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Preface

This volume is a collection of papers presented at the international confer-
ence on Nonlinear Mathematics for Uncertainty and Its Applications (NL-
MUA2011), held at Beijing University of Technology during the week of
September 7–9, 2011.

Over the last fifty years there have been many attempts in extending the
theory of classical probability and statistical models to the generalized one
which can cope with problems of inference and decision making when the
model-related information is scarce, vague, ambiguous, or incomplete. Such
attempts include the study of nonadditive measures and their integrals, im-
precise probabilities and random sets, and their applications in information
sciences, economics, finance, insurance, engineering, and social sciences.

Possibility measures, belief functions, Choquet capacities, and fuzzy mea-
sures are all nonadditive measures, and their related integrals are nonlinear.
Imprecise probability allows us to measure chance and uncertainty with a
family of classical probability measures. Their lower and upper expectations
or previsions are nonlinear again. Theory of random sets and related sub-
jects extend the horizon of classical probability and statistics to set-valued
and fuzzy set-valued cases.

The conference brought together more than one hundred participants from
fourteen different countries. It gathered researchers and practitioners involved
with all aspects of nonlinear mathematics for uncertainty and its applications.
Researchers in probability theory and statistics were also invited since the
scope of the conference is the heart of current interests in new mathematical
perspectives for quantifying appropriately risk measures in financial econo-
metrics as well as formulating realistic models for prediction. They exchanged
their research results and discussed open problems and novel applications.
They also fostered the collaboration in future research and applied projects
in the area of nonlinear mathematics and uncertainty management.

During the meeting the following five principal speakers delivered plenary
lectures.



VI Preface

Michio Sugeno, Japan
Zengjing Chen, Shaodong University, China
Thierry Denoeux, Universite de Technologie de Compiegne, France
Jianming Xia, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, China
Gert de Cooman, Ghent University, Belgium

In addition to plenary lectures, there were also eighty-six talks organized in
parallel sessions.

The proceedings presented here contain eighty-five papers; some of them
are expository articles, while others are original papers. The papers included
in this volume were carefully evaluated and recommended for publication by
reviewers. Some of the topics include nonadditive measures and nonlinear
integrals, Choquet, Sugeno and other types of integrals, possibility theory,
Dempster-Shafer theory, random sets, fuzzy random sets and related statis-
tics, set-valued and fuzzy stochastic processes, imprecise probability theory
and related statistical models, fuzzy mathematics, nonlinear functional analy-
sis, information theory, mathematical finance and risk managements, decision
making under various types of uncertainty, information fusion and knowledge
integration in uncertain environments, soft computing and intelligent data
analysis, applications in economics, finance, insurance, biology, engineering
and others.

The publication of this volume was supported by grants PHR (No. 2010061
02), NSFC (No. 10971007), China.

We would like to express our appreciation to all the members of Program
Chairs, Publication Chairs, International Program Committee, and the ex-
ternal referees for their great help and support.

On behalf of the organizing committee we would like to take this oppor-
tunity to thank all our colleagues, secretarial staff members, and graduate
students from College of Applied Sciences, Beijing University of Technology.
Our acknowledgement of appreciation goes to their assistance in organizing
the meetings, chairing the sessions, and helping with registration and many
other necessary undertakings.

Beijing, China Shoumei Li
September 2011 Xia Wang

Yoshiaki Okazaki
Jun Kawabe

Toshiaki Murofushi
Li Guan
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Ordinal Preference Models Based on
S-Integrals and Their Verification

Michio Sugeno

Abstract. This paper discusses the ordinal preference models based on
S-integrals. In parallel with the cardinal preference models based on Choquet
integrals, there are various S-integrals: S-integral, SS-integral, CPTS-integral
and BCS-integral.

First, we verify the ordinal models. To this aim, two psychological exper-
iments have been conducted, where all the preferences of subjects could be
modeled by S-, SS-, CPTS- and BCS-integrals. A counter example to BCS-
integral models is also shown.

Next, we consider Savage’s Omelet problem in multi-criteria decision mak-
ing. There are many admissible preference orders of acts depending on the
consequents of acts. We find that there exist some preferences which cannot
be modeled even by the BCS-integral.

Finally, to breakthrough the difficulty of BCS-integral models, we propose
hierarchical preference models by which we can model the above counter
examples.

Keywords: S-integrals, Ordinal preference, Savage’s omelet problem,
Hierarchical preference.

1 Introduction

There are two streams in theoretical models in preference theory. One is to
use cardinal models with addition and multiplication on real numbers, where
there are two cases: preference under risk when objective probabilities are
available and preference under uncertainty when only subjective probabilities
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are available. The other is to use ordinal models with max and min operations
on ordinal numbers.

Concerning the cardinal preference theory, we can go back to St. Peters-
burg’s paradox in which Bernoulli presented the seminal idea of utility func-
tions in 1738 [2]. Many years later, von Neumann and Morgenstern initiated
the expected utility theory with objective probabilities in 1944 [12]. Soon
later, Allais showed a counter example to their theory in 1953 [1]. In case
that objective probabilities are not available, Savage suggested to use subjec-
tive probabilities in 1954 [13]. Then Ellsberg showed the well-known Ellsberg
paradox in 1961 [4] that is a counter example to the Savage’s theory.

These difficulties can be solved by Schmeidler’s concept of nonlinear expec-
tation in 1989 [14] based on Choquet integrals with distorted probabilities (a
special case of fuzzy measures) [3] that are obtained by the monotonic trans-
formation of probabilities, where the Choquet integral with respect to fuzzy
measures [15] was first suggested by Höhle in 1982 [8] and also studied by
Murofushi and Sugeno in 1989 [10]. Then, based on Choquet integrals, Tver-
sky and Kahneman presented Cumulative Prospect Theory in 1992 [16] in
which they used the so-called Cumulative Prospect Theory (CPT) Choquet
integrals with two distorted probabilities on a bipolar scale. Their theory stat-
ing that people behave in a case of losses differently from a case of gains was
experimentally verified. However, a counter example to Cumulative Prospect
Theory was shown by Grabisch and Labresuche, and to solve this difficulty,
the concept of Bi-capacity (BC) Choquet integrals was suggested as an exten-
sion of CPT-Choquet integrals in 2002 [5]. The concept of Bipolar capacities
was also presented by Greco et al. in 2002 [7]. Again, a counter example to
BC-Choquet integral models was shown in 2007 [9], [6]. That is, there ex-
ists a reasonable preference that cannot be modeled even by a BC-Choquet
integral model.

2 Ordinal Preference Theory Based on S-Integrals

While the cardinal theory has a long history, the ordinal theory started very
recently. It is considered that the ordinal theory based on only comparisons
matches human subjective preferences better than the cardinal theory since it
is hardly assumed that ordinary people make numerical calculations in their
brains. In parallel with various Choquet integrals, we can define S-integral,
Symmetric S-integral, CPT S-integral, and Bi-capacity S-integral [8], [6].

Define a finite set: X = {x1, · · · , xn}, an ordinal scale: L+ = {0, · · · , ℓ}
Let f be a function f : X → L, where f(x) can be expressed as a row vector
f = (f1, · · · , fn) with fi = f(xi). Without loss of generality, we assume
f1 ≤ · · · ≤ fn; if not, we can rearrange it in an increasing order.
Let μ be a fuzzy measure on X , μ: 2X −→ L+ such that

(i) μ(φ) = 0,
(ii) μ(A) ≤ μ(B), forA ⊂ B.
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The S-integral of f with respect to a fuzzy measure μ is defined as

Sμ(f) = Sμ(f1, · · · , fn) =
n∨

i=1

[fi ∧ μ(Ai)], (1)

where Ai = {xi, · · · , xn}.
Define L− = {−ℓ, · · · ,−1} and a bipolar scale L = L− ∪ L+. We extend

max ∨ and min ∧ operations to L such that for a, b ∈ L,

a � b = sign(a + b)(|a| ∨ |b|),
a � b = sign(a · b)(|a| ∧ |b|). (2)

where neither � nor � is associative, and � is not distributive over �. How-
ever, these do not cause any difficulties in the following applications.

The symmetric S-integral of f with respect to a fuzzy measure μ is defined
as

SSμ(f) = Sμ(f+) �−Sμ(f−), (3)

where f+ = max{f, 0} and f− = −min{f, 0}.
The Cumulative Prospect Theory S-integral of f with respect to a pair of

fuzzy measures μ+ and μ− is defined as

CPTSμ+,μ−(f) = Sμ+(f+) �−Sμ−(f−), (4)

where μ+ is a fuzzy measure for the positive part of f and μ− for the negative
part of f .

Now define a bi-capacity v as a set function with two arguments v : 2X ×
2X → L such that

(i) v(φ, φ) = 0,

(ii) v(A,B) ≤ v(A
′

, B), forA ⊂ A
′

,

(iii) v(A,B) ≥ v(A,B
′

), forB ⊃ B
′

.

Then, the Bi-Capacity S-integral of f with respect to a bi-capacity v is defined
as

BCSv(f) =
n�

i=1

[|fi|� v(Ai ∩X+, Ai ∩X−)], (5)

where |f1| ≤ · · · ≤ |fn|, X+ = {x|f ≥ 0} and X− = {x|f < 0}.
Obviously, SS-integral is an extension of S-integral and CPTS-integral is

a further extension, but BCS-integral is not exactly an extension of CPTS-
integral; there exist a CPTS-integral that cannot be expressed by a BCS-
integral.
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3 Experimental Verifications of S-Integral Models

We have conducted two psychological experiments to verify S-integral models
for human subjective preferences.

3.1 Preferences of Apartments

We have prepared five samples of apartments for students and married adults
with four attributes: (1) time to the nearest station, (2) life environment such
as shops, restaurants, parks, etc., (3) plan of apartment, and (4) direction of
the main room. The samples are shown in Tables 1 and 2.

Table 1 Samples of apartments for students

Apartment Time Life Plan Direction

A 20 min. good 1K SE

B 3 min. not so good 2DK E

C 10 min. not good 1R S

D 18 min. very good 1DK SW

E 7 min. medium 2K W

Table 2 Samples of apartments for married adults

Apartment Time Life Plan Direction

A 16 min. not so good 2LDK SW

B 3 min. medium 1LDK W

C 20 min. very good 2DK S

D 12 min. good 3DK NW

E 7 min. not good 2LK E

We made a questionnaire about preference orders on the attributes and
the apartments, where subjects were 24 students aged 21-22 and 21 married
adults aged around 30-40. We show an example of the obtained answers; here,
life environment is a priori ordered as is seen in Tables 1 and 2, where 1K: one
bedroom and one kitchen; 2DK: two bedroom and one dining kitchen; 2LDK:
two bedrooms, one living room and one dining kitchen; 1R: one bedroom;
2LK: two bedrooms, one living room and one kitchen; E: East; S: South; SE:
South East.

Time: B > E > C > D > A: 5 > 4 > 3 > 2 > 1,
Plan: B > D = E > A > C: 5 > 4 = 4 > 2 > 1,
Direction: A > B > C = D > E: 5 > 4 > 3 = 3 > 1,
Apartment: B = D > A > E > C: 5 = 5 > 3 > 2 > 1.
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As is shown above, preference orders are transformed to those in the scale
L+ = {0, · · · , 5}.

We show some modeling examples of preferences. For modeling, we con-
sider an apartment, e.g., A as a map from X (a set of attributes) to L+

(a unipolar scale) and also express it by a vector (1, 4, 3, 1) as is seen
in Table 3, where the preference of apartments by the student No.13 is
B > E > A = D > C.

Table 3 Preference by student No.13: B > E > A = D > C

Apart. x1: Time x2: Life x3: Plan x4: Direc.

A 1 4 3 1

B 5 2 5 2

C 4 1 1 5

D 1 5 5 4

E 4 3 3 4

For the sake of simplicity, we express, for instance, μ({x1, x3}) as μ(13), By
setting μ(13) = 5, μ(14) = 2 and μ(234) = 2, where other values are free
as far as they satisfy the monotonicity of a fuzzy measure, we easily obtain
Sμ(A) = 2, Sμ(B) = 5, Sμ(C) = 1, Sμ(D) = 2, Sμ(E) = 3. From these follows
B > E > A = D > C. That is, this preference is modeled by a S-integral.

Another example is shown in Table 4 (a). This example is found to be
modeled neither by a S-integral nor by a SS-integral. We apply a CPTS-
integral. To this aim we choose a neutral value 3 and subtract it from the
orders of the attributes expressed in L+ as is seen in Table 4 (b), where a
neutral value is chosen from {0, · · · , 4}.

Table 4 Preference by student No. 2: E > D > B > C > A

(a)

❅
❅❅

x1 x2 x3 x4

A 1 4 2 3

B 3 2 3 1

C 5 1 1 5

D 1 5 4 5

E 5 3 5 2

(b) :subtract 3 from(a)

❅
❅❅

x1 x2 x3 x4

A -2 1 -1 0

B 0 -1 0 -2

C 2 -2 -2 2

D -2 2 1 2

E 2 0 2 -1

Then we normalize these in L = {−5, · · · , 5}. As a result, we obtain the
normalized orders of the attributes expressed on a bipolar scale L as is shown
in Table 5.
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Table 5 Normalized preference table of student No. 2 with n = 3

x1 x2 x3 x4

A -5 3 -3 0

B 0 -3 0 -5

C 5 -5 -5 5

D -5 5 3 5

E 5 0 5 -3

Setting μ+(2) = 2, μ+(13) = 4, μ+(14) = 1, μ+(234) = 3, and μ−(1) =
2, μ−(4) = 1, μ−(13) = 3, μ−(23) = 2, μ−(24) = 1, we obtain that

CPTSμ+,μ−(A) = [3 ∧ μ+(2)] �−[(3 ∧ μ−(13)) ∨ (5 ∧ μ−(1))] = −3,

CPTSμ+,μ−(B) = −[(3 ∧ μ−(24)) ∨ (5 ∧ μ−(4))] = −1,

CPTSμ+,μ−(C) = [(5 ∧ μ+(14))] �−[(5 ∧ μ−(23))] = −2,

CPTSμ+,μ−(D) = [(3 ∧ μ+(234)) ∨ (5 ∧ μ+(24))] �−[(5 ∧ μ−(1))] = 3,

CPTSμ+,μ−(E) = [5 ∧ μ+(13)] �−[3 ∧ μ−(4)] = 4.

From these follows E > D > B > C > A. Therefore this preference can be
modeled by a CPTS-integral.

The results of modeling are summarized in Table 6. As is seen, all the
preferences in the experiments are modeled by S-, SS-, or CPTS-integrals.

Table 6 Modeling results of preferences for apartments

❅
❅❅

S-integral SS-integral CPTS-integral Total

Students 10 (42%) 8 (33%) 6 (25%) 24

Adults 7 (33%) 8 (38%) 6 (29%) 21

Total 17 (38%) 16 (36%) 12 (27%) 45

3.2 Preferences of Part-Time Jobs

We consider the preferences of part-time jobs. Table 7 shows five samples of
part-time jobs with four attributes: (1) hourly wage, (2) number of times per
week, (3) access time to work place, and (4) hardness of job. We conducted
similar experiments where the subjects were 10 male students and 10 female
students. The preference by the student No. 6 modified with a neutral value
3 is shown in Table 8. It is found that this preference cannot be modeled for
any neutral value by a CPTS-integral. Therefore, we apply a BCS-integral to
the preference table.
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Table 7 Part-time jobs for students

Job Hourly Wage Times/Week Access Time Hardness of Job

A 1100 yen 2 20 min rather busy

B 900 yen 4 15 min average

C 1100 yen 2 25 min busy

D 700 yen 6 10 min rather not busy

E 700 yen 6 5 min not busy

Table 8 Preference expressed in L with n = 3 by student No. 6: A > C > B >
E > D

❅
❅❅

x1 x2 x3 x4

A 5 5 -3 -3

B 0 0 0 0

C 5 5 -5 -5

D -5 -5 3 3

E -5 -5 5 5

Setting a bi-capacity as v(12, φ) = 5, v(12, 34) = 3, v(34, 12) = −3, and
v(φ, 12) = −5, we obtain that

BCSv(A) = [3 � v(12, 34)] � [5 � v(12, φ)] = 5,

BCSv(B) = 0,

BCSv(C) = (5 � v(12, 34)) = 3,

BCSv(D) = [3 � v(34, 12)] � [5 � v(φ, 12)] = −5,

BCSv(E) = (5 � v(34, 12)) = −3.

From these, the preference order by the student No. 6: A > C > B > E > D
is derived.

The results of modeling are summarized in Table 9 that shows all the pref-
erences are modeled by S-, SS-, CPTS-, or BCS-integrals. The results suggest
that the female students make more sophisticated preferences than the male
students, since compared to the male students; there are no preferences mod-
eled by S-integrals and are more preferences modeled by BCS-integrals.

Hinted by the above examples, we present a counter example to BCS-
integral models as is shown in Table 10 (a). We apply the following preference
rules to it: (1) first evaluate x1 and x2 roughly and then (2) evaluate x3 and
x4 in detail. From the rule 1, we obtain {A,B} > C > {D,E} and then,
from the rule (2) followsA > B > C > D > E. This reasonable preference
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Table 9 Modeling results of preferences for part-time jobs

❅
❅❅

S SS CPTS BCS Total

Male 7 0 1 2 10

Female 0 3 1 6 10

Total 7 3 2 8 (40%) 20

cannot be modeled even by BCS-integral models with any neutral values. For
instance, we transform (a) in Table 10 to (b) with n = 3.

Table 10 A counter example to BCS-integral models

(a)

❅
❅❅

x1 x2 x3 x4

A 4 5 2 1

B 5 5 1 1

C 3 3 3 3

D 1 1 5 5

E 2 1 4 5

(b) with n = 3

❅
❅❅

x1 x2 x3 x4.

A 4 5 -4 -5

B 5 5 -5 -5

C 0 0 0 0

D -5 -5 5 5

E -4 -5 4 5

Applying BCS-integral, we obtain that

BCSv(A) = [4 � v(12, 34)] � [(5 � v(2, 4))],

BCSv(B) = 5 � v(12, 34),

BCSv(C) = 0,

BCSv(D) = 5 � v(34, 12),

BCSv(E) = [4 � v(34, 12)] � [(5 � v(4, 2))].

It is easily proved that there do not exist v(12, 34), v(2, 4), v(34, 12) and v(4, 2)
satisfying that BCSv(A) > BCSv(B) > 0 > BCSv(D) > BCSv(E).

4 Savage’s Omelet Problem

In his book, “The foundation of statistics” in 1954 [13], Savage gave an inter-
esting example for multi-criteria decision making known as Savage’s omelet
problem that consists of three acts and two states as we shall see. We are
making an omelet with six eggs and so far five fresh eggs have been broken
into a bowl. For a sixth egg that may be not fresh, we can take three acts.

a1 : break it into a bowl;
a2 : break it into a saucer to examine its quality;
a3 : throw it away.
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If we take a1, we may lose the whole omelet when a 6th egg is rotten; if we
take a2, we have a saucer to wash; and if we take a3, we may lose a fresh egg.
Then we have the following decision (or preference in our terminology) table,
where there are two states: fresh and rotten. Many scientists have ever used
this problem to explain decision making problems, but nobody has ever tried
to fully solve the problem. The reason for this is, perhaps, that the problem
looks very simple. It is, however, not the case as we shall see. In the sequel,
we will fully analyze this problem and give a complete solution to it.

We denote 6E: 6-egg-omelet; 6EW: 6-egg-omelet and a saucer to wash;
5EW: 5-egg-omelet and a saucer to wash; 5EL: 5-egg-omelet and one egg lost;
5E: 5-egg-omelet; NE: no omelet. Then the preference table of the Savage’s
omelet problem is shown in Table 11.

Table 11 Preference table of Savage’s omelet problem

❅
❅❅

fresh rotten

a1: break into bowl 6E: 6-egg-omlet NE: no omlet

a2: break into saucer 6EW: 6-egg-omlet & saucer
to wash

5EW: 5-egg-omlet with
saucer to wash

a3: throw away 5EL: 5-egg-omlet & saucer
to wash

5E: 5-egg-omlet

First we may assume in general that (i) 6E > any > NE, (ii) 6EW >
5EW , and (iii) 5E > 5EW or 5EL. These assumptions seem quite reasonable
from our common sense though there may be a person who states that all
the consequents are the same.

Now we find 11 admissible orders for six consequents under the above
assumption, for instance, #1: 6E > 6EW > 5E > 5EW > 5EL > NE, #8:
6E > 5E > 6EW > 5EW = 5EL > NE, and so on. We express these orders
in L+ = {0, · · · , 5}. Then we can list up 13 possible orders of three acts, for
instance, 1© a1 > a2 > a3, 5© a2 > a1 > a3, 10© a3 > a1 = a2, 13© a1 = a2 = a3

and so on. We note that not all orders of acts are admissible with respect to
those of consequents. For example, consider the following preference order of
consequents:

a1: 5(6E)/fresh, 0(NE)/rotten;

a2: 3(6EW)/fresh, 1(5EW)/rotten;

a3: 3(5EL)/fresh, 4(5E)/rotten.

In this case, the order a2 > a3 is not admissible since we have to assume
monotonicity: a2 ≤ a3; thus there are only 8 admissible orders about this
preference table. Then we find that there are altogether 130 admissible orders
of acts concerned with 11 preference tables corresponding to the orders of
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consequents. Taking into account that we may have to consider a neutral value
chosen in {0, · · · , 4} for modeling, there are 650 (130× 5) cases altogether.

We consider the preference table #6 shown in Table 12 with five neutral
values, where 0 implies the original table.

Table 12 Preference table #6 with 13 admissible orders of acts

❅
❅❅

n=0 n=1 n=2 n=3 n=4

a1 5 0 5 -2 5 -4 4 -5 2 -5

a2 4 1 4 0 4 -3 3 -4 0 -4

a3 2 4 2 4 0 4 -3 3 -3 0

The six orders 1© a1 > a2 > a3, 2© a1 > a2 = a3, 4© a1 = a2 > a3, 10©
a3 > a1 = a2, 11© a3 > a2 > a1, 13© a1 = a2 = a3 are modeled by S-integrals
with n = 0; the two orders 8© a2 = a3 > a1 and 12© a3 = a1 > a2 are
modeled by SS-integral with n = 1 and n = 2, respectively; the two orders
6© a2 > a1 = a3, 7© a2 > a3 > a1 are modeled by CPTS-integrals with
n = 2; the two orders 3© a1 > a3 > a2, 9© a3 > a1 > a2 are also modeled
by CPTS-integrals with n = 3, and finally, the order 5© a2 > a1 > a3 cannot
be modeled even by a BCS-integral. For instance, we can calculate the BCS-
integral of the table with n = 4 as follows:

BCS(a1) = [2 � v(1, 2)] � [(5 � v(φ, 2))],

BCS(a2) = 4 � v(φ, 2),

BCS(a3) = 3 � v(1, 2).

It is easily proved that there do not exist v(1, 2) and v(φ, 2) satisfying that
BCS(a2) > BCS(a1) > BCS(a3): 5© a2 > a1 > a3; it is also the case for the
other neutral values.

We examined all the cases with S-, SS-, CPTS-, and BCS-integrals and
five neutral values including 0. The results are summarized in Table 13 for
the 130 preference orders of acts corresponding to the 11 preference tables.
As is seen, there are 16 preference orders that cannot be modeled even by
BCS-integrals.

Table 13 Modeling results of Savage’s omelet problem

S SS CPTS BCS No model Total

80 13 19 2 16 130

62% 10% 14% 2% 12% 100%
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5 Hierarchical Preference Models

In order to breakthrough the difficulties of BCS-integrals, we propose hierar-
chical preference models. We begin with the definition of a preference table.

Define a preference table as a triplet (A,X,L+), where A = {a1, · · · , ap}:
a set of objects, X = {x1, · · · , xq}: a set of attributes, and L+ = {0, · · · , ℓ}:
a unipolar scale. Here ai is also regarded as a map ai : X → L+ assigning the
orders of consequents to attributes, alternatively, ai can be expressed for a
finite set X by a row vector (ai1, · · · , aiq) ∈ (L+)1×q, where aij = ai(xj). As
has been stated before, the S-integral of ai with respect to a fuzzy measure
μ is written as Sμ(ai) = Sμ(ai1, · · · , aiq). Define a column vector of acts
[a] = (a1, · · · , ap)

t where t means transpose. Here, [a] can be expressed as
a matrix {aij} ∈ Lp×q. First, we extend [a] to [a]n on a bipolar scale L =
{−ℓ, · · · , 0, · · · , ℓ} by subtracting a neutral value n ∈ {0, · · · , ℓ − 1} from
each element of a matrix [a] and then normalize it in L as we have seen. This
process is represented by a map

n : (L+)p×q → Lp×q : [a] −→ [a]n, (6)

We call [a]n a preference matrix with a neutral value n, where [a]0 implies
an original preference matrix.

Now define a general S-integral GS as an element of {S, SS,CPTS,BCS}
and a general fuzzy measure gμ on X as an element of {ordinary fuzzy mea-
sure μ, a pair of CPT-type fuzzy measures (μ+, μ−), a bi-capacity v}. Con-
sider a general S-integral as a map

GSgμ : L1×q → L :

(ai)n = (ai1, · · · , aiq)n −→ GSgμ((ai)n) = GSgμ((ai1, · · · , aiq)n), (7)

where (ai)n is the i-th row vector of a matrix [a]n.

Preference model at level 1
Extending the domain of a map GSgμ from L1×q to Lp×q, we define a general
S-integral of [a]n with respect to a general fuzzy measure gμ as a map

GSgμ : Lp×q → Lp×1 :

[a]n = ((a1)n, · · · , (ap)n)t −→ GSgμ([a]n) = (GSgμ(a1), · · · , GSgμ(ap))
t.

(8)

We call it preference model of the original preference matrix [a] ∈ (L+)p×q,
based on [a]n with a neutral value n.

Remark:
We can consider GSgμ([a]n) as (GSgμ ◦ n)([a]), i.e., the composition of two
maps n : (L+)p×q → Lp×q and GSgμ : Lp×q → Lp×1. That is,
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GSgμ ◦ n : (L+)p×q → Lp×1 : [a] −→ GSgμ([a]n). (9)

Let N be a set of neutral values: N = {n1, · · · , nr}and define [a]N =
([a]n1, · · · , [a]nr) ∈ (Lp×q)r : a vector of matrices. Let GM be a set of general
fuzzy measure corresponding to N at level 1: GM = {gμ1, · · · , gμr}. Here
again, we consider N as a map

N : (L+)p×q → (Lp×q)r : [a] −→ [a]N = ([a]n1 , · · · , [a]nr ), (10)

Then define a general S-integral with respect to a set of general fuzzy mea-
sures GM as a map

GSGM : (Lp×q)r → Lp×r :

[a]N −→ GSGM ([a]N ) = (GS1
gμ1

([a]n1), · · · , GSr
gμr

([a]nr )), (11)

where GSk, 1 ≤ k ≤ r, implies a certain general S-integral and GSGM ([a]N )
is expressed as the composition of two maps

GSGM ◦N : (L+)p×q → Lp×r : [a] −→ GSGM ([a]N ), (12)

We call GSGM ([a]N ) preference matrix at level 2. Now we define a set
GMN = {(gμk, nk)|gμk ∈ GM,nk ∈ N, 1 ≤ k ≤ r}. Noting the expression
at Eq. (11) and [a]N = ((a1)N , · · · , (ap)N )t, we can consider GSGM ([a]N ) as
a matrix shown at Fig. 1, where (ai)N , the i-th element of [a]N , is regarded
as a map (note: at level 1, (ai)n is regarded as a map from X to L)

(ai)N : GMN −→ L : (gμk, nk) −→ GSgμk
((ai)nk

), (13)

(gμk, nk)

(ai)N GSgμk
((ai)nk

)

Fig. 1 Preference matrix GSGM ([a]N ) at level 2

Preference model at level 2
Let gσ be a general fuzzy measure on GMN and GSgσ be a general S-integral
with respect to gσ. We define a preference model of the preference matrix
[a] ∈ (L+)p×q based on [a]N with a set of neutral values N at level 2 as
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GSgσ : Lp×r → Lp×1 : GSGM ([a]N ) −→ GSgσ(GSGM ([a]N )), (14)

where GSgσ is a general S-integral of GSGM ([a]N ) with respect to a general
fuzzy measure gσ, and GSgσ(GSGM ([a]N )) is expressed as the composition
of three maps

GSgσ ◦GSGM ◦N : (L+)p×q → Lp×1 : [a] −→ GSgσ(GSGM ([a]N )), (15)

We illustrate the hierarchi cal modeling process at Fig. 2.

Now we are ready to apply a hierarchical preference model to the Savage’s
omelet problem. Consider the preference table #6. We have

[a]0 =

⎛
⎝

5 0
4 1
2 4

⎞
⎠ , [a]2 =

⎛
⎝

5 −4
4 −3
0 4

⎞
⎠ .

Let μ1(1) = 3, μ1(2) = 2 and μ+
2 (1) = 4, μ+

2 (2) = 0, μ−
2 (2) = 4. Then we

obtain

Sμ1([a]0) = Sμ1

⎛
⎝

5 0
4 1
2 4

⎞
⎠ =

⎛
⎝

3
3
2

⎞
⎠ ,

CPTSμ+
2 ,μ−

2
([a]2) = CPTSμ2

⎛
⎝

5 −4
4 −3
0 4

⎞
⎠ =

⎛
⎝

0
4
0

⎞
⎠ ,

where Sμ1([a]0) gives a1 = a2 > a3 and CPTSμ+
2 ,μ−

2
([a]2) gives a2 > a1 = a3.

Now setting that σ(1) = 3 and σ(2) = 4, we obtain that

Sσ(Sμ1([a]0), CPTSμ+
2 ,μ−

2
([a]2)) = Sσ

⎛
⎝

3 0
3 4
2 0

⎞
⎠ =

⎛
⎝

3
4
2

⎞
⎠ .

Remark:
As we see in the above example, Sσ is chosen for GSgσ, and GS1 = S with
gμ1 = μ1, GS2 = CPTS with gμ2 = (μ+

2 , μ
−
2 ).

That is, we can model the preference order 5© a2 > a1 > a3 for the
preference table #6 by a hierarchical preference model. Similarly we can show
that all the preference orders of the Savage’s omelet problem to which BCS-
integral models are not applicable are modeled by hierarchical preference
models. The above hierarchical preference model is illustrated at Fig. 3.
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Fig. 2 Hierarchical modeling of preferences
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✻

✁
✁

✁
✁

❆
❆
❆
❆

5© a2 > a1 > a3

Sμ1([a]0) CPTSμ+
2 ,μ+

2
([a]2)

Sσ

a1 = a2 > a3 a2 > a1 = a3

Fig. 3 Hierarchical model of preference order 5© for preference table #6

Next we consider the counter example shown in Table 10 concerning pref-
erences on part-time jobs: a1 > a2 > a3 > a4 > a5. We have its preference
matrices [a]0 and [a]3 such that

[a]0 =

⎛
⎜⎜⎜⎜⎝

4 5 2 1
5 5 1 1
3 3 3 3
1 1 5 5
2 1 4 5

⎞
⎟⎟⎟⎟⎠

, [a]3 =

⎛
⎜⎜⎜⎜⎝

4 5 5 −5
5 5 −5 −5
0 0 0 0
−5 −5 5 5
−4 −5 4 5

⎞
⎟⎟⎟⎟⎠

It is found that this counter example can be modeled by a hierarchical pref-
erence model with 4 levels as is illustrated at Fig. 4; we omit the detailed
modeling process. Note that this hierarchical model evaluates at level 2 the
outputs from the level 1, but at level 3 the outputs from both the levels 1
and 2, and so on.

Finally, we consider a counter example to Bi-capacity Choquet integral
models presented by Labreuche and Grabisch [9], [6]. First we need the defi-
nitions of various Choquet integrals.

Let f : X −→ R+ be a non-negative real valued function where X is a
finite set {x1, · · · , xn}, and μ be a fuzzy measure on X with a range R+.
Then, the Choquet integral of f with respect of μ is defined as

Cμ(f) =

n∑

i=0

(fi − fi−1), (16)

where fi ≤ · · · ≤ fn, fi = f(xi), f0 = 0 andAi = {xi, ., xn}.
Let f : X −→ R, f+ = max(f, 0) and f− = min(f, 0), then the Symmetric

Choquet integral (or Šipoš integral) is defined as

SCμ(f) = Cμ(f+)− Cμ(f−), (17)

Similarly the Cumulative Prospect Theory Choquet integral is defined with
respect to two fuzzy measures μ+ and μ−as
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Fig. 4 Hierarchical model for a counter example to BCS-integrals with four levels

CPTCμ(f) = Cμ+(f+)− Cμ−(f−), (18)

Let v be a bi-capacity such that v : 2X×2X −→ [−1, 1], then the Bi-capacity
Choquet integral is defined as

BCCμ(f) =

n∑

i=0

(|fi| − |fi−1|)v(Ai ∩X+, Ai ∩X−), (19)

where |f1| ≤ · · · ≤ |fn|, |f0| = 0, X+ = {x|f ≥ 0} and X− = {x|f < 0}.
Table 14 shows the preference table with consequents in R of the counter

example. In this table, a1 ∼ a4 are four high school students and x1, x2 and
x3 are the test scores of mathematics, statistics, and language, respectively. A
teacher applies the rules; if mathematics is well satisfied, consider language,
and if mathematics is ill-satisfied, consider statistics since it is usually known
that a student good at mathematics is also good at statistics. Then the
preference order of the students is given as a1 > a2 > a3 > a4. This order
looks reasonable, but it cannot be modeled even by a BCC-integral.
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Table 14 A counter example to BCC-integrals: [a]∗

x1 x2 x3

a1 10 10 -20

a2 10 10 -30

a3 -10 20 -30

a4 -10 10 -20

We can calculate BCC integrals as

BCCv(a1) = 10v(12, 3) + 10v(φ, 3),

BCCv(a2) = 10v(12, 3) + 10v(2, 3) + 10v(φ, 3),

BCCv(a3) = 10v(2, 13) + 10v(2, 3) + 10v(φ, 3),

BCCv(a4) = 10v(2, 13) + 10v(φ, 3).

Then, BCCv(a1) > BCCv(a2) implies that v(2, 3) < 0, and BCCv(a3) >
BCCv(a4) implies that v(2, 3) > 0. This is a contradiction and so the prefer-
ence cannot be modeled even by a BCC-integral.

Now we apply a hierarchical preference model to this counter example. We
define a preference matrix [a]∗ for the preference table shown in Table 14,
where ∗ implies a certain neutral value with which the table is derived from
the original test scores.

Setting μ1(2) = 0.5, μ1(3) = 0 and μ1(12) = μ1(13) = 1, we have
SCμ1([a]∗) = (10, 15, 0,−5)t that implies a2 > a1 > a3 > a4. Also set-
ting μ2(2) = 0, μ2(3) = 0.2 and μ2(12) = μ2(13) = 1, we have SCμ2([a]∗) =
(6, 4,−14,−12)t that implies a1 > a2 > a4 > a3. Next setting σ(1) = σ(2) =
0 at level 2, we obtain

SCσ(SCμ1([a]∗), SCμ2([a]∗)) =

⎛
⎜⎜⎝

10 6
15 4
0 −14
−5 −12

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

6
4
0
−5

⎞
⎟⎟⎠ .

This implies a1 > a2 > a3 > a4. Therefore we can model the counter example
by a hierarchical model. An idea similar to a hierarchical model is discussed
in [11].

Conclusions

In his paper, we discussed the ordinal preference models based on various
S-integrals. First, we verified these models by conducting psychological ex-
periments. Then, we analyzed the Savage’s omelet problem under the frame-
work of S-integral models and gave a complete solution to it. In order to
breakthrough the difficulty of Bi-capacity S-integral models, we proposed
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hierarchical preference models based on S-integrals. It has been shown that
all the counter examples to S-integral models can be modeled by hierarchi-
cal preference models. It has been also shown that a counter example to
Bi-capacity Choquet integral models can be modeled by the same scheme.
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Strong Laws of Large Numbers for
Bernoulli Experiments under
Ambiguity

Zengjing Chen and Panyu Wu

Abstract. In this paper, we investigate the strong laws of large numbers on
upper probability space which contains the case of Bernoulli experiments
under ambiguity. Our results are natural extensions of the classical Kol-
mogorov’s strong law of large numbers to the case where probability mea-
sures become to imprecise. Finally, an important feature of these strong laws
of large numbers is to provide a frequentist perspective on capacities.

Keywords: Bernoulli experiments, Capacity, Strong law of large number,
Upper-expectation.

1 Introduction

One of the key concepts in probability theory is the notion of independence.
Using independence, we can decompose a complex problem into simpler com-
ponents and build a global model from smaller sub-models. The concept of
independence is essential for imprecise probabilities too, but there is disagree-
ment about how to define it (one can see [2] to get the different definitions
of independence under imprecise probability).

Recently, Peng introduced a definition of independence in upper probabil-
ity space which is very popular (see eg. [6]), many results such as the law of
large number (for short LLN) [6], central limit theorem [6], theory of large
deviations [5] have been established and have been used to many fields for
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example, finance, control theory, statistics, et al.. Using Peng’s definition of
IID, Chen [1] obtains the strong laws of large number (for short SLLN) on
upper probability space. In this paper, we give a new definition of indepen-
dence in upper probability space which contains the Bernoulli experiments
under ambiguity, and the Peng’s independence is our special case. Using this
new independence, we investigate the SLLN which need not the condition
some like identically distributed on upper probability space. The conclusion
of Chen [1] will become a direct corollary of our SLLN. Note that we do not
use Peng’s LLN as in proof of [1], but fortunately we overcome this gap by
exponential function. Finally, we give the invariance principle of SLLN under
upper probability space.

2 Notation and Lemmas

Let (Ω,F) be a measurable space, and M the set of all probability measures
on Ω. Every non-empty subset P ⊆M defines an upper probability

V(A) = sup
P∈P

P (A), A ∈ F ,

and a lower probability

v(A) = inf
P∈P

P (A), A ∈ F .

Obviously V and v are conjugate to each other, that is

V(A) + v(Ac) = 1,

where Ac is the complement set of A.

Definition 1. V (·) is a set function from F to [0, 1], V (·) is called a capacity
if it satisfying the following (1)(2) and is called a lower/upper continuous
capacity if it further satisfying the following(3)/(4):

(1) V (φ) = 0, V (Ω) = 1.

(2) V (A) ≤ V (B), whenever A ⊂ B and A,B ∈ F .

(3) V (An) ↑ V (A), if An ↑ A, where An, A ∈ F .

(4) V (An) ↓ V (A), if An ↓ A and An, where An, A ∈ F .

Remark 1. It is easy to check that V(·) is always a lower continuous capac-
ity and v(·) is always a upper continuous capacity. And V(·) being upper
continuous is equivalent to v(·) being lower continuous.

Definition 2. [3] quasi-surely
A set D is polar set if V(D) = 0 and a property holds “quasi-surely” (q.s. for
short) if it holds outside a polar set.
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Now we define the upper expectation E[·] and the lower expectation E(·)
on (Ω,F), for each X ∈ L0(Ω) (the space of all F measurable real random
variables on Ω),

E[X ] = sup
P∈P

EP [X ], E [X ] = inf
P∈P

EP [X ].

It is easy to check that E [X ] = −E[−X ] and E[·] is a sub-linear expecta-
tion (more details can see [6]) on (Ω,F), that is E[·] satisfies the following
properties (a)-(d): for all X,Y ∈ L0(Ω),

(a) Monotonicity: X ≥ Y implies E[X ] ≥ E[Y ].
(b) Constant preserving: E[c] = c, ∀c ∈ R.
(c) Positive homogeneity: E[λX ] = λE[X ], ∀λ ≥ 0.
(d) Sub-additivity: E[X + Y ] ≤ E[X ] + E[Y ].

Now we give the new definition of independence on upper probability space
(Ω,F ,E).

Definition 3. Independence: Suppose that X1, X2, · · · , Xn is a sequence
of real measurable random variables on (Ω,F). Xn is said to be independent
of (X1, · · · , Xn−1) under E (or V), denoted by Xn ⊥ (X1, · · · , Xn−1) if for
each nonnegative continuous function ϕi(·) on R with ϕ(Xi) ∈ L0(Ω) for
each i = 1, · · · , n, we have

E[

n∏

i=1

ϕi(Xi)] = E[

n−1∏

i=1

ϕi(Xi)]E[ϕn(Xn)].

Independence random variables sequence: (Xi)
∞
i=1 is said to be a se-

quence of independent random variables, if Xi+1 is independent of (X1, · · · ,
Xi) for each i ∈ N.

Example 1. If X ⊥ Y , from the definition of 3 and Jensen’s inequality, we
have

E[eX+Y ] = E[eX ] · E[eY ] ≥ eE[X] · eE[Y ].

Example 2. If X ⊥ Y , then X + a ⊥ Y + b, and XIX≤a ⊥ Y IY ≤b, for any
a, b ∈ R.

3 The Main Results

In this section, we give the strong laws of large numbers in upper probability
space and list some applications. The proof will be in Appendix.

Theorem 1. SLLN: Let (Xi)
∞
i=1 be a sequence of independence random

variables for upper expectation E. Suppose supi≥1 E[|Xi|1+α] < ∞ for some

α > 0, and E[Xi] ≡ μ, E [Xi] ≡ μ. Set Sn :=
n∑

i=1

Xi. Then
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(I)

V
(
{lim inf

n→∞
Sn/n < μ}

⋃
{lim sup

n→∞
Sn/n > μ}

)
= 0, (1)

and

v

(
μ ≤ lim inf

n→∞
Sn/n ≤ lim sup

n→∞
Sn/n ≤ μ

)
= 1. (2)

If further assume v(·) is lower continuous, and for any subsequence of N
denoted by (ni)

∞
i=1, (Sni − Sni−1)

∞
i=1 are pairwise independence under v(·),

and also there exist n0 ∈ N, c0 > 0 such that

1

n
|

n∑

i=1

Xi| ≤ c0 ln(n + 1), ∀n > n0. (3)

Then we have

(II)

V
(

lim sup
n→∞

Sn/n = μ

)
= 1, V

(
lim inf
n→∞

Sn/n = μ
)

= 1.

Remark 2. If (Xi)
∞
i=1 is bounded, then it is evident that (3) holds true.

We can easily obtain the following two corollaries from the above theorem.

Corollary 1. Under the whole assumptions of theorem 1, v( lim
n→∞

Sn/n =

a) = 1 holds if and only if a = μ = μ.

Corollary 2. For any continuous function ϕ(·) on R, under the assumptions
of theorem 1 (I), we have

V

(
{lim inf

n→∞
ϕ(Sn/n) < inf

u∈[μ,μ]
ϕ(u)}

⋃
{lim sup

n→∞
ϕ(Sn/n) > sup

u∈[μ,μ]

ϕ(u)}
)

= 0,

and v

(
inf

u∈[μ,μ]
ϕ(u) ≤ lim inf

n→∞
ϕ(Sn/n) ≤ lim sup

n→∞
ϕ(Sn/n) ≤ sup

u∈[μ,μ]

ϕ(u)}
)

= 1.

Now we give a example of SLLN on upper probability space which here
we called the Bernoulli experiments under ambiguity. In classical probability
theory, repeated independent experiments are called Bernoulli experiments
if there are only two possible outcomes for each experiment and their prob-
abilities remain the same throughout the experiments [4].

Example 3. We consider a countable infinity Ellsberg urns, ordered and in-
dexed by the set N = {1, 2, · · · }. You are told that each urn contains 100
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balls (actually the total balls can be different, here we ask all 100 balls just to
satisfying P is the same) that are either red or blue, thus Ωi = {R,B}. You
may also be given additional information, symmetric across urns, but it does
not pin down either the precise composition of each urn or the relationship
between urns. However you are told that for any i, the proportion of red
balls pi in the i-th urn is in the same interval, without loss of generality, we
suppose pi ∈ [1/4, 1/2]. One ball will be drawn from each urn, which defines
“experiment”. Let define the random variable on Ωi by

Yi(ωi) =

{
1 ωi = R i.e. if ball drawn from the i-th urn is red;
0 ωi = B i.e. if ball drawn from the i-th urn is blue.

The full state space is

Ω =
∞∏

i=1

Ωi = Ω1 ×Ω2 × · · · .

Denote F the product σ-algebra on Ω. The set of probability P on measure
space (Ω,F) is generated by

P =
∞∏

i=1

Pi = P1 × P2 × · · · ,

where Pi is generated by pi ∈ [1/4, 1/2].A random variables sequence (Xi)
∞
i=1

on (Ω,F) is defined by

Xi(ω) = Yi(ωi), ∀i ∈ N.

It is easy to check that (Xi)
∞
i=1 is independence under definition 3, and

since Xi is bounded, from remark 2 we know that (Xi)
∞
i=1 satisfying condition

(3). It is also obvious that the lower probability of P is lower continuous, and
for any subsequence of N denoted by (ni)

∞
i=1, (Sni − Sni−1)

∞
i=1 are pairwise

independence under v(·). Then we have

V
(
{lim inf

n→∞
Sn/n < 1/4}

⋃
{lim sup

n→∞
Sn/n > 1/2}

)
= 0,

and v

(
1/4 ≤ lim inf

n→∞
Sn/n ≤ lim sup

n→∞
Sn/n ≤ 1/2

)
= 1,

also V
(

lim sup
n→∞

Sn/n = 1/2

)
= 1, V

(
lim inf
n→∞

Sn/n = 1/4
)

= 1.
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Appendix: Proof of Theorem 1

Before we prove Theorem 1, let us first introduce the following Lemmas
which will be important in the proof of Theorem 1. First is the Borel-Cantelli
Lemma in upper probability space. The second lemma is motivated by Lemma
4 in [1], and both proofs are actually the same for it just need the indepen-
dence of exponential functions. So we omit the proof.

Lemma 1. [1] Borel-Cantelli Lemma Let {An, n ≥ 1} be a sequence of
events in F and (V, v) be a pair of upper and lower probability generated by
P.

(1) If
∞∑

n=1
V(An) <∞, then V

( ∞⋂
n=1

∞⋃
i=n

Ai

)
= 0.

(2) If further v(·) is lower continuous and {An, n ≥ 1} are pairwise in-

dependent with respect to v(·), that is for any n ∈ N, v

( ∞⋂
i=n

Ac
i

)
=

∏∞
i=n v(Ac

i ). Also if
∞∑

n=1
V(An) =∞, then

V

( ∞⋂

n=1

∞⋃

i=n

Ai

)
= 1.

Lemma 2. Given upper expectation E[·], let (Xi)
∞
i=1 be a sequence of inde-

pendent random variables such that sup
i≥1

E[|Xi|1+α] < ∞ for some constant

α > 0. Suppose that there exists a constant c > 0 such that

|Xn − E[Xn]| ≤ c
n

ln(1 + n)
, n = 1, 2, · · · .

Then for any m > 1 we have

sup
n≥1

E

[
exp

(
m ln(1 + n)

n

n∑

i=1

[Xi − E[Xi]]

)]
<∞.

Now we begin the proof of Theorem 1.

Proof. (I). Since V and v is conjugate, (2) is equivalent to (1). And using the
monotonicity and sub-additivity of V, it is easy to check that argument (1)
is equivalent to the conjunction of

V
(

lim sup
n→∞

Sn/n > μ

)
= 0, (4)

V
(
lim inf
n→∞

Sn/n < μ
)

= 0. (5)

Now we prove (4) by two steps.
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Step 1. Assume that there exists a constant c > 0 such that |Xn − μ| ≤
cn

ln(1+n) for n ≥ 1. Thus, (Xi)
∞
i=1 satisfies the assumptions of Lemma 2.

To prove (4), we shall show that for any ǫ > 0,

V

( ∞⋂

n=1

∞⋃

k=n

{Sk/k ≥ μ + ǫ}
)

= 0. (6)

In fact, by Lemma 2, for ǫ > 0, let us choose m > 1/ǫ we have

sup
n≥1

E

[
exp

(
m ln(1 + n)

n

n∑

k=1

(Xk − E[Xk])

)]
<∞.

By Chebyshev’s inequality,

V(Sn/n ≥ μ + ǫ) = V(Sn−nμ
n ≥ ǫ)

= V
(

m ln(1+n)
n

n∑
k=1

(Xk − μ) ≥ ǫm ln(1 + n)

)

≤ e−ǫm ln(1+n)E
[
exp

(
m ln(1+n)

n

n∑
k=1

(Xk − μ)

)]

≤ 1
(1+n)ǫm sup

n≥1
E
[
exp

(
m ln(1+n)

n

n∑
k=1

(Xk − μ)

)]
.

Since ǫm > 1, sup
n≥1

E
[
exp

(
m ln(1+n)

n

n∑
k=1

(Xk − μ)

)]
<∞, following from the

convergence of
∞∑

n=1

1
(1+n)ǫm , we have

∞∑

n=1

V(Sn/n ≥ μ + ǫ) <∞.

Using the first Borel-Cantelli Lemma, we have

V
(

lim sup
n→∞

Sn/n ≥ μ + ǫ

)
= 0 ∀ǫ > 0.

By the lower continuous of V(·), we have

V
(

lim sup
n→∞

Sn/n > μ

)
= 0, and v

(
lim sup

n→∞
Sn/n ≤ μ

)
= 1.

Step 2. For any fixed c > 0, set

Xn := (Xn − μ)I{|Xn−μ|≤ cn
ln(1+n)} − E

[
(Xn − μ)I{|Xn−μ|≤ c n

ln(1+n) }
]

+ μ.

Immediately, E[Xn] ≡ μ, and for each n ≥ 1,
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|Xn − μ| ≤ 2c n

ln(1 + n)
.

Meanwhile, for each n ≥ 1, it easy to check that

|Xn − μ| ≤ |Xn − μ|+ E[|Xn − μ|].

Then

E[|Xn − μ|1+α] ≤ 21+α
(
E[|Xn − μ|1+α] + (E[|Xn − μ|])1+α

)
<∞.

So (X i)
∞
i=1 satisfies the assumptions in Lemma 2.

Setting Sn :=
n∑

i=1

X i, immediately,

1

n
Sn ≤

1

n
Sn +

1

n

n∑

i=1

|Xi − μ|I{|Xi−μ|> c i
ln(1+i)

} +
1

n

n∑

i=1

E
[
|Xi − μ|I{|Xi−μ|> c i

ln(1+i)
}

]
.(7)

Applying the Hölder and Cheyshev’s inequality, we have

∞∑
i=1

E

[
|Xi−μ|I

{|Xi−μ|> c i
ln(1+i)

}

]

i

≤
∞∑

i=1

1
i (E[|Xi − μ|1+α])1/(1+α)(E[I{|Xi−μ|> c i

ln(1+i)
}])

α/(1+α)

≤
∞∑

i=1

[ln(1+i)]α

cα i1+α E[|Xi − μ|1+α]

≤ sup
i≥1

E[|Xi − μ|1+α]
(

1
c

)α ∞∑
i=1

[ln(1+i)]α

i1+α <∞.

By Kronecker Lemma,

1

n

n∑

i=1

E
[
|Xi − μ|I{|Xi−μ|> c i

ln(1+i)
}
]
→ 0. (8)

Next we want to prove

1

n

n∑

i=1

(
|Xi − μ|I{|Xi−μ|> c i

ln(1+i)
}
)
→ 0, q.s.. (9)

Similarly by the Kronecker Lemma, we just need to show that

∞∑

i=1

|Xi − μ|I{|Xi−μ|> c i
ln(1+i)

}

i
<∞, q.s..
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Set Ai := {|Xi − μ| > c i
ln(1+i)} for i ≥ 1. It suffices to prove that

v

( ∞⋃

n=1

∞⋂

i=n

Ac
i

)
= 1 that is V

( ∞⋂

n=1

∞⋃

i=n

Ai

)
= 0.

In fact, by Chebyshev’s inequality,

V
(
|Xi − μ| > c i

ln(1 + i)

)
≤
(

ln(1 + i)

c i

)1+α

E[|Xi − μ|1+α]

Hence,
∞∑

i=1

V
(
|Xi − μ| > c i

ln(1 + i)

)
<∞

and by the first Borel-Cantelli Lemma, we have V
( ∞⋂

n=1

∞⋃
i=n

Ai

)
= 0. So we

get (9).
Taking lim sup

n→∞
on both side of (7), then by (8) and (9), we have

lim sup
n→∞

Sn/n ≤ lim sup
n→∞

Sn/n, q.s..

Since (Xn)∞n=1 satisfies the assumption of Step 1, by Step 1 and above, we
get

V(lim sup
n→∞

Sn/n > μ) = 0, and also v(lim sup
n→∞

Sn/n ≤ μ) = 1.

Similarly, considering the sequence (−Xi)
∞
i=1, from E[−Xi] ≡ −μ, we

obtain

V
(

lim sup
n→∞

(−Sn)/n > −μ
)

= 0.

Hence,

V
(
lim inf
n→∞

Sn/n < μ
)

= 0, also v
(
lim inf
n→∞

Sn/n ≥ μ
)

= 1.

Therefore, the proof of (I) is complete.
(II). If μ = μ, it is trivial. Suppose μ > μ, we only need to prove that there

exists an increasing subsequence (nk) of N such that for any 0 < ǫ < μ− μ,

V

( ∞⋂

m=1

∞⋃

k=m

{Snk
/nk ≥ μ− ǫ}

)
= 1. (10)
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Because v(·) is lower continuous, we have V(·) is upper continuous, then

V
(

lim sup
k→∞

Snk
/nk ≥ μ

)
= 1.

This with (I) suffices to yield the desired result (II). Because the previous
finite Xi have no impact on the limit of (Xi)

∞
i=1, so we may assume that there

exist c1 > 0 such that

1

n
|

n∑

i=1

(Xi − μ)| ≤ c1 ln(n + 1), ∀n ∈ N.

Choosing nk = kk for k ≥ 1 and setting Zn :=
n∑

i=1

(Xi − μ), we have

1

nk − nk−1
|Znk

− Znk−1
|

≤ nk

nk − nk−1
· 1

nk
|Zk|+

nk−1

nk − nk−1
· 1

nk−1
|Zk−1|

≤ nk

nk − nk−1
· c1 ln(nk + 1) +

nk−1

nk − nk−1
· c1 ln(nk−1 + 1)

≤ 2c1nk ln(nk + 1)

nk − nk−1
.

Notice the fact that for any λ > 0, IY ≥−ǫ ≥ eλY −e−λǫ

eλM , where Y is a random
variable bounded by M , we have

V
(

Snk
−Snk−1

nk−nk−1
≥ μ− ǫ

)

= V
(

Snk
−Snk−1

−(nk−nk−1)μ

nk−nk−1
≥ −ǫ

)

= V
(

Znk
−Znk−1

nk−nk−1
≥ −ǫ

)

= E[IZnk
−Znk−1

nk−nk−1
≥−ǫ

]

≥ E
[(

exp(λ
Znk

−Znk−1

nk−nk−1
)− exp(−λǫ)

)
exp(−λ2c1nk ln(nk+1)

nk−nk−1
)
]

≥ (nk + 1)
−2λc1nk
nk−nk−1

(
nk∏

i=nk−1+1

E[expλ(Xi − μ)]− exp(−λǫ)
)

≥ (nk + 1)
−2λc1nk
nk−nk−1 (1− e−λǫ),

where the last inequality is coming from the Jensen’s inequality. We choose
λ such that 2λc1 < 1, because of nk

nk−nk−1
→ 1, we get

∞∑

k=1

V
(
Snk

− Snk−1

nk − nk−1
≥ μ− ǫ

)
≥

∞∑

k=1

(nk + 1)
−2λc1nk
nk−nk−1 (1− e−λǫ) = ∞.
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By assuming (Snk
− Snk−1

)k≥1 are pairwise independence under v(·), using
the second Borel-Cantelli Lemma, we have

V

( ∞⋂

i=1

∞⋃

k=i

{
Snk

− Snk−1

nk − nk−1
≥ μ− ǫ

})
= 1.

Thus

V
(

lim sup
k→∞

Snk
− Snk−1

nk − nk−1
≥ μ− ǫ

)
= 1.

But
Snk

nk
≥ Snk

− Snk−1

nk − nk−1
· nk − nk−1

nk
− |Snk−1

|
nk−1

· nk−1

nk
,

and
nk−1

nk
→ 0, as k →∞,

from
lim sup

n→∞
Sn/n ≤ μ, lim sup

n→∞
(−Sn)/n ≤ −μ q.s.,

we have
lim sup

n→∞
|Sn|/n ≤ max{|μ|, |μ|}, q.s..

Hence,

lim sup
k→∞

Snk

nk
≥ lim sup

k→∞

Snk
− Snk−1

nk − nk−1
lim

k→∞
nk − nk−1

nk
−lim sup

k→∞

|Snk−1
|

nk−1
lim

k→∞
nk−1

nk
.

We conclude that

V
(

lim sup
k→∞

Snk

nk
≥ μ− ǫ

)
= 1.

Since ǫ is arbitrary and V(·) is upper continuous, we have

V
(

lim sup
k→∞

Snk
/nk ≥ μ

)
= 1.

By (I), we know V
(

lim sup
n→∞

Sn/n > μ

)
= 0, thus

V
(

lim sup
n→∞

Sn/n = μ

)
= V

(
lim sup

n→∞
Sn/n = μ

)
+ V

(
lim sup

n→∞
Sn/n > μ

)

≥ V
(

lim sup
n→∞

Sn/n ≥ μ

)
= 1.
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Considering the sequence of (−Xn)∞n=1, from E[−Xi] ≡ −μ, we have

V
(

lim sup
n→∞

(−Sn)/n = −μ
)

= 1.

Therefore,

V
(
lim inf
n→∞

Sn/n = μ
)

= 1.

The proof of (II) is complete. ⊓⊔
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Comparative Risk Aversion for
g-Expected Utility Maximizers

Guangyan Jia and Jianming Xia

Abstract. An index is introduced to measure the risk aversion of a
g-expected utility maximizer.

In the following we just introduce the main idea and the main results of our
on-going manuscript [3], in which the detailed proofs are provided.

The comparative risk aversion for expected utility maximizers was carried
out by Arrow [1] and Pratt [6]. They derived the famous Arrow-Pratt index
−u′′/u′ of risk aversion for a utility function u.

We now consider a kind of time-consistent nonlinear expectation, called
g-expectation, instead of the classical linear expectation. The notion of g-
expectation was introduced and developed by Peng [4, 5]. It is defined as a
solution of a backward stochastic differential equation (BSDE) with a gener-
ator g. More precisely, consider a BSDE:

dyt = g(t, zt)dt− ztdBt, yT = ξ.

Here Bt is a standard Brownian motion defined on a completed and filtered
probability space (Ω,F , (Ft),P), Ft is the augmented natural filtration gener-
ated by Bt, F = FT , g : [0, T ]×R→ R satisfies the usual standard conditions
such as Lipschitz continuity and linear growth w.r.t. z and g(t, 0) = 0, and
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ξ ∈ L2(Ω,FT ,P). The g-expectation of ξ is given by Eg[ξ] = y0 and, more
generally, the conditional g-expectation of ξ at time t is given by Eg

t [ξ] = yt.
A risk is a random variable X ∈ F . Assume a decision maker’s preference

can be represented by g-expected utility, that is, risk X is preferred to risk Y
if and only if Eg[u(X)] ≥ Eg[u(Y )], where utility function u : R → R is twice
continuously differentiable and satisfies u′(x) > 0 for all x ∈ R. Hereafter,
such a decision maker is simply denoted by (g, u).

Definition 1 (g-risk averse). A decision maker (g, u) is called g-risk averse
if Eg[u(X)] ≤ u(Eg[X ]) for all X ∈ L∞.

For any utility function u, set

P g
u (t, x, z) = −1

2

u′′(x)

u′(x)
|z|2 − g(t, u′(x)z)

u′(x)
+ g(t, z).

It has already been essentially reported in [2] that (g, u) is g-risk averse if
and only if P g

u (t, x, z) ≥ 0 for all (t, x, z). In this case, function u is called
g-concave.

Definition 2. Given two utility functions u and v, we say u is more g-risk
averse than v if for any constant x ∈ R and risk X ∈ L∞, Eg[v(X)] ≤ v(x)
implies Eg[u(X)] ≤ u(x).

One of our main results is

Theorem 1. Given two utility functions u and v, then the following condi-
tions are equivalent:

(i) u is more g-risk averse than v.
(ii) There exists an increasing and g-concave function ψ such that u(x) =

ψ(v(x)) for all x; that is, u is a g-concave transformation of v.
(iii) Ag

u(t, x, z) ≥ Ag
v(t, x, z) for all t, x, z, where

Ag
w(t, x, z) = −1

2

w′′(x)

w′(x)
|z|2 − g(t, w′(x)z)

w′(x)
, w ∈ {u, v}.

From the preceding theorem, the index Ag
u measures the risk aversion of a

decision maker (g, u).
In order to compare risk aversion across individuals with heterogenous

expectations, we need extend the concept g-concavity to adopt the hetero-
geneity of expectations.

Definition 3. A function u is called (g, h)-concave if for all t, x, z,

−1

2
u′′(x)|z|2 − g(t, u′(x)z) + u′(x)h(t, z) ≥ 0.

The next lemma can be easily proved by mimicking the arguments of [2].
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Lemma 1. The following properties are equivalent:

(i) u is (g, h)-concave.
(ii) For any risk X ∈ L∞, Eg[u(X)] ≤ u(Eh[X ]).

Definition 4. We say a decision maker (g, u) is more risk averse than (h, v)
if for any constant x ∈ R and risk X ∈ L∞, Eh[v(X)] ≤ v(x) implies
Eg[u(X)] ≤ u(x).

Another main result of ours is

Theorem 2. The following properties are equivalent:

(i) (g, u) is more risk averse than (h, v).
(ii) u(x) = ψ(v(x)) for some increasing and (g, h)-concave function ψ.
(iii) Ag

u(t, x, z) ≥ Ah
v (t, x, z) for all t, x, z.

Definition 5. Decision makers (g, u) and (h, v) are called equivalent if for
any risk X and Y , Eg[u(X)] ≤ Eg[u(Y )] if and only if Eh[v(X)] ≤ Eh[v(Y )].

Obviously, the equivalence of the decision makers implies that they are as
risk averse as each other. The following theorem shows that the conversion
is also true.

Theorem 3. The following properties are equivalent:

(i) (g, u) and (h, v) are equivalent.
(ii) Ag

u = Ah
v .

(iii) There exist constants α > 0 and β ∈ R such that u(x) = αv(x)+β (that
is, u is a positively affine transformation of v) and g(t, αz) = αh(t, z).

(iv) There exist constants α > 0 and β ∈ R such that Eh
t [u(X)] =

αEg
t [v(X)] + β for any risk X.

(v) There exist constants α > 0 and β ∈ R such that Eh[u(X)] =
αEg[v(X)] + β for any risk X.
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Riesz Type Integral Representations
for Comonotonically Additive
Functionals

Jun Kawabe

Abstract. The Daniell-Stone type representation theorem of Greco leads
us to another proof and an improvement of the Riesz type representation
theorem of Sugeno, Narukawa, and Murofushi for comonotonically additive,
monotone functionals.

Keywords: nonadditive measure, Choquet integral, Comonotonic additiv-
ity, Greco theorem, Riesz type integral representation theorem.

1 Introduction

Let X be a locally compact Hausdorff space. Let C+
00(X) denote the space

of all nonnegative, continuous functions on X with compact support and
let C+

0 (X) denote the space of all nonnegative, continuous functions on X
vanishing at infinity. In [8], Sugeno et al. succeeded in proving an analogue
of the Riesz type integral representation theorem in nonadditive measure
theory. More precisely, they gave a direct proof of the assertion that every
comonotonically additive, monotone functional on C+

00(X) can be represented
as the Choquet integral with respect to a nonadditive measure on X with
some regularity properties. Their theorem gives a functional analytic char-
acterization of the Choquet integrals and is inevitable in order to develop
nonadditive measure theory based on the topology of the underlying spaces
on which measures are defined.

In this paper, we first give another proof and an improvement of the above
theorem with the help of the Greco theorem [4], which is the most general
Daniell-Stone type integral representation theorem for comonotonically addi-
tive, monotone functionals on function spaces. By using the same approach,
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we also give a Riesz type integral representation theorem for a bounded func-
tional on C+

0 (X).

2 Notation and Preliminaries

Let X be a non-empty set and let 2X denote the family of all subsets of
X . For each A ⊂ X , let χ

A
denote the characteristic function of A. Let R

and R+ denote the set of all real numbers and the set of all nonnegative real

numbers, respectively. Also let R and R
+

denote the set of all extended real
numbers and the set of all nonnegative extended real numbers, respectively.
Let N denote the set of all natural numbers. For any functions f, g : X → R,
let f ∨g := max(f, g) and f ∧g := min(f, g). For any bounded f , let ‖f‖∞ :=
supx∈X |f(x)|.

Definition 1. A set function μ : 2X → R
+

is called a nonadditive measure
on X if μ(∅) = 0 and μ(A) ≤ μ(B) whenever A ⊂ B.

Let μ be a nonadditive measure on X and let f : X → R
+

be a function. Since
the function t ∈ R+ → μ({f > t}) is non-increasing, it is Lebesgue integrable
on R+. Therefore, the following formalization is well-defined; see [2] and [7].

Definition 2. Let μ be a nonadditive measure on X . The Choquet integral

of a nonnegative function f : X → R
+

with respect to μ is defined by

(C)

∫

X

fdμ :=

∫ ∞

0

μ({f > t})dt,

where the right hand side of the above equation is the usual Lebesgue integral.

Remark 1. For any nonadditive measure μ on X and any function f : X →
R

+
, the two Lebesgue integrals

∫∞
0 μ({f > t})dt and

∫∞
0 μ({f ≥ t})dt are

equal, since μ({f ≥ t}) ≥ μ({f > t}) ≥ μ(f ≥ t + ε}) for every ε > 0 and
0 ≤ t <∞. This fact will be used implicitly in this paper.

See [3], [6], and [9] for more information on nonadditive measures and Cho-
quet integrals.

For the reader’s convenience, we introduce the Greco theorem [4, Proposi-
tion 2.2], which is the most general Choquet integral representation theorem
for comonotonically additive, monotone, extended real-valued functionals.
Recall that two functions f, g : X → R are comonotonic and is written by
f ∼ g if, for every x, x′ ∈ X , f(x) < f(x′) implies g(x) ≤ g(x′).

Theorem 1 (The Greco theorem). Let F be a non-empty family of func-
tions f : X → R. Assume that F satisfies
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(i) 0 ∈ F ,
(ii) f ≥ 0 for every f ∈ F (nonnegativity), and
(iii) if f ∈ F and c ∈ R+, then cf, f ∧ c, f − f ∧ c = (f − c)+ ∈ F (the

Stone condition).

Assume that a functional I : F → R satisfies

(iv) I(0) = 0,
(v) if f, g ∈ F and f ≤ g, then I(f) ≤ I(g) (monotonicity),
(vi) if f, g ∈ F , f + g ∈ F , and f ∼ g, then I(f + g) = I(f) + I(g)

(comonotonic additivity),
(vii) lima→+0 I(f − f ∧ a) = I(f) for every f ∈ F , and
(viii) limb→∞ I(f ∧ b) = I(f) for every f ∈ F .

For each A ⊂ X, define the set functions α, β : 2X → R
+

by

α(A) := sup{I(f) : f ∈ F , f ≤ χ
A
},

β(A) := inf{I(f) : f ∈ F , χ
A
≤ f},

where let inf ∅ :=∞.

(1) The set functions α and β are nonadditive measures on X with α ≤ β.
(2) For any nonadditive measure λ on X, the following two conditions are

equivalent:

(a) α ≤ λ ≤ β.

(b) I(f) = (C)
∫

X fdλ for every f ∈ F .

Remark 2. The functional I given in Theorem 1 is nonnegative, that is,
I(f) ≥ 0 for every f ∈ F , and positively homogeneous, that is, I(cf) = cI(f)

for every f ∈ F and c ∈ R
+
. See, for instance, [3, page 159] and [5, Proposi-

tion 4.2].

3 Riesz Type Integral Representation Theorems

In this section, we first give another proof and an improvement of the Sugeno-
Narukawa-Murofushi theorem [8, Theorem 3.7]. This can be done by the
effective use of the Greco theorem and the following technical lemma.

Lemma 1. Let F and I satisfy the same hypotheses as Theorem 1.

(1) Assume that, for any f ∈ F , there is a g ∈ F such that χ{f>0} ≤ g and

I(g) < ∞ (in particular, 1 ∈ F and I(1) < ∞). Then, condition (vii) of
Theorem 1 holds.

(2) Assume that every f ∈ F is bounded. Then, condition (viii) of Theorem 1
holds.
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(3) Assume that every f ∈ F is bounded. Also assume that I is bounded, that
is, there is a constant M > 0 such that I(f) ≤M‖f‖∞ for every f ∈ F .
Then, conditions (vii) and (viii) of Theorem 1 hold.

Proof. (1) Let f ∈ F , and chose g ∈ F such that χ{f>0} ≤ g and I(g) <

∞. Since f ∧ a ≤ ag for every a > 0, the monotonicity and the positive
homogeneity of I imply I(f ∧a) ≤ I(ag) = aI(g). Since f − f ∧a ∼ f ∧a, by
the comonotonic additivity of I, we have I(f) ≥ I(f−f∧a) = I(f)−I(f∧a) ≥
I(f)− aI(g). Thus, lima→+0 I(f − f ∧ a) = I(f).

(2) Let f ∈ F . Then f ∧ b = f for a sufficiently large b > 0, so that
limb→∞ I(f ∧ b) = I(f).

(3) Fix f ∈ F , and let gn := f − f ∧ (1/n) for each n ∈ N. Since gn ∼
f∧(1/n), the comonotonic additivity of I implies I(f) = I(gn)+I(f∧(1/n)).
Since ‖f ∧ (1/n)‖∞ ≤ 1/n for all n ∈ N, by the boundedness of I, I(gn) →
I(f) as n→∞.

Take ε > 0 arbitrarily, and chose δ > 0 such that δ < 1/n0 and I(f) −
I(gn0) < ε. Let 0 < a < δ. Then, f − f ∧ a ≥ gn0 , so that I(f − f ∧ a) ≥
I(gn0) > I(f)− ε. Thus, we have lima→+0 I(f − f ∧ a) = I(f). ✷

From this point forwards, X is a locally compact Hausdorff space. For any
real-valued function f on X , let S(f) denote the support of f , which is defined
by the closure of {f �= 0}.

The following regularity properties give a tool to approximate general sets
by more tractable sets such as open and compact sets. They are still impor-
tant in nonadditive measure theory.

Definition 3. Let μ be a nonadditive measure on X .

(1) μ is said to be outer regular if, for every subset A of X , μ(A) = inf{μ(G) :
A ⊂ G,G is open}.

(2) μ is said to be quasi outer regular if, for every compact subset K of X ,
μ(K) = inf{μ(G) : K ⊂ G,G is open}.

(3) μ is said to be inner Radon if, for every subset A of X , μ(A) = sup{μ(K) :
K ⊂ A,K is compact}.

(4) μ is said to be quasi inner Radon if, for every open subset G of X ,
μ(G) = sup{μ(K) : K ⊂ G,K is compact}.

The following theorem is an improvement of [8, Theorem 3.7] and it has
essentially been derived from the Greco theorem.

Theorem 2. Let a functional I : C+
00(X) → R satisfy the following condi-

tions:

(i) if f, g ∈ C+
00(X) and f ≤ g, then I(f) ≤ I(g) (monotonicity), and

(ii) if f, g ∈ C+
00(X) and f ∼ g, then I(f + g) = I(f) + I(g) (comonotonic

additivity).
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For each A ⊂ X, define the set functions α, β, γ : 2X → R
+

by

α(A) := sup{I(f) : f ∈ C+
00(X), f ≤ χ

A
},

β(A) := inf{I(f) : f ∈ C+
00(X), χ

A
≤ f},

γ(A) := sup{I(f) : f ∈ C+
00(X), 0 ≤ f ≤ 1, S(f) ⊂ A},

where let inf ∅ :=∞, and their regularizations α∗, β∗, γ∗ : 2X → R
+

by

α∗(A) := inf{α(G) : A ⊂ G,G is open},
β∗∗(A) := sup{β(K) : K ⊂ A,K is compact},
γ∗(A) := inf{γ(G) : A ⊂ G,G is open}.

(1) The set functions α, β, γ, α∗, β∗∗, and γ∗ are nonadditive measures on X.

(2) For any nonadditive measure λ on X, the following two conditions are
equivalent:

(a) α ≤ λ ≤ β.

(b) I(f) = (C)
∫

X fdλ for every f ∈ C+
00(X).

(3) γ∗(K) = β(K) <∞ for every compact subset K of X.

(4) γ∗ is quasi inner Radon and outer regular.

(5) β∗∗ is inner Radon and quasi outer regular.

(6) β∗∗(G) = γ(G) for every open subset G of X.

(7) The defined nonadditive measures are comparable, that is, α = γ ≤ β∗∗ ≤
α∗ = γ∗ ≤ β, so that any of them is a representing measure of I.

Proof. (1) This assertion is obvious.

(2) Let F := C+
00(X) in Theorem 1 and Lemma 1. Conditions (i)–(iii), (v),

and (vi) of Theorem 1 are easily verified. Consequently, in order to prove this
assertion, we have only to check the rest of the conditions.

(iv): Since 0 ∈ C+
00(X) and 0 ∼ 0 and since I is comonotonic, I(0) =

I(0 + 0) = I(0) + I(0), so I(0) = 0.

(vii): Let f ∈ C+
00(X). Since S(f) is compact, by [1, Theorem 54.3], there

is g ∈ C+
00(X) such that χ

S(f)
≤ g. Thus, we have χ{f>0} ≤ g, so that (vii)

follows from Lemma 1.

(viii): This condition follows from Lemma 1 since every f ∈ C+
00(X) is

bounded.

(3) Let K be a compact subset of X . By [1, Theorem 54.3], there is f0 ∈
C+

00(X) with χ
K
≤ f0, so we have β(K) ≤ I(f0) <∞.

Next we prove γ∗(K) ≤ β(K). Take f ∈ C+
00(X) with χ

K
≤ f arbitrarily.

Let 0 < r < 1 and let Gr := {f > r}. Then K ⊂ Gr. For any g ∈ C+
00(X) such

that 0 ≤ g ≤ 1 and S(g) ⊂ Gr, we have rg ≤ f , so that γ∗(K) ≤ γ(Gr) ≤
I(f/r) = I(f)/r. Letting r ↑ 1, we have γ∗(K) ≤ I(f), so γ∗(K) ≤ β(K)
follows.



40 J. Kawabe

Finally we prove the reverse inequality. Take ε > 0 arbitrarily, and chose an
open set G such that G ⊃ K and γ(G) ≤ γ∗(K) + ε. By [1, Theorem 54.3],
there is f0 ∈ C+

00(X) with 0 ≤ f0 ≤ 1, S(f0) ⊂ G and χ
K
≤ f0 ≤ χ

G
.

Therefore, we have γ∗(K) + ε ≥ I(f0) ≥ β(K). Letting ε ↓ 0, the reverse
inequality γ∗(K) ≥ β(K) follows.

(4) The outer regularity of γ∗ is obvious. So, we prove that γ∗ is quasi
inner Radon. Let G be an open subset of X . Then γ∗(G) ≥ sup{γ∗(K) :
K ⊂ G,K is compact} and, hence, we prove the reverse inequality.

Take r < γ∗(G) = γ(G) arbitrarily, and chose f0 ∈ C+
00(X) such that

0 ≤ f0 ≤ 1, S(f0) ⊂ G and r < I(f0). Let K0 := S(f0). For any open H ⊃ K0,
we have γ(H) ≥ I(f0) > r, and this implies γ∗(K0) ≥ r. Since K0 ⊂ G is
compact, r ≤ sup{γ∗(K) : K ⊂ G,K is compact}. Letting r ↑ γ∗(G), the
reverse inequality follows.

(5) It is obvious that β∗∗ is inner Radon. So, we prove that β∗∗ is quasi
outer regular. Let K be a compact subset of X . Then β∗∗(K) ≤ inf{β∗∗(G) :
K ⊂ G,G is open} and, hence, we prove the reverse inequality.

Take 0 < r < 1 arbitrarily, and chose f0 ∈ C+
00(X) such that χ

K
≤ f0 and

I(f0) ≤ β(K)+r. Let Gr := {f0 > 1−r}. Then K ⊂ Gr and χ
Gr
≤ f0/(1−r).

For any compact L ⊂ Gr , we have χ
L
≤ f0/(1− r), and this implies β(L) ≤

I(f0/(1 − r)) = I(f0)/(1 − r). Thus, β∗∗(Gr) ≤ I(f0)/(1 − r) and, hence,
inf{β∗∗(G) : K ⊂ G,G is open} ≤ (β(K)+r)/(1−r) = (β∗∗(K)+r)/(1−r).
Letting r ↓ 0, the reverse inequality follows.

(6) This assertion follows from (3) and (4) of this theorem.
(7) It is readily seen that the inequalities γ ≤ α ≤ β, α ≤ α∗, β∗∗ ≤ β,

and γ ≤ γ∗ ≤ α∗ hold. Therefore, we have only to prove the inequalities
β∗∗ ≤ γ∗, α ≤ γ, α ≤ β∗∗, and α∗ ≤ β.

Let A ⊂ X . For any compact K and open G with K ⊂ A ⊂ G, by [1,
Theorem 54.3], there is f0 ∈ C+

00(X) such that 0 ≤ f0 ≤ 1, S(f0) ⊂ G, and
χ

K
≤ f0 ≤ χ

G
. Thus, β(K) ≤ γ(G), and this implies β∗∗ ≤ γ∗.

By (2) and (6) of this theorem, for every f ∈ C+
00(X), I(f) =

∫
X fdβ =∫∞

0
β({f > t})dt =

∫∞
0

β({f ≥ t})dt =
∫∞
0

β∗∗({f ≥ t})dt =
∫∞
0

β∗∗({f >

t})dt =
∫∞
0

γ({f > t})dt =
∫

X
fdγ. Thus, again by (2), we have α ≤ γ.

We can prove α ≤ β∗∗ and α∗ ≤ β in a similar fashion. ✷

Remark 3. Define the functional I : C+
00(R) → R by I(f) :=

∫∞
−∞ f(t)dt for

every f ∈ C+
00(R). Then I satisfies (i) and (ii) of Theorem 2, but it is not

bounded. So, Theorem 2 does not follow from (3) of Lemma 1.

From Theorem 2 and Lemma 1, we can derive a representation theorem for
bounded, comonotonically additive, monotone functionals on C+

0 (X).

Theorem 3. Let a functional I : C+
0 (X)→ R satisfy

(i) if f, g ∈ C+
0 (X) and f ≤ g, then I(f) ≤ I(g) (monotonicity),

(ii) if f, g ∈ C+
0 (X) and f ∼ g, then I(f + g) = I(f) + I(g) (comonotonic

additivity), and
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(iii) there is a constant M > 0 such that I(f) ≤ M‖f‖∞ for every f ∈
C+

0 (X) (boundedness).

For each A ⊂ X, define the set functions α, β, γ : 2X → R
+

by

α(A) := sup{I(f) : f ∈ C+
0 (X), f ≤ χ

A
},

β(A) := inf{I(f) : f ∈ C+
0 (X), χ

A
≤ f},

γ(A) := sup{I(f) : f ∈ C+
0 (X), 0 ≤ f ≤ 1, S(f) ⊂ A},

where let inf ∅ :=∞, and their regularizations α∗, β∗∗, γ∗ : 2X → R
+

by

α∗(A) := inf{α(G) : A ⊂ G,G is open},
β∗∗(A) := sup{β(K) : K ⊂ A,K is compact},
γ∗(A) := inf{γ(G) : A ⊂ G,G is open}.

(1) The set functions α, β, γ, α∗, β∗∗, and γ∗ are nonadditive measures on
X and they satisfy properties (3)–(7) in Theorem 2.

(2) For any nonadditive measure λ on X, the following two conditions are
equivalent:

(a) α ≤ λ ≤ β.

(b) I(f) = (C)
∫

X fdλ for every f ∈ C+
0 (X).

(3) α(X) = γ(X) = α∗(X) = γ∗(X) <∞.
(4) Let λ be a nonadditive measure on X with λ(X) < ∞. Define the func-

tional I : C+
0 (X)→ R by I(f) := (C)

∫
X
fdλ for every f ∈ C+

0 (X). Then
I satisfies conditions (i)–(iii).

Proof. (1) We first prove that, α, β, and γ are equal to those defined in
Theorem 2, respectively, that is, for each A ⊂ X ,

α(A) = sup{I(f) : f ∈ C+
00(X), f ≤ χ

A
}, (1)

β(A) = inf{I(f) : f ∈ C+
00(X), χ

A
≤ f}, (2)

γ(A) = sup{I(f) : f ∈ C+
00(X), 0 ≤ f ≤ 1, S(f) ⊂ A}. (3)

To prove (1), take f ∈ C+
0 (X) with f ≤ χ

A
arbitrarily, and let gn := f −

f ∧ (1/n) for each n ∈ N. Then, it is easy to see that 0 ≤ gn ≤ f , S(gn) ⊂
{f ≥ 1/n} ⊂ S(f). Since {f ≥ 1/n} is compact, S(gn) is also compact. Thus
gn ∈ C+

00(X). Since gn ∼ f ∧ (1/n), by the comonotonic additivity of I, we
have I(f) = I(gn) + I(f ∧ (1/n)), which implies I(gn) → I(f) as n → ∞,
since the boundedness of I and since ‖f ∧(1/n)‖∞ ≤ 1/n for all n ∈ N. Thus,
a routine argument leads us to (1).

We can prove (3) in a similar way.
To prove (2), take f ∈ C+

0 (X) with χ
A
≤ f arbitrarily, and let hn :=

(1 + 1/n)f − {(1 + 1/n)f} ∧ (1/n) for each n ∈ N. Then, it is easy to verify
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that χ
A
≤ hn and S(hn) ⊂ {f ≥ 1/(n+1)}. Since {f ≥ 1/(n+1)} is compact,

S(hn) is also compact. Thus hn ∈ C+
00(X). Since hn ∼ {(1 + 1/n)f} ∧ (1/n),

by the comonotonic additivity and the positive homogeneity of I, we have
(1 + 1/n)I(f) = I((1 + 1/n)f) = I(hn) + I({(1 + 1/n)f} ∧ (1/n)), which
implies I(hn) → I(f) as n → ∞, since the boundedness of I and since
‖{(1+1/n)f}∧(1/n)‖∞ ≤ 1/n for all n ∈ N. Thus, a routine argument leads
us to (2). Consequently, by Theorem 2, the nonadditive measures α, β, γ,
and their regularizations satisfy (3)–(7) in Theorem 2.

(2) This assertion follows from Theorem 1 and (3) of Lemma 1.
(3) Let M be the positive constant given in (iii) of this theorem. For any

f ∈ C+
0 (X) with f ≤ 1, we have I(f) ≤M , so α(X) ≤M <∞. Since α = γ,

the rest of the assertion follows.
(4) This assertion follows from the fundamental properties of Choquet

integrals [3, Proposition 5.1]. ✷

4 Conclusions

In this paper, we gave another proof and an improvement of the Riesz type
integral representation theorem of Sugeno, Narukawa, and Murofushi by the
help of the Daniell-Stone type integral representation theorem of Greco. By
using the same approach, we also gave a Riesz type integral representation
theorem for a bounded functional on C+

0 (X). Our approach will lead us
to various Riesz type integral representation theorems on a wide variety of
function spaces and sequence spaces.
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Pseudo-concave Integrals

Radko Mesiar, Jun Li, and Endre Pap

Abstract. The notion of Lehrer-concave integral is generalized taking in-
stead of the usual arithmetical operations of addition and multiplication
of reals more general real operations called pseudo-addition and pseudo-
multiplication.

Keywords: Pseudo-addition, Pseudo-multiplication, Lehrer integral,
Choquet integral.

1 Introduction

The integration theory makes a fundament for the classical measure theory,
see [19]. The Riemann and the Lebesgue integrals are related to the addi-
tive measure (more precisely countably additive measure), which makes the
base also for the probability theory. The first integral based on non-additive
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measures (first of all on monotone measure or capacity) was the Choquet
integral [2], see [3, 18], which also covers the classical Lebesgue integral. On
the other side, Sugeno [22] has introduced an integral based also on non-
additive measures, but with respect to join (maximum) and meet (minimum)
operations instead of the usual addition and product. In these approaches it
was important to consider the horizontal representation by means of the
level sets of a fuzzy subset of a universe X , where the level set for level t
consists of all points of X with degree of membership greater than or equal
to t. The Choquet integral is based also on the horizontal approach. Fur-
ther generalization of integrals related to the horizontal approach is given by
means of the universal integral [8]. The horizontal approach based on level
sets has as a consequence that chains of subsets of X play the important
role. Lehrer [10, 11] has introduced concave integral which is not based on
horizontal approach, but considering all possible set systems, see also [24].
His integral coincides with the Choquet integral only when the monotone
measure (capacity) is convex (supermodular).

In this paper we investigate the generalization of the Lehrer integral taking
more general real operations than classical plus and product. For this purpose
we shall use pseudo-addition ⊕ and pseudo-multiplication ⊙, see [1, 18, 23].
These operations form a semiring structure, which was a base for treating
many nonlinear and optimizations problems, see [9,18,20], and they are giv-
ing common framework for treating many different types of integrals, e.g.,
Choquet, Sugeno and Imaoka ( [4]) integrals.

2 Definitions of Choquet, Sugeno and Lehrer integrals

Let Ω be a non-empty set, A a σ-algebra of subsets of Ω and v : A → [0,∞] a
monotone set function with v(∅) = 0. Two well-known nonadditive integrals
are Choquet and Sugeno integrals, see [18]. The Choquet integral [2] of a
measurable nonnegative function f is given by

Cv(f) =

∫ ∞

0

v(f � t) dt

= sup

{∑

i∈I

aiv(Ai) |
N∑

i=1

ai1Ai � f, (Ai)
N
i=1⊂ A decreasing, ai � 0, N ∈ N

}
,

where Ai+1 ⊆ Ai for every i = 1, 2, . . . , N − 1, and 1Ai is the characteristic
function of the set Ai.

The Choquet integral has the property of the reconstruction of the mea-
sure, i.e., for every A ∈ A we have

∫ ∞

0

1A dv = v(A).
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The Choquet integral for finite case (and thus also for simple functions) is
given on Ω = {1, . . . , n} and for (a1, a2, . . . , an) ∈ [0,∞]n by

Cv(a1, a2, . . . , an) =

n∑

i=1

(a(i) − a(i−1))v(A(i))

with a permutation σ on {1, . . . , n} such that a(1) � a(2) � · · · � a(n), with
the convention x(0) = 0, A(i) = {(i), . . . , (n)}, and 0 · ∞ = 0. The Choquet
integral can be given by an equivalent formula

Cv(a1, a2, . . . , an) =

n∑

i=1

a(i)

(
v(A(i))− v(A(i+1))

)
,

with A(n+1) = ∅. The Sugeno integral [22] is given on Ω = {1, . . . , n} and
for (a1, a2, . . . , an) ∈ [0,∞]

n
by

Sv(a1, a2, . . . , an) =

n∨

i=1

(
a(i) ∧ v(A(i))

)
,

and in the case of a general space (Ω,A) it is given by

Sv(f) = sup{t ∧ v({f � t}) | t ∈ [0,∞]}.

Another integral can also be introduced, namely, the Shilkret integral [21]
given by

Kv(f) = sup{t · v({f � t}) | t ∈ [0,∞]}.
Observe that again we have the reconstruction property

Sv(1A) = Kv(1A) = v(A).

A set function v on 2N is supermodular, i.e., 2-monotone or convex, if it
satisfies the following inequality for all A,B ∈ 2N :

v(A ∪B) + v(A ∩B) � v(A) + v(B).

The functional f → Cv(f) is concave if and only if v is supermodular, see [12].

Lehrer concave integral is given in the following definition, [11].

Definition 1. Concave integral of a measurable function f : Ω → [0,∞[ is
given by

(L)

∫
f dv = sup

{∑

i∈I

aiv(Ai) |
∑

i∈I

ai1Ai � f, I is finite , ai � 0

}
,

where Ai, i ∈ I, are measurable.
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Note that the equality (L)
∫

1A dv = v(A) is violated, in general, and it holds
only for supermodular v (for all A ∈ A).

3 Pseudo-operations

We have seen that the Lehrer-concave integral as also the Choquet integral are
strongly related to the usual operations of addition + and multiplication · on
the interval [0,∞]. Similarly, the Sugeno integral depends on the operations
∨ and ∧ on the interval [0, 1].

There were considered generalizations of the previously mentioned opera-
tions [1, 7, 23]. In order to find a common framework for both Choquet and
Sugeno integrals, we have to deal with a general pseudo-addition ⊕ and a gen-
eral pseudo-multiplication ⊙ which must be fitting to each other. In general,
⊕ is supposed to be a continuous generalized triangular conorm (see [1,6,18]).

Definition 2. A binary operation ⊕ : [0,∞]2 → [0,∞] is called a pseudo-
addition on [0,∞] if the following properties are satisfied:

(PA 1) a⊕ b = b⊕ a (commutativity)

(PA 2) a ≤ a′, b ≤ b′ ⇒ a⊕ b ≤ a′ ⊕ b′ (monotonicity)

(PA 3) (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity)

(PA 4) a⊕ 0 = 0⊕ a = a (neutral element)

(PA 5) an → a, bn → b⇒ an ⊕ bn → a⊕ b (continuity).

Remark 1. The structure of the operation ⊕ is described in details as an
I-semigroup, for more details see [6].

By (PA 5), the continuity of the operation ⊕, the set of ⊕-idempotent ele-
ments C⊕ = {a ∈ [0,∞] | a⊕a = a} is closed and non-empty since 0,∞ ∈ C⊕.
Two extreme cases are possible: C⊕ = {0,∞} and C⊕ = [0,∞]. In the first
case the pseudo-addition ⊕ is isomorphic with the usual addition on [0,∞] or
isomorphic with the truncated addition on [0, 1]. In the second case, ⊕ = ∨.
All other cases are covered by ordinal sums of the first case, [6, 23].

For the integration procedure we need another binary operation ⊙, which
is called pseudo-multiplication. The expected properties of the integral deter-
mine the next minimal properties of ⊙ which we have to require, see [6, 23].

Definition 3. Let ⊕ be a given pseudo-addition on [0,∞]. A binary opera-
tion ⊙ : [0,∞]× [0,∞] → [0,∞] is called a ⊕-fitting pseudo-multiplication if
the following properties are satisfied:

(PM 1) a⊙ 0 = 0⊙ b = 0 (zero element)

(PM 2) a ≤ a′, b ≤ b′ ⇒ a⊙ b ≤ a′ ⊙ b′ (monotonicity)
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(PM 3) (a⊕ b)⊙ c = a⊙ c⊕ b⊙ c (left distributivity)

(PM 4) (supn an)⊙ (supm bm) = supn,m an ⊙ bm (left continuity).

4 Pseudo-concave Integral

For any a ∈ R
+

and any A ∈ A, the function b(a,A) defined by:

b(a,A)(x) =

{
a if x ∈ A
0 if x /∈ A.

is called basic (simple) function.

We can introduce a generalization of Lehrer’s integral with respect to
pseudo-addition ⊕ and pseudo-multiplication ⊙.

Definition 4. Let ⊕ : [0,∞]2 → [0,∞] be a pseudo-addition and ⊙ :
[0,∞]2 → [0,∞] a ⊕-fitting pseudo-multiplication. Pseudo-concave integral
of a measurable function f : Ω → [0,∞] is given by

(L)

∫ ⊕,⊙
f dv = sup

{⊕

i∈I

ai ⊙ v(Ai) |
⊕

i∈I

b(ai, Ai) � f, I is finite , ai � 0

}
,

where Ai, i ∈ I, are measurable.

Example 1. (i) Of course that for ⊕ = + and ⊙ = · we obtain the Lehrer’s
integral from Definition 1.

(ii) In a special case, when ⊕ = ∨, the corresponding pseudo-multiplication
have to be non-decreasing, and then we have

(L)

∫ ∨,⊙
f dv =

∨

a∈[0,∞]

a⊙ v(f � a)).

This case cover Sugeno Sv and Shilkret Kv integrals, taking for the
pseudo-multiplication ⊙ minimum ∧ and product ·, respectively.

(iii) In another special case, when ⊕ is strict (strictly monotone), then there
exists an increasing bijection g : [0,∞]→ [0,∞] such that

a⊕ b = g−1(g(a) + g(b)),

see [17,18,23]. The only left distributive pseudo-multiplication ⊙ is given
by

a⊙ b = g−1(g(a)h(b)),

where h : [0,∞] → [0,∞] is a left-continuous non-decreasing function,
h(0) = 0, see [15, 16, 17, 18, 20]. Then we have
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(L)

∫ ⊕,⊙
f dv = sup

{
g−1

(∑

i∈I

aih(v(Ai)

)
| g−1

(∑

i∈I

b(g(ai), Ai)

)
� f,

I is finite , ai � 0

}

= g−1

(
(L)

∫
g ◦ f dh ◦ v

)
.

For h = g we obtain convex g-integral, for g-like integrals see [13].

Depending on additional properties of pseudo-multiplication ⊙ we can ob-
tain useful properties of pseudo-concave integral. For example, if ⊙ is associa-
tive we obtain the positive homogeneity of pseudo-concave integral. Generally,
we have for two measurable functions f1 and f2

(L)

∫ ⊕,⊙
(f1 ⊕ f2) dv � (L)

∫ ⊕,⊙
f1 dv ⊕ (L)

∫ ⊕,⊙
f2 dv.

5 Concluding Remarks

Our proposal of pseudo-concave integrals can be seen as a starting point for
a deeper investigation of properties of this interesting functional, promissing
fruitful applications in the area of multicriteria decision making and related
areas. Note that a related concept generalizing Lebesgue integral was recently
proposed and discussed in [26], and it would be interesting to see the con-
nections with the pseudo-concave integral. Another line for deeper study of
pseudo-concave integrals can be done for integral inequalities and relations
with some classical integrals, in the spirit of our recent work [14].
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On Spaces of Bochner and Pettis
Integrable Functions and Their
Set-Valued Counterparts

Coenraad C.A. Labuschagne and Valeria Marraffa

Abstract. The aim of this paper is to give a brief summary of the Pettis
and Bochner integrals, how they are related, how they are generalized to the
set-valued setting and the canonical Banach spaces of bounded maps between
Banach spaces that they generate. The main tool that we use to relate the
Banach space-valued case to the set-valued case, is the R̊adström embedding
theorem.

Keywords: Absolutely summing operator, Banach lattice, Banach space,
Bochner integral, Pettis integral.

1 Introduction

The aim of this paper is to give a brief summary of the Pettis and Bochner
integrals, how they are related, how they are generalized to the set-valued
setting and the canonical Banach spaces of bounded maps between Banach
spaces that they generate. The main tool that we use to relate the Banach
space-valued case to the set-valued case, is the R̊adström embedding theorem.

In Section 2 we consider the spaces of Pettis and Bochner integrable func-
tions and the relationship between them via the absolutely summing maps.
The purpose of Section 3 is the space of set-valued Pettis intgrable functions.

Coenraad C.A. Labuschagne
School of Computational and Applied Mathematics,
University of the Witwatersrand, Private Bag 3, P O WITS 2050, South Africa
e-mail: Coenraad.Labuschagne@wits.ac.za

Valeria Marraffa
Dipartimento di Matematica e Informatica, Università Degli Studi Di Palermo,
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We show that there are two canonical metrics on this space, which coincides
with the canonical norms in the Banach space case. In Section 4 and Section
5 we consider the integrably bounded functions and the canonical set-valued
maps that they generate. In Section 6 we briefly consider the connection be-
tween the space of order-Pettis integrable functions and the space of Bochner
integrable functions and discuss their relationship using cone absolutely sum-
ming maps.

2 Connecting Pettis to Bochner Integrable Functions

Let (Ω,Σ, μ) be a finite measure space and let X and Y be Banach spaces,
with duals X∗ and Y ∗.

We first recall the definition of Pettis integral.

Definition 1. Let X be a Banach space. Then f : Ω → X is called Pettis
integrable if

∫
Ω |x∗f | dμ <∞ for all x∗ ∈ X∗, and for all A ∈ Σ there exists

a vector fA ∈ X such that x∗(fA) =
∫

A
x∗f dμ for all x∗ ∈ X∗.

The set function fA : Σ → X is called the indefinite Pettis integral of f .
From the integral point of view, the functions with the same indefinite Pettis
integrals are non-distinguishable, they are weakly equivalent. Thus denote
by P (μ,X) the space of all weakly equivalent Pettis integrable functions
f : Ω → X . If B(X∗) = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}, it is well known that both

‖f‖Pettis = sup
x∗∈B(X∗)

∫

Ω

|x∗f | dμ and ‖f‖P = sup
A∈Σ

‖fA‖X

define norms on P (μ,X) that are equivalent. Moreover, (P (μ,X), ‖ · ‖Pettis)
is not complete. It is well known that (P (μ,X), ‖ · ‖Pettis) can be embedded
in L1(μ)⊗∨X , which denotes the norm completion of L1(μ)⊗X with respect
to the injective norm (see [5]).

For 1 ≤ p < ∞, let Lp(μ,X) denote the space of (classes of a.e. equal)
Bochner p-integrable functions f : Ω → X and denote the Bochner norm on

Lp(μ,X) by ∆p, i.e. ∆p(f) =
(∫

Ω
‖f‖p

Xdμ
)1/p

.
For 1 ≤ p < ∞, the space Lp(μ,X) is isometrically isomorphic to the

norm completion Lp(μ)⊗̃ΔpX of Lp(μ)⊗Δp X , where ∆p denotes the induced
Bochner norm (see [5]).

We use the following few notions to describe a connection between Pettis
integrable functions and Bochner integrable functions.

Let L(X,Y ) := {T : X → Y : T is linear and bounded} be the Banach
space with norm defined by ‖T ‖ := sup{‖Tx‖ : ‖x‖ ≤ 1} for all T ∈ L(X,Y ).

Definition 2. Let T ∈ L(X,Y ). Then T is called absolutely summing if
for every summable sequence (xn) in X , the sequence (Txn) is absolutely
summable in Y (see [4]).



Bochner and Pettis Integrable Functions 53

The space Las(X,Y ) = {T : X → Y : T is absolutely summing} is a Banach
space with respect to the norm defined by

‖T ‖as = sup

{
n∑

i=1

‖Txi‖ : x1, . . . , xn ∈ X,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = 1, n ∈ N

}

for all T ∈ Las(X,Y ).
If composed by absolutely summing maps, strongly measurable Pettis in-

tegrable functions may be transformed to Bochner integrable functions as
stated in the next result.

Theorem 1. ( [3]) If T ∈ L(X,Y ), then T ∈ Las(X,Y ) if and only if T ◦f ∈
L1(μ, Y ) for all strongly measurable f ∈ P(μ,X).

3 Set-Valued Pettis Integrable Functions

Let P0(X) := {A ⊆ X : A is nonempty}. We restrict ourselves to the subsets

cbf(X) := {A ∈ P0(X) : A is convex, bounded and closed} and

ck(X) := {A ∈ P0(X) : A is convex and compact},
of P0(X). If A ∈ P0(X) and x ∈ X , the distance between x and A is defined
by d(x,A) = inf{‖x − y‖X : y ∈ A}. Define dH for all A,B ∈ cbf(X)
by dH(A,B) = supa∈A d(a,B) ∨ supb∈B d(b, A), and, in particular, ‖A‖H =
dH(A, {0}) = supa∈A ‖a‖. Then dH is a metric on cbf(X), which is called
the Hausdorff metric, and (cbf(X), dH) is a complete metric space (see [9]).
Moreover, ck(X) is closed in (cbf(X), dH).

From here onwards, we assume that X is separable. For every C ∈ cbf(X),
the support function of C is denoted by s(·, C) and is defined by s(x∗, C) =
sup{〈x∗, c〉 : c ∈ C} for each x∗ ∈ X∗. Clearly, the map x∗ −→ s(x∗, C) is
sublinear on X∗ and −s(−x∗, C) = inf{〈x∗, c〉 : c ∈ C}, for each x∗ ∈ X∗.

The R̊adström embedding ˜R(cbf(X)) of cbf(X) is given by j : cbf(X) →
˜R(cbf(X)), where j(C) = s(·, C) for all C ∈ cbf(X), and ˜R(cbf(X)) is the

closure of the span of {s(·, C) : C ∈ cbf(X)} in C(B(X∗)). Here C(B(X∗))
is the Banach space of continuous functions on B(X∗) (the latter is endowed
with the weak∗-topology), and norm given by ‖f‖∞ = sup{|f(ω)| : ω ∈
B(X∗)} for all f ∈ C(B(X∗)).

A multifunction Γ : Ω → cbf(X) is said to be scalarly measurable if for
every x∗ ∈ X∗, the function s(x∗,Γ(·)) is measurable. We say that Γ is
scalarly integrable if, for every x∗ ∈ X∗, the function s(x∗,Γ(·)) is integrable
in the Lebesgue sense.
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Definition 3. Let X be a Banach space. Then F : Ω → ck(X) is called set-
valued Pettis integrable if

∫
Ω
|s(x∗, F (ω))| dμ < ∞ for all x∗ ∈ X∗, and for

all A ∈ Σ there exists FA ∈ ck(X) such that s(x∗, FA) =
∫

A
s(x∗, F (ω)) dμ

for all x∗ ∈ X∗.

Thus FA is called the Pettis integral of F on A. Let P [Σ, ck(X)] be the set
of all set-valued Pettis integrable F : Ω → ck(X).

There is a canonical metric dP on P [Σ, ck(X)] that corresponds to the
‖ · ‖P. Define dP : P [Σ, ck(X)]× P [Σ, ck(X)]→ R+ by

dP (F,G) = sup{dH(FA, GA) : A ∈ Σ}.

Then dP is a metric on P [Σ, ck(X)] which has the property that dP (F, {0}) =
‖F‖P.

In order to define the metric dPettis on P [Σ, ck(X)]×P [Σ, ck(X)] that we
give below, we mention the following result.

Theorem 2. ( [1], [6]) Let F : Ω → ck(X). Then F is Pettis integrable if

and only if j(F ) is Pettis integrable in ˜R(ck(X)).

Thus, if F ∈ P [Σ, ck(X)], then j ◦ F : Ω → ˜R(ck(X)) is Pettis integrable;
hence,

‖j ◦ F‖Pettis = sup
{∫

Ω

|x∗(j(F (ω)))| dμ : x∗ ∈ (j(ck(X)))∗, ‖x∗‖ ≤ 1
}
.

Identifying the Pettis integrable multifunctions which have the same in-
definite Pettis integral, then it is easy to show that dPettis, defined by

dPettis(F,G)

= sup{
∫

Ω

|x∗(j(F (ω))) − x∗(j(G(ω)))| dμ : x∗ ∈ (j(ck(X)))∗, ‖x∗‖ ≤ 1}

for all F,G ∈ P [Σ, ck(X)], is a metric on P [Σ, ck(X)] × P [Σ, ck(X)] and
dPettis(F, {0}) = ‖j(F )‖Pettis. Moreover, dP is equivalent to dPettis, be-
cause ‖F‖P = sup{dP (FA, {0}) : A ∈ Σ} = sup{‖j(FA)‖∞ : A ∈ Σ} ∼=
‖j(F )‖Pettis = dPettis(F, {0}), where ‖ · ‖∞ is the norm on ˜R(ck(X)).

4 Integrably Bounded Functions

Consider X to be a separable Banach space. Let

M[Σ, cbf(X)] := {F : Ω → cbf(X) : F is Σ-measurable}.

In [7], Hiai and Umegaki introduced an analogue of L1(μ,X) for set-valued
functions.
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If F ∈ M[Σ, cbf(X)], then F is called integrably bounded provided that
there exists ρ ∈ L1(μ) such that ‖x‖X ≤ ρ(ω) for all x ∈ F (ω) and for all
ω ∈ Ω. In this case, dH(F (ω), {0}) = sup{‖x‖X : x ∈ F (ω)} ≤ ρ(ω) for all
ω ∈ Ω.

Let L1[Σ, cbf(X)] denote the set of all equivalence classes of a.e. equal
F ∈ M[Σ, cbf(X)] which are integrably bounded. If ∆ : L1[Σ, cbf(X)] ×
L1[Ω, cbf(X)]→ R+ is defined by ∆(F1, F2) =

∫
Ω dH

(
F1(ω), F2(ω)

)
dμ, then

(L1[Σ, cbf(X)], ∆) is a complete metric space (see [7, 9]).
An R+-linear map T : ck(X) → ck(Y ) is called a set-valued absolutely

summing map if there exists c ∈ R+ such that for every finite sequence
X1, · · · , Xn ∈ ck(X),

n∑

i=1

dH(T (Xi), {0}) ≤ cdH(

n⊕

i=1

Xi, {0}). (1)

The following results characterize set-valued absolutely summing maps.
For the definition of T̂ , we recall the following from [14].

If T : ck(X)→ ck(Y) is R+−linear then T̂ : R(ck(X)) → R(ck(Y)), defined
by

T̂ (Z) =

n∑

i=1

λis(·, T (Ci)),

for all Z ∈ ck(X) and Z =
∑n

i=1 λis(·, Ci). Then, T̂ is well defined and linear
(see Theorem 3.4 in [14]).

Theorem 3. A function T : ck(X) → ck(Y ) is a set-valued absolutely sum-

ming if and only if T̂ : ˜R(ck(X)) → ˜R(ck(Y )) is an absolutely summing
map.

Proof. Suppose T is absolutely summing and c satisfies the inequality (1).
Let Z1, · · · , Zn ∈ ck(X). Suppose that each Zk =

∑nk

i=1 λ
k
i s(·, Ck

i ). Then

n∑

i=1

∥∥∥T̂ (Zi)
∥∥∥
∞

=

n∑

i=1

∥∥∥
ni∑

j=1

λi
js(·, T (Ci

j)
∥∥∥
∞

=

n∑

i=1

dH

( ni⊕

j=1

λi
jT (Ci

j), {0}
)

≤ c dH(
n⊕

i=1

ni⊕

j=1

λi
jC

i
j , {0}) =

∥∥∥
n∑

i=1

ni∑

j=1

λi
js(·, Ci

j)
∥∥∥
∞

= c
∥∥∥

n∑

i=1

Zi

∥∥∥
∞
.

Since T̂ is continuous we can extend it to T̂ : ˜R(ck(X)) → ˜R(ck(Y )). The
converse is trivial.

Theorem 4. A set-valued map S : ck(X) → ck(Y ) is absolutely summing if
and only if S ◦ F ∈ L1[Σ, ck(X)] for all F ∈ P [Σ, ck(X)].

Proof. The proof follows easily by Theorems 1, 2 and 3 and using the fact
that the space X is separable.
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5 Set-Valued Cone Absolutely Summing

Using Hörmander’s embedding theorem, Hiai and Umegaki obtained in [7] a
result similar to the the following:

Lemma 1. Let X be a separable Banach space and (Ω,Σ, μ) a finite measure
space. Then there exists a compact Hausdorff space Γ and an embedding
j : cbf(X) →֒ C(Γ ), such that if F ∈M[Σ, cbf(X)], then F ∈ L1[Σ, cbf(X)]
if and only if j ◦ F ∈ L1(μ,C(Γ )) and ∆(F (·), {0}) = ‖j ◦ F‖L1(μ,C(Γ )).

For terminology and notation regarding Banach lattices, the reader may con-
sult [13, 15].

Chaney and Schaefer extended the Bochner norm to the ‖ · ‖l norm on the
tensor product of a Banach lattice E and a Banach space Y . The ‖ · ‖l-norm
is given by

‖u‖l = inf

{∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|
∥∥∥∥∥ : u =

n∑

i=1

xi ⊗ yi

}

for all u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y , and coincides with the Bochner norm
on Lp(μ) ⊗ Y for all finite measure spaces (Ω,Σ, μ) and 1 ≤ p < ∞ (see
[2, 10, 15]).

We consider a generalization of l-tensor products to operators defined on
Banach lattices which take their values in Banach spaces.

Let E be a Banach lattice and let Y be a Banach space. A linear map
T : E → Y is called cone absolutely summing if for every positive summable
sequence (xn) in E, the sequence (Txn) is absolutely summable in Y (see
[15, Chapter IV, Section 3]). The space Lcas(E, Y ) = {T : E → Y :
T is cone absolutely summing} is a Banach space with respect to the norm
defined by

‖T ‖cas = sup

{
n∑

i=1

‖Txi‖ : x1, . . . , xn ∈ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = 1, n ∈ N

}

for all T ∈ Lcas(E, Y ).
Cone absolutely summing maps extend the Chaney-Schaefer l-tensor prod-

uct in the following sense: Each one of the canonical maps E∗ ⊗l Y →
Lcas(E, Y ), given by

∑n
i=1 x

∗
i ⊗ yi =: u → Tu, where Tux =

∑n
i=1 x

∗
i (x)yi

for all x ∈ E, and E ⊗l Y → Lcas(E∗, Y ), given by
∑n

i=1 xi ⊗ yi =: u → Tu,
where Tux

∗ =
∑n

i=1 x
∗(xi)yi for all x∗ ∈ E∗, is an isometry (see [15, Chapter

IV, Section 7] and [2, 10]).
Returning to the case at hand, if F ∈ L1[Σ, cbf(X)], then it follows from

Lemma 1 that j ◦ F ∈ L1(μ,C(Γ )). By the preceding remarks, the latter
defines a cone absolutely summing map Tj◦F : L∞(μ) → C(Γ ).
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Definition 4. Let E be a Banach lattice and T : E → cbf(X) a R+-linear
map. Then T is called a cone absolutely summing cbf(X)-valued map pro-

vided that there exists l ∈ R such that
∑n

i=1 dH(Txi, {0}) ≤ l
∥∥∥
∑n

i=1 |xi|
∥∥∥

for all x1, · · · , xn ∈ E.

If V : E → cbf(X) is an R+-linear map, let ‖V ‖◦ := sup{dH(V x, {0}) :
‖x‖ ≤ 1}, which may be equal to ∞. Let

R+L[E, cbf(X)] = {V : E → cbf(X) : V is R+-linear and ‖V ‖◦ <∞}.

Since V : E → cbf(X) is R+-linear if and only if j ◦ V : E → ˜R(cbf(X))
is linear and d(V x, {0}) = ‖(j ◦ V )x‖ ˜R(cbf(X))

for all x ∈ E, we see that

V ∈ R+L[E, cbf(X)] if and only if j ◦ T ∈ L(E, ˜R(cbf(X))).

Theorem 5. Let E be a Banach lattice and l ∈ R+. Then the following
statements are equivalent for T ∈ R+L[E, cbf(X)]:

1. If x1, · · · , xn ∈ E, then
∑n

i=1 dH(Txi, {0}) ≤ l
∥∥∥
∑n

i=1 |xi|
∥∥∥.

2. If x1, · · · , xn ∈ E, then
∑n

i=1 ‖(j ◦ T )xi‖ ˜R(cbf(X))
≤ l
∥∥∥
∑n

i=1 |xi|
∥∥∥.

3. There exist an L-normed space L, a positive linear map U1 : E → L and
an R+-linear map V1 : L→ cbf(X) such that T = V1 ◦U1, ‖U1‖ ≤ 1 and
‖V1‖◦ ≤ l.

4. There exist an AL-space L, a positive linear map U : E → L and a linear

map V : L→ ˜R(cbf(X)) such that j ◦ T = V ◦ U , ‖U‖ ≤ 1 and ‖V ‖ ≤ l.

5. There exists x∗ ∈ E∗
+ such that ‖x∗‖ ≤ l and d(Tx, {0}) ≤ x∗(|x|) for all

x ∈ E.

6. There exists x∗ ∈ E∗
+ such that ‖x∗‖ ≤ l and ‖(j◦T )x‖ ˜R(cbf(X))

≤ x∗(|x|)
for all x ∈ E.

Let R+Lcas[E, cbf(X)] = {T : E → cbf(X), T is a cone absolutely summing}
and

‖T ‖cas◦ = sup

{
n∑

i=1

d(Txi, {0}) : x1, . . . , xn ∈ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = 1, n ∈ N

}

for all T ∈ R+Lcas[E, cbf(X)]. It is known that ˜R(ck(X)) is a Banach lattice
(see [14]). The next theorem follows in a similar manner to Theorem 3.

Corollary 1. Suppose E is a Banach lattice. If V : E → ck(X) is R+-linear,

then T ∈ R+Lcas(E, ck(X)) if and only if j ◦T ∈ Lcas(E, ˜R(ck(X)); in which
case, ‖T ‖cas◦ = ‖j ◦ T ‖cas.
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6 Mapping Order-Pettis Integrable to Integrably
Bounded Functions

Let (Ω,Σ, μ) be a finite measure space, X a Banach space and E a Banach
lattice. A function g : Ω → E is called order-Pettis integrable provided that
g is measurable and |g| is Pettis integrable (see [10]). Denote by Porder(μ,E)
the set of all such order-Pettis integrable functions.

The following description of cone absolutely summing maps was noted
in [10, Chapter 3, Theorem 1.1].

Theorem 6. ( [10]) Let (Ω,Σ, μ) be a finite measure space, E and F Banach
lattices and T ∈ L(E,F ). Then T is cone absolutely summing if and only if
T ◦ g ∈ L1(μ, F ) for all g ∈ Porder(μ,E).

If X a separable Banach space, let R+LM[E, cbf(X)] denote the set of all
T ∈ R+L[E, cbf(X)] which satisfies there exists (ti) ⊆ E∗ ⊗ X such that
ti(z) ∈ T (z) a.e. for all z ∈ E and i ∈ N, and T (z) = {ti(z) : i ∈ N} for
all z ∈ E, where the closure is the norm closure in X . As in [12] we obtain
obtain a set-valued analogue of Theorem 6.

Theorem 7. Let (Ω,Σ, μ) be a finite measure space, X a separable Banach
space, E Banach lattice and T ∈ R+LM[E, cbf(X)]. Then T is a cone abso-
lutely summing cbf(X)-valued map if and only if T ◦ g ∈ L1[Σ, cbf(X)] for
all g ∈ Porder(μ,E).
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tional Research Foundation, the Università degli Studi di Palermo and the M.I.U.R.
of Italy.
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Upper Derivatives of Set Functions
Represented as the Choquet Indefinite
Integral

Shinsuke Nakamura, Toshiyuki Takasawa, and Toshiaki Murofushi

Abstract. This paper shows that, for a set function ν represented as the
Choquet indefinite integral of a function f with respect to a set function μ,
the upper derivative of ν at a measurable set A with respect to a measure m
is, under a certain condition, equal to the difference calculated by subtracting
the product of the negative part f− and the lower derivative of μ at the whole
set with respect to m from the product of the positive part f+ and the upper
derivative of μ at A with respect to m.

Keywords: Upper and lower derivatives, Set function, Choquet integral.

1 Introduction

Morris [4] defines a derivative of a set function by locally approximating it by
a linear set function, i.e., a measure. His derivative is a generalization of the
Radon-Nikodým derivative. This paper defines upper and lower derivatives
of set functions based on his definition, and shows two theorems on the upper
derivative of a set function represented as a Choquet indefinite integral.

2 Preliminaries

Throughout the paper, we assume that X is the whole set, 2X is the power
set of X , (X,X ) is a measurable space, where X ⊂ 2X is a σ-algebraC and
M(X,X ) is the family of measurable functions f : X → R. Furthermore, 1A
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represents the indicator function of a set A, the integral sign
∫

means the
Lebesgue integral, and (C)

∫
represents the Choquet integral defined below.

Definition 1. [2] A set function is a function μ : X → R satisfying
μ(∅) = 0.

Definition 2. [5] Let μ be a set function on (X,X ). The total variation
V (μ) of μ is defined by

V (μ) = sup

n∑

i=1

|μ(Ai)− μ(Ai−1)|,

where the supremum in the right-hand side is taken over all finite sequences
{Ai}n

i=1 ⊂ X of any length satisfying ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X . A
set function μ is said to be of bounded variation if V (μ) <∞. We denote by
BV (X,X ) the family of set functions of bounded variation on (X,X ) .

Remark 1. [5] For every set function μ on (X,X ), it holds that |μ(A)| ≤
V (μ) for all A ∈ X . Thus, every set function of bounded variation is bounded.

Definition 3. [2] [5] Let μ be a set function on (X,X ). The Choquet integral
over A ∈ X of f ∈M(X,X ) with respect to μ is defined by

(C)

∫

A

f dμ =

∫ ∞

−∞
μf,A(r)dr

if the integral in the right-hand side exists, where

μf,A(r) =

{
μ({f(x) ≥ r} ∩A), r ≥ 0,

μ({f(x) ≥ r} ∪Ac)− μ(X), r < 0.

A measurable function f is called μ-Choquet integrable if the Choquet integral
of f exists and its value is finite.

Remark 2. [5] If a set function μ is of bounded variation, then μf,A is a
function of bounded variation, hence it is measurable, and by Remark 1 it is
bounded. Furthermore, if f is bounded, then, since μf,A vanishes outside the
interval [inf f, sup f ], the function μf,A is integrable.

Definition 4. [2] [5] Let f and g be real-valued functions. We write f ∼ g
if

f(x) < f(x′) ⇒ g(x) ≤ g(x′), ∀x, x′ ∈ X.

When f ∼ g, functions f and g are said to be comonotonic.
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3 Derivatives of Set Functions

3.1 Derivatives, Upper and Lower Derivatives of Set

Functions

Definition 5. [4] Let (X,X ,m) be a measure space, μ be a set function on
(X,X ), and A0 ∈X . If there exists f ∈M(X,X ) such that

μ(A) = μ(A0) +

∫

A\A0

f dm−
∫

A0\A

f dm + o(m(A△A0))

for every A ∈ X , then μ is said to be differentiable at A0 with respect to
m, and the function f is called a derivative at A0 with respect to m, where
g(x) = o(x) means that for each ε > 0 there exists a δ > 0 such that

0 < |x| < δ ⇒
∣∣∣∣
g(x)

x

∣∣∣∣ < ε.

Definition 6. Let (X,X ,m) be a measure space, μ be a set function on
(X,X ), f ∈M(X,X ), and A0 ∈X . Consider the following two conditions:

(UD): For every A ∈X such that A ⊃ A0,

μ(A) = μ(A0) +

∫

A\A0

f dm + o(m(A \A0)).

(LD): For every A ∈ X such that A ⊂ A0,

μ(A) = μ(A0)−
∫

A0\A

f dm + o(m(A0 \A)).

If there exists f ∈M(X,X ) satisfying condition (UD) [resp. (LD)], then μ is
said to be upper [resp. lower] differentiable at A0 with respect to m, and f is
called an upper [resp. lower] derivative at A0 with respect to m. We denote by
DA0(X,X ,m) [resp. DA0

(X,X ,m)] the family of set functions on (X,X )
which are upper [resp. lower] differentiable at A0 with respect to m.

Remark 3. By definition, the upper [resp. lower] derivative f at A0 can be
arbitrary on A0 [resp. Ac

0] under the condition that f is measurable.

Remark 4. By definition, every differentiable set function at A0 are upper and
lower differentiable at A0, and the derivative is an upper and lower derivative.
On the other hand, an upper and lower differentiable set function at A0 is
not necessarily differentiable at A0 (Example 2 below).

Example 1. [4] Let u : Rn → R be a totally differentiable function of n
variables, (X,X ,m) be a measure space, vi : X → R (i = 1, 2, . . . , n) be
m-integrable functions, and μ be the set function on (X,X ) defined by
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μ(A) = u

(∫

A

v1 dm,

∫

A

v2 dm, . . . ,

∫

A

vn dm

)
, A ∈ X .

Then μ is differentiable at every A0 ∈X with respect to m and

n∑

i=1

ui

(∫

A0

v1dm,

∫

A0

v2dm, . . . ,

∫

A0

vndm

)
vi

is the derivative at A0 with respect to m, where ui is the partial derivative of u
with respect to the i-th variable. Therefore μ is upper and lower differentiable
at every A0 ∈ X with respect to m, and the above derivative is an upper
and lower derivative at A0 with respect to m.

Definition 7. [3] Let (X,X ,m) be a measure space. A ∈ X is called an
atom if m(A) > 0 and

B ⊂ A, B ∈ X ⇒ m(B) = 0 or m(A).

A measure space without atoms is said to be non-atomic.

Remark 5. The values of a derivative f on an atom can be chosen to be
arbitrary under the condition that f is measurable. The same holds for upper
and lower derivatives.

According to Remark 5 above, in the rest of the paper we deal only with
non-atomic measure spaces.

Proposition 1. Let (X,X ,m) be a non-atomic measure space. If μ ∈
DA0(X,X ,m) [resp. DA0

(X,X ,m)], then the upper [resp. lower] deriva-
tive is m-integrable on every finite-measure subset of Ac

0 [resp. A0].

Proposition 2. Let (X,X ,m) be a non-atomic measure space. If μ ∈
DA0(X,X ,m) [resp. DA0

(X,X ,m)], then the upper [resp. lower] deriva-
tive of μ at A0 with respect to m is m-a.e. uniquely determined on Ac

0 [resp.
A0].

According to Remark 3 and Proposition 2, we put the following definition.

Definition 8. For μ ∈ DA0(X,X ,m), we denote by dμ
dm+

(A0) the upper

derivative at A0 with respect to m such that
(

dμ
dm+

(A0)
)

(x) = 0 for all

x ∈ A0. Similarly, for μ ∈ DA0
(X,X ,m), we denote by dμ

dm−
(A0) the lower

derivative at A0 with respect to m such that
(

dμ
dm−

(A0)
)

(x) = 0 for all

x ∈ Ac
0.

Proposition 3. Let (X,X ,m) be a non-atomic measure space, and μ be
a differentiable set function at A0 ∈ X with respect to m. Then μ ∈
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DA0(X,X ,m) ∩ DA0
(X,X ,m), and the derivative f of μ at A0 with re-

spect to m is represented by

f =
dμ

dm+
(A0) +

dμ

dm−
(A0).

Example 2. Let (X,X ,m) be a non-atomic measure space, A0 ∈ X be of
positive measure, and μ be the set function on (X,X ) defined by

μ(A) = m(A0) + 3
√
m(A \A0)3 −m(A0 \A)3, A ∈X .

Since

μ(A) = m(A0) +

∫

A\A0

1 dm, ∀A ∈X ;A ⊃ A0,

μ(A) = m(A0)−
∫

A0\A

1 dm, ∀A ∈X ;A ⊂ A0,

it follows that μ ∈ DA0(X,X ,m) ∩DA0
(X,X ,m), and that

dμ

dm+
(A0) = 1Ac

0
,

dμ

dm−
(A0) = 1A0 .

Assume that μ is differentiable at A0 with respect to m. Then, by Proposi-
tion 3, the derivative have to be the constant function 1. However, it follows
that for every A ∈X

μ(A)− μ(A0)−
∫

A\A0

1 dm +

∫

A0\A

1 dm

= 3
√
m(A \A0)3 −m(A0 \A)3 −m(A \A0) + m(A0 \A)

�= o(m(A△A0)).

Thus, μ is not differentiable at A0 with respect to m.

Example 3. Let (X,X ,m) be a non-atomic measure space, and μ be a
finite measure on (X,X ) such that μ ≪ m. Then, μ ∈ DA0(X,X ,m) ∩
DA0

(X,X ,m), and the Radon-Nikodým derivative dμ
dm is an upper and lower

derivative. Especially, we have

dμ

dm+
(A0) =

dμ

dm
1Ac

0
,

dμ

dm−
(A0) =

dμ

dm
1A0 .

3.2 Two Main Theorems on Upper Derivatives

We state our two main theorems.
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Theorem 1. Let (X,X ,m) be a non-atomic finite measure space, μ ∈
BV (X,X )∩DA0(X,X ,m), f be a μ-Choquet integrable non-negative func-
tion essentially bounded on Ac

0 such that 1A0 ∼ f , and ν be the set function
on (X,X ) defined by

ν(A) = (C)

∫

A

f dμ, A ∈ X .

Then ν ∈ DA0(X,X ,m) and

dν

dm+
(A0) = f

dμ

dm+
(A0), m-a.e.

Theorem 2. Let (X,X ,m) be a non-atomic finite measure space, μ ∈
BV (X,X ), f be a μ-Choquet integrable function essentially bounded on
Ac

0, and ν be the set function on (X,X ) defined by

ν(A) = (C)

∫

A

fdμ, A ∈ X .

If f ≥ 0 on A0, 1A0 ∼ f , and μ ∈ DA0(X,X ,m) ∩ DX(X,X ,m), then
ν ∈ DA0(X,X ,m) and

dν

dm+
(A0) = f+ dμ

dm+
(A0)− f− dμ

dm−
(X)1Ac

0
, m-a.e.

If f ≤ 0 on A0, 1Ac
0
∼ f , and μ ∈ D∅(X,X ,m) ∩ DAc

0
(X,X ,m), then

ν ∈ DA0(X,X ,m) and

dν

dm+
(A0) = f+ dμ

dm+
(∅)1Ac

0
− f− dμ

dm−
(Ac

0), m-a.e.

Example 4. Let (X,X ,m) be a non-atomic measure space, μ be a measure
on (X,X ) such that μ≪ m, f be a μ-integrable function, and ν be the set
function defined by

ν(A) =

∫

A

f dμ, A ∈ X .

Then, the Radon-Nikodým derivatives dν
dm and dμ

dm satisfy the following equa-
tion [3]:

dν

dm
= f

dμ

dm
, m-a.e. (1)

Let A0 ∈ X , f be essentially bounded on Ac
0, and 1A0 ∼ f . First, we

consider the case where f is a non-negative function. Since μ ∈ BV (X,X )∩
DA0(X,X ,m), it follows from Theorem 1 that

dν

dm+
(A0) = f

dμ

dm+
(A0), m-a.e. (2)
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Since by Example 3 we have

dν

dm+
(A0) =

dν

dm
1Ac

0
,

dμ

dm+
(A0) =

dμ

dm
1Ac

0
,

by substituting the above two formulae into Eq. (2), we obtain

dν

dm
1Ac

0
= f

dμ

dm
1Ac

0
, m-a.e.,

which is just Eq. (1) multiplied by 1Ac
0
.

Next, we consider the case where f is not necessarily non-negative. Assume
that f ≥ 0 on A0. Then, since μ ∈ DA0(X,X ,m)∩DX(X,X ,m), it follows
from Theorem 2 that

dν

dm+
(A0) = f+ dμ

dm+
(A0)− f− dμ

dm−
(X)1Ac

0
. (3)

Since by Example 3 we have

dν

dm+
(A0) =

dν

dm
1Ac

0
,

dμ

dm+
(A0) =

dμ

dm
1Ac

0
,

dμ

dm−
(X) =

dμ

dm
1X =

dμ

dm
,

by substituting the above three formulae into Eq. (3), we obtain

dν

dm
1Ac

0
= f+ dμ

dm
1Ac

0
− f− dμ

dm
1Ac

0
= (f+ − f−)

dμ

dm
1Ac

0
= f

dμ

dm
1Ac

0
, m-a.e.

which is just Eq. (1) multiplied by 1Ac
0
.

The same argument is valid when 1Ac
0
∼ f and f ≤ 0 on A0. Therefore,

Theorems 1 and 2 can be regarded as generalizations of the existing result
(1) in measure theory.

Example 5. Let (X,X ,m) be a non-atomic space, n ∈ N, vi : X → R+ be
an m-integrable non-negative function for i = 1, 2, . . . n, D =

[
0,
∫
X
v1 dm

]
×

· · · ×
[
0,
∫

X vn dm
]
⊂ Rn, u : D → R be a totally differentiable function

of bounded Arzelá variation [1] such that u(0, . . . , 0) = 0, and μ be the set
function on (X,X ) defined by

μ(A) = u

(∫

A

v1 dm, . . . ,

∫

A

vn dm

)
, A ∈X .

Then, for each i = 1, 2, . . . n, since vi is non-negative, if A, B ∈ X and
A ⊂ B, then ∫

A

vi dm ≤
∫

B

vi dm.

Therefor, since V (μ) ≤ AV (u) <∞, where AV (u) is the Arzelá variation [1]
of u, it follows that μ is of bounded variation. By Example 1 we have that
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μ ∈ DA0(X,X ,m) ∩DX(X,X ,m) and that

dμ

dm+
(A0) =

n∑

i=1

ui

(∫

A0

v1 dm, . . . ,

∫

A0

vn dm

)
vi1Ac

0
,

dμ

dm−
(X) =

n∑

i=1

ui

(∫

X

v1 dm, . . . ,

∫

X

vn dm

)
vi,

where ui is the partial derivative of u with respect to the i-th variable.
Assume that f is essentially bounded, f ≥ 0 on A0, and 1A0 ∼ f . Then

f is μ-Choquet integrable. Let ν be the set function on (X,X ) defined by

ν(A) = (C)

∫

A

f dμ, A ∈ X .

Then ν is upper differentiable at A0 with respect to m and

dν

dm+
(A0) =

n∑

i=1

Kivi1Ac
0
,

where

Ki = f+ui

(∫

A0

v1 dm, . . . ,

∫

A0

vn dm

)
− f−ui

(∫

X

v1 dm, . . . ,

∫

X

vn dm

)
.

4 Conclusions

In this paper, we have defined upper and lower derivatives of set functions,
and shown two theorems on the upper derivative of a set function repre-
sented as a Choquet indefinite integral. These theorems can be regarded as
generalizations of the existing result in measure theory.

References
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On Regularity for Non-additive
Measure

Toshikazu Watanabe and Tamaki Tanaka

Abstract. In this paper, we give a certain result on the regularity for non-
additive Borel measure under the conditions of weakly null additivity, a con-
tinuity from above, and a certain additional continuity.

Keywords: Non-additive measure, Regularity, Weakly null additive,
Continuity.

1 Introduction

The regularity of measure is one of the important properties in classical
measure theory. In [12], Wu and Ha generalize the regularity from a classi-
cal measure space to a finite autocontinuous fuzzy measure space and prove
Lusin’s theorem for the measure. Jiang and Suzuki [3] extent the result of [12]
to those for a σ-finite fuzzy measure space. In [9], Song and Li investigate
the regularity of null additive fuzzy measure on a metric space and prove
that Lusin’s theorem remains valid on fuzzy measure space under the null
additivity condition. In [6], Li and Yasuda extent the regularity and cor-
responding theorem in the case of fuzzy Borel measures on a metric space
under the weakly null additivity condition. Discussion for the regularity of
fuzzy measures, see Pap [8], Jiang et al. [4], and Wu and Wu [13]. For real
valued non-additive measures, see [2, 8, 11].

In this paper, in Section 3, we prove the regularity for real valued non-
additive measure on a metric space in the case where the measure is weakly
null-additive Borel measure and continuous from above together with a

Toshikazu Watanabe and Tamaki Tanaka
Graduate School of Science and Technology, Niigata University, 8050,
Ikarashi 2-no-cho, Nishi-ku, Niigata, 950–2181, Japan
e-mail: wa-toshi@math.sc.niigata-u.ac.jp, tamaki@math.sc.niigata-u.ac.jp

S. Li (Eds.): Nonlinear Maths for Uncertainty and its Appli., AISC 100, pp. 69–75.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

wa-toshi@math.sc.niigata-u.ac.jp


70 T. Watanabe and T. Tanaka

property suggested by Sun [10]. In Section 4, we give the version of Ego-
roff’s Theorem for the measure on a metric space under the conditions.

2 Preliminaries

Let R be the set of real numbers and N the set of natural numbers. Denote
by Θ the set of all mappings from N into N . Let (X,F) be a measurable
space.

Definition 1. A set function μ : F → [0,∞] is called a non-additive measure
if it satisfies the following two conditions.
(1) μ(∅) = 0.
(2) If A, B ∈ F and A ⊂ B, then μ(A) ≤ μ(B).

In this paper, we always assume that μ is a finite measure on F , that is,
μ(X) <∞.

Definition 2. (1) μ is called continuous from above if limn→∞ μ(An) = μ(A)
whenever {An} ⊂ F and A ∈ F satisfy An ց A and there exists n0 such
that μ(An0) <∞.
(2) μ is called continuous from below if limn→∞ μ(An) = μ(A) whenever
{An} ⊂ F and A ∈ F satisfy An ր A.
(3) μ is called a fuzzy measure if it is continuous from above and below.
(4) μ is called weakly null-additive if μ(A ∪B) = 0 whenever A,B ∈ F and
μ(A) = μ(B) = 0; see [11].
(5) μ is called strongly order continuous if it is continuous from above at
measurable sets of measure 0, that is, for any {An} ⊂ F and A ∈ F with
An ց A and μ(A) = 0, it holds that limn→∞ μ(An) = 0.
(6) μ has property (S) if for any sequence {An} ⊂ F with limn→∞ μ(An) = 0,
there exists a subsequence {Ank

} such that μ(∩∞
i=1 ∪∞

k=i Ank
) = 0; see [10].

Definition 3. Let {fn} be a sequence of F -measurable real valued functions
on X and f also such a function.
(1) {fn} is called convergent μ-a.e. to f if there exists an A ∈ F with μ(A) = 0
such that {fn} converges to f on X � A.
(2) {fn} is called μ-almost uniformly convergent to f if there exist a decreas-
ing net {Bγ | γ ∈ Γ} ⊂ F such that for any ε > 0, there exists a γ ∈ Γ such
that μ(Bγ) < ε and {fn} converges to f uniformly on each subset X � Bγ .

For the weakly null-additivity, we give the following Lemma.

Lemma 1. If μ is strongly order continuous and has property (S), then the
following two conditions are equivalent:
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(i) μ is weakly null-additive.
(ii) For any ε > 0 and double sequence {Am,n} ⊂ F satisfying that
Am,n ց Dm as n → ∞ and μ(Dm) = 0 for each m ∈ N , there exists a
θ ∈ Θ such that μ

(
∪∞

m=1Am,θ(m)

)
< ε.

Proof. (i)→ (ii) Let {Am, n} be a double sequence such that Am, n ց Dm

as n → ∞ and μ(Dm) = 0 for each m ∈ N . Put Bm, n = ∪m
j=1Aj, n and

Fm = ∪m
j=1Dj, then {Bm, n} is increasing for each n ∈ N and Bm, n ց Fm as

n→∞. Since μ is weakly null additive, μ(Fm) = 0. Since μ is strongly order
continuous, for any integer m, there exists n0(m) such that μ(Bm,n0(m)) <

1
m .

Then limm→∞ μ(Bm,n0(m)) = 0. By property (S), there exists a strictly
increasing sequence {mi} ⊂ N such that μ(∩∞

j=1 ∪∞
i=j Bmi, n0(mi)) = 0.

For any ε > 0, since μ is strongly order continuous, there exists a j0 ∈
N such that μ(∪∞

i=j0
Bmi, n0(mi)) < ε. Define θ ∈ Θ such that θ(m) =

n0(mj0) if 1 ≤ m ≤ mj0 and θ(m) = n0(mi) if mi−1 < m ≤ mi

for some i > j0. Since {Bm, n} is increasing for each n ∈ N , we have
∪∞

i=j0
Bmi, n0(mi) = ∪∞

m=1Bm, θ(m). Since ∪∞
m=1Am, θ(m) ⊂ ∪∞

m=1Bm, θ(m), we
have μ(∪∞

m=1Am, θ(m)) ≤ μ(∪∞
m=1Bm, θ(m)). Thus, (ii) holds.

(ii)→(i) Let F, G ∈ F and μ(F ) = μ(G) = 0. Define a double sequence
{Am, n} ⊂ F such that A1, n = F , A2, n = G and Am, n = ∅ (m ≥ 3) for
any n ∈ N . Let D1 = F , D2 = G and Dm = ∅ (m ≥ 3) for any n ∈ N . By
assumption, for any ε > 0 there exists a θ ∈ Θ such that μ(∪∞

m=1Am, θ(m)) <
ε. Since ∪∞

m=1Am, θ(m) = F ∪ G, we have μ(F ∪ G) < ε. Then we have
μ(F ∪G) = 0. ✷

3 Regularity of Measure

Let X be a Hausdorff space. Denote by B(X) the σ-field of all Borel subsets
of X , that is, the σ-field generated by the open subsets of X . A non-additive
measure defined on B(X) is called a non-additive Borel measure on X . In
Theorem 1, we prove that the regularity is enjoyed by non-additive Borel
measures which is continuous from above with weakly null-additivity and
has property (S). The proof is similar to that of [6, Theorem 1] and given
here for completeness.

Definition 4 ( [12]). Let μ be a non-additive Borel measure on X . μ is
called regular if for any ε > 0 and A ∈ B(X), there exist a closed set Fε and
an open set Gε such that Fε ⊂ A ⊂ Gε and μ(Gε � Fε) < ε.

Theorem 1. Let X be a metric space and B(X) a σ-field of all Borel subsets
of X. Let μ be a non-additive Borel measure on X which is weakly null
additive, continuous from above and has property (S). Then μ is regular.

Proof. Let μ be a non-additive Borel measure. Denote by E the family of
Borel subsets A of X with the property that for any ε > 0, there exist a
closed set Fε and an open set Gε such that



72 T. Watanabe and T. Tanaka

Fε ⊂ A ⊂ Gε and μ(Gε � Fε) < ε.

We first show that E is a σ-field. It is obvious that E is closed for complemen-
tation and contains ∅ and X . We show that E is closed for countable unions.
Let {Am} be a sequence of E and put A = ∪∞

m=1Am on X . Then for each
m ∈ N , there exist double sequences {Fm,n} of closed sets and {Gm,n} of
open sets such that

Fm,n ⊂ Am ⊂ Gm,n and μ(Gm,n � Fm,n) <
1

n
for all n ∈ N.

We may assume that, for each m ∈ N , {Fm,n} is increasing and {Gm,n}
is decreasing without loss of generality. For each m ∈ N , put Dm =
∩∞

n=1(Gm,n � Fm,n). Since μ is continuous from above and

(Gm,n � Fm,n) ց Dm as n→∞,

we have μ(Dm) = limn→∞ μ (Gm,n � Fm,n) = 0. As μ is weakly null additive,
by Lemma 1, for any ε > 0 there exists a θ ∈ Θ such that

μ

( ∞⋃

m=1

(
Gm,θ(m) � Fm,θ(m)

)
)

<
ε

2
,

and then

μ

( ∞⋃

m=1

Gm,θ(m) �
∞⋃

m=1

Fm,θ(m)

)
<

ε

2
.

Since
( ∞⋃

m=1

Gm,θ(m) �
N⋃

m=1

Fm,θ(m)

)
ց
( ∞⋃

m=1

Gm,θ(m) �
∞⋃

m=1

Fm,θ(m)

)

as N →∞, by the continuity from above and monotonicity of μ, there exists
an N0 ∈ N such that

μ

( ∞⋃

m=1

Gm,θ(m) �
N0⋃

m=1

Fm,θ(m)

)
− μ

( ∞⋃

m=1

Gm,θ(m) �
∞⋃

m=1

Fm,θ(m)

)
<

ε

2
.

Then we have

μ

( ∞⋃

m=1

Gm,θ(m) �
N0⋃

m=1

Fm,θ(m)

)
<

ε

2
+

ε

2
= ε.

Denote Fε = ∪N0
m=1Fm,θ(m) and Gε = ∪∞

m=1Gm,θ(m), then Fε is closed, Gε is
open and we have
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Fε ⊂ A ⊂ Gε and μ (Gε � Fε) < ε.

Therefore A ∈ E . Thus we have proved that E is a σ-field.
Next we verify that E contains all closed subsets of X . Let F be closed in

X . Since X is a metric space, one can find a sequence {Gn} of open subsets
of X such that Gn ց F , and hence limn→∞ μ(Gn �F ) = 0 by the continuity
from above. Thus, we have F ∈ E . Consequently, E is a σ-field which contains
all closed subsets of X , so that it also contains all Borel subsets of X , that
is, E ⊂ B(X). Therefore μ is regular. ✷

Example 1. Let X = [0, 1] be a metric space with the metric d(x, y) = |x−y|,
B(X) a Borel measure of X and m the Lebesgue measure on B(X). Define

μ(A) =

{
a ·m(A) if m(A) < 1,
1 if m(A) = 1,

where 0 < a < 1. Then μ is a non-additive measure. It is easy to see that μ
is continuous from above. In fact, let {An} ⊂ B(X) a sequence with An ց A
where A ∈ B(X). We consider the following cases: (i) m(A) = 1, (ii) m(A) <
1. In cases (i), since m(An) = 1, the assertion is clear. In cases (ii), when
m(An) < 1 the assertion is clear, however, when m(An) = 1 it is impossible.
Thus μ is continious from above. Since m is the Lebesgue measure, weakly
null additivity and property (S) of μ hold. μ is not continuous from below.
In fact, if we take An =

[
0, 1− 1

n

]
∪{1}, n ∈ N , then An ր X . Nevertheless,

we have μ(An) = a ·m(An) = a ·
(
1− 1

n

)
ր a < 1 = μ(X).

4 Egoroff’s Theorem

In this section, we prove a version of Egoroff’s theorem for a measure which
is weakly null-additive, continuous from above and has property (S) defined
on a metric space. The proof is similar to [6, Proposition 4] and given here
for completeness. Let us begin with giving the following result; see [1].

Theorem 2. Let μ be a non-additive measure which is strongly order con-
tinuous and has property (S). Let {fn} be a sequence of F-measurable real
valued functions on X and f also such a function. If {fn} converges μ-a.e.
to f , then {fn} converges μ-almost uniformly to f .

Theorem 3. Let μ be a non-additive Borel measure which is strongly order
continuous and has property (S). Let {fn} be a sequence of Borel measurable
real valued functions on X and f also such a function. If {fn} converges
μ-a.e. to f , then there exists an increasing sequence {Am} ⊂ B(X) such that
μ(X � ∪∞

m=1Am) = 0 and {fn} converges to f uniformly on Am for each
m ∈ N .
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Proof. Since {fn} converges μ-a.e. to f , by Theorem 2, for any ε > 0, there
exists a decreasing net {Bγ | γ ∈ Γ} such that μ(Bγ) < ε and that {fn}
converges to f uniformly on each set X �Bγ . For any m ∈ N , there exists a
{γm} such that μ(Bγm) < ε. Put Am = X � ∩m

i=1Bγi for each m ∈ N . The
proof is complete. ✷

Theorem 4. Let X be a metric space and μ a non-additive Borel measure
which is weakly null additive, continuous from above and has property (S).
Let {fn} be a sequence of Borel measurable real valued functions on X and
f also such a function. If {fn} converges μ-a.e. to f , then for any ε > 0,
there exists a closed set Fε such that μ(X �Fε) < ε and {fn} converges to f
uniformly on each Fε.

Proof. Since {fn} converges μ-a.e. to f , by Theorem 3, there exists an in-
creasing sequence {Am} ⊂ B(X) such that {fn} converges to f uniformly on
Am for each m ∈ N and μ(X � ∪∞

m=1Am) = 0. By Theorem 1, μ is regular.
Then for each m ∈ N , there exists an increasing sequence {Fm, n} of closed
sets such that Fm, n ⊂ Am and μ(Am � Fm, n) < 1

n for any n ∈ N . With-
out loss of generality, we can assume that for each m ∈ N , {Am � Fm, n} is
decreasing as n→∞. Then we have

(Am � Fm, n) ց
∞⋂

n=1

(Am � Fm, n) as n→∞.

Put Xm, n = (X � ∪∞
m=1Am)∪(Am � Fm, n) and Dm = ∩∞

n=1Xm, n. Then for
each m ∈ N , Xm, n ց Dm as n→∞. Since

μ

( ∞⋂

n=1

(Am � Fm, n)

)
≤ μ (Am � Fm, n) ,

we have

μ

( ∞⋂

n=1

(Am � Fm, n)

)
= lim

n→∞
μ(Am � Fm, n) = 0.

By the weakly null additivity of μ, we have μ(Dm) = 0 for any m ∈ N . For
any ε > 0, by Lemma 1, there exists a θ ∈ Θ such that μ

(
∪∞

m=1Xm, θ(m)

)
< ε

2 .
Since X � ∪∞

m=1Fm, θ(m) ⊂ ∪∞
m=1Xm, θ(m), we have

μ

(
X �

∞⋃

m=1

Fm, θ(m)

)
<

ε

2
.

On the other hand, since
(
X � ∪N

m=1Fm, θ(m)

)
ց

(
X � ∪∞

m=1Fm, θ(m)

)
as

N →∞ and μ is continuous from above, there exists an N0 ∈ N such that

μ
(
X � ∪N0

m=1Fm, θ(m)

)
− μ

(
X � ∪∞

m=1Fm, θ(m)

)
<

ε

2
.
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Then we have

μ

(
X �

N0⋃

m=1

Fm, θ(m)

)
<

ε

2
+

ε

2
= ε.

Denote Fε = ∪N0
m=1Fm, θ(m), then Fε is a closed set, μ(X � Fε) < ε and Fε ⊂

∪N
m=1Am. It is easy to see that {fn} converges to f uniformly on Fε. ✷
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Autocontinuity from below of Set
Functions and Convergence in Measure

Jun Li, Masami Yasuda, and Ling Zhou

Abstract. In this note, the concepts of strong autocontinuity from below
and strong converse autocontinuity from below of set function are introduced.
By using four types of autocontinuity from below of monotone measure, the
relationship between convergence in measure and pseudo-convergence in mea-
sure for sequence of measurable function are discussed.

Keywords: Monotone measure, Autocontinuity from below, Convergence in
measure, Pseudo-convergence in measure.

1 Introduction

In non-additive measure theory, there are several different kinds of conver-
gence for sequence of measurable functions, such as almost everywhere conver-
gence, pseudo-almost everywhere convergence, convergence in measure,
and convergence pseudo-in measure. The implication relationship between
such convergence concepts are closely related to the structural charac-
teristics of set functions. In this direction there are a lot of results
( [5, 7, 2, 6, 3, 10, 4, 8, 9, 11, 12, 14, 15]).
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In this note, we further discuss the relationship between convergence in
measure and convergence pseudo-in measure for sequence of measurable func-
tions. We shall introduce the concepts of strong autocontinuity from below
and strong converse autocontinuity from below of a set function. By using the
two types of autocontinuity from below of monotone measures, we investigate
the inheriting of convergence in measure and convergence pseudo-in measure
for sequence of measurable function under the common addition operation
“+” and logic addition operation “∨”. The implication relationship between
convergence in measure and pseudo-convergence in measure are shown by
using autocontinuity from below and converse autocontinuity from below,
respectively.

2 Preliminaries

Let X be a non-empty set, F a σ-algebra of subsets of X , and (X,F) denotes
the measurable space.

Definition 1. ( [9, 15]) Set function μ : F → [0,+∞] is called a monotone
measure on (X,F) iff it satisfies the following requirements:

(1) μ(∅) = 0; (vanishing at ∅)
(2) A ⊂ B and A,B ∈ F ⇒ μ(A) ≤ μ(B). (monotonicity)

When μ is a monotone measure, the triple (X,F , μ) is called a monotone
measure space ( [9, 15]).

In some literature, a set function μ satisfying the conditions (1) and (2) of
Definition 1 is called a fuzzy measure or a non-additive measure .

In this paper, all the considered sets are supposed to belong to F and μ is
supposed to be a finite monotone measure, i.e., μ(X) <∞. All concepts and
symbols not defined may be found in [9, 15].

Definition 2. ( [1]) A set function μ : F → [0,+∞) is said to have pseu-
dometric generating property (for short p.g.p), if for any {En} ⊂ F and
{Fn} ⊂ F ,

μ(En) ∨ μ(Fn)→ 0 =⇒ μ(En ∪ Fn)→ 0.

Note: The concept of pseudometric generated property goes back to Do-
brakov and Farkova in seventies, and this was related to Frechet-Nikodym
topology [1, 9].

Let F be the class of all finite real-valued measurable functions on (X,F , μ),
and let A ∈ F , f ∈ F, fn ∈ F (n = 1, 2, . . .) and {fn} denote a se-
quence of measurable functions. We say that {fn} converges in measure μ to
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f on A, and denote it by fn
μ−→
A

f , if for any given σ > 0, lim
n→+∞

μ({|fn−f | ≥
σ} ∩ A) = 0; {fn} converges pseudo-in measure μ to f on A, and denote it

by fn
p, μ−→
A

f , if for any given σ > 0, lim
n→+∞

μ({|fn− f | < σ}∩A) = μ(A); {fn}

converges pseudo-in measure μ to f in A, and denote it by fn
p.μ−→ f in A, if

fn
p.μ−→ f on C for all C ∈ A ∩ F .

3 Autocontinuity of Set Function

In [14] Wang introduced the concepts of autocontinuity from below and
converse-autocontinuity from below of set function, and discussed the con-
vergence for sequence of measurable functions by using the structure of set
functions. Now we shall introduce the concepts of strong autocontinuity from
below and strong converse-autocontinuity from below for set functions and
show their properties.

Definition 3. ( [9, 14, 15]) Let (X,F , μ) be a monotone measure space.
(1) μ is said to be autocontinuous from below and denote it by autoc.↑, if

for any E ∈ F , {Fn} ⊂ F ,

μ(Fn) → 0 =⇒ μ(E − Fn)→ μ(E);

(2) μ is said to be converse-autocontinuous from below and denote it by
c.autoc.↑, if for any A ∈ F , {Bn} ⊂ A ∩ F ,

μ(Bn) → μ(A) =⇒ μ(A−Bn)→ 0.

Definition 4. Let (X,F , μ) be a monotone measure space.
(1) μ is said to be strong autocontinuous from below and denote it by

s.autoc.↑, if

μ(En) ∨ μ(Fn) → 0 =⇒ μ(A− En ∪ Fn) → μ(A),

for any A ∈ F , {En} ⊂ F and {Fn} ⊂ F ;
(2) μ is said to be strong converse-autocontinuous from below and denote

it by s.c.autoc.↑, if

μ(A− En) ∧ μ(A− Fn)→ μ(A) =⇒ μ(En ∪ Fn)→ 0,

for any A ∈ F , {En} ⊂ A ∩ F and {Fn} ⊂ A ∩ F .

Proposition 1. If μ is s.autoc.↑ (resp. s.c.autoc.↑), then it is autoc.↑ (resp.
c.autoc.↑).

Proposition 2. If μ is autoc.↑ and has p.g.p, then it is s.autoc.↑.
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Proposition 3. If μ is c.autoc.↑ and has p.g.p, then it is s.c.autoc.↑.

4 Convergence in Measure

In this section, we study the application relationship between convergence in
measure and convergence pseudo-in measure on monotone measure spaces.

The first conclusion of the following theorem due to Wang [15].

Theorem 1. Let μ be a monotone measure. Then,

(1) μ is autoc.↑ iff fn
p.μ−→
A

f whenever fn
μ−→
A

f , ∀A ∈ F , f, fn ∈ F;

(2) μ is c.autoc↑, iff fn
μ−→
A

f whenever fn
p.μ−→
A

f , ∀A ∈ F , f, fn ∈ F.

Proof. We only prove (2). Let μ be c.autoco↑. If fn
p.μ−→
A

f , then for any given

σ > 0, we have
lim

n→+∞
μ({|fn − f | < σ} ∩A) = μ(A)

and therefore, using the converse-autocontinuity from below of μ, we have

lim
n→+∞

μ({|fn − f | ≥ σ} ∩A) = lim
n→+∞

μ(A− {|fn − f | < σ})
= 0.

So fn
μ−→
A

f .

Conversly, for any A ∈ F , {Bn} ⊂ A ∩ F , and μ(Bn) → μ(A), we define
measurable function sequences {fn} by

fn = χBn =

{
0 if x /∈ Bn

1 if x ∈ Bn,

n = 1, 2,..., and denote f ≡ 1. It is easy to see that fn
p.μ−→
A

f . If it implies

fn
μ−→
A

f , then for σ = 1
2 , we have

lim
n→+∞

μ({|fn − f | ≥ 1

2
} ∩A) = 0.

As

{|fn − f | ≥ 1

2
} ∩A = {1− χBn ≥

1

2
} ∩A = A−Bn.

So lim
n→+∞

μ(A−Bn) = 0. This shows that μ is c.autoc↑. ✷
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The following theorems describe the inheriting of convergence in measure and
convergence pseudo-in measure for sequence of measurable function under the
common addition operation.

Theorem 2. Let μ be a monotone measure.

(1) If μ is s.autoc.↑, then fn
μ−→ f and gn

μ−→ g on A imply

αfn + βgn
p.μ−→
D

αf + βg,

for any D ∈ A ∩ F , α, β ∈ R1.

(2) If μ is s.c.autoc.↑, then fn
p.μ−→
A

f and gn
p.μ−→
A

g imply

αfn + βgn
μ−→
A

αf + βg,

for any A ∈ F , α, β ∈ R1.

Proof. It is similar to the proof of Theorem 1. ✷

The following Theorem 3 and 4 describe respectively the characteristics of
strong autocontinuity from below and strong converse-autocontinuity from
below of set functions.

Theorem 3. The following statements are equivalent:
(1) μ is s.autoc.↑;
(2) fn + gn

p.μ−→
A

0 whenever fn
μ−→
A

0 and gn
μ−→
A

0, ∀A ∈ F ;

(3) fn ∨ gn
p.μ−→
A

0 whenever fn
μ−→
A

0 and gn
μ−→
A

0, ∀A ∈ F .

Proof. (1) =⇒ (2). It follows directly from Theorem 2 above.

(2) =⇒ (3). For any A ∈ F , if fn
μ−→
A

0 and gn
μ−→
A

0, then |fn| μ−→
A

0 and

|gn| μ−→
A

0. By condition (2), we have |fn|+ |gn| p.μ−→ 0 on A, therefore, for any

σ > 0,
lim

n→+∞
μ({|fn|+ |gn| < σ} ∩A) = μ(A).

Noting that |fn ∨ gn| ≤ |fn|+ |gn|, we get

{|fn|+ |gn| < σ} ∩A ⊆ {|fn ∨ gn| < σ} ∩A ⊆ A.

So
lim

n→+∞
μ({|fn ∨ gn| < σ} ∩A) = μ(A).

This shows fn ∨ gn
p.μ−→ 0 on A.
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(3)=⇒(1). For any {En} ⊂ F , {Fn} ⊂ F with lim
n→∞

μ(En)∨ μ(Fn) = 0, we

define measurable function sequences {fn} and {gn} by

fn = χEn =

{
0 if x /∈ En

1 if x ∈ En

and

gn = χFn =

{
0 if x /∈ Fn

1 if x ∈ Fn,

n = 1, 2,..., then fn
μ−→ 0 on A and gn

μ−→ 0 on A. Thus, fn ∨ gn
μ−→ 0 on

A. Therefore for σ = 1
2 , we have

lim
n→+∞

μ({fn ∨ gn <
1

2
} ∩A) = μ(A).

Noting fn ∨ gn = χEn ∨ χFn = χEn∪Fn , and

{χEn ∨ χFn <
1

2
} ∩A = A− {χEn ∨ χFn ≥

1

2
} = A− En ∪ Fn.

So
lim

n→+∞
μ(A− En ∪ Fn) = μ(A).

That is, μ is s.autoc.↑. ✷

Theorem 4. The following statements are equivalent:

(1) μ is s.c.autoc.↑;
(2) fn + gn

μ−→
A

0 whenever fn
p.μ−→
A

0 and gn
p.μ−→
A

0, ∀A ∈ F ;

(3) fn ∨ gn
μ−→
A

0 whenever fn
p.μ−→
A

0 and gn
p.μ−→
A

0, ∀A ∈ F .

Proof. It is similar to the proof of Theorem 3. ✷
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On Lusin’s Theorem for Non-additive
Measure

Tamaki Tanaka and Toshikazu Watanabe

Abstract. In this paper, we prove Lusin’s theorem remains valid for non-
additive Borel measure under the conditions of weakly null additivity, conti-
nuity from above and a certain additional continuity.

Keywords: Non-additive measure, Lusin’s theorem, Weakly null additive,
Continuity.

1 Introduction

Lusin’s theorem is one of the most fundamental theorems in classical measure
theory and does not hold in non-additive measure theory without additional
conditions. In [13], Wu and Ha generalize Lusin’s theorem from a classical
measure space to a finite autocontinuous fuzzy measure space. Jiang and
Suzuki [2] extent the result of [13] to a σ-finite fuzzy measure space. In [9],
Song and Li investigate the regularity of null additive fuzzy measure on a
metric space and show Lusin’s theorem remains valid on fuzzy measure space
under the null additivity condition. In [5], Li and Yasuda extent the theorem
into the Borel measures on a metric space under the weakly null additivity
condition. For the regularity fuzzy measures, see Pap [7], Jiang et al. [3], and
Wu and Wu [14]. For real valued non-additive measures, see [1, 7, 11].

In [12], we investigate the regularity of non-additive Borel measures on
a metric space in the case where the measure is weakly null-additive and
continuous from above together with a certain property suggested by Sun [10].
In this paper, we prove Lusin’s theorem remains valid for the measure on a
metric space under the conditions.
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2 Preliminaries

Let R be the set of real numbers and N the set of natural numbers. Denote
by Θ the set of all mappings from N into N . Let (X,F) be a measurable
space.

Definition 1. A set function μ : F → [0,∞] is called a non-additive measure
if it satisfies the following two conditions.
(1) μ(∅) = 0.
(2) If A, B ∈ F and A ⊂ B, then μ(A) ≤ μ(B).

In this paper, we always assume that μ is a finite measure on F , that is,
μ(X) <∞.

Definition 2. (1) μ is called continuous from above if limn→∞ μ(An) = μ(A)
whenever {An} ⊂ F and A ∈ F satisfy An ց A and there exists n0 such
that μ(An0) <∞.
(2) μ is called continuous from below if limn→∞ μ(An) = μ(A) whenever
{An} ⊂ F and A ∈ F satisfy An ր A.
(3) μ is called a fuzzy measure if it is continuous from above and below.
(4) μ is called weakly null-additive if μ(A ∪B) = 0 whenever A,B ∈ F and
μ(A) = μ(B) = 0; see [11].
(5) μ is called strongly order continuous if it is continuous from above at
measurable sets of measure 0, that is, for any {An} ⊂ F and A ∈ F with
An ց A and μ(A) = 0, it holds that limn→∞ μ(An) = 0.
(6) μ has property (S) if for any sequence {An} ⊂ F with limn→∞ μ(An) = 0,
there exists a subsequence {Ank

} such that μ(∩∞
i=1 ∪∞

k=i Ank
) = 0; see [10].

Definition 3. Let {fn} be a sequence of F -measurable real valued functions
on X and f also such a function.
(1) {fn} is called convergent μ-a.e. to f if there exists an A ∈ F with μ(A) = 0
such that {fn} converges to f on X � A.

3 Regularity of Measure

In [12], first, for the weakly null-additivity, we give the following Lemma.
Second, we also showed the regularity of non-additive Borel measures on a
metric space (Theorem 1). Finally, we showed a version of Egoroff’s theorem
for the measures on a metric space (Theorem 2).

Lemma 1. If μ is strongly order continuous and has property (S), then the
following two conditions are equivalent:
(i) μ is weakly null-additive.
(ii) For any ε > 0 and double sequence {Am,n} ⊂ F satisfying that
Am,n ց Dm as n → ∞ and μ(Dm) = 0 for each m ∈ N , there exists a
θ ∈ Θ such that μ

(
∪∞

m=1Am,θ(m)

)
< ε.
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Let X be a Hausdorff space. Denote by B(X) the σ-field of all Borel subsets
of X , that is, the σ-field generated by the open subsets of X . A non-additive
measure defined on B(X) is called a non-additive Borel measure on X .

Definition 4 ( [13]). Let μ be a non-additive Borel measure on X . μ is
called regular if for any ε > 0 and A ∈ B(X), there exist a closed set Fε and
an open set Gε such that Fε ⊂ A ⊂ Gε and μ(Gε � Fε) < ε.

Theorem 1. Let X be a metric space and B(X) a σ-field of all Borel subsets
of X. Let μ be a non-additive Borel measure on X which is weakly null
additive, continuous from above and has property (S). Then μ is regular.

Theorem 2. Let X be a metric space and μ a non-additive Borel measure
which is weakly null additive, continuous from above and has property (S).
Let {fn} be a sequence of Borel measurable real valued functions on X and
f also such a function. If {fn} converges μ-a.e. to f , then for any ε > 0,
there exists a closed set Fε such that μ(X �Fε) < ε and {fn} converges to f
uniformly on each Fε.

4 Lusin’s Theorem

In this section, we shall further generalize well-known Lusin’s theorem in
classical measure theory to that of non-additive measure spaces by using the
results obtained in Sections 3. The proof is similar to that of [5, Theorem 4]
and given here for completeness. For real valued fuzzy measure case, see [5],
and for Riesz space-valued fuzzy measure case, see [4].

Theorem 3. Let X be a metric space and μ a non-additive Borel measure
which is weakly null additive, continuous from above and has property (S).
Let f be a Borel measurable real valued function on X. Then for any ε > 0,
there exists a closed set Fε such that μ (X � Fε) < ε and f is continuous on
each Fε.

Proof. We prove the theorem stepwise in the following two situations.

(a) Suppose that f is a simple function, that is, f(x) =
∑s

m=1 amχAm(x)
(x ∈ X), where am ∈ R (m = 1, 2, . . . , s), χAm(x) is the characteristic
function of the Borel set Am and X =

∑s
m=1 Am (a disjoint finite union).

By Theorem 1, μ is regular. Then for each m ∈ N , there exists a sequence
{Fm, n} of closed sets such that Fm, n ⊂ Am and μ (Am � Fm, n) < 1

n for any
n ∈ N . We may assume that {Fm, n} is increasing in n for each m, without
any loss of generality. Put Bm,n = Am �Fm, n if m = 1, . . . , s and Bm,n = ∅
if m > s, and put Dm = ∩∞

n=1Bm,n. We have μ(Dm) = 0. By Lemma 1, for
any ε > 0, there exists a θ ∈ Θ such that μ

(⋃∞
m=1

(
Am � Fm, θ(m)

))
< ε.

Put Fε = ∪s
m=1Fm, θ(m), then f is continuous on the closed subset Fε of X

and we have
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μ (X � Fε) = μ

(
s⋃

m=1

Am �
s⋃

m=1

Fm, θ(m)

)
≤ μ

(
s⋃

m=1

(
Am � Fm, θ(m)

)
)
.

Therefore we have μ (X � Fε) < ε.

(b) Let f be a Borel measurable real valued function. Then there exists
a sequence {φm} of simple functions such that φm → f as m → ∞ on X .
By the result obtained in (a), for each simple function φm and every n ∈ N ,
there exists a closed set Xm, n ⊂ X such that φm is continuous on Xm, n

and μ (X � Xm, n) < 1
n . Without loss of generality, we can assume that the

sequence {Xm, n} of closed sets is increasing with respect to n for each m
(otherwise, we can take ∪n

i=1Xm, i instead of Xm, n and noting that φm is a
simple function, it remains continuous on ∪n

i=1Xm, i). Since

(X � Xm, n) ց
∞⋂

n=1

(X � Xm, n) as n→∞,

we have μ (∩∞
n=1 (X � Xm, n)) = limn→∞ μ (X � Xm, n) = 0. By using

Lemma 1, for any n ∈ N , there exists a sequence {τn} ⊂ Θ such that

μ

( ∞⋃

m=1

(
X � Xm, τn(m)

)
)

<
1

n
,

that is, μ
(
X � ∩∞

m=1Xm, τn(m)

)
< 1

n . Since the double sequence {X�Xm, n}
is decreasing in n ∈ N for each m ∈ N , without any loss of generality, we
may assume that for fixed m ∈ N , τ1(m) < τ2(m) < · · · < τn(m) < · · · . Put
Hn = ∩∞

m=1Xm, τn(m), then we have a sequence {Hn} of closed sets satisfying
H1 ⊂ H2 ⊂ · · · . Since

(X � Hn)ց
(
X �

∞⋃

n=1

Hn

)
as n→∞,

we have

μ

(
X �

∞⋃

n=1

Hn

)
= lim

n→∞
μ (X � Hn) = 0.

Noting that φm is continuous on Xm, n and Hn ⊂ Xm, τn(m), φm is continuous
on Hn for every m ∈ N .

On the other hand, since φm → f as m → ∞ on X , by Theorem 2,
there exists a sequence {Kn} of closed sets such that μ (X � Kn) < 1

n and
{φm} converges to f uniformly on Kn for every n ∈ N . We may assume
that {Kn} is increasing in n for each m, without any loss of generality.
Since (X � Kn) ց (X � ∪∞

n=1Kn) as n → ∞, we have μ (X � ∪∞
n=1Kn) =

limn→∞ μ (X � Kn) = 0. Then {φm} converges to f uniformly on Kn for
every n ∈ N . Consider the sequence {(X � Hn) ∪ (X � Kn)}, then we have
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(X � Hn) ∪ (X � Kn)ց
(
X �

∞⋃

n=1

Hn

)
∪
(
X �

∞⋃

n=1

Kn

)
as n→∞.

Since μ is weakly null-additive, we have

μ

((
X �

∞⋃

n=1

Hn

)
∪
(
X �

∞⋃

n=1

Kn

))
= 0.

Moreover, since μ is continuous from above, for any ε > 0, there exists an
n0 such that μ ((X � Hn0) ∪ (X � Kn0)) < ε. Put Fε = Hn0 ∩Xn0 , then Fε

is a closed set and μ (X � Fε) < ε. We show that f is continuous on Fε. In
fact, Fε ⊂ Hn0 and φm is continuous on Hn0 , therefore φm is continuous on
Fε for each m ∈ N . Noting that {φm} converges to f uniformly on Fε, f is
continuous on Fε. ✷

5 Applications of Lusin’s Theorem

In [5], Li and Yasuda give applications Lusin’s Theorem for fuzzy measure.
In this section, we prove the same results when the measure is weakly non-
additive Borel, continuous from above and has property (S) on metric spaces.
The proof is the same as that of [5] and is given for completeness.

Let μ be a non-additive measure on B(X) and f a non-additive real valued
measurable function on X . We define the Sugeno Integral of f on X with
respect to μ, denoted by (S)

∫
fdμ, as follows:

(S)

∫
fdμ = sup

0≤α<+∞
[α ∧ μ({x ∈ X | f(x) ≥ α})].

The Choquet integral of f on X with respect to μ, denoted by (C)
∫
fdμ, is

defined by

(C)

∫
fdμ =

∫ ∞

0

μ ({x ∈ X | f(x) > t})dt,

where the right side integral is Lebesgue integral.

We say that a sequence {fn} of measurable function converges to f in

non-additive measure μ, and denote it by fn
μ→ f , if for any ε > 0,

limn→∞ μ ({x ∈ X | |fn(x)− f(x)| ≥ ε}) = 0.

Theorem 4. Let μ be a non-additive measure on B(X) which is weakly null-
additive, continuous from above and has property (S) and f a non-additive
real valued measurable function on B(X), then there exists a sequence {φn}
of continuous function on X such that φn

μ→ f . Moreover, if |f | ≤ M , then
|φ| ≤M , n ∈ N .
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Proof. For every n ∈ N , by Theorem 3, there exists closed subset Fn of X
such that f is continuous on Fn and μ(X � Fn) < 1

n . By Tietze’s extension
Theorem [8], for every n ∈ N , there exists continuous function φn on X
such that φn(x) = f(x) for x ∈ Fn and if |f | ≤ M , then |φn| ≤ M . We
show that {φn} converges to f in the non-additive measure. In fact, for
any ε > 0, we have {x ∈ X | |φn(x) − f(x)| ≥ ε} ⊂ X � Fn and thus
μ ({x ∈ X | |φn(x)− f(x)| ≥ ε}) ≤ μ(X � Fn) < 1

n , for n ∈ N . Therefore we
have limn→∞ μ ({x ∈ X | |φn(x)− f(x)| ≥ ε}) = 0. ✷

Theorem 5. Let μ be a non-additive measure on B(X) which is weakly null-
additive, continuous from above and has property (S) and f a non-additive
real valued measurable function on X, then there exists a sequence {φn} of
continuous function such that

(S) lim
n→∞

∫
|φn − f |dμ = 0.

Moreover, if |f | ≤M , then |φn| ≤M , n ∈ N and

(C) lim
n→∞

∫
|φn − f |dμ = 0.

Proof. By Theorem 4, there exists a sequence {φn} of continuous function

such that φn
μ→ f . By Theorem 7.4 in [11], we have limn→∞(S)

∫
|φn−f |dμ =

0. By Theorem 4, if |f | ≤M , then |φn| ≤M n ∈ N . Put

gn(t) = μ ({x ∈ X | |φn(x)− f(x)| > t}) , t ∈ [0,∞)

since φn
μ→ f , we have gn(t) → 0 μ-a.e on [0,∞) as n → ∞. Note that

|gn(t)| ≤ μ(X) <∞, we have gn(t) = 0 for any t > 2M , n ∈ N . Applying the
Bounded Convergence theorem in Lebesgue integral theory [8] to the function
sequence {gn(t)}, we have

∫ ∞

0

gn(t)dt =

∫ 2M

0

gn(t)dt→ 0 as n→∞.

Then we have limn→∞(C)
∫
|φn − f |dμ = 0. ✷

In the following argument, let X = R1. Then the following theorems are also
proved, see [5].

Theorem 6. Let μ be a non-additive measure on B(X) which is weakly null-
additive, continuous from above and has property (S) and f a non-additive
real valued measurable function on [a, b], then there exists a sequence {Pn} of

polynomials on [a, b] such that Pn
μ→ f on [a, b]. Moreover, if |f | ≤ M , then

|Pn| ≤M + 1, n ∈ N .
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Proof. Consider the problem on the reduced non-additive measure space
([a, b], [a, b] ∩ B(X), μ). By Theorem 4, there exists a sequence {φn} of con-

tinuous function on [a, b] such that φn
μ→ f on [a, b]. There exists a subse-

quence {φnk
} of {φn} such that μ({x ∈ X | |φnk

(x) − f(x)| ≥ 1
2k}) < 1

k
for any k ∈ N . Since φnk

is continuous on [a, b], by using Weierstrass’s the-
orem [8], for any k ∈ N , there exists a polynomial Pk on [a, b] such that
|Pk(x) − φnk

(x)| < 1
2k for any x ∈ [a, b]. Then for any k ∈ N , we have

{x ∈ X | |Pk(x)−φnk
(x)| ≥ 1

2k} = ∅. Noting that {x ∈ X | |Pk(x)−φnk
(x)| ≥

1
k} ⊂ Ak ∪Bk, where Ak = {x ∈ X | |Pk(x)− φnk

(x)| ≥ 1
2k} and Bk = {x ∈

X | |φnk
(x)−f(x)| ≥ 1

2k}. Since Ak∪Bk = {x ∈ X | |φnk
(x)−f(x)| ≥ 1

2k}, we

have μ({x ∈ X | |Pk(x) − f(x)| ≥ 1
k}) < 1

k . Moreover we prove that Pn
μ→ f

on [a, b]. In fact, any ε > 0, there exists an n0 such that 1
n0

< ε, then for any

n ≥ n0, we have {x ∈ X | |Pn(x)−f(x)| ≥ ε} ⊂ {x ∈ X | |Pn(x)−f(x)| ≥ 1
n},

and μ({x ∈ X | |Pn(x)−f(x)| ≥ ε}) ≤ μ({x ∈ X | |Pn(x)−f(x)| ≥ 1
n}) < 1

n .

Therefore Pn
μ→ f . From above, if |f | ≤ M , then |φnk

| ≤M . Since for every
Pk, |Pk(x)− φnk

(x)| < 1
2k for all x ∈ [a, b], we have |Pn| ≤M + 1, n ∈ N . ✷

We can prove the following result in a similar way to the proof of Theorem 5.

Theorem 7. Let μ be a non-additive measure on B(X) which is weakly null-
additive, continuous from above and has property (S) and f a non-additive
real valued measurable function on [a, b], then there exists a sequence {Pn} of
polynomials on [a, b] such that

(S) lim
n→∞

∫
|Pn − f |dμ = 0.

Moreover, if |f | ≤M , then |Pn| ≤M + 1, n ∈ N and

(C) lim
n→∞

∫
|Pn − f |dμ = 0.

Similarly, we can prove the following.

Theorem 8. Let μ be a non-additive measure on B(X) which is weakly null-
additive, continuous from above and has property (S) and f a non-additive
real valued measurable function on [a, b], then there exists a sequence {sn} of

step functions on [a, b] such that sn
μ→ f and

(S) lim
n→∞

∫
|sn − f |dμ = 0.

Moreover, if |f | is Choquet integrable, then so is |sn| and

(C) lim
n→∞

∫
|sn − f |dμ = 0.
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Multiple-Output Choquet Integral
Models and Their Applications in
Classification Methods

Eiichiro Takahagi

Abstract. Two types of the multiple-output Choquet integral models are
defined. Vector-valued Choquet integral models are vector-valued functions
calculated by m times Choquet integral calculations with respect to the m-th
fuzzy measure of a fuzzy measure vector. Logical set-function-valued Choquet
integral models are set-function-valued functions that can be used in classifi-
cation. The set function shows singleton, overlap, and unclassifiable degrees.
The sum value of the set function is equal to 1. A method for transformation
from vector-valued Choquet integral models to logical set-function-valued
Choquet integral models is proposed.

Keywords: Choquet Integral, Vector-valued function, Classification,
Overlap and unclassifiable degrees.

1 Introduction

Choquet integral [1] models are useful comprehensive models [3]. In [6], Cho-
quet integral models are extended to multiple-output models; thus, for a input
vector (x1, . . . , xn) and fuzzy measures μ1, . . . , μm, by calculating m times
Choquet integrals, m dimensional output vector (y1, . . . , ym) is obtained. The
properties of the output vector are dependent on the restrictions on the fuzzy
measures. For example, if

∑
μj(A) = 1, ∀A, then

∑
yj = 1. Because of this

property, Choquet integral models can be used in classification. In sections 2
and 3, we present the definitions and properties of the multi-output Choquet
integral models. In section 4, we propose a logical set-function-valued Cho-
quet integral model and a method for the transformation from vector-valued
Choquet integral models to set-function-valued Choquet integral models.
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2 Definitions

2.1 Choquet Integral

Definition 1. X = {1, . . . , n} is the set of evaluation items (n: number of
evaluation items), xi ∈ R+ is the input value of the ith item, and y is the
comprehensive evaluation value.

Definition 2. A non-monotone fuzzy measure μ is defined as

μ : 2X → R , μ(∅) = 0. (1)

Definition 3. The Choquet integral with respect to μ is defined as

y = fC
μ (x1, . . . , xn) ≡

n∑

i=1

[xσ(i) − xσ(i+1)]μ({σ(1), . . . , σ(i)}), (2)

where σ is a permutation such that xσ(1) ≥ . . . ≥ xσ(n) and X = {σ(1), . . . ,
σ(n)}, and let xσ(n+1) = 0.

2.2 Logical Choquet Integral

The logical Choquet integral [5] was introduced to deal with fuzzy values
(the interval [0, 1]) and the fuzzy switching functions. The input and output
values, the domain of fuzzy measures (set functions), and the integration
range are the interval [0, 1].

Definition 4. x♯
i ∈ [0, 1] is the input value of the ith item, and y♯ is the

comprehensive evaluation value.

Definition 5. The extended fuzzy measure μ♯ is a set function to the interval
[0, 1], that is

μ♯ : 2X → [0, 1]. (3)

Definition 6. The extended Choquet integral (the Choquet integral with
respect to set functions) is defined as

y♯ = fEC
μ♯ (x♯

1, . . . , x
♯
n) ≡

n∑

i=0

[x♯
σ(i) − x♯

σ(i+1)]μ
♯({σ(1), . . . , σ(i)}), (4)

where x♯
σ(0) = 1, x♯

σ(n+1) = 0 and {σ(1), . . . , σ(i)} = ∅ when i = 0.

The extended Choquet integral can be calculated by using the Choquet
integral as follows:

fEC
μ♯ (x♯

1, . . . , x
♯
n) = fC

μ (x♯
1, . . . , x

♯
n) + μ♯(∅), (5)

where μ(A) = μ♯(A)− μ♯(∅), ∀A ∈ 2X .
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2.3 Vector-Valued Choquet Integral Model

Vector-valued Choquet integral model [6] is an extension of the product of
a matrix and a vector. Let us input the vectors x = (x1, . . . , xn) and x♯ =

(x♯
1, . . . , x

♯
n).

Definition 7. Vector-valued Choquet integral models are vector-valued func-
tions calculated by m times Choquet integral calculations with respect to the
mth fuzzy measure vector.

y = fµ(x), where yj = fC
μj

(x1, . . . , xn), j = 1, . . . ,m. (6)

Definition 8. Logical vector-valued Choquet integral models are defined as

y♯ = fµ♯(x♯), where y♯
j = fEC

μ♯
j

(x♯
1, . . . , x

♯
n), j = 1, . . . ,m. (7)

3 Properties of the Vector-Valued Choquet Integral

Property 1. If
∑m

j=1 μj(A) =| A |, ∀A ∈ 2X , then for any x ∈ R+n
, y = fµ(x)

satisfies the property,
∑m

j=1 yj =
∑n

i=1 xi, where | A | is the number of
elements of the set A.

Property 2. If
m∑

j=1

μ♯
j(A) = 1, ∀A ∈ 2X (8)

for any x♯ ∈ [0, 1]n, y♯ = fEC
µ♯ (x♯) satisfies the properties, y♯

j ∈ [0, 1], j =
1, . . . ,m and

m∑

j=1

y♯
j = 1. (9)

4 Classification

Fuzzy integral models are used in the classification method such as [4]. In
this section, we propose a normalised outputs model by using the Choquet
integral model.

4.1 Classification by the Vector-Valued Choquet

Integral

It is useful to apply the logical vector-valued Choquet integral to the clas-
sification models. The classification rules are given by the extended fuzzy
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measures derived from the fuzzy switching functions, linear functions, etc. Let
Y = {1, . . . ,m} be a set of classes. The fuzzy measure values are assigned
from the functions gj : {0, 1}n → [0, 1], j ∈ Y . The fuzzy switching functions
that are the linear functions shown in section 5 are examples of gj .

μ♯
j(A) = gj(x

♯A
), where x♯A

i =

{
1 if i ∈ A

0 otherwise.

Applying the vector-valued Choquet integral y♯ = fEC
µ♯ (x♯), y♯ ∈ [0, 1]m is

the degree of belogingness of each class. Choquet integral is a linear interpo-
lation function among binary inputs [2].

4.2 Logical Set-Function-Valued Choquet Integral

Model

If the fuzzy measures satisfy the equation (8), then the output vector y♯

satisfies
∑

j y
♯
j = 1. As the conditions are not always satisfied when the fuzzy

measures are identified individually, a logical set-function-valued Choquet
integral model that includes overlap classification and unclassified degrees is
proposed. The rules of the classification are 2m fuzzy measures,

ν♯
B : 2X → [0, 1], ∀B ∈ 2Y , (10)

and z♯
B are calculated by using the extended Choquet integrals as follows:

z♯
B = fEC

ν♯
B

(x♯
1, . . . , x

♯
n), ∀B ∈ 2Y . (11)

Definition 9. The function for the transformation from μ♯
j(A) (j ∈ Y ) to

ν♯
B (B ∈ 2Y ), ∀A ∈ 2X is defined as follows:

ν♯
B(A) =

⎧
⎪⎪⎨
⎪⎪⎩

∑

B⊆C

[(−1)|C\B| min
j∈C

μ♯
j(A)] if B �= ∅

1−
∑

B∈(2Y \∅)
ν♯

B(A) otherwise.
(12)

The sum of the transformed ν♯
B is equal to 1 even if μ♯ does not satisfy

the equation (8).

Property 3. For any μ♯
1, . . . , μ

♯
m, the transformed ν♯

B represented by equation
(12) satisfies ∑

B∈2Y

ν♯
B(A) = 1, ∀A ∈ 2X . (13)
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Property 4. For any μ♯
1, . . . , μ

♯
m and x♯

1, . . . , x
♯
n, using the transformed ν♯

B by
equation (12), ∑

B∈2Y

z♯
B =

∑

B∈2Y

fEC
ν♯

B

(x♯
1, . . . , x

♯
n) = 1. (14)

Definition 10. The whole fuzzy measure ν⋄B is defined as follows:

ν⋄B(A) =

⎧
⎨
⎩

∑

C⊆B,C �=∅
ν♯

C(A) if B ∈ (2Y \ ∅)

ν♯
∅(A) otherwise .

(15)

If | B |= 1, then z♯
B shows the singleton degree of the class. For example,

z♯
{2} shows the singleton degree of class 2; this singleton degree of class 2 does

not include the overlap degree of both classes 1 and 2. If | B |> 1, then z♯
B

shows the overlap degree of B. For example, z♯
{1,3} shows the overlap degree

that belongs to both classes 1 and 3. The whole degree which belongs to
classes 1 and 3 is z⋄{1,3} = fEC

ν⋄
{1,3}

(x♯
1, . . . , x

♯
n) = z♯

{1,3} + z♯
{1} + z♯

{3}. z
♯
∅ shows

the degree that does not belong to any of the classes.

Property 5. For any (μ♯
1, . . . , μ

♯
m) and (x♯

1, . . . , x
♯
n), the transformed ν♯

B, ∀B ∈
2Y by equation (12) and z♯

B = fEC
ν♯

B

(x♯
1, . . . , x

♯
n), ∀B ∈ 2Y have the following

properties:

μ♯
i(A) =

∑

i∈B

ν♯
B(A), ∀A ∈ 2X (16)

y♯
i =

∑

i∈B

z♯
B (17)

ν♯
∅(A) = 1− max

j=1,...,m
μ♯

j(A), ∀A ∈ 2X (18)

z♯
∅ = 1− max

j=1,...,m
y♯

j (19)

ν♯
B(A) ∈ [0, 1], ∀A ∈ 2X , ∀B ∈ 2Y (20)

z♯
B ∈ [0, 1], ∀B ∈ 2Y (21)

5 Numerical Examples

5.1 Linear Functions

First example is a recommendation system for selecting either arts course
or science course in high schools. Input values are the language score (x♯

1)

and the mathematics score (x♯
2 ). Output values are the arts course (y♯

1) and
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the science course (y♯
2). The classification functions are represented by the

following linear functions:

g1(x1, x2) = 0.5x1 + 0.4x2 + 0.1 (22)

g2(x1, x2) = 0.3x1 + 0.7x2. (23)

Table 1 Fuzzy Measures corresponding to equations (22) and (23)

A (Sets) μ♯
1(A) μ♯

2(A) ν♯

{1}(A) ν♯

{2}(A) ν♯

{1,2}(A) ν♯

∅(A) ν⋄
{1,2}(A)

∅ 0.1 0 0.1 0 0 0.9 0.1
{1} 0.6 0.3 0.3 0 0.3 0.4 0.6
{2} 0.5 0.7 0 0.2 0.5 0.3 0.7
{1, 2} 1.0 1.0 0 0 1.0 0 1.0

By using the equation (10),(12), and (15), we obtain the values listed in
table 1; these values satisfy the properties 3, 4, and 5. Figure 1 is the graph
when x1 = 0.4. As x2 increases, z♯

{1} decreases because z♯
{1} is the sigleton

degree of the art course, and the mathematics weights of art course (equation
(22)) is lower than science course (equation (23)).

Fig. 1 Outputs corre-
sponding to the Art and
Science model (x♯

1 = 0.4) 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

y
♯
1

y
♯
1

y
♯
2

y
♯
2

z
♯
{1}

z
♯
{2}

z
♯
{1,2}

z
♯
{1,2}

z
♯
∅

z⋄{1,2}

z⋄{1,2}

x2

5.2 Fuzzy Switching Function

The following are fuzzy switching functions with n = 4 and m = 2 and they
are defiend as

g1(x1, x2, x3, x4) = (0.8 ∧ x1 ∧ x2) ∨ (0.6 ∧ x2 ∧ x4) ∨ (x1 ∧ x2 ∧ x4) (24)

g2(x1, x2, x3, x4) = (0.7 ∧ x1 ∧ x3) ∨ (0.8 ∧ x3 ∧ x4) ∨ (x1 ∧ x3 ∧ x4) (25)
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Those functions indicate the following:

• If x1, x2, and x4 are fulfilled, then the object is classified as a class 1
object with degree 1.

• If x1 and x2, or x2 and x4 are fulfilled, then the object is classified as a
class 1 object with a certain degree.

• If x1, x3, and x4 are fulfilled, then the object is classified as a class 2
object with degree 1.

• If x1 and x3, or x3 and x4 are fulfilled, then the object is classified as a
class 2 object with a certain degree.

Table 2 Fuzzy Measures corresponding to equations (24) and (25)

A (Sets) μ♯
1(A) μ♯

2(A) ν♯

{1}(A) ν♯

{2}(A) ν♯

{1,2}(A) ν♯

∅(A) ν⋄
{1,2}(A)

{} 0 0 0 0 0 1 0
{1} 0 0 0 0 0 1 0
{2} 0 0 0 0 0 1 0
{1, 2} 0.8 0 0.8 0 0 0.2 0.8
{3} 0 0 0 0 0 1 0
{1, 3} 0 0.7 0 0.7 0 0.3 0.7
{2, 3} 0 0 0 0 0 1 0
{1, 2, 3} 0.8 0.7 0.1 0 0.7 0.2 0.8
{4} 0 0 0 0 0 1 0
{1, 4} 0 0 0 0 0 1 0
{2, 4} 0.6 0 0.6 0 0 0.4 0.6
{1, 2, 4} 1 0 1 0 0 0 1
{3, 4} 0 0.8 0 0.8 0 0.2 0.8
{1, 3, 4} 0 1 0 1 0 0 1
{2, 3, 4} 0.6 0.8 0 0.2 0.6 0.2 0.8
X 1 1 0 0 1 0 1

Fig. 2 Outputs corre-
sponding to the fuzzy
switching functions
(x1 = 0.8, x3 = 0.4,
and x4 = 0.7) 0 0.2 0.4 0.6 0.8 1
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♯
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Table 2 shows the fuzzy measures of the fuzzy switching functions. Figure 2
shows graphs for the case in which x1 = 0.8, x3 = 0.4, and x4 = 0.7. When
0 ≤ x2 ≤ 0.4, that is x2 ≤ x3, the rule g1 is given priority over g2. Therefore,
z♯
{1} = 0.

6 Conclusions

We show the method for the transformation from vector-valued classification
functions by Choquet integrals to set-function-valued functions, which can
express singleton, overlap, or unclassifiable degrees. However, as the examples
were artificial models, real applications have to be developed.
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On Convergence Theorems of
Set-Valued Choquet Integrals

Hongxia Wang and Shoumei Li

Abstract. The article aims at discussing the Choquet integrals of set-valued
random variables with respect to capacities. We firstly state representation
theorems and subadditive property of set-valued Choquet integrals. Then we
mainly prove Fatou’s Lemmas, Lesbesgue dominated convergence theorem
and monotone convergence theorems of set-valued Choquet integrals under
the weaker conditions than that in previous works.

Keywords: Set-valued Choquet integral, Set-valued random variable,
Capacity, Kuratowski convergence.

1 Introduction

It is well known that classical probability theory and statistical methods
are powerful tools for dealing with stochastic phenomena with many applica-
tions. However, there are many uncertain phenomena which can not be easily
modeled by using classical probability theory in finance and economics. The
famous counterexamples are the Allais paradox [1] and the Ellsberg para-
dox [5]. In 1953, Choquet introduced concepts of capacities and the Choquet
integral [3]. Capacity is non-additive measure and the Choquet integral is one
kind of nonlinear expectations. Many papers developed the Choquet theory
and its applications. We would like to thank the excellent overview paper
written by Wang and Yan [14]. Here we specially mention that Schmeidler
introduced the Choquet expected utility (CEU) [13]. Under the framework
of CEU theory, Wang and Yan gave the solutions to Allais’ paradox and
Ellsberg’s paradox. On the other hand, there is also another kind of uncer-
tain phenomena, which can be described by a set-valued random variable
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(also called random sets, multifunctions, correspondences in literature) and
the Aumann integral (cf. [2]). Aumann and others used multifunctions to
discuss the competitive equilibria problem in economics. After that, the the-
ory of set-valued random variables with its applications was developed very
deeply and extensively (e.g. [6, 10, 11]).

There are many complex systems in which we have to deal with two un-
certainty phenomena at the same time. Jiang and Kwon [7] introduced the
concept of set-valued Choquet integrals and discussed some properties of
this kind of integrals. Jang et al. studied some convergence theorems of a
sequence of set-valued Choquet integrals in [8, 9]. Zhang et al. revised some
mistakes in above papers and proved convergence theorems for set-valued
Choquet integrals with respect to an m-continuous and continuous capacity
in the Kuratowski sense in [15]. But it is necessary to point out that we
may weaken the sufficient conditions for some convergence results in [8,9,15],
which is our main purpose.

This paper is organized as follows. Section 2 is for preliminaries and notions
of capacity, Choquet integral, set-valued random variable, and set-valued
Choquet integral. In Section 3, we shall discuss representation theorems and
subadditive property, and then mainly build the convergence theorems of set-
valued Choquet integrals under the weaker conditions than that in previous
works.

2 Preliminaries and Notations

Throughout this paper, assume that (Ω,F) is a measurable space, R (R+)
is the set of (non-negative) real numbers, K(R+) is the class of nonempty
closed subsets of R+ and P0(R+) is the family of all nonempty subsets of R+.
N is the set of natural numbers.

We first recall some concepts and some elementary results of capacity and
the Choquet integral.

Definition 1. [3] A set function μ : F → [0, 1] is called a capacity if it
satisfies: (1) μ(∅) = 0, μ(Ω) = 1; (2) μ(A) ≤ μ(B) for any A ⊆ B and
A,B ∈ F . A triplet (Ω,F , μ) is called a capacity space.

The concepts of a capacity μ on F is continuous from below (above) and
continuous are the same as that in classical probability. A capacity μ is called
concave (or submodular) if μ(A∪B)+μ(A∩B) ≤ μ(A)+μ(B), A,B ∈ F .

Assume that (Ω,F , μ) is a capacity space. If B ⊂ Ω, exists A ∈ F , such
that B ⊂ A and μ(A) = 0, then B is called a μ-nullset. A property depending
on ω ∈ Ω is said to hold almost everywhere with respect to μ, abbreviated
a.e.[μ], if there is a μ-nullset N such that the property is valid outside N .

Definition 2. [3] The Choquet integral of a measurable function f : Ω →
R+ with respect to capacity μ on A ∈ Ω is defined by



On Convergence Theorems of Set-Valued Choquet Integrals 103

(C)

∫

A

fdμ =

∫ +∞

0

μ((f ≥ t) ∩A)dt,

where the integral in the right hand is taken in the sense of Riemann. Instead

of (C)

∫

Ω

fdμ, we shall write (C)

∫
fdμ. If (C)

∫
fdμ < ∞, we say that f

is Choquet integrable.

Definition 3. Let μ be a capacity on (Ω,F). We define

LC(μ) =
{
f : Ω → R+ is measurable : (C)

∫
fdμ <∞

}
.

The following two lemmas come from the article [4, 12].

Lemma 1. (Fatou’s lemmas) For given a sequence of non-negative measur-
able functions {fn}, (1) if μ is continuous from below, then

(C)

∫
limn→∞fndμ ≤ limn→∞(C)

∫
fndμ;

(2) if μ be continuous from above and there exists g ∈ LC(μ), such that fn ≤ g
for n ≥ 1, then

limn→∞(C)

∫
fndμ ≤ (C)

∫
limn→∞fndμ.

Lemma 2. (Lebesgue dominated convergence theorem) Let μ be continuous.
If fn → f a.e.[μ], and there exists g ∈ LC(μ), such that fn ≤ g for n ≥ 1,

then (C)

∫
fndμ→ (C)

∫
fdμ.

In the following subsection, we shall list some preliminaries about set-valued
random variables and set-valued Choquet integrals.

Let F : Ω → P0(R+) be a mapping, called a set-valued mapping. The set
G(F ) = {(ω, x) ∈ Ω × R+ : x ∈ F (ω)}, is called the graph of F, and the set
F−1(A) = {ω ∈ Ω : F (ω) ∩A �= ∅}, A ⊂ R+, the inverse image of F.

Definition 4. [11] A set-valued mapping F : Ω → K(R+) is called measur-
able if, for each open subset O ⊂ R+, F−1(O) ∈ F . A measurable set-valued
mapping is also called a set-valued random variable.

Theorem 1. [11] Let F : Ω → K(R+) be a set-valued mapping. If F is
complete with respect to some σ-finite measure, then the following conditions
are equivalent:

(1) for each Borel set B ⊂ B(R+), F−1(B) ∈ F , where B(R+) is the Borel
σ-field of R+;
(2) for each closed set C ⊂ R+, F−1(C) ∈ F ;
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(3) for each open set O ⊂ R+, F−1(O) ∈ F ;
(4) G(F ) is F ×B(R+)-measurable.

Definition 5. [11] A function f : Ω → R+ is called a selection for a set-
valued mapping F : Ω → K(R+) if f(ω) ∈ F (ω) for all ω ∈ Ω.

Theorem 2. [11] Assume that F : Ω → K(R+) is a set-valued mapping.
Then the following statements are equivalent:

(1) F is a set-valued random variable;
(2) there exists a countable family {fn : n ∈ N} of measurable selections

of F such that

F (ω) = cl{fn(ω) : n ∈ N}, for all ω ∈ Ω.

Now we introduce the concept of set-valued Choquet integrals.

Definition 6. Let F : Ω → K(R+) be a set-valued random variable, and μ
be a capacity on (Ω,F). We define the family of Choquet integrable selections
of F a.e.[μ] as

SC(F ) =
{
f ∈ LC(μ) : f(ω) ∈ F (ω) a.e.[μ]

}
.

It is easy to show that SC(F ) is a closed subset of LC(μ).

Definition 7. [7] Let F : Ω → K(R+) be a set-valued random variable. The
Choquet integral of F with respect to capacity μ on A ∈ F is defined by

(C)

∫

A

Fdμ =
{
(C)

∫

A

fdμ : f ∈ SC(F )
}
.

Remark 1. (1) Instead of (C)

∫

Ω

Fdμ, we shall write (C)

∫
Fdμ.

(2) A set-valued random variable F is said to be integrable with respect

to μ if (C)

∫
Fdμ �= ∅.

(3) (C)

∫
Fdμ is closed [15].

Definition 8. Let F : Ω → K(R+) be a set-valued random variable. F is
called Choquet integrably bounded if ‖F (ω)‖K ∈ LC(μ), where

‖F (ω)‖K = sup
{
|x| : x ∈ F (ω)

}
, for all ω ∈ Ω.

Remark 2. (1) This definition is different from Definition 2.5 in [7]: a set-
valued function F is said to be Choquet integrably bounded if there is g ∈
LC(μ) such that

‖F (ω)‖K ≤ g(ω).
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In Definition 9, we directly take g = ‖F‖K since ‖F‖K is measurable from
Theorem 2.

(2) It is easy to prove that SC(F ) is not empty if F is Choquet integrably
bounded.

Definition 9. [11] Let An ⊂K(R+), we write

lim inf
n→∞

An = {x ∈ R+ : x = lim
n→∞

xn, xn ∈ An, n ≥ 1},

lim sup
n→∞

An = {x ∈ R+ : x = lim
k→∞

xnk
, xnk

∈ Ank
, k ≥ 1}.

If lim inf
n→∞

An = lim sup
n→∞

An = A, then {An} is said to be the Kuratowski

convergent to A and it is simply noted with An → A, n→∞.

3 Main Results

Throughout this section, let (Ω,F) be a measurable space and μ be a ca-
pacity on Ω. The family of all set-valued random variables is denoted by
U [Ω;K(R+)]. Since the page limitation, we have to omit some proofs in
this section. We firstly present representation theorems of set-valued random
variables.

Theorem 3. Let F ∈ U [Ω;K(R+)]. If F is Choquet integrably bounded, then
there exists a sequence {fn : n ∈ N} ⊂ SC(F ) such that F (ω) = cl{fn(ω) :
n ∈ N} for all ω ∈ Ω.

Theorem 4. Let F ∈ U [Ω;K(R+)]. If SC(F ) �= ∅ and μ is submodular, then
there exists a sequence {fn : n ∈ N} ⊂ SC(F ) such that F (ω) = cl{fn(ω) :
n ∈ N} for all ω ∈ Ω.

The next theorem shows that the subadditive of Choquet integral can be
extended to the case of set-valued Choquet integral.

Theorem 5. Assume that the capacity μ is submodular and F1, F2 ∈ U [Ω;
K(R+)] are Choquet integrably bounded. Then we have

(C)

∫
(F1 + F2)dμ ≤ (C)

∫
F1dμ + (C)

∫
F2dμ.

Now we shall mainly establish convergence theorems of Choquet integrals for
sequences of set-valued random variables.

In the following convergence theorems, we always assume that μ is a con-
tinuous capacity and Fn ∈ U [Ω;K(R+)].

For any A ∈ P0(R) and x ∈ R the distance between x and A is defined by
d(x,A) = infy∈A |y − x|. Now we prove the following Fatou’s Lemmas.
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Theorem 6. Let μ be submodular. Assume that Fn are Choquet integrably
bounded and there exists a positive function g ∈ LC(μ), such that d(0, Fn) ≤ g
a.e.[μ] for all n ≥ 1. If F = lim inf

n→∞
Fn a.e.[μ] and SC(F ) �= ∅ then

(C)

∫
Fdμ ⊂ lim inf

n→∞
(C)

∫
Fndμ.

Proof. For each f ∈ SC(F ) and n ≥ 1, define Gn : Ω → K(R+) by

Gn(ω) =
{
x ∈ Fn(ω) : |f(ω)− x| ≤ d(f(ω), Fn(ω)) +

1

n

}
, ω ∈ Ω.

Since d(x, Fn(ω)) is continuous with respect to x ∈ R+ and is measurable with
respect to ω ∈ Ω, d(x, Fn(ω)) is F×B(R+)-measurable. Thus d(f(ω), Fn(ω))
is measurable. Furthermore,

φn(x, ω) = |f(ω)− x| − d(f(ω), Fn(ω))

is continuous with respect to x ∈ R+ and is measurable with respect to ω ∈ Ω.
Then φn(x, ω) is F ×B(R+)-measurable. Hence G(Gn) ∈ F ×B(R+). By
using Theorem 1 and Theorem 2, there is an F -measurable function fn such
that fn(ω) ∈ Gn(ω) for all ω ∈ Ω. Since fn ≤ ‖F‖K ∈ LC(μ) a.e.[μ], we
have fn is Choquet integrable, i.e., fn ∈ SC(Fn). Since f(ω) ∈ F (ω) =
lim inf
n→∞

Fn(ω) a.e.[μ] implies d(f(ω), Fn(ω)) → 0 a.e.[μ] as n→∞, and

|f(ω)− fn(ω)| ≤ d(f(ω), Fn(ω)) +
1

n
a.e.[μ],

we have |f(ω)− fn(ω)| → 0 a.e.[μ] as n→∞. Since

0 ≤ fn(ω) ≤ |f(ω)− fn(ω)|+ f(ω) ≤ d(f(ω), Fn(ω)) + f(ω) +
1

n

≤ d(0, Fn(ω)) + 2f(ω) +
1

n
≤ g(ω) + 2f(ω) +

1

n
a.e.[μ],

and μ is submodular which implies (C)

∫
(g + 2f +

1

n
)dμ ≤ (C)

∫
gdμ +

2(C)

∫
fdμ +

1

n
<∞, from Lemma 2, it follows that

d
(
(C)

∫
fdμ, (C)

∫
Fndμ

)
≤
∣∣∣(C)

∫
fdμ− (C)

∫
fndμ

∣∣∣→ 0.

Hence, (C)

∫
fdμ ∈ lim inf

n→∞
(C)

∫
Fndμ, which implies the conclusion of the

Theorem. ✷
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Theorem 7. Assume that there exists g ∈ LC(μ), such that ‖Fn‖K ≤ g
a.e.[μ] for all n ≥ 1. If F = lim inf

n→∞
Fn a.e.[μ], then

(C)

∫
Fdμ ⊂ lim inf

n→∞
(C)

∫
Fndμ.

Remark 3. The sufficient condition of Theorem 3.13 (Fatou’s lemma) in [15]
is: μ is continuous, m-continuous and there exists a Choquet integrable func-
tion g, such that ‖Fn‖K ≤ g for n ≥ 1. Obviously, the sufficient condition of
the above Theorem is weaker.

Theorem 8. Assume that there exists g ∈ LC(μ) such that ‖Fn‖K ≤ g
a.e.[μ] for all n ≥ 1. If F = lim sup

n→∞
Fn a.e.[μ] then

lim sup
n→∞

(C)

∫
Fndμ ⊂ (C)

∫
Fdμ.

Proof. Take y ∈ lim sup
n→∞

(C)

∫
Fndμ. Then there exists a sequence {ynj : j ∈

N} with limit y, such that ynj = (C)

∫
fnjdμ with fnj ∈ SC(Fnj ), j ∈ N.

Since
lim sup

j→∞
Fnj ⊆ lim sup

n→∞
Fn = F a.e.[μ],

and fnj ∈ SC(Fnj ), j ∈ N, we have limj→∞fnj (ω) ∈ F (ω) a.e.[μ]. Hence,
there exists a subsequence {njk

: k ∈ N} of {nj : j ∈ N}, such that
lim

k→∞
fnjk

(ω) ∈ F (ω) a.e.[μ] due to the concept of upper limit. Define

f(ω) = lim
k→∞

fnjk
(ω). Since fnjk

≤ ‖Fnjk
‖K ≤ g, k ∈ N, and g ∈ LC(μ),

we have

(C)

∫
fdμ = lim

k→∞
(C)

∫
fnjk

dμ = y

by using Lemma 2. So y ∈ (C)

∫
Fdμ, which completes the proof. ✷

From above two theorems, we have the following Lebesgue dominated con-
vergence theorem of set-valued Choquet integrals in the sense of Kuratowski
convergence.

Theorem 9. Assume that there exists g ∈ LC(μ), such that ‖Fn‖K ≤ g
a.e.[μ] for all n ≥ 1. If Fn → F (n→∞) a.e.[μ] then

lim
n→∞

(C)

∫
Fndμ = (C)

∫
Fdμ.

Finally, we shall discuss the monotone convergence theorems of set-valued
Choquet integrals in the sense of Kuratowski convergence.
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Theorem 10. Assume that Fn+1 ⊃ Fn for all n ∈ N, and F =
∞⋃

n=1
Fn. If

SC(F ) �= ∅ and F is Choquet integrably bounded, then

lim
n→∞

(C)

∫
Fndμ = (C)

∫
Fdμ.

Theorem 11. Assume that Fn+1 ⊂ Fn for all n ∈ N, and F =
∞⋂

n=1
Fn. If

SC(F ) �= ∅ and F1 is Choquet integrably bounded, then

lim
n→∞

(C)

∫
Fndμ = (C)

∫
Fdμ.
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On Nonlinear Correlation of Random
Elements

Hung T. Nguyen

Abstract. In view of imprecise data in a variety of situations, we proceed
to investigate dependence structure of random closed sets. Inspired by the
modeling and quantifying of nonlinear dependence structures of random vec-
tors, using copulas, we look at the extension of copula connection to the case
of infinitely separable metric spaces with applications to the space of closed
sets of a Hausdorff, locally compact, second countable space.

Keywords: Copulas, Correlation, Dependence structures, Random closed
sets.

1 Introduction

In view of interests in financial risk management, there is a need to take a
closer look at the problem of modeling and quantifying dependence structures
among random variables. Traditionally, this problem is very simple. When
two random variables X and Y are not independent, one quantifies their de-
pendence by using Pearson’s correlation coefficient. Even it was spelled out
that Pearson’s correlation coefficient is a measure of linear dependence be-
tween the variables, there was no comments on how to model and quantify
other (nonlinear) dependence structures. Of course, linearity is always con-
sidered as a first approximation to nonlinearity. It is the field of financial
economics which has triggered a reexamination of Pearson linear correla-
tion analysis. First, there are random variables which have infinite variances
(namely those with heavy-tailed distributions). Pearson’s correlation cannot
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be even defined for such variables. Second, it is well known that Pearson’s
correlation coefficient is not invariant with changes of scales. But most im-
portantly, Pearson’s correlation coefficient is only the degree to which how
removed the dependence of two variables from being linear. In other words,
one only concerned with linear correlation. On the other hand, linearity de-
pendence and its quantification are not sufficient to specify the multivariate
model governing the random vector of interest, given its marginal distribu-
tions. This is so because dependence structures are of various forms. The joint
distribution of a random vector contains all information about its behavior,
including its dependence structure. How to extract the dependence structure
of a random vector from the knowledge of its joint distribution? The answers
to this question and to “how to relate marginal distributions to the joint
distribution?” are fortunately given by Sklar’s theory of copulas. This has
opened the door to investigating nonlinear dependence structures and their
quantifications (correlations).

After describing the state-of-the-art of modeling and quantifying nonlinear
dependence structures of random vectors using copulas, as well as discussing
open research issues, we embark on the problem of nonlinear correlation of
random closed sets.

2 Why Nonlinear Correlation?

Let (Ω,A) and (S,S) be two measurable spaces. A map X : Ω → S is called
a random element when X−1(S) ⊆ A. If P is a probability measure on A,
then the (probability) law of X is the probability measure PX = PX−1 on
S. For two random elements X and Y , defined on (Ω,A, P ) with values in
(S,S), (T, T ), respectively, the law of the random element Z = (X,Y ) is a
probability measure PZ on S ⊗ T such that

PX = PZ ◦ π−1
S , PY = PZ ◦ π−1

T

where π−1
S , π−1

T denote the projections from S × T onto S, T , respectively,
in other words, PX and PY are marginal laws. X and Y are said to be
independent when PZ = PX⊗PY (product measure), i.e., for any A ∈ S ⊗ T ,

PZ(A) =

∫

S×T

1A(s, t)dPX(s)dPY (t)

We are concerned with the case where X and Y are not independent (they
are dependent). Note that, this is somewhat similar to the concern about
noncompactness of sets in infinitely dimensional metric spaces in metric fixed
point theory (see e.g. [1]) where the quantification of noncompactness by
some measures of noncompactness, such as Kuratowski’s one, is needed to
investigate sufficient conditions for the fixed point property of non-expansive
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mappings. Here, we wish to model and quantify dependence structures in
multivariate models for statistical decision-making.

Now the dependence between X and Y can be of various different forms.
For example, for random variables, i.e. when S = T = R, if Y = aX+ b, then
they are linearly dependent; if Y = X2, then they are nonlinearly dependent.
When focusing on linear dependence (as a first approximation) the usual
approach is this. Assuming that both X and Y have finite variances, one
quantifies its strength (i.e., measures how far the dependence is removed
from linearity) by using Pearson’s correlation coefficient. Clearly Pearson’s
correlation cannot detect nonlinear dependence. One well-known drawback
of Pearson’s correlation it that it is not invariant with respect to a change of
scale. As far as financial economics is concerned, Pearson’s correlation is not
defined since financial variables usually have heavy-tailed distributions, and
hence have infinite variances (see e.g., [9]).

For other random elements, as observed data, such as random closed sets

of R
d
, the space of closed sets is nonlinear. As such, we need to model and

quantify nonlinear dependence.

3 Entering Copulas

For the case of random vectors, i.e., when S = R
d

with its Borel σ-field

B
(
R

d
)
, the modeling of dependence structures is solved by copulas (see

[2, 5, 11]). Specifically, in view of Lebesgue-Stieltjes theorem, it suffices to
look at multivariate distribution functions instead of probability measures. If
Z = (X,Y ) has joint distribution H and marginals F,G, then C : [0, 1]2 →
[0, 1], where C(u, v) = H(F−1(u), G−1(v)) is a copula such that, for any

(x, y) ∈ R
2
, H(x, y) = C(F (x), G(y)), assuming, for simplicity that F and G

are continuous.

The copula C of (X,Y ) models their dependence structure. For example,
X and Y are comonotonic if and only if C(u, v) = u ∧ v; X and Y are
counter-comonotonic if and only if C(u, v) = max{u + v − 1, 0}. Of course,
C(u, v) = uv if and only if X and Y are independent.

The problem of quantifying a given dependence structure represented by
a copula is rather delicate. Let C be the space of all bivariate copulas. A
(copula-based) correlation measure is a functional ϕ : C →[−1, 1]. Just like
modeling financial risk, the best we can do is to list desirable properties
a correlation measure should possess. For example, κ(X,Y ) = ϕ(C) should
satisfies: κ(X,Y ) is defined for every pair of X and Y (regardless of their finite
or infinite variances), symmetric, is zero when X and Y are independent.

But, whatever we associate a measure, called a correlation measure, to
a dependence structure, i.e., to a given copula C, that correlation measure
should be a function of C alone, since copulas are invariant with respect
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to strictly increasing transformations. The Pearson’s correlation is not scale
invariant since it is a function of C and the marginal distributions.

While the copula of (X,Y ) represents their dependence structure, one
usually looks at some specific way that X and Y are related to each other,
for example the classical Kandell τ rank correlation is based on the concept
of concordance, whereas the Spearman rho ρ measures how far C is removed
from independence. These copula-based correlations are, respectively

τ(X,Y ) =

∫ 1

0

∫ 1

0

C(u, v)dC(u, v) − 1,

ρ(X,Y ) = 12

∫ 1

0

∫ 1

0

[C(u, v)− uv]dudv

One could ask: what is a copula-based correlation measuring how far C is
removed from linearity?

A useful local correlation is the tail dependence correlation

λ(X,Y ) = lim
αր1

1− 2α + C(α, α)

1− α

The copula connection between distributions H,F and G is written in
terms of their associated probability laws as, for any x, y in R,

dH(([−∞, x]× [−∞, y]) = C(dF ([−∞, x], dG([−∞, y]))

noting that σ{[−∞, x] : x ∈ R} = B(R), and dF, dG are nonatomic probabil-
ity measures.

X and Y are independent if and only if C(u, v) = uv, so that, for any A,B
in B(R),

dH(A×B) = C(dF (A), dG(B))

4 Copulas for Probability Measures

In infinitely dimensional (polish) spaces, such as C([0, 1]), D([0, 1]), we have
to work directly with probability laws on them, since there is no counter-
part of distribution functions as opposed to Euclidean spaces. Since copulas
are essential for modeling and quantifying dependence structures of random
vectors, we would like to know whether there are some copula connection be-
tween probability measures. To our knowledge, the only work in this direction
is [8] in which a formal generalization of

dH(([−∞, x]× [−∞, y]) = C(dF ([−∞, x], dG([−∞, y]))
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is obtained for general polish spaces. Note that, without referring to Sklar’s
copulas, Strassen [12] investigated the existence of a joint probability measure
with given marginals and bounds.

The setting is this. For two random elements X and Y , defined on (Ω,A, P )
with values in (S,S), (T, T ), respectively, the law of the random element
Z = (X,Y ) is a probability measure PZ on S ⊗ T such that PX = PZ ◦ π−1

S ,
PY = PZ ◦π−1

T , where π−1
S , π−1

T denote the projections from S×T onto S, T ,
respectively, in other words, PX and PY are marginal laws. We seek some
copula connection between PZ , PX and PY .

The main result of Scarsini [10] is this. Let A ⊆ S,B ⊆ T be totally ordered
by set inclusion, and suppose PX(S) = PY (T ) = [0, 1]. Then there exists a
copula C, depending upon A and B, such that, for any A ∈ A, B ∈ B,

PZ(A×B) = C(PX(A), PY (B))

There was no discussions about dependence modeling, let alone correlation
analysis, in this infinitely dimensional abstract setting.

5 The Case of Random Closed Sets

Here is an important example of a type of random elements with values in
infinitely dimensional polish spaces. Coarse data are sets rather than points
in euclidean spaces. Now random vectors can be viewed as random elements

taking singletons {x} as values, where the {x} are closed sets of R
d
. Thus,

random closed subsets of R
d

are natural generalizations of values of random

vectors. Closed subsets of R
d

(or, more generally, of a Hausdorff, locally com-
pact and second countable space) are bona fide values of random elements,
thanks to Matheron [3], see also [3, 6].

The space F of all closed subsets of Rd, equiped with the hit-or-miss
topology (see [3, 4, 6]) is compact, Hausdorff and second countable, and as
such, it is metrizable and separable. A metric compatible with this topology
is the stereographic distance. Specifically, using one-point compactification
of Rd as the sphere Dd ⊆ Rd+1, and the Euclidean metric ρ on Rd+1, the
stereographic Hausdorff distance on F is

Hρ(A,B) = ρ(A′ ∪NP,B′ ∪NP )

where ρ is the Hausdorff distance on compact sets of Dd, and A′, B′ are
stereographic projections of A,B on Dd, and NP stands for “North pole”
of Dd.

Remark. The space F with the set inclusion is a partially ordered set. In
fact, it is a continuous lattice, and its hit-or-miss topology is precisely the
Lawson topology (see e.g., [7]). The framework of continuous lattices is useful
for extending closed sets to upper semi-continuous functions.
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A random closed set is a map X : Ω → F , such that X−1(B(F)) ⊆ A,
where B(F) denotes the Borel σ-field respect to the hit-or-miss topol-
ogy. Its law is a probability measure on B(F). Unlike function spaces
like C([0, 1]), D([0, 1]), there is a counterpart of Lebesgue-Stieltjes theorem,
namely probability measures on B(F) are in a bijective correspondence with
capacity functionals (playing the role of distribution functions of random vec-
tors). Specifically, let K be the class of compact subsets of Rd. A capacity
functional is a map F : K → [0, 1] such that

(i) F (∅) = 0,

(ii) if Kn ց K then F (Kn)ց F (K),

(iii) F is alternating of infinite order, i.e.,

F

(
n⋂

i=1

Ki

)
≤

∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1F

(⋃

i∈I

Ki

)
.

The Choquet theorem is this. If F is a capacity functional, then there
exists a unique probability measure Q on B(F) such that Q(A ∈ F : A∩K �=
∅) = F (K), for any K ∈ K.

Remark. For a random set with values as subsets of a finite set, the dual of
its capacity functional, i.e., A→ 1 − F (Ac) is its distribution function (also
called a belief function) where ⊆ replaces ≤. In general, the Choquet theorem
is not valid in non-locally compact Polish spaces, see [8].

In view of Choquet theorem, copula connections among probability mea-
sures on B(F) could be investigated at the level of their associated capacity
functionals. But a direct application of Scarsini’s result is also possible.

Unlike the case of random vectors (viewed as random closed sets taking
singleton sets as values), dependence structures among general random closed
sets could be broken down further in terms of factors such as shape, location
and size. For example, suppose we are interested in the dependence with
respect to size of two random closed sets X and Y , we proceed as follows.

Let L denote the Lebesgue measure on Rd. Then a functional Φ : F → R
+
is

considered, where Φ(A) = L(A).

In general, let Φ : F → R be a continuous functional. Let Ax =
Φ−1([−∞, x]), and A = {Ax : x ∈ R}. Then A is a chain. Assuming that
PX(B(F)) = PY (B(F)) = [0, 1], there exists a unique copula CΦ such that,
for any x, y ∈ R,

P(X,Y )(Ax ×Ay) = CΦ(PX(Ax), PY (Ay))

from which one can proceed to define various concepts of copula-based cor-
relation for random closed sets. It is clear that further studies are needed to
complete this program.
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On Fuzzy Stochastic Integral
Equations–A Martingale Problem
Approach

Mariusz Michta

Abstract. In the paper we consider fuzzy stochastic integral equations using
the methods of stochastic inclusions. The idea is to consider an associated
martingale problem and its solutions in order to obtain a solution to the fuzzy
stochastic equation.

Keywords: Fuzzy-valued integral, Fuzzy-stochastic equation.

1 Introduction

Fuzzy stochastic differential equations were studied recently by Kim in [7],
Ogura in [14], and Malinowski and Michta in [10] and [11]. In this note
we describe a new and different method used to the study the notion of
fuzzy stochastic differential or integral equations proposed recently in [12].
We study the existence of solutions of a fuzzy stochastic differential equation
driven by the Brownian motion under weaker conditions than Lipschitz con-
tinuity imposed on the right-hand side and considered earlier in the cited
papers. In our approach, we use a new and different method applied to
stochastic fuzzy systems. We interpret the fuzzy stochastic equation as a
family of stochastic differential inclusions. The idea implemented in this note
is to solve those inclusions via the appropriately defined martingale problem
and then apply the theorem of Negoita and Ralescu. In the deterministic
case, our approach corresponds to ideas and comments presented in [1], [5]
and [2], where two different approaches to the fuzzy differential equation
were presented and compared. Moreover, the idea presented here enables
us to overcome (in different way than recently proposed in [10]) difficulties
with a possible unboundedness of a set-valued and (consequently) of a fuzzy
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stochastic integral, which seems to be an open problem. Consequently, we
are able to consider fuzzy stochastic equations not only with a single-valued
but also with a fuzzy-valued integrands appearing in diffusion terms.

2 Set-Valued Trajectory Stochastic Integral

Let (Ω,F, {Ft}t≥0
, P ) be a complete filtered probability space satisfying the

usual hypothesis, i.e., {Ft}t≥0
is an increasing and right continuous family of

sub-σ-fields of F and F0 contains all P -null sets. Let P denote the smallest
σ-field on R+×Ω with respect to which every left-continuous and {Ft}t≥0

-

adapted process is measurable. An Rd-valued stochastic process X is said
to be predictable if X is P-measurable. One has P ⊂ β ⊗ F, where β
denotes the Borel σ-field on R+. Let Z be an {Ft}t≥0

-adapted and càdlàg
(right hand continuous with left limits) semimartingale with values in R1, i.e.,
Z = M+A, Z0 = 0 where M is an {Ft}t≥0

-adapted local martingale and A is
an {Ft}t≥0

-adapted, càdlàg process with finite variation on compact intervals
in R+ (see [15] for details). By H2 we denote the space of {Ft}t≥0

-adapted
semimartingales with a finite H2-norm:

||Z||H2 := ||[M,M]1/2
∞ ||L2 + ||

(∫ ∞

0

|dAt|
)
||L2 <∞,

where [M,M ] denotes the quadratic variation process for a local martingale
M , while |A|· :=

∫ ·
0
|dAs| is the total variation of the random measure induced

by the paths of the process A. Let μM denote the Doléans-Dade measure for
the martingale M (see [3]). Then for all f ∈ L2 (R+ ×Ω,P , μM ) one has

∫

[0,t]×Ω

|f |2dμM = E

(∫ t

0

|fs|2d[M,M ]s

)
= E|

∫ t

0

fsdMs|2,

for t ≥ 0. Let us also define a random measure on R+

γ(ω, dt) := |A(ω)|∞|dAt(ω)|
and a measure associated with the process A by the formula:

νA(C) :=

∫

Ω

∫ ∞

0

IC(ω, t)γ(ω, dt)P (dω)

for every C ∈ P . Then we have

νA(R+ ×Ω) = E

(∫ ∞

0

|dAs|
)2

.

Hence νA is a finite measure on P . Finally, we define a finite measure μZ

associated with Z ∈H2 by μZ := μM + νA. Let us denote L2
P(μZ) :=

L2 (R+ ×Ω,P , μZ). Particularly, when Z = W is a standard Wiener
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process we have dμW = dt × dP and we may concentrate on the class of
square integrable and nonanticipating processes.

By Cl(Rd)
(
Clb(R

d)
)

we denote the family of all nonempty, closed (nonempty,
closed and bounded) subsets of Rd. Similarly, Comp(Rd) (resp. Conv(Rd))
is the family of all nonempty and compact (resp. compact and convex) sub-
sets of Rd, endowed with the Hausdorff metric HRd . Let F = (F (t))

t≥0
be a

set-valued stochastic process with values in Cl(Rd). We call F to be {Ft}t≥0
-

adapted if F (t) is Ft-measurable for each t ∈ R+. It is predictable if F is
P-measurable. Let us define the set

S2
P(F, μZ) := {f ∈ L2

P(μZ) : f ∈ F μZ a.e.}.

We say that F is L2
P(μZ)-integrably bounded if ||F || ∈ L2

P(μZ), where
||F || := HRd (F, {0}). By Kuratowski and Ryll-Nardzewski Selection Theo-
rem (see e.g. [8] ) it follows that S2

P(F, μZ) �= ∅ and for every f ∈ S2
P(F, μZ)

the Itô stochastic integral
∫
fsdZs exists. Hence for every t ≥ 0, we define

the set ∫ t

0

FsdZs :=

{∫ t

0

fsdZs : f ∈ S2
P(F, μZ )

}

which is called the set-valued trajectory stochastic integral of F with respect
to semimartingale Z. By [12] we have the following result needed in the sequel.

Theorem 1. For each n ≥ 1, let Fn : R+ ×Ω → Comp(Rd) be a predictable
multivalued mapping such that F1 is L2

P(μZ)- integrably bounded and F1 ⊃
F2 ⊃ ... ⊃ F μZ-a.e. and let F :=

⋂
n≥1 Fn μZ-a.e.. Then for every t ≥ 0 it

holds
∫ t

0
FsdZs =

⋂
n≥1

∫ t

0
(Fn)s dZs.

3 Fuzzy Trajectory Stochastic Integral

Let X be a given metric space with a Borel σ-field β (X ) and as before, let
(Ω,F, {Ft}t≥0

, P ) be a given filtered probability space. We also let Z to be
a given H2-semimartingale.

Definition 1. By a fuzzy set u ∈ F (X ) we mean a function u : X → [0, 1] for
which the α-level set [u]

α
:= {x ∈ X : u(x) ≥ α} ∈ Clb(X ) for all α ∈ (0, 1].

The support of u is defined by [u]0 := cl{x ∈ X : u(x) > 0}.

We consider also

FComp (X ) = {u ∈ F (X ) : [u]α ∈ Comp(X ), α ∈ [0, 1]}

and
FConv (X ) = {u ∈ F (X ) : [u]α ∈ Conv(X ), α ∈ [0, 1]}
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in the case when X is a linear normed space. In what follows, we will consider
the case X = Rd. The following metric in FComp

(
Rd
)

is often used (see
e.g. [9]):

d∞ (u, v) := sup
α∈[0,1]

HRd ([u]α, [v]α) for u, v ∈ FComp

(
Rd
)
.

By a fuzzy random variable we mean a function u : Ω → F
(
Rd
)

such that
[u (·)]α : Ω → Clb(R

d) is an F-measurable set-valued mapping for every
α ∈ [0, 1]. The fuzzy-valued random function f : R+ × Ω → F

(
Rd
)

is said
to be predictable (resp. nonanticipating) if the set-valued mapping [f ]

α
:

R+ × Ω → Clb
(
Rd
)

is P (resp. N ) measurable for every α ∈ [0, 1]. The
family (ut, t ∈ R+) of fuzzy random variables is called a fuzzy stochastic
process. It is called (Ft)t≥0-adapted if ut is an Ft-measurable fuzzy random
variable for every t ∈ R+. We recall the following version of the theorem of
Negoita and Ralescu.

Theorem 2. ( [13]) Let Y be a set and let {Yα, α ∈ [0, 1]} be a family of
subsets of Y such that

a) Y0 = Y ,
b) α1 ≤ α2 ⇒ Yα1 ⊃ Yα2 ,
c) αn ր α⇒ Yα =

⋂∞
n=1 Yαn .

Then the function φ : Y → [0, 1] defined by φ(x) = sup{α ∈ [0, 1] : x ∈ Yα}
has the property that {x ∈ Y : φ(x ) ≥ α} = Y α for any α ∈ [0, 1].

For f : R+ × Ω → F
(
Rd
)

being a predictable fuzzy random function it
is called to be L2

P(μZ)-integrably bounded if ||[f ]0|| ∈ L2
P(μZ). For such a

predictable fuzzy random function f let us consider the trajectory set-valued
stochastic integral Yα(t) :=

∫ t

0
[f ]αs dZs for any t ∈ R+ and every α ∈ [0, 1].

Then by Theorem 1 and Theorem 2 ( [13]), for every fixed t ∈ R+ there
exists a fuzzy set X(f, Z)t ∈ F

(
L2(Ω,Ft, P,R

d)
)

such that [X(f, Z)t]
α

=∫ t

0
[f ]

α
s dZs for every t ∈ R+ and every α ∈ [0, 1]. Having the family of just

described fuzzy sets {X(f, Z)t, t ∈ R+}, one can introduce ( [12]):

Definition 2. By a fuzzy trajectory stochastic integral of the predictable
and L2

P(μZ)-integrably bounded fuzzy random function f with respect to
the semimartingale Z we mean the family of fuzzy sets {X(f, Z)t, t ∈ R+}
described above. We denote it by X(f, Z)t := (F)

∫ t

0 fdZ for t ∈ R+.

4 Fuzzy Stochastic Differential Equation

Let us assume now Z = W , where W is an m-dimensional Wiener process
defined on some filtered probability space (Ω,F, {Ft}t∈[0,T ]

, P ). By Rd×m we
denote the space of all d×m matrices (gij)d×k with real elements, equipped
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with the norm: ||(gij)d×m|| = max1≤i≤d,1≤j≤m |gij |. By Fx
t we denote a σ-

field generated by the process x to the time t, i.e. Fx
t = σ{x(s); s ≤ t}.

By P x we denote the distribution (probability law) of the process x under
the probability P . We consider β([0, T ]) × β(Rd)-measurable fuzzy valued
functions f : [0, T ]× Rd → FConv(R

d) and g : [0, T ]× Rd → FConv(R
d×m).

By the fuzzy stochastic equation we mean the formal relation

dx(t) = f(t, x(t))dt + g(t, x(t)dWt, t ∈ [0, T ] ˜ (1)

x(0) = x0 ∈ FConv

(
Rd
)

which is interpreted as a family of stochastic fuzzy integral inclusions

x(t) − x(s) ∈
[
(F)

∫ t

s

f(τ, x(τ))dτ

]α

+

[
(F)

∫ t

s

g(τ, x(τ))dWτ

]α

,

x(0) ∈ [x0]
α
,

where 0 ≤ s ≤ t ≤ T. Or equivalently as

x(t)− x(s) ∈
∫ t

s

[f(τ, x(τ)]
α
dτ +

∫ t

s

[g(τ, x(τ)]
α
dWτ , 0 ≤ s ≤ t ≤ T, (1

α
)

x(0) ∈ [x0]
α ,

for α ∈ [0, 1]. The fuzzy trajectory stochastic integrals above are defined as
in Definition 2, while the set-valued trajectory stochastic integrals in (1α)
are their α-level sets taking as a semimartingale Zt = t or Zt = Wt, provided
they are nonempty sets. The stochastic inclusion (1α) can only have any
significance as a replacement for the fuzzy stochastic differential equation
(1) if the solutions of (1α) generate fuzzy sets. Following [12] this is true for
distributions (probability laws) of the solution processes to (1α). For this aim
we describe first the set of solutions to the stochastic inclusion (1α) for a fixed
α ∈ [0, 1].

Definition 3. By a solution to the stochastic inclusion (1α) we mean a
d-dimensional, continuous stochastic process x defined on some probabil-
ity space (Ω,F, P ) with the filtration (Fx

t )t∈[0,T ], an (Fx
t )t∈[0,T ]-Wiener

process W and stochastic processes u ∈ S2
Nx ([f ◦ x]

α
, μW ) and v ∈

S2
Nx ([g ◦ x]α , μW ) such that:

x(t) = x(0) +

∫ t

0

usds +

∫ t

0

vsdWs, t ∈ [0, T ] (2
α
)

x(0) ∈ [x0]
α

where N x denotes here a σ-field of nonanticipating subsets in [0, T ] × Ω,
generated by the filtration (Fx

t )t∈[0,T ].
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The solution defined above is thought as a system (Ω,F, P,W, {Fx
t }t∈[0,T ], x)

in which all elements can depend on the fixed level index α ∈ [0, 1]. To avoid
such a dependence one can use an equivalent approach based on martingale
problems on the path space (canonical space) (see [12] for details). This al-
lows identification of weak solutions with their distributions which is crucial
for the notion of fuzzy solution to the equation (1). For these aims let C :=
C([0, T ], Rd) be the space of continuous,Rd-valued functions with the Borel σ-
field β(C). Define a coordinate process (canonical projections) πt : C → Rd,
πt(x) = x(t), and its natural filtration (At)t∈[0,T ],At := σ{πs : s ≤ t}, t ∈
[0, T ]. Let us take its right-continuous version (A+

t )t∈[0,T ],A+
t := At+ =⋂

s>tAs. Let a : [0, T ]×C → Rd, b : [0, T ]×C → Rd×m be β ([0, T ])× β (C)-

measurable functions. ByC2
b (Rd) we denote the space of all bounded and twice

continuously differentiable functions z : Rd → R1. For z ∈ C2
b (Rd) and y ∈ C

we let:

(Ltz)(y) :=
1

2

d∑

i=1

d∑

k=1

γik(t, y)
∂2z(y(t))

∂xi∂xk
+

d∑

i=1

ai(t, y)
∂z(y(t))

∂xi
,

where γik(t, y) =
∑m

j=1 bij(t, y)bkj(t, y); 1 ≤ i, k ≤ d.
Let M(C) denote the set of all probability measures on (C, β(C)).

Definition 4. Let α ∈ [0, 1]. A probability measure Q ∈M(C) is said to be
a solution to the local martingale problem of (1α) if it satisfies:

i) Q{π0 ∈ [x0]
α} = 1

ii) there exist measurable mappings a : [0, T ]×C → Rd, and b : [0, T ]×C →
Rd×m, such that a(t, y) ∈ [f(t, y(t))]

α
, b(t, y) ∈ [g(t, y(t))]

α
dt × dQ-a.e.,

and for every z ∈ C2
b (Rd) the process (Mz

t ) ( on (C, β(C), Q) ):

Mz
t := z ◦ πt − z ◦ π0 −

∫ t

0

(Lsz)ds : t ∈ [0, T ]

is a (A+
t , Q)-local martingale.

Let Rα(f, g, [x0]
α) denote the set of those measures Q ∈ M(C), which are

solutions to the local martingale problem of (1α). The space M(C) and the
set Rα(f, g, [x0]

α) can be equipped with a topology of weak convergence of
probability measures. We have the following connection between the solutions
to the stochastic inclusion (1α) and solutions to the martingale problem de-
scribed above (see [12]).

Proposition 1. Let f : [0, T ] × Rd → FConv(R
d) and g : [0, T ] × Rd →

FConv(R
d×m) be β([0, T ]) × β(Rd)-measurable fuzzy valued functions. Then

for every α ∈ [0, 1] and x0 ∈ FConv(R
d) there exists a weak solution to the

stochastic inclusion (1α) if and only if Rα(f, g, [x0]
α) �= ∅.

Further analysis in this section makes use of the following notions.
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Definition 5. A set U ⊂ Rd×m is said to satisfy a (DC) property (diagonal
convexity) if the set D(U) := {uuT : u ∈ U} is a convex subset in Rd×d, where
uT denotes the transposition for u. Consequently, a fuzzy valued function
g : [0, T ]× Rd → FConv(R

d×m) is said to satisfy a (DC) property if the set
[g(t, x)]α ⊂ Rd×m satisfies such property for every (t, x) ∈ [0, T ] × Rd and
α ∈ [0, 1].

Having the characterization given in Proposition 3 one can state the notion
of a fuzzy solution to equation (1).

Definition 6. By the fuzzy solution of the fuzzy stochastic differential
equation (1) we mean a fuzzy set X(x0, f, g) ∈ FComp (M(C)) such that
[X(x0, f, g)]

α
= Rα(f, g, [x0]

α) for every α ∈ [0, 1].

The main result of this note comes from [12], where we refer the reader for
the proof.

Theorem 3. Let f : [0, T ] × Rd → FConv(R
d), and g : [0, T ] × Rd →

FConv(R
d×m) be β([0, T ]) × β(Rd)-measurable and bounded fuzzy valued

functions such that f(t, ·) : Rd →
(
FConv(R

d), d∞
)
and g(t, ·) : Rd →(

FConv(R
d×m), d∞

)
are continuous for each fixed t ∈ [0, T ]. Assume also

that g satisfies a (DC) property and let x0 ∈ FConv(R
d). Then there exists a

fuzzy solution of the fuzzy stochastic equation (1).

5 Applications

This meaning of the stochastic fuzzy equation described above reflects the
idea used earlier in the deterministic case by Hullermeier in [5] and next by
Agarwal, O’ Regan, Lakshmikantham in [1] (and others), which was an alter-
native approach to the notion of the fuzzy differential equation initiated by
Kaleva in [6]. In [5] and [1] the authors considered fuzzy differential equation

dx(t) = f(t, x(t))dt, x(0) = x0; (3)

interpreted as a family of integral inclusions:

x(t) − x(s) ∈
∫ t

s

[f(τ, x(τ))]
α
dτ, x(0) ∈ [x0]

α;

for α ∈ [0, 1]. The notion of a fuzzy solution of fuzzy differential equation was
described as follows: for a fixed α ∈ [0, 1], let S (α) be a set of all solutions
of the inclusion above ( provided it is nonempty), i.e.

S (α) :=
{
x ∈ C([0, T ], Rd) : x(t) − x(s) ∈

∫ t

s

[f(τ, x(τ))]
α
dτ, 0 ≤ s ≤ t ≤ T, x(0) ∈ [x0]

α

}
.
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Then under appropriate conditions S (α) is nonempty and compact subset
of C([0, T ], Rd) for every α ∈ [0, 1]. Moreover if the family (S (α) : α ∈ [0, 1])
satisfies conditions of Negoita and Ralescu type theorem, therefore there
exists a fuzzy set (let say) X (f, x0) ∈ FComp

(
C([0, T ], Rd)

)
such that

[X (f, x0)]
α = S (α) for every α ∈ [0, 1]. In [1] just a fuzzy set is called

a fuzzy solution to the fuzzy differential equation (3). Taking the diffu-
sion term g = θ (i.e., zero in a fuzzy sense) in the fuzzy stochastic equa-
tion (1), we obtain Rα(f, θ, [x0]

α) = {δx : x ∈ S(α)} and consequently
[X(f, θ, x0)]

α
= {δx : x ∈ [X (f, x0)]

α} for every α ∈ [0, 1]. In this sense
the martingale approach in the stochastic case generalizes the deterministic
case and the fuzzy stochastic equation (1) generalizes the fuzzy differential
equation (3) above.
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Set-Valued Stochastic Integrals with
Respect to Poisson Processes in a
Banach Space

Jinping Zhang and Itaru Mitoma

Abstract. In a separable Banach space X, after studying X-valued stochas-
tic integrals with respect to Poisson random measure N(dsdz) and the com-
pensated Poisson random measure Ñ(dsdz) generated by stationary Poisson
stochastic process P, we prove that if the characteristic measure ν of P is fi-
nite, the stochastic integrals (denoted by {Jt(F )} and {It(F )} separately) for
set-valued stochastic process {F (t)} are integrably bounded and convex a.s.
Furthermore, the set-valued integral {It(F )} with respect to compensated
Poisson random measure is a right continuous (under Hausdorff metric) set-
valued martingale.

Keywords: Poisson Random Measure, Compensated Poisson Random
Measure, Set-Valued Stochastic Integral.

1 Introduction

Recently, stochastic integrals for set-valued stochastic processes with respect
to Brownian motion and martingale have been received much attention, e.g.
see [5, 6, 9, 11, 13, 16]. Correspondingly, the set-valued differential equations
are studied, e.g. see [11,12,14,15,17]. Michta [10] extended the integrator to
a larger class: semimartingales. But the integrable boundedness of the cor-
responding set-valued stochastic integrals are not obtained since the semi-
martingale may not be of finite variation.
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Poisson stochastic processes are special but they play an important role
both on random mathematics (cf. [4,2,7]) and on applied fields for example in
financial mathematics [7]. If the characteristic measure ν of stationary Poisson
process of P is finite, then both the Poisson random measure N(dsdz) (where
z ∈ Z, the state space of P) and compensated Poisson random measure
Ñ(dsdz) are of finite variation. We will prove that the stochastic integrals for
set-valued S -predictable (see Definition 1) process with respect to N(dsdz)
and Ñ(dsdz) are integrably bounded, convex a.s. Furthermore, when the
σ-algebra F is separable, the set-valued stochastic integrals with respect to
compensated Poisson random measure is a right continuous (under Hausdorff
metric) set-valued martingale. The maximal inequality is studied in another
paper [18].

This paper is organized as follows: Section 3 is on the notations and pre-
liminaries on set-valued theory. In Section 3, at first we study the stochastic
integrals for X-valued S -predictable process with respect to N(dsdz) and
Ñ(dsdz). Then we study the stochastic integrals for set-valued S -predictable
processes with respect to N(dsdz) and Ñ(dsdz).

Note: since the limitation of pages, in this paper we only list our results
without proof. The detailed proofs are given in [18].

2 Preliminaries

Let (Ω,F , P ) be a complete probability space, {Ft}t≥0 a filtration sat-
isfying the usual conditions, which means F0 includes all P -null sets in
F , the filtration is non-decreasing and right continuous. Let B(E) be the
Borel field of a topological space E, (X, ‖ · ‖) a separable Banach space
equipped with the norm ‖ · ‖ and K(X) (resp. Kb(X)) the family of all
nonempty closed (resp. bounded closed) subsets of X. Let 1 ≤ p < +∞
and Lp(Ω,F , P ; X) (denoted briefly by Lp(Ω; X)) be the Banach space of
equivalent class of X-valued F -measurable functions f : Ω → X such that the

norm ‖f‖p =
{∫

Ω
‖f(ω)‖pdP

}1/p

is finite. An X-valued function f is called

Lp-integrable if f ∈ Lp(Ω; X).

A set-valued function F : Ω → K(X) is said to be measurable if for any
open set O ⊂ X, the inverse F−1(O) := {ω ∈ Ω : F (ω) ∩ O �= ∅} be-
longs to F . Such a function F is called a set-valued random variable. Let
M
(
Ω,F , P ;K(X)

)
be the family of all set-valued random variables, which is

briefly denoted by M
(
Ω;K(X)

)
.

For A,B ∈ 2X (the power set of X), H(A,B) ≥ 0 is defined by

H(A,B) := max{sup
x∈A

inf
y∈B

||x − y||, sup
y∈B

inf
x∈A

||x− y||}.
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H(A,B) for A,B ∈ Kb(X) is called the Hausdorff metric. It is well-known
that Kb(X) equipped with the H-metric denoted by (

(
Kb(X), H

)
) is a com-

plete metric space (cf. [8]).
For F ∈M

(
Ω,K(X)

)
, the family of all Lp-integrable selections is defined

by
Sp

F (F) := {f ∈ Lp(Ω,F , P ; X) : f(ω) ∈ F (ω) a.s.}.
In the following, Sp

F (F) is denoted briefly by Sp
F . If Sp

F is nonempty, F is said
to be Lp-integrable. F is called Lp-integrably bounded if there exits a function
h ∈ Lp(Ω,F , P ; R) such that ‖x‖ ≤ h(ω) for any x and ω with x ∈ F (ω).
It is equivalent to that ‖F‖K ∈ Lp(Ω; R), where ‖F (ω)‖K := sup

a∈F (ω)

‖a‖.

The family of all measurable K(X)-valued Lp-integrably bounded functions
is denoted by Lp

(
Ω,F , P ;K(X)

)
. Write it for brevity as Lp

(
Ω;K(X)

)
.

Proposition 1. ( [3]) Let F1, F2 ∈ M(Ω; X) and F (ω) = cl(F1(ω) + F2(ω))
for all ω ∈ Ω. Then F ∈ M(Ω; X).

Let R+ be the set of all nonnegative real numbers and B+ := B(R+). N
denotes the set of natural numbers. An X-valued stochastic process f =
{ft : t ≥ 0} (or denoted by f = {f(t) : t ≥ 0} )is defined as a function
f : R+ × Ω −→ X with the F -measurable section ft, for t ≥ 0. We say f is
measurable if f is B+ ⊗F-measurable. The process f = {ft : t ≥ 0} is called
Ft-adapted if ft is Ft-measurable for every t ≥ 0. f = {ft : t ≥ 0} is called
predictable is it is P-measurable, where P is the σ-algebra generated by all
left continuous and Ft-adapted stochastic processes.

In a fashion similar to the X-valued stochastic process, a set-valued
stochastic process F = {Ft : t ≥ 0} is defined as a set-valued function
F : R+ × Ω −→ K(X) with F -measurable section Ft for t ≥ 0. It is called
measurable if it is B+⊗F-measurable, and Ft-adapted if for any fixed t, Ft(·)
is Ft-measurable. F = {Ft : t ≥ 0} is called predictable if it is P-measurable.

3 Set-Valued Stochastic Integrals with Respect to
Poisson Process

In this section, at first we will study the stochastic integrals with respect to
the Poisson random measure and compensated Poisson random measure for
X-valued stochastic processes. Then we study the corresponding stochastic
integrals for set-valued stochastic processes.

3.1 Single Valued Stochastic Integrals w.r.t. Poisson

Process

Let (X, ‖ · ‖) be a separable Banach space and Z an another separable Ba-
nach space with σ-algebra B(Z). A point function p on Z means a mapping
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p : Dp → Z, where the domain Dp is a countable subset of [0, T ]. p de-
fines a counting measure Np(dtdz) on [0, T ]×Z (with the product σ-algebra
B([0, T ])⊗ B(Z)) by

Np((0, t], U) : = #{τ ∈ Dp : τ ≤ t,p(τ) ∈ U},
t ∈ (0, T ], U ∈ B(Z).

(1)

The for 0 ≤ s < t ≤ T ,

Np((s, t], U) := Np((0, t], U)−Np((0, s], U). (2)

In the following, we also write Np((0, t], U) as Np(t, U).
A point process is obtained by randomizing the notion of point functions.

If there is a continuous Ft-adapted increasing process N̂p such that for U ∈
B(Z) and t ∈ [0, T ], Ñp(t, U) := Np(t, U)−N̂p(t, U) is an Ft-martingale, then

the random measure {N̂p(t, U)} is called the compensator of the point process

p (or {Np(t, U)}) and the process {Ñp(t, U)} is called the compensated point
process.

A point process p is called Poisson Process if Np(dtdz) is a Poisson random
measure on [0, T ]×Z. A Poisson point process is stationary if and only if its
intensity measure νp(dtdz) = E[Np(dtdz)] is of the form

νp(dtdz) = ν(dz)dt (3)

for some measure ν(dz) on (Z,B(Z)). ν(dz) is called the characteristic mea-
sure of p.

Let ν be a σ- finite measure on (Z,B(Z)), (i.e. there exists Ui ∈ B(Z), i ∈
N, pairwise disjoint such that ν(Ui) <∞ for all i ∈ N and Z = ∪∞

i=1Ui), and
p = (pt) the Ft-adapted stationary Poisson point process on Z with the char-
acteristic measure ν such that the compensator N̂p(t, U) = E[Np(t, U)] =
tν(U) (non-random).

For convenience, from now on, we will omit the subscript p appeared in
the above notations.

Definition 1. An X-valued function defined on [0, T ]× Z × Ω is called S -
predictable if the mapping (t, z, ω)→ f(t, z, ω) is S /B(X)-measurable where
S is the smallest σ-algebra on [0, T ] × Z × Ω with respect to all g having
the following properties are measurable:

(i) for each t ∈ [0, T ], (z, ω)→ g(t, z, ω) is B(Z)⊗Ft-measurable;
(ii) for each (z, ω), t→ (t, z, ω) is left continuous.

Remark 1. S = P⊗B(Z), where P denotes the σ-field on [0, t]×Ω generated
by all left continuous and Ft-adapted processes.
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Set

L =
{
f(t, z, ω) : f is S−predictable and

E
[ ∫ T

0

∫

Z

‖f(t, z, ω)‖2ν(dz)dt
]
<∞

}

equipped with the norm

‖f‖L :=
(
E
[ ∫ T

0

∫

Z

‖f(t, z, ω)‖2ν(dz)dt
])1/2

.

Similar to the Lemma 2.2 in [7], we have the following result:

Lemma 1. Let f(z) be an Fs⊗B(Z)-measurable random variable taking val-
ues in X such that E

[ ∫
Z ‖f(z)‖2ν(dz)

]
<∞. Then it holds for any s < t ≤ T ,

E
[( ∫

Z

f(z)Ñ((s, t], dz)
)
| Fs

]
= 0 a.s. (4)

E
[
‖
∫

Z

f(z)Ñ((s, t], dz)‖2 | Fs

]
= (t− s)

∫

Z

‖f(z)‖2ν(dz) a.s. (5)

E
[( ∫

Z

f(z)N((s, t], dz)
)
| Fs

]
= (t− s)

∫

Z

f(z)ν(dz) a.s. (6)

If ν is of finite measure, then there exists a constant C (independent of t)
such that

E
[
‖
∫

Z

f(z)N((s, t], dz)‖2 | Fs

]
≤ C

∫

Z

‖f(z)‖2ν(dz) a.s. (7)

From now on, we suppose ν is finite in the measurable space (Z,B(Z)).
Let S be the subspace of those f ∈ L for which there exists a partition

0 = t0 < t1 < · · · < tn = T of of [0, T ] such that

f(t, z, ω) = f(0, z, ω)χ{0}(t) +

n∑

i=1

χ(ti−1,ti](t)f(ti−1, z, ω).

Lemma 2. S is dense in L with respect to the norm ‖ · ‖L .

Let f be in S and

f(t, z, ω) = f(0, z, ω)χ{0}(t) +

n∑

i=1

χ(ti−1,ti](t)f(ti−1, z, ω),

where 0 = t0 < t1 < · · · < tn = T is a partition of [0, T ]. Define

JT (f) =

∫ T

0+

∫

Z

f(s, z, ω)N(dzdt) :=

n∑

i=1

∫

Z

f(ti−1, z, ω)N((ti−1, ti], dz),

(8)
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and

IT (f) =

∫ T

0+

∫

Z

f(s, z, ω)Ñ(dzdt) :=

n∑

i=1

∫

Z

f(ti−1, z, ω)Ñ((ti−1, ti], dz).

(9)
For any integer 0 ≤ k ≤ n, let

Mk =

k∑

i=1

∫

Z

fti−1Ñ((ti−1, ti], dz)

then Mk is Ftk
-measurable, E[Mk] = 0, E[IT (f)] = E[Mn] = 0 and

E[Mk|Ftk−1
] = E[(Mk−1 +

∫

Z

ftk−1
Ñ((ti−1, ti], dz)|Ftk−1

]

= Mk−1 +

∫

Z

ftk−1
E[Ñ((ti−1, ti], dz)] = Mk−1.

That is to say {Mk,Ftk
: 1 ≤ k ≤ n} is an X-valued martingale.

For any t ∈ (0, T ], define

Jt(f) =

∫ t

0+

∫

Z

f(s, z, ω)N(dzds) :=
n∑

i=1

∫

Z

f(ti−1, z, ω)N((ti−1∧t, ti∧t], dz),

(10)
and

It(f) =

∫ T

0+

∫

Z

f(s, z, ω)Ñ(dzds) :=

n∑

i=1

∫

Z

f(ti−1, z, ω)Ñ((ti−1∧t, ti∧t], dz).

(11)
By Lemma 2, for any f ∈ L , there exist a sequence {fn : n ∈ N} in S such

that {fn} converges to f with respect to ‖ · ‖L and
{∫ t

0+

∫
Z fnN(dzds)

}

converges to a limit in L2-sense. The limit is denoted by

It(f) :=

∫ t

0+

∫

Z

f(s, z, ω)Ñ(dzds),

which is called stochastic integral of f with respect to compensated Pois-
son random measure Ñt. Similarly, we can define the stochastic integral
of f with respect to Poisson random measure N , denoted by Jt(f) =∫ t

0+

∫
Z
f(s, z, ω)N(dzds). Similarly, for any 0 < s < t < T , the integrals∫ t

s

∫
Z
f(τ, z, ω)Ñp(dzdτ) and

∫ t

s

∫
Z
f(τ, z, ω)N(dzdτ) can be defined.

Remark 2. When the measure ν is finite, for any A ∈ B(Z), both {N(t, A)}
and {Ñ(t, A)} are of finite variation processes. The stochastic integrals coin-
cide with Lebesgue-Stieltjes integrals.
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Proposition 2. For any f ∈ S, both {It(f)} and {Jt(f)} are Ft-adapted
square-integrable processes. Moreover, {It(f)} is an X-valued right continuous
martingale with mean zero.

Definition 2. ( [1]) A Banach space (X, ‖ ·‖) is called M-type 2 if and only if
there exists a constant CX > 0 such that for any X-valued martingale {Mk},
it holds that

sup
k

E[‖Mk‖2] ≤ CX

∑

k

E[‖Mk −Mk−1‖2]. (12)

Theorem 1. Let X be of M-type 2 and (Z,B(Z)) a separable Banach space
with finite measure ν. Let Np be stationary Poisson process with characteristic
measure ν. Let f be in L . Then there exists a constant C such that

E
[

sup
0<s≤t

∥∥∥
∫ s

0+

∫

Z

f(τ, z, ω)Ñ(dzdτ)
∥∥∥

2]
≤ C

∫ t

0

∫

Z

E[‖f(s, z, ω)‖2]ν(dz)ds,

(13)
and

E
[

sup
0<s≤t

∥∥∥
∫ s

0+

∫

Z

f(τ, z, ω)N(dzdτ)
∥∥∥

2]
≤ C

∫ t

0

∫

Z

E[‖f(s, z, ω)‖2]ν(dz)ds,

(14)
where C depends on the constant CX in Definition 1.

3.2 Set-Valued Stochastic Integrals w.r.t. Poisson

Process

Now we study the set-valued stochastic integration with respect to the Pois-
son random measure and the compensated Poisson random measure in an
M-type 2 separable Banach space X.

A set-valued stochastic process F = {Ft} : Z× [0, T ]×Ω→ K(X) is called
S -predictable if F (z, t, ω) is S /σ(C)-measurable.

Set

M =
{
F (t, z, ω) : F is S−predictable and

E
[ ∫ T

0

∫

Z

‖F (t, z, ω)‖2Kν(dz)dt
]
<∞

}

Given a set-valued stochastic process F ∈ M , the X-valued stochastic process
f ∈ S is called S -selection if f(z, t, ω) ∈ F (z, t, ω) for a.e. (z, t, ω). The
family of all L -selections is denoted by S(F ), that is

S(F ) = {f ∈ L : f(z, t, ω) ∈ F (z, t, ω) for a.e. (z, t, ω)}.
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Set

Γ̃t := {
∫ t

0+

∫

Z

f(z, s, ω)Ñ(ds, dz) : (f(t))t∈[0,T ] ∈ S(F )},

Γt := {
∫ t

0+

∫

Z

f(z, s, ω)N(ds, dz) : (f(t))t∈[0,T ] ∈ S(F )},

Remark 3. It is easy to see for any t ∈ [0, T ], Γ̃t and Γt are the subsets of
L2[Ω,Ft, P ; X]. Furthermore, if {Ft,Ft : t ∈ [0, T ]} is convex, then Γ̃t and Γt

so do.

Let deΓ̃t (resp. deΓt) denote the decomposable set of Γ̃t (resp. Γt) with respect
to σ-algebra Ft, deΓ̃t (resp. deΓt)the decomposable closed hull of Γ̃t (resp.
Γt)with respect to Ft, where the closure is taken in L1(Ω,X). That is to say,
for any g ∈ deΓ̃t (resp. deΓt)and any given ǫ > 0, there exists a finite Ft-
measurable partition {A1, ..., Am} of Ω and (f1(t))t∈[0,T ], ..., (f

m(t))t∈[0,T ] ∈
S(F ) such that

‖g −
m∑

k=1

χAk

∫

0+

∫ t

Z

fk(s)Ñ(dsdz)‖L1 < ǫ.

(resp. ‖g −
m∑

k=1

χAk

∫

0+

∫ t

Z

fk(s)N(dsdz)‖L1 < ǫ)

Similar to Theorem 4.1 in [16], we have

Theorem 2. Let {Ft,Ft : t ∈ [0, T ]} ∈ M , then for any t ∈ [0, T ], deΓt ⊂
L1(Ω,Ft, P ; X). Moreover, there exists a set-valued random variable Jt(F ) ∈
M(Ω,Ft, P ;K(X)) such that S1

Jt(F )(Ft) = deΓt. Similarly, there exists a set-

valued random variable It(F ) ∈ M(Ω,Ft, P ;K(X)) such that S1
It(F )(Ft) =

deΓ̃t.

Definition 3. Set-valued stochastic processes (Jt(F ))t∈[0,T ] and (It(F ))t∈[0,T ]

defined as above are called stochastic integral of {Ft,Ft : t ∈ [0, T ]} ∈ M

with respect to Poisson random measure N(dsdz) and compensated
random measure Ñ(dsdz) respectively. For each t, we denote It(F ) =∫ t

0+

∫
Z FsÑ(dsdz), Jt(F ) =

∫ t

0+

∫
Z FsN(dsdz). Similarly, for 0 < s < t, we

also can define the set-valued random variable Is,t(F ) =
∫ t

s

∫
Z FuÑ(dsdz),

Js,t(F ) =
∫ t

s

∫
Z FuN(dsdz).

Theorem 3. Let {Ft,Ft : t ∈ [0, T ]} ∈ M . Then for any t ∈ [0, T ], the
stochastic integrals It(F ) and Jt(F ) are integrably bounded and convex a.s.

Since for f ∈ L , the integral process {It(f)} with respect to compensated
random measure is an X-valued martingale, then we have
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Theorem 4. Let {Ft,Ft : t ∈ [0, T ]} ∈ M , then the stochastic integral
{It(F ),Ft : t ∈ [0, T ]} is a set-valued submartingale.

Lemma 3. If F is separable with respect to probability measure P , for
{Ft,Ft : t ∈ [0, T ]} ∈ M , there exists a sequence {fn : n ∈ N} ⊂ S(F ),
such that for every t ∈ [0, T ],

S1
It(F ) = de{

∫ t

0+

∫

Z

fn
s Ñ(dsdz) : n ∈ N}, (15)

S1
Jt(F ) = de{

∫ t

0+

∫

Z

fn
s N(dsdz) : n ∈ N}, (16)

where the closure is taken in L1, decomposability is with respect to Ft.

Theorem 5. (Castaing representation of set-valued stochastic integrals)
Assume F is separable with respect to the probability measure P . Then for a
set-valued stochastic process {Ft,Ft : t ∈ [0, T ]} ∈M , there exists a sequence
{(f i

t )t∈[0,T ] : i = 1, 2, ...} ⊂ S(F ) such that for each t ∈ [0, T ], F (t, z, ω) =
cl{(f i

t (z, ω)) : i = 1, 2, ...} a.s., and

It(F )(ω) = cl{
∫

0+

∫ t

Z

f i
s(z, ω)Ñ(dsdz)(ω) : i = 1, 2, ...} a.s.

and

Jt(F )(ω) = cl{
∫

0+

∫ t

Z

f i
s(z, ω)N(dsdz)(ω) : i = 1, 2, ...} a.s.

Theorem 6. Assume F is separable with respect to P , a set-valued stochastic
process {Ft,Ft : t ∈ [0, T ]} ∈M . Then the following holds

It(F )(ω) = cl{It1(F )(ω) +

∫ t

t1

Fs(ω)Ñ(dsdz)(ω)}, a.s.

Jt(F )(ω) = cl{Jt1(F )(ω) +

∫ t

t1

Fs(ω)N(dsdz)(ω)}, a.s.

where the closure is taken in X.

Theorem 7. Assume F is separable with respect to P , a set-valued stochas-
tic process {Ft,Ft : t ∈ [0, T ]} ∈ M . Then {It(F )} is a set-valued right
continuous (with respect to Hausdorff metric) martingale.

Acknowledgements. The authors would like to express their gratitude to referees
for valuable suggestions. This paper is partly supported by The Project Sponsored
by SRF for ROCS, SEM and The Fundamental Research Funds for the Central
Universities (No. 10QL25).



134 J. Zhang and I. Mitoma

References
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The Convergence Theorems of
Set-Valued Pramart in a Banach Space

Li Guan and Shoumei Li

Abstract. Martingale theory plays an important role in probability theory
and applications such as mathematical finance, system control and so on.
Classical martingale theory has been extended to more general cases, i.e. the
theory of set-valued martingales and fuzzy set-valued martingales. In this
paper, we shall introduce the concept of set-valued asymptotic martingale in
probability (pramart for short) in a Banach space and discuss its some prop-
erties. Then we shall prove two convergence theorems of set-valued pramart
in the sense of △ and Hausdorff metric in probability respectively.

Keywords: Set-valued random variables, Hausdorff metric, Set-valued
pramart.

1 Introduction

It is well known that the classical martingale is one of the most important
stochastic processes, and martingale theory is one necessary tool especially in
stochastic analysis and applications, for example, mathematical finance [28].
By the development of stopping time techniques, it is allowed to generate
the concepts of martingale. The outcome of this effort was the introduc-
tion and detailed study of vector-valued asymptotic martingales (amarts for
short), uniform amarts (e.g. cf. [9], [10]) and amart in probability (pramart
for short)(cf. [1], [24]). Amart and pramart theory is important because it is
not only the extension of classical martingale theory but also includes many
classical limit theories. For example, in the finite Euclidean space, each uni-
formly integrable sequence of random variables is a pramart. It is a more
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general process than martingale and amart. So it is interesting to study con-
vergences of pramarts. From mathematical view, pramart theory should be
considered in more general spaces such as Banach spaces, general topological
spaces, hyperspaces and function spaces of Banach spaces. A hyperspace is
a family of subsets of some basic Banach space X, which means that the el-
ements of hyperspace are subsets of X. Usually, a hyperspace is not a linear
space. A pramart in a hyperspace is a set-valued pramart of X.

In the past 40 years, the theory of set-valued random variables (or random
sets, set-valued functions, multivalued functions, in literature) has been devel-
oped quite extensively (cf. [2], [3], [13], [14], [15], [22], [34] etc.). Many results
have been obtained for set-valued martingale theory. For examples, the repre-
sentation theorem of set-valued martingales was proved by using martingale
selections by Luu [23]; The convergence theorems of martingales, submartin-
gales and supermartingales under various settings were obtained by many
authors, such as Hess [12] , Korvin and Kleyle [16], Li and Ogura [19], [20], Pa-
pageorgiou [29], [30], Wang and Xue [36], etc.. Papageorgiou [31] also proved
the convergence of set-valued uniform amart in the sense of Kuratowski-
Mosco, and discussed the weak convergence of set-valued amart. In [17], we
provided an optional sampling theorem, a quasi-Riesz decomposition theorem
and a representation theorem for set-valued amarts.

For set-valued pramart, it is divided into two concepts, i.e. superpramart
and subpramart. In [35], Zhang et al. proved some convergence theorems of
weakly compact convex set-valued superpramart in the sense of Kuratowski-
Mosco convergence. In [1] Ahmed got the convergence theorems of vector-
valued and set-valued pramart in the sense of Mosco convergence. The dis-
cussions for set-valued pramart are not enough and the results are less. The
aim of this paper is to obtain more properties and more convergence theorems
for set-valued pramart in a Banach space.

This paper is organized as follows. In section 2, we shall briefly introduce
some concepts and notations on set-valued random variables. In section 3, we
shall introduce the concepts of set-valued pramart and prove the properties
of set-valued pramart. In section 4, we shall state our main results in the
form of convergence theorems. In view of the limitation of pages, we omit the
proof in this paper.

2 Preliminaries on Set-Valued Random Variables

Throughout this paper, we assume that (Ω,A, μ) is a nonatomic complete
probability space, (X, ‖ · ‖) is a real separable Banach space, N is the set of
nature numbers, Kk(X) is the family of all nonempty compact subsets of X,
and Kkc(X) is the family of all nonempty compact convex subsets of X.

Let A and B be two nonempty subsets of X and let λ ∈ R, the set of all
real numbers. We define addition and scalar multiplication as
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A + B = {a + b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.
The Hausdorff metric on Kk(X) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖},

for A, B ∈ Kk(X). For an A in Kk(X), let ‖A‖K = dH({0}, A). The metric
space (Kk(X), dH) is complete and separable, and Kkc(X) is a closed subset
of (Kk(X), dH) (cf. [22], Theorems 1.1.2 and 1.1.3). For more general hyper-
spaces, more topological properties of hyperspaces, readers may refer to a
good book [5].

For each A ∈ Kkc(X), define the support function by

s(x∗, A) = sup
a∈A

< x∗, a >, x∗ ∈ X∗,

where X∗ is the dual space of X.
A set-valued mapping F : Ω → Kk(X) is called a set-valued random vari-

able (or a random set, or a multifunction) if, for each open subset O of X,
F−1(O) = {ω ∈ Ω : F (ω) ∩O �= ∅} ∈ A.

In fact, set-valued random variables can be defined as a mapping from
Ω to the family of all closed subsets of X. Since our main results shall be
only related to compact set-valued random variables, we limit the definition
above in the compact case. Concerning its equivalent definitions, please refer
to [6], [13] [22] and [35].

A set-valued random variable F is called integrably bounded (cf. [13] or [22])
if
∫

Ω ‖F (ω)‖Kdμ <∞.
Let L1[Ω,A, μ;Kk(X)] denote the space of all integrably bounded random

variables, and L1[Ω,A, μ;Kkc(X)] denote the space of all integraly bounded
random variables taking values in Kkc(X). For F,G ∈ L1[Ω,A, μ;Kk(X)],
F = G if and only if F (ω) = G(ω) a.e.(μ).

We define the following metric for F,G

�
(F,G) =

∫

Ω

dH(F,G)dμ,

then (L1[Ω,A, μ;Kk(X)],
�

) is a complete metric space (cf. [13], [22]).
For each set-valued random variable F , the expectation of F , denoted by

E[F ], is defined as

E[F ] =
{∫

Ω

fdμ : f ∈ SF

}
,
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where
∫

Ω fdμ is the usual Bochner integral in L1[Ω,X], the family of in-
tegrable X-valued random variables, and SF = {f ∈ L1[Ω; X] : f(ω) ∈
F (ω), a.e.(μ)}. This integral was first introduced by Aumann [3], called
Aumann integral in literature.

Let A0 be a sub-σ-field of A and let SF (A0) denote the set of all A0-
measurable mappings in SF . The conditional expectation E[F |A0] of an
F ∈ L1[Ω,A, μ; Kkc(X)] is determined as a A0-measurable element of
L1[Ω,A, μ;Kkc(X)] by

SE[F |A0](A0) = cl{E(f |A0) : f ∈ SF },

where the closure is taken in the L1[Ω,X]. This definition was first introduced
by Hiai and Umegaki in [13].

In the following, we assume that {An : n ≥ 1} is an increasing sequence
of sub-σ-fields of A such that A∞ = σ(

⋃
n≥1An).

{Fn,An : n ∈ N} is called a set-valued martingale (submartingale, super-
martingale resp.) if

(1) Fn ∈ L1[Ω,An, μ;Kkc(X)] for all n ∈ N ,

(2) for any n ∈ N, Fn = (⊆, ⊇ resp.)E[Fn+1|An] a.e.(μ).

The following concept will be used later.

Definition 1. A Banach space X is said to have the Radon Nikodym prop-
erty (RNP) with respect to the finite measure space (Ω,A, μ), if for each
μ-continuous X-valued measure m : A → X of bounded variation, there ex-
ists an integrable function f : Ω → X such that

m(A) =

∫

A

fdμ, for all A ∈ A.

It is known that every separable dual space of a separable Banach space and
every reflexive space have the RNP [7].

3 Properties of Set-Valued Pramarts

A function τ : Ω → N
⋃{∞} is said to be a stopping time with respect to

{An : n ∈ N}, if for each n ≥ 1,

{τ = n} =: {ω ∈ Ω : τ(ω) = n} ∈ An.

The set of all stopping times is denoted by T ∗. And we say that τ1 ≤ τ2 if
and only if

τ1(ω) ≤ τ2(ω), for all ω ∈ Ω.

Let T denote the set of all bounded stopping times. For any given σ ∈ T ,
denote T (σ) = {τ ∈ T : σ ≤ τ}. Given τ ∈ T , define
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Aτ = {A ∈ A : A ∩ {τ = n} ∈ An, n ≥ 1}.

Then Aτ is a sub-σ-field of A. If Xn ∈ L1[Ω,An, μ;Fkc(X)] for any n ∈ N,
define

Xτ (ω) = Xτ(ω)(ω) for all ω ∈ Ω,

then Xτ : Ω → Fkc(X) is Aτ -measurable.
Now we give the definition of a set-valued pramart.

Definition 2. An adapted set-valued process {Fn,An : n ≥ 1} is called a
set-valued pramart, if for any given δ > 0, we have

lim
σ∈T

sup
τ∈T (σ)

μ{dH(Fσ, E[Fτ |Aσ]) > δ} = 0.

The concept of set-valued pramart is the extension of both concepts of
real-valued pramart and set-valued martingale. And we obviously can know
that every set-valued uniform amart is a set-valued pramart. We also have
the following result.

Theorem 1. If {Fn,An : n ≥ 1} is set-valued pramart, then for any x∗ ∈ X∗,
{s(x∗, Fn),An : n ≥ 1} is a real-valued pramart.

Theorem 2. If {Fn : n ≥ 1} and {Gn : n ≥ 1} are set-valued pramarts, then
(1) {Fn ∩Gn,An : n ≥ 1} is a set-valued pramart.
(2) {Fn ∪Gn,An : n ≥ 1} is a set-valued pramart.

Theorem 3. If {Fn,An : n ≥ 1} is a set-valued pramart, then {Fρ∧n,Aρ∧n :
n ≥ 1} is a set-valued pramart.

4 Convergence Theorems of Set-Valued Pramarts

In this section, we will give two convergence theorems of set-valued pramarts
in the sense of Hausdorff metric dH in probability.

Theorem 4. Assume that {Fn,An : n ≥ 1} ⊂ L1[Ω,A, μ; Kkc(X)] is a set-
valued pramart, then there exists a set-valued martingale {Gn,An : n ≥ 1} ⊂
L1[Ω,A, μ;Kkc(X)] such that for any δ > 0, there is

lim
σ

μ{△(Fσ, Gσ) > δ} = 0.

Lemma 1. Let {An, Bn;n ≥ 1} ⊂ Kbc(X), and for any ε > 0,

lim
n→∞

μ
{
dH(An, Bn) >

ε

2

}
= 0.
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(i) If there exists B ∈ Kbc(X) such that lim
n→∞

dH(Bn, B) = 0, then for any

ε > 0, we have

lim
n→∞

μ
{
dH(An, B) > ε

}
= 0

(ii) If there exists B ∈ Kbc(X) such that lim
n→∞

‖Bn‖K = ‖B‖K, then we

have
μ
{∣∣∣‖An‖K − ‖B‖K

∣∣∣ > ε
}
→ 0, (n→∞).

Theorem 5. Let X be a finite dimensional space, {Fn : n ≥ 1} ⊂
L1[Ω,A, μ;Kbc(X)] be a set-valued pramart, and sup

n
E[‖Fn‖K] < ∞, if one

of the following conditions is satisfied,
(i) X has Radon Nikodym property and X∗ is separable;
(ii) there exists weak compact convex set-valued G, such that

E[Fm|An] ⊂ G, a.e.,m ≥ n ≥ 1;

then there exists F ∈ L1[Ω,A, μ;Kbc(X)], such that

μ
{
dH(Fn, F ) > ε

}
→ 0, n→∞.

μ
{∣∣∣‖Fn‖K − ‖F‖K

∣∣∣ > ε
}
→ 0, n→∞.
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Fuzzy Stochastic Integral Equations
Driven by Martingales

Marek T. Malinowski and Mariusz Michta

Abstract. Exploiting the properties of set-valued stochastic trajectory inte-
grals we consider a notion of fuzzy stochastic Lebesgue–Stieltjes trajectory
integral and a notion of fuzzy stochastic trajectory integral with respect to
martingale. Then we use these integrals in a formulation of fuzzy stochastic
integral equations. We investigate the existence and uniqueness of solution
to such the equations.

Keywords: Fuzzy stochastic integrals, Fuzzy stochastic integral equation.

1 Introduction

The notions of set-valued stochastic integrals have been introduced by
Kisielewicz in [7] and since then they were successfully used in the topic
of stochastic differential inclusions. The Kisielewicz approach utilizes Au-
mann’s concept of set-valued integral and leads to set-valued stochastic in-
tegral as a subset of the space of square integrable random vectors. We call
this type of integral a set-valued stochastic trajectory integral. Further stud-
ies treated on set-valued stochastic integrals are contained in [5,9,11,25,26].
In [5] the definition of set-valued stochastic integral has been modified in

Marek T. Malinowski
Faculty of Mathematics, Computer Science and Econometrics, University of Zielona
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order to describe it as a set-valued adapted stochastic process. The definition
from [5] was then modified in [11] by considering the predictable set-valued
processes as a set-valued random variable in the product space IR+ × Ω.
In [26] the authors considered set-valued stochastic integrals (also as the set-
valued stochastic processes) with respect to a real-valued Brownian motion,
whereas in [25] with respect to a real-valued, continuous, square integrable
martingale. There are also the papers with the studies and applications of
the set-valued integrals with set-valued integrators [18, 19] and recently [9].

Incorporating the notions of set-valued stochastic integrals, the set-valued
differential equations - a new subject ( [8, 10, 14, 15, 21, 27]) - generalize the
theory of classical stochastic differential equations. An other approach can be
found in [22]. In the papers [8,10,21,27] such the set-valued equations contain
the diffusion part (driven by a Brownian motion) being a single-valued Itô’s
integral.

This note is an abbreviated version of the manuscript [17], where we use the
Kisielewicz concept of set-valued stochastic trajectory integral. We consider
such integral driven by a martingale. It allows us to define a fuzzy stochastic
trajectory integrals and study fuzzy-set-valued stochastic integral equations
with (essentially) set-valued stochastic integrals. The stochastic fuzzy integral
equations can be adequate in modelling of the dynamics of real phenomena
which are subjected to two kinds of uncertainties: randomness and fuzziness,
simultaneously. Some results in this area are contained in [3, 4, 6, 12, 13, 15,
16, 23].

2 Preliminaries

Let X be a separable, reflexive Banach space, Kb
c(X ) the family of all

nonempty closed, bounded and convex subsets of X . The Hausdorff metric
HX in Kb

c(X ) is defined by

HX (A,B) = max
{

sup
a∈A

distX (a,B), sup
b∈B

distX (b, A)
}
,

where distX (a,B) = infb∈B ‖a− b‖X and || · ||X denotes a norm in X .

It is known that (Kb
c(X ), HX ) is a complete, separable metric space.

Let (U,U , μ) be a measure space. A set-valued mapping (multifunction)
F : U → Kb

c(X ) is said to be U-measurable (or measurable, for short) if it
satisfies: {u ∈ U : F (u) ∩ C �= ∅} ∈ U for every closed set C ⊂ X .

A measurable multifunction F : U → Kb
c(X ) is said to be Lp

U(μ)-integrably
bounded (p ≥ 1), if there exists h ∈ Lp(U,U , μ; IR+) such that the inequality
‖|F |‖X ≤ h holds μ-a.e., where ‖|A|‖X = HX (A, {0}) = supa∈A ||a||X for
A ∈ Kb(X ), and IR+ = [0,∞).

Let M be a set of U-measurable mappings f : U → X . The set M is
said to be decomposable if for every f1, f2 ∈ M and every A ∈ U it holds
f11A + f21U\A ∈ M.
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Denote I = [0, T ], where T < ∞. Let (Ω,A, {At}t∈I , P ) be a complete
filtered probability space satisfying the usual hypotheses.

At this moment we put X = IRd, U = I × Ω, U = P , where P denotes
the σ-algebra of the predictable elements in I × Ω. A stochastic process
f : I ×Ω → IRd is called predictable if f is P-measurable.

A mapping F : I ×Ω → Kb
c(IR

d) is said to be a set-valued stochastic pro-
cess, if for every t ∈ I the mapping F (t, ·) : Ω → Kb

c(IR
d) is an A-measurable

multifunction. If for every fixed t ∈ I the mapping F (t, ·) : Ω → Kb
c(IR

d) is
an At-measurable multifunction then F is called {At}-adapted. A set-valued
stochastic process F is predictable if it is a P-measurable multifunction.

By a fuzzy set u of the space X we mean a function u : X → [0, 1]. We
denote this fact as u ∈ F(X ). For α ∈ (0, 1] denote [u]α := {x ∈ X : u(x) ≥
α} and let [u]0 := clX{x ∈ X : u(x) > 0}, where clX denotes the closure in
(X , ‖ · ‖X ). The sets [u]α are called the α-level sets of fuzzy set u, and 0-level
set [u]0 is called the support of u.

Denote Fb
c (X ) = {u ∈ F(X ) : [u]α ∈ Kb

c(X ) for every α ∈ [0, 1]}. In this
set we consider two metrics: the generalized Hausdorff metric

DX (u, v) := sup
α∈[0,1]

HX ([u]α, [v]α),

and the Skorohod metric

DX
S (u, v) := inf

λ∈Λ
max

{
sup

t∈[0,1]

|λ(t) − t|, sup
t∈[0,1]

HX (xu(t), xv(λ(t)))
}
,

where Λ denotes the set of strictly increasing continuous functions λ : [0, 1]→
[0, 1] such that λ(0) = 0, λ(1) = 1, and xu, xv : [0, 1]→ Kb(X ) are the càdlàg
representations for the fuzzy sets u, v ∈ Fb(X ), see [1] for details. The space
(Fb(X ), DX ) is complete and non-separable, and the space (Fb(X ), DX

S ) is
Polish.

For our aims we will consider two cases of X . Namely we will take X = IRd

or X = L2, where L2 = L2(Ω,A, P ; IRd) and we assume that σ-algebra A is
separable with respect to probability measure P .

Definition 1. (Puri–Ralescu [24]). By a fuzzy random variable we mean a
function u : Ω → Fb

c (X ) such that [u(·)]α : Ω → Kb
c(X ) is an A-measurable

multifunction for every α ∈ (0, 1].

This definition is one of the possible to be considered for fuzzy random vari-
ables, and because of our further aims we recall some facts about measura-
bility concepts for fuzzy-set-valued mappings. Generally, having a metric d
in the set Fb

c (X ) one can consider σ-algebra Bd generated by the topology
induced by d. Then a fuzzy random variable u can be viewed as a measur-
able (in the classical sense) mapping between two measurable spaces, namely
(Ω,A) and (Fb

c (X ),Bd). Using the classical notation, we write this as: u is
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A|Bd-measurable. It is known (see [1]) that for a mapping u : Ω → Fb
c (X ),

where (Ω,A, P ) is a given probability space, it holds:

- u is the fuzzy random variable if and only if u is A|BDX
S

-measurable,

- if u is A|BDX -measurable, then it is the fuzzy random variable; the op-
posite implication is not true.

A fuzzy-set-valued mapping f : I × Ω → Fb
c (X ) is called a fuzzy stochastic

process if f(t, ·) : Ω → Fb
c (X ) is a fuzzy random variable for every t ∈ I.

The fuzzy stochastic process f : I × Ω → Fb
c (X ) is said to be predictable

if the set-valued mapping [f]α : I × Ω → Kb
c(X ) is P-measurable for every

α ∈ (0, 1].
Let f : I × Ω → Fb

c (X ) be a predictable fuzzy stochastic process. The
process f is said to be L2

P(μ)-integrably bounded, if ‖|[f]0|‖ ∈ L2
P(μ).

3 Fuzzy Stochastic Lebesgue–Stieltjes Trajectory
Integral

Let A : I × Ω → IR be an {At}-adapted stochastic process. We will assume
that its trajectories are continuous and of finite variation on I, A(0, ·) = 0
P -a.e.

Let |A(ω)|t denotes the total variation of the random measure induced
by the trajectories of the process A. We will assume that IE|A|2T < ∞. De-
note by Γ a random measure on I which is defined as follows: ΓA(·,ω)(dt) =
|A(ω)|T d|A(ω)|t. Finally, we define the measure νA on (I ×Ω,P) by

νA(C) :=

∫

I×Ω

1C(t, ω)ΓA(·,ω)(dt)P (dω) for C ∈ P .

Denote L2
P(νA) := L2(I × Ω,P , νA; IRd). Let F : I × Ω → Kb(IRd) be a

predictable set-valued stochastic process. Let us define the set S2
P(F, νA) :=

{f ∈ L2
P(νA) : f ∈ F, νA-a.e.}. Notice that S2

P(F, νA) �= ∅.

Definition 2. For a predictable and L2
P(νA)-integrably bounded set-valued

stochastic process F : I ×Ω → Kb
c(IR

d) and for τ, t ∈ I, τ < t the set-valued
stochastic Lebesgue–Stieltjes trajectory integral (over interval [τ, t]) of F with
respect to the process A is the set

(S)

∫ t

τ

F (s)dAs :=
{∫ t

τ

f(s)dAs : f ∈ S2
P(F, νA)

}
.

In the rest of the paper, for the sake of convenience, we will write L2 instead
of L2(Ω,A, P ; IRd) and L2

t instead of L2(Ω,At, P ; IRd).

Theorem 1. Let F : I×Ω → Kb
c(IR

d) be a predictable and L2
P(νA)-integrably

bounded set-valued stochastic process. Then
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(a) S2
P(F, νA) is nonempty, bounded, closed, convex, weakly compact and

decomposable subset of L2
P(νA),

(b) (S)
∫ t

τ F (s)dAs is nonempty, bounded, closed, convex and weakly com-
pact subset of L2

t for every τ, t ∈ I, τ < t.

Theorem 2. For each n ∈ IN , let Fn : I × Ω → Kb(IRd) be a predictable
set-valued stochastic process such that F1 is L2

P(νA)-integrably bounded and
F1 ⊃ F2 ⊃ . . . ⊃ F νA-a.e., where F :=

⋂∞
n=1 Fn νA-a.e. Then for every

τ, t ∈ I, τ < t it holds (S)
∫ t

τ
F (s)dAs =

⋂∞
n=1(S)

∫ t

τ
Fn(s)dAs.

Using the Representation Theorem of Negoita–Ralescu we obtain:

Theorem 3. Assume that f : I ×Ω → Fb
c (IRd) is a predictable and L2

P(νA)-
integrably bounded fuzzy stochastic process. Then for every τ, t ∈ I, τ <
t there exists a unique fuzzy set in Fb

c (L2) denoted by (F )
∫ t

τ
f(s)dAs such

that for every α ∈ (0, 1] it holds
[
(F )

∫ t

τ
f(s)dAs

]α

= (S)
∫ t

τ
[f(s)]αdAs, and

[
(F )

∫ t

τ f(s)dAs

]0
⊂ (S)

∫ t

τ [f(s)]0dAs.

For a fuzzy stochastic trajectory integral (F )
∫ t

τ f(s)dAs defined in Theorem 3
the following properties hold true.

Theorem 4. Let f1, f2 : I × Ω → Fb
c (IRd) be the predictable and L2

P(νA)-
integrably bounded fuzzy stochastic processes. Then

(a) for every τ, a, t ∈ I, τ ≤ a ≤ t it holds (F )
∫ t

τ f1(s)dAs = (F )
∫ a

τ f1(s)dAs

+ (F )
∫ t

a f1(s)dAs,

(b) for every τ, t ∈ I, τ < t it holds D2
L2

(
(F )

∫ t

τ f1(s)dAs, (F )
∫ t

τ f2(s)dAs

)

≤ 2
∫

[τ,t]×Ω

D2
IRd(f1, f2)dνA,

(c) for every τ ∈ [0, T ) the mapping [τ, T ] ∋ t → (F )
∫ t

τ f1(s)dAs ∈ Fb
c (L2)

is continuous with respect to the metric DL2 .

4 Fuzzy Stochastic Trajectory Integral with Respect to
Martingales

In this section we consider the notion of fuzzy stochastic trajectory integral,
where the integrator is a martingale.

Let M : I ×Ω → IR be a square-integrable {At}-martingale with continu-
ous trajectories, M(0, ·) = 0 P -a.e. The martingale M generates a measure
μM defined on measurable space (I×Ω,P) which is called the Doléans-Dade
measure (see e.g. [2]).

Denote L2
P(μM ) := L2(I × Ω,P , μM ; IRd). Let G : I × Ω → Kb

c(IR
d) be

a predictable and L2
P(μM )-integrably bounded set-valued stochastic process.

Then the set S2
P(G,μM ) := {g ∈ L2

P(μM ) : g ∈ G, μM -a.e.} is nonempty.
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Definition 3. For a predictable and L2
P(μM )-integrably bounded set-valued

stochastic process G : I ×Ω → Kb
c(IR

d) and for τ, t ∈ I, τ < t the set-valued
stochastic trajectory integral (over interval [τ, t]) of G with respect to the
continuous, square-integrable martingale M is the set

(S)

∫ t

τ

G(s)dMs :=
{∫ t

τ

g(s)dMs : g ∈ S2
P(G,μM )

}
.

Theorem 5. Let G : I×Ω → Kb
c(IR

d) be a predictable and L2
P(μM )-integrably

bounded set-valued stochastic process. Then

(a) S2
P(G,μM ) is nonempty, bounded, closed, convex, weakly compact and

decomposable subset of L2
P(μM ),

(b) (S)
∫ t

τ G(s)dMs is nonempty, bounded, closed, convex and weakly com-
pact subset of L2

t , for every τ, t ∈ I, τ < t.

Theorem 6. Let Gn : I × Ω → Kb
c(IR

d), n ∈ IN , be the predictable set-
valued stochastic processes such that G1 is L2

P(μM )-integrably bounded and
G1 ⊃ G2 ⊃ . . . ⊃ G μM -a.e., where G :=

⋂∞
n=1 Gn μM -a.e. Then for every

τ, t ∈ I, τ < t it holds (S)
∫ t

τ
G(s)dMs =

⋂∞
n=1(S)

∫ t

τ
Gn(s)dMs.

Theorem 7. Assume that g : I×Ω → Fb
c (IRd) is a predictable and L2

P(μM )-
integrably bounded fuzzy stochastic process. Then for every τ, t ∈ I, τ < t
there exists a unique fuzzy set in Fb

c (L2) denoted by (F )
∫ t

τ g(s)dMs such

that for every α ∈ (0, 1] it holds
[
(F )

∫ t

τ g(s)dMs

]α
= (S)

∫ t

τ [g(s)]αdMs, and
[
(F )

∫ t

τ
g(s)dMs

]0
⊂ (S)

∫ t

τ
[g(s)]0dMs.

For a fuzzy stochastic trajectory integral (F )
∫ t

τ
g(s)dMs defined in Theo-

rem 7 the following properties hold true.

Theorem 8. Let g1, g2 : I × Ω → Fb
c (IRd) be the predictable and L2

P(μM )-
integrably bounded fuzzy stochastic processes. Then

(a) for every τ, a, t ∈ I, τ ≤ a ≤ t it holds (F )
∫ t

τ
g1(s)dMs =(F )

∫ a

τ
g1(s)dMs

+ (F )
∫ t

a
g1(s)dMs,

(b) for every τ, t ∈ I, τ < t it holds D2
L2

(
(F )

∫ t

τ g1(s)dMs, (F )
∫ t

τ g2(s)dMs

)

≤
∫

[τ,t]×Ω

D2
IRd(g1, g2)dμM ,

(c) for every τ ∈ [0, T ) the mapping [τ, T ] ∋ t → (F )
∫ t

τ
g1(s)dMs ∈ Fb

c (L2)
is continuous with respect to the metric DL2 .

5 Solutions of Fuzzy Stochastic Integral Equations

Now we consider the fuzzy stochastic integral equations with the fuzzy
stochastic trajectory integrals defined in the preceding sections.
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Let f, g : I × Ω × Fb
c (L2) → Fb

c (IRd) and let X0 ∈ Fb
c (L2

0). By a fuzzy
stochastic integral equation we mean the following relation in the metric
space

(
Fb

c (L2), DL2

)
:

X(t) = X0 + (F )

∫ t

0

f(s,X(s))dAs + (F )

∫ t

0

g(s,X(s))dMs for t ∈ I. (1)

Definition 4. By a solution to (1) we mean aDL2-continuousmappingX : I →
Fb

c (L2) that satisfies (1). A solution X : I → Fb
c (L2) to (1) is unique if X(t) =

Y (t) for every t ∈ I, where Y : I → Fb
c (L2) is any solution to (1).

Assume that f, g : I ×Ω × Fb
c (L2)→ Fb

c (IRd) satisfy:

(f1) the mappings f, g : I × Ω × Fb
c (L2) → Fb

c (IRd) are P ⊗ B
DL2

S
|B

DIRd
S

-

measurable,
(f2) there exists a constant K > 0 such that

max
{
DIRd

(
f(t, ω, u), f(t, ω, v)

)
, DIRd

(
g(t, ω, u), g(t, ω, v)

)}
≤ KDL2(u, v),

for every (t, ω) ∈ I ×Ω, and every u, v ∈ Fb
c (L2),

(f3) there exists a constant C > 0 such that

max
{
DIRd

(
f(t, ω, u), θ̂

)
, DIRd

(
g(t, ω, u), θ̂

)}
≤ C

(
1 + DL2(u, Θ̂)

)
,

for every (t, ω) ∈ I ×Ω, and every u ∈ Fb
c (L2),

(f4) there exists a constant Q > 0 such that 2K2 sup
t∈I

e−Qt
(
2
∫
[0,t]×Ω eQsdνA

+
∫
[0,t]×Ω

eQsdμM

)
< 1.

The description of the symbols θ̂, Θ̂ appearing in (f3) is as follows:
let θ, Θ denote the zero elements in IRd and L2, respectively, the symbols
θ̂, Θ̂ are their fuzzy counterparts, i.e. θ̂ ∈ Fb

c (IRd) and [θ̂]α = {θ} for every
α ∈ [0, 1], also Θ̂ ∈ Fb

c (L2) and [Θ̂]α = {Θ} for every α ∈ [0, 1].

Theorem 9. Let X0 ∈ Fb
c (L2

0), and f, g : I × Ω × Fb
c (L2) → Fb

c (IRd) satisfy
the conditions (f1)-(f4). Then the equation (1) has a unique solution.
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Moderate Deviations of Random Sets
and Random Upper Semicontinuous
Functions

Xia Wang

Abstract. In this paper, we obtain moderate deviations of random sets which
take values of bounded closed convex sets on the underling separable Banach
space with respect to the Hausdorff distance dH . We also get moderate devia-
tions for random upper semicontinuous functions whose values are of bounded
closed convex levels on the underling separable Banach space in the sense of
the uniform Hausdorff distance d∞H . The main tool is the work of Wu on the
moderate deviations for empirical processes [15].

Keywords: Random sets, Random upper semicontinuous functions, Large
deviations, Moderate deviations.

1 Introduction

The theory of large deviation principle (LDP) and moderate deviation prin-
ciple (MDP) deals with the asymptotic estimation of probabilities of rare
events and provides exponential bound on probability of such events. Some
authors have discussed LDP and MDP on random sets and random upper
semicontinuous functions. In 1999, Cerf [2] proved LDP for sums i.i.d. com-
pact random sets in a separable type p Banach space with respect to the
Hausdorff distance dH , which is called Cramér type LDP. In 2006, Terán ob-
tained Cramér type LDP of random upper semicontinuous functions whose
level sets are compact [11], and Bolthausen type LDP of random upper semi-
continuous functions whose level sets are compact convex [12] on a sepa-
rable Banach space in the sense of the uniform Hausdorff distance d∞H . In
2009, Ogura and Setokuchi [9] proved a Cramér type LDP for random upper
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semicontiunous functions on the underling separable Banach space with re-
spect to the metric dQ (see [9] for the notation) in a different method, which
is weaker than the uniform Hausdorff distance d∞H . In 2010, Ogura, Li and
Wang [8] also discussed LDP for random upper semicontinuous functions
whose underlying space is d-dimensional Euclidean space Rd under various
topologies for compact covex random sets and random upper semicontinuous
functions, Wang [13] considered LDP joint behavior of a family of random
compact sets indexed by t, which was called sample path or functional LDP in
some textbooks and literatures, Wang and Li [14]obtained LDP for bounded
closed convex random sets and related random upper semicontiunous func-
tions. About the aspect on the MDP of random sets and random upper
semicontiunous functions, Ogura, Li and Wang [8]first discussed a MDP of
random compact covex sets with respect to Hausdorff distance dH and a MDP
of random upper semicontinuous functions whose level sets are compact con-
vex with respect to the distance d0

p on the underling separable Banach space,
in their paper, they embedded them into a separable Banach space respec-
tively by support function and support process, and then used the classical
result of MDP on the separable Banach space(see Chen [3]) and obtained
their result. However, previous work about MDP was restricted to compact
convex random sets and compact convex random upper semicontinuous func-
tions. In this paper, we will obtain MDP for bounded closed convex random
sets with respect to the Hausdorff distance dH and related random upper
semicontiunous functions in the sense of the uniform Hausdorff distance d∞H .
We also embed them into a Banach space respectively by support function
and support process, but they are not separable, and we can’t again use the
classical result of MDP [3], then we continue to embed those Banach spaces
to Wu’s spaces (not necessarily separable), where Wu [15] has obtained MDP,
so the main tool is the work of Wu on the moderate deviations for empirical
processes [15].

The paper is structured as follows. Section 2 will give some preliminaries
about bounded closed convex random sets and random upper semicontinuous
functions. In section 3, we will give moderate deviations of random sets which
take values of bounded closed convex sets on the underling separable Banach
space with respect to the Hausdorff distance dH , and prove that of random
upper semicontiunous functions whose values are of bounded closed convex
levels on the underling separable Banach space in the sense of the uniform
Hausdorff distance d∞H .

2 Preliminaries

Throughout this paper, we assume that (Ω,A, P ) is a complete probability
space, (X, ‖ · ‖X) is a real separable Banach space with its dual space X∗,
which is separable with respect to usual norm ‖ · ‖X∗ . K(X) is the family of
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all non-empty closed subsets of X, Kb(X)(resp. Kbc(X)) is the family of all
non-empty bounded closed (resp. bounded closed convex) subsets of X.

Let A and B be two non-empty subsets of X and let λ ∈ R, we can define
addition and scalar multiplication by A+B = cl{a+b : a ∈ A, b ∈ B}, λA =
{λa : a ∈ A}, where clA is the closure of set A taken in X. The Hausdorff
distance on Kb(X) is defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖X, sup
b∈B

inf
a∈A

‖a− b‖X

}
.

In particular, we denote ‖A‖K = dH({0}, A) = sup
a∈A

{‖a‖X}. Then (Kb(X), dH)

is a complete metric space (see Li, Ogura and Kreinovich [6, p.5 Theorem
1.1.2].

X is called bounded closed convex random sets, if it is a measurable
mapping from the space (Ω,A, P ) to the space (Kbc(X),B(Kbc(X))), where
B(Kbc(X)) is the Borel σ-field of Kbc(X) generated by the Hausdorff distance
dH . The expectation of X denoted by E[X ], is defined by E[X ] = cl{

∫
Ω
ξdP :

ξ ∈ SX}, where
∫

Ω ξdP is the usual Bochner integral in L1[Ω; X] (the family
of integral X-valued random variables), and SX = {ξ ∈ L1[Ω; X] : ξ(ω) ∈
X(ω), a.e. P}. We call E[X ] Auman integral (see Auman [1]).

Let S∗ be unit sphere of X∗ with strong topology whose related strong
distance is denoted by d∗s . Since we assume the dual space X∗ is a separable
Banach space, the unit sphere S∗ is also separable. Let D1 = {x∗

1, x
∗
2, · · · }

be the countable dense subset in the unit sphere S∗. Denote by C(S∗, d∗s)
be space of all continuous functions on S∗ with the strong topology with the
uniform norm ‖·‖C(S∗)(‖f‖C(S∗) = sup{|f(x∗)| : x∗ ∈ S∗}, for f ∈ C(S∗, d∗s),
in fact ‖f‖C(S∗) = sup{|f(x∗)| : x∗ ∈ D1}). We know that C(S∗, d∗s) is a
Banach space, and in general it is not separable.

For each A ∈ Kbc(X), we define its support function s(A) : S∗ → R as

s(A)(x∗) = sup{x∗(x) : x ∈ A}, x∗ ∈ S∗.

The mapping s : Kbc(X) → C(S∗, d∗s) has the following properties: for
any A1, A2 ∈ Kbc(X) and λ ∈ R+ = [0,∞),(1)s(A1 + A2) = s(A1) +
s(A2), (2)s(λA1) = λs(A1), (3)dH(A1, A2) = ‖s(A1)− s(A2)‖C(S∗).

In fact, the mapping s is an isometric embedding of (Kbc(X), dH) into a
closed convex cone of the Banach space (C(S∗, d∗s), ‖ · ‖C(S∗)) (see Li, Ogura
and Kreinovich [6, p.11 Theorem 1.1.12]).

In the following, we introduce the definition of a random upper semicon-
tinuous function. Let I = [0, 1], I0+ = (0, 1]. Let Fb(X) denote the family
of all functions u : X → I satisfying the conditions: (1) the 1-level set
[u]1 = {x ∈ X : u(x) = 1} �= ∅, (2) each u is upper semicontinuous, i.e. for
each α ∈ I0+, the α level set [u]α = {x ∈ X : u(x) ≥ α} is a closed subset of
X, (3) the support set [u]0 = cl{x ∈ X : u(x) > 0} is bounded.
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Let Fbc(X)(resp. Fc(X)) be the family of all bounded closed convex (resp.
convex) upper semicontinuous functions. It is known that u is convex in the
above sense if and only if, for any α ∈ I, [u]α ∈ Fc(X)(see Chen [3, Theorem
3.2.1]).

For any two upper semicontinuous functions u1, u2, define

(u1 + u2)(x) = sup
x1+x2=x

min{u1(x1), u2(x2)} for any x ∈ X.

Similarly, for any upper semicontinuous function u and for any λ ≥ 0 and
x ∈ X, define

(λu)(x) =

⎧
⎨
⎩

u(
x

λ
), if λ �= 0,

I0(x), if λ = 0,

where I0 is the indicator function of 0. It is known that for any α ∈ [0, 1], [u1+
u2]α = [u1]α + [u2]α, [λu]α = λ[u]α.

The following distance is the uniform Hausdorff distance which is ex-
tension of the Hausdorff distance dH : for u, v ∈ Fb(X), d∞H (u, v) =
supα∈I dH([u]α, [v]α), this distance is the strongest one considered in the lit-
eratures. The space (Fbc(X), d∞H ) is complete. We denote ‖u‖F = d∞H (u, I{0})
= ‖u0‖K.

X is called a random upper semicontinuous function (or random fuzzy
set or fuzzy set-valued random variable), if it is a measurable mapping
X : (Ω,A, P ) → (Fbc(X),B(Fbc(X))) (where B(Fbc(X)) is the Borel σ-
field of Fbc(X) generated by the uniform Hausdorff distance d∞H ). It is well
known that the level mappings Lα : U → [U ]α(α ∈ I) are continuous
from the space (Fbc(X), d∞H ) to the space (Kbc(X), dH), so if X is a ran-
dom upper semicontinuous function, then [X ]α is a bounded closed convex
random set for any α ∈ I. The expectation of an Fbc(X)-valued random
variable X, denoted by E[X ], is an element in Fbc(X) such that for every
α ∈ I,[E[X ]]α = cl

∫
Ω[X ]αdP = cl{Eξ : ξ ∈ S[X]α}.

Let D(I, C(S∗, d∗s)) = {f : I → C(S∗, d∗s) is left continuous at I0+, right
continuous at 0 and bounded, and f has right limit in (0, 1)}. Then it is a

Banach space with respect to the norm ‖f‖D = sup
α∈I

‖f(α)‖C(S∗) ( see Li

Ogura and Nguyen [7, Lemma 3.1]), and it is not separable.

For any u ∈ Fbc(X), The support process of u is defined to be the process

j(u)(α, x∗) = s([u]α)(x∗) = sup
x∈[u]α

{x∗(x)}, (α, x∗) ∈ I × S∗.

The mapping j : Fbc(X) → D(I, C(S∗, d∗s)) has the following properties:
(1) j(u + v) = j(u) + j(v), for any u, v ∈ Fbc(X), (2) j(λu) = λj(u), λ ≥
0, for any u ∈ Fbc(X), (3)‖j(u)− j(v)‖D = d∞H (u, v), for any u, v ∈ Fbc(X).
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In fact, the mapping j is an isometrically embedding of (Fbc(X), d∞H ) into
a closed convex cone of the Banach space (D(I, C(S∗, d∗s)), ‖ · ‖D), which is
not separable.

Our ideal for obtaining our main results is that we first embed respec-
tively the space (Kbc(X), dH) into a closed convex cone of the Banach space
(C(S∗, d∗s), ‖ · ‖C(S∗)) by support function, and the space (Fbc(X), d∞H ) into a
closed convex cone of the Banach space (D(I, C(S∗, d∗s)), ‖ · ‖D) by support
process, but both of them are not separable, we can’t again use the classical
result of MDP [3], where the Banach space is needed to be separable, then
we respectively continue to embed those Banach space into Wu’s spaces (not
necessarily separable) by linear and isometric mappings g1 and g2(see the
following notations), where Wu [15] has obtained LDP, so we can obtain our
main results. In the following, we will introduce some notations that we need
corresponding to Wu’s paper [15].

Since D1 = {x∗
1, x

∗
2, · · · } is countable dense in the unit sphere S∗, D̃1 =

{x̃∗
1, x̃

∗
2, · · · } is a subset of the unit ball of the dual space of (C(S∗, d∗s), ‖ ·

‖C(S∗)), where x̃∗
i (f) = f(x∗

i ), for any i ∈ N, f ∈ C(S∗, d∗s). Let ℓ∞(D̃1) be

the space of all bounded real function on D̃1 with supnorm ‖F‖
ℓ∞(D̃1)

=

sup
ν∈D̃1

|F (ν)|. This is a nonseparable Banach space.

Denote Mb(C(S∗, d∗s), ‖ · ‖C(S∗)) be space of sighed measures of finite vari-
ations on (C(S∗, d∗s), ‖ · ‖C(S∗)). For every ν ∈ Mb(C(S∗, d∗s), ‖ · ‖C(S∗)), we

can define an element νD̃1 in ℓ∞(D̃1) as νD̃1(x̃∗
i ) = ν(x̃∗

i ) =
∫

C(S∗,d∗
s)
x̃∗

i dν,

for all x̃∗
i ∈ D̃1. In particular, denote the mapping g1 : C(S∗, d∗s)→ ℓ∞(D̃1)

given by

g1(f) = δD̃1

f , δD̃1

f (x̃∗
i ) = δf (x̃∗

i ) =

∫

C(S∗,d∗
s)

x̃∗
i dδf = x̃∗

i (f) = f(x∗
i ),

for all x̃∗
i ∈ D̃1, δf is the Dirac measure concentrated at f. In fact, the map-

ping g1 is linear and isometric from the Banach space C(S∗, d∗s) to ℓ∞(D̃1),
i.e.

(1)g1(αf + βh) = αg1(f) + βg1(h) for any f, h ∈ C(S∗, d∗s), α, β ∈ R,

(2)‖f − h‖C(S∗) = sup
x∗∈S∗

|δD̃1

f (x̃∗)− δD̃1

h (x̃∗)| = ‖g1(f)− g1(h)‖
ℓ∞(D̃1)

.

Let Q0 be all rational numbers in the interval I, D2 = Q0 × D1,

D̃2 = {(̃α, x∗) : (α, x∗) ∈ D2} is a subset of the unit ball of the dual

space of (D(I, C(S∗, d∗s)), ‖ · ‖D), where (̃α, x∗)(f) = f(α, x∗), for any

f ∈ D(I, C(S∗, d∗s)). Let ℓ∞(D̃2) be the space of all bounded real function on

D̃2 with supnorm ‖F‖ℓ∞(D̃2) = sup
ν∈D̃2

|F (ν)|. This is a nonseparable Banach

space.
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Denote Mb(D(I, C(S∗, d∗s)), ‖ · ‖D) be space of sighed measures of finite
variations on (D(I, C(S∗, d∗s)), ‖ · ‖D). For every ν ∈ Mb(D(I, C(S∗, d∗s)), ‖ ·
‖D), we can also define an element νD̃2 in ℓ∞(D̃2) as νD̃2((̃α, x∗

i )) =

ν((̃α, x∗
i )) =

∫
D(I,C(S∗,d∗

s))
(̃α, x∗)dν, for all (̃α, x∗

i ) ∈ D̃2. In particular, we

define another mapping g2 : D(I, C(S∗, d∗s)) → ℓ∞(D̃2) given by

g2(f) = δD̃2

f ,

δD̃2

f ((̃α, x∗)) = δf ((̃α, x∗)) =

∫

D(I,C(S∗,d∗
s))

(̃α, x∗)dδf = (̃α, x∗)(f) = f(α, x∗),

for all (̃α, x∗), f ∈ D̃2. In fact, the mapping g2 is also linear and isometric

from Banach space D(I, C(S∗, d∗s)) to ℓ∞(D̃2), i.e.

(1) g2(αf + βh) = αg2(f) + βg2(h) for any f, h ∈ D(I, C(S∗, d∗s)), α, β ∈ R,

(2) ‖f− h‖D = sup
α∈I

sup
x∗∈S∗

|f(α, x∗)− h(α, x∗)| = sup
(α,x∗)∈D2

|f(α, x∗)− h(α, x∗)|

= sup
(̃α,x∗)∈D̃2

|δD̃2

f ((̃α, x∗))− δD̃2

h ((̃α, x∗))| = ‖g2(f)− g2(h)‖
ℓ∞(D̃2)

.

Wu [15] has obtained MDP on the spaces (ℓ∞(D̃1), ‖·‖ℓ∞(D̃1)
) and (ℓ∞(D̃2), ‖·

‖
ℓ∞(D̃2)

).

3 Main Results and Proofs

Before giving MDP for random sets and random upper semicontinuous func-
tions, we define rate functions and LDP. We refer to the books of Dembo
and Zeitouni [4] and Deuschel and Stroock [5] for the general theory on large
deviations (also see Yan, Peng, Fang and Wu [16]).

Let E be a regular Hausdorff topological and {μλ : λ > 0} be a family
of probability measures on (E, E), where E is the Borel σ-algebra. A rate
function is a lower semicontinuous mapping I : E → [0,∞]. A good rate
function is a rate function such that the level sets {x : I(x) ≤ α} are compact
subset of E. let bλ be a positive function on (0,+∞) satisfying limλ→+∞ bλ →
+∞. A family of probability measures {μλ : λ > 0} on the measurable space
(E, E) is said to satisfy the LDP with speed 1

bλ
and with the rate function

I if, for all open set V ⊂ E , lim infλ→∞ 1
bλ

lnμλ(V ) ≥ − infx∈V I(x), for all

closed set U ⊂ E , lim supλ→∞
1
bλ

lnμλ(U) ≤ − infx∈U I(x),
In the following, we give our main two results. We first present MDP for

(Kbc(X), dH)-valued i.i.d. random variables.
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Suppose {a(n)}n≥1 be a real number sequence satisfying: a(n)/n →
0, a(n)/

√
n→∞.

Theorem 1. Let X, X1, . . . , Xn be Kbc(X)-valued i.i.d. random variables sat-

isfying E(s(X)(x∗))2 <∞, ∀ x∗ ∈ D1, and (1)The space (D̃1, d
(1)
2 ) is totally

bounded, (2)dH

(
X1+···+Xn

a(n) , nE[X]
a(n)

)
P−−−−→ 0, (3)There exists M > 0, such

that, for all ε > 0, lim supn→∞
n

a2(n) log(nP {‖X‖K > ε}) ≤ −ε2/M.

Then for any open set U ⊂ R,

lim inf
n→∞

n

a2(n)
logP

{
dH

(X1 + · · ·+ Xn

a(n)
,
nE[X ]

a(n)

)
∈ U

}

≥ − inf
x∈U

{inf{I(1)

ℓ∞(D̃1)
(F ) : ‖F‖

ℓ∞(D̃1)
= x}},

any for any closed set V ⊂ R,

lim sup
n→∞

n

a2(n)
logP

{
dH

(X1 + · · ·+ Xn

a(N)
,
nE[X ]

a(n)

)
∈ V

}

≤ − inf
x∈V

{inf{I(1)

ℓ∞(D̃1)
(F ) : ‖F‖

ℓ∞(D̃1)
= x}},

where

I
(1)

ℓ∞(D̃1)
(F ) = inf{I(ν) : ν ∈Mb(C(S∗, d∗s), ‖ · ‖C(S∗)), νD̃1 = F on D̃1}

and I(ν) = 1
2

∫
C(S∗,d∗

s)(
dν

d(P◦s(X)−1)
)2d(P ◦ s(X)

−1
), if ν ≪ d(P ◦ s(X)

−1
),

ν(C(S∗, d∗s)) = 0. Otherwise, I(ν) = +∞.

The type of the large deviations above is usually called the moderate devia-
tions (MDP). We omit the proof of Theorem 1 because its key step is included
in the proof of Theorem 2 below. ✷

In the following, we give MDP for (Fbc(X), d∞H )-valued i.i.d. random variables.

Theorem 2. Let X, X1, . . . , Xn be Fbc(X)-valued i.i.d. random variables sat-

isfying E(j(X)(α, x∗))2 <∞, ∀ (α, x∗) ∈ D2 and (1)The space (D̃2, d
(2)
2 ) is

totally bounded, (2)d∞H

(
X1+···+Xn

a(n) , nE[X]
a(n)

)
P−−−−→ 0, (3)There exists M > 0,

such that, for all ε > 0, lim supn→∞
n

a2(n) log(nP {‖X‖F > ε}) ≤ −ε2/M.

Then for any open set U ⊂ R,

lim inf
n→∞

n

a2(n)
logP

{
d∞H
(X1 + · · ·+ Xn

a(n)
,
nE[X ]

a(n)

)
∈ U

}

≥ − inf
x∈U

{inf{I(2)

ℓ∞(D̃2)
(F ) : ‖F‖

ℓ∞(D̃2)
= x}}, (1)

and for any closed set V ⊂ R,



158 X. Wang

lim sup
n→∞

n

a2(n)
logP

{
d∞H
(X1 + · · ·+ Xn

a(N)
,
nE[X ]

a(n)

)
∈ V

}

≤ − inf
x∈V

{inf{I(2)

ℓ∞(D̃2)
(F ) : ‖F‖

ℓ∞(D̃2)
= x}}, (2)

where

I
(2)

ℓ∞(D̃2)
(F )

= inf{I(ν) : ν ∈Mb(D(I, C(S∗, d∗s))), ‖ · ‖D), νD̃2 = F on D̃2} (3)

and I(ν) = 1
2

∫
D(I,C(S∗,d∗

s))
( dν

d(P◦(j(X))−1)
)2d(P ◦ (j(X))−1), if ν ≪ d(P ◦

(j(X))−1), ν(D(I, C(S∗, d∗s))) = 0. Otherwise I(ν) = +∞.

Proof. For each α ∈ I and i ∈ N, random sets [Xi]α ∈ Fbc(X), and also
clE[[Xi]α] ∈ Fbc(X). Further s(clE[[Xi]α]) = s(E[[Xi]α]) = E[s([Xi]α] (cf.Li,
Ogura and Kreinovich [6, p.46, Theorem 2.1.12]). By the properties of linear
and isometric mapping g2, hence we obtain

d∞H

(
X1 + · · ·+ Xn

a(n)
,
nE[X ]

a(n)

)

= sup
α∈I

dH

(
[X1]α + · · ·+ [Xn]α

a(n)
,
nclE[[X]α]

a(n)

)

= sup
α∈I

‖s([X1]α) + · · ·+ s([Xn]α)

a(n)
− ns(clE[[X]α])

a(n)
‖C(S∗)

= sup
α∈I

‖s([X1]α) + · · ·+ s([Xn]α)

a(n)
,
ns(E[[X ]α])

a(n)
‖C(S∗)

= ‖ j(X1) + · · ·+ j(Xn)

a(n)
− nE[j(X)]

a(n)
‖D

= ‖g2

(
j(X1) + · · ·+ j(Xn)

a(n)

)
− g2

(
nE[j(X)]

a(n)

)
‖ℓ∞(D̃2)

= ‖
(
δ j(X1)+···+j(Xn)

a(n)

− n

a(n)
P ◦ (j(X))−1

)D̃2

‖
ℓ∞(D̃2)

.

In view of the conditions of this Theorem and the above equation, we
have {j(X), j(Xn) : n ∈ N} are (D(I, C(S∗, d∗s)), ‖ · ‖D)-valued i.i.d. random

variables satisfying D̃2 ⊂ L2(D(I, C(S∗, d∗s), P ◦ (j(X))−1) and (i)The space

(D̃2, d
(2)
2 ) is totally bounded, (ii)

(
δ j(X1)+···+j(Xn)

a(n)

− n
a(n)P ◦ (j(X))−1

)D̃2

P−−−→ 0, in ℓ∞(D̃2), (iii)There exists M > 0, such that, for all ε > 0,

lim sup
n→∞

n

a2(n)
log(nP

{
‖δD̃2

j(X)‖ℓ∞(D̃2)
> ε

}
) ≤ −ε2/M.
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By Theorem 5 in Wu [15], we know {P ◦
((

1
a(n)

∑n
i=1 δj(Xi) − n

a(n)P ◦

(j(X)))−1
)D̃2

)−1
) : n ∈ N} as n→∞ satisfy the MDP in ℓ∞(D̃2) with speed

n
a2(n) and with the rate function given in (2). Since the mapping ‖ · ‖

ℓ∞(D̃2)

from (D(I, C(S∗, d∗s)), ‖ · ‖D) to R is continuous, and due to the contraction
priciple [4, p.126, Theorem 4.2], then we easily obtain (1) and (5) in Theorem
2. So we complete the proof of Theorem 2.

Acknowledgements. This research is partially supported by Basic Research
Foundation of Natural Science of BJUT (No. 00600054K2002) and supported by
PHR (No. 201006102) and Beijing Natural Science Foundation(Stochastic Analysis
with uncertainty and applications in finance).

References

1. Auman,A.: Integrals of set valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)
2. Cerf, R.: Large deviations for sums of i.i.d. random compact sets. Pro. Amer.

Math. Soc. 127, 2431–2436 (1999)
3. Chen, Y.: Fuzzy systems and mathematics. Huazhong institute press of Science

and Technology, Wuhan (1984) (in Chinese)
4. Dembo, A., Zeitouni, O.: Large Deviations Techniques and applications, 2nd

edn. Springer, Heidelberg (1998)
5. Deuschel, J.D., Strook, D.W.: Large Deviations. Academin Press, Inc., Boston

(1989)
6. Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set-

valued and Fuzzy-valued Random Variables. Kluwer Academic Publishers,
Dordrecht (2002)

7. Li, S., Ogura, Y., Nguyen, H.T.: Gaussian processes and martingales for fuzzy
valued random variables with continuous parameter. Information Sciences 133,
7–21 (2001)

8. Ogura, Y., Li, S., Wang, X.: Large and moderate deviations of random upper
semicontinuous functions. Stoch. Anal. Appl. 28, 350–376 (2010)

9. Ogura, Y., Setokuchi, T.: Large deviations for random upper semicontinuous
functions. Tohoku. Math. J. 61, 213–223 (2009)

10. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114,
406–422 (1986)

11. Teran, P.: A large deviation principle for random upper semicontimuous func-
tions. Pro. Amer. Math. Soc. 134, 571–580 (2006)

12. Teran, P.: On Borel measurability and large deviations for fuzzy random vari-
ables. Fuzzy Sets and Systems 157, 2558–2568 (2006)

13. Wang, X.: Sample path large deviations for random compact sets. International
Journal of Intelligent Technologies and Applied Statistic 3(3), 323–339 (2010)

14. Wang, X.: Large deviations of random compact sets and random upper semi-
continuous functions. In: Borgelt, C., et al. (eds.) Combining Soft Computing
and Statistical Methods in Data Analysis, pp. 627–634. Springer, Berlin (2010)

15. Wu, L.M.: Large deviations, moderate deviations and LIL for empirical pro-
cesses. Ann. Probab. 22, 17–27 (1994)

16. Yan, J.A., Peng, S.G., Fang, S.Z., Wu, L.M.: Several Topics in Stochstic Anal-
ysis. Academic Press of China, Beijing (1997)



Solution of Random Fuzzy Differential
Equation

Jungang Li and Jinting Wang

Abstract. Random Fuzzy Differential Equation(RFDE) describes the phe-
nomena not only with randomness but also with fuzziness. It is widely used
in fuzzy control and artificial intelligence etc. In this paper, we shall discuss
RFDE as follows:

dF̃ (t) = f̃(t, F̃ (t))dt + g(t, F̃ (t))dBt,

where f̃(t, F̃ (t))dt is related to fuzzy set-valued stochastic Lebesgue inte-
gral, g(t, F̃ (t))dBt is related to Itô integral. Firstly we shall give some basic
results about set-valued and fuzzy set-valued stochastic processes. Secondly,
we shall discuss the Lebesgue integral of a fuzzy set-valued stochastic process
with respect to time t, especially the Lebesgue integral is a fuzzy set-valued
stochastic process. Finally by martingale moment inequality, we shall prove a
theorem of existence and uniqueness of solution of random fuzzy differential
equation.

Keywords: Fuzzy set-valued stochastic process, Random fuzzy differential
equation, Fuzzy set-valued Lebesgue integral, Level-set process.

1 Introduction

Itô type stochastic differential equations have been widely used in the stochas-
tic control (e.g. [5]) and financial mathematics (e.g. [17]). Random fuzzy
differential equations(RFDEs) deal with the real phenomena not only with
randomness but also with fuzziness. Puri and Ralescu introduced fuzzy set-
valued random variable in [16], and gave the concept of differentiability by
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Hukuhara difference in [15]. Li et al discussed Lebesgue integral of a set-
valued stochastic process with repect to time t and Lebesgue integral of a
fuzzy set-valued stochastic process with repect to time t in [6] [7] [9] [10].

There are some nice papers on RFDEs. Feng [3] [4] studied mean-square
fuzzy stochastic differential systems by mean-square derivative introduced
in [2]. In [1], Fei proved the existence and uniqueness of the solution for
RFDEs with non-Lipschitz coefficients. Malinowski proved the existence and
uniqueness of the solution to RFDEs with global Lipschits-type condition
in [13] and discussed local solution and global solution to RFDEs in [14].
Since the existence of Hukuhara difference is a difficult problem (c.f. [9]), we
shall discuss random fuzzy differential equation with level sets and selections
by martingale moment inequality in this paper.

We organize our paper as follows: in section 2, we shall introduce some
necessary notations, definitions and results about set-valued stochastic pro-
cesses and fuzzy set-valued stochastic processes. In section 3, we shall give
Lebesgue integral of a fuzzy set-valued stochastic process with respect to
time t and discuss its properties, especially the integral is a fuzzy set-valued
stochastic process. Finally, we prove the theorem of existence and uniqueness
of solution to RFDE.

2 Fuzzy Set-Valued Stochastic Processes

Throughout this paper, assume that (Ω,A, μ) is a complete atomless proba-
bility space, I = [0, T ], the σ-field filtration {At : t ∈ I} satisfies the usual
conditions (i.e. containing all null sets, non-decreasing and right continu-
ous). We assume that A is μ-separable as for the almost everywhere problem
(cf. [9]). R is the set of all real numbers, N is the set of all natural num-
bers, Rd is the d-dimensional Euclidean space with usual norm ‖ · ‖, B(E)
is the Borel field of the metric space E. Let f = {f(t),At : t ∈ I} be a
Rd-valued adapted stochastic process. It is said that f is progressively mea-
surable if for any t ∈ I, the mapping (s, ω) → f(s, ω) from [0, t] × Ω to Rd

is B([0, t])×At-measurable. Each right continuous (left continuous) adapted
process is progressively measurable. Assume that Lp(Rd) denotes the set of
Rd-valued stochastic processes f = {f(t),At : t ∈ I} such that f satisfying
(a) f is progressively measurable; and (b)

|||f |||p =
[
E
(∫ T

0

‖f(t, ω)‖pds
)]1/p

<∞.

Let f, f ′ ∈ Lp(Rd), f = f ′ if and only if |||f−f ′|||p = 0. Then (Lp(Rd), |||·|||p)
is complete. Now we review notation and concepts of set-valued stochastic
processes. Assume that K(Rd) is the family of all nonempty, closed subsets
of Rd, and Kc(R

d) (resp. Kk(Rd), Kkc(R
d)) is the family of all nonempty

closed convex (resp. compact, compact convex) subsets of Rd.
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Let F(Rd) denote the family of all functions ν : Rd → [0, 1] which satisfy
the following two conditions:

(1) each ν is an upper semicontinuous function, i.e., for each α ∈ (0, 1] the
level set να = {x ∈ Rd : ν(x) ≥ α} is a closed subset of Rd,

(2) the level set ν1 = {x ∈ Rd : ν(x) = 1} �= ∅.
Let Fk(Rd) denote the family of all functions ν in F(Rd) with property

(3) their support sets ν0+ = cl{x ∈ Rd : ν(x) > 0} ∈ Kk(Rd).
A fuzzy set-valued random variable ( or fuzzy random variable, fuzzy ran-

dom set) is a function X̃ : Ω → F(Rd), such that its level set

X̃α(ω) = {x ∈ Rd : X̃(ω)(x) ≥ α}

is a set-valued random variable for every α ∈ (0, 1].

Definition 1. F̃ = {F̃ (t) : t ∈ I} is called a fuzzy set-valued stochastic
process if F̃ : I × Ω → F(Rd) is such that for any fixed t ∈ I, F̃ (t, ·) is a
fuzzy set-valued random variable. For any α ∈ (0, 1], F̃α = {F̃α(t) : t ∈ I} is
a set-valued stochastic process called α-level set process.

Definition 2. A set-valued stochastic process F = {F (t) : t ∈ I} is called
progressively measurable, if for any A ∈ B(Rd) and any t ∈ I, {(s, ω) ∈
[0, t] × Ω : F (s, ω) ∩ A �= ∅} ∈ B([0, t]) × At. F is called L1-bounded, if the
real stochastic process {‖F (t)‖K,At : t ∈ I} ∈ L1(R).

Definition 3. A Rd-valued progressively process {f(t),At : t ∈ I} ∈
L1(Rd) is called an L1-selection of F = {F (t),At : t ∈ I} if f(t, ω) ∈
F (t, ω) for a.e. (t, ω) ∈ I ×Ω.

Let S1({F (·)}) or S1(F ) denote the family of all L1-selections of F =
{F (t),At : t ∈ I}, i.e.

S1(F ) =
{
{f(t) : t ∈ I} ∈ L1(Rd) : f(t, ω) ∈ F (t, ω), for a.e. (t, ω) ∈ I×Ω

}
.

Let L1(K(Rd)) denote the set of all L1-bounded progressively measurable
K(Rd)-valued stochastic processes. Similarly, we have notations L1(Kc(R

d)),
L1(Kk(Rd)) and L1(Kkc(R

d)).

Definition 4. A fuzzy set-valued stochastic process F̃ = {F̃ (t) : t ∈ I} is
called progressively measurable, if for any α ∈ (0, 1], F̃α = {F̃α(t) : t ∈ I} is
a progressively measurable set-valued stochastic process.

Definition 5. A fuzzy set-valued stochastic process F̃ = {F̃ (t) : t ∈ I}
is called integrably bounded, if F̃0+ = {F̃0+(t) : t ∈ I} is L1-bounded. Let
L1[Ω,A, μ;Fk(Rd)] be the set of all integrably bounded progressively measur-
able fuzzy set-valued stochastic processes and similarly L1[Ω,A, μ;Fkc(R

d)].

Concerning more definitions and more results of set-valued and fuzzy set-
valued random variables or stochastic processes, readers could refer to the
book [11].
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3 Fuzzy Set-Valued Lebesgue Integral and Random
Fuzzy Differential Equation

Now we introduce Aumann type Lebesgue integral of a fuzzy set-valued
stochastic differential equation, for more details we could refer to [10]. Here,
we use L1(Fk(Rd)). In fact, the following holds for Lp(Fk(Rd)), p ≥ 1.

Definition 6. Let a fuzzy set-valued stochastic process F̃ = {F̃ (t) : t ∈
I} ∈ L1(Fk(Rd)). For any α ∈ (0, 1], t ∈ I, ω ∈ Ω, define

(A)

∫ t

0

F̃α(s, ω)ds :=

{∫ t

0

fα(s, ω)ds : fα ∈ S1(F̃α)

}
,

where
∫ t

0
fα(s, ω)ds is the Lebesgue integral. (A)

∫ t

0
F̃ (s, ω)ds is called the

Aumann type Lebesgue integral of the fuzzy set-valued stochastic process F̃
with respect to time t. For any 0 ≤ u < t < T ,

(A)

∫ t

u

F̃ (s, ω)ds := (A)

∫ t

0

I[u,t](s)F̃ (s, ω)ds.

Theorem 1. Let a fuzzy set-valued stochastic process F̃ ∈ L1(Fk(Rd)).
Then for any α ∈ (0, 1], the set-valued mapping Lt(F̃α) : Ω → Kkc(R

d)
defined by

Lt(F̃α)(ω) = (A)

∫ t

0

F̃α(s, ω)ds

is measurable, i.e. Lt(F̃α) is a set-valued random variable, and

Lt(F̃α)(ω) = (A)

∫ t

0

coF̃α(s, ω)ds.

Remark. We are interested in the set of all selections of the integral stochas-
tic process L(F̃α). For any fixed t ∈ I, It(fα)(ω) =:

∫ t

0 fα(s, ω)ds is an At-

measurable function with respect to ω for any given fα ∈ S1(F̃α). Thus

It(fα)(·) =:
∫ t

0
fα(s, ·)ds is a selection of Lt(F̃α). As a matter of fact, we have

the following Theorem.

Theorem 2. Assume that a fuzzy set-valued stochastic process F̃ ∈
L1(Fk(Rd)) and continue to use above notations. Then we have that for any
α ∈ (0, 1], {It(fα) : fα ∈ S1(F̃α)} is closed in L1[Ω,At, μ;Rd].

Theorem 3. For any F̃ , G̃ ∈ L1(Fk(Rd)), α ∈ (0, 1], we have

d2
H(Lt(F̃α)(ω), Lt(G̃α)(ω)) ≤ t

∫ t

0

d2
H(F̃α(s, ω), G̃α(s, ω))ds.

Theorem 4. For any fuzzy set-valued stochastic process F̃ ∈ L1(Fk(Rd)),
there exists a unique fuzzy set-valued random variable L̃(t) which belongs to
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L1[Ω,At, μ;Fk(Rd)] such that for all t ∈ I, α ∈ [0, 1],

{
x ∈ Rd : L̃(t, ω) ≥ α

}
=

∫ t

0

F̃α(s, ω)ds, a.e.

From theorem 4, the Aumann type Lebesgue integral of fuzzy set-valued
stochastic process F̃ with respect time t is the fuzzy set-valued stochastic
process L̃ = {L̃(t), t ∈ I}. Now we introduce its application in random fuzzy
differential equation.

We consider the following fuzzy set-valued stochastic differential equation

dF̃ (t) = f̃(t, F̃ (t))dt + g(t, F̃ (t))dBt, (1)

where the fuzzy set-valued random variable F̃ (t) ∈ L2(Fk(Rd)) with initial
condition F̃ (0) being an L2-bounded fuzzy set-valued random variable, for
any α ∈ [0, 1], f̃α : I ×Kk(Rd) → Kk(Rd) is measurable, gα : I ×Kk(Rd) →
Rd ⊗ Rm is measurable, f̃(t) ∈ �L2(Fk(Rd)), g : I × Fk(Rd) → Rd ⊗ Rm,
g ∈ �L2(Rd), Bt is an m-dimensional Brown motion. Equation (1) is equivalent
to the integral form:

F̃ (t) = F̃ (0) + (A)

∫ t

0

f̃(s, F̃ (s))ds +

∫ t

0

g(s, F̃ (s))dBs, (2)

or the level set integral equation: for any α ∈ (0, 1],

F̃α(t) = F̃α(0) + (A)

∫ t

0

f̃α(s, F̃α(s))ds +

∫ t

0

gα(s, F̃α(s))dBs.

Theorem 5 (Existence and uniqueness theorem). For α ∈ (0, 1],F̃α ∈
Kk(Rd), t ∈ I, assume that f̃α(t, F̃α), gα(t, F̃α) satisfy the following condi-
tions:

(i) linear growth condition:

‖f̃α(t, F̃α)‖2K + ‖gα(t, F̃α)‖2 ≤ K2(1 + ‖F̃α‖2K);

(ii) Lipschitz continuous condition:

dH(f̃α(t, F̃1,α), f̃α(t, F̃2,α)) + ‖gα(t, F̃1,α)− gα(t, F̃2,α)‖ ≤ KdH(F̃1,α, F̃2,α);

where K is a positive constant. Then for any given initial L2-bounded fuzzy
set-valued random variable F̃ (0), there is a solution to the equation (1), and
the solution is unique.

Proof. Step 1 We first note that, for any α ∈ (0, 1], each t ∈ I,

E[‖f̃α(t, F̃α(t)‖2K] + E[‖g(t, F̃α(t))‖2] ≤ 4K2(1 + E[‖F̃α(t)‖2K]). (3)
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Since F̃α(s, ω) is progressively measurable, then f̃α(t, F̃α(t)) and g(t, F̃α(t))

are also progressively measurable. Hence, f̃α(t, F̃α(t) ∈ L2(Kk(Rd)) and
g(t, F̃α(t)) ∈ L2(Rd ⊗Rm).

To use successively approximation method, we define, for each t ∈ I,

F̃0,α(t) = F̃α(0),

F̃n+1,α(t) = F̃α(0) +

∫ t

0

f̃α(s, F̃n,α(s))ds +

∫ t

0

g(s, F̃n,α(s))dBs, n ≥ 0.

We will show that F̃n,α = F̃n,α(s, ω) belongs to L2(Kk(Rd)). This assertion

is obvious for n = 0. Assume that F̃n,α ∈ L2(Kk(Rd)). Then f̃α(t, F̃n,α(t)) ∈
L2(Kk(Rd)) and g(t, F̃n,α(t)) ∈ L2(Rd ⊗Rm) by (3). We further have

E[‖F̃n+1,α(t)‖2K] ≤ 3E
[
‖F̃α(0)‖2K +

∥∥∥
∫ t

0

f̃α(s, F̃n,α(s))ds
∥∥∥

2

K

+
∥∥∥
∫ t

0

g(s, F̃n,α(s))dBs

∥∥∥
2]
.

Since E[‖
∫ t

0 g(s, F̃n,α(s))dBs‖2] = E[
∫ t

0 ‖g(s, F̃n,α(s))‖2ds], the equation

above with (3) implies F̃n+1,α ∈ L2(Kk(Rd)). Hence F̃n,α ∈ L2(Kk(Rd))
for all n ≥ 0 by induction.

Step 2 In this step we shall prove the existence of a solution to equation
(2). By Theorem 3 together with the inequality

dH(a1 + A1 + B1, a2 + A2 + B2) ≤ ‖a1 − a2‖+ dH(A1, A2) + dH(B1, B2),

for ai ∈ Rd, Ai, Bi ∈ Kk(Rd), we have

dH(F̃n,α(t), F̃n+1,α(t)) ≤
∫ t

0

dH(f̃(s, F̃n−1,α(s)), f̃(s, F̃n,α(s)))ds

+
∥∥∥
∫ t

0

(g(s, F̃n−1,α(s))− g(s, F̃n,α(s)))dBs

∥∥∥.

By the martingale moment inequality, it holds

E
[

sup
u∈[0, t]

∥∥∥
∫ u

0

(g(s, F̃n−1,α(s))− g(s, F̃n,α(s)))dBs

∥∥∥
2]

≤ 4E
[∫ t

0

‖g(s, F̃n−1,α(s))− g(s, F̃n,α(s)‖2ds
]
.
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By the two inequalities above and condition (ii), we have

∆n(t) ≤ 2E
[
T

∫ t

0

d2
H(f̃(s, F̃n−1,α(s)), f̃(s, F̃n,α(s)))ds

+ 4

∫ t

0

‖g(s, F̃n−1,α(s))− g(s, F̃n,α(s)‖2ds
]

≤ 2(T ∨ 4)K2E
[∫ t

0

d2
H(F̃n−1,α(s), F̃n,α(s))ds

]

≤ 2(T ∨ 4)K2

∫ t

0

∆n−1(s)ds,

where
∆n(t) = E

[
sup

s∈[0, t]

d2
H(F̃n,α(s, ω), F̃n+1,α(s, ω))

]
.

Hence, we have

∆n(T ) ≤ cn

∫ T

0

∫ s1

0

· · ·
∫ sn−1

0

∆1(sn)dsndsn−1 · · ·ds1 ≤
(cT )n

n!
∆1(T ),

for some constants c > 0. Therefore, one has

∞∑

n=1

∆n(T ) <∞, or

∞∑

n=1

sup
s∈[0, T ]

d2
H(F̃n,α(s, ω), F̃α(s, ω)) <∞, a.e.

This ensures the existence F̃α(t, ω) ∈ Kk(Rd) such that

lim
n→∞

sup
s∈[0, T ]

dH(F̃n,α(s, ω), F̃α(s, ω)) = 0, a.e.

Since [0, 1] is separable, there is a solution F̃ which is a fuzzy set-valued
stochastic process satisfying equation (2).

Step 3 In this step we shall prove the uniqueness of the solutions. Let F̃
and G̃ be two solutions to equation (2), and for any α ∈ (0, 1], denote

∆(t) = E[ sup
s∈[0, t]

d2
H(F̃α(s, ω), G̃α(s, ω))].

Then, through the same way as above, we have

∆(t) ≤ 2(T ∨ 4)K2

∫ t

0

∆(s)ds,

which implies

∆(T ) ≤ (cT )n

n!
∆(T ).

Letting n→∞, we obtain ∆(T ) = 0 and the uniqueness follows. ✷
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Completely Monotone Outer
Approximations of Lower Probabilities
on Finite Possibility Spaces

Erik Quaeghebeur

Abstract. Drawing inferences from general lower probabilities on finite pos-
sibility spaces usually involves solving linear programming problems. For
some applications this may be too computationally demanding. Some special
classes of lower probabilities allow for using computationally less demand-
ing techniques. One such class is formed by the completely monotone lower
probabilities, for which inferences can be drawn efficiently once their Möbius
transform has been calculated. One option is therefore to draw approximate
inferences by using a completely monotone approximation to a general lower
probability; this must be an outer approximation to avoid drawing inferences
that are not implied by the approximated lower probability. In this paper,
we discuss existing and new algorithms for performing this approximation,
discuss their relative strengths and weaknesses, and illustrate how each one
works and performs.

Keywords: lower probabilities, Outer approximation, Complete monotonic-
ity, Belief functions, Möbius transform.

1 Introduction

In the theory of coherent lower previsions—or, more colloquially, of impre-
cise probabilities—the procedure of natural extension is the basic technique
for drawing inferences [11, §3.1]. In a finitary setting, i.e., one with a finite
possibility space Ω and in which the lower prevision P is assessed for a finite
collection of gambles (random variables) K ⊆ RΩ , calculating the natural
extension EP f for a gamble f in RΩ corresponds to solving a linear pro-
gramming (LP) problem:
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EP f := max
{
α ∈ R : f − α ≥∑g∈K λg · (g − Pg), λ ∈ RK

≥0

}
. (1)

In applications where K is large or where the natural extension needs to
be calculated for a large number of gambles, such LP problems may be too
computationally demanding. But natural extension preserves dominance: if
P ∗ ≤ P then EP ∗

≤ EP .
So first we restrict K and only consider lower previsions P that are defined

on the set of (indicators of) events; i.e., we only consider lower probabilities P
defined on the power set 2Ω. Now, for 2-monotone lower probabilities P ∗,
which form a subclass of the coherent lower probabilities, the natural exten-
sion EP∗

can be calculated more efficiently using Choquet integration [11, see,

e.g.,§3.2.4]:

EP∗
f = (C)

∫
fdP ∗ := min f +

∫ max f

min f P ∗{ω ∈ Ω : fω ≥ t}dt, (2)

So if we can find a 2-monotone outer approximation P ∗ to P , i.e., such that
P ∗A ≤ PA for all events A ⊆ Ω, we can efficiently calculate the outer
approximation EP∗

to EP .
How can we go about this? Every coherent lower prevision P can be writ-

ten as a convex combination of extreme coherent lower previsions [7] that is
not-necessarily unique [6, e.g.,§2.3.3, ¶4]; in the finitary case, the set Ec(K)
of extreme coherent lower previsions on K is finite. So P =

∑
Q∈Ec(K)λQ ·Q,

where λ : Ec(K) → [0, 1] is a function that generates coefficients of a convex
Ec(K)-decomposition of P . The same holds for 2-monotone lower probabili-
ties, but with a different set of extreme members E2(Ω) [8,6]. The idea is to
find a ν : E2(Ω) → [0, 1] such that P ∗ :=

∑
Q∈E2(Ω)νQ · Q is an—in some

sense—good outer approximation to P .
It is impractical to consider all elements of E2(Ω): finding this set is com-

putationally very demanding and with increasing |Ω| it quickly becomes very
large [8, §4]. In this paper, our strategy is to only retain the subclass E∞(Ω) of
vacuous lower probabilities: each such lower prevision essentially corresponds
to an assessment that a given event A of Ω occurs; the corresponding natural
extension is given by EAf := minω∈A fω. Lower probabilities P ∗ that can
be written as a convex combination of vacuous lower probabilities are called
completely monotone. The decomposition of such a lower probability, i.e., the
coefficient function ν : 2Ω → [0, 1], is unique and determines it as follows:

P ∗A =
∑

B⊆A νB, EP∗
f =

∑
B⊆Ω νB ·EBf =

∑
B⊆Ω νB ·minω∈B fω.

(3)
The left-hand equation is called Möbius inversion; the right-hand one is an
alternative to Choquet integration for calculating the natural extension.

Mathematically, completely monotone lower probabilities coincide with the
belief functions of Dempster–Shafer theory [4, 9]. From this theory, we know
that the coefficients of the decomposition—which we call basic belief mass
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assignments in this paper—can be obtained by using the Möbius transform
of P ∗; i.e., the coefficient of EA is

νA =
∑

B⊆A(−1)|A\B| · P ∗B = P ∗A−
∑

B⊂A νB, (4)

where the last expression shows how these coefficients can be calculated re-
cursively. Obviously, P ∗ must be defined for all events to calculate these
coefficients; if necessary, one should extend it to all indicator functions first
to obtain the lower probability on all events.

In this paper, we assume a lower probability P is given that is defined on
all events. We discuss a number of algorithms that allow us to obtain a ba-
sic belief mass assignment function ν that determines—via Equation (3)—a
completely monotone lower probability P ∗ that is an outer approximation
to P , i.e., P ∗ ≤ P . The reason we focus on outer approximations is that they
are conservative in the sense that they do not lead to inferences unwarranted
by the approximated lower probability. For the algorithms to work, it is suf-
ficient that P satisfies

∑
ω∈Ω P {ω } ≤ 1, is nonnegative (P ≥ 0), monotone

(B ⊆ A⇒ PB ≤ PA), and normed (P∅ = 0 and PΩ = 1), all four of which
we assume to be the case.

2 Completely Monotone Outer Approximation
Algorithms

We are going to discuss four algorithms—one trivial new one, two from the
literature, and one substantive new one—that fall into three classes: the first
one creates a linear-vacuous mixture, the second one reduces the problem to
an LP problem, and the last two are based on modifications of the Möbius
transformation and are more heuristic in nature. (All algorithms have been
implemented in Troffaes’s improb software package/framework [10].) But be-
fore jumping into this material, we discuss a useful preprocessing step and
introduce the lower probabilities that are used to illustrate (the results) of
the techniques.

First the preprocessing step: we mentioned that the decomposition into
extreme coherent lower previsions of a coherent lower prevision P is in gen-
eral non-unique. However, the coefficients λ{ω } of the degenerate lower
previsions—i.e., vacuous lower previsions relative to singletons {ω } of Ω—
are unique [7, Prop. 1], so we can write any coherent lower probability as a
linear-imprecise mixture:

PA = κ ·∑ω∈A pω+(1−κ) ·RA, EP f = κ ·∑ω∈Ω pω ·fω+(1−κ) ·ERf,
(5)

where κ :=
∑

ω∈Ω λ{ω } and pω := λ{ω }/κ, which allows us to solve for the
imprecise part R. This is a coherent lower probability whose lower probability
on singletons is zero. (The second equation then follows from [11, §3.4.1].) In
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case P is not coherent, R may end up with negative values, but we may infer
from the zero values of R on singletons that these may be set to zero. Given
that linear previsions are completely monotone, it makes sense to separate
out the linear part—represented by the probability mass function p—and
only approximate the imprecise part.

We use some example lower probabilities to illustrate the algorithms. All
have Ω = { a, b, c, d}: a cardinality of four allows the lower probabilities to
be complex enough to be interesting without resulting in unending lists of
numbers. (Also, for |Ω| < 4, all lower probabilities are probability intervals
and therefore 2-monotone [2, Prop. 5].) The first one in Table 1 is from the lit-
erature [5, Ex. 2], for which we also give the linear-imprecise decomposition;
the second and third ones in Table 2 are especially chosen extreme coher-
ent lower probabilities [8, 6, App. A] that highlight some of the algorithms’
features and consist of an imprecise part only.

Table 1 A lower probability P , its linear-imprecise decomposition (p,R, κ =
0.737), the 2-monotone probability interval outer approximation RPI of R (gener-
ated by efficient natural extension from [R {ω } , R {ω } = 1−R(Ω \ {ω })]ω∈Ω [2,
cf. particularly Prop. 4]), the Möbius transform ρ of R, and six completely mono-
tone outer approximations of R: the linear-vacuous one RLV; two optimal ones,
RLPDS using a dual simplex solver and RLPCC using a criss-cross solver; two IRM-
approximations, RIRM using the lexicographic order and πRIRM the inverse order;
the IMRM-approximation RIMRM. Negative values in the Möbius transform ρ of
R are highlighted with a gray background. Approximation values that differ from
the approximated values of R are in boldface. The last row contains the sum-norm-
differences between R and the approximations. The number of significant digits
used has been chosen to facilitate comparisons and verification.

Event P p R ρ RLV RLPDS RLPCC RIRM πRIRM RIMRM RPI

a 0.0895 0.122
b 0.2743 0.372

c 0.2668 0.362
d 0.1063 0.144

a b 0.3947 0.117 0.117 0 0 0.117 0.046 0.091 0.066 0
a c 0.4506 0.358 0.358 0 0.196 0.079 0.185 0.193 0.211 0
a d 0.2959 0.381 0.381 0 0.352 0.352 0.242 0.249 0.244 0.129

b c 0.5837 0.162 0.162 0 0.162 0.162 0.074 0.074 0.082 0
b d 0.4835 0.391 0.391 0 0.227 0.110 0.219 0.216 0.227 0

c d 0.4079 0.132 0.132 0 0.002 0.119 0.099 0.051 0.081 0
a b c 0.7248 0.358 −0.280 0 0.358 0.358 0.305 0.358 0.358 0.358
a b d 0.6224 0.579 −0.310 0 0.579 0.579 0.507 0.556 0.579 0.579
a c d 0.6072 0.550 −0.322 0 0.550 0.550 0.526 0.493 0.550 0.550

b c d 0.7502 0.391 −0.295 0 0.391 0.391 0.391 0.341 0.391 0.391
a b c d 1 1 0.664 1 1 1 1 1 1 1

‖R − R∗‖1 3.419 0.603 0.603 0.827 0.797 0.631 1.413
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Table 2 Two lower probabilities P—the one on the left is permutation invari-
ant [6, cf., e.g.,§2.2.6]—with their Möbius transforms μ and IMRM-approximations
P IMRM. On the left moreover two other completely monotone outer approximations,
an optimal one PLP and an IRM-approximation P IRM. On the right moreover the
Möbius transform ν6 of the IMRM-approximation and two intermediate basic belief
mass assignments (ν3 and ν5) used in its construction. (N.B.: for this lower proba-
bility, we have ‖P − PLP‖1 = 1/2, ‖P − P IRM‖1 = 3/4.) Other table elements and
stylings have the same meaning as in Table 1.

Event P µ PLP P IRM P IMRM P µ ν3 ν5 ν6 P IMRM

a b 1/3 1/3 0 1/10 1/6 1/2 1/2 1/2 1/4 1/4 1/4
a c 1/3 1/3 1/6 0.95/8 1/6 1/4 1/4 1/4 1/8 1/8 1/8
a d 1/3 1/3 1/3 1/7 1/6 1/4 1/4 1/4 1/8 1/8 1/8

b c 1/3 1/3 1/3 0.96/7 1/6 1/4 1/4 1/4 1/8 1/8 1/8
b d 1/3 1/3 1/6 0.99/6 1/6 0 0 0 0 0 0

c d 1/3 1/3 0 0.98/5 1/6 0 0 0 0 0 0
a b c 1/2 −1/2 1/2 1.07/3 1/2 1/2 −1/2 −1/2 0 0 1/2
a b d 1/2 −1/2 1/2 0.82/2 1/2 3/4 0 0 3/8 9/32 21/32
a c d 1/2 −1/2 1/2 0.91/2 1/2 1/4 −1/4 −1/4 0 0 1/4

b c d 1/2 −1/2 1/2 1/2 1/2 1/4 0 0 1/8 3/32 7/32
a b c d 1 0 1 1 1 1 1/2 −1/8 0 1

‖P − P∗‖1 1 99/70 1 3/4

In the tables, we have also given the Möbius transform μ of each of these
lower probabilities—or the transform ρ of their imprecise part—by applying
Equation (4). As is the case for all lower probabilities that are not completely
monotone, some of the basic belief mass assignments so obtained are negative,
but they still sum up to one [3, 9]. The algorithms we discuss all essentially
construct a nonnegative basic belief mass assignment function which can be
seen as resulting from shifting positive mass up in the poset of events ordered
by inclusion (or shifting negative mass down) to compensate the negative
mass assignments. This mass shifting is also the basic idea behind the last
two algorithms.

Linear-vacuous approximation. The first algorithm is trivial: it consists
in replacing a lower probability’s imprecise part by the vacuous lower prob-
ability, which is identically zero except in Ω, where it is 1. In terms of mass
shifts, all mass of non-singletons is shifted up to the event poset’s top Ω.

Table 1 contains a—due to the triviality—not very interesting illustration.

Approximation via optimization. The second algorithm is based on the
formulation of the problem as an optimization problem: we wish to find a
nonnegative basic belief mass assignment function ν such that its Möbius in-
verse PLP minimizes some distance to the approximated lower probability P .
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We can force PLP to be an outer approximation by adding constraints that
express its dominance by P . By choosing the distance to be a linear function
of ν’s components, the optimization problem becomes an LP problem [1, §7];
we choose the sum-norm-distance:

ν = argmin
{
‖P − PLP‖1 : PLP ≤ P and PLP is completely monotone

}

(6)

= argmin
{∑

A⊆Ω|PA− PLPA| : PLP ≤ P andPLP is completely monotone
}

= argmax
{∑

A⊆Ω PLPA : PLP ≤ P and PLP is completely monotone
}

= argmax
{∑

A⊆Ω

∑
B⊆A νB : ∀A⊆Ω(

∑
B⊆A νB ≤ PA)

and ν ≥ 0,
∑

B⊆Ω

νB = 1
}

= argmax
{∑

B⊆Ω 2|Ω\B|νB : ∀A⊆Ω(
∑

B⊆A νB ≤ PA)

and ν ≥ 0,
∑

B⊆Ω

νB = 1
}
, (7)

where 2|Ω\B| is the number of events A that contain B. The third equality
follows from taking into account the dominance constraints; the fourth from
making the dependence on ν explicit using Equation (4). The linear-vacuous
approximation shows that this linear program is feasible.

The results of this optimization approach are given for the lower proba-
bility in Table 1 and the one on the left in Table 2. In Table 1, two differing
‘optimal’ outer approximations are given, resulting from using different LP
solvers. The optimal outer approximation given for the permutation invariant
lower probability in Table 2 on the left is not permutation invariant itself.
Both are due to the fact that in general there is no unique optimal solution
and that solvers return the first one reached, which for the typical (non-
interior-point) methods used lies on the border of the convex set of solutions.

The sum-norm distance can also be used as a quality criterion—one that
obviously does not take symmetry aspects into account—for other approxi-
mation techniques. It has therefore also been calculated and included for the
other approximations in Table 1 and 2; ‖P −PLP‖1 and ‖P −PLV‖1 provide
lower and upper bounds.

Iterative rescaling method. The Iterative Rescaling Method or IRM [5]
builds on the recursive Möbius transform formula in Equation (4), interrupt-
ing it to shift mass whenever negative mass assignments are encountered for
some event.
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Algorithm 1. IRM(Ω,P ) := P IRM

Form a sequence A of length 2|Ω| by ordering all events in 2Ω by1

increasing cardinality and arbitrarily for events of equal cardinality and
set ν∅ := P∅ = 0
for i := 1 to 2|Ω| − 1 do νAi := PAi −

∑
B⊂Ai

νB2

3 if νAi < 0 then (ℓ, α) := MassBasin(Ai, ν)4

5 foreach B ⊂ Ai : |B| ≥ ℓ do νB := α+νAi

α · νB6

νAi := 07

end8

end9

return the Möbius inverse P IRM of ν10

In the if -block, the negative mass νAi is distributed proportionally to its
subevents of a for compensation lowest needed cardinality and up; i.e.,

ℓ := max{k < |Ai| :
∑

B⊂A:|B|≥k νB =: αk > νAi}, α := αℓ.

For clarity, we have separated out the algorithm that calculates these
parameters:

Algorithm 2. MassBasin(A, ν) := (ℓ, α)

Set ℓ := |A| and α := 01

while α < −νA do ℓ := ℓ− 1 and α := α +
∑

B⊂A:|B|=ℓ νB2

return the (lowest needed) cardinality ℓ and the compensation mass α3

The results of the IRM-algorithm are given for the lower probability in
Table 1 and the one on the left in Table 2. In Table 1, two differing outer
approximations are given, resulting from using different ‘arbitrary’ orderings
of the events of equal cardinality. Using the sum-norm criterion, we see that
the quality of the approximation depends on the order chosen. Also, the
outer approximation given for the permutation invariant lower probability in
Table 2 on the left is not permutation invariant itself, reflecting the impact
of the arbitrary order.

Furthermore, it can be seen in the Tables that for events of a cardinality
for which the optimization approximation is always exact, this is not so for
the IRM-approximation; there only the last such event of the arbitrary order
is exact. This is due to the fact that the IRM-algorithm does not backtrack
to recalculate the mass assignments for an event after rescaling some of its
subevents due to negative masses encountered for subsequent events.

Iterative minimal rescaling method. Inspired by the IRM, we have
designed an approximation algorithm that avoids its defects mentioned
above, at the cost of increased complexity. Furthermore, our algorithm is
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permutation-invariant, so it improves on the LP approach as well, in that
regard.

The algorithm is still based on the recursive Möbius transform formula in
Equation (4), but the rescaling approach is a bit more involved than with the
IRM and gives rise to a higher number of these recursion calculations:

Algorithm 3. IMRM(Ω,P ) := P IMRM

Set ν∅ := P∅ = 0 and k := 11

while k ≤ |Ω| do A := ∅2

3 foreach A ⊆ Ω : |A| = k do νA := PA−∑B⊂A νB4

A := {A ⊆ Ω : |A| = k ∧ νA < 0}5

if A = ∅ then k := k + 16

else foreach A ∈ A do (ℓA, αA) := MassBasin(A, ν)7

8 ℓ := minA∈A ℓA and B := {A ∈ A : ℓA = ℓ }9

foreach A ∈ B do βA :=
∑

B⊂A:|B|=ℓ νB10

foreach B ∈ ⋃A∈B 2A : |B| = ℓ do11

νB := maxA∈B:B⊂A
αA+νA

βA
· νB

k := ℓ + 112

end13

end14

return the Möbius inverse P IMRM of ν15

Per cardinality k, all basic belief mass assessments are calculated before doing
any rescaling due to negative masses encountered for the events in A. To limit
the mass loss for events of lowest needed cardinality ℓ—i.e., those most heavily
penalized by the sum-norm criterion—, only their masses are rescaled during
that iteration of the while-loop, which is the reason to restrict attention
to B. For a single event A of B, the mass loss for its cardinality-ℓ subevents is
limited by only shifting that mass down which cannot be compensated higher
up, which explains the scaling factor βA used. We avoid overcompensation
of negative mass in one element of B due to a bigger deficit in another by
using the largest scaling factor available, which leads to a minimal rescaling.
This last point is what lead us to name the algorithm the Iterative Minimal
Rescaling Method or IMRM. In general, the IMRM will not be as good as
the optimization approach in terms of the sum-norm criterion: the mass is
still shifted proportionally, which is not necessarily optimal.

The lower probability P IMRM obtained is indeed completely monotone,
because for the basic belief mass assignment function we have ν∅ = 0 from
the start, νA ≥ 0 for all events such that |A| < k at the end of each iteration
of the while-loop, and νΩ = PΩ−∑B⊂Ω νB = 1−∑B⊂Ω νB at the end of
the last iteration. It is an outer approximation because the recursion formula
used tries to make P IMRMA equal to PA for all A ⊆ Ω; subsequent rescalings
can only lower this value.



Completely Monotone Outer Approximations 177

The results of the IMRM-algorithm are given for the lower probability in
Table 1 and both in Table 2. The positive impact of the algorithm’s permu-
tation invariance is especially clear for the left lower probability of Table 2.
The algorithm itself is illustrated on Table 2’s right side; there ν is given as it
exists at the moment A = ∅ is checked for the third, fifth, and sixth—final—
iteration of the while loop; the impact of negative mass values on subsequent
iterates is the prime point of interest here.

3 Conclusions

We have introduced and illustrated the linear-imprecise decomposition of
lower probabilities, and the linear-vacuous and IMRM-algorithms for gener-
ating completely monotone outer approximations to lower probabilities. We
have compared these to algorithms in the literature; permutation invariance
is their main advantage.

One thing that still needs to be done is a complexity and parallelizability
analysis to get a view of the relative computational burden of each of the algo-
rithms discussed. Also interesting to investigate is the use of other objective
functions in the optimization approach—e.g., using other norms, engender-
ing nonlinear convex optimization problems—; this could lead to uniqueness
of the solution and therewith permutation invariance. Both would allow for
a more informed choice between the different possible completely monotone
outer approximation algorithms.
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Belief Networks and Local
Computations

Radim Jiroušek

Abstract. This paper is one of many attempts to introduce graphical Markov
models within Dempster-Shafer theory of evidence. Here we take full advan-
tage of the notion of factorization, which in probability theory (almost) coin-
cides with the notion of conditional independence. In Dempster-Shafer theory
this notion can be quite easily introduced with the help of the operator of
composition.

Nevertheless, the main goal of this paper goes even further. We show that
if a belief network (a D-S counterpart of a Bayesian network) is to be used to
support decision, one can apply all the ideas of Lauritzen and Spiegelhalter’s
local computations.

Keywords: Operator of composition, Factorization, Decomposable models,
Conditioning.

1 Introduction

Graphical Markov models (GMM) [9], a technique which made computations
with multidimensional probability distributions possible, opened doors for
application of probabilistic methods to problem of practice. Here we have in
mind especially application of the technique of local computations for which
theoretical background was laid by Lauritzen and Spiegelhalter [10]. The
basic idea can be expressed in a few words: a multidimensional distribution
represented by a Bayesian network is first converted into a decomposable
model which allows for efficient computation of conditional probabilities.

The goal of this paper is to show that the same ideas can be employed also
within Dempster-Shafer theory of evidence [11].
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In this paper we consider a finite setting: space XN = X1×. . .×Xn, and its

subspaces (for K ⊆ N) XK =×i∈KXi. For a point x = (x1, . . . , xn) ∈ XN

its projection into subspace XK is denoted x↓K = (xi,i∈K). Analogously, for
A ⊆ XN , A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}. By a join of two sets A ⊆ XK

and B ⊆ XL we understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint, then A ⊗ B = A × B, if K = L then
A⊗B = A ∩B.

In view of this paper it is important to realize that for C ⊆ XK∪L, C ⊆
C↓K ⊗ C↓L, and that the equality C = C↓K ⊗ C↓L holds only for some of
them.

2 Basic Assignments

A basic assignment (ba) m on XK (K ⊆ N) is a function m : P(XK) → [0, 1],
for which ∑

∅�=A⊆XK

m(A) = 1.

If m(A) > 0, then A is said to be a focal element of m. Recall that

Bel(A) =
∑

∅�=B⊆A

m(B), and Pl(A) =
∑

B⊆XK :B∩A �=∅
m(B).

Having a ba m on XK one can consider its marginal assignment on XL

(for L ⊆ K), which is defined (for each ∅ �= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Definition 1 (Operator of composition). For two arbitrary ba’s m1 on
XK and m2 on XL (K �= ∅ �= L) a composition m1 ⊲ m2 is defined for each
C ⊆ XK∪L by one of the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 ⊲ m2)(C) =
m1(C

↓K) ·m2(C
↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 ⊲ m2)(C) = m1(C
↓K);

[c] in all other cases (m1 ⊲ m2)(C) = 0.
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Let us stress that the operator of composition is something other than the fa-
mous Dempster’s rule of combination [2]. While Dempster’s rule was designed
to combine different (independent) sources of information (it realizes fusion
of sources), the operator of composition was designed to assemble (compose)
factorizing basic assignments from their pieces. Notice that, e.g., for compu-
tation of (m1 ⊲ m2)(C) it suffices to know only the values of m1 and m2 for
the respective projections of set C, whereas computing Dempster’s combi-
nation of m1 and m2 for set C requires knowledge of, roughly speaking, the
entire basic assignments m1 and m2. This is an indisputable (computational)
advantage of the factorization considered in this paper. Unfortunately, the
operator of composition is neither commutative nor associative. In [8, 7] we
proved a number of properties concerning the operator of composition; the
following ones are the most important for the purpose of this paper.

Proposition 1. Let m1 and m2 be ba’s defined on XK , XL, respectively.
Then:

1. m1 ⊲ m2 is a ba on XK∪L;
2. (m1 ⊲ m2)

↓K = m1;

3. m1 ⊲ m2 = m2 ⊲ m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 .

From Property 1 one immediately gets that for basic assignments m1,m2,
. . . ,mr defined on XK1 ,XK2 , . . . ,XKr , respectively, the formula m1 ⊲ m2 ⊲
. . . ⊲ mr defines a (possibly multidimensional) basic assignment defined on
XK1∪...∪Kr . However, to avoid ambiguity (recall that the operator is not
associative) we have to say that, if not specified otherwise by parentheses,
the operators will always be applied from left to right, i.e.,

m1 ⊲ m2 ⊲ . . . ⊲ mr = (. . . (m1 ⊲ m2) ⊲ . . . ⊲ mr−1) ⊲ mr.

Nevertheless, when designing the process of local computations for com-
positional models in D-S theory, which is intended to be an analogy to the
process proposed by Lauritzen and Spiegelhalter in [10], one needs a type of
associativity (see also [12]) expressed in the following assertion proved in [6].

Proposition 2. Let m1,m2 and m3 be ba’s on XK1 ,XK2 and XK3 , respec-
tively, such that K2 ⊇ K1 ∩K3, and

m↓K1∩K2

1 (C↓K1∩K2) > 0 =⇒ m↓K1∩K2

2 (C↓K1∩K2) > 0.

Then (m1 ⊲ m2) ⊲ m3 = m1 ⊲ (m2 ⊲ m3).

Belief Networks and Decomposable Models

In this subsection we introduce a Dempster-Shafer counterpart to GMM’s.
Studying properly probabilistic GMM’s one can realize that it is the notion
of factorization that makes it possible to represent multidimensional prob-
ability distributions efficiently. Focusing only on Bayesian networks one can
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see that they can be defined in probability theory in several different ways.
Here we will proceed according to a rather theoretical approach which defines
a Bayesain network as a probability distribution factorizing with respect to a
given acyclic directed graph (DAG). The factorization guarantees that the in-
dependence structure of a probability distribution represented by a Bayesian
network is in harmony with the well-known d-separation criterion [4, 9].

For Bayesian networks, this factorization principle can be formulated in
the following way (here pa(i) denotes the set of parents of a node i of the
considered DAG, and fam(i) = pa(i)∪{i}): measure π is a Bayesian network
with a DAG G = (N,E) if for each i = 2, . . . , |N | (assuming that this ordering
of nodes is such that k ∈ pa(j) =⇒ k < j) marginal distribution π↓{1,2,...,i}

factorizes with respect to couple ({1, 2, . . . , i − 1}, fam(i)). And this is the
definition which can be directly taken over into Dempster-Shafer theory.

Definition 2 (Belief network). We say that a ba m is a belief network
(BN) with a DAG G = (N,E) if for each i = 2, . . . , |N | (assuming the
enumeration meets the property that k ∈ pa(j) =⇒ k < j) marginal ba
m↓{1,2,...,i} factorizes in the following sense: m↓{1,2,...,i} = m↓{1,2,...,i−1} ⊲
m↓fam(i).

From this definition, which differs from those used in [3,12], we immediately
get the following description of a BN.

Proposition 3 (Closed form for BN). Let G = (N,E) be a DAG, and
1, 2, . . . , |N | be its nodes ordered in the way that parents are before their
children. Ba m is a BN with graph G if and only if

m = m↓fam(1) ⊲ m↓fam(2) ⊲ . . . ⊲ m↓fam(|N |).

Taking advantage of the notion of factorization which is based on the
operator of composition, we can also introduce decomposable ba’s. In har-
mony with decomposable probability distribution, decomposable ba’s are de-
fined as those factorizing with respect to decomposable graphs, i.e. undirected
graphs whose cliques (maximal sets of nodes inducing complete subgraphs)
C1, C2, . . . , Cr can be ordered to meet the so-called running intersection
property (RIP): for all i = 2, . . . , r there exists j, 1 ≤ j < i, such that
Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj.

Definition 3 (Decomposable ba). Consider a decomposable graph G =
(N,F ) with cliques C1, C2, . . . , Cr and assume the cliques are ordered to meet
RIP. We say that a ba m is decomposable (Dba) with respect to G = (N,F )
if for each i = 2, . . . , r marginal ba m↓C1∪...∪Ci factorizes in the following
sense:

m↓C1∪...∪Ci = m↓C1∪...∪Ci−1 ⊲ m↓Ci .

Analogously to the closed form for a BN we get also closed form for Dba,
which is again an immediate consequence of the definition.
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Proposition 4 (Closed form for Dba). Let G = (N,F ) be decomposable
with cliques C1, C2, . . . , Cr and assume the cliques are ordered to meet RIP.
Ba m is decomposable with respect to G if and only if

m = m↓C1 ⊲ m↓C2 ⊲ . . . ⊲ m↓Cr .

Conditioning

Unfortunately, there is no generally accepted way of conditioning in D-S
theory. Though we do not have an ambition to fill in this gap, we need a tool
which will enable us to answer questions like: What is a belief for values of
variable Xj if we know that variable Xi has a value a? In probability theory
the answer is given by conditional probability distribution π(Xj |Xi = a). Let
us study a possibility to obtain this conditional distribution with the help of
the probabilistic operator of composition1.

Define a degenerated one-dimensional probability distribution κ|i;a as a
distribution of variable Xi achieving probability 1 for value Xi = a, i.e.,

κ|i;a(Xi = x) =

{
1 if x = a,
0 otherwise.

Now, compute (κ|i;a ⊲ π)↓{j} for a probability distribution π of variables XK

with i, j ∈ K:

(κ|i;a ⊲ π)↓{j}(y) = ((κ|i;a ⊲ π)↓{j,i})↓{j}(y) = (κ|i;a ⊲ π↓{j,i})↓{j}(y)

=
∑

x∈Xi

κ|i;a(x) · π↓{j,i}(y, x)

π↓{i}(x)
=

π↓{j,i}(y, a)

π↓{i}(a)
= π↓{j,i}(y|a).

Using an analogy, we consider in this paper that a proper answer to the
above-raised question, in a situation when ba m is taken into consideration,
is given by (m|i;a ⊲ m)↓{j} (or rather by the corresponding Bel function),
where m|i;a is a ba on Xi with only one focal element m({a}) = 1. This idea
is moreover supported by the semantics of m|i;a; this ba expresses the fact
that we are sure that variable Xi takes the value a. Therefore m|i;a ⊲ m is a
ba arising from m by enforcing it to have a marginal for variable Xi that is
equal to m|i;a (see Property 2 of Proposition 1). In other words it describes
the relationships among all variables from XN which is encoded in m, when
we know that Xi takes value a.

1 In probability theory the operator of composition is defined for distributions
π(XK) and κ(XL), for which π↓K∩L is absolutely continuous with respect to
κ↓K∩L, for each x ∈ XL∪K by the formula

(π ⊲ κ)(x) =
π(x↓K)κ(x↓L)

κ↓K∩L(x↓K∩L)
.

For the precise definition and its properties see [5].
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3 Local Computations

As said in Introduction, by local computations we understand a realization
of the ideas published by Lauritzen and Spiegelhalter [10]. They proposed
to compute a conditional probability (as for example π(Xd|Xi = a,Xj =
b,Xk = c)) for a distribution π represented in a form of a Bayesian network
in the following two steps.

1. Bayesian network is transformed into a decomposable model representing
the same probability distribution π;

2. the required conditional distribution is computed by a process consisting
of computations with the marginal distributions corresponding to the
cliques of the respective decomposable graph.

This means that to get the desired conditional distribution one needs to
know only the structure of the decomposable models (e.g. the respective
decomposable graph) and the respective system of marginal distributions.

And it is the goal of this section to show that practically the same com-
putational process can be realized also in D-S theory.

Conversion of a BN into Dba

The process realizing this step can be directly taken over from probability
theory [4]. If G = (N,E) is a DAG of some belief network, then undirected
graph G = (N, Ē), where

Ē =
{
{i, j} ∈

(
N
2

)
: ∃k ∈ N {i, j} ⊆ fam(k)

}
,

is a so-called moral graph from which one can get the necessary decomposable
graph G = (V, F ) (which will be uniquely specified by a system of its cliques
C1, C2, . . . , Cr) by any heuristic approach used for moral graph triangula-
tion [1] (it is known that the process of looking for an optimal triangulated
graph is a NP hard problem). Then it is an easy task to compute the neces-
sary marginal ba’s m↓C1 , . . . ,m↓Cr when one realizes that there must exist
an ordering (let it be the ordering C1, C2, . . . , Cr) of the cliques meeting RIP
and simultaneously

i ∈ pa(j) =⇒ f(i) ≤ f(j),

where f(k) = min(ℓ : k ∈ Cℓ).

Computation of Conditional ba

In comparison with the previous step, this computational process is much
more complex. We have to show that having a decomposable ba m = m↓C1 ⊲
. . . ⊲ m↓Cr one can compute (m|i;a ⊲ m)↓{j} locally.
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For this, we take advantage of the famous fact that if C1, C2, . . . , Cr can be
ordered to meet RIP, then for each k ∈ {1, 2, . . . , r} there exists an ordering
meeting RIP for which Ck is the first one. So consider any Ck for which
i ∈ Ck, and find the ordering meeting RIP which starts with Ck. Without
loss of generality let it be C1, C2, . . . , Cr (so, i ∈ C1).

Considering ba m decomposable with respect to a graph with cliques
C1, C2, . . . , Cr, our goal is to compute

(m|i;a ⊲ m)↓{j} =
(
m|i;a ⊲ (m↓C1 ⊲ m↓C2 ⊲ . . . ⊲ m↓Cr)

)↓{j}
.

However, at this moment we have to assume that m↓{i}({a}) is positive.
Under this assumption we can apply Proposition 2 r − 1 times getting

m|i;a ⊲ (m↓C1 ⊲ m↓C2 ⊲ . . . ⊲ m↓Cr)

= m|i;a ⊲ (m↓C1 ⊲ m↓C2 ⊲ . . . ⊲ m↓Cr−1) ⊲ m↓Cr

= . . . = m|i;a ⊲ m↓C1 ⊲ m↓C2 ⊲ . . . ⊲ m↓Cr ,

from which computationally local process2

m̄1 = m|i;a ⊲ m↓C1 ,

m̄2 = m̄↓C2∩C1

1 ⊲ m↓C2 ,

m̄3 = (m̄1 ⊲ m̄2)
↓C3∩(C1∪C2) ⊲ m↓C3 ,

...

m̄r = (m̄1 ⊲ . . . ⊲ m̄r−1)
↓Cr∩(C1∪...Cr−1) ⊲ m↓Cr ,

yields a sequence m̄1, . . . , m̄r, for which m|i;a ⊲ m = m̄1 ⊲ . . . ⊲ m̄r, and each

m̄k = (m|i;a ⊲ m)↓Ck . Therefore, to compute (m|i;a ⊲ m)↓{j} it is enough to

find any k such that j ∈ Ck because in this case (m|i;a ⊲ m)↓{j} = m̄
↓{j}
k .

This simple idea can be quite naturally generalized in the following sense.
Considering a model with basic assignment m and having a prior information
about values of variables Xi1 = a1, . . . , Xit = at, the goal may be to compute

(m|i1,...,it;a1,...,at
⊲ m)↓{j} = (m|i1;a1

⊲ . . . ⊲ m|it;at
⊲ m)↓{j}.

It can be done easily just by repeating the described computational process
as many times as the number of given values (in our case t). This is possible
because ba m|i1;a1

⊲ m = m̄1 ⊲ . . . ⊲ m̄r is again decomposable and therefore
ba’s m̄1, . . . , m̄r can be again reordered so that the respective sequence of
index sets meets RIP and index i2 belongs to the first index set, and so on.
However, and it is important to stress it, in this case we have to assume

2 Notice that due to the assumption that C1, . . . , Cr meets RIP, for each k there

exists ℓ such that (m̄1 ⊲ . . . ⊲ m̄k−1)
↓Ck∩(C1∪...Ck−1) = m̄

↓Ck∩(C1∪...Ck−1)

ℓ , which
ensures locality of the described computations.
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that the combination of given values, which specifies the condition, is a focal
element of ba m, i.e., regarding the condition specified above, we have to
assume that m↓{i1,...,it}({a1, . . . , at}) > 0.

4 Conclusions

In the paper we have shown that with the help of the operator of composi-
tion it is possible to define BN’s as a D-S counterpart of Bayesian networks.
Moreover, we have shown that under the assumption that a given condition
is a focal element of a ba represented by a BN, one can realize a process
yielding a basic assignment representing a conditional belief. This computa-
tional process can be performed locally, i.e., all the computations involves
only marginal distributions of the respective ba. The only weak point of the
presented approach is that it can be applied only under an additional as-
sumption requiring that the prior information specifying the condition is a
focal element of the ba represented by the given BN.

Acknowledgements. This work was supported by GAČR under the grants
ICC/08/E010, and 201/09/1891, and by MŠMT ČR under grants 1M0572 and
2C06019.
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Some New Entropies on the
Interval-Valued Fuzzy Set

Wenyi Zeng, Hongxing Li, and Shuang Feng

Abstract. In this paper, we review some existing entropies of interval-valued
fuzzy set, and propose some new formulas to calculate the entropy of interval-
valued fuzzy set. Finally, we give one comparison with some existing entropies
to illustrate our proposed entropies reasonable.

Keywords: Fuzzy set, Interval-valued fuzzy set, Normalized distance,
Similarity measure, Entropy.

1 Introduction

Since the fuzzy set was introduced by Zadeh [13], fuzzy set theory has become
an important approach to treat imprecision and uncertainty. Another well-
known generalization of an ordinary fuzzy set is the interval-valued fuzzy
set, which was first introduced by Zadeh [14, 15, 16]. Since then, many re-
searchers have investigated this topic and have established some meaningful
conclusions. For example, Wang et al. [11] investigated the combination and
normalization of the interval-valued belief structures, Deschrijver [5] investi-
gated the arithmetic operators of the interval-valued fuzzy set theory. More-
over, some researchers have pointed out that there is a strong connection
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between Atanassov’s intuitionistic fuzzy sets and the interval-valued fuzzy
sets. For more details, readers can refer to [4, 6, 9].

The entropy of fuzzy set is an important topic in the fuzzy set theory. The
entropy of a fuzzy set describes the fuzziness degree of a fuzzy set and was
first mentioned by Zadeh [13] in 1965. Several scholars have studied it from
different points of view. For example, in 1972, De Luca and Termini [3] first
introduced some axioms which captured people’s intuitive comprehension to
describe the fuzziness degree of a fuzzy set. Kaufmann [8] proposed a method
for measuring the fuzziness degree of a fuzzy set by a metric distance between
its membership function and the membership function of its nearest crisp set.
Another method presented by Yager [12] was to view the fuzziness degree of
a fuzzy set in terms of a lack of distinction between the fuzzy set and its
complement. Based on these concepts and their axiomatic definitions, Zeng
and Li [18] investigated the relationship among the inclusion measure, the
similarity measure, and the fuzziness of fuzzy sets.

Aimed at the concept of entropy of fuzzy set, some researchers extended
these concept to the interval-valued fuzzy set theory and investigated its re-
lated topic from different points of view. For example, Burillo and Bustince [2]
introduced the concept of entropy of Atanassov’s intuitionistic fuzzy set and
the interval-valued fuzzy set in 1996. Zeng and Li [17] introduced the en-
tropy of the interval-valued fuzzy set by using a different method and inves-
tigated the relationship between the similarity measure and the entropy of
the interval-valued fuzzy sets. Wang and Li [10] studied the integral represen-
tation of the interval-valued fuzzy degree and the interval-valued similarity
measure. Grzegorzewski [7] proposed a definition of the distance of interval-
valued fuzzy sets based on the Hausdroff metric. In this paper, we propose
some new formulas to calculate the entropy of interval-valued fuzzy set and
compare with some existing entropies to illustrate our proposed entropies
reasonable.

The organization of our work is as follows. In section 2, some basic no-
tions of interval-valued fuzzy set are reviewed. In section 3, we propose some
new entropies of interval-valued fuzzy set based on the distance and the sim-
ilarity measure between interval-valued fuzzy sets, and do some comparisons
between these entropies. The conclusion is given in the last section.

2 Some Notions

Throughout this paper, we use X = {x1, x2, · · · , xn} to denote the discourse
set, and IVFSs stand for the set of all interval-valued fuzzy subsets in X . A
expresses an interval-valued fuzzy set, and the operation “c” stands for the
complement operation.

Let L = [0, 1] and [L] be the set of all closed subintervals of the interval
[0, 1]. Especially for an arbitrary element a ∈ [0, 1], we assume that a is the
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same as [a, a], namely, a = [a, a]. Then, according to Zadeh’s extension princi-
ple [13], for any a = [a−, a+], b = [b−, b+] ∈ [L], we can popularize some oper-
ators such as

∨
,
∧

, and c to [L] and have a
∨
b = [a−

∨
b−, a+

∨
b+], a

∧
b =

[a−
∧
b−, a+

∧
b+], ac = [1 − a+, 1 − a−],

∨
t∈W at = [

∨
t∈W a−t ,

∨
t∈W a+

t ]

and
∧

t∈W at = [
∧

t∈W a−t ,
∧

t∈W a+
t ], where W denotes an arbitrary index

set. Furthermore, we have a = b ⇐⇒ a− = b−, a+ = b+, a � b ⇐⇒ a− �
b−, a+ � b+, and a < b ⇐⇒ a � b and a �= b; then there exists a minimal
element 0 = [0, 0] and a maximal element 1 = [1, 1] in [L].

We call a mapping, A : X −→ [L] an interval-valued fuzzy set in X . For
every A ∈IVFSs and x ∈ X , then A(x) = [A−(x), A+(x)] is the degree of
membership of an element x to the interval-valued fuzzy set A. Thus, fuzzy
sets A− : X → [0, 1] and A+ : X → [0, 1] are called low and upper fuzzy
sets of the interval-valued fuzzy set A, respectively. For simplicity, we denote
A = [A−, A+], F(X) and P(X) stand for the set of all fuzzy sets and crisp
sets in X , respectively.

If A,B ∈IVFSs, then the following operations can be found in Zeng and
Li [17].

A ⊆ B iff ∀x ∈ X,A−(x) ≤ B−(x) and A+(x) ≤ B+(x),

A = B iff ∀x ∈ X,A−(x) = B−(x) and A+(x) = B+(x),

(A)c(x) = [(A+(x))c, (A−(x))c], ∀x ∈ X ,

(A ∩B)(x) = [A−(x) ∧B−(x), A+(x) ∧B+(x)], ∀x ∈ X ,

(A ∪B)(x) = [A−(x) ∨B−(x), A+(x) ∨B+(x)], ∀x ∈ X .

Definition 1. For any positive real number n, A ∈ IVFSs, we order An ∈
IVFSs, and its membership function is defined as follows.

An(x) = [(A−(x))n, (A+(x))n], for every x ∈ X

For some linguistic hedges such that “very”, “more or less” and “slightly”,
we frequently use the mathematical models An to represent the modifiers of
linguistic variables. For example, we define the concentration and dilation of
the interval-valued fuzzy set A as follows.

Concentration : C(A) = A2, Dilation : D(A) = A
1
2

Therefore, we have some mathematical models in the following.

VeryA = C(A) = A2, more or lessA = D(A) = A
1
2 , Very veryA = A4

For example, let X = {6, 7, 8, 9, 10}, A = {(6, [0.1, 0.2]), (7, [0.3, 0.5]),
(8, [0.6, 0.8]), (9, [0.9, 1]), (10, [1, 1])}, according to our mathematical models,
then we have:

A
1
2 = {(6, [0.316, 0.448]), (7, [0.548, 0.707]), (8, [0.775, 0.894]),

(9, [0.949, 1]), (10, [1, 1])}
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A2 = {(6, [0.01, 0.04]), (7, [0.09, 0.25]), (8, [0.36, 0.64]),
(9, [0.81, 1]), (10, [1, 1])}

A4 = {(6, [0.0, 0.0016]), (7, [0.0081, 0.065]), (8, [0.1296, 0.4096]),
(9, [0.6561, 1]), (10, [1, 1])}

3 Main Results

In 1996, Burillo and Bustince [2] introduced the concept of the entropy of the
interval-valued fuzzy set. Later, Zeng and Li [17] used a different approach
from Burillo and Bustince’s [2] and extended De Luca and Termini [3] axioms
for the fuzzy set to the interval-valued fuzzy set.

Definition 2. [17] A real function E : IVFSs−→ [0, 1] is called an entropy
of an interval-valued fuzzy set, if E satisfies the following properties:

(E1) E(A) = 0 if A is a crisp set;
(E2) E(A) = 1 iff A−(xi) + A+(xi) = 1, ∀i = 1, 2, · · · , n;
(E3) E(A) ≤ E(B) if A is less fuzzy than B, i.e., A−(xi) ≤ B−(xi) and

A+(xi) ≤ B+(xi) for B−(xi) + B+(xi) ≤ 1, ∀i = 1, 2, · · · , n or A−(xi) ≥
B−(xi) and A+(xi) ≥ B+(xi) for B−(xi) + B+(xi) ≥ 1, ∀i = 1, 2, · · · , n;

(E4) E(A) = E(Ac).

In the following, we will give two formulas to calculate the entropy of the
interval-valued fuzzy set A.

E1(A) = 1− 1

n

n∑

i=1

|A−(xi) + A+(xi)− 1| (1)

E2(A) = 1−

√√√√ 1

n

n∑

i=1

(
A−(xi) + A+(xi)− 1

)2

(2)

Definition 3. [17] A real function N : IVFSs× IVFSs−→ [0, 1] is called
the similarity measure of the interval-valued fuzzy sets, if N satisfies the
following properties:

(N1) N(A,Ac) = 0 if A is a crisp set;
(N2) N(A,B) = 1 iff A = B;
(N3) N(A,B) = N(B,A);
(N4) For all A,B,C ∈IVFSs, if A ⊆ B ⊆ C, then N(A,C) ≤ N(A,B),

N(A,C) ≤ N(B,C).

N1(A,B) = 1− 1

2n

n∑

i=1

(
|A−(xi)−B−(xi)|+ |A+(xi)−B+(xi)|

)
(3)

In many theoretical and practical problems, people want to numerically ex-
press the differences of two objects (notions) by means of the distance of
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the corresponding fuzzy sets. For example, Grzegorzewski [7] proposed a dis-
tance for the interval-valued fuzzy sets based on the Hausdroff metric. For
the interval-valued fuzzy sets A and B, Atanassov [1] proposed the following
formulas to calculate the normalized Hamming distance and the normalized
Euclidean distance between the interval-valued fuzzy sets A and B.

Normalized Hamming distance d1(A,B)

d1(A,B) =
1

2n

n∑

i=1

(
|A−(xi)−B−(xi)|+ |A+(xi)−B+(xi)|

)
(4)

Normalized Euclidean distance d2(A,B)

d2(A,B) =

√√√√ 1

2n

n∑

i=1

(
(A−(xi)−B−(xi))2 + (A+(xi)−B+(xi))2

)
(5)

Obviously, they are straightforward generalizations of distances used in the
classical set, which are obtained by replacing the characteristic functions of
the classical sets with the membership functions of the interval-valued fuzzy
sets.

Theorem 1. Given a real function f : [0, 1]→ [0, 1], if f is a strictly mono-
tone decreasing function, and d is the normalized distance of the interval-
valued fuzzy sets, for A,B ∈IVFSs, then

N(A,B) =
f(d(A,B)) − f(1)

f(0)− f(1)

is the similarity measure of the interval-valued fuzzy sets A and B.

Proof. (N1) If A is a crisp set, then known by the definition of the normalized
distance of the interval-valued fuzzy sets, we have d(A,Ac) = 1, therefore,
N(A,Ac) = 0.

(N2) Known by the expression of N(A,B),

N(A,B) = 1 iff f(d(A,B)) − f(1) = f(0)− f(1)
iff d(A,B) = 0
iff A = B

(N3) Known by the definition of the normalized distance d(A,B), we have
d(A,B) = d(B,A), therefore, N(A,B) = N(B,A).

(N4) Since A ⊆ B ⊆ C, then we have d(A,B) ≤ d(A,C), d(B,C) ≤
d(A,C), and f is a strictly monotone decreasing function. Thus, we have
f(d(A,B)) ≥ f(d(A,C)) and f(d(B,C)) ≥ f(d(A,C)), and therefore, we
obtain N(A,C) ≤ N(A,B), N(A,C) ≤ N(B,C).

Hence, we complete the proof of Theorem 1. ✷
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Now, our problem is how to select a useful and reasonable function f . In
general, the simplest function f is chosen as f(x) = 1 − x. Thus, the cor-
responding similarity measure of the interval-valued fuzzy sets A and B is
N(A,B) = 1− d(A,B).

Considering that an exponential operation is highly useful in dealing with
a similarity relation and cluster analysis in the fuzzy set theory, therefore,
we choose f(x) = e−x. Then, the corresponding similarity measure of the
interval-valued fuzzy sets A and B is

Ne(A,B) =
e−d(A,B) − e−1

1− e−1
. (6)

On the other hand, we may choose f(x) =
1

1 + x
, then the corresponding

similarity measure of the interval-valued fuzzy sets A and B is

Nc(A,B) =
1− d(A,B)

1 + d(A,B)
. (7)

And if we choose f(x) = 1 − x2, then we can obtain the corresponding
similarity measure of the interval-valued fuzzy sets A and B,

Nd(A,B) = 1− d2(A,B). (8)

Theorem 2. Suppose that d and N are the normalized distance and the sim-
ilarity measure of the interval-valued fuzzy sets, respectively, for A ∈IVFSs,
then E(A) = N(A,Ac) is the entropy of the interval-valued fuzzy set A.

We choose Eq.(4) being the distance of interval-valued fuzzy sets, and Eq.
(3), (6), (7) and (8) being the similarity measure of interval-valued fuzzy sets,
respectively, then we have the following formulas to calculate the entropy of
interval-valued fuzzy set A.

E1(A) = 1− 1

n

n∑

i=1

|A−(xi) + A+(xi)− 1| (9)

Ee(A,B) =

exp(− 1

n

n∑

i=1

|A−(xi) + A+(xi)− 1|)− exp(−1)

1− exp(−1)
(10)

Ec(A,B) =

1− 1

n

n∑

i=1

|A−(xi) + A+(xi)− 1|

1 +
1

n

n∑

i=1

|A−(xi) + A+(xi)− 1|
(11)

Ed(A,B) = 1− (
1

n

n∑

i=1

|A−(xi) + A+(xi)− 1|)2 (12)
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Thus, we have the following comparison result.

Example 1. Let X = {6, 7, 8, 9, 10}, A = {(6, [0.1, 0.2]),(7, [0.3, 0.5]),
(8, [0.6, 0.8]), (9, [0.9, 1]), (10, [1, 1])}, then we have:

A
1
2 = {(6, [0.316, 0.448]), (7, [0.548, 0.707]), (8, [0.775, 0.894]),

(9, [0.949, 1]), (10, [1, 1])}

A2 = {(6, [0.01, 0.04]), (7, [0.09, 0.25]), (8, [0.36, 0.64]),
(9, [0.81, 1]), (10, [1, 1])}

A4 = {(6, [0.0, 0.0016]), (7, [0.0081, 0.065]), (8, [0.1296, 0.4096]),
(9, [0.6561, 1]), (10, [1, 1])}

Table 1 Results of the entropy of interval-valued fuzzy set with different entropy
formulas

IVFSs d E1 Ee Ec Ed

A
1
2 0.622 0.378 0.267 0.233 0.613

A 0.64 0.36 0.252 0.22 0.59
A2 0.684 0.316 0.216 0.188 0.532
A4 0.808 0.192 0.123 0.106 0.347

From the viewpoint of concentration and dilation operators, the entropies
of these interval-valued fuzzy sets have the following requirement:

E(A
1
2 ) ≥ E(A) ≥ E(A2) ≥ E(A4)

Obviously, known by the results of Table 1, we find that our calculating
conclusion is very accordance with our knowledge.

Correspondingly, the readers can use the similar method and extend these
conclusions as above to the continuous set X = [a, b].

4 Conclusions

Considering the importance of the entropy of interval-valued fuzzy set, in this
paper, we propose some new formulas to calculate the entropy of interval-
valued fuzzy set. We believe that some different normalized distances and
similarity measures of interval-valued fuzzy sets will induce more formulas to
calculate the entropy of interval-valued fuzzy set. on the other hand, known
by Zeng and Li [17], some different entropies of interval-valued fuzzy set
will also induce more formulas to calculate the similarity measure of interval-
valued fuzzy sets based on the transformation between the similarity measure
and the entropy of interval-valued fuzzy sets. These conclusions will rich
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information measure of interval-valued fuzzy sets. Therefore, our conclusions
can be extensively applied in many fields such as pattern recognition, image
processing, approximate reasoning, fuzzy control, and so on.
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Bottleneck Combinatorial
Optimization Problems with Fuzzy
Scenarios

Adam Kasperski and Pawe�l Zieliński

Abstract. In this paper a class of bottleneck combinatorial optimization
problems with unknown costs is discussed. A scenario set containing all the
costs realizations is specified and a possibility distribution in this scenario set
is provided. Several models of uncertainty with solution algorithms for each
uncertainty representation are presented.

Keywords: Bottleneck optimization, Uncertainty, Possibility theory.

1 Introduction

A combinatorial optimization problem consists of a finite set of elements
E = {e1, . . . , en} and a set Φ ⊆ 2E of subsets of E, called the set of fea-
sible solutions. Each element e ∈ E has a cost ce and we seek a solution
X ∈ Φ whose bottleneck cost f(X) = maxe∈X ce is minimal. Such formu-
lation encompasses a large variety of classical combinatorial optimization
problems, for instance: the bottleneck path, assignment, spanning tree, etc.
(see, e.g. [1]).

In this paper we study the case in which the element costs are uncertain.
In general, this uncertainty can be modeled by specifying a scenario set Γ ,
which contains all possible cost realizations, called scenarios. Several ways
of defining the scenario set Γ have been proposed in literature. Among the
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most popular are the discrete and interval uncertainty representations (see,
e.g. [7]). In the former, Γ contains a finite number of distinct cost scenarios.
In the latter one, a closed interval is specified for each element cost and
Γ is the Cartesian product of all these intervals. The discrete and interval
scenario representations model different types of uncertainty. The discrete
representation allows us to express a global uncertainty, connected with some
events having a global influence on the element costs. On the other hand, the
interval scenario representation is appropriate for modeling a local uncertainty
resulting from an imprecise nature of a single cost. In this case the value of
a cost may vary independently on the values of the remaining costs.

The method of choosing a solution depends on additional information pro-
vided with the scenario set Γ . If a probability distribution in Γ is given, then
stochastic optimization is appropriate. If a possibility distribution in Γ is
specified, then fuzzy optimization techniques can be applied [5]. Finally, if no
distribution in the scenario set is given, then robust optimization approach
can be used [2,7]. In this paper we assume that a possibility distribution in the
scenario set Γ is provided. So, in order to choose a solution, we use the fuzzy
possibilistic optimization techniques (see, e.g., [6]). Our approach also gener-
alizes the robust minmax and minmax regret models (see, e.g., [2, 3, 7]). We
propose several descriptions of the scenario set in which both global and local
uncertainty are taken into account. An optimal solution to all the problems
considered can be computed in polynomial time if only their deterministic
counterparts are polynomially solvable.

2 Robust Bottleneck Problems

In this section we recall some known facts on the robust bottleneck combi-
natorial optimization problems. Let Γ be a scenario set and let ce(S) be the
cost of element e ∈ E under scenario S ∈ Γ . We use f(X,S) = maxe∈X ce(S)
to denote the bottleneck cost of solution X under scenario S. We also denote
by f∗(S) the bottleneck cost of an optimal solution under S. The quantity
δ(X,S) = f(X,S)−f∗(S) is called a deviation of solution X under S. In the
robust approach two criteria of choosing a solution are widely applied. The
first, called a minmax criterion, leads to the following problem:

ROB1: min
X∈Φ

max
S∈Γ

f(X,S).

The second, called a minmax regret criterion, leads to the following problem:

ROB2: min
X∈Φ

max
S∈Γ

δ(X,S).

A deeper discussion on both robust criteria can be found in [7].
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There are two popular models of uncertainty representation. In the discrete
uncertainty representation the set of scenarios Γ = {S1, . . . , SK} contains
K ≥ 1 distinct cost scenarios. Such a description of the scenario set is appro-
priate if we wish to model a global uncertainty, where each scenario Sj ∈ Γ
corresponds to some event having a global influence on the costs. Solving
ROB1 (resp. ROB2) can be then reduced to computing an optimal solution
to the deterministic problem with the element costs c∗e = max1≤j≤K ce(Sj)
(resp. c∗e = max1≤j≤K(ce(Sj)− f∗(Sj))), e ∈ E, (see [2]).

In the interval uncertainty representation, for each element e ∈ E a closed
interval [ce, ce] is specified, which contains all possible values of the cost of
e. Then Γ = ×e∈E [ce, ce] is the Cartesian product of all the uncertainty
intervals. This representation allows us to model a local uncertainty, which
represents a varying nature of the element costs. We have to assume, however,
that the element costs are unrelated, which means that the value of an element
cost does not depend on the values of the remaining element costs. In this
case, ROB1 is trivial, since maxS∈Γ f(X,S) = maxe∈X ce, and it is enough
to solve the deterministic problem with the element costs ce, e ∈ E. The
ROB2 problem is more complex. Let Se ∈ Γ be the scenario in which the
cost of e is ce and the costs of all f �= e are cf . It was shown in [3], then
solving ROB2 reduces to computing an optimal solution of its deterministic
counterpart with the element costs c∗e = max{0, ce − f∗(Se)}, e ∈ E.

3 Possibilistic Bottleneck Problems

We first recall some basic notions on possibility theory (a more detailed
description of this theory can be found in [4]). Let Z̃ be an unknown
real valued quantity. We specify for Z̃ a possibility distribution πZ̃ , where

πZ̃(z) = Π(Z̃ = z) is a possibility of the event that Z̃ will take the value of z.

Let Ã be a fuzzy set in IR with membership function μÃ. Then “Z̃ ∈ Ã” is a
fuzzy event and the possibility that it will occur can be computed as follows:

Π(Z̃ ∈ Ã) = sup
z∈IR

min{πZ̃(z), μÃ(z)}. (1)

The necessity of the event “Z̃ ∈ Ã” can be computed in the following way:

N(Z̃ ∈ Ã) = 1−Π(Z̃ ∈ Ã′), (2)

where Ã′ is the complement of Ã with the membership function 1 − μÃ(z).

We obtain a particular case of the possibility distribution if we assume that Z̃
is a fuzzy interval. Then πZ̃ is quasi concave, upper semicontinuous and has

a bounded support. These assumptions imply that each λ-cut of Z̃, i.e. the
set Z̃λ = {z : πZ̃(z) ≥ λ} = [z(λ), z(λ)], λ ∈ (0, 1], is a closed interval (see,

e.g., [4]). We will also assume that Z̃0 is the smallest closed set containing
the support of Z̃.
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We now describe scenario set Γ by a possibility distribution πΓ in IRn.
Namely, the value of πΓ (S) ∈ [0, 1], S ∈ IRn, is a possibility of the event that
the cost scenario S = (ce(S))e∈E will occur. The possibility distribution πΓ

coincides with the membership function μΓ of the fuzzy subset Γ of IRn,
πΓ = μΓ . We assume that μΓ (S) = 1 for at least one S ∈ IRn, Γ is a bounded
fuzzy set, i.e. ∀λ > 0, ∃c ∈ IR {S ∈ IRn : μΓ (S) ≥ λ} ⊂ {S ∈ IRn : ||S|| ≤ c},
and μΓ is an upper semicontinuous function. Now the possibility distributions
πf̃(X) and πδ̃(X) for the uncertain cost f̃(X) and deviation δ̃(X) of a given
solution X are defined as follows:

πf̃(X)(z) = Π(f̃(X) = z) = sup
{S∈Γ :f(X,S)=z}

πΓ (S),

πδ̃(X)(z) = Π(δ̃(X) = z) = sup
{S∈Γ :δ(X,S)=z}

πΓ (S).
(3)

In order to choose a solution we need an additional information from a
decision maker. Assume that he/she expresses his/her preferences about the
solution cost (deviation) by means of a fuzzy goal G̃, which is a fuzzy interval
with a bounded support and a nonincreasing upper semicontinuous member-
ship function μG̃ : IR→ [0, 1]. The value of μG̃(g) is the degree of acceptance

of the solution cost (deviation) equal to g. We will denote by G̃′ the com-
plement of G̃ with the membership function 1− μG̃(z). Now f̃(X) ∈ G̃ and

δ̃(X) ∈ G̃ are fuzzy events and it is natural to compute a solution X which
maximizes the necessity of these events (see also [6]). We thus need to solve
the optimization problems maxX∈Φ N(f̃(X) ∈ G̃) and maxX∈Φ N(δ̃(X) ∈ G̃).
By applying (2) we get the equivalent formulations of both problems:

Fuzzy ROB1 : min
X∈Φ

Π(f̃(X) ∈ G̃′) and Fuzzy ROB2 : min
X∈Φ

Π(δ̃(X) ∈ G̃′).

The following theorem is crucial for solving both fuzzy problems:

Theorem 1. An optimal solution of Fuzzy ROB1 (resp. Fuzzy ROB2)
can be obtained by computing an optimal solution of its deterministic coun-
terpart with the costs c∗e = supS min{πΓ (S), μG̃′(ce(S))}, e ∈ E (resp. c∗e =
supS min{πΓ (S), μG̃′(ce(S)− f∗(S))}, e ∈ E).

Proof. The theorem follows from (1), (3) and the properties of μG̃′ . ✷

Theorem 1 allows us to transform the fuzzy problems into the equivalent
deterministic ones. However, computing the costs c∗e for e ∈ E requires of
solving an optimization problem, which may be a difficult task. We now
show some additional results on both problems which can help to simplify
the computations. Let Γ λ, λ ∈ (0, 1] be the set of all the scenarios whose
possibility of occurrence is not less than λ, i.e. Γ λ = {S : πΓ (S) ≥ λ}.
Note that Γ λ is a crisp subset of IRn. Let us define the bounds f

λ
(X) =

supS∈Γ λ f(X,S) and δ
λ
(X) = supS∈Γ λ δ(X,S) for a given X ∈ Φ.
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Theorem 2. The following equalities hold:

Π(f̃(X) ∈ G̃′) = inf{λ : λ ≥ μG̃′(f
λ
(X))},

Π(δ̃(X) ∈ G̃′) = inf{λ : λ ≥ μG̃′(δ
λ
(X))}.

Proof. The theorem follows from (1) and the properties of μG̃′ . ✷

Theorem 3, the boundedness of Γ , the upper semicontinuity of μΓ and the
continuity of f(X,S) with respect to S show that Fuzzy ROB1 and Fuzzy

ROB2 can be represented as the following optimization problems:

minλ

λ ≥ μG̃′(f
λ
(X)),

X ∈ Φ,
λ ∈ [0, 1],

min λ

λ ≥ μG̃′(δ
λ
(X)),

X ∈ Φ,
λ ∈ [0, 1],

(4)

Consider now the following problems for a fixed λ ∈ (0, 1]:

min
X∈Φ

f
λ
(X) = min

X∈Φ
sup

S∈Γ λ

f(X,S), (5)

min
X∈Φ

δ
λ
(X) = min

X∈Φ
sup

S∈Γ λ

δ(X,S). (6)

By combining (4) and (5) we get that Fuzzy ROB1 can be solved by applying
a binary search on λ ∈ [0, 1] (see Algorithm 4). If problem (5) can be solved
in O(f(n)) time, then Fuzzy ROB1 can be solved in O(f(n) log ǫ−1) time
with a given precision ǫ > 0. A similar algorithm can be used to solve Fuzzy

ROB2. It is enough to modify lines 3 and 4 in Algorithm 4.

Algorithm 4. The algorithm for solving Fuzzy ROB1

λ := 0.5, λ1 := 0, k := 2, X := ∅1

while |λ − λ1| > ǫ do2

Find an optimal solution Y to problem (5)3

if λ ≥ μG̃′(f
λ
(Y )) then λ := λ − 1

2k , X := Y else λ := λ + 1
2k4

k := k + 1, λ1 := λ5

return X6

Model I. Suppose that one of the pairwise distinct scenarios S1, . . . , SK can
occur and the possibility that it will be Sj equals πj . Hence the possibility
distribution πΓ (S) = πj if S = Sj for some j = 1, . . . ,K and πΓ (S) =
0 otherwise. A sample problem of this type is shown in Fig. 1a. This is
the shortest path problem, where E = {e1, . . . , e5} is the set of arcs of the
sample graph G and Φ = {{e1, e4}, {e1, e3, e5}, {e2, e5}} contains all the paths
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between nodes s and t in G. There are three possible cost scenarios, denoted
by S1, S2 and S3, each of them can occur with a given possibility (see Fig. 1b).
So, in this model only the global uncertainty is taken into account. Theorem 1
now implies:

Theorem 3. An optimal solution to Fuzzy ROB1 (resp. Fuzzy ROB2)
can be obtained by computing an optimal solution of its deterministic coun-
terpart with the costs ĉe = max1≤j≤K min{πj , μG̃′(ce(Sj))}, e ∈ E (resp.
ĉe = max1≤j≤K min{πj , μG̃′(ce(Sj)− f∗(Sj))}, e ∈ E).

Hence both fuzzy problems are polynomially solvable if only their determin-
istic counterparts are polynomially solvable.

Model II. Consider again the sample problem shown in Fig. 1a. Three cost
scenarios shown in this example correspond to three events which globally
influence the arc costs. However, it is quite possible that the costs under
each event are still unknown. For example, the costs may represent the arc
traveling times and it is reasonable to assume that we only know their lower
and upper bounds. This situation is shown in Fig. 1c. The three columns
represent three possible events each of which can occur with a given possibility
πj . Furthermore, the j-th event results in an interval scenario set Γj , which is
the Cartesian product of interval costs. Consequently, each scenario S ∈ Γj

has the possibility of occurrence equal to πj and one can compute πΓ (S) by
taking the maximum πj over all j such that S ∈ Γj . For instance, the scenario
S = (3, 3, 4, 1, 4) can occur if the first or the second event will happen. Thus
πΓ (S) = max{π1, π2} = 1.

Let us now formalize the model. Let Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓK , where Γj is
the Cartesian product of the intervals [cj

e, c
j
e] for e ∈ E. Each scenario S ∈ Γj

has a possibility of occurrence equal to πj . Then

πΓ (S) = max
{1≤j≤K:S∈Γj}

πj (7)

and πΓ (S) = 0 if S /∈ Γj for all j = 1, . . . ,K.

Theorem 4. An optimal solution of Fuzzy ROB1 (resp. Fuzzy ROB2)
can be obtained by computing an optimal solution of its deterministic coun-
terpart with the costs ĉe = max1≤j≤K min{πj , μG̃′(cj

e)}, e ∈ E (resp. ĉe =
max1≤j≤K min{πj , μG̃′(cj

e − f∗(Se
j ))}, e ∈ E, where Se

j is the scenario such

that ce(S
e
j ) = cj

e and cf (Se
j ) = cj

f for all f �= e).

s t

e1

e2

e3

e4

e5

(a) (b) (c) (d)πj 0.2 1 0.8
S1 S2 S3

e1 3 4 1
e2 1 6 3
e3 2 3 2
e4 3 8 1
e5 1 1 7

πj 0.2 1 0.8
Γ1 Γ2 Γ3

e1 [1,4] [3,5] [1,1]
e2 [2,6] [1,9] [2,7]
e3 [4,4] [3,5] [5,6]
e4 [1,5] [1,8] [3,4]
e5 [2,7] [3,5] [2,6]

πj 0.2 1 0.8
Γ1 Γ2 Γ3

e1 (1,2,4) (3,4,5) (0,1,1)
e2 (2,4,6) (1,5,9) (2,5,7)
e3 (3,4,4) (3,4,5) (4,5,6)
e4 (1,2,5) (1,6,8) (2,3,4)
e5 (2,4,7) (3,4,5) (2,4,6)

Fig. 1 A sample shortest path problem with three models of uncertainty.
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Proof. We present the proof for Fuzzy ROB2 (the proof for Fuzzy ROB1 is
similar). We show that ĉe = c∗e for all e ∈ E, where c∗e are the element costs
from Theorem 1. Let j maximize the right hand side of the formula for ĉe. Then
Se

j ∈ Γj , πΓ (Se
j ) ≥ πj (see (7)) and μG̃′(ce(S

e
j )− f∗(Se

j )) = μG̃′(cj
e − f∗(Se

j )).

Therefore, ĉe = min{πj , μG̃′(cj
e − f∗(Se

j ))} ≤ min{πΓ (Se
j ), μG̃′(ce(S

e
j ) −

f∗(Se
j ))} ≤ c∗e. On the other hand, let S be a scenario that maximizes the right

hand side of the formula for c∗e (see Theorem 1). Suppose that πΓ (S) = πj

and S ∈ Γj (see (7)). Since μG̃′ is nondecreasing, μG̃′(ce(S
e
j ) − f∗(Se

j )) ≥
μG̃′(ce(S) − f∗(S)). Therefore, c∗e = min{πΓ (S), μG̃′(ce(S) − f∗(S))} ≤
min{πj , μG̃′(ce(S

e
j )− f∗(Se

j ))} ≤ ĉe. ✷

Notice that the presented model is a generalization of Model I. Moreover,
if K = 1, then Fuzzy ROB1 (resp. Fuzzy ROB2) is equivalent to ROB1

(resp. ROB2) with the interval uncertainty representation.

Model III. Now we generalize Model II by allowing the costs to be modeled
as fuzzy intervals (recall that a closed interval is a special case of a fuzzy one).
Let us consider again the shortest path problem shown in Fig. 1a. There
are three events that can globally influence the arc costs and each event
has some possibility of occurrence. Additionally, the arc costs under each
event are unknown and they are modeled by fuzzy intervals (see Fig. 1d).
For example, if the first event will happen, then the cost of arc e1 has the
possibility distribution in the form of the triangular fuzzy interval (1, 2, 4).

This model can be formalized as follows. Assume that under the j-th event,
1 ≤ j ≤ K, the cost of element e ∈ E has a possibility distribution μj

e. Con-
sider a cost scenario S = (se)e∈E . If the j-th even happens, then the possi-
bility that S will occur is πΓ (S|j) = Π(

∧
e∈E(ce = se)|j) = mine∈E Π(ce =

se|j) = mine∈E μj
e(se). Since there are K possible events and each event j

has a possibility of occurrence πj , the possibility that S will occur can be
computed as follows:

πΓ (S) = max
1≤j≤K

min{πj , πΓ (S|j)}. (8)

In order to solve the fuzzy problems we apply Algorithm 4. So we must only
provide the methods for solving problems (5) and (6). Let S = (se)e∈E .
By (8), πΓ (S) ≥ λ if and only if there exists j ∈ {1, . . . ,K} such that πj ≥ λ
and πΓ (S|j) ≥ λ. Consequently, πj ≥ λ and μj

e(se) ≥ λ for all e ∈ E or,
equivalently, πj ≥ λ and se ∈ [cj

e(λ), cj
e(λ)] for all e ∈ E. Hence Γ λ can

be computed in the following way. First, determine the set Uλ = {j : 1 ≤
j ≤ K,πj ≥ λ}. Then, for each j ∈ Uλ define Γj as the Cartesian product
×e∈E [cj

e(λ), cj
e(λ)] and, finally, Γ λ =

⋃
j∈Uλ Γj . Now

f
λ
(X) = max

S∈Γ λ
f(X,S) = max

j∈Uλ
max
S∈Γj

max
e∈X

ce(S) = max
e∈X

max
j∈Uλ

cj
e(λ).
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Consequently, problem (5) can be solved by computing an optimal solution
for the deterministic problem with costs c∗e = maxj∈Uλ cj

e(λ), e ∈ E. A
similar reasoning shows that solving problem (6) can be reduced to computing
an optimal solution for its deterministic counterpart with the costs c∗e =
max{0, cj

e(λ) − f∗(Sj
e(λ))} for e ∈ E, where Sj

e(λ) is the scenario in which
ce(S

j
e(λ)) = cj

e(λ) and cf (Sj
e(λ)) = cj

f (λ) for all the elements f �= e.

4 Conclusions

In this paper we have investigated the bottleneck combinatorial optimization
problems with uncertain costs. This uncertainty has been modeled by a pos-
sibility distribution over a scenario set. We have proposed several models,
with different descriptions of the scenario set and different criteria of choos-
ing a solution, in the possibilistic setting. We have generalized the known
robust models. An optimal solution to all the problems considered can be
computed in polynomial time if only the deterministic version of the problem
is polynomially solvable.
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About the Probability-Field-
Intersections of Weichselberger and a
Simple Conclusion from Least
Favorable Pairs

Martin Gümbel

Abstract. In the frame of probability theory of Weichselberger there
are probability fields and operations on probability fields. We look at the
probability-field-intersection and present a simple conclusion for this opera-
tion, if there exists a least favorable pair of probabilities.

Keywords: Interval probability, Probability-field-intersection, Least favor-
able pairs.

1 Some Brief Extracts from the Theory of Interval
Probability of Weichselberger

In the first section we will present some definitions following Weichsel-
berger in his theory of interval valued probabilities. Basic for his concept
of probability are probability fields. These fields have restricting inequalities
(the intervals) and probabilities in the classical sense which are contained
in them. On the probability-fields operations can be defined. We will in-
troduce the probability-field-intersection operation. In view of the
probability-field-intersection are there sufficient conditions for the
cut of the intervals and the cut of the set of probabilities to be empty or
nonempty?

The derivation by the axioms is lent from [8]. The interval-field-intersection
example is from [5].
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Let Ω = {ωi | i ∈ I} be a (discrete countable) measure space1 with a
countable indexset I. The subsets Ω containing just one element are noted
Ei. With P(Ω) we have a σ-algebra on (Ω,P(Ω)).

Definition 1.1 A function p : P(Ω) → R is called K-function, if

(K.I) ∀A∈P(Ω) p(A) ≥ 0 ,
(K.II) p(Ω) = 1 ,
(K.III) for all sequences (Ai)i∈N of pairwise disjoint events (of

P(Ω)):
p (
⋃∞

i=1 Ai) =
∑∞

i=1 p(Ai)

hold.2

A K-function is a (classical) simple valued probability in form of a real number
greater equal 0 and less equal 1.

We introduce now interval valued probabilities P : It seems reasonable

to work with intervals such that a K-function is contained in the defining
intervals:

Definition 1.2 Choosing (Ω,P(Ω)) as before we define P : P(Ω) → R2.
Such a P (A) = [L(A), U(A)], for all A ∈ P(Ω), is called R-field, if the
following axioms hold:

(T.IV) 0 ≤ L(A) ≤ U(A) ≤ 1.
(T.V) The set M of K-functions p(·) over P(Ω) with

∀A∈P(Ω)L(A) ≤ p(A) ≤ U(A) is not empty.

The set M is called structure of the R-field.

Definition 1.3 An R-field with structure M is called F-field (’F’ for feasi-
ble), if additionally the following axiom holds:

(T.VI) For all A ∈ P(Ω):
L(A) = infp∈M p(A) and U(A) = supp∈M p(A).

The F-fields have some well known specializations:

Definition 1.4 A F-field is called
C-field, if the two-monotone inequality

∀A,B∈P(Ω)L(A) + L(B) ≤ L(A ∩B) + L(A ∪B) (1)

holds.

The C is an abbreviation for Choquet, see [3].
The totally monotone fields derived by evidences (with the belief-functions

taken as L(·) and the plausibility-functions as U(·) introduced by Dempster-
Shafer, see [4]) are two-monotone C-fields and therefore F-fields. (The

1 Many of the results in the theory of interval valued theory of Weichselberger hold
on more general spaces, see [1].

2 These are the Kolmogorov axioms.



A Simple Conclusion for the Probability-Field-Intersections 207

E1

E2

E3

0,4

0,7

0,1

0,45

0,1

0,45

Fig. 1 Graphic example F-field

I = {1, 2, 3}, the structure (represented by the striped region in the diagram)
is a convex set between the extrempoints. One probability in the F-field is p =
(0, 4; 0, 15; 0, 45). For example P (E1) = [ 0, 4 ; 0, 7 ].

Dempster-Shafer-theory has an eminent meaning because of the combina-
tion rule. To cite one application of the combination rule we refer f.e. to [9]).
The feasible probability intervals (probability fields, where all the limiting
intervals can be deduced from intervals imposed only on the sets Ei ⊆ {Ω},
i ∈ I, abbreviated F-PRI, see [2]) are C-Fields and therefore F-fields. The
restrictions for R-fields and F-fields by the intervals are less general than the
restrictions by linear previsions proposed by Walley [7].

Let R1 be an R-field with the intervals [L1(·);U1(·)] and R2 an R-Field
with the intervals [L2(·) ; U2(·)]. The following condition is of interest:

Definition 1.5 The Interval-cuts-condition contains the following in-
equalities:

∀A∈P(Ω) [L1(A) , U1(A) ] ∩ [L2(A) , U2(A) ] �= ∅. (2)

Now we have the

Definition 1.6 Probability-field-intersection

Let R1 be an R-field with the intervals [L1(·);U1(·)] and R2 an R-Field with
the intervals [L2(·) ; U2(·)]. If (2) (the interval-cuts-condition) holds and if
the field
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R̃ = R1 ∩ R2 with the intervals L̃(·) = max{L1(·), L2(·)} and

Ũ(·) = min{U1(·), U2(·)} has a nonempty structure, then the field given by

the intervals R̃ is an R-field and is called probability-field-intersection

of the fields R1 and R2.
If R̃ is not an R-field or (2) does not hold, we say: the probability-field-
intersection is empty.

0,45

E1

E2

E3

Fig. 2 visualization-example of a probability-field-intersection

In the graphical example the probability-field-intersection of two F-fields is an R-

field. Ũ(E3) is not reached by a probability and is the dashed line. The structure
of the probability-field-intersection is the striped area.

The interval-cuts-condition is a necessary condition to have an nonempty
probability-field-intersection. But it is not sufficient as the following example
demonstrates:
I = {1, 2, 3, 4}, the field F0 with the intervals [L0 ; U0] and F1 with the
intervals [L1 ; U1]:

intervals: [L0 ; U0] [L1 ; U1]
[
L̃ ; Ũ

]

P (∅) = [0 ; 0] [0 ; 0] [0 ; 0]
P (E1) = [0, 1 ; 0, 35] [0, 35 ; 0, 5] [0, 35 ; 0, 35]
P (E2) = [0, 15 ; 0, 4] [0, 15 ; 0, 3] [0, 15 ; 0, 3]
P (E3) = [0, 1 ; 0, 3] [0, 15 ; 0, 3] [0, 15 ; 0, 3]
P (E4) = [0, 2 ; 0, 4] [0 ; 0, 2] [0, 2 ; 0, 2]
P (E1 ∪E2) = [0, 5 ; 0, 5] [0, 5 ; 0, 7] [0, 5 ; 0, 5]
P (E1 ∪E3) = [0, 4 ; 0, 55] [0, 5 ; 0, 8] [0, 5 ; 0, 55]



A Simple Conclusion for the Probability-Field-Intersections 209

· · [L0 ; U0] [L1 ; U1]
[
L̃ ; Ũ

]

P (E1 ∪ E4) = [0, 3 ; 0, 7] [0, 5 ; 0, 55] [0, 5 ; 0, 55]
P (E2 ∪ E3) = [0, 3 ; 0, 7] [0, 45 ; 0, 5] [0, 45 ; 0, 5]
P (E2 ∪ E4) = [0, 45 ; 0, 6] [0, 2 ; 0, 5] [0, 45 ; 0, 5]
P (E3 ∪ E4) = [0, 5 ; 0, 5] [0, 3 ; 0, 5] [0, 5 ; 0, 5]
P (E1 ∪ E2 ∪ E3) = [0, 6 ; 0, 8] [0, 8 ; 1] [0, 8 ; 0, 8]
P (E1 ∪ E2 ∪ E4) = [0, 7 ; 0, 9] [0, 7 ; 0, 85] [0, 7 ; 0, 85]
P (E1 ∪ E3 ∪ E4) = [0, 6 ; 0, 85] [0, 7 ; 0, 85] [0, 7 ; 0, 85]
P (E2 ∪ E3 ∪ E4) = [0, 65 ; 0, 9] [0, 5 ; 0, 65] [0, 65 ; 0, 65]
P (Ω) = [1 ; 1] [1 ; 1] [1 ; 1] .

(1,0,0,0)
(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

Fig. 3 F0 and F1 of the example

We regard the following K-functions:

F0 : F1 :
( 0, 35 ; 0, 15 ; 0, 2 ; 0, 3) ( 0, 35 ; 0, 3 ; 0, 15 ; 0, 2 )
( 0, 3 ; 0, 2 ; 0, 1 ; 0, 4) ( 0, 5 ; 0, 2 ; 0, 3 ; 0 )
( 0, 3 ; 0, 2 ; 0, 2 ; 0, 3) ( 0, 35 ; 0, 15 ; 0, 3 ; 0, 2 )
( 0, 1 ; 0, 4 ; 0, 3 ; 0, 2)
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Every lower and upper intervalbound can be reached in F0 and F1 by some
probability. So F0 and F1 are F-fields.

The F-fields satisfies the interval-cuts-condition (2). In the intervals
[
L̃ ; Ũ

]

there cannot be a probability otherwise we would get:

2 = p(E1 ∪ E2) + p(E1 ∪ E3) + p(E2 ∪ E3) + 2p(E4)

≤ Ũ(E1 ∪ E2) + Ũ(E1 ∪ E3) + Ũ(E2 ∪ E3) + 2Ũ(E4)
= 0, 5 + 0, 55 + 0, 5 + 0, 4
= 1, 95,

which is a contradiction and this means that two F-fields can satisfy (2)
having an empty probability-field-intersection.

In the next section we will give a supplementary condition on two F-fields,
such that (2) is violated, if the two F-fields have an empty probability-field-
intersection.

2 Least Favorable Pairs of Probabilities and
Probability-Field-Intersections

In this section we will add the notion of least favorable pairs. The conclusion
with the existence of a least favorable pair is taken from [5] p.66-68.
Again Ω = {ωi | i ∈ I} is a (discrete countable) measure space.

Definition 2.1 Least favorable pairs:

Two K-functions q0 ∈ M0 and q1 ∈ M1 are a least favorable pair

for the test F0 (H0) against F1 (H1), if for the densityquotient π with

π(A) = q1(A)
q0(A) almost everywhere we have

∀t≥0∀p0∈M0 : p0({ω|π(ω) > t}) ≤ q0({ω|π(ω) > t}) and
∀t≥0∀p1∈M1 : p1({ω|π(ω) > t}) ≥ q1({ω|π(ω) > t}) .

(3)

If a least favorable pair (q0, q1) ∈ M0 ×M1 of K-functions exists, the
likelihood-ratio-test of the hypothesis q0 against the hypothesis q1 at level
α (error of the first kind) is at the same time maximin-test (minimizing the
maximal β, error of the second kind) of F0 against F1 (F-fields) at level α.
Compare [1], p. 98, Proposition 3.5 .

If F0 and F1 have a K-function p in common (M0 ∩M1 �= ∅), then the
two F-fields represent no separable pair of hypothesis.

With the existence of a least favorable pair there is a consequence for the
intervalcuts of two F-fields with disjoint structures M0 and M1 :
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Theorem 2.2 Existence of an empty intervalcut for general

F-Fields:

If F0 and F1 are two F-Fields with structures M0 and M1 and
M0 ∩ M1 = ∅ and a least favorable pair (q0, q1) ∈M0 × M1 exists,
then there is a set B with

U0(B) < L1(B) , (4)

and consequently for this set B [L1(B), U1(B)] ∩ [L0(B), U0(B)] = ∅, the
interval-cuts-condition is violated.

Proof. Since M0 ∩ M1 = ∅ , the K-functions q0 and q1 (the least favorable
pair) are not identical and with the likelihood-ratio-test q0 against q1 at level
q0(At0) (α, error of the first kind) has β-value (error of the second kind)
q1(¬At0 ) for some critical value t0 and this likelihood-ratio-test is unbiased
or

q0(At0) < q1(At0 )

holds, since the probability of the set At0 to reject q0 must be less than the
acceptance of q1.

3 But refering to the definition of least favorable pairs and
(3) with (T.V I) this yields

q0(At0) = U0(At0) < L1(At0 ) = q1(At0).

Choose B = At0 ✷

Since for F0 and F1 of the example in section 1 the interval-cuts-condition
holds, in consequence of theorem 2.2 there cannot be a least favorable pair
for these two fields! 4 For C-fields there is the

Theorem 2.3 Huber- and Strassen-Theorem:

If F0 and F1 are C-fields and M0 ∩ M1 = ∅ , a least favorable pair
(q0, q1) ∈ M0 ×M1 exists.

See [6] (also for more general measure spaces under continuity conditions).
As a consequence of theorem 2.2 and of theorem 2.3 we have

Theorem 2.4 Condition for the probability-field-intersection of

C-fields:

The probability-field-intersection of two C-fields F0 and F1 is nonempty if
and only if the interval-cuts-condition (2) holds.

This is also valid for the totally monotone fields and the feasible probability
intervals (F-PRI).

3 Compare also p. 59 [5].
4 Another example, where two F-fields have no least favorable pair, is shown with

linear optimization in [1].
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Using Imprecise and Uncertain
Information to Enhance the Diagnosis
of a Railway Device

Zohra L. Cherfi, Latifa Oukhellou, Etienne Côme, Thierry Denœux, and
Patrice Aknin

Abstract. This paper investigates the use of partially reliable information
elicited from multiple experts to improve the diagnosis of a railway infras-
tructure device. The general statistical model used to perform the diagnosis
task is based on a noiseless Independent Factor Analysis handled in a soft-
supervised learning framework.

Keywords: Belief function theory, Soft-supervised learning, Independent
Factor Analysis, EM algorithm, Fault diagnosis.

1 Introduction

When a pattern recognition approach is adopted to solve diagnosis problems,
it involves using machine learning techniques to assign the measured signals
to one of several predefined classes of defects. In most real world applica-
tions, a large amount of data is available but their labeling is generally a
time-consuming and expensive task. However, it can be taken advantage of
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expert knowledge to label the data. In this case, the class labels can be subject
to imprecision and uncertainty. A solution to deal with imprecise and uncer-
tain class labels have been proposed in [3] [6]. In this framework, this paper
presents a fault diagnosis application using partially labeled data to learn a
statistical model based on Independent Factor Analysis (IFA) [2]. Learning
of this statistical model is usually performed in an unsupervised way. The
idea investigated in this paper is to incorporate additional information on
the class membership of some samples to estimate the parameters of the IFA
model, using an extension of the EM algorithm [3] [6].

This paper is organized as follows. Background material on belief functions
is first recalled in Sect. 2. Learning the IFA model from data with soft labels
is then addressed in Sect. 3. Sect. 4 describes the application under study
and introduces the diagnosis problem in greater detail. Experimental results
are finally reported in Sect. 5, and Sect. 6 concludes the paper.

2 Background on Belief Functions

This section provides a brief account of the fundamental notions of the
Dempster-Shafer theory of belief functions, also referred to as Evidence The-
ory [4, 9]. A particular interpretation of this theory has been proposed by
Smets [11], under the name of the Transferable Belief Model (TBM).

2.1 Belief Representation

Let Ω = {ω1, ..., ωn} be a finite frame of discernment, defined as a set of ex-
clusive and exhaustive hypotheses about some question Q of interest. Partial
information about the answer to question Q can be represented by a mass
function m : 2Ω → [0, 1] such that

∑
A⊆Ω m(A) = 1. The quantity m(A)

represents a measure of the belief that is assigned to subset A ⊆ Ω given the
available evidence and that cannot be committed to any strict subset of A.
Every A ⊆ Ω such that m(A) > 0 is called a focal set of m. A mass function
or a bba (for basic belief assignment) is said to be:

• normalized if ∅ is not a focal set (condition not imposed in the TBM);
• dogmatic if Ω is not a focal set;
• vacuous if Ω is the only focal set (it then represents total ignorance);
• simple if it has at most two focal sets and, if it has two, Ω is one of

those;
• categorical if it is both simple and dogmatic.
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A simple bba such that m(A) = 1 − w for some A �= Ω and m(Ω) = w can
be noted Aw. Thus, the vacuous bba can be noted A1 for any A ⊂ Ω, and a
categorical bba can be noted A0 for some A �= Ω.

The information contained in a bba m can be equivalently represented
thanks to the plausibility function pl(A) =

∑
B∩A �=∅m(B), ∀A ⊆ Ω. The

quantity pl(A) is an upper bound on the degree of support that could be
assigned to A if more specific information became available.

2.2 Information Combination

Let m1 and m2 be two bbas defined over a common frame of discernment
Ω, they may be combined using a suitable operator. The most common ones
are the conjunctive and disjunctive rules of combination defined, respectively,
as:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω. (1)

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω. (2)

The mass assigned to the empty set may be interpreted as a degree of conflict
between the two sources. An extension of the conjunctive rule proposed by
Yager assumes that, in case of conflict, the result is not reliable but the
solution must be in Ω. The mass on ∅ is thus redistributed to Ω which leads
to a normalized bba [12].

The conjunctive and disjunctive rules of combination assume the indepen-
dence of the data sources. In [5], Denœux introduced the cautious rule of com-
bination � to combine bbas provided by non independent sources. Although
the cautious rule can be applied to any non dogmatic bba, it will be recalled
here only in the case of separable bba, i.e., bbas that can be decomposed as the
conjunctive combination of simple bbas [9] [10]. Let m1 and m2 be two such
bbas. They can be written as m1 = ∩©A⊂ΩAw1(A) and m2 = ∩©A⊂ΩAw2(A),

where Aw1(A) and Aw2(A) are simple bbas, w1(A) ∈ (0, 1] and w2(A) ∈ (0, 1]
for all A ⊂ Ω. Their combination using the cautious rule is defined as:

(m1 � m2)(A) = ∩©A⊂ΩAw1(A)∧w2(A), (3)

where ∧ denotes the minimum operator. This rule avoids to double-count
common evidence when combining non distinct bbas (idempotence property)
i.e., it verifies m � m = m for all m.
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3 Statistical Model and Learning Method

3.1 Independent Factor Analysis

IFA is based on a generative model that makes it possible to recover inde-
pendent latent components (sources) from their observed linear mixtures [2].
In its noiseless formulation (used throughout this paper), the IFA model
can be expressed as y = H z, where H is a nonsingular square matrix of
size S, y is the observed random vector whose elements are the S mix-
tures and z the random vector whose elements are the S latent compo-
nents. Each source density is a mixture of Gaussians (MOG), so that a
wide class of densities can be approximated. The pdf of z is thus given by

fZ(z) =
∏S

j=1

∑Kj

k=1 π
j
kϕ(zj ;μj

k, ν
j
k), where zj denotes the j-th component

of vector z, ϕ(.;μ, ν) denotes the pdf of a Gaussian random variable of mean
μ and variance ν; πj

k, μj
k and νj

k are the proportion, mean and variance of
component k for source j, and Kj is the number of components for source j.
In the classical unsupervised setting used in IFA, the problem is to estimate
both the mixing matrix H and the MOG parameters from the observed vari-
ables y alone. Maximum likelihood estimation of the model parameters can
be achieved by an alternating optimization strategy [1].

3.2 Soft-Supervised Learning in IFA

This section considers the learning of the IFA model in a soft-supervised learn-
ing context where partial knowledge of the cluster membership of some sam-
ples is available in the form of belief functions. In the general case, we will con-
sider a learning set M = {(y1,m

1
1, . . . ,m

S
1 ), . . . , (yN ,m1

N , . . . ,mS
N )}, where

m1
i , . . . ,m

S
i is a set of bbas encoding uncertain knowledge on the cluster mem-

bership of sample i = 1 . . .N for each one of the S sources. Each bba mj
i is de-

fined on the frame of discernment Uj = {c1, . . . , cKj} composed of all possible
clusters for source j. Let us denote by xi = (yi, u

1
i , . . . , u

S
i ) the completed

data where yi ∈ RS are the observed variables and uj
i ∈ Uj , ∀j ∈ {1, . . . , S}

are the cluster membership variables which are ill-known. In this model two
independence assumptions are made. The random generation process induces
the stochastic independence assumption between realizations:

f(X; Ψ ) =

N∏

i=1

f(xi; Ψ ), (4)

where Ψ is the IFA parameter vector, X = (x1, . . . ,xN ) is the complete
sample vector and f(xi) the pdf of a complete observation according to the
IFA model. Additionally, the imperfect perception of cluster memberships
induces the following cognitive independence assumption (see [9, page 149]):
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pl(X) =

N∏

i=1

pli(xi) =

N∏

i=1

S∏

j=1

plji (u
j
i ), (5)

where pl(X) is the plausibility that the complete sample vector is equal to
X, pli(xi) is the plausibility that the complete data for instance i is xi and
plji (u

j
i ) is the plausibility that the source j for example i was generated from

component uj
i . Under the assumptions (4) and (5) and following [6], the

observed data log likelihood can be written as:

l(Ψ ;M) =−N log(| det(H)|)+
N∑

i=1

S∑

j=1

log

⎛
⎝

Kj∑

k=1

pljikπ
j
kϕ((H−1yi)

j ;μj
k, ν

j
k)

⎞
⎠(6)

where pljik = plji (ck) is the plausibility that sample i belongs to cluster k
of latent variable j. This criterion must be maximized with respect to Ψ to
compute parameter estimates. An extension of the EM algorithm called E2M
for Evidential EM can be used to perform this task [6].

4 Diagnosis Approach

4.1 Problem Description

The track circuit is an essential component of the automatic train control
system [8]. Its main function is to detect the presence or absence of vehicle
traffic on a given section of the railway track. For this purpose, the railway
track is divided into different sections (Fig. 1); each section is equipped with
a specific track circuit consisting of: a transmitter connected to one of the two
section ends, the two rails that can be considered as a transmission line, a re-
ceiver at the other end of the track section and trimming capacitors connected
between the two rails at constant spacing to compensate the inductive behav-
ior of the track. A train is detected when the wheels and axles short-circuit
the track. It induces the loss of the track circuit signal and the drop of the
received signal below a threshold indicates that the section is occupied. The
different parts of the track circuit can be subject to malfunctions that must
be detected as soon as possible to maintain the system at the required safety
and availability levels. In the most extreme cases, an unfortunate attenuation
of the transmitted signal may induce important signaling problems (a section
can be considered as occupied even if it is not). The objective of diagnosis is
to avoid such inconvenience on the basis of inspection signals analysis [8]. For
this purpose, an inspection vehicle is able to deliver a measurement signal
(denoted as Icc) linked to electrical characteristics of the system (Fig. 1).
This paper describes the approach adopted for the diagnosis of track circuit
from real inspection signals, it will focus on trimming capacitor faults.
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Fig. 1 Track circuit rep-
resentation and examples
of inspection signals (Icc)
simulated along a 1500 m
track circuit: one of them
corresponds to a fault-
free system, while the
others correspond to a
signal with one defective
capacitor, and respec-
tively a signal with two
defective capacitors.
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4.2 Diagnosis Methodology

A track circuit can be considered as a complex system made up of a series of
S spatially related subsystems, where each subsystem correspond to a trim-
ming capacitor. A defect on one subsystem can be represented either by its
capacitance or by a discrete value if considering a finite number of operating
modes. The approach adopted here consists in extracting features from the
measurement signal, and building a generative model as shown in Fig. 2. In
this model, the variables yj

i are observed variables extracted by approximat-
ing each arch of the inspection signal (Icc) by a quadratic polynomial. The
variables zj

i are continuous latent variables corresponding to continuous val-
ues describing the subsystem defects (capacitances), while the discrete latent
variables uj

i correspond to the membership of the subsystem operating mode
to one of the following three states: fault-free, medium defect, major defect.
Assuming that a linear relationship exists between observed and latent vari-
ables and that each latent variable can be modeled semi-parametrically by a
MOG, the involved generative model can be considered as an IFA model [2].

Fig. 2 Generative model
for the diagnosis of track
circuits represented by a
graphical model
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5 Results and Discussion

The diagnosis system was assessed using a real data set consisting of 422 in-
spection signals provided by the French National Railway Company (SNCF).
A labeling campaign was organized with the aim of presenting separately
the signals to four experts for labeling. Three classes were considered for the
labeling operation, corresponding to the three operating modes of the sub-
systems. Experts were allowed to specify imprecise and uncertain labels that
were represented as belief functions. The labels from individual experts were
combined using each of the rules described in Sect. 2.2, and the IFA model
was fit using the combined labels thanks to the E2M algorithm [6].

Because of the lack of the ground truth about the real state of the com-
ponents under diagnosis, we chose to take as reference another labeling of
the same database obtained thanks to a third-party expertise. This particu-
lar labeling was achieved simultaneously by three observers and in favorable
conditions to provide a reference tool. This reference labeling will be referred
to as REF in the following. The classification results reported in Table 1 re-
veal a good classification performance despite some confusions between con-
tiguous classes. The confusion matrices corresponding to individual experts
provide some information on expert skills. Indeed, experts 1 and 4 seem to
better detect major defects, while experts 2 and 3 are more accurate for the
detection of medium defects. The combination of expert opinions makes it
possible to improve the detection of both types of defects. The best results
were achieved by the cautious rule, which suggests that the expert opinions
cannot be regarded as independent. The confusion between contiguous classes
can be explained by the fact that identification of medium defects is a difficult
exercise due to the continuous nature of the real states.

Table 1 Confusion matrices between true classes ω0, ω1 and ω2 (defined by the
REF labeling) and their estimates d0, d1 and d2 (computed on ten cross validation
test sets)

ω0 ω1 ω2

d0 98.8 33.1 2.1
d1 0.9 51.1 6.9
d2 0.2 15.8 90.9

(Expert 1)

ω0 ω1 ω2

d0 98.9 34.7 3.0
d1 0.8 58.8 12.2
d2 0.3 6.5 84.7

(Expert 2)

ω0 ω1 ω2

d0 98.7 22.1 2.1
d1 1.1 63.6 13.8
d2 0.2 14.3 84.1

(Expert 3)

ω0 ω1 ω2

d0 98.8 34.6 3.3
d1 1.0 49.6 5.8
d2 0.2 15.8 90.9

(Expert 4)

ω0 ω1 ω2

d0 98.9 30.7 2.9
d1 0.9 58.0 7.7
d2 0.2 11.3 89.4

(Disjonctive

rule)

ω0 ω1 ω2

d0 98.9 20.2 2.9
d1 1.0 64.2 6.5
d2 0.1 15.6 90.6

(Conjonctive

rule)

ω0 ω1 ω2

d0 98.9 20.4 2.6
d1 1.0 65.3 4.9
d2 0.1 14.2 92.4

(Cautious

rule)
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6 Conclusions

The particular application that was considered concerns the diagnosis of rail-
way track circuits. Experiments were carried out with real signals labeled by
four different human experts. Experts’ uncertain knowledge about the state
of each subsystem was encoded as belief functions, which were pooled using
different combination rules. These combined opinions were shown to yield
better classification results than those obtained from each individual expert,
especially with the cautious rule of combination [5], which can be explained
by the existence of common knowledge shared among the experts.

This work can be extended in several directions. The approach relies on
expert knowledge elicitation in the belief function framework, an important
problem that has not received much attention until now. More sophisticated
combination schemes could also be considered: for instance, discount rates
could be learned from the data to take into account the competence of each
individual expert [7].
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Pricing CDS with Jump-Diffusion Risk
in the Intensity-Based Model

Ruili Hao and Zhongxing Ye

Abstract. In this paper, we mainly discuss the pricing of credit default swap
(CDS) in intensity-based models with counterparty risk. The default intensity
of firm depends on the stochastic interest rate driven by the jump-diffusion
process and the default states of counterparty firms. Moreover, we apply the
hyperbolic function to illustrate the attenuation effect of correlated defaults
between counterparties. Our models are extensions of the models in Jarrow
and Yu (2001) and Bai, Hu and Ye (2007). In the model, we make use of
the techniques in Park (2008) to obtain some important results and derive
the explicit prices of bond and CDS in the primary-secondary and looping
default frameworks respectively.

Keywords: Jump-diffusion process, Credit default swap, Bond, Counter-
party risk, Hyperbolic attenuation function.

1 Introduction

Recently, credit securities are actively traded and the valuation of credit
securities has called for more effective models according to the real market.
Until now, there have been mainly two basic models: the structural model
and the reduced-form model.

The structural approach considers that the firm’s default is governed by
the value of its assets and debts. It was pioneered by Merton (1974), then
extended by Black and Cox (1976), Longstaff and Schwartz (1995). In their
models, the asset process was all driven by the Brownian motion. For the
valuation of credit derivatives involving jump-diffusion process, it is still
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difficult to get explicit results in the event of defaulting before the matu-
rity date, even if using the above approaches.

Comparing with the structural approach, the reduced-form approach is
flexible and tractable. It was pioneered by Jarrow, Lando and Turnbull (1994)
and Duffie and Singleton (1995). They considered the default as a random
event which is controlled by an exogenous intensity process.

Davis and Lo (2001) firstly proposed the model of credit contagion to
account for concentration risk in large portfolios of defaultable securities.
Later, motivated by a series of events such as the South Korean banking crisis
and so on, Jarrow and Yu (2001) thought that the traditionally structural
and reduced-form models all ignored the firm’s specific source of credit risk.
They applied the Davis’s contagious model and introduced the concept of
counterparty risk which is from the defaults of firm’s counterparties. Their
models paid more attention to the primary-secondary framework in which
the defaults of firms were correlated with the interest rate. Besides, there
are also other similar applications such as Leung and Kwork (2005), Bai, Hu
and Ye (2007) and so on. In recent years, some authors applied this approach
into portfolio credit securities such as Yu (2007) and Leung and Kwok (2009).
Nevertheless, the stochastic interest rate in the above models still was driven
by diffusion processes.

This paper mainly studies the pricing of CDS in primary-secondary and
looping default frameworks, extending the models in Jarrow and Yu (2001).
Our models consider the risk-free interest rate as the macroeconomic variable
which presents the interaction between credit risk and market risk. However,
the stochastic interest rate follows a jump-diffusion process rather than the
continuous diffusion process in Jarrow and Yu (2001). Thus, our models not
only reflect the real market much better, but more precisely to identify the
impact of counterparty risk on the valuation of credit securities.

2 Model

Let (Ω,F , {Ft}T∗

t=0, P ) be the filtered probability space satisfying the usual
conditions, where F = FT∗ , T ∗ is large enough but finite and P is an
equivalent martingale measure.

On (Ω,F , {Ft}T∗

t=0, P ), X = {Xt}T∗

t=0 represent economy-wide state vari-
ables. There are two firms with two point processes N i, i = A,B (N i

0 = 0)
which represent the default processes of two firms respectively. When N i first
jumps from 0 to 1, we call that the firm i defaults and denote τ i be the de-
fault time of firm i. Thus, N i

t = 1{τ i≤t} where 1{·} is the indicator function.

The filtration Ft = FX
t ∨FA

t ∨FB
t is generated by the state variables and

the default processes of two firms where

F
X
t = σ(Xs, 0 ≤ s ≤ t) and F

i
t = σ(N i

s, 0 ≤ s ≤ t), i = A,B.
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Let
HA

t = F
A
t ∨F

X
T∗ ∨F

B
T∗ ,HB

t = F
B
t ∨F

X
T∗ ∨F

A
T∗ .

We assume that the default time τ i(i = A,B) possesses a strictly positive

H i
0 -adapted intensity process λi

t satisfying
∫ t

0
λi

sds < ∞, P − a.s. for all
t ∈ [0, T ∗]. The conditional survival probability distribution of primary firm
i is given by

P (τ i > T ∗|H i
0 ) = exp

(
−
∫ T∗

t

λi
sds

)
, t ∈ [0, T ∗].

We suppose that the state variable Xt only contains the risk-free spot rate
rt following the jump-diffusion process

drt = α(K − rt)dt + σdWt + qtdYt, (1)

where Wt is a standard Brownian motion on the probability space (Ω,F , P )
and Yt is a Possion process under P with intensity μ. qt is a deterministic
function and α, σ,K are constants. Wt and Yt are mutually independent. In
fact, from Park (2008), we know that for u ≥ t,

rt =r0e
−αt + αK

∫ t

0

e−α(t−s)ds + σ

∫ t

0

e−α(t−s)dWs +

∫ t

0

qse
−α(t−s)dYs

=f(t, u) +

∫ u

t

αKeα(v−u)dv +

∫ u

t

σeα(v−u)dWv +

∫ u

t

qve
α(v−u)dYv,

where f(0, u) = r0e
−αu and

f(t, u) = f(0, u) +

∫ t

0

αKeα(v−u)dv +

∫ t

0

σeα(v−u)dWv +

∫ t

0

qve
α(v−u)dYv

(2)
We now give two important lemmas which is important to the pricing of
CDS.

Lemma 1. Suppose Rt,T =
∫ T

t
rsds be the cumulative interest from time t

to T . Let Et[·] denotes the expectation conditional on Ft and Et[e
−aRt,T ] =

g(a, t, T ) for all a ∈ R, then we obtain

g(a, t, T ) = e
∫ T

t
[−af(t,u)+ 1

2 σ2a2c2
T (u)+μ(e−aqucT (u)−1)]du−aK(T−t)+aKcT (t),

where

cv(u) = − 1

α
(eα(u−v) − 1), 0 ≤ v, u ≤ T. (3)

In particular, g(1, t, T ) is the time-t price of zero-coupon bond.

Proof. Omitted. The detail proof is given in Ref [5].
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Lemma 2. Assume Rt,T be the cumulative interest from time t to T . For
0 ≤ t0 ≤ t1 ≤ t2 ≤ t3 ≤ T , let Et0 [e

−m1Rt0,t1−m2Rt1,t2 ] = H(t0, t1, t2;m1,m2)
and Et0 [e

−m1Rt0,t1−m2Rt1,t2−m3Rt2,t3 ] = G(t0, t1, t2, t3;m1,m2,m3) where
m1,m2 and m3 are real numbers. Then

H(t0, t1, t2;m1,m2)

= exp

(
−m1

∫ t1

t0

f(t0, u)du− F (m2, t0, t1, t2)−
2∑

i=1

miK(ti − ti−1)

)

· exp(m1Kct1(t0) + m2(K − r0)d(t1, t2, 0))

· exp

[
μ

2∑

i=1

∫ ti

ti−1

[e−qu(micti
(u)+mi+1d(ti,ti+1,u)1{i+1≤2}) − 1]du

]

· exp

[
1

2
σ2

2∑

i=1

∫ ti

ti−1

(micti(u) + mi+1d(ti, ti+1, u)1{i+1≤2})
2du

]
.

and

G(t0, t1, t2, t3;m1,m2,m3)

= exp

(
−m1

∫ t1

t0

f(t0, u)du−
3∑

i=2

F (mi, ti−2, ti−1, ti)

)

· exp

( 3∑

i=2

mi(K − r0)d(ti−1, ti, 0)−
3∑

i=1

miK(ti − ti−1) + m1Kct1(t0)

)

· exp

[
μ

3∑

i=1

∫ ti

ti−1

[e−qu(micti
(u)+mi+1d(ti,ti+1,u)1{i+1≤3}) − 1]du

]

· exp

[
1

2
σ2

3∑

i=1

∫ ti

ti−1

(micti(u) + mi+1d(ti, ti+1, u)1{i+1≤3})
2du

]
,

where f(ti, u), cti(u) are given by (2), (3) and

d(ti, ti+1, u) = − 1

α
eαu(e−αti+1 − e−αti)

F (mi, ti−2, ti−1, ti) =

∫ ti−2

0

σmid(ti−1, ti, u)dWu +

∫ ti−2

0

miqud(ti−1, ti, u)dYu.

Proof. Omitted. The detail proof is presented in Ref [6].
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3 Main Results

In this section, we begin to price CDS. Firm C holds a bond issued by the
reference firm A with the maturity date T . To decrease the possible loss,
firm C buys protection with the maturity date T1 (T1 ≤ T ) from firm B on
condition that firm C gives the payments to firm B at a fixed swap rate in
time while firm B promises to make up firm C for the loss caused by the
default of firm A at a certain rate. Each party has the obligation to make
payments until its own default. The source of credit risk may be from three
parties: the issuer of bond, the buyer of CDS and the seller of CDS.

In the following, we consider a simple situation which only contains the
risk from reference firm A and firm B. To make the calculation convenient,
we suppose that the face value of the bond issued by firm A is 1 dollar. In
the event of firm A’s default, firm B compensates firm C for 1 dollar if it
doesn’t default, otherwise 0 dollar. Thus, the swap rate could be obtained
by the principle that the time-0 market value of firm C’s fixed rate payment
equals to the time-0 market value of firm B’s promised payment in the event
of A’s default. Denoted the swap rate by a constant c and interest rate by rt.
There are four cases for the defaults of firm A and firm B:

1. The defaults of firm A and firm B are mutually independent conditional
on the risk-free interest rate.

2. Firm A is the primary party whose default only depends on the risk-free
interest rate and the firm B is the secondary party whose default depends
on the risk-free interest rate and the default state of firm A.

3. Firm B is the primary party and the firm A is the secondary party.

4. The defaults of firm A and firm B are mutually contagious (looping
default).

3.1 Pricing CDS in the Primary-Secondary

Framework

The primary-secondary model was proposed by Jarrow and Yu (2001). In
their model, the interest rate rt was driven by the diffusion process and the
pricing formula of bond was obtained. We generalize their model and allow
the interest rate to follow a jump-diffusion process. Let the default times
of firm A and B be τA with the intensity λAand τB with the intensity λB

respectively.

Case.1 The defaults of firm A and firm B are mutually independent con-
ditioning on the common factor which is interest rate in this paper. The
intensities are given by

λA
t = bA

0 + bA
1 rt,

λB
t = bB

0 + bB
1 rt.
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Since this model in case 1 could be considered as a simple special case
of case 2,3 in primary-secondary framework or case 4 and the price of CDS
could be derived by the similar method. Therefore, this case is not discussed
in details.

Case 2. Firm A is the primary firm and firm B is secondary firm. We as-
sume that their intensity processes respectively satisfy linear relations below:

λA
t = bA

0 + bA
1 rt, (4)

λB
t = bB

0 + bB
1 rt + bB1{τA≤t}, (5)

where bA
0 , b

A
1 , b

B
0 , b

B
1 and bB are positive constants.

When bB = 0, it reduces to the model in case 1. First, we give the pricing
formulas of defaultable bonds issued by firm A and B.

Lemma 3. Suppose that the bonds issued by firm A and B have the same
maturity date T and recovery rates both equal to zero. If the intensity processes
λA

t and λB
t satisfy (4) and (5) and no defaults occur up to time t, then the

time-t price of bond issued by primary firm A is

V A(t, T ) = g(1 + bA
1 , t, T )e−bA

0 (T−t);

and the time-t price of bond issued by secondary firm B is

V B(t, T ) = g(1 + bB
1 , t, T )e−(bB

0 +bB)(T−t) + bBe−(K+KbB
1 +bB

0 +bB)T

· e(1+bB
0 +bA

0 +bB
1 +bA

1 )t

∫ T

t

e−(1+bB
1 +bA

1 )
∫

s
t

f(t,u)du+(bB−bA
1 K−bA

0 )s

· e(1+bB
1 +bA

1 )Kcs(t)+(1+bB
1 )(K−r0)d(s,T,0)−f1(t,s)+M(s)ds,

where for ∀k, v, u ∈ [0, T ], cv(u), d(k, v, u) is given by (3) and Lemma 2,

f1(t, s) =

∫ t

0

σ(1 + bB
1 )d(s, T, u)dWu +

∫ t

0

(1 + bB
1 )qud(s, T, u)dYu,

M(s) =

∫ T

s

[
1

2
σ2(1 + bB

1 )2c2T (u) + μ(e−(1+bB
1 )qucT (u) − 1)]du

+

∫ s

t

1

2
σ2[(1 + bB

1 + bA
1 )cs(u) + (1 + bB

1 )d(s, T, u)]2du

+

∫ s

t

μ[e−qu((1+bB
1 +bA

1 )cs(u)+(1+bB
1 )d(s,T,u)) − 1]du.

Proof. Omitted. The details are given in Ref [5].

Next, we give the pricing formula of CDS.
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Theorem 1. Suppose that the risk-free interest rate rt satisfies (1) and the
intensities λA and λB satisfy (4) and (5) respectively. Then, the swap rate c
has the following expression

c =
V B(0, T1)− e−(bB

0 +bA
0 )T1g(1 + bB

1 + bA
1 , 0, T1)∫ T1

0
g(1, 0, s)ds

, (6)

where g(·, ·, ·) and V B(0, T1) are given in Lemma 1 and Lemma 3 respectively.

Proof. The process is omitted and the details are given in Ref [5].

Case 3. Firm B is the primary firm and firm A is secondary firm. Suppose
that the default intensities satisfy

λA
t = bA

0 + bA
1 rt + bA1{τB≤t}, (7)

λB
t = bB

0 + bB
1 rt, (8)

where bA
0 , b

A
1 , b

B
0 , b

B
1 and bA are positive constants. By the similar approach

in Theorem 1, we could obtain the swap rate

c =
g(1 + bB

1 , 0, T1)e
−bB

0 T1 − e−(bB
0 +bA

0 )T1g(1 + bB
1 + bA

1 , 0, T1)∫ T1

0
g(1, 0, s)ds

,

where g(·, ·, ·) are given by Lemma 1. We omit the details.

3.2 Pricing CDS in the Looping Default Framework

Case 4. The defaults of firm A and firm B are mutually contagious. The
defaults of firm A and B have direct linkage. Namely, default risk may occur
when one firm holds large amounts of debt issued by the other firm. The
default intensities satisfy the relations

λA
t = bA

0 + bA
1 rt + bA1{τB≤t},

λB
t = bB

0 + bB
1 rt + bB1{τA≤t},

where bA
0 , b

A
1 , b

A, bB
0 , b

B
1 and bB are positive constants. Since this model is

a special case of the following more general model with attenuate effect,
therefore this model will not be discussed in details.

Now, we turn to the more general model with attenuate effect. Suppose
that their intensity processes satisfy

λA
t = bA

0 + bA
1 rt + 1{τB≤t}

bA
2

bA
3 (t− τB) + 1

, (9)

λB
t = bB

0 + bB
1 rt + 1{τA≤t}

bB
2

bB
3 (t− τA) + 1

, (10)
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where bA
0 , b

A
1 , b

A
3 , b

B
0 , b

B
1 and bB

3 are nonnegative real numbers, bA
2 , b

B
2 are real

numbers satisfying bA
0 + bA

1 + bA
2 > 0, bB

0 + bB
1 + bB

2 > 0. If firm A is a
competitor(or copartner) of firm B, bA

2 < 0(or bA
2 > 0). In the event of firm

B’ default, the intensity λA
t jumps abruptly and the effect will attenuate until

disappear with hyperbolic speed as time goes on. Reversely, the impact of
firm A to B is similar to above situation. Parameters bA

2 and bB
2 reflect the

impact of counterparty’s default to intensities. Parameters bA
3 and bB

3 reflect
the attenuation speed. When bA

1 = 0 and bB
1 = 0, the model becomes the one

in Bai, Hu and Ye (2007). When bA
3 = 0 and bB

3 = 0, it becomes the model
of case 4.

For simplicity, we assume −bA
2 = bA

3 = cA > 0 and −bB
2 = bB

3 = cB > 0 in
the following discussion.

Lemma 4. We suppose that the bond issued by firm B have the maturity
date T , recovery rate equals zero and no default occur up to time t. If the
intensity process λB

t satisfy (10), then the time-t price of bond issued by firm
B is given by

V B(t, T ) = (cB(T − t) + 1)e−bB
0 (T−t)g(1 + bB

1 , t, T )− cBe−bB
0 T+(bB

0 +bA
0 )t

·
∫ T

t

(cA(s− t) + 1)e−bA
0 sH(t, s, T ; 1 + bA

1 + bB
1 , 1 + bB

1 )ds + cAcBe−bB
0 T+2bB

0 t

· ebA
0 t

∫ T

t

∫ s

t

e−bA
0 s−bB

0 uG(t, u, s, T ; 1 + bA
1 + 2bB

1 , 1 + bB
1 + bA

1 , 1 + bB
1 )duds,

where R·,·, g(·, t, T ), H(t, s, T ; ·, ·) and G(t, u, s, T ; ·, ·, ·) are given in Lemma
1 and Lemma 2.

Proof. The detail proof is given in Ref [6]. We omit it.

If no defaults occur up to time t, then the time-t price of bond issued by firm
A can be obtained similarly by Lemma 4.

Theorem 2. Suppose that the intensities λA and λB satisfy (9) and (10). If
no defaults occur up to time t, then the swap rate

c =
V B(0, T1)− e−(bB

0 +bA
0 )T1g(1 + bB

1 + bA
1 , 0, T1)∫ T1

0 g(1, 0, s)ds
,

where g(·, ·, ·) and V B(0, T2) are given in Lemma 1 and Lemma 4.

Proof. Omitted. The proof is referred to [6].

Remark. The interest rate rt in our model is an extension of Vasicek
model. It may cause negative intensity. We could use the similar method
in Jarrow and Yu (2001) to avoid this case. For example, we could assume
λA

t = max {bA
0 + bA

1 rt, 0}, λB
t = max {bB

0 + bB
1 rt + bB1{τA≤t}, 0}. The other

cases are similar. We shall discuss it elsewhere.
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Pricing Convertible Bonds Using the
CGMY Model

Coenraad C.A. Labuschagne and Theresa M. Offwood

Abstract. This paper looks at using the CGMY stock price process to price
European convertible bonds. We compare the prices given by the CGMY
model to prices given by the popular geometric Brownian motion model.

Keywords: Convertible bonds, Brownian motion, Levy process, CGMY pro-
cess, CGMY model, Component model, Monte Carlo method.

1 Introduction

Convertible bonds are complex financial instruments, which despite their
name, have more in common with derivatives than with conventional bonds.
As the pricing techniques are moving away from geometric Brownian motion
(GBM) models, it is important to look at the valuation of convertible bonds
under different densities. This paper has chosen to compare the CGMY model
prices of convertible bonds to the GBM model prices. It will have a look at
two methods: the component model and the Monte Carlo technique, to price
European convertible bonds.

The paper is set up as follows. In Section 2, we define convertible bonds
and how they are structured. Section 3 looks at the CGMY process. The
two pricing methods are described in Section 4. Our results are then given in
Section 5 and Section 6 concludes.
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2 Convertible Bonds

A convertible bond is a corporate debt security that gives the holder the
right to exchange future coupon payments and the principal repayment for a
prescribed number of shares of equity. Thus it can be seen as a hybrid security
with elements of both debt and equity. Due to its hybrid nature, convertibles
appeal to both issuers and investors with different preferences of risk.

From the issuer’s perspective, a convertible bond reduces the cost of debt
funding compared to straight debt alone. From the investor’s perspective, a
convertible bond offers advantages particular to both stocks and bonds. On
the one hand they offer a greater stability of income than regular stock, while
on the other hand if the company does well, they can convert to equity and
receive the benefits of holding stock.

The paper written by Goldman, Sachs & Co [4] summarises nicely what
quantities and features are typically included in convertible bond contracts:

• Principal (N): The face value of the convertible bond, i.e. the redemption
value.

• Coupon (c): The annual interest rate as a percentage of the principal.
• Conversion Ratio (γt): The number of shares of the underlying stock

that the convertible bond can be exchanged into. This ratio is usually
determined at issue and is only changed to keep the total equity value
constant, eg. when dividends or stock splits occur.

• Conversion Price: The price of each underlying share paid on conver-
sion, assuming the bond principal is used to pay for the shares received.

Conversion Price =
Principal

Conversion Ratio
(1)

• Conversion Value (γtSt): The conversion value is generally determined
on a daily basis as the closing price of the stock multiplied by the con-
version ratio.

• Call Provisions: A call provision gives the issuer the right to buy the
bond back at the call price, which is specified in the call schedule. Gen-
erally, convertible bonds are call protected for a certain number of years
and only become callable after a certain date.

• Put provisions: A put provision gives the investor the right to sell
the bond back at the put price on certain dates prior to maturity. This
provides the investor with extra downside protection.

In this paper, however, we will only look at European convertible bonds with
no call or put provisions. We leave this for future work. The convertible bond
will pay constant coupons at regular times and will be exchangeable into a
certain number of shares at the discretion of the investor.
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Some further notation:

• rt,T = continuously compounded risk-free interest rate from t to T

• Vt = fair value of the convertible bond

• T = maturity of the convertible bond

• St = price of the underlying equity at time t

• dS = continuously compounded dividend yield of the underlying equity

• κ = final redemption ratio at time T in percentage points of the face
value

• t1, t2, ..., tn = coupon payment dates

3 CGMY Model

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying the usual
conditions. Let T ∈ [0,∞] denote the time horizon. We consider a Lévy
process X . The following theorem, the formula in which is known as the
Lévy-Khintchine formula, plays an important role in our discussion of the
CGMY proccess.

Theorem 1. The distribution fX of a random variable X is infinitely divis-
ible if and only if there exists a triplet (b, c, ν), with b ∈ R, c ∈ R+ and a
measure satisfying ν(0) = 0 and

∫
R(1 ∧ |x|2)ν(dx) <∞ such that

E [eiuX ] = exp
[
ibu− u2c

2
+

∫

R
(eiux−1−iux1{|x|<1})ν(dx)

]
. (2)

The triplet (b, c, ν) is called the Lévy or characteristic triplet and the

exponent in (2).κ(u) = ibu− u2c
2 +

∫
R(eiux−1−iuh(x))ν(dx) is called the Lévy

or characteristic exponent. Moreover, b ∈ R is called the drift term, c ∈ R+

the diffusion coefficient and ν the Lévy measure.

In the literature, several choices for the Lévy process in the stock returns
process have been considered. Madan and Seneta [6] proposed the variance
gamma (VG) Lévy process, Eberlein and Keller [5] used a hyperbolic model
and the Normal inverse Gaussian (NIG) model was introduced by Barndorff-
Nielsen [1]. Carr et al. [3] in 2002 introduced the CGMY model, of which the
VG model is a special case. See [7] for more details.

3.1 CGMY Process

The Lévy density of the CGMY process is given by

κCGMY (x) =

{
Ce−G|x|

|x|1−Y if x < 0
Ce−M|x|

|x|1+Y if x > 0,
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where C > 0, G,M ≥ 0 and Y < 2. We denote by XCGMY (t, C,G,M, Y ) the
infinitely divisible process of independent increments with the above Lévy
density.

The parameters play an important role in capturing the various aspects
of the stochastic process. The parameter C can be seen as the measure of
overall level of activity in the process. The parameters G and M control the
rate of exponential decay on the right and left of the Lévy density, leading
to skewed distributions when they are unequal. The parameter Y is useful in
characterising the monotonicity of the process including whether the process
has finite or infinite activity and finite or infinity variation.

The characteristic function of the CGMY process is given by

φCGMY (u, t, C,G,M, Y ) = etCΓ (−Y )[(M−iu)Y −MY +(G+iu)Y −GY ].

The CGMY stock price process is given by

St(ω) = S0e
(μ+ω)t+XCGMY (t,C,G,M,Y ),

where μ is the mean rate of returns on the stock and ω is a ‘convexity cor-
rection’.

3.2 Pricing Options Given the Characteristic

Function

If the density of our stock price process is known, then pricing options is
easy as you just need to calculate the expected value. However, if only the
characteristic function is known, then Carr and Madan [2] showed that the
price of a European call option C(T,K) with maturity T and strike K is
given by

C(T,K) =
e−αlog(K)

π

∫ ∞

0

e−ivlog(K)ρ(v)dv,

where ρ(v) = e−rT φ(v−(α+1)i)
α2+α−v2+i(2α+1)v and α is a positive constant such that the

αth moment of the stock price exists (typically a value of α = 0.75 will do).
Using fast Fourier transforms, it is possible to compute within seconds the
complete option surface.

4 Pricing Convertible Bonds

4.1 The Component Model

In practice, a very popular method for pricing convertible bonds is via the
component model, also called the synthetic model. The convertible bond is
divided into a straight bond component denoted by Bt and a call option Kt
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on the conversion value γtSt with strike Xt = Bt. The fair value of the bond
is calculated using the standard formulae, i.e. the sum of the present value
of its cashflows:

Bt = Ne−(rt,T +ξt)(T−t) + Nc

n∑

i=1

e−(rti,T +ξti
)(ti−t). (3)

The call can be priced either using the standard Black-Scholes formula or
via the fast Fourier transform mentioned in section 3.2. Then the value of
the convertible bond is just the sum of the two: Vt = Bt + Kt

4.2 Monte Carlo Methods

As with most complex derivatives, it is possible to approximate the price of
a convertible bond using Monte Carlo simulations. Since convertible bonds
are American in style, a technique to find the optimal stopping time needs
to be added to the usual Monte Carlo method. For example in the case of
a vanilla convertible bond, at every conversion time, the investor compares
the payoff from immediate conversion to the expected present value of future
payoffs from the bond to decide whether he should convert or not.

As in this paper we are only considering European convertible bonds, this
condition only needs to be checked at maturity. These values are then aver-
aged and discounted to today to result in an approximate price.

5 Results

There are various assumptions that were made to simplify the implementation
of these models for the purpose of this paper. First of all, interest rates are
assumed to be constant. Similarly, constant volatilities are also assumed. The
stock volatilities used should be based on historical volatilities.

Since the convertible bond pays regular coupons, a 360 day year is assumed.
This allows for the assumption that, for example, semi-annual coupon pay-
ments happen every 180 days. To make it more accurate one would need to
work with the actual dates.

All models work with a conversion ratio instead of a conversion price. In
practice, it seems that conversion prices are more common then ratios. It is
not difficult to change the models to work with prices instead of ratios.

For the purpose of this paper, the following parameters will be used
throughout the next few sections to illustrate the advantages and challenges
of implementing the models described in this paper:

• S0 = 50
• σS = 30%
• dS = 3%
• r = 8%
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• N = 100
• κ = 1
• γ = 2
• c = 10% NACS (Nominal annual compounded semi-annually)

In Figures 1 and 2 we used C = 4, G = 40, M = 70 and Y = 0.75 as
the values for the CGMY parameters. For more accuracy, one would need to
calibrate the CGMY model to the stock returns.

The first aspect we inspected was the convergence rate of both the Monte
Carlo using the GBM paths and the Monte Carlo using the CGMY paths.
This is shown in Figure 1.
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Fig. 1 Conversion rate of Monte Carlo methods.

It is immediately obvious that the CGMY Monte Carlo converges instan-
taneously, while the Monte Carlo based on GBM does not seem to converge
at all. Note as well, that they both give significantly different prices. The
price calculated using the CGMY paths is lower than that given by the GBM
paths.

In Figure 2 and 3 we have plotted the price of the convertible bond as
a function of time to maturity. The prices given by the GBM-component
model, CGMY-component model, GBM Monte Carlo model and CGMY
Monte Carlo model are shown.

Looking only at the component model prices, the CGMY component model
price is slightly lower than the GBM price, however, they have a similar shape.
The two Monte Carlo methods differ greatly. The Monte Carlo price based
on the CGMY model is lower and steeper than the Monte Carlo price based
on GBM. The CGMY Monte Carlo price starts close to where the component
prices start, while the GBM Monte Carlo price starts higher.
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Fig. 2 Component and Monte Carlo pricing techniques with coupons using a neg-
atively skewed CGMY process.

Next we decided to adjust the CGMY parameters to see how the prices
would change. Remember that the GBM model is a symmetric model, while
the CGMY model with the above mentioned values is negatively skewed.
This would explain why the CGMY prices are in general lower than the
GBM prices.

In Figure 3, we interchanged the values for G and M , thereby making it
positively skewed.
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Fig. 3 Component and Monte Carlo pricing techniques with coupons using a pos-
itively skewed CGMY process.

As can be seen, the CGMY Monte Carlo price changes significantly. At
T = 1, the positively skewed CGMY price is slightly lower, and at T = 10,
the price is quite a bit higher, as one would expect.
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6 Conclusions

This is only the beginning into the research of using the CGMY model to price
convertible bonds. We now need to extend these model to price American
convertible bonds, which include both call and put provisions. Credit risk,
which was not considered in this paper, also needs to be introduced into the
pricing.
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the NRF for their financial support.
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The Dividend Problems for Compound
Binomial Model with Stochastic
Return on Investments

Jiyang Tan, Xiangqun Yang, Youcai Zhang, and Shaoyue Liu

Abstract. We consider a discrete time risk process with stochastic return on
investments based on the compound binomial model, and we are interested
in the expected present value of all dividends paid out until ruin occurs when
the insurer uses a simple barrier strategy.

Keywords: Compound binomial process, Return on investment, Dividend
barrier.

1 Introduction

In the compound binomial model, the number of insurance claims is gov-
erned by a binomial process N(n), n = 0, 1, 2, · · · . In any time period, the
probability of a claim is p, 0 < p < 1, and the probability of no claim is
q = 1 − p. We denote by ξn = 1 the event where a claim occurs in the time
period (n-1,n] and denote by ξn = 0 the event where no claim occurs in
the time period (n-1,n]. Then N(n) =

∑n
k=1 ξk for n ≥ 1 and N(0) = 0.

The occurrences of claims in different time periods are independent events.
The claim amounts X1, X2, X3, · · · are mutually independent, identically dis-
tributed, positive and integer-valued random variables; they are independent
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of the binomial process {N(n)}. Let the initial surplus be u, which is a non-
negative integer. Assume that the premium received in each time period is c,
a positive integer. For n = 1, 2, · · · , the surplus at time n is

U(n) = u + cn− Sn, (1)

where Sn = X1ξ1 + X2ξ2 + · · ·+ Xnξn, and U(0) = u.
In this paper, we consider the compound binomial model modified by the

inclusion of stochastic return on the investments by an insurer. We mainly
investigate the expected value of all dividends paid out until ruin occurs
for a barrier strategy. The dividend policy is that when the surplus is big-
ger than a positive integer b, the insurer pays out all of the surplus over b
as dividends. For more risk models in the presence of dividend payments,
see [5] [2] [9] [3] [4] [1] [7] [8]. Some discrete time risk models with dividend
has been seen in literature. For example, Tan and Yang [11] considered a com-
pound binomial model with randomized decisions on paying dividends; Kim
et al [6] proposed a discrete time model with dividend payments affected by an
Markov environment process. It is worth mentioning that Paulsen and Gjess-
ing [10] considered a continuous time risk model with stochastic return on
investments and dividend payments. They were interested mainly in expected
present value of all dividends paid until ruin occurs, and this expected value
was found by solving a boundary value problem for an integro-differential
equation. Xiong and Yang [12] considered the Cramér-Lundberg model with
investments in a risky asset, and proved that ψ(u) = 1. We consider the com-
pound binomial model with investments and dividend payments, and obtain
the expected present value of all dividends paid until ruin occurs.

Our paper is organized as follows. We introduce the model in Section 2. In
Section 3, we find that the expected present value of the first dividend prior
to ruin satisfies a set of linear equations, and obtain its solution. Similarly,
we find some results about all dividends up to the ruin time.

2 The Model and Preliminaries

Consider a discrete time risk process based on the compound binomial model
(1). The surplus process is described as follows.

Let Yin (n = 1, 2, · · · ) denote the return on the investment by an insurer
in the time period (n− 1, n] when the surplus is i at time n− 1. And assume
that for all i (i = 0, 1, 2, · · · ), {Yin, n = 1, 2, · · · } is a sequence of mutually
independent, identically distributed, integer-valued random variables, and
independent of {Sn, n = 1, 2, · · · }. Besides, for i �= j and n �= m, Yin is
independent of Yjm. Let U(n) denote the surplus at time n(n = 0, 1, · · · )
when no dividend is considered. Then
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U(n) = U(n− 1) + c + YU(n−1),n −Xnξn, (2)

where U(0) = u.

We introduce a constant dividend barrier into the model (2). Assume that
any surplus of the insurer above the level b (a positive integer) is immediately
paid out to the shareholders so that the surplus is brought back to the level
b. When the surplus is below, nothing is done. Once the surplus is negative,
the insurer is ruined and the process stops. Let V (n) denote the surplus at
time n. Then

V (n) = min{V (n− 1) + c + YV (n−1),n −Xnξn, b}, (3)

where V (0) = u. We are interested in the expected present value of the
accumulated dividends up to the time of ruin in the risk model (3).

It is reasonable that the incomes from investments are brought in. The
income Yin(i ≥ 0, n ≥ 1) is certainly related to the capital i, and when
i = 0 the income should be 0, i.e. Y0n = 0 with probability 1. In general,
Pr(Yin ≥ −i) = 1. We should point out the assumption that Yin is restricted
to be integer-valued is not completely identical with reality, but as the unit
of money decreases it is closer and closer to reality.

Put X = X1 and let

f(k) = Pr(X = k), k = 1, 2, 3, · · · (4)

be the common probability function of the claim amounts. (The value of f(k)
is zero if k is not a positive integer.) Let

F (n) =

n∑

k=−∞
f(k); F̄ (n) = 1− F (n). (5)

Let
gi(k) = Pr(Yin = k), k = 0,±1,±2, · · · ; i = 0, 1, 2, · · · , (6)

Gi(n) =

n∑

k=−∞
gi(k); Ḡi(n) = 1−Gi(n); (7)

where g0(0) = Pr(Y0n = 0) = 1.

Define
T = inf{t ≥ 1 : V (t) < 0} (inf ∅ =∞) (8)

as the time of ruin and

τ = inf{t ≥ 1 : U(t) > b} (inf ∅ =∞). (9)

Assume
Pr(Xn > c) > 0. (10)
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The assumption is reasonable because an insurer should face a real risk pro-
cess. Because of the assumption (10) and b <∞, Pr(T <∞) = 1. We assume
throughout this paper that 0 ≤ u ≤ b.

3 The Expected Present Value of Dividends

Let Zin = Yin −Xn, and hi(z) denote Zin’s probability function. Then

hi(z) = Pr(Zin = z) =

∞∑

x=1

f(x)gi(z + x), z = 0,±1,±2, · · · . (11)

Let

Hi(n) =

n∑

k=−∞
hi(k); H̄i(n) = 1−Hi(n).

Let D1(u) denote the expected present value of the first dividend, and D(u)
denote the expected present value of all dividends up to the ruin time with
a discounted factor v (0 < v ≤ 1).

By conditioning on the time 1, we see that

D1(u) = vq

⎡
⎣

b−(u+c)∑

y=−u

D1(u + c + y)gu(y) +
∞∑

y=b+1−u−c

(u + c + y − b)gu(y)

⎤
⎦

+vp

⎡
⎣

b−(u+c)∑

z=−(u+c)

D1(u + c + z)hu(z) +

∞∑

z=b+1−u−c

(u + c + z − b)hu(z)

⎤
⎦ ,

(12)
and

D(u) = vq

⎡
⎣

b−(u+c)∑

y=−u

D(u + c + y)gu(y) +

∞∑

y=b+1−u−c

(u + c + y − b)gu(y)

+D(b)Ḡu(b − u− c)

⎤
⎦+vp

⎡
⎣

b−(u+c)∑

z=−(u+c)

D(u + c + z)hu(z)

+

∞∑

z=b+1−u−c

(u + c + z − b)hu(z) + D(b)H̄u(b − u− c)

]
. (13)

Note that gu(y) = 0 for y < −u. We change equivalently Eq. (12) into

D1(u) =

b∑

z=0

vD1(z)[qgu(z − u− c) + phu(z − u− c)]
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+

∞∑

y=b+1−(u+c)

v(u + c + y − b)[qgu(y) + phu(y)]. (14)

Eq. (14) can be rewritten as

(I− vqQ1 − vpP1)

⎛
⎜⎜⎜⎝

D1(0)
D1(1)

...
D1(b)

⎞
⎟⎟⎟⎠ = v, (15)

where I is a (b + 1)× (b + 1) unit matrix; Q1 is

⎛
⎜⎜⎜⎜⎝

g0(−c) g0(1− c) · · · g0(b− c)
g1(−1− c) g1(−c) · · · g1(b− 1− c)
g2(−2− c) g2(−1− c) · · · g2(b− 2− c)
· · · · · · · · · · · ·
gb(−b− c) gb(1− b− c) · · · gb(−c)

⎞
⎟⎟⎟⎟⎠

;

P1 is equal to

⎛
⎜⎜⎜⎜⎝

f(c) f(c− 1) · · · f(c− b)
h1(−1− c) h1(−c) · · · h1(b − 1− c)
h2(−2− c) h2(−1− c) · · · h2(b − 2− c)
· · · · · · · · · · · ·
hb(−b− c) hb(1− b − c) · · · hb(−c)

⎞
⎟⎟⎟⎟⎠

;

and v is the column vector

⎛
⎜⎜⎜⎝

v
∑∞

y=b+1−c(c + y − b)[qg0(y) + ph0(y)]

v
∑∞

y=b−c(1 + c + y − b)[qg1(y) + ph1(y)]
...

v
∑∞

y=1−c(c + y)[qgb(y) + phb(y)]

⎞
⎟⎟⎟⎠ .

Theorem 1. Under the assumption that Pr(Yin ≤ 0) > 0 (i = 0, 1, · · · , b)
or v < 1, the set of linear equations (15) has a solution and the solution is
unique, i.e.,

(D1(0), D1(1), · · · , D1(b))
T

= (I− vqQ1 − vpP1)−1v. (16)

Proof. First, we consider the case Pr(Yin ≤ 0) > 0. Let

R = (rkj) = I− vqQ1 − vpP1.
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Owing to the assumption (10). we have

∃x0 > c, s.t. f(x0) > 0,

which leads to that

f(c) + f(c− 1) + · · ·+ f(c− b) < 1.

Therefore,

vq

b∑

k=0

g0(k − c) + vp

b∑

k=0

f(c− k)] < 1,

which leads to that
|r11| >

∑

j �=1

|r1j |.

Hence, there exists λ1 ∈ (0, 1) such that λ1|r11| >
∑

j �=1 |r1j |. Let S1 =

diag(λ1, 1, · · · , 1)b+1 and R1 = (r1
kj) = RS1. Because of (10), we have for

every i (0 ≤ i ≤ b)
∃x < −c s.t. hi(x) > 0. (17)

It is easily seen that

|r1
kk| >

∑

j �=k

|r1
kj | (k = 1, 2)

because of (17).

Owing to |r1
22| >

∑
j �=2 |r1

2j |, there exists λ2 ∈ (0, 1) such that λ2|r1
22| >∑

j �=2 |r1
2j |. Let S2 = diag(1, λ2, 1, · · · , 1)b+1 and R2 = (r2

kj) = R1S2. We
have that

|r2
kk| >

∑

j �=k

|r2
kj | (k = 1, 2, 3).

We continue with the above program, and get λ3, λ4, · · · , λb in turn and Sk

= diag(1, · · · , 1, λk, 1, · · · , 1)b+1 (k = 3, 4, · · · ) with the k-th element being
λk. Finally, we obtain

Rb = (rb
kj) = RS, (18)

where S = S1S2 · · ·Sb = diag (λ1, λ2, · · · , λb, 1). Note that

|rb
kk| >

∑

j �=k

|rb
kj | (k = 1, 2, · · · , b + 1).

Thus, Rb is a (row) strictly diagonally dominant matrix, which is nonsingu-
lar. Hence, the coefficient matrix R = I− vqQ1 − vpP1 (called as H-matrix)
in the linear equations (15) is also a nonsingular matrix, which leads to the
result.

For the case v < 1, R is a strictly diagonally dominant matrix. Owing to
such a fact, the result also holds. ✷
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Remark. The condition Pr(Yin ≤ 0) > 0 implies that the insurer selects
risky investments.

Similarly, from Eq. (13), we obtain

(I− vqQ− vpP) (D(0), D(1), · · · , D(b))
T

= v, (19)

where Q is

⎛
⎜⎜⎜⎜⎝

g0(−c) g0(1− c) · · · g0(b − 1− c) Ḡ0(b − 1− c)
g1(−1− c) g1(−c) · · · g1(b − 2− c) Ḡ1(b − 2− c)
g2(−2− c) g2(−1− c) · · · g2(b − 3− c) Ḡ2(b − 3− c)
· · · · · · · · · · · · · · ·
gb(−b− c) gb(1− b− c) · · · gb(−1− c) Ḡb(−1− c)

⎞
⎟⎟⎟⎟⎠

;

P is
⎛
⎜⎜⎜⎜⎝

f(c) f(c− 1) · · · f(c− b− 1) F (c− b)
h1(−1− c) h1(−c) · · · h1(b− 2− c) H̄1(b − 2− c)
h2(−2− c) h2(−1− c) · · · h2(b− 3− c) H̄2(b − 3− c)
· · · · · · · · · · · · · · ·
hb(−b− c) hb(1− b− c) · · · hb(−1− c) H̄b(−1− c)

⎞
⎟⎟⎟⎟⎠

.

Thus, we have the following theorem.

Theorem 2. Under the assumption that Pr(Yin ≤ 0) > 0 (i = 0, 1, · · · , b)
or v < 1, the set of linear equations (19) has a solution and the solution is
unique, i.e.,

(D(0), D(1), · · · , D(b))
T

= (I− vqQ− vpP)−1v. (20)

Proof. Similar to Theorem 1. ✷
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Pricing Formulas of Compound
Options under the Fractional
Brownian Motion

Chao Zhang, Jizhou Zhang, and Dongya Tao

Abstract. In this paper, the pricing formulas of the compound options under
the fractional Brownian motion are given by the method of partial differential
equation.

Keywords: Fractional Brownian motion, Compound option, Black-Scholes
formula.

1 Introduction

It is well known that the Brownian motion was first introduced to finance by
Bachelier [8]. Black and Scholes [3] and, independently, Merton [10] proposed
the model of the prices of stock options on the basis of the geometric Brown-
ian motion. Nevertheless, Black and Scholes models are far from perfection.
Two apparent problems exist in the Black-Scholes formulation, namely fi-
nancial processes are not Gaussian and Markovian in distribution. Thus the
fractional Brownian motion (for short FBM) is a generalization of the more
well-known process of Brownian motion. The fractional Brownian motion
was originally introduced by Kolmogorov [7]. But Kolmogorov did not use
the name “fractional Brownian motion” and he called the process “Wiener
spiral”. The name “fractional Brownian motion” came from the influential
paper by Mandelbrot and Van Ness [9].
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The FBM is a continuous zero mean Gaussian process with station-
ary increments. It has long-range dependency property which makes the
FBM a plausible model in mathematical finance. Cheridito [2], Hu and Ok-
sendal [5] and Guasoni [4] have proved that there is no arbitrage in the
market under FBM. Necula [11] deduced the option pricing formula under
FBM by using the technology of fractal geometry. In addition, Hu and Ok-
sendal [5] have also obtained the pricing formula by the method of measure
transformation.

A compound option is an option on an option. There are four main types
of compound option, namely, a call on a call, a call on a put, a put on a call,
a put on a put. In this paper, we will derive the pricing formula of a call
on a call under FBM by the method of partial differential equation(for short
PDE). We can deal with other compound options in the same manner.

This paper is organized as followed. The next section is for basic assump-
tions. In section 3, we study the formulas of compound options. The final
section is for concluding remarks.

2 Basic Assumptions

We first give the following assumptions.
(1) The governing stochastic differential equation for the price of underly-

ing asset St is given by

dSt = μStdt + σStdW
H
t ,

where μ is the instantaneous expected return rate of St, σ is its volatility,

WH
t is FBM, E(dWH

t ) = 0 and V ar(dWH
t ) = t2H . In particular, if H =

1

2
,

then WH
t is a standard Brownian motion.

(2) Riskless interest rate r is constant.
(3) Dividend rate is q.
(4) No transaction cost and tax.
(5) The market is complete.

3 Main Results

Let V co
c,c(S, t) denotes the price of the compound option at time t ∈ [0, T1]

under FBM and K̂ is its strike price. We set the following portfolio Π and
its value at time t is given by

Π = V co
c,c −∆C,
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where C = C(S, t) denotes a call value at time t ∈ [T1, T2](T2 > T1) under
FBM whose strike price is K. By choosing suitable ∆, we can ensure that Π
is riskless such that

dΠ = rΠdt = r(V co
c,c −∆C)dt.

According to the Itô formula of FBM, we can obtain that

dΠ = dV co
c,c −∆dC

= (
∂V co

c,c

∂t
+ Ht2H−1σ2S2

∂2V co
c,c

∂S2
+ μS

∂V co
c,c

∂S
)dt + σS

∂V co
c,c

∂S
dS

−∆
(
(
∂C

∂t
+ Ht2H−1σ2S2 ∂

2C

∂S2
+ μS

∂C

∂S
)dt + σS

∂C

∂S
dS
)
.

(1)

Let ∆ =
∂V co

c,c

∂S

/∂C
∂S

. In addition, C satisfies (see [9])

∂C

∂t
+ Ht2H−1σ2S2 ∂

2C

∂S2
+ (r − q)S

∂C

∂S
− rC = 0. (2)

Thus, we have from (1) and (2) that

⎧
⎨
⎩

∂V co
c,c

∂t
+ Ht2H−1σ2S2

∂2V co
c,c

∂S2
+ (r − q)S

∂V co
c,c

∂S
− rV co

c,c = 0, 0 < t < T1,

V co|t=T1 = (C(S, T1)− K̂)+,
(3)

where (see [9])

C(S, T1) = Se−q(T2−T1)N(d̂1)−Ke−r(T2−T1)N(d̂2),

d̂1 =
ln S

K + (r − q)(T2 − T1) +
σ2

2
(T 2H

2 − T 2H
1 )

σ
√
T 2H

2 − T 2H
1

, d̂2 = d̂1−σ
√
T 2H

2 − T 2H
1 .

In the following, our main result on the problem (3) is given.

Theorem 3.1. The value of the compound option (a call on a call) at time
t is

V co
c,c(S, t) = e−q(T2−T1) exp{− B2

2σ2(T 2H
2 − T 2H

1 )τ
}M(a2, b2; ρ)

−Ke−r(T2−T1) exp{− B1

2σ2(T 2H
2 − T 2H

1 )τ
}M(a1, b1; ρ)

−K̂N

(
lnS − x∗

σ
√

T 2H
1 − t2H

)
,

(4)

where M(a, b; ρ), a1, a2, b1, b2, ρ, B1, B2, τ and x∗ are defined below.
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Proof. Let x = lnS, τ = ρ(t), η(t) = x+ α(t) and W (η, τ) = V co
c,c(x, t)e

β(t).
Then the equation (3) becomes

ρ′(t)
∂W

∂τ
+Hσ2t2H−1 ∂

2W

∂η2
+(r−q−Hσ2t2H−1+α′(t))

∂W

∂η
−(r+β′(t))W = 0.

(5)
Let ρ(t) = T 2H

1 − t2H , β(t) = r(T1 − t) and α(t) = (r − q)(T1 − t) −
σ2

2
(T 2H

1 − t2H). We know from (5) that

⎧
⎨
⎩

∂W

∂τ
− σ2

2

∂2W

∂η2
= 0, −∞ < η < +∞,

W (η, 0) = (C(η, T1)− K̂)+,

where
C(η, T1) = eη(T1)−q(T2−T1)N(d̃1)−Ke−r(T2−T1)N(d̃2),

d̃1 =
η(T1)− lnK + (r − q)(T2 − T1) +

σ2

2
(T 2H

2 − t2H)

σ
√

T 2H
2 − T 2H

1

,

d̃2 = d̃1 − σ
√

T 2H
2 − T 2H

1 .

Denote by x∗ the root of the equation eη(T1)−q(T2−T1)N(d̃1) − Ke−r(T2−T1)

N(d̃2)− K̂ = 0. By using the Poisson formula, we obtain

W (η, τ)

=
1

σ
√

2πτ

∫ +∞
−∞ e−

(x−ξ)2

2σ2τ (eη(T1)−q(T2−T1)N(d̃1)−Ke−r(T2−T1)N(d̃2)−K̂)+dξ

=
1

σ
√

2πτ

∫ +∞
x∗ e−

(x−ξ)2

2σ2τ (eη(T1)−q(T2−T1)N(d̃1)−Ke−r(T2−T1)N(d̃2)−K̂)+dξ

= I1 + I2 + I3,
(6)

where

I1 = e−q(T2−T1)
∫ +∞

x∗

1

σ
√

2πτ
e−

(x−ξ)2

2σ2τ eξN(d̃1)dξ,

I2 = −Ke−r(T2−T1)
∫ +∞

x∗

1

σ
√

2πτ
e−

(x−ξ)2

2σ2τ N(d̃2)dξ,

I3 = −K̂
∫ +∞

x∗

1

σ
√

2πτ
e−

(x−ξ)2

2σ2τ dξ.

In the following, we will derive I1, I2 and I3, respectively.
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First, we verify I3 by

I3 = −K̂
∫ +∞

x∗

1

σ
√

2πτ
e
−

(x− ξ)2

2σ2τ dξ = −K̂
∫
x− x∗
σ
√
τ

−∞
1√
2π

e
−
y2

2 dy

= −K̂N(
x− x∗
σ
√
τ

),

(7)

where N(x) is the standard normal distribution function. Next,

I2 = −Ke−r(T2−T1)
∫ +∞

x∗

1

σ
√

2πτ
e
−

(x− ξ)2

2σ2τ N(d̃2)dξ

= −Ke−r(T2−T1)
∫ +∞

x∗

1

σ
√

2πτ
e
−

(x− ξ)2

2σ2τ
( ∫ d̃2

−∞
1√
2π

e
−
z2

2 dz
)
dξ

= −Ke−r(T2−T1)
∫ +∞

x∗

1

σ
√

2πτ
e
−

(x− ξ)2

2σ2τ

( ∫
ξ−ln K+(r−q)(T2−T1)− σ2

2
(T 2H

2 −T2H
1 )

σ

√
T2H
2 −T2H

1

−∞
1√
2π

e
−
z2

2 dz
)
dξ

= −Ke−r(T2−T1)
∫ +∞

x∗

∫ ξ

−∞
1

2πσ2
√

(T 2H
2 − T 2H

1 )τ

exp
(
− (x− ξ)2

2σ2τ
−

(z − lnK + (r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 ))2

2σ2(T 2H
2 − T 2H

1 )

)
dzdξ.

We make the variable transformation as follows, ξ = −u, z = v−u. Then we
have

I2 = −Ke−r(T2−T1)
1

2πσ2
√

(T 2H
2 − T 2H

1 )τ

∫ −x∗

−∞
∫ 0

−∞

exp
(
− (x + u)2

2σ2τ
− (v − u− lnK+ (r− q)(T2 −T1)− σ2

2 (T 2H
2 − T 2H

1 ))2

2σ2(T 2H
2 − T 2H

1 )

)
dudv

(8)
Denote by P the exponential part of (8), that is,

P = − (x + u)2

2σ2τ
−

(v − u− lnK + (r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 ))2

2σ2(T 2H
2 − T 2H

1 )

= − 1

2σ2(T 2H
2 − T 2H

1 )τ

{
(T 2H

2 − T 2H
1 + τ)u2 + 2u{x(T 2H

2 − T 2H
1 )

+τ((r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 )− lnK)}+ τv2

+2τv((r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 )− lnK)− 2τuv

+x2(T 2H
2 − T 2H

1 ) + τ((r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 )− lnK)2

}
.

(9)
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For convenience, We assume

P = − 1

2σ2(T 2H
2 − T 2H

1 )τ

(
(au+c1)

2−2ρ(au+c1)(bv+d1)+(bv+d1)
2 +B1

)
.

Due to (9), we have

a =
√
T 2H

2 − T 2H
1 + τ =

√
T 2H

2 − t2H ,

b =
√
τ =

√
T 2H

1 − t2H ,

ρ =

√
τ√

T 2H
2 − T 2H

1 + τ
=

√
T 2H

1 − t2H

T 2H
2 − t2H

,

c1 = x
√

T 2H
2 − t2H +

2τ
√
T 2H

2 − t2H
(
(r − q)(T2 − T1)−

σ2

2
(T 2H

2 − T 2H
1 )− lnK

)

T 2H
2 − T 2H

1

,

d1 = τ((r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 )− lnK)

+
√
τ (x +

2τ
(
(r − q)(T2 − T1)−

σ2

2
(T 2H

2 − T 2H
1 )− lnK

)

T 2H
2 − T 2H

1

),

B1 = x2(T 2H
2 − T 2H

1 ) +

τ((r − q)(T2 − T1)−
σ2

2
(T 2H

2 − T 2H
1 )− lnK)2− c21 + 2ρc1d1− d2

1.

Therefore, we have from (8) that

I2 = −Ke−r(T2−T1)
1

2πσ2
√

(T 2H
2 − T 2H

1 )τ
×

e
−

B1

2σ2(T 2H
2 − T 2H

1 )τ ∫ −x∗

−∞
∫ 0

−∞ ePdudv.

(10)

Let

u∗ =

√
T 2H

2 − t2Hu + c1

σ
√

(T 2H
2 − T 2H

1 )(T 2H
1 − t2H)

, v∗ =

√
T 2H

1 − t2Hv + d1

σ
√

(T 2H
2 − T 2H

1 )(T 2H
1 − t2H)

.
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From (10), we obtain that

I2 = −Ke−r(T2−T1)e
−

B1

2σ2(T 2H
2 − T 2H

1 )τ ∫ a1

−∞
∫ b1
−∞ f(u∗, v∗)dudv

= −Ke−r(T2−T1)e
−

B1

2σ2(T 2H
2 − T 2H

1 )τ M(a1, b1; ρ),

(11)

where M(a, b; ρ) is standard bivariate normal distribution function with cor-
relation coefficient ρ, f(x, y) is its probability density function, and a1, b1 are
given by

a1 =
−
√

T 2H
2 −T 2H

1 +τx∗+c1

σ
√

(T 2H
2 −T 2H

1 )τ
, b1 = d1

σ
√

(T 2H
2 −T 2H

1 )τ
.

Finally, we can derive by the above similar way that

I1 = e−q(T2−T1)e
− B2

2σ2(T2H
2

−T2H
1

)τ M(a2, b2; ρ), (12)

where

a2 =
−
√

T 2H
2 −T 2H

1 +τx∗+c2

σ
√

(T 2H
2 −T 2H

1 )τ
, b2 = d2

σ
√

(T 2H
2 −T 2H

1 )τ
,

c2 = (x + 2σ2τ)
√

T 2H
2 − T 2H

1 + τ

+
2τ
√

T 2H
2 −T 2H

1 +τ
(
(r−q)(T2−T1)+ σ2

2 (T 2H
2 −T 2H

1 )−ln K
)

T 2H
2 −T 2H

1
,

d2 =
√
τ ((r − q)(T2 − T1) + σ2

2 (T 2H
2 − T 2H

1 )− lnK)

+
√
τ(x + 2σ2τ +

2τ
(
(r−q)(T2−T1)+

σ2

2 (T 2H
2 −T 2H

1 )−ln K
)

T 2H
2 −T 2H

1
),

B2 = x2(T 2H
2 − T 2H

1 ) + τ((r − q)(T2 − T1) + σ2

2 (T 2H
2 − T 2H

1 )− lnK)2

−c22 + 2ρc2d2 − d2
2.

Therefore, substituting (7), (11), (12) into (6) and backing to the original
variables, we obtain the conclusion (4).

By a similar argument, we may obtain the results on the other compound
options (a call on a put). Here, we omit the proof process and the results on
the a put on a call and a put on a put.

Theorem 3.2. The value formulaes for other European compound options
(a call on a pu, a put on a call and a put on a put, respectively) at time t are

V co
c,p(S, t) = e−q(T2−T1) exp{− B2

2σ2(T 2H
2 − T 2H

1 )τ
}M(a2,−b2;−ρ)

−Ke−r(T2−T1) exp{− B1

2σ2(T 2H
2 − T 2H

1 )τ
}M(a1,−b1;−ρ)

+K̂N

(
lnS − x∗

σ
√

T 2H
1 − t2H

)
,
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Remark. In the Theorems above, if we take H =
1

2
, then we obtain the

results in [10] for the compound options.

4 Concluding Remarks

In this paper, we used the method of PDE to obtain the formulas of four types
of compound options under FBM. They could be regarded by the generaliza-
tion of the existing results under the standard fractional Brownian motion.
The approach is also suitable for other types of options.

Acknowledgments. This project is supported by the National Basic Research

Program of China(2007CB814903), originality and perspectiveness advanced re-

search of Shanghai Normal University, Shanghai Leading Academic Discipline

Project (No.S30405) and Special Funds for Major Specialties of Shanghai Education

Committee.

References

1. Bender, C., Sottinen, T., Valkeila, E.: Arbitrage with fractional Brownian
Motion. Theory of Stochastics Process 12, 3–4 (2006)

2. Cheridito, P.: Arbitrage in fractional Brownian Motion models. Finance and
Stochastics 7, 533–553 (2003)

3. Fischer, B., Myron, S.: The pricing of option and corporate liabilities. J. Polit-
ical Economy 81, 637–654 (1973)

4. Guasoni, P.: No arbitrage under transaction costs with fractional Brownian
motion and beyond. Mathematical Finance 16, 569–582 (2006)

5. Hu, Y.Z., Oksendal, B.: Fractional white noise calculus and application to fi-
nance. infinite dimensional analysis. Quantum Probability and Related Top-
ics 6, 1–32 (2003)

6. Jiang, L.S.: Mathematical Modeling and Methods of Option Pricing. World
Scientific Publishing Company, Singapore (2005)

7. Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven in
Hilbertschen Raum. Comptes Rendus (Doklady) de l’Academie des Sciences de
l’URSS 26, 115-118 (1940)

8. Louis, B.: Theorie de la speculation. Annales Scientifiques de l’Ecole Normale
Superieure 17, 21–86 (1900)

9. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions.Fractional
Noises and Applications. Siam Review 10, 422–437 (1968)

10. Merton, R.C.: Theory of rational option pricing, Bell. J. Econ. & Manag. Sci. 4,
141–183 (1973)

11. Necula, C.: Option pricing in a fractional Brownian Motion environment. Draft.
Academy of Economic Studies 12, 1–18 (2002)

12. Nualart, D.: Stochastic Integration with Respect to Fractional Brownian
Motion and Applications (2004) (preprint)

13. Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian
Motion. Collectanea Mathematica 53(1), 55–81 (2002)



Influence of Risk Incentive by Limited
Dividend Provision

Hiroshi Inoue, Masatoshi Miyake, and Li Guan

Abstract. Moral hazard problem, which has been broadly studied in eco-
nomics, financial engineering and other areas, is understood as one of ineffi-
ciency to distribute the resources. It is interpreted that after some contract
was concluded, one person who has more information than the other may
change his behaviour and attitude toward his investment planning, causing
some trouble to the other person. In this paper, we study a risk incentive
problem between a creditor and shareholders, whose right to make a claim
is different from each other, for corporate profits. In particular, we refer to
and discuss limited provision on dividend, which may play a role to be able
to solve the incentive problem. Some numerical examples are examined to
illustrate the problem mentioned.

Keywords: Barrier option, Limited dividend provision, Shareholders and
creditor, Option pricing, Risk-shifting incentive.

1 Introduction

The moral hazard can be applied to financial contract since there exists in-
formation asymmetry between a principal as a lender and an agent as a
borrower. The agent having an information predominance over the principal,
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after the contract was concluded, may have incentive to pursue his own profit
by taking some behavior which is not perceived by the principal, concealing
the information and telling lies. Jensen and Meckling [4] study incentive prob-
lems that, when an agent’s behavior cannot be perceived by a principal, the
agent breaks their contract and invests in a risky project with higher return
after the agent borrowed money from the principal. As a mean to mitigate
risk incentive problem occurred in firms a creditor may set covenant or col-
lateral and give a limitation to the behavior of firms or utilize a convertible
bond and a warrant bond. Also, limited dividend provision to protect credi-
tor’s right taken up in this study is one of possible methods. For the study of
risk incentive problem and limited dividend provision Isagawa and Yamashita
[3] is referred, in which the limited dividend provision attached on a bond
can give some possibility to remove agency cost incurred by the debt of the
shareholders’ risk incentive problem.

In this paper, we consider the risk-shifting problem between sharehold-
ers and a creditor in a framework of option pricing theory, in which the
shareholders start investing activities after he raised investing funds from the
creditor. In particular, we refer to and discuss limited provision on dividend,
which may play a role to be able to solve the incentive problem. Our analysis
is based on option pricing theory, so that the methodology is different from
the model developed by Isagawa and Yamashita. We note that for the option
pricing formula of Black-Scholes model some barriers need to be attached to
the formula since in the standard B-S equity valuation model shareholders
always select infinite-volatility projects.

2 Structure of Contract

We focus on all-equity firm which consists of shareholders’ equity.

• Presently, shareholders plan to commit their funds to a venture, but don’t
have surplus fund. Therefore, they raise investing funds I by issuing dis-
count bonds, whose maturity is the end of the term, in exchange for a
promise that the shareholders repay redemption (face value) D (=I) of
the discount bonds to the creditor.

• Next, the shareholders start investing activities after they raised investing
funds from the creditor. The shareholders can choose and invest all funds
in any one of a series of projects n. In this case, the value of the project
is equal to the investing fund (S0 = I) and the expected profit rate is
constant with non-risk rate r. Also, assume the projects take different
risk σ. Further, the value of asset Si follows the next geometric Brownian
motion.

dSi = rSidt + σiSidW (i = 1...n) (1)
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• The project brings profit twice, at the mid and the end of a period. The
profit x(> 0) through the period is the same for all projects. Denote
the asset value at maturity time by S(σ). On the other hand, the profit
at the end of the period is fluctuated since the asset follows equation
(1) so that the profits are different among projects. At maturity time,
the profit of the shareholders become x(σ,D) and that of the creditor
is expressed as the difference that the asset value minus shareholders’
profit, S(σ) − x(σ,D).The shareholders has limited liability.

• Also, when the value of asset drops at default boundary L the default
of obligation occurs and by exercising a security right the asset L is
collected. Then, the shareholders transfer the asset to the creditor and
the return of the shareholders becomes 0.

At this time, applying option pricing theory to the pay-off structure, as the
volatility in Black-Scholes gets high the value of call option which the share-
holders possess may increase. On the contrary, the creditor has loss when
the project failed while the creditor can not receive the gain form upside
when the project with high risk is successful. This is because the creditor
who has short position of call option make their value high by controlling the
volatility.

Therefore, in this paper, some consideration for the asset dynamics of
project is taken. When the asset value reaches the default boundary before
maturity time, the creditor becomes aware of the situation and the project is
immediately suspended. After that, the creditor collects the asset by perform-
ing a security right and the shareholders transfer the asset to the creditor, so
that the shareholders’ gain becomes 0.

3 Gain of Shareholders and Creditor and Optimal Risk
Without Limited Dividend Provision

In a case that there is no limited dividend provision, when left profit dur-
ing the period to shareholders’ discretion each shareholder pays himself a
dividend. Hence, letting redemption fund be D and the profit at maturity
x(σ,D), the gain of the shareholders at T -th term Vshareholder(σ,D, x+) is
obtained as below.

Vshareholder(σ,D, x+) = x + x(σ,D) (2)

Assuming that profit at the end of the period follows geometric Brownian
motion of (1) we have
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x(σ,D) =

{
max[ST −D, 0] min

0≤τ≤T
(Sτ ) > L

0 otherwise

= erT

{
S0N(d1)−De−rTN(d1 − σ

√
T )− S0

(
S0

L

)− 2r
σ2 −1

N(d2)

+

(
S0

L

)− 2r
σ2 +1

De−rTN(d2 − σ
√
T )

}
, (3)

where d1 = ln(S0/D)+(r+σ2/2)T

σ
√

T
, d2 = ln(L2/S0D)+(r+σ2/2)T

σ
√

T
.

The rate of change of shareholders’ gain for risk ∂Vshareholder(σ,D, x+)/∂σ
can be found, and the optimal risk which maximizes the shareholders’ gain
σ∗

shareholder is found as follows.

∂Vshareholder(σ,D, x+)

∂σ

∣∣∣∣
σ=σ∗

shareholder

= 0 (4)

The optimal value of σ∗
shareholder can’t be analytically obtained and need to

use numerical computation which is showed later.

The gain of the creditor at T -th term Vcreditor(σ,D, x+) is expressed as a
difference that the whole asset x+S(σ) minus the gain of the shareholders of
(2) Vshareholder(σ,D, x+), hence the gain of the creditor is obtained as below,

Vcreditor(σ,D, x+) = x + S(σ)− Vshareholder(σ,D, x+) (5)

By introducing knock-out condition, the value of the asset at the end of the
period S(σ) becomes, denoting its barrier by L,

S(σ) =

{
min[ST , D] min

0≤τ≤T
(Sτ ) > L

L otherwise

= S0e
rTN(d3)−

(
L

S0

) 2r
σ2 −1

L2

S0
erTN(d4) + L

−
(
LN(d3 − σ

√
T )−

(
L

S0

) 2r
σ2 −1

LN(d4 − σ
√
T )

)
, (6)

where d3 = ln(S0/L)+(r+σ2/2)T

σ
√

T
, d4 = ln(L/S0)+(r+σ2/2)T

σ
√

T
.

The optimal risk which maximizes the gain of the creditor σ∗
creditor is

Vcreditor(σ,D, x+)
∣∣
maxσ≥σ∗

creditor

= I. (7)

It means to find the largest value of σ for which the creditor’s gain is equiv-
alent to I.
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Assume two different projects, one is project R which has the optimal
risk σ∗

shareholder of shareholders and the other one is project S which has
the optimal risk σ∗

creditor of creditor. Here, project S is referred as a safety
project while R is referred a risky project. In other word, σR > σS . On this
supposition, if the shareholders implement project S the debt for the creditor
is cleared off. Hence, it is the best way for the creditor to implement project
S with σS = σ∗

creditor

On the other hand, to the shareholders the relation between the value
of the shareholders Vshareholder(σS , D, x+) and the value of the shareholders
Vshareholder(σR, D, x+), when implementing project S or when implement-
ing project R, is described, Vshareholder(σR, D, x+) ≥ Vshareholder(σS , D, x+).
Also, the shareholders have risk incentive to do project R with high risk
against the creditor’s will, in order to maximize his own profit, as a result
the profit of the creditor is hampered, causing risk incentive. But, if the
creditor is sensible he may predict in advance risk incentive that the share-
holders do project R and claims redemption fund D∗(≥ D) which satisfies
the following relation.

Vcreditor(σR, D, x+)
∣∣
D=D∗ = I (8)

Replacing
Vcreditor(σR, D

∗, x+) = I

by x + S(σR)− Vshareholder(σR, D
∗, x+) = I, the gain of the shareholders is

Vshareholder(σR, D
∗, x+) = x + S(σR)− I. (9)

The relation of the gains of the shareholders between when choosing project
R, under redemption fund followed to creditor’s claim, and when choosing
project S is expressed as follows. Since S(σ) is a decreasing function with
respect to σ,

Vshareholder(σS , D, x+)−Vshareholder(σR, D
∗, x+) = S(σS)−S(σR) > 0 (10)

holds. The difference in (10) is agency cost which the shareholders bear. Thus,
as the difference of the optimal risk between the shareholders and the creditor
gets greater the agency cost which the shareholders bear increases.

Let the investing cost for both projects be I=100 and the redemption
fund D=100. Let the profit during the period be x=20. Also, let the asset
value of the project at the initial term be S0=100 and the expected profit
rate r=0.2. Further, assume project period is T=2, the default boundary is
L=70. Then, each risk for project S and R is obtained from (4) and (7),
σS=0.036887, σR=0.474947, respectively. As showed in table 1, if choosing
project S the creditor can collect the promised redemption money in full
while if choosing project with high risk R against the creditor’s will, the
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gain of the shareholders goes up from 69.1825 to 73.8781 but the gain of the
creditor goes down from 100 to 84.1224, resulting in situation of default. If the
creditor is sensible he may in advance predict shareholders’ risk incentive and
claim D∗=130.125 for investing fund I = 100. In other words, the creditor set
required profit rate 100× exp(2× rd) = 130.125→ rd=0.131663. In this case,
the creditor’s gain becomes 100 while the shareholders’ gain will be 58.0006
by (9). Hence, when project S was chosen the difference from both gains of
the shareholders is 69.1825-58.0006=11.1819. Note the difference is agency
cost which the shareholders bear.

Table 1 Gains of shareholders and creditor without limited dividend provision

Project S Project R Project R
(Cum div. Redm. money D) (Non div. Redm. money D∗)

Gain of shareholders 69.1825 73.8781 58.0006
Gain of creditor 100 84.1224 100

4 Gains of Shareholders and Creditor and Optimal
Risk with Limited Dividend Provision

When dividend provision is limited the gains of the shareholders and creditor
is found with optimal risks. Limited dividend provision is applied and the
profit during the period is reserved till the end, then the gain of the share-
holders at T -th term will be below. For the case of min

0≤τ≤T
(Sτ ) > L, the value

that calculated as the sum of the profit during the period and the asset value
minus redemption funds becomes the gain of the shareholders. Otherwise,
because the default of obligation occurs the total sums of collected asset L
and the profit during the period become the underlying asset, so that the
redemption funds become strike price.

Vshareholder(σ,D, x−) =

{
max[x + ST −D, 0] min

0≤τ≤T
(Sτ ) > L

max[x + L−D, 0] otherwise
(11)

On the other hand, the creditor’s gain at T -th term Vcreditor(σ,D, x−) is ob-
tained as the difference for which the shareholders’ gain Vshareholder(σ,D, x−)
is subtracted from x + S(σ). Hence, the creditor’s gain is

Vcreditor(σ,D, x−) = x + S(σ)− Vshareholder(σ,D, x−) (12)

Then, the gains of the shareholders and the creditor is expressed as in Table 2.
Note that x(σ,D− x) is obtained by replacing D in (3) by D−x. For D ≤ x
and x < D ≤ x+L, the profit during the period is reserved till the end of the
period, then the creditor can collect the promised redemption money in full.
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Table 2 Gains for shareholders and creditor

D ≤ x x < D
D ≤ x + L x + L < D

Gain of shareholders x + S(σ) − D x + S(σ) − D x(σ,D − x)
Gain of creditor D D x + S(σ) − x(σ, D − x)
total x + S(σ) x + S(σ) x + S(σ)

To do so, limited dividend provision may be applied and hence there does not
occur any risk incentive problem between the shareholders and the creditor.
On the other hand, for x + L < D even though the gain during the period
is reserved there exists risk incentive problem between the shareholders and
the creditor. The optimal risk which maximizes the shareholders’ gain in
x + L < D σ∗∗

shareholder is

∂Vshareholder(σ,D, x−)

∂σ

∣∣∣∣
σ=σ∗∗

shareholder

= 0. (13)

The optimal risk σ∗∗
creditor which maximizes the creditor’s gain is

Vcreditor(σ,D, x−)
∣∣
max σ≥σ∗∗

creditor

= I. (14)

Similarly as before, assume two different projects S, R which have the opti-
mal risk of the shareholders and the creditor σ∗∗

shareholder and σ∗∗
creditor. On

this supposition, it is the best choice for the creditor to choose project S
with σS = σ∗∗

creditor. On the other hand, the relation between the share-
holders’ gain when choosing project S and the shareholders’ gain when
choosing project R is expressed as Vshareholder(σR, D, x−) ≥ Vshareholder

(σS , D, x−). For the shareholders, to choose project R is the best choice with
σR = σ∗∗

shareholder. As a consequence, the gain of the creditor is hampered
and a incentive problem appears. A sensible creditor predicts in advance risk
incentive of the shareholders and claims the redemption funds D∗∗ which
satisfy Vcreditor(σR, D, x−)|D=D∗∗ = I,

Next, let examine with numerical example. Using the same numerical val-
ues as before. Respective risk for project S and R are obtained from (13),
(14), respectively, σS=0.0581002, σR =0.147411. If project S was selected
the creditor can collect the promised redemption funds while project R was
selected against the creditor’s will, the gain of the shareholders increases
from 69.1825 to 69.1845 but the creditor’s gain decreases 100 to 99.9834, so
that default of obligation appears. If the creditor is sensible he may predict
in advance risk incentive of the shareholders and claim D∗∗=120.287 for in-
vesting funds I=100. In other words, the creditor set required profit rate
rd = 0.0923552. In this case, the gain of creditor becomes 100 while that of
the shareholders becomes 69.168. Hence, the difference from the shareholders’
gain for project S is 69.1825-69.168=0.0145. When we compare the agency
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cost without limited divided provision with that of limited dividend provi-
sion, the shareholders’ agency cost is decreased by 11.1819-0.0145=11.1674.

Table 3 Gains of shareholders and creditor with limited dividend provision

Project S Project R Project R
(Cum div. Redm. money D) (Non div. Redm. money D∗∗)

Gain of shareholders 69.1825 69.1845 69.168
Gain of creditor 100 99.9834 100

5 Concluding Remarks

We studied a risk incentive problem between shareholders and creditor
with/without limitation of dividend provision. The gains of the sharehold-
ers and the creditor is derived by using option pricing evaluation method
with knock out condition numerical examples. It is found that without div-
idend constraint, there is a difference of the gains of the both sides between
project S and project R, in particular, the difference is noticeable when the
redemption amount is optimal. However, when the dividend is preserved the
circumstance is different from that of unlimited dividend. The gains of both
sides for safe project and risky project are compared under dividend con-
straints, so that the creditor do not lose much gain even risky project was
selected.
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An Application of the Forward
Integral to an Insider’s Optimal
Portfolio with the Dividend

Yong Liang, Weiyin Fei, Hongjian Liu, and Dengfeng Xia

Abstract. This paper discusses an insider’s optimal portfolio with dividend,
in the case that the performance is measured in terms of the logarithm of
the terminal wealth minus a term measuring the roughness and the growth
of the portfolio. The stochastic calculus of the forward integral is employed.
The explicit solution in a special case is obtained.

Keywords: Forward integrals, Optimal portfolio, Insider trading, Dividend,
Filtration.

1 Introduction

In a financial market, an insider possesses more information than the infor-
mation generated by the financial market. In recent years, there has been an
increasing interest in the insider trading (see, e.g., Biagani and Øksendal [2],
Fei and Wu [4, 5]). Some of them might trade, directly or indirectly, on the
asset and make profit from the privileged information.

Karatzas and Shreve [7] introduce the dividend into their model of portfo-
lio. Fei [3] studies optimal consumption and portfolio choice with ambiguity
and anticipation. In Back [1] and Kyle [8], the impact of trading strategies on
prices is explained by the presence of an insider. Hu and Øksendal [6] study
optimal smooth portfolio selection for an insider. In probabilistic terminology,
information is generally represented by a filtration. Usually an investor can
only use the filtration generated by the market to make a decision. We call

Yong Liang, Weiyin Fei, Hongjian Liu, and Dengfeng Xia
School of Mathematics and Physics, Anhui Polytechnic University,
Anhui Wuhu 241000, P.R. China
e-mail: liangyong@ahpu.edu.cn, wyfei@ahpu.edu.cn, hjliu2006@ahpu.edu.cn,
dengfengxia@ahpu.edu.cn

S. Li (Eds.): Nonlinear Maths for Uncertainty and its Appli., AISC 100, pp. 263–270.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

liangyong@ahpu.edu.cn,


264 Y. Liang et al.

such investors honest. An insider has a larger filtration (more information)
available to her and can use this larger filtration to maximize her portfolio.

To simplify our presentation we assume that the market consists of fol-
lowing two assets over the time period [0, T ]. The first one is a bond
whose price follows dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T. Another asset is
the stock whose price follows the following geometric Brownian motion
dS(t) = S(t)[μ(t)dt + σ(t)dB(t)], 0 ≤ t ≤ T, where T > 0 is constant and
r(t), μ(t) and σ(t) are given Ft-adapted processes, B(t) = Bt(ω), 0 ≤ t ≤ T,
is a Brownian motion and dB(t) denotes the Itô type stochastic differen-
tial. Denote Ft = σ(Bs, 0 ≤ s ≤ t), which is the information generated
by the market. Assume for example that at the beginning (t = 0) the in-
sider knows in addition the future value of the underlying Brownian mo-
tion at time T0, where T0 > T . Then her information filtration is given by
Gt = σ(Bs, 0 ≤ s ≤ t) ∨ σ(BT0), the filtration generated by the Brownian
motion up to time t and BT0 . The insider may use the filtration Gt (rather
than as usual use only the filtration Ft) to optimize her portfolio.

In what follows, just as Karatzas and Shreve [7] introduce the dividend
into their model, we shall consider the financial market with the dividend
rate δ(t) which is an Ft-adapted process. So our model extends the one of
Hu and Øksendal [6] where the dividend is not considered.

Let us express the portfolio in terms of the fraction π(t) of the total wealth
invested in the stock at time t. Let Xπ(t) denote the corresponding wealth
at time t. Similar to Pikovsky and Karatzas [10], we consider the problem of
maximizing the expectation of the logarithmic utility of terminal wealth

ΦG
△
= sup

π
{E [log(Xπ(T ))]}, (1)

where the supremum is taken over all Gt-adapted portfolios π(·). It is easy to
obtain that in this case the optimal insider portfolio is

π∗(t) =
μ(t) + δ(t)− r(t)

σ2(t)
+

B(T0)−B(t)

σ(t)(T0 − t)
. (2)

Moreover, the corresponding maximal expected utility ΦG is given by

ΦG = E

[∫ T

0

{
r(s) +

1

2

(μ(s) + δ(s)− r(s))2

σ2(s)
+

1

2(T0 − s)

}
ds

]
, T0 ≥ T.

In particular, if T0 = T we get ΦG = ∞, which is clearly an unrealistic result.
If T0 = T we see by (2) that the optimal portfolio π∗ needed to achieve
ΦG = ∞ will converge towards the derivative of B(t) at t = T−

0 . Thus π∗(t)
will consist of more and more wild fluctuations as t → T−

0 . This is both
practically impossible and also undesirable from the point of view of the
insider: She does not want to explore a too conspicuous portfolio, compared
to that of the honest trader, which in the optimal case is just
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π∗
honest(t) =

μ(t) + δ(t)− r(t)

σ2(t)
.

To model this constraint we propose to modify the problem (1) to the fol-
lowing:

Problem 1. Find π∗ ∈ AG and Φ such that

Φ = sup
π∈AG

E
[
log(X(π)(T ))− 1

2

∫ T

0 |Qπ(s)|2ds
]

= E
[
log(X(π∗)(T ))− 1

2

∫ T

0 |Qπ∗(s)|2ds
]
,

where AG is a suitable family of admissible Gt-adapted portfolios π. Here Q :
AG → AG is some linear operator measuring the size and/or the fluctuations
of the portfolio.

For example we could have Qπ(s) = λ1(s)π(s), where λ1(s) ≥ 0 is some given
weight function. This models the situation where the insider is penalized for
large volumes of trade.

An alternative choice of Q would be Qπ(s) = λ2(s)
d
dsπ(s), for some weight

function λ2(s) ≥ 0. In this case the insider is penalized for large trade fluc-
tuations. Other choices of Q are also possible.

Now this paper is arranged as follows. Section 2 studies the smooth port-
folio of an insider investor in a financial market with the dividend. Finally,
Section 3 concludes.

2 An Insider’s Optimal Smooth Portfolio with
Dividend

In this section, we discuss Problem 1 in the introduction. Assume that an
investor selects one riskless bond and one risk stock whose prices dynamics
follows as those in the introduction. The related concepts and properties of
the forward integral can refer to Hu and Øksendal [6].

Let Gt ⊃ Ft be the information filtration available to the insider and let
π(t) be the portfolio chosen by the insider, measured in terms of the fraction
of the total wealth X(t) = X(π)(t) invested in the stock at time t ∈ [0, T ].
Then the corresponding wealth X(t) = X(π)(t) at time t is modeled by the
forward stochastic differential equation

dX(t) = (1− π(t))X(t)r(t)dt
+π(t)X(t) [(μ(t) + δ(t))dt + σ(t)d−B(t)]

= X(t){[r(t) + (μ(t) + δ(t)− r(t))π(t)]dt
+σ(t)π(t)d−B(t)}.

(3)
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For simplicity we assume X(0) = 1. This forward integral model for the
anticipating stochastic differential equation (3) shows the forward integral as
a limit of Riemann sums of the Itô type, i.e. where the i-th term has the form
φ(ti)(B(ti+1)−B(ti)) with φ evaluated at the left end point ti of the interval
[ti, ti+1]. Moreover, if B(t) happens to be a semimartingale with respect to Gt,
then indeed the forward integral coincides with the semimartingale integral.

We now specify the set A = AG of the admissible portfolios π as follows.

Definition 1. Let A = AG denote the space of all stochastic processes π(t)
such that (4)-(7) hold, where

π(t) is Gt − adapted and the σ − algebra generated by

{π(t);π ∈ A} is equal to Gt, for all t ∈ [0, T ], (4)

π ∈ L1,2 and π belongs to the domain of Q, (5)

σ(t)π(t) is forward integrable, (6)

E

[∫ T

0

|Qπ(t)|2dt
]
<∞. (7)

With these definitions we can now specify Problem 1 as follows.

Problem 2. Find Φ and π∗ ∈ A such that

Φ = sup
π∈A

J(π) = J(π∗),

where

J(π) = E

[
log(X(π)(T ))− 1

2

∫ T

0

|Qπ(t)|2dt
]
,

Q: A → A being a given linear operator (E denotes the expectation with
respect to P). We call Φ the value of the insider and π∗ ∈ A an optimal
portfolio (if it exists).

We now proceed to solve Problem 2: We get that the solution of (3) is

X(t) = exp
(∫ t

0
{r(s) + (μ(s) + δ(s)− r(s))π(s)

− 1
2σ

2(s)π2(s)
}
ds +

∫ t

0 σ(s)π(s)d−B(s)
)
.

Therefore we get

J(π) = E
[∫ T

0

{
r(t) + (μ(t) + δ(t)− r(t))π(t) − 1

2σ
2(t)π2(t)

}
dt

+
∫ T

0
σ(t)π(t)d−B(t)− 1

2

∫ T

0
|Qπ(t)|2dt

]
.

(8)
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To maximize J(π) we use a calculus of variation technique, as follows: Suppose
an optimal insider portfolio π = π∗ exists (in the following we omit the ∗).
Let θ ∈ A be another portfolio. Then the function

f(y)
△
= J(π + yθ), y ∈ R

is maximal for y = 0 and hence

0 = f ′(0) = d
dy [J(π + yθ)]y=0

= E
[∫ T

0

{
(μ(t) + δ(t)− r(t))θ(t) − σ2(t)π(t)θ(t)

}
dt

+
∫ T

0
σ(t)θ(t)d−B(t) −

∫ T

0
Qπ(t)Qθ(t)dt

]
.

(9)

Let Q∗ denote the adjoint of Q in the Hilbert space L2([0, T ]×Ω), namely,

E

[∫ T

0

α(t)(Qβ)(t)dt

]
= E

[∫ T

0

(Q∗α)(t)β(t)dt

]

for all α and β in A. Then we can rewrite (9) as

E[
∫ T

0

{
μ(t) + δ(t)− r(t) − σ2(t)π(t)

−Q∗Qπ(t)} θ(t)dt +
∫ T

0
σ(t)θ(t)d−B(t)] = 0.

(10)

Let

M(t)
△
=
∫ t

0

{
μ(s) + δ(s)− r(s) − σ2(s)π(s)

−E[Q∗Qπ(s)|Gs]} ds +
∫ t

0
σ(s)dB(s).

(11)

Now we give the following theorem.

Theorem 1. Suppose an insider’s optimal portfolio π ∈ A for Problem 2
exists. Then

dB(t) = dB̂(t)− 1
σ(t)

{
μ(t) + δ(t)− r(t) − σ2(t)π(t) −E[Q∗Qπ(t)|Gt]

}
dt

where B̂(t)
△
=
∫ t

0
σ−1(s)dM(s) is a Gt-Brownian motion. In particular, B(t)

is a semimartingale with respect to Gt.

Proof. Apply (10) to a special choice of θ: Fix t ∈ [0, T ] and h > 0 such
that t + h < T and choose θ(s) = θ0(t)χ[t,t+h](s); s ∈ [0, T ], where θ0(t) is
Gt-measurable. Since σ(t) is Ft-adapted, we have

E
[∫ T

0 σ(s)θ(s)d−B(s)
]

= E
[∫ t+h

t σ(s)θ0(t)d
−B(s)

]

= E
[
θ0(t)

∫ t+h

t
σ(s)dB(s)

]
.
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We know that r(t), μ(t), δ(t) and σ(t) are givenFt-adapted processes, so using
the property of conditional expectation in conjunction with (10) we get

E
[(∫ t+h

t

{
μ(s) + δ(s)− r(s)− σ2(s)π(s)

−Q∗Qπ(s)} ds +
∫ t+h

t
σ(s)dB(s)

)
θ(t)

]
= 0.

Since this holds for all such θ(t) we conclude that E[M(t+h)−M(t)|Gt] = 0.
Due to σ(t) �= 0, the proof of Theorem is complete. ✷

From Theorem 1, we now find an equation for an optimal portfolio π: Assume
that there exists a function γt(s, ω) such that γt(s) is Gt-measurable for all

s ≤ t and t→
∫ t

0 γt(s)ds is of finite variation a.s. and

N(t)
△
= B(t)−

∫ t

0
γt(s)ds is a martingale with repect to Gt. (12)

Suppose that π ∈ A satisfies the following equation

σ2(t)π(t) + E[Q∗Qπ(t)|Gt]

= μ(t) + δ(t)− r(t) + σ(t) d
dt

(∫ t

0 γt(s)ds
)
.

(13)

The following theorem can be obtained.

Theorem 2. Suppose (12) holds and that π ∈ A is optimal for Problem 2.
Then π solves the equation (13).

Proof. By comparing (11) and (12) we get that σ(t)dN(t) = dM(t), which
deduces

−σ(t)
d

dt

(∫ t

0

γt(s)ds

)
= μ(t) + δ(t)− r(t) − σ2(t)π(t) −E[Q∗Qπ(t)|Gt].

Thus we can get (13). Therefore, the claim is proved. ✷

Next we turn to a partial converse of Theorem 2.

Theorem 3. Suppose (12) holds. Let π(t) be a process solving the equation
(13). Assume π ∈ A. Then π is optimal for Problem 2.

Proof. Note that πt ∈ A is Gt-adapted. Substituting

dB(t) = dN(t) +
d

dt

(∫ t

0

γt(s)ds

)
dt
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and σ(t)π(t)d−B(t) = σ(t)π(t)dN(t)+σ(t)π(t) d
dt

(∫ t

0
γt(s)ds

)
dt into (8), we

get

J(π) = E
[∫ T

0 {r(t) + (μ(t) + δ(t)− r(t))π(t)

− 1
2σ

2(t)π2(t) + σ(t)π(t) d
dt

(∫ t

0 γt(s)ds
)
− 1

2 |Qπ(t)|2dt
]
,

(14)

which is a concave functional of π, so if we can find π = π∗ ∈ A such that

d

dy
[J(π∗ + yθ)]y=0 = 0, for all θ ∈ A,

then π∗ is optimal. By a computation similar to the one leading to (10) we
get

d
dy [J(π∗ + yθ)]y=0

= E
[∫ T

0
{μ(t) + δ(t)− r(t)− σ2(t)π∗(t)

+σ(t) d
dt

∫ t

0 γt(s)ds−Q∗Qπ∗(t)}θ(t)dt
]
,

which is 0 if π = π∗ solves equation (13). Thus we complete the proof. ✷

Now we consider a special case. Let

Qπ(t) = λ1(t)σ(t)π(t), (15)

where λ1(t) ≥ 0 is deterministic and

π(t) = π∗(t) =
μ(t) + δ(t)− r(t) + σ(t) d

dt

∫ t

0 γt(s)ds

σ2(t)[1 + λ2
1(t)]

. (16)

Then we have the following theorem.

Theorem 4. Suppose (12) and (15) holds. Let π∗(t) be given by (16). If
π∗ ∈ A then π∗ is optimal for Problem 2. Moreover, the insider value is

Φ = J(π∗)

= E

[∫ T

0

{
r(t) + 1

2 (1 + λ2
1(t))

−1
(

μ(t)+δ(t)−r(t)
σ(t) + d

dt

∫ t

0
γt(s)ds

)2
}
dt

]
.

Proof. From (13) we gets the form

σ2(t)π(t) + λ2
1(t)σ

2(t)π(t) = μ(t) + δ(t)− r(t) + σ(t)
d

dt

∫ t

0

γt(s)ds,

which deduces (16). Substituting (16) into the formula (14) for J(π) we obtain
the claim. ✷
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3 Conclusions

In this paper, the optimal portfolio of an insider investor in a financial market
with the dividend is studied. In the case that the performance is measured
in terms of the logarithm of the terminal wealth minus a term measuring
the roughness and the growth of the portfolio, we characterize the optimal
smooth portfolio of the insider investor. The stochastic calculus of the forward
integral is employed. The explicit solution in a special case is obtained which
shows that the optimal policy depends on the dividend of a stock.
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The Nonlinear Terminal-Boundary
Problems for Barrier Options

Yulian Fan

Abstract. In the framework of stochastic optimal control theory, we get the
nonlinear terminal-boundary value problems satisfied, in the sense of viscos-
ity solutions, by the worst case values of the barrier options with uncertain
volatilities. We also prove that the out-in parity does not hold in uncertain
volatility model.

Keywords: Volatility uncertainty, Barrier option, Nonlinear terminal-
boundary value problem.

1 Introduction

[2] and [6] introduced the uncertainty in volatility (uncertain volatility model,
abbreviated UVM): instead of choosing a pricing model that incorporates a
complete view of the forward volatility as a single number, or a predetermined
function of time and price, or even a stochastic process with given statistics,
they assume the market operates under the less stringent assumption that
the volatility of future prices is not known, but is assumed to lie in a fixed
interval [σ, σ̄]. The authors obtained a generalization of the duality formula
by stochastic control techniques in the case of European options with payoffs
that depend only on the terminal values of the underlying asset ST . The
discrete-time case has been studied recently in [4].

After the seminal works by [2] and [6], [1] and [3] have considered the
pricing in the UVM of a basket of options in which includes barrier and
American options written on a single asset. Still in the single-asset case: [8]
has also studied the pricing of American options.
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In the literature of the pricing of barrier options without volatility un-
certainty, the probabilistic approach is widely used. But in the uncertain
volatility model, there is no specific pricing measure. In this paper, we’ll use
the stochastic optimal control theory to get the nonlinear terminal-boundary
value problems satisfied by the values of the barrier options, and prove that
the out-in parity does not hold in uncertain volatility model.

The paper is organized as follows. In section 2, we briefly introduce the
uncertain volatility model. In section 3, we deduce the nonlinear terminal-
boundary value problems satisfied by the values of the barrier options.

2 The Uncertain Volatility Model

Let (Ω,F , P ) be a probability space and (Wt)t≥0 be a Brownian motion. The
filtration generated by Wt is denoted by Ft := σ{Wν , 0 ≤ ν ≤ t} ∨N , where
N is the collection of P-null subsets.

Assume a risky asset follows a controlled diffusion process

dSt,s
ν = μνSνdν + σνSνdWν , St = s, (1)

where μ and σ are adapted functions such that σ ≤ σ ≤ σ̄. The constant
σ and σ̄ represent the upper and lower bounds on the volatility that should
be input in the model according to the user’s expectation about future price
fluctuations.

If there is no arbitrage, the forward stock price dynamics under any pricing
measure should satisfy the modified risk-neutral Itô equation

dSt,s
ν = rSνdν + σνSνdWν , St = s, (2)

where r is the riskless interest rate
In the next section, we’ll consider the pricing PDEs of the barrier options

based on this asset.

3 The PDEs for the Barrier Options

3.1 Single Barrier Options

Let’s first consider the down-out call option with maturity T and strike price
K. Let L ≤ s be the predetermined barrier level. If St,s

ν ≤ L for some ν ∈
[t, T ], the option is called “knock out” and expires worthless; otherwise, the
option has the same payoff as a vanilla call option. The terminal payoff of
the option can thus be written as (St,s

T −K)+1{St,s
ν >L,ν∈[t,T ]}, where 1 is the

indicator function.
Define a stopping time

τ = τ(t, x) := inf{ν : St,s
ν = L} ∧ T,
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and a function Ψdo(t, s,K)

Ψdo(t, s,K) =

{
(s−K)+, (t, s) ∈ {T } × (L,+∞),
0, (t, s) ∈ [0, T ]× {L}.

Then if St,s
τ ∈ (L,∞), we have τ = T . Hence

Ψdo(τ, S
t,s
τ ,K) = (St,s

τ −K)+1{St,s
ν >L,ν∈[t,T ]}.

Denote Σ[t, T ] = {σ = (σν)t≤ν≤T | σ is Fν-adapted with σ ≤ σν ≤ σ̄, t ≤
ν ≤ T }. Then at time t, the worst case price of the option for the seller is

Cdo(t, s,K) = inf
σ∈Σ[t,T ]

E[e−rT (St,s
T −K)+1{St,s

ν >L,ν∈[t,T ]}]

= inf
σ∈Σ[t,T ]

E[e−rτΨdo(τ, S
t,s
τ ,K)].

(3)

Consider the following nonlinear terminal-boundary value problem:

⎧
⎨
⎩

∂Cdo

∂t + infσ∈[σ,σ̄]{ 1
2σ

2s2 ∂2Cdo

∂s2 }+ rs∂Cdo

∂s − rCdo = 0, s > L, 0 ≤ t < T
Cdo(t, L,K) = 0, 0 ≤ t < T,
Cdo(T, s,K) = (s−K)+, s > L

(4)

Using the usual argument of viscosity solution, we can prove Cdo(t, s,K)
is the unique viscosity solution of (4) (refer to [10] theorem 4.2-4.4).

For the up-out call option with maturity T, strike price K and upper
barrier H , if St,s

ν ≥ H for some ν ∈ [t, T ], the option is called “knock out”
and expires worthless; otherwise, the option has the same payoff as a vanilla
call option. The terminal payoff of the option can thus be written as

(St,s
T −K)+1{St,s

ν <H,ν∈[t,T ]},

where 1 is the indicator function.
For the case of H ≤ K, before the option is in-the-money it has to hit the

barrier H and be knock out, so in this case the price of the option is zero.
We just consider the case of H > K. In this case, by the same argument, we
get the similar nonlinear PDE

⎧
⎨
⎩

∂Cuo

∂t + infσ∈[σ,σ̄]{ 1
2σ

2s2 ∂2Cuo

∂s2 }+ rs∂Cuo

∂s − rCuo = 0, s < H, 0 ≤ t < T
Cuo(t,H,K) = 0, 0 ≤ t < T,
Cuo(T, s,K) = (s−K)+, s < H.

(5)

Now let’s see the knock in barrier options. Take the down-in option as an
example. If St,s

ν ≤ L for some ν ∈ [t, T ], the option is called “knock in” and
has the same payoff as a vanilla call option; otherwise, expires worthless. The
terminal payoff of the option can thus be written as

C(τ, St,s
τ ,K)1{St,s

τ =L},
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where C(t, s,K) is the price of the vanilla European call option. Define func-
tion Ψdi(t, s,K)

Ψdi(t, s,K) =

{
0, (t, s) ∈ {T } × (L,+∞),
C(t, s,K), (t, s) ∈ [0, T ]× {L}.

Then

Ψdi(τ, S
t,s
τ ,K) = C(τ, St,s

τ ,K)1{St,s
τ =L}.

The worst case price of this option is

Cdi(t, s,K) = inf
σ∈Σ[t,T ]

E[e−rτΨdi(τ, S
t,s
τ ,K)]. (6)

Similarly, we can prove that the price of the down-in call option is the
unique viscosity solution of the following nonlinear PDE:

⎧
⎨
⎩

∂Cdi

∂t + infσ∈[σ,σ̄]{ 1
2σ

2s2 ∂2Cdi

∂s2 }+ rs∂Cdi

∂s − rCdi = 0, s > L, 0 ≤ t < T,
Cdi(t, L,K) = C(t, L,K), 0 ≤ t < T,
Cdi(T, s,K) = 0, s > L.

(7)

In the model without uncertain volatility, the out-in parity for European
style option is a well known result, i.e.,

C̄(t, s,K) = C̄do(t, s,K) + C̄di(t, s,K), (8)

where C̄, C̄do, C̄di are the prices of the vanilla European call option, the down-
out barrier call option and the down-in barrier call option respectively.

Does the out-in parity still hold in uncertain volatility model? Let

Ψ(t, s,K) =

{
(s−K)+, t = T, s ≥ 0,
C(t, s,K), t < T, s ≥ 0.

Then Ψ is the payoff function (when t = T ) or the price (when t < T ) of the
vanilla European call option in uncertain volatility model. It is easily to see

Ψ(t, s,K) = Ψdo(t, s,K) + Ψdi(t, s,K), ∀t ∈ [0, T ], s ≥ L. (9)

That is the payoff of the vanilla call option equals to the payoff of the down-
out barrier call option plus that of the down-in barrier call option. But the
worst case pricing means that

C(t, s,K) = inf
σ·∈Σ[t,T ]

Ψ(t, s,K) = inf
σ·∈Σ[t,T ]

[Ψdo(t, s,K) + Ψdi(t, s,K)]

≥Cdo(t, s,K) + Cdi(t, s,K)], ∀t ∈ [0, T ], s ≥ 0.
(10)
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Hence, in general, the out-in parity does not hold in uncertain volatility
model.

The price of the vanilla European call option C(t, s,K) is the solution of
the following nonlinear PDE

{
∂C
∂t + infσ∈[σ,σ̄]{ 1

2σ
2s2 ∂2C

∂s2 }+ rs∂C
∂s − rC = 0,

C(T, s,K) = (s−K)+.

Since C(t, s,K) is a convex function of the stock price, we have ∂2C
∂s2 ≥ 0.

Hence the above PDE is
{

∂C
∂t + 1

2σ
2s2 ∂2C

∂s2 + rs∂C
∂s − rC = 0,

C(T, s,K) = (s−K)+,

which is the Black-Scholes equation with volatility σ.

Similarly, the up-in call option satisfies the following PDE

⎧
⎨
⎩

∂Cui

∂t + infσ∈[σ,σ̄]{ 1
2σ

2s2 ∂2Cui

∂s2 }+ rs∂Cui

∂s − rCui = 0, s < H, 0 ≤ t < T,
Cui(t, L,K) = C(t, L,K), 0 ≤ t < T,
Cui(T, s,K) = 0, s < H.

(11)

For the put barrier options, using similar argument, we can get the cor-
responding nonlinear PDEs. One type of put options should be paid more
attention to. For the down-out put options, in the case that the lower barrier
is higher than or equals to the strike price, i.e., L ≥ K, the option has to be
knocked out before it is in the money, so in this case the price of the option
is zero. For the down-out put option, we assume L < K. We get the PDE of
the prices of the down-out(up-out) put option Pdo(t, s,K)(Puo(t, s,K)) with
the terminal condition (s − K)+ replaced by (K − s)+ in (4)((5)), and the
PDE of the prices of the down-in(up-in) put option Pdi(t, s,K)(Pui(t, s,K))
with the boundary condition C(t, s,K) replaced by P (t, s,K) in (7)((11)),
where P (t, s,K) is the price of the vanilla European put option.

Also, we have that the worst case value of a vanilla put option is larger
than or equals to that of a down-out put option plus that of a down-in put
option, i.e.,

P (t, s,K) ≥ Pdo(t, s,K) + Pdi(t, s,K). (12)

3.2 Double Barrier Options

A double barrier option is characterized by two barriers, L (lower barrier)
and H (upper barrier). The double barrier knock out call option is knocked
out if either barrier is touched. Otherwise, the option gives at maturity T the
standard Black-Scholes payoff: max(0, St,s

T −K).
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For the case that the upper barrier H is lower than or equals to the strike
price K, to be in-the-money, the call option has to be knocked out first, so
in this case the price of the barrier option is zero. We just consider the case
of H > K.

The terminal payoff of the option can thus be written as

(St,s
T −K)+1{L<St,s

ν <H,ν∈[t,T ]},

where 1 is the indicator function.
Let G = (L,H). Define a stopping time

τ = τ(t, x) := inf{ν : St,s
ν /∈ G} ∧ T,

and a function Ψdbo(t, s,K)

Ψdbo(t, s,K) =

{
(s−K)+, (t, s) ∈ {T } × int(G),
0, (t, s) ∈ [0, T ]× ∂G.

Then at time t, the worst case price of the option is

Cdbo(t, s,K) = inf
σ∈Σ[t,T ]

E[e−rτΨdbo(τ, S
t,s
τ ,K)] (13)

By the theorem of [10] Theorem 4.2-4.4,Cdbo(t, s,K) is the unique viscosity
solution of the following nonlinear PDE:

⎧
⎨
⎩

∂Cdbo

∂t + infσ∈[σ,σ̄]{ 1
2σ

2s2 ∂2Cdbo

∂s2 }+ rs∂Cdbo

∂s − rCdbo = 0, H > K
Cdbo |∂G= 0
Cdbo |t=T = (s−K)+.

(14)

Similarly, the price of the double barrier knock in call option Cdbi(t, s,K)
should satisfy the following PDE

⎧
⎨
⎩

∂Cdbi

∂t + infσ∈[σ,σ̄]{ 1
2σ

2s2 ∂2Cdbi

∂s2 }+ rs∂Cdbi

∂s − rCdbi = 0,
Cdbi |∂G= C(t, s,K)
Cdbi |t=T = 0.

(15)

We also have that the worst case value of a vanilla call option is larger
than or equals to that of a double out call option plus that of a double in call
option, i.e.,

C(t, s,K) ≥ Cdbo(t, s,K) + Cdbi(t, s,K). (16)

For the corresponding put options, we still can get the PDE of the prices of
the double out put option Pdbo(t, s,K) with the terminal condition (s−K)+

replaced by (K − s)+ in (14), and the PDE of the prices of the double in
put option Pdbi(t, s,K) with the boundary condition C(t, s,K) replaced by
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P (t, s,K) in (15), where P (t, s,K) is the price of the vanilla European put
option. And we also have

P (t, s,K) ≥ Pdbo(t, s,K) + Pdbi(t, s,K). (17)
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European Option Pricing with
Ambiguous Return Rate and Volatility

Junfei Zhang and Shoumei Li

Abstract. In this paper, we consider the problem of option pricing when
return rate and volatility are ambiguous. Firstly we illustrate how to describe
this ambiguous option pricing model by using set-valued differential inclusion
and how to change the discussion of pricing bound problems of options into
that of maximal and minimal conditional expectations. Secondly we discuss
the properties of maximal and minimal conditional expectations, especially
the representation theorem of maximal and minimal expectations. Finally we
give the bounds of the European option pricing by using above theorems.

Keywords: Set-valued stochastic differential inclusion, Martingale mea-
sures, Maximal and minimal conditional expectations, Bounds of option
prices.

1 Introduction

In 1973, Black and Sholes [3] provided with the famous pricing formula for
European options under the assumption that the price of risky underlying
asset {St : t ∈ [0, T ]} is described as dSt

St
= μdt+σdWt, where μ is a constant

and called the expected return rate, σ is also a constant and called volatility,
{Wt : t ∈ [0, T ]} is a standard Brownian motion, T is maturity (0 < T <∞).
Following their work, many authors discussed various option pricing problems
under more general model

dSt

St
= μtdt + σtdWt, (1)
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where {μt : t ∈ [0, T ]} and {σt : t ∈ [0, T ]} are two given predict processes
with respect to the filtration {Ft : t ∈ [0, T ]}, induced by the Brownian
motion {Wt : t ∈ [0, T ]}, and the risk-free bond is described as dBt = rtBtdt,
where rt is determined interest rate function on [0,T] with B0 = 1 (e.g. [11]).
The pricing theory of options shows that, if the market is complete and
arbitrage-free, there exists a unique risk neutral martingale measure Q defined
by

dQ

dP
= exp{−1

2

∫ T

0

(μs − rs

σs

)2

ds +

∫ T

0

(μs − rs

σs

)
dWs}

such that for any contingent claim ξT at time T , the value of ξT at any time
t ∈ [0, T ) is given by

Vt(ξT ) = BtEQ[ξTB
−1
T |Ft] = EQ

[
e−

∫ T
t

ruduξT |Ft

]
,

and, in particular, the current price is V0(ξT ) = EQ

[
e−

∫ T
0

ruduξT

]
. Note that

we use the notation EQ to denote expectation with respect to the probability
measure Q.

In the real world, however, one is difficult to observe exactly {μt : t ∈
[0, T ]} and {σt : t ∈ [0, T ]}, since the factors of affecting market are too
complex. But it is possible to estimate the lower bound and upper bound of
the expected return rate, i.e. the expected return rate is within some interval,
for example, μt ∈ [a, b] := U with b > a. Similarly it happens for the volatility
σt ∈ [c, d] := V with d > c > 0. In this case, the model is with ambiguity
since U, V are subsets of R, the set of all real numbers. It can be rewritten
as the following set-valued differential inclusion

dSt

St
∈ Udt + V dWt. (2)

Our problem is how to estimate the prices of the options under this set-valued
model? At least, we should estimate the lower bound and upper bound of
option prices.

Before we go to the bound estimation, let us look at the right hand of (2). It
relates two kind integrals: Itô integral of a set-valued stochastic process with
respect to a real-valued Brownian motion Wt, and the Lebesgue integral of
a set-valued process with respect to time t. For the first type, Kisielewicz
introduced the definition in [8]. More related works may refer to [6], [9],
[12], [14] and so on. There are also some works of the Lebesgue integral
of a set-valued stochastic process with respect to time t, readers may refer
to [10], [13] and their related references. Concerning the definitions, existence
of the strong solutions and weak solutions of set-valued stochastic differential
inclusions, readers may refer to [1], [2], [9] and [14].

The general set-valued stochastic differential inclusion is given by

dxt ∈ F (t, xt)dt + G(t, xt)dWt, (3)
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where F (t, xt), G(t, xt) are set-valued functions of R, {xt : t ∈ [0, T ]} is an
adapted stochastic process. A continuous stochastic process x = {xt : t ∈
[0, T ]} is called a strong solution of (3), with an initial value x0 = η, a.e.,
if there exist square integrable selections f = {f(t, xt) : t ∈ [0, T ]}, g =
{g(t, xt) : t ∈ [0, T ]} of {F (t, xt) : t ∈ [0, T ]} and {G(t, xt) : t ∈ [0, T ]}
respectively, such that for any t ∈ [0, T ],

xt = x0 +

∫ t

0

f(s, xs)ds +

∫ t

0

g(s, xs)dWs, a.e..

In general, the strong solutions of (3) are a set of stochastic processes.

Now let us back to the model (2). To make the model simple, we assume
that the risk-free bond has constant interest rate r in [0, T ]. If continuous
stochastic processes {μt}, {σt} satisfy a ≤ μt ≤ b, c ≤ σt ≤ d and

dSt

St
= μtdt + σtdWt,

with S0 = s > 0, then we may obtain its related strong solutions. Thus, we
may get a set of strong solutions of (2), denoted by S .

Let νt := μt−r
σt

. If a ≥ r, then a−r
d ≤ νt ≤ b−r

c . If a < r < b, then
a−r

c ≤ νt ≤ b−r
c . If r ≥ b, then a−r

c ≤ νt ≤ b−r
d . Without any loss in

generality, we suppose νt ∈ [k1, k2]. In this case, the risk neutral martingale
measures are no longer unique, they belong to the following set of probabilities

P = {Qν :
dQν

dP
= exp{−1

2

∫ T

0

ν2
sds+

∫ T

0

νsdWs, k1 ≤ νs ≤ k2, 0 ≤ s ≤ T }},

which is the set of the risk neutral martingale measures with respect to the
strong solutions set S of the model (2). Hence, at any time t ∈ [0, T ), we may
define the minimal value and maximal value of a contingent claim ξT as

V t[ξT ] = sup
Q∈P

e−r(T−t)EQ[ξT |Ft], V t[ξT ] = inf
Q∈P

e−r(T−t)EQ[ξT |Ft]. (4)

In particular, the current maximal price and minimal price of ξT are

V 0[ξT ] = sup
Q∈P

EQ[e−rT ξT ], V 0[ξT ] = inf
Q∈P

EQ[e−rT ξT ]. (5)

Note that, k1, k2 are determined by a, b, c, d, so the pricing bounds about
model (2) can be obtained from (4) and (5) .

If ξT is an European option, can we give the formula of its current maximal
price and minimal price? Furthermore, it is nature to ask how to calculus
V t[ξT ], V t[ξT ] for any t ∈ [0, T ]? To do it, we have to investigate the maximal
and minimal conditional expectations.
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We especially would like to thank Chen and Kulperger’s excellent work [5].
In their paper, they gave the model starting from multiple prior probability
measures, introduced the concept of the maximal and minimal conditional
expectations, discussed the martingale representation theorem under a sym-
metrical assumption |vt| ≤ k (k is a given constant). However, they didn’t
give any explain why they should have this symmetrical assumption under the
ambiguous model. As we have known from above introduction by using the
view of set-valued stochastic differential inclusion, |vt| usually is asymmetric.

In our paper, we shall discuss some properties of above maximal and min-
imal conditional expectations related to (4), especially martingale represen-
tation theorem. Our proofs are enlightened by [5] but we treat asymmetrical
case. We shall also calculus the lower bound price and upper bound price of
European options.

We organize our paper as follows. In Section 2, we shall discuss the proper-
ties of maximal and minimal conditional expectations, especially their mar-
tingale representation theorem. Section 3 will present the formula of the max-
imal and minimal values of options whose payoff are monotone functions of
terminal risky asset price ST . In Section 4, we shall also calculate the lower
bound prices and upper of European options. Since the page limitation, we
have to omit the proofs of theorems in this paper.

2 The Properties of Maximal and Minimal Conditional
Expectations

Assume that (Ω,F ,P) is a completed probability space, W =: {Wt : t ∈
[0, T ]} is a real-valued Brownain motion defined on (Ω,F ,P) and {Ft :
0 ≤ t ≤ T } is natural filtration generated by the Brownian motion W .
Furthermore, we take F to be FT for simplicity. Let L2(Ω,F ,P) = {ξ :
ξ is a F -measurable random variable s.t. E[|ξ|2] < ∞}. By using the nota-
tion in Section 1, we have the following definition.

Definition 1. (cf. [5])For any ξ ∈ L2(Ω,F ,P), we define the maximal and
minimal conditional expectations of ξ with respect to Ft, E [ξ|Ft], denoted by
E [ξ|Ft] respectively, as

E [ξ|Ft] = ess sup
Q∈P

EQ[ξ|Ft], E [ξ|Ft] = ess inf
Q∈P

EQ[ξ|Ft].

where ess means essential. And the maximal and minimal expectations of ξ
is

E [ξ] = sup
Q∈P

EQ[ξ], E [ξ] = inf
Q∈P

EQ[ξ].

Lemma 1. For any ξ ∈ L2(Ω,F ,P), E [ξ|F0] = E [ξ] and E [ξ|F0] = E [ξ].



European Option Pricing with Ambiguous Return Rate and Volatility 283

Theorem 1. For any ξ ∈ L2(Ω,F ,P), then E [ξ|Ft] ∈ L2(Ω,Ft,P) and
E [ξ|Ft] ∈ L2(Ω,Ft,P), in specially, E [|ξ|] <∞, E [|ξ|] <∞.

Next, we state the representation theorem of minimal and maximal condi-
tional expectations by using the solution of backward stochastic differential
equation (BSDE for short). For more general case, readers may refer to [7].

Theorem 2. Let ξ ∈ L2(Ω,F ,P).
(i) If Yt := E [ξ|Ft], then there exists an adapted process {zt : t ∈ [0, T ]}

such that (Yt, zt) is the solution of BSDE

Yt = ξ +

∫ T

t

(k1zsI{zs<0} + k2zsI{zs≥0})ds−
∫ T

t

zsdWs, 0 ≤ t ≤ T.

(ii) If yt := E [ξ|Ft], then there exists an adapted process {xt : t ∈ [0, T ]}
such that (yt, xt) is the solution of BSDE

yt = ξ −
∫ T

t

(k1xsI{xs<0} + k2xsI{xs≥0})ds−
∫ T

t

xsdWs, 0 ≤ t ≤ T.

3 Calculations of Maximal and Minimal Conditional
Expectations

For simplicity, we firstly study the properties of E [·|Ft], the results of E [·|Ft]
can be obtained in the same way.

The general stochastic differential equation (SDE) is given by

{
dXt = b(t,Xt)dt + σ(t,Xt)dWt,
X0 = x,

(6)

where b and σ : [0, T ] × R → R are continuous in (t, x) and Lipshictz
continuous in x. It is well-known that the SDE (6) has a unique solution
X = {Xt : t ∈ [0, T ]} with XT ∈ L2(Ω,F ,P).

Lemma 2. (cf. [4]) Let X be the solution of the SDE (6). Assume Φ is a
function such that Φ(XT ) ∈ L2(Ω,F ,P). Consider the BSDE

yt = Φ(XT ) +

∫ T

t

aszsds−
∫ T

t

zsdWs, 0 ≤ t ≤ T

and it has a unique pair solution, denoted by (yt, zt). Since this solution
depends on the adapted process {as}, we write it as (ya

t , z
a
t ).

(i) If Φ is an increasing function, then ztσ(t,Xt) ≥ 0, a.e. t ∈ [0, T ).
(ii)If Φ is a decreasing function, then ztσ(t,Xt) ≤ 0, a.e. t ∈ [0, T ).
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Theorem 3. Assume the conditions of Lemma 2 hold, and σ(t, x) > 0 for
all 0 ≤ t ≤ T and x ∈ R, then there are equivalent martingale measures Q2

and Q1, such that
(i) If Φ is an increasing function, then

E [Φ(XT )|Ft] = EQ2 [Φ(XT )|Ft], E [Φ(XT )|Ft] = EQ1 [Φ(XT )|Ft], t ∈ [0, T ].

In particular,

E [Φ(XT )] = EQ2 [Φ(XT )] and E [Φ(XT )] = EQ1 [Φ(XT )].

(ii) If Φ is a decreasing function, then

E [Φ(XT )|Ft] = EQ1 [Φ(XT )|Ft], E [Φ(XT )|Ft] = EQ2 [Φ(XT )|Ft], t ∈ [0, T ].

In particular,

E [Φ(XT )] = EQ1 [Φ(XT )] and E [Φ(XT )] = EQ2 [Φ(XT )].

Where the equivalent martingale measures Q2 and Q1 are defined by

{
dQ2

dP = exp{− 1
2k

2
2T + k2WT },

dQ1

dP = exp{− 1
2k

2
1T + k1WT }.

(7)

By Theorem 3, we have the following corollary because of the monotone
property of Φ(x) = e−rT (x−K)+ and Φ(x) = e−rT (K − x)+.

Corollary 1. Assume that {Xt} = {St} in SDE (6) is the price of a stock
and b(s,Xs) = μsSs with a ≤ μs ≤ b and σ(s,Xs) = σsSs with c ≤ σs ≤ d
and X0 = x > 0, for all s ∈ [0, T ]. Let (ST − K)+ and (K − ST )+ be the
payoff of the European call option and put option respectively. Then

(i) the upper bound and the lower bound of the European call option price
are given respectively by

V 0[(ST −K)+] = E [e−rT (ST −K)+] = EQ2 [e
−rT (ST −K)+]

and

V 0[(ST −K)+] = E [e−rT (ST −K)+] = EQ1 [e
−rT (ST −K)+];

(ii) the upper bound and the lower bound of the European put option price
are given respectively by

V 0[(K − ST )+] = E [e−rT (K − ST )+] = EQ1 [e
−rT (K − ST )+]

and

V 0[(ST −K)+] = E [e−rT (ST −K)+] = EQ2 [e
−rT (ST −K)+].

where K is strike price, and Q1,Q2 are defined by Eq. (7).
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4 European Option Pricing Under Ambiguous Model

In this section, we will obtain the formula of upper and lower bounds of the
European call and put option by the results in Section 3.

From Theorem 3 and Eq. (7), we have FP (WT ) = N(0, T ), FQ2(WT −
k2T ) = N(0, T ), and FQ1(WT − k1T ) = N(0, T ). Therefor, FQ2(WT ) =
N(k2T, T ) and FQ1(WT ) = N(k1T, T ), where FP (ξ) means the distribution
of random variable ξ with respect to probability measure P . We also use
the notation N(μ, σ2) to denote the normal distribution with mean μ and
variance σ2, and let F0 be the standard normal distribution function.

In the following, we consider the European call option pricing bounds
formula. Assume that the stock price St satisfies geometric Brownian motion

dSt

St
= μdt + σdWt, S0 = x > 0.

For simplicity, we assume interest rate b > r > a (that is k1 = a−r
c and

k2 = b−r
c ) is constant. However, our conclusion can be easily extended to

the case where r is not constant. By Corollary 1, we have the formula of the
bounds of European call option pricing.

V 0[(ST −K)+] = E [B−1
T (ST −K)+]

= e−rTEQ2 [(xe
(μ− 1

2 σ2)T+σWT −K)+]

= e−rTEP [(xe(k2σ+μ− 1
2 σ2)T+σWT −K)+]

= e−rT

∫ ∞

d2

(xe(k2σ+μ− 1
2 σ2)T+σy −K)

1√
2πT

e−
y2

2T dy

= e−rT
{
xe(k2σ+μ)TF0(− d2−σT√

T
)−KF0(− d2√

T
)
}

Because equivalent probability measure is Q2, where μ = b, σ = c. And

V 0[(ST −K)+] = E [(B−1
T (ST −K)+]

= e−rTEQ1 [(xe
(μ− 1

2 σ2)T+σWT −K)+]

= e−rTEP [(xe(k1σ+μ− 1
2 σ2)T+σWT −K)+]

= e−rT

∫ ∞

d1

(xe(k1σ+μ− 1
2 σ2)T+σy −K)

1√
2πT

e−
y2

2T dy

= e−rT
{
xe(k1σ+μ)TF0(− d1−σT√

T
)−KF0(− d1√

T
)
}

Because equivalent probability measure is Q1, where μ = a, σ = c. And where

d2 =
log K

x − (k2c + b− 1
2c

2)T

c
√
T

, d1 =
log K

x − (k1c + a− 1
2c

2)T

c
√
T

.

With the same way, we have the formula of the bounds of European put
option pricing
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P 0[(K −XT )+] = e−rT{KF0(
d1√
T

)− xe(k1σ+μ)TF0(
d1 − σT√

T
)}

and

P 0[(K −XT )+] = e−rT{KF0(
d2√
T

)− xe(k1σ+μ)TF0(
d2 − σT√

T
)}

where d1, d2 are same as above.
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Knightian Uncertainty Based Option
Pricing with Jump Volatility

Min Pan and Liyan Han

Abstract. In the viewpoint of Knightian uncertainty, this paper deals with
option pricing with jump volatility. First, we prove that the jump volatil-
ity model is a Knightian uncertainty problem; then we identify the factors
which reflect the Knighitan uncertainty based on k-Ignorance. We find that
the option price under Knightian uncertainty is not unique but an interval.
Through theoretical analysis and simulation, we conclude that the inten-
sity of Poisson, the jump size, and the maturity date determine the price
interval.

Keywords: Jump, Knightian Uncertainty, k-Ignorance, Option Pricing.

1 Introduction

Knightian uncertainty is different from risk. Unlike under risk, we can not get
the precise probability distribution under Knightian uncertainty. There are
two methods to deal with Knightian uncertainty. The first one is proposed
by Bewely[1] which adopts the “inertia” assumption instead of the complete-
ness assumption. Similarly, Epstein & Wang[4] propose a family of probability
distributions based on individual “belief”. The second one, Gilboa[6], Schmei-
dler[10], and Gilboa & Schmeidler[7] relax the “certainty rule” and use non-
additive measure based on Choquet integral. Additionly, Chen & Epstein[3]
use a k-Ignorance to contain the probability distributions. Inspired by their
theories, we establish a model with jump volatility and identify the factors
affecting the k-Ignorance. We also get a price interval to reflect the Knightian
uncertainty.
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On option pricing, the focus of research shifts from risk to Kngihtian un-
certainty. In Black and Scholes’[2] model, they deal with an “ideal condi-
tions” without Knightian uncertainty. Merton[8] establishes a model with
time-varying and non-stochastic volatility. Although the probability distri-
bution is unique, we can find that the parameters of it are more complex.
Merton[9] establishes a model where the underlying stock has a Poisson jump
process; the probability distribution of the stock is not unique but depending
on the jump process. There is a family of probability distributions of the
underlying asset. In the viewpoint of this paper, there is Knightian uncer-
tainty. Hull & White[5] develop a stochastic volatility model. In their model,
the volatility of the underlying stock follows an independent process. Every
possible path of the volatility decides a probability distribution of the stock;
in fact, the probability distribution of the underlying stock is unknown; the
stochastic volatility causes the Knightian uncertainty. In this view, we can
say these models are treating the Knightian uncertainty.

This paper deals with the European call option pricing with jump volatility
based on Knightian uncertainty. We have two contributions. (1) We prove
that the jump volatility model can be transferred into a model of Knightian
uncertainty. We first show the ambiguity of the model. After choosing a
reference model, we create a family of models. Then, we get the option price
interval based on k-Ignorance. (2) We indicate the factors which affect the
k-Ignorance. And we prove that the factors affecting the k-Ignorance also
affect the option price interval. This conclusion captures the feature of the
Knightian uncertainty.

The following is the structure of this paper. Section 1 is the introduction.
In section 2, we establish our model and get the solution. Section 3, after
investigating the price bias through Monte Carlo simulation, we illustrate that
our option price interval captures the feature of the Knightian uncertainty
well. Section 4 is the conclusion.

2 Model

In a risk-neutral world, consider a European call option C with maturity date
T , strike price K, and depending on the security S, which price obeys the
following stochastic processes:

dS/S = rdt + vdw (1)

dv = v (Y − 1) dq (2)

In equation (1), r is the risk-free return of the bond, and v is the instanta-
neous volatility of the return of the stock; dw is a standard Wiener process.
Equation (2) is a jump process describing the change of volatility v; q (t) is a
Poisson process with intensity λ; dw and dq are assumed to be independent
of each other. We can treat λ as the average number of events occurred in
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unit time; (Y − 1) is the random variable percentage change in the instanta-
neous volatility when the event occurred. Y ∼ Unif [1− θ, 1 + θ] , θ > 0. If
the Poisson event does not occur, (2) can be written as dv = 0; if the Poisson
event does occur, dv = (Y − 1) v.

With jump volatility process v (t), given a path of volatility, we can di-
vide the interval [0, T ] by jumps. Suppose there are n jumps and we get a
partition τ : 0 = t0, t1, · · · , tj, tj+1, · · · , tn, tn+1 = T . tj (1 � j � n) means
the time when the jth jump happens. In every interval [tj , tj+1], the volatil-
ity keeps constant and the distribution of log {S (tj+1) /S (tj)} is normal.

Because log {S (T ) /S (0)} =
n∑
0

log {S (tj+1) /S (tj)}, the distribution of

log {S (T ) /S (0)} is normal, too. But there are infinite paths of v (t), so we can
not know the distribution of log {S (T ) /S (0)} precisely. The jump process of
volatility causes the shift of the distribution. There is Knightian uncertainty.

The process v (t) makes the probability distribution unknown. In the light
of Bewley’s theory, we follow three steps to deal with this Knightian uncer-
tainty: (1) The individual selects a reference probability measure P according
to his “belief”, “inertia”, or even “animal spirit”; (2) he knows the probabil-
ity measure P is not precise; by disturbing P , he gets a family of probability
measures P; (3) because of the non-unique of probability distribution, he can
not get a precise option price; he can only get an interval. The option’s price
should be in this interval.

It is a natural choice to select the average of v (t) as a reference. Averagely,
we know that there are λt jumps in [0, t] due to the character of Poisson
process. Because EY = 1, we have E (v) = v (0). Under the probability
measure P , the reference model should be:

dS/S = rdt + v (0) dw (3)

The individual knows that the model is inaccurate, there may be other

probability measure P̃ . We define z (t) � dP̃
/
dP , so z (t) is the Radon-

Nikodym derivative of P̃ and P . Due to Girsanov Theorem we can note

z (t) as z (t) = exp
[∫ t

0 h (τ) dw (τ)− 1
2

∫ t

0 h2 (τ) dτ
]
, with Novikov condition

E
[
exp

[∫ t

0
h2 (τ) dτ

]]
< ∞. To make the problem easier, we treat the h (t)

as some unknown and deterministic process in this paper.
According to Girsanov Theorem, we know dw = h (t) dt+ dw̃, where dw̃ is

a standard Brownian motion under another possible probability measure P̃ .
Substituting this transform into (3), we get a process under another possible
risk-neutral probability measure P̃ :

dS/S = (r + v (0)h (t)) dt + v (0) dw̃ (4)
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Equation (4) does not mean one process, but a family of possible processes
with the same form. Different h (t) means different process. To get the value
of European call C (T, S (t)) which underlying stock price follows equation
(4), we have the proposition:

Proposition 1. 1 Suppose that, in a risk-neutral world, a stock price S (t)
with time-varying, nonrandom interest rate follows the stochastic process
dS (t) = r̃ (t)S (t) dt+v (0)S (t) dw̃. The value of European call with the ma-

ture date T is C (T, S (t)) = BSM
(
T − t, S (t) ;K, 1

T−t

∫ T

t
r̃ (τ) dτ, v2 (0)

)
.

Here the BSM (t∗, S;K, r∗, v∗) is the value of Black-Scholes-Merton Euro-
pean call with expiration time t∗, initial stock price S, exercise price K, con-
stant interest rate r∗ and constant volatility v∗.

According to this proposition, if the price of underlying stock follows the form
of (4), the price of European call option is:

C (T, S (t)) = BSM (T − t, S (t) ;K, r∗, v (0)) (5)

where

r∗ = r +
v (0)

(T − t)

∫ T

t

h (τ) dτ (6)

Because (4) means a family of processes, (5) means a family of prices. We
know that h (t) determines the interval of price by (5) and (6). We deal with
the Knightian uncertainty via a control-set H = {h (t) | |h (t)| ≤ k},2 which is
called as k-Ignorance by Chen and Epstein. k-Ignorance reflects the Knightian
uncertainty, and gives the probability measure family a constraint. k reflects
the range of the Knightian uncertainty. But they did not identify the factors
upon which k depends. Here we know that the Poisson jump causes the
Knightian uncertainty. So the Poisson process and the size of jumps decide
the k-Ignorance. k should reflect the characters of q (t) and Y .

We define k � λaθbtγ , a � 0, b � 0, |γ| < 1 to show this relationship. λ
reflects the character of q (t); and θ reflects the size of jumps. k � λaθbtγ is
a reasonable definition. A larger value of λ means that the jump will happen
with a larger probability. Similarly, a larger θ may contribute to a larger size
for every jump. What’s more, a and b reflect the individual sensitivity to q (t)
and Y . And tγ reflects the possible change of k-Ignorance; if γ = 0, it means
the individual has a constant k-Ignorance. Then, we have |h (t)| � λaθbtγ .
And we get the range for h (t): −λaθbtγ � h (t) � λaθbtγ .

According to the features of BSM (t∗, S;K, r∗, v∗), we know that the larger
the value of r∗ is, the larger the price of option will be. When h (t) = λaθbtγ ,
we get the upper bound of the price, we note it as C (T, S (t)); when h (t) =
−λaθbtγ , we get the lower bound of the price C (T, S (t)). They are:

1 It is a simplification version of Shreve[11], exercise 5.4.
2 If we consider equation (6), h (t) should be noted as h (τ ), and we have t ≤ τ ≤ T .
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C (T, S (t)) = BSM (T − t, S (t) ;K, r, v (0)) (7)

where,

r = r +
v (0)λaθb

(T − t) (γ + 1)

(
T γ+1 − tγ+1

)
(8)

C (T, S (t)) = BSM (T − t, S (t) ;K, r, v (0)) (9)

where,

r = r +
v (0)λaθb

(T − t) (γ + 1)

(
tγ+1 − T γ+1

)
(10)

The option price will be in the interval
[
C (T, S (t)), C (T, S (t))

]
. In (7),

(8), (9) and (10), we can see that if λ = 0 or θ = 0, the interval will degenerate
to a point; it means that there is no Knightian uncertainty in that situation.
Also, we can find that the larger λ and θ become, or the smaller t (larger T−t)
turns, the wider the price interval will be. This shows that it will be more
difficult for the individual to get a precise price if the Poisson process is more
intensive, the jump is more severe, or the maturity date is farther. A more
violent situation or a longer time-latitude always brings larger Knightian
uncertainty, and it is more difficult for the individual to get a precise price. In
the next section, we will use Monte Carlo simulation to identify this character.

3 Simulation

Black-Scholes-Merton option pricing formula is widely used in reality (B-S
price for short), but in fact, the volatility can not be observed. Commonly,
people always assume that the volatility is constant and use some “average”
value. In our viewpoint, if the Knightian uncertainty caused by jump volatil-
ity exists, there should be clearly bias between the B-S price and the true
price. So we can identify some characters of pricing option with Knightian un-
certainty by analyzing this price bias. Also, we can see that our price interval
captures some important features of Kinghtian uncertainty.

We use Monte Carlo simulation to calculate the option’s true price. As we
assumed in section 2, the equations (1), (2) can be written as:

dS = rSdt + vSdw

v (t) = v (0)

q(t)∏

n=0

Yn

where Yn ∼ Unif [1− θ, 1 + θ]; dw, q (t), and Yn are independent of each
other.

We simulate the jump times τ1, τ2, · · · explicitly by generating the time
interval for next jump, from the exponential distribution with mean 1/λ. In
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the interval between two close jumps (τi−1, τi], S (t) evolves like a geometric
Brownian motion with constant volatility v (τi−1), so we have the following
equations for the paths:

v (τi−1) = v (τi−2)Yi−1

S (τi)=S (τi−1) exp
{(

r − 1
2v (τi−1)

2
)

(τi − τi−1)+ v (τi−1) [w (τi)−w (τi−1)]
}

We can get one “sample value” of the option price:

e−rT max [S (T )−K, 0]

Let r = 0.2, v (0) = 0.2, S (0) = 100 be constant for our simulation.
And calculate every combination with different λ, θ, K and T as Table 1.
One combination means one option. After doing 10,000 simulations for every
combination, we get a group of prices for different options.

Table 1 Parameters of Monte Carlo simulation

Parameter Value

λ 60, 120, 180, 360
θ 0.02, 0.1
K 80, 85, 90, 95, 100, 105, 110, 115, 120
T 15, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300,

330, 360
Other Parameters r = 0.2, v (0) = 0.2, S (0) = 100

When calculating the B-S price, we use the average volatility value:
E (v (t)) = v (0). The price bias has the following characters. First, the value
of λ dramatically affects the price bias. From Fig. 1, we can see the price bias
clearly. With different λ (See Fig.1), we can see that the larger the value of
λ is, the larger the bias will be. Because λ reflects the impact of the Poisson
process, a higher frequency of the jump will come along with a larger value
of λ. There will be more Knightian Uncertainty and it is more difficult to
know the precise probability distribution. Formulas (7), (8), (9), and (10)
illustrate that the individual will use a wider price interval to accommodate
the possible larger bias.

Second, the maturity date is important for the price bias. Fig.2 shows the
price bias when expiration time is 15 days. We can see that there is almost
no price bias. Comparing Fig.1 with Fig.2, we find that the price bias will
disappear when the maturity date is closing. In our formulas, it means a
narrower price interval.
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Fig. 1 Price bias when T=360 days, θ=0.1

Fig. 2 Price bias when T=15 days, θ=0.1

Fig. 3 Price bias when T=360 days,
λ=360

Third, the jump size will affect
the price bias. In the extreme case,
if θ = 0, and according to our for-
mulas, the price interval will de-
generate to a point. We can expect
that there will be no price bias and
vise versa. As Fig.3 shows, when we
choice a lager θ, the price bias will
be clearly. Our simulation proves
this character.

4 Conclusion

Frank Knight distinguished the risk and the Knightian uncertainty. Under
Knightian uncertainty, the individual can not get a precise probability dis-
tribution because of information missing, ambiguity, etc. So he has to face a
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family of probability distributions. And we find that the option price is not
unique, but an interval under Knightian uncertainty.

This paper analyzes the option with jump volatility from the perspective
of Knightian uncertainty, under which we do not know the precise probability
distribution due to the jump volatility which evolves as a Poisson process.
Through selecting a reference model and disturbing it, we get a family of
processes with the same form. Then we transfer this option pricing problem
with jump volatility process into a Knightian uncertainty model.

Based on Chen and Epstein’s k-Ignorance, we identify the factors which
determine the constraint of Knightian uncertainty. And we get the formula
for European call option. Differing from the option without Knightian uncer-
tainty, we get a price interval for the option. Both the theoretical analysis and
the Monte Carlo simulation show that our price interval captures the main
characters of the option pricing under Knightian uncertainty. The factors,
that is, the intensity of Poisson, the jump size and the maturity date which
reflect the Knightian uncertainty also determine the price interval.
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70821061.
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Conditional Ruin Probability with a
Markov Regime Switching Model

Xuanhui Liu, Li-Ai Cui, and Fangguo Ren

Abstract. Ruin probabilities have been of a major interest in mathematical
insurance. The diffusion process is used to the model of risk reserve of an
insurance company usually. In this paper, we introduce a Markov chain and
extend the Reserve processes to a jump-diffusion model and research the
ruin probabilities. By using stochastic calculus techniques and the Martingale
method a partial differential equation satisfied by the finite time horizon
conditional ruin probability is obtained.

Keywords: Ruin probability, Regime-switching, Martingale, Jump-diffusion.

1 Introduction

For a long period of time, ruin probabilities have been of a major inter-
est in mathematical insurance and have been investigated by many au-
thors. The earliest work on this problem can be, at least, tracked back to
Lundberg [4]. When we consider the ruin problems, the quantity of inter-
est is the amount of surplus (by surplus, we mean the excess of some initial
fund plus premiums collected over claims paid). We say ruin happens when
the surplus becomes negative In order to track surplus, we need to model
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the claim payments, premiums collected, investment incomes, and expenses,
along with any other items that affect the cash flow. The classic risk metric
model is a compound Poisson process. Iglehart [2] have showed that un-
der the proper limit, the compound Poisson model could be approximated
by a diffusion model. Recently, many papers have been using the diffusion
model to model the surplus process of an insurance company. See for ex-
ample, Asmussen and Taksar [1], Paulsen [5] , [6].Yang Hailiang [9] consid-
ered a diffusion model for the risk reserve and obtained a partial differential
equation. Because insurance company’s investment and operation is oper-
ated in market economy environment.Recently,regime-switching,orMarkov-
modulated,models have received much attention among both researchers
and market practitioners.shuxiangxie [8],Robert,J. [7],Ka-fai [3].The optimal
portfolio selection is investigated in Markovian regime-switching financial
market.the Markovian regime-switching model Provides a natural way of de-
scribe the impact of structural changes in (macro)-economic condition on
asset price dynamics and risk. we consider risk model jointly driven by Brow-
nian motion and Poisson process and Markovian regime-switching model is
more realistic and practicable. We use Brownian motion describing the in-
fluence affected by the Market continuous information to the risk level, and
use the Poisson process describing the influence affected by emergency in-
formation. Applicaton Markovian regime-switching the impact of structural
changes in(macro)-economic condition on risk. This has more important the-
oretical significance to ruin probability’s analysis and research.

2 The Dynamic Formulation

Lemma 2.1. Let x(t) satisfy

dx(t) = b(t, x(t), r(t)dt + σ(t, x(t), r(t))dW (t)

and ψ(t, x(t), i) ∈ C2([0,∞)×Rn), i = 1, . . . , l be given.Then,

E{ϕ(T, x(T ), r(T ))− ϕ(s, x(s), r(s))|r(s) = i}

= E{
∫ T

s

[ϕt(t, x(t), r(t)) + Γϕ(t, x(t), r(t))]dt|r(s) = i}, (1)

where

Γϕ(t, x, i) =
1

2
tr[σ(t, x, i)Tϕxx(t, x, i)] + b(t, x, i)Tϕx(t, x, i) +

l∑

j=1

qijϕ(t, x, j).
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Let the risk reserve level at time t ≥ 0 be denoted by R(t), π(t, α(t), R(t)),
being the aggregate rate at which premiums are cashed at that time. Let
μ(t) be the average aggregate claim rate at time t and let β(t) be the force
of interest at time t .Let α(t) be a continuous-time stationary Markov chain.
α(t) takes value in a finite state space M = {1, 2, . . . , l}.
⎧
⎨
⎩

dR(t) = [π(t, α(t), R(t)) + β(t)R(t)− μ(t)]dt + σ(t, α(t), R(t))dW (t)
+ ϕ(t, α(t), R(t))dN(t)

R(0) = r0, α(0) = i, (i = 1, 2, . . . , l) (2)

Where W (t) is a standard Brownian motion and W (t) is a Poisson process.
Let FW

t be the completion of σ{Ws : 0 ≤ s ≤ t} , the σ fields generated by
W (t) . Let FN

t be the completion of σ{Ns : 0 ≤ s ≤ t} , the σ fields generated
by N(t). W (t) , N(t) and α(t) are independent of each other. The Markov
chain α(t) has a generator Q(qij)l×l and stationary transition probabilities:
Pij(t) = P{α(t) = j|α(0) = i}, t ≥ 0, i, j = 1, 2, . . . , l And generator is
defined as:

qij =

⎧
⎨
⎩

lim
t→0+

Pij

t , i �= j

lim
t→0+

Pij−1
t , i = j

i, j = 1, 2, . . . , l (3)

σ(t, α(t), R(t)) depends on R(t). ϕ(t, α(t), R(t))is relatively jumping height
under emergency information. Notice that the coefficients of the above
stochastic differential equation depend on history only through R(t) . There-
fore, the reserve process R(t) is a Markov process.

3 Partial Differential Equation Satisfied by the
Conditional Ruin Probability

In this section, we will drive the partial differential equation satisfied by the
conditional ruin probability. First, let us give some definitions.

Definition 3.1. The probability of ruin that occurs between time t and T ,
given the reserve at time t is r and the Markov chain at time t is k, is denoted
by

ψ(t, k, r) = P ( inf
t≤s≤T

R(s) < 0|α(t) = k,R(t) = r). (4)

Definition 3.2. The time of the first ruin occurring is a stopping time, and
is defined by τ = inf{t ≥ 0|R(t) < 0}. (5)

In this paper, we will consider both the probability of ruin over a finite
time horizon and over an infinity time horizon. For 0 < T ≤ T ≤ ∞, T <∞,
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corresponding to the finite time horizon, and T = ∞ corresponding to the
infinity time horizon case.

Lemma 3.1. ψ(t, α(t), R(t)) is a Ft∧τ martingale.

Proof

ψ(t ∧ τ, α(t ∧ τ), R(t ∧ τ)) = P ( inf
t∧τ≤s≤T

R(s) < 0|α(t ∧ τ), R(t ∧ τ))

= E[I{ inf
t∧τ≤s≤T

R(s) < 0|α(t ∧ τ), R(t ∧ τ)}]

= E[I{τ < T |α(t ∧ τ), R(t ∧ τ)}]
= E[I{τ < T |Ft∧τ}], (6)

Which is a Ft∧τ martingale and the last equalitdy holds because of the dif-
fusion process R(t) has strong Markovian property. The following theorem
gives the main result of this section.

Theorem 3.1. The conditional ruin probability ψ(t, k, r) satisfies the follow-
ing parabolic partial differential equation:

∂ψ
∂t (t, k, r) + [π(t, k, r) + β(t)r − μ(t)]∂ψ

∂r (t, k, r) + 1
2 [σ(t, k, r) ×

∂2ψ
∂2r (t, k, r)σ(t, k, r)] +

l∑
j=1

qijψ(t, j, r) + λE[ψ(t, k, r

+φ(t, k, r))−ψ(t, k, r)] = 0, (7)

and the following condition: ψ(t, k, r) = 1 if r < 0. (8)

Proof: From It’o formula and Lemma 2.1, we have that

dψ(t, k, r) = [
∂ψ

∂s
+ [π(s, k, r) + β(s)r− μ(s)]

∂ψ

∂r
+

1

2
tr[σ(s, k, r)

∂2ψ

∂2r
σ(s, k, r)]

+
l∑

j=1

qijψ(t, j, r)]ds + σ(s, k, r)
∂ψ

∂r
dW (s)

+[ψ(s, k, r + φ(s, k, r)) − ψ(s, k, r)]dN(s)

= [
∂ψ

∂s
+ [π(s, k, r) + β(s)r − μ(s)]

∂ψ

∂r
+

1

2
[σ(s, k, r)

∂2ψ

∂2r
σ(s, k, r)]

+

l∑

j=1

qijψ(t, j, r)]ds + σ(s, k, r)
∂ψ

∂r
dW (s)

+ λE[ψ(s, k, r + φ(s, k, r)) − ψ(s, k, r)]ds

Where λE[ψ(s, k, r+φ(s, k, r))−ψ(s, k, r)]ds is Ruin probality’s variation
produced by Poisson jumping. Therefore,
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ψ(t ∧ τ, α(t ∧ τ), R(t ∧ τ)) − ψ(0, α(0), R(0))

=

t∧τ∫

0

[
∂ψ

∂s
+ [π(s, k, r) + β(s)r − μ(s)]

∂ψ

∂r
+

1

2
[σ(s, k, r)

∂2ψ

∂2r
σ(s, k, r)]

+
l∑

j=1

qijψ(s, j, r)ds +

t∧τ∫

0

σ(s, k, r)
∂ψ

∂r
dW (s)

+

t∧τ∫

0

λE[ψ(s, k, r + φ(s, k, r)) − ψ(s, k, r)]ds

=

t∧τ∫

0

[
∂ψ

∂s
+ [π(s, k, r) + β(s)r − μ(s)]

∂ψ

∂r
+

1

2
[σ(s, k, r)

∂2ψ

∂2r
σ(s, k, r)]

+

l∑

j=1

qijψ(s, j, r) + λE[ψ(s, k, r + φ(s, k, r)) − ψ(s, k, r)]]ds

+

t∧τ∫

0

σ(s, k, r)
∂ψ

∂r
dW (s).

By Lemma 3.1, we know that ψ(t ∧ τ, α(t ∧ τ) is a Ft∧τ martingale, so
ψ(t ∧ τ, α(t ∧ τ), R(t ∧ τ)) − ψ(0, i, r0)) is a zero initial valued martingale
(obviously it is square integrable). Therefore,

t∧τ∫
0

[∂ψ
∂s + [π(s, k, r) + β(s)r − μ(s)]∂ψ

∂r + 1
2 [σ(s, k, r)∂2ψ

∂2r σ(s, k, r)]

+
l∑

j=1

qijψ(s, j, r)ds + λE[ψ(s, k, r + φ(s, k, r))− ψ(s, k, r)]]ds = 0. (9)

Since t can be any nonnegative real number, we have

∂ψ
∂s + [π(s, k, r) + β(s)r − μ(s)]∂ψ

∂r + 1
2 [σ(s, k, r)∂2ψ

∂2r σ(s, k, r)]

+
l∑

j=1

qijψ(s, j, r)ds+λE[ψ(s, k, r+φ(s, k, r))−ψ(s, k, r)] = 0 (10)

The condition (2.8) is obvious from the definition of ψ(t, k, r).

4 Concluding Remarks

In this paper, we take the reserve level of a insurance company as the risk
measurement size and study the problem of ruin probability driven by Brow-
nian motion and Poisson process. By using generalized formula and Martin-
gale method, a partial differential equations satisfied by the ruin probability
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influenced by the Market continuous information and emergency information
is obtained. This has important theoretical significance on the finance.
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A Property of Two-Parameter
Generalized Transition Function

Yuquan Xie

Abstract. We find that a generalized transition function Ps,t(x, y, z, A) with
two parameters s, t > 0 on a measurable space (E,E ) has a very interesting
and important property: its total transition probability Ps,t(x, y, z, E) is only
related to the product st of the two parameters s, t > 0 and is unrelated to
the states x, y, z ∈ E. To be more exact, there is a constant 0 ≤ λ ≤ +∞
such that

Ps,t(x, y, z, E) ≡ exp(−λst), ∀s, t > 0, x, y, z ∈ E.

Keywords: Markov processes, Two parameters, Transition function.

1 Introduction

M.R.Cairoli [2] put forward a kind of transition function with two parame-
ters which is often referred to as three points transition function or tri-point
transition function [11]. It plays very important roles in Markov processes
with two parameters[3 ∼ 4], such as Brown sheet, Poisson sheet, Lévy sheet,
Ornstein-Uhlenbeck processes, Bessel processes and so on. There are some in-
vestigations about the two-parameter transition functions (see, for examples,
[5 ∼ 11]). In this paper, we use mathematical analysis to find a very inter-
esting and important property that a two-parameter generalized transition
function has and an one-parameter one does not have.

Definition 1. [2] Let (E,E ) be a general measurable space. A function family

Ps,t(x, y, z, A), ∀ s, t > 0, x, y, z ∈ E,A ∈ E (1)
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is called a two-parameter transition function or three points transi-
tion function on (E,E ), if the following four conditions (A)∼(D) hold true

(A) ∀s, t > 0, x, y, z ∈ E, the function A→ Ps,t(x, y, z, A) is a probabil-
ity measure on (E,E ).

(B) ∀s, t > 0, A ∈ E , the function (x, y, z) → Ps,t(x, y, z, A) is E 3-
measurable.

(C) Horizontal Chapman-Kolmogorov Equation: ∀s, h, t > 0, x,
y, z,∈ E,A ∈ E , we have

Ps+h,t(x, y, z, A) =

∫

η∈E

Ps,t(x, y, ξ, dη)Ph,t(ξ, η, z, A), ∀ξ ∈ E. (2)

(D) Vertical Chapman-Kolmogorov Equation: ∀s, t, h > 0, x, y, z,∈
E,A ∈ E , we have

Ps,t+h(x, y, z, A) =

∫

η∈E

Ps,t(x, ξ, z, dη)Ps,h(ξ, y, η, A), ∀ξ ∈ E. (3)

If the condition (A) is substituted by (A′) as follows:
(A′) ∀s, t > 0, x, y, z ∈ E, the function A→ Ps,t(x, y, z, A) is a nonneg-

ative measure on (E,E ) with

0 ≤ Ps,t(x, y, z, E) ≤ 1. (4)

Then Ps,t(x, y, z, A) is called a two-parameter generalized transition function
If the condition (A) is substituted by (A′′) as follows:
(A′′) ∀s, t > 0, x, y, z ∈ E, the function A→ Ps,t(x, y, z, A) is a measure

on (E,E ) with
1 ≤ Ps,t(x, y, z, E) ≤ +∞. (5)

Then Ps,t(x, y, z, A) is called a two-parameter second generalized transition
function

2 Main Results

Theorem 2. Let (E,E ) be a general measurable space, Ps,t(x, y, z, A) be a
two-parameter generalized transition function on (E,E ). Then there exists a
constant number 0 ≤ λ ≤ +∞ such that

Ps,t(x, y, z, E) ≡ exp(−λst), ∀s, t > 0, x, y, z ∈ E.

Theorem 3. Let (E,E ) be a general measurable space, Ps,t(x, y, z, A) be a
two-parameter second generalized transition function on (E,E ). Then there
exists a constant number 0 ≤ λ ≤ +∞ such that

Ps,t(x, y, z, E) ≡ exp(λst), ∀s, t > 0, x, y, z ∈ E.
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It is especially worth noting that, the one-parameter generalized transition
functions does not have similar results as Theorem 2 and 3.

3 Several Lemmas

In order to prove Theorem 2 and 3 above, we firstly give several lemmas as
follows:

Lemma 4. Let f(s) be a monotonic function in (0,+∞). Then the discon-
tinuous points of the function f(s) in (0,+∞) form at most a countable set
and both the left limit f(s−), ∀s > 0 and the right limit f(s+), ∀s ≥ 0 are
existent.

Lemma 5. Let f(s) be a monotonic decreasing function in (0,+∞). If
f(s+ h) = f(s)f(h), ∀s, h > 0, then there exists a constant number 0 ≤ λ ≤
+∞ such that f(s) = exp(−λs), ∀s > 0.

Lemma 6. Let f(s) be a monotonic decreasing function in (0,+∞), g(s)
be a continuous everywhere function in (0,+∞), and C be a dense subset in
(0,+∞). If f(s+) = g(s), ∀ s ∈ C, then the function f(s) = g(s), ∀s > 0.

Lemma 7 Let f(s), g(s) be two monotonic decreasing functions in (0,+∞).
If f(s+ h) = f(s)g(h), ∀s, h > 0, then the function f(s) is continuous every-
where in (0,+∞).

The above Lemma 4 and 5 are well-known, their proofs can be found in
general textbooks, but Lemma 6 and 7 may be new, despite their proofs are
not very difficult.

Proof of Lemma 6. For arbitrary s > 0, because C is dense in (0,+∞), we
always can take two series {sn}, {tn} ⊆ C such that sn < s < tn, ∀ n ≥ 1 and
sn ↑ s, tn ↓ s as n ↑ ∞. Because the function f(s) is monotonic decreasing,
we have

g(sn) = f(sn+) ≥ f(s−) ≥ f(s) ≥ f(s+) ≥ f(tn+) = g(tn), ∀ n ≥ 1.

Letting n ↑ +∞, we have g(s−) ≥ f(s) ≥ g(s+). By g(s) is continuous in
(0,+∞), we have g(s−) = g(s) = g(s+). Thus f(s) = g(s), ∀s > 0.

Proof of Lemma 7. Because f(s) is a monotonic decreasing function in
(0,+∞), by Lemma 4, we know that the right limit f(s+), ∀s ≥ 0 is existent.
By the conditions f(s+h) = f(s)g(h), ∀s, h > 0, we have f(s+) = f(0+)g(s)
and f((s + h)+) = f(s+)g(h), ∀ s, h > 0. Thus

f(0+)g(s + h) = f(0+)g(s)g(h), ∀ s, h > 0.

If f(0+) = 0, then f(s+) ≡ 0, ∀ s > 0.
If f(0+) �= 0, then g(s + h) = g(s)g(h), ∀ s, h > 0. By Lemma 5, there

exists a constant number 0 ≤ λ ≤ +∞ such that g(s) = exp(−λs), ∀s > 0.
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Thus
f(s+) = f(0+) exp(−λs), ∀s > 0.

Because the function f(s) is monotonic decreasing, by Lemma 6, we have

f(s) ≡ 0, ∀ s > 0 or f(s) = f(0+) exp(−λs), ∀s > 0.

It is shown the function f(s) is continuous everywhere in (0,+∞).

4 Proofs of Theorem

Proof of Theorem 2. ∀s, t, h > 0, x, y, z ∈ E, by (3) and (4), we have

Ps,t+h(x, y, z, E) ≤ Ps,t(x, ξ, z, E), ∀ξ ∈ E. (6)

Specially, when ξ = y, we have

Ps,t+h(x, y, z, E) ≤ Ps,t(x, y, z, E).

It is shown that the function t→ Ps,t(x, y, z, E) is monotonic decreasing. By
Lemma 4, the limit

Ps,t+(x, y, z, E)=̂ lim
h→0+

Ps,t+h(x, y, z, E), (7)

is existent. By (6), we easy check that

Ps,t+h(x, y, z, E) ≤ Ps,t+(x, ξ, z, E), ∀ξ ∈ E, (8)

Ps, t+ (x, y, z, E) ≤ Ps, t (x, ξ, z, E), ∀ξ ∈ E, (9)

Ps,t+(x, y, z, E) ≤ Ps,t+(x, ξ, z, E), ∀y, ξ ∈ E. (10)

By (10) and the symmetries of y, ξ ∈ E, we have

Ps,t+(x, y, z, E) = Ps,t+(x, ξ, z, E), ∀y, ξ ∈ E. (11)

It is shown that Ps,t+(x, y, z, E) is unrelated to y ∈ E.
For arbitrary s, t, h, r > 0, x, y, z, ξ ∈ E, by (2),(8) and (11), we have

Ps+h,t+r(x, y, z, E)

=

∫

η∈E

Ps,t+r(x, y, ξ, dη)Ph,t+r(ξ, η, z, E)

≤
∫

η∈E

Ps,t+r(x, y, ξ, dη)Ph,t+(ξ, η, z, E)

= Ps,t+r(x, y, ξ, E)Ph,t+(ξ, η, z, E), ∀η ∈ E,

≤ Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E), ∀η ∈ E,
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Letting r ↓ 0, for arbitrary ξ, η ∈ E, we have

Ps+h,t+(x, y, z, E) ≤ Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E). (12)

Again by (2),(9) and (11), we have

Ps+h,t(x, y, z, E)

=

∫

η∈E

Ps,t(x, y, ξ, dη)Ph,t(ξ, η, z, E)

≥
∫

η∈E

Ps,t(x, y, ξ, dη)Ph,t+(ξ, η, z, E)

= Ps,t(x, y, ξ, E)Ph,t+(ξ, η, z, E), ∀η ∈ E,

≥ Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E), ∀η ∈ E,

that is,

Ps+h,t(x, y, z, E) ≥ Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E). (13)

By (12) and (13), we have

Ps+h,t+(x, y, z, E) ≤ Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E) ≤ Ps+h,t(x, y, z, E). (14)

For arbitrary t > 0, we always can take a series {tn} ⊆ (t,+∞) such that
tn ↓ t as n ↑ ∞. By (14), we have

Ps+h,tn+(x, y, z, E) ≤ Ps,tn+(x, y, ξ, E)Ph,tn+(ξ, η, z, E) ≤ Ps+h,tn(x, y, z, E),

Ps+h,t+(x, y, z, E) ≤ Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E) ≤ Ps+h,t+(x, y, z, E).

Thus

Ps+h,t+(x, y, z, E) = Ps,t+(x, y, ξ, E)Ph,t+(ξ, η, z, E). (15)

Specially, when ξ = z, we have

Ps+h,t+(x, y, z, E) = Ps,t+(x, y, z, E)Ph,t+(z, η, z, E). (16)

By (4) and (16), we have

Ps+h,t+(x, y, z, E) ≤ Ps,t+(x, y, z, E).

It is shown that the function s→ Ps,t+(x, y, z, E) also is monotonic decreas-
ing. By Lemma 4, the limit

Ps+,t+(x, y, z, E)=̂ lim
h→0+

Ps+h,t+(x, y, z, E), (17)
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is existent. By (4) and (15), we have

Ps+,t+(x, y, z, E) ≤ Ps+,t+(x, y, ξ, E), ∀ z, ξ ∈ E.

By the symmetries of z, ξ ∈ E, we have

Ps+,t+(x, y, z, E) = Ps+,t+(x, y, ξ, E), ∀ z, ξ ∈ E.

It is shown that Ps+,t+(x, y, z, E) is not only unrelated to y ∈ E, but also
unrelated to z ∈ E.

By (16) and Lemma 7, we know that the function s→ Ps,t+(x, y, z, E) is
continuous everywhere in (0,+∞) and is unrelated to y, z ∈ E. For simplicity,
we will denote Ps,t+(x, y, z, E) by ϕs,t(x), that is,

ϕs,t(x)=̂Ps,t+(x, y, z, E), ∀ x, y, z ∈ E, s, t > 0.

By (15), we have

ϕs+h,t(x) = ϕs,t(x)ϕh,t(ξ), ∀ x, ξ ∈ E.

By Lemma 7, we know that the function s→ ϕs,t(x) is continuous in (0,+∞).
By (4), we have

ϕh,t(x) = ϕh+,t(x) = lim
s↓0

ϕs+h,t(x) ≤ ϕh,t(ξ), ∀ x, ξ ∈ E.

By the symmetries of x, ξ ∈ E, we know that ϕs,t(x) also is unrelated to
x ∈ E. Let ϕs,t=̂ϕs,t(x), ∀ x ∈ E. Then

ϕs+h,t = ϕs,tϕh,t, ∀ s, h > 0.

By Lemma 5, there exists a constant number 0 ≤ μ(t) ≤ +∞ such that

ϕs,t = exp(−μ(t)s), ∀ s, t > 0,

that is,

Ps,t+(x, y, z, E) = exp(−μ(t)s), ∀ s, t > 0. (18)

Similarly, for arbitrary s > 0, there also exists a constant number 0 ≤
λ(s) ≤ +∞ such that

Ps+,t(x, y, z, E) = exp(−λ(s)t), ∀ s, t > 0. (19)

Let C be a subset of right continuous point of the function t→ P1,t(x, y, z, E).
By (18), we know that the function s→ Ps,t+(x, y, z, E) is continuous every-
where in (0,+∞). Thus

P1,t(x, y, z, E) = P1,t+(x, y, z, E) = P1+,t+(x, y, z, E)

≤ P1+,t(x, y, z, E) ≤ P1,t(x, y, z, E), ∀ t ∈ C.
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So
P1,t+(x, y, z, E) = P1+,t(x, y, z, E) = P1,t(x, y, z, E), ∀ t ∈ C.

By (18) and (19), we have

exp(−μ(t)) = exp(−λ(1)t) = exp(−λt), ∀ t ∈ C,

where λ=̂λ(1). Thus

Ps,t+(x, y, z, E) = exp(−λst), ∀ s > 0, t ∈ C. (20)

By Lemma 4, we know that the subset C is dense in (0,+∞). Thus, by
(20) and Lemma 6, we have

Ps,t(x, y, z, E) = exp(−λst), ∀ s, t > 0. ✷

Proof of Theorem 3. It is completely similar to the proofs of Theorem 2.

5 Application of Theorem

Theorem 2 and 3 are very interesting and important results, we give some
application examples as follows:

Example 8. If Ps,t(x, y, z, A) �= 0 is a horizontal constant type (or vertical
constant type) two-parameter generalized transition function on (E,E ), that
is, Ps,t(x, y, z, A) is unrelated to s > 0 (or t > 0), then Ps,t(x, y, z, A) is a
two-parameter transition function on (E,E ).

Proof. By Theorem 2, there exists a constant 0 ≤ λ < +∞ such that
Ps,t(x, y, z, E) = exp(−λst). Because Ps,t(x, y, z, E) is unrelated to s > 0 (or
t > 0), thus λ = 0 or +∞. However Ps,t(x, y, z, E) �= 0, thus λ = 0 and
Ps,t(x, y, z, E) ≡ 1. ✷

Remark 9. If Ps,t(x, y, z, A) is a two-parameter transition function on
(E,E ), then under some conditions, we can prove that both limits

lim
s↓0

Ps,t(x, y, z, A) and lim
s↑∞

Ps,t(x, y, z, A)

are two horizontal constant type two-parameter generalized transition func-
tions on (E,E ). Theorem 2 more further shows that two limits above are two
horizontal constant type two-parameter transition functions.

Example 10. As all know that an one-parameter generalized transition
function P (s, x,A) on a measurable space (E,E ) can be turn into an one-

parameter transition function P̃ (s, x,A) on another measurable space (Ẽ, Ẽ )
by appending a new state δ into E as follows:
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P̃ (s, x,A)=̂

⎧
⎪⎪⎨
⎪⎪⎩

P (s, x,A), when x ∈ E,A ∈ E ,
0, when x = δ, A ∈ E ,

1− P (s, x, E), when x ∈ E,A = ∆,
1, when x = δ, A = ∆,

(21)

where δ /∈ E,∆ = {δ}, Ẽ = E
⋃
∆, Ẽ = σ(E

⋃
∆).

However, for a two-parameter generalized transition function Ps,t(x, y, z, A)
on (E,E ), according to Theorem 2, only need to take

P̄s,t(x, y, z, A) = exp(λst)Ps,t(x, y, z, A),

we can turn Ps,t(x, y, z, A) into a two-parameter transition function P̄s,t(x, y,
z, A) on the same measurable space (E,E ).
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The Extinction of a Branching Process
in a Varying or Random Environment

Yangli Hu, Wei Hu, and Yue Yin

Abstract. A sufficient condition and a necessary condition for extinction of
BPVE are given. Then a splitting statistical regularity of individual in every
generation of BPRE is given. In the last example, the speed of extinction of
BPRE is contrasted with that of BPVE.

Keywords: Random environment, Varying environment, Branching
process, Extinction.

1 Introduction

As an extension of classical branching process, the research on a branching
process in a random environment (BPRE) and a branching process in a vary-
ing environment (BPVE) dated from 1960s. It is one of the most fruitful fields
about the research on branching processes. A series of profound results were
acquired (details sees in [2] [3] [7] [5] [6] [1] [4] and their bibliographies). The
mathematical formulation of BPRE was given in [3]. In [3], the measurability
related to the definition was proved, an equivalent theorem was given and
the existence of this model was proved. This laid a solid foundation of the
further research on it. In [2], bounds of the extinction probability of BPRE
and BPVE were obtained, then a sufficient and necessary condition for ex-
tinction of BPVE and a sufficient condition and a necessary condition for
certain extinction of BPRE were formed. But they were not proved and the
proofs are not trivial. In this paper, we give a series of corresponding proofs
and then obtain a sufficient condition and a necessary condition (Theorem 1
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and 2). Thus the sufficient and necessary condition given by Agresti in 1975
becomes a corollary. And we give a splitting statistical regularity of individ-
ual in every generation of BPRE. The last example shows that how to use
the extinction probability of BPVE to describe the extinction probability of
BPRE.

2 BPVE

Let {Zn : n ≥ 0} be BPVE, satisfying that

Z0 = 1, Zn+1 =

Zn∑

i=1

Xni, (1)

where for any fixed n ≥ 0, {Xni : i ≥ 1} is a sequence of independent
and identically distributed random variables taking values in the set of non-
negative integers, but {Xni : n ≥ 0, i ≥ 1} is just a sequence of independent
random variables. For any fixed n ≥ 0, i ≥ 1, Xni denotes the number of
the offspring produced by the ith individual in the nth generation with he
probability generating function(pgf) fn(s) = E(sXni). A necessary condition
for certain extinction of BPVE was given in the next. Let

T = min{n : Zn = 0}, q = lim
n→∞

P (Zn = 0), Pn =
n−1∏

j=0

f ′
j(1),

M = sup
n≥0

f ′′
n (1)

f ′
n(1)

, N =

∞∑

j=0

1

Pj+1
, δ(n) = infj≥n

f ′′
j (0)

f ′
j(1)

.

Theorem 1. If M <∞, f ′′
j (1) <∞, j ≥ 0, q = 1, then N =∞.

Proof. Assuming that N <∞, then

Pn →∞, n→∞. (2)

According to (2.4) in [2], we have

P (T ≤ n) ≤ 1− [P−1
n +

n−1∑

j=0

f ′′
j (1)

f ′
j(1)Pj+1

]−1

≤ 1− [P−1
n + M

n−1∑

j=0

P−1
j+1]

−1 ≤ 1− [P−1
n + NM ]−1. (3)
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Taking limit in both sides of (3) as n→∞, we have

q = lim
n→∞

P (T ≤ n) ≤ 1− 1

MN
< 1.

It contradict the condition q = 1. ✷

Conversely, we can also obtain a sufficient condition for certain extinction.

Theorem 2. If f ′′
j (1) <∞, j ≥ 0, N =∞ , and there exists a finite nonneg-

ative integer n0 such that δ(n0) > 0, then q = 1.

Proof. According to (2.4) in [2], we have

P (T ≤ n) ≥ 1− [P−1
n +

1

2

n−1∑

j=0

f ′′
j (0)

f ′
j(1)Pj+1

]−1

≥ 1− [P−1
n +

1

2

n0−1∑

j=0

f ′′
j (0)

f ′
j(1)Pj+1

+
1

2
δ(n0)

n−1∑

j=n0

P−1
j+1]

−1

≥ 1− [
1

2
δ(n0)

n−1∑

j=n0

P−1
j+1]

−1, n > n0. (4)

Because δ(n0) > 0, N = ∞, taking limit in both sides of (4) as n → ∞, we
have

q = lim
n→∞

P (T ≤ n) ≥ 1,

so q = 1. ✷

The following corollary can be obtained from Theorem 1 and Theorem 2.
This is just the conclusion of Theorem 1 in [2].

Corollary 1. If f ′′
j (1) < ∞, j ≥ 0,M < ∞ and exist a finite nonnegative

integer n0 such that δ(n0) > 0, then q = 1 ⇔ N = ∞.

3 BPRE

Let ξ = {ξn : n ≥ 0} be a sequence of independent random variables defined
on a probability space (Ω,ℑ, P ) and taking values in a measurable space
(Θ,Σ). Let P (·|ξ) = Pξ(·) and E(·|ξ) = Eξ(·).

Let {Zn : n ≥ 0} be BPRE, satisfying (1). For a given random environment
ξ, {Xni : n ≥ 0, i ≥ 1} is a sequence of independent random variables taking
value in the set of non-negative integers and satisfying

Pξ(Xnj = rnj , 1 ≤ j ≤ l, 0 ≤ n ≤ m) =

m∏

n=0

l∏

j=1

Pξn(Xnj = rnj).



312 Y. Hu, W. Hu, and Y. Yin

The conditional pgf of the number of offspring created by an individual in
the nth generation is denoted by

fn(s) ≡ fξn(s) = Eξ(s
Xni).

For a given random environment ξ, the conditional pgf of the number of all
the individuals in the nth generation of the process {Zn, n ≥ 0} is denoted
by ϕn(ξ; s) = Eξ(s

Zn) , then by Theorem 2.1 in [3], we have ϕn(ξ; s) =
fξ0(fξ1(· · · fξn−1(s) · · · )). Set ϕn(s) = E(sZn). Let

U = sup
j≥0

E(
f ′′

j (1)

(f ′
j(1))2

), V =

∞∑

j=1

j−1∏

i=0

E(
1

f ′
i(1)

),

γ(n) = inf
j≥n

Ef ′′
j (0)

Ef ′
j(1)

,W =
∞∑

j=0

j∏

i=0

1

Ef ′
i(1)

, A = sup
j≥1

E(
1

∏j−1
i=0 f ′

i(1)
)2,

we can also obtain some conditions for certain extinction.

Theorem 3. (i) If U <∞, q = 1, then V = ∞.
(ii)Let ξ be a sequence of independent and identically distributed random

variables, if q = 1, E(
f ′′
0 (1)

(f ′
0(1))2 ) <∞, then E( 1

f ′
0(1) ) ≥ 1.

Proof. (i) Assuming that V <∞, then we have

∞∏

i=0

E(
1

f ′
i(1)

) = 0. (5)

According to (3.4) in [2], we have

P (T ≤ n) ≤ 1− [

n−1∏

j=0

E(
1

f ′
j(1)

) +

n−1∑

j=1

E(
f ′′

j (1)

(f ′
j(1))2

)

j−1∏

i=0

E(
1

f ′
i(1)

)]−1

≤ 1− [

n−1∏

j=0

E(
1

f ′
j(1)

) + U

n−1∑

j=1

j−1∏

i=0

E(
1

f ′
i(1)

)]−1. (6)

Taking limit in both sides of (6) as n→∞, we have

q = lim
n→∞

P (T ≤ n) ≤ 1− (UV )−1 < 1,

It contradict the condition q = 1.
(ii) Because we have the fact that

U = E(
f ′′
0 (1)

(f ′
0(1))2

), (7)
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V =

∞∑

j=1

j−1∏

i=0

E(
1

f ′
i(1)

) =

∞∑

j=1

[E(
1

f ′
0(1)

)]j . (8)

We can get the conclusion from (7), (8) and (i). ✷

Theorem 4. (i) If W = ∞ , and there exists a finite nonnegative integer n0

such that γ(n0) > 0, then q = 1.
(ii) Let ξ be a sequence of independent and identically distributed random

variables, if
Ef ′′

0 (0)

Ef ′
0(1)

> 0, Ef ′
0(1) ≤ 1,

then q = 1.

Proof. (i) According to (3.2) in [2], for all n ≥ n0, we have

P (T ≤ n) ≥ 1− [(

n−1∏

j=0

Ef ′
j(1))−1 +

1

2

n−1∑

j=0

Ef ′′
j (0)

Ef ′
j(1) ·∏j

i=0 Ef ′
i(1)

]−1

≥ 1− [(

n−1∏

j=0

Ef ′
j(1))−1 +

1

2

n0−1∑

j=0

Ef ′′
j (0)

Ef ′
j(1) ·∏j

i=0 Ef ′
i(1)

+
γ(n0)

2

n−1∑

j=n0

j∏

i=0

1

Ef ′
i(1)

]−1

≥ 1− [
γ(n0)

2

n−1∑

j=n0

j∏

i=0

1

Ef ′
i(1)

]−1. (9)

Taking limit in both sides of (9) as n → ∞, since γ(n0) > 0,W = ∞, we
have

q = lim
n→∞

P (T ≤ n) ≥ 1,

so q = 1.
(ii) Because we have the fact that

γ(n) ≡ Ef ′′
0 (0)

Ef ′
0(1)

, (10)

W =

∞∑

j=0

[
1

Ef ′
0(1)

]j+1, (11)

so we can get the conclusion from (10), (11) and (i). ✷

Theorem 5. Let ξ be a sequence of independet random variables, if
infj≥0 P (f ′

j(1) ≤ 1) > 0 , A <∞ and V = ∞, then as j →∞, there exist an
integer k ≥ j such that P (f ′

k(1) ≤ 1) = 1.
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Proof. By the assumption, we have

∞∑

j=1

E(
1

∏j−1
i=0 f ′

i(1)
) = V = ∞,

and

∞ =
∞∑

j=1

E(
1

∏j−1
i=0 f ′

i(1)
)P (

1

f ′
j(1)

≥ 1)

≤
∞∑

j=1

[E(
1

∏j−1
i=0 f ′

i(1)
)2]

1
2P (

1

f ′
j(1)

≥ 1)

≤ A
1
2

∞∑

j=1

P (
1

f ′
j(1)

≥ 1). (12)

But A <∞, so we have

∞∑

j=1

P (
1

f ′
j(1)

≥ 1) = ∞.

Since { 1
f ′

j(1)
≥ 1 : j ≥ 1} is a sequence of independent random variables,

using Borel 0− 1 law, we have P (f ′
j(1) ≤ 1, i.o.) = 1, j = 1, 2, · · · . So we can

obtain the conclusion directly. ✷

Example 1. A model : For a given random environment ξ, each individual
in the nth generation produces offspring according to a Poisson distribution
with the mean λ(ξn) ∼ Γ (αn, βn).

Proof. We set λ(ξi) = λi, then pk(ξi) = (λi)
k

k! e−λi , i ≥ 0. Since f ′
i(1) = λi,

λi ∼ Γ (αi, βi), so

E(
1

λ
) =

∫ ∞

0

1

x
· α

βxβ−1

Γ (β)eαx
dx =

∫ ∞

0

αβxβ−2

Γ (β)eαx
dx =

αβ

Γ (β)

∫ ∞

0

xβ−2

eαx
dx

=
αβ

Γ (β)
·( 1

α
)β−2· 1

α

∫ ∞

0

μβ−2

eμ
du =

αβ

Γ (β)
·( 1

α
)β−1·Γ (β−1) =

α

β − 1
,

where μ = α · x. So (E( 1
f ′

i(1)
))−1 = βi−1

αi
. By Jensen’s inequality, this process

becomes extinct slowerly than the one in a varying environment with means
{(βi − 1)/αi, i ≥ 0}.

For a fixed ξj , fj(s) is a increasing convex function. By Jensen’s inequality
and the smoothing property of conditional expectation,
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ϕn(s) = Eϕn(ξ; s) = E(f0(f1(· · · (fn−1(s) · · · ))
= E{E[f0(f1(· · · (fn−1(s) · · · ))|ξ]}
≥ E{f0(E[f1(· · · fn−1(s) · · · )|ξ])}
≥ · · · ≥ Ef0(Ef1(· · ·Efn−1(s) · · · )). (13)

Since fi(s) = eλi(s−1), λi ∼ Γ (αi, βi), so we have

Eeλ(s−1) =

∫ ∞

0

ex(s−1) · α
βxβ−1

Γ (β)eαx
dx

=
αβ

Γ (β)
(

1

α + 1− s
)β

∫ ∞

0

e(s−1−α)xxβ−1dx

=
αβ

Γ (β)

∫ ∞

0

μβ−1e−μdu = (
α

α + 1− s
)β ,

where μ = (α + 1− s)x. Obviously (α/(α + 1− s))β is a pgf, so by (13) and
(3.1) in [1], this process becomes extinct fasterly than the one in a varying
environment with pgf’s {( αi

αi+1−s)βi , i ≥ 0}. ✷
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Metric Adjusted Skew Information and
Metric Adjusted Correlation Measure

Kenjiro Yanagi and Shigeru Furuichi

Abstract. We show that a Heisenberg type or a Schrödinger type uncertainty
relation for Wigner-Yanase-Dyson skew information proved by Yanagi can
hold for an arbitrary quantum Fisher information under some conditions.
One of them is a refinement of the result of Gibilisco and Isola.

Keywords: Heisenberg uncertainty relation, Schrödinger uncertainty rela-
tion, Wigner-Yanase-Dyson skew information, Operator monotone fnction,
Quantum Fisher information.

1 Introduction

Wigner-Yanase skew information

Iρ(H) =
1

2
Tr

[(
i
[
ρ1/2, H

])2
]

= Tr[ρH2]− Tr[ρ1/2Hρ1/2H ]

was defined in [9]. This quantity can be considered as a kind of the degree for
non-commutativity between a quantum state ρ and an observable H . Here we
denote the commutator by [X,Y ] = XY −Y X . This quantity was generalized
by Dyson
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Iρ,α(H) =
1

2
Tr[(i[ρα, H ])(i[ρ1−α, H ])] = Tr[ρH2]−Tr[ραHρ1−αH ], α ∈ [0, 1]

which is known as the Wigner-Yanase-Dyson skew information. Recently it
is shown that these skew informations are connected to special choices of
quantum Fisher information in [2]. The family of all quantum Fisher infor-
mations is parametrized by a certain class of operator monotone functions
Fop which were justified in [7]. The Wigner-Yanase skew information and
Wigner-Yanase-Dyson skew information are given by the following operator
monotone functions

fWY (x) =

(√
x + 1

2

)2

, fWY D(x) = α(1−α)
(x − 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0, 1),

respectively. In particular the operator monotonicity of the function fWY D

was proved in [8]. On the other hand the uncertainty relation related to
Wigner-Yanase skew information was given by Luo [6] and the uncertainty
relation related to Wigner-Yanase-Dyson skew information was given by
Yanagi [10], respectively. In this paper we generalize these uncertainty re-
lations to the uncertainty relations related to quantum Fisher informations.

2 Operator Monotone Functions

Let Mn(C)(resp. Mn,sa(C)) be the set of all n×n complex matrices (resp. all
n×n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product
〈A,B〉 = Tr(A∗B). Let Mn,+(C) be the set of strictly positive elements of
Mn(C) and Mn,+,1(C) be the set of stricly positive density matrices, that is
Mn,+,1(C) = {ρ ∈ Mn(C)|Trρ = 1, ρ > 0}. If it is not otherwise specified,
from now on we shall treat the case of faithful states, that is ρ > 0.

A function f : (0,+∞) → R is said operator monotone if, for any n ∈ N,
and A,B ∈ Mn such that 0 ≤ A ≤ B, the inequalities 0 ≤ f(A) ≤ f(B)
hold. An operator monotone function is said symmetric if f(x) = xf(x−1)
and normalized if f(1) = 1.

Definition 1. Fop is the class of functions f : (0,+∞)→ (0,+∞) such that

(1) f(1) = 1,
(2) tf(t−1) = f(t),
(3) f is operator monotone.

Example 1. Examples of elements of Fop are given by the following list

fRLD(x) =
2x

x + 1
, fWY (x) =

(√
x + 1

2

)2

, fBKM (x) =
x− 1

log x
,

fSLD(x) =
x + 1

2
, fWY D(x) = α(1 − α)

(x− 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0, 1).
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Remark 1. Any f ∈ Fop satisfies

2x

x + 1
≤ f(x) ≤ x + 1

2
, x > 0.

For f ∈ Fop define f(0) = limx→0 f(x). We introduce the sets of regular
and non-regular functions

Fr
op = {f ∈ Fop|f(0) �= 0}, Fn

op{f ∈ Fop|f(0) = 0}

and notice that trivially Fop = Fr
op ∪ Fn

op.

Definition 2. For f ∈ Fr
op we set

f̃(x) =
1

2

[
(x + 1)− (x− 1)2

f(0)

f(x)

]
, x > 0.

Theorem 1 ( [1], [2], [5]). The correspondence f → f̃ is a bijection between
Fr

op and Fn
op.

3 Metric Adjusted Skew Information and Metric
Adjusted Correlation Measure

In Kubo-Ando theory of matrix means one associates a mean to each operator
monotone function f ∈ Fop by the formula

mf (A,B) = A1/2f(A−1/2BA−1/2)A1/2,

where A,B ∈ Mn,sa(C). Using the notion of matrix means one may define
the class of monotone metrics (also said quantum Fisher informtions) by the
following formula

〈A,B〉ρ,f = Tr(A ·mf (Lρ, Rρ)
−1(B)),

where Lρ(A) = ρA,Rρ(A) = Aρ. In this case one has to think of A,B as
tangent vectors to the manifold Mn,+,1(C) at the point ρ (see [7], [2]).

Definition 3. For A,B ∈Mn,sa and ρ ∈Mn,+,1(C), we define the following
quantities:

Corrf
ρ (A,B) =

f(0)

2
〈i[ρ,A], i[ρ,B]〉ρ,f , If

ρ (A) = Corrρ,f (A,A),

Cρ,f (A,B) = Tr[mf(Lρ, Rρ)(A)B], Cf
ρ (A) = Cρ,f (A,A),

Uf
ρ (A) =

√
Vρ(A)2 − (Vρ(A)− If

ρ (A))2,
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The quantity If
ρ (A) is known as metric adjusted skew information [4] and the

metric adjusted correlation measure Corrf
ρ (A,B) was also previously defined

in [4].

Then we have the following proposition.

Proposition 1. ( [1], [3]) For A,B ∈Mn,sa(C) and ρ ∈Mn,+,1(C), we have
the following relations, where we put A0 = A−Tr[ρA]I and B0 = B−Tr[ρB].

(1) If
ρ (A) = If

ρ (A0) = Tr(ρA2
0)− Tr(mf̃ (Lρ, Rρ)(A0) · A0)

= Vρ(A) − C f̃
ρ (A0),

(2) Jf
ρ (A) = Tr(ρA2

0) + Tr(mf̃ (Lρ, Rρ)(A0) · A0) = Vρ(A) + C f̃
ρ (A0),

(3) 0 ≤ If
ρ (A) ≤ Uf

ρ (A) ≤ Vρ(A),

(4) Uf
ρ (A) =

√
If
ρ (A) · Jf

ρ (A).

(5) Corrf
ρ (A,B) = Corrf

ρ (A0, B0)

= 1
2Tr[ρA0B0] +

1
2Tr[ρB0A0]− Tr[mf̃ (Lρ, Rρ)(A0)B0]

= 1
2Tr[ρA0B0] +

1
2Tr[ρB0A0]− C f̃

ρ (A0, B0).

4 The Main Result

Theorem 2. For f ∈ Fr
op, if

x + 1

2
+ f̃(x) ≥ 2f(x), (1)

then it holds
Uf

ρ (A) · Uf
ρ (B) ≥ f(0)|Tr(ρ[A,B])|2, (2)

Uf
ρ (A) · Uf

ρ (B) ≥ 4f(0)|Corrf
ρ (A,B)|2, (3)

where A,B ∈Mn,sa(C) and ρ ∈Mn,+,1(C).

In order to prove Theorem 2, we use several lemmas.

Lemma 1. If (1) holds, then the following inequality is satisfied;

(
x + y

2

)2

−mf̃ (x, y)2 ≥ f(0)(x− y)2.

Proof. By (1) we have

x + y

2
+ mf̃ (x, y) ≥ 2mf(x, y).
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Then

(
x + y

2

)2

−mf̃ (x, y)2 =

{
x + y

2
−mf̃ (x, y)

}{
x + y

2
+ mf̃ (x, y)

}

≥ f(0)(x− y)2

2mf(x, y)
2mf(x, y) = f(0)(x− y)2.

✷

Lemma 2. Let {|φ1〉, |φ2〉, · · · , |φn〉} be a basis of eigenvectors of ρ, corre-
sponding to the eigenvalues {λ1, λ2, · · · , λn}. We put ajk = 〈φj |A0|φk〉, bjk =
〈φj |B0|φk〉. By Corollary 6.1 in [1],

If
ρ (A) =

1

2

∑

j,k

(λj + λk)ajkakj −
∑

j,k

mf̃ (λj , λk)ajkakj

= 2
∑

j<k

{
λj + λk

2
−mf̃(λj , λk)

}
|ajk|2.

Jf
ρ (A) =

1

2

∑

j,k

(λj + λk)ajkakj +
∑

j,k

mf̃ (λj , λk)ajkakj

≥ 2
∑

j<k

{
λj + λk

2
+ mf̃ (λj , λk)

}
|ajk|2.

(Uf
ρ (A))2 =

1

4

⎛
⎝∑

j,k

(λj + λk)|ajk|2
⎞
⎠

2

−

⎛
⎝∑

j,k

mf̃ (λj , λk)|ajk|2
⎞
⎠

2

and

Corrf
ρ (A,B)

=
1

2

∑

j,k

λjajkbkj +
1

2

∑

j,k

λkajkbkj −
∑

j,k

mf̃ (λj , λk)ajkbkj

=
∑

j<k

(
λj + λk

2
−mf̃ (λj , λk)

)
ajkbkj +

∑

j<k

(
λj + λk

2
−mf̃ (λk, λj)

)
(4)

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Since

Tr(ρ[A,B]) = Tr(ρ[A0, B0]) =
∑

j,k

(λj − λk)ajkbkj ,
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we have

f(0)|Tr(ρ[A,B])|2

≤

⎛
⎝∑

j,k

f(0)1/2|λj − λk||ajk||bkj |

⎞
⎠

2

≤

⎛
⎝∑

j,k

{(
λj + λk

2

)2

−mf̃ (λj , λk)2

}1/2

|ajk||bkj |

⎞
⎠

2

≤

⎛
⎝∑

j,k

{
λj + λk

2
−mf̃ (λj , λk)

}
|ajk|2

⎞
⎠×

⎛
⎝∑

j,k

{
λj + λk

2
+ mf̃ (λj , λk)

}
|bkj |2

⎞
⎠

= If
ρ (A)Jf

ρ (B).

Hence we have the Heisenberg type inequality (2). On the other hand, by (4),
we have

|Corrf
ρ (A, B)|

≤
∑

j<k

∣∣∣∣
(

λj + λk

2
− mf̃ (λj , λk)

)
ajkbkj

∣∣∣∣+
∑

j<k

∣∣∣∣
(

λj + λk

2
− mf̃ (λk, λj)

)
akjbjk

∣∣∣∣

≤
∑

j<k

∣∣∣∣
λj + λk

2
− mf̃ (λj , λk)

∣∣∣∣ |ajk||bkj | +
∑

j<k

∣∣∣∣
λj + λk

2
− mf̃ (λk, λj)

∣∣∣∣ |akj ||bjk|

= 2
∑

j<k

∣∣∣∣
λj + λk

2
− mf̃ (λj , λk)

∣∣∣∣ |ajk||bkj |

≤
∑

j<k

|λj − λk||ajk||bkj |.

Then we have

f(0)|Corrf
ρ (A,B)|2

≤

⎛
⎝∑

j<k

f(0)1/2|λj − λk||ajk||bkj |

⎞
⎠

2
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≤

⎛
⎝∑

j<k

{(
λj + λk

2

)2

−mf̃ (λj , λk)2

}1/2

|ajk||bkj |

⎞
⎠

2

≤

⎛
⎝∑

j<k

{
λj + λk

2
−mf̃ (λj , λk)

}
|ajk|2

⎞
⎠×

⎛
⎝∑

j<k

{
λj + λk

2
+ mf̃ (λj , λk)

}
|bkj |2

⎞
⎠

=
1

4
If
ρ (A)Jf

ρ (B).

By the similar way we also have the Schrödinger type inequality (3). ✷

By putting

fWY D(x) = α(1 − α)
(x − 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0, 1),

we obtain the following uncertainty relation;

Corollary 1 ( [10]). For A,B ∈Mn,sa(C) and ρ ∈Mn,+,1(C),

UfWY D
ρ (A)UfW Y D

ρ (B) ≥ α(1 − α)|Tr(ρ[A,B])|2,

UfWY D
ρ (A)UfW Y D

ρ (B) ≥ 4α(1− α)|Corrρ,α(A,B)|2,
where

Corrρ,α(A,B) =

1

2
Tr[ρA0B0] +

1

2
Tr[ρB0A0]−

1

2
Tr[ραA0ρ

1−αB0]−
1

2
Tr[ραB0ρ

1−αA0].

Proof. Since

fWY D(x) = α(1− α)
(x− 1)2

(xα − 1)(x1−α − 1)
,

it is clear that

f̃WY D(x) =
1

2
{x + 1− (xα − 1)(x1−α − 1)}.

By Lemma 3.3 in [10] we have for 0 ≤ α ≤ 1 and x > 0,

(1− 2α)2(x − 1)2 − (xα − x1−α)2 ≥ 0.
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Then we can rewrite as follows;

(x2α − 1)(x2(1−α) − 1) ≥ 4α(1 − α)(x − 1)2.

Thus

x + 1

2
+ f̃WY D(x) = x + 1− 1

2
(xα − 1)(x1−α − 1) =

1

2
(xα + 1)(x1−α + 1)

≥ 2α(1− α)
(x− 1)2

(xα − 1)(x1−α − 1)
= 2fWY D(x).

It follows from Theorem 2 that we can give the aimed result. ✷

Remark 2. In [3], the following result was given. Even if (1) does not
necessarily hold, then

Uf
ρ (A)Uf

ρ (B) ≥ f(0)2|Tr[(ρ[A,B])|2, (5)

Uf
ρ (A)Uf

ρ (B) ≥ 4f(0)2|Corrf
ρ (A,B)|2, (6)

where A,B ∈Mn,sa(C) and ρ ∈Mn,+,1(C). Since f(0) < 1, it is easy to show
(5), (6) are weaker than (2), (3), respectively.
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Integral-Based Modifications
of OWA-Operators

Erich Peter Klement and Radko Mesiar

Abstract. An OWA-operator (ordered weighted averaging aggregation oper-
ator) can be seen as a discrete Choquet integral with respect to a symmetric
monotone measure. Based on this representation and using universal inte-
grals, several modifications of OWA-operators are introduced and discussed.

Keywords: Choquet integral, Sugeno integral, Universal integral, OWA
operator, Monotone measure, Symmetric monotone measure.

1 Introduction

The ordered weighted averaging operator (OWA-operator for short, see [12])
OWAw : [0, 1]n → [0, 1] based on a weight vector w = (w1, w2, . . . , wn) with
wi ≥ 0 and

∑n
i=1 wi = 1 is given by

OWAw(x) =

n∑

i=1

wi · x(i). (1)

Here (·) is a permutation of (1, . . . , n) making the input vector x= (x1, . . . , xn)
non-increasing, i.e., x(1) ≥ x(2) ≥ · · · ≥ x(n). OWA operators have attracted
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a lot of attention in several applications — we only recall two edited volumes
on this topic [13, 14].

In [4] an integral representation of OWA-operators was given. Indeed, the
n-dimensional OWA-operator OWAw can be seen as the Choquet integral [2]
with respect to the symmetric monotone measure m : 2{1,...,n} → [0, 1] given
by m(∅) = 0 and, for E �= ∅, by

m(E) =

|(|E)∑

i=1

wi.

Note also that, as a consequence of the axiomatic characterization of the dis-
crete Choquet integral given in [8, 9], OWA-operators are exactly symmetric
comonotone additive aggregation functions (on [0, 1]).

Finally note that applying the Sugeno integral [11] based on the symmetric
monotone measure m (as given above) to an n-dimensional vextor x ∈ [0, 1]n

one gets

Sum(x) =

n∨

i=1

(x(i) ∧ vi), (2)

where, for each i ∈ {1, . . . , n}, vi =
∑i

j=1 wj , i.e., vi = m(E) for each E ⊆
{1, . . . , n} with |(|E) = i. Hence Sum can be called an ordered weighted
maximum operator (OWMax-operator for short).

The aim of this paper is a further modification of OWA-operators, where
also other kinds of fuzzy integrals will be considered. To specify, we will take
into account four classes of discrete universal integrals recently introduced
in [5]. The paper is organized as follows. In the following section, discrete
universal integrals are recalled, in particular the copula-based, Benvenuti, the
smallest and the greatest universal integrals. The modified OWA-operators
obtained in this way are characterized, and some examples are given.

2 Discrete Universal Integrals

For functions with values in the nonnegative real numbers, universal inte-
grals which can be defined on arbitrary measurable spaces and for arbitrary
monotone measures were introduced and investigated in [5]. We restrict our
considerations to discrete universal integrals, i.e., X = {1, . . . , n} is a finite
space (equipped with the σ-algebra A = 2X). Moreover, we will require that
each discrete universal integral acts on [0, 1]n as an idempotent aggregation
function, i.e., it assigns the output c to the constant input c = (c, . . . , c) for
each c ∈ [0, 1].

Definition 1. Let ⊙ : [0, 1]2 → [0, 1] be a non-decreasing function with neu-
tral element 1 (i.e., ⊙ is a semicopula [3]). Let m : 2{1,...,n} → [0, 1] be a
monotone measure, i.e., a non-decreasing set function such that m(∅) = 0 and
m({1, . . . , n}) = 1. Each idempotent aggregation function I⊙,m : [0, 1]n →
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[0, 1] satisfying I⊙,m(c ·1E) = c⊙m(E) for each c ∈ [0, 1] and E ⊆ {1, . . . , n}
is called a discrete universal integral (based on ⊙).

The monotonicity of the universal integral implies that the smallest ⊙-based
discrete universal integral Is

⊙,m : [0, 1]n → [0, 1] is given by

Is
⊙,m(x) =

∨

t∈[0,1]

(t⊙m({i ∈ {1, . . . , n} | xi ≥ t}))

=
∨

t∈[0,1]

x(i) ⊙m ({(1), . . . , (i)}) ,

where the same notation x(i) is used as in (1) and (2) for the OWA- and
OWMax-operators.

Recall that Is
∧,m is the Sugeno integral, while Is

Π,m is the Shilkret integral
[10] with respect to the monotone measure m. Similarly, the greatest⊙-based
universal integral Ig

⊙,m : [0, 1]n → [0, 1] can be introduced. Here the support,

supp(x) = {i ∈ {1, . . . , n} | xi > 0}, and the essential supremum x(m) of x
with respect to a monotone measure m given by

x(m) = sup{t ∈ [0, 1] | m({i ∈ {1, . . . , n} | xi ≥ t}) > 0}

play a crucial role. Observe that x(m) = x(1) = max(x) if m(E) = 0 implies
E = ∅. Using these notations we obtain

Ig
⊙,m(x) = x(m) ⊙m(supp(x)),

and for each ⊙-based discrete universal integral I⊙,m we have

Is
⊙,m ≤ I⊙,m ≤ Ig

⊙,m.

A copula-based discrete universal integral is based on a (two-dimensional)
copula C : [0, 1]2 → [0, 1], i.e., a semicopula C satisfying the property of 2-
monotonicity, i.e., for all x, x∗, y, y∗ ∈ [0, 1] with x ≤ x∗ and y ≤ y∗

C(x∗, y∗)− C(x∗, y) ≥ C(x, y∗)− C(x, y).

Note that the copulas form a convex compact subclass of the class of pseudo-
multiplications, and that for each copula C, the C-based discrete universal
integral KC,m : [0, 1]n → [0, 1] is given by

KC,m(x) =

n∑

i=1

(C(x(i),m({(1), . . . , (i)})− C(x(i),m({(1), . . . , (i− 1)})),

using the convention {(1), (0)} = ∅.
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Recall that for the greatest copula Min(= ∧), KMin,m is the discrete Sugeno
integral, while the product copula Π yields KΠ,m, the discrete Choquet in-
tegral with respect to the monotone measure m.

The last class of discrete universal integrals we will introduce here is based
on ideas in [1]. Let ⊕ : [0, a]2 → [0, a] be a pseudo-addition on [0, a] with
a ∈ [1,∞], i.e., a continuous non-decreasing associative function with neutral

element 0 (then the symmetry of ⊕ follows, see [7]), and let ⊗ : [0, a]
2 → [0, a]

be a non-decreasing mapping with annihilator 0, i.e., 0⊗u = u⊗0 = 0 for each
u ∈ [0, a], which is left-distributive over ⊕, i.e., (u⊕v)⊗w = (u⊗w)⊕(v⊗w)
for all u, v, w ∈ [0, a], and for which u ⊗ 1 = 1 ⊗ u for all u ∈ [0, 1]. Then
the Benvenuti integral B⊕,⊗,m : [0, 1]n → [0, 1] with respect to a monotone
measure m : 2{1,...,n} → [0, 1] is given by

B⊕,⊗,m(x) =
n⊕

i=1

(
x(i) ⊖ x(i+1)

)
⊗m({(1), . . . , (i)}),

where x(i) ⊖ x(i+1) = sup{z ∈ [0, a] | x(i+1) ⊕ z = x(i)}, and x(n+1) = 0 by
convention.

Observe that B+,·,m (i.e., + and · are the standard arithmetic operations)
is just the discrete Choquet integral, while B∨,∧,m is the discrete Sugeno
integral with respect to the monotone measure m. Moreover, B∨,⊗,m = Is

⊙,m

whenever ⊙ = ⊗|[0,1]2 .

3 Modified OWA-Operators

For each universal integral I⊙,m with respect to a symmetric monotone mea-
sure m, the function I⊙,m : [0, 1]n → [0, 1] can be understood as a modification
of an OWA-operator. Recall once more that a symmetric monotone measure
m : 2{1,...,n} → [0, 1] is determined by a weight vector w = (w1, . . . , wn) via

m(E) =
∑|(|E)

i=1 wi = v|(|E). OWA-operators contain as a special case three
basic aggregation functions:

(i) Min is related to wMin = (0, . . . , 0, 1),
(ii) Max is related to wMax = (1, 0, . . . , 0),
(iii) the arithmetic mean AM is related to wAM = ( 1

n ,
1
n . . . , 1

n ).

The corresponding symmetric monotone measures are then given by

(i) mMin(E) =

{
1 if E = {1, . . . , n},
0 otherwise,

(ii) mMax(E) =

{
0 if E = ∅,
1 otherwise,

(iii) mAM(E) = 1
n |(|E).

It is not difficult to check that Is
⊙,mMin

= Min = Ig
⊙,mMin

, and thus always
I⊙,mMin = Min. Similarly one can show that I⊙,mMax = Max. On the other
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Fig. 1 Π-based modifications of the arithmetic mean: Is
Π,mAM

(left), Ig
Π,mAM

(cen-
ter), and KΠ,mAM

hand, Is
⊙,mAM

(x) =
∨n

i=1 x(i) ⊙ i
n and Ig

⊙,mAM
(x) = Max(x) ⊙ 1

n |(| supp(x))
are different, in general.

For a general symmetric monotone measure m characterized by a weight
vector w we obtain the following modifications of OWA-operators:

(i) Is
⊙,m(x) =

n∨
i=1

x(i) ⊙ vi,

(ii) Ig
⊙,m(x) = x(m) ⊙ v|(| supp(x)),

(iii) KC,m(x) =
n∑

i=1

(C(x(i), vi) − C(x(i), vi−1)), where v0 = 0 by conven-

tion,

(iv) B⊕,⊗,m(x) =
n⊕

i=1

(x(i) ⊖ x(i+1))⊗ vi.

Example 1. Fix n = 2 and consider the standard product Π on [0, 1] (or
[0,∞]). Then we have the following modifications of the arithmetic mean
(see Figure 1):

(i) Is
Π,mAM

(x, y) = min(x, y) ∨ max(x,y)
2 ,

(ii) Ig
Π,mAM

(x, y) =

{
max(x,y)

2 if min(x, y) = 0,

max(x, y) otherwise,

(iii) KΠ,mAM(x, y) = B+,·,mAM(x, y) = x+y
2 = AM(x, y),

However, if ⊕2 : [0,∞]
2 → [0,∞] denotes the pseudo-addition given by

u⊕2 v =
√
u2 + v2,

then we get B⊕2,·,mAM(x, y) =
√

x2+y2

2 .

Example 2. Fix n = 3, w = (0, 1
3 ,

2
3 ), let m be the symmetric monotone

measure determined by w, and consider the smallest copula TL given by
TL(x, y) = max(x + y − 1, 0). Then
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(i) Is
TL,m(x, y, z) = (med(x, y, z)− 2

3 ) ∨min(x, y, z),

(ii) Ig
TL,m(x, y, z) =

⎧
⎪⎨
⎪⎩

0 if med(x, y, z) = 0,
1
3med(x, y, z) if 0 = min(x, y, z) < med(x, y, z),

med(x, y, z) otherwise,

(iii) KTL,m(x, y, z) =

⎧
⎪⎨
⎪⎩

med(x, y, z) if min(x, y, z) ≥ 2
3 ,

min(x, y, z) if med(x, y, z) ≤ 2
3 ,

min(x, y, z) + med(x, y, z)− 2
3 otherwise.

Note that there is no Benvenuti integral B⊕,⊗ such that ⊗|[0,1]2 = TL.

As already mentioned, OWA-operators can be characterized as symmetric
comonotone additive aggregation functions [4]. Each of the classes of modi-
fied OWA-operators introduced here are symmetric idempotent aggregation
functions linked to some discrete universal integral and based on a monotone
measure m which can be identified with the aggregation of the characteristic
function vector.

We have the following axiomatic characterization of the OWA modifica-
tions introduced here. For more details see [1, 5, 6].

Theorem 1. A symmetric idempotent aggregation function A : [0, 1]n →
[0, 1] is

(i) the smallest discrete universal integral if and only if it is comonotone
maxitive and if A(1E) = A(1F ) implies A(t · 1E) = A(t · 1F ) for all
t ∈ [0, 1];

(ii) a copula-based discrete universal integral if and only if it is comonotone
modular;

(iii) a (⊕,⊙)-based discrete Benvenuti integral if and only if it is comono-
tone ⊕-additive and if A(t · 1E) = t ⊙ A(1E) for all E ⊆ {1, . . . , n} and
t ∈ [0, 1].

4 Concluding Remarks

We have introduced several modifications of OWA-operators which have the
form of a discrete universal integral with respect to a symmetric monotone
measure. Note that some classes of the aggregation functions discussed here
can be already found in the literature, although sometimes under different
names. For example, the smallest universal integrals can be seen as (N)-
fuzzy integrals as introduced in [15]. Copula-based discrete universal integrals
were recently shown to coincide with OMA-operators (ordered modular aver-
ages) [6]. We are convinced that all the modified OWA-operators considered
here will offer a wider choice of models for decision procedures in any domain
where OWA-operators have been applied succesfully (information science,
engineering, social choice, economics, image processing, etc.)
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Fuzzy Similarity Measure Model for
Trees with Duplicated Attributes

Dianshuang Wu and Guangquan Zhang

Abstract. In many business situations, complex user profiles are described
by tree structures, and evaluating the similarity between these trees is es-
sential in many applications, such as recommender systems. This paper pro-
poses a fuzzy similarity measure model for trees with duplicated attributes.
In this model, the conceptual similarity between attributes and the weights
of nodes are expressed by linguistic terms. To deal with duplicated attributes
in the trees, nodes with the same concept are clustered. The most conceptual
corresponding cluster pairs among two trees are identified. Based on the cor-
responding cluster pairs, the conceptual similarity and the value similarity
between two trees are evaluated, and the final similarity measure is assessed
as a weighted sum of their conceptual and value similarities.

Keywords: Tree similarity measure, Fuzzy similarity measure, Trees with
duplicated attributes.

1 Introduction

Due to a huge amount of products available on e-commerce websites, recom-
mender systems are essential in e-business environment nowadays [1]. The
basic idea of recommender systems is to recommend a customer the items
which are preferred by the customer’s similar users. Therefore, effective eval-
uation of the similarity between users is vital to the success of recommender
systems. In many business situations, users’ profiles are so complex that they
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can only be described by hierarchical tree structures [7]. For example, two
business user profiles in telecom industry are shown in Fig.1. Taking T1 in
the figure as an example, the business user has two accounts: one mobile ac-
count and one landline account. Each account has many services. The mobile
account has four services, three $49 plans and one $59 plan. The landline ac-
count has two services, one $45 plan and one $55 plan. The average spending
per month of each service is also listed in the bracket under the service. Differ-
ent accounts or services also have different importance degrees. To compare
this kind of complex user profiles comprehensively, a tree similarity measure
method is proposed in this study.

Tree structures are used for information representation in various areas,
such as e-business [7, 2], XML Schema matching [3] and case-based reason-
ing [6]. The similarity measure between trees is essential in these applica-
tions. In these researches, trees are modeled as node labeled [3], edge labeled,
weighted trees [2,6]. These tree models are not sufficient enough to represent
the abundant information in our situation. In [7], a hierarchical item tree is
defined, in which each node is associated with an attribute, a weight and a
value. When evaluating the similarity between two trees, the tree structures,
nodes’ weights, concepts and values are all considered. A maximum corre-
spondence tree mapping is constructed to identify the concept corresponding
node pairs of two trees, and the conceptual similarity between two trees is
evaluated. The value similarity between two trees is evaluated based on the
mapping. The final similarity measure between two trees is assessed as a
weighted sum of their conceptual and value similarities.

There are two problems applying the method in [7] to our problem. First,
the maximum correspondence tree mapping in the method is a one to one
mapping, which is useful to the trees that every node has a distinct attribute.
However, there are duplicated nodes in our trees. For example, nodes v4, v5,
v6 in T1 cannot be distinguished by their concepts. These duplicated attribute
nodes can only be mapped randomly when constructing the maximum cor-
respondence tree mapping, which cannot fully express the correspondence
between two trees. Thus, a similarity measure method for trees with dupli-
cated attributes is needed. Second, in practical situations, the conceptual

Fig. 1 Two hierarchical user profiles



Fuzzy Similarity Measure Model for Trees with Duplicated Attributes 335

similarity measures between any two attributes are usually evaluated by do-
main experts. The similarity degrees between different attributes are hard to
rate by exact numbers. Linguistic terms, such as ‘very similar’, ‘absolutely dif-
ferent’, are suitable to describe them. The weights of nodes are also assigned
by users or experts. Linguistic variables, such as ‘import’, ‘more important’,
are used to evaluate them. In such a case, precise mathematical approaches
are not enough to tackle such linguistic variables, but fuzzy set theory can
be applied to deal with the situation [5, 10]. Therefore, a fuzzy similarity
measure of trees with duplicated attributes is proposed.

The rest of this paper is organized as follows. Section 2 describes the fea-
tures of the hierarchical tree structured user profiles formally. A comprehen-
sive fuzzy similarity measure of trees with duplicated attributes is proposed
in Section 3. Finally, conclusions and future studies are discussed in Section 4.

2 Hierarchical Profile Tree (HP-Tree)

To describe the features of the tree structured user profile more formally, a
hierarchical profile tree (HP-tree) is defined in this section.

Definition 1. HP-tree. A hierarchical profile tree is a structure T =
(V,E,A,W,R), in which V is a finite set of nodes; E is a binary relation
on V where each pair (u, v) ∈ E represents the parent-child relationship be-
tween two nodes u, v ∈ V ; A is a set of attributes assigned to each node in
V ; W are the weights assigned to each node to represent their importance
degrees to their siblings, which are expressed by linguistic terms; and R are
the values assigned to every leaf node to describe the relevant attribute.

The two user profiles in Fig. 1 are two examples of HP-trees. As seen in
Fig. 1, ‘landline’ in T1 and ‘office phone’ in T2 almost represent the same
thing but with different terms. To identify these conceptual similar terms in
different trees, a conceptual similarity measure between attributes is intro-
duced as in [8]. The conceptual similarity is expressed by linguistic terms.
Let A1 and A2 be two attribute sets, a1 ∈ A1, and a2 ∈ A2. The conceptual
similarity measure between a1 and a2 is defined, denoted as scA1,A2(a1, a2).
For convenience, the subscript A1, A2 is omitted if there is no confusion.

The HP-tree is an extension of the HI-tree defined in [7]. First, there are
conceptual duplicated nodes in HP-trees. Second, the nodes’ weights and
the conceptual similarities between attributes are represented by linguistic
terms. In this paper, the linguistic terms in set Weight are used to describe
the weights.

Weight={Very low (VL), Low (L), Medium low (ML), Medium (M),
Medium high (MH), High (H), Very high (VH)}.

The linguistic terms in set S are used to describe the similarity measures
between attribute terms.

S={Absolutely different (AD), Very different (VD), Different (D), Medium
(M), Similar (S), Very similar (VS), Absolutely similar (AS)}.
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Fuzzy numbers are applied to deal with these linguistic terms. Based on
research results in [10, 9], we can use any forms of fuzzy numbers, called
general fuzzy numbers, to describe these linguistic terms. This study defines
fuzzy numbers a1, a2, ..., a7 to describe the terms in Weight respectively,
where a1 < a2 < ... < a7 , and defines normalized fuzzy numbers b1, b2, ..., b7
to describe the terms in S respectively, where b1 < b2 < ... < b7.

3 Fuzzy Similarity Measure Model for HP-Trees

A fuzzy similarity measure model for HP-trees is presented in this section.
In this model, the nodes with the same concept are clustered, and the most
conceptual corresponding cluster pairs among two trees are identified. Then,
the conceptual similarity and the value similarity between two trees are eval-
uated, and the final similarity measure is assessed as a weighted sum of their
conceptual and value similarities.

3.1 Weights Normalization

The weights of nodes in HP-trees are expressed by general fuzzy numbers
and need to be normalized. For each internal node v, let C(v) be v’s children.
For any u ∈ C(v), let wu be u’s weight, its normalization w∗

u is computed as:

w∗
u =

wu∑
t∈C(v) wt

R
0

. (1)

3.2 Conceptual Similarity

As the conceptual hierarchy of the HP-tree, the root node can represent
the whole tree. Therefore, the conceptual similarity between two trees,
sct(T1, T2), can be defined by the concept correspondence degree between
their root nodes, cord(root(T1), root(T2)):

sct(T1, T2) = cord(root(T1), root(T2)). (2)

The concept correspondence degree, cord(), needs to be defined. Given two
nodes v and u in two trees, there are three situations based on the nodes’
structures [7]: 1) both v and u are leaves; 2) v is a leaf and u is an internal
node; 3) both v and u are internal nodes.

In the first two cases, cord() is defined as [7]. In case 1), cord(v, u) =
sc(av, au), where av represents the attribute of node v. In case 2), let
u1, u2, ..., uq be u’s children, cord(v, u) = α · sc(av, au) + (1− α) ·∑q

i=1 w
∗
ui
·

cord(v, ui), where α is the influence factor of the parent node and w∗
ui

is the
weight of ui.
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In case 3), duplicated attributes should be treated. Let C(v) = {v1, v2, ..., vp}
and C(u) = {u1, u2, ..., uq} be the children sets of v and u respectively. The
duplicated attributes in the trees should be identified first. Clusters of dupli-
cated nodes in C(v) and C(u) are constructed as CC(v) and CC(u) respec-
tively, where CC(v) = {vc1, vc2, ..., vcm} and CC(u) = {uc1, uc2, ..., ucn}.
vci, i = 1, 2, ...,m, and ucj, j = 1, 2, ..., n, are node set, such that

∀x, y ∈ vci, ∀t ∈ C(u), cord(x, t) = cord(y, t), (3)

∀x, y ∈ ucj , ∀t ∈ C(v), cord(x, t) = cord(y, t). (4)

Let x ∈ vci and y ∈ ucj, the concept correspondence degree between vci

and ucj , cordc(vci, ucj), is defined as cord(x, y).

A bipartite graph Gv,u = (V,E), induced by CC(v) and CC(u), is con-
structed as follows: V = CC(v)

⋃
CC(u), E = {(s, t) : s ∈ CC(v), t ∈

CC(u)}. The weights of edges are defined based on the concept correspon-
dence degree between relevant node clusters. A fuzzy positive-ideal value r∗

and a fuzzy negative-ideal value r− are defined as: r∗=1 and r−=0. For edge
(s, t), the distances between cordc(s, t) and r∗, cordc(s, t) and r− are cal-
culated as d∗s,t = d(cordc(s, t), r

∗) and d−s,t = d(cordc(s, t), r
−), where d(·)

is the distance between two fuzzy numbers. The weight of edge (s, t) is de-
fined as ws,t = 1/2(d−s,t +(1−d∗s,t)). To find most corresponding node cluster
pairs between CC(v) and CC(u), a maximum weighted bipartite matching
(MWBM) problem [4] of Gv,u is resolved. A MWBM of CC(v) and CC(u),
Mv,u, is constructed.

The concept correspondence degree between two internal nodes v and u,
cord(v, u), is defined as:

cord(v, u) = α·sc(av, au)+(1−α)·
∑

(vci,ucj)∈Mv,u

1
2 (w∗

vci
+w∗

ucj
)·cordc(vci, ucj)

(5)
where w∗

vci
=
∑

x∈vci
w∗

x, w∗
ucj

=
∑

y∈ucj
w∗

y .

According to the above formulas, the conceptual similarity between the
roots of two trees can be calculated, and the conceptual similarity between
two trees is obtained.

During the computation process of the conceptual similarity between two
trees, the children clusters of each internal node are recorded. For two corre-
sponding internal nodes in two trees, the maximum concept correspondence
cluster mapping of their children is also recorded. Based on the records, the
most corresponding nodes among two trees can be identified. The roots of
two trees are corresponding node pairs. Then the corresponding nodes in the
children of two roots are identified based on two roots’ children’s maximum
concept correspondence cluster mapping. Other corresponding nodes can be
identified in the same way.
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3.3 Value Similarity between Two Trees

In this section, values of nodes are taken into account, and the value simi-
larity between two HP-trees is evaluated. In the HP-tree, only leaf nodes are
assigned values initially, and internal nodes’ values are computed by aggre-
gating their children’s. As the root is the representation of the whole tree, the
value similarity between two trees, svt(T1, T2), can be defined by the value
similarity between two root nodes, sv(root(T1), root(T2)):

svt(T1, T2) = sv(root(T1), root(T2)). (6)

The value similarity between nodes within two trees should be defined first.
For any corresponding node pair (v, u) in two trees, there are two cases: 1) v
or u is a leaf node; 2) both v and u are internal nodes.

In case 1), sv(v, u) = s(value(v), value(u)), where value(v) denotes v’s
value and s(·) denotes a value similarity measure. If v is a leaf node, value(v)
is assigned initially. Otherwise, it is computed by aggregating its children’s
values. s(·) can be defined according to the specific applications. In this study,
the similarity between two values a and b is defined as s(a, b) = 1 − |a −
b|/max(a, b). For example, the value similarity between v4 and u4 in Fig. 1
is 0.796.

In case 2), the value similarity between v and u is evaluated based on
their children’s value similarities. According to v and u’s children cluster
mapping Mv,u recorded in last section, the most corresponding clusters are
identified. The value similarity between v and u is evaluated by aggregating
the value similarity between these corresponding clusters of their children. Let
CC(v) = {vc1, vc2, ..., vcm} and CC(u) = {uc1, uc2, ..., ucn} be node clusters
of v and u’s children respectively. Within each cluster, different nodes have
different values. To fully reflect the value similarity between two trees, we
should compare the values node by node, rather than cluster by cluster. Let
vci and ucj be a corresponding cluster pair. A bipartite graph is constructed
by vci and ucj as follows: V = vci

⋃
ucj , E = {(x, y) : x ∈ vci, y ∈ ucj}. The

weights of edges are derived from the value similarity between the endpoints.
As the value similarity is also a fuzzy concept, the fuzzy positive-ideal value
r∗ and the fuzzy negative-ideal value r− are introduced. For edge (x, y), the
distances between sv(x, y) and r∗, sv(x, y) and r− are calculated as d∗x,y =
d(sv(x, y), r∗) and d−x,y = d(sv(x, y), r−) , where d(·) is the distance between
two fuzzy numbers. The weight of edge (x, y) is defined as wx,y = 1/2(d−x,y +
(1−d∗x,y)). Then, a maximum weighted bipartite matching (MWBM) Mvci,ucj

is constructed. The value similarity between clusters vci and ucj is calculated
by:

svc(vci, ucj) =
∑

(x,y)∈Mvci,ucj

1
2 (w∗

x + w∗
y) · sv(x, y). (7)
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The value similarity between v and u is computed by:

sv(v, u) =
∑

(vci,ucj)∈Mv,u

svc(vci, ucj). (8)

Based on the above formulas, the value similarity between two roots can
be evaluated, and the value similarity between two trees is obtained.

3.4 Similarity Measure between Two Trees

The final comprehensive similarity measure of two trees T1 and T2 is defined
as follows:

sim(T1, T2) = α1 · sct(T1, T2) + α2 · svt(T1, T2). (9)

where α1 + α2 = 1.
The similarity measures are normalized fuzzy numbers, and their ranges

belong to closed interval [0, 1]. A closeness coefficient is defined to rank
the similarity measures. Let the similarity between T and Ti, i = 1, ..., n be
sim(T, Ti). A fuzzy positive-ideal similarity value s∗ and a fuzzy negative-
ideal similarity value s− are defined respectively: s∗ = 1 and s− = 0. The
distances between sim(T, Ti) and s∗, sim(T, Ti) and s− are calculated as
d∗i = d(sim(T, Ti), s

∗) and d−i = d(sim(T, Ti), s
−), where d(·) is the distance

between two fuzzy numbers. The closeness coefficient of Ti is defined as:

ci = 1
2 (d−i + (1− d∗i )). (10)

The user profile Ti that corresponds to larger ci is more similar to T .

4 Conclusions and Future Work

This study proposes a fuzzy similarity measure model for trees with dupli-
cated attributes. In this model, the conceptual similarity between attributes
and the weights of nodes are expressed by linguistic terms. To deal with du-
plicated attributes in the trees, nodes with the same concept are clustered.
The most conceptual corresponding cluster pairs among two trees are iden-
tified during the conceptual similarity computation process. Based on the
corresponding cluster pairs, the value similarity between two trees is evalu-
ated, and the final similarity measure is assessed as a weighted sum of their
conceptual and value similarities. Further study includes developing a recom-
mender system based on the proposed model and experimentally evaluating
the model.
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Linking Developmental Propensity
Score to Fuzzy Sets: A New
Perspective, Applications and
Generalizations

Xuecheng Liu, Richard E. Tremblay, Sylvana Cote, and Rene Carbonneau

Abstract. First, we outline the group-based trajectory models for longitudi-
nal data; second, we briefly describe the concept of propensity scores based on
these models; third, we give a new perspective of propensity scores in fuzzy
sets; fourth, we apply operations of fuzzy sets to propensity scores; fifth, we
generalize propensity scores to trajectories based on fuzzy and possibilistic
clusterings.

Keywords: Group-based trajectory modeling, Group membership posterior
probability, Propensity score, Fuzzy set, Operation of fuzzy sets, Fuzzy clus-
tering, Possibilistic clustering

1 Introduction

Liu et al. [7] proposes the concept of individual developmental propensity
scores based on group-based trajectory models (special mixture models) for

Xuecheng Liu, Richard E. Tremblay, Sylvana Cote, and Rene Carbonneau
Research Unit on Children’s Psychosocial Maladjustment,
University of Montreal, Canada
e-mail: xuecheng.liu@umontreal.ca

Richard E. Tremblay
School of Public Health and Population Sciences, University College Dublin, Ireland
e-mail: richard.ernest.tremblay@umontreal.ca

Sylvana Cote
International Laboratory for Child and Adolescent Mental Health,
University of Montreal, Canada and INSERM U669, France
e-mail: sylvana.cote@umontreal.ca

Rene Carbonneau
Department of Pediatrics, Faculty of Medicine, University of Montreal, Canada
e-mail: rene.carbonneau@umontreal.ca

S. Li (Eds.): Nonlinear Maths for Uncertainty and its Appli., AISC 100, pp. 341–348.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

xuecheng.liu@umontreal.ca
richard.ernest.tremblay@umontreal.ca
sylvana.cote@umontreal.ca
rene.carbonneau@umontreal.ca


342 X. Liu et al.

longitudinal data. The individual developmental propensity score (or propen-
sity score for short) measures the degree of an individual to follow a given
group trajectory identified by the group-based trajectory model. As a contin-
uous variable, the propensity score has more variation/information than the
categorical variable of classified groups based on group membership posterior
probabilities, further it is robust to the choice of the number of groups.

This paper links the concept of propensity scores to fuzzy sets and is
organized as follows. In Section 2, we outline the group-based trajectory
models for longitudinal data. In Section 3, we briefly describe the concept
of propensity scores based on the group-based trajectory models. In section
4, we give a new perspective of propensity scores in fuzzy sets. In Section
5, based on the new perspective of propensity scores, we apply operations of
fuzzy sets to propensity scores. In Section 6, we generalize propensity scores
to trajectories based on fuzzy and possibilistic clusterings.

2 Outline of Group-Based Trajectory Models for
Longitudinal Data

We outline group-based trajectory statistical models for longitudinal data
(e.g. Nagin [8,9]) as follows. The data are collected at several times t1, ..., tK
over a period [t1, tK ]. For each individual (or, in a more general term, subject)
indexed by i = 1, 2, ..., N , the data are denoted by yi1, ..., yiK . We assume
that there are G latent groups corresponding to G trajectories indexed by g =
1, ..., G. Each individual follows the group trajectory g with prior probability
πg. (So, πg ≥ 0 and π1 + · · · + πG = 1.) Each group trajectory g is usually
specified by a polynomial as

cg(t)
def
= αg + βgt + γgt

2 (1)

for quadratic form, for example, where αg, βg and γg are parameters.
Let Yik denote the random variable corresponding to yik for all i and k. Fix

G, conditional on a group trajectory g and time tk, we assume that Yik has
distribution Pgk(Yik = yik) with the mean cj(tk) (or, sometimes, a function of
cj(tk), depending on assumption of data distributions) and other parameters.
Let θ denote the set of all parameters. Under assumption that, conditional
on a group trajectory, for each individual, observations in different times are
independent, the likelihood of the models is

L(θ|Data)
def
=

N∏

i=1

G∑

g=1

[
πg

K∏

k=1

Pgk(Yik = yik)
]

(2)

Note that the choice of the distributions of Yik largely depend on the data
types. For example, with continuous data, we could assume that the distri-
bution is normal or censored normal; with count data, Poisson distribution;
and with dichotomized data, Bernoulli distribution; etc.
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Denoted by θ̂ the maximal likelihood estimate (MLE) of θ, and (possi-
ble) missing data are assumed to be missing at random (MAR, Rubin [10]),
and the model is usually estimated with full information maximum likeli-
hood (FIML) method. For each individual i, the group membership posterior
probabilities are

pig
def
=

π̂g

∏K
k=1 Pgk(Yik = yik)

∑G
g=1 π̂g

∏K
k=1 Pgk(Yik = yik)

(3)

where g = 1, ..., G.

There is a controversial/challenging issue in group-based trajectory model-
ing, or more general mixture modeling: how to decide “the” number of groups
G. Since G is latent, we need to fix it when we estimate a model. With dif-
ferent choices of G, we could choose one model as the final model according
to some criteria, like model BICs.

3 Brief Description of Propensity Scores

The motivation of proposing propensity scores is as follows. Usually, we are
more interested in comparison between the highest level group trajectory
group vs other groups in two approaches: One is to create a categorical vari-
able by classifying individuals based on group membership posterior proba-
bilities; the other is to use continuous variable of membership posterior prob-
ability directly. For the classifying approach, sometimes it is hard to classify
certain individuals, and very often to classify very similar individuals into
different groups, in addition we lose information in the group membership
posterior probabilities. For the posterior probability approach, the posterior
probabilities are not stable: they depend on the number of groups, closeness
between the interested group trajectories, and so on.

In order to overcome above disadvantages of the group-based trajectory
models (or more general mixture models), Liu et al. [7] propose serval scores
(continuous variables) which measure propensities for an individual to follow
any given trajectory among the group trajectories. They use all information in
estimates of group trajectories and individual’s group membership posterior
probabilities. They improve the group membership posterior probabilities in
many aspects, and has no disadvantages as discussed above. In addition, it
is robust to the number of groups.

Assumptions and notations. We always assume that the variables Yik are
non-negative in discussion below. (It is true for almost situations for real data.
If not, we may transform data in order to have such property.) To simplify
our discussion, we also assume that the group trajectories are “completely
ordered”, i.e., there exist no two intersecting group trajectories. (If not, the
discussions are similar.) In addition, for each pair of group trajectories g, g′,
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we use A(g, g′) to denote the area of the region bounded by the group tra-
jectories g, g′ and the vertical lines t = T1, t = TK . We denote A(g, g′) by
A(g) when g′ is identified or defined by y = 0 (time-axis). The highest and
the lowest group trajectories will be denoted by ghigh and glow respectively.

The propensity score: general form. We define the propensity score in
two steps. First, for each group trajectory g, define

Kg
def
= A(g)/A(ghigh). (4)

We have
0 ≤ Kg ≤ 1 and Kghigh

= 1, (g = 1, ..., G).

Second, we define the propensity score for the individual i as

PS(i)
def
= K1pi1 + K2pi2 + · · ·+ KGpiG, (5)

where pig’s are the group membership posterior probabilities defined in (3).

The propensity score is a continuous variable valued in [min{K1, ...,KG}, 1],
and usually, min{K1, ...,KG} > 0.

An alternative propensity score. We can define an alternative propensity
score (APS for short) as follows. First, for g = 1, ..., G, define

K(a)
g

def
= A(g, gmin)/A(ghigh, gmin). (6)

Then, in the same way as (5),

APS(i)
def
= K

(a)
1 pi1 + K

(a)
2 pi2 + · · ·+ K

(a)
G piG. (7)

From (6), K
(a)
glow = 0 and K

(a)
ghigh = 1. So, APS takes values in [0, 1].

Propensity score to medium level group trajectories. Up to now, we
focus on our discussion of propensity scores to the highest level group trajec-
tory. We can apply the “dual” approach to the lowest level group trajectory
in a dual way. Now we propose a propensity score to any of medium level
group trajectories, denoted by gm, in the following way. First, For each g,
define

K(gm)
g

def
= 1−A(g, gm)/Mm; (8)

where
Mm = max{A(gm, ghigh), A(gm, glow)}. (9)

Then, for each individual i, define the propensity score to the group trajectory
gm as

PS(gm)(i)
def
= K

(gm)
1 pi1 + K

(gm)
2 pi2 + · · ·+ K

(gm)
G piG. (10)
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We can show that APS is identical to PS(gm) when gm is selected as ghigh

in (10).

4 A New Perspective of Propensity Scores of Fuzzy
Sets

In this section, we only consider the general version of propensity scores
defined by (5). Discussion for the other propensity scores is similar.

To the general version of propensity score, Kg can be interpreted as a mea-
sure of closeness between the group trajectory g and ghigh. If an individual
follows exactly the group trajectory g, the propensity score is just Kg. For
any individual, the propensity score is the weighted sum of Kgs with the
weights of individual’s group membership posterior probabilities.

We can have a new perspective of the general version propensity score in
the frame of fuzzy set (Zadeh [11]) in the following way. First, define the
universal set (often called G−simplex) as

∆G
def
= {[p1, ..., pG]′; pi ≥ 0, p1 + · · ·+ pG = 1}, (11)

Second, we identify each individual i by the group membership posterior
probability vector [pi1, ..., piG]′ ∈ ∆G.

Third, let H be the fuzzy set over ∆G of individuals whose individual-
trajectories are close to the highest group trajectory ghigh.

Fourth, the propensity score defined in (5) is used to define the membership
degrees of an individual to the fuzzy set H . It is clear such assignment of
membership degree is appropriate through the definitions of propensity score.

Note. The definition of Kg’s is based on the same idea used in Liu [6] to
define similarity between fuzzy sets, which is the complement of distance
between fuzzy sets.

5 Applying Operations of Fuzzy Sets to Propensity
Scores

In the new perspective of propensity scores in the frame of fuzzy sets, in this
section, we illustrate with examples how to apply operations of fuzzy sets to
form new general propensity scores.

Applying Operations of fuzzy sets to propensity scores. Suppose that
we identified 4 group trajectories indexed as 1, 2, 3 and 4, labeled respectively
as “low”, “medium-low”, “medium-high” and “high” respectively. Denote by
A1, A2, A3 and A4 the fuzzy sets to the propensity scores to these 4 group
trajectories. With operations of union (∪), intersection (∩) and complement
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(c) of fuzzy sets, we can define the following new propensity scores of an
individual to follow

• either the “medium-high” or the ”high” level group trajectory by the
fuzzy set A3 ∪A4;

• the “medium-high” and the ”high” level group trajectories by the fuzzy
set A3 ∩A4;

• the “medium” level group trajectory by the fuzzy set A2 ∪A3;

• not the “low” level group trajectory by the fuzzy set [A1]
c;

• not any of these 4 group trajectories by the fuzzy set [A1∪A2∪A3∪A4]
c,

just to mention a few.

Applying linguistic hedge to propensity scores. Linguistic hedges could
apply to fuzzy sets to create new fuzzy sets (Zadeh [12]). For example, ap-
plying the hedges “very” and “somewhat” to fuzzy set A4 mentioned above,
we can define propensity scores of an individual i to follow a “very high” and
“somewhat” high group trajectories as

PSveryhigh(i)
def
= [A4(i)]

2 (12)

and
PSsomewhat(i)

def
= [A4(i)]

0.5 (13)

respectively.

Note. By combining the operations of fuzzy sets, union, intersection, com-
plement, linguistic hedges, we can define more new “operations” of fuzzy sets
and these new operations can also be applying in defining new propensity
scores as needed.

6 Generalization of Propensity Cores to Fuzzy and
Possibilistic Clustering-Based Group Trajectories

In this section, we generalize the propensity scores based on the statis-
tical modeling group trajectories described in Section 3 to ones on two
non-statistical, fuzzy and possibilistic, clustering group trajectories. We also
briefly compare these statistical and non-statistical clustering approaches.

Propensity scores to fuzzy clustering-based group trajectories. As-
sume that the data yik for all i and k are as the same as in Section 2. Each indi-

vidual i corresponds to a K-dimensional point, i.e., yi
def
= [yi1, ..., yiK ]′ ∈ RK .

Fuzzy clustering (also called soft clustering) is used to assign each individual i
into each of groups (or, clusters, classes, etc) g (g = 1, ..., G) with membership
degree uig in [0, 1] such that
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G∑

g=1

uig = 1. (14)

There are many fuzzy clustering algorithms, but they share similar ideas. Here
we briefly describe Fuzzy C-Means (FCM) Algorithm (Bezdek [1]). Let d be
the Euclidean distance in RK , and G be the number of groups, starting from
an initial clusters of individuals, iteratively, we search the optimal solution
to minimize the objective function below:

G∑

g=1

N∑

i=1

um
ig [d(yi, cg)]

2, (15)

where cg ∈ RK is the center of the points in the group g, g = 1, ..., G, and
m ≥ 1 is the fuzziness parameter, usually selected as 2.

Since uig plays a similar role as the posterior probability pig in the statis-
tical group-based trajectory modeling in Section 3, with the fuzzy clustering
groups (clusters), we can define the group trajectory to the group g as the

broken line joining the points (t1, ȳ
(g)
1 ), ..., (tK , ȳ

(g)
K ), where, for k = 1, ...,K,

ȳ
(g)
k

def
=

N∑

i=1

uigyik. (16)

Taking the general version of a statistical modeling propensity score in Section
3 as an example, it can be generalized to fuzzy-clustering propensity score as

PSfc(i)
def
= K1ui1 + K2ui2 + · · ·+ KGuiG, (17)

where Kg (g = 1, ..., G) is defined in the same way as in Section 3.

Propensity scores to possibilistic clustering-based group trajecto-
ries: an immature solution. Possibilistic clustering (Krishnapuram et
al. [4, 5]) is as the same as fuzzy clustering except that we drop the con-
strain that, for each individual, the sum of the membership degrees is 1. To
avoid the trivial and unrealistic solution with the objective function in (14),
The objective function is modified by adding an adjusting term as follows:

G∑

g=1

N∑

i=1

um
ig[d(yi, cg)]

2 +
G∑

g=1

βg

N∑

i=1

(1− uig)
m, (18)

where the parameters βg > 0, (g = 1, ..., G).

Since uig (g = 1, 2, ..., G) have nothing to do with probabilities in the sense

that
∑G

g=1 uig is not necessary 1, to define propensity scores with possibilistic
clustering, one approach is to find the best probabilities transformed from
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the possibilistic distribution uig (g = 1, 2, ..., G) for each individual i. There
are many literatures in discussing probability-possibility transformation, for
example, see Dubois et al. [2].

Comparison of the statistical and non-statistical modeling cluster-
ing approaches. The advantage of statistical modeling approach is that
when we know the distributions of data, it is more effective. Further, we need
not to impute missing data, since under the assumption of missing at random,
the model will take care of the missing data automatically. (Its disadvantage
is that when we “incorrectly” specify the distributions of the data, it is less
effective.)

The advantages of fuzzy and possibilistic clustering approaches are that we
do not need to know the distribution of the data, that is to say, it is robust to
the distributions of the data. Its disadvantage is that we need to treat missing
data either repairing them before clustering or carrying out incrementally in
each iteration (see more recent review paper by Garcia-Laencina et al. [3]
and references therein).
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Chaos in a Fractional-Order Dynamical
Model of Love and Its Control

Rencai Gu and Yong Xu

Abstract. This paper aims at investigating the dynamics of fractional-order
model of love in the fact that fractional-order derivatives could possess mem-
ories by which romantic relationships are naturally impacted. Based on the
discussions of properties including the stability of equilibrium points, chaotic
behaviors and typical bifurcations, we found rich dynamics exhibited by the
fractional-order love system with proper fractional order and model param-
eters. Besides, the control problems were studied theoretically and the simu-
lation results illustrated the effectiveness of the proposed methods.

Keywords: Fractional-order model of love, Chaotic behaviors, Control.

1 Introduction

The theory of fractional-order derivatives and the applications of fractional
calculus in physics and engineering are just a recent focus of interests [5].
Fractional differential equations could be used to describe the operations of
a variety psychological and life sciences processes [2] [6] [7]. Recently, many
efforts have been devoted to the studies of chaotic dynamics and control of
fractional-order differential system [4] [16] [1] [11] [10]. Indeed, many investi-
gations have obtained chaos control in fractional-order chaotic systems [8].

Love affairs, one kind of typical psychology activities can be described as a
series of ordinary differential equations [15] [13]. Fractional-order love models
are more realistic with fractional-order to denote memories. In this paper we
are to examine the dynamics of the fractional-order love model with the its
control problems.
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2 Dynamical Model of Love

The integer-order dynamical love model [14] is given as

dRJ

dt
= aRJ + bf1(J −G),

dJ

dt
= cf1(RJ) + dJ,

dRG

dt
= aRG + bf1(G− J),

dG

dt
= ef1(RG) + fG,

(1)

where f1(x) = x(1 − |x|). This model describes a ’Love-triangle’, in which
Romeo (R) is involved in romantic relationships with Juliet (J) and Guine-
vere (G), where RJ is Romeo’s feeling for Juliet and RG is Romeo’s feeling
for Guinevere.

Here we can take the nonlinearity in (1) as f1(x) = x(1 − x2), and then
corresponding fractional-order love system can be rewritten as:

dq1RJ

dt
q1

= aRJ + b(J −G)(1 − (J −G)
2
),

dq2J

dt
q2

= cRJ(1−RJ
2) + dJ,

dq3RG

dt
q3

= aRG + b(G− J)(1 − (G− J)
2
),

dq4G

dt
q4

= eRG(1 −RG
2) + fG,

(2)

where dqi/dtqi = Dqi , qi ∈ (0, 1], (i = 1, 2, 3, 4), the operator Dθ is generally
called ”θ-order Caputo differential operator”, which can be defined as:

Dθx(t) = 1
Γ (m−θ)

∫ t

0

(t− τ)
m−θ−1

x(m)(τ)dτ , (3)

where 0 ≤ m− 1 < q < m, Γ stands for Gamma function.

On the basis of [12], the order qi has some practical physical meanings
which represents the impact factor of memory (IFM) of an individual. It is
noteworthy that the conception of IFM is proposed here to denote a measure-
ment of how profound an individual is influenced by his/her past experiences.
When one’s IFM is low, his/her past experiences may have little influence on
his/her present and future life; while when the IFM is high, it might be diffi-
cult for him/her to escape from the past experiences, in despite of nightmares
or sweet memories.

3 Dynamics of the Fractional-Order Love System

It is clear that the integer-order model can be viewed as a special case from the
more general fractional-order model of qi = 1.0, i = 1, 2, 3, 4. The numerical
algorithm of the initial value problem for fractional-order systems is shown
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in [9]. Using Benettin method to calculate the top Lyapunov exponent λ1 of
the system (2) when qi = 1.0, i = 1, 2, 3, 4, we get λ1 is 0.44 for a = −3, b =
10, c = −6, d = e = 2, f = −1, it indicates that the integer-order love system
is chaotic. With the change of the order of the equations of system (2), we
can analyze the chaotic dynamics of the fractional order love system.

3.1 The Stability of Equilibrium Points

One can find a necessary and sufficient condition in [3] to judge the stability
of the fractional order systems, which is as follows:

Theorem 1. System (2) is locally asymptotically stable if all the eigenvalues
of the Jacobian matrix J = ∂f(x)/∂x evaluated at the equilibrium points
satisfy:

|arg(eig(J))| > θπ/2 , θ = max(q1, q2, q3, q4), (4)

where eig(J) represents the eigenvalues of matrix J .

Obviously, s0(0, 0, 0, 0) is a equilibrium point of the system (2), then the
Jacobian matrix of Eq. (2) at s0 is

A =

⎛
⎜⎜⎝

a b 0 −b
c d 0 0
0 −b a b
0 0 e f

⎞
⎟⎟⎠ , (5)

the characteristic equation of the Jacobian matrix A is

λ4 + α1λ
3 + α2λ

2 + α3λ + β = 0, (6)

where

α1 = −(2a + f + d),

α2 = df + 2af + 2ad + a2 − be− bc,

α3 = −2adf − a2f − a2d + ade + bde + adc + bcf,

β = a2df − abed− abcf,

(7)

when the parameters a = −3, b = 10, c = −6, d = e = 2, f = −1, the
eigenvalues of the Eq.(6) are λ1,2 = 0.2882±6.0334i,λ3 = −3.0, λ4 = −2.576.
If θ ∈ [0.97, 1.0], the Eq.(4)cannot be satisfied, thus s0 is unstable.
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Fig. 1 Attractors of system (2) for q1 = q2 = q3 = q4 = θ with the same parameters
and initial conditions as in Fig.1: (a)θ = 0.99;(b)θ = 0.98;(c)θ = 0.97;(d)θ = 0.96.

3.2 Analysis of Chaotic Dynamics of the System

Let system parameters fixed, qi, i = 1, 2, 3, 4 varied

Fix a = −3, b = 10, c = −6, d = e = 2, f = −1, Fig.1 shows several typical
attractors’ projection in the RJ − J plane for q1 = q2 = q3 = q4 = θ.
When θ = 0.98, the trajectory of system (2) takes on periodicity, as Fig. 1(b)
shows; If θ increased to 0.99, the system behaves chaotically, see Fig. 1(a);
The system (2) stabilizes to a fixed point s for θ = 0.97, as Fig. 1(c) shows;
Fig.1(d) indicates the system will tend to the origin s0(0, 0, 0, 0) when θ =
0.96, which corresponds to the conclusion mentioned above. Corresponding
to psychology, we may explain that in real world, people with low IFM has
simpler psychological activity than someone who with high IFM. If the IFM
is high enough, one becomes more sensitive and his/her feeling turns to be
more complex and unpredictable.

Take a = −3, b = 10, c = −6, d = e = 2, f = −1, q2 = q3 = q4 = 1.0, phase
diagrams of the RJ − J plan of variable RJ for q1 = 0.99, 0.985, 0.98 are
shown in Fig. 2(a-c), respectively. From which we can observe three different
dynamics. When θ = 0.985, the trajectory of system (2) takes on periodicity,
as reflected in Fig. 2(b); If θ increased to 0.99, the system behaves chaoti-
cally, see Fig. 2(a); The system (2) stabilizes to a fixed point s(1.01,-0.68,
-1.01,0.454) for θ = 0.98, as Fig. 2(c) shows. For the cases of Fig.1(c) and
Fig.2(c), Romeo eventually loves Juliet and hates Guinevere, while Juliet
hates him and Guinevere loves him.

Let Fractional-Order qi Fixed, System Parameters Varied.

Here, the fractional-orders q1,q3 are equal and fixed at 0.99, while q2,q4 are
equal and fixed at 0.98. The parameters a = −3, c = −6, d = e = 2, f =
−1 and b is varied from 11.2 to 11.7. The initial states of the fractional-
order love system are RJ(0) = 0.1, J(0) = 0.3, RG(0) = 0.2, G(0) = 0.4, and
the maximum value of RJ in conditions of RJ < 1.0, J < 0.5 as ordinate,
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Fig. 2 Attractors of system (2) for q2 = q3 = q4 = 1.0, q1 = θ with the same
parameters and initial conditions as in Fig.1: (a)θ = 0.99;(b)θ = 0.985;(c)θ = 0.98.

Fig. 3 Bifurcation dia-
gram of the fractional-
order love system with b.
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Fig. 4 Attractors of the fractional-order love system for q1 = q3 = 0.99, q2 = q4 =
0.98with a = −3, c = 6, d = e = 3, f = −1 and the same initial conditions as in
Fig.1: (a) b = 11.33; (b) b = 11.4;(c) b = 11.55;(d) b = 11.7.

bifurcation diagram in Fig.3 was obtained. It shows that the fractional-order
love system is chaotic when b = 11.4, see Fig.4 (b). There exists a tangent
bifurcation when b ≈ 11.36, and a flip bifurcation when b ≈ 11.51. Fig.4 (a)
shows a period 3 attractor of the fractional-order love system with b = 11.33,
which implies there exist chaos. If b = 11.55 and 11.7, the system appear
period 2 and period 1 attractor, respectively, as given in Fig.4(c) and Fig.4(d).
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4 Chaos Control of Fractional-Order Love System

Chaos can be enhanced or compressed by the method of feedback method,
which is a typical adaptable control method for ODE systems [10] [3].

The controlled fractional-order love system is given by

dq1RJ

dt
q1

= aRJ + b(J −G)(1 − (J −G)
2
)− u1,

dq2J

dt
q2

= cRJ(1−RJ
2) + dJ − u2,

dq3RG

dt
q3

= aRG + b(G− J)(1 − (G− J)
2
)− u3,

dq4G

dt
q4

= eRG(1 −RG
2) + fG− u4,

(8)

where u1,u2,u3 and u4 are the external control terms, and the control law of
single state variable feedback has the following form

u1 = k1(RJ −RJ), u2 = k2(J − J),

u3 = k3(RG −RG), u4 = k4(G−G),
(9)

where(RJ , J, RG, G) is the desired unstable equilibrium point of the chaotic
Eq. (2), k1, k2, k3 and k4 are the feedback gains, substituting Eq. (9) into Eq.
(8), we can get

dq1RJ

dt
q1

= aRJ + b(J −G)(1 − (J −G)2)− k1(RJ −RJ ),

dq2J

dt
q2

= cRJ(1−RJ
2) + dJ − k2(J − J),

dq3RG

dt
q3

= aRG + b(G− J)(1− (G− J)2)− k3(RG −RG),

dq4G

dt
q4

= eRG(1−RG
2) + fG− k4(G−G).

(10)

It is clear that Eq. (10) has one equilibrium point (RJ , J, RG, G). Substi-
tuting the coordinate of s0 into (10), we get the Jacobean matrix as follows

J(s0) =

⎛
⎜⎜⎝

a− k1 b 0 −b
c d− k2 0 0
0 −b a− k3 b
0 0 e f − k4

⎞
⎟⎟⎠ . (11)

The characteristic equation of the Jacobian matrix J(s0) is given by

p(λ) = λ4 − α1λ
3 + α2λ

2 − α3λ + β = 0, (12)
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Fig. 5 Time responses for the states RJ , J of the controlled Eq. (2) stabilizing the
equilibrium point s0 (a) θ = 0.99, κ = 0.6; (b) θ = 0.98, k1 = −0.6.

where

α1 = 2a + f + d− (k1 + k2 + k3 + k4), α2 = (a− k3)(f − k4)+

(a + d− k1 − k2)(a + f − k3 − k4) + (a− k1)(d− k2)− be− bc

α3 = (a− k3)(f − k4)(a + d− k1 − k2) + (a− k1)(d− k2)(a + f − k3 − k4)

− bc(a + d− k1 − k2)− bc(a + f − k3 − k4),

β = (a−k1)(d −k2)(a−k3)(f− k4)− be(a− k1)(d− k2)− bc(a− k3)(f− k4).

(13)

Let a = −3, b = 10, c = −6, d = e = 2, f = −1, k2 = k4 = 0 and
k1 = k3 = κ, when 0.7 ≤ κ ≤ 34.3, the real part of all the eigenvalues
are negative, so system (2) is stable ats0∀θ ∈ (0, 1). If we selectθ = 0.99
and 0.472 ≤ κ ≤ 35.3, then the eigenvalues satisfy Eq.(4), thus the system
is also stable at s0 in this case. Similarly, let k2 = k4 = 1.0, k1 = 1 − k3,
when −0.4 ≤ k1 ≤ 3.44, the real part of all the eigenvalues are negative,
then system (2) is stable at s0, ∀θ ∈ (0, 1). The eigenvalues satisfy Eq.(4) if
θ = 0.98 and −0.82 ≤ k1 ≤ 3.52. Simulation results are presented in Fig. 5
for (a) θ = 0.99 with κ = 0.6, (b) θ = 0.98 with k1 = −0.6, the initial states
are taken as RJ(0) = 0.1, J(0) = 0.3, RG(0) = 0.2, G(0) = 0.4. It is evident
that the designed controller can effectively control the fractional-order love
system to asymptotically stable at equilibrium points s0.

5 Concluding Remarks

The aim of this paper is to create interests and spark research efforts
in the field of ”psychology and life sciences”, where fractional-order mod-
elling might offer more insights towards the understanding of the dynam-
ical behaviors of these systems. We considered a more realistic dynamical
model with fractional-order, and control problems of the fractional-order love
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system have been discussed theoretically.Simulation results are carried out to
find the effectiveness of the control method.
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The Semantics of wlp and slp of Fuzzy
Imperative Programming Languages

Hengyang Wu and Yixiang Chen

Abstract. In this paper, we focus on the weakest liberal precondition seman-
tics (wlp, for short) and the strongest liberal postcondition semantics (slp,
for short) of fuzzy imperative programming languages and discuss their some
basic properties.

Keywords: Fuzzy imperative language, The weakest liberal precondition,
The strongest liberal postcondition, Fuzzy logic.

1 Introduction

Fuzzy programming languages can be used to describe fuzzy algorithms and
fuzzy control rules. In 1980, J. M. Adamo in [1, 2] gave a fuzzy program-
ming language L.P.l and introduced its syntax and semantics in detail; In
1991, D. F. Clark and A. Kandle in [6] gave another fuzzy programming
language HALO; In 1993 and 1997, R. M. Bueno et al in [4, 5] gave fuzzy
programming languages L and XL, respectively. XL language allows an in-
definite loop statement (while statement); In 2004, D. S. Alvarez et al in [3]
gave an imperative fuzzy programming language and studied its denotational
and operational semantics; Recently, T. Vetterlein et al in [18] gave a fuzzy
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programming language FAS, which can be used in medicine. We also in [7]
gave an approach to investigate the semantics of fuzzy programming lan-
guages. However, these researches about the semantics haven’t reached a
very high abstract level like the ones of the classical programming languages
[9,13,14,15,16] and the probabilistic programming languages [10,11,12,17,19].

Main goal of this paper is setting up the theory of predicate calculus of
fuzzy programming languages. We focus on the weakest liberal precondi-
tions semantics and the strongest liberal postconditions semantics of fuzzy
imperative programming languages, which support the stepwise refinement
of programs, and get the desired results. In our discussion, fuzzy logic is
a foundation, where the standard negation ¬, t-norm ⊗, the corresponding
t-conorm ⊕ and the S−implication → satisfying the adjoint condition are
used to model fuzzy not, conjunctivity, disjunctivity and implication,
respectively.

2 Preliminaries

In this section, we introduce fuzzy logic and recall the notions of fuzzy pred-
icates and fuzzy relations.

2.1 Fuzzy Logic

In this paper, fuzzy logic is a kind of logic consisting of those formulae in the
syntax as follows: ϕ := ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | (∀x)ϕ | (∃x)ϕ. Each
formula ϕ is assigned a real number in the unit interval [0, 1], representing
the possibility truth value degree. We use the ⊗, ⊕ and → as the logical
connectives of the truth value for conjunction, disjunction and implication,
respectively, where⊗, ⊕ and→ are a t-norm, the corresponding t-conorm and
a S−implication satisfying the adjoint condition (i.e., for any a, b, c ∈ [0, 1],
a → b = 1 − a ⊗ (1 − b) and a ⊗ b ≤ c iff a ≤ b → c), respectively.
Moreover, in this paper, we need the ⊗ to be continuous. �Lukasiewicz logical
system satisfies the previous conditions: for any a, b, c ∈ [0, 1], ¬a = 1 − a,
a→ b = min(1− a+ b, 1), a⊗ b = max(a+ b− 1, 0) and a⊕ b = min(a+ b, 1).

2.2 Fuzzy Predicates and Fuzzy Relations

A fuzzy predicate on a state space X is just a fuzzy set [20] on X . That is, a
mapping from X to the unit interval. We denote the set of fuzzy predicates
on X by F(X). The partial order ⊑ on F(X) is defined pointwise: for A,B ∈
F(X), A ⊑ B iff for any x ∈ X , A(x) ≤ B(x).

The join ⊔i∈IAi and meet ⊓i∈IAi of a family {Ai | i ∈ I} of fuzzy predicates
are given by (⊔i∈IAi)(x) = supi∈I Ai(x) and (⊓i∈IAi)(x) = infi∈I Ai(x). The
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bottom element of F(X) is 0 such that 0(x) = 0 for any x ∈ X , and its top
element is 1 such that 1(x) = 1 for any x ∈ X .

For any r ∈ [0, 1], we define the constant fuzzy predicate r as the constant
function r from X to [0,1](i.e., r(x) = r for all x ∈ X), and a point fuzzy
predicate ηx as ηx(x′) = 1 if x′ = x and 0 otherwise for all x ∈ X .

In addition to the greatest lower bound and the least upper bound, we
introduce the logical connectives: negation ¬, t-norm ⊗, t-conorm ⊕ and the
corresponding implication → which are pointwise defined as follows: for all
A,B ∈ F(X) and x ∈ X , (¬A)(x) = 1 − A(x), (A ⊗ B)(x) = A(x) ⊗ B(x),
(A ⊕ B)(x) = A(x) ⊕ B(x) and (A → B)(x) = A(x) → B(x). In particular,
(r ⊗ A)(x) = r ⊗ A(x), where r ∈ [0, 1]. Clearly, for any fuzzy predicate A,
A = ⊔x∈XA(x) ⊗ ηx or A = ⊓x∈Xηx → A(x).

Fuzzy relations can be used to describe the semantics of fuzzy programming
statements. Given two state spaces X and Y , a fuzzy relation P from X to Y
is a fuzzy set on the product space X×Y . The order between fuzzy relations
is defined pointwise. The bottom element is ⊥ such that ⊥(x, y) = 0 for
any (x, y) ∈ X × Y , and its top element is ⊤ such that ⊤(x, y) = 1 for any
(x, y) ∈ X × Y .

The join ⊔i∈IPi and meet ⊓i∈IPi of a family {Pi | i ∈ I} of fuzzy relations
on X × Y are given by (⊔i∈IPi)(x, y) = supi∈I Pi(x, y) and (⊓i∈IPi)(x, y) =
infi∈I Pi(x, y). The identity relation Id in X ×X is defined as: Id(x, y) = 1
if y = x and 0 otherwise.

The composition of fuzzy relations is defined as sup−min (∧) composition
by Zadeh in [20]. Latter, some people replace the operation ∧ by ⊗. For fuzzy
relations P in X × Y and Q in Y ×Z, sup-⊗ composition P •Q in X ×Z is
defined by (P •Q)(x, z) = supy∈Y P (x, y)⊗Q(y, z) for all x ∈ X and z ∈ Z.

3 Denotational Semantics

The syntax of fuzzy language fragment is defined as follows:

S ::= skip|X := FUZZ(X)|S1;S2|S1 � S2|if b then S1 else S2|while b do S

where X := FUZZ(X) is a fuzzy assignment statement associating with a
fuzzy relation P and b is a boolean condition, i.e., a mapping from a state
space to {0, 1}. The program S1 � S2 nondeterministically executes either S1

or S2.

Remark 1. Fuzzy assignment statement can be seen as an extension of the
classical assignment statement. For example [5], X := FUZZ(X) associates
with a fuzzy relation P , which is defined as follows:

P (x, y) =

⎧
⎨
⎩

1, if y = x− 1
0.5, if y = x− 2
0, otherwise.



360 H. Wu and Y. Chen

If the state space is the positive integer set, then when the input x = 3, the
output is a fuzzy set A = 1/2 + 0.5/1. This fuzzy set can be understood as
“the states that 3 can reach”, A(1) = 0.5 means the possibility is 0.5 that 3
reaches 1.

The denotation of a fuzzy imperative program [[S]] is a fuzzy relation on the
state space, i.e., [[S]] : X × X → [0, 1], which is defined inductively by the
following semantic clauses.

• [[skip]] = Id
• [[X := FUZZ(X)]] = P , where P is the associated fuzzy relation of
X := FUZZ(X).

• [[S1;S2]] = [[S1]] • [[S2]]
• [[S1 � S2]] = [[S1]] ⊔ [[S2]]
• [[if b then S1 else S2]](x, y) = b(x)⊗ [[S1]](x, y) ⊕ ¬b(x)⊗ [[S2]](x, y)
• [[while b do S]] = μF

where μF is the least fixed point of the functional F and F : (X × X →
[0, 1])→ (X×X → [0, 1]) defined by F (R)(x, y) = b(x)⊗ (S •R)(x, y)⊕ (1−
b(x))⊗ Id(x, y) for any R ∈ (X ×X → [0, 1]) and (x, y) ∈ X ×X.

Since (X × X → [0, 1]) is a complete lattice and the functional F is an
order-preserving mapping, we have the following proposition.

Proposition 1. The functional F has the following properties:
(1) F preserves sup;
(2) F has the least fixed point μF and μF = ⊔n∈ωF

n(⊥), where Fn(R) =
F (Fn−1(R)) and F 0(R) = R for any R ∈ (X ×X → [0, 1]).

4 The wlp and slp Semantics

In the classical case, in Dijkstra’s opinion [8], a partial logic of Hoare triple
P{S}Q is valid means: for an input x, if x makes predicate P true, then the
program S either terminates a state, say y ∈ X which makes predicate Q true,
or nontermination, where P and Q are subsets of state space. This can be for-
malized as follows: P (x) = 1 =⇒ ∀y, S(x, y) = 1 implies Q(y) = 1. Further,
this can be translated as follows: P (x) ≤ inf{S(x, y)→ Q(y) | y ∈ X}.

Now, we generalize the notion “true” to the fuzzy case and consider fuzzy
Hoare triple A{S}B where A and B are fuzzy sets and S a fuzzy pro-
gram. A{S}B is valid means: A(x) ≤ inf{S(x, y) → B(y) | y ∈ X}. Thus,
for any postcondition B and the command S, we can get the weakest lib-
eral precondition (i.e., the largest A such that A{S}B is valid) as follows:
wlp(S,B)(x) = infy∈X S(x, y)→ B(y).

Theorem 1. wlp(S,B) satisfies the following equations

• wlp(skip, B) = B.
• wlp(X := FUZZ(X), B)(x) = infy∈X P (x, y)→ B(y).
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• wlp(S1;S2, B) = wlp(S1, wlp(S2, B)).

• wlp(S1 � S2, B) = wlp(S1, B) ⊓ wlp(S,B).

• wlp(if b then S1 else S2, B) = b⊗ wlp(S1, B)⊕ ¬b ⊗ wlp(S2, B).

• wlp(while b do S,B) = νG where νG is the greatest fixed point of G and
G(A)(x) = b(x)⊗ wlp(S,A)(x) ⊕ ¬b(x) ⊗B(x).

Proof. We choose to prove wlp(while b do S,B) = νG.

Firstly

wlp(while b do S,B)(x)
= infy∈X(⊔n∈ωF

n(⊥))(x, y) → B(y)
= infy∈X infn∈ω Fn(⊥)(x, y) → B(y)
= infy∈X infn∈ω Fn+1(⊥)(x, y) → B(y)
= infn∈ω infy∈X Fn+1(⊥)(x, y) → B(y)
= infn∈ω infy∈X F (Fn(⊥))(x, y) → B(y)
= infn∈ω infy∈X [b(x) ⊗ (S • Fn(⊥))(x, y) ⊕ (1− b(x))⊗ Id(x, y)] → B(y)
= infn∈ω[infy∈X [b(x)⊗ [(S • Fn(⊥))(x, y) → B(y)]]⊕ [(1− b(x))⊗B(x)]]
= infn∈ω[infy∈X [b(x)⊗ [supz∈X S(x, z)⊗ Fn(⊥)(z, y)→ B(y)]]

⊕ [(1− b(x)) ⊗B(x)]]
= infn∈ω[infz∈X [b(x)⊗ infy∈X [S(x, z)→ (Fn(⊥)(z, y)→ B(y))]]

⊕ [(1− b(x)) ⊗B(x)]]
= infn∈ω[infz∈X [b(x)⊗ [S(x, z)→ infy∈X [Fn(⊥)(z, y)→ B(y)]]

⊕ [(1− b(x)) ⊗B(x)]]
= infn∈ω[b(x)⊗ infz∈X(S(x, z)→ An(z))⊕ [(1− b(x))⊗B(x)]]
= infn∈ω[b(x)⊗ wlp(S,An)(x) ⊕ (1− b(x))⊗B(x)]

where An(z) = infy∈X Fn(⊥)(z, y) → B(y). Then, one can verify that
A0(x) = 1 for any x and An+1(x) = b(x)⊗wlp(S,An)(x)⊕ (1− b(x))⊗B(x).
That is,

wlp(while b do S,B) = ⊓n∈ωAn. (1)

Secondly, ⊓n∈ωAn is the fixed point of G.

G(⊓n∈ωAn)(x) = ⊓n∈ωG(An)(x)
= ⊓n∈ωb(x)⊗ wp(S,An)(x) ⊕ (1− b(x)) ⊗B(x)(⊓n∈ωAn+1)(x)
= (⊓n∈ωAn)(x) (since A0 = 1)

Finally, suppose that C is any fixed point of G, now we prove ⊓n∈ωAn ⊒ C.
We use the mathematical introduction to prove. (1)n = 0, clearly A0 ⊒ C.
(2)Suppose n = k, Ak ⊒ C. Then

Ak+1(x)
= b(x)⊗ wlp(S,Ak)(x) ⊕ (1− b(x)) ⊗B(x)
≥ b(x)⊗ wp(S,C)(x) ⊕ (1− b(x))⊗B(x)
= G(C)(x)
= C(x) (since C is the fixed point of G)



362 H. Wu and Y. Chen

Hence, for any n, An ⊒ C. Then, ⊓n∈ωAn ⊒ C. Thus, ⊓n∈ωAn is the greatest
fixed point of G.

Theorem 2. wlp(S,B) has the following properties

• Termination. wlp(S,1) = 1.
•Monotonicity. wlp(S,B1) ⊑ wlp(S, B2) if B1 ⊑ B2.
• Implication. wlp(S, r→ B) = r→ wlp(S,B) where r ∈ [0, 1].
• Conjunctivity. wlp(S,⊓i∈IBi) = ⊓i∈Iwlp(S,Bi) if {Bi : i ∈ I} ⊆
F(X).

Now, we consider the strongest liberal postcondition slp(A,S) for a given
command S and a precondition A. That is, finding the strongest liberal post-
condition sp(A,S) which makes the Hoare triple A{S}sp(A,S) valid. We
know, if sp(A,S) ⊑ B, then A{S}B is valid. Hence, the strongest postcondi-
tion means the smallest B such that A{S}B is valid.

Theorem 3. Let A ∈ F(X) and S a command. Then slp(A,S)(y) =
supx∈X S(x, y)⊗A(x).

Theorem 4. slp(A,S) satisfies the following equations

• slp(A, skip) = A.
• slp(A,X := FUZZ(X))(y) = supx∈X P (x, y)⊗A(x).
• slp(A,S1;S2) = slp(slp(A, S1), S2).
• slp(A,S1 � S2) = slp(A,S1) ⊔ slp(A,S2).
• slp(A, if b then S1 else S2) = b ⊗ slp(A,S1)⊕ ¬b⊗ slp(A,S2).
• slp(A,while b do S) = μT where μT is the least fixed point of T and
T (C)(x) = b(x)⊗ slp(C, S)(x)⊕ ¬b(x) ⊗A(x).

Theorem 5. slp(A,S) has the following properties

• Strictness. slp(0, S) = 0.
•Monotonicity. slp(A1, S) ⊑ slp(A2, S) if A1 ⊑ A2.
• Homogeneity. slp(r⊗A,S) = r⊗ slp(A,S) where r ∈ [0, 1].
• Disjunctivity. slp(⊔i∈IAi, S) = ⊔i∈Islp(Ai, S) if {Ai : i ∈ I} ⊆ F(X).

5 Duality and Logic

Given the functional T : F(X)→ F(X), which has implication property and
is conjunctivity. That is, T (r→ A) = r→ T (A) and T (⊓i∈IAi) = ⊓i∈IT (Ai)
for any A ∈ F(X), r ∈ [0, 1] and {Ai : i ∈ I} ⊆ F(X). Define T ⋆ : X ×X →
[0, 1] such that

T ⋆(x, y) = 1− T (¬ηy)(x) (2)

for any (x, y) ∈ X ×X .
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Given a fuzzy relation R : X×X → [0, 1], define R◦ : F(X)→ F(X) such
that

R◦(A)(x) = inf
y∈X

R(x, y) → A(y) (3)

for any A ∈ F(X) and x ∈ X . Clearly, R◦ has implication property and is
conjunctivity.

Theorem 6. (R◦)⋆ = R and (T ⋆)◦ = T .

Proof. Firstly, for any (x, y) ∈ X ×X ,

(R◦)⋆(x, y)
= 1−R◦(¬ηy)(x)
= 1− infz∈X R(x, z)→ (1− ηy(z))
= 1− (R(x, y) → 0)
= R(x, y).

Hence, (R◦)⋆ = R.
Secondly, for any A ∈ F(X) and x ∈ X ,

(T ⋆)◦(A)(x)
= infy∈X T ⋆(x, y) → A(y)
= infy∈X(1− T (¬ηy)(x)) → A(y)
= infy∈X [¬A(y) → T (¬ηy)(x)]
= infy∈X T (¬A(y)→ ¬ηy)(x)
= infy∈X T (ηy → A(y))(x)
= T (infy∈X ηy → A(y))(x)
= T (A)(x).

So, (T ⋆)◦ = T .

In this case, we call R and R◦ to be dual, similarity for T and T ⋆. We now
consider how we can use the duality related the logic and semantics. The
semantics of a fuzzy program S is defined as a fuzzy relation X ×X → [0, 1],
the weakest liberal precondition semantics is a function F(X) → F(X),
which has implication property and is conjunctivity. The semantics, [[S]], is
dual to the functional given by the weakest liberal preconditions semantics,
namely λA.wlp(S, A). Symbolically this is just

[[S]]◦ = λA.wlp(S, A). (4)

Moreover from the previous duality we know that (λA.wlp(S, A))⋆ = [[S]].
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Public-Key Cryptosystem Based on
n-th Residuosity of n = p2q

Tomoko Adachi

Abstract. We set n = pq where p and q are odd primes. A number z is said
to be an n-th residue modulo n2 if there exists a nonnegative integer y such
that z = yn mod n2, where y is less than n2 and is coprime to n2. In this
paper, we investigate n-th residues in the case of n = p2q where p and q are
odd primes. We will give n-th residues in the case of n = 32·5, in particular.

Keywords: n-th residues, Public key cryptosystem.

1 Introduction

Suppose p is an odd prime and a is an integer. a is defined to be a quadratic
residue modulo p if a /≡ 0 (mod p) and the congruence y2 ≡ a (mod p)
has a solution y where nonnegative y is less than n. It is well-known that
a quadratic residue is adopted to public key cryptosystems. For example,
we show Rabin Cryptosystem [5]. Let n = pq, where p and q are primes,
and p, q ≡ 3 (mod 4). The value n is the public key, while p and q are the
private key. For a plaintext m < n, we define the cipertext c = m2 (mod n).
Quadratic residuosity is adopted in a trapdoor mechanism of this public key
cryptosystem. As well, the public key cryptosystem by Kurosawa et. al. [2]
also utilized quadratic residuosity. Moreover, the public key cryptosystem by
Naccache and Stern [3] utilized higher residuosity. In this paper, we adopt
n-th residuosity.

We set n = pq where p and q are odd primes. A number z is said to be
an n-th residue modulo n2 if there exists a nonnegative integer y such that
z = yn mod n2, where y is less than n2 and is coprime to n2. The problem
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of deciding n-th residuosity, that is, distinguishing n-th residues from non
n-th residues will be denoted by CR[n]. Paillier [4] introduced public key
cryptosystems based on CR[n]. Here, we investigate more general cases. In
this paper, we investigate n-th residues in the case of n = p2q where p and
q are odd primes. We will give n-th residues in the case of n = 32·5, in
particular.

2 Review: n-th Residuosity of n = pq

In this section, we describe n-th residuosity of n = pq and its cryptosystem.
All the results in this section are due to [4].

We set n = pq where p and q are large primes. In this case, we denote
by φ(n) = (p − 1)(q − 1) Euler’s function and by λ(n) = lcm(p − 1, q − 1).
We adopt λ instead of λ(n) for visual comfort. We denote by Zn2 a residue
class ring modulo n2 and by Z∗

n2 its invertible element set. The set Z∗
n2 is a

multiplicative subgroup of Zn2 of order φ(n2) = nφ(n) = pq(p − 1)(q − 1).
For any w ∈ Z∗

n2 , wλ = 1 (mod n) and wnλ = 1 (mod n2) hold.

Definition 1. A number z is said to be an n-th residue modulo n2 if there
exists a number y ∈ Z∗

n2 , such that z = yn (mod n2).

The set of n-th residues is a multiplicative subgroup of Z∗
n2 of order φ(n).

The problem of deciding n-th residuosity, that is, distinguishing n-th residues
from non n-th residues will be denoted by CR[n]. As for prime residuosity,
deciding n-th residuosity, is believed to be computationally hard.

Let g be some element of Z∗
n2 and denote by εg the integer-valued function

defined by
Zn×Z∗

n → Z∗
n2

(x, y) −→ gxyn (mod n2).

Here, depending on g, εg may feature an interesting property such as the
following lemma.

Lemma 1. If the order of g is a nonzero multiple of n then εg is bijection.

We denote by Bα⊂Z∗
n2 the set of elements of order nα and by B their disjoint

union for α = 1, · · ·, λ.

Definition 2. Assume that g∈B. For w∈Z∗
n2 , we call n-th residuosity class

of w with respect to g the unique integer x∈Zn for which there exists y∈Z∗
n,

such that
εg(x, y) = w.

Adopting Benaloh’s notations [1], the class of w is denoted [[w]]g . It is worth-
while noticing the following property.
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Lemma 2. [[w]]g = 0 if and only if w is an n-th residue modulo n2. Further-
more,

∀w1, w2 ∈ Z∗
n2 [[w1w2]]g = [[w1]]g + [[w2]]g (mod n)

that is, the class function w −→ [[w]]g is a homomorphism from (Z∗
n2 ,×) to

(Zn,+) for any g∈B.

By Lemma 2, it can easily be shown that, for any w ∈ Z∗
n2 and g1, g2 ∈ B,

we have
[[w]]g1 = [[w]]g2 [[g2]]g1 (mod n), (1)

which yields [[g1]]g2 = [[g2]]g1

−1
mod n and thus [[g2]]g1 is invertible modulo

n.

The set
Sn = {u < n2 | u = 1 (mod n)}

is a multiplicative subgroup of integers modulo n2 over which the function L
such that

∀u ∈ Sn L(u) =
u− 1

n

is clearly well-defined.

Lemma 3. For any w ∈ Z∗
n2 , L(wλ (mod n2)) = λ[[w]]1+n (mod n).

By Lemma 3, for any g ∈ B and w ∈ Z∗
n2 , we can compute

L(wλ (mod n2))

L(gλ (mod n2))
=

λ[[w]]1+n

λ[[g]]1+n
=

[[w]]1+n

[[g]]1+n
= [[w]]g (mod n), (2)

by virtue of Equation 1.
Now, we describe the public key cryptosystem based on the n-th residuosity

class problem.
Set n = pq and randomly select a base g ∈ B: as shown before, this can

be done efficiently by checking whether gcd(L(gλ (mod n2)), n) = 1. Now,
consider (n, g) as public parameters whilst the pair (p, q) remains private. The
cryptosystem is depicted below. For a plaintext m < n, we select a random
r < n, and compute the cipertext c = gmrn (mod n2). That is to say, we
employ εg as an encryption function. For a cipertext c < n2, we compute the

plaintext m = L(cλ (mod n2))
L(gλ (mod n2))

mod n, by Equation 2.

3 n-th Residuosity of n = p2q

In this section, we will investigate n-th residues in the case of n = p2q where
p and q are odd primes, and p �= q. Especially, we will give some n(= p2q)-th
residues in the case of p = 3 and q = 5.
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We set n = p2q where p and q are large primes. In this case, we denote by
φ(n) = p(p − 1)(q − 1) Euler’s function and by λ(n) = lcm(p, p − 1, q − 1).
We adopt λ instead of λ(n) for visual comfort. We denote by Zn2 a residue
class ring modulo n2 and by Z∗

n2 its invertible element set. The set Z∗
n2 is a

multiplicative subgroup of Zn2 of order φ(n2) = nφ(n) = p3q(p − 1)(q − 1).
For any w ∈ Z∗

n2 , the following equations hold:

wλ = 1 (mod n), wnλ = 1 (mod n2).

For n = p2q, we define n-th residue modulo n2 in the same way as Def-
inition 1 for n = pq. Let g be some element of Z∗

n2 and εg be the function
defined by

Zn×Z∗
n → Z∗

n2

(x, y) −→ εg(x, y) = gxyn (mod n2).
(3)

If the order of g is a nonzero multiple of n then εg is bijection. We denote
by Bα⊂Z∗

n2 the set of elements of order nα and by B their disjoint union for
α = 1, · · ·, λ. For n = p2q, we define n-th residuosity class in the same way
as Definition 2 for n = pq.

For n = p2q, we define the function L as follows:

Sn = {u < n2 | u = 1 (mod n)} → Zn

u −→ L(u) = u−1
n .

(4)

In the case of n = pq, we have public-key cryptosystem, that is, for any

g∈B, the function εg is encryption and L(cλ (mod n)2)
L(gλ (mod n)2)

mod n is decryption.

However, in the case of n = p2q, for any g∈B, the function εg is NOT
encryption. Because, in the case of n = 32·5, when we choose g = 19∈B,
L(gλ (mod n)2) = 3 is not invertible element modulo n2 and we cannot de-
crypt. Hence, we investigate public-key cryptosystem based on n(= p2q)-th
residuosity in order to be well-defined.

Here, we give n(= p2q)-th residuosity class in the case of p = 3 and q = 5.
We obtain λ(n) = lcm(p, p− 1, q− 1) = 12. For g∈Z∗

n2 , the value α such that
an order of g is equal to nα is 1, 2, 3, 4, 6 or 12. Each Bα is as follows, and
B = B1 ∪ B2 ∪B3 ∪B4 ∪B6 ∪B12.

B1 = { 46, 91, 181, 316, 361, 496, 586, 631, 721, 766, 856, 991, 1036, 1171,
1261, 1306, 1396, 1441, 1531, 1666, 1711, 1846, 1981 }
B2 = { 19, 38, 44, 64, 71, 89, 116, 154, 179, 206, 289, 314, 334, 341, 359,
386, 469, 494, 521, 559, 584, 604, 611, 629, 656, 694, 719, 739, 746, 764, 791,
809, 854, 881, 964, 989, 1009, 1016, 1034, 1061, 1144, 1169, 1196, 1234, 1259,
1279, 1286, 1304, 1331, 1369, 1394, 1414, 1421, 1439, 1466, 1504, 1529, 1556,
1639, 1664, 1684, 1691, 1709, 1736, 1819, 1844, 1871, 1909, 1934, 1954, 1961,
1979, 2006 }
B3 = { 16, 31, 61, 106, 121, 166, 196, 211, 241, 256, 286, 331, 346, 391, 421,
436, 466, 481, 511, 556, 571, 616, 646, 661, 691, 706, 736, 781, 796, 841, 871,
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886, 916, 931, 961, 1006, 1021, 1066, 1096, 1111, 1141, 1156, 1186, 1231, 1246,
1291, 1321, 1336, 1366, 1381, 1411, 1456, 1471, 1516, 1546, 1561, 1591, 1606,
1636, 1981, 1696, 1741, 1771, 1786, 1816, 1831, 1861, 1906, 1921, 1966, 1996,
2011 }
B4 = { 8, 17, 37, 62, 73, 98, 127, 152, 172, 197, 208, 233, 253, 262, 287, 388,
397, 413, 422, 442, 467, 478, 503, 548, 577, 602, 613, 658, 667, 683, 692, 737,
748, 773, 802, 827, 847, 872, 883, 908, 928, 937, 953, 962, 1063, 1072, 1088,
1097, 1117, 1142, 1153, 1178, 1198, 1223, 1252, 1277, 1288, 1313, 1342, 1358,
1367, 1387, 1412, 1423, 1448, 1477, 1502, 1547, 1558, 1583, 1603, 1612, 1628,
1637, 1738, 1747, 1763, 1772, 1792, 1817, 1828, 1853, 1873, 1898, 1927, 1952,
1963, 1988, 2008, 2017 }
B6 = { 4, 11, 14, 29, 34, 41, 56, 59, 79, 86, 94, 104, 119, 131, 139, 146, 164,
169, 184, 191, 194, 209, 214, 221, 229, 236, 239, 254, 259, 266, 281, 284, 304,
311, 319, 329, 344, 356, 364, 371, 389, 394, 409, 416, 419, 434, 439, 446, 454,
461, 464, 479, 484, 491, 506, 509, 529, 536, 544, 554, 569, 581, 583, 596, 614,
619, 634, 641, 644, 659, 664, 671, 679, 686, 689, 704, 709, 716, 731, 734, 754,
761, 769, 779, 794, 806, 814, 821, 839, 844, 859, 866, 869, 884, 889, 896, 904,
911, 914, 929, 934, 941, 953, 979, 994, 1004, 1019, 1031, 1039, 1046, 1064,
1069, 1084, 1091, 1094, 1109, 1114, 1121, 1129, 1136, 1139, 1154, 1159, 1166,
1181, 1184, 1204, 1211, 1219, 1229, 1244, 1256, 1264, 1271, 1289, 1294, 1309,
1316, 1319, 1334, 1339, 1346, 1354, 1361, 1364, 1379, 1384, 1391, 1406, 1409,
1429, 1436, 1444, 1454, 1469, 1481, 1489, 1496, 1514, 1519, 1534, 1541, 1544,
1559, 1564, 1571, 1579, 1586, 1589, 1604, 1609, 1616, 1631, 1634, 1654, 1661,
1669, 1679, 1694, 1706, 1714, 1721, 1739, 1744, 1759, 1766, 1769, 1784, 1789,
1796, 1804, 1811, 1814, 1829, 1834, 1841, 1856, 1859, 1879, 1886, 1894, 1904,
1939, 1946, 1964, 1909, 1984, 1991, 2009. 2014, 2021 }
B12 = { 2, 22, 23, 38, 47, 52, 58, 67, 77, 83, 88, 92, 97, 103, 112, 113, 122,
128, 133, 137, 142, 148, 158, 167, 173, 178, 187, 202, 203, 212, 223, 227, 238,
247, 248, 263, 272, 277, 283, 292, 302, 308, 313, 317, 322, 328, 337, 338, 347,
353, 358, 362, 367, 373, 383, 392, 398, 403, 412, 427, 428, 437, 448, 452, 463,
472, 473, 488, 497, 502, 508, 517, 527, 533, 538, 542, 547, 553, 562, 563, 572,
578, 583, 587, 592, 598, 608, 617, 623, 628, 637, 652, 653, 662, 673, 677, 688,
697, 698, 713, 722, 727, 733, 742, 752, 758, 763, 767, 772, 778, 787, 788, 797,
803, 808, 812, 817, 823, 833, 842, 848, 853, 862, 877, 878, 887, 898, 902, 913,
922, 923, 938, 947, 952, 958, 967, 977, 983, 988, 992, 997, 1003, 1012, 1013,
1022, 1028, 1033, 1037, 1042, 1048, 1058, 1067, 1073, 1078, 1087, 1102, 1103,
1112, 1123, 1127, 1138, 1147, 1148, 1163, 1172, 1177, 1183, 1192, 1202, 1208,
1213, 1217, 1222, 1228, 1237, 1238, 1247, 1253, 1258, 1262, 1267, 1273, 1283,
1292, 1298, 1303, 1312, 1327, 1328, 1337, 1348, 1352, 1363, 1372, 1373, 1388,
1397, 1402, 1408, 1417, 1427, 1433, 1438, 1442, 1447, 1453, 1462, 1463, 1472,
1478, 1483, 1487, 1492, 1498, 1508, 1517, 1523, 1528, 1537, 1552, 1553, 1562,
1573, 1577, 1588, 1597, 1598, 1613, 1622, 1627, 1633, 1642, 1652, 1658, 1663,
1667, 1672, 1678, 1687, 1688, 1697, 1703, 1708, 1712, 1717, 1723, 1733, 1742,
1748, 1753, 1762, 1777, 1778, 1787, 1798, 1802, 1813, 1822, 1823, 1838, 1847,
1852, 1858, 1867, 1877, 1883, 1888, 1892, 1897, 1903, 1912, 1913, 1922, 1928,
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1933, 1937, 1942, 1948, 1958, 1967, 1973, 1978, 1987, 2002, 2003, 2012, 2023
}

For all g∈B, we check whether L(gλ (mod n2)) is invertible element mod-
ulo n2 or not. Therefore, we obtain the following result: If g is an element
of the set B3, B6 or B12, then L(gλ (mod n2)) is invertible element modulo
n2. If g is an element of the set B1, B2 or B4, then L(gλ (mod n2)) is not
invertible element modulo n2.

We set B′ = B3∪B6∪B12. For any w ∈ Z∗
n2 , we have L(wλ (mod n)) =

λ[[w]]1+n (mod n). Therefore, for any g ∈ B′ and w ∈ Z∗
n2 , we can compute

L(wλ (mod n2))

L(gλ (mod n2))
=

λ[[w]]1+n

λ[[g]]1+n
=

[[w]]1+n

[[g]]1+n
= [[w]]g (mod n).

Hence, we get the following theorem.

Theorem 1. We set n = p2q and λ = lcm(p, p−1, q−1). In the case of p = 3
and q = 5, for any g ∈ B′ = B3∪B6∪B12, we obtain public-key cryptosystem
as public keys (n, g) and private keys (p, q). For a plaintext m < n, we select
a random r < n, and compute the cipertext c by Equation 5. For a cipertext
c < n2, we compute the plaintext m by Equation 6.

c = gmrn (mod n2), (5)

m =
L(cλ (mod n2))

L(gλ (mod n2))
(mod n). (6)

For n = p2q, we obtain the public key cryptosystem based on the n-th resid-
uosity class problem.
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Shrinking Projection Method for a
Family of Quasinonexpansive
Mappings with a Sequence of Subsets
of an Index Set

Yasunori Kimura

Abstract. Using a sequence of subsets of an index set for a family of quasi-
nonexpansive mappings, we propose an iterative scheme generated by the
shrinking projection method for finding their common fixed point. We prove
strong convergence of this scheme under appropriate conditions.

Keywords: Common fixed point, Iterative scheme, Quasinonexpansive,
Shrinking projection method, Mosco convergnence.

1 Introduction

Finding a common fixed point of various types of nonlinear operators is one of
the most developed topics in nonlinear analysis. A large number of iterative
schemes have been proposed by many researchers. In particular, we will focus
on the following result proved by Takahashi, Takeuchi, and Kubota.

Theorem 1 (Takahashi-Takeuchi-Kubota [8]). Let H be a Hilbert space
and C a nonempty closed convex subset of H. Let {Tλ : λ ∈ Λ} be a family of
nonexpansive mappings of C into itself and {Sn} a sequence of nonexpansive
mappings of C into itself satisfying

∅ �=
⋂

λ∈Λ

F (Tλ) ⊂
∞⋂

n=1

F (Sn),

where F (T ) is the set of fixed points of a mapping T . Suppose that {Sn}
satisfies the NST condition (I) with {Tλ}, that is, for each bounded sequence
{wn} ⊂ C, it holds that limn→∞‖wn − Tλwn‖ = 0 for all λ ∈ Λ whenever

Yasunori Kimura
Department of Information Science, Toho University, Miyama, Funabashi,
Chiba 274-8510, Japan
e-mail: yasunori@is.sci.toho-u.ac.jp

S. Li (Eds.): Nonlinear Maths for Uncertainty and its Appli., AISC 100, pp. 371–378.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

yasunori@is.sci.toho-u.ac.jp


372 Y. Kimura

limn→∞‖wn−Snwn‖ = 0. Let {αn} be a sequence in [0, a], where 0 < a < 1.
For an arbitrary point x ∈ H, generate a sequence {xn} by the following
iterative scheme: x1 ∈ C, C1 = C, and

yn = αnxn + (1− αn)Snxn,

Cn+1 = {z ∈ Cn : ‖z − yn‖ ≤ ‖z − xn‖},
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PFx ∈ C, where F =⋂
λ∈Λ F (Tλ) and PK is the metric projection of H onto a nonempty closed

convex subset K of H.

This method is called the shrinking projection method and has been modified
and generalized to Banach spaces and others; see [3, 6, 9, 7, 4, 11, 2].

Kimura and Tahahashi [4] proved a strong convergence theorem for a fam-
ily of quasinonexpansive mappings in a reflexive Banach spece with certain
conditions by using the technique of convergence of sets. In this paper, we
use a sequence of subsets of an index set and obtain a strong convergence
theorem, which generalizes the result in [4] in the setting where the under-
lying space is a Hilbert space. We also show several convergence theorems
deduced from the main result.

2 Preliminaries

Throughout the present paper, a Hilbert space is over the real scalar field.
Let C be a nonempty closed convex subset of a Hilbert space H . A mapping
T : C → H is said to be quasinonexpansive if F (T ) is nonempty and ‖Tx−
z‖ ≤ ‖x − z‖ for all x ∈ C and z ∈ F (T ), where F (T ) denotes the set of
fixed points of T ; F (T ) = {z ∈ C : z = Tz}. We know that F (T ) is closed
and convex if T is quasinonexpansive.

For a nonempty closed convex subset of K in H , We denote by PK the
metric projection of H onto K. Namely, for x ∈ H , a point PKx ∈ K sat-
isfies that ‖x − PKx‖ ≤ ‖x − y‖ for every y ∈ K, which is always uniquely
determined in a Hilbert space.

Let {Kn} be a sequence of nonempty closed convex subsets of H . We
define subsets s-Lin Kn and w-Lsn Kn as follows: x ∈ s-Lin Kn if and only
if there exists {xn} ⊂ H such that {xn} converges strongly to x and that
xn ∈ Kn for all n ∈ N. On the other hand, y ∈ w-Lsn Kn if and only if
there exist a subsequence {Kni} of {Kn} and a sequence {yi} ⊂ H such
that {yi} converges weakly to y and that yi ∈ Kni for all i ∈ N. We define
that {Kn} converges to K0 in the sense of Mosco [5] if K0 satisfies that
K0 = s-Lin Kn = w-Lsn Kn. In this case, we write K0 = M-limn→∞ Kn. It
is easy to see that if a sequence of nonempty closed convex subsets {Kn} is
decreasing with respect to inclusion and

⋂∞
n=1 Kn is nonempty, then {Kn}

converges to
⋂∞

n=1 Kn in the sense of Mosco. For more details, see [1].
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The following theorem proved by Tsukada [10] plays an important role in
our results. Obviously, this theorem can be applied to the case where the
underlying space is a Hilbert space.

Theorem 2 (Tsukada [10]). Let E be a smooth, reflexive, and strictly con-
vex Banach space. Suppose that E has the Kadec-Klee property, that is, ev-
ery weakly convergent sequence {xn} in E with the limit x0 ∈ E converges
strongly to x0 whenever {‖xn‖} converges to ‖x0‖. Let {Kn} be a sequence
of nonempty closed convex subsets of E. If K0 = M-limn→∞ Kn exists and
is nonempty, then {PKnx} converges strongly to PK0x for every x ∈ C.

3 Strong Convergence of an Iterative Sequence

Let Λ be an index set. In the main result, we use a sequence of subsets {Λn}
of Λ and assume that Λ0 =

⋂∞
n=1

⋃∞
k=n Λk is nonempty. We will show some

examples of {Λn} and Λ0.

Example 1. If {Λn} is an increasing sequence of subsets of an index set Λ,
then Λ0 =

⋃∞
n=1 Λn.

Example 2. Let Λ be an arbitrary index set and {Ik : k = 0, 1, . . . , N − 1}
a finite number of subsets of Λ. For n ∈ N, let Λn = I(n mod N). Then it

follows that Λ0 =
⋃N−1

k=0 Ik. As a special case of the result above, if Λ =
{0, 1, . . . , N − 1} and Ik = {k} for k = 0, 1, . . . , N − 1, then Λ = Λ0.

Example 3. Let {Ik} be a sequence of subsets of an arbitrary index set Λ. Let
i : N → N be such that

i(1) = 1,

i(2) = 1, i(3) = 2,

i(4) = 1, i(5) = 2, i(6) = 3,

i(7) = 1, i(8) = 2, i(9) = 3, i(10) = 4, . . . .

More presicely, for each k ∈ N, let l(k) be a unique natural number satisfying
that

l(k)−1∑

j=0

j < k ≤
l(k)∑

j=0

j

and define i(k) = k −∑l(k)−1
j=0 j. Using this function, we let Λn = Ii(n) for

n ∈ N. Then, we have that Λ0 =
⋃∞

n=1 In. In particular, if Λ = N and
Λn = {i(n)} for every n ∈ N, then Λ0 = Λ = N.

Now we prove a strong convergence theorem for an iterative scheme generated
by a family of quasinonexpansive mappings to their common fixed point.
This result generalizes various types of iterative schemes by the shrinking
projection method.
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Theorem 3. Let Λ be an index set and {Λn} a sequece of nonempty subsets
of Λ such that Λ0 =

⋂∞
n=1

⋃∞
k=n Λk is nonempty. Let H be a Hilbert space

and C a nonempty closed convex subset of H. For λ ∈ Λ, let Tλ : C → H be a
quasinonexpansive mapping and suppose that, if both {vn} and {Tλvn} have
the same strong limit v0 ∈ C for a sequence {vn} of C, then v0 ∈ F (Tλ). For
each λ ∈ Λ, let {αn,λ : n ∈ Nλ} be a family of real numbers such that

0 ≤ sup
n∈Nλ
n≥k

αn,λ < 1

for some k ∈ N depending on λ, where Nλ = {n ∈ N : λ ∈ Λn}. Let u ∈ H
and generate a sequence {xn} in C and a sequence {Cn} of subsets in C as
follows: x1 ∈ C, C1 = C, and

yn,λ = αn,λxn + (1 − αn,λ)Tλxn for each λ ∈ Λn,

Cn+1 =

{
z ∈ H : sup

λ∈Λn

‖yn,λ − z‖ ≤ ‖xn − z‖
}
∩ Cn,

xn+1 = PCn+1u

for every n ∈ N. If F =
⋂

λ∈Λ F (Tλ) is nonempty, then {xn} is well defined
and it converges strongly to x0 ∈ F0, where F0 =

⋂
λ∈Λ0

F (Tλ). In particular,
if Λ = Λ0, then x0 = PFu.

We remark that, in the theorem above, if there is no n satisfying n ∈ Nλ and
n ≥ k, then the condition 0 ≤ supn∈Nλ,n≥k αn,λ < 1 is supposed to be true.
In other words, we assume that sup(n,λ)∈∅ αn,λ = 0.

Proof. Firstly, we prove that {xn} and {Cn} are well defined by induc-
tion. Suppose that {x1, . . . , xm} and {C1, . . . , Cm} are defined and F =⋂

λ∈Λ F (Tλ) ⊂ Cm for m ∈ N. Then since it holds that

{
z ∈ H : sup

λ∈Λm

‖ym,λ − z‖ ≤ ‖xm − z‖
}

=
⋂

λ∈Λm

{
z ∈ H : ‖ym,λ − z‖2 ≤ ‖xm − z‖2

}

=
⋂

λ∈Λm

{
z ∈ H : 〈2(xm − ym,λ), z〉 ≤ ‖xm‖2 − ‖ym,λ‖2

}
,

we have that it is closed and convex. Since Cm is closed and convex, so is
Cm+1. Let z ∈ F . Then we have that

‖ym,λ − z‖ = ‖αm,λxm + (1− αm,λ)Tλxm − z‖
≤ αm,λ‖xm − z‖+ (1− αm,λ)‖Tλxm − z‖
≤ αm,λ‖xm − z‖+ (1− αm,λ)‖xm − z‖
= ‖xm − z‖



Shrinking Projection Method 375

for all λ ∈ Λm and thus z ∈ Cm+1. Since F is nonempty, we obtain that
Cm+1 is also nonempty. Therefore there exists a metric projection PCm+1 of
H onto Cm+1 and hence xm+1 is also well defined. Hence we have that {xn}
and {Cn} are both well defined.

By definition, {Cn} is a decreasing sequence with respect to inclusion. It
follows that M-limn→∞ Cn = C0 =

⋂∞
n=1 Cn. Since C0 includes F and thus

it is nonempty, Theorem 2 implies that {xn} = {PCnu} converges strongly
to x0 = PC0u.

Fix λ ∈ Λ0 =
⋂∞

n=1

⋃∞
k=n Λk arbitrarily and we will show that x0 ∈ F (Tλ).

From the definition of Λ0, there exists a subsequence {nj} of N such that
λ ∈ Λnj for every j ∈ N. Since x0 ∈ C0 =

⋂∞
n=1 Cn, we have that

‖xnj − x0‖2 ≥ ‖ynj,λ − x0‖2

= ‖αnj ,λxnj + (1 − αnj ,λ)Tλxnj − x0‖2

= αnj ,λ‖xnj − x0‖2 + (1− αnj ,λ)‖Tλxnj − x0‖2

− αnj ,λ(1 − αnj ,λ)‖Tλxnj − xnj‖2

and thus

‖Tλxnj − x0‖2 − αnj ,λ‖Tλxnj − xnj‖2 ≤ ‖xnj − x0‖2

for sufficiently large j ∈ N. Tending j →∞, we get that

lim sup
j→∞

(1− αnj ,λ)‖Tλxnj − x0‖2 ≤ 0

and hence {Tλxnj} converges strongly to x0. From the assumption of Tλ, we
have that x0 ∈ F (Tλ), which implies that x0 ∈ F0 =

⋂
λ∈Λ0

F (Tλ).

For the case where Λ = Λ0, it follows that

x0 ∈ F0 =
⋂

λ∈Λ0

F (Tλ) =
⋂

λ∈Λ

F (Tλ) = F ⊂
∞⋂

n=1

Cn = C0.

Since x0 = PC0u, we obtain that x = PFu, which is the desired result.

4 Deduced Results

In this section, we prove several results deduced from the main result proved
in the previous section.

Suppose that Λn = Λ for all n ∈ N. In this case, we may change the
assumption for a coefficients {αn,λ} into milder one. Namely, we obtain the
following result, which was essentially proved by Kimura and Takahashi [4]
in the setting where the underlying space is a Banach space with certain
properties.
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Corollary 1 (Kimura-Takahashi [4]). Let H, C, Λ, and {Tλ} be the same
as in Theorem 3. For each λ ∈ Λ, let {αn,λ : n ∈ N} be a sequence in [0, 1]
such that lim infn→∞ αn,λ < 1. Let u ∈ H and generate a sequence {xn} in
C and a sequnce {Cn} of subsets in C as follows: x1 ∈ C, C1 = C, and

yn,λ = αn,λxn + (1− αn,λ)Tλxn for each λ ∈ Λ,

Cn+1 =

{
z ∈ H : sup

λ∈Λ
‖yn,λ − z‖ ≤ ‖xn − z‖

}
∩ Cn,

xn+1 = PCn+1u

for every n ∈ N. If F =
⋂

λ∈Λ F (Tλ) is nonempty, then {xn} is well defined
and it converges strongly to x0 = PFu.

Proof. Fix λ ∈ Λ. Then, since lim infn→∞ αn,λ < 1, there exists an infinite
subset Sλ of N such that supn∈Sλ

αn,λ < 1. Let Λ′ = (N∪{0})×Λ and define
a subset Λ′

n of Λ as

Λ′
n =

⋃

λ∈Λ

({(0, λ) : n ∈ Sλ} ∪ {(n, λ) : n /∈ Sλ}).

For each n ∈ N and (k, λ) ∈ Λ′
n, let T(k,λ) = Tλ and αn,(k,λ) = αn,λ for

k ∈ N ∪ {0}. Then, it is easy to see that the iterative scheme {xn} coincides
with that defined in Theorem 3 with the index set Λ′. Hence we obtain the
desired result.

Next, we will assume that the index set Λ is a countable set. For the case
where Λ is finite, we may apply Example 2 with the main result.

Corollary 2. Let H and C be the same as in Theorem 3, and Λ = {0, 1, . . . ,
N − 1}. For k ∈ Λ, let Tk : C → H be a quasinonexpansive mapping and
suppose that, if both {vn} and {Tkvn} have the same strong limit x0 ∈ C for
a sequence {vn} of C, then v0 ∈ F (Tk). Let {αn : n ∈ N} be a sequence of
nonnegative real numbers such that supn∈N αn < 1. Let u ∈ H and generate a
sequence {xn} in C and a sequence {Cn} of subsets in C as follows: x1 ∈ C,
C1 = C, and

yn = αnxn + (1− αn)T(n mod N)xn,

Cn+1 = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖} ∩ Cn,

xn+1 = PCn+1u

for every n ∈ N. If F =
⋂N−1

k=0 F (Tk) is nonempty, then {xn} is well defined
and it converges strongly to PFu.

For the case where Λ is countably infinite, we have the following result by
using Example 3.
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Corollary 3. Let H and C be the same as in Theorem 3. For k ∈ N, let
Tk : C → H be a quasinonexpansive mapping and suppose that, if both {vn}
and {Tkvn} have the same strong limit x0 ∈ C for a sequence {vn} of C,
then v0 ∈ F (Tk). Let {αn : n ∈ N} be a sequence of nonnegative real numbers
such that supn∈N αn < 1. Let u ∈ H and generate a sequence {xn} in C and
a sequence {Cn} of subsets in C as follows: x1 ∈ C, C1 = C, and

yn = αnxn + (1− αn)Ti(n)xn,

Cn+1 = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖} ∩ Cn,

xn+1 = PCn+1u

for every n ∈ N, where i : N → N is the mapping defined in Example 3.
If F =

⋂∞
k=0 F (Tk) is nonempty, then {xn} is well defined and it converges

strongly to PFu.

We may apply the index set shown in Example 1 with the case where Λ = N
and consequently we get the following corollary.

Corollary 4. Let H, C, and {Tk} be the same as in Theorem 3. For each k ∈
N, let {αn,k : n ≥ k} be a family of real numbers such that lim supn→∞ αn,k <
1. Let u ∈ H and generate a sequence {xn} in C and a sequence {Cn} of
subsets in C as follows: x1 ∈ C, C1 = C, and

yn,k = αn,kxn + (1− αn,k)Tkxn for each 1 ≤ k ≤ n,

Cn+1 =

{
z ∈ H : sup

1≤k≤n
‖yn,k − z‖ ≤ ‖xn − z‖

}
∩Cn,

xn+1 = PCn+1u

for every n ∈ N. If F =
⋂∞

k=1 F (Tk) is nonempty, then {xn} is well defined
and it converges strongly to PFu.

Remark 1. Using the technique in Corollary 1, we may weaken the assumption
for the coefficients {αn,λ} and {αn} for Corollaries 2, 3, and 4. For example,
the condition that supn∈N αn < 1 appearing in Corollary 4 can be replaced
with that {αn,k} ⊂ [0, 1] and lim infn→∞ αn,k < 1 for k ∈ N.
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Note on Generalized Convex Spaces

Xiaodong Fan and Yue Cheng

Abstract. Some examples are given to show that some known generalized
convex spaces are so abstract that some basic properties related to the con-
vexity are lost. In order to improve the convexity structure for applications,
the concepts of path-convex space, path-convex set and path-convex function
are introduced. And their properties are discussed.

Keywords: Generalized convex spaces, Path-convex space, Path-convex
function.

1 Introduction

Convexity plays an important role in many aspects of mathematics. There
have been many generalizations of the concept of linear convex space under
the circumstances without linear structure, such as, H-spaces introduced by
Horvath [5] [4], L-spaces due to Ben-El-Mechaiekh et al. [1], spaces having
property [H] due to Huang [6], FC-spaces due to Ding [2] [3]. The most general
ones seem to be the G-convex space introduced by Park and Kim [12] and the
interval spaces due to Stachó [13]. Recently, Park proposed a new generalized
convex space, called KKM space [8] [10] [11], which is a generalization of G-
convex spaces. All the generalized convex spaces mentioned above contain
H-space as a special case. Observing these spaces, it is not difficult to find
that many important properties related to the convexity are lost.

In Section 2, we give some examples to show that interval spaces (H-spaces,
or Wu spaces, respectively) don’t has some basic properties for practical
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applications. In order to improve the convexity structure for applications,
we introduce a new generalized convex space, called path-convex space. And
some properties of path-convex set are discussed in Section 3. We also give
the concepts of path-convex functions and path-quasiconvex functions, and
investigate their properties.

2 Examples of Generalized Convex Spaces

A topological space E is contractible if there exists a continuous map h :
E× [0, 1]→ E, such that h(x, 0) is a constant map and h(x, 1) is the identity
map. A contractible space is path-connected, and so connected.

Definition 2.1. [5] [4]Let E be a topological space, A and A′ be finite subsets
of E. An ordered pair (E, {ΓA}) is said to be H-space if ΓA is a given family
of nonempty contractible subsets indexed by all the finite subset of E such
that A ⊂ A′ implies ΓA ⊂ ΓA′ . A subset D ⊂ E is said to be H-convex if for
any finite subset A ⊂ D it follows ΓA ⊂ D.

Denote C (E) as the family of all connected subsets of E.

Definition 2.2. [7] [13] An interval space is a pair (E, 〈·, ·〉) where E is a
topological space and 〈·, ·〉 : E × E → C (E) is a map such that x, y ∈ 〈x, y〉
for all (x, y) ∈ E × E. If furthermore 〈x, y〉 = 〈y, x〉 for all x, y ∈ E, then
(E, 〈·, ·〉) is called symmetric. Symmetric interval spaces were introduced by
Stachó [13]. Subsets C ⊂ E are called interval-convex if x, y ∈ C implies
〈x, y〉 ⊂ C.

Definition 2.3. [7]A pair (E,P ) is called a Wu space, if E is a topological
space and P : [0, 1]× E × E → E is a map such that for any pairs x, y ∈ E
we have that P (·, x, y) is continuous, P (0, x, y) = x and P (1, x, y) = y. The
map P is called Wu map.

Every Wu space (E,P ) gives rise to an interval space (E, 〈·, ·〉) with
〈x, y〉 = {P (t, x, y) : t ∈ [0, 1]}. Subsets C ⊂ E are called Wu interval-convex
if {P (t, x, y) : t ∈ [0, 1]} ⊂ C for any x, y ∈ C.

Now, we give some examples to show that interval spaces (H-spaces,
or Wu spaces, respectively) don’t has some basic properties for practical
applications.

Example 2.1

1) For any x, y ∈ R2, define 〈·, ·〉 : R2 → C (R) as in Definition 2.2 by

〈x, y〉 = B(
x + y

2
,
‖ x− y ‖

2
) = {z ∈ R2 :‖ z − x + y

2
‖≤ ‖ x− y ‖

2
}.

It is obvious that 〈x, y〉 is contractible, and so connected. We can assert the
following two consequences:

a) 〈x, y〉 is not interval-convex for any x �= y.

b) The minimal interval-convex set which contains x and y is the space R2

itself.
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In fact, take u, v ∈ 〈x, y〉 such that u, v, x, y are distinct from each other

and ‖ v − x+y
2 ‖=‖ u − x+y

2 ‖= ‖x−y‖
2 . By the definition of 〈u, v〉, it follows

that 〈u, v〉 �⊂ 〈x, y〉. Thus 〈x, y〉 is not interval-convex set. See Fig.2.1.

By the symmetries, it is suffice to consider the vertical direct as in Fig.2.1.
Suppose that x = (a, 0), y = (−a, 0), the maximal extending attains when

s = (−
√

2
2 a,

√
2

2 a) and t = (
√

2
2 a,

√
2

2 a).

Hence we obtain a bigger disc with the center at x+y
2 and the radius being√

2a. It is not interval-convex for the same reason as a). By repeating the
above process, we get a sequence of discs with radius converging to +∞.

Therefore, there are only three kinds of interval-convex sets: the empty
set, R2 and all singletons.

Fig.2.1

a x

u

y

v

〈x, y〉

〈u, v〉
R

R√
2a

2) For any A = {x1, x2, · · ·xn} ⊂ R2, define ΓA as in Definition 2.1 by

ΓA =
⋂
{C ⊂ R2 : C is contractible and 〈xi, xj〉 ⊂ C for all 1 ≤ i, j ≤ n}

where 〈xi, xj〉 = B(xi+xj

2 , ‖xi−xj‖
2 ). Thus (R2, {ΓA}) is a H-space. The con-

clusion that only empty set, R2 and singletons are H-convex sets follows from
the similar discusses as in 1).

Example 2.2

1). For any x = (x1, x2), y = (y1, y2) ∈ R2 and t ∈ [0, 1], let

P (t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+y
2 + ‖x−y‖

2 e
((1−t)π+arctan(

x2−y2
x1−y1

))i
x1 < y1

x+y
2 + ‖x−y‖

2 e(tπ+arctan(
x2−y2
x1−y1

))i x1 > y1

x+y
2 + ‖x−y‖

2 e(tπ−π
2 )i x1 = y1, x2 ≤ y2

x+y
2 + ‖x−y‖

2 e((1−t)π−π
2 )i x1 = y1, x2 > y2
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where eθi = (cos θ, sin θ). That is, {P (t, x, y) : t ∈ [0, 1]} is the semi-circle of
the disc in Example 2.1. One can deduce that the set {P (t, x, y) : t ∈ [0, 1]}
and all bounded sets are not Wu interval-convex.

2) For any x, y ∈ R2 and t ∈ [0, 1], let

P (t, x, y) =

⎧
⎨
⎩

(1− 2t)x, 0 ≤ t < 1
2

(2t− 1)y, 1
2 ≤ t ≤ 1.

Then {P (t, x, x) : t ∈ [0, 1]} = {λx : λ ∈ [0, 1]} which implies that singletons
are not Wu interval-convex for any x �= (0, 0).

3 Path-Convex Space and Path-Convex Map

In this section, we introduce a generalized convex space, called path-convex
space, in which there are enough ”convex sets”. Further, we give the concept
of path-convex functions, and discuss some properties on path-convex spaces
and path-convex maps.

Definition 3.1. An path-convex space (E;P ) consists of a topological space
E and a continuous map P : R× E × E → E satisfying, for any x, y ∈ E,

i) P (0, x, y) = x and P (1, x, y) = y ;

ii) P (t, x, x) = x for all t ∈ R;

iii) for any s1, s2 ∈ [0, 1],

{P (t, P (s1, x, y), P (s2, x, y)) : t ∈ [0, 1]} ⊂ {P (t, x, y) : t ∈ [0, 1]}.

P is said to be a path-convex structure on E.

A subset C of E is said to be path-convex if and only if P (t, x, y) ∈ C for
all x, y ∈ C and 0 < t < 1.

For any subset D of E, the path-convex hull of D, which is denoted as
coP (D), is given by

coP (D) =
⋂
{C : D ⊂ C and C is path− convex}.

Remark 3.1. Example 2.2 implies that conditions ii) and iii) are necessary
to ensure that all singletons and {P (t, x, y) : t ∈ [0, 1]} are path-convex,
respectively.

Example 3.1

1) Every convex set in topological vector space E is path-convex by taking
a path-convex structure P (t, x, y) = tx + (1− t)y.

2) We give an example of the path-convex structure in R2 as follows.

For any x = (x1, x2), y = (y1, y2) ∈ R2 and t ∈ R, let
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P (t, x, y) :=

⎧
⎨
⎩

m(x, y) + (2t− 1)(y −m(x, y)), t > 1
2

m(x, y) + (1− 2t)(x−m(x, y)), t ≤ 1
2

where m(x, y) = (min{x1, y1},min{x2, y2}).
It is obvious that coP ({x, y}) = {P (t, x, y) : 0 ≤ t ≤ 1} is path-convex in

(R2, P ). However it is not convex.

Proposition 3.1
(a) The empty set, E and all singletons are path-convex.
(b) If {Lλ : λ ∈ Λ} is an arbitrary family of path-convex sets, then

⋂
λ Lλ

is path-convex.
(c) If {Lλ : λ ∈ Λ} is a family of path-convex sets such that for any

λ1, λ2 ∈ Λ, there is λ3 ∈ Λ with Lλ1 ∪Lλ2 ⊂ Lλ3 , then
⋃

λ Lλ is path-convex.

Proposition 3.2. The following properties hold:
(a) coP (∅) = ∅, coP (E) = E, coP ({x}) = {x} for any x ∈ E.
(b) For all D ⊂ E, D ⊂ coP (D) and coP (coP (D)) = coP (D).
(c) For all D1, D2 ∈ E, if D1 ⊂ D2, then coP (D1) ⊂ coP (D2).
Propositions 3.1 and 3.2 are rather standard in the context of generalized

convexities. The proof is obvious and is omitted.

Theorem 3.1. The closure of a path-convex subset of E is path-convex.

Proof. Let C be a path-convex subset of E and C be its closure. If x =
lim

n→∞
xn and y = lim

n→∞
yn with xn, yn ∈ C for all n, from the continuity of

P , one can deduce that P (t, x, y) = lim
n→∞

P (t, xn, yn) for all t ∈ [0, 1]. Further-

more, by the path-convexity hypothesis of C, it follows that P (t, xn, yn) ∈ C
for all n. Hence P (t, x, y) ∈ C. �

Theorem 3.2. Let D be a compact subset of E. Then the path-convex hull
coP (D) is compact.

Proof. Let {Uλ : λ ∈ Λ} be any open covering of coP (D), then {P−1(Uλ) :
λ ∈ Λ} is an open covering of [0, 1]×D×D in R×E×E by the continuity of
P . Since [0, 1]×D ×D is compact, there is a finite subcovering {P−1(Uλi) :
1 ≤ i ≤ n}. Note coP ({x, y}) = {P (t, x, y) : 0 ≤ t ≤ 1} for all x, y ∈ D.
Hence {Uλi : 1 ≤ i ≤ n} is a finite subcovering of coP (D). �

Remark 3.2. Example 2.1 and 2.2 imply that Theorem 3.2 do not hold in
interval spaces, H-spaces and Wu spaces, respectively.

Definition 3.2. Let (E1;P1), (E2;P2) be two path-convex spaces, a map
T : E1 → E2 is said to be path-affine map if

T (P1(t, x, y)) = P2(t, T (x), T (y)),

for each x, y ∈ E and t ∈ R.
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Theorem 3.3. Let (E1;P1), (E2;P2) be two path-convex spaces, and T :
E1 → E2 be a path-affine map. Then for all path-convex set C of E2, the
inverse image T−1(C) is a path-convex set in E1. And for all path-convex set
D of E1, the image T (C) is a path-convex set in E2.

Proof. For any x1, x2 ∈ T−1(C), T (x1), T (x2) ∈ C. C is path-convex in
(E2;P2). Then P2(t, T (x1), T (x2)) ∈ C for all t ∈ (0, 1). Since

T (P1(t, x1, x2)) = P2(t, T (x1), T (x2)), ∀t ∈ (0, 1),

P1(t, x1, x2) ∈ T−1(C). Hence T−1(C) is a path-convex set of (E1, P1).
For any y1, y2 ∈ T (D), there are x1, x2 ∈ D such that y1 = T (x1), y2 =

T (x2). D is path-convex in (E1;P1). Then P1(t, x1, x2) ∈ D. Since

T (P1(t, x1, x2)) = P2(t, T (x1), T (x2)) = P2(t, y1, y2),

P2(t, y1, y2) ∈ T (D). Hence T (D) is a path-convex set of (E2, P2). ✷

Definition 3.3. A function f : E → R is said to be path-convex on a path-
convex set D ⊂ E if and only if

f(P (t, x, y)) ≤ tf(x) + (1− t)f(y)

for each x, y ∈ D and t ∈ [0, 1]. If −f is path-convex, then f is called path-
concave on D. If the inequality is strict for any two distinct points x and y,
f is called strictly path-convex and strictly path-concave, respectively.

Let (E;P ), (E′;P ′) be two path-convex spaces and E×E′ be equipped with
the product topology. It is easy to prove that (E×E′, P ×P ′) is also a path-
convex space. Therefore, a subset S ⊂ E×E′ is path-convex in (E×E′, P×P ′)
if we have

(P (t, x, y), P ′(t, x′, y′)) ∈ S, t ∈ (0, 1)

for any (x, x′), (y, y′) ∈ S. Especially, a subset S ⊂ E × R is path-convex if
(x, a), (y, b) ∈ S imply

(P (t, x, y), ta + (1− t)b) ∈ S, t ∈ (0, 1).

Let f be a function from E to R, we call the subset

epi(f) := {(x, a) : x ∈ E, a ∈ R, f(x) ≤ a}.

the epigraph of f . The sets

S(f, λ) := {x ∈ E : f(x) ≤ λ}, λ ∈ R

are said to be sections of f .
Next we give characterizations of a path-convex function f in terms of its

epigraph and sections.
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Theorem 3.4. A function f : E → R is path-convex if and only if its
epigraph epi(f) is path-convex in E × R.

Proof. Suppose that f is path-convex. We show that the set epi(f) is path-
convex. For any (x, a), (y, b) ∈ epi(f), one has f(x) ≤ a, f(y) ≤ b. f is
path-convex. Then f(P (t, x, y)) ≤ tf(x) + (1− t)f(y) ≤ ta + (1− t)b. Hence
(f(P (t, x, y)), ta + (1− t)b) ∈ epi(f), epi(f) is path-convex.

Conversely, assume that epi(f) is path-convex. For any x, y ∈ E, (x, f(x)),
(y, f(y)) ∈ epi(f). By the path-convexity of epi(f),

(P (t, x, y), tf(x) + (1− t)f(y)) ∈ epi(f).

Therefore f(P (t, x, y)) ≤ tf(x) + (1− t)f(y) and f is path-convex. ✷

The following properties are obvious.

Propositions 3.3. Suppose that (E;P ), (E′;P ′) are path-convex spaces, and
the functions f, g from E to R are path-convex. The following results hold.

a) f + g is path-convex.

b) If a > 0, then af is path-convex.

c) If T is a path-affine map from E′ to E, then f ◦ T is path-convex.

Theorem 3.5. Assume that {fi}i∈I is a family of path-convex functions
which are bounded above about i ∈ I on a path-convex set C ⊂ E. Then the
function f(x) = supi∈I fi(x) is path-convex on C.

Proof. Since each fi is a path-convex function on C, the epigraph of fi is
a path-convex set in E × R. From the definitions of f and epi(f), one has
epi(f) = ∩i∈Iepi(fi). Hence, by Proposition 3.1(b) and Theorem 3.4, f is a
path-convex function on C. ✷

Theorem 3.6. Let g be a path-convex function from (E × E′, P × P ′) to
R that is bounded below about y ∈ E′. Then the function f from E to R
defined by

f(x) := inf
y∈E′

g(x, y)

is path-convex.

Proof. Suppose that x1, x2 ∈ E. Then for any ǫ > 0, there exist y1, y2 ∈ E′

such that
g(xi, yi) < f(xi) + ǫ, i = 1, 2.

It follows from the path-convexity hypothesis of g that

f(P1(t, x1, x2)) ≤ g(P1(t, x1, x2), P2(t, y1, y2)) < tf(x1) + (1− t)f(x2) + ǫ

for each t ∈ [0, 1]. Let ǫ tend to 0 and the proof is completed. ✷

Definition 3.4. A function f : E → R is said to be path-quasiconvex if

f(P (t, x, y)) ≤ max{f(x), f(y)}



386 X. Fan and Y. Cheng

for all x, y ∈ E and t ∈ [0, 1]. If f(P (t, x, y)) ≥ min{f(x), f(y)} for all
x, y ∈ E and t ∈ [0, 1], f is called path-quasiconcave. If the strict inequalities
holds for any two distinct points x and y, f is called strictly path-quasiconvex
or strictly path-quasiconcave, respectively.

Theorem 3.7. A function f : E → R is path-quasiconvex if and only if its
section S(f, λ) := {x ∈ E : f(x) ≤ λ} is path-convex for each λ ∈ R.

Proof. Suppose that f is path-quasiconvex. Then, for any x, y ∈ S(f, λ)
and t ∈ [0, 1], one has f(P (t, x, y)) ≤ max{f(x), f(y)} ≤ λ. It follows that
P (t, x, y) ∈ S(f, λ) and the set S(f, λ) is path-convex.

Conversely, assume that S(f, λ) is a path-convex set for each λ ∈ R.
For any x, y ∈ E, let λ = max{f(x), f(y)}. Then x, y ∈ S(f, λ). Since
S(f, λ) is path-convex, P (t, x, y) ∈ S(f, λ) for all t ∈ [0, 1] which implies
that f(P (t, x, y)) ≤ λ = max{f(x), f(y)} for all t ∈ [0, 1]. ✷

Corollary 3.1. If f is a path-convex function from E to R, then its sections
S(f, λ) are path-convex.
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Halpern’s Iteration for a Sequence of
Quasinonexpansive Type Mappings

Koji Aoyama

Abstract. In this paper, we prove strong convergence of a Halpern’s iteration
generated by a sequence of quasinonexpansive type mappings in a Hilbert
space. Then using the result, we establish convergence theorems for a λ-
hybrid mapping and a maximal monotone operator.

Keywords: Quasinonexpansive mapping, λ-hybrid mapping, Fixed point.

1 Introduction

Let H be a Hilbert space and C a closed convex subset of H . This paper is
devoted to the study of convergence of an iterative sequence {xn} defined by
an arbitrary point x1 ∈ C and

xn+1 = αnu + (1− αn)Snxn (1)

for n ∈ N, where u is a point in C, αn is a real number in [0, 1], and Sn is a
self-mapping of C for n ∈ N. In particular, we focus on the case where each
Sn is given by the following form:

Sn =
1

n

n∑

k=1

T k−1,

where T is some quasinonexpansive self-mapping of C. Then we prove that,
under some assumptions, {xn} converges strongly to a fixed point of T .

Strong convergence of the iteration defined by (1) was established by
Shimizu and Takahashi [11] when Sn is generated by two commutative
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nonexpansive mappings; by Kamimura and Takahashi [6] when Sn is a resol-
vent of a maximal monotone operator; by Kurokawa and Takahashi [9] when
T is a nonspreading mapping introduced by Kohsaka and Takahashi [8]; by
Osilike and Isiogugu [10] when T is a strictly pseudo nonspreading mapping;
see also [5], [13], and [14].

This paper is organized as follows: In §2, we establish some preliminaries
that we need. In §3, we first prove a strong convergence theorem for a sequence
of quasinonexpansive type mappings (Theorem 1). Then using Theorem 1,
we obtain a convergence theorem for a λ-hybrid mapping (Theorem 2), which
is closely related to the results in [9, 10]. Furthermore, Theorem 1 can also
be applicable to the proof of the convergence theorem in [6]; see Corollary 2.

2 Preliminaries

Throughout the present paper, H denotes a real Hilbert space, 〈 · , · 〉 the
inner product of H , ‖ · ‖ the norm of H , C a nonempty closed convex subset
of H , I the identity mapping on H , and N the set of positive integers. Strong
convergence of a sequence {xn} in H to x is denoted by xn → x and weak
convergence by xn ⇀ x. It is clear that the following inequality holds for all
x, y ∈ H :

‖x + y‖2 ≤ ‖x‖2 + 2 〈y, x + y〉 . (2)

The metric projection of H onto C is denoted by PC , that is, PC(x) ∈ C and
‖PC(x)− x‖ ≤ ‖y − x‖ for all x ∈ H and y ∈ C. It is known that

〈x− PC(x), y − PC(x)〉 ≤ 0 (3)

for all x ∈ H and y ∈ C; see [12].

The set of fixed points of a mapping T : C → C is denoted by F (T ). A
mapping T : C → C is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x − y‖ for
all x, y ∈ H . A mapping T : C → C is said to be quasinonexpansive if F (T )
is nonempty and ‖Tx− z‖ ≤ ‖x− z‖ for all x ∈ C and z ∈ F (T ). It is known
that F (T ) is closed and convex if T is a quasinonexpansive mapping. Let λ
be a real number. A mapping T : C → C is said to be λ-hybrid [2, 3] if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2(1− λ) 〈x− Tx, y − Ty〉 (4)

for all x, y ∈ C. It is clear that T is quasinonexpansive if T is a λ-hybrid
mapping with a fixed point.

Let κ be a real number with 0 ≤ κ < 1. Then a mapping T : C → C is
said to be κ-strictly pseudononspreading [10] if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2 〈x− Tx, y − Ty〉+ κ‖x− Tx− (y − Ty)‖2

for all x, y ∈ C. We know the following result.
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Lemma 1 ( [3, Lemma 2.5]). Let H be a Hilbert space, C a nonempty
closed convex subset of H, κ and β real numbers with 0 ≤ κ ≤ β < 1, and
T : C → C a κ-strict pseudononspreading mapping. Then Tβ = βI +(1−β)T
is −β/(1− β)-hybrid.

The following lemma is a variant of [1, Lemma 3.1] and [3, Lemma 2.7].

Lemma 2. Let H be a Hilbert space, C a nonempty closed convex subset of
H, T : C → C a mapping, {ym,n} a double sequence in C, {ξm,n} a double se-
quence of real numbers, {zn} a sequence in C defined by zn = (1/n)

∑n
k=1 yk,n

for n ∈ N, and z a weak cluster point of {zn}. Suppose that {y1,n} is bounded,

ξm,n ≤ ‖ym,n − z‖2 − ‖ym+1,n − Tz‖2

for all m,n ∈ N, and (1/n)
∑n

k=1 ξk,n → 0 as n→∞. Then z is a fixed point
of T .

Proof. By assumption, it is clear that

ξk,l ≤ ‖yk,l − z‖2 − ‖yk+1,l − Tz‖2

= ‖yk,l − Tz + Tz − z‖2 − ‖yk+1,l − Tz‖2

= ‖yk,l − Tz‖2 − ‖yk+1,l − Tz‖2 + 2 〈yk,l − Tz, T z − z〉+ ‖Tz − z‖2

for every k, l ∈ N. Summing these inequalities from k = 1 to n and dividing
by n, we have

1

n

n∑

k=1

ξk,l ≤
1

n

(
‖y1,l − Tz‖2 − ‖yn+1,l − Tz‖2

)

+ 2

〈
1

n

n∑

k=1

yk,l − Tz, T z − z

〉
+ ‖Tz − z‖2

≤ 1

n
‖y1,l − Tz‖2 + 2

〈
1

n

n∑

k=1

yk,l − Tz, T z − z

〉
+ ‖Tz − z‖2

for every n, l ∈ N. Since z is a weak cluster point of {zn}, there is a subse-
quence {zni} of {zn} such that zni ⇀ z. Replacing both n and l by ni in the
above inequality, we obtain

1

ni

ni∑

k=1

ξk,ni ≤
1

ni
‖y1,ni − Tz‖2 + 2 〈zni − Tz, T z − z〉+ ‖Tz − z‖2.

Since (1/ni)
∑ni

k=1 ξk,ni → 0, {y1,ni} is bounded, and zni ⇀ z, we conclude
that

0 ≤ 2 〈z − Tz, T z − z〉+ ‖Tz − z‖2 = −‖Tz − z‖2

and hence Tz = z. ✷
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Let {Tn} be a sequence of self-mappings of C and F a nonempty closed
convex subset of H . Then we say that {Tn} satisfies the condition (S) with
respect to F if every weak cluster point of {Tnxn} belongs to F whenever
{xn} is a bounded sequence in C.

Lemma 3. Let H be a Hilbert space, C a nonempty closed convex subset of
H, λ a real number, T : C → C a λ-hybrid mapping with a fixed point, and
Sn : C → C a mapping defined by Sn = (1/n)

∑n
k=1 T

k−1 for n ∈ N, where
T 0 = I. Then {Sn} satisfies the condition (S) with respect to F (T ).

Proof. We know that T is quasinonexpansive, so F (T ) is closed and convex.
Let {xn} be a bounded sequence in C and set zn = Sn(xn) for n ∈ N. Let
{zni} be a subsequence of {zn} such that zni ⇀ z. Note that z ∈ C. Since T
is λ-hybrid, it follows from (4) that

ξm,n ≤
∥∥Tm−1xn − z

∥∥2 − ‖Tmxn − Tz‖2

for every m,n ∈ N, where ξm,n = −2(1− λ)
〈
Tm−1xn − Tmxn, z − Tz

〉
. It is

clear that zn = (1/n)
∑n

k=1 T
k−1xn for every n ∈ N and {T 0xn} = {xn} is

bounded. Since T is quasinonexpansive, {T nxn} is bounded and thus

1

n

n∑

k=1

ξk,n =
−2(1− λ)

n

n∑

k=1

〈
T k−1xn − T kxn, z − Tz

〉

= −2(1− λ)

〈
xn − T nxn

n
, z − Tz

〉
→ 0

as →∞. Therefore, Lemma 2 implies that z is a fixed point of T . This means
that {Sn} satisfies the condition (S) with respect to F (T ). ✷

A mapping A : H → 2H is said to be an operator and we can identify an
operator A : H → 2H with a subset of H×H . An operator A ⊂ H×H is said
to be monotone if 〈x− x′, y − y′〉 ≥ 0 for all (x, y), (x′, y′) ∈ A; a monotone
operator A ⊂ H×H is said to be maximal if A = B whenever B ⊂ H×H is
a monotone operator with A ⊂ B. Let A ⊂ H ×H be a maximal monotone
operator, ρ a positive real number, and A−10 the set of zero points of A,
that is, A−10 = {z ∈ H : (z, 0) ∈ A}. Then it is known that (I + ρA)−1 is a
single-valued nonexpansive self-mapping of H and F

(
(I + ρA)−1

)
= A−10.

Such a mapping (I + ρA)−1 is called the resolvent of A; see [12] for more
details.

The following lemma is a special case of [4, Lemma 3.6].

Lemma 4. Let H be a Hilbert space, A ⊂ H × H a maximal monotone
operator such that A−10 is nonempty, and {ρn} a sequence of positive real
numbers such that ρn →∞. Then

{
(I + ρnA)−1

}
satisfies the condition (S)

with respect to A−10.

To prove our result, we also need the following; see, for example, [14].
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Lemma 5. Let {ξn} be a sequence of nonnegative real numbers, {αn} a se-
quence in [0, 1], and {γn} a sequence of real numbers. Suppose that ξn+1 ≤
(1 − αn)ξn + αnγn for all n ∈ N, lim supn→∞ γn ≤ 0, and

∑∞
n=1 αn = ∞.

Then ξn → 0.

3 Strong Convergence Theorems

In this section, we first prove strong convergence of a Halpern’s iteration
generated by a sequence of quasinonexpansive type mappings.

Theorem 1. Let H be a Hilbert space, C a nonempty closed convex sub-
set of H, u a point in C, and {αn} a sequence in [0, 1] such that αn → 0
and

∑∞
n=1 αn = ∞. Let {Sn} be a sequence of self-mappings of C and F a

nonempty closed convex subset of C. Suppose that

‖Sny − z‖ ≤ ‖y − z‖ (5)

for all n ∈ N, y ∈ C, and z ∈ F , and that {Sn} satisfies the condition (S)
with respect to F . Let {xn} be a sequence in C defined by x1 ∈ C and

xn+1 = αnu + (1− αn)Snxn (6)

for n ∈ N. Then {xn} converges strongly to PF (u).

Proof. Set w = PF (u). We first show that {xn} and {Snxn} are bounded.
Since w ∈ F , it follows from (6) and (5) that

‖xn+1 − w‖ ≤ αn‖u− w‖ + (1− αn)‖Snxn − w‖
≤ αn‖u− w‖ + (1− αn)‖xn − w‖,

so, by induction on n,

‖Snxn − w‖ ≤ ‖xn − w‖ ≤ max{‖x1 − w‖, ‖u− w‖}

for every n ∈ N. Therefore, {xn} and {Snxn} are bounded.
We next show lim supn→∞ 〈u− w, xn+1 − w〉 ≤ 0. By the boundedness of

{Snxn}, it follows from (6) and αn → 0 that

xn+1 − Snxn = αn(u− Snxn)→ 0. (7)

The boundedness of {Snxn} also implies that there exists a strictly increasing
sequence {ni} in N such that Snixni ⇀ v and

lim sup
n→∞

〈u− w, xn+1 − w〉 = lim
i→∞

〈u− w, xni+1 − w〉 .
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Since {xn} is bounded and {Sn} satisfies the condition (S) with respect to
F , it follows from (7) that xni+1 ⇀ v ∈ F . Therefore, by (3), we conclude
that

lim sup
n→∞

〈u− w, xn+1 − w〉 = 〈u− w, v − w〉 ≤ 0. (8)

Lastly, we show that {xn} converges strongly to w. Since αn ∈ [0, 1], it
follows from (2) and (5) that

‖xn+1 − w‖2 = ‖(1− αn)(Snxn − w) + αn(u− w)‖2

≤ ‖(1− αn)(Snxn − w)‖2 + 2 〈αn(u− w), xn+1 − w〉
= (1− αn)2‖Snxn − w‖2 + 2αn 〈u− w, xn+1 − w〉
≤ (1− αn)‖xn − w‖2 + 2αn 〈u− w, xn+1 − w〉

for every n ∈ N. Thus Lemma 5 and (8) imply that xn → w. ✷

Remark 1. In Theorem 1, if we assume that each Sn is quasinonexpansive and
F =

⋂∞
n=1 F (Sn) is nonempty, then it is clear that (5) holds for all y ∈ C

and z ∈ F .

Using Theorem 1, we obtain the following strong convergence theorem for a
λ-hybrid mapping.

Theorem 2. Let H, C, u, and {αn} be the same as in Theorem 1. Let λ
be a real number, T : C → C a λ-hybrid mapping with a fixed point, and
Sn : C → C a mapping defined by

Sn =
1

n

n∑

k=1

T k−1

for n ∈ N, where T 0 = I. Let {xn} be a sequence in C defined by x1 ∈ C
and (6) for n ∈ N. Then {xn} converges strongly to PF (T )(u).

Proof. Since T is quasinonexpansive, it is clear that

‖Sny − z‖ =

∥∥∥∥∥
1

n

n∑

k=1

T k−1y − z

∥∥∥∥∥

≤ 1

n

n∑

k=1

∥∥T k−1y − z
∥∥

≤ 1

n

n∑

k=1

‖y − z‖ = ‖y − z‖

for all y ∈ C and z ∈ F (T ). Thus (5) holds. Moreover, Lemma 3 shows that
{Sn} satisfies the condition (S) with respect to F (T ). Therefore, Theorem 1
implies the conclusion. ✷
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A direct consequence of Theorem 2 is the following result.

Corollary 1 ( [10, Theorem 3.2]). Let H, C, u, and {αn} be the same as
in Theorem 1. Let κ and β be real numbers with 0 ≤ κ ≤ β < 1, T : C → C
a κ-strictly pseudononspreading mapping with a fixed point, and Sn : C → C
a mapping defined by

Sn =
1

n

n∑

k=1

(Tβ)k−1

for n ∈ N, where Tβ = βI + (1− β)T and (Tβ)0 = I. Let {xn} be a sequence
in C defined by x1 ∈ C and (6) for n ∈ N. Then {xn} converges strongly to
PF (T )(u).

Proof. By Lemma 1, we know that Tβ is a −β/(1 − β)-hybrid self-mapping
of C. It is obvious that F (Tβ) = F (T ) �= ∅. Therefore, Theorem 2 implies the
conclusion. ✷

Remark 2. In [10, Theorem 3.2], {αn} is assumed to be a sequence in [0, 1).
If κ = β = 0 in Corollary 1, then we obtain [9]*Theorem 4.1.

Theorem 1 also implies the following result proved in [6]; see also [7].

Corollary 2 ( [6, Theorem 1]). Let H and {αn} be the same as in Theo-
rem 1. Let u be a point in H, A ⊂ H×H a maximal monotone operator with
a zero point, and {ρn} a sequence of positive real numbers such that ρn →∞.
Let {xn} be a sequence in C defined by x1 ∈ C and

xn+1 = αnu + (1− αn)(I + ρnA)−1xn

for n ∈ N. Then {xn} converges strongly to PA−10(u).

Proof. Set Sn = (I + ρnA)−1 for n ∈ N. Since Sn is nonexpansive and
F (Sn) = A−10, it follows that ‖Sny − z‖ ≤ ‖y − z‖ for all y ∈ H and
z ∈ A−10. Thus (5) holds. Moreover, Lemma 4 shows that {Sn} satisfies
the condition (S) with respect to A−10. Therefore, Theorem 1 implies the
conclusion.

Remark 3. In [6, Theorem 1], the initial point x1 is assumed to be u.
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Convergence of Iterative Methods for
an Infinite Family of
Pseudo-contractions

Yuanheng Wang and Jiashuai Dong

Abstract. In this paper, we establish some strong convergence theorems for
an infinitely countable family of Lipschitzian pseudo-contractions in Hilbert
spaces by proposing some kinds of new iterative methods. The results here ex-
tend and improve the corresponding results of other authors’, such as Haiyun
Zhou [Convergence theorems of fixed points for Lipschitz pseudo-contractions
in Hilbert spaces, J Math Anal Appl 343: 546-556 ], Marino G and Xu H
K [Weak and strong convergence theorems for strict pseudo-contractions in
Hilbert spaces, J Math Anal Appl 329(1): 336-346 ], Rhoades B E [Fixed
point iterations using infinite matrices, Trans Amer Math Soc 196: 162-176].

Keywords: Infinite family of pseudo-contractions, Lipschitz mapping, Iter-
ative algorithm, Strong convergence theorem.

1 Introduction

Mann’s iteration algorithm which was introduced by Mann [2] generates a
sequence {xn} by the following manner:

∀x0 ∈ C, xn+1 = αnxn + (1 − αn)Txn, n ≥ 0,

where {αn} is a real sequence in (0,1) which satisfies certain control
conditions.

In 1967, Browder and Petryshyn [1] established the first convergence re-
sult for κ-strict pseudo-contractions in real Hilbert spaces. They proved weak
and strong convergence theorems by using Mann’s algorithm with a constant
control sequence αn = α for all n. Afterward, Rhoades [5] generalized in part
the corresponding results in [1] in the sense that a variable control sequence
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was taken into consideration. Under assumption that the domain of mapping
T is compact convex, he established a strong convergence theorem by us-
ing Mann’s algorithm with a control sequence {αn} satisfying the conditions
α0 = 1, 0 < αn < 1, Σ∞

n=0(1 − αn) = ∞ and lim supn→∞ αn = α > κ.
However, without compact assumption on the domain of mapping T, in gen-
eral, one cannot expect to infer any weak convergence results from Rhoades’s
convergence theorem. In 2007, Marino and Xu [3] have proved a weak con-
vergence theorem by using Mann’s algorithm with a control sequence {αn}
satisfying the conditions κ < αn < 1 and Σ∞

n=0(αn − κ)(1 − αn) = ∞.
Their convergence theorem extends and improves the corresponding results
in [2,5]. In 2009, Zhou [7] improves and extends Marino and Xu’s convergence
theorems (Theorems 3.1 and 4.1) by virtue of new analysis techniques. The
purpose of this paper is to extend the results of Zhou [6] to an an infinitely
countable family of Lipschitzian pseudo-contractions in Hilbert spaces by
proposing some kinds of new iterative methods. The results here improve the
corresponding results of other authors’( [1] [5] [3] [4][6]).

2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space with inner
product 〈·, ·〉 and C is a nonempty closed convex subset of H. Let ωω(xn) =
{x : ∃xnk

⇀ x} denote the weak ω-limit set of {xn} and let N denote the set
{1, 2, · · · , n, · · · }. Recall that T: C → C is called a κ-strict pseudo-contraction
if there exists a constant κ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2

for all x, y ∈ C.
When κ = 0, T is said to be nonexpansive; when κ = 1, T is said to be

pseudo-contractive. Clearly, the class of κ-strict pseudo-contractions falls into
the one between classes of nonexpansive mappings and pseudo-contractions.
T is said to be strongly pseudo-contractive, if there exists a positive constant
λ ∈ (0, 1) such that T +λI is pseudo-contractive. We remark that the class of
strongly pseudo-contractive mappings is independent of the class of κ-strict
pseudo-contractions. We also remark in passing that if T is a κ-strict pseudo-
contraction, then it is Lipschitz continuous, and a pseudo- contraction may
be not continuous.

Lemma 1. ([6]) (Demi-closedness principle) Let C be a nonempty closed
convex subset of a real Hilbert space H and T : C → C be a demicontinuous
pseudo-contractive self-mapping from C into itself. Then F(T) is a closed
convex subset of C and I-T is demiclosed at zero.

Lemma 2. ([3]) Let H be a real Hilbert space. ∀x, y ∈ H , there hold the
following identities
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(a) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2;
(b) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2;
(c) ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Lemma 3. ([6]) Let C be a nonempty closed convex subset of a real Hilbert
space H. For every x ∈ H, there exists a unique point z ∈ C such that ‖x−z‖ ≤
‖x− y‖, for all y ∈ C. Define PC : H → C by z = PCx. Then z = PCx if and
only if for all y ∈ C, the following inequality holds: 〈x− z, y − z〉 ≤ 0.

Lemma 4. ([8]) Let C be a nonempty closed convex subset of a real Hilbert
space H and PC : H → C be the metric projection from H onto C. Then for
all x ∈ H, y ∈ C, the following inequality holds

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2.

3 Main Results

In this section, we propose several iterative algorithms for an infinitely count-
able family of Lipschitzian pseudo-contractions in Hilbert spaces.

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert space
H and let {Ti}∞i=1 : C → C be an infinitely countable family of Lipschitzian
pseudo-contractions such that F =

⋂∞
i=1 F (Ti) �= φ. Assume the control

sequences {αn,i}, {βn,i} are chosen in (0,1) satisfying the conditions:

(a) βn,i ≤ αn,i, ∀n ≥ 0, i ∈ N.
(b) lim infn→∞ αn,i > 0, i ∈ N.
(c) lim supn→∞ αn,i ≤ αi ≤ 1√

1+L2
i +1

, i ∈ N.

where Li is the Lipschitzian constant of Ti. The sequence {xn} is given by
the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn,i = (1− αn,i)xn + αn,iTixn,

zn,i = (1− βn,i)xn + βn,iTiyn,i,

Cn,i = {z ∈ C : ‖zn,i − z‖2 ≤ ‖xn − z‖2 − αn,iβn,i(1 − 2αn,i

− L2
iα

2
n,i)‖xn − Tixn‖2}, Cn =

∞⋂

i=1

Cn,i,

Q0 = C,Qn = {z ∈ Qn−1 : 〈z − xn, x− xn〉 ≤ 0}, n ≥ 1,

xn+1 = PCn
⋂

Qn
x, n = 0, 1, 2, · · · , i ∈ N.

(1)

Then the sequence {xn} converges strongly to PFx, where PF is the metric
projection from H onto F.
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Proof: We split the proof into seven steps.

Step1. Show that PF is well defined for every x ∈ C. By Lemma 1, we
know F (Ti) is closed and convex for every i ∈ N. F =

⋂∞
i=1 F (Ti) is nonempty

by our assumption. Therefore, F is a nonempty closed convex subset of C.
Consequently, PF is well defined for every x ∈ C.

Step2. Show that Cn and Qn are closed and convex for all n ≥ 0. This
follows from the constructions of Cn and Qn. We omit the details.

Step3. Show that F ⊂ Cn

⋂
Qn for all n ≥ 0. We first prove F ⊂ Cn.

Let p ∈ F and let n ≥ 0. Then, using the definition of pseudo-contraction,
(1) and Lemma 2, we have

‖zn,i − p‖2 = ‖(1− βn,i)(xn − p) + βn,i(Tiyn,i − p)‖2

= (1− βn,i)‖xn − p‖2 + βn,i‖Tiyn,i − p‖2 − βn,i(1− βn,i)‖xn − Tiyn,i‖2

≤ (1− βn,i)‖xn − p‖2 + βn,i(‖yn,i − p‖2 + ‖Tiyn,i − yn,i‖2)
− βn,i(1 − βn,i)‖xn − Tiyn,i‖2.

(2)

we also have

‖Tiyn,i − yn,i‖2 = ‖(1− αn,i)(xn − Tiyn,i) + αn,i(Tixn − Tiyn,i‖2

= (1− αn,i)‖xn−Tiyn,i‖2+ αn,i‖Tixn− Tiyn,i‖2−αn,i(1− αn,i)‖xn− Tixn‖2

≤ (1− αn,i)‖xn−Tiyn,i‖2 + αn,iL
2
i ‖xn − yn,i‖2−αn,i(1− αn,i)‖xn− Tixn‖2

= (1− αn,i)‖xn−Tiyn,i‖2 + α3
n,iL

2
i ‖xn − Tixn‖2−αn,i(1− αn,i)‖xn−Tixn‖2

= (1− αn,i)‖xn− Tiyn,i‖2 + αn,i(α
2
n,iL

2
i + αn,i − 1)‖xn− Tixn‖2,

(3)

and

‖yn,i − p‖2 = ‖(1− αn,i)(xn − p) + αn,i(Tixn − p)‖2

= (1 − αn,i)‖xn − p‖2 + αn,i‖Tixn − p‖2 − αn,i(1− αn,i)‖xn − Tixn‖2

≤ (1 − αn,i)‖xn − p‖2 + αn,i‖xn − p‖2 + αn,i‖xn − Tixn‖2−
αn,i(1− αn,i)‖xn − Tixn‖2 = ‖xn − p‖2 + α2

n,i‖xn − Tixn‖2.

(4)

Substituting (3) and (4) into (2) yields

‖zn,i − p‖2 ≤ (1− βn,i)‖xn − p‖2 + βn,i‖xn − p‖2

+ βn,iα
2
n,i‖xn − Tixn‖2 + βn,i(1− αn,i)‖xn − Tiyn,i‖2

+ αn,iβn,i(α
2
n,iL

2
i + αn,i − 1)‖xn − Tixn‖2 − βn,i(1− βn,i)‖xn − Tiyn,i‖2

= ‖xn − p‖2 + βn,i(βn,i − αn,i)‖xn − Tiyn,i‖2

+ αn,iβn,i(α
2
n,iL

2
i + 2αn,i − 1)‖xn − Tixn‖2.

(5)
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From condition (a), we have βn,i(βn,i − αn,i) ≤ 0, and hence

|zn,i − p‖2 = ‖xn − p‖2 + αn,iβn,i(α
2
n,iL

2
i + 2αn,i − 1)‖xn − Tixn‖2

= ‖xn − p‖2 − αn,iβn,i(1− 2αn,i − α2
n,iL

2
i )‖xn − Tixn‖2,

(6)

which shows that p ∈ Cn,i for all n ≥ 0, i ∈ N. This proves that F ⊂ Cn,i for
all n ≥ 0, and hence F ⊂ Cn for all n ≥ 0.

Next we prove F (T ) ⊂ Qn for all n ≥ 0. We prove this by induction. For
n=0, we have F (T ) ⊂ C = Q0. Assume that F (T ) ⊂ Qn. Since xn+1 is the
projection of x onto Cn

⋂
Qn, by Lemma 3, we have 〈xn+1−z, x−xn+1〉 ≥ 0,

for any z ∈ Cn

⋂
Qn. As F ⊂ Cn

⋂
Qn by the induction assumption, the last

inequality holds, in particular, for all p ∈ F . This together with the definition
of Qn+1 implies that F ⊂ Qn+1. Hence, F ⊂ Cn

⋂
Qn for all n ≥ 0.

Step4. Show that limn→∞ ‖xn − x‖ exists. In view of (2) and Lemma 3,
we have xn = PQnx, which means that for any z ∈ Qn, ‖xn − x‖ ≤ ‖z − x‖.
Since xn+1 ∈ Qn and p ∈ F (T ) ⊂ Qn, we obtain ‖xn−x‖ ≤ ‖xn+1−x‖, and
‖xn − x‖ ≤ ‖p− x‖, for all n ≥ 0. Consequently, limn→∞ ‖xn − x‖ exists.

Step5. Show that xn → p ∈ C, as n→ ∞. For m > n, by the definition
of Qn, we see that Qm ⊂ Qn. Noting that xm = PQmx and xn = PQnx, by
Lemma 4, we conclude that ‖xm−xn‖2 ≤ ‖xm−x‖2−‖xn−x‖2. In view of
step 4, we deduce that xm−xn → 0 as m,n→∞, which means that {xn} is
cauchy. Since H is complete and C is closed, we can assume that xn → p ∈ C,
n→∞. In particular, we obtain that ‖xn+1 − xn‖ → 0 as n→∞.

Step6. Show that ‖xn − Tixn‖ → 0, as n → ∞, i ∈ N. By the fact
xn+1 ∈ Cn,i, we have

‖xn+1 − zn,i‖2 ≤ ‖xn+1 − xn‖2

− αn,iβn,i(1− 2αn,i − α2
n,iL

2
i )‖xn − Tixn‖2,

(7)

‖xn+1 − zn,i‖2 = ‖xn+1 − xn‖2

+ 2〈xn+1 − xn, xn − zn,i〉+ ‖xn − zn,i‖2.
(8)

Combining (7) and (8), and noting that zn,i = (1 − βn,i)xn + βn,iTiyn,i, we
get

β2
n,i‖xn − Tiyn,i‖2 + 2βn,i〈xn+1 − xn, xn − Tiyn,i〉

≤ −αn,iβn,i(1− 2αn,i − α2
n,iL

2
i )‖xn − Tixn‖2.

(9)

Since βn,i > 0 for all n ≥ 0, canceling βn,i in (9), we get

βn,i‖xn − Tiyn,i‖2 + 2〈xn+1 − xn, xn − Tiyn,i〉
≤ −αn,i(1− 2αn,i − α2

n,iL
2
i )‖xn − Tixn‖2.

(10)
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From the assumption on {αn} and noting that {Tiyn,i} is bounded, we see
that there exist positive constants ai, bi and Mi such that

bi(1− 2ai − a2
iL

2
i )‖xn − Tixn‖2 ≤Mi‖xn+1 − xn‖. (11)

for n large enough, where Mi = 2 sup{‖xn − Tiyn‖ : n ≥ 0}. Indeed, we can
choose ai ∈ (αi,

1√
1+L2

i +1
). For such ai, αn,i < ai for all n ≥ 0. Noting that

the function fi(t) = 1− 2t−Lit
2 is strictly decreasing in (0,1), we infer that

(1− 2αn,i − α2
n,iL

2
i ) > (1− 2ai − a2

iL
2
i ) > 0. (12)

Choosing bi ∈ (0, ci), where ci = lim infn→∞ αn,i, we have that αn,i > bi for
all n ≥ 0. This together with (10) and (12), deduces to (11). It follows from
step 5 that ‖xn − Tixn‖ → 0, as n→∞, i ∈ N.

Step7. Show that p = PFx. Since xn → p and ∀i ∈ N , ‖xn− Tixn‖ → 0,
as n → ∞, we have that p = Tip, and hence p ∈ F . From step 3, we know
that F ⊂ Qn for all n ≥ 0, hence, by using Lemma 3, for arbitrary z ∈ F ,
we have 〈z − xn, x− xn〉 ≤ 0. This leads 〈z − p, x− p〉 ≤ 0 for all z ∈ F . By
Lemma 3, we conclude that p = PFx.

Remark 1. From the proof process of Theorem 1, we can see that the
construction of Qn is a strong condition which ensures that {xn} is cauchy,
and hence {xn} strongly converges a point in C. In the next theorem, we
modify the algorithm used in Theorem 1 so that the strong convergence is
still obtained but the assumption on Qn is weakened.

Theorem 2. Let C be a nonempty closed convex subset of a real Hilbert
space H and let {Ti}∞i=1 : C → C be an infinitely countable family of Lip-
schitzian pseudo-contractions such that F =

⋂∞
i=1 F (Ti) �= φ. Assume the

control sequences {αn,i}, {βn,i} are chosen in (0,1) satisfying the conditions
(a) βn,i ≤ αn,i, ∀n ≥ 0, i ∈ N;
(b) lim infn→∞ αn,i > 0, i ∈ N;
(c) lim supn→∞ αn,i ≤ αi ≤ 1√

1+L2
i +1

, i ∈ N,

where Li is the Lipschitzian constant of Ti. The sequence {xn} is given by
the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn,i = (1 − αn,i)xn + αn,iTixn,

zn,i = (1 − βn,i)xn + βn,iTiyn,i,

Cn,i = {z ∈ C : ‖zn,i − z‖2 ≤ ‖xn − z‖2 − αn,iβn,i(1− 2αn,i

− L2
iα

2
n,i)‖xn − Tixn‖2}, Cn =

∞⋂

i=1

Cn,i,

Qn = {z ∈ C : 〈z − xn, x− xn〉 ≤ 0},
xn+1 = PCn

⋂
Qn

x, n = 0, 1, 2, · · · , i ∈ N.

(13)
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Then the sequence {xn} converges strongly to PFx, where PF is the metric
projection from H onto F.

Proof: We split the proof into nine steps. Following the proof lines of Theo-
rem 1, we can also show which are right from Step1 to Step6.

Step7. ωω(xn) ⊂ F . In fact, since {xn} is a bounded set in H, we see
that ωω(xn) �= φ, consequently, there exists a subsequence {xnk

} of {xn}
converging weakly to p for each p ∈ ωω(xn). By Step 6, we have ‖xnk

−
Tixnk

‖ → 0, as k →∞. By Lemma 1, we get p = Tip, and hence p ∈ F .
Step8. {xn} converges weakly to v = PFx. By Lemma 1, we see that F is

a nonempty closed convex subset of H, hence v = PFx is determined uniquely.
Suppose that any subsequence {xnk

} of {xn} such that xnk
⇀ p ∈ F . In view

of the weak lower semi-continuity of the norm, we get

‖x− v‖ ≤ ‖x− p‖ ≤ lim inf
k→∞

‖x− xnk
‖ ≤ lim sup

k→∞
‖x− xnk

‖ ≤ ‖x− v‖.

Thus, we obtain ‖x − p‖ = ‖x − v‖, this implies p = v. Therefore, {xn}
converges weakly to v = PFx.

Step9. {xn} converges strongly to v = PFx. By Lemma 2, we have

‖xn − xm‖2 = ‖xn − x + x− xm‖2

= 2‖xn − x‖2 + 2‖x− xm‖2 − ‖xn + xm − 2x‖2

= 2‖xn − x‖2 + 2‖x− xm‖2 − 4‖xn + xm

2
− x‖2.

By step 8, we have known that xn+xm

2 converges weakly to v as m, n → ∞.
By the weak lower semi-continuity of the norm, we obtain

lim inf
m,n→∞

‖xn + xm

2
− x‖2 ≥ ‖x− v‖2.

Taking the superior limit on the both sides, we get

lim sup
m,n→∞

‖xn − xm‖2 ≤ 2 lim
n→∞

‖xn − x‖2 + 2 lim
n→∞

‖x− xm‖2

− 4 lim inf
m,n→∞

‖xn + xm

2
− x‖2 ≤ 2d2 + 2d2 − 4‖v − x‖2

≤ 4(d2 − ‖v − x‖2) ≤ 0.

Hence, {xn} is a cauchy sequence. It follows from step 7 in Theorem 1 that
xn → v as n →∞. This completes the proof.

Remark 2. Theorem 2 extends Theorem 3.6 in Zhou[6] to an infinitely count-
able family of Lipschitzian pseudo-contractions.
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Existence of Fixed Points of
Nonspreading Mappings with
Bregman Distances

Fumiaki Kohsaka

Abstract. We propose a notion of nonspreading mapping with respect to a
Bregman distance in a Banach space. We investigate the existence of a fixed
point of such a mapping. The proposed class of mappings is related to zero
point problems for monotone operators in Banach spaces.

Keywords: Banach space, Bregman distance, Dg-nonspreading mapping,
firmly nonexpansive mapping, fixed point theorem.

1 Introduction

Many nonlinear problems in optimization and nonlinear analysis can be for-
mulated as the problem of solving the inclusion 0 ∈ Au for a maximal mono-
tone operator A : X → 2X∗

defined in a real Banach space X . Such a point
u is called a zero point of A and the set of all zero points of A is denoted by
A−10.

The resolvent TA = (∇g+A)−1∇g of the operator A plays a central role in
the study of approximation of a zero point of A, where g : X → (−∞,+∞] is
a suitably chosen differentiable convex function. The mapping TA is Dg-firm
in the sense of Bauschke, Borwein, and Combettes [1], where Dg denotes the
Bregman distance [3] with respect to g, and the fixed point set F (TA) of TA

coincides with A−10.
In this paper, we propose a notion of Dg-nonspreading mapping; see for-

mula (5). As we see in Section 2, every Dg-firm mapping is Dg-nonspreading.
In the particular case when g = ‖ · ‖2/2 in a smooth Banach space X ,
the notions of Dg-nonspreading mapping and Dg-firm mapping coincide
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with the notions of nonspreading mapping [7] and firmly nonexpansive-type
mapping [6], respectively. We study the existence of fixed points of Dg-
nonspreading mappings in reflexive Banach spaces. The obtained results gen-
eralize the corresponding results obtained in [6, 7, 10].

2 Preliminaries

In what follows, unless otherwise specified, X is a reflexive real Banach space
and C is a nonempty, closed, and convex subset of X . We denote the conjugate
space of X by X∗. For x ∈ X and x∗ ∈ X∗, x∗(x) is also denoted by 〈x, x∗〉.
The norms of X and X∗ are denoted by ‖ · ‖. The closed ball with radius
r > 0 centered at 0 ∈ X is denoted by rBX . The interior and the closure
of a subset E of X (with respect to the norm topology of X) are denoted
by IntE and E, respectively. The set of all real numbers and the set of all
positive integers are denoted by R and N, respectively. We also denote the set
R ∪ {+∞} by (−∞,+∞]. The set of all proper, lower semicontinuous, and
convex functions of X into (−∞,+∞] is denoted by Γ (X). The fixed point
set of a mapping T : C → X is denoted by F (T ).

Let g ∈ Γ (X) be a function. The effective domain of g is the set
D(g) = {x ∈ X : g(x) ∈ R}. The function g is said to be strictly convex
on a nonempty subset E of D(g) if g(αx + (1 − α)y) < αg(x) + (1− α)g(y)
whenever x, y ∈ E, x �= y, and 0 < α < 1. The function g is said to be
coercive (resp. strongly coercive) if g(xn) → +∞ (resp. g(xn)/‖xn‖ → +∞)
whenever {xn} is a sequence of X such that ‖xn‖ → +∞. The function g is
said to be bounded on bounded sets if g(rBX) is bounded for all r > 0. In
particular, this condition implies that D(g) = X . For g ∈ Γ (X), we denote
the subdifferential of g and the conjugate function of g by ∂g and g∗, respec-
tively. It is well-known that g∗ ∈ Γ (X∗) and ∂g∗ = (∂g)−1, where the latter
follows from the reflexivity of X .

Let g ∈ Γ (X) be a function and let x ∈ IntD(g) be a point. The
directional derivative of g at x in the direction h ∈ X is defined by
d+g(x)(h) = limt↓0

(
g(x + th) − g(x)

)
/t. The mapping d+g(x) : X → R is

continuous and sublinear. The function g is also said to be Gâteaux differen-
tiable at x if d+g(x)(−h) = −d+g(x)(h) for all h ∈ X . In this case, d+g(x) is
also denoted by ∇g(x). Under the assumptions on g and x, this is equivalent
to any one of the following assertions holds: d+g(x) ∈ X∗; ∂g(x) consists of
one point. Thus ∂g(x) = ∇g(x) holds. The function g is said to be Gâteaux
differentiable on IntD(g) if it is Gâteaux differentiable at any x ∈ IntD(g).
See [2, 4, 11] for more information on convex analysis. We need the following
propositions:

Proposition 1 (see [9]). Every coercive function in Γ (X) has a minimizer
over X.

Proposition 2 (see [2,11]). Let g ∈ Γ (X) be a function. Then g is strongly
coercive if and only if g∗ is bounded on bounded sets.
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Proposition 3. Let g ∈ Γ (X) be a real valued and strongly coercive function
which is Gâteaux differentiable and strictly convex on X. Then ∇g : X → X∗

is a bijection, g∗ is Gâteaux differentiable on X∗, and ∇g∗ = (∇g)−1.

Proof. By assumption, we have ∂g(x) = ∇g(x) for all x ∈ X . We first show
that ∇g is onto. Let x∗ ∈ X∗ be given. Since X is reflexive and the function
f = g − x∗ ∈ Γ (X) is strongly coercive, Proposition 1 implies that there
exists u ∈ X such that f(u) = inf f(X), and consequently, ∇g(u) = x∗.
Thus ∇g is surjective. The strict convexity of g on X implies that ∇g is
injective; see [4]. By Proposition 2, we also know that D(g∗) = X∗. Since
X is reflexive, we have ∂g∗ = (∂g)−1 = (∇g)−1. Since ∇g is a bijection, we
know that ∂g∗(x∗) consists of one point for all x∗ ∈ X∗. Consequently, g∗ is
Gâteaux differentiable on X∗ and ∇g∗ = (∇g)−1. ✷

Let g ∈ Γ (X) be a function such that g is Gâteaux differentiable on IntD(g).
The Bregman distance [3] Dg : X × IntD(g) → [0,+∞] with respect to g
is defined by Dg(y, x) = g(y) − 〈y − x,∇g(x)〉 − g(x) for all y ∈ X and
x ∈ IntD(g). It is obvious that Dg(y, x) ≥ 0 and Dg(x, x) = 0 for all y ∈ X
and x ∈ IntD(g). The following follows from the definition of Dg:

〈x − y,∇g(z)−∇g(w)〉 = Dg(x,w) + Dg(y, z)−Dg(x, z)−Dg(y, w) (1)

for all x, y ∈ D(g) and z, w ∈ IntD(g). In particular,

〈x− z,∇g(z)−∇g(y)〉 = Dg(x, y)−Dg(x, z)−Dg(z, y) (2)

holds for all x ∈ D(g) and y, z ∈ IntD(g). If g is also strictly convex on
IntD(g), then y = x whenever y, x ∈ IntD(g) and Dg(y, x) = 0. See [2,4] for
more information on Bregman distance.

Let X be a smooth, strictly convex, and reflexive Banach space, let p be
a real number such that 1 < p < +∞, and let g = ‖ · ‖p/p. Then it obviously
holds that g ∈ Γ (X), D(g) = X , g is strongly coercive, and bounded on
bounded sets. We also know that g is Gâteaux differentiable and strictly
convex on X ; see [2, 11]. In this case, Dg : X ×X → [0,+∞) is given by

Dg(y, x) =
1

p

{
‖y‖p − p〈y, Jpx〉+ (p− 1)‖x‖p

}
(3)

for all y, x ∈ X , where Jp denotes the duality mapping of X into X∗ with
respect to the weight function ω(t) = tp−1 given by

Jpx =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1

}
(4)

for all x ∈ X .
Let E be a nonempty subset of X and let g ∈ Γ (X) be a function such

that g is Gâteaux differentiable on IntD(g) and E ⊂ IntD(g). Then we say
that a mapping T : E → IntD(g) is Dg-nonspreading (or nonspreading with
respect to Dg) if
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Dg(Tx, T y) + Dg(Ty, Tx) ≤ Dg(Tx, y) + Dg(Ty, x) (5)

for all x, y ∈ E. A mapping T : E → IntD(g) is also said to be Dg-firm (or
firm with respect to Dg) [1] if

〈
Tx− Ty,∇g(Tx)−∇g(Ty)

〉
≤
〈
Tx− Ty,∇g(x)−∇g(y)

〉

for all x, y ∈ E. It follows from (1) that every Dg-firm mapping is Dg-
nonspreading. In fact, T : E → IntD(g) is Dg-firm if and only if

Dg(Tx, T y) + Dg(Ty, Tx) ≤ Dg(Tx, y) + Dg(Ty, x)

−Dg(Tx, x)−Dg(Ty, y)

for all x, y ∈ E. If g = ‖ · ‖2/2 and X is a Hilbert space, then T is Dg-firm if
and only if it is firmly nonexpansive in the classical sense, i.e., ‖Tx−Ty‖2 ≤
〈Tx− Ty, x− y〉 for all x, y ∈ E.

Let g ∈ Γ (X) be a strongly coercive function such that g is Gâteaux
differentiable and strictly convex on IntD(g) and C ⊂ IntD(g). Fix x ∈
IntD(g). By Proposition 1 and the strict convexity of g, there exists a unique
yx ∈ C such that Dg(yx, x) = infy∈C Dg(y, x). The mapping Π g

C : IntD(g) →
C defined by Π g

Cx = yx for all x ∈ IntD(g) is called the Bregman projection
of IntD(g) onto C. It is known that if x ∈ IntD(g) and z ∈ C, then

z = Π g
Cx⇐⇒ sup

y∈C
〈y − z,∇g(x)−∇g(z)〉 ≤ 0. (6)

It is also known [1] that Π g
C is Dg-firm and F (Π g

C) = C.
An operator A : X → 2X∗

is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0
whenever x∗ ∈ Ax and y∗ ∈ Ay. The domain and the range of A are defined
by D(A) = {x ∈ X : Ax �= ∅} and R(A) =

⋃
x∈X Ax, respectively. Let g ∈

Γ (X) be a function such that g is Gâteaux differentiable and strictly convex
on IntD(g) and C ⊂ IntD(g). Suppose that A : X → 2X∗

is a monotone
operator such that D(A) ⊂ C ⊂ (∇g)−1R(∇g + A). Then for each x ∈ C,
there exists a unique zx ∈ D(A) such that ∇g(x) ∈ ∇g(zx) + Azx. The
mapping TA : C → C defined by TAx = zx for all x ∈ C is called the resolvent
of A with respect to g. In other words, TAx = (∇g+A)−1∇g(x) for all x ∈ C.
It is known [1] that TA is Dg-firm and F (TA) = A−10. If we additionally
assume that D(g) = X = C, g is strongly coercive, bounded on bounded
sets, and A is maximal monotone, then R(∇g + A) = X∗; see [5].

The following proposition shows that there exists a discontinuous Dg-
nonspreading mapping:

Proposition 4. Let X be a smooth, strictly convex, and reflexive Banach
space, let p be a real number such that 1 < p < +∞, and let g be the function
defined by g = ‖ · ‖p/p. Let S1, S2 : X → X be Dg-firm mappings such that
S1(X) and S2(X) are contained by rBX for some r > 0, let δ be a positive real
number with δp−1{(p−1)δ−pr}/p ≥ 4rp, and let T : X → X be the mapping
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defined by Tx = S1x if x ∈ δBX ; S2x otherwise. Then T is Dg-nonspreading.

Further, if S1(X) and S2(X) are disjoint, then T is discontinuous at any point
z ∈ X with ‖z‖ = δ with respect to the norm topology of X

Proof. Let x, y ∈ X be given. If either x, y ∈ δBX or x, y /∈ δBX , then (5)
obviously holds. Suppose that x ∈ δBX and y /∈ δBX . Then we have from (3)
and (4) that

Dg(Tx, T y) + Dg(Ty, Tx) ≤ 2

p

{
rp + prp + (p− 1)rp

}
= 4rp.

On the other hand, we have

Dg(Tx, y) + Dg(Ty, x) ≥ Dg(Tx, y)

≥ 1

p

{
‖S1x‖p − p‖S1x‖‖y‖p−1 + (p− 1)‖y‖p

}

≥ ‖y‖p−1

p

{
(p− 1)‖y‖ − p‖S1x‖

}
≥ δp−1

p
{(p− 1)δ − pr}.

Thus (5) holds and hence T is Dg-nonspreading.

Suppose that S1(X) ∩ S2(X) = ∅ and fix z ∈ X with ‖z‖ = δ. Set zn =
(1 + 1/n)z for all n ∈ N. Note that Tz = S1z ∈ S1(X) and Tzn = S2zn ∈
S2(X) for all n ∈ N. By assumption, {Tzn} does not converge strongly to
Tz. Therefore T is not norm-to-norm continuous at z. ✷

Proposition 4 immediately implies the following corollary:

Corollary 1. Let C1 and C2 be nonempty, closed, and convex subsets of a
smooth, strictly convex, and reflexive Banach space X such that C1 and C2

are contained by rBX for some r > 0, let Si = Π g
Ci

for i ∈ {1, 2}, and let
p, g, δ, and T be the same as in Proposition 4. Then T is Dg-nonspreading.
Further, if C1 and C2 are disjoint, then T is discontinuous at any point z ∈ X
with ‖z‖ = δ with respect to the norm topology of X

3 Existence of a Fixed Point

In this section, we obtain a fixed point theorem for a nonspreading mapping
with respect to a Bregman distance. The following proposition directly follows
from (2) and (5):

Proposition 5. Let E be a nonempty subset of X, let g ∈ Γ (X) be a function
such that g is Gâteaux differentiable on IntD(g) and E ⊂ IntD(g), and let
T : E → IntD(g) be a mapping. Then T is Dg-nonspreading if and only if

0 ≤ Dg(Ty, y) + Dg(Ty, x)−Dg(Ty, Tx) + 〈Tx− Ty,∇g(Ty)−∇g(y)〉

for all x, y ∈ E.
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Motivated by the techniques in [6, 7, 8], we show the following fixed point
theorem:

Theorem 1. Let g ∈ Γ (X) be a function such that g is Gâteaux differentiable
and strictly convex on IntD(g) and C ⊂ IntD(g), let T : C → C be a Dg-
nonspreading mapping, and let {UT

n } be the sequence of mappings defined
by UT

n =
∑n

k=1 T
k/n for each n ∈ N. Then the following assertions are

equivalent:

(a) T has a fixed point;
(b) {T nx} is bounded for some x ∈ C;
(c) {UT

n x} has a bounded subsequence for some x ∈ C.

Proof. If T has a fixed point, then {T np} is bounded for all p ∈ F (T ).
Thus (a) implies (b). It is also clear that (b) implies (c).

Thus it remains to be seen if (c) implies (a). To see this, we suppose that
there exists x ∈ C such that {UT

n x} has a bounded subsequence {UT
ni
x}. Set

zn = UT
n x for all n ∈ N. Since {zni} is bounded and X is reflexive, there

exists a subsequence
{
znij

}
of {zni} which converges weakly to some u ∈ X .

Since C is closed and convex, we have u ∈ C. According to Proposition 5,
the following inequality

0 ≤ Dg(Tu, u) + Dg(Tu, T
kx)−Dg(Tu, T

k+1x)

+ 〈T k+1x− Tu,∇g(Tu)−∇g(u)〉
(7)

holds whenever k ∈ N ∪ {0}, where T 0 denotes the identity mapping on C.
Multiplying 1/n by the inequality obtained after summing up (7) with respect
to k ∈ {0, 1, . . . , n− 1}, we have

0 ≤ Dg(Tu, u) +
1

n

{
Dg(Tu, x)−Dg(Tu, T

nx)
}

+ 〈zn − Tu,∇g(Tu)−∇g(u)〉

for all n ∈ N. This gives us that

0 ≤ Dg(Tu, u) +
1

nij

Dg(Tu, x) +
〈
znij

− Tu,∇g(Tu)−∇g(u)
〉

(8)

for all j ∈ N. Letting j → +∞ in (8), we obtain

0 ≤ Dg(Tu, u) + 〈u− Tu,∇g(Tu)−∇g(u)〉 = −Dg(u, Tu),

where the last equality follows from (1). Accordingly, we have Dg(u, Tu) = 0.
The strict convexity of g on C implies that u is a fixed point of T . ✷

Theorem 1 immediately implies the following corollaries:

Corollary 2. Let g, T , and {UT
n } be the same as in Theorem 1. Then the

following assertions hold:
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(a) If C is bounded, then T has a fixed point;
(b) T has no fixed point if and only if ‖UT

n x‖ → +∞ for all x ∈ C.

Corollary 3. Let C be a nonempty, closed, and convex subset of a smooth,
strictly convex, and reflexive Banach space X, let p be a real number such
that 1 < p < +∞, and let g be the function defined by g = ‖ · ‖p/p. Let
T : C → C be a Dg-nonspreading mapping and let {UT

n } be the sequence of
mappings defined by UT

n =
∑n

k=1 T
k/n for each n ∈ N. Then the following

assertions are equivalent: T has a fixed point; {T nx} is bounded for some
x ∈ C; {UT

n x} has a bounded subsequence for some x ∈ C.

Remark 1. Corollary 3 is a generalization of the corresponding result in [7],
where the equivalence between the first two assertions was shown for p = 2.

4 Characterization of the Existence of a Fixed Point

Inspired by the discussion in [10], we show the following theorem:

Theorem 2. Let g ∈ Γ (X) be a real valued and strongly coercive function
such that g is Gâteaux differentiable and strictly convex on X. Then the
following assertions are equivalent:

(a) C is bounded;
(b) every Dg-nonspreading self mapping on C has a fixed point;
(c) every Dg-firm self mapping on C has a fixed point.

Proof. According to Corollary 2, we know that (a) implies (b). Since every
Dg-firm mapping on C is also Dg-nonspreading, (b) clearly implies (c).

We show that (c) implies (a). Suppose that C is not bounded. Then the
uniform boundedness theorem ensures the existence of x∗ ∈ X∗ such that
inf x∗(C) = −∞. Proposition 3 ensures that ∇g : X → X∗ is a bijection,
g∗ is Gâteaux differentiable on X∗, and ∇g∗ = (∇g)−1. Let S : C → X
and T : C → C be the mappings defined by Sx = ∇g∗(∇g(x) − x∗) and
Tx = Π g

CSx for all x ∈ C. Using the fact that Π g
C : X → X is Dg-firm, we

can show that T is Dg-firm. We next show that T has no fixed point. If u ∈ C,
then the choice of x∗ implies the existence of y ∈ C such that x∗(y) < x∗(u).
Consequently, we obtain

〈
y−u,∇g(Su)−∇g(u)

〉
= 〈u−y, x∗〉 > 0. Thus (6)

yields that Π g
C(Su) �= u. Consequently, T has no fixed point. ✷

Corollary 4. Let C be a nonempty, closed, and convex subset of a smooth,
strictly convex, and reflexive Banach space X, let p be a real number such
that 1 < p < +∞, and let g be the function defined by g = ‖ · ‖p/p. Then
the following assertions are equivalent: C is bounded; every Dg-nonspreading
self mapping on C has a fixed point; every Dg-firm self mapping on C has a
fixed point.

Remark 2. In the case when p = 2, Corollary 4 is reduced to the corresponding
result in [10].
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The (h, ϕ)−Generalized Second-Order
Directional Derivative in Banach Space

Wenjuan Chen, Caozong Cheng, and Caiyun Jin

Abstract. In this paper, we introduce the conception of (h, ϕ)−generalized
second-order directional derivatives of real function in Banach space and dis-
cuss some of their properties and their relationships. In order to define above
conceptions, we generalize the Ben-Tal’s generalized algebraic operations in
Euclidean space to Banach space.

Keywords: (h, ϕ)−generalized second-order directional derivatives,
Ben-Tal’s generalized algebraic operations, Banach space.

1 Introduction

In 1977, Ben-Tal[1] introduced the generalized algebraic operations, and they
have been applied in optimization widely. In 2001, Q. X. Zhang[2] intro-
duced (h, ϕ)−generalized directional derivatives and (h, ϕ)−generalized gra-
dient of function in Rn which involve generalized algebraic operations. In
2006, Y. H. Xu[3] introduced (h, ϕ)−Lipschitz function in Rn, and then de-
fined (h, ϕ)−directional derivative of (h, ϕ)−Lipschitz function in Rn and
(h, ϕ)−generalized gradient at x. However, Ben-Tal’s generalized algebraic
operations define on Euclidean space Rn, that limits us in Euclidean space Rn

on the research of (h, ϕ)−generalized directional derivative and (h, ϕ)−genera-
lized gradient. For break the limitation, we generalize generalized algebraic
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operations to Banach space. On the basis of above work, we introduce the
(h, ϕ)−generalized second-order directional derivatives of real function in Ba-
nach space and discuss some properties. At last, we discuss the relations
between (h, ϕ)− generalized Hessian and (h, ϕ)−generalized second-order di-
rectional derivatives in Hilbert space.

2 Generalized Algebraic Operations in Banach

According to the Ben-Tal generalized addition and scalar multiplication in [1],
we define Ben-Tal generalized addition and scalar multiplication in Banach
space X as follows:

1) Let H be a subset of X and K be a complex domain. Let h : H → Rn be
a continuous function and its inverse function h−1 exists. h−vector addition
and h−scalar multiplication are definited, respectively

x⊕ y = h−1(h(x) + h(y)), ∀ x, y ∈ H ;

λ⊙ x = h−1(λh(x)), ∀ x ∈ H,λ ∈ K.

Especially, for convenient, we write generalized addition and scalar multi-
plication in R as follows:

2) Let ϕ be a continuous real valued function of Φ ⊂ R, and has inverse
function ϕ−1, ϕ−addition is definited as α[+]β = ϕ−1(ϕ(α)+ϕ(β)), ∀α, β ∈
Φ; and ϕ− scalar multiplication is definite as λ[·]α = ϕ−1(λϕ(α)), ∀ α ∈
Φ, λ ∈ R.

3) Let X be an inner product space with inner (·, ·), (h, ϕ)−inner product
is definited as (x, y)h,ϕ = ϕ−1(h(x), h(y)), ∀ x, y ∈ H.

Following from the above definitions, generalized subtraction in Banach
space and R are definite as x ⊖ y = x ⊕ ((−1) ⊙ y) = h−1(h(x) − h(y));
α[−]β = α[+]((−1)[·]β) = ϕ−1(ϕ(α) − ϕ(β)), respectively.

In the following sections, we always suppose that h : X → X is 1-1 onto
continuous function; ϕ : R → R is 1-1 onto monotone increasing function. If
f is real function on X , we denote f̂(t) = ϕ(f(h−1(t))) = ϕfh−1(t).

3 (h, ϕ)−Generalized Second-Order Directional
Derivatives

In this section, we will introduce some (h, ϕ)−generalized second-order direc-
tional derivatives in real Banach space and discuss their properties. For conve-
nience, we recall the definition of generalized first-order directional derivatives
and generalized second-order directional derivatives.
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Let X be a real Banach space and f : X → R . Generalized directional
derivative[4] of function f at x in direction u ∈ X and generalized second-
order directional derivative[5] of function f at x in direction (u, v) ∈ X ×X
are, respectively

f0(x;u) = lim sup
y→x
t↓0

f(y + tu)− f(y)

t
,

f00(x;u, v) = lim sup
y→x
s,t↓0

1

st

{
f(y + su + tv)− f(y + su)− f(y + tv) + f(y)

}
.

Next, we will use generalized algebraic operations on Banach space gener-
alize the above definitions.

Definition 1. Let X be a real Banach space and f : X → R . (h, ϕ)−genera-
lized directional derivative of function f at x in direction u ∈ X and
(h, ϕ)−generalized second-order directional derivatives in direction (u, v) ∈
X ×X are, respectively

f∗(x;u) = lim sup
y→x
t↓0

1

t
[·]{f(y ⊕ t⊙ u)[−]f(y)} ,

f∗∗(x;u, v)

= lim sup
y→x
s,t↓0

1

st
[·]
{
f
(
y⊕ s⊙ u⊕ t⊙ v

)
[−]f

(
y⊕ s⊙ u

)
[−]f

(
y⊕ t⊙ v

)
[+]f

(
y
)}

.

It is easy to verify that lemma 3.1 in [3] also hold in Banach space, and
according to the monotonicity of ϕ−1, we can rewritten it as follow.

Lemma 1. Let g be a real valued function of Banach space X and x0 ∈ X,
then

lim sup
x→x0

ϕ−1
(
g(x)

)
= ϕ−1

(
lim sup

x→x0

g(x)
)
.

On the lines of proposition 3.1 of [3], we can prove that (h, ϕ)−generalized
directional derivative has the following relation with original generalized di-
rectional derivative.

Proposition 1. Let X be a real Banach space and f : X → R, then ∀ x, u ∈
X,

f∗(x;u) = ϕ−1

(
f̂0
(
h(x);h(u)

))
.

For the relationship of (h, ϕ)−generalized second-order directional derivative
and original generalized directional derivative, we have:
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Proposition 2. Let X be a real Banach space and f : X → R, then
∀ (x, u, v) ∈ X ×X ×X, ∀ x, u ∈ X,

f∗∗(x;u, v) = ϕ−1

(
f̂00
(
h(x);h(u), h(v)

))
.

Proof. From λ[·]α = ϕ−1(λϕ(α)), we have that ∀ (x, u, v) ∈ X ×X ×X,

f∗∗(x;u, v)

= lim sup
y→x
s,t↓0

ϕ−1

{
1

st
ϕ
(
f(y⊕s⊙u⊕t⊙v)[−]f(y⊕s⊙u)[−]f(y⊕t⊙v)[+]f(y)

)}
.

Furthermore, following from the definition of Ben-Tal’s generalized algebraic
operations that

f∗∗(x;u, v) = lim sup
y→x
s,t↓0

ϕ−1
{ 1

st
ϕ
(
ϕ−1

(
ϕf(y ⊕ s⊙ u⊕ t⊙ v)− ϕf(y ⊕ s⊙ u)

−ϕf(y ⊕ t⊙ v) + ϕf(y)
))}

= lim sup
y→x
s,t↓0

ϕ−1
{ 1

st

(
ϕf(y ⊕ s⊙ u⊕ t⊙ v)− ϕf(y ⊕ s⊙ u)

−ϕf(y ⊕ t⊙ v) + ϕf(y)
)}

= lim sup
y→x
s,t↓0

ϕ−1
{ 1

st

(
ϕfh−1(h(y) + sh(u) + th(v))

−ϕfh−1(h(y) + sh(u))− ϕfh−1(h(y) + th(v)) + ϕfh−1(h(y))
)}

.

Let z = h(y), f̂ = ϕfh−1, then following from Lemma 3.1, that

f∗∗(x;u, v) = ϕ−1

(
f̂00
(
h(x);h(u), h(v)

))
.

Which completes the proof.

4 Propositions of (h, ϕ)−Generalized Second-Order
Directional Derivative

Definition 2. Let X be a real Banach space and Y be a subset of X , f :
Y → R is said to be

1) (h, ϕ)− positive homogeneous ⇔ f(t⊙ x) = t[·]f(x), ∀ t > 0, ∀x ∈ Y ;

2) (h, ϕ)− subadditivity ⇔ f(x⊕ y) ≤ f(x)[+]f(y), ∀ x, y ∈ Y ;
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3) (h, ϕ)− sublinear⇔ f is both (h, ϕ)− positive homogeneous and (h, ϕ)−sub-
additivity.

Theorem 1. LetX be a real Banach space and f : X → R . Then
1) ∀ (x, u, v) ∈ X×X×X, mapping (u, v)→ f∗∗(x;u, v) is symmetrical and
(h, ϕ)−bisublinear, ((h, ϕ)− sublinear in u, v, respectively);
2) mapping x→ f∗∗(x;u, v) is upper semicontinuous, ∀ (u, v) ∈ X ×X ;
3) f∗∗(x;u, (−1) ⊙ v) = f∗∗(x; (−1) ⊙ u, v) = ([−]f)∗∗(x;u, v), ∀ (x, u, v) ∈
X ×X ×X.

Proof: 1) Since f̂ : X → R , h(u) ∈ X, h(v) ∈ X, h(x) ∈ X , from [5], we

know that f̂00(h(x);h(u), h(v)) is symmetrical in (h(u), h(v)), then

f∗∗(x;u, v) = ϕ−1

(
f̂00
(
h(x);h(u), h(v)

))

= ϕ−1

(
f̂00
(
h(x);h(v), h(u)

))
= f∗∗(x; v, u)

That is, f∗∗(x;u, v) is symmetrical in (u, v) ∈ X ×X .
Next, we only proof that f∗∗(x; ·, v) is (h, ϕ)−positive homogeneous and

(h, ϕ)−subadditivity,

f∗∗(x;λ⊙u, v) = ϕ−1(f̂00(h(x);h(λ⊙u), h(v))) = ϕ−1(f00(h(x);λh(u), h(v))) ,

furthermore, by proposition 1.2 of [5], we know that

f∗∗(x;λ⊙ u, v) = ϕ−1

(
λf̂00

(
h(x);h(u), h(v)

))

= ϕ−1
(
λϕf∗∗(x;u, v)

)
= λ[·]f∗∗(x;u, v).

Which implies that f∗∗(x; ·, v) is (h, ϕ)−positive homogeneous.
Next, we prove that f∗∗(x; ·, v) is (h, ϕ)−subadditivity. In fact, ∀ u,w ∈ X,

f∗∗(x;u ⊕ w, v) = ϕ−1

(
f̂00
(
h(x);h(u ⊕ w), h(v)

))

= ϕ−1

(
f̂00
(
h(x);h(u) + h(w), h(v)

))
.

Following from proposition 1.2 of [5], we have that

f̂00
(
h(x);h(u)+h(w), h(v)

)
≤ f̂00

(
h(x);h(u), h(v)

)
+f̂00

(
h(x);h(w), h(v)

)
.

Since ϕ−1 is monotonically increasing,

f∗∗(x;u⊕ w, v) ≤ ϕ−1

(
f̂00
(
h(x);h(u), h(v)

)
+ f̂00

(
h(x);h(w), h(v)

))
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= ϕ−1
(
ϕf∗∗(x;u, v) + ϕf∗∗(x;w, v)

)
= f∗∗(x;u, v)[+]f∗∗(x;w, v).

2) Let {xi}∞i=1 ⊂ X be a sequence which converges to x. Then by h is
continuous, we have that h(xi) → h(x). From proposition 1.2 of [5], we have

that ∀ u, v ∈ X , h(x) → f̂00(h(x);h(u), h(v)) is upper semicontinuous, that
is

lim sup
i→∞

f̂00
(
h(xi);h(u), h(v)

)
≤ f̂00

(
h(x);h(u), h(v)

)
.

Furthermore by ϕ−1 is monotonically increasing, we have that,

ϕ−1(lim sup
i→∞

f̂00
(
h(xi);h(u), h(v)

)
≤ ϕ−1

(
f̂00
(
h(x);h(u), h(v)

))
.

From Lemma 3.1, we can get that

lim sup
i→∞

ϕ−1

(
f̂00
(
h(xi);h(u), h(v)

))
≤ ϕ−1

(
f̂00
(
h(x);h(u), h(v)

))
,

that is,
lim sup

i→∞
f∗∗(xi;u, v) ≤ f∗∗(x;u, v).

Then x→ f∗∗(x;u, v) is upper semicontinuous.
3) Following from Proposition 3.2 that ∀ (x, u, v) ∈ X ×X ×X ,

f∗∗(x;u, (−1)⊙ v) = ϕ−1

(
f̂00
(
h(x);h(u), h((−1)⊙ v)

))

= ϕ−1

(
f̂00
(
h(x);h(u),−h(v)

))
.

Furthermore by proposition 1.2 of [5], we have

f∗∗(x;u, (−1)⊙ v) = ϕ−1

(
(−f̂)00

(
h(x);h(u), h(v)

))
.

On the other hand

([−]f)∗∗(x;u, v) = ϕ−1

(
(−f̂)00

(
h(x);h(u), h(v)

))
.

Which implies that

f∗∗(x;u, (−1)⊙ v) = ([−]f)∗∗(x;u, v).

In the same way, we can prove that f∗∗(x; (−1) ⊙ u, v) = ([−]f)∗∗(x;u, v).
Then 3)holds.

Definition 3. Function f : X → R is (h, ϕ)−twice C−differentiable at x,
if f∗∗(x;u, ·) is lower semicontinuous , ∀ u ∈ X . If ∀ x ∈ X , f∗∗(x;u, ·)
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is (h, ϕ)−twice C−differentiable at x, then we called f is (h, ϕ)−twice
C−differentiable on X .

Theorem 2. Function f : X → R is (h, ϕ)−convex, if ∀ x1, x2 ∈ X, ∀ λ ∈
[0, 1], we have

f((1− λ) ⊙ x1 ⊕ λ⊙ x2) ≤ (1 − λ)[·]f(x1)[+]λ[·]f(x2).

Remark 1. If f twice C−differentiable at x (∀ u ∈ X, f00(x;u, ·) is lower
semicontinuous), then f is (h, ϕ)−twice C−differentiable at x. Since we just
take h(x) = x, x ∈ X,ϕ(t) = t, t ∈ R. But the converse of this proposition is

not holds. For example, ∀ x ∈ R, let h(x) = x, f(x) = x
4
3 , ϕ(x) = x

3
4 , by [5],

we know that f isn’t twice C−differentiable at x = 0, and it is easy to verify
that f is (h, ϕ)−twice C−differentiable atx = 0.

Theorem 3. Let f : X → R be (h, ϕ)−convex, (h, ϕ)−twice C−differentiable
on X, and ϕ−1(0) ≥ 0. Then f∗∗(x;u, u) ≥ 0, ∀ x, u ∈ X.

Proof. From Corollary 4.3 of [6], we can get f̂ : X → R is convex. By

Proposition 3.2, we can get f̂ : X → R is (h, ϕ)−twice C−differentiable at

h(x), then following from Proposition 4.3 of [5], that f̂00(h(x);h(u), h(u)) ≥
0, ∀ h(u) ∈ X. Furthermore, since ϕ−1 is monotonically increasing function,

we have f∗∗(x;u, u) = ϕ−1(f̂00(h(x);h(u), h(u))) ≥ 0, ∀ x, u ∈ X.

Proposition 3. Let f, g : X → R. Then ∀x, u, v ∈ X, we have

(f [+]g)∗∗(x;u, v) ≤ f∗∗(x;u, v)[+]g∗∗(x;u, v).

Proof. Let f [+]g = M , by Proposition 3.2, we have

M∗∗(x;u, v) = ϕ−1

(
M̂00

(
h(x);h(u), h(v)

))
.

Since M = ϕ−1(ϕf + ϕg), we have M̂ = ϕ(ϕ−1(ϕf + ϕg))h−1 = ϕfh−1 +
ϕgh−1. Furthermore by Proposition 3.2, that

M∗∗(x;u, v) = ϕ−1

(
(ϕfh−1 + ϕgh−1)00

(
h(x);h(u), h(v)

))

≤ ϕ−1

(
(ϕfh−1)00

(
h(x);h(u), h(v)

)
+ (ϕgh−1)00

(
h(x);h(u), h(v)

))

= ϕ−1

(
ϕf∗∗(x;u, v) + ϕg∗∗(x;u, v)

)
= f∗∗(x;u, v)[+]g∗∗(x;u, v).

Lemma 2. Let X be a real Banach space, f : X → R be a continuous func-
tion, x, u, v ∈ X and f0(·;u) be finite near x. Then

(
f0(·;u)

)0

(x; v) = lim sup
y→x
s↓0

1

s

(
f0(y + sv;u)− f0(y;u)

)
≤ f00(x;u, v).



418 W. Chen, C. Cheng, and C. Jin

Theorem 4. Let X be a real Banach space, f : X → R be a continuous
function, x, u, v ∈ X and f̂0(·;u) be finite near x. Then

(
f∗(·;u)

)∗
(x; v) = lim sup

y→x
s↓0

1

s
[·]
(
f∗
(
y ⊕ s⊙ v;u

)
[−]f∗(y;u)

)
≤ f∗∗(x;u, v).

Proof. Since f : X → R is continuous, then f̂ : X → R is continuous too. By
Lemma 4.1, we can get

lim sup
h(y)→h(x)

s↓0

1

s

{
f̂0
(
h(y)+sh(v);h(u)

)
−f̂0

(
h(y);h(u)

)}
≤ f00

(
h(x);h(u), h(v)

)
.

By Lemma 3.1, we can get

lim sup
h(y)→h(x)

s↓0

1

s
[·]ϕ−1

(
f̂0
(
h(y) + sh(v);h(u)

))
[−]ϕ−1

(
f̂0
(
h(y);h(u)

))

= lim sup
h(y)→h(x)

s↓0

ϕ−1

{
1

s

(
f̂0
(
h(y) + sh(v);h(u)

)
− f̂0

(
h(y);h(u)

))}

≤ ϕ−1

(
f00
(
h(x);h(u), h(v)

))
.

From Proposition 3.1 and Proposition 3.2, we have

(
f∗(·;u)

)∗
(x; v) = lim sup

y→x
s↓0

1

s
[·]
(
f∗(y ⊕ s⊙ v;u)[−]f∗(y;u)

)
≤ f∗∗(x;u, v).
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Estimation of Bessel Operator
Inversion by Shearlet

Lin Hu and Youming Liu

Abstract. Curvelets are used to deal with the inverse problem of recovering
a function f from noisy Bessel data Bαf by Candès and Donoho. Motivated
by the work of Colona, Easley and Labate, we solve the same problem by
shearlets. It turns out that our method attains the mean square error con-

vergence to O(log(ε−1)ε
2

3
2
+α ), as the noisy level ε goes to zero. Although this

converge rate is the same as Candès and Donoho’s in the case α = 1
2 , the

shearlets possess affine systems and avoid more complicated structure of the
curvelet constructure. This makes it a better candidate for theoretical and
numerical applications.

Keywords: Inverse problem, Bessel operator, Shearlets.

1 Introduction and Preliminary

This paper studies the problem of noisy convolution inversion. Assume α > 0,
define two-dimensional Bessel Potential of order α , the kernel bα(x) with
Fourier transform

b̂α(ξ) = (1 + |ξ|2)−α
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The Bessel operator Bα is the operator of convolution with bα : Bαf = bα∗f .
Consider the problem of recovering an image f in white noise:

Y = Bαf + εW (1)

where f is the object to be recovered which is compactly supported and C2

away from a C2 edge, W denotes a Wiener sheet, ε is a noisy level. This linear
inverse problem has many applications. In 2002, Candès and Donoho ([1])
applied curvelets to this inverse problem of Bessel convolution with α = 1

2 .

They obtained the mean squar error (MSE) convergence to O(log2(ε
−1)ε

4
5 ),

outperforming wavelet-based (which achieve only the ε
2
3 rate) and linear

methods (which achieve only the ε
1
2 rate).

In 2010, Colonna ([2]) proposed a new technique for inverting the Radon
transform using shearlet system. Motivated by their work, we apply shearlets

to the problem (1) and receive the MSE convergence to O(log2(ε
−1)ε

2
3/2+2α ).

Our methods achieve the same rates of convergence as curvelets, and faster
than similar competitive strategies based on any linear methods or wavelets
in the case α = 1

2 . Unlike the curvelet representation, the shearlet approach
is based on the framework of affine systems, and avoids the more complicated
structure of the curvelet construction.

There exists different constructions of discrete shearlets, we will follow
mainly the one in [2, 4, 5]. Set

A0 =

(
4 0
0 2

)
, B0 =

(
1 1
0 1

)
,

and for any ξ = (ξ1, ξ2) ∈ R2, ξ1 �= 0, let

ψ̂(0)(ξ) = ψ̂1(ξ1)ψ̂2(
ξ2
ξ1

),

where ψ̂1, ψ̂2 ∈ C∞(R), supp ψ̂1 ⊂ [− 1
2 ,− 1

16 ] ∪ [ 1
16 ,

1
2 ] and supp ψ̂2 ⊂ [−1, 1].

In addition, we assume that

∑

j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥ 1

8
,

and for each j ≥ 0,

2j−1∑

l=−2j

|ψ̂2(2
jω − l)|2 = 1 for |ω| ≤ 1.

Let D0 = {(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 1
8 , |

ξ2

ξ1
| ≤ 1} and L2(D0)

∨ = {f ∈ L2(R2) :

suppf̂ ⊂ D0}. Then the collection {ψ(0)
j,l,k : j ≥ 0, − 2j ≤ l ≤ 2j − 1, k ∈ Z2}

defined by
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ψ
(0)
j,l,k(x) = 2

3
2 jψ(0)(Bl

0A
j
0x− k)

is a Parseval frame for L2(D0)
∨. Similarly, we can construct a Parseval frame

for L2(D1)
∨, where D1 is the vertical cone D1 = {(ξ1, ξ2) ∈ R2 : |ξ2| ≥

1
8 , |

ξ1

ξ2
| ≤ 1}. Let

A1 =

(
2 0
0 4

)
, B1 =

(
1 0
1 1

)
,

and
ˆψ(1)(ξ) = ψ̂1(ξ2)ψ̂2(

ξ1
ξ2

).

Then the collection {ψ(1)
j,l,k : j ≥ 0, −2j ≤ l ≤ 2j − 1, k ∈ Z2} defined by

ψ
(1)
j,l,k(x) = 2

3
2 jψ(1)(Bl

1A
j
1 x− k)

is a Parseval frame for L2(D1)
∨. Finally, let ϕ̂ ∈ C∞

0 (R2) be chosen to satisfy

1 = |ϕ̂(ξ)|2 +

1∑

d=0

∑

j≥0

2j−1∑

l=−2j

| ˆψ(d)((B−l
d )TA−j

d ξ)|2XDd
(ξ),

where XDi(ξ) is the indicator function of the set Di (i = 1, 2). The following
result[2] plays an important role in this paper:

Theorem 1. Let ϕ and ψ
(d)
j,l,k be defined as above. Also, for d = 0, 1, let

ˆ̃ψ
(d)
j,l,k(ξ) = ψ̂

(d)
j,l,k(ξ)XDd

(ξ). Then the collection of shearlets

{ϕk : k ∈ Z2} ∪ {ψ(d)
j,l,k(x) : j ≥ 0,−2j + 1 ≤ l ≤ 2j − 2, k ∈ Z2, d = 0, 1}

∪ {ψ̃(d)
j,l,k(x) : j ≥ 0, l = −2j, 2j − 1, k ∈ Z2, d = 0, 1}

is a Parseval frame for L2(R2).

In the following, for brevity of notation, we introduce the index setM = N ∪
M , where N = Z2, M = {μ = (j, l, k, d) : j ≥ 0,−2j ≤ l ≤ 2j−1, k ∈ Z2, d =
0, 1}. Hence, the shearlet system is denoted by {sμ : μ ∈ M = N∪M}, where

sμ = ψμ = ψ
(d)
j,l,k if μ ∈ M , and sμ = ϕμ if μ ∈ N . For {sμ : μ ∈ M}, it is

understood that the shearlet functions are modified as in Theorem 1.

This paper is organized as follows: In Section 2, we show two lemmas which
will be used to prove the main theorem. In Section 3, we give the estimator
performance of the shearlet-based inversion algorithm when the convolution
data are corrupted by additive Gaussian noise.
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2 Two Lemmas

In order to prove our main results in the next section, two lemmas are given
in this part. We begin with introducing the companion representation of
shearlet system.

Definition 1. Let α be a positive number. For μ ∈ M, define ψ+
μ and ϕ+

μ

by their Fourier transforms:

ψ̂+
μ (ξ) = 2−2αj(1 + |ξ|2)α

2 ψ̂μ(ξ) for μ ∈M

ϕ̂+
μ (ξ) = (1 + |ξ|2)α

2 ϕ̂μ(ξ) for μ ∈ N

Now, we construct an inversion formula of the Bessel operator based on them.

Lemma 1. Let {sμ : μ ∈ M} be the Parseval frame of shearlets and {s+
μ :

μ ∈M} be the companion representation of shearlets defined above. Then the
following reproducing formula holds:

f =
∑

μ∈M
〈Bαf, s

+
μ 〉22αjsμ

for all f ∈ L2(R2).

Proof. In order to prove this theorem, it is sufficient to derive

〈f, sμ〉 = 22αj〈Bαf, s
+
μ 〉

for all μ ∈ M, since {sμ : μ ∈ M} is a Parseval frame for L2(R2). In
fact, by the assumption sμ = ψμ for μ ∈ M and the Parseval equal-

ity, 22αj〈Bαf, s
+
μ 〉 = 22αj〈B̂αf, ŝ

+
μ 〉 = 22αj

∫
R2(1 + |ξ|2)− α

2 f̂(ξ)2−2αj(1 +

|ξ|2)α
2 ŝμ(ξ)dξ = 〈f, sμ〉 for μ ∈ M . In the cases μ ∈ N , sμ = ϕμ, a sim-

ilar computation yields 〈Bαf, s
+
μ 〉 = 〈B̂αf, ϕ̂

+
μ 〉 =

∫
R2(1 + |ξ|2)−α

2 f̂(ξ)(1 +

|ξ|2)α
2 ϕ̂μ(ξ)dξ = 〈f, ϕμ〉. ✷

To exploit the shearlet system to the inverse problem, we give some necessary
modification of the shearlet system defined in Section 1, by rescaling the
coarse scale system. For a fixed j0 ∈ N , let ϕ ∈ C∞

0 (R2) be such that

|ϕ̂(2−j0ξ)|2 +
1∑

d=0

∑

j≥j0

2j−1∑

l=−2j

|ψ̂(d)((B−l
d )TA−j

d )ξ|2XDd
(ξ) = 1,

Therefore, the modified shearlet system:

{2j0ϕ(2j0x− k) : k ∈ Z2}∪{ψ̃(d)
j,l,k(x) : j ≥ j0, l =−2j, 2j− 1, k ∈Z2, d= 0, 1}

∪ {ψ(d)
j,l,k(x) : j ≥ j0,−2j + 1 ≤ l ≤ 2j − 2, k ∈ Z2, d = 0, 1}

is a Parseval frame for L2(R2).
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Similar to Section 1, we denote M̃ = N ∪M0, where N = Z2, M0 = {μ =
(j, l, k, d) : j ≥ j0,−2j ≤ l ≤ 2j − 1, k ∈ Z2, d = 0, 1}. Moreover, the new

shearlet system {sμ : μ ∈ M̃} is defined by sμ = ψμ = ψ
(d)
j,l,k if μ ∈ M0 and

sμ = 2j0ϕ(2j0x− μ) if μ ∈ N .

For our reconstruction, we need to introduce a collection N (ε) of sig-
nificant shearlet coefficients, depending on the noise level ε. Let j0 =

1
9
2 + 6α

log2(ε
−1), j1 =

1
3
2 + 2α

log2(ε
−1). We define the set of significant

coefficients N (ε) ⊂ M̃ , which is given by the union N (ε) = M0(ε) ∪N0(ε),
where

N0(ε) = {μ = k ∈ Z2 : |k| ≤ 22j0+1},
M0(ε) = {μ = (j, l, k, d) : j0 < j ≤ j1, |k| ≤ 22j+1, d = 0, 1}.

The following lemma gives properties of N (ε).

Lemma 2. Let ε denote the noise level, and N (ε) be the set of significant
indices associated with the shearlet representation of f given by

f =
∑

μ∈M̃

〈f, sμ〉sμ.

Then the following properties hold:

(i) The neglected shearlet coefficients satisfy

sup
f∈ε2(A)

∑

μ∈N (ε)c

|〈f, sμ〉|2 ≤ Cε
2

3
2
+2α ;

(ii) The risk proxy satisfies

sup
f∈ε2(A)

∑

μ∈N (ε)

min(|〈f, sμ〉|2, 24αjε2) ≤ Cε
2

3
2
+2α ;

(iii) The cardinality of N (ε) obeys

♯N (ε) ≤ Cε
− 5

3
2
+2α ,

where C is positive constants independent of f and ε2(A) is the set of
functions supported inside [0, 1]2 which are C2 away from a C2 edge.

Proof. We shall omit the proof of (i) and (iii), since it is essentially the same
as that of Theorem 4.1.1 in [2]. In order to show (ii), we introduce the set
R(j, ε) = {μ ∈ Mj : |cμ| > ε} to denote the collection of large shearlet
coefficients at a fixed scale j. According to Corollary 1.5 in [5] (which is valid
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both for coarse and fine scale shearlets), there is a constant C > 0 such that

♯R(j, ε) ≤ Cε−
2
3 for ε > 0. It follows by rescaling that

♯R(j, 22αjε) ≤ C2−
4
3 αjε−

2
3 .

For μ = (j, l, k, d) ∈M0 and d = 0, we have

|cμ| = |〈f, ψμ〉| = |
∫

R2

f(x)2
3
2 jψ(Bl

0A
j
0x−k)dx| ≤ 2−

3
2 j‖f‖∞‖ψ‖1 ≤ C2−

3
2 j .

Note that 22αjε > 2−
3
2 j , when j > j1 ≥ 1

2α+ 3
2

log2(ε
−1). Thus, we can

conclude R(j, 22αjε) = ∅ from the definition of R(j, 22αjε). For the risk proxy,
notice that ∑

μ∈N (ε)

min(c2μ, 2
4αjε2) = S1(ε) + S2(ε),

where
S1(ε) =

∑

{μ∈N (ε):|cμ|≥22αjε}
min(c2μ, 2

4αjε2),

and
S2(ε) =

∑

{μ∈N (ε):|cμ|<22αjε}
min(c2μ, 2

4αjε2).

By the assumption that j1 = 1
2α+ 3

2

log2(ε
−1), the estimates in (ii) can be

derived in a similar fashion as that of Theorem 4.1.1 (2) in [2]. ✷

3 Main Result

This section is devoted to show the main theorem in this paper, based on
Theorem 1, Lemma 1 and Lemma 2.

We return to the problem of noisy convolution inversion:

Y = Bαf + εW. (2)

Projecting the data (2) onto the system {s+
μ : μ ∈M}, we obtain

yμ := 22αj〈Y, s+
μ 〉 = 22αj〈Bαf, s

+
μ 〉+ ε22αj〈W, s+

μ 〉 = 〈f, sμ〉+ ε22αjnμ,

where nμ is a Gaussian noise with zero mean and variance σ2
μ = ‖s+

μ ‖2.
To estimate f from the noisy observation (2), we will introduce the soft

thresholding function Ts(y, t) = sgn(y)(|y| − t)+ and construct an estimator
of the form:

f̃ =
∑

μ∈N (ε)

c̃μsμ, (3)
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where the coefficients are estimated by the rule

c̃μ =

⎧
⎨
⎩

Ts(yμ, ε
√

2 log(♯N (ε))22αjσμ), μ ∈ N (ε);

0, otherwise.
(4)

where σμ = ‖s+
μ ‖ and the term {σμ : μ ∈ M̃} are uniformly bounded.

Theorem 2. Let f ∈ ε2(A) be the solution of the inverse problem Y = Bαf+

εW and f̃ be the approximation to f defined by (3)-(4). Then there exist a
constant C > 0 such that

sup
f∈ε2(A)

E‖f̃ − f‖2 ≤ C log(ε−1)ε
2

3
2
+2α

for small ε > 0, where E is the expectation operator.

Proof. Let cμ = 〈f, sμ〉 and c̃μ be given by (4). From the Parseval frame

property of the shearlet system {sμ : μ ∈ M̃}, we know that

E‖f̃ − f‖2 = E(
∑

μ∈M̃

|c̃μ − cμ|2) = E(
∑

μ∈N (ε)

|c̃μ − cμ|2) +
∑

μ∈N (ε)c

|cμ|2.

Since
∑

μ∈N (ε)c

|cμ|2 ≤ Cε
2

3
2
+2α due to Lemma 2 (i), it is sufficient to prove

E(
∑

μ∈N (ε)

|c̃μ − cμ|2) ≤ C log(ε−1)ε
2

3
2
+2α . (5)

According to the Oracle Inequality [3],

E(
∑

μ∈N (ε)

|c̃μ − cμ|2) ≤ L(ε)[ε2
∑

μ∈N (ε)

24αjσ2
μ

♯N (ε)
+

∑

μ∈N (ε)

min(c2μ, ε
224αjσ2

μ)],

(6)
where L(ε) = 1 + 2 log(♯N (ε)). The assumption j1 = 1

3
2+α

log(ε−1) implies

that

ε2
∑

μ∈N (ε)

24αjσ2
μ

♯N (ε)
≤ Cε224αj1 ≤ Cε

3
3
2
+2α .

From the Lemma 2 (ii) and the uniform boundness of {σμ : μ ∈ M̃}, we have

∑

μ∈N (ε)

min(c2μ, ε
224αjσ2

μ) ≤ Cε
2

3
2
+2α .

Then for small ε > 0,
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ε2
∑

μ∈N (ε)

24αjσ2
μ

♯N (ε)
+

∑

μ∈N (ε)

min(c2μ, ε
224αjσ2

μ) ≤ Cε
2

3
2
+2α .

On the other hand, Lemma 2 (iii) tells

♯N (ε) ≤ Cε
− 5

3
2
+2α .

All these with (6) lead to the desired (5). ✷

When α = 1
2 , the shearlet method achieves the near-optimal rate ε

4
5 , outper-

forming wavelet-based (which achieve only the ε
2
3 rate) and linear methods

(which achieve only the ε
1
2 rate).
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Globally Convergent Inexact
Smoothing Newton Method for
SOCCP

Jie Zhang and Shao-Ping Rui

Abstract. An inexact smoothing Newton method for solving second-order
cone complementarity problems (SOCCP) is proposed. In each iteration the
corresponding linear system is solved only approximately. Under mild as-
sumptions, it is proved that the proposed method has global convergence
and local superlinear convergence properties. Preliminary numerical results
indicate that the method is effective for large-scale SOCCP.

Keywords: Second-order cone complementarity problems, Inexact methods,
Large-scale problems.

1 Introduction

Let Kn be the second-order cone (SOC) in Rn, also called the Lorentz cone
or ice-cream cone, defined by

Kn = {(x1, x2) ∈ R×Rn−1| ‖x2‖ ≤ x1},

where ‖ · ‖ denotes the Euclidean norm. We are interested in complementar-
ity problems involving the second-order cone in its constraints. In general,
the second-order cone complementarity problems (SOCCP) has the follwing
form:
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Find an x ∈ K, such that F (x) ∈ K and xTF (x) = 0, (1)

where F : Rn → Rn is a continuously differentiable function, and K =
Kn1 × · · · × Knm with m,n1, . . . , nm ≥ 1 and n1 + · · · + nm = n. Unless
otherwise specified, in the following analysis we assume that m = 1 and
n1 = n.

Second-order cone complementarity problems have wide range of applica-
tions and, in particular, includes a large class of quadratically constrained
problems as special cases [6]. Recently, SOCCP have attracted a lot of atten-
tion [4,5] and a number of smoothing methods for solving SOCCP have been
proposed [1,3]. As in the smooth case, each iteration consists of finding a so-
lution of linear system which may be cumbersome when solving a large-scale
problem. The inexact method is one way to overcome this difficulty. Inexact
Newton methods have been proposed for solving large scale complementar-
ity problems [2, 7]. In this paper, we extend the inexact Newton method to
SOCCP. We propose a new inexact smoothing Newton algorithm for solving
SOCCP under the framework of smoothing Newton method. We view the
smoothing parameter as an independent variable. The forcing parameter of
inexact Newton method links the norm of residual vector to the norm of
mapping at the current iterate.

The paper is organized as follows: In the next Section, we introduce pre-
liminaries and study a few properties of a vector-valued function. An inexact
smoothing Newton method for solving the SOCCP (1) is proposed. Conver-
gence results are analyzed in Section 3. In Section 4, numerical experiments
are presented. Conclusions are given in Section 5.

The following notations will be used throughout this paper. “ := ” means
“is defined as”. R+ and R++ denote the nonnegative and positive reals.
All vectors are column vectors, the superscript T denotes transpose. For
simplicity, we use x = (x1, x2) instead of x = (x1, x

T
2 )T . 〈·, ·〉 represents the

Euclidean inner product. The symbol ‖ · ‖ stands for the 2-norm. Landau
symbols o(·) and O(·) are defined in usual way. Let intK denote the interior
of K. x 4 y (x ≻ y) means that x− y ∈ K (x− y ∈ intK).

2 Preliminaries and Algorithm

First, we recall the Euclidean Jordan algebra associated with SOC. Next, we
introduce a vector-valued function for SOCCP (1) and propose an inexact
smoothing Newton method for SOCCP (1).

For any x = (x1, x2), y = (y1, y2) ∈ R×Rn−1, Jordan product associated
with K is defined by

x ◦ y =

(
xT y

y1x2 + x1y2

)
,

with e = (1, 0, . . . , 0) ∈ Rn being its unit element. We write x2 to mean x◦x.
The linear mapping is defined by Lxy = x ◦ y, ∀y ∈ Rn.
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We next introduce the spectral factorization of vectors in Rn associated
with K. Let x = (x1, x2) ∈ R×Rn−1. Then x can be decomposed as

x = λ1u
(1) + λ2u

(2),

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral
vectors of x given by

λi = x1 + (−1)i‖x2‖,

u(i) =

{
1
2

(
1, (−1)i x2

‖x2‖

)
if x2 �= 0,

1
2 (1, (−1)iw) if x2 = 0,

for i = 1, 2 with w being any vector in Rn−1 satisfying ‖w‖ = 1.

Lemma 1. [3] For any (x1, x2) ∈ R×Rn−1 with spectral values λ1, λ2 and
spectral vectors u(1), u(2) given as above, we have that

(i) x ∈ K if and only if λi ≥ 0 and x ∈ intK if and only if λi > 0, i = 1, 2.
(ii)x2 = λ2

1u
(1) + λ2

2u
(2) ∈ K.

(iii) x
1
2 =

√
λ1u

(1) +
√
λ2u

(2) ∈ K if x ∈ K.

Lemma 2. [10] For any a, b, u, v ∈ K. If a ≻ 0, b ≻ 0, a ◦ b ≻ 0, 〈u, v〉 ≥ 0
and a ◦ u + b ◦ v = 0, then u = v = 0.

We introduce the following vector-valued function

φ(μ, x, y) = (1 + μ)(x + y)−
√

(x + μy)2 + (y + μx)2 + 2μ2e, (1)

where (μ, x, y) ∈ R+ ×Rn ×Rn. Let z := (μ, x, y) ∈ R+ ×Rn ×Rn and

H(z) :=

⎛
⎝

μ
F (x)− y
φ(μ, x, y)

⎞
⎠ . (2)

Theorem 1. Let φ : R+ × Rn × Rn → Rn and H : R+ × Rn × Rn →
R+ ×Rn ×Rn be defined by (1) and (2), respectively. Then

(i) φ(0, x, y) = 0 ⇔ x ◦ y = 0, x ∈ K, y ∈ K.
(ii) φ(μ, x, y) is a smoothing function of φ(0, x, y) and φ(μ, x, y) is semis-

mooth on R+ ×Rn ×Rn.
(iii) H(z) is continuously differentiable at any z = (μ, x, y) ∈ R++×Rn×

Rn with its Jacobian

∇H(z) =

⎛
⎝

1 0 0
0 ∇F −I
∇φμ ∇φx ∇φy

⎞
⎠ , (3)
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where

∇φμ = x + y − L−1
ω (Lx+μyy + Ly+μxx + 2μe),

∇φx = (1 + μ)I − L−1
ω (Lx+μy + μLy+μx),

∇φy = (1 + μ)I − L−1
ω (Ly+μx + μLx+μy),

ω =
√

(x + μy)2 + (y + μx)2 + 2μ2e.

If F (x) is monotone, then the Jacobian ∇H(z) is nonsingular for any μ > 0.

Proof. (i) By Proposition 2.1 in [3], we can obtain (i). Then solution set of

Ψ(z) := ‖H(z)‖2 = 0

coincide with the solution of SOCCP (1).
(ii) Now we prove that φ(μ, x, y) is a smoothing function of φ(0, x, y).

For any x = (x1, x2), y = (y1, y2) ∈ R × Rn−1, it follows from the spectral
factorization of

(x + μy)2 + (y + μx)2 + 2μ2e

and Lemma 1 that

φ(μ, x, y) = (1 + μ)(x + y)− (
√
λ1(μ)u(1)(μ) +

√
λ2(μ)u(2)(μ)),

where

λi(μ) = ‖x + μy‖2 + ‖y + μx‖2 + 2μ2 + 2(−1)i‖c(μ)‖, i = 1, 2,

u(i)(μ) =

{
1
2

(
1, (−1)i c(μ)

‖c(μ)‖

)
if c(μ) �= 0,

1
2 (1, (−1)iw) if c(μ) = 0,

c(μ) = (x1 + μy1)(x2 + μy2) + (μx1 + y1)(μx2 + y2),

and w ∈ Rn−1 being an arbitrary vector satisfying ‖w‖ = 1. In a similar
way,

φ(0, x, y) = x + y − (
√
λ1u

(1) +
√
λ2u

(2)),

where

λi = ‖x‖2 + ‖y‖2 + 2(−1)i‖v‖, i = 1, 2,

u(i) =

{
1
2

(
1, (−1)i v

‖v‖

)
if v �= 0,

1
2 (1, (−1)iw) if v = 0,

v = x1x2 + y1y2.

If v �= 0, then

limμ↓0λi(μ) = λi,

limμ↓0u
(i)(μ) = u(i),

i = 1, 2. Hence, limμ↓0φ(μ, x, y) = φ(0, x, y). If v = 0, then



Globally Convergent Inexact Smoothing Newton Method for SOCCP 431

v(μ) = 0,

λi = ‖x‖2 + ‖y‖2,

u(i) =
1

2
(1, (−1)iw),

i = 1, 2. Then

limμ↓0(
√
λ1(μ)u(1)(μ) +

√
λ2(μ)u(2)(μ))

=
√
‖x‖2 + ‖y‖2u(1)(μ) +

√
‖x‖2 + ‖y‖2u(2)(μ)

=
√
‖x‖2 + ‖y‖2e

=
√
‖x‖2 + ‖y‖2u(1) +

√
‖x‖2 + ‖y‖2u(2)

=
√
λ1u

(1) +
√
λ2u

(2).

Therefore, φ(μ, x, y) is a smoothing function of φ(0, x, y). Semismoothness of
the function φ(μ, x, y) on R+ ×Rn ×Rn which can be obtained by Theorem
3.2 in [9].

(iii) It is easy to show that H(z) is continuously differentiable at any
(μ, z, y) ∈ R++ × Rn × Rn. Since for any (μ, z, y) ∈ R++ × Rn × Rn, we
have ω ≻ 0, then Lω is invertible. So the computation of ∇H(z) is not
difficult. Next we want to show the nonsingularity of ∇H(z). Assume that
∇H(z)∆z = 0, we need to shown ∆z = 0. From ∇H(z)∆z = 0 we have

∆μ = 0, (4)

∇F (x)∆x −∆y = 0, (5)

∇φμ∆μ +∇φx∆x +∇φy∆y = 0. (6)

Form (4) and (6), we obtain

((1+μ)Lω−Lx+μy−μLy+μx)∆x+((1+μ)Lω−Ly+μx−μLx+μy)∆y = 0. (7)

Then, from (7), using Jordan product “ ◦ ” yield

((1+μ)ω−(x+μy)−μ(y+μx))◦∆x+((1+μ)ω−(y+μx)−μ(x+μy))◦∆y = 0.
(8)

It is easy to see from the definition of ω that

(1+μ)ω− (x+μy)−μ(y+μx) ≻ 0, (1+μ)ω− (y+μx)−μ(x+μy) ≻ 0 (9)

and

((1 + μ)ω − (x + μy)− μ(y + μx)) ◦ ((1 + μ)ω − (y + μx)− μ(x + μy))

= 1/2((1 + μ)ω − x− μy − μ(y + μx)− y − μx− μ(x + μy))2

+ μ((x + μy)− (y + μx))2 + (1 + μ)2μ2e ≻ 0. (10)
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From (5) and the monotonicity of F , we can get

〈∆x,∆y〉 = 〈∆x,∇F (x)∆x〉 ≥ 0. (11)

Then, by combining (9)-(11) with Lemma 2 we obtain that ∆x = 0 and
∆y = 0. The proof is completed.

Given constants δ ∈ (0, 1) and σ ∈ (0, 1). Let (μ0, x0, y0) ∈ R++ × Rn × Rn
1

with (μ0, x0) arbitrary and y0 = F (x0). Choose γ ∈ (0, 1) such that γμ0 < 1/2
and a sequence {ηk} such that ηk ∈ [0, η], where η ∈ [0, 1 − γμ0] is a constant.
Set k := 0.
Step 1. If Ψ(zk) = 0, stop.2

Step 2. Compute ∆zk = (∆μk, ∆xk, ∆yk) by3

H(zk) + ∇H(zk)∆zk = Rk, (12)

where Rk = (ρkμ0, 0, rk) ∈ R++ × Rn × Rn, ρk = ρ(zk) = γmin{1, Ψ(zk)} and
‖rk‖ ≤ ηk‖H(zk)‖.
Step 3. Let θk be the maximum of the values 1, δ, δ2, . . . such that4

Ψ(zk + θk∆zk) ≤ [1 − σ(1 − γμ0 − ηk)θk]Ψ(zk). (13)

Step 4. Set zk+1 = zk + θk∆zk and k = k + 1, go to Step 1.5

We now prove that Algorithm 5 is well-defined. First, defined the set Ω =
{z = (μ, x, y) ∈ R++ ×Rn ×Rn | μ ≥ ρ(z)μ0}, ρ(z) = γmin{1, Ψ(z)}.
Theorem 2. Suppose that F (x) is a monotone function. Then Algorithm 5 is
well defined and infinite sequence {zk = (μk, xk, yk)} generated by Algorithm
5 satisfy μk > 0 and zk ∈ Ω for all k ≥ 0.

Proof. Proof of the theorem similarly to Lemma 2.3 and Theorem 2.1 in [8].
For brevity, we omit the details here.

3 Convergence Analysis

In this section, we consider the global convergence and local superlinear con-
vergence of Algorithm 5. We need the following assumption:

Assumption 3.1. The level sets L(z0) = {z ∈ R2n+1|Ψ(z) ≤ Ψ(z0)} of Ψ(z)
are bounded.

Theorem 3. Suppose that F (x) is a monotone function. If Assumption 3.1
holds, then each accumulation point z∗ of an infinite sequence {zk} generated
by the Algorithm 5 is a solution of H(z) = 0.

Proof. It follows from Theorem 2 that an infinite sequence {zk} is generated
such that zk ∈ Ω. Without loss of generality, we assume that {zk} con-
vergence to {z∗}. From the design of Algorithm 5, the sequence {Ψ(zk)}
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is monotonically decreasing. Then from the continuity of Ψ(z), we have
{Ψ(zk)} → Ψ(z∗) ≥ 0. If Ψ(z∗) = 0, then we obtain the desired result.
Suppose Ψ(z∗) > 0, from zk ∈ Ω, i.e., μk ≥ ρ(zk)μ0 = γmin{1, Ψ(zk)}μ0, we
have μ∗ ∈ R++. Then, ∇H(z∗) exists and is invertible. Hence, there exists a
closed neighborhood N (z∗) of z∗ and a positive number ᾱ ∈ (0, 1] such that
for any z = (μ, x, y) ∈ N (z∗), and all α ∈ [0, ᾱ]

Ψ(zk + α∆zk) ≤ [1− σ(1− γμ0 − ηk)α]Ψ(zk)

holds, which shows that for a nonnegative integer l such that δl ∈ (0, ᾱ],

Ψ(zk + δl∆zk) ≤ [1− σ(1− γμ0 − ηk)δl]Ψ(zk)

holds for all sufficiently large k. By the design of Algorithm 5, θk ≥ δl, ηk ≤ η
for all sufficiently large k. Then

Ψ(zk+1) ≤ [1− σ(1− γμ0 − η)δl]Ψ(zk) (14)

for all sufficiently large k. Taking the limit k → ∞ in the both sides of
inequality (14) generates

Ψ(z∗) ≤ [1− σ(1 − γμ0 − η)δl]Ψ(z∗).

This contradicts the assumption of Ψ(z∗) > 0. This completes the proof.

Theorem 4. Suppose that F (x) is a monotone function and z∗ = (μ∗, x∗, y∗)
is an accumulation point of the iteration sequence {zk} generated by Al-
gorithm 5. If all V ∈ ∂H(z∗) are nonsingular, Assumption 3.1 holds and
ηk → 0. Then, {zk} converges to {z∗} superlinearly, that is, ‖zk+1 − z∗‖ =
o(‖zk − z∗‖). Moreover, μk+1 = o(μk).

Proof. From Theorem 3, H(z) is semismooth at z∗, and we can prove the
theorem similarly to Theorem 3.2 in [8]. For brevity, we omit the details here.

4 Numerical Experiments

In this section, we have implemented some numerical experiments on the
SOCCP using the Algorithm 5 described in this paper. All programs are writ-
ten in Matlab code, numerical test in PC, CPU Main Frequency 1.73GHz 1G
run circumstance Matlab 7.1. In experiments, the function F (x) in SOCCP
(1) is Mx + q, M ∈ Rn × Rn, q ∈ Rn. The matrix M is obtained by setting
M = NTN , where N is a square matrix. Elements of N and q are chosen
randomly from the interval [−1, 1]. The parameters in algorithm 5 we choose
as: σ = 0.8, γ = 0.001, δ = 0.8, ηk = 2−k. The initial μ0 is chosen randomly
from interval (0, 2) and x0 is generated from a uniform distribution in the in-
terval (0, 1). We use ‖H(z)‖ ≤ 10−10 as the stoping criterion. The numerical
results is listed in Table 1, where No.it denotes the numbers of iterations, the
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Table 1 Numerical results of Algorithm 5 for SOCCP of various problems size (n)

n No.it CPU(sec) xT F (x)

1000 14 70.8418 5.3340e-6
1500 19 264.639 1.5520e-3
2000 25 509.478 7.8776e-4

CPU time is in seconds. From Table 1, we see the inexact smoothing Newton
Algorithm proposed in the paper needs few iterations and CPU. Moreover,
Algorithm 5 can deal with large-scale second-order cone complementarity
problems.
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Existence of Positive Solution
for the Cauchy Problem
for an Ordinary Differential Equation

Toshiharu Kawasaki and Masashi Toyoda

Abstract. In this paper we consider the existence of positive solution for the
Cauchy problem of the second order differential equation u′′(t) = f(t, u(t)).

Keywords: Ordinary differential equation, Cauchy problem, Fixed point.

1 Introduction

The following ordinary differential equations arise in many different areas
of applied mathematics and physics; see [2, 4]. In [3] Knežević-Miljanović
considered the Cauchy problem

{
u′′(t) = P (t)tau(t)σ, t ∈ [0, 1],
u(0) = 0, u′(0) = λ,

(1)

where a, σ, λ ∈ R with σ < 0 and λ > 0, and P is a continuous mapping

of [0, 1] such that
∫ 1

0
|P (t)|ta+σdt < ∞. On the other hand in [1] Erbe and

Wang considered the equation

u′′(t) = f(t, u(t)), t ∈ [0, 1]. (2)

In this paper we consider the second order Cauchy problem

{
u′′(t) = f(t, u(t)), t ∈ [0, 1],
u(0) = 0, u′(0) = λ,

(3)
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where f is a mapping from [0, 1]× [0,∞) into R satisfying the Carathéodory
condition and λ ∈ R with λ > 0.

2 Main Results

Theorem 1. Suppose that a mapping f from [0, 1]× [0,∞) into R satisfies
the following.

(a) The mapping f satisfies the Carathéodory condition, that is, the map-
ping t −→ f(t, u) is measurable for any u ∈ (0,∞) and the mapping
u −→ f(t, u) is continuous for almost every t ∈ [0, 1].

(b) |f(t, u1)| ≥ |f(t, u2)| for almost every t ∈ [0, 1] and for any u1, u2 ∈
[0,∞) with u1 ≤ u2.

(c) There exists α ∈ R with 0 < α < λ such that

∫ 1

0

|f(t, αt)|dt <∞.

(d) There exists β ∈ R with β > 0 such that

∣∣∣∣
∂f

∂u
(t, u)

∣∣∣∣ ≤
β|f(t, u)|

u

for almost every t ∈ [0, 1] and for any u ∈ (0,∞).

Then there exist h ∈ R with 0 < h ≤ 1 such that the Cauchy problem (3) has
a unique solution in X, where X is a subset

X =

{
u

∣∣∣∣
u ∈ C[0, h], u(0) = 0, u′(0) = λ
and αt ≤ u(t) for any t ∈ [0, h]

}

of C[0, h], which is the class of continuous mappings from [0, h] into R.

Proof. It is noted that C[0, h] is a Banach space by the maximum norm

‖u‖ = max{|u(t)| | t ∈ [0, h]}.

Instead of the Cauchy problem (3) we consider the integral equation

u(t) = λt +

∫ t

0

(t− s)f(s, u(s))ds.

By the condition (c) there exists h ∈ R with 0 < h ≤ 1 such that

∫ h

0

|f(t, αt)|dt < min

{
λ− α,

α

β

}
.
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Let A be an operator from X into C[0, h] defined by

Au(t) = λt +

∫ t

0

(t− s)f(s, u(s))ds.

Since a mapping t −→ λt belongs to X , X �= ∅. Moreover A(X) ⊂ X . Indeed
by the condition (a) Au ∈ C[0, h], Au(0) = 0,

(Au)′(0) =

[
λ +

∫ t

0

f(s, u(s))ds

]

t=0

= λ

and by the condition (b)

Au(t) = λt +

∫ t

0

(t− s)f(s, u(s))ds

≥ λt− t

∫ h

0

|f(s, u(s))|ds

≥ λt− t

∫ h

0

|f(s, αs)|ds

≥ αt

for any t ∈ [0, h]. We will find a fixed point of A. Let ϕ be an operator from
X into C[0, h] defined by

ϕ[u](t) =

{
u(t)

t , if t ∈ (0, h],
λ, if t = 0,

and

ϕ[X ] = {ϕ[u] | u ∈ X}
= {v | v ∈ C[0, h], v(0) = λ and α ≤ v(t) for any t ∈ [0, h]}.

Then ϕ[X ] is a closed subset of C[0, h] and hence it is a complete metric
space. Let Φ be an operator from ϕ[X ] into ϕ[X ] defined by

Φϕ[u] = ϕ[Au].

By the mean value theorem for any u1, u2 ∈ X there exists a mapping ξ such
that

f(t, u1(t))− f(t, u2(t))

u1(t)− u2(t)
=

∂f

∂u
(t, ξ(t))

and

min{u1(t), u2(t)} ≤ ξ(t) ≤ max{u1(t), u2(t)}
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for any t ∈ [0, h]. By the conditions (b) and (d)

|f(t, u1(t))− f(t, u2(t))| =
∣∣∣∣
∂f

∂u
(t, ξ(t))(u1(t)− u2(t))

∣∣∣∣

≤
∣∣∣∣
βf(t, ξ(t))

ξ(t)

∣∣∣∣ |u1(t)− u2(t)|

≤
∣∣∣∣
βf(t, αt)

αt

∣∣∣∣ |u1(t)− u2(t)|

for almost every t ∈ [0, h]. Therefore

|Φϕ[u1](t)− Φϕ[u2](t)| =
∣∣∣∣
1

t

∫ t

0

(t− s)(f(s, u1(s))− f(s, u2(s)))ds

∣∣∣∣

≤
∫ h

0

∣∣∣∣
βf(s, αs)

αs

∣∣∣∣ |u1(s)− u2(s)|ds

≤ β

α

∫ h

0

|f(s, αs)|ds‖ϕ[u1]− ϕ[u2]‖

for any t ∈ [0, h]. Therefore

‖Φϕ[u1]− Φϕ[u2]‖ ≤
β

α

∫ h

0

|f(s, αs)|ds‖ϕ[u1]− ϕ[u2]‖.

By the Banach fixed point theorem there exists a unique mapping ϕ[u] ∈ ϕ[X ]
such that Φϕ[u] = ϕ[u]. Then Au = u. ✷

Theorem 2. Suppose that a mapping f from [0, 1]× [0,∞) into R satisfies
the following.

(a) The mapping f satisfies the Carathéodory condition, that is, the map-
ping t −→ f(t, u) is measurable for any u ∈ (0,∞) and the mapping
u −→ f(t, u) is continuous for almost every t ∈ [0, 1].

(e) |f(t, u1)| ≤ |f(t, u2)| for almost every t ∈ [0, 1] and for any u1, u2 ∈
[0,∞) with u1 ≤ u2.

(f) There exists α ∈ R with 0 < α < λ such that

∫ 1

0

|f(t, (2λ− α)t)|dt <∞.

(d) There exists β ∈ R with β > 0 such that

∣∣∣∣
∂f

∂u
(t, u)

∣∣∣∣ ≤
β|f(t, u)|

u

for almost every t ∈ [0, 1] and for any u ∈ (0,∞).

Then there exist h ∈ R with 0 < h ≤ 1 such that the Cauchy problem (3) has
a unique solution in X, where X is a subset
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X =

{
u

∣∣∣∣
u ∈ C[0, h], u(0) = 0, u′(0) = λ
and αt ≤ u(t) ≤ (2λ− α)t for any t ∈ [0, h]

}

of C[0, h].

Proof. By the condition (f) there exists h ∈ R with 0 < h ≤ 1 such that

∫ h

0

|f(t, (2λ− α)t)|dt < min

{
λ− α,

α

β

}

and let A be an operator from X into C[0, h] defined by

Au(t) = λt +

∫ t

0

(t− s)f(s, u(s))ds.

Since a mapping t −→ λt belongs to X , X �= ∅. Moreover A(X) ⊂ X . Indeed
by the condition (a) Au ∈ C[0, h], Au(0) = 0,

(Au)′(0) =

[
λ +

∫ t

0

f(s, u(s))ds

]

t=0

= λ

and by the condition (e)

Au(t) = λt +

∫ t

0

(t− s)f(s, u(s))ds

≥ λt− t

∫ h

0

|f(s, u(s))|ds

≥ λt− t

∫ h

0

|f(s, (2λ− α)s)|ds

≥ αt

and

Au(t) = λt +

∫ t

0

(t− s)f(s, u(s))ds

≤ λt + t

∫ h

0

|f(s, u(s))|ds

≤ λt + t

∫ h

0

|f(s, (2λ− α)s)|ds

≤ (2λ− α)t

for any t ∈ [0, h]. We will find a fixed point of A. Let ϕ be an operator from
X into C[0, h] defined by
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ϕ[u](t) =

{
u(t)

t , t ∈ (0, h],
λ, t = 0,

and

ϕ[X ] = {ϕ[u] | u ∈ X}
= {v | v ∈ C[0, h], v(0) = λ and α ≤ v(t) ≤ (2λ− α) for any t ∈ [0, h]}.

Then ϕ[X ] is a closed subset of C[0, h] and hence it is a complete metric
space. Let Φ be an operator from ϕ[X ] into ϕ[X ] defined by

Φϕ[u] = ϕ[Au].

Then we can show just like Theorem 1 that by the Banach fixed point theorem
there exists a unique mapping ϕ[u] ∈ ϕ[X ] such that Φϕ[u] = ϕ[u] and hence
Au = u. ✷

3 Examples

In this section we give some examples to illustrrate the results above.

Example 1. In [3] the Cauchy problem (1) is considered. Since f(t, u) =
P (t)tauσ, a, σ, λ ∈ R with σ < 0 and λ > 0 and P is a continuous map-

ping such that
∫ 1

0
|P (t)|ta+σdt < ∞, the conditions (a), (b), (c) and (d) are

satisfied. Indeed (a), (b) and (c) are clear and since

∣∣∣∣
∂f

∂u
(t, u)

∣∣∣∣ = |P (t)taσuσ−1|

=
|σ||f(t, u)|

u
,

(d) holds. By Theorem 1 the Cauchy problem (1) has a unique solution in

X =

{
u

∣∣∣∣
u ∈ C[0, h], u(0) = 0, u′(0) = λ
and αt ≤ u(t) for any t ∈ [0, h]

}
.

Example 2. We consider the Cauchy problem

{
u′′(t) = a(t) + u(t), t ∈ [0, 1],
u(0) = 0, u′(0) = λ,

(4)

where a is positive and integrable, and λ ∈ R with λ > 0. Since f(t, u) =
a(t) + u, the conditions (a), (e), (f) and (d) are satisfied. Indeed (a), (e) and
(f) are clear and since

∣∣∣∣
∂f

∂u
(t, u)

∣∣∣∣ = 1 ≤ a(t) + u

u
=
|f(t, u)|

u
,
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(d) holds. By Theorem 2 the Cauchy problem (4) has a unique solution in

X =

{
u

∣∣∣∣
u ∈ C[0, h], u(0) = 0, u′(0) = λ
and αt ≤ u(t) ≤ (2λ− α)t for any t ∈ [0, h]

}
.

Example 3. We consider the Cauchy problem

{
u′′(t) = a(t)u(t)σ, t ∈ [0, 1],
u(0) = 0, u′(0) = λ,

(5)

where
∫ 1

0 |a(t)|tσdt <∞ and σ, λ ∈ R with λ > 0. Since f(t, u) = a(t)uσ, the
conditions (a), (b), (c) and (d) are satisfied if σ < 0 and the conditions (a),
(e), (f) and (d) are satisfied if σ ≥ 0. Indeed (a) is clear, (b) and (c) are clear
if σ < 0, (e) and (f) are clear if σ ≥ 0, and since

∣∣∣∣
∂f

∂u
(t, u)

∣∣∣∣ =

{
|a(t)σuσ−1|, if σ �= 0,
0, if σ = 0,

=
|σ||f(t, u)|

u
,

(d) holds. By Theorem 1 if σ < 0 and by Theorem 2 if σ > 0 the Cauchy
problem (5) has a unique solution in

X =

{
u

∣∣∣∣
u ∈ C[0, h], u(0) = 0, u′(0) = λ
and αt ≤ u(t) for any t ∈ [0, h]

}

and

X =

{
u

∣∣∣∣
u ∈ C[0, h], u(0) = 0, u′(0) = λ
and αt ≤ u(t) ≤ (2λ− α)t for any t ∈ [0, h]

}
,

respectively.
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Stability of a Two Epidemics Model

T. Dumrongpokaphan, W. Jaihonglam, and R. Ouncharoen

Abstract. An SI1I2RS epidemic model is studied. We derive the sufficient
conditions on the system parameters which guarantee that the equilibrium
points of the system are locally asymptotically stable or globally asymptoti-
cally stable.

Keywords: Epidemic, Incidence rate, Stability.

1 Introduction

Recently, many diseases caused by virus have emerged. The danger level of
the disease such as dengue fever and malaria is calculated by the spreading of
the disease. We determine who is infected by virus by measuring the amount
of the disease or pathogen in the patient. Therefore, the model of the germ’s
behavior plays an important role in finding the characteristics of the disease
and its control.

The system proposed in [18] is based on the assumptions that the natu-
ral birth rate is not the same as the natural death rate and the recovered
population may lose its immunity and become susceptible again. S.Mena-
Lorca and H.W.Hethcote [15] used the system propose in [18] as the basis
model,and introduced the SIR model in which the death of infected popu-
lation is possible and the recovered population can be re-infected. S.Mena
Lorca and H.W.Hethcote also derived the parametric conditions to classify
the equilibrium points in the similar manner as in [18].
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La-di Wang and Jian-quan Li [17], on the other hend, adapted the system
from [7] with the assumptions that the system has two diseases and the
disease - related death of the infected population may occur. Their model
incorporates two classes of infectious individuals with different infectivities
and the incidence rate is nonlinear.They investigated local and global stability
of the disease-free and endemic equilibrium points.

In this work two diseases are considered in the system and we assume that
the recovered population can be re-infected. So,we obtain

dS(t)

dt
= A− μS(t)− [β10I1(t)S(t) + β20I2(t)S(t)] + δ10R(t)

dI1(t)

dt
= p1 [β10I1(t)S(t) + β20I2(t)S(t)]− (μ + α10 + γ10) I1(t) (1)

dI2(t)

dt
= p2 [β10I1(t)S(t) + β20I2(t)S(t)]− (μ + α20 + γ20) I2(t)

dR(t)

dt
= γ10I1(t) + γ20I2(t)− μR(t)− δ10R(t),

where S(t)is the density of susceptable population at time t,Ii(t)(i = 1, 2) is
the density of infective population in the class i at time t,R(t) is the density
of recorvered population at time t, N(t) is the density of total population
at time t,where N(t) = S(t) + I1(t) + I2(t) + R(t),A is the recruitment rate
of populations,μ is the natural death rate,αi0(i = 1, 2) is the disease-related
death rate in the class i,γi0(i = 1, 2)is the recovery rate in the class i,pi(i =
1, 2)is the probability of incidence in the class i , p1+p2 = 1,βi0IiS(i = 1, 2) is
the incidence rate in the class i,δ10 is the rate that recovered individuals lose
immunity and return to the susceptible class,and all parameters are positive.

2 Main Results

We investigate local asymptotical stability and gobal asymptotical stability
of the disease-free equilibrium point and the endemic equilibrium point.
Letting τ = μt , we obtain the following system analogous to (1):

dS

dτ
=

A

μ
− S − [β1I1S + β2I2S] + δR

dI1
dτ

= p1 [β1I1S + β2I2S]− (1 + α1 + γ1) I1 (2)

dI2
dτ

= p2 [β1I1S + β2I2S]− (1 + α2 + γ2) I2

dR

dτ
= γ1I1 + γ2I2 −R− δR

where β1 =
β10

μ
, β2 =

β20

μ
, δ =

δ10
μ

, α1 =
α10

μ
, α2 =

α20

μ
, γ1 =

γ10

μ
, γ2 =

γ20

μ
.
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2.1 Disease - Free Equilibrium Point

Letting di = 1 + αi + γi(i = 1, 2), the system (2) becomes :

dS

dτ
=

A

μ
− S − [β1I1S + β2I2S] + δR

dI1
dτ

= p1 [β1I1S + β2I2S]− d1I1 (3)

dI2
dτ

= p2 [β1I1S + β2I2S]− d2I2

dR

dτ
= γ1I1 + γ2I2 −R− δR.

Next consider the system (3) by letting N = S + I1 + I2 + R.

Then,
dN

dτ
=

A

μ
−N − (α1I1 + α2I2)

Next we will prove that all solutions of the system (3) with positive data
will remain positive for all times τ > 0.

Lemma 1. Let the initial solutions be S(0) > 0, I1(0) > 0, I2(0) > 0, and
R(0) > 0. Then solutions S(τ), I1(τ), I2(τ) and R(τ) of the system (3) are
positive for all τ > 0.

Thus the total population size N may vary in time. In the absence of

disease, the population size N converges to the equilibrium
A

μ
.

For biological considerations, we study the system (3) in the closed set

Ω =

{
(S, I1, I2, R) ∈ R4

+; 0 ≤ S + I1 + I2 + R = N ≤ A

μ

}

where R4
+ denotes the non - negative cone of R4 including its lower dimen-

sional faces. It can be verified by Lemma 1 that Ω is a positive invariant
set with respect to the system (3). ∂Ω and Ω̇ denote the boundary and the
interior of Ω, respectively. The disease - free equilibrium point of the system

(3) is E0 =

(
A

μ
, 0, 0, 0

)
∈ Ω, and it exists for all nonegative values of the

parameters. Any equilibrium in Ω̇ corresponds to the disease being endemic
and is called an endemic equilibrium.From the system (3) we obtain

I1 =
p1d2I2
d1p2

. (4)

The disease-free equilibrium point corresponds to I1 = 0, I2 = 0 and R = 0.

Substituting I1 = 0, I2 = 0 and R = 0 into system (3), we obtain S =
A

μ
.
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2.1.1 Local Asymptotic Stability of the Disease-Free Equilibrium
Point

Here, we derive the conditions which guarantee that the disease-free equilib-

rium point is locally asymptotically stable. Let ℜ0 =
p1β1A

d1μ
+

p2β2A

d2μ
) which

will be called the basic reprodution number, that is the number of secondary
infectious cases produced by an infectious individual during his or her effec-
tive infectious period when introduced into the population of susceptibles.

Theorem 1. If ℜ0 < 1 , then the disease-free equilibrium point E0 is locally
asymptotically stable, and E0 is unstable if ℜ0 > 1 .

Proof. The characteristic equation is

0 = (λ + 1)(λ + 1 + δ)×[
λ2 +

(
d1+ d2 −

(
p1β1A

μ
+

p2β2A

μ

))
λ + d1d2

(
1−
(
p1β1A

μ
+

p2β2A

μ

))]
.

Consider

0 = λ2+

(
d1 + d2 −

(
p1β1A

μ
+

p2β2A

μ

))
λ+d1d2

(
1−
(
p1β1A

d1μ
+

p2β2A

d2μ

))
.

Equivalently,

0 = λ2 +

(
d1 + d2 −

(
p1β1A

μ
+

p2β2A

μ

))
λ + d1d2 (1−ℜ0) (5)

If ℜ0 < 1,then
p1β1A

d1μ
< 1 and

p2β2A

d2μ
< 1, which means d1 >

p1β1A

μ
and

d2 >
p2β2A

μ
. Therefore, d1 + d2 −

(
p1β1A

μ
+

p2β2A

μ
)

)
> 0.

Thus, all roots of the equation (5) have negative real parts if ℜ0 < 1 and
one of its root has positive real part if ℜ0 > 1. Therefore, if ℜ0 < 1 then the
disease-free equilibrium point E0 is locally asymptotically stable. �

2.1.2 Global Asymptotic Stability of the Disease-Free
Equilibrium Point

We have seen that the disease-free equlibrium point is unstable if ℜ0 > 1.
In this section, we shall prove the global stability of disease-free equilibrium
point under the condition ℜ0 ≤ 1.

Theorem 2. If ℜ0 ≤ 1, then the disease-free equilibrium point E0 is globally
asymptotically stable.
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Proof. Consider the Lyapunov function (constructed in [17])

V (S, I1, I2, R) =
β1

d1
I1+

β2

d2
I2 . Its derivative along the solutions to the system

(3) is

dV

dτ

∣∣
(3)

=
β1

d1

dI1
dτ

+
β2

d2

dI2
dτ

≤ (ℜ0 − 1)(β1I1 + β2I2).

Since ℜ0 ≤ 1 and S ≤ A

μ
,then

dV

dτ

∣∣
(3)
≤ 0.

When ℜ0 < 1 , the set Ω̄ =

{
(S, I1, I2, R) ∈ Ω :

dV

dτ

∣∣
(3)

= 0

}
, is the same as

the set {(S, I1, I2, R) ∈ Ω : I1 = I2 = 0}. Therefore, from the first equation

of the system (3), we obtain S =
A

μ
− e−τ .

Now,

lim
τ→+∞

S(τ) = lim
τ→+∞

(
A

μ
− e−τ

)
=

A

μ
.

Next, we consider
dV

dτ
≤ (ℜ0 − 1) (β1I1 + β2I2) ≤ (ℜ0 − 1)kV

where k = max

{
β1

d1
,
β2

d2

}
. Therefore,

dV

dτ
≤ (ℜ0 − 1) kV

V ≤ e−(1−ℜ0)kτ .

If τ → +∞ then V (τ) → 0, provided that ℜ0 < 1. Since V (S, I1, I2, R) =
β1

d1
I1 +

β2

d2
I2, we obtain

lim
τ→+∞

I1(τ) = lim
τ→+∞

I2(τ) = 0.

From the fourth equation of the system (3) if I1 = I2 = 0, we obtain R =
e−(1+δ)τ . Thus,

lim
τ→+∞

R(τ) = lim
τ→+∞

e−(1+δ)τ = 0.

Therefore, the disease - free equilibrium point E0 is globally asymptotically
stable on the set Ω if ℜ0 < 1. When ℜ0 = 1,the set

Ω̄ =

{
(S, I1, I2, R) ∈ Ω :

dV

dτ

∣∣
(3)

= 0

}
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is one of the folowing four sets :
Ω̄1 = {(S, I1, I2, R) ∈ Ω : I1 = I2 = 0},
Ω̄2 =

{
(S, I1, I2, R) ∈ Ω : I1 = 0, S =

A

μ

}
,

Ω̄3 =

{
(S, I1, I2, R) ∈ Ω : I2 = 0, S =

A

μ

}
,

Ω̄4 =

{
(S, I1, I2, R) ∈ Ω : S =

A

μ

}
.

We are led to
4⋃

i=1

Ωi = Ω1 ∪Ω4.

We consider set Ω̄1 when I1 = I2 = 0 and substitute I1 = I2 = 0 into the

system (3). We obtain S =
A

μ
and R = 0. Next, we consider the set Ω̄4 when

S =
A

μ
and substitute S =

A

μ
into the system (3). We obtain I1 = I2 = R = 0.

Then, the largest compact invariant set of the system (3) on the set Ω̄ is the
singleton set {E0} . So the LaSalle’s Invariance Principle [14] implies that E0

is globally asymptotically stable on the set Ω if ℜ0 = 1. �

2.2 Endemic Equilibrium Point

Now, we consider the endemic equilibrium point of the system (3) and its
local stability and global stability. Consider at equilibrium point and using
(4) we are led to

d2I2

[
β1p1S

d1
+

β2p2S

d2
− 1

]
= 0.

At the endemic equilibrium point, I1 �= 0 and I2 �= 0. Then,

β1p1S

d1
+

β2p2S

d2
− 1 = 0. (6)

Let

F (S) =
β1p1S

d1
+

β2p2S

d2
− 1. (7)

We obtain
dF (S)

dS
=

β1p1

d1
+

β2p2

d2
.



Stability of a Two Epidemics Model 449

Since all parameters are positive,
dF (S)

dS
> 0. Thus, F (S) > 0 is an increasing

function. At S = 0, we have F (0) = −1 < 0. At S =
A

μ
, we have F

(
A

μ

)
=

ℜ0 − 1. If ℜ0 > 1,then F

(
A

μ

)
> 0.

Since F (S) is an increasing and continuous function, then there exists a

positive root S ∈
(

0,
A

μ

)
by the intermediate value theorem.

Next, we consider the endemic equilibrium point E∗ = (S∗, I∗1 , I
∗
2 , R

∗)

by letting
dS

dτ
=

dI1
dτ

=
dI2
dτ

=
dR

dτ
= 0. We then have the endemic equi-

librium point E∗ = (S∗, I∗1 , I
∗
2 , R

∗), where S∗ =
d1d2

β1p1d2 + β2p2d1
, I∗1 =

(A− μS∗) (1 + δ) p1d2

d1d2 + δ (d1d2 − γ1p1d2 − γ2p2d1)
, I∗2 =

(A− μS∗) (1 + δ) p2d1

d1d2 + δ (d1d2 − γ1p1d2 − γ2p2d1)

, R∗ =
(A− μS∗) (γ1p1d2 + γ2p2d1)

d1d2 + δ(d1d2 − γ1p1d2 − γ2p2d1)
.

2.2.1 Local Asymptotic Stability of the Endemic Equilibrium
Point

Here, we will derive for the conditions which ensure that the endemic equi-
librium point is locally asymptotically stable.

Theorem 3. If ℜ0 > 1, then the endemic equilibrium point E∗ (S∗, I∗1 , I
∗
2 , R

∗)
is locally asymptotically stable.

Proof. Letting B =
d2p1β1S

∗

d1
+

d1p2β2S
∗

d2
, the characteristic equation of

J(E∗) is λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, where a1 = 2 + m + δ + B > 0 ,
a2 = (1 + δ)(1 + m) + m(d1 + d2) + (2 + δ)B > 0, a3 = mδ(2 + α1 + α2 +
p1γ2 + p2γ1) +m(d1 + d2 + d1d2) + (1 + δ)B > 0 , a4 = md1d2 +mδ[1 + (1 +
α2)γ1p2 + (1 + α1)γ2p1 + (1 + γ2)α1 + (1 + γ1)α2] > 0 .
By the Routh - Hurwitz criteria, the endemic equilibrium point is locally
asymptotically stable if a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2

3 + a2
1a4, we

consider a1a2a3 − a2
3 − a2

1a4 which yields

a1a2a3 − a2
3 − a2

1a4

= mδB(1 + δ)[(2 + δ)(2 + α1 + α2) + (1 + B)(p1γ2 + p2γ1) +

B(1 + δ)2] + B2[(1 + δ)(2 + δ)(1 + δ + B) + mδ(p1γ2 + p2γ1)] +

mδ(2 + α1 + α2 + p1γ2 + p2γ1)[B + mB(2 + δ) + mδ(p1γ2 + p2γ1)] +

m(d1 + d2 + d1d2)[mδ(p1γ2 + p2γ1) + B + B2(2 + δ)] +

mB2(1 + δ)[(1 + δ)(2 + δ) + 1] + m

(
d2
2p1β1S

∗

d1
+

d2
1p2β2S

∗

d2

)
×

[mδ(2 + α1 + α2 + p1γ1 + p2γ1) + m(d1 + d2 + d1d2) + B(1 + δ)].
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We observe that a1a2a3 − a2
3 − a2

1a4 > 0 if ℜ0 > 1. Thus, the endemic
equilibrium point E∗ is locally asymptotically stable. �

3 Conclusions

This SI1I2RS model incorporates the assumption that the recovered popu-
lation can be re-infected. In this study, local asymptotic stability and global
asymptotic stability are examined at the system equilibrium points which
are disease-free and endemic. This research finds how these two equilibrium
points could be stable. If the disease-free equilibrium point is stable, then
the virus may be eradicated. On the other hand, if the endemic equilibrium
point is stable, the infected population is reaches a constant level meaning
that the infected rate equals the recovery rate. Consequently, we can predict
the behavior of the spread of the disease and appropriate prevention program
can be efficiently executed.

Acknowledgements. The research is partly supported by Centre of Excellence
in Mathematics, CHI, Thailand and Faculty of Science Chiang Mai University,
Thailand.
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The Impulsive Synchronization for
m-Dimensional Reaction-Diffusion
System

Wanli Yang and Suwen Zheng

Abstract. In this paper, an m-dimensional impulsive reaction-diffusion sys-
tem is studied. Sufficient conditions are obtained for the global existence
of solution for the impulsive system. By considering the equi-attractivity
property of the impulsive error system, the impulsive synchronization of the
m-dimensional reaction-diffusion system is investigated, and the sufficient
conditions leading to the equi-attractivity property are obtained.

Keywords: Impulsive system, Reaction-diffusion systems, Global solution,
Synchronization, Equi-attractivity.

1 Introduction

In this paper, the following m-dimensional impulsive predator-prey reaction-
diffusion system is considered.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ui

∂t = di∆ui + ui(ai − biu
2
i −

m∑
j=1
j �=i

cij

1+uj
), t �= tk,

ui(tk + 0, x) = pik(x),
ui(0, x) = ui0(x),
ui(t, x) = 0, x ∈ ∂Ω, i = 1, 2, · · · ,m.

(P)

where x ∈ Ω, and Ω ∈ Rn is a fixed bounded domain with smooth bound-
ary ∂Ω. di, ai, bi, cij(i, j = 1, 2, · · · ,m) are positive constants, ui0, pik(i =
1, 2, · · · ,m) are given nonnegative functions.
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We take the following assumptions

(H0) :

⎧
⎪⎪⎨
⎪⎪⎩

ui0, pik ∈ H1+ε(Ω) ∩ L∞(Ω), 0 < ε < 1,
ui0(x) > 0, pik(x) > 0, x ∈ Ω,
ui0 = pik = 0, x ∈ ∂Ω,
i = 1, 2, · · · ,m; k = 1, 2, · · ·

The moments of impulse satisfy 0 < t1 < . . . < tk < tk+1 < . . ., and
tk →∞, as k →∞. And for any i = 1, 2, · · ·m,

ui(tk + 0, x) = lim
t→t+

k

ui(t, x), ui(tk − 0, x) = lim
t→t−

k

ui(t, x) � ui(tk, x)

The system (P) arises in mathematical biology as a model of some com-
petitive species which interact each other and migrate under self and cross-
diffusion effects [7] [1]. In such a model, ui(i = 1, 2, · · · ,m) are population
densities of some species.

The theory of impulsive ordinary differential equations and its applica-
tions to the fields of science and engineering have been very active research
topics [16] [8] [9] [10] [14] [15]. Extending the theory of impulsive differential
equations to partial differential equations has also gained considerable atten-
tion recently [5] [2] [3] [4]. Several differential inequalities are obtained, and
asymptotic stability results, comparison results and uniqueness results involv-
ing first order PDE’s and first order partial differential-functional equations
are established using the method of Lyapunov functional equation. Unfortu-
nately, there has been no theoretical analysis of the impulsive synchronization
for impulsive reaction-diffusion systems, such as systems (P).

In this paper, we shall investigate the global existence of the solution for
system (P) and the impulsive synchronization. Here, system (P) is the driven
system, and the driving system is described as follows:

⎧
⎪⎪⎨
⎪⎪⎩

∂ũi

∂t = di∆ũi + ũi(ai − biũ
2
i −

m∑
j=1
j �=i

cij

1+ũj
), t �= tk,

ũi(0, x) = ũi0(x),
ũi(t, x) = 0, x ∈ ∂Ω, i = 1, 2, · · · ,m.

(P̃)

Let ei(t, x) = ũi(t, x) − ui(t, x), ei0(x) = ũi0(x) − ui0(x), then, the error
system between reaction-diffusion system (P̃) and the impulsive reaction-
diffusion system (P) can be described by the following equations:

⎧
⎪⎪⎨
⎪⎪⎩

∂ei

∂t = di∆ei + ϕi(ui, ũi), t �= tk,
ei(tk + 0, x) = ũi(tk, x)− pik(x),
ei(0, x) = ei0(x),
ei(t, x) = 0, x ∈ ∂Ω, i = 1, 2, · · · ,m.

(E)
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where

ϕi(ui, ũi) = ũi(ai − biũ
2
i −

m∑

j=1
j �=i

cij

1 + ũj
)− ui(ai − biu

2
i −

m∑

j=1
j �=i

cij

1 + uj
)

= aiei − biei(ũ
2
i + ũiui + u2

i )−
m∑

j=1
j �=i

cij
ei + eiuj − uiej

(1 + ũj)(1 + uj)
.

In order to state the main results, the definition of the uniformly equi-
attractive in the large for the solutions of the impulsive error systems (E) is
introduced as follows.

Definition 1.1. [1] Solution of the error system (E) is said to be uniformly
equi-attractive in the large if for each ǫ > 0, δ > 0 , there exists a number
T = T (ǫ, δ) > 0 such that ‖(e1(0, x), e2(0, x), · · · , em(0, x))‖2 < δ implies
‖(e1(t, x), e2(t, x)), · · · , em(t, x))‖2 < ǫ for t ≥ T . where

‖(e1, e2, · · · , em)‖2 �

(∫

Ω

m∑

i=1

e2
i dx

) 1
2

.

2 The Global Existence of the Solution

Consider the following logistic differential equation with impulsive actions
(k = 1, 2, · · · ): ⎧

⎨
⎩

dw
dt = w(a0 − b0w

r), t �= tk,
w(tk + 0) = wk,
w(0) = w0.

(1)

where a0, b0, r > 0, and w0 > 0, wk > 0(k = 1, 2, · · · ).
The following assertion is significant as an auxiliary result of our paper.

Lemma 2.1. Every solution w(t) = w(t, 0, w0; tk, wk) of the system (1) sat-
isfies

0 < w(t) ≤ max
k=0,1,2,···

{(
a0

b0

) 1
r

, wk

}
.

Proof. For t ∈ (0, t1], we can obtain

wr(t) =
a0w

r
0

a0e−a0rt + b0wr
0(1 − e−a0rt)

≤
{ a0

b0
, a0 − b0w

r
0 ≥ 0,

wr
0 , a0 − b0w

r
0 < 0. (2)

It implies that

w(t) ≤
{

(a0

b0
)

1
r , a0 − b0w

r
0 ≥ 0,

w0, a0 − b0w
r
0 < 0. (3)
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For t ∈ (tk, tk+1], we can obtain that

wr(t) =
a0w

r
k

a0e−a0r(t−tk) + b0wr
k[1− e−a0r(t−tk)]

≤
{ a0

b0
, a0 − b0w

r
k ≥ 0,

wr
k, a0 − b0w

r
k < 0. (4)

It implies that

w(t) ≤
{

(a0

b0
)

1
r , a0 − b0w

r
k ≥ 0,

wk, a0 − b0w
r
k < 0. (5)

The following comparison theorems will be needed throughout the paper.

Theorem 2.2. (Walter) [13] Suppose that vector-functions

v(t, x) = (v1(t, x), · · · , vm(t, x)), w(t, x) = (w1(t, x), · · · , wm(t, x)),m ≥ 1,

satisfy the following conditions:

(T1) they are of class C2 in x ∈ Ω and of class C1 in (t, x) ∈ [a, b] × Ω̄,
where Ω ⊂Rn is a bounded domain with smooth boundary;

(T2) vt − μ∆v − g(t, x, v) ≤ wt − μ∆w − g(t, x, w), where (t, x) ∈
[a, b] × Ω,μ = (μ1, . . . , μm) > 0 (inequalities between vectors are satisfied
coordinate-wise), vector-function g(t, x, u) = (g1(t, x, u), . . . , gm(t, x, u)) is
continuously differentiable and quasi-monotonically increasing with respect
to u = (u1, · · · , um):

∂gi(t, x, u1, . . . , um)

∂uj
≥ 0, i, j = 1, . . . ,m, i �= j;

(T3) v = w = 0, (t, x) ∈ [a, b]× ∂Ω.
Then, v(t, x) ≤ w(t, x) for (t, x) ∈ [a, b]× Ω̄.

Theorem 2.3. (Smith) [12] Assume that T and d are positive real numbers,
the function u(t, x) is continuous on (0, T ]× Ω̄, continuously differentiable in
x ∈ Ω̄, with continuous derivatives ∂2u/∂xi∂xj and ∂u/∂t on (0, T ]×Ω, and
u(t, x) satisfies the following inequalities:

⎧
⎨
⎩

∂u
∂t − d∆u + c(t, x)u ≥ 0, (t, x) ∈ (0, T ]×Ω,
u ≥ 0, (t, x) ∈ (0, T ]× ∂Ω,
u(0, x) ≥ 0, x ∈ Ω.

where c(t, x) is bounded on (0, T ]×Ω. Then u(t, x) ≥ 0 on (0, T ]× Ω̄.

The local existence of the solution for the system (P) is well-known:

Theorem 2.4.[15-17] The system (P) admits a unique nonnegative solution
(u1, u2, · · · , um) : Ω × [0, T ∗) → R2

+ where 0 < T ∗ ≤ ∞. And, if T ∗ < ∞,
then

m∑

i=1

‖ui(t, 0)‖∞,Ω →∞, as t→ T ∗.
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On the global existence of the solution for impulsive system (P), we have
the following results:

Theorem 2.5. Under the assumption (H0), the solution of (P) is global
existence and ultimately bounded. And

0 < ui(t, x) ≤Mi, i = 1, 2, · · · ,m

where

Mi = max
k=1,2,···

{√
ai

bi
, ‖ui0(x)‖∞, ‖pik(x)‖∞

}
.

Proof. Let ui be the solution of system (P) in (0, T ∗). If T ∗ <∞, then, there
exists k0 such that

tk0 ≤ T ∗ < tk0+1.

(1) T ∗ ∈ (tk0 , tk0+1).
Let vi be the solution of the following impulsive differential equations

respectively: ⎧
⎨
⎩

dvi

dt = vi(ai − biv
2
i ),

vi(tk + 0) = ‖pik(x)‖∞,
vi(0) = ‖ui0(x)‖∞.

(6)

By the lemma 2.1, for t ∈ [0, T ∗), we have that

0 < vi(t) ≤ max
1≤k≤k0

{√
ai

bi
, ‖ui0(x)‖∞, ‖pik(x)‖∞

}
(7)

From the assumption (H0), we obtain that

−vi(ai − biv
2
i ) ≤ −v1(ai − biv

2
i −

ci

1 + vi
) (8)

It implies that

0 = dui

dt − di∆ui − ui(ai − biu
2
i −

m∑
j=1
j �=i

cij

1+uj
)

= dvi

dt − vi(ai − biv
2
i )

≤ dvi

dt − vi(ai − biv
2
i −

m∑
j=1
j �=i

cij

1+vj
)

(9)

Using the comparison theorem 2.2, we have that

0 < ui(t, x) ≤ vi(t), x ∈ Ω, t ∈ [0, T ∗), i = 1, 2, · · · ,m. (10)

From (7) and theorem 2.4, we know that T ∗ = ∞.
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(2) T ∗ = tk0 .
Similarity to (10), for t ∈ [0, T ∗), we can obtain that

0 < ui(t) ≤ max
1≤k≤k0−1

{√
ai

bi
, ‖ui0(x)‖∞, ‖pik(x)‖∞

}
(11)

From theorem 2.4, we also have T ∗ = ∞.
For the system (P̃), we have that

Theorem 2.6. The solution of the system (P̃) is global existent and ulti-
mately bounded, and for all t ∈ (0,∞), x ∈ Ω, the following inequalities
hold:

0 < ũi(t) ≤ max
i=1,2,··· ,m

{√
ai

bi
, ‖ui0(x)‖∞

}
� Ni.

Proof. For all T ∈ R1, t ∈ (0, T ), let ũi be the solution of (P̃). Similarity to
theorem 2.5, we have

0 ≤ ũi(t) ≤ ũi1(t).

where ũi1(t) is the solution of the following differential equations respectively:

{
dũi1

dt = ũi1(ai − biũ
2
i1), t > 0,

ũi1(0) = ‖ui0(x)‖∞.

From (2), we obtain that

ũ2
i1(t) =

ai‖ui0(x)‖2∞
aie−2ait + bi‖ui0(x)‖2∞(1− e−2ait)

≤
{ ai

bi
, ai − bi‖ui0(x)‖2∞ ≥ 0,

‖ui0(x)‖2∞, ai − bi‖ui0(x)‖2∞ < 0.

Therefore, for all t ∈ (0,∞), it follows that

0 < ũi(t) ≤ max
i=1,2,··· ,m

{√
ai

bi
, ‖ui0(x)‖∞

}
.

3 Impulsive Synchronization

In this section, we will investigate the impulsive synchronization of the system
(P) and (P̃). For the impulsive error system (E), we have the following result:

Theorem 3.1. Let

pik = αikũi(tk) + (1− αik)ui(tk), αik ∈ [0, 1],
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and c0 is the pioncare constant such that

∫

Ω

ϕ2 ≤ c20

∫

Ω

|∇ϕ|2, ∀ϕ ∈ H1
0 (Ω).

If ⎡
⎣

k∑

j=1

(λ0 − min
i=1,2,··· ,m

di

c20
)(tj+1 − tj) + lnλk

⎤
⎦→ −∞, k→∞,

where
λk = max

i=1,2,··· ,m
{(1− αik)2}, k = 1, 2, · · ·

λ0 = sup
xi �=0

∑m
i=1 Aix

2
i +

∑m
i=1

∑m
j=1
j �=i

cijuixixj
∑m

i=1 x
2
i

with

Ai = sup
0≤x≤Ni
0≤y≤Mi

[ai − bi(x
2 + xy + y2)−

m∑

j=1
j �=i

cij
1

1 + x
].

Then, the error system (E) is uniformly equi-attractive in the large.

Proof. Let

V (e) =
1

2

∫

Ω

m∑

i=1

e2
i dx. (12)

It implies that

D′
tV (e) =

∫

Ω

m∑

i=1

ei
∂ei

∂t
=

∫

Ω

[
m∑

i=1

diei∆ei +
m∑

i=1

eiϕi(ui, ũi)

]

=

∫

Ω

[
−

m∑

i=1

di|∇ei|2 +

m∑

i=1

eiϕi(ui, ũi)

]
. (13)

In the above equation (13),

eiϕ(ui, ũi)

= aie
2
i − bie

2
i (ũ

2
i + ũiui + u2

i )−
m∑

j=1
j �=i

cij
e2

i + e2
iuj − uieiej

(1 + ũj)(1 + uj)

= e2
i [ai − bi(ũ

2
i + ũiui + u2

i )−
m∑

j=1
j �=i

cij
1

1 + ũj
]

+

m∑

j=1
j �=i

cijui

(1 + ũj)(1 + uj)
eiej . (14)
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Thus

m∑

i=1

eiϕ(ui, ũi) =

m∑

i=1

e2
i [ai − bi(ũ

2
i + ũiui + u2

i )−
m∑

j=1
j �=i

cij
1

1 + ũj
]

+
m∑

i=1

m∑

j=1
j �=i

cijui

(1 + ũj)(1 + uj)
eiej

≤
m∑

i=1

Aie
2
i +

m∑

i=1

m∑

j=1
j �=i

cijuieiej] ≤ λ0

m∑

i=1

e2
i . (15)

Therefore, we have that

D′
tV (e) ≤

∫

Ω

λ0

m∑

i=1

e2
i −

m∑

i=1

di

c20
e2

i ≤
∫

Ω

(λ0 − min
i=1,2,··· ,m

di

c20
)

m∑

i=1

e2
i

= (λ0 − min
i=1,2,··· ,m

di

c20
)V (e). (16)

Thus

V (e(tk+1, x)) ≤ exp(λ0 − min
i=1,2,··· ,m

di

c20
)(tk+1 − tk)V (e(tk + 0, x)).

By the structure of the error system (E), we have that

ei(tk + 0, x) = ũ(tk)− pik(x) = (1− αik)ei(tk, x)

Then,

V (e(tk + 0, x)) = max
i=1,2,··· ,m

{(1− αik)2}
∫

Ω

m∑

i=1

e2
i (tk, x)

= λkV (e(tk, x)). (17)

It implies

V (e(tk+1, x))

≤ λk exp

[
(λ0 − min

i=1,2,··· ,m
di

c20
)(tk+1 − tk)

]
V (e(tk, x))

≤ exp

⎛
⎝

k∑

j=1

[(λ0 − min
i=1,2,··· ,m

di

c20
)(tj+1 − tj) + lnλk]

⎞
⎠V (e(t1, x)).

Therefore,
lim

k→∞
V (e(tk+1, x)) = 0. (18)
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A New Numerical Method for Solving
Convection-Diffusion Equations

Hengfei Ding and Yuxin Zhang

Abstract. In this paper, we using semi-discrete method, transformed

convection-diffusion equation into a ODEs: dU(t)
dt = AU(t), then we get

the solution of the ODEs: U(t) = etAU0. Furthermore, we give a numeri-
cal approximation for etA and get a special difference scheme for solving the
convection-diffusion equation which improve the accuracy order and stability
condition greatly. The accuracy order is fourth order and second order in
space and time direction respectively. Finally, numerical result shows that
this method is effective.

Keywords: Convection-diffusion equation, Difference scheme, High
accuracy, System of ODEs.

1 Introduction

The convection-diffusion equation is commonly encountered in physical sci-
ences governing the transport of a quantity such as mass, momentum, heat
and energy. So, it is obvious very important to find a quick, stable and practi-
cal numerical method. we now consider one dimensional convection-diffusion
equation [1]

∂u

∂t
+ ε

∂u

∂x
= γ

∂2u

∂x2
, 0 ≤ x ≤ 1 , t ≥ 0 . (1)

subject to the initial condition

u(x, 0) = g(x) , 0 ≤ x ≤ 1 .
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and boundary conditions

u(0, t) = 0 , t ≥ 0 .

u(1, t) = 0 , t ≥ 0 .

The parameter γ is the viscosity coefficient and ε is the phase speed, and
both are assumed to positive.

At present, the accuracy order of some difference schemes for solving Eq.(1)
are not very high. Generally, they are first order or second order in time direc-
tion and space direction respectively, furthermore, they are almost condition
stable [1] [4] [2]]. In this paper, we using semi-discrete method, get a new high
accuracy order difference scheme for solving Eq.(1), which is fourth accuracy
order in space and second accuracy order in time direction respectively, and
is uncondition stability. Finally, the numerical examples are presented which
are fully matched with theory analysis.

The present paper is organized as follows. In section 2, we proposition
of the difference scheme. In section 3, we discuss the accuracy order and
stability. Some numerical examples are presented in section 4 and concluding
remarks are given in section 5.

2 Proposition of the Difference Scheme

We subdivide the interval 0 ≤ x ≤ 1 into M equal subintervals by the grid
points xj = jh, j = 0(1)M, where h = 1/M , assume τ is time-size, mesh
function u(jh, kτ) is written as uk

j .
We extend interval [0, 1] to [−h, 1 + h], expanding u(−h, t) and u(h+ 1, t)

in a Taylor series expansion about x = 0 and x = 1, respectively. We get:

u(−h, t) = u(0, t)− hux(0, t) +
h2

2
uxx(0, t) + O(h3) = u(0, t) + O(h) (2)

u(1 + h, t) = u(1, t) + hux(1, t) +
h2

2
uxx(1, t) + O(h3) = u(1, t) + O(h) (3)

neglecting the term of O(h) from the (2) and (3) and we then obtain:

u(−h, t) = u(0, t) , u(1 + h, t) = u(1, t) (4)

In the same way, we expanding ut(−h, t) and ut(1 + h, t) in a Taylor series
expansion about x = 0 and x = 1, respectively, and get

ut(−h, t) = ut(0, t) , ut(1 + h, t) = ut(1, t) (5)
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Definite difference operator as follows:

δx : δxuj = uj+ 1
2
− uj− 1

2

μx : μxuj =
1

2
(uj+ 1

2
+ uj− 1

2
)

δ2
x : δ2

x = uj+1 − 2uj + uj−1

μxδx : μxδxuj =
1

2
(uj+1 − uj−1)

Write down Eq.(1) at every mesh point xj = jh, j = 1(1)M − 1. Along
time level t, then, we substitute compact difference approximation [7]

1

h

μxδxuj

1 + 1
6δ

2
x

+ O(h4) (6)

and
1

h2

δ2
xuj

1 + 1
12δ

2
x

+ O(h4) (7)

for
∂u(xj ,t)

∂x and
∂2u(xj ,t)

∂x2 in Eq.(1), respectively. By neglecting the terms of
O(h4), it then follows that the values uj(t) approximating u(xj , t) will be
the exact solution values of the system of the M − 1 ordinary differential
equations

duj(t)

dt
= − ε

h

μxδxuj(t)

1 + 1
6δ

2
x

+
γ

h2

δ2
xuj(t)

1 + 1
12δ

2
x

(8)

Let
duj(t)

dt
= vj(t) (9)

Eq.(1) becomes

vj(t) = − ε

h

μxδxuj(t)

1 + 1
6δ

2
x

+
γ

h2

δ2
xuj(t)

1 + 1
12δ

2
x

(10)

simply (10) and yield to

1
72h

2vj+2(t) + 7
36h

2vj+1(t) + 7
12h

2vj(t) + 7
36h

2vj−1(t) + 1
72h

2vj−2(t)

= (1
6γ − 1

24εh)uj+2(t) + (1
3γ − 5

12εh)uj+1(t)− γuj(t)+

(1
3γ + 5

12εh)uj−1(t) + (1
6γ + 1

24εh)uj−2(t)
(11)

In matrix notation, (11) can be written as:

{
AV(t) = BU(t)
U(0) = U0

(12)
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since
duj(t)

dt = vj(t), (12) rewritten as

{
AdU(t)

dt = BU(t)
U(0) = U0

(13)

where
V(t) = [v1(t), v2(t), . . . , vM−2(t), vM−1(t)]

T

U(t) = [u1(t), u2(t), . . . , uM−2(t), uM−1(t)]
T

U(0) = [g(x1), g(x2), . . . , g(xM−2), g(xM−1)]
T

and A, B are the five-diagonal matrix of order M − 1 as below

A = Fivediag(
1

72
h2,

7

36
h2,

7

12
h2,

7

36
h2,

1

72
h2),

B = Fivediag(
1

6
γ +

1

24
εh,

1

3
γ +

5

12
εh, −γ, 1

3
γ − 5

12
εh,

1

6
γ − 1

24
εh).

Definition 1 [6]. An (M−1)×(M−1) complex matrix D = [dij ] is diagonally
dominant if

|dii| ≥
M−1∑

j=1, j �=i

|dij | (14)

for all 1 ≤ i ≤M − 1. An (M − 1)× (M − 1) matrix D is strictly diagonally
dominant if strict inequality in (14) is valid for all 1 ≤ i ≤M − 1.

Lemma 1 [6]. Let D = [dij ] be an (M − 1)× (M − 1) strictly or irreducibly
diagonally dominant complex matrix, then, the matrix D is nonsingular.

From above, we know A is nonsingular, so we easily get the solution of
(13):

U(t) = etA−1BU0 (15)

As tk = kτ, k = 0, 1, . . . , so

U(tk+1) = e(k+1)τA−1BU0 , U(tk) = ekτA−1BU0

then we have the following scheme:

U(tk+1) = eτA−1BU(tk) (16)

now, the problem is how to approximate eτA−1B to get the numerical solution.
A good approximation to eZ is the [1, 1] padé approximation which have the
form [3]

eZ =
2 + Z

2− Z
+ O(Z3) (17)
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neglecting the high order term of O(Z3), yield to

eZ .
=

2 + Z

2− Z
(18)

so we give a approximation to eτA−1B with (2I − τA−1B)−1(2I + τA−1B)
and applied it into (16), then get a new difference scheme for solving Eq.(1)
as follow:

U(tk+1) = (2I − τA−1B)−1(2I + τA−1B)U(tk) (19)

writing (19) in the component form, we can yield to the difference scheme:

[2h2 − τ(12γ + 3εh)]uk+1
j−2 + [28h2 − τ(24γ + 30εh)]uk+1

j−1

+(84h2 + 72τγ)uk+1
j + [28h2 − τ(24γ − 30εh)]uk+1

j+1

+[2h2 − τ(12γ − 3εh)]uk+1
j+2 = [2h2 + τ(12γ + 3εh)]uk

j−2

+[28h2 + τ(24γ + 30εh)]uk
j−1 + (84h2 − 72τγ)uk

j

+[28h2 + τ(24γ − 30εh)]uk
j+1 + [2h2 + τ(12γ − 3εh)]uk

j+2

(20)

3 Accuracy Order and Stability Analysis

From the analysis and computation process above, we know that the leading
error term of the (1) padé approximate to eτA−1B is O(τ3), but Equ.(16) was
derived by interating the ordinary differential for U(t) with respect to t, so
the time direction is second accuracy order, the space direction is still fourth
accuracy order, then we know the accuracy order of the difference scheme
(19) is O(τ2 + h4).

Consider a function u defined in a discrete set of points xj = jh, uj =

u(jh), the Euclid or l2-norm is defined to be ||u||2 =
√∑N

j=1 |uj|2h.
Lemma 2 [5]. The difference scheme

Uk+1 = QUk (21)

is stable with respect to the l2-norm if and only if there exists positive con-
stants τ0, h0 and K so that

|ρ(ξ)| < 1 + Kτ (22)

for 0 < τ < τ0, 0 < h < h0, and all ξ ∈ [−π, π], and where ρ is the
symbol of difference scheme (21), then it is said that ρ satisfies the Von
Neumann condition. But when we consider a difference scheme with initial-
boundary value problem,the Von Neumann condition is a necessary condition
for stability.

We taking the discrete Fourier transform of Eq.(20) and yield to

ûn+1 = ρ(ξ)ûn (23)
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where

ρ(ξ) = {[(2h2 + 12τγ) cos 2ξ + (28h2 + 24τγ) cos ξ + (42h2 − 36τγ)]

−i[(3 sin 2ξ + 30 sin ξ)τεh]}{[(2h2 − 12τγ) cos 2ξ + (28h2 − 24τγ) cos ξ

+(42h2 + 36τγ)] + i[(3 sin 2ξ + 30 sin ξ)τεh]}−1

(24)
then, from the lemma 2 we get a necessary condition for stability is obtained
by

|ρ(ξ)| ≤ 1 (25)

take (23) into (24) and yield to

cos4 ξ + 8 cos3 ξ + 15 cos2 ξ − 4 cos ξ − 20 ≤ 0 (26)

Lemma 3. For ∀ cos ξ ∈ [−1, 1], (26) holds.
Proof : since

cos4 ξ + 8 cos3 ξ + 15 cos2 ξ − 4 cos ξ − 20
= cos4 ξ + 8 cos3 ξ + 16 cos2 ξ − cos2 ξ − 4 cos ξ − 20
= (cos2 ξ + 4 cos ξ)2 − (cos2 ξ + 4 cos ξ)− 20
= (cos2 ξ + 4 cos ξ + 4)(cos2 ξ + 4 cos ξ − 5)
= (cos ξ + 2)2[(cos ξ + 2)2 − 9]

and (cos ξ + 2)2 > 0, (cos ξ + 2)2 − 9 ≤ 0.
so cos4 ξ + 8 cos3 ξ + 15 cos2 ξ − 4 cos ξ − 20 ≤ 0
From above we know

Theorem 1. Difference scheme (20) is uncondition stability.

4 Numerical Examples

For the constant coefficient convection-diffusion equation:

⎧
⎨
⎩

∂u
∂t + ε∂u

∂t = γ ∂2u
∂x2 , 0 ≤ x ≤ 1, t ≥ 0

u(x, 0) = e
ε
2γ x sinπx, 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0, t ≥ 0

(27)

Let
(1) : ε = 1

10 ; γ = 1
50 ; h = 1

100 ; τ = 1
5000

(2) : ε = 1
10 ; γ = 1

100 ; h = 1
200 ; τ = 1

10000

(3) : ε = 1
50 ; γ = 1

100 ; h = 1
200 ; τ = 1

5000

For convenience, we can use the exact solution to calute the value of the
first state u1

j , then according to the above scheme, we can get the values of
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the 20000th state, we compute its absolute error(which equals the absolute
value of numerical solution minus exact solution). The results are shown in
the following table 1, table 2 and table 3.

Table 1 The absolute error at the condition (1)

x absolute error

0.1 1.12456334137e-003
0.3 1.51081896755e-003

0.5 2.18596452693e-003

0.7 4.18620943296e-003

0.9 8.54100403283e-003

Table 2 The absolute error at the condition (2)

x absolute error

0.1 1.73175381084e-003

0.3 1.08837660703e-003
0.5 5.78126687751e-004

0.7 8.52338492887e-003

0.9 1.02787202415e-003

Table 3 The absolute error at the condition (3)

x absolute error

0.1 3.79786505083e-003

0.3 1.06744955984e-003

0.5 2.49066221474e-004
0.7 1.62952105685e-003

0.9 8.65239009388e-003

5 Concluding Remarks

In this work, we proposed a method to find the solution of the system of
ordinary differential equations arisen from discing the convection-diffusion
equation with respect to the space variable, the method is fourth order in
space and second order in time direction, it is shown through a discrete
Fourier analysis that it is unconditionally stable, numerical experiments are
conducted to test its high accuracy and to shown its reasonableness.

Acknowledgements. The project Supported by ’QingLan’ Talent Engineering
Funds and SRF(TSA0928) by Tianshui Normal University.
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Pullback Attractor for
Non-autonomous P-Laplacian
Equation in Unbounded Domain

Guangxia Chen

Abstract. By applying extended asymptotic a priori estimate method, we
are concerned with the existence of (L2(Rn), Lp(Rn))–pullback attractor for
non-autonomous p-Laplacian equation defined in Rn, where the external force
g(t, x) satisfies only a certain integrability condition.

Keywords: P-Laplacian equation, Pullback attractor, Unbounded domain.

1 Introduction

We consider the following non-autonomous p-Laplacian equation

{
ut − div(|∇u|p−2∇u) + λ|u|p−2u + f(u) = g(t, x) in Rn × [τ,∞),

u(x, τ) = uτ ,
(1)

where p > 2, λ > 0. Assume that f(·) ∈ C1(R) satisfies the conditions

α1|u|2 − β1|u|p ≤ f(u)u ≤ α2|u|2 + β2|u|p, (2)

f ′(u) > −l, l > 0, (3)

for some positive constants αi, βi (i = 1, 2) and λ > β1. Furthermore, g(t, x) ∈
L2

loc
(R, L2(Rn)), such that for some σ ∈ (0, α1),

∫ t

−∞
eσs|g(s)|22ds <∞, ∀t ∈ R. (4)
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The existence of global attractor for p-Laplacian equation has been studied
extensively in many papers and monographs, see e.g., [1, 2, 5, 7, 8]. When g
is time dependent, [4] considered the existence of uniform attractors for p-
Laplacian equation in bounded domains, and recently, in [3], the existence of
pullback attractor in L2(Rn) has been proved.

In this paper we will prove the existence of (L2(Rn), Lp(Rn))–pullback
attractor for problem (1). Instead of the hypothesis that g(t) is translation
bounded, we assume the external force satisfies only a certain integrability
condition (4) which is less restrictive than translation bounded. At the same
time, when consider the problem in whole space Rn, the Sobolev embed-
dings are not compact. In fact, these are the two major difficulties when we
discuss the existence of pullback attractor for problem (1). To attain our
goal, in abstract framework, we extend the idea of asymptotic a priori esti-
mate to non-autonomous dynamical systems, as application, we obtain the
(L2(Rn), Lp(Rn))–pullback asymptotic compactness of the process associated
with problem (1).

Now, we recall the existence theorem for unique and global in time weak
solution for problem (1)(see [1]).

Theorem 1. Assume that f satisfies (2) (3), and g ∈ L2
loc(R, L2(Rn)). Then

for any τ ∈ R, any initial data uτ ∈ L2(Rn) and any T ≥ τ, there exists
a unique solution u ∈ C([τ, T );L2(Rn)) ∩ Cw((τ, T );W 1,p(Rn)) for equation
(1), and the mapping uτ → u(t, τ ;uτ ) is continuous in L2(Rn).

In view of Theorem 1, we define a continuous process {U(t, τ) : −∞ < τ ≤
t <∞} in L2(Rn) such that for all t ≥ τ, U(t, τ)uτ = u(t), where u(t) is the
solution of equation(1) with initial data u(τ) = uτ ∈ L2(Rn).

Our main results read as follows.

Theorem 2. Assume that f satisfies (2) (3) and g(t) ∈ L2
loc(R, L2(Rn) sat-

isfies (4) for some 0 < σ < α1. Then the process U(t, τ) associated with prob-
lem (1) possesses a (L2(Rn), Lp(Rn))–pullback attractor A = {A(t)}t∈Rn , in
which

A(t) =
⋂

s≤t

⋃

τ≤s

U(t, τ)B(τ)
Lp

and {B(t)} is (L2(Rn), Lp(Rn))–pullback absorbing for U(t, τ).

2 Preliminaries and Abstract Results

2.1 Preliminaries

In this subsection, we recall some basic definitions and abstract results about
bi-space pullback attractor, see [6] for details.
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Definition 1. Let X,Y be two Banach spaces, U(t, τ) be a process defined
on X and on Y . A family of sets A = {A(t)}t∈R ⊂ X is said to be a (X,Y)–
pullback attractor for the process U , if
1.) for any t ∈ R, A(t) is closed in X and compact in Y ;
2.) U(t, τ)A(τ) = A(t) for any τ ≤ t;
3.) it pullback attracts bounded subsets of X in the topology of Y , i.e., for any
bounded subset D ⊂ X, and any t ∈ R, limτ→−∞ distY (U(t, τ)D,A(t)) = 0.

Theorem 3. ( [6])Let X,Y be two Banach spaces, U(t, τ) be a norm-to-
weak continuous process defined on X and on Y . Assume the family B =
{B(t)}t∈R is (X,X)–pullback absorbing and B1 = {B1(t)}t∈R is (X,Y )–
pullback absorbing for U(t, τ), and for any t ∈ R, any sequence τn → −∞,
xn ∈ B(τn), the sequence {U(t, τn)xn} is precompact in Y ((X,Y )–pullback
asymptotic compactness). Then the family A = {A(t)}t∈R, where A(t) =
⋂

s≤t

⋃
τ≤s U(t, τ)(B(τ) ∩B1(τ))

X
=
⋂

s≤t

⋃
τ≤s U(t, τ)(B(τ) ∩B1(τ))

Y
is a

(X,Y )–pullback attractor for U(t, τ).

2.2 Abstract Results

In this subsection, we extend the ideas in [7,8] to non-autonomous dynamical
systems, it is useful for us to prove the existence of pullback attractor in
Lp(Rn) (p ≥ 2).

Lemma 1. (see [7]) Let D ⊂ Lp(Rn) ∩ L2(Rn) be bounded in both Lp(Rn)
and L2(Rn). Then for any ε > 0, D has a finite ε–net in Lp(Rn) if there
exists a positive constant M = M(ε), such that
1.) D has a finite (3M)(2−p)/2(ε/2)p/2–net in L2(Rn).
2.) For all u ∈ D, (

∫
Rn(|u|≥M) |u|pdx)1/p < 2−(2p+2)/pε.

Lemma 2. Let U be a process on Lp(Rn) (p ≥ 1), {B(t)} is bounded and
(L2(Rn), Lp(Rn))–pullback absorbing for U, which satisfies

for ∀ t ∈ R, ∃τ∗ = τ∗(t), s.t.U(t, τ)B(τ) ⊂ B(t) as τ < τ∗. (5)

Then for any t ∈ R and ε > 0, there exist constants τ0 = τ0(t, ε) and M =
M(t, ε) such that m(Rn(|U(t, τ)uτ | ≥M)) < ε for any uτ ∈ B(τ) and τ ≤ τ0.

Proof. Assume that {B(t)} can be bounded by M1(t). Then for any uτ ∈
B(τ), we can deduce from (5) that |U(t, τ)uτ |pp ≤M1(t) as τ ≤ τ∗, then

M1(t) ≥
∫

Rn

|U(t, τ)uτ |pdx ≥
∫

Rn(|U(t,τ)uτ |≥M(t))

|U(t, τ)uτ |pdx

≥
∫

Rn(|U(t,τ)uτ |≥M(t))

Mp(t)dx ≥Mp(t) ·m(Rn(|U(t, τ)uτ | ≥M(t))),

take M(t) ≥ (M1(t)/ε)
1/p, then we have m(Rn(|U(t, τ)uτ | ≥M)) < ε. ✷
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Lemma 3. (see [7]) Let D be a bounded subset in Lp(Rn) (p ≥ 1). If D has
a finite ε–net in Lp(Rn), then there exists an M = M(D, ε) such that for any
u ∈ D, the estimate

∫
Rn(|u|≥M)

|u|pdx ≤ 2p+1εp is valid.

Theorem 4. Let U be a norm-to-weak continuous process on L2(Rn) and
on Lp(Rn), where 2 ≤ p < ∞. Suppose that U possesses a compact
(L2(Rn), L2(Rn))–pullback attracting set. Then U has a (L2(Rn), Lp(Rn))–
pullback attractor provided the following conditions hold:
1.) U(t, τ) has a bounded (L2(Rn), Lp(Rn))–pullback absorbing set B =
{B(t)};
2.) for any t ∈ R and ε > 0, there exist positive constants M = M(ε, t)
and τ0 = τ(ε, t) such that the estimate

∫
Rn(|U(t,τ)uτ |≥M) |U(t, τ)uτ |pdx ≤ ε is

valid for any uτ ∈ B(τ) and τ ≤ τ0.

Proof. From Theorem 3, we need to verify that for any τn → −∞ and uτn ∈
B(τn), {U(t, τn)uτn} is precompact in Lp(Rn). Let {P (t)} be the compact
(L2(Rn), L2(Rn))–pullback attracting set, then any ε–neighborhood of P (t)
in L2(Rn), we denote it by {B0(t)}, is (L2(Rn), L2(Rn))–pullback absorb-
ing, take B1(t) = B(t) ∩ B0(t), then {B1(t)} is not only (L2(Rn), L2(Rn))–
pullback absorbing, but also (L2(Rn), Lp(Rn))–pullback absorbing. There-
fore, it is sufficient to prove that for any τn → −∞, and uτn ∈ B1(τn), the
sequence {U(t, τn)uτn}n is precompact in Lp(Rn).

In fact, from Theorem 3, it is easy to see that there exists τ1(ε, t), such that
{U(t, τn)uτn |τn ≤ τ1} has a finite (3M)(2−p)/2(ε/2)p/2–net in L2(Rn). Taking
τ∗ = min{τ0, τ1}, then Lemma 3 implies that {U(t, τn)uτn |τn ≤ τ∗} has a
finite ε–net in Lp(Rn), from the arbitrariness of ε, we obtain {U(t, τn)uτn}
is precompact in Lp(Rn). ✷

3 Proof of Theorem 2

Theorem 5. ( [3]) Assume f satisfies (2) (3), g ∈ L2
loc(R, L2(Rn)) satis-

fies (4) for some σ ∈ (0, α1). Let U be the process associated with problem
(1). Then for any bounded subset D ⊂ L2(Rn) and any t ∈ R, there exists
τ1(D, t) ≤ t such that for ∀τ ≤ τ1(D, t)

∫

Rn

|u|2 + |u|p + |∇u|p ≤ C(eσ(τ−t)|u(τ)|22 + e−σt

∫ t

−∞
eσs|g(s)|22ds). (6)

Furthermore, there exists a (L2(Rn)), L2(Rn))–pullback attractor for U .

Denote {B(t)}t∈R by

B(t) = {u ∈ L2(Rn) ∩W 1,p(Rn) : |u|22 + |u|pp + |∇u|pp ≤ R(t)}, (7)

where R(t) := C(1+e−σt
∫ t

−∞ eσs|g(s)|22ds). Then {B(t)} is (L2(Rn), L2(Rn))–

pullback absorbing and (L2(Rn),W 1,p(Rn))–pullback absorbing for U asso-
ciated with problem (1). From (6), we know that
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eσtR(t)→ 0 as t→ −∞. (8)

Next, we give an asymptotic a priori estimate for the unbounded part of
the modular |u| in Lp(Rn).

Lemma 4. Assume that (2) (3) hold and g(t) ∈ L2
loc(R, L2(Rn) satisfies (4)

with 0 < σ < α1, let {B(t)} be the (L2(Rn), Lp(Rn))–pullback absorbing set
defined by (7). Then for any t ∈ R, ε > 0, there exist constants τ0 = τ0(ε, t) ≤
t and M = M(ε, t) > 0, such that

∫

Rn(|u|≥M)

|U(t, τ)uτ |pdx ≤ Cε for any τ ≤ τ0 and uτ ∈ B(τ).

Proof. For any fixed ε > 0, there exists a δ > 0, such that if e ⊂ Rn and
m(e) < δ, then

∫ t

−∞
eσr

∫

e

|g(r)|2dxdr < ε. (9)

On the other hand, from Lemma 1, Lemma 2 and Theorem 5, we know that
there exist τ1 = τ1(ε, t) < t and M1 = M1(ε, t), such that for any uτ ∈ B(τ)
and τ ≤ τ1, it yields

m(Rn(|u(t)| ≥M1)) ≤ min{ε, δ}. (10)

Moreover, from (2) we can choose M0 large enough such that

α1|u| − β1|u|p−1 ≤ f(u) ≤ α2|u|+ β2|u|p−1 in Rn(u ≥M0). (11)

Take M2 = max{M0,M1} and τ ≤ τ1, let (u−M2)+ be the positive part of
u−M2, that is

(u −M2)+ =

{
u−M2, u ≥M2

0, u ≤M2.

Multiplying (1) by (u−M2)+ and integrating on Rn, we have

1

2

d

dt

∫

Ω2

|(u−M2)+|2dx +

∫

Ω2

|∇u|pdx + λ

∫

Ω2

|u|p−2u(u−M2)+dx

+

∫

Ω2

f(u)(u−M2)+dx =

∫

Ω2

g(t)(u−M2)+dx,

where Ω2 � Rn(u ≥M2), then

1

2

d

dt

∫

Ω2

|(u−M2)+|2dx +

∫

Ω2

|∇u|pdx + λ

∫

Ω2

|u|pdx +

∫

Ω2

f(u)udx
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≤
∫

Ω2

g(t)(u −M2)+dx + M2

[
λ

∫

Ω2

|u|p−1dx +

∫

Ω2

f(u)dx

]
.

From (2), (10), (11) and Young’s inequality, we have

1

2

d

dt

∫

Ω2

|(u−M2)+|2dx +

∫

Ω2

|∇u|pdx +
λ− β1

2

∫

Ω2

|u|pdx + α1

∫

Ω2

|u|2dx

≤ C(δ)

∫

Ω2

|g(t)|2dx + δ

∫

Ω2

|u|2 + Cε, (12)

for some δ > 0 small enough, such that 0 < σ < α1 − δ. Multiplying (12) by
eσt, we get that

d

dt
eσt

∫

Ω2

|(u−M2)+|2dx + eσt

∫

Ω2

(
2|∇u|p + (λ− β1)|u|p + 2α1|u|2

)
dx

− σeσt

∫

Ω2

|(u −M2)+|2dx ≤ Ceσt

∫

Ω2

|g(t)|2dx + Ceσtε,

then we obtain that

d

dt
eσt

∫

Ω2

|(u −M2)+|2dx + eσt

∫

Ω2

(
2|∇u|p + (λ − β1)|u|p + α1|u|2

)
dx

+ (α1 − σ)eσt

∫

Ω2

|(u −M2)+|2dx ≤ Ceσt

∫

Ω2

|g(t)|2dx + Ceσtε. (13)

Therefore, Gronwall’s inequality yields that

∫

Ω2

|(u(t)−M2)+|2dx ≤e−σteστ

∫

Ω2

|(u(τ)−M2)+|2dx

+ Ce−σt

∫ t

τ

eσs

∫

Ω2

|g(s)|2dxds + Cε,

combining this inequality with (8) and (9), there exists τ3(t), such that

∫

Ω2

|(u(t)−M2)+|2dx ≤ Cε, for ∀uτ ∈ B(τ) and τ ≤ τ3.

Now, for any τ ≤ min{τ3, τ1}, integrating (13) from τ to t, we get that

eσt

∫

Ω2

|(u(t)−M2)+|2dx + C

∫ t

τ

eσt

∫

Ω2

(
|∇u|p + |u|p + |u|2

)
dxdt

≤eστ

∫

Ω2

|(u(τ)−M2)+|2dx + C

∫ t

τ

eσt

∫

Ω2

|g(t)|2dxdt + Cε

∫ t

τ

eσtdt

≤Cε. (14)
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Denote F (u) =
∫ u

0 f(s)ds, we can deduce from (2) that

α1

2
|u|22 −

β1

p
|u|pp ≤

∫

Ω2

F (u) ≤ α3|u|22 + β3|u|pp, (15)

for some α3, β3 > 0. Then (14) implies that

∫ t

τ

eσt

∫

Ω2

(|∇u|p + |u|p + F (u)) dxdt ≤ Cε. (16)

On the other hand, multiplying (1) by (u−M2)+t and integrating on Rn,
we have

∫

Rn

|(u−M2)+t|2dx +

∫

Rn

|∇u|p−2∇u∇(u−M2)+tdx

+ λ

∫

Rn

|u|p−2u · (u −M2)+tdx +

∫

Rn

f(u) · (u−M2)+tdx

=

∫

Rn

g(t) · (u−M2)+tdx.

Then we have

1

2

∫

Rn

|(u−M2)+t|2dx +
d

dt

∫

Ω2

(
1

p
|∇u|p +

λ

p
|u|p + F (u)

)
dx

≤ 1

2

∫

Ω2

|g(t)|2dx,

after some simple calculation, it becomes

d

dt
eσt

∫

Ω2

(
1

p
|∇u|p +

λ

p
|u|p + F (u)

)
dx

≤σeσt

∫

Ω2

(
1

p
|∇u|p +

1

p
λ|u|p + F (u)

)
dx +

1

2
eσt

∫

Ω2

|g(t)|2dx,

in which 0 < σ < α1, then from uniform Gronwall’s inequality, we have

∫

Ω2

(
1

p
|∇u|p +

λ

p
|u|p + F (u)

)
dx ≤ Cε,

by applying (15) once again, it is easy to get that

∫

Ω2

(
|∇u|p + |u|p + |u|2

)
dx ≤ Cε. (17)

Just taking |(u + M2)−| instead of (u −M2)+, and replacing (u−M2)+t

with (u + M2)−t, after repeating the same steps above, we can deduce that
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∫

Rn(u≤−M2)

(
|∇u|p + |u|p + |u|2

)
dx ≤ Cε, (18)

combining (17) with (18), we conclude that for any M ≥M2,

∫

Rn(|u|≥M)

(
|∇u|p + |u|p + |u|2

)
dx ≤ Cε,

and the proof is completed. ✷

Proof of Theorem 2: First of all, it is obvious that U is norm-to-weak
continuous process on Lp(Rn). Collecting Theorem 4, Theorem 5, and Lemma
4, the (L2(Rn), Lp(Rn))–pullback attractor for U exists. ✷
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Monte-Carlo Simulation of Error Sort
Model

Ryoji Fukuda and Kaoru Oka

Abstract. We propose a novel quantization method for human likelihood
or preference using rank data. We estimate an evaluation function by assum-
ing that the data is sorted on the basis of observed function values and that
the observation includes some errors. We use the difference in the rank order
to estimate the corresponding function. Then, its performance will vary de-
pending on the settings. Our data are normally distributed random numbers.
First, function values are given as normally distributed random numbers, and
after that, observed values are given by adding normally distributed random
errors. The performance will depend on the difference in the variances of two
normal distributions: for the function values and for the error values. We
present a test to evaluate the proposed method by using random data.

Keywords: Monte-Carlo Simulation, Evaluation function, Rank data.

1 Introduction

Service providers struggle with the evaluation of human feelings to create
good industrial products or to render quality services. For example, com-
puter software may take over some human task if certain human feelings are
quantified. Such features are important for supporting handicapped persons
who use assistive software.
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In general, the quantification of human feelings is not easy. Questionnaires,
which are typically used to quantify human feelings, do not provide sufficient
information. The format of the questionnaire is important. If the questions are
too simple, the structure of the data is also simple, and we need a large number
of respondents. Conversely, complex questions will wear down the respondents.
From this point of view, we believe that the ranking of data is useful. Arranging
the data is a primitive task, and people may be accustomed to it. Indeed, there
are many TV programs and magazine articles on ranking data.

In this report, we deal with incomplete rank data, that is, data of integer

sequences {{r(k)
j }j≤n}k≤K , where {r(k)

j }j≤n consists of n different integers for
each k ≤ K, and these sets may be different from each other. Moreover, we
assume that these ranks are determined by an unknown estimation function
f(x), and that these values are observed with independent N(0, 1)-errors.
This model was defined as error sort model in [2]. Our objective is to de-
velop an estimation method for the function f(x) using the above rank data.
Another try for rank data is found, for example, in [1].

Simulations for complete rank data are given in [2] (which is submitted
to FSS and is written in Japanese), and these outlines will be explained in

the following sections. This is the case where {r(k)
j }j≤n are permutations of

{1, 2, . . . , n}. We use data of the difference in the ranks in these estimations;
we cannot estimate the function when all rank data are the same. The perfor-
mance of the estimation may depends on the difference in the function f(x).
We will analyze them using Monte-Carlo simulation.

2 Error Sort Model

The definition of this model is given in [2] (in Japanese), and some results for
complete rank data (in the case N = n) are given. This section includes the
definition and some results of [2], which are explained for self-containedness.

2.1 Definition of the Model

Let n,K be integers with n < N , and {{r(k)
j }j≤n}k≤K be a family of integer

sequences such that

1 ≤ r
(k)
j ≤ N, r

(k)
i �= r

(k)
j if i �= j for each k ≤ K.

Let f(x) be a function defined on I = 1, 2, . . . , N . This is an ideal evaluation
function and all rank data are sorted according to this function. Differences
among the rank data arise from errors of observation.
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Let {g(k)
j }j≤n,k≤K be a sequence of independent random variables, and

assume that the distribution of g
(k)
j is N(0, σ2) for each j and k. We assume

that the rank data {r(k)
j }j≤n (k ≤ K) is a sorting result of

{f(j) + g
(k)
j }j≤n.

This was defined as error sort model in [2].

2.2 Reverse Count

When all the rank data {r(k)
j }j≤n (k ≤ K) are of the same order, we can

only determine the order but never estimate the function values.

Assume that there exists a standard rank order {r∗j }j≤n. We do not assume
that “f(r∗j ) < f(r∗k) if j < k” is always true; in the actual analysis we obtain
this rank order using the average of individual ranks. First, we consider the
case n = N . Let Ri,j be the number of the reverse order for two elements
i, j ∈ I, as compared to the standard order, that is,

Ri,j = #{k : (i∗ − j∗)(i(k) − j(k)) < 0},

where i∗, i(k) are integers that satisfy r∗i∗ = i, r
(k)

i(k) = i and #{. . .} denotes
the cardinality of the set {. . .}. The number Ri,j is defined as the reverse
count for i, j

Next, we consider general cases (n ≤ N). Let I ′ be a set of all integers in

{r(k)
j }j≤n (k ≤ K), that is,

I ′ =
⋃

k≤K

{r(k)
j }j≤n.

Assume that the given standard rank order is a permutation of I ′. Then, we
can extend Ri,j as

Ri,j = #

⎧
⎨
⎩k :

(i∗ − j∗)(i(k) − j(k)) < 0
(i∗ − j∗) < 0 i(k) does not exist

(i∗ − j∗) > 0. j(k) does not exist

⎫
⎬
⎭ ,

Next, we define

Ti,j = #
{
k : {i, j} ∩ {r(k)

j }j≤n �= ∅
}
.

Then, the distribution of the random variable Ri,j is binomial B(Ti,j , p).
Without loss of generality, we assume that i∗ < j∗; then the probability p is
given by
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p =
1√

2πσ2

∫ ∞

f(j)−f(i)

e−
x2

2σ2 dx.

The difference f(j) − f(i) can be negative if the standard order is different
from the ascending order of {f(i)}. All distributions for reverse counts are
determined by the function f(i). Then, we are able to estimate the function
by the maximum likelihood method.

3 Simulations for Reverse Counts

3.1 For Complete Data

Let n = N and K be a positive integers and {{r(k)
j }j≤n}k≤K be a family of

rank data. We define a tentative evaluation function f∗ on I(= I ′).

f∗(i) =

K∑

k=1

i(k),

where i(k) denotes the rank of the integer ‘i’ in {r(k)
j }j≤n (see also section

2.2). We define a standard rank order r∗ = {r∗j }j≤n′ as the sorting result
according to the function f∗. Then we obtain the reverse count {Ri,j} with
respect to the standard order r∗.

We define that a pair i, j is m-connected if Ri,j ≥ m, and that I is m-
connected if I consists of one equivalent class with respect to the equivalence
relation “m-connected”. The maximum connected reverse count (MCRC) is
the maximum m with I is m-connected. We believe that this value has certain
dependence with the estimate accuracy by our method. We try to obtain an
average values for MCRCs under several situations, according to the table 1.

In general, we use N(0, SD2)-random numbers and obtain the function
values {f(1), f(2), . . . , f(N)} Let {gj}N

j=1 be a sequence of independent

N(0, sd2)-random numbers (sd < SD). (‘Target Num.’ stands for N , ‘Base
Sd’ stands for SD, ‘Error Sd’ stands for sd.) One datum {rj}n

j=1 is a sorting
result of top n indices (f(r1) + gr1 ≤ f(r2) + gr2 ≤ · · · , and ‘Select Num’
stands for n). The left graph in Fig. 1 is a graph of 1000 trials’ average of
the MCRCs.

3.2 For Incomplete Data

Let I ′(⊂ I = {1, 2, . . . , N} be a set of all appeared indices. The number of
I ′ is larger than the select num n. We select n reliable indices via following
steps.

1. Set the tentative evaluation function f∗(j) on I ′, let {r∗j }n′

j=1 be the sort
result with respect to f∗.
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Table 1 Simulation 1

Target Num. 15
Select Num. 15
Sample Num. 100
Base SD 1.0
Error SD 0.1 ∼ 0.5 (step 0.1)
Try Num 1000

2. Let C1 be the 1-connected component including r1, and stop this proce-
dure if |C1| is larger than n.

3. Let C2 be the 1-connected component including rj , where j is the minimal
number with rj �∈ C1. Stop this procedure if |C1 ∪ C2| ≥ n.

4. Iterate similar steps until |⋃J
j=1 Cj | ≥ n.

5. Sort all indices in
⋃J

j=1 Cj with respect to f∗ and select the top n ele-
ments.

Let I∗ be the set of n selected indices by the above steps. In the next section
we estimate the evaluation function f on I∗. We try the test of MCRC for
the random data in Table 2, and the right graph in Fig. 1 is its result, Each
MCRC’s is caluculated for the selected set I∗.

Table 2 Simulation 2

Target Num. 150
Select Num. 15
Sample Num. 100
Base SD 1.0
Error SD 0.01 ∼ 0.10 (step 0.01)
Try Num 300

4 Simulations for Estimations

Fix a pair i1, i2 ∈ I∗ and assume that i2 appears after i1 in {r∗j }. The reverse

count Ri1,i2 is the number of data {r(k)
j }j in which i1 appears after i2(see

Section 2). The probability of “i1 appears after i2” is given by

E(f(i2)− f(i1)) =
1√

4πσ2

∫ ∞

f(i2)−f(i1)

e−
x2

4sd2 dx,

where the distribution of the errors gi1 and gi2 is N(0, sd2). Let T (i1, i2)
be the number of appearance of the pair i1, i2, then the distribution of the
reverse count Ri1,i2 is binomial B(T (i1, i2), E(f(i2) − f(i1))). Then, by the
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Fig. 1 Average of Reverse Count

maximum likelihood estimation, we obtain the difference f(i2) − f(i1) as
follows:

f(i2)− f(i1) = E−1(R(i1, i2)/T (i1, i2)).

Note that we cannot obtain this value when R(i1, i2) = 0 or R(i1, i2) =
T (i1, i2)). In the case of complete data,T (i1, i2) = n, and for general case,

T (i1, i2) is the numbers of {r(k)
j }j satisfying {i1, i2} ∩ {r(k)

j }j �= ∅.
If I∗ is 1-connected, all values of f(j) (j ∈ I∗) can be defined using the

difference of the function. However, the function cannot be uniquely defined.
The following steps are our suggested method.

1. Calclate the maximum connected reverse count m for I∗.
2. Sort I∗ with respect to {r∗j }j .
3. Select the top index i0 ∈ I∗ in the above rank, and seek a m-connected

index i1 ∈ I∗. (The seek order is ascending order of {r∗j }j)
4. For i1, seek a m-connected index i2 and iterate this procedure until there

is no connected element. Then we obtain a m-connected path. Define
f(i0) = 0, and define function values for other indices in this path using
the above method.

5. Next we construct another path starting from top index among remaining
indices, and define the function values.

6. Seek m-connected index pair between the new path and the old path (or
the union of all other paths). In the case where there exist a connected
pair, obtain a difference of corresponding function values using the above
method, and if there is no connected pair, give a fixed large value for the
nearest rank pair. Then arrange the function values for indices of new
path.

7. Iterate this procedure until we obtain all function values.
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Fig. 2 Estimations for Complete Data

Fig. 3 Estimations for Incomplete Data

Fig. 4 Sq. Errors for Estimations

For the two settings in Table 1 and Table 2, we try an estimation tests
by the above procedure. Our purpose is to obtain evaluation functions, and
assume that the role or the meaning of these functions never changes by lin-
ear transformations. Then, in the comparison among a original function, and
the corresponding tentative and estimated function; we give linear transfor-
mations for the tentative and estimated function, to adjust these function
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values. After these adjustment the maximum values and the minimum values
are same among these three functions. Fig. 2 and Fig. 3 are sample graphs
for these estimations, and Fig. 4 contains graphs of averages of square errors.

5 Conclusions

We proposed the model, error sort model, for estimating an evaluation func-
tion using rank data, and we tested its performance via several Monte-Carlo
simulations. Especially for imcomplete data, the target evaluation function
was not clear and we set a reliable domain for this function.

Reverse counts, the numbers of different orders, constitute key information
and the performance is sufficiently good if the reverse counts are positive for
sufficient pairs of elements. In many cases estimations are stable when the
errors are small. However in our case, the nubers of reverse counts need to
be sufficiently large, that is, the variance of the errors need to be sufficiently
large.

It is not easy to realize sufficient reverse counts depending on situations.
For example, assume that some fixed element is the first element of the rank
data; then the corresponding reverse counts are 0, and we are not able to
estimate the function value for this element. We can potentially improve this
estimation method by adding some information about how easily the rank
is determined. However, simplicity and easy-to-get are the major merits of
this method. In the future, ways to obtain effective information easily and to
construct corresponding models will be investigated.

In this report, we could not compare two estimations for complete and
imcomplete data. In this situation, these are quite different from each other
and we are not able to compare them on an equal footing. These may be our
future problems.
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A Fuzzy Estimation of Fuzzy
Parameters with Rational Number
Cuts

Dabuxilatu Wang and Jingjing Wang

Abstract. Based on the distribution function of an interval-valued random
variable, we propose the parametric set for random sets, and extend the
concept of fuzzy parameters proposed by Kruse and Meyer [5] and Wu [10].
Under the assumption of “inducibility from the original”, we consider some
novel point estimation methods for the proposed fuzzy parameters.

Keywords: Fuzzy estimator, Fuzzy parameters, Fuzzy random variables

1 Introduction

Point estimation for fuzzy parameters proposed by Kruse and Meyer [5] and
Wu [10] is an important aspect of statistics with fuzzy data. The fuzzy param-
eters here are associated with fuzzy random variables (FRVs, [6] [5] [2] [7])
that model the fuzzy perception of a crisp but unknown random variable.
For example, in an acceptance sampling by attributes, the number of confor-
mity items in the sequence of a n Bernoulli trials is governed by the binomial
distribution b(n, p). However, often in practical case, it is difficult to classify
inspected items as “conformity” or “nonconformity”. When we can not distin-
guish clearly a conformity item from a nonconformity item, a fuzzy observa-
tion method have to be considered, in this case, the percent defective p could
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be considered as a vague parameter. Estimation of fuzzy parameters plays
a key role in modelling the complicated uncertainties in systems. Wang [8]
extended the fuzzy parameter by Kruse and Meyer [5] to n-dimensional case
with considering the notion of selector of a set-valued function under the
generalized Hausdorff distance d∞. However, there has been some tweaking
of the original two definitions of fuzzy parameters. It is reasonable to pro-
pose a unified standard definition for fuzzy parameters under the structure
of the distribution function of random sets [1]. The aim of this note is to
propose some novel fuzzy parameters and a novel point estimation approach
by introducing the notion “inducibility from the original”.

2 Preliminary Concepts

Let U be a universal set. A mapping A : U → [0, 1] is said to be a fuzzy set on
U . A(·) is called the membership function of fuzzy set A. For each α ∈ [0, 1],
the set Aα :=

{
x ∈ U |A(x) � α

}
(Asα := {x ∈ U |A(x) > α} ) is said to be

the α-cut (strong α-cut ) of fuzzy set A. The family
{
Aα : α ∈ [0, 1]

}
is a

set representation of fuzzy set A. Based on the resolution identity, we have
A(x) = supα∈[0,1]

{
α|x ∈ Aα

}
, x ∈ U. In the sequel, we assume U = R (or

more general R0 ⊂ R), where R is the set of all real numbers.

Definition 2.1. A mapping a : R → [0, 1] is said to be a fuzzy number if it
satisfies (1){x|a(x) = 1, x ∈ R} �= ∅. (2)∀α ∈ [0, 1], the α−cuts of a, aα is a
closed interval,i.e. aα = [a−α , a

+
α ], where a−α � a+

α , a−α , a
+
α ∈ R.

By F(R) we denote the set of all fuzzy numbers.

Definition 2.2. A fuzzy number a of R is said to be a fuzzy real number
if and only if (1)a is strictly increasing on the interval [a−0 , a

−
1 ] and strictly

decreasing on the interval [a+
1 , a

+
0 ] (2)a−1 = a+

1 . By FR we denote the set of
all fuzzy real numbers.

Let Q be the set of all rational numbers. The family {asα : α ∈ [0, 1]∩Q} is
a set representation of fuzzy number a, i.e. a(x) = supα∈[0,1]∩Q{α|x ∈ asα},
x ∈ R.

We describe a random experiment by a probability space, (Ω,A, P ), where
Ω is the set of all possible outcomes of the experiment, A is a σ− algebra of
subsets of Ω and the set function P , defined on A, is a probability measure.

We will represent by a random variable, ξ : Ω → R, the observation of
some attribute of the elements in the referential set, Ω. When our obser-
vation can not be totally precise, we do not know the exact value, ξ(ω),
of the characteristics for the individual ω. Hence, we can define a fuzzy-
valued mapping, X : Ω → F(R) (or FR), that represents the fuzzy per-
ception of ξ, all we can observe about the point ξ(ω) is that it belongs to
sets Xα(ω) = [X−

α (ω), X+
α (ω)], ∀α ∈ [0, 1]. We will call ξ the original ran-

dom variable of X (or the original of X)(see. [5]). A fuzzy-valued mapping
X is said to be FRV of Kruse and Meyer’s sense if (1){Xα(ω) : α ∈ [0, 1]}
is a set representation of X(ω) for all ω ∈ Ω. (2).For each α ∈ [0, 1], both
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X−
α (ω) := inf Xα(ω) and X+

α (ω) := supXα(ω) are real valued random vari-
ables on (Ω,A, P )(see. [5]).

By definition 3.3 and proposition 3.1 of [2], Xα(ω) = [X−
α (ω), X+

α (ω)] ,
α ∈ [0, 1], ω ∈ Ω, are random sets with respect to an appropriate measurable
structure. A random variable ξ is said to be a measurable selection of the
random set Xα if there ξ(ω) ∈ Xα(ω) =

[
X−

α (ω), X+
α (ω)

]
, ∀ω ∈ Ω. It is

easy to show that the both random variables X−
α , X+

α , α ∈ [0, 1] are mea-
surable selections of the random set Xα. By S(Xα), we denote the set of all
measurable selections of the random set Xα, i.e.

S(Xα) =
{
η|η : Ω → R is random variable and

η(ω) ∈ Xα(ω), ∀ω ∈ Ω
}
, α ∈ [0, 1].

The set of all measurable selections of Xα, α ∈ [0, 1] is denoted by χ, which
is also called the set of all measurable selections of the FRV X . It is easy to
verify that χ = ∪α∈[0,1]S(Xα) = S(X0). Note that, the α -level here can be
viewed as a membership value which stands for the acceptance degree of the
measurable selection being the original in values it takes on. Thus, we can
further define a special fuzzy set v on χ, v : χ → [0, 1], for a fixed η ∈ χ,
v(η) = supα∈[0,1]

{
α|η ∈ S(Xα)

}
.

According to I.Couso’s distribution function of a random set (see. [1]),

F (Xα) =
{
Fη : R → [0, 1]|η ∈ S(Xα)

}
, α ∈ [0, 1].

and for a fixed x ∈ R

FXα(x) =
{
Fη(x)|η ∈ S(Xα)

}
, α ∈ [0, 1].

The union ∪α∈[0,1]F (Xα) must contain the distribution Fξ of the original ξ. It
is easy to show that ∪α∈[0,1]F (Xα) = F (X0), and ∪α∈[0,1]FXα(x) = FX0(x).

We now assume that the type of the distribution of the original ξ is known
as Fξ(x; θ), where θ ∈ Θ is unknown, Θ is the parameter space of θ. And
each measurable selection η of X has its own unknown parameter θη ∈ R and
the distribution function Fη(x; θη). The distribution of Xα with unknown
parameters is denoted by FXα(θ(Xα)) :=

{
Fη(x; θη)|η ∈ S(Xα)

}
, where

θ(Xα) :=
{
θη|η ∈ S(Xα), η ∼ Fη(x; θη)

}
, θη ∈ R, is called the parametric set

of the random set Xα, their union

∪α∈[0,1]θ(Xα) = θ(X0) =
{
θη|η ∈ S(Xα), η ∼ Fη(x; θη), α ∈ [0, 1]

}
, θη ∈ R

contains parameter θ. Therefore, this union implies all the available informa-
tion about θ. On the other hand, this union can be viewed as a union of all
α-cuts of the so-called fuzzy parameter θ̃ of the FRV X , here θ̃ : θ(X0) → [0, 1]
is defined as
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θ̃(θη) = sup
α∈[0,1]

{
α|η ∈ S(Xα), Fη(x; θη) ∈ FXα(θ(Xα))

}
, θη ∈ θ(X0).

Note that θ̃(θη) = v(η), and Θ, θ(X0) ⊂ R.

If all members θη ∈ θ(X0) are unknown, then θ(X0) will be completely
unknown, so that we have no any information about θ. We need a procedure of
point estimation to give an estimator for the parametric set θ(X0) depending
on the available fuzzy sample X1, · · · , Xn from the population X .

Remark 2.1
(1)χ �= ∅. It is reasonable to put restriction on the fuzzy set v that the iden-
tically distributed measurable selections should take the same membership
value. i.e., if the set χ can be divided into different identically distributed
groups [F1], [F2], · · · , then choose a representative η(i), i = 1, 2, · · · from
each group and calculate the membership value v(η(i)) = supα∈[0,1]{α|η(i) ∈
S(Xα)}, i = 1, 2, · · · , where η(i) has the distribution Fi and for any η ∈ [Fi],
v(η) = v(η(i)), i = 1, 2, · · · .
(2)The fuzzy parameter θ̃ proposed by Kruse and Meyer [5] is defined as
a fuzzy set on the parameter space Θ of θ with considering the parameter
family

{
Fξ(x; θ) : θ ∈ Θ

}
of the original ξ, i.e.,

θ̃(t) = sup
{
v(η) : η ∈ χ0, θη = t

}
, t ∈ Θ.

where χ0 is the set of all measurable selections of X with same type of
distribution as the original ξ, and the function v is defined above. Thus, the
fuzzy parameter by Kruse and Meyer is a special case of the fuzzy parameter
of the FRV X defined above.
(3)The fuzzy parameter θ̃ proposed by Wu [10] for FRV X is directly defined
as a fuzzy real number on the parameter space Θ, where Θ is assumed to
be an interval of R, and the distributions FX−

α
, FX+

α
of the random variables

X−
α , X+

α (α ∈ [0, 1]) satisfy that

FX−
α

(x) = Fξ(x; θ̃−α ), FX+
α

(x) = Fξ(x; θ̃+
α ).

This parameter is also a special case of the fuzzy parameter of the FRV X .

3 Fuzzy Parameters Estimation under Inducibility

In this section, we propose a novel point estimation approach for the proposed
fuzzy parameter in Section 2. The population X is a FRV with the original
ξ behind it. Assume that only fuzzy observations (fuzzy data) X1, · · · , Xn

(the realization of X) on the unknown original ξ as well as the distribution
Fξ(x; θ) with an unknown parameter θ ∈ Θ ⊂ R are available. It is clear that

the estimation on θ̃ can be reduced to the estimation on the parametric set
θ(Xα), α ∈ [0, 1], which means that we need to obtain a set-valued estimator
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⋃
η∈Xα

θ̂η(X
(s)
α ), where X

(s)
α represents the sample from the population Xα,

so that the estimator of the fuzzy parameter θ̃ can be obtained formally as⋃
α∈[0,1]

⋃
η∈Xα

θ̂η(X(s)), where X(s) represents the fuzzy sample from the
population X . However, in general, there are infinite number of distribution
types in FXα(θ(Xα)) :=

{
Fη(x; θη)|η ∈ S(Xα)

}
, α ∈ [0, 1], so it is impossible

to estimate θ(Xα), α ∈ [0, 1] by distribution-wise way.

We have to consider to put some restriction on the family FXα (θ(Xα)), α ∈
[0, 1].

Definition 3.1. Let X be a FRV with the original ξ. X is said to be inducible

from the original if all distributions
{
FX−

r
(x; θX−

r
), FX−

r
(x; θX−

r
) : r ∈ [0, 1]∩

Q, X±
r ∈ χ

}
, θX±

r
∈ R, are in the parametric family

{
Fξ(x; θ), θ ∈ Θ

}
.

Obviously, if the distributions of random variables X−
α , X+

α are in the
parametric family of the original for all α ∈ [0, 1] (this is the case of [5] [10]),
then X is inducible from the original. If X is degenerated to a random variable
then it naturally inducible; If X is valued in the set of all identically shaped
fuzzy real numbers, then it is inducible from the original.
A FRV X is not inducible from the original if there exists rational number
r0 ∈ [0, 1] such that X−

r0
or X+

r0
has no distribution in the parameter family

of the original.

Let X be inducible from the original. Then, for any α ∈ [0, 1], X±
α are in

the parametric family of the original if and only if X−
rn
→P X−

α , X+
rn
→P X+

α

when rn → α, (n→∞), where {rn} ⊂ [0, 1]∩Q. Definition 3.1 indicates that
an inducible FRV has a set of measurable selections reduced to the original.

Now we consider the estimation of fuzzy parameter of the FRV X which
is inducible from the original ξ with a parametric family

{
Fξ(x; θ), θ ∈ Θ

}
.

Since

{
FX−

r
(x; θX−

r
), FX+

r
(x; θX+

r
); r ∈ [0, 1] ∩Q, X±

r ∈ χ
}

⊂
{
Fξ(x; θ), θ ∈ Θ

}
, θX+

r
, θX−

r
∈ R,

and the set [0, 1] ∩ Q is dense in the interval [0, 1], the parametric set
{θX−

r
, θX+

r
; r ∈ [0, 1] ∩ Q, X±

r ∈ χ} ≈ Θ ⊂ θ(X0). Given a fuzzy sam-

ple X1, . . . , Xn, then the crisp samples X−
1r, X

+
1r, . . . , X

−
nr, X

+
nr (r ∈ [0, 1] ∩

Q) are given, then the unknown parameter θX−
r

(θX+
r

) of FX−
r

(x; θX−
r

)
(FX+

r
(x; θX+

r
)) can be estimated by moment method or maximum like-

lihood method. The estimator θ̂X−
r

= θ̂X−
r

(x−
1r , x

−
2r, . . . , x

−
nr) (or θ̂X+

r
=

θ̂X+
r

(x+
1r, x

+
2r , . . . , x

+
nr)) can be viewed as an estimator of θ, i.e.

θ̂ = θ̂(x1, x2, . . . , xn) := θ̂X−
r

(x−
1r , x

−
2r, . . . , x

−
nr)

(or θ̂X+
r

(x+
1r, x

+
2r , . . . , x

+
nr)), where {x1, x2, . . . , xn} ⊂ E,
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E :=
{
X−

r (ω), X+
r (ω), r ∈ [0, 1] ∩Q, ω ∈ Ω

}
.

We can extend the estimator θ̂(x1, x2, . . . , xn) to a fuzzy set θ̂(X1, X2, . . . , Xn)
within E by means of Zadel’s extension principle. This fuzzy set is a kind
of fuzzy estimator of fuzzy parameter θ̃ of the FRV X when X is inducible
from the original, i.e.

ˆ̃
θ(t) = θ̂(X1, X2. . . . , Xn)(t)

= sup
t=θ̂(x1,x2,...,xn),{x1,x2,...,xn}⊂E

min
{
X1(x1), . . . , Xn(xn)

}
.

equivalently, ˆ̃θ(t) = supα∈[0,1]

{
α|t ∈ ˆ̃θα

}
, t ∈ Θ, where

ˆ̃
θα =

{
θ̂s(x1, x2, . . . , xn), s = X+

r , X−
r ,

r ∈ [0, 1] ∩Q, {x1, x2, . . . , xn} ⊂ E
}
.

If θ̂(x1, x2, . . . , xn) is a maximum likelihood (or moment) estimator of θ,

then the fuzzy set θ̂(X1, X2. . . . , Xn) is said to be a fuzzy maximum likeli-

hood estimator (or fuzzy moment estimator) ˆ̃θ of the fuzzy parameter θ̃ of the
FRV X .

Example 3.1. Assume that some risk variable ξ about environmental con-
tamination in city area can be governed by a Gaussian distribution N(μ, σ2).
The environmental contamination risks are perceived by the inhabitants in
different senses. Assume that the fuzzy perception of the inhabitants on the
risk variable ξ can be expressed with a triangular FRV X = (ξ, l, s)LR [9],
where L(x) = R(x) = max{0, 1− x}, l ∼ N(μl, σ

2
l ), s ∼ N(μs, σ

2
s), and ξ, l, s

are independent. Then, for any α ∈ [0, 1],

X−
α = ξ − (1− α)l ∼ N

(
μ− (1− α)μl, σ

2 + (1− α)2σ2
l

)
,

X+
α = ξ + (1− α)s ∼ N

(
μ + (1 − α)μs, σ

2 + (1− α)2σ2
s

)
,

which means

FX−
α
FX+

α
∈
{
N(μ, σ2);−∞ < μ <∞, σ2 > 0

}
,

therefore, the FRV X is inducible from the original ξ, and here E ={
X−

r (ω), X+
r (ω), r ∈ [0, 1], ω ∈ Ω

}
. Since X is a fuzzy perception of ξ, then

there are also fuzzy perceptions on the two unknown parameters μ, σ2, they
are fuzzy parameters denoted by μ̃X , σ̃2

X , and

μ̃X(t) = sup
α∈[0,1]

{
α|t ∈

[
μ− (1− α)μl, μ + (1− α)μs

]}
, t ∈ μ(X0),
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σ̃2
X(t) = sup

α∈[0,1]

{
α|t ∈

{
σ2+(1−β)2σ2

l , σ
2+(1−β)2σ2

s , β ∈ [α, 1]
}}

, t ∈ σ2(X0).

Assume that we have a sample of size n from the inhabitants by questionnaire,
Xi = (ξi, li, si)LR, i = 1, . . . , n, based on which we attempt to estimate the
fuzzy parameters. From the α-cut of each fuzzy sample data, we have the
crisp samples X−

iα = ξi − (1− α)li, X
+
iα = ξi + (1− α)si, i = 1, . . . , n for each

α ∈ [0, 1], and the estimates of the parameters

μX−
α

= μ− (1− α)μl, μX+
α

= μ + (1− α)μs,

σ2
X−

α
= σ2 + (1− α)2σ2

l , σ
2
X+

α
= σ2 + (1− α)2σ2

s ,

can be obtained easily as

μ̂X−
α

= ξ − (1 − α)l, μ̂X+
α

= ξ + (1− α)s,

σ̂2
X−

α
=

1

n

n∑

i=1

[
(1− α)(li − l) + (ξi − ξ)

]2
,

σ̂2
X+

α
=

1

n

n∑

i=1

[
(1 − α)(si − s) + (ξi − ξ)

]2
.

By Zadel’s extension principle, we have

ˆ̃μX(t) = sup
α∈[0,1]

{
α|t ∈

[
ξ−(1−α)l, ξ−(1−α)s

]}
, t ∈

{
μ̂X−

α
, μ̂X+

α
, α ∈ [0, 1]

}
,

i.e. ˆ̃μX = (ξ, l, s)LR.

ˆ̃σ2
X(t) = sup

α∈[0,1]

{
α|t ∈

{ 1

n

n∑

i=1

[
(1 − β)(si − s) + (ξi − ξ)

]2
,

1

n

n∑

i=1

[
(1− β)(li − l) + (ξi − ξ)

]2
, β ∈ [α, 1]

}}
,

t ∈
{
σ̂2

X−
α
, σ̂2

X+
α
, α ∈ [0, 1]

}
.

The estimator ˆ̃μX ,ˆ̃σ2
X is a fuzzy maximum likelihood estimator of μ̃X , σ̃2

X ,
respectively.

4 Conclusions

We have proposed a parametric set , a general fuzzy parameter and the
notion “inducibility from the original ” for fuzzy random variable of Kruse
and Meyer. Based on the fuzzy observations and the given parameters model
of the original, we present a fuzzy estimation on the fuzzy parameters by
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using extension principle with simple restriction on the set of parameters of
selections. The proposed method can be used to all inducible fuzzy random
variables with known parameters models.
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Regularized REML for Estimation in
Heteroscedastic Regression Models

Dengke Xu and Zhongzhan Zhang

Abstract. In this paper, we propose a regularized restricted maximum like-
lihood(REML) method for simultaneous variable selection in heteroscedastic
regression models. Under certain regularity conditions, we establish the con-
sistency and asymptotic normality of the resulting estimator. A simulation
study is conducted to illustrate the performance of the proposed method.

Keywords: Heteroscedastic regression models, Variable selection, REML,
Regularization.

1 Introduction

Many different approaches have been suggested to the problem of flexibly
modeling of the mean. Less attention, however, has been devoted to the
problem of modeling of the variance compared with that of the mean in
statistical literature. In many applications, particularly in the econometric
area and industrial quality improvement experiments, modeling the variance
will be of direct interest in its own right, to identify the source of variability
in the observations. On the other hand, modeling the variance itself may be
of scientific interest. Thus, modeling of the variance can be as important as
that of the mean.

Heteroscedastic regression models for normal data have been received a
lot of attention in recent years. For example, Park [9] proposed a log linear
model for the variance parameter and described the Gaussian model using
a two stage process to estimate the parameters. Harvey [5] discussed max-
imum likelihood (ML) estimation of the mean and variance effects and the
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subsequent likelihood ratio test under general conditions. Aitkin [1] provided
ML estimation for the joint mean and variance models and applied it to the
commonly cited Minitab tree data. Verbyla [13] estimated the parameters
using restricted maximum likelihood (REML) and provided leverage and in-
fluence diagnostics for ML and REML. Engel and Huele [2] applied a similar
model to Taguchi-type experiments for robust design. Taylor and Verbyla [11]
proposed joint modeling of location and scale parameters of the t distribution
to accommodate possible outliers. More general distributions from the family
of generalized linear models are considered by Nelder and Lee [8], Lee and
Nelder [7], Smyth and Verbyla [10] and Wang and Zhang [14].

To the best of our knowledge, most existing variable selection procedures
are limited to only select the mean explanation variables, e.g., Fan and Lv [4]
and references therein. In practice, it is also important that we can find
which variables drive the variance by variable selection procedures. However,
little work has been done to select the variance explanation variables. Wang
and Zhang [14] proposed an only variable selection of the mean explanation
variable criterion EAIC based on the extended quasi-likelihood which is for
joint generalized linear models with structured dispersions.

The main objective of this paper is to develop an efficient regularized
REML based method to select explanatory variables that make a significant
contribution to the joint mean and variance models. We propose a unified
procedure that simultaneously selects significant variables in joint mean and
variance models. Furthermore, with proper choice of tuning parameters, we
show that this variable selection procedure is consistent, and the estima-
tors of regression coefficients have oracle property. This indicates that the
regularized estimators work as well as if the subset of true zero coefficients
were already known. A simulation study is used to illustrate the proposed
methodologies.

The rest of this paper is organized as follows. In Section 2 we first describe
heteroscedastic regression models. Then, we propose a regularized method
for the joint models via regularized REML method. Asymptotic properties
of the resulting estimators are considered in Section 3. In Section 4 we carry
out simulation studies to assess the finite sample performance of the method.

2 Variable Selection in Heteroscedastic Regression
Models

2.1 Heteroscedastic Regression Models

Let Y = (y1, y2, · · · , yn)T be a vector of n independent responses, where n
is the sample size; X = (x1, x2, · · · , xn)T be an n × p matrix whose ith row
xT

i = (xi1, · · · , xip) is the observation of explanatory variables associated
with the mean of yi; and Z = (z1, z2, · · · , zn)T be an n× q matrix whose ith
row zT

i = (zi1, · · · , ziq) is the observation of explanatory variables associated
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with the variance of yi. There might be some zs which coincide with some
xs. The heteroscedastic regression models are then written as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi ∼ N(μi, σ
2
i )

μi = xT
i β

σ2
i = h2(zT

i γ)

(1)

where β = (β1, · · · , βp)
T is a p× 1 vector of unknown regression coefficients

in the mean model, and γ = (γ1, · · · , γq)
T is a q×1 vector of regression coef-

ficients in the variance model. For the identifiability of the model, we always
suppose that h(·) is a monotone function. We first assume all the explana-
tory variables of interest, and perhaps their interactions as well, are already
included into the initial models. We then aim to remove the unnecessary
explanatory variables from the models.

2.2 Regularized REML Estimation

Our variable selection method is built upon standard methods of estimation
in the heteroscedastic regression models, specifically, maximum likelihood
(ML) and restricted maximum likelihood (REML) methods. Under model
(1) and up to a constant, the (full) log-likelihood for the data is

ℓF (β, γ) = −1

2
log |Σ| − 1

2
(Y −XTβ)TΣ−1(Y −XTβ), (2)

where Σ = diag{h2(zT
1 γ), · · · , h2(zT

n γ)}, and the ML estimates of parameters
β, γ can be obtained by maximizing the log-likelihood function (2).Note that
when γ is known, the MLE for β is given by

β̂(γ) = arg min
β

1

2
(Y −XTβ)TΣ−1(Y −XTβ). (3)

One well-known criticism on the ML estimation is that for the variance
components (i.e. γ), there is a downward finite-sample bias due to the fact
that the ML method does not take into account the loss in degrees of free-
dom from the estimation of β. The restricted maximum likelihood estimator
(REML) corrects for this bias by defining estimators of the variance compo-
nents as the maximizers of the log-likelihood based on n − p linearly inde-
pendent error contrasts. This log-likelihood, according to Harville [6], is

ℓR(γ) = −1

2
log |Σ|− 1

2
log |XΣ−1XT |− 1

2
(Y −XT β̂(γ))TΣ−1(Y −XT β̂(γ)),

(4)

where β̂(γ) is given by (3).
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One way to obtain the estimate of (β, γ) is to solve (3) and (4) iteratively
until convergence. Joining the estimator (3) and the REML (4), we may write
a modified log-likelihood as

ℓn(β, γ) = −1

2
log |Σ|− 1

2
log |XΣ−1XT |− 1

2
(Y −XTβ)TΣ−1(Y −XTβ). (5)

Clearly, the MLE of β and the REML of γ can be obtained by jointly
maximizing (5). In order to obtain the desired sparsity in the final estimators,
we propose the regularized likelihood function

L(β, γ) = ℓn(β, γ)− n

p∑

j=1

p
λ
(1)
j

(|βj |)− n

q∑

k=1

p
λ
(2)
k

(|γk|). (6)

For notational simplicity, we rewrite (6) in the following

L(θ) = ℓn(θ)− n

p∑

j=1

p
λ
(1)
j

(|βj |)− n

q∑

k=1

p
λ
(2)
k

(|γk|), (7)

where θ = (θ1, · · · , θs)
T = (β1, · · · , βp; γ1, · · · , γq)

T with s = p+q and pλ(l)(·)
is a given penalty function with the tuning parameter λ(l)(l = 1, 2). The
tuning parameters can be chosen by a data-driven criterion such as cross
validation (CV), generalized cross-validation (GCV) (Tibshirani [12]), or the
BIC-type tuning parameter selector (Wang et al. [15]). Here we use the same
penalty function p(·) for all the regression coefficients but with different tun-
ing parameters λ(1) and λ(2) for the mean parameters and the variance pa-
rameters, respectively. Note that the penalty functions and tuning parameters
are not necessarily the same for all the parameters. For example, we wish to
keep some important variables in the final model and therefore do not want to
penalize their coefficients. In this paper, we use the smoothly clipped absolute
deviation (SCAD) penalty whose first derivative satisfies

p′λ(t) = λ

{
I(t ≤ λ) +

(aλ− t)+
(a− 1)λ

I(t > λ)

}

for some a > 2 (Fan and Li [3]). Following the convention in Fan and Li [3],
we set a = 3.7 in our work. The SCAD penalty is a spline function on an
interval near zero and constant outside, so that it can shrink small value of
an estimate to zero while having no impact on a large one.

The regularized REML estimator of θ, denoted by θ̂, maximizes the func-
tion L(θ) in (7). With appropriate penalty functions, maximizing L(θ) with
respect to θ leads to certain parameter estimators vanishing from the initial
models so that the corresponding explanatory variables are automatically
removed. Hence, through maximizing L(θ) we achieve the goal of selecting
important variables and obtaining the parameter estimators, simultaneously.
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3 Asymptotic Properties

We next study the asymptotic properties of the resulting regularized REML
estimators. We first introduce some notations. Let θ0 denote the true values
of θ. Furthermore, let θ0 = (θ01, · · · , θ0s)

T = ((θ
(1)
0 )T , (θ

(2)
0 )T )T . For ease of

presentation and without loss of generality, it is assumed that θ
(1)
0 consists

of all nonzero components of θ0 and that θ
(2)
0 = 0. Denote the dimension of

θ
(1)
0 by s1. Let

an = max
1≤j≤s

{p′λn
(|θ0j |), θ0j �= 0}

and
bn = max

1≤j≤s
{|p′′λn

(|θ0j |)| : θ0j �= 0},

where λn is equal to either λ
(1)
n or λ

(2)
n , depending on whether θ0j is a com-

ponent of β0 or γ0(1 ≤ j ≤ s).
To obtain the theorems in the paper, we require the following regularity

conditions:
(C1): The parameter space is compact and the true value θ0 is in the

interior of the parameter space.
(C2): The design matrices xi and zi in the joint models are all bounded,

meaning that all the elements of the matrices are bounded by a single finite
real number.

(C3): lim
n−→∞

( 1
nXΣ−1XT ) = Iβ , lim

n−→∞
(− 1

n
∂2ℓR

∂γ∂γT ) = Iγ , where Iβ and Iγ

are positive definite matrices.

Theorem 1. Assume an = Op(n
− 1

2 ), bn → 0 and λn → 0 as n→∞. Under
the conditions (C1)− (C3) , with probability tending to 1 there must exist a

local maximizer θ̂n of the regularized likelihood function L(θ) in (7) such that

θ̂n is a
√
n-consistent estimator of θ0.

The following theorem gives the asymptotic normality property of θ̂n. Let

An = diag(p′′λn
(|θ(1)

01 |), · · · , p′′λn
(|θ(1)

0s1
|)),

cn = (p′λn
(|θ(1)

01 |)sgn(θ
(1)
01 ), · · · , p′λn

(|θ(1)
0s1
|)sgn(θ

(1)
0s1

))T ,

where θ
(1)
0j is the jth component of θ

(1)
0 (1 ≤ j ≤ s1). Denote the Fisher

information matrix of θ by In(θ).

Theorem 2. Assume that the penalty function pλn(t) satisfies

lim inf
n→∞

lim inf
t→ 0+

p′λn
(t)

λn
> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix Iθ(θ0)
as n → ∞. Under the same mild conditions as these given in Theorem 1, if
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λn → 0 and
√
nλn → ∞ as n → ∞, then with probability tending to 1, the√

n-consistent estimator θ̂n = ((θ̂
(1)
n )T , (θ̂

(2)
n )T )T in Theorem 1 must satisfy

(i) θ̂
(2)
n = 0.

(ii)
√
n(Ī(1)

n )−1/2(Ī(1)
n + An){(θ̂(1)

n − θ
(1)
0 ) + (Ī(1)

n + An)−1cn} D→ Ns1(0, Is1).

where Ī(1)
n is the (s1 × s1) submatrix of Īn corresponding to the nonzero

components θ
(1)
0 and Is1 is the (s1 × s1) identity matrix.

Remark: Proofs of Theorem 1 and Theorem 2 are essentially along the same
line as Fan and Li [3]. This will lead to the conclusions. To save space, the
proofs are omitted.

4 Simulation Study

In this section we conduct a simulation study to assess the small sample
performance of the proposed procedures. We consider the sample size n=50,
75 and 100 respectively. We choose the true values of the parameters in the
model (1) to be β0 = (β1, β2, · · · , β7)

T with β1 = 1, β2 = 1, β3 = 1, and
γ0 = (γ1, γ2, · · · , γ7)

T with γ1 = 1, γ2 = 1, γ3 = 1, respectively, while the
remaining coefficients, corresponding to the irrelevant variables, are given by
zeros.

In the models, the covariates xi and the covariates zi are generated by
drawing random samples from uniform distribution on [-1,1]. The responses
yi are then drawn from the normal distribution N(μi, σ

2
i )(i = 1, · · · , n).

In the simulation study, 1000 repetitions of random samples are generated.
For each random sample, the proposed variable selection procedure for finding
out regularized REML estimators with SCAD penalty function is considered,
says RSCAD. The unknown tuning parameters λ(l), (l = 1, 2)for the penalty
function are chosen by BIC criterion in the simulation. The average number
of the estimated zero coefficients with the 1000 simulation runs is reported
in Table 1. Note that “Correct” in Table 1 means the average number of zero
regression coefficients that are correctly estimated as zero, and “Incorrect”
depicts the average number of non-zero regression coefficients that are erro-
neously set to zero. The performance of estimator β̂ and γ̂ will be assessed
by the generalized mean square error(GMSE), defined as

GMSE(β̂) = (β̂−β0)
TE(XXT )(β̂−β0),GMSE(γ̂) = (γ̂−γ0)

TE(ZZT )(γ̂−γ0).

We compare the performance of the RSCAD variable selection procedure,
proposed by this paper, with the SCAD variable selection procedure based
the log-likelihood (2), says NSCAD.

From Table 1, we can make the following observations. Firstly, the per-
formances of both variable selection procedures become better and better as
n increases. For example, the values in the column labeled ’Correct’ become



Regularized REML for Estimation in Heteroscedastic Regression Models 501

Table 1 Variable selections for the parametric component with different methods

n = 50 n = 75 n = 100
β Method GMSE Correct Incorrect GMSE Correct Incorrect GMSE Correct Incorrect

RSCAD 0.1011 3.8340 0.1130 0.0393 3.9680 0.0150 0.0238 3.9940 0.0070
NSCAD 0.1279 3.7340 0.1400 0.0403 3.9510 0.0150 0.0241 3.9890 0.0030

γ Method GMSE Correct Incorrect GMSE Correct Incorrect GMSE Correct Incorrect

RSCAD 0.4357 3.1530 0.5700 0.2288 3.5780 0.3190 0.1301 3.7710 0.1490
NSCAD 0.6402 2.5690 0.4580 0.2558 3.3570 0.2480 0.1399 3.6660 0.1170

more and more closer to the true number of zero regression coefficients in
the models. Secondly, the performance of RSCAD is significantly better than
that of NSCAD. The latter cannot eliminate some unimportant variables and
gives larger model errors. Thirdly, the performance of the variable selection
procedure in mean model outperforms that in variance model.
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Testing of Relative Difference under
Inverse Sampling

Shaoping Jiang and Yanfang Zhao

Abstract. Inverse sampling is one of the most hot topic in the continuous
sampling process. It is considered to be a more appropriate sampling scheme
than the usual binomial sampling scheme when the subjects arrive sequen-
tially and the underlying response of interest is acute. In this article, we have
studied various test statistics for testing relative difference in case-control
studies under inverse sampling. We utilized the way of Fisher-score to get
the variance of interest parameter. Then we got type I error and power by
Monte Carlo simulation. In general, Score statistic is the best, which can get
the small type I error and large power.

Keywords: Inverse sampling, Risk difference, Score-statistic.

1 Introduction

Inverse sampling scheme, first proposed by Haldane [1], suggests that one
continues to sample subjects until a pre-specified number of index subjects
with the rare event of interest is observed. This inverse sampling scheme is
referred as standard inverse sampling scheme in all subsequent discussion.
In contrast with binomial sampling, it is more appropriate in detecting the
difference between two treatments for a rare disease by avoiding sparse data
structure due to the low incidence of the disease. Moreover, inverse sampling
is preferred to binomial sampling when subjects arrive sequentially and when
maximum likelihood estimators of some epidemiological measures do not exist
under binomial sampling [3].
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In reality, inverse sampling has important practical value, many schol-
ars have made a lot of research about this problem. For instance, Kikuchi [2]
studied the association between congenital heart disease and low birth weight
under inverse sampling. Smith [6] used inverse sampling to study the level of
HIV-1 mRNA-expressing (positive) mononuclear cells within the esophageal
mucosa of patients with acquired immune deficiency syndrome (AIDS) and
esophageal disease under inverse sampling. Lui [4] considered the asymptotic
conditional test procedures for relative difference under inverse sampling. In
these paper they haven’t used the way of Fisher-score to get the variance of
interest parameter. According to this method we consider various test statis-
tics(Wald, Score, Wald-score and likelihood ratio test statistic) for testing the
hypothesis of equality of the relative difference. Relative difference is intro-
duced in section 2. In section 3, parameters estimate and four test statistics
are given. In section 4, simulation studies are constructed to investigate to
performance of the above test statistic. Finally, some concluding remarks are
given in section 5.

2 Definition of Relative Difference

Consider a study involving two comparative groups, with group 0 denoting
exposed and group 1 unexposed. The key feature of the inverse sampling
design is that the number of events ri (i=0,1) is pre-specified. Let yi denote
the number of non-events to ensure that pre-specified events are observed.
The probability mass function is given by

f(Yi = yi|pi) =

(
yi + ri − 1

yi

)
pri

i (1− pi)
y
i , (i = 0, 1) (1)

Consider the two samples is independent, the probability density function of
(y0, y1) is given by:

f(Y1 = y1, Y0 = y0|p1, p0)

=

(
y1 + r1 − 1

y1

)
pr1
1 (1− p1)

y1

(
y0 + r0 − 1

y0

)
pr0
0 (1− p0)

y0

=

(
y1 + r1 − 1

y1

)(
y0 + r0 − 1

y0

)
pr1
1 qy1

1 pr0
0 qy0

0 . (2)

where qi = 1− pi, i = 0, 1.
Following the arguments of Sheps [5], we define relative difference as:

δ =
p1 − p0

1− p0
= 1− Φ. (3)

where Φ = q1

q0
, and we can get that relative difference δ ≤ 1.



Testing of Relative Difference under Inverse Sampling 505

Here, our main interest is to test the following hypothesis:

H0 : δ = δ0 ←→ H1 : δ �= δ0

Where δ0 is a fixed constant. According to Eq.(2), the log-likelihood func-
tion of the observed frequencies (y0, y1) is given by:

L(δ, p0) = r1 log[p0 + δ(1− p0)] + y1 log[(1− δ)(1 − p0)]

+ r0 log p0 + y0 log(1 − p0) + C. (4)

where C is a constant which does not depend on the parameters δ and p0, δ
is the parameter of interest, and p0 is the nuisance parameter.

3 Parameter Estimate and Statistic

3.1 Parameter Estimate

We can get the MLE of parameter by solve the efficient score function,

U(θ) = (Uδ(θ), UP0(θ))
T = (

∂L(y1, y0)

∂δ
,
∂L(y1, y0)

∂p0
)T = 0 (5)

The MLE of θ denoted by θ̂ = (δ̂, p̂0), where δ̂ = r1y0−r0y1

y0(r1+y1)
and p̂0 = r0

y0+r0
.

We can get the MLE of parameter under H0 by solve the Up0(θ) =
∂L(y1,y0)

∂p0
= 0, the the estimate is given by θ̃ = (δ0, p̃0), and p̃0 = −B+

√
B2−4AC
2A ,

where A = (1−δ0)(y1+y0+r1+r0), B = δ0(y0+y1+r1+2r0)−(r1+r0), C =
−r0δ0.

3.2 Statistic

In past research we use the delta method to get the expectations and variance
of interest parameters. But the delta way is a method of approximate solution,
the result with a certain degree of deviation; To avoid bias, we use the Fisher-
score approach to get the variance of parameter. The Fisher information
matrix as follows:

I =

(
I11 I12
I21 I22

)
=

(
E(−∂2L

∂δ2 ) E(− ∂2L
∂δ∂p0

)

E(− ∂2L
∂δ∂p0

) E(−∂2L
∂p2

0
)

)

We must know that the parameter yi(i=0, 1) follow the negative bino-

mial distribution, the expectation of parameter given by: E(y0) = r0(1−p0)
p0

,

E(y1) = r1(1−p1)
p1

. And the variance of interest parameter is given by:
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Var(δ̂) =
∑

(θ)

= (I11 − I2
12I

−1
22 )−1 =

(1 − δ){r1p2
0(1 − δ) + r0[p0 + δ(1− p0)]

2}
r1r0(1− p0)

We consider the following test statistics,

(1)Wald statistic:

T1 = (δ̂ − δ0)
T (
∑

(θ̂))−1(δ̂ − δ0). (6)

(2)Score statistic:

T2 = Uδ(θ̃)
T
∑

(θ̃)Uδ(θ̃). (7)

(3)Wald-score statistic:

T3 = (δ̂ − δ0)
T (
∑

(θ̃))−1(δ̂ − δ0). (8)

(4)Likelihood statistic:

T4 = −2[L(θ̃)− L(θ̂)]. (9)

which are asymptotically distributed as the chi-square distribution with one
degree of freedom under H0 : δ = δ0.

4 Simulation Studies

In this section, several simulation studies are conducted to investigate the
performance of various test statistics. In simulation studies, we set δ =
−0.1, 0.0, 0.1, p0 = 0.2, 0.3, 0.5, and r0 = r1 =30,50,100,150. We evaluate
the type I error and power under the statistics in the Table1.

After observed the value of Table1, we get the conclusion as follows:

Score statistic is optimal because it can be ensure that committed the type
I error is the smallest and power is large in the same condition with other
statistics. Especially when r below 50, the performance is perfect, so we can
use the score statistic to deal with small samples. By observing the type I
error we found the T4 statistics has stable nature. But compare with score
statistic, the T4 statistics is worse, because it has big type I error than score
statistic.

The Wald statistic T1 applied to the large samples. The type I error become
smaller and smaller as the sample size n increases, and tend to critical level.
Compare with T3 statistic, T1 statistic is stable because the type I error of
T3 statistic has big wavy.
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Table 1 Empirical Type I error rates and power for testing hypothesis H0 : δ = δ0

based on 10000 trials at α = 5%

δ0 p0 r0 = r1 T1 T2 T3 T4

0.1 0.2 10 6.03(100) 5.00(100) 7.17(100) 5.64(100)
30 5.55(100) 4.29(99.9) 6.11(100) 5.25(99.9)
50 5.11(100) 4.84(100) 5.48(100) 4.95(100)
80 5.17(100) 4.92(100) 5.56(100) 5.14(100)
100 5.07(100) 4.89(100) 5.37(100) 5.06(100)

0.3 10 5.43(100) 4.65(100) 6.53(100) 5.13(100)
30 5.39(100) 5.03(100) 6.36(100) 5.29(100)
50 5.15(99.9) 4.74(99.2) 5.58(99.7) 5.12(99.8)
80 5.00(100) 4.93(99.9) 5.43(100) 5.01(99.7)
100 5.14(100) 4.90(100) 5.38(100) 5.03(100)

0.5 10 5.12(100) 4.74(100) 7.15(100) 5.54(100)
30 4.87(100) 4.77(100) 6.63(100) 5.29(100)
50 5.03(100) 5.04(100) 5.86(100) 5.30(100)
80 4.68(95.6) 4.80(84.4) 5.48(75.9) 4.75(94.6)
100 4.81(99.6) 4.62(96.0) 5.12(96.9) 4.73(99.5)

0.0 0.2 10 6.28(100) 5.05(99.9) 7.37(99.9) 5.56(100)
30 6.00(100) 5.17(99.9) 6.70(100) 5.53(99.9)
50 5.65(100) 5.20(100) 6.25(100) 5.46(100)
80 5.44(100) 5.07(100) 5.78(100) 5.25(100)
100 4.77(100) 4.58(100) 4.99(100) 4.69(100)

0.3 10 5.37(100) 4.65(100) 6.95(100) 5.24(100)
30 5.22(100) 4.89(100) 6.53(100) 5.23(100)
50 4.70(100) 4.61(99.8) 5.66(99.9) 4.86(99.9)
80 5.15(100) 5.02(100) 5.69(100) 5.16(100)
100 4.65(100) 4.55(100) 4.94(100) 4.66(100)

0.5 10 5.09(100) 4.50(100) 8.24(100) 5.72(100)
30 4.81(100) 4.73(100) 6.83(100) 5.23(100)
50 4.72(100) 4.87(100) 5.97(100) 5.02(100)
80 4.64(98.1) 4.60(90.6) 5.47(83.0) 4.80(97.1)
100 4.77(99.8) 4.97(98.2) 5.71(98.7) 5.10(99.8)

-0.1 0.2 10 6.39(100) 4.85(100) 8.36(100) 5.58(100)
30 6.12(100) 5.15(100) 7.07(100) 5.65(99.9)
50 5.68(100) 4.94(100) 6.62(100) 5.23(100)
80 5.43(100) 5.01(100) 5.82(100) 5.26(100)
100 5.08(100) 4.90(100) 5.51(100) 4.95(100)

0.3 10 5.58(100) 4.92(100) 8.00(100) 5.74(100)
30 5.03(100) 4.65(100) 6.51(100) 5.10(100)
50 5.25(100) 4.91(99.9) 6.23(100) 5.23(99.9)
80 5.27(100) 5.17(100) 5.82(100) 5.16(100)
100 5.00(100) 4.94(100) 5.62(100) 5.05(100)

0.5 10 4.34(100) 4.74(100) 8.23(100) 5.61(100)
30 4.36(100) 5.11(100) 7.30(100) 5.60(100)
50 4.50(100) 4.76(100) 6.13(100) 4.95(100)
80 4.73(99.1) 4.87(93.9) 5.76(87.9) 4.86(98.3)
100 4.76(99.9) 4.92(99.1) 5.72(99.5) 4.90(99.9)

a T1, T2, T3 and T4 are correspond to Wald statistics, Score statistic, Wald-score
statistic and Likelihood statistic.
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5 Discussion

Inverse samples are often involved in our life. In this paper we use the Fisher-
Score method to get the variance of interesting parameter. This method can
be more accurate than delta way. we constructed four statistics and got the
priority one based on the evaluation of type I error and power. In the future,
we can use the same method to discuss the test about risk ratio.
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Adaptive Elastic-Net for General
Single-Index Regression Models

Xuejing Li, Gaorong Li, and Suigen Yang

Abstract. In this article, we study a general single-index model with diverg-
ing number of predictors by using the adaptive Elastic-Net inverse regression
method. The proposed method not only can estimate the direction of index
and select important variables simultaneously, but also can avoid to estimate
the unknown link function through nonparametric method. Under some reg-
ularity conditions, we show that the proposed estimators enjoy the so-called
oracle property.

Keywords: Elastic-Net, Single-index Model, Inverse regression, High di-
mensionality, Dimension reduction, Variable Selection, Oracle property.

1 Introduction

The single-index models combine flexibility of modelling with interpretability
of linear models, and have more advantages than the linear or nonparamet-
ric regression models. One advantage of the single index model is that it
overcomes the risk of misspecifying the link function. Another advantage of
the single index model is that it avoids the so-called curse of dimensionality.
Therefore, single index models have been widely studied by many statisti-
cian. In this paper, we consider the general single-index model proposed by
Li and Duan (1989) and Li (1991) as follows

Yi = G(βTXi, ei), i = 1, . . . , n, (1)

where Xi = (Xi1, . . . , Xipn)T is the linearly independent predictors, β is a
pn×1 interest index, the error terms ei are assumed to be independent of Xi,
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and G(·) is an unknown link function, which relates the response variable Y to
the the predictor vector X through a linear combination βTX and the error
term e. Equivalently, Y is independent of X when βTX is given (Cook 1998).
Clearly, model (1) is very general and covers the heteroscedastic model as a
special case. Note that when the link function G(·) is unspecified, the slope
vector β is identified only up to a multiplicative scalar because any location-
scale change in βTX can be absorbed into the link function. If we can identify
the direction of β in model (1), then we reduce the dimension pn of predictors
to one dimension. In the literature the theory of sufficient dimension reduc-
tion (SDR) provides an effective starting point to estimate β without loss
of regression information of Y on X and without assuming the specific link
function. The promising methods include sliced inversion regression (SIR, Li
1991, Cook and Ni 2005), sliced average variance estimation (Cook and Weis-
berg 1991), contour regression (Li, Zha and Chiaromonte 2005), nonconcave
penalized inverse regression (Zhu and Zhu 2009) and references therein.

In practice, pn is usually very large compared to the sample size n, and
thus pn can be assumed to depend on n at some rate (Donoho 2000, Li,
Peng and Zhu 2011). To enhance the prediction performance of the fitted
model, there are two important issues in regressions: reducing dimensionality
and fitting parsimonious model through excluding the unimportant variables.
To solve the problems above, various penalized methods have been proposed
and shown a better performance, such as ridge regression (Hoerl and Kennard
1970), Lasso (Tibshirani 1996) and SCAD (Fan and Li 2001). Recently, Zou
(2006) has showed explicitly that Lasso could be inconsistent in certain situa-
tion. Zou (2006) proposed an modified version of Lasso called adaptive Lasso
and explicitly proved its consistency in terms of oracle properties. Through
combining both ridge (L2) and lasso (L1) penalty together, Zou and Hastie
(2005) proposed the Elastic-Net, which also has the property of sparsity, to
solve the collinearity problems. Zou and Hastie (2005) and Zou and Zhang
(2009) further showed that the Elastic-Net can significantly improve the pre-
diction accuracy of the Lasso when the correlations among the predictors
become high.

In this paper we study the variable selection when the assumed link func-
tion might be incorrect. Model (1) is assumed to be “sparse”, i.e. most of
the regression coefficients β are exactly zero corresponding to predictors that
are irrelevant to the response. Let A = {j : βj �= 0, j = 1, . . . , pn} denote
the true model set and |A| = kn < pn. We intend to understand the model
selection performance of the adaptive Elastic-Net inverse regression method.
The proposed method not only can estimate the direction of index and select
important variables simultaneously, but also can avoid to estimate the un-
known link function through nonparametric method. Under some regularity
conditions, we demonstrate that the proposed estimators enjoy the so-called
oracle property.

The rest of the article is organized as follows. In Section 2, we introduce
the adaptive Elastic-Net inverse regression for general single-index model
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with high dimensional predictors. In Section 3, some statistical properties,
including the oracle property, are established. The technical details are avail-
able upon request.

2 Methodology

2.1 Identification of β

In this subsection, we will define a population identification of β for single-
index models (1) without introducing the penalty. In the SDR context, we will
define a criterion to identify β in model (1) so that we can have a sufficient
recovery of the direction of β in the sense that the projection direction under
our criterion identifies β only up to a multiplicative scalar. To be precise,
denote by F (y) = Prob(Y ≤ y) the distribution function of the continuous
response Y . Let the loss function take the form of

ℓ(βTX,F (Y )) = −F (Y )βTX + ψ(βTX), (2)

where ψ(βTX) is convex in βTX . The loss function ℓ(βTX,F (Y )) defined in
(2) covers the least square measure as a special case, namely,

ℓ(βTX,F (Y )) = (F (Y )− βTX)2/2. (3)

by letting ψ(βTX) = [βTXXTβ + F 2(Y )]/2 in (2). The the estimate of β is
a solution of the following minimization problem:

β0 = arg min
β

E[ℓ(βTX,F (Y ))], (4)

The minimizer is very general and includes least squares, M -estimates with
nondecreasing influence functions, etc. When the loss function is defined by
(3), then the least squares estimation is

βn0 =: argmin
β

E[ℓ(βTX,F (Y ))] = argmin
β

E[F (Y )− βTX ]2

= Σ−1Cov(X,F (Y )).
(5)

Note that we do not restrict ‖β‖ = 1, which indicates only the direction
of β is of our concern. Without loss of generality, we assume the predictor
variables are centered and satisfy E(X) = 0. The identification of β is stated
in the following proposition.

Proposition 1. Under model (1) and the criterion function (2). Further
assume:
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(C1) ψ(βTX) is convex in βTX;

(C2) The expected criterion function E[ℓ(βTX,F (Y ))] has a proper mini-
mizer;

(C3) The linearity condition: E(X |βTX) = Σβ(βTΣβ)−1βTX, where Σ =
Cov(X).

Then the minimizer β0 of (4) using the objective function (2) is proportional
to β.

In this proposition, condition (C1) is satisfied for many important esti-
mation methods, including least squares, M -estimates with non-decreasing
influence functions, etc. The convexity property of the criterion is crucial
here. Without the convexity, we may have inconsistency. When the convexity
of ψ(·) is not strict, we need some additional assumptions to reach the same
conclusion. The study of this issue could be parallel to Theorem 2.2 in Li
and Duan (1989). Condition (C2) is quite mild and can usually be satisfied.
All elliptical contoured distributions satisfy the linearity condition. The lin-
earity condition (C3) is widely assumed in the dimension reduction context
such as Li (1991) and Cook (1998, proposition 4.2, page 57). Hall and Li
(1993) showed that, as pn → ∞, this linearity condition holds to a good
approximation in model (1).

This proposition implies that, if ψ(·) in the objective function (2) is strictly
convex, then all minimizers of (4) must fall along the directions of β even
though the link function G(·) is unspecified. Thus any regression slope esti-
mate based on minimizing the criterion function (4) is proportional to β up
to a multiplicative scalar.

2.2 Adaptive Elastic Net

Suppose that (XT
i , Yi)

T , i = 1, . . . , n, are independent copies of (XT , Y )T and
come from model (1). Let Y = (Y1, . . . , Yn)T is the response vector, Xj =
(X1j , . . . , Xnj)

T , j = 1, . . . , pn, are the linearly independent predictors, β is
a pn×1 interest index. Let X = [X1, . . . ,Xpn ] be the predictor matrix. From
now on, we assume that X is centered so that each column has mean 0. Due to
the diverging number of parameters, we cannot assume that the least square
functions are invariant in our study. Let Fn(Y) = (Fn(Y1), . . . , Fn(Yn))T ,
where Fn(Y ) = 1

n

∑n
i=1 1{Yi≤Y } is the empirical distribution function and is

estimable from the response sample Y . Thus, the sample version of the least
square measure in (3) becomes

Ln(β) = [Fn(Y) −Xβ]T [Fn(Y) −Xβ]. (6)

Now we consider the following optimization problem to get the naive Elastic-
Net estimation of β
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β̂naive = argmin
β

{
Ln(β) + λ2

pn∑

j=1

β2
j + λ1

pn∑

j=1

|βj |
}
. (7)

As discussed in Zou and Zhang (2009), the Elastic-Net estimator which is a
scaled version of the naive Elastic-Net estimator is defined as

β̂enet =
(
1 +

λ2

n

)
β̂naive. (8)

Parameters λ1 and λ2 in (7) control the amount of regularization applied to

the estimate. λ2 = 0 leads the naive Elastic-Net estimate β̂naive back to the
Lasso estimate. Although the Elastic-Net can do both continuous shrinkage
and automatic variable selection simultaneously, and handle the collinearity
for high dimensional data, it is easy to see that the Elastic-Net is lack of the
oracle property.

Next we propose a revised version of the Elastic-Net by incorporating
adaptive weights in the Lasso penalty of equation (7). The adaptive Elastic-
Net can be viewed as a combination of the Elastic-Net and the adaptive Lasso.
Suppose that β̂ is a root n-consistent estimator of β. We can choose the naive
Elastic-Net estimator β̂enet given by (8), then we define the adaptive weights
by

ω̂j = (|β̂enet,j|)−γ , j = 1, . . . , pn, (9)

where β̂enet,j denotes the j-th component of naive Elastic-Net estimator β̂enet,
and γ is a positive constant. The adaptive Elastic-Net estimate is then defined
as

β̂n =
(
1 +

λ2

n

)
arg min

β

{
Ln(β) + λ2

pn∑

j=1

β2
j + λ1

pn∑

j=1

ω̂j|βj |
}
. (10)

λ2 = 0 leads the adaptive Elastic-Net estimate back to the adaptive Lasso
estimate. We would also like to define An = {j : β̂n,j �= 0}. The adaptive
Elastic-Net variable selection is consistent if and only if limn→∞ P (An =
A) = 1.

3 Theoretical Results

In this section, we are interested in the oracle properties of adaptive Elastic-
Net expressed in (10).

Throughout the paper, we denote γmin(A) and γmax(A) as the minimum
and maximum eigenvalues and tr(A) as the trace operator of a matrix A,
respectively. For the convenience and simplicity, we shall employ c > 0 to
denote some constants not depending on n and pn but may take difference
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values at each appearance. In order to establish the theoretical results, we
introduce the following regularity conditions.

(A) We assume that b ≤ γmin

(
1
nXT X

)
≤ γmax

(
1
nXT X

)
≤ B, where b and

B are two positive constants.
(B) 0 < C1 < γmin{E(XXT )2} ≤ γmax{E(XXT )2} < C2 <∞ for all pn.

(C) lim
n→∞

λ1√
n

= 0, lim
n→∞

λ2

n
= 0, lim

n→∞
λ1√
n
nγ/2p−(1+γ)/2

n = ∞.

(D) lim
n→∞

λ2

n

√∑

j∈A
β2

j = 0 lim
n→∞

( √
n√

pnλ1

)1/γ(
min
j∈A

|βj |
)

=∞.

Condition (A) and (B) assume the predictor matrix has a reasonably good
behavior. Similar conditions were considered in Zou and Zhang (2009) and
Zhu and Zhu (2009). Conditions (C) and (D) is similar to conditions (A5)

and (A6) in Zou and Zhang (2009). Note that λ1√
n
nγ/2p

−(1+γ)/2
n → ∞ is

reduced to λ1√
n
nγ/2 → ∞ in the finite dimension setting, which agree with

the condition in Ghosh (2007).

Theorem 1. Suppose that the data set is given by (Y,X), and let ω̂ =
(ω̂1, . . . , ω̂pn) be a vector whose components are all non-negative and can
depend on (Y,X). Define

β̂ω̂(λ2, λ1) = argmin
b

{
Ln(β) + λ2

pn∑

j=1

β2
j + λ1

pn∑

j=1

ω̂j|βj |
}
,

for non-negative parameters λ2 and λ1. If ω̂j = 1 for all j, we denote

β̂ω̂(λ2, λ1) by β̂(λ2, λ1) for convenience.
If we assume the model (1) and condition (A), then we have

E(‖β̂ω̂(λ2, λ1)− β‖2)

≤ 4

3
2λ

2
2‖β‖2 + 4C2npn + 3C2n‖β‖2 + λ2

1E
[ pn∑

j=1

ω̂2
j

]

(bn + λ2)2
+ o
( pn log2 n

(bn + λ2)2

)
.

(11)

In particular, when ω̂j = 1 for all j, we have

E(‖β̂(λ2, λ1)− β‖2)

≤ ∗ 4
3
2λ

2
2‖β‖2 + 4C2npn + 3C2n‖β‖2 + λ2

1pn

(bn + λ2)2
+ o
( pn log2 n

(bn + λ2)2

)
.

Theorem 1 implies that β̂(λ2, λ1) is a root-(n/pn) consistent estimator.
This consistent rate is the same as the result of SCAD (Zou and Zhang
2009, and Fan and Peng 2004). Therefore, the root-(n/pn) consistency result
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suggests that it is appropriate to use the Elastic-Net estimator to construct
the adaptive weights.

Theorem 2.(Oracle properties) Suppose that conditions (B)-(D) hold, if

p3
n/n → 0 as n → ∞, then the adaptive Elastic-Net estimator β̂n defined

by (10) must satisfy the following:

1. Consistency in variable selection: lim
n→∞

P
(
An = A

)
= 1.

2. Asymptotic normality: Further assume that 0 < C1 < γmin{E(XXT )4} ≤
γmax{E(XXT )4} < C2 < ∞ holds uniformly for pn. Then

√
nAnΣA(β̂A −

βA) → N(0, G), where βA is the first kn nonzero elements of β, An is a q×kn

matrix such that γmax(AnA
T
n ) < ∞ and AnCov

(
XT

A[F (Y ) −XT
AβA]

)
AT

n →
G, and G is a q × q nonnegative symmetric matrix.

By Theorem 2, the selection consistency and the asymptotic normality are
still valid when the number of parameters diverges.
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Some Remark about Consistency
Problem of Parameter Estimation

Mingzhong Jin, Minqing Gong, and Hongmei Liu

Abstract. Let Yi = x
′

iβ + ei, 1 ≤ i ≤ n, n � 1,be a linear regression model.

Denote by λn and μn the smallest and largest eigenvalues of
n∑

i=1

xix
′

i. Assume

that the random errors e1, e2, · · · are iid, Ee1 = 0 and E|e1| <∞. Under the
restriction that μn = O(λn), this paper obtains the necessary and sufficient
condition for the LS estimate of β to be strongly consistent.

Keywords: Linear regression model, Least squares estimate, Strong
consistency.

1 Introduction

Consider the linear regression model

Yi = x
′

iβ + ei, 1 ≤ i ≤ n, n � 1. (1)

We shall always assume that x1, x2, · · · are known non-random p-vectors.
The least squares estimate of β, the p-vector of regression coefficients, will
be denoted by β̂n.

Many statisticians studied the problem of strong consistency (SC) of β̂n. In
earlier days this problem was studied under the assumption that the random
errors e1, e2, · · · possess finite variance. This case was finally solved by Lai
and others in an important work [6] published in 1979. In that paper they

Mingzhong Jin and Hongmei Liu
Guizhou Universicy for Nationalities.Guiyang Huaxi, 550025, China
e-mail: jmz6899@163.com

Minqing Gong
Guizhou Universicy, Guiyang Huaxi, 550025, China

S. Li (Eds.): Nonlinear Maths for Uncertainty and its Appli., AISC 100, pp. 517–524.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

jmz6899@163.com


518 M. Jin, M. Gong, and H. Liu

showed that if the random errors e1, e2, · · · are iid, with Ee1 = 0 and 0 <
Ee2

1 < ∞(these assumptions can be considerably weakened), then S−1
n ≡

(
n∑

i=1

xix
′

i)
−1 → 0 is a sufficient condition for SC of β̂n. Since it was known

earlier [5]that this condition is also necessary, so S−1
n → 0 is the necessary and

sufficient (NS) condition. Later the research effort turned to the case where a
lover-order moment for ei is assumed. A typical formulation is that e1, e2, · · ·
are iid, Ee1 = 0 and E|e1|r <∞ for some r ∈ [1, 2). In 1981, Chen [2]showed

that β̂n is SC if S−1
n = O(n−(2−r)/r(logn)−a) for some a > 1 and some other

conditions are satisfied. At almost the same time Chen et al. [1]obtained a
single sufficient condition S−1

n = O(n−(2−r)/r(logn)−2/r−ε) for some ε > 0.
In 1989, Zhu in his doctorial dissertation [7]made a substantial improvement
by showing that S−1

n = O(n−(2−r)/r) is sufficient. Using a result recently
published [3], it can be shown that Zhu’s result cannot be further improved.
For any cn ↓ 0 such that limsup cnn

(2−r)/r =∞, the condition S−1
n = O(cn)

is no longer sufficient even for the weak consistency of β̂n.
Zhu also attempted to find the NS condition for β̂n to be SC in the special

case p = 1, which was later completely solved by Chen and others [4]. For
general p the NS condition is still unsolved. The problem seems more difficult
than earlier expected.

The purpose of this paper is to give, for general p but under some additional
restriction , a NS condition for β̂n to be SC. We need some notations. Assume
that S−1

n exists for large n and write

ai = S−1
i xi, i ≥ 1.

ai can be arbitrarily defined if S−1
i does not exist. Define

N(K) = #{i : i ≥ 1, ‖ ai ‖≥ K−1}.

Let ((n, 1), (n, 2), · · · , (n, n)) be a permutation of (1, 2, · · · , n) such that

‖ a(n,1) ‖≥‖ a(n,2) ‖≥ · · · ≥‖ a(n,n) ‖ .

Dfine

V (n, j) = S−1
n

n∑

i=1

xiI(‖ ai ‖≥‖ a(n,j) ‖), 1 ≤ j ≤ n.

V (n) = max
1≤j≤n

‖ (n, j) ‖,

Where I(·) is the indicator. Denote by λn and μn the smallest and largest
eigenvalues of Sn. Finally, write |A| for max

i,j
|aij |, where A = (aij).
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Now we can formulate the main result of this paper:

Theorem 1. Suppose that e1, e2, · · · in model(1) are iid, Ee1 = 0 and
E|e1|r <∞, and that

μn = O(λn) (2)

Then the NS condition for β̂n to be SC is that

For 1 < r < 2: S−1
n → 0, N(K) = O(Kr) as K →∞.

For r = 1: S−1
n → 0, N(K) = O(Kr) as K →∞, V (n) = O(1).

(3)

Remark 1. The necessity means that is one of these conditions is not satisfied,
then there exists {ei} satisfying the conditions specified in the theorem such

that if the model (1) has this {ei}, then β̂n does not converge a.s. to β. Thus
the necessary condition is not related to individual {ei}, but rather to the
whole class F of {ei} satisfying the conditions specified in the theorem. It
would be ideal if we find a condition C such that is C is(not) satisfied, the

β̂n converges(does not converge) a.s. to β for any {ei} ∈ F . But it can easily
be shown that such a condition C does not exist when r < 2.

We divide the proof of this theorem into several sections(from theorem 2 to
theorem 4).

2 Necessity of S−1
n

→ 0

This follows from a lemma proved in [1]: Let {ei} be a sequence of independent
random variables containing no asymptotically degenerate subsequence, and

{Cni, 1 ≤ i ≤ n, n ≥ 1} be an array of constants such that
n∑

i=1

Cniei → 0 in

pr. Then
n∑

i=1

C2
ni → 0.

3 Necessity of N(K) = O(Kr)

Theorem 2. If μn = O(λn), then

|S−1
n Sn−1| = O(1). (4)

Proof. We have

S−1
n = (Sn−1 + xnx

′

n)−1 = S−1
n−1 − S−1

n−1xnx
′

nS
−1
n−1/(1 + x

′

nS
−1
n−1xn),

hence
S−1

n Sn−1 = I − S−1
n−1xnx

′

n/(1 + x
′

nS
−1
n−1xn).
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Since μn = O(λn), we have |S−1
n−1| = O(μ−1

n−1), thus

|S−1
n−1xnx

′

n| = O(‖ xn ‖2 /μn−1).

On the other hand, x
′

nS
−1
n−1xn ≥‖ xn ‖2 /μn−1. Hence (4) follows.

Theorem 3. If S−1
n−1 → 0, then an → 0 and max

1≤i≤n
‖ S−1

n xi ‖→ 0.

Proof. Write Sn = P
′

nΛnPn, where Pn is orthogonal and Λn is diagonal. Put

zni ≡ (zni1, · · · , znip)
′

= Pnxi, 1 ≤ i ≤ n.

Then an = P
′

nΛ
−1
n znn and Λn =

n∑
i=1

zniz
′

ni. Hence the j-th component of

Λ−1
n znn is znnj/

n∑
i=1

z2
nij . S−1

n → 0 entails lim
n→∞

n∑
i=1

z2
nij = ∞ and hence

lim
n→∞

znnj/
n∑

i=1

z2
nij = 0. This proves Λ−1

n znn → 0 and hence an → 0. The

second assertion can be proved likewisely.
Since the length restriction ,we omit the proof detailedly.

4 Sufficiency, 1 < r < 2

Theorem 4. (Matrix Form of Kronecker Theorem). If μn = O(λn) and

S−1
n → 0, then the convergence of

∞∑
i=1

aiei entails the convergence to zero

of S−1
n

n∑
i=1

xiei.

Proof. Write Bi = xi+1x
′

i+1, i = 0, 1, · · · , T0 = 0, Tn =
n∑

i=1

aiei, n ≥ 1. Simple

manipulations give

S−1
n

n∑

i=1

xiei = S−1
n (

n0∑

i=1

xiei − Sn0+1Tn0) + S−1
n

n−1∑

j=0

Bj(Tn − Tj) ≡ J1 + J2.

where n0 is fixed so that S−1
n0

exists. We have J1 → 0 in view of S−1
n → 0.

To deal with J2, denote by siuv and bjuv the (u, v)-element of Si and Bj .

Then siuv =
−1∑
j=0

bjuv and |bjuv| ≤ (bjuu + bjvv)/2. Denote by tnjl the l-th

component of Tn − Tj , and

tnj = max
1≤i≤p

max
j≤k≤n

|tnkl|.
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tnj does not increase as j increases. We have

|u− th component of
n−1∑

j=k

Bj(Tn − Tj)| ≤
n−1∑

j=k

p∑

v=1

|bjuv||tnjv |

≤tnk

n−1∑

j=k

p∑

v=1

(bjuu + bjvv)/2

≤tnk(p

n−1∑

j=k

(bjuu +

p∑

v=1

n−1∑

j=k

bjvv))

≤tnk(psnuu +

p∑

v=1

snuu)

≤ctnkμn,

(5)

where c is a constant. Since μn = O(λn), |S−1
n | ≤ c0/μn for some constant

c0. Hence by (5) we have

|S−1
n

n−1∑

j=k

bj(Tn − Tj)| ≤ cc0ptnk → 0, as n > k→∞. (6)

Here we use the fact that tnk → 0 as n > k → ∞, which follows from the
convergence of Tn as n → ∞. On the other hand, since S−1

n → 0, we have

S−1
n

k−1∑
j=0

bj(Tn − Tj) → 0 as n → ∞. (Here again we use the fact that Tn

converges as n → ∞). Combining this with (6), we obtain J2 → 0, and the
theorem is proved.

Remark 2. Simple counter-example shows that the condition μn = O(λn) is
essential. This is the reason why the restriction μn = O(λn) is imposed.

Now turn to the main task of this section. According to Theorem 4, it

suffices to show that
∞∑

i=1

diei converges a.s., where di is the j-th component

of ai, 1 ≤ j ≤ p. Put e
′

i = eiI(|ei| < |di|−1), i ≥ 1. N(K) = O(Kr) entails

Ñ(K) ≡ #{i : i ≥ 1, |di| ≥ K−1} = O(Kr).

Employing this fact and E|e1|r < ∞, it can easily be shown that P (ei �=
e
′

i, i.o.) = 0. Hence we have only to show that

∞∑

i=1

die
′

i converges a.s.. (7)
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(7) is the true if the following two assertions are true:

∞∑

i=1

diE(e
′

i) converges (8)

∞∑

i=1

d2
iE(e

′

i

2
) <∞. (9)

We proceed to prove (8). The proof of (9) is similar and will be omitted.
Put qi = P (i − 1 ≤ |e1| < i), i = 1, 2, · · · . Since Eei = 0, we have Ee

′

i =
−E(eiI(|ei| ≥ |di|−1)). If k − 1 ≤ |di|−1 < k, then

|Edie
′

i| ≤ |di|E|eiI(|ei| ≥ |di|−1)| ≤ (k − 1)−1
∞∑

j=1

jqi, k ≥ 2.

Further,

#{i : i ≥ 1, k − 1 < |di|−1 ≤ k} = Ñ(k)− Ñ(k − 1).

Hence
∞∑

i=1

|Edie
′

i| ≤ Ñ(1)sup
i≥1
|di|E|e1|+

∞∑

k=2

(Ñ(k)− Ñ(k − 1))(k − 1)−1
∞∑

j=k−1

jqj

≡ J1 + J2.

Since S−1
n → 0, we have an → 0 by Theorem 3. Hence J1 remains finite as

n→∞. On the other hand

J2 =

∞∑

j=1

(j−1Ñ(j+1)−Ñ(1))+

∞∑

k=2

Ñ(k)((k−1)−1−k−1)jqj ≡ H1−H2+H3.

H1 < ∞ in view of Ñ(j + 1) ≤ c(j + 1)r and E|e1|r < ∞. H2 < ∞ follows
from E|e1| <∞. As for H3, since Ñ(k) ≤ ckr and r > 1, we see that

j∑

k=2

Ñ(k)((k − 1)−1 − k−1) = O(jr−1),

and H3 < ∞ follows from E|e1|r < ∞. Thus we obtain (7). The proof is
concluded.

5 Sufficiency, r = 1

The argument in section 4 fails in the case r = 1. The trouble lies in dealing

with H3, since we have only
∞∑

k=2

Ñ(k)((k − 1)−1 − k−1) = O(logj) and not
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O(jr−1) or O(1). This is why we need the additional condition V (n) = O(1)
in this case.

In order to make an easy use of the condition V (n) = O(1), we slightly
change the argument in Sect 4. Define e

′′

i = eiI(|ei| <‖ ai ‖−1). Then P (ei �=
e
′′

i , i.o) = 0. Since S−1
n → 0, in order to show S−1

n

n∑
i=1

xiei → 0, a.s.., we have

only to show that S−1
n

n∑
i=1

xie
′′

i → 0, a.s.., which is true if the following tow

assertions are true:

S−1
n

n∑

i=1

xiEe
′′

i → 0,

S−1
n

n∑

i=1

xi(e
′′

i − Ee
′′

i ) → 0, a.s.. (10)

According to Theorem 4, (10) is true if
n∑

i=1

ai(e
′′

i − Ee
′′

i ) converges a.s., and

the latter is true if
n∑

i=0

d2
iE(e

′′

i

2
) <∞. (11)

where di is the same as in Sect 4.

Since the length restriction ,we omit the proof detailedly.

6 Necessity of V (n) = O(1) in Case r = 1

Suppose that β̂n is SC, so Sn

n∑
i=1

xiei → 0, a.s.. From Sect 2 and Sect 3

we have S−1
n → 0 and N(k) = O(K). In Sect 5 we pointed out that these

two facts entail (11) which in turn entails S−1
n

n∑
i=1

xi(e
′′

i − Ee
′′

i ) → 0, a.s..

Therefore

S−1
n

n∑

i=1

xiEe
′′

i → 0. (12)

Thus, we have only to show that if V (n) is not O(1), Then we can construct
an iid. sequence {ei} with Eei = 0, E|ei| → ∞, such that (12) fails.

Since the length restriction ,we omit the proof detailedly. Therefore, if in
model(1) the random errors e1, e2, · · · are iid. with the common distribution

F0, then β̂n does not converge a.s. to β, and the necessity of V (n) = O(1) is
established.
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Variable Selection for Semiparametric
Isotonic Regression Models

Jiang Du, Zhongzhan Zhang, and Tianfa Xie

Abstract. In this paper, we propose a penalized constrained least squares
method for variable selection in semiparametric isotonic regression model.
Under certain regularity conditions, asymptotic properties of the proposed
estimators are established. A simulation study is presented for illustrations.

Keywords: Semiparametric isotonic regression models, Variable selection,
Tuning parameter.

1 Introduction

In practice, the number of potential explanatory variables is often large, how-
ever, only a subset of them are predictive to the response. Variable selection is
necessary to improve prediction accuracy and model interpretability of final
models. For classical linear regression models, many variable selection pro-
cedures have been proposed since the 1970s such as the Akaike information
criterion,Bayesian information criterion, Risk information criterion, least ab-
solute selection and shrinkage operator (LASSO), smooth clipped absolute
deviation (SCAD), least angle regression, adaptive lasso. An earlier review
on variable selection for linear regression is given by Linhart and Zucchini [8]
and a recent review is of Fan and Lv [7]. Though there is a vast amount of
work on variable selection for linear model, limited works have been done
on model selection for semiparemetric isotonic regression model. Model se-
lection for semiparametric regression models is challenging, since it consists
of several interrelated estimation and selection problems: nonparametric esti-
mation, smoothing parameter selection, and variable selection and estimation
of linear component.
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Consider the following semiparametric regression model

Y = Xβ + g(Z) + ε, (1)

where Y is a response, X is a 1×d vector consisting of explanatory variables
of primary interest, β = (β1, · · · , βd)

T is a d × 1 vector of unknown param-
eters, g(·) is an unknown smooth function of auxiliary covariate Z, ε is a
model error with E(ε|X,Z) = 0. In this model, the mean response is linearly
related to X , while its relation with Z is not specified up to any finite number
of parameters. This model combines the flexibility of nonparametric regres-
sion and parsimony of linear regression. An advantage of the semiparamtric
regression model is when the relation between Y and X is of main interest
and can be approximated by a linear function, it offers more interpretability
than a purely nonparametric model. Another advantage of the semiparamtric
regression model is that it provides a convenient way. In this paper, to avoid
the curse of dimensionality, we assume that Z is univariate that ranges over
a nondegenerate compact interval. Without loss of generality, it is assumed
to be the unit interval W = [0, 1].

Model (1) was introduced by Engle et al [5]. Variable selection for this
model has been studied by many authors recently; see for example, Bunea
[1], Bunea and Wegkamp [2], Li and Liang [10]. Semiparametric model (1)
with g being assumed as a monotone function is studied by Huang [9] and
Cheng [4].To the best of our knowledge, most existing estimation method are
limited to directly estimate the parameters of linear part and most existing
variable selection procedures of semiparametric regression model are limited
to smooth function, which is not constrained by isotonic property. Variable
selection of semiparametric isotonic regression model imposes challenges for
many practical statisticians. Variable selection for semiparametric isotonic
regression model is not investigated yet. Therefore, to solve this problem,
in this paper, we proposed a variable selection method for semiparametric
regression model with function g being increasing. With proper choices of
the penalty functions and the tuning parameter, the consistency and asymp-
totic normality of the resulting estimators of both parametric component and
nonparametric component are established.

The rest of this article is organized as follows. In Section 2,we propose the
variable selection procedures for semiparametric isotonic regression models
via penalized constrained least squares. The asymptotic properties of the
resulting estimators are established in the Section 3. Simulation studies are
given in Section 4. Regularity conditions is relegated to the Appendix.

2 Penalized Constrained Least Squares Method

Consider the semiparametric isotonic regression model

Y = Xβ + g(Z) + ε, (2)
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where X = (X1, · · · , Xd) is a 1 × d dimensional covariate, β ∈ Θ is a d × 1
dimensional parameter of interest, and g is an unknown increasing function,
ε is the model error with E(ε|X,Z) = 0, Var(ε) = σ2. In this article, we only
consider univariate Z. The proposed method is applicable to multivariate Z.
The extension to the multivariate Z might be practically less useful due to
the ”curse of dimensionality.”

Let (β0, g0) be the true value of the parameters (β, g). Assume that
β0 belongs to a subset Θ ⊂ Rd and to be definitive, β0 also has sparse
representation. Without loss of generality, assume that Θ is a convex set.
If it is not, then a larger convex set containing Θ can be used. Suppose
that {(Xi, Yi, Zi), i = 1, 2, · · · , n} is a random sample from model (2). Let
Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the ordered values of Zi’s. For the sake of sim-
plicity of notation, let gi = g(Z(i)), 1 ≤ i ≤ n. The constrained penalized

least squares estimator (β̂, ĝn) of (β0, g0) is defined to be the minimizer of
Mn(β, g) subjected to β ∈ Θ and g1 ≤ g2 ≤ · · · ≤ gn, where

Mn(β, g) =

n∑

i=1

(Yi −Xiβ − g(Zi))
2 + n

d∑

j=1

pλjn(|βj |), (3)

pλjn(|βj |) is a penalty function with a tuning parameter λjn, which may be
chosen using BIC proposed by Wang et al. [11], for j = 1, · · · , d. The tuning
parameters are not necessarily the same for all j. For example, we wish keep
some important variables in the final model, and therefore we should not
penalize their coefficients. For the sake of simplicity of notation, we use λj

to stand for λjn throughout this article.

Since g(Z) = E(Y |Z) − E(X |Z)β, then the objective function can be
rewritten as

Mn(β) =

n∑

i=1

[Yi − E(Yi|Zi)− {Xi − E(Xi|Zi)}β]2 + n

d∑

j=1

pλj (|βj |).

Denote my(Z) = E(Y |Z) and mx(Z) = E(X |Z). Let m̂y(·) and m̂x(·) be
estimates of my(·) and mx(·), respectively. In this section, we use local linear

regression to estimate both my(·) and mx(·). Let Ŷi = Yi − m̂y(Zi) and

X̂i = Xi − m̂x(Zi). Thus, Mn(β) can be approximated as

M̂n(β) =

n∑

i=1

[
Ŷi − X̂iβ

]2
+ n

d∑

j=1

pλj (|βj |).

This suggests us that we can define an estimator of β as

β̂n = arg min
β

⎧
⎨
⎩

n∑

i=1

[Ŷi − X̂iβ]2 + n
d∑

j=1

pλj (|βj |)

⎫
⎬
⎭ .
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The isotonic least squares estimator of g0(·) is defined as

ĝn = arg min
h∈H

{
n∑

i=1

(Yi −Xiβ̂n − h(Zi))
2

}
, (4)

where H is the class of all non-decreasing functions on W . Note that since H

forms a closed convex cone, the optimization problem is that of minimizing
a convex function over a convex cone, therefore, ĝn is well defined. (4) gives
the isotonic least squares estimator proposed by Brunk [4] that is

ĝn(z) = max
u≤z

min
z≤t

∑
{i:u≤Zi≤t}

(Yi −Xiβ̂n)

Nn([u, t])
, (5)

where z ∈ W,Nn([u, t]) = ♯{i : u ≤ Zi ≤ t, 1 ≤ i ≤ n}, ♯ denotes the counting
measure.

3 Sampling Properties

In this section,we establish the asymptotic behavior of the estimators. Let

β0 = (β10, β20, · · · , βd0)
τ = (βτ

10,β
τ
20)

τ .

Without loss of generality, assume that β10 consists of all nonzero components
of β0, and β20 = 0. Let s denote the dimension of β10. Denote

an = max
1≤j≤d

{|p′λj
(|βj0|)|, βj0 �= 0}, bn = max

1≤j≤d
{|p′′λj

(|βj0|)|, βj0 �= 0},

bn = {p′λ1
(|β10|)sgn(β10), p

′
λ2

(|β20|)sgn(β20), · · · , p′λs
(|βs0|)sgn(βs0)}τ ,

Σλ = diag{p′′λ1
(|β10|, p′′λ2

(|β30|, · · · , p′′λs
(|βs0|)},

In what follows, denote A
⊗

2 = AAτ for any vector or matrix A. ||v|| denotes
the Euclidean norm for the vector v. We only state our theorems here, and
put the conditions for the theorems into the appendix. The proofs of the
theorems are omitted for the sake of space.

Theorem 1. Suppose that an = O(n−1/2), bn → 0, and the regularity condi-
tions A1 −A6 in the appendix hold. Then we have the following conclusions.

(1) With probability approaching one, there exists a local minimizer β̂ of

M̂n(β) such that ||β̂ − β0|| = Op(n
−1/2).

(2) Further assume that all λjn → 0, n1/2λjn →∞, and

lim inf
n→∞

lim inf
t→ 0+

p′λjn
(t)

λjn
> 0, (6)
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the root n consistent estimator β̂ = (β̂1
τ
, β̂2

τ
) in conclusion (1) satisfies (a)

β̂2 = 0, and (b) β̂1 has an asymptotic normal distribution, i.e.

√
n(H11 + Σλ){(β̂1 − β10) + (H11 + Σλ)−1bn} → Ns (0, I11),

in distribution, where I11 is d×d unit matrix and H11 is given in the appendix.

The following theorem gives the sampling property of the nonparametric
isotonic function of g(·).

Theorem 2. Under the regularity conditions A1−A6, if g(·) is continuously
differentiable at z0, and the derivative ġ(z0) > 0, we have

n1/3

[
2fZ(z0)

σ2ġ(z0)

]1/3

(ĝ(z0)− g(z0))−→ζ, n −→∞,

in distribution, where ζ is the slope at zero of the greatest convex minorant
of B(t)− t2. B(t) is a two-sided standard Brownian motion.

Theorem 2 can be shown along the same lines as Theorem 2.1 of Huang [9].

4 Simulation Studies

To demonstrate the finite sample performance of the proposed penalized con-
strained least squares method, we consider the following semiparametric iso-
tonic regression model

Y = Xβ + g(Z) + ε, (7)

where X is generated from a multivariate normal distribution with zero mean
and covariance

Cov(xij1 , xij2 ) = ρ|j1−j2|, 1 ≤ j1, j2 ≤ d, 1 ≤ i ≤ n, (8)

with ρ = 0.5, 0.75. In our simulation, the sample size n is 50,100 and 200,re-
spectively, d = 10 and parameter β10 = (3, 1.5, 0.75), g(t) = t3, Z is generated
from uniform distribution [-1,1], ε is generated from standard normal distri-
bution. For each case, we repeat the simulation 1,000 times. We use SCAD,
Lasso and ALasso penalty function to chose significant variables in paramet-
ric part. The unknown tuning parameters for the penalty function in the
simulation are chosen by BIC (Wang et al. [11]). For the sake of computa-
tional convenience, we employ the algorithm which is proposed by Fan and
Li [6], and take ε0 = 10−6 as threshold value. For each parametric estima-

tor β̂, its estimation accuracy is measured by mean squared error defined as
MSE = E[(β̂ − β0)

′E(X ′X)(β̂ − β0)]. The variable selection performance
is gauged by ”C” , and ”IC”, where ”C” is the number of zero coefficients
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those are correctly estimated by zero, ”IC” is the number of nonzero coef-
ficients incorrectly estimated to be zero. For nonparametric component, the
estimation accuracy is measured by mean integrated square error defined as

MISE = E

{∫ 1

−1

[ĝ(t)− g(t)]2 dt

}
. (9)

The results are summarized in the following tables.
We now summarize the main findings from this study. Firstly, from the

MSE of the parametric estimators, we can conclude that the parametric esti-
mator has little impact on nonparametric estimator, which is in accordance
with theory, estimator of the regression parameter is root-n consistent and
the isotonic estimator of the functional component, at a fixed point, is cubic
root-n consistent. Secondly, for small sample size, the performance of the es-
timators is good, especially when the correlation coefficient of covariates is
small. Last but not least, the correlation coefficient of covariates is impor-
tant for the resulting estimators. With increase of the correlation coefficient
of covariates, MSE and MISE is becoming increasing.

Table 1 The sample size is n = 50

ρ = 0.50 ρ = 0.75
Methods IC C MSE MISE IC C MSE MISE
SCAD 0.963 5.687 2.906 2.313 1.263 4.362 17.020 2.853
Lasso 0.708 5.650 2.181 2.238 1.444 5.676 7.153 2.596
ALasso 0.972 5.541 3.146 2.401 1.563 5.446 11.300 2.772
Oracle 0.000 7.000 0.881 2.053 0.000 7.000 3.246 2.378

Table 2 The sample size is n = 100

ρ = 0.50 ρ = 0.75
Methods IC C MSE MISE IC C MSE MISE

SCAD 0.781 6.576 0.923 1.968 1.372 6.236 3.268 2.149
Lasso 0.332 6.565 0.498 1.967 1.130 6.598 1.288 2.094
ALasso 0.766 6.559 0.977 2.006 1.437 6.413 2.554 2.157
Oracle 0.000 7.000 0.318 1.915 0.000 7.000 1.045 2.042

5 Appendix: Assumptions

In order to proof the theorems, we need the following conditions.
(A1) The distribution of ε satisfies the moment condition E|ε|2 <∞.
(A2)

E(X − E(X |Z))⊗2 = H =

(
H11 H12

H21 H22

)
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Table 3 The sample size is n = 200

ρ = 0.50 ρ = 0.75
Methods C IC MSE MISE C IC MSE MISE

SCAD 0.458 6.795 0.435 2.085 1.149 6.870 0.998 2.060
Lasso 0.078 6.805 0.157 2.058 0.707 6.776 0.481 2.048
ALasso 0.415 6.855 0.404 2.085 1.185 6.790 1.071 2.080
Oracle 0.000 7.000 0.104 2.038 0.000 7.000 0.336 2.023

H11 is a s× s positive definite matrix.
(A3) The function ζ(Z) ≡ E(X |Z = z) satisfies the Lipschitz condition

‖ ζ(z1)− ζ(z2) ‖≤ C|z1 − z2|

for all z1, z2 ∈W , W is compact interval of R and C is a constant.
(A4) The support of X is a bounded subset of Rd, and the density of Z,

denoted as fZ , is continuous.
(A5) g(·) is differentiable and its derivatives are bounded on W . For some

constants C, γ > 0, it holds that inf |u−v|>δ | g(u)−g(v) |≥ Cδγ for all δ > 0.
(A6) g is strictly increasing and is bounded, that is, sup

z
|g(z)| < C for a

finite constant C; and the parametric space Θ is bounded.
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Study of Prognostic Factor Based on
Factor Analysis and Clustering
Method

Zheng Liu, Liying Fang, Mingwei Yu, and Pu Wang

Abstract. Relevance exists in Traditional Chinese Medicine(TCM) clinical
symptoms. Their different combinations reflect different effects. Focusing on
these characteristics, an univariate analysis method based on the factor anal-
ysis and clustering(FACUA) is proposed. First, the independent common
factors extracted from the correlative multivariable are used to establish the
eigenvectors of symptoms for patients. Then, the symptom patterns are dis-
covered from the gathered similar symptoms combination. The method is
verified by the patients with advanced NSCLC(non-small cell lung cancer)
from Beijing Hospital of Traditional Chinese Medicine. The experimental
result shows that the FACUA method can deal with the TCM clinical symp-
toms and analyze the relationship between the TCM clinical symptoms and
the tumor progression. The FACUA method can improve the universal ap-
plicability of the univariate analysis in TCM clinical symptoms.

Keywords: Factor Analysis, Clustering, Univariate Analysis, Clinical
Symptoms.

1 Introduction

More attention has been paid on the quality of life since a new concept of
health was proposed by the WHO [4]. Clinical experience shows that effec-
tive TCM treatment for patients with advanced cancer can improve clinical
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symptoms, enhance the quality of life, and prolong survival time. Therefore,
more and more researchers focus on tumor therapy with Traditional Chinese
Medicine(TCM), however, the study is still in the stage of exploration [3].
Some researchers have analyzed the relationship between the single clinical
symptom or TCM syndrome and the tumor progression by directly using a
survival analysis method directly [5], which not only neglects the relevance
of clinical symptoms but also affects the experimental result obtained by the
visual observation and experience of doctors. Thus, the medical significance
and reproducibility of the experimental result are not convincible [7].

To compensate for these shortages, this paper takes the factor analysis and
clustering method into analyz the prognostic factors of tumor progression
by considering the relevance between the symptoms and the similarity of
the comprehensive effect. The reserch allows the practical research of an
appropriate method for clinical symptoms and can provide a reference for
advanced NSCLC with the TCM treatment.

2 Object and Implementation Framework

2.1 Object of Study

Symptom refers to the information that is relevant to the disease, which is the
main contents of Chinese interrogation and basis of TCM syndrome [1]. The
characteristics of TCM symptoms are more complicated. On one hand, some
symptoms are caused by the common potential risk factor. On the other hand,
some different symptoms combinations reflect the same type of comprehensive
effect. For example, from the Chinese perspective, the spontaneous sweat and
night sweat are all caused by asthenic-syndrome. When dry throat, fever and
other symptoms occur together, the risk of tumor progression will be higher.

2.2 Implementation Framework

To solve the above problems, this paper proposes a univariate analysis method
based on the factor analysis and clustering(FACUA) to analyze the prognos-
tic symptoms factors of tumor progression. Fig. 1 shows the steps of data
processing and the framework of the FACUA system. The framework mainly
includes four modules.

2.2.1 Preprocessing Module

(1) Calculation of PFS time

Progression-free survival(PFS) is a term used to describe the length of
time during and after medication or treatment during which the disease being
treated(usually cancer) does not get worse [6].The PFS time is calculated as
T = Te − Ts, where Ts is the time of patients enrolled and Te is the first
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Fig. 1 The framework
of the FACUA system.

time when tumor progression occurs(include death). During the research, Te

will be the deadline of the research with no progression and to be the last
follow-up time if patients withdraw.

(2) Calibration of tumor progression

The PFS time is only partially known once the patients withdraw or no pro-
gression, thus a statue variable must be added to make a distinction between
accurate data and censored data. In this paper, 1 is for tumor progression
and 0 is for another statue.

(3) Processing of missing data

The symptom of cold extremities has a little information and more obstruc-
tion for the next procedures. Therefore, we eliminate the symptom index from
the data set.

2.2.2 Factor Analysis Module

Factor analysis(FA) is a statistical method, which describes variability among
observed variables in terms of a potentially lower number of unobserved vari-
ables called common factor(CF). In this paper, FA is used to uncover the
underlying structure of the TCM symptoms and to seek the least number of
CF that can account for the majority of the information of the set of symp-
toms variables, i.e., the FA module mainly reduces dimension and extracts
CF for the clinical symptoms.

Firstly, a patient-symptoms original data matrix is established based
on indicators samples. The FA model is establish by using the correlated
symptoms.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

X1 = a11F1 + a12F2 + · · ·+ a1pFp + U1

X2 = a21F1 + a22F2 + · · ·+ a2pFp + U2

...
Xm = am1F1 + am2F2 + · · ·+ ampFp + Um

(1)

Where X = (X1, X2, · · · , Xm)T is an observed clinical symptoms vector,
F = (F1, F2, · · · , Fp)

T is a CF vector, A = (aij)m×p is the factor loading
matrix. In matrix notation, we have Xm×1 = Am×p · Fp×1 + Um×1

The principle component analysis(PCA) is chosen to extract the CF and
estimate the factor loading matrix. Varimax orthogonal rotation is used on
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the loading matrix to improve the interpretation of the common factors.
The factor scores are then calculated for each patient on every CF, which is
very useful to reflect the degree of the correlation between the patients and
common factors.

2.2.3 Clusternig Module

Clustering is a method for unsupervised learning and best known as a useful
technique of data automatic classification according to their similarities to
each other. The symptom eigenvector is used to describe the combination of
the multiple symptoms. The main objective of clustering module is to assign
patients into subsets according to the similar of symptom eigenvectors, which
can be considered as the pattern of symptoms.

Sample properties including relatively independent symptoms index and
scores of patients in common factors, which separately belong to categori-
cal variables and numerical variables. K - prototypes clustering algorithm is
chosen to deal with the two types of variables. Mean value and Euclidean dis-
tance are used when dealing with numerical variables. Mode and principle of
minimum difference degree are used when dealing with categorical variables.

2.2.4 Univariate Analysis Module

Kaplan-Meier is a non-parametric estimate method for the survival analysis
[2]. An important advantage of the Kaplan-Meier curve is that the method
can consider some types of censored data that always occurs in medicine. A
univariate analysis(UA) method, including Kaplan-Meier estimate and Log-
Rank test, will be used for analyzing the relationship between the TCM
clinical symptoms and the tumor progression.

Comprehensive effect(CE) of the clinical symptoms can be defined as a
variable used to describe the combination effect to health. PFS survival func-
tion will be illustrated by Kaplan-Meier curve. The null hypothesis of no
difference between the survival functions will be test by Log-Rank test for
each level of the CE. It can be judged by P-value whether CE can represent
highly statistically significant predictors of PFS time or not.

3 Experiments and Result Analysis

For further discussing the relationship between the TCM clinical symptoms
and the tumor progression, we use the conventional UA and FACUA method
to compare the following experiments.

51 patients in advanced NSCLC were collected from the Beijing Chinese
Medicine Hospital. Their symptoms include cough, chest pain, appetite and
other 17 indicators. Each symptom is divided into four grades marked as
0,1,2, and 3 according to the severiry is. After preprocessed, the PFS time is
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calculated, the state of tumor progression is marked, and the useless symp-
toms are excluded.

3.1 Conventional UA Experimental

Some experiments were carried out with the UA method for analyzing the
relationship between the single symptom and the tumor progression directly.
The significant effect of each symptom is tested by Log-Rank. Results are
listed in Table 1.

Table 1 Results of conventional single-factor analysis

Factor P-value Factor P-value Factor P-value

Age 0.375 chest tightness 0.122 constipation 0.012
Sex 0.216 mouth parched 0.720 fever 0.626
Time 0.053 asthenic fever 0.016 nocturia 0.012
ECOG 0.004 expectoration 0.435 night sweating 0.014
TNM 0.000 inappetency 0.236 weariness 0.017
chest pain 0.675 diarrhoea 0.984 blood sputum 0.300
cough 0.169 insomnia 0.053 breathe hard 0.378

It can be seen that the symptoms of weariness, constipation, nocturia,
night sweating and asthenic fever, and TNM stage and ECOG subtypes rep-
resent highly statistically significant effects of PFS time (P < 0.05). How-
ever, the sample data indicate that, more than 80%, these 5 symptoms are
appeared combining with others. Thhus, the results are easy to be effected
by the overlap influence of multi-avaliables.

3.2 FACUA Experimental

The correlation test is performed for the 10 related symptoms selected
from the medical point of view, KMO=0.811 (KMO > 0.5) and refuses to
Bartlett’s hypothesis (P < 0.001). The results indicated that the FA method
is appropriate for the selected symptoms set.

At first, extracting 3 CF with the eigenvalue λ > 1 according with the
results of the principle component analysis which can explain 71.9% of the
total variance with less lost, partial results are shown in Table 2.

The rotated component matrix showed in Table 3 illustrates the correla-
tion between the observed symptoms and the CF. For example, the CF1 is
characterized by very high loadings of the symptoms of night sweating, noc-
turia, constipation and asthenic fever. Thus, the CF1 is accordingly defined
as the asthenia-syndrome factor.
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Table 2 Total Variance Explained

cmpnt Initial Eigenvalues Extraction Sums of Squared Loadings

Total %of Variance Cumulative% Total %of Variance Cumulative%

1 4.817 48.175 48.175 4.817 48.175 48.175
2 1.299 12.991 61.165 1.299 12.991 61.165
3 1.074 10.741 71.907 1.074 10.741 71.907
4 0.726 7.262 79.169
5 0.576 5.757 84.925

Table 3 Rotated Component Matrix

Component

1 2 3

cough .049 .857 -.017
chest tightness .186 .707 .311
chest pain .337 .396 .618
mouth parched .015 -.045 .860
weariness .369 .582 .449
inappetency .399 .634 -.051
night sweating .756 .346 .207
constipation .517 .150 .628
nocturia .898 .039 .251
asthenic fever .889 .322 .070

TCM signification asthenia-
syndrome

lung
tumor-
syndrome

sthenia-
syndrome

Similarly, the CF2 and CF3 are defined as the lung tumor-syndrome and
sthenia-syndrome which is consistent with TCM conclusion.

The eigenvectors of symptoms for patients can be estabilished through
the factor scores and other independent symptoms. Symptom patterns can
be discovered by the cluster analysis through the eigenvectors. As shown in
Table 4, the test indicates that the criterion for the K-prototypes algorithm
is satisfied and the symptom patterns of TCM are clear when the clustering
group is 4. Using the second group as an example, the symptom pattern is a
combination result thst includes expectoration, breathe hard, and lung tumor
symptoms(CF2).

CE can be divided into four levels corresponding to these four symptom
patterns and the UA can be done on each level. Fig. 2 shows the curve of
PFS survival function. The results show that CE represented for accordingly
pattern of the symptoms is the highly statistically significant predictor of
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Table 4 Final Cluster Centers

Cluster

1 2 3 4

expectoration 1 1 1 1
Blood sputum 0 0 0 0
breathe hard 0 1 1 0
fever 0 0 0 0
insomnia 0 0 0 0
diarrhoea 0 0 0 0
factor score 1 .03793 -.24058 -.27493 4.35865
factor score 2 -.47556 .18155 -.03761 1.57654
factor score 3 -.44524 -.07984 .41887 .34146

PFS (P = 0.001, P < 0.05). In the point of medicine, it can be interpreted
that the less CF the patients have, the longer PFS time the patients get.

Fig. 2 The PFS survival
function

4 Discussion and Conclusions

Because of ignoring the correlation between the different TCM clinical symp-
toms, the results of conventional UA are not comprehensive and superim-
posed which will affect the overall results. This paper proposes the FACUA
method to deal with the multiple types and strong correlation characteristics
of TCM clinical symptoms. The results show that FACUA can extract CF
represented comprehensive information and discover the symptom patterns
from multiple symptom eigenvectors.

The CE represented according to different symptom patterns are highly
statistically significant predictors of PFS. The FACUA has proven itself to
be an effective method for processing clinical symptoms for TCM.
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Applying Factor Analysis to Water
Quality Assessment: A Study Case of
Wenyu River

Chen Gao, Jianzhuo Yan, Suhua Yang, and Guohua Tan

Abstract. This paper takes the mean monitoring data of Wenyu river basin
in Beijing during 2006-2010 as an example. Based on the characteristics of ori-
gin data, the water quality assessment (WQA) is analyzed by factor analysis,
which focuses on five aspects: data standardization, applicability evaluation,
principle factor extraction, principle factor interpretation and factor scores.
Results show that, by objectively and reasonably using the factor analysis
to evaluate water quality, the development tendency and variation law of re-
gional water quality can be further understood, which can be a reference for
contamination control planning of a region environmental system.

Keywords: Water quality assessment, Factor analysis, Wenyu river basin,
Beijing.

1 Introduction

According to several water quality indicators, water quality assessment(WQA)
aims at comprehensively evaluating water quality with establishing a mathe-
matical model. The results can further understands of the development ten-
dency and variation law of regional water quality, which can be a reference
for contamination control planning of a region environmental system [6].

WQA with multiple factors mainly analyzes the interaction between the
water quality assessment factors with the minimum human factors. In re-
cent years, with the application and popularization of multivariate statis-
tical methods and computers, factor analysis(FA) has been widely used in
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WQA [5]. However, there are lots of problems about the application and se-
lection of methods when water quality is evaluated by using FA, which lead to
deficient explanation and persuasion of an empirical analysis. Thus, properly
applying FA in WQA is very important.

2 Basic Principle and Mathematical Model

FA is a multivariate statistical analysis method. It reduces the complexity of
large-scale data set and eliminates redundant information. Based on Eigen-
analysis of the correlation or a covariance matrix, FA converts many indica-
tors to a few irrelevant composite indicators and individuates the meaning of
each principle factor(PF) [7].

Assume that the number of cross-sections is m, and each cross-section is
described by a total of p strong correlation variables. Thus, a mathematical
model of FA is [8]:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = a11f1 + a12f2 + · · ·+ a1pfp + ε1

x2 = a21f1 + a22f2 + · · ·+ a2pfp + ε2

...
xm = am1f1 + am2f2 + · · ·+ ampfp + εm

(1)

where X = (x1, x2, · · · , xm)T is standardized monitoring data vector; F =
(f1, f2, · · · , fp)

T is PF vector; aij is factor loading, which reflects correlation
between xi and fj ; εi stands for other affection factors, which is not included
in ahead p factors and often be ignored in actual analysis.

3 Study Case

Based on the mean monitoring data of Wenyu river basin in Beijing during
2006-2010, this section objectively and reasonably applies factor analysis to
WQA.

3.1 Data Standardization

Based on analysis of original data, the correlation matrix is applied to FA,
therefore the original data must be converted into normalized format. Gen-
erally, data standardization keeps the correlation of variables and tends to
lessen the influence of large magnitude gap. Thus, the resulting correlation
matrix is more suitable for FA in WQA. The equation of standardization is
as follows [4]:
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x′
ij =

xij − xj

Sj
, (i = 1, 2, · · · , n; j = 1, 2, · · · , k) (2)

where xj = 1
n

∑
xij and Sj =

√∑
(xij−xj)2

n−1 .

3.2 Applicability Evaluation

The correlation coefficient matrix is shown in Table 1. It can be seen that
most values are more than 0.3, which means that there is strong correlation
between indicators [2]. Thus, utilizing PFs to evaluate Wenyu river water
quality is objective and reasonable.

Table 1 Correlation Coefficient Matrix

Corre-
lation

Turbi-
dity

DO NO2
− NO3

− PH TN NH3-N TP CODMn BOD5

Turbidity 1.000 -0.490 -0.529 -0.258 -0.138 0.670 0.675 0.622 0.570 0.494
DO -0.490 1.000 0.715 0.360 0.535 -0.638 -0.622 -0.506 -0.599 -0.786
NO2

− -0.529 0.715 1.000 0.454 0.373 -0.698 -0.704 -0.505 -0.572 -0.697
NO3

− -0.258 0.360 0.454 1.000 0.057 -0.324 -0.329 -0.186 -0.369 -0.379
PH -0.138 0.535 0.373 0.057 1.000 -0.403 -0.368 -0.339 -0.413 -0.625
TN 0.670 -0.638 -0.698 -0.324 -0.403 1.000 0.995 0.917 0.942 0.891
NH3-N 0.675 -0.622 -0.704 -0.329 -0.368 0.995 1.000 0.930 0.945 0.869
TP 0.622 -0.506 -0.505 -0.186 -0.339 0.917 0.930 1.000 0.927 0.762
CODMn 0.570 -0.599 -0.572 -0.369 -0.413 0.942 0.945 0.927 1.000 0.831
BOD5 0.494 -0.786 -0.697 -0.379 -0.625 0.891 0.869 0.762 0.831 1.000

3.3 Principle Factor Extraction

The main purpose of FA is to use a few irrelevant composite indicators to
interpret FA model. Too many PFs can not achieve the purpose, however,
too little PFs mean more information lost from origin dataset [1]. Based
on correlation coefficient matrix listed in Table 1, each PF’s eigenvalue and
cumulative proportion in anova can be calculated in SPSS software. In the
paper, factors are extracted as PFs when the factor’s eigenvalue more than
1 and cumulative proportion in anova beyond 85%.

Total variance explained result is shown in Table 2. Three PFs are ex-
tracted. Nearly 85.911% information of primitive variables can be explained
by the only three PFs, which can conveniently and efficiently interpret
the contamination type and contamination level among 19 cross-sections of
Wenyu river basin.
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Table 2 Total Variance Explained

Initial Eigenvalues
Extraction

Sums of Squared
Loadings

Rotation Sums of
Squared Loadings

Factor

Total
%of
Vari-
ance

Cumu-
lative% Total

%of
Vari-
ance

Cumu-
lative% Total

%of
Vari-
ance

Cumu-
lative%

1 6.493 64.934 64.934 6.493 64.934 64.934 4.681 46.808 46.808
2 1.075 10.753 75.686 1.075 10.753 75.686 2.209 22.086 68.893
3 1.022 10.225 85.911 1.022 10.225 85.911 1.702 17.018 85.911
4 0.598 5.983 91.894
5 0.365 3.654 95.548
6 0.268 2.680 98.228
7 0.110 1.096 99.624
8 0.050 0.500 99.824
9 0.015 0.148 99.972
10 0.003 0.028 100.00

3.4 Principle Factor Interpretation

A FA model is established not only for extracting PFs but also for the actual
meaning of each PF, which can be really helpful for a real situation analysis.
When factor loading values are relatively average, reasons of factor scores’
difference about assessment objects in each factor can not be obtained from
original indicators. Thus, factor rotation is necessary. Factor rotation mainly
includes oblique rotation and orthogonal rotation. Oblique rotation depends
on parameters defined by users and factors still have a little correlation. The
factors of orthogonal rotation are irrelevant without information overlaps,
which is exactly needed in this study case [4].

As a popular method of orthogonal rotation, a varimax is applied to define
the three extracted factors listed in Table 2. The component matrix is shown
in Table 3. The rotated component matrix is shown in Table 4. Compared
with Table 3, factor loading values of NO3

−, PH and DO listed in Table 4
apparently approach to extremes by rotating without information loss. The
loading absolute values of variables are greater than 0.6 because the loading
absolute value is an indicator of the participation of the variable in each PF.
Thus the implications of factors are distinct and each PF can be defined.

PF1 accounts for 64.964% of the total variance, and it is characterized
by very high loadings of Turbidity, TN, NH3-N, TP, CODMn and BOD5, so
PF1 is defined as Organic Pollution Factor(OPF). PF2 accounts for 10.753%
of the total variance, and it is characterized by very high loadings of PH
and DO. Therefore, PF2 is defined as Eutrophication Pollution Factor(EPF).
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Table 3 Component Matrix

Factor
Indicator

1 2 3

Turbidity 0.693 0.355 -0.153
DO -0.777 0.408 0.085
NO2

− -0.779 0.224 0.292
NO3

− -0.424 0.171 0.798
PH -0.515 0.656 -0.435
TN 0.967 -0.182 -0.080
NH3-N 0.963 -0.218 -0.060
TP 0.878 -0.339 -0.228
CODMn 0.925 -0.182 -0.098
BOD5 0.931 -0.209 -0.094

Table 4 Rotated Component Matrix

Factor
Indicator

1 2 3

Turbidity 0.737 0.025 -0.291
DO -0.394 0.646 0.453
NO2

− -0.464 0.418 0.594
NO3

− -0.122 0.009 0.912
PH -0.127 0.932 -0.044
TN 0.903 -0.332 -0.222
NH3-N 0.917 -0.294 -0.229
TP 0.941 -0.226 -0.017
CODMn 0.872 -0.320 -0.191
BOD5 0.659 -0.631 -0.295

PF3 accounts for 10.225% of the total variance, and it is characterized by
NO3

− and NO2
−. So PF3 is defined as Nitrate Pollution Factor(NPF).

3.5 Factor Scores

Factor scores can be calculated in SPSS by a regression method and the
results are shown in Table 5. The comprehensive evaluation function is [9]:
F = (64.934/85.911)∗PF1+(10.753/85.911)∗PF2+(10.225/85.911)∗PF3.
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As shown in Table 5, section NO.14 possesses an extremely high level of
PF1 and F, which indicates this section has the worst pollution situation
of water quality among 19 cross-sections and is mainly affected by organic
pollution factor. Section NO.13 possesses a high level of PF2, which indicates
that eutrophication is the main pollution factor, and section NO.15 possesses
the highest content of nitrate. According to Environmental Quality Standards
for Surface Water [3], the water quality situation is tally with the actual water
quality.

Table 5 Factor Scores

NO. Section OPF EPF NPF F

1 Wenquan 0.162483433 -1.017321597 -0.363872021 -0.047830328
2 Qianshajian -0.521036617 -2.089409411 -1.127792864 -0.789562374
3 Daoxianghu -0.613710586 -0.397753953 0.245329048 -0.484446019
4 Shangzhuang -0.669855934 0.331661442 -0.641677277 -0.541155614
5 Shaheqiao 0.189568346 0.687050879 -0.568459412 0.161618321
6 Nanshahe -0.587717586 -1.567742935 -0.790908445 -0.734572201
7 Beishahe 1.060608301 0.019090927 0.698329615 0.887141862
8 Chaozhong -0.463883625 -0.802269832 -1.055451513 -0.576650470
9 Longtan -0.864281169 0.853902816 -0.153707709 -0.564664336
10 Yangtaizidong -0.544041961 0.705033686 1.025133914 -0.200947483
11 Yangtaizixi -0.732899027 0.786212003 0.230557159 -0.428099787
12 Yangtaizi -0.618138163 1.027967046 0.530118742 -0.275447727
13 Nanzhuang 0.531468891 2.053247353 -1.448513707 0.486292990
14 Xiaocunqiao 3.540005135 -0.392162463 0.106218841 2.639194726
15 Shagouqiaoxi -0.168949057 -0.355103222 2.345284569 0.106989462
16 Shagouqiaodon -0.407269783 -0.062797437 1.389940242 -0.150257569
17 Qintunhe 0.160176810 0.134984289 -0.996825747 0.019320736
18 Tugoucunqiao 0.341260805 0.859640080 -0.567194752 0.298024381
19 Xinbaozha 0.206211789 -0.774229672 1.143491317 0.195051430

4 Conclusions

Combined with characteristics of Wenyu river water quality monitoring data,
factor analysis is applied to water quality assessment of Wenyu river basin
by focusing on five aspects: data standardization, applicability evaluation,
principle factor extraction, principle factor interpretation and factor scores.

Standardization equation is utilized to normalize the origin monitoring
data to ensure the comparability among data. Based on the correlation coef-
ficient matrix, the correctness and effectiveness of water quality assessment
with factor analysis is guaranteed. To ensure that each extracted PF can
completely interpret at least one indicator’s variance and all PFs can inter-
pret at least 85% of total information, factor is extracted as PF on condition
that its eigenvalue over 1 and cumulative proportion in anova beyond 85%.
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Three comprehensive factors are rotated by varimax with Kaiser Normaliza-
tion, and can be defined as organic pollution factor, eutrophication pollution
factor and nitrate pollution factor, which have actual evaluation significance.
Based on factor scores and comprehensive factor scores of each cross-section,
the pollution situation and level of water quality about Wenyu river basin is
analyzed.

With tentative exploration for research and innovation of water quality
assessment, this paper provides a scientific, reasonable and practical guiding
for reference.
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On the Profit Manipulations
of Chinese Listed Companies

Shuangjie Li and Xingxing Chen

Abstract. This paper proposes a recognizing model of profit manipulations
based on BP neural network model. Then it improves the model by adding
DEA efficiency index according to the empirical result of Chinese listed com-
pany’s data in 2005-2009. The Error type II of the model is reduced rapidly
and the discriminate rate of the model is successfully improved to 90%.

Keywords: Listed company, Profit manipulation, BP neural network model,
DEA efficiency.

1 Introduction

Chinese security market made a rapid development in 1990s. In 2008, 4701
enterprises were punished by the ministry of finance departments, and the
punished enterprises were required to adjust their financial records, repay
taxes or pay fines. By regulating behaviors of listed companies, China’s na-
tional treasury gathered taxes of 1.03 billion Yuan, and captured fines of
55.96 million Yuan1. Therefore,profit manipulations in China are serious.

Earnings management has been studied by western countries since 1960s
[7]. Healy and Wahlen (1999) studied impacts of resource distribution made
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by earning management [3], pioneering a new chapter of researches in earning
management. In the early of the 21st century, Syed did some researches on
improved Jones model [1]. Since then, studies of earning management tended
to quantitative and modeling. Researches of profit manipulations in China
begun by Li Xin (2003) [5], and were about 40 years later than western
country. Li Yanxi (2006) set up a recognizing model of profit manipulation
by using statistical methods [6]. This thesis builds a model for recognizing
profit manipulations of listed companies in China, and successfully combines
knowledge of artificial intelligence and profit manipulation for the first time.

2 Theoretical Bases

2.1 Definition of Profit Manipulation

Definitions of earnings management can be classified as white, gray and black.
White earnings management is beneficial, the black is pernicious, and the
gray is manipulation of reports within the boundaries of compliance with
bright-line standards [2]. The concept of profit manipulation is related to
the definition of earnings management and the understanding of the word
“manipulation”. When “manipulation” is derogatory, earnings management
is considered to be neutral, and contains the concept of profit manipulation.
While regarding ”manipulation” as neutral, profit manipulation contains the
concept of earnings management [8].

This paper identifies the concept of manipulation as neutral and considers
profit manipulation to be a behavior of an enterprise which controls its finan-
cial indicators and to dominate profit of the company. The study analyzes
conditions of profit manipulations of Chinese listed companies. By using the
special concept of profit manipulation according to domestic researches, this
article successfully collects data and builds a recognizing model.

2.2 BP Neural Network

BP neural network system is a neural network that its error propagates back
and forward with multilayer, which includes an input layer, an output layer
and one or more hidden layers. It is said that BP neural network theory
offers a good prediction on the area of financial warning for enterprises. Al-
though there aren’t any researches on profit manipulation by using BP neural
network, the method which is used in identifying profit manipulations of en-
terprises can be theoretically demonstrated as feasible. In order to determine
the inputs, outputs and the cell numbers of hidden layers, BP neural net-
work processes the training sample data, finds out the data decision-making
threshold, and controls the error of the model. Finally, BP neural network
model is created.
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2.3 DEA Efficiency

In 1978, Charnes, A., Cooper, W.W., Rhodes, E. proposed a method called
Data Envelopment Analysis (DEA) to evaluate relative efficiency among each
Decision Making Unit (DMU) for the first time. DEA is a kind of nonpara-
metric analytical methods that evaluates efficiencies. It measures relative
efficiency of a group of inputs and outputs by using the method of linear
programming [4]. According to whether the returns to scale changed, DEA
model can be divided into Constant Returns to Scale (CRS) model and Vari-
able Returns to Scale (VRS) model.

3 BP Neural Network Model

3.1 Data Gathering and Preprocessing

This paper uses some financial indicators in literatures for reference2, and
the formulas of indicators are shown in Table 1.

The symbol Δ represents the value change of a variable form year t-1 to
year t, and year t is the year when listed companies are punished by CSRC
because of their profit manipulations.

Data of listed corporations of profit manipulation from 2005 to 2009 are
collected from the illegal database, a sub-database in China Center for Eco-
nomic Research (CCER). Companies that have missing values are deleted,
and finally 19 corporations are obtained, which include 3 companies in 2005,
5 companies in 2006, 7 companies in 2007, and 4 companies in 2008. In ad-
dition, another group of companies with profit manipulation is set up as a
control group, so the number of corporations is 38. The companies are divided
into 28 training samples and 10 testing samples. As samples of t-1, t-2 and t-3
periods shall be gathered to study the financial trends for each company, so
the number of training sample and test sample is respectively 84 (28×3) and
30 (10×3), and the total number of samples is 114. The article uses paired
samples T-test to test significant differences between the two groups, and the
data is divided into t-1, t-2 and t-3 periods. Then T value and P value of 26
indicators in the three periods are gotten. Selecting 0.1 as significance, the
chosen financial indicators are x3, x4, x6, x7, x8, x17, x18, x19, x22, and
x25. Correlation analysis in the three periods is also used, and the results
shows the 10 indicators are uncorrelated at the 0.05 significant level.

2 Yao Hong, Li Yanxi, Gao Rui: A Recognition Model of Aggressive Earnings
Management in Chinese Listed Companies Based on the Principal Components
Method. Journal of Management Science. Oct. vol. 20(5), 83-91 (2007).
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Table 1 Formula for indexes

IndexFormula IndexFormula

x1 Net cash flow from operating activi-
ties/Gross profit

x14 Accounts payable/∆Revenue

x2 Net cash flow from operating activi-
ties/Net profit

x15 Accounts payable/Total assets

x3 Net cash flow from investing activities/Net
profit

x16 Cost of sales/Revenue

x4 Net cash flow from operating activi-
ties/Revenue

x17 Finance expense/Revenue

x5 Net cash flow from operating activities per
share/Earnings per sharea

x18 Ending balance of cash/(Account
receivable +Notes receivable)

x6 Outflows of operating cash/Total cost x19 Ending balance of cash and cash
equivalents/Total assets

x7 ∆Account receivable/∆Revenue x20 Impairment for fixed assets/Total
assets

x8 Bad debt provision/Account receivable x21 Tax payable/Revenue
x9 ∆Commodity stocks/∆Revenue x22 Gross profit margin/Gross margin

in the same industry
x10 ∆Commodity stocks/∆Cost of sales x23 Gross profit margin this

year/Average gross marginb

x11 ∆Commodity stocks/∆Accounts payable x24 (Profit before tax-Nonoperating
expense/Profit before tax

x12 Provision for inventory/Inventory x25 Cash gross margin/Cash gross
margin in the same industry

x13 Impairment for fixed assets/Depreciation
of fixed assets

x26 Cash gross margin/Sales margin

a Fully diluted method; bOver the past five years.

3.2 Normalizes Input Variables

Input variables of the model for recognizing profit manipulations of listed
corporations shall be normalized before setting up the model, which means
the data should be transformed into [0.001, 0.999]. However, when synthet-
ically analyzing multiple indicators, some indicators are treated as positive
indicators, others indicators are reverse indicators, and still others are mod-
erate indicators3. Based on the recognizing model, positive indicators mean
that identification of profit manipulations will be easier when the value of
indicators are large; Reverse indicators mean the identification will be eas-
ier when the value of indicators is small; Moderate indicators are defined as
behaviors of profit manipulations will be easily recognized when the value
of indicators is too large or too small. Therefore, this paper will ultimately
divides 10 financial indicators into three categories, in which x6, x18, x22 are

3 The specific definition will be look up at Ye Zongyu: Methods of Dealing indica-
tors with Positive and Dimensionless Methods through Synthetical Evaluation
of Multi-indicators. Zhejiang Statistics. 4, 24-25 (2003).
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positive indicators, x3, x4, x8, x17, x19, x25 are reverse indicators, and x7
is moderate indicator. For different types of indicators, different formulas are
used to normalize its value. The specific methods are as follows.

1. For positive indicators and moderate indicator, Eq.1 is used. As for re-
verse indicators, Eq.2 is used.

yi = 0.001 +
xi −minxi

maxxi −minxi
× 0.998 i = 1, 2, . . . , n (1)

yi = 0.001 +
maxxi − xi

maxxi −minxi
× 0.998 i = 1, 2, . . . , n (2)

2. 114 (57 pairs) samples of t-1, t-2, t-3 periods are divided into 84 (42 pairs)
training samples and 30 (15 pairs) test samples at random.

3.3 Construction of BP Neural Network Model

MATLAB program is compiled by using the reduced samples and BP neural
network model is set up. The program is run 30566 times and the error of
the model reaches 0.02, consuming 5 minutes 28 seconds. The gradient of the
model is 0.00873 when the performance goal is met.

Fig. 1 Error Scatter Plot Fig. 2 Error Performance Curve

Figure.1 shows that scatter of error is almost around the original point, so
there is only a little abnormal value. Also, the model is convergent according
to the error performance curve of Fig.2. The error of the model is smaller
than the expected error of 0.02. Therefore, the model is reasonable.
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3.4 Discriminate Rate of the Model

Through three-layer BP neural network, samples are trained, and weights and
thresholds of each layer are gained. Final output of the model is gotten by
MATLAB, and it is close to the expected values. So if financial indicators are
acquired, whether listed corporations have behaviors of profit manipulations
or not can be predicted by the three-layer BP neural network model. Also,
there is a conclusion that it is feasible to apply BP neural network model to
researches of profit manipulation. The result shows that 22 companies can be
correctly recognized by using the three-layer BP neural network model, and
the discriminate rate of the model reaches 73.33%.

3.5 Results of the Model

Results of 30 test samples reflect that in the 15 manipulated companies, 13
companies can be successfully recognized as manipulated, while 2 compa-
nies are treated as normal. And the discriminate rate of the 15 manipulated
companies is 86.67%. At the same time, in 15 normal companies, there are 9
companies recognized as normal and 6 as manipulated. Thus the discriminate
rate of the 15 normal companies is only 60%, and the average discriminate
rate of the model is 73.33%. So although the predicted result of the model is
good, there is still room for improvement.

To have a better view of the outcomes of the model, this research makes
a null hypothesis that listed companies are profit manipulated, and an alter-
native hypothesis that listed companies are normal. The probability of Error
type I of the model is 13.33%, and the Error type II is 40%. So the probability
of recognizing normal companies into profit manipulated companies (Error
type II) is higher than the probability of recognizing profit manipulated com-
panies into normal companies (Error type I). This is because profit manipu-
lations methods of listed companies are concealed, and profit manipulations
can’t be identified only by financial indicators. Therefore, it is necessary to
add non-financial indicators into the model to enhance the efficiency.

4 Improved Model Based on DEA Efficiency

A DEA efficiency indicator is added into the model to set up an improved
model. The thesis uses total employees x 1 (People), total assets x 2 (100
million Yuan), main business cost x 3 (100 million Yuan) as input indicators,
and net profit y 1 (10 million Yuan), main business income y 2 (100 million
Yuan) as output indicators to establish a DEA efficiency model.
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4.1 Improved Model

Constant Scale Efficiency (CRS) model is used, and efficiencies of paired sam-
ples for each period are calculated by Efficiency Measurement System (EMS).
The indicator calculated by the DEA efficiency model is marked as x27. Then
paired sample T-test is made by SPSS. From the correlation analysis of each
period, variable x17, x19 and x25 that are significantly correlated are deleted,
and the rest of the variables are uncorrelated under the significant level of
0.001. So the input variables of the improved model are x3, x4, x6, x7, x8,
x18, x22, and x27.

An improved model is created based on the reduced samples and the DEA
efficiency indicators by compiling MATLAB program. After operating 44994
times, the improved model reaches the expected error of 0.03. As the model is
convergent according to the error performance curve, the model is reasonable.

4.2 Results of the Improved Model

Comparing with the outcome of the model before, the improved model has
a better prediction on profit manipulations. 30 test samples as mentioned
before are adopted again. By using the improved model, 13 companies can
be successfully recognized as manipulated in the 15 manipulated companies,
while 2 companies are marked as normal. So the discriminate rate of the
manipulated companies is still 86.67%. But in 15 normal companies, 14 com-
panies are recognized as normal and only one company as manipulated. Thus
the discriminate rate of the 15 normal companies is 93.33%, and the average
discriminate rate of the model is successfully improved to 90%. Therefore, al-
though the probability of Error type I of the improved model is still 13.33%,
the probability of recognizing normal companies into profit manipulated com-
panies (Error type II) decreases from 40% to 6.67%. This is because efficien-
cies of listed corporations with profit manipulations are lower than that of
normal corporations. In a word, it is rigorous to distinguish whether there
are profit manipulations in companies only by using financial indicators.

In order to study whether behaviors of profit manipulations in listed com-
panies can be effectively recognized by DEA efficiency indicator, this pa-
per does some researches on changes of efficiencies in listed corporations.
Hypothesis that “Efficiencies of profit manipulated companies decline and
normal companies increase”, and it is found that efficiencies of profit manip-
ulated corporations will decline with a probability of 63.16% and efficiencies
of normal companies increase with a probability of 94.74%. On the one hand,
normal companies can be successfully recognized by the improved model after
entering the DEA efficiency indicator, and this can decrease the probability
of recognizing normal companies into profit manipulated companies (Error
type II). On the other hand, the operating situations of some listed compa-
nies of profit manipulations don’t deteriorate, which means motivations of
these companies are misappropriating, raising equity, smoothing profits and



556 S. Li and X. Chen

so on. Therefore, motivations of profit manipulations in the improved model
include not only financial crises of companies, but also contain a broader way.

5 Conclusions

Profit manipulations of listed companies damage the interests of stakeholders
and disturb the order of the security market. Based on financial indicators in
previous researches, the article studies indicators of profit manipulations and
creates a recognizing model. The outcome of the model is influenced by error
type II, which reduces the accuracy of the model. So the paper creatively
introduces DEA efficiency index, and successfully reduces error of the second
kind. In addition, the paper points out that motivations of profit manipu-
lations are multiple and complicated, and behaviors of profit manipulations
may not occur only in listed companies, whose operating condition deteri-
orate. To improve the accuracy of the model, non-financial indicators will
continue to be explored in the future.
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Fuzzy Portfolio Optimization Model
with Fuzzy Numbers

Chunquan Li and Jianhua Jin

Abstract. A new portfolio optimization model with triangular fuzzy num-
bers is proposed in this paper. The objective function is considered as maxi-
mizing fuzzy expected return of securities under the constraint that the risk
will not be greater than a preset tolerable fuzzy number, where the expected
return and risk of securities are described as triangular fuzzy numbers. By
using the method of dominance possibility criterion, the portfolio optimiza-
tion model is converted into its equivalent crisp linear programming problem.
Finally an example is presented to illustrate the effectiveness of the proposed
algorithm.

Keywords: Fuzzy portfolio optimization model, Fuzzy number, Fuzzy
expected rate of return, Risk, Securities markets.

1 Introduction

Portfolio selection has been one of the important research topics in finan-
cial area since Markowitz [14] proposed the famous mean-variance theory
in 1952. Markowitz initially investigated a mathematical way for analyzing
portfolio selection problem. Thereafter, a variety of simplified mean-variance
models have been constantly developed such as references [1, 8, 12]. In prac-
tice processing, the majority of portfolio selection models require a perfect
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knowledge of data. However, the data are often prone to errors since it may be
difficult to obtain statistically meaningful estimates from available historical
data, especially for the rate of security returns. Portfolio optimization based
on inaccurate point estimates may be highly misleading. Black [5] said that
the portfolio selection system cannot be tolerant of a little change appearing
in the rate of return. The security market is sensitive to various economic
and political factors, which can be affected by not only probabilistic factors
but also complex uncertainty or vagueness factors.

After the inception of fuzzy set theory by Zadeh [17], many fuzzy portfolio
selection models were constructed by scholars [3, 4, 7, 16], etc. Sometimes
the security return or the rate of risk cannot be characterized approximately
by fuzzy variables, the portfolio selection problem is solved in more complex
uncertainty situations. When the security returns are considered as fuzziness
with random parameters, Ammar [2] employed fuzzy random programming
method to select the optimal portfolio. Regarding the security returns to be
random but the expected returns of the securities as fuzziness, Huang [9] pro-
posed random fuzzy mean-variance models. Recently, Huang [10] discussed
fuzzy portfolio selection problem in the situation that each security return be-
longs to a certain class of fuzzy variables, and proposed two credibility-based
minimax mean-variance models. In this paper, we will discuss portfolio selec-
tion optimization problem in the situation that the fuzzy expected return and
risks of securities are predicted as the triangular fuzzy numbers, and propose
a new fuzzy portfolio optimization model by maximizing the expected rate
of return on portfolios under the constraint that the risks will not be greater
than a preset tolerable fuzzy number.

The remainder part of the paper is organized in the following way. Some
necessary knowledge about fuzzy set are presented in Section 2. In Section 3,
a new portfolio selection model is proposed. The objective function is consid-
ered as maximizing fuzzy expected return of securities under the constraint
that the risks will not be greater than a preset tolerable fuzzy number, where
the expected rates of return and risk are described as fuzzy numbers. The res-
olution of the portfolio selection model is presented in Section 4. An numerical
example is given to illustrate the effectiveness of the proposed algorithm in
Section 5. The conclusions are presented in Section 6.

2 Preliminaries

In this section we review some definitions and results already known, and
give some notations used throughout the paper. Let R denote the set of real
numbers and F (X) = {f : X → [0, 1]|f is a mapping from X to the unit
interval [0, 1]} denote the family of all fuzzy subsets of the set X .

Definition 1. [13] Let A ∈ F (R). Then the fuzzy subset A is called a fuzzy
number with the following conditions satisfied:
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(i) A is normal, that is, there is an element x0 ∈ R such that A(x0) = 1;
(ii) the α−cut set of A, denoted by Aα = {x ∈ R|A(x) ≥ α}, is a closed

interval in R, for any α ∈ (0, 1].

Definition 2. A fuzzy number Ã is called a triangular fuzzy number if it has
a triangular membership function which is given by

Ã(x) =

⎧
⎨
⎩

0, if x < Ba or x > ā
x−Ba
a0−Ba , if Ba ≤ x ≤ a0
ā−x
ā−a0

, if a0 ≤ x ≤ ā

We denote it by Ã = [Ba, a0, ā]. For the triangular fuzzy numbers Ã =
[Ba, a0, ā] and B̃ = [Bb, b0, b̄], the following assertions hold clearly: Ã + B̃ =
[Ba + Bb, a0 + b0, ā + b̄], Ã − B̃ = [Ba − b̄, a0 − b0, ā − Bb], k[Ba, a0, ā] =
[kBa, ka0, kā], and (Ã + B̃)λ = Ãλ + B̃λ, ∀k ≥ 0, ∀λ ∈ [0, 1].

The comparison between triangular fuzzy numbers can be carried out using
the dominance possibility criterion [15]. The above criterion is frequently
applied in fuzzy programming and stochastic fuzzy programming [11]. Given
two triangular fuzzy numbers Ã = [Ba, a0, ā] and B̃ = [Bb, b0, b̄], assume that
a given relation is Ã ≥ B̃, then the binary relation can be presented as follows
through the dominance possibility criterion(denoted by DPC):

Poss(Ã ≥ B̃) =

⎧
⎨
⎩

1, if a0 ≥ b0
ā−Bb

ā−a0+b0−Bb , if b0 ≥ a0, ā ≥ Bb
0, if Bb ≥ ā

It means the possibility that the maximum value of Ã exceeds the maximum
value of B̃.

3 Fuzzy Portfolio Optimization Model

Assume that an investor wants to allocate one’s wealth among n risky assets
and a non-risky assets. rtj represents the historical rate of return of risky
asset j at period t, t = 1, 2, · · · , T, j = 1, 2, · · · , n. Traditionally, researchers

consider the arithmetic mean rj = 1
T

T∑
t=1

rtj as the expected return of risky

asset j. However, this technique would have great defect since there are many
uncertain factors in securities markets. Furthermore, the later historical date
should contain more information than the earlier historical date. If the time
horizon of history data of assets is long enough, the defect would be greater.
Hence, it seems more reasonable and realistic to describe the expected returns
in terms of fuzzy numbers, according to the developing trendy and perfor-
mance of risky assets, or according to experts’ knowledge and experience.

In this paper, the expected rate of return and risks are described to be
triangular fuzzy numbers. Let r̃j = [Brj, r0j , r̄j ] be the fuzzy expected rate
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of return of risky asset j, xj be proportion of the total investment devoted to

risky asset j, and xj ≥ 0, j = 1, 2, · · · , n,
n∑

j=1

xj ≤ 1. Let a nonnegative real

number rf denote the return of non-risky asset, the proportion of the total

investment devoted to it be denoted by xn+1. Then xn+1 = 1 −
n∑

j=1

xj , and

the fuzzy expected return r̃ of portfolio x = (x1, · · · , xn+1) can be stated as

r̃ =
n∑

j=1

r̃jxj + rfxn+1 = [
n∑

j=1

Brjxj + rfxn+1,
n∑

j=1

r0jxj + rfxn+1,
n∑

j=1

r̄jxj +

rfxn+1].

The risk of portfolio x is represented by Ṽ (x) in the following way.

Ṽ (x) =
1

T

T∑

t=1

(
n∑

j=1

(rtj − r̃j)
2xj + (rf − rf )2xn+1) = [BV, V0, V̄ ],

where, BV = min{ 1
T

T∑
t=1

n∑
j=1

(rtj − Brj)
2xj ,

1
T

T∑
t=1

n∑
j=1

(rtj − r̄j)
2xj}, V̄ = max

{ 1
T

T∑
t=1

n∑
j=1

(rtj −Brj)
2xj ,

1
T

T∑
t=1

n∑
j=1

(rtj − r̄j)
2xj}, V0 = 1

T

T∑
t=1

n∑
j=1

(rtj − r0j)
2xj .

Suppose that the triangular fuzzy number β̃ is the maximum variance
level of risk the investors can tolerate. Then, for the purpose of pursuing
profit, the investor should require that the variance of the portfolio risk in
all cases should not be greater than the preset β̃ and then pursue maximum
fuzzy expected return of securities in the worst case. To express the idea
mathematically, the portfolio optimization model is constructed as follows:

(P1) max r̃, (1)

s.t.

⎧
⎨
⎩

Ṽ ≤ β̃
n∑

j=1

xj + xn+1 = 1, xj ≥ 0, j = 1, 2, · · · , n + 1
(2)

Where, β̃ = [Bβ, β0, β̄], Bβ < β̄. The constraint Ṽ ≤ β̃ means that the
rate of portfolio risk in any cases will not be greater than the given fuzzy
number β̃, and the objective function (1) means that the optimal portfolio
should be the one with maximum expected return in the worst case.

4 The Resolution of Fuzzy Portfolio Optimization
Model

Firstly, the equivalent deterministic-crisp objective function for the fuzzy
objective function (1) is considered to be presented based on the λ−cut of
fuzzy numbers given in Section 2. For the given level λ ∈ [0, 1], according to
the definition of λ−cut, we have r̃(x) ≥ λ. Then r̃λ = [r̃−λ , r̃+

λ ], where

r̃−λ =
n∑

j=1

(λr0j + (1− λ)Brj)xj + rfxn+1, (3)
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r̃+
λ =

n∑
j=1

(λr0j + (1− λ)r̄j)xj + rfxn+1. (4)

Assume that for the level λ ∈ [0, 1], the investor maximize the expected
return, then the fuzzy objective function(1) can be represented as

max r̃−λ =
n∑

j=1

(λr0j + (1− λ)Brj)xj + rfxn+1. (5)

It is shown that the model (P1) is an optimization problem with triangular
fuzzy numbers in objective function and constraints. Therefore, techniques
of classical programming can not be applied. In the following, we will get
the equivalent deterministic crisp constraints for the fuzzy constraint in (2),
according to the dominance possibility criterion as presented in Section 2.
Assume that β̃ ≥ Ṽ , according to DPC, it can be represented as follows:

Poss(β̃ ≥ Ṽ ) =

⎧
⎨
⎩

1, if β0 ≥ V0
β̄−BV

β̄−β0+V0−BV
, if V0 ≥ β0, β̄ ≥ BV

0, if BV ≥ β̄

Given level λ ∈ [0, 1], if Poss(β̃ ≥ Ṽ ) ≥ λ, then the equivalent deterministic-
crisp constraints for the fuzzy constraint in (2) can be stated as

{
(1− λ)β̄ + λβ0 ≥ (1− λ)BV + λV0

β̄ ≥ BV (6)

Let Ṽ −
λ = (1 − λ)BV + λV0. According to the DPC, (P1) can be trans-

formed equivalently to the following linear programming model (P2):

(P2) : max(r̃)−λ =
n∑

j=1

(λr0j + (1− λ)Brj)xj + rfxn+1,

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − λ)β̄ + λβ0 ≥ (1− λ)BV + λV0, β̄ ≥ BV
BV = min{ 1

T

T∑
t=1

n∑
j=1

(rtj − Brj)
2xj ,

1
T

T∑
t=1

n∑
j=1

(rtj − r̄j)
2xj}

n∑
j=1

xj + xn+1 = 1, xj ≥ 0, j = 1, 2, · · · , n + 1

Clearly, the model (P2) can be transformed to the following equivalent
model (LP2), where (r̃−λ )∗ and (r̃−λ )∗∗ be the maximum values of the following
models (LP2)(a) and (LP2)(b), respectively.

(LP2) : max{((r̃(x))−λ )∗, ((r̃(x))−λ )∗∗},

(LP2)(a) : maxr̃−λ =

n∑

j=1

(λr0j + (1− λ)Brj)xj + rfxn+1,



562 C. Li and J. Jin

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− λ)β̄ + λβ0 ≥ (1− λ)ω + λ 1
T

T∑
t=1

n∑
j=1

(rtj − r0j)
2xj

T∑
t=1

n∑
j=1

(rtj − Brj)
2xj ≤

T∑
t=1

n∑
j=1

(rtj − r̄j)
2xj

ω = 1
T

T∑
t=1

n∑
j=1

(rtj − Brj)
2xj , β̄ ≥ ω

n∑
j=1

xj + xn+1 = 1, xj ≥ 0, j = 1, 2, · · · , n + 1

(LP2)(b) : maxr̃−λ =
n∑

j=1

(λr0j + (1− λ)Brj)xj + rfxn+1,

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− λ)β̄ + λβ0 ≥ (1− λ)ω + λ 1
T

T∑
t=1

n∑
j=1

(rtj − r0j)
2xj

T∑
t=1

n∑
j=1

(rtj − Brj)
2xj ≥

T∑
t=1

n∑
j=1

(rtj − r̄j)
2xj

ω = 1
T

T∑
t=1

n∑
j=1

(rtj − r̄j)
2xj , β̄ ≥ ω

n∑
j=1

xj + xn+1 = 1, xj ≥ 0, j = 1, 2, · · · , n + 1

From the above analysis, the following assertion holds:

Theorem 1. x∗ = (x∗
1, x

∗
2, · · · , x∗

n, x
∗
n+1) is the optimal portfolio of the

model (P2) if and only if x∗ = (x∗
1, x

∗
2, · · · , x∗

n, x
∗
n+1) is the optimal port-

folio of the model (LP2).

One can see that both (LP2)(a) and (LP2)(b) are two standard linear pro-
gramming problems. They can be solved by several algorithms of linear pro-
gramming efficiently. Therefore, we can solve the original portfolio selection
problem (P1) by solving (P2) or (LP2).

5 An Example

In order to illustrate the proposed methods, we will consider an example
introduced by Fang [6], which is shown in Table 1. Let r0j be the arithmetical
mean of the history data of securities, Brj = (1 − ε)r0j , r̄j = (1 + ε)r0j ,
ε = 0.1, j = 1, 2, · · · , 8. Assume that the return of non-risky security is
the tenth column given in Table 1, denoted by rf = 0.03. For the model
(LP2), given the level λ = 0.8 and the fuzzy tolerable risk in terms of a

triangular fuzzy number β̃, the optimal portfolio strategies are obtained by
using algorithms of linear programming. Some of the results are presented
in Table 2. One can see that the results in Table 2 display the distributive
investment.
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Table 1 Returns of nine securities

year 1 2 3 4 5 6 7 8 9

1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.435 0.03
1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.238 0.03
1939 0.055 0.2 -0.047 0.165 -0.424 -0.078 0.381 -0.295 0.03
1940 -0.126 0.03 0.104 -0.043 -0.189 -0.077 -0.051 -0.036 0.03
1941 -0.28 -0.183 -0.171 -0.277 0.637 -0.187 0.087 -0.24 0.03
1942 -0.003 0.067 -0.039 0.476 0.865 0.156 0.262 0.126 0.03
1943 0.428 0.3 0.149 0.225 0.313 0.351 0.341 0.639 0.03
1944 0.192 0.103 0.26 0.29 0.637 0.233 0.227 0.282 0.03
1945 0.446 0.216 0.419 0.216 0.373 0.349 0.352 0.578 0.03
1946 −0.088 −0.046 −0.078 −0.272 −0.037 −0.209 0.153 0.289 0.03
1947 −0.127 −0.071 0.169 0.144 0.026 0.355 −0.099 0.184 0.03
1948 −0.015 0.056 −0.035 0.107 0.153 −0.231 0.038 0.114 0.03
1949 0.305 0.038 0.133 0.321 0.067 0.246 0.273 −0.222 0.03
1950 −0.096 0.089 0.732 0.305 0.579 −0.248 0.091 0.327 0.03
1951 0.016 0.09 0.021 0.195 0.04 −0.064 0.054 0.333 0.03
1952 0.128 0.083 0.131 0.39 0.434 0.079 0.109 0.062 0.03
1953 −0.01 0.035 0.006 −0.072 −0.027 0.067 0.21 −0.048 0.03
1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.185 0.03

Table 2 The optimal portfolio strategies

β̃ return Ṽ −
λ optimal portfolio x∗

[0.005, 0.010, 0.015] 0.0645 0.0110 (0, 0, 0, 0, 0.01, 0, 0.348, 0, 0.642)
[0.010, 0.020, 0.030] 0.0985 0.0220 (0, 0, 0, 0, 0.01, 0.012, 0.7006, 0,0.2774)
[0.0200, 0.030, 0.040] 0.1266 0.0320 (0, 0, 0, 0.012, 0.0225, 0.008, 0.9575, 0,

0)
[0.030, 0.040, 0.050] 0.1337 0.0420 (0, 0, 0, 0.014, 0.1224, 0.006, 0.8576, 0,

0)
[0.05, 0.060, 0.070] 0.1477 0.0620 (0, 0, 0, 0.01, 0.3270, 0.0050, 0.6580, 0,

0)
[0.060, 0.070, 0.080] 0.1541 0.0720 (0, 0, 0, 0.1, 0.3667, 0.0100, 0.5233, 0,

0)
[0.080, 0.090, 0.100] 0.1685 0.0920 (0, 0, 0, 0.2, 0.5023, 0.0020, 0.2957, 0,

0)
[0.0093, 0.1123, 0.1153]0.1836 0.1129 (0, 0, 0, 0.009, 0.8419, 0, 0.1491, 0, 0)
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Fig. 1 The binary re-
lation that the expected
risk Ṽ −

λ corresponding
to the optimal return
of portfolio is given in
Table 2. It is believed
that the more the tol-
erable risk β̃, the larger
both the expected return
and the corresponding
risk of portfolios. The
investor may choose in-
vestment strategy from
the portfolios according
one’s attitude towards
the expected return and
risk of securities.
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6 Conclusions

This paper proposes a fuzzy portfolio optimization model based on triangu-
lar fuzzy numbers. The expected returns and risks of securities are described
as triangular fuzzy numbers. The proposed models are converted into equiv-
alent crisp linear programming models by using the method of dominance
possibility criterion. As is well known, the linear programming problem can
be solved by several algorithms of linear programming efficiently. Finally, an
example is presented to illustrate the effectiveness of the proposed models.
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Soft Computing Techniques and Its
Application in the Intelligent Capital
Compensation

Kuo Chang Hsiao, Berlin Wu, and Kai Yao

Abstract. Measurement of the value of intellectual capital is increasingly
receiving more and more attention. However, the evaluation of intellectual
capital is complex, it involves many factors, such as peoples’ utility (human
subjective recognition) and the economic efficiency etc. that are very difficult
to compute by traditional methods. In this paper we propose an integrated
fuzzy evaluation procedure to measure intellectual capital. The main meth-
ods used in this research are fuzzy statistical analysis, fuzzy-weighting and
fuzzy ranking. This integrated procedure is aimed at yielding appropriate and
reasonable rankings and value of intellectual capital. Empirical study shows
that fuzzy statistics with soft computing are more realistic and reasonable in
the intellectual capital evaluation.

Keywords: Intellectual capital, Evaluation, Fuzzy statistics, Human
thought, Fuzzy-weighting.

1 Introduction

The implication of intellectual property rights(IPR) reveals one of the most
important competence ability of a country. Aside from traditional property
owners, IP holders own their properties in intangible form. Therefore, intel-
lectual property is easier to be violated than tangible one. The standard of
compensation is also difficult to be judged upon once it happened.
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According to Tort Law (TL), the compensation that IP holder demands
relies on the testimony of how the property is violated and the “level of being
damaged.” The fact is that, many IP holders give up prosecuting violating
cases since it’s difficult to prove and measure the actual loss; therefore, IPR
relief system is a nominal in reality.

We live in a knowledge economy society. Knowing how to evaluate in-
tellectual property is an important issue. Therefore, establishing a method
for objectively evaluating intellectual capital is not only important but also
urgent. The difficulties of evaluating intellectual capital follow from (1) the
involvement of too many influential variables; (2) inappropriate measurement
techniques (3) vagueness perception and cognition of intellectual capital. Fol-
lowing are few researches that are available on evaluating intellectual capital
evaluation, this paper proposes an integrated procedure to compute the in-
tellectual capital via fuzzy statistical analysis.

This essay is aiming at exploring the intellectual property value(IPV) of
the academic journals. The indicators applied in this articles are: author’s
academic background, author’s position, ranking of journal he/she published,
framework of the article, research method and whether the research meets
applicative and academic needs and demands. These factors are based on the
opinions of professional experts to gauge intellectual capital, and are thus
highly subjective, uncertain as well as incomplete.

Since Zadeh (1965) developed fuzzy set theory, its applications are ex-
tended to traditional statistical inferences and methods in social sciences, in-
cluding medical diagnosis or a stock investment system. For example, Dubois
and Parde (1991) , demonstrated the approximate reasoning econometric
methods one after another. Wu and Hsu (2004) developed fuzzy time se-
ries model to overcome the bias of stock market which might be explained
unreasonable.

There has been considerable and increasing attention paid to the idea of
fuzzy logic since it was introduced by Zadeh as a modification of conventional
mathematical Set Theory (Zadeh 1965). The basic aim is that vagueness and
ambiguity can be described and distinguished mathematically. Fuzzy theory
has been widely used by a variety of authors. Tseng and Wu (2002) applied
fuzzy regression models to business cycle analysis. Wu et al., (2002) proposed
new approaches on market research with fuzzy statistical analysis. Kostas
Metaxiotis (2003) integrated fuzzy logic into a decision support system. Hong
Zhang (2004) proposed the fuzzy discrete-event simulation to model the un-
certain activity duration. Rajkumer Ohdar et al., (2004) introduced the
fuzzy-based approach to measure and evaluate the performance of suppliers
in the supply chain. Jeng et al., (2009) applied fuzzy forecasting techniques
in DNA computing. Ho and Wu (2008) used integrated fuzzy statistics anal-
ysis in the valuation of intellectual capital. Sharon M. Ordoobadi (2008) used
fuzzy logic to evaluate advanced technologies for decision makers and pro-
vided a model based on fuzzy logic for decision makers to help them with
selection of appropriate suppliers in 2009.
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2 How to Evaluate an Intelligent Capital

People’s thinking is full of uncertainty and whose wisdom is difficult to mea-
sure or quantify as well. The value of intellectual property is nearly impossible
to evaluate by traditional statistics. For this reason, researchers start to ap-
ply fuzzy statistics/soft computing to study intellectual property. Hence the
result shall be more objective, and prone to meet the social expectation.

2.1 What Is the Discussion Domain for an

Intellectual Capital?

An intellectual capital means all resources that determine the value and the
competitiveness of a work. Edvisson and Malone(1999)suggested that the in-
tellectual property rights(IPR)consist with knowledge capital, non-financial
capital, concealed property capital, non-visible property, or intangible assets.
Brooking, Board and Jones(1998) indicate that IPR include market assets, in-
tellectual property assets, infrastructure assets, human-centered assets. Such
intellectual property, being the difference between company market value and
book value, is the counterpart of visible entity capital and finance capital.

EIU(1995), Smith and Parr(1994), Stewart(1994), Edvisson and Malone
(1999), and Reilly and Schweihs(1998)propose that intellectual capital in-
cludes three basic classes, such as human capital, structural capital, and
relationship capital. Human capital represents the individual skills applied
to satisfy customers. Structural capital is the organizational capabilities
of the enterprise, demanded by the market. Relationship capital is the
strength of a franchise afforded by a business’s ownership of rights. While
Mar(2000)surmise the literature and suggests that the intellectual capital in
a wide sense, including knowledge capital, management capital, and market
capital.

2.2 Statistical Evaluation with Fuzzy Data

Many phenomena in the world, such as human language, thinking and
decision-making, all possess non-quantitative characteristics. Human behav-
ior is particularly difficult to quantize. The argument is about the principle
of applying fuzzy scale and categorization into human’s interaction with the
dynamic environment, and to give a more concrete description and solution
toward complicated/vague phenomenon.

Since mode, mean and median are essential statistics in analyzing the
sampling survey. For instance, when people process a happy assessment, they
classify the distraction into two categories: happy and unhappy. This kind of
classification is not realistic, since that happiness is a fuzzy concept (degree)
and can hardly be justified by the true-false logic. Therefore, to compute the
information based on the fuzzy logic should be more reasonable. Calvo and
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Mesiar (2001)] proposed the generalized median by discussing aggregation
operators closely related to medians and to propose new types of aggregation
operators appropriate, both for the cardinal and ordinal types of information.

3 Soft Computing in the Fuzzy Evaluation

If the researcher can use the membership function to express the degree of
persons’ feelings based on their own choices, the result presented will be
closer to the people’s real thinking. 3.1 shows how to compute sample mean
for fuzzy data

3.1 The Role of Fuzzy Weight

How to decide the weights, called fuzzy weights, becomes a primary work
before evaluating the intellectual capital. In this section we will demonstrate
an integrated design via appropriate questionnaires of field study to reach a
common agreement for weight of fuzzy factors for an object/event.

For example, to suppose that we are doing the sampling survey during an
election to period. If the questionnaire is designed to forecast the percentage
of popular ballot, then the factors to supporting the candidate are affected
by people’s judgment. Because the trend in voting intentions are crucial to
understanding actual voting behavior, it is important to measure the weight
of weight for forecasting the in preferable voting.

Therefore, a voter’s views on a variety of issues determine his view of
each candidate. Voters make choices by synthesizing a range of factors and
then determines how these are related to each candidate. However, different
factors affect a popular ballot with different degree. But each individual voter
emphasizes these trends differently. Accordingly, consider firstly, the fuzzy
weight by an individual.

Here, the calculating process of entity fuzzy weight is presented:
Step1: First, determine the factorsA = {A1, A2, ...., Ak} for the intellectual

capital
Step2: Ask each interviewee i to give the importance of factors set with an

membership mij

k∑
j=1

mij = 1. Let mij be the membership of importance of

factor j for the ith interviewee

Step3: Calculate the fuzzy weight wj of Aj by wj =

n∑
i=1

mij

k∑
j=1

n∑
i=1

mij

Example 3.1. Suppose there are five interviewees rank a certain event with
five factors for a discussion domain, Table 1 illustrates the result.
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Table 1 Memberships for five factors with five interviewees

sample 1 2 3 4 5

1 0.10 0.10 0.6 0.10 0.10

2 0.20 0.15 0.5 0.05 0.10
3 0.10 0.10 0.7 0.05 0.05

4 0.10 0.20 0.5 0.10 0.10

5 0.25 0.10 0.4 0.15 0.10
Sum of memberships 0.75 0.65 2.7 0.45 0.45

w 0.15 0.13 0.54 0.09 0.09

It shows that w1 =

5∑
i=1

mi1

5∑
k=1

5∑
i=1

mij

= 0.75
5 = 0.15,. . . ,w5 =

5∑
i=1

mi5

5∑
k=1

5∑
i=1

mij

= 0.45
5 =

0.09.

3.2 Distance among Fuzzy Data

Once such a transformation has been selected, instead of the original trape-
zoiddata, we have a new value y = f(x). In the ideal situation, this new
quantity y is normally distributed. (In practice, a normal distribution for
y may be a good first approximation.) When selecting the transformation,
we must take into account that, due to the possibility of a rescaling, the
numerical values of the quantity x is not uniquely determined.

Definition 3.1. Scaling for a interval fuzzy number on R

Let A = [a, b] be an interval fuzzy number on Uwith its center (a− b)/2.
Then the defuzzification number RA of A = [a, b] is defined as

RA = cx + (1 − ln(1 + ‖A‖
‖A‖ );

where, ‖A‖is the length of the interval.

However, there are few literatures and definitions appear on the measure-
ment system. In this section, a well-defined distance for interval data will be
presented.

Definition 3.2. Let Ai = [ai, bi] (i=1,2,. . . n) be a sequence of interval fuzzy
number on Uwith its center (a−b)/2. Then the distance between the trapezoid
fuzzy number Ai and Aj is defined as

d(Ai, Aj) = |cxi − cxj |+
∣∣∣∣
ln(1 + ‖Ai‖)

‖Ai‖
-
ln(1 + ‖Aj‖)

‖Aj‖

∣∣∣∣
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4 An Integrated Fuzzy Evaluation Process

Analysis by traditional methods usually involves the following weaknesses: (a)
the use of arithmetic in traditional questionnaires is often over-explanation.
(b) experimental data are often overused just to cater to the need for appar-
ent numerical accuracy. (c) for the sake of simplifying the evolutional model,
however, will neglect the relationship of actual condition and dynamic char-
acteristic. That is why we will prefer to apply fuzzy theory to handle the
questions that involve human opinion.

4.1 Discussion Domain and Weight of Factors

It is appropriate to apply the membership function, a more precise math-
ematical techniques, in analyzing the fuzzy information. The value of the
membership function, between 0 and 1, is derived from the characteristic
function, to express the membership grade of each element in a set.

There are many types of membership function, such as Z- type, Λ- type,
Π- type, S- type,and so on (Nguyen and Wu, 2006). In this research the Λ –
type membership functions is applied. It assesses the fuzzy interval of various
evaluations, and then calculates the fuzzy value of an enterprise according to
appraiser’s fuzzy weighting.

The researcher also uses the Λ- type to reflect the value of the intelligent
capital distribution. That is, we will give the value of intelligent capital into
different linguistic terms, such as, valueless, not too valuable, lightly valuable,
valuable, very valuable, extremely valuable, hugely valuable, invaluable. Each
term will be correspondent with a real value, which will be determined by
the sampling survey and fuzzy statistical analysis.

4.2 Intelligent Capital: Factors with Highly Co

Integrated Property

After a detailed discussion from the above sections, an integrated process
of fuzzy evaluation is shown following. The geometric average is used to
instead for the weighted arithmetic average. The reason is that the factors
are highly correlated, any extreme value of a certain factor will influence the
real intelligent capital. For instance in evaluating the intelligent capital of an
academic paper.

How to assess the value of a paper? According to an investigation on the
scholars, the conclusion is drawn as that the five key items to judge a paper’s
value are: (1)author’s academic background; (2)author’s position; (3)rank-
ing of journal he/she published; (4)structure and creative of the article, and
whether the (5) research meets applicative and academic needs. When apply-
ing these five elements into paper-value judgement, subjective opinions are
also involved. It makes a difference from the evaluative ratio, therefore we
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make a geometric average to get a more appropriate evaluation. That is, if
to suppose the factor sets is A = {Ai = [ai, bi], i = 1..., l}and which corre-
sponding to the with a weight set w = {w1, w2, ...., wl}, then the integrated
Intelligent Capital will be

IC = [

l∏

i=1

awi

i ,

l∏

i=1

bwi

i ] (1)

4.3 How Much Does the Author Lost

When we calculate the lost for intelligent capital compensation, we may take
two points into considerations: 1. Personal 2. Public. Form the personal point
of view we will consider how long does the author work to complete this piece,
how much does the median of author’s monthly income. From the public point
of view, the rank of the journal, the degree of similarity to the original work
and the time from the first publication of this work.

We will put these two parts of compensation by addition. While inside
these two factors, we would like to take it by the production. Since inside
the factors, the variables are highly co-integrated. Model (2) illustrates the
above description for Lost Evaluation (LE ).

LE = (M ·
√
W + R · T · e−Y) · S (2)

Where M=median of monthly income /salary in recent 10 years (U$ dol-
lar), 0≤M <∞

W=working months to complete the paper, 0≤T<∞.

R=the status of the journal that the paper published (R=1,2,. . . 10. 1=the
beginning rank,10=the highest rank, for example, top 10 journal of the field
will be ranked as 10, rank 6 to rank 8 will be the international journal such as
SSCI. SCI, EI, A&H, etc; rank 4 to rank 6 will be the international journal or
core journal for local area, rank 1 to rank 3 will be the local journal, refereed
conference or preprint report),

T= total spend on completing this work, Y=year from the first publication,
0≤Y<∞.

S= degree of similarity to the original paper, an interval data on the [0, 1].

To explain the equation (2), the following points are necessary and im-
portant: (1) We use the median of monthly income in recent 10 years to
evaluate the lost of intelligent capital. (2) We measure the working months
to complete the work by square root function (since intelligent action needs
kind of concentration working.) (3)We use the journal of rank to evaluate
the status/quality of this paper. (4) We use the fuzzy expense evaluation to
measure the total spend for completing the work. (5) We use the year with
exponential decay function to measure the creative value of this work. (6)We
use the degree of similarity to judge the ratio value of compensation.
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For example, if a person has the median of salary in recent ten years
is U$3,000. He worked 30 months to complete the paper. The rank of this
paper published in the field is rank 8. Total spend in completing this work is
U$5,000. The year from the first publication is one. The degree of similarity
to the original paper is 60%, hence according to the formula (2) we evaluate
the Lost Evaluation as:

LE = (3 ·
√

30 + 8 · 5 · e−1) · [.6, .7] = [18.7, 21.8]

4.4 Integrated Compensation Evaluation and Decision

Making.

Due to it is difficult to meet the common agreement of compensation for
the both sides, in order to minimize the gap, it is necessary to propose an
appropriate decision rule. Let LE=[a,b] and IC=[c,d] stand for the lost
evaluation and intelligent capital respectively, we set the compensation as

Compensation = [l, u], (3)

where l = min
√
ad,
√
bc and u = max

√
ad,
√
bc.

The reason for the researcher to choose geometric average with endpoints
cross production is to avoid people’s unusual estimation in the lost evaluation
as well as the intelligent capital. The advantage of this estimation is that
we can use this two evaluated interval to reach an appropriate (common
agreement) interval so that both sides of people would like to accept the
result. While most traditional evaluation methods are base on the real value
operation with the mean (arithmetic average) functions.

5 A Case Study about the Academic Paper

In 2010, from the news of web, there is a PhD candidate, works as a teacher,
was founded plagiarism for 30% of the article he submitted. The author, his
professor, has found it out and made his lawyer sending legal confirm letter
to him. Taking his career future into consideration, the candidate thus took
initiative move: providing U$5000 dollars as compensation, signing recogni-
zance for confession and promising never to make the mistake again. Later,
the PhD candidate and his professor reach a peacemaking result without
further prosecution.

The case mentioned above is studied as an example to discuss the rational-
ity of intellectual property compensation. This case has revealed two layers
of the issue: plagiarism and compensation. The former is easy to identify:
a published journal article is plagiarized. But how to decide the property
value to the holder? There’s no fair means for calculating, so as the difficulty
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to estimate the loss; consequentially rationality of compensation is hard to
reach.

Firstly, we interviewed 20 experts in the academic field, including univer-
sity professors, associate professors, assistant professors, lecturers and gradu-
ated students, to rating the indicators for valuating articles. Five items stand
out after the analysis: author’s academic background, author’s position, rank-
ing of journal he/she published, structure of the article, research method and
whether the research meets applicative and academic needs. Table 2 illustrate
the weight for five intelligent capital factors.

Table 2 The weights of intelligent capital factors for an academic paper

Education Position Ranking Structure App. and
Background Position of Journals and Method Technicality

Professor 0.2 0.2 0.3 0.1 0.2

Associate Prof 0.1 0.2 0.3 0.1 0.3

Assistant Prof 0.1 0.1 0.3 0.1 0.4
Lecturer 0.1 0.1 0.2 0.2 0.4

Grad. Student 0.2 0.2 0.2 0.1 0.3

Table 2 shows the fuzzy statistics for the Intelligent Capital value From
Table 2 we can find that the fuzzy mode and fuzzy mean of the capital
intelligent for four levels. Suppose the factors in the discussion domain in-
clude :A1 =Educational Background, A2= Position, A3= Ranking of Jour-
nals, A4= Structure and Method, A5= App. and Technicality. For instance,
the weight for the professor level is w1 = 0.2, w2 = 0.2, w3 = 0.3, w4 =
0.1, w5 = 0.2. For the reason of comparison, by the equation (1), we com-
pute the value of intellectual capital for the professor level as well as for the
graduate student’s level:

IC =[150.2 · 130.2 · 110.3 · 120.1 · 160.2, 350.2 · 250.2 · 270.3 · 210.1 · 280.2= [13,28]

IC =[120.2 · 80.2 · 110.2 · 120.1 · 130.3, 190.2 · 150.2 · 190.2 · 160.1 · 170.3]= [11,17]

Secondly, we calculate the author’s lost by model (2) from his background
to reach a reasonable compensation. For comparison, we illustrate it as a
professorship and a graduate student.

LE (professor)= (3 ·
√

30 + 8 · 5 · e−1)·[.6, .7] = [18.7, 21.8]

LE(graduated student)= (1 ·
√

30 + 8 · 5 · e−1)·[.6, .7] = [6.2, 7.2]

Table 3 illustrates the LE, IC and the common agreement of the evaluate
value for this case.
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Table 3 Intelligent Capital Evaluation for an academic paper Unit = U$ dollar
(thousand)

Factors Education Position Ranking Structure Appl. and Intelligent
Background of and Technicality capital

Journals Method
Professor Fuzzy Mode [10,30] [10,30] [10,30] [10,30] [10,30] [10,30]

Fuzzy mean [15,35] [13,25] [11,27] [12,21] [16,28] [13,28]

Associate Fuzzy Mode [10,30] [10,20] [10,30] [10,20] [10,20] [10,24]
Professor Fuzzy mean [17,30] [12,26] [14,25] [11,18] [13,22] [13,24]

Assistant
Fuzzy Mode [10,20] [10,20] [10,20] [10,20] [10,20] [10,20]

Prof. Fuzzy mean [12,22] [13,23] [13,23] [11,21] [11,19] [12,21]

Lecturer
Fuzzy Mode [10,20] [5,20] [10,20] [10,20] [10,15] [9,17]
Fuzzy mean [11,19] [8,17] [12,20] [11,18] [10,18] [11,18]

Grad.
Fuzzy Mode [10,20] [10,15] [10,30] [10,20] [10,15] [10,20]

student Fuzzy mean [12,19] [8,15] [11,19] [12,16] [13,17] [11,17]

Table 4 The LE, IC as well and the common agreement of the evaluate value

Evaluated value (Professor) Evaluated value (Graduate Student)

LE [19, 22] [6, 7]

IC [13, 28] [11,17]
Compensation [17,23] [9,12]

6 Conclusions

Intellectual capital is a wide-ranging and complex area, and its evaluation
includes much dispute. The advantage of the fuzzy statistical analyzing tech-
niques proposed in this article, lies in its method to handle human thought
and recognition, improving the vague measurement. The presented integrated
procedure differs from the traditional assessment method, and establishes the
membership grade of evaluator’s weight to better capture real values.

Moreover, if we survey an intelligent capital object. No matter how care-
fully we read the measuring process, we can never be certain of the exact
value, but we can answer with more confident that the appropriate area lies
within certain bounds. The fact is that intervals can be considered as a num-
ber or a according to the underlying applications. Though interval analysis
and fuzzy set theory being as areas of active research in mathematics, numer-
ical analysis and computer science began in the late 1950s and early 1960s.
The application to statistical evaluations is just beginning.

Human mind is full of uncertainty. It’s easier to catch the truth by apply-
ing fuzzy statistics rather than tradition ones. This research, applying fuzzy
statistic on valuating articles and IPR compensation, hopes to understand
better what contribute to article values and the rationality of compensation.
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This paper also finds that (1) traditional methods use all equally weights
for every assessment factor, but in reality, factors are variously important.
This text proposes fuzzy weighting in accordance with real conditions. (2)
This research provides a method for evaluating intellectual capital, using a
Λ- type membership function to establish the value interval, according to the
above weights and to determine a membership grade to calculate fuzzy value
and rank.

The future development of this research will be: (1) to apply the soft
computing technique to get the more appropriate evaluation (2) intellectual
capital, wide ranging, complex expand the assessment of factors to include
the type of enterprise, increasing the objectivity of the evaluation, and (3)
using of the fuzzy regression methods, according to sub assessment factors,
to determine the appropriate value of intellectual capital.
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Geometric Weighting Method and Its
Application on Load Dispatch in
Electric Power Market

Guoli Zhang and Chen Qiao

Abstract. The paper gives geometric weighting method(GWM), which can
change the multi-objective programming into a single objective program-
ming, prove that the optimal solution of the single objective programming is
non-inferior solution of original multi-objective programming. We take three
objective load dispatch problem as an example, and use the geometric weight-
ing method to solve the load dispatch problem. Simulation results show that
the geometric weighting method is feasible and effective.

Keywords: Multi-objective programming, Geometric weighting method,
Electric power market, Load dispatch.

1 Introduction

A multi-objective optimization problem can be stated as follows:

{
min f(x) = (f1(x), f2(x), · · · , fK(x))

s.t. x ∈ X
(1)

Where, X = {x = (x1, x2, · · · , xn)T ∈ Rn|hi(x) = 0, i = 1, 2, · · · , p; gj(x) ≤
0, j = 1, 2, · · · , q} is the constraint set, f(x) = (f1(x), f2(x), · · · , fK(x)) is
a K(K ≥ 2) dimensional objective function. Any or all of the functions
fk(x), hi(x) and gj(x) may be nonlinear. The multi-objective optimization
problem is also known as a vector minimization problem. The multi-objective
programming generally has no absolute optimal solution, so how to get its
non-inferior solutions is very important issue. Several methods have been
developed for solving a multi-objective optimization problem. The traditional
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methods have main utility (evaluation) function method, constraint method,
interactive method, layered sequence method and goal programming method
etc. In recent years, some new method such as fuzzy method [5], genetic
algorithms, particle swarm optimization [11] [10] etc. have been proposed to
solve the multi-objective optimization problem.

Economic dispatch (ED) is very important in power systems, with the ba-
sic objective of scheduling the committed generating unit outputs to meet
the load demand at minimum operating cost, while satisfying all units and
system constraints. Different models and techniques have been proposed in
the literature [12] [6] [2] [9]. As more and more attention fixes on environ-
mental protection, economic dispatch problem is no longer a pure problem of
minimization of fuel consumption (operating costs), how to reduce the emis-
sions of pollutants must be taken into consideration. In addition, in electric
market environment, the expense of purchasing electricity is also should con-
sider. Some new models and solving algorithms have been proposed to solve
load dispatch problem in electric power market [7] [1] [4] [3].

The rest of this paper is organized as follows: Section 2 gives geometric
weighting method which change multi-objective programming into a single
objective programming, proves that the optimal solution of the single ob-
jective programming is the non-inferior solution of original multi-objective
programming. Section 3 introduces a load dispatch model which has three
objective functions, and uses geometric weighting method to solve the three
objective load dispatch problem. The conclusion is drawn in section 4.

2 Geometric Weighting Method

Evaluation function method is one of effective methods for solving multi-
objective programming problem, through evaluation function u(f(x)), the
optimization problem (1) becomes a single objective optimization problem
as follows: {

min u(f(x))

s.t. x ∈ X
(2)

Where u : RK → R is evaluation function. The evaluation function takes
commonly linear weighting function, maximum function, distance function
etc.

As we all known, if the relative important degrees of the objective functions
are known, the linear weighting method is commonly used to solve multi-
objective optimization problem. Gives weight vector (w1, w2, · · · , wK)T , lin-
ear weighting method takes evaluation function as follows:

u(f(x)) =
∑K

k=1 wkfk(x) (3)

The original multi-objective optimization problem (1) can be changed into
the following single objective optimization problem (4):
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⎧
⎨
⎩

min
∑K

k=1 wkfk(x)

s.t. x ∈ X
(4)

Specifically, when wk = 1/K(k = 1, 2, · · · ,K) the evaluation function is:

(1/K)× f1(x) + (1/K)× f2(x) + · · ·+ (1/K)× fK(x) (5)

That is the arithmetic mean for f1(x), f2(x), · · · , fK(x), similarly the geomet-
ric mean for the objective functions f1(x), f2(x), · · · , fK(x) can be described
by the formula (6):

f1(x)1/K × f2(x)1/K × · · · × fm(x)1/K (6)

In general, the important degrees of the objective functions are different,
so the evaluation function is taken as the following form:

u(f(x)) =
∏K

k=1 fk(x)wk (7)

and the multi-objective optimization problem (1) is formulated as:

⎧
⎨
⎩

min
∏K

k=1 fk(x)wk

s.t. x ∈ X
(8)

Where, wk(k = 1, 2, · · · ,K) is weight such that wk ≥ 0 ,
∑K

k=1 wk = 1.
The problem (8) is a single objective optimization problem.

Lemma 1. Let X ⊆ Rn, f : X → RK , u : RK → R1, if u(y) is strict
increase function, x∗ is one optimal solution of the problem (8), then x∗ is
one non-inferior solution of the problem (1).

Theorem 1. Let X ⊆ Rn, f : X → RK , f(x) > 0 (∀x ∈ X), w =
(w1, w2, · · · , wK) > 0 is constant vector, if x∗ is one optimal solution of
the problem (8), then x∗ is one non-inferior solution the problem (1).

Proof. ∀f ′

, f
′′ ∈ RK , assume ∀f ′ ≤ f

′′

, denote f
′

= (f
′

1, f
′

2, · · · , f
′

K), f
′′

=

(f
′′

1 , f
′′

2 , · · · , f
′′

K), then f
′

k ≤ f
′′

k (k = 1, 2, · · · ,K), and there exist at least one

k0 ∈ {1, 2, · · · ,K} such that f
′

k0
< f

′′

k0
.

Because f(x) > 0, w > 0, hence f
′wk

k ≤ f
′′wk

k (k = 1, 2, · · · ,K) and f
′wk0

k0
<

f
′′wk0

k0
.

Therefore we have ∏K
k=1 f

′wk

k <
∏K

k=1 f
′′wk

k
(9)

That is u(f
′

) =
∏K

k=1 f
′wk

k <
∏K

k=1 f
′′wk

k = u(f
′′

), in other words, u(f(x))
is strict increase function. According to the lemma 1, x∗ is one non-inferior
solution of the problem (1). ✷
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3 Application of GWM on Load Dispatch in Electric
Power Market

3.1 The Load Dispatch Model

In electric market environment, load dispatch problem is no longer a pure
economic dispatch problem which minimizes only fuel consumption or op-
erating costs. The reference [8] established multi-objective a load dispatch
model which includes three objective functions, they are fuel consumption,
harmful gas emissions and power purchase cost functions respectively. The
multi-objective load dispatch model given in reference [8] can be described
as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

minF = {f1(PGr ), f2(PGr ), f3(PGr )}
∑M

r=1 PGr (t)− Pd(t)− Prc(t) = 0

PGrmin ≤ PGr ≤ PGrmax

(10)

Where,

f1(PGr ) =
∑T

t=1

∑M
r=1[arP

2
Gr

(t) + brPGr(t) + cr] (11)

f2(PGr ) =
∑T

t=1

∑M
r=1[αrP 2

Gr
(t) + βrPGr (t) + γr] (12)

f3(PGr ) =
∑T

t=1

∑M
r=1 PGr(t)ρGr (t)] (13)

Where, T is the number of time intervals per dispatch cycle, (usually taken
24, 48, 96), M represents the number of committed units, f1(PGr ) is the
fuel consumption of power generation, ar, br, cr are the constant coefficients;
f2(PGr ) is the function of the emission of harmful gases, αr, βr, γr are the
constant coefficients; f3(PGr ) is function of the purchase cost; PGr(t) is the
output power of the r-th unit in the t-th time interval; Pd(t) and Prc(t) are
active load and active network loss in the t-th time interval respectively;
PGrmax , PGrmin are the maximum and minimum output power of the r-th
unit respectively; ρGr(t) is the bid of the r-th unit in the t-th time interval.

3.2 Simulation Experiment

First, by the geometric weighting method, the load dispatch problem (10)
becomes: ⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

minF = f1(PGr )w1 × f2(PGr )w2 × f3(PGr )w3

∑M
r=1 PGr (t)− Pd(t)− Prc(t) = 0

PGrmin ≤ PGr ≤ PGrmax

(14)
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Table 1 Unit parameters

Unit
No.

Coefficient of Fuel
Consumption(t/h)

Coefficient of
Nitrogen Oxides
Emission(10−7t/h)

Output
Constraints
(MW)

Bid(RMB
/(Kwh))

ar br cr αr βr γr PGrminPGrmax

1 0.000175 0.11 3.0 6.490 -5.554 4.091 310 570 0.27
2 0.000230 0.15 5.0 5.638 -6.047 2.543 250 425 0.20
3 0.000116 0.07 7.0 4.586 -5.094 4.257 350 700 0.25
4 0.000150 0.13 3.0 3.380 -3.550 5.326 300 610 0.23
5 0.000120 0.12 5.0 4.586 -5.904 4.258 325 660 0.27

Table 2 Objective function values for different weights

Weight(w1, w2, w3) Total Fuel
Consumption f1

Total
Emissions f2

Power Purchase
Costs f3

1 0 0 9.7937e+003 12.2672 1.3082e+007
0 1 0 1.0198e+004 11.0580 1.2891e+007
0 0 1 1.0413e+004 11.4211 1.2701e+007
0.3 0.1 0.6 1.0079e+004 11.2780 1.2825e+007
0.7 0.2 0.1 9.8795e+003 11.5387 1.2985e+007
0.4 0.3 0.4 1.0077e+004 11.1599 1.2869e+007
0.4 0.5 0.1 1.0100e+004 11.1256 1.2881e+007
0.2 0.7 0.1 1.0197e+004 11.0711 1.2846e+007
0.2 0.6 0.2 1.0206e+004 11.0687 1.2840e+007

This is a single objective nonlinear optimization problem, which can be solved
by using classical single objective optimization methods.

Then consider the five power plants the system, each competitor as a single
business unit. To simplify the calculation, T takes 24, uses the same bid in
each time intervals, neglects network losses, unit parameters shown in Table 1
come from literature [8].

Simulation program is realized by matlab, the results are shown from Table
2 to Table 5.

It can be seen that each objective function value how to change as weights
changing from table 2 to table 5, it show also that multi-objective load dis-
patch model is suitable for power market, application still need to determine
the weights.
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Table 3 Active power outputs for w = (0.3, 0.1, 0.6)

t Load Unit 1 Unit 2 Unit 3 Unit4 Unit 5

0 1880.80 310.0000 311.2572 493.0673 439.7836 326.6920
1 2012.01 310.0000 334.2215 529.2445 476.2384 362.3056
2 1852.12 310.0000 304.7820 482.8498 429.4881 325.0000
3 1786.95 310.0000 289.1142 458.1920 404.6438 325.0000
4 1810.95 310.0000 294.8788 467.2748 413.7964 325.0000
5 1873.01 310.0000 309.8063 490.7528 437.4509 325.0000
6 1849.90 310.0000 304.2362 482.0154 428.6484 325.0000
7 1898.98 310.0000 314.4389 498.0796 444.8352 331.6263
8 2011.98 310.0000 334.2166 529.2362 476.2299 362.2973
9 2055.99 310.0000 341.9189 541.3706 488.4574 374.2431
10 2366.64 329.3979 392.8826 621.6786 569.3833 453.2975
11 2231.75 310.0000 372.6878 589.8281 537.2853 421.9488
12 2195.77 310.0000 366.3838 579.9104 527.2929 412.1829
13 2272.76 314.4921 379.0714 599.8998 547.4340 431.8628
14 2302.72 319.2338 383.4911 606.8513 554.4415 438.7022
15 2302.72 319.2337 383.4905 606.8516 554.4416 438.7026
16 2260.72 312.5504 377.3056 597.1148 544.6280 429.1212
17 2298.72 318.5922 382.9432 605.9115 553.4920 437.7810
18 2693.79 401.7084 425.0000 700.0000 610.0000 557.0816
19 2723.50 413.9052 425.0000 700.0000 610.0000 574.5948
20 2699.50 404.0523 425.0000 700.0000 610.0000 560.4477
21 2576.55 364.6276 425.0000 673.0534 610.0000 503.8690
22 2446.66 342.1237 404.6596 640.2334 588.0804 471.5628
23 2190.94 310.0000 365.5376 578.5791 525.9515 410.8718

a t represents the t-th time interval.

Table 4 The objective function values corresponding to optimal dispatch for
w = (0.3, 0.1, 0.6)

t f1 f2 f3 s t f1 f2 f3 s

0 343.7985 0.3419 4.5858e+005 1.2916e+004 12 419.4567 0.4631 5.3452e+005 1.5494e+004
1 374.4413 0.3897 4.9021e+005 1.3974e+004 13 438.8754 0.4959 5.5321e+005 1.6143e+004
2 337.0216 0.3315 4.5190e+005 1.2687e+004 14 446.4251 0.5090 5.6058e+005 1.6398e+004
3 321.7753 0.3087 4.3689e+005 1.2174e+004 15 446.4250 0.5090 5.6058e+005 1.6398e+004
4 327.3386 0.3169 4.4242e+005 1.2362e+004 16 435.8583 0.4908 5.5026e+005 1.6041e+004
5 342.0019 0.3391 4.5671e+005 1.2854e+004 17 445.4175 0.5072 5.5959e+005 1.6363e+004
6 336.4942 0.3307 4.5139e+005 1.2670e+004 18 545.7669 0.6980 6.5917e+005 1.9810e+004
7 347.9697 0.3483 4.6296e+005 1.3061e+004 19 553.3294 0.7136 6.6719e+005 2.0081e+004
8 374.4342 0.3897 4.9021e+005 1.3974e+004 20 547.2106 0.7010 6.6072e+005 1.9862e+004
9 384.9919 0.4065 5.0082e+005 1.4333e+004 21 517.3768 0.6368 6.2806e+005 1.8765e+004
10462.7085 0.5373 5.7628e+005 1.6943e+004 22 483.4414 0.5739 5.9594e+005 1.7632e+004
11428.5580 0.4783 5.4320e+005 1.5796e+004 23 418.2421 0.4611 5.3336e+005 1.5453e+004

b f1 represents the fuel consumption.
c f2 represents the Emissions.
d f3 represents the Power Purchase Costs.
e s represents the fw1

1 × fw2
2 × fw3

3 .



Geometric Weighting Method and Its Application on Load Dispatch 585

Table 5 The objective function values corresponding to optimal dispatch for
w = (0.7, 0.2, 0.1)

t f1 f2 f3 s t f1 f2 f3 s

0 336.5777 0.3497 4.6416e+005175.5358 12 409.7109 0.4759 5.4244e+005217.6069
1 365.8914 0.4010 4.9722e+005192.5885 13 428.6827 0.5092 5.6138e+005228.4539
2 330.3431 0.3391 4.5699e+005171.9222 14 436.1619 0.5224 5.6874e+005232.7263
3 316.4379 0.3159 4.4070e+005163.8801 15 436.1620 0.5224 5.6874e+005232.7263
4 321.5162 0.3243 4.4670e+005166.8142 16 425.6928 0.5039 5.5841e+005226.7418
5 334.8772 0.3468 4.6221e+005174.5499 17 435.1604 0.5206 5.6776e+005232.1517
6 329.8635 0.3383 4.5643e+005171.6453 18 539.9436 0.7071 6.6479e+005291.6141
7 340.5656 0.3565 4.6871e+005177.8455 19 548.5038 0.7216 6.7206e+005296.3643
8 365.8855 0.4009 4.9721e+005192.5763 20 541.5830 0.7099 6.6619e+005292.5262
9 376.7662 0.4167 5.0728e+005198.4905 21 507.0145 0.6516 6.3609e+005273.3143
10 452.2984 0.5513 5.8447e+005241.9643 22 472.8450 0.5885 6.0415e+005253.7271
11 418.5331 0.4913 5.5129e+005222.6477 23 408.5325 0.4738 5.4125e+005216.9289

4 Conclusions

Geometric weighting method can obtain the non-inferior solutions of multi-
objective optimization problem. This method can be used to solve the actual
problem.

In electric market environment, load dispatch problem is no longer a pure
economic dispatch problem which minimizes only fuel consumption or oper-
ating costs, it is necessary to build the multi-objective load dispatch mode.
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Application of Cross-Correlation in
Velocity Measurement of Rainwater in
Pipe

Zhanpeng Li and Bin Fang

Abstract. According to the diversity of fluid composition and the complex-
ity of flow pattern of rainwater in the pipeline, a flow velocity measurement
method based on cross-correlation analysis is proposed, reference flow filed
measurement technique in Particle Image Velocimetry. The fast algorithm
of cross-correlation analysis is studied. Established a pipeline rainwater cal-
ibration device using weir slot. The results show that extracting an average
speed from the velocity field can smooth the flow variability and accurately
measure the average velocity of rainwater.

Keywords: Cross-correlation, Flow measurement, Rainwater.

1 Introduction

As the rapid development of urbanization, there is a significant increase in
impervious area, and cities face increasing pressure on storm and flood. By
monitoring the rainwater flow in the pipe network, we can predict the region
where seeper may occur. Due to the rotary mechanical structure, traditional
propeller flow meter is easily winded or even damaged by the impurities in
the pipe. On the other hand, current ultrasonic flow meters are too expensive
to install widely.

Unlike existing methods, we use the solid particles as tracer particles of the
rainwater, combining with image processing technology, firstly measure the
distribution of two-dimensional flow field by cross-correlation technique, then
obtain the average flow rate by data analysis method. Experimental results
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show that this method is suitable for the complex rainwater flow composition,
which can measure rainwater flow accurately.

2 Principle of Cross-Correlation and Rapid Realization

2.1 Cross-Correlation Analysis

Cross-correlation analysis method is a new detection method based on in-
formation theory and random process theory. Recent years, with the rapid
development of computer technology and signal (image) processing technol-
ogy, cross-correlation has been successfully applied to many engineering fields,
such as image matching, flow measurement and modal analysis and so on.

The flow field image at time t1 is represented as p(x, y) = I(x, y)+n1(x, y).
The relative displacement of the internal flow field is not intense when the
time interval ∆t is small enough. So, flow field at t2 (t2 = t1 + ∆t) time can be
represented as q(x, y) = I(x+∆x, y+∆y)+n2(x, y), where n1(x, y), t2(x, y) is
random noise in the imaging system. p(x, y) and q(x, y) calculated the cross-
correlation function rpq(τx, τy), assuming the noise n1(x, y) and n2(x, y) is
not relevant to image signal I(x, y), that their cross-correlation function is 0.
We can get the following formula [5]:

rpq(τx, τy) =

∫∫
p(x, y)q(x + τx, y + τy)dxdy

=

∫∫
I(x, y)I(x + ∆x + τx, y + ∆y + τy)dxdy (1)

According to the definition of auto-correlation function, the auto-correlation
function of I(x, y) is:

rII =

∫∫
I(x, y)I(x + τx, y + τy)dxdy (2)

Thus, equation (1) can be transformed into:

rpq = rII(τx + ∆x, τy + ∆y) (3)

Auto-correlation function is an even function and obtain the maximum value
at the origin, that satisfies the inequality rII(τx, τy) ≦ rII(0, 0). With formula
(3), the following inequality holds:

rpq � rpq(−∆x,−∆y) (4)

The location of maximum of cross-correlation function corresponds to the
relative displacement between the flow field (cross-correlation peaks is showed
in Figure 1), that is the average displacement of tracer particles in the time
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between t1 and t2. The interval time of the image collection can be deter-
mined, that ∆t is known. Average speed of tracer particles in ∆t can be
calculated using basic definition of speed. The speed of tracer particles can
approximated represent the speed of water.

Fig. 1 Cross-correlation
peak

In actual analysis process, the pair of two images need to be meshed, and
calculate the cross-correlation function of each grid pair. Use the maximum
location of cross-correlation to determine average relative displacement of
the grid. Then further calculate the average speed. Scan the whole image
and obtain two-dimensional velocity vector distribution.

2.2 Fast Implementation of Cross-Correlation

Analysis

In order to improve the efficiency of cross-correlation analysis and reduce
the computing time, two-dimensional fast Fourier transform can be used
to achieve cross-correlation. Suppose two-dimensional Fourier transform of
p(x, y), q(x, y) and rpq(τx, τy) respectively is P (u, v), Q(u, v) and R(u, v).
Following equation holds:

⎧
⎨
⎩

P (u, v) =
∫∫

p(x, y)e−i(ux+vy)dxdy
Q(u, v) =

∫∫
p(x, y)e−i(ux+vy)dxdy

R(u, v) =
∫∫

rpq(x, y)e
−i(ux+vy)dxdy

(5)

The corresponding frequency domain expression is [2]:

R(u, v) = P ∗(u, v) ·Q(u, v), (6)

where P ∗(u, v) is the conjugate function of P (u, v).

Using cross-correlation properties of Fourier transform and fast Fourier
transform algorithm, we can only calculate twice Fourier transform and one
inverse Fourier transform to achieve the calculation of cross-correlation func-
tion rpq(τx, τy). It avoids complex integral operation and greatly improves
the computing speed.
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3 Image Preprocessing and Data Post-Processing

3.1 Weighting Function

Since particles may run out of or into the cross-correlation analysis regional,
a mutation will occur around the edges of analysis region. Before conduct-
ing cross-correlation analysis, flow field images need to add cosine weighting
function shown in Figure 2 to reduce the weight of region edge.

Fig. 2 Cosine weighting
function

3.2 Sub-Pixel Fit

In order to get sub-pixel precision, cross-correlation results must make sub-
pixel interpolation [3]. Commonly used sub-pixel precision method are cen-
troid method, parabolic fit, Gaussian fit and Whittaker reconstruction. They
have different accuracy in different situations. For the characteristics of par-
ticle image is similar to a Gaussian distribution, Gaussian curve fitting for
sub-pixel interpolation can achieve good results.

3.3 Vector Correction

Related to camera image quality, flow instability, the tracer particle (i.e. im-
purities in the water) too much or too little and other factors, false velocity
vector will inevitably be generated in the analysis process [4]. For the muta-
tion between error vector and other vectors around is greatly, using median
filter or low pass filter can effectively remove the error vector. Calculate the
average of velocity vector field can obtain the average speed of water flow.

3.4 Feasibility Analysis of Algorithms

Figure 3 is an image (pixel size is 640×480) of flow filed captured by generic
USB camera, bright part of which is the image of solid particles in water. Shift
it to the upper right corner of 4 pixels by image processing software. Make
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cross-correlation analysis between the two images. Figure 4 is the distribution
of displacement vector. The average of horizontal displacement is 4.02 and
standard deviation is 0.04. The average of vertical displacement is 4.01 and
standard deviation is 0.04. The result shows that this method can correctly
reflect the displacement of flow field.

Fig. 3 Flow image
Fig. 4 Distribution of displacement
vector

4 Cross-Correlation Analysis Software Design

After verification of the cross-correlation algorithm by using Matlab, we de-
velop cross-correlation analysis software using MFC in Visual Studio 2008.

Use DirectShow technology to collect the images of flow field which cap-
tured by USB camera. DirectShow can be easily used to capture image data
form video capture device which support WDM driver model (such as general
USB camera), and do corresponding post-processing. DirectShow is based on
COM component object mode, composed of many modular components. De-
velopers just need to write applications follow the COM interfaces without
regard to the difference of terminal hardware and configuration of hardware,
greatly simplifying the program development process [6].

5 Experimental Device

In order to simulate the components of urban rain pipeline, you need to add
appropriate amount of impurities into the water (such as solid particulate
matter, organic matter, etc.). To be able to recycle the rain mixed with
impurities - we formed a circulating water channel to simulate the flow of
rainwater in pipe by using the plexiglass plate, shown in Figure 5.

Pump pumps the ’rain’ to interval 2 from interval 1 continuously, and the
’rain’ clockwise flow in the tank. Blocked by the triangular weir, the water
level difference formed on both sides of triangular weir. The relationship
between water level of right-angle triangle weir and flow rate is [1]:

Q = 1.4h5/2 (7)



592 Z. Li and B. Fang

Flow can be calculated by measuring the height of water head on the left of
the triangular weir. Although many measurements can measure flow, such as
Venturi flow meter, electromagnetic flow meter, etc, but usually still use the
thin-walled rectangular or triangular weir, because of its high measurement
accuracy. Normally, technician use a triangular weir with high accuracy to
measure small flows. When θ = 90◦, the measurement range of triangular
weir is 0.001∼1.8m3/s, the uncertainty of calculated flow rate ranges from 1
to 3%, meeting experimental requirements.

Because of the incompressibility of water, the ’rain’ flows through both
sides of the channel have the same flow in recycling process. Combined with
cross-sectional area of the flow, we can easily calculate the velocity of the
’rain’ in measurement section; compare with the velocity obtained by cross-
correlation analysis, you can confirm whether the method is valid.

The installation of the sink holes in the rectifier board can reduce the level
fluctuation and the measurement error.

Fig. 5 Distribution of absolute error

6 Experimental Results Analysis

Green light laser slices perpendicular light the area of the flow field, and
parallel to the direction of the flow; USB camera collected the image from
the side of the flow field which be illuminated; finally, the velocity vector
distribution can be got by using the cross-correlation analysis (Figure 6).
The left is the real-time video information the camera shot, the right is an
image collected, and the white arrow means the velocity vector distributions.

Before carrying on the actual survey, needs to identify the actual size of
each single pixel in the image. Put the grid coordinates with actual size the
sign (the unit: mm) in water, and photographs an image. Then, use the mouse
to click on the corresponding coordinates of the points in order in the pro-
gram interface, and the camera pats between image picture element and real
displacement’s proportional relationship has been identified. Figure 7(a) is
the actual photographic analyzing result of the flow field mutual correlation.
After Figure 7(b) is the result after the vector revising. Calculation of mean
can obtain average value.
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Fig. 6 Distribution of absolute error

Fig. 7 Distribution of absolute error

Fig. 8 Distribution of
relative error

Table 1 Measurement error under different flow velocity

1 2 3 4 5

Measurements(mm/s) 13.36 20.89 36.62 39.37 44.51
Cross-correlation
(mm/s)

13.83 20.08 38.11 38.21 42.15

Relative error (%) 3.52 3.88 4.07 2.95 5.30

Make the flow velocity calculated from the weir the flow tank as a reference,
when the flow velocity in the measurement section is 13.36mm/s, the absolute
error distribution between the measured value and the reference values shown
in Figure 8, the average velocity measured is 13.83mm/s, the relative error
is 3.5%, which can meet the requirements of general measurement.
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7 Conclusions

This paper investigates a pipeline rainwater velocity measurement method
based on cross-correlation analysis technology, expounds the principle of the
method and system design scheme. The fast algorithm based on FFT effec-
tively improved the calculation speed. Based on the MATLAB simulation,
used a velocity calibration device to validate this method. Experimental re-
sults showed the accuracy and feasibility of the method. With no mechanical
movement structure and low-costs, this measurement system can be used in
piping conditions. The method of extracting average velocity from velocity
field can be applied to other occasions where are difficult to measuring using
traditional methods because of complex flow characteristics.
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A Decision-Making Model of Adopting
New Technology by Enterprises in
Industrial Clusters under the
Condition of Interaction

Xianli Meng, Xin-an Fan, Baomin Hu, and Xuan Li

Abstract. Adopting new technology by enterprises, i.e. technology diffusion,
in industrial clusters is an important issue for the development of industrial
clusters. Technology diffusion in country industrial clusters is a complicated
process and has specific characteristics. As most country industrial clusters
are composed of small and medium sized enterprises which situate close to
each other, technology diffusion within these industrial clusters is usually
carried out through the informal relationships between them. In this paper,
the technology diffusion process within country industrial clusters is analyzed
based on the herd behavior in the behavior finance theory. A decision-making
model of adapting new technologies by enterprises in country industrial clus-
ters under the condition of interaction is proposed.

Keywords: Decision-making model, Herd behavior theory, Industrial
Clusters, Technology Diffusion.

1 Introduction

Industrial clusters have great strengths in providing competitiveness and cre-
ativity [1, 2, 3, 4]. One important issue of the emergence and development of
industrial clusters is that, with the help of the technology-spreading network
established within the clusters, enterprises within a cluster can adopt essen-
tial production technologies to develop themselves more conveniently and
collectively. The evolution of industrial clusters can be viewed as a process of
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enterprises adopting new technologies, that is, a process of technology diffu-
sion [5,6]. Therefore, the technology diffusion in industrial clusters is vital for
the development of industrial clusters. However, the technology diffusion pro-
cess is a complicated process. For enterprises within the industrial clusters,
a decision-making model of adopting new technologies is needed.

Country industrial clusters are a kind of specific clusters. They compete
and cooperate with each other. Their geographical proximity and complex
informal relationship doomed that their emergence, development and the
technology diffusion within them have some specific characteristics. Technol-
ogy diffusion in country industrial clusters is a complicated process. Because
most country industrial clusters are composed of small and medium sized en-
terprises which situate close to each other, technology diffusion within these
industrial clusters is usually carried out through the informal relationships
between them [7], which makes the decision-making problem during the tech-
nology diffusion process complex. The technology diffusion process within
country industrial clusters meets the assumption of the herd behavior the-
ory in behavioral finance, and the problem is similar to the herd behavior
theory of investors in capital market. In the light of the information stacking
discipline in the herd behavior theory, this paper is trying to build a decision-
making model for country industrial clusters to adopt new technologies.

The rest of this paper is organized as follows. Section 2 presents basic
assumptions of the country technology diffusion model based on the herd
behavior theory. The decision-making model of adapting new technology by
enterprises in country industrial clusters under the condition of interaction
is proposed in Section 3. The model is discussed in Section 4.

2 The Basic Assumptions

In view of the overstrict assumption in traditional financial theory, the herd
behavior is generated. It relaxes these assumptions, rationally takes people’s
psychological factors into consideration and makes the research more in line
with the actual situation of the capital market. However, the construction
of these theories is based on a series of assumptions. Therefore, the country
technology diffusion model based on herd behavior theory is also built on the
basis of these assumptions. Specifically speaking, it includes:

(1) Information is visible. This assumption is easily embodied in real life.
In the county industrial clusters, all enterprises are concentrated in the same
county and are familiar with each other. The complex relationship between
staff members in different enterprises and the petticoat influence result that
the information transmission between enterprises carries out more through
informal relationships. This also increases the visibility of information.

(2) Decision-making is carried out in turns. Generally speaking, technology
diffusion starts in one single enterprise but followed by other enterprises in the
same country. This is in line with the order assumption of decision-making.
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(3) All investors are seeking the maximum of the VNM utility function
(anticipated utility function, put forward by Von Neumann and Morgenstern
in 1944, takes the weighted average of anticipated utility by investors on
uncertain conditions as the judgment standard of investment, instead of the
anticipated value of currency result). It is the basic assumption of behavioral
finance theory.

3 The Model Building

This model assumes the existence of the N investors. We assume an equal
amount of investment from each investor. Suppose there are a series of in-
vestment, each is represented by numerical figure between [0, 1] and a(i)
represents the ith project. The return of project a(i) is z(i) ∈ R. Suppose the
existence of i∗ is unique, any i �= i∗ ensures z(i) = 0 and z(i∗) = z, z ≻ 0. This
indicates that the return of investing in certain project is strictly much more
than that of investing on other projects. Investors don’t know the specific i∗,
but they have their own estimation. Each investor gets the information that
the value of i∗ is i′ by the possibility of α. Of course, this information is not
necessarily true. The possibility of being false, that is the value of i∗ is not
i′, is 1− a.

Decision-making is carried out in turns. We assume a certain investor who
is chosen randomly makes decision first. The second investor who is also
chosen randomly makes decision accordingly. Different from the first investor,
investors followed can see the decisions made by the investors before them.
However, investors followed can not make sure whether the first investor
really obtains certain information. The following game goes on in the same
way. Each new decision-maker makes decisions based on the past records.
After all decisions are made, these decisions will be tested. If any of them is
valid, the investor who makes it will be rewarded. If no one makes a valid
decision, none of them will be rewarded.

Suppose that the game structure and Bayesian reason are common knowl-
edge, and they obey the following rules:

(1) When an investor has no information and other investors have chosen
i = 0 (investors do not make any investment), then the investor also choose
i = 0.

(2) When there is no difference in making choices between the two ways,
following other investors and according to his own information, he always
gives priority to the latter one.

(3) When there is no difference in making choices by following different pre-
ceding investors, he always gives priority to follow the choice of the investor
whose i value is the highest.

If the first investor acquires a certain amount of information, he must
make an appropriate decision according to the information; if he doesn’t
have any information, he will choose i = 0 according to (1). This option



598 X. Meng et al.

has the smallest possibility of making mistakes. If the second investor has no
information, he will imitate the first investor and choose i = 0 too. But if
he has information and the first investor doesn’t choose i = 0, then he will
know the first investor must have acquired certain amount of information and
that the possibility of their information being right is the same. Thus, there
would be no difference for the second investor to make decisions whether by
referring to his own information or by following the first investor. According
to (2), at that time, investors give priority to their own information.

In this way, the choices of the first two investors will have four possible
results: 1) both of them have chosen i = 0; 2) the first investor has chosen
i = 0, while the second has chosen i �= 0; 3) both of them have chosen the
same i �= 0; 4) they chose different non zero values. The third investor will
observe one of the results. When both of the first two investors choose i = 0,
the third investor will follow the decision made by the preceding two investors
if he has no information, otherwise, he will follow his own information. Under
the third condition, if the third investor has no information, he will follow the
person who has chosen i �= 0. If both of the first two investors choose different
i which is not zero, then according to (3), the third investor will follow the
decision made by the investor whose i value is higher. On the other hand, if
the third investor has got the information i′ and the first two investors haven’t
chosen the same i0(i0 �= 0 and i0 �= i′), he will make his decision according
to his own information. If both of the first two investors have chosen the
same i0, it proves that the information of the first investor is at least as good
as that of the third investor. His decision is probably right, thus the third
investor should also choose i0. When the first two investors both have chosen
i = 0, obviously, the third investor will make the decision according to his
own information. When there is only one who makes a choice different from
i = 0 and i = i′, the other will choose i = 0. This is the result of (2). When
his information coincides with the choice of the preceding investors, it is sure
that he will make the decision according to his own information.

Next investor will observe the following three cases:

A number of investors choose a certain option other than i = 0, and it is
the option with the biggest i inside.

A number of investors choose a certain option other than i = 0, but it is
not the option with the biggest i inside.

A number of investors choose two certain options other than i = 0 and
one of them is the option with the biggest i inside.

The first case is similar to the front view. The next investor should follow
the options that most investors have chosen before him. In the second and
third cases, obviously, the decision-maker who has chosen the option without
the biggest i inside is sure to have the same information. It’s sure to be the
right option and the following investors should choose it.

This view is suitable for all the following investors. In a word, according
to (1), (2), (3), the balanced decision-making rules that investors follow are
as follows:
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1. If the first investor has information, he will make the decision according
to his own information; If not, he will choose i = 0.

2. If the k(k ≻ 1) th investor has information, he will make the decision ac-
cording to his own information under such conditions: if and only if Condition
(1) is satisfied or Condition (1) isn’t satisfied but Condition(2) is. Condition
(1): his information coincides with the choice of a certain preceding investor;
Condition (2): apart from i = 0, no choices of the preceding investors are the
same.

3. Suppose the k(k ≻ 1)th investor has information, if the preceding in-
vestors have chosen a certain option except the biggest i for many times, then
he also chooses it. If the choices of the preceding investors coincide with his
information, then he will make the decision according to his own information.

4. Suppose the k(k ≻ 1)th investor has information, if the preceding in-
vestors have chosen a certain option except the biggest i for many times and
besides only i = 0 has been chosen repeatedly, then he will also choose the
biggest i option. But if the choices of the preceding investors coincide with
his information, he will choose this option.

5. Suppose the k(k ≻ 1)th investor doesn’t have information, if and only if
all the preceding investors have chosen i = 0, he will choose i = 0. Otherwise,
if there is no other repeatedly chosen option except i = 0, then he will choose
the biggest i option; but if there is a repeatedly chosen option except i = 0,
he will choose this option too. To be more visual and clearer, see the specific
rules in Table 1.

Table 1 The Balanced Decision-making Rules for Investors

Information Choice records Option

In
fo

rm
a
ti
o
n

i

No other people choose i = iktwo options except
i = 0 are chosen by many people

The smaller
one of the two

No other people choose i = ikone option except
i = 0 is chosen by many people

This one

No other people choose i = ik, no option except
i = 0 is chosen by many people

i = ik

Another person chooses i = ik i = ik

N
o

In
fo

rm
a
ti
o
n Except i = 0, two options are chosen by many

people
The smaller
one of the two

Except i = 0, only one option is chosen by many
people

This one

One person chooses all the other options except
i = 0

The biggest
from all of the
chosen ones

The others all choose i = 0 i = 0
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The characteristics of the balanced decision-making rule in the model are
the externalities of the herd behavior. Even if investors cannot exactly make
sure whether the choices of other people are right or not, they give up their
own information and follow others. If the first one has information, he will
follow his own, so will the second one. But we cannot guarantee that the
third will also follow his own. If the first one chooses i = 0 and the second
one follows him, then the third one will always follow them, so will all the
following investors.

When the first person, the second, even the third and the fourth make
different options, herd behavior can also occur. After making k different op-
tions, for any k ≻ 0, if next investor has no information, he will choose
the option with the biggest i value inside. If certain information of all the
following investors coincides with the chosen options, they will choose the
same option. Only if the right option is chosen, this will happen. Therefore,
if the first information investor or a certain investor after him but before the
first none-information investor doesn’t make the right option, then the herd
behavior of wrong option occurs.

The key of this model is that the choices made by investors are not always
the result of the complete collections of their information. If the choice is
always the result of the complete collections, potential investors will always
know the information that the preceding investors are based on. In that
case there will be no herd externality and validity. Potential herd externality
exists when the choice of some investors influence the information obtainment
of the following investors. Moreover, in this model, the herd behavior has
the characteristics of positive feedback, so its balanced pattern is variable
and unstable. This shows the variability and unsteadiness of the technology
diffusion in industrial clusters.

4 Discussion and Conclusions

Based on the herd behavior in the behavioral finance theory, the model builds
the one for technology diffusion in industrial clusters. On one hand, this model
is built on the basis of a series of assumptions and rules. However, these as-
sumptions and rules are not exactly the same to practical life. On the other
hand, this model only takes into account the information stacking up in in-
dustrial clusters. It doesn’t consider other factors which affect the technology
diffusion in industrial clusters, especially the relationship between enterprises,
enterprises and government, enterprises and external environment. So the
analysis has certain limitation. Nevertheless, this model grasps the essence
of technology diffusion in industrial clusters and represents the core of tech-
nology diffusion. It also provides some help to improve technology diffusion
within industrial clusters.
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Study of Newsboy Problem with Fuzzy
Probability Distribution

Xinshun Ma and Ting Yuan

Abstract. Newsboy problem, as the famous and basic model in stochas-
tic programming, has numerous applications. Completely known probability
distribution for random demand is a basic hypothesis in classical Newsboy
model, but this is almost impossible to achieve in practice due to that the
probability distribution is generally determined by some approximative meth-
ods such as statistical inferences and expertise. Newsboy problem with fuzzy
probability distribution is studied in this paper, and two-stage stochastic
linear programming model with recourse is set up. Improved L-shaped algo-
rithm is designed to solve the problem. Numerical example demonstrates the
feasibility and efficiency of the algorithm.

Keywords: Newsboy problem, Two-stage stochastic programming, Fuzzy
probability distribution, L-shaped algorithm.

1 Introduction

Newsboy problem (also known as Newsvendor problem) is a classical stochas-
tic programming problem [10], and has been widely applied in many fields
including supply chain management. With the increased decentralization of
manufacturing activities, there is a renewed interest in inventory theory, and
Newsboy problem has caused wide public concern in the research works [6].
Newsboy problem and its extensions have received much attention from re-
searchers in inventory managements, the studies range over that multiple
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periods, multiple products, random demand forecasting, lead-time demand
etc. [3, 11].

More often than not, the aforementioned inventory models developed from
Newsboy problem framework are based on a basic hypothesis that demands
are stochastic and can be described by random variables with completely
known probability distribution. However, in many situations, the probabil-
ity distribution is determined through some approximate methods such as
statistical inferences and expertise, so it is nearly impossible to obtain the
probability distribution accurately.

Fuzzy random demand basic methods arise in Newsboy modeling in the
literatures [13,5]. Fuzzy random variables are random variables whose values
are fuzzy numbers. Since H. Kwakernaak [8] first proposed the concept of
fuzzy random variables based on fuzzy set theory [14], fuzzy random theo-
ries have received much attention from researchers. In [9], a new concept of
fuzzy random variables was introduced based on the credibility measure, the
expected value model was presented, and the hybrid intelligent algorithms
integrated genetic algorithm and artificial neural network were designed to
solve the problem. Based on the above theory, the Newsboy models were pre-
sented in [13] under the fuzzy random demand, and simulating based method
was used to achieve the approximate solution. The other one type of fuzzy
random concept emerged from work in [5], where the random variable obeyed
normal distribution whose uncertainty mean was a triangle fuzzy number.
Based on this approach, inventory model related to fuzzy random lead-time
demand and fuzzy total demand was proposed in this literature.

Another fuzziness with respect to stochastic probability distribution known
as linear partial information (LPI) is introduced by E. Kofler [7]. Essentially,
LPI-fuzziness is described by establishment of linear equality or inequality
constraint. Compared with fuzzy set theory, LPI-fuzziness not only has sim-
pler algorithm, but also is easier to implement in practice. Stochastic linear
programming problem in which the stochastic probability distribution has
LPI-fuzziness was studied in literature [1], and two approaches including the
chance constraint and the recourse method are used to solve the problem.
Based on above methodological framework, multi-objective stochastic linear
programming with LPI-fuzziness was researched in [2], a compromise pro-
gramming approach was used to solve the problem.

In this paper, Newsboy problem is studied based on LPI-fuzziness, and two-
stage stochastic linear programming with recourse model is set up. Improved
L-shaped algorithm is employed to solve the model [12,4], numerical example
demonstrates the feasibility and efficiency of the method.

2 Problem Statement

The popular Newsboy problem is described as follows. A newsboy goes to
the publisher every morning and buys x newspapers at a wholesale price of
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c, then he sells as many newspapers as possible at the retail price q1. Any
unsold newspapers can be returned to the publisher at a return price q2.
Demand for newspapers is unknown to the newsboy at the time of purchase,
and it is described by a random variable ξ defined on the probability space
(Ω, A , P ), where Ω, A , and P are nonempty set, σ- algebra of subsets of
Ω, and probability measure, respectively.

To formulate the newsboy’s profit, suppose that y1 is the number of the
effective sales, and y2 is the number of newspapers returned to the publisher
at the end of the day. Obviously, both y1 and y2 are associated with the
random demand ξ. Because of the limitation of purchasing power, the number
of newspapers purchased by the newsboy is bounded above by some limit u,
i.e. 0 ≤ x ≤ u. Newsboy problem is to decide how many newspapers are
purchased from publisher to maximize his own profit, where the demand for
newspapers varies over days and is described by the random variable ξ. As a
result, the problem can be formulated as the following two-stage stochastic
programming problem:

min cx + E[Q(x, ξ)] (1a)

s.t. 0 ≤ x ≤ u, (1b)

and

Q(x, ξ) = min {−q1 · y1(ξ)− q2 · y2(ξ)} (2a)

s.t. y1(ξ) ≤ ξ, (2b)

y1(ξ) + y2(ξ) ≤ x, (2c)

y1(ξ), y2(ξ) ≥ 0, (2d)

where E[·] denotes the mathematical expectation with respect to ξ. By in-
troducing the following notations,

y(ξ) =
(
y1(ξ), y2(ξ), s1(ξ), s2(ξ)

)T
, q =

(
−q1,−q2, 0, 0

)T
,

W =

(
1 0 1 0
1 1 0 1

)
, h(ξ) =

(
ξ, 0

)T
, T =

(
0,−1

)T
,

where s1(ξ) and s2(ξ) are slack variables associated to the inequality con-
straints (2b) and (2c), respectively, then the second stage problem (2) has
the following form:

Q(x, ξ) = min qT · y(ξ) (3a)

s.t. Wy(ξ) = h(ξ)− Tx, (3b)

y(ξ) ≥ 0. (3c)

Assume that the finite discrete probability distribution is taken into consid-
eration, i.e. Ω and A are the finite nonempty set with Ω = {ω1, ω2, · · · , ωn}



606 X. Ma and T. Yuan

and the power set of Ω with A = 2Ω, respectively. Moreover, assume that
pi = P ({ω = ωi}) and ξi = ξ(ωi), for i = 1, 2, · · · , n. In the classical Newsboy
problem, all probabilities mentioned above are considered as the completely
known values. However, in many situations, these probabilities cannot be
explicitly determined due to some practical methods such as statistical infer-
ences and expertise.

Based on linear partial information [7], we assume that pi almost belongs
to some interval [ai, bi], i.e. ai 	 pi 	 bi, i = 1, 2, · · · , n, where ai and bi

are crisp values. ai 	 pi 	 bi are fuzzy inequalities, especially, ai 	 pi 	 ai

means that pi is almost equal to ai. Suppose that the membership function μi

associated with the fuzzy inequality ai 	 pi 	 bi is the following trapezoidal
piecewise linear function:

μi(pi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pi − ai + di
−

di
− , if ai − di

− ≤ pi ≤ ai,

1, if ai ≤ pi ≤ bi,

bi + di
+ − pi

di
+ , if ai ≤ pi ≤ bi + di

+,

0, otherwise,

(4)

for i = 1, 2, · · · , n, where di
− and di

+ are vagueness level. By making use of
α-cut technique, we can transform the fuzzy inequalities into the following
set:

π =

⎧
⎪⎨
⎪⎩

P = (p1, p2, · · · , pn)T ∈ Rn|
n∑

i=1

pi = 1, pi ≥ 0,

ai − (1− αi
−)di

− ≤ pi ≤ bi + (1− αi
+)di

+, i = 1, 2, · · · , n

⎫
⎪⎬
⎪⎭

,

where, αi
− and αi

+ are two levels of α-cut technique associated with the
constraint pi 	 bi and ai 	 pi, respectively, and which express the decision
maker (DM) credibility degree for partial information on probability distri-
bution. The different level values express the different attitudes of the DM in
dealing with the uncertain information, for instance, αi

+ = αi
− = 0 means

all possible values of pi in [ai − di
−, ai + di

+] will be considered by the DM,
and αi

+ = αi
− = 1 means deterministic information is dealt with in decision

making process, and other situations mean some intermediate attitudes of
the DM.

Clearly, in the situation mentioned above, the mathematical expectation
E[Q(x, ξ)] has uncertain value due to the existence of fuzziness in proba-
bility distribution of ξ, actually, the two-stage problem cannot be solved.
In order to overcome the difficulty, we employ minmax criterion to evaluate
the second stage target value, and substitute max

P∈π
E[Q(x, ω)] for E[Q(x, ω)].

Consequently, the two-stage stochastic problem with fuzzy probability distri-
bution can be solved through the following deterministic equivalent problem:
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min
x∈X

(cTx + max
P∈π

E[Q(x, ξ)]). (5)

Here, X = {x ∈ R|0 ≤ x ≤ u} ∩K, and K = {x ∈ R| for all i = 1, 2, · · · , n,
there exists y ≥ 0, such that Wy = h(ξi) − Tx}, and max

P∈π
E[Q(x, ξ)] =

max
P∈π

n∑

i=1

piQ(x, ξi).

From the polyhedral form for X (see [4]), we can obtain an optimal vector

P̄ = (p̄1, p̄2, · · · , p̄n)T ∈ π such that

n∑

i=1

p̄iQ(x, ξi) = max
P∈π

E[Q(x, ξ)], for the

given x. As a result, we can design the following L-shaped algorithm to solve
the problem.

3 Algorithm

Step 0: Set r = s = k = 0.
Step 1: Set k = k + 1. Solve the following linear program (master problem)

min cTx + θ (6a)

s.t. Dlx ≥ dl, l = 1, 2, · · · , r, (6b)

Elx + θ ≥ el, l = 1, 2, · · · , s, (6c)

0 ≤ x ≤ u, θ ∈ R. (6d)

Let (xk, θk) be an optimal solution. If no constraint (6c) is present, θk is set
equal to −∞, and xk is chosen arbitrary from the polyhedral set defined by
the constraints (6b) and (6d). Go to step 2.
Step 2: For i = 1, · · · , n, solve the following linear program

min Zi = eTu+ + eTu− (7a)

s.t. Wy + Iu+ − Iu− = h(ξi)− Txk, (7b)

y ≥ 0, u+ ≥ 0, u− ≥ 0, (7c)

where e = (1, 1, · · · , 1)T , until, for some i, the optimal value Zi > 0. Let σk

be the optimal simplex multiplier associated to equality in (7), and define

{
Ds+1 = (σk)TT,
ds+1 = (σk)Th(ξi)

(8)

to generate a new constraint (called feasibility cut) of type (6b).
Set r = r + 1, add the constraint set (6b) and return to step 1.
If for all i, Zi = 0, then go to step 3.
Step 3: For i = 1, · · · , n, solve the following linear program
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min qT y(ξi) (9a)

s.t. Wy = h(ξi)− Txk, (9b)

y(ξi) ≥ 0 (9c)

to obtain Q(xk, ξi) for the given xk. Let zi
k be the optimal simplex multiplier

associated with (9b) for i = 1, · · · , n. Solve

R(xk) = max
P∈π

n∑

i=1

piQ(xk, ξi) (10)

to get optimal solution P = (p1, · · · , pn)T , define

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Es+1 =

n∑

i=1

p̄i(zi
k)TT,

es+1 =

n∑

i=1

p̄i(zi
k)Th(ξi).

(11)

If θk ≥ R(xk) = es+1 −Es+1x
k, stop, then xk is an optimal solution. Other-

wise, set s = s + 1, add Es+1x
k + θk ≥ es+1 to the constraint set (6c), and

return to step 1.

4 Numerical Example

Assume that c, q1, and q2 are 0.61, 0.8 and 0.6, respectively, and the upper
limit of purchasing power u is specified to 1000. Suppose that the random
demand ξ take three possible values ξ1 = 90, ξ2 = 100, and ξ3 = 120, and the
corresponding probabilities p1, p2 and p3 are almost equal to 1/3, 1/2, and
1/6, respectively, i.e. p1

∼= 1/3, p2
∼= 1/2 and p3

∼= 1/6. Set di
+ = di

− = 1/6,
αi

+ = αi
− = 1/2, for i = 1, 2, 3. It follows from α-cut technique that

π =

⎧
⎪⎨
⎪⎩

P = (p1, p2, p3)
T ∈ R3|

3∑

j=1

pj = 1,

1/4 ≤ p1 ≤ 5/12, 5/12 ≤ p2 ≤ 7/12, 1/12 ≤ p3 ≤ 1/4

⎫
⎪⎬
⎪⎭

. (12)

If the initial solution x is specified to 0, the Newsboy problem with fuzzy
probability distribution can be solved from L-shaped algorithm stated above.
The calculating results are listed in Table 1.

The optimal solution is xk = 120.00 with an optimal value equal to
cTxk + θk = −18.300. This optimal solution is achieved with the probability
distribution P̄ = (0.417, 0.500, 0.083)T .

If fuzziness is not taken into consideration in the Newsboy problem, three
probabilities with respect to three random demands are p1 = 1/3, p2 = 1/2,
and p3 = 1/6, respectively. Under the circumstances, the Newsboy problem
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Table 1 Results iterated from L-shaped algorithm for the Newsboy problem

k cT xk + θk xk es+1 Es+1

1 -2426.709 1000.000 -0.000 3.037
2 -19.420 8.00 -19.500 0.600
3 -18.525 97.50 -0.000 0.800
4 -18.471 102.86 -7.500 0.717
5 -18.300 120.00 -17.500 0.617

with fuzzy probability distribution degenerates into the classical stochastic
problem. We still use L-shaped algorithm [4] to solve the problem, and the
optimal objective value is -18.800. Compared with the former result, the dif-
ference between -18.300 and -18.800 is 0.500, which is the DM’s loss brought
from fuzziness.

5 Conclusions

Two-stage stochastic newsboy problem with fuzzy probability distribution is
modeled in this paper. α-cut technique is employed to defuzzify. Improved
L-shaped algorithm is designed to solve the problem based on minimax rule.
Numerical examples demonstrate the essential character of algorithm. The
newsboy model presented in this paper is very simple from point of view
in practical application. Based on fuzzy probability distribution, the news-
boy models, under more general hypothesizes such as multiple products and
multiple periods, will be considered by future research activity.
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Blogger’s Interest Mining Based on
Chinese Text Classification

Suhua Yang, Jianzhuo Yan, Chen Gao, and Guohua Tan

Abstract. In this paper, a new blogger’s interest mining module is pro-
posed, which is based on Chinese text classification. In fact, the problem of
the interest mining is transformed into the problem of Chinese text catego-
rization. Before the Chinese text categorization, the text is pre-processed for
the text representation. The Chinese text is represented in vector space model
and classified by support vector machine classification, while filter algorithm
which filters the unrelated interest text is proposed. After the filtering, the
text can get it’s interest category. Finally the new module has been made
use of to carry out an interest mining experiment, and the other experiment
which has not filter algorithm is also carried in order to compare with the
new module. The two experimental results show that the support vector ma-
chine is a effective algorithm, and the comparing data of the two experiments
shows that new module make the interest mining more effective.

Keywords: Interest mining, Text classification, Support vector machine,
Filter algorithm.

1 Introduction

In recent years, weblog has became one of the main information resources,
with the rapid development of weblog, the domains of scientific research and
industry have been interested in weblog. If you can make full use of the
abundant weblog resources and mine the valuable information, it is of great
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practical and research significance to learn the development of internet, im-
prove various internet service and enrich user’s internet lives [3].

Mining blogger’s interest is the core and basis in personalized services, only
blogger’s personalized information is well understood, the ideal of personal-
ized services may be achieved. At present, most methods of mining blogger’s
interests are by classifying weblog’s articles [2]. The technique of text classi-
fication is mainly based on statistical theory and machine learning, such as
Naive Bayes and KNN. The model of Naive Bayes is a probability classifi-
cation model based upon two assumptions. It requires that the probabilities
of all words are independent and the class of the document has got noth-
ing to do with it’s length, but the effect is unstable in practical application.
KNN(k-Nearest Neighbor algorithm) is a method based on lazy and required
learning method the effect of classification is better, but the time of classifi-
cation is nonlinear, and when the number of training text increasesthe time
of classification will sharp increase [5]. SVM(Support Vector Machine) is a
new machine learning method advanced by Vapnik according to statistical
learning theory, it is similar to structure risk minimization principle, it has
splendidly learning ability, it only needs few samples for training a high-
performance text classifier. In this paper, Support vector machine is used for
text classification, and achieves a satisfying effect.

Although user’s interest category could be reasoned by the algorithm based
on the text classification, the personalized characteristic of different bloggers
make weblog’s content disorganized. Each user has their own interest, so the
content which they browse is different. We find that not all blog texts could
reflect user’s interest by observing. This paper calls the article which can not
express blogger’s interest as unrelated interest article, and calls the article
which can express blogger’s interest as related interest article. In the method
of mining weblogger’s interest based on text classification, the wrong classi-
fication of unrelated interest article will directly make the mined interesting
collection in chaos. Thus the accuracy of interests mining will be reduced.
Therefore, Filtering out the unrelated interest articles is greatly important
.In this paper, the discriminative value of each interest category is counted.
And filtering the unrelated article by setting the threshold in the experiment.
Thus it improves the accuracy of interest mining.

2 Blogger’s Interest Mining

The general framework of interest mining consists of two modules: the pre-
processing module and the interest classification module [1]. However, for the
classification of blog texts, there often have some unrelated interest texts that
greatly affected the accuracy of classification. In view of this problem, we add
a interest determination module, It filters out the unrelated interest articles
by calculating to improve the accuracy of mining interests. The framework
of interest mining proposed in this paper is shown in Fig. 1.
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Fig. 1 The framework
of interest mining based
on SVM Chinese text
classification

The frame mainly has three modules, namely pre-processing module, clas-
sification module and interest determination module, which are detailed
below.

2.1 Pre-processing Module

Blog pages are written by HTML(Hypertext Markup Language), they are
semi-structured text files. In addition to plain text, the page itself also con-
tains some of the labels. HTML contains a wealth of information. Before
feature extraction ,we need web filtering for getting the body of the page.
And then the body of the page is as regular text, we classify the regular
texts.

Specific steps include removing labels, word segmentation, removing stop
words, word frequency and document frequency statistics, the feature extrac-
tion, text representation. Specific steps are as follows:

1. Removing labels: Using regular expressions to remove the label of the
source of the document.

2. Word segmentation: Using ICTCLAS(Institute of Computing Technol-
ogy, Chinese Lexical Analysis System) to segment words.

3. Removing stop words: We created list of terms which were filtered before
the word frequency process started. The list includes mainly conjunctions,
prepositions or pronouns [4].

4. Word frequency and document frequency statistics: Word frequency
statistic for each word which appears in the text, if the first time when
the word frequency F is set to 1, while adding a statistical document
frequency of each interest category.

5. The feature extraction: Delete the words from the text which can not
contribute to or very little contribution to the entry category information,
Taking into account the large amount of information carried by nouns,
verbs followed by adjectives and adverbs, this article frame realizes uses
only retains the noun used for feature selection methods.

6. Text representation: Using vector space model to represent the text.
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The method of vector space model representation as follows:
Each blog text is represented as a n-dimensional vector (w1, w2, w3, . . . , wn),
the weight of each dimension in the vector of this text should correspond
with the weight in this text [6]. Weight Set: W = {wi|i ∈ n}

wi =

∑
i∈s

(wi × tfi)× log(N/ni)

√∑
j

((
∑
i∈s

wi × tfi)× log(N/ni))2
(1)

wi is the corresponding weight of the i-key words, and tfi is the frequency of
the i- key words in the page, N is the total number of text contained in the
training set, ni is the number of the text which contains the characteristics.

2.2 Classification Module

The next step is Chinese text classification based on SVM. Support Vector
Machine (SVM) is a general learning machine, the idea is: the input vector X
is mapped to a high dimensional feature space Z by nonlinear mapping which
is pre-selected, in which we structure the optimal separating hyperplane. SVM
classification function is similar to neural network in form, the output is a
linear combination of intermediate nodes, each intermediate node corresponds
to a support vector, the dot product is operated between vectors [7]. The
expression of the function of SVM for classification of non-linear optimal
separating surface as follow:

f(z) =
∑

supvector

ai
∗yiϕ(zi)ϕ(z) + b∗ =

∑

supvector

ai
∗yik(zi, z) + b∗ (2)

Therefore, if we adopt the kernel function to avoid the high dimensional
feature space for complex operations. The process can be expressed as follows:
First, mapping the input vector X : ψ : Rn → H

Mapping into a high dimensional Hilbert space H . The kernel function has
different forms, Different kernel functions will form a different algorithm. In
general, the commonly used kernel functions are the following:

1. Polynomial kernel function:

K(z, zi) = (z × zi + 1)d (3)

2. Radial basis function:

K(z, zi) = exp(−‖z − zi‖2/δ2) (4)
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3. Neural network kernel function:

K(z, zi) = S(v(z × zi) + c) (5)

The choice of kernel function has little effect on classification accuracy. But
polynomial classifier both for the low-dimensional, high-dimensional, large
sample, small sample and so on are applicable, and has a wider domain of
convergence, parameter easy to control, etc, this paper choose polynomial
classifier as a kernel function [8].

2.3 Interest Determination Module

For an article d, SVM classification results will produce a discriminative vec-
tor, whose elements are the discriminative values belonging to each category.
This type is descending ordered based on their discriminative values, and the
sorted vector is expressed as −→p = {p(d, c1), p(d, c2), . . . , p(d, cm)}, m is the
number of interest category.

Use Pr(d) to express the cumulative value of the discriminative vector
element, the formula as follows:

Pr(d) =

m∑

i=1

p(d, ci) (6)

Filter text formula:
Pr(d) ≥ T (7)

Training through multiple experiments, the threshold (T ) is set as 0.1. If
the article does not fits the formula, it will be classified as unrelated interest
article.

After the filtering, select p(d, c1) as the last result of related interest article,
if it is a unrelated interest article, it will be filtered. Then we get the blogger’s
interest by the blogger’s more articles.

3 Experiments and Result Analysis

3.1 Experimental Data

Experimental data includes eight class documentations, and they are news,
sports, finance, entertainment, shopping, reading, travel, and military.

The training data is different from testing data, the training data is from
the language material database of FuDan University, the testing data is from
http : //blog.sina.com.cn/.
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3.2 Experimental Results

The first experiment does not use filter algorithm, the second experiment
uses filter algorithm. Performance evaluation of interest classification mainly
includes accuracy rate(P ), recall rate(R) and F1 (F1 = 2×P×R

P+R ).The follow-
ing two sets of experimental data are the different classification results with
the same training data sets and testing data sets under different classification
algorithms.

1. The result of SVM classification which does not have filter algorithm is
shown in Table 1

Table 1 The result of SVM classification which does not have filter algorithm

Interest category Training cor-
pus/Testing corpus

P (%) R(%) F1(%)

news 1800/200 85.0 83.4 84.2
sports 1800/200 87.2 87.6 87.4
finance 1800/200 82.1 85.2 83.6
entertainment 1800/200 89.2 88.8 89.0
shopping 1800/200 84.6 85.8 85.2
reading 1800/200 89.2 86.7 87.9
travel 1800/200 89.1 87.2 88.1
military 1600/200 88.7 85.7 87.7

2. The result of SVM classification which has filter algorithm is shown in
Table 2

Table 2 The result of SVM classification which has filter algorithm

Interest category Training cor-
pus/Testing corpus

P (%) R(%) F1(%)

news 1800/200 87.7 89.3 88.5
sports 1800/200 89.1 88.2 88.6
finance 1800/200 85.5 89.1 87.3
entertainment 1800/200 90.2 90.9 90.5
shopping 1800/200 87.6 88.1 87.8
reading 1800/200 90.2 89.7 89.9
travel 1800/200 93.1 90.6 91.8
military 1600/200 92.2 89.7 90.9
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Accuracy rate and recall rate reflect two different aspects of classification
quality, while a comprehensive evaluation index of the two aspects is the F1
value. As shown in Fig. 2, the figure reflects classification results of the two
modules under the composite index F1 value.

Fig. 2 The comparison
of comprehensive index
F1 value

3.3 Result Analysis

We can clearly see that SVM classification which has filter algorithm is more
effective than SVM classification which does not have filter algorithm. It has
higher accuracy rate and recall rate. As a comprehensive evaluation index for
text classification, F1 test value is better to reflect the effects of a good or
bad classifier. So as a whole, SVM classification which has filter algorithm is
superior for interest mining.

4 Conclusions

In this paper, we present a new blogger’s interest mining method based on
Chinese text classification technology. It improves the interest classification
accuracy by adding the unrelated interest text filter algorithm. The effective-
ness of our method has been tested on real blog data.

On the other hand, blogger’s interest is related to the browsing behavior.
If combining the Chinese text classification with the browsing behavior to
mining the blogger’s interest, it will get a better result. So how to promote
blogger’s interest mining better, will remain our ongoing efforts to study
direction in the future.

Acknowledgements. The experiments used Institute of Computer Technology
segmentation system interface, Fudan University Corpus and the data of http :
//blog.sina.com.cn/, a special thanks here.
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Characterization of Generalized
Necessity Functions in �Lukasiewicz
Logic

Tommaso Flaminio and Tomáš Kroupa

Abstract. We study a generalization of necessity functions to MV-algebras.
In particular, we are going to study belief functions whose associated mass
assignments have nested focal elements. Since this class of belief functions
coincides with necessity functions on Boolean algebras, we will call them gen-
eralized necessity functions. Using geometrical and combinatorial techniques
we provide several characterizations of these functions in terms of Choquet
integral, Lebesgue integral, and min-plus polynomials.

Keywords: Necessity function, Belief function, MV-algebra

1 Introduction

There are at least two different, yet equivalent, ways to define necessities on
Boolean algebras [4]. If the Boolean algebra is the set 2X of all subsets of
a given universe X , then the first approach consists in axiomatizing a ne-
cessity N : 2X → [0, 1] as a map satisfying N(X) = 1, N(∅) = 0, and
N(A ∩B) = min {N(A), N(B)}. According to the second way, a necessity is
viewed as a belief function [15] defined by a mass assignment µ : 2X → [0, 1]
such that the class of its focal elements {A ⊆ X | µ(A) > 0 } is a chain with
respect to the set inclusion. Since the former axiomatic approach can be
traced back to Halpern’s belief measures [6], we will henceforth distinguish
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between necessity measures, if the former is the case, and necessity functions
in the latter case. These two ways of introducing necessities on Boolean alge-
bras are equivalent. Specifically, a map N : 2X → [0, 1] is a necessity measure
if and only if N is a necessity function.

Since MV-algebras [1] are among important many-valued generalizations
of Boolean algebras, which provide a useful algebraic framework to deal with
a certain and a relevant class of fuzzy sets, it is natural to ask what hap-
pens when we generalize necessity measures and necessity functions to these
algebraic structures. Moreover, it is worth noticing that, as it was already
remarked in [3], the generalizations of necessity measures and necessity func-
tions to MV-algebras do not lead to one single concept as in the Boolean
case. Hence it makes sense to study those notions separately.

In [5] the authors provide an axiomatic approach to necessity measures
on MV-algebras and they show that they are representable by generalized
Sugeno integrals. In this paper we characterize generalized necessity func-
tions in the framework of the generalization of belief functions to MV-algebras
proposed in [12]. In particular, we are going to use geometrical and combina-
torial tools to provide several characterizations for these measures in terms
of Choquet integral, Lebesgue integral, and min-plus polynomial.

The paper is organized as follows. In Section 2 we introduce the preliminar-
ies about MV-algebras and states. We recall the theory of belief functions on
Boolean algebras together with the equivalence between the two approaches
to necessities in Section 3. Section 4 introduces generalized necessity func-
tions with the main characterization (Proposition 3). Due to lack of space we
are unable to include proofs; however, we provide examples to clarify main
features of the discussed concepts.

2 Basic Notions

MV-algebras [1] play the same role for �Lukasiewicz logic as Boolean algebras
for the classical two-valued logic. An MV-algebra is an algebra (M,⊕,¬, 0),
where M is a non-empty set, the algebra (M,⊕, 0) is an abelian monoid, and
these equations are satisfied for every x, y ∈ M : ¬¬x = x, x ⊕ ¬0 = ¬0,
¬(¬x ⊕ y) = ¬(¬y ⊕ x).

In every MV-algebra M , we define the constant 1 = ¬0 and the following
binary operations: for all x, y ∈ M , put x ⊙ y = ¬(¬x ⊕ ¬y), x ∨ y =
¬(¬x ⊕ y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y). For every x, y ∈ M , we write x ≤ y iff
¬x ⊕ y = 1 holds in M . As a matter of fact, ≤ is a partial order on M , and
M is said to be linearly ordered whenever ≤ is a linear order.

Example 1. Every Boolean algebra A is an MV-algebra in which the opera-
tions⊕ and ∨ coincide (similarly, the operations⊙ and ∧ coincide). Moreover,
in every MV-algebra M , the set B(M) = { x | x⊕ x = x } of its idempotent
elements is the domain of the largest Boolean subalgebra of M (the so-called
Boolean skeleton of M).
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Example 2. Endow the real unit interval [0, 1] with the operations x ⊕ y =
min{1, x + y} and ¬x = 1− x. Then ([0, 1],⊕,¬, 0) becomes an MV-algebra
called the standard MV-algebra. In this algebra, x ⊙ y = max{0, x + y − 1},
x ∧ y = min{x, y} and x ∨ y = max{x, y}. The two operations ⊙, ⊕ are the
so-called �Lukasiewicz t-norm and the �Lukasiewicz t-conorm, respectively.

Example 3. Let X be a nonempty set. The set [0, 1]X of all functions X →
[0, 1] with the pointwise operations of the MV-algebra [0, 1] is an MV-algebra.
In particular, if X is a finite set, say X = {1, . . . , n}, then we can identify
the MV-algebra [0, 1]X with the n-cube [0, 1]n and each a ∈ [0, 1]X with the
n-dimensional vector a = (a1, . . . , an) ∈ [0, 1]n. The set of vertices of [0, 1]n

coincides with the Boolean skeleton of [0, 1]n.

Throughout the paper, we will assume that X is always finite whenever we
write [0, 1]X . The MV-algebra [0, 1]X is the natural algebraic framework for
studying belief functions in �Lukasiewicz logic (cf. [10]). The extensions to-
wards infinite X are possible and mathematically nontrivial (see [11, 12]).
Herein we confine to the case of finite X for the sake of clarity.

Normalized and additive maps on MV-algebras (so-called states) were
introduced in [7, 13]. States are many-valued analogues of probabilities on
Boolean algebras. A state on an MV-algebra M is a function s : M → [0, 1]
satisfying the following properties:

(i) s(0) = 0, s(1) = 1,
(ii) s(x⊕ y) = s(x) + s(y), whenever x⊙ y = 0.

Observe that the restriction of every state s on M to its Boolean skeleton
B(M) is a finitely additive probability measure on B(M). Much more is
known: every MV-algebra M is (isomorphic to) an MV-algebra of continuous
functions over some compact Hausdorff space X (see [1]) and each state on M
is the Lebesgue integral with respect to a unique regular Borel probability
measure on X (see [8] or [14]). In case of the MV-algebra [0, 1]X with finite X ,
the previous fact can be formulated as follows. Observe that every probability
measure on 2X with X = {1, . . . , n} can be represented by a unique vector
μ from the standard n-simplex ∆n = { μ ∈ Rn | μi ≥ 0,

∑n
i=1 μi = 1 }.

Proposition 1 ( [8,14]). Let X = {1, . . . , n}. If s is a state on M = [0, 1]X,
then there exists a unique μ ∈ ∆n such that

s(a) =

n∑

i=1

aiμi, for each a ∈M .

Moreover, the coordinates of μ are μi = s({i}), provided {i} is identified with
its characteristic function, for each i ∈ X.

3 Necessity Functions

See [15] for an in-depth treatment of Dempster-Shafer theory of belief func-
tions. Let X be a finite set and M = 2X . A mass assignment µ is a function
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2X → [0, 1] satisfying µ(∅) = 0 and
∑

A∈2X µ(A) = 1. A belief function
(with the mass assignment µ) is a function Bel : 2X → [0, 1] given by
Bel(A) =

∑
B⊆A µ(B), for each A ∈ 2X . Each A ∈ 2X with µ(A) > 0 is

said to be a focal element. A mass assignment µ is called nested provided
the set of its focal elements

{
A ∈ 2X

∣∣ µ(A) > 0
}

is a chain in 2X with re-
spect to the set inclusion. By definition every belief function Bel is uniquely
determined by the restriction of its mass assignment to the set of all focal ele-
ments. A necessity function on 2X is a belief function whose mass assignment
is nested. This can be rephrased as follows: a belief function is a necessity
function iff its mass assignment determines a finitely additive probability on

22X

that is supported by a chain and vanishing at the singleton {∅}.
If Bel is a belief function on 2X , then the credal set of Bel is the following

set C(Bel) of finitely additive probability measures P on 2X :

C(Bel) =
{
P
∣∣ P (A) ≥ Bel(A), A ∈ 2X

}
.

It is well-known that Bel arises as the lower envelope of C(Bel):

Bel(A) =
∧

P∈C(Bel)

P (A), for each A ∈ 2X .

Example 4. Let A ∈ 2X be nonempty and put BelA(B) = 1, if A ⊆ B,
and BelA(B) = 0, otherwise. Then BelA is a necessity function whose mass
assignment is

µA(B) =

{
1, A = B,

0, otherwise.
(1)

The credal set C(BelA) is just the set of all probabilities whose support is
the set A. Specifically, this means that C(BelA) is (affinely isomorphic to)
the simplex ∆|A|, where |A| is the cardinality of A. Observe that A ⊆ B iff
C(BelA) ⊆ C(BelB) iff ∆|A| ⊆ ∆|B|.

In the next proposition we summarize some of the characterizations of neces-
sity functions that appeared in the literature. Our goal is to compare these
descriptions with the properties of extensions of necessity functions to MV-
algebras in Section 4.

Proposition 2. Let Bel be a belief function on 2X with the mass assign-
ment µ. Then the following are equivalent:

(i) Bel is a necessity function,
(ii) Bel(A ∩B) = Bel(A) ∧Bel(B), for each A,B ∈ 2X ,
(iii) the set

{
C(BelA)

∣∣ A ∈ 2X , µ(A) > 0
}

is a chain and

C(Bel) =
∑

A∈2X

µ(A)>0

µ(A)C(BelA), (2)
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where the sum and the multiplication in (2) are the Minkowski sum of
sets and the pointwise multiplication of sets of vectors, respectively,

(iv) there exist n ∈ {1, . . . , |X |}, a vector α = (α1, . . . , αn) ∈ ∆n with all
coordinates positive, and a chain of standard simplices ∆i1 ⊂ · · · ⊂ ∆in ,
where in ≤ n, such that C(Bel) is (affinely isomorphic to) the Minkowski
sum

∑n
j=1 αj∆ij .

The equivalence of (i) with (ii) was proven in [15]. The properties (iii)-(iv)
are a purely geometrical way to describe necessities by the composition of
the associated credal sets. This approach has appeared first in [9], where the
equivalence of (i) with (iii) was proven in a slightly more general setting. The
property (iv) is just a direct reformulation of (iii). Geometrical treatment of
belief functions appeared also in [2], where the properties of the set of all
belief functions are discussed.

4 Generalized Necessity Functions

We will introduce the generalized necessity functions as particular cases of
generalized belief functions in �Lukasiewicz logic (cf. [10]). The starting point
for this research was the generalization of Möbius transform established in
a fairly general framework [11]. The interested reader is referred to those
papers for further motivation and details.

If X = {1, . . . , n}, then by P we denote the set 2X \ {∅}. Let MP be
the MV-algebra of all functions P → [0, 1]. We will consider the following
embedding ρ of the MV-algebra M = [0, 1]n into MP :

ρ : M × P → [0, 1], ρa(A) =
∧

i∈A

ai, for each a ∈M , A ∈ P .

If a ∈M is fixed and ρa(∅) := 0, then observe that function ρa : 2X → [0, 1]
is a necessity measure on 2X .

Definition 1. Let M be the MV-algebra [0, 1]X . A state assignment is a state
s on MP . If s is a state assignment, then a (generalized) belief function Bel∗

on M is given by Bel∗(a) = s(ρa), a ∈M . We say that a belief function Nec∗

on M is a (generalized) necessity function if the finitely additive probability

on 22P

corresponding to its state assignment (via Proposition 1) is supported
by a chain.

Example 5. Let A ∈ P and put Bel∗A(a) = ρa(A). Clearly, function Bel∗A is
a necessity function. Its state assignment sA is given by sA(f) = f(A), for
each f ∈MP .

Remark 1. Following the analogy with Proposition 2(ii), necessity measures
on an MV-algebra M have been recently introduced in [5] as mappings N :
M → [0, 1] such that N(1) = 1, N(0) = 0, and for every a, b ∈M , N(a∧b) =
N(a) ∧ N(b). It was observed already in [3] by Dubois and Prade that, in
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sharp contrast with the classical case (cf. Proposition 2), necessity functions
are not necessity measures. Indeed, generalized necessity functions do not
satisfy the property N(a∧ b) = N(a)∧N(b), in general: this follows directly
from Definition 1.

Let Bel∗ be a belief function on M = [0, 1]X and let s be its associated state
assignment. Clearly, for each A ∈ P , the mass assignment µA from (1) is
an element of MP . As a direct consequence of the definition of state, the
function µs : 2X → [0, 1] defined by µs(A) = s(µA) for every A ∈ P , and
zero otherwise, is a mass assignment. Hence Bel∗(a) =

∑
A∈MP

ρa(A)µs(A),
for each a ∈M , which follows from Proposition 1.

If Bel∗ is a belief function on M , then the credal set of Bel∗ is the following
set C(Bel∗) of states s on M :

C(Bel∗) = { s | s(a) ≥ Bel∗(a), a ∈M } .

It can be shown that Bel∗ is the lower envelope of C(Bel∗):

Bel∗(a) =
∧

s∈C(Bel∗)

s(a), for each a ∈M . (3)

In the following proposition we give several equivalent formulations de-
scribing generalized necessity functions within the class of generalized belief
functions. In particular, some of the properties directly correspond to the
respective properties of necessity functions—see Proposition 2.

Proposition 3 (Characterization of generalized necessity functions).
Let X = {1, . . . , n} and Bel∗ be a belief function on the MV-algebra M =
[0, 1]n with the state assignment s and the mass assignment µs. Then the
following are equivalent:

(i) Bel∗ is a necessity function,
(ii) there exists a necessity measure Nec on 2X such that

Bel∗(a) =

∫
Ca d Nec, a ∈M,

where the discrete integral above is the Choquet integral,
(iii) the mass assignment µs is nested on a chain A ⊆ P such that

Bel∗(a) =
∑

A∈A
µs(A)ρa(A), a ∈M,

(iv) the mass assignment µs is nested on a chain A1 ⊂ · · · ⊂ Ak such that

Bel∗(a) =
∧

(i1,...,ik)∈I

k∑

j=1

µs(Aj)aij , a ∈M,

where I = A1 × · · · ×Ak,
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(v) there exists a maximal chain A = A1 ⊂ A2 ⊂ · · · ⊂ An = X in 2X and
a mass assignment µ nested on A such that

Bel∗(a) =
n!∧

s=1

(
n∑

i=1

µ(Ai) · af−1(s)(i)

)
, a ∈M,

where f : A1 × . . .×An → {1, 2, . . . , n!} is a bijection,
(vi) the set

{
C(Bel∗A)

∣∣ A ∈ 2X ,µs(A) > 0
}

is a chain and

C(Bel∗) =
∑

A∈2X

µs(A)>0

µs(A)C(Bel∗A),

(vii) there exist n ∈ {1, . . . , |X |}, a vector α = (α1, . . . , αn) ∈ ∆n with each
αi ≥ 0, and a chain of standard simplices ∆i1 ⊂ · · · ⊂ ∆in , where
in ≤ n, such that C(Bel∗) is (affinely isomorphic to) the Minkowski sum∑n

j=1 αj∆ij .

Proposition 3, whose proof is omitted due to a lack of space, provides a num-
ber of interpretations of necessity functions. In particular, (ii) means that
each generalized necessity function is recovered as the Choquet integral ex-
tension of a necessity measure. The properties (vi)-(vii) say that the credal
set of a generalized necessity function is built from “nested” simplices in
a very special way—observe that this is identical with the property of ne-
cessity functions on Boolean algebras (Proposition 2(iii)-(iv)). The min-sum
formula in (iv) is then a consequence of this geometrization together with
(3): when minimizing a linear function given by a ∈ [0, 1]n over C(Bel∗), it
suffices to seek the minimum among the elements of any finite set containing
the vertices of the convex polytope C(Bel∗). Notice that although the equiv-
alence between (iv) and (v) is clear, because in fact (v) is a particular case of
(iv), (v) can be easily proved to be equivalent to (iii) by using a combinatorial
argument. The results are illustrated with a simple example.

Example 6. Let X = {1, 2, 3} and M = [0, 1]X . Suppose that Nec is the
necessity measure on 2X whose mass assignment µ is defined as µ({1}) = 1

8 ,

µ({1, 2}) = 4
8 , µ(X) = 3

8 . The necessity function Nec∗ associated with Nec
via Proposition 3(ii) is then

Nec∗(a) = 1
8a1 + 4

8 (a1 ∧ a2) + 3
8 (a1 ∧ a2 ∧ a3),

for each a ∈ [0, 1]3. Due to Proposition 3(vi), the credal set C(Nec∗) can
be identified with the Minkowski sum 1

8∆1 + 4
8∆2 + 3

8∆3. This is a convex

polytope embedded in ∆3 with the four vertices (1, 0, 0), (1
8 ,

7
8 , 0), (5

8 , 0,
3
8 ),

and (1
8 ,

4
8 ,

3
8 ). This means together with Proposition 3(v) that we get the

min-sum formula
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Nec∗(a) = a1 ∧
(

1
8a1 + 7

8a2

)
∧
(

5
8a1 + 3

8a3

)
∧
(

1
8a1 + 4

8a2 + 3
8a3

)
.
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On Generating Functions of
Two-Dimensional T-Norms

Masaya Nohmi, Aoi Honda, and Yoshiaki Okazaki

Abstract. t-norms are significant operations employed in various fields in-
cluding fuzzy theories. There exist many types of t-norms. t-norms defined
on discrete domains and continuous domains have rather different proper-
ties. It is known that continuous and strictly monotone t-norms defined on
continuous domains have generating functions [1, 4, 5]. Generating functions
are important functions that characterize the properties of t-norms. In this
article, tow-dimensional t-norms are proposed, and their properties are stud-
ied. Furthermore, it is shown that if a tow-dimensional t-norm satisfies par-
ticular conditions, it could be decomposed into Cartesian product of two
one-dimensional t-norms and each one-dimensional t-norm have a generating
function. Applications of two-dimensional t-norms are briefly discussed at the
last of this article [2, 3].

Keywords: T-norm, Two-dimensional t-norm, Generating function, Strictly
monotone operation, Continuous operation.

1 Preliminary

Although ordinary t-norms are defined on the unit interval I = [0, 1], in
this article, two-dimensional t-norms defined on the closed domain I × I are
studied. For the purpose, order relations are introduced on I × I.

Definition 1. (order) For points α = (x, y) and α′ = (x′, y′) in the closed
domain I × I, the order relation α ≤ α′ holds iff the conditions
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x ≤ x′ and y ≤ y′ (1)

hold.

The order relation defined by Definition 1 is a partial order, but is not a
total order. It effects properties of t-norms defined later.

Definition 2. (order) For points α = (x, y) and α′ = (x′, y′) in the closed
domain I × I, the order relation α < α′ holds iff the conditions

α ≤ α′ and α �= α′ (2)

hold.

two-dimensional t-norms on I × I are defined as follows.

Definition 3. (two-dimensional t-norms) An operation

T : (I × I)× (I × I) → (I × I)

is a t-norm, if T satisfies the following four conditions:

(1) commutativity: T (α, α′) = T (α′, α),

(2) associativity: T
(
α, T (α′, α′′)

)
= T

(
T (α, α′), α′′),

(3) monotonicity: α ≤ α′ ⇒ T (α, α′′) ≤ T (α′, α′′),

(4) boundary conditions: T
(
α, (0, 0)

)
= (0, 0), T

(
α, (1, 1)

)
= α,

where α, α′, α′′ ∈ I × I.

Definition 4. (strong monotonicity) If a two-dimensional t-norm T satisfies
the condition

α < α′ ⇒ T (α, α′′) < T (α′, α′′), (3)

for any α, α′, α′′ ∈ (0, 1]× (0, 1], t-norm T is strongly monotone .

Projenctions π1 : I×I → I and π2 : I×I → I are defined by the equations

π1(α) = x, π2(α) = y, (4)

where α = (x, y) ∈ I × I.

Example 1. Let TP be the operation defined on I × I by the equation

TP

(
(x, y), (x′, y′)

)
= (xx′, yy′), (5)

where (x, y), (x′, y′) ∈ I×I. That is, the operation TP is the two-dimensional
algebraic product. Furthermore, let σ : I × I → I × I be the map defined by
the equation

σ
(
(x, y)

)
=
(
x, y(x+1)/2

)
. (6)
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The inverse of σ is

σ−1 : I × I → I × I, σ−1
(
(x, y)

)
=
(
x, y2/(x+1)

)
. (7)

Let T be an operation defined by the equation

T
(
(x, y), (x′, y′)

)
= σ−1

[
TP

(
σ
(
(x, y)

)
, σ
(
(x′, y′)

))]
. (8)

The the operation T is a two-dimensional t-norm on I × I.

Proof. Because the operation TP is commutative,

T
(
(x, y), (x′, y′)

)
= σ−1

[
TP

(
σ
(
(x, y)

)
, σ
(
(x′, y′)

))]

= σ−1
[
TP

(
σ
(
(x′, y′)

)
, σ
(
(x, y)

))]
= T

(
(x′, y′), (x, y)

)
, (9)

therefore, the operation T is also commutative. Because the operation TP is
associative,

T
(
(x, y), T

(
(x′, y′), (x′′, y′′)

))

= σ−1
[
TP

(
σ
(
(x, y)

)
, σ
[
σ−1

[
TP

(
σ
(
(x′, y′)

)
, σ
(
(x′′, y′′)

))]])]

= σ−1
[
TP

(
σ
(
(x, y)

)
, TP

(
σ
(
(x′, y′)

)
, σ
(
(x′′, y′′)

)))]

= σ−1
[
TP

(
TP

(
σ
(
(x, y)

)
, σ
(
(x′, y′)

))
, σ
(
(x′′, y′′)

))]

= σ−1
[
TP

(
σ
[
σ−1

[
TP

(
σ
(
(x, y)

)
, σ
(
(x′, y′)

))]]
, σ
(
(x′′, y′′)

))]

= T
(
T
(
(x, y), (x′, y′)

)
, (x′′, y′′)

)
, (10)

therefore, the operation T is also associative. The operation T could be cal-
culated as

T
(
(x, y), (x′, y′)

)
=
(
xx′, y(x+1)/(xx′+1)y′(x

′+1)/(xx′+1)
)
. (11)

It is shown that the operator T is strongly monotone by calculating the
partial differentiation of (11). It is also shown that the operator T satisfies
the boundary conditions from the equation (11).

Example 2. Let TP be the algebraic product defined by (5) in Example 1.
Let σ : I × I → I × I be the map defined by the equation

σ
(
(x, y)

)
=

(
x,

x + 1

2
y

)
. (12)

The inverse of σ is

σ−1 : I × I → I × [0, 2], σ−1
(
(x, y)

)
=

(
x,

2

x + 1
y

)
. (13)
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Let T be an operation defined by the equation

T
(
(x, y), (x′, y′)

)
= σ−1

[
TP

(
σ
(
(x, y)

)
, σ
(
(x′, y′)

))]
. (14)

The operation T is a two dimensional t-norm on I × I.

Proof. The commutativity and the associativity of T are shown as same as
Example 1. The operation T could be calculated as

T
(
(x, y), (x′, y′)

)
=

(
xx′,

(x + 1)(x′ + 1)

2(xx′ + 1)
yy′
)
. (15)

It is shown that the operator T is strongly monotone by calculating the
partial differentiation of (15). It is also shown that the operator T satisfies
the boundary conditions from the equation (15).

2 Main Theorem

Proposition 1. For any x, y, y′ ∈ I,

π1

[
T
(
(0, y), (x, y′)

)]
= 0. (16)

Proof. From the monotonicity and the boundary condition of t-norm T ,

T
(
(0, y), (x, y′)

)
≤ T

(
(0, 1), (1, 1)

)
= (0, 1), (17)

therefore,
π1

[
T
(
(0, y), (x, y′)

)]
= 0. (18)

Proposition 2. For any x, x′, y ∈ I,

π2

[
T
(
(x, 0), (x′, y)

)]
= 0. (19)

Proof. It is proved as same as Proposition 1.

In this section, it is shown that if a two-dimensional t-norm satisfies the
conditions

T
(
(1, 0), (1, 0)

)
= (1, 0), (20)

T
(
(0, 1), (0, 1)

)
= (0, 1), (21)

it could be decomposed into Cartesian product of two one-dimentional t-
norms, and each one-dimensional t-norm have a genarating function. The
t-norm mentioned in Example 1 satisfies the condition (20) and (21), but the
t-norm mentioned in Example 2 does not satisfy the condition (21).

Proposition 3. Assume that a two-dimensional t-norm T satisfies the con-
dition (21). For any x, x′ ∈ I, there exists x̂ ∈ I such that the equation
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T
(
(x, 1), (x′, 1)

)
= (x̂, 1) (22)

holds.

Proof. From the condition (21) and the monotonicity of T ,

(0, 1) = T
(
(0, 1), (0, 1)

)
≤ T

(
(x, 1), (x′, 1)

)
, (23)

therefore,
π2

(
T
(
(x, 1), (x′, 1)

))
= 1. (24)

Proposition 4. Assume that that a two-dimensional t-norm T satisfies the
condition (20). For any y, y′ ∈ I, there exists ŷ ∈ I such that the equation

T
(
(1, y), (1, y′)

)
= (1, ŷ) (25)

holds.

Proof. The proof is same as Proposition 3.

The map
T1 : I × I → I, T1(x, x

′) = x̂ (26)

could be defined from the condition (22) in Proposition 3. Similarly, the map

T2 : I × I → I, T2(y, y
′) = ŷ (27)

could be defined from the condition (25).
A two dimensional-tnorm T is continuous , if T satisfies the condition

lim
(x,y)→(x0 ,y0)

(x′,y′)→(x′
0,y′

0)

T
(
(x, y), (x′, y′)

)
= T

(
(x0, y0), (x

′
0, y

′
0)
)

(28)

for arbitrary (x0, y0), (x
′
0, y

′
0) ∈ I × I.

Theorem 1. Assume that a strongly monotone and continuous two-
dimensional t-norm T satisfies the conditions (20) and (21). Let T1 and T2

be the maps that are defined by the equations (26) and (27) respectively. The
operations T1 and T2 are strongly monotone and continuous one-dimensional
t-norms.

Proof. Take x, x′ ∈ I arbitrarily. Because t-norm T is commutative, the
equation

π1

[
T
(
(x, 1), (x′, 1)

)]
= π1

[
T
(
(x′, 1), (x, 1)

)]
(29)

holds, therefore, T1(x, x
′) = T1(x

′, x). That is, the operation T1 is commu-
tative. Take x, x′, x′′ ∈ I arbitrarily. Because t-norm T is associative, the
equation

π1

[
T
(
T
(
(x, 1), (x′, 1)

)
, (x′′, 1)

)]
= π1

[
T
(
(x, 1), T

(
(x′, 1), (x′′, 1)

))]
(30)
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holds, therefore, T1

(
T1(x, x

′), x′′) = T1

(
x, T1(x

′, x′′)
)
. That is, the operation

T1 is associative. Assume that x, x′, x′′ ∈ I and x < x′. Because the order
relation (x, 1) < (x′, 1) holds, the order relation

T
(
(x, 1), (x′′, 1)

)
< T

(
(x′, 1), (x′′, 1)

)
(31)

holds from the strong monotonicity of the t-norm T . Because the equation

π2

[
T
(
(x, 1), (x′′, 1)

)]
= π2

[
T
(
(x′, 1), (x′′, 1)

)]
= 1 (32)

holds, the inequality

π1

[
T
(
(x, 1), (x′′, 1)

)]
< π1

[
T
(
(x′, 1), (x′′, 1)

)]
(33)

holds. Therefore, T1(x, x
′′) < T1(x

′, x′′). That is, the operation T1 is strongly
monotone. Take x ∈ I arbitrarily. From Proposition 2, the equation

π1

[
T
(
(x, 1), (0, 1)

)]
= 0 (34)

holds. Therefore, T1(x, 0) = 0. Furthermore, from the boundary condition of
the t-norm T , the equation

T
(
(x, 1), (1, 1)

)
= (x, 1) (35)

holds. Therefore, T1(x, 1) = x. Take x0, x
′
0 ∈ I arbitrarily. Because the t-

norm T is continuous, the equation

lim
(x,x′)→(x0,x′

0)
T
(
(x, 1), (x′, 1)

)
= T

(
(x0, 1), (x′

0, 1)
)

(36)

holds, therefore, the equation

lim
(x,x′)→(x0,x′

0)
T1(x, x

′) = T1(x0, x
′
0) (37)

holds. That is, the operation T1 is also continuous. The proof for the operation
T2 is quite the same as T1.

Theorem 2. Assume that strongly monotone and continuous two-dimensional
t-norm T satisfies the condition (20) and (21). There exist two strongly mono-
tone function

h1 : (0, 1]→ [0,+∞), (38)

h2 : (0, 1]→ [0,+∞) (39)

and a map
Λ : I × I → I × I (40)
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and a pseudo-inverse Λ̃ of Λ such that

T
(
(x, y), (x′, y′)

)
=

Λ
[(

h−1
1

(
h1(x̃) + h1(x̃′)

)
, h−1

2

(
h2(ỹ) + h2(ỹ′)

))]
, (41)

Λ̃
(
(x, y)

)
= (x̃, ỹ), Λ̃

(
(x′, y′)

)
= (x̃′, ỹ′)

holds for any (x, y), (x′, y′) ∈ (0, 1]× (0, 1].

Proof. Let T1 be the map defined by the equation (26). From Theorem 1, the
map T1 is strongly monotone and continuous, therefore, it has a generating
function.1 That is, there exists strongly monotone and continuous function

h1 : (0, 1]→ [0,+∞) (42)

such that the equation

T1(x, x
′) = h−1

1

(
h1(x) + h1(x

′)
)
, x, x′ ∈ (0, 1] (43)

holds. Similarly, let T2 be the map defined by the equation (27), then T2 has a
generating function. That is, there exists strongly monotone and continuous
function

h2 : (0, 1]→ [0,+∞), (44)

such that the equation

T2(x, x
′) = h−1

2

(
h2(x) + h2(x

′)
)
, x, x′ ∈ (0, 1] (45)

holds. Define the map Λ : I × I → I × I by the equation

Λ
(
(x, y)

)
= T

(
(x, 1), (1, y)

)
, (x, y) ∈ I × I. (46)

Let ∆1 = {(x, 0) |x ∈ I}. The segment ∆1 is one of four segments that
compose the boundary of the domain I × I. From Proposition 2, Λ

(
(x, 0)

)
∈

∆1 holds. Furthermore, the equations

Λ
(
(0, 0)

)
= T

(
(0, 1), (1, 0)

)
= (0, 0), (47)

Λ
(
(1, 0)

)
= T

(
(1, 1), (1, 0)

)
= (1, 0) (48)

hold, therefore, Λ(∆1) = ∆1. Similarly, for the segment ∆2 = {(0, y) | y ∈ I},
the equation Λ(∆2) = ∆2 holds. For the segment ∆′

1 = {(x, 1) |x ∈ I}, the
equation

Λ
(
(x, 1)

)
= T

(
(x, 1), (1, 1)

)
= (x, 1) (49)

holds from the boundary condition of T . Furthermore, the equations

Λ
(
(0, 1)

)
= T

(
(0, 1), (1, 1)

)
= (0, 1), (50)

Λ
(
(1, 1)

)
= T

(
(1, 1), (1, 1)

)
= (1, 1) (51)
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hold, therefore, Λ(∆′
1) = ∆′

1. Similarly, for the segment ∆′
2 = {(1, y) | y ∈

I}, the equation Λ(∆′
2) = ∆′

2 holds. Therefore, for the boundary ∆ =
{∆1,∆2,∆

′
1,∆

′
2} of the closed domain I × I, the equation Λ(∆) = ∆ holds.

Therefore, the map Λ : I × I → I × I is a surjection, and there exists a
pseudo-inverse Λ̃ : I × I → I × I such that Λ

(
Λ̃
(
(x, y)

))
= (x, y). Let

Λ̃
(
(x, y)

)
= (x̃, ỹ), Λ̃

(
(x′, y′)

)
= (x̃′, ỹ′), (52)

then

T
(
(x, y), (x′, y′)

)
= T

(
Λ
(
(x̃, ỹ)

)
, Λ
(
(x̃′, ỹ′)

))

= T
(
T
(
(x̃, 1), (1, ỹ)

)
, T
(
(x̃′, 1), (1, ỹ′)

))

= T
(
T
(
(x̃, 1), (x̃′, 1)

)
, T
(
(1, ỹ), (1, ỹ′)

))

= T
((
T1(x̃, x̃′), 1

)
,
(
1, T2(ỹ, ỹ′)

))

= T
((

h−1
1

(
h1(x̃) + h1(x̃′)

)
, 1
)
,
(
1, h−1

2

(
h2(ỹ) + h2(ỹ′)

)))

= Λ
[(

h−1
1

(
h1(x̃) + h1(x̃′)

)
, h−1

2

(
h2(ỹ) + h2(ỹ′)

))]
(53)

holds.

Many applications of two-dimensional t-norms could be considered. In intu-
itionistic fuzzy set theory [2], a fuzzy set is defined as A = {(x, μA(x), νA(x))},
where μA(x) ∈ I is the degree of membership of x in A, νA(x) ∈ I is the
degree of non-membership of x in A. The degree of membership is defined
as a pair of numbers in I × I, therefore, two-dimensional t-norms could be
applicable. Furthermore, studies of partially ordered semigroups are impor-
tant as fundamental studies [3]. The authors are considering them as further
themes of our studies.

The authors wish to express their gratitude to the unknown referees for
their fruitful comments and advices.
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Approximating a Fuzzy Vector Given
Its Finite Set of Alpha-Cuts

Xuecheng Liu and Qinghe Sun

Abstract. In this paper, with information of a finite set of alpha-cuts of a
2-dimensional fuzzy vector, we propose some approaches in approximating
the fuzzy vector by a fuzzy vector or a sequence of fuzzy vectors.

Keywords: Fuzzy number, Fuzzy vector, Alpha-cut, Membership function,
Convex set, Convex hull.

1 Introduction

In any application of fuzzy sets, we first need to elicit their membership
functions. It is much more practical to require information of a finite set of
alpha-cuts (such as the core and the support) of a fuzzy set than the mem-
bership function itself. One question is that how to approximate or construct
a fuzzy set with the information of these alpha-cuts. This paper answers the
question to a special case of fuzzy sets, 2-dimensional fuzzy vectors, or fuzzy
vectors for short from now on, defined on the universal set of R2.

To (1-dimensional) fuzzy numbers, there are two directions in approxima-
tion. One is to approximate fuzzy numbers having complicated membership
functions with fuzzy numbers having simpler membership functions such as
interval numbers (e.g., Grzegorzewski [5], Chanas [3]), fuzzy numbers with tri-
angular and trapezoidal membership functions (e.g., Abbasbandy [1], Ban [2]
and Yeh [9]), or more flexible LR fuzzy numbers (Dubois [4]), to name a few.
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It is clear that defuzzification is the wildest approximation for fuzzy numbers
(e.g., Ma et al [6]).

The other direction in approximating fuzzy numbers is, given a finite set
of alpha-cuts of a fuzzy number, how to approximate it or reconstruct it with
a new fuzzy number. For such purpose, Wang [8] approximates the fuzzy
number with a pairwise approximation of a fuzzy set on R1 with piecewise
linear membership function. Figure 1 from Wang [8] illustrates the notion,
and the membership function may be termed as piled trapezoidal membership
function.

Fig. 1 Fuzzy number approximation using piecewise linear membership functions
(Wang [8])

This paper applies above notion to fuzzy vectors: given a finite set of alpha-
cuts of a fuzzy vector, we approximate or reconstruct the fuzzy vector with
a fuzzy vector with piled “2-dimensional trapezoidal” membership function.
Without any loss of generality, in this paper, we consider the case that the
given finite set of alpha-cuts consists of only the support and the core.

The rest of this paper is organized as follows. In Section 2, we describe the
concepts of fuzzy set, the core and the support of a fuzzy set, fuzzy number,
fuzzy vector etc. We also give some notations used in the paper.

In Section 3, we propose some approaches in approximating fuzzy vectors
when (1) the core is a singleton; (2) the support and the core are regions
enclosed by the projections of two parallel conic sections of a cone; and (3)
the core and the support are two rectangles with parallel sides.

In Section 4, first, we use an example to explain that, for more general
cores and supports of fuzzy vectors, the approaches used in Section 3 are no
longer working. Then we proposal a new approach in approximating fuzzy
vectors for any given cores and supports of fuzzy vectors.
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In Section 5, we discuss further research questions on approximating 2-
dimensional fuzzy vectors and discuss possibilities of the approximating ap-
proaches in this paper to even high-dimensional fuzzy vectors.

2 Definitions, Assumptions and Notations

Definition 1. (Fuzzy sets, alpha-cuts, cores, supports, Zadeh [10] and
Talaǒvá et al. [7]) A fuzzy set A on X is defined by its membership function
A : X → [0, 1]. The α-cuts Aα (α ∈ [0, 1]) are defined by {x ∈ X ; A(x) ≥ α}.
The α-cut A1 is called the core of A and denoted by Core(A), and the set
{x ∈ X ; A(x) > 0} is called the support of A and denoted by Supp(A).

Definition 2. (Fuzzy vectors and fuzzy numbers, Talaǒvá et al [7]) A
fuzzy set A on Rm is called a fuzzy vector, or a fuzzy number when m = 1, if
(1) Core(A) �= ∅; (2) for all α ∈ (0, 1], Aα are bounded closed convex subsets
of Rm; and (3) Supp(A) is bounded.

Assumptions and notations. Throughout this paper:

• We use A to stand for both the fuzzy vector with given support and core
and the fuzzy vector used to approximate it;

• We identify Supp(A) and its closure and denote it by A0;
• We assume that the interior of A0 (to the usual topology in R2) is

not empty. (Otherwise, fuzzy vectors are equivalent to fuzzy numbers
or alike);

• We assume that A1 (i.e. Core(A)) is a subset of the interior of A0, i.e.,
the boundaries of A0 and A1 are disjoint;

• We denote by P1P2 the segment between P1, P2 ∈ R2;
• We denote by d(P1, P2) the Euclidean distance between P1, P2 ∈ R2;
• We denote by P1P2 · · ·Pk the polygon with vertices P1, P2, ..., Pk in R2;
• Let S be a bounded solid-region in R2, we denote its boundary by ∂(S).
• We denote by LCP the ray with vertex C and through the point P , and
LC the set consisting of all LCP ’s;

3 Approximating Fuzzy Vectors: Some Special Cases

The case of singleton cores. If A1 is a singleton, denoted by {C}, by our
assumption, the point C is an interior point of A0. We approximate the fuzzy
vector A by the fuzzy vector whose membership function is the surface of
the cone with the vertex C at height 1 and with the boundary of A0 as the
perimeter of the cone base. Figure 2 illustrates the case: for P ∈ A1, Q lies on
the surface of the cone and the segment QP is orthogonal to the X1X2 plane.
The membership degree of A at P is the height of Q, i.e, d(Q,P ). Clearly,
the membership function is continuous.

The membership function A can be defined in another equivalent way. In
Figure 2, for the point P , denote by P0 the point at which the ray LCP and
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Fig. 2 A membership
function of fuzzy vector
with singleton core

∂(A0) intersect. (The point Q must lies on the segment of HP0.) The the
membership degree of A at P is d(P0, P )/d(P0, C).

The case of supports and cores paralleling to conic sections. This
is a case which is an extension of above case. The support and the core are
regions enclosed by the projections of parallel conic sections of a cone. Figure
3 illustrates the case. Similar to the case of singleton cores, the membership
function of the fuzzy vector is defined by the surface of the frustum, that is,
the membership degree is defined as 1 for any point in A1, and as the height
of Q, i.e., d(P,Q), for the points P ∈ A0 \A1 (the difference of sets A0, A1).

Fig. 3 An membership
function of a fuzzy vector
with the support and
the core to parallel conic
sections

Similar to the case of singleton cores, the membership function of A can be
defined in an equivalent way. For any P ∈ A0\A1, denote by P0 (respectively,
P1) the point at which the ray LCP and ∂(A0) (respectively, ∂(A1)) intersect.
Then the membership degree of A at P is d(P0, P )/d(P0, P1).

The case of rectangle supports and cores with parallel sides. Consider
the case of the support X1X2X3X4 and the core Y1Y2Y3Y4 as rectangles
shown in Figure 4. We do not require that there exists a cone to the support
and the core as the cases discussed above. The most natural way to use
the following approach to approximate the fuzzy vector A: for each P in
A0 \A1, say P in X2X3Y3Y2, draw a line parallel to X2X3, and denote by P2

(respectively P3) the point at which the line and X2Y2 (respectively X3Y3)
intersect. The membership degree of A at P is defined as d(Y2, P2)/d(Y2, X2)
(or, equivalently, d(Y3, P3)/d(Y3, X3)).
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Fig. 4 Rectangle sup-
ports and cores with
parallel sides

We can define the same membership degree of A at the point P by con-
sidering a ray LCP where C ∈ A1 and LCP and Y2Y3 intersect. Denote by
P0 (respectively, P1) the point at which LCP and ∂(A0) (respectively, ∂(A1))
intersect. The membership degree of A at P is d(P0, P )/d(P0, P1). Note that
the choice of C may depend on the point P in this case, unlike the two cases
discussed above.

4 Approximating Fuzzy Vectors: General Case

In this section, we consider the general case of the supports and the cores
of fuzzy vectors. Remind that we have assumed that the boundaries of the
support and the core are disjoint (Section 2).

In all of the three special cases discussed in Sections 3, we can always use
the “drawing-a-ray” approach in defining the membership functions. It seems
natural to apply the same notion to the general case. That is, to select a point
C in the interior of A1 and consider all rays with vertex C. For any point
P in A0 \ A1, denoted by P0 (respectively, P1) the point at which LCP and
∂(A0) (respectively, ∂(A1)) intersect. Then define the membership degree of
A at the point P as d(P1, P )/d(P1, P0). However, the fuzzy set defined in this
way usually is not a fuzzy vector, as the following example shows.

An example of fuzzy set on R2 which is not a fuzzy vector. In Figure
5, the support A0 is the rectangle with vertices

(−6,−8), (6,−8), (6, 8), (−6, 8),

and the core A1 is the hexagon with vertices

(0,−6), (3/2,−2), (3/2, 2), (0, 6), (−3/2, 2), (−3/2,−2).

We select O(0, 0) as the vertex of the rays, and define membership function
in the “drawing-a-ray” approach. The 1

2 -cut is not convex, even A0, A1 are
symmetric polygons and O is the center of both A0 and A1. ✷

To the general case, we modify above ”drawing-a-ray” approach. The
basic idea is to construct a sequence of fuzzy vectors with “2-dimensional
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Fig. 5 An example of
fuzzy sets being not a
fuzzy vector

step-functions” whose limit is the fuzzy vector A. We explain the idea with
above example, where, with “drawing-a-ray” approach, the 1

2 -cut is not con-
vex. We use its convex hull as the 1

2 -cut of A in approximation. In this way,
we construct a fuzzy vector with the “2-dimensional step-functions” with 3
alpha-cuts, A0, A 1

2
and A1, rather than the original 2 alpha-cuts A0 and A1.

Then consider the pair of A0, A 1
2

and the pair A 1
2

and A1 separately, we can
further construct A 1

4
and A 3

4
. Such process can be repeated as many times

as we need, and the approximation will get better and better. Meanwhile,
if, after some steps, all newly contracted alpha-cuts are already convex, we
come back to the “drawing-a-ray” approach.

We formulate the notion in the following Theorem 1, where we show that
the fuzzy vector defined by the limit of the sequence of the fuzzy vectors
with 2-dimensional step-functions has an everywhere continuous membership
function.

Before we state Theorem 1, we give some notations. Let S0 ⊇ S be two
bounded solid-regions in R2 and S has nonempty interior, let C be a point
in the interior of S.

Hc(S)
def
= the convex hull of S;

T (C, S, S0)
def
= {(P, P0); for L ∈ LC , ∂(S), ∂(S0) intersect L at P, P0

respectively};
M(C, S, S0)

def
= {M ; M is the mid-point of P, P0, (P, P0) ∈ T (C, S, S0)};

D(C, S, S0)
def
= max{d(P, P0); (P, P0) ∈ T (C, S, S0)}.

The value D(C, S, S0) describes the degree of closeness between the bound-
aries of S and S0: the smaller the value D(C, S, S0) is, the closer the bound-
aries of S and S0 are.
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We can use Figure 5 to illustrate the notations. The sets S0 and S in defin-
ing notations are A0 and A1 in Figure 5 respectively. The set T (C, S, S0) con-
sists of all “twin” pairs (P, P0) for all rays with vertex O; The set M(C, S, S0)
is the curve of all points M ’s; The value D(C, S, S0) is the distance between
(say) the points (3/2, 2) and (6, 8), i.e., 7.5.

The sequence of the fuzzy vectors, denoted by {An}n=0,1,2,..., whose limit
is used to approximate A, is constructed as follows. First, inductively, denote,

for n = 0 : A0
0

def
= A0, A0

1
def
= A1;

for n = 1 : A1
0

def
= A0

0, A1
1
2

def
= Hc(M(C,A0

1, A
0
0)), A1

1 = A0
1;

for n = 2 : A2
1

def
= A1

1, A2
3
4

def
= Hc(M(C,A1

1, A
1
1
2
)), A2

2
4

def
= A1

1
2
,

A2
1
4

def
= Hc(M(C,A1

1
2
, A1

0)), A2
0 = A1

0,

repeat above process, for each An, we have 2n +1 alpha-cuts, from largest to
smallest,

An
0 = An

0/2n = A0, A
n
1/2n , An

2/2n , ..., An
2n/2n = An

1 = A1.

Then we can define the sequence of fuzzy vectors {An}n=0,1,2,... as

An(P ) =

{
1, if P ∈ An

1 = A1,
k
2n , if P ∈ An

k
2n
\An

k+1
2n

(k = 2n − 1, 2n − 2, ..., 1, 0).

Above partitioning process can be as fine as we need, which is formalized
in Lemma 1.

Lemma 1. Under the assumption that ∂(A0) and ∂(A1) are disjoint,

1. For n = 1, 2, ..., i = 0, 1, ..., 2n, ∂(An
i/2n) and ∂(An

(i+1)/2n) are disjoint.

2. For every δ > 0, there exists a positive integer N(δ) such that

max{D(C,An
i/2n , An

(i+1)/2n); i = 0, 1, 2, ..., 2n} < δ

when n ≥ N(δ).

Proof. Omitted. ✷

For every P ∈ A0, since An(P ) is increasing and upper bounded by 1, then
limn→∞An(P ) exists. We obtain a fuzzy set whose membership function is
defined by the the limit. By using Lemma 1, we can prove

Theorem 1. The fuzzy set A defined by the limit is a fuzzy vector, and the
membership function is continuous over A0.

Proof. Omitted. ✷
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5 Summary and Discussion

Given a finite set of alpha-cuts of a fuzzy vector, we discussed how to ap-
proximate it with one having “2-dimensional” trapezoidal-like membership
functions. Without any loss of generality, assuming that the finite set of
alpha-cuts contains the support and the core only,

• we listed 3 special cases that we can use the “drawing-a-ray” approach
to approximate the fuzzy vector;

• we used an example to show that the “drawing-a-ray” approach usually
does not work in general case;

• and thus, in general case, we constructed a sequence of fuzzy vectors to
approximate the fuzzy vector;

• and finally, in general case, we proved that the fuzzy vector defined by
the sequence limit has everywhere continuous membership function.

Note that in this paper, we assumed that the boundaries of the support and
the core are disjoint. Without it, the continuity of the membership function
of the limit fuzzy vector does not hold.

The most natural choice of the vertex of the rays is the centroid the core
of the fuzzy vector. Further study is needed in the sensitivity of the choice.

We could extend the discussion from 2-dimensional fuzzy vectors into any
multi-dimensional fuzzy vectors. It seems that we have not difficulty for such
extension if we “translate” the language in 2-dimensional fuzzy vectors in
Sections 3 and 4 into the language in any multi-dimensional fuzzy vectors.
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A New Fuzzy Linear Programming
Model and Its Applications

Hsuan-Ku Liu and Berlin Wu

Abstract. It is difficult to determine precise values for the parameters in the
real world problems. To model the uncertainty, a new fuzzy linear program-
ming model, called β-tolerance linear programming model, is developed in this
paper. When the fuzzy numbers are all triangle fuzzy numbers, the solutions,
which propose a selection interval for the decision maker, are obtained.

Keywords: Fully fuzzy linear inequations, Fuzzy triangular matrix, Fuzzy
programming, Optimization models.

1 Introduction

Many decision problems or resources allocation problems are modelled as
a linear programming models. However, determining precise values for the
parameters in the real world problems is often a difficult task for the decision
maker(s). To model the uncertainty, many methods, such as the stochastic
programming or the fuzzy programming, are developed. The uncertainty in
the stochastic programming is described by a probabilistic random variable.

Many real world problems take place in an imprecise environment in where
vagueness in the coefficient may not be of a probabilistic type. In this section,
the decision makers could model the imprecise by means of fuzzy parameters
[19]. In the last few years, several articles have been devoted to the study of
this subject [14], [15]. An early contribution was made by Fang et al. [10].
They focus on the fuzzy linear programming
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max cTx

s.t. Ãx ≤ b̃
x ≥ 0,

where Ã and b̃ are n×m and m× 1 matrices with fuzzy coefficients, c and x
are crisp n-dimensional column vectors. Based on the specific ranking of fuzzy
numbers, such problems are reduced to a linear semi-infinite programming
problems.

Recently, few studies have been made at the full fuzzy linear programming
problems of which the coefficients and the variables are all fuzzy numbers.
With a special ranking on fuzzy numbers, Hosseinzadeh Lotfi [12] transformed
the full fuzzy linear programming to multiple objective linear programming
where all variables and parameters are crisp. The fuzzy linear programming
with multiple objective linear programming has also been used by Buckley [1]
and Xu and Chen [16].

This paper addresses a β−tolerance fuzzy linear programming model. To
find a feasible region of this model, we first consider the the β-tolerance fuzzy
system of inequalities. The advantage is that the programming with triangle
fuzzy coefficients can be transformed to a crisp linear programming and its
solution is still a triangle fuzzy vector. In the example, the β-tolerance fuzzy
linear programming is applied to model the resources allocation problems in
the vagueness environments.

This paper is organized as follows. In Section 2, the basic results of the
fuzzy set theory will be discussed. In this section, we provide definitions for
the solution of non-negative FFLS. In Section 3, we propose the β-tolerance
relation between two fuzzy numbers and consider the fuzzy linear system of
inequalities under the given relation. In Section 4, we develop the β-tolerance
fuzzy linear programming and provide two applications for this programming.
In Section 5, we close this paper with a concise conclusion.

2 Preliminary and Generalized Definition

This section introduces basic results in fuzzy set theory.

Definition 1. A fuzzy number A = (a, α, β), α > 0, β > 0 is called a triangle
fuzzy number if its membership function has the form:

μA(x) =

⎧
⎪⎨
⎪⎩

x−a+α
α if x ≤ a,

1 if x = a,
x−a−β

β if x ≥ a.

where a is the center of F and α ≥ 0 and β ≥ 0 are the left and right spreads,
respectively.

Here, we say that Ã = (a, α, β) is positive if a − α > 0 and that two fuzzy
numbers A = (a, α, β) and B = (b, γ, δ) is equal if a = b, α = γ and β = δ.
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For any two fuzzy numbers, we define the following operations [9].

Definition 2. Let F be the set of LR-fuzzy numbers. If A = (a, α, β) and
B = (b, γ, δ) are two fuzzy numbers in F , then two operations, say addition
and multiplication, are defined as:

• Addition
(a, α, β) ⊕ (b, γ, δ) = (a + b, α + γ, β + δ).

• Approximate multiplication
If A > 0 and B > 0, then

(a, α, β) ⊗ (b, γ, δ) = (ab, bα + aγ, bβ + aδ).

If A < 0 and B > 0, then

(a, α, β)⊗ (b, γ, δ) = (ab, bα− aδ, bβ − aγ).

If A < 0 and B < 0, then

(a, α, β) ⊗ (b, γ, δ) = (ab,−bβ − aδ,−bα− aγ).

On the other hand, the fuzzy matrix is defined as follows.

Definition 3. A matrix Ã = (ãij) is called a fuzzy matrix if each element in
A is a fuzzy number.

Following the notation of Dehghan and Hashemi [6], the matrix Ã can be
represented as Ã = (A,M,N) since Ã = (ãij) and ãij = (aij , αij , βij). Three
crisp matrices A = (aij), M = (αij) and N = (βij) are called the center
matrix and the right and left spread matrices, respectively.

The symmetric fully fuzzy linear system (SFFLS) is given as form:

(ã11 ⊗ x̃1)⊕ (ã12 ⊗ x̃2)⊕ · · · ⊕ (ã1n ⊗ x̃n) = b̃1,

(ã21 ⊗ x̃1)⊕ (ã22 ⊗ x̃2)⊕ · · · ⊕ (ã2n ⊗ x̃n) = b̃2,
...

(ãn1 ⊗ x̃1)⊕ (ãn2 ⊗ x̃2)⊕ · · · ⊕ (ãnn ⊗ x̃n) = b̃n.

(1)

The matrix form of this linear system is represented as

Ã⊗ x̃ = b̃

where [Ã]α = (ãij) = (A,Aα, Aα), 1 ≤ i, j ≤ n is an n × n fuzzy matrix,

x̃ = (x̃i) = (x, xα, xα) and b̃ = (b̃i) = (b, bα, bα)), 1 ≤ i ≤ n are n× 1 fuzzy
matrices. Hence the α-level set of Ã⊗ x̃ is

[Ã⊗ x̃] = (Ax,Aαx + Axα, Aαx + Axα),
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as Ã is positive. This implies that the fuzzy linear system is reformulated as

Ax = b,
Aαx + Axα = bα,

Aαx + Axα = bα,

for all 0 ≤ α ≤ 1. So far, a considerable number of researches, such as [6], [7],
[8], has been proposed to find the solution of the linear systems.

In the following sections, we shall consider the linear system of fuzzy in-
equalities and the fuzzy optimization problems.

3 The β-Tolerance Fuzzy Linear System of Inequalities

To consider the fuzzy inequality system, we first propose a fuzzy relation
between two fuzzy numbers.

Definition 4. Let ã and b̃ be two fuzzy numbers. We say ã ≤β b̃ if

sup{x|x ∈ [ã]α} ≤ inf{x|x ∈ [̃b]α}

for α ≥ β, where [ã]α and [̃b]α are α-level sets of ã and b̃.

Let ã and b̃ be two triangle fuzzy numbers, their α-level sets are written
as

[ã]α = (a, (1 − α)a, (1− α)a) and [̃b]α = (b, (1− α)b, (1− α)b).

This implies

sup{x|x ∈ [ã]α} = a + (1− α)a and inf{x|x ∈ [̃b]α} = b− (1− α)b.

For the triangle fuzzy numbers, we say ã ≤β b̃ if (1−α)(a+ b) ≤ b− a, for

β ≤ α ≤ 1, since (1−α) ≤ (1− β),for β ≤ α ≤ 1. Let Ã = (ãij) be a triangle

fuzzy matrix with α-level set [Ã]α = (A, (1− α)A, (1− α)A) and b̃ = (̃bi) be

a triangle fuzzy vector with α-level set[̃b]α = (b, (1 − α)b, (1 − α)b). Here, A

(or b) is the center matrix of Ã (or b̃), and A (or b) and A ( or b) are left and

right spread matrices of [Ã]0 (or [̃b]0).
Let [x̃]α = (x, (1 − α)x, (1 − α)x) be a triangle fuzzy number. The

β−tolerance fuzzy linear system of inequalities is considered by

Ã⊗ x̃ ≤β b̃. (2)

and is formulated as

(Ax, (1−α)Ax+(1−α)Ax, (1−α)Ax+(1−α)Ax) ≤ (b, (1−α)b, (1−α)b),

for all β ≤ α ≤ 1. This implies that

[(1− α)A + A]x ≤ [b− (1− α)b]− (1− α)Ax, ∀ β ≤ α ≤ 1. (3)
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Definition 5. The solution of the system (2) is to find the fuzzy vector [x̃]α =
(x, (1 − α)x, (1− α)x) such that the inequality 3 holds for α ≥ β.

Since (1− α) ≤ (1− β), it is suffices to solve the system of inequalities

[(1− β)A + A]x ≤ [b− (1− β)b]− (1− β)Ax.

4 The β−Tolerance Fuzzy Linear Programming and
Their Applications

Many linear programming models are developed under the crisp setting. How-
ever, it is difficult to estimate the parameters about the future prices and the
market requirements at the current time. To model the uncertainty of future,
we shall propose the β-tolerance fuzzy linear programming models, of which
the solutions and the parameters are all fuzzy numbers.

Definition 6. Given 0 ≤ β ≤ 1, the standard statement of the β−tolerance
fuzzy linear programming model has the form

max c̃⊗ x̃,

s.t. Ã⊗ x̃ ≤β b̃,
x̃ ≥ 0,

where Ã, c̃, and b̃ are fuzzy triangle matrices and [x̃]α = (x, (1−α)x, (1−α)x)
is a triangle fuzzy variable.

The fuzzy feasible region is obtained as

{(x, (1−α)x, (1−α)x)|[(1−β)A+A]x+(1−β)Ax ≤ b−(1−β)b, and x−x ≥ 0}

and this model is reformulated as the linear programming model with fuzzy
objective function:

max c̃⊗ x̃,

s.t. [(1− β)A + A]x + (1− β)Ax ≤ b− (1 − β)b,
x− x ≥ 0.

Remark 1. Over the past two decades, a great deal of effort has been made on
ranking a set of fuzzy numbers. Most methods, such as [3], [4], [5], [17], [18],
rank the fuzzy numbers by integrating the membership function of the fuzzy
number. However, for the triangle fuzzy number it suffices to compare the
center point, the left spread, and the right spread (c.f. Liu et al. [11]).

Example 1. (Resources allocation problems)
Two resources, A and B, are used to produce three main products, C, D,
and E. Each unit of resource A yields about 0.3 unit of product C, about
0.4 unit of product D, about 0.2 unit of product E. Each unit of resource B
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yields about 0.4 unit of product C, about 0.3 unit of product D, about 0.3
unit of product E. Two resources can purchase up to about 90 units per day
of resource A at about $20 per unit, up to about 60 units per day of resource
B at about $15 per unit. The requirement of products are about 20 units per
day of product C, about 15 units per day of product D, and about 05 unit per
day of product E. How can these requirements be fulfilled most efficiently?

We define decision variables
x1

Δ
= units of resource A refined per day.

x2
Δ
= units of resource B refined per day.

In the crisp setting, this resources allocation problem is formulated as

min 20x1 + 15x2,
s.t. 0.3x1 + 0.4x2 ≥ 20,

0.4x1 + 0.2x2 ≥ 15,
0.2x1 + 0.3x2 ≥ 5,
x1 ≤ 90, x2 ≤ 60, x1, x2 ≥ 0.

The solution of above model is obtained as x1 = 20 and x2 = 35.
However, in the future the real requirement or the real price can not be

known at the current time. Hence, it may be better to formulate the model
by using the β−tolerance fuzzy linear programming model as follows.

min 2̃0x̃1 + 1̃5x̃2,

s.t. 0.3x̃1 + 0.4x̃2 ≥β 2̃0,

0.4x̃1 + 0.2x̃2 ≥β 1̃5,

0.2x̃1 + 0.3x̃2 ≥β 5̃,

x̃1 ≤β 9̃0, x̃2 ≤β 6̃0, x̃1, x̃2 ≥ 0.

Suppose that the spread (uncertain) in this model is 0.5 for each fuzzy
number. In practice, the spread should be estimated by using the market
data. As a result, this fuzzy model is reformulated as the form.

min (20x1 + 15x2, 2x1 + 15x2 + 0.5x1 + 0.5x2, 20x1 + 15x2 + 0.5x1 + 0.5x2),
s.t. 0.3x1 + 0.4x2 + (1 − β)(0.3x1 + 0.4x2) ≥ 20− 0.5(1− β),

0.4x1 + 0.2x2 + (1 − β)(0.4x1 + 0.2x2) ≥ 15− 0.5(1− β),
0.2x1 + 0.3x2 + (1 − β)(0.2x1 + 0.3x2) ≥ 5− 0.5(1− β),
x1 + (1− β)x1 ≤ 90− 0.5(1− β),
x2 + (1− β)x2 ≤ 60− 0.5(1− β),
x1 − (1− β)x1 ≥ 0, x2 − (1− β)x2 ≥ 0.

To find the solution, we should choose a suitable ranking method of the fuzzy
numbers for the consideration problems.

When the fuzzy numbers are ranked by their right points, the objective
function is written as

min (20x1 + 15x2) + (20x1 + 15x2 + 0.5x1 + 0.5x2).
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The fuzzy solutions are obtained as [x̃1]α =(20.5, 0, 0) and [x̃2]α =(35.25, 0, 0).
Here the left spreads and the right spreads are all less than 10−11 and are
regarded as zero.

When the fuzzy numbers are only ranked by their center points, that is
the objective function is written as

max 20x1 + 15x2,

the fuzzy solutions of this β-tolerance fuzzy linear programming model with
β = 0.5 can be obtained as [x̃1]α = [(20.5, 0, 63.18(1 − α))] and [x̃2]α =
[(35.25, 0, 24.55(1− α))], where 0.5 ≤ α ≤ 1. This implies that the decision
maker could select two crisp numbers from [20.5, 52] and [35.25, 47.5] for x1

and x2, respectively.

Remark 2. 1. The β-tolerance model is an extension of the crisp linear pro-
gramming model. When β = 1, the β-tolerance model is equal to the
crisp model.

2. We find that the fuzzy solutions of the β-tolerance model are depended
on their ranking methods. The ”goodness” of a selected ranking method
depends on the preference of the decision maker used in describing the
decision situation.

5 Conclusions

For the triangle fuzzy numbers, the main contributions of this paper are (i)
to propose a β-tolerance relation between two fuzzy numbers; (ii) to consider
the β-tolerance fuzzy linear system of inequalities; and (iii) to develop the β-
tolerance fuzzy linear programming for modelling the uncertainty of the real
world problems. The coefficients and the variables of the β-tolerance fuzzy
linear programming are all triangle fuzzy numbers. The advantage of this
model is that the programming with triangle fuzzy coefficients is transformed
to a crisp linear programming. The solution of this model proposes an interval
with membership function for the decision maker to make the decision.
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Interval Relaxation Method for Linear
Complementarity Problem

Juan Jiang

Abstract. This paper established an interval relaxation method for com-
plementarity problems. We proposed a method for linear complementarity
problems,which M is assumed to be an H-matrix with a positive main diag-
onal. The convergence of these algorithms are proved. Numerical results are
presented and show that the algorithms are stable and efficient.

Keywords: Complementarity problem, Interval relaxed, Iterative method.

1 Introduction

Complementarity problems arise naturally from the mathematical models of
various of physical processes, and also applied in engineering and economics.
The methods for solving complementarity have achieved an increasing atten-
tion in recent years. And there are some methods for solving the problem.
For instance, interval method for vertical nonlinear complementarity prob-
lem (see [3]), interval method for P0-matrix linear complementarity prob-
lem(see [10]), and homophony method for horizontal linear complementarity
problem (see [12]), and so on.

Let f : Rn −→ Rn be a continuously differentiable operator. The comple-
mentarity problem is to find a vector x ∈ Rn such that

⎧
⎨
⎩

x ≥ 0;
f(x) ≥ 0;
xT f(x) = 0.

(1)
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If f(x) is nonlinear operator,the problem (1) is denoted as nonlinear com-
plementarity problem NCP (f). If f(x) is linear operator, i.e. f(x) = Mx+q,
then problem (1) is denoted as linear complementarity problem LCP (M, q),
where q = (q1, q2, . . . , qn) ∈ Rn,M = (mij ∈ Rn×n).

The following notations on interval mathematics are used throughout our
paper. Let [x] = ([x1, x1], [x2, x2], . . . , [xn, xn])T = ([x]1, [x]2, . . . , [x]n)T be
the n− dimensional interval,where [x]i ∈ I(R) is a one-dimensional interval.
The set of all interval vectors on [x] is denoted as I(Rn). For ∀[x] ∈ I(Rn),
we define

m([x]) = (m([x]1),m([x]2), . . . ,m([x]n)),

W ([x]) = (W ([x]1),W ([x]2), . . . ,W ([x]n))T ,

r([x]) =
W ([x])

2
, i = 1, 2, . . . , n.

More detailed knowledge on interval mathematics can be found in[4-6].

2 Main Conclusion and Algorithm

Define

g(x) = max{0, x−ΩDf(x)} (2)

where Ω is relaxation matrix(a nonsingular matrix), D = diag(d1, d2 . . . , dn)
is diagonal matrix,where di > 0, i = 1, 2, . . . , n.

Theorem 2.1. x∗ is the solution of (1), if and only if x∗ is a fixed point of
g(x).

Proof. (1) x∗ is a fixed point of g(x), then x∗ = g(x∗) = max{0, x∗ −
ΩDf(x∗)}. If x∗ − ΩDf(x∗) ≥ 0, then x∗ = x∗ − ΩDf(x∗). Therefore,
ΩDf(x∗) = 0. Since Ω is a nonsingular matrix, so f(x∗) = 0. It follows that

(x∗)T f(x∗) = 0. While if x∗−ΩDf(x∗) < 0, then x∗ = 0 and (x∗)T f(x∗) = 0,
whence x∗ is the solution of (1).

(2) If x∗ is the solution of (1), then x∗ ≥ 0, f(x∗) ≥ 0 and (x∗)T f(x∗) = 0.
If x∗ = 0, then g(x∗) = max{0, x∗−ΩDf(x∗)} = max{0,−ΩDf(x∗)} = 0 =
x∗. It can be known that x∗ = 0 is a fixed point of g(x). If f(x∗) = 0, then
g(x∗) = max{0, x∗ − ΩDf(x∗)} = max{0, x∗} = 0 = x∗. Thus x∗ = 0 is a
fixed point of g(x). The proof is complete.

We introduce an interval operator (see [4])

max{0, [x]} = [max{0, x},max{0, x}]

where [x] is an n-dimensional interval vector,and max{0, [x]} is a component-
wise interval operator. It is easy to see that this operator is inclusion-
monotonic, that is to say if [x] ⊆ [y], then
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max{0, [x]} ⊆ max{0, [y]}, r(max{0, [x]}) ≤ r([x])

In [11], Wang Deren introduced the interval relaxation method for nonlin-
ear equations. This paper, we will establish the interval relaxation method
for complementarity problems.

Define

Γ (x, [x], D,Ω) = max{0, x−ΩDf(x) + (I −ΩDf ′([x]))([x] − x)}

Theorem 2.2. Let [x] is n-dimensional interval vector, f ′([x]) is the interval
extension of f ′ on [x]. If

Γ (x, [x], D,Ω) = max{0, x−ΩDf(x) + (I −ΩDf ′([x]))([x] − x)} ⊆ [x] (3)

where x ∈ [x] is fixed, Ω, D is defined as above, then Γ (x, [x], D,Ω) include
the solution of the problem (1). If any solution x∗ of (1) is included in [x],
then x∗ ∈ Γ (x, [x], D,Ω).

Proof. For ∀y ∈ [x] then

y −ΩDf(y) ∈ x−ΩDf(x) + (I −ΩDf ′([x]))([x] − x)

From [7],

g(y) = max{0, y −ΩDf(x)}
∈ max{0, x−ΩDf(x) + (I −ΩDf ′([x]))([x] − x)}

That is to say Γ (x, [x], D,Ω) is interval extension of the mapping g(·) on [x].
Then (3) show that g(·) map [x] onto itself,from the continuity of g(·) and
the Brouwer fixed point theorem, there is an x∗ ∈ [x] in g(·), where x∗ is the
solution of (1). For ∀x∗ ∈ [x],

x∗ = g(x∗) ∈ max{0, x−ΩDf(x) + (I −ΩDf ′([x]))([x] − x)}

that is

x∗ ∈ Γ (x, [x], D,Ω).

The proof is complete.

Corollary 2.1. Let Γ (x, [x], D,Ω) be defined as (3), if Γ (x, [x], D,Ω)∩ [x] =
Φ, then there is no solution of problem (1) in [x].

From theorem 2.2, if we start from an initial [x]0, satisfies(3), then we can
conclude a n-dimensional inclusion-monotonic sequence{[x]k}, where

[x]k+1 = Γ (xk, [x]k, Dk, Ωk) ∩ [x]k, k = 0, 1, 2, . . . ,
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xk ∈ [x]k, Dk is a nonsingular matrix, Ωk is relaxation matrix. So there is a
solution of problem(1)in every [x]k.

Corollary 2.2. Let [x] be n-dimensional interval, fix x ∈ [x], D is a nonsin-
gular matrix, Ωk is relaxation matrix. If

Γ (x, [x], D,Ω) = max{0, x−ΩD(Mx + q) + (I −ΩDM)([x]− x)} ⊆ [x](4)

Then there is a solution x∗ of linear complementarity problem in Γ (x, [x], D,Ω).
And if x∗ ∈ [x], then x∗ ∈ Γ (x, [x], D,Ω).

Next we will construct the interval iterative algorithm for linear comple-
mentarity problem, where M is H-matrix which main diagonal element is
positive. Before giving the algorithm, we define the H-matrix and compari-
son matrix. If M = (mij) ∈ Rn×n is H-matrix, then ∃d = (di),di > 0, such
that

∑

j �=i

|mij | < |mij |d(i = 1, 2, . . . , n).

Let M = (m)ij , is the comparison matrix of M, where

(m)ij =

{
|mij |, i = j,
−|mij |, i �= j.

Let D = diag(m−1
11 ,m

−1
22 , . . . ,m

−1
nn), Ω = diag(ω1, ω2, . . . , ωn) 0 < ωi < 1(i =

1, 2, . . . , n) and the interval [x] include the unique solution x∗,

{
[x]

0
= [x]

[x]
k+1

= [x]k ∩max{0, xk −ΩD(Mxk + q) + (I −ΩDM)([x]k − xk)} (5)

where [x]k = m([x]k).

Theorem 2.3. Let M be H-matrix which main diagonal element is positive,
if the unique solution x∗ of the linear complementarity problem is included
in [x], then the nested intervals sequence {[xk]}, which is generated from (5),
converges to [x∗, x∗].

Proof. From Corollary 2.2, the nested intervals sequence {[x]k}, ∀k =
0, 1, 2, . . . , x∗ ∈ [x]k, Denote

W =

⎡
⎢⎣

1− ω1 · · · 0
...

. . .
...

0 · · · 1− ωn

⎤
⎥⎦ ,

Consider

[x]
k+1 ⊆ max{0, xk −ΩD(Mxk + q) + (I −ΩDM)([x]k − xk)}
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Then

r([x]k+1) ≤ r(max{0, xk −ΩD(Mxk + q) + (I −ΩDM)([x]k − xk)})
≤ r(xk −ΩD(Mxk + q) + (I −ΩDM)([x]k − xk))

≤ r((I −ΩDM)([x]k − xk))

For xk = m([x]
k
), then

(I −ΩDM)([x]k − xk)

= (I −ΩDM)(−r(([x]k)− r([x]k))

= [−(W + Ω(I −DM)r([x]k), (W + Ω(I −DM)r([x]k))

where W + Ω(I −DM) ≥ 0. Hence

r([x]
k+1

) ≤ r(W + Ω(I −DM))r([x]k)

Denote A = W + Ω(I −DM), then

A = W + Ω(I −DM) =

⎡
⎢⎢⎢⎢⎣

1− ω1 ω1
|m12|
m11

· · · ω1
|m1n|
m11

ω2
|m21|
m22

1− ω2 · · · ω2
|m2n|
m22

... · · · . . .
...

ωn
|mn1|
mnn

· · · ωn−1
|mn(n−1)|

mnn
1− ωn

⎤
⎥⎥⎥⎥⎦
,

Because M is H-matrix, so we have

n∑

j=1

|A1j | = 1− ω1 + ω1(
|m12|
m11

+ · · ·+ |m1n|
m11

)

< 1− ω1 + ω1

= 1

And so for ∀i = 1, 2, . . . , n, then
∑n

j=1 |Aij | < 1.

From [5], we know ρ(A) < 1, that is

ρ(W + Ω(I −DM)) < 1

So, r([x])k −→ 0, then we know the nested intervals sequence r{[x]})k con-
verges to [x∗, x∗]. The proof is complete.

Based on the above theorems, the detailed steps of the new proposed al-
gorithm for linear complementarity problem is presented as follows, where ε
is precision.

Algorithm 2.1

Step 1 Select ωi and initial interval [x],i = 1, 2, . . . , n;

Step 2 Compute x = m([x]), [y] = x−ΩD(Mx+q)+(I−ΩDM)([x]−x);
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Step 3 Calculate Γ (x, [x], D,Ω) = max{0, [y]};
Step 4 Compute X = Γ (x, [x], D,Ω) ∩ [x]; If X = Φ, print ” there is no

solution in this interval ,” input a new interval and go to step 2; or, continue;

Step 5 If ‖ω‖ < ε, then print the approximate interval X and the solution
m(X); or,let [x] = X, go to Step 2;

Step 6 end.

3 Numerical Results

The algorithm has been implemented using Matlab 6.5 on a desktop computer
(P IV,2.93GHz,Memory 512M. Numerical results for the following four exam-
ples are proposed in the section. The symbols [x]0, x∗,[x], x, L, ε = 1e− 15,
ωi = 1

2 , i = 1, 2, . . . are denoted as the initial interval, exact solution, opti-
mum solution interval, optimum solution, the number of iteration, precision
and relaxation factor, respectively.

Example 1. LCP (M, q) Fathi [2],

M =

(
1 2
2 5

)
, q =

(
−1
−1

)
, x∗ = (1, 0)T , [x]0 =

([
0, 2

]
[
0, 2

]
)
.

L = 33, X =

([
1.000000000000000, 1.000000000000000

]
[
0, 0

]
)
,

x =

(
1.000000000000000

0

)
.

Example 2. LCP (M, q),

M =

⎡
⎢⎢⎣

3 0 −1 0
−1 3 −1 0
0 −1 4 −2
1 −1 −1 5

⎤
⎥⎥⎦ , q =

⎡
⎢⎢⎣

−2
3
−4
5

⎤
⎥⎥⎦ , x∗ = (1, 0, 1, 0)T , [x]0 =

⎛
⎜⎜⎝

[
0, 2

]
[
0, 2

]
[
0, 2

]
[
0, 2

]

⎞
⎟⎟⎠ .

L = 34, X =

⎛
⎜⎜⎝

[
1.000000000000000, 1.000000000000000

]
[
0, 0

]
[
1.000000000000000, 1.000000000000000

]
[
0, 0

]

⎞
⎟⎟⎠ ,

x =

⎛
⎜⎜⎝

1.000000000000000
1.000000000000000
1.000000000000000

0

⎞
⎟⎟⎠ .
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Example 3. LCP (M, q),

M =

⎡
⎢⎢⎣

4 −1 0 0
−1 4 −1 0
0 −1 4 −1
0 0 −1 4

⎤
⎥⎥⎦ , q =

⎡
⎢⎢⎣

−4
3
−4
2

⎤
⎥⎥⎦ , x∗ = (1, 0, 1, 0)T , [x]0 =

⎛
⎜⎜⎝

[
0, 2

]
[
0, 2

]
[
0, 2

]
[
0, 2

]

⎞
⎟⎟⎠ .

L = 30, X =

⎛
⎜⎜⎝

[
1.000000000000000, 1.000000000000000

]
[
0, 0

]
[
1.000000000000000, 1.000000000000000

]
[
0, 0

]

⎞
⎟⎟⎠ ,

x =

⎛
⎜⎜⎝

1.000000000000000
1.000000000000000
1.000000000000000

0

⎞
⎟⎟⎠ .

Example 4. LCP (M, q) [9],

M =

⎡
⎢⎢⎣

1 2 2 2
0 1 2 2
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦ , q =

⎡
⎢⎢⎣

−1
−1
−1
−1

⎤
⎥⎥⎦ , x∗ = (0, 0, 0, 1)T , [x]0 =

⎛
⎜⎜⎝

[
0, 2

]
[
0, 2

]
[
0, 2

]
[
0, 2

]

⎞
⎟⎟⎠ .

L = 29, X =

⎛
⎜⎜⎝

[
0, 0

]
[
0, 0

]
[
0, 0

]
[
1.000000000000000, 1.000000000000000

]

⎞
⎟⎟⎠ ,

x =

⎛
⎜⎜⎝

0
0
0

1.000000000000000

⎞
⎟⎟⎠ .

Trough the results all of above, we can concluded that the proposed algorithm
can converge to the solution, and this method can get more accurate result.

4 Conclusions

In this paper, a relaxation interval iterative method for complementarity
problems has been investigated. Firstly, we transformed this problem into an
equivalent problem with the use of fixed point theorem. Then we proposed
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the corresponding operator and proved the convergence of the algorithm to-
gether with relevant properties. Numerical results are presented to show the
efficiency of the method.
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The Representation Theorem on the
Category of FTML(L)

Jie Zhang, Xiaoliang Kou, and Bo Liu

Abstract. The theory of L−Fuzzy topological molecule lattices is the gen-
eralization theory of topological molecule lattices. The characteristic of cat-
egory of L−Fuzzy topological molecule lattices must be given a straightfor-
ward description. In this paper, a representation theorem about the category
of L−Fuzzy topological molecule lattices is proved: The category of L−Fuzzy
topological molecule lattices is equal to that the category of FSTS(L) which
consists of L−fuzzifying scott topological space and the L−fuzzifying con-
tinuous mapping of orientation-join preserving and the relation of way-below
preserving. Using it as the deduction of this theorem, a representation theo-
rem about the category of topological molecule lattices is obtained.

Keywords: Category, Fuzzy topology, Lattice, Mapping.

1 Introduction

Based on completely distributive lattices, the theory of topological molecular
lattices was constructed in 1992 [5]. And the basic framework of L−fuzzy
topological molecular lattices theory (L−smooth topological molecular lat-
tices theory) was constructed from [5] in 2002 [14]. The theory of topolog-
ical molecule lattices is the generalization theory of L−topological spaces
on nonempty set X. The theory of L−Fuzzy topological molecule lattices
is the generalization theory of topological molecule lattices. The character-
istic of category of L−Fuzzy topological molecule lattices must be given a
straightforward description. In this paper, a representation theorem about
the category of L− Fuzzy topological molecule lattices is proved: The cate-
gory of L−Fuzzy topological molecule lattices is equal to that the category of
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FSTS(L) which consists of L−fuzzifying scott topological space and the L−
fuzzifying continuous mapping of orientation-join preserving and the relation
of way-below preserving. From the theorem, a representation theorem about
the category of topological molecule lattices is obtained TML.

2 Preparations

In this paper, L,L, Li denote completely distributive lattices ( or molecular
lattices). 0 and 1(0 �= 1) denote the smallest element and the greatest element
respectively. M(L) denotes the set of all non-zero ∨−irreducible (or coprime)
elements in L. P (L) denotes the set of all non-unit prime elements in L.
Define ∧∅ = 1 and ∨∅ = 0. α(a), β(a) are standard the maximal set and the
minimal set of a respectively. The others notations and concepts which are
not explained come from [5], [14], [11] and [10], respectively.

Definition 1. ( [2]) A partially ordered set P is called the continuous par-
tially ordered set, if P is co-perfect(every directed set in P has the least upper
bound), and satisfies the conditions as follows:

(i) ∀x ∈ P, ↓↓x = {u ∈ P | u≪ x} is an oriented set.

(ii) ∀x ∈ P, x = sup ↓↓x. Where ∀u, x ∈ P, u ≪ x if and only if for
arbitrary directed set D ⊆ P , x ≤ supD implies ∃y ∈ D such that u ≤ y. In
this case, the u is called way-below x.

(2) Let P be a partially ordered set. F ⊆ P is called a scott closed set,
if F is a lower set and it is closed for the operation of directed join. The
complementary set of scott closed set is called scott open set. All sets of
scott open sets in P consist a topology on P . The topology is called the scott
topology on P , and note it as σ(P ). All sets of scott closed sets in P consist
a co-topology on P . Define the co-topology as the scott co-topology on P ,
and note as Σ(P ).

Theorem 1. ([1]) Let L be a molecular lattice. The mapping T : L −→ 2M(L)

is defined as follows: ∀A ∈ L, T (A) = {m ∈ M(L) | m �≤ A}. Then the
following conclusions are true.

(1) T is an injection, and T (0) = M(L), T (1) = ∅.
(2) ∀{Ai ∈ L | i ∈ ∆} ⊆ L, T (

∧
i∈Δ Ai) =

⋃
i∈Δ T (Ai).

(3) ∀A,B ∈ L, T (A
∨
B) = T (A)

⋂ T (B).
(4) T (L) is a molecular lattice and T (L) = σ(M(L)). (M(L), T (L)) is

the spectral space of L
op

.
(5) If (L, η) is a topological molecular lattice, then T (η) ⊆ T (L) is a

topology on M(L). ∀x ∈M(L) and Q ∈ η, x �≤ Q if and only if x ∈ T (Q), i.e.
Q is a closed remote neighborhood of x if and only if T (Q) is a neighborhood
of x.

Theorem 2. ([6]) (1) Let P1, P2 be continuous partially ordered sets. Then
the mapping f : P1 −→ P2 can be expanded to a generalized order homomor-
phism f : Σ(P1) −→ Σ(P2) if and only if f preserves orientation-join and
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the relation of way-below, i.e. f is a scott continuous mapping of preserving
way-below relation.

(2) Let f : L1 −→ L2 be a generalized order homomorphism. Then
f |M(L1) : M(L1) −→ M(L2) is the mapping of preserving directed join and
the relation of way-below.

(3) Let f : M(L1) −→ M(L2) be a mapping of preserving directed join
and the relation of way-below. If a ∈ L1, and define L(f)(a) =

∨{f(x) |
x ∈ β

∗

(a)}, then L(f) : L1 −→ L2 is a generalized order homomorphism and
L(f)|M(L1) = f .

(4) Let (L1, η1), (L2, η2) be topological molecular lattices, f : L1 −→ L2 is
a generalized order homomorphism. Then f is a continuous generalized order
homomorphism if and only if f |M(L1) : (M(L1), T (η

1
)) −→ (M(L2), T (η

2
))

is a continuous mapping.

Theorem 3. (1) Let P be a continuous partially ordered set. Define it as
L(P ) = {⋃p∈A

↓↓ p : A ⊆ P and A =↓ A}. Then L(P ) is a completely

distributive lattice (the order is ⊆) and P
φ∼= M(L(P )), where the mapping

φ : P −→M(L(P )) is defined as ∀p ∈ P, φ(p) = ↓↓ p.

(2) Let L be a completely distributive lattice. Then L
ψ∼= L(M(L)). Where,

the mapping ψ : L −→ L(M(L)) is defined as ∀a ∈ L, ψ(a) = β∗(a) =⋃{ ↓↓ p | p ≤ a}.

Definition 2. ( [7]) Let X be a nonempty set. Then an L− fuzzy (com-
plement) topology in 2X is called an L−fuzzifying (complement) topology
on X .

3 The Representation Theorem on the Category of
FTML(L)

Theorem 4. Let (L,F) be an L−fuzzy topological molecular lattice and T :
L −→ 2M(L) is described in the theorem 1.

(1) The mapping T (F) : 2M(L) −→ L is defined as ∀A ∈ 2M(L),

T (F)(A) =

{∨{
a ∈ L | A ∈ T

(
F[a]

)}
, A ∈ T (L),

0 , A �∈ T (L).

Then T (F) is an L−fuzzifying topology on M(L)(i.e. an L−fuzzy topology
on 2M(L)) which satisfies ∀a ∈ L, T (F)[a] = T (F[a]).

(2) The mapping T ′(F) : 2M(L) −→ L is defined as ∀A ∈ 2M(L),T ′(F)(A)
=T (F)(A′). Then T ′(F) is an L−fuzzifying complement topology on M(L)(i.e.
an L-fuzzy complement topology on 2M(L)) which satisfies ∀a ∈ L, T ′(F)[a] =

T ′(F[a]), where T ′(F[a]) = {A ∈ 2M(L) | A ∈ Σ(M(L)), A′ ∈ T (F[a])}.

Proof. (1) From theorem 3.5 [14] and theorem 1, for ∀a ∈ L, F[a] is
a complement topology on L and T (F[a]) is a topology on M(L). With
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theorem 3.8 [14], the mapping T is an injection, and satisfies F[a] =⋂
b∈β∗(a) F[b]. Consequently , ∀A ∈ 2M(L), A ∈ T (F[a]) ⇐⇒ ∃B ∈ F[a] =⋂
b∈β∗(a) F[b] such that A = T (B) ⇐⇒ ∀b ∈ β∗(a), ∃B ∈ F[b] such that A =

T (B) ∈ T (F[b])⇐⇒ A ∈ ⋂b∈β∗(a) T (F[b]). Hence, T (F[a]) =
⋂

b∈β∗(a) T (F[b]).

According to theorem 3.9 [14], T (F) is an L− fuzzy topology on 2M(L), which
satisfies ∀a ∈ L, T (F)[a] = T (F[a]).

(2) It can be proved by the same way of (1). ✷

Definition 3. Let P be a continuous partially ordered set, and the eigen-
function of σ(P ) is also signified as σ(P ). Then σ(P ) is an L−fuzzifying
topology on P . If S is an L−fuzzifying topology on P , which is satisfied as
S 8 σ(P ), then (P,S) is called the L−fuzzifying scott topological space.

Theorem 5. Let (L,F) be an L−fuzzy topological molecular lattice. Then
(M(L), T (F)) is an L−fuzzifying scott topological space.

Proof. Becasue M(L) is a continuous partially ordered set and with the the-
orem 4, then obtain T (F) 8 σ(M(L)). ✷

Lemma 1. Let P be a continuous partially ordered set and the mapping E :
Σ(P ) −→ L(P ) is defined as ∀A ∈ Σ(P ), E(A) =

⋃{ ↓↓x | x ∈ A}. Then

(1) E is an injection and E(∅) = ∅, E(P ) =
⋃

p∈P
↓↓ p,

(2) ∀A,B ∈ Σ(P ), {Ai | i ∈ ∆} ⊆ Σ(P ), E(A
⋃

B) = E(A)
⋃ E(B),

E(
⋂

i∈Δ Ai) =
⋂

i∈Δ E(Ai).
(3) Let τ ⊆ σ(P ) be a topology on P . Then (L(P ), E(τ ′)) is a topological

molecular lattice.

Proof. (1) ∀A,B ∈ Σ(P ) and E(A) = E(B). If A �= B, there exists x0 ∈
A, x0 �∈ B. Therefore, obtain ↓↓x0 ⊆ E(A) = E(B). Because B is a scott

closed set, it is the lower set of orientation-join preserving . Hence, ↓↓x0 ⊆ B.

And ↓↓x0 is the orient set, there is x0 =
∨ ↓↓x0 ∈ B. It is contradictory. Then

obtain A = B. It is equal to that E is an injection.
(2) Let A,B ∈ Σ(P ). Then E(A

⋃
B) =

⋃{ ↓↓x ⊆ P | x ∈ A
⋃
B} =

(
⋃{ ↓↓x ⊆ P | x ∈ A})⋃(

⋃{ ↓↓x ⊆ P | x ∈ B}) = E(A)
⋃ E(B).

Let {Ai | i ∈ ∆} ⊆ Σ(P ). Then E(
⋂

i∈Δ Ai) =
⋃{ ↓↓x ⊆ P | x ∈⋂

i∈Δ Ai} ⊆
⋃{ ↓↓x ⊆ P | x ∈ Ai} = E(Ai). Therefore, E(

⋂
i∈Δ Ai) ⊆⋂

i∈Δ E(Ai). Otherwise, ∀ ↓↓x ∈ β∗(
⋂

i∈Δ E(Ai)), for i ∈ ∆, ↓↓x ∈ β∗(E(Ai)).

There exists ↓↓y ∈ { ↓↓z ∈ M(L(P )) | z ∈ Ai} such that ↓↓x ⊆ ↓↓y. Then
obtain x ≤ y and y ∈ Ai. Because Ai is the lower set, get x ∈ Ai and x ∈⋂

i∈Δ Ai. Furthermore, get ↓↓x ⊆ E(
⋂

i∈Δ Ai) and E(
⋂

i∈Δ Ai) ⊇
⋂

i∈Δ E(Ai).
(3) From (1), (2) and theorem 3, the conclusion can be proved easily. ✷

Theorem 6. (1) Let (L, η) be a topological molecular lattice. Then it is
homeomorphic with the topological molecular lattice of (L(M(P )), E(T ′(η))).

(2) Let P be a continuous partially ordered set, τ ⊆ σ(P ) is a topology
on P . Then the topological spaces (P, τ) and (M(L(P )), T (E(τ ′))) is homeo-
morphic.
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Proof. (1) From the theorem 3, the mapping ψ : L −→ L(M(L)), ∀a ∈
L, a −→ β∗(a) is the isomorphic mapping. So it just needs to prove the
continuity and close of φ.

Suppose A ∈ E(T ′(η)). Then there exists B ∈ η such that A = E(M(L)−
T (B)). Therefore, get φ−1(A) = φ−1(E(M(L) − T (B))) = φ−1(

⋃{ ↓↓x | x ∈
M(L) − T (B)}) = φ−1(

⋃{ ↓↓x | x ≤ B}) = φ−1(β∗(B)) = B ∈ η. It shows
that φ is a continuous mapping.

Suppose A ∈ η. Then φ(A) = β∗(A) =
⋃{ ↓↓x | x ≤ A} =

⋃{ ↓↓x | x ∈
M(L)− T (A)} = E(M(L)− T (A)) ∈ E(T ′(η)). So φ is a closed mapping.

(2) From the theorem 3, the mapping ψ : P −→ M(L(P )), ∀a ∈ P, a −→
↓↓a is an isomorphic mapping. It just needs to prove ψ is continuous and

open.
∀A ∈ T (E(τ ′)), there exists B ∈ τ such that A = T (E(P − B)). Then

ψ−1(A) = ψ−1(T (E(P − B))) = ψ−1({ ↓↓x | x �⊆ E(P − B)}) = ψ−1({ ↓↓x |
x �∈ P −B}) = {x | x �∈ P −B} = B ∈ τ. Hence, ψ is a continuous mapping.
∀A ∈ τ , there is P − A ∈ τ ′. Because ψ(A) = { ↓↓x | x ∈ A} = { ↓↓x | x �∈

P −A} = { ↓↓x | ↓↓x �⊆ E(P −A)} = T (E(P −A)), ψ is an open mapping. ✷

Theorem 7. Let P be a continuous partially ordered set and (P,S) is an L−
fuzzifying scott topological space. Then

(1) (L(P ), E(S′)) is an L−fuzzy topological molecular lattice, where the
mapping E(S′) : L(P ) −→ L is defined as ∀A ∈ L(P ), with A ∈ E(Σ(P )),
E(S′)(A) =

∨{a ∈ L | A ∈ E(S′
[a])}. Otherwise, E(S′)(A) = 0.

In an addition, the above theorem satisfies ∀a ∈ L, E(S′)[a] = E(S′
[a]);

(2) (M(L(P )), T (E(S′)) is an L−fuzzifying scott topological space, where
the mapping T (E(S′)) : 2M(L(P )) −→ L is defined as ∀A ∈ 2M(L(P )),
with A ∈ σ(M(L(P ))), T (E(S′))(A) =

∨{a ∈ L | A ∈ T (E(S′
[a]))}

and A �∈ σ(M(L(P ))), T (E(S′))(A) = 0; Moreover, it is satisfied as ∀a ∈
L, T (E(S′))[a] = T (E(S′

[a]));
(3) (P,S) with (M(L(P )), T (E(S′))) is an L−fuzzifying homeomorphic.

Proof. (1) From the definition 2 and the theorem 3.5 [14], ∀a ∈ L, S[a] ⊆
σ(P ) is a topology on P . Though the theorem 6, E(S′

[a]) is a complement

topology on the molecular lattice L(P ) . And with the condition that E is
an injection and S′

[a] =
⋂

b∈β∗(a) S[b], it is proved easily that E(S′
[a]) =⋂

b∈β∗(a) E(S′
[b]). Therefore, from the theorem 3.5 [14] and the theorem 3.9

[14], get E(S′)[a] = E(S′
[a]) and E(S′) is an L−fuzzy complement topology

on L(P ).
(2) From (1) and the theorem 1, ∀a ∈ L, T (E(S′

[a])) is a topology on
M(L(P )) which satisfies T (E(S′

[a])) ⊆ σ(M(L(P ))). From the theorem 4
and the theorem 2.9 [14], get T (E(S′

[a])) = T (E(S′)[a]) = T (E(S′))[a] easily.
Hence, T (E(S′)) 8 σ(M(L(P ))) is obtained. It is equal to that T (E(S′)) for
M(L(P )) is an L−fuzzifying scott topology on M(L(P )).

(3) From the theorem 6, ∀a ∈ L , the mapping ψ : (P,S[a]) −→
(M(L(P )), T (E(S′

[a]))), ∀x ∈ P, x −→ ↓↓x is a homeomorphic mapping.
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From (2) and the theorem 4.9 [14], the mapping ψ : (P,S) −→ (M(L(P )),
T (E(S′))) is an L−fuzzifying(fuzzy) homeomorphic mapping. ✷

Theorem 8. Let (L,F) be an L−fuzzy topological molecular lattice. Then
(1) (L(M(L)), E(T ′(F))) is an L−fuzzy topological molecular lattice, where

the mapping E(T ′(F)) : L(M(L)) −→ L is defined as ∀A ∈ L(M(L)):
with A ∈ E(Σ(M(L))), E(T ′(F))(A) =

∨{a ∈ L | A ∈ E(T ′(F[a]))} and
A �∈ E(Σ(M(L))), E(T ′(F))(A) = 0, it satisfies ∀a ∈ L, E(T ′(F))[a] =
E(T ′(F[a]));

(2) (L,F) with (L(M(L)), E(T ′(F))) is an L−fuzzy homeomorphic.

Proof. (1) From the theorem 3, L(M(L)) is a completely distributive lattice.
Get ∀a ∈ L, E(T ′(F[a])) = E(T ′(F)[a]) = E(T ′(F))[a] and E(T ′(F[a])) is a
complement topology on L(M(L)) by the way similar to the theorem 7. And
with the theorem 3.5 [14], (L(M(L)), E(T ′(F))) is an L−fuzzy topological
molecular lattice .

(2) From the theorem 6, ∀a ∈ L, the mapping of φ : (L,F[a]) −→
(L(M(P )), E(T ′(F[a]))), ∀x ∈ L, x −→ β∗(x) is a homeomorphism gener-
alized order homomorphism.

From the theorem 4.9 [14], φ : (L,F) −→ (L(M(L)), E(T ′(F))) is an L−
fuzzy homeomorphism generalized order homomorphism. ✷

Theorem 9. Let (L1,F1), (L2,F2) be L−fuzzy topological molecular lattices
and f : L1 −→ L2 is a generalized order homomorphism. Then the conclu-
sions as follows are equivalent:

(1) f : (L1,F1) −→ (L2,F2) is an L−fuzzy generalized order homomor-
phism.

(2) f |M(L1) : (M(L1), T (F1)) −→ (M(L2), T (F2)) is an L−fuzzifying
continuous mapping.

(3) ∀a ∈ L, f |M(L1) : (M(L1), T (F1[a]
)) −→ (M(L2), T (F2[a]

)) is a con-
tinuous mapping.

Theorem 10. Let (P1,S1), (P2,S2) be L−fuzzifying scott topological spaces
and f : P1 −→ P2 is a mapping of preserving directed join and the way-below
relation. The mapping L(f) : L(P1) −→ L(P2) is defined as ∀a ∈ L(P1),
L(f)(a) =

⋃{ ↓↓f(b) | ↓↓b ∈ β∗(a)}. Then the conclusions as follows are
equivalent:

(1) f : (P1,S1) −→ (P2,S2) is an L−fuzzifying continuous mapping.
(2) f : (P1,S1[a]

) −→ (P2,S2[a]
) is a continuous mapping.

(3) L(f) : (L(P1), E(S′
1)) −→ (L(P2), E(S′

2)) is an L−fuzzy continuous
generalized order homomorphism.

(4) ∀a ∈ L, L(f) : (L(P1), E(S′
1[a]

)) −→ (L(P2), E(S′
2[a]

)) is a continuous

generalized order homomorphism.

Proof. Prove the definition about L(f) is reasonable firstly.

From the theorem 3, P1

φ1∼= M(L(P1)) and P2

φ2∼= M(L(P2)) are true. De-

fine f̂ = φ2 ◦ f ◦ φ1
−1 : M(L(P1)) −→ M(L(P2)), L(f) = L(f̂) :
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L(P1) −→ L(P2). Then ∀a ∈ L(P1), L(f)(a) = L(f̂)(a) =
⋃{f̂( ↓↓b) |

↓↓b ∈ β∗(a)} =
⋃{φ2(f(φ1

−1( ↓↓b))) | ↓↓b ∈ β∗(a)} =
⋃{φ2(f(b)) | ↓↓b ∈

β∗(a)} =
⋃{ ↓↓(f(b)) | ↓↓b ∈ β∗(a)}. Because φ1

−1 and φ2 are both iso-

morphic mappings, f̂ is a mapping of preserving directed join and the way-
below relation, and L(f) is a generalized order homomorphism which satisfies

L(f) |M(L(P1))= f̂ .
From the theorem 4.2 [14], (1) ⇔ (2) and (3) ⇔ (4) can be proved easily.

Therefore, it just needs to prove (2) ⇔ (4).
∀A ∈ L(P2), A can be proved that it is a lower set and f−1(A) is a lower

set; and get ∀a ∈ L, A ∈ S′
2[a]

⇐⇒ E(A) ∈ E(S′
2[a]

). Therefore, the equations

as follows are true: L(f)−1(E(A)) = L(f)−1(
⋃

x∈A
↓↓x) =

⋃
x∈A L(f)−1( ↓↓x)

=
⋃

x∈A(
⋃{ ↓↓b | L(f)( ↓↓b) ⊆ ↓↓x}) =

⋃
x∈A(

⋃{ ↓↓b | ↓↓f(b) ⊆ ↓↓x}) =⋃
x∈A(

⋃{ ↓↓b | f(b) ≤ x}) =
⋃

(
⋃

x∈A{ ↓↓b | f(b) ≤ x}) =
⋃{ ↓↓b | f(b) ∈ A} =⋃{ ↓↓b | b ∈ f−1(A)} =

⋃
b∈f−1(A)

↓↓b = E(f−1(A)). Hence, get ∀a ∈ L, ∀A ∈
S′

2[a]
, f−1(A) ∈ S′

1[a]
⇐⇒ ∀E(A) ∈ E(S′

2[a]
), L(f)−1(E(A)) ∈ E(S′

1[a]
). It is

equal to (2)⇔ (4). ✷

Theorem 11. FSTS(L) denotes the category which consists of L−fuzzifying
scott topological space and the fuzzifying continuous mapping of orientation-
join preserving and the relation of way-below.

(1) Defining the mapping E : FSTS(L) −→ FTML(L) as follows.
∀(P,S) ∈ ob(FSTS(L)), E((P,S)) = (L(P ), E(S′));
∀f ∈ Hom((P1,S1), (P2, S2)), E(f) = L(f) : (L(P1), E(S′

1)) −→
(L(P2), E(S′

2)). Then E is a functor which is from the category FSTS(L)
to the category FTML(L).

(2) Defining the mapping T : FTML(L) −→ FSTS(L) as follows.
∀(L,F) ∈ ob(FTML(L)), T ((L,F)) = (M(L), T (F)),
∀f ∈ Hom((L1,F1), (L2,F2)), T (f) = f |M(L1) : (M(L1), T (F1)) −→

(M(L2), T (F2)).
Then T is a functor which is from the category FTML(L) to the category

FSTS(L).

Theorem 12. The functors T and E are both complete faithful functors.

Proof. ∀f, g ∈ Hom((L1,F1), (L2,F2)). If T (f) = T (g), there is f |M(L1)=
g |M(L1). And because ∀a ∈ L1, f(a) = f(

∨
β∗(a)) =

∨
x∈β∗(a) f(x) =∨

x∈β∗(a) g(x) = g(
∨
β∗(a)) = g(a),f = g. It is equal to that T is faithful.

∀f ∈ Hom
FSTP(L)

(T (L1,F1), T (L2,F2)). From the theorem 9 and 10,
there exists the morphism L(f) ∈ Hom

FTML(L)
((L1,F1), (L2,F2)) such that

T (L(f)) = L(f) |M(L1)= f . Hence, T is the complete functor.
E is a complete faithful functor which can be proved with the same

way. ✷

Theorem 13. [10] Let C and D be categories. G : C −→ D is a functor.
Then the conditions as follows are equivalent.

(1) The categories of C and D are equivalent.
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(2) The functor of G is the complete faithful functor. Fetch ∀B ∈ ob(D),
there exists A ∈ ob(C) such that F (A) ∼= B.

Theorem 14. (The Representation Theorem of the category FTML(L))
The category of FTML(L) and category of FSTS(L) are equivalent.

Theorem 15. If the category of STP denotes the category which consists of
topological space of (P, τ), τ ⊆ σ(P ) on the continuous partially ordered set
and the continuous mapping of orientation preserving join and the relation of
way-below, then the category of TML and the category of STP are equivalent.
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L-Fuzzy Subalgebras and L-Fuzzy
Filters of R0-Algebras

Chunhui Liu and Luoshan Xu

Abstract. R0-algebras are the logic algebras associated to the formal deduc-
tive system L∗ for fuzzy propositional calculus. In this paper, the concepts of
L-fuzzy subalgebras and L-fuzzy filters of R0-algebras are introduced. Prop-
erties of L-fuzzy subalgebras and L-fuzzy filters are investigated. characteri-
zations of L-fuzzy subalgebras and L-fuzzy filters of R0-algebras are obtained.
It is proved that an L-fuzzy set on an R0-algebra M is an L-fuzzy subalgebra
of M if and only if for all t ∈ L, every its nonempty t-level section is a subal-
gebra of M . It is also proved that under some reasonable conditions, images
and inverse images of L-fuzzy subalgebras (resp., L-fuzzy filters) of R0-algebra
homomorphisms are still L-fuzzy subalgebras (resp. L-fuzzy filters).

Keywords: R0-algebras, L-fuzzy subalgebras, L-fuzzy filters, Fuzzy logic.

1 Introduction

With the developments of mathematics and computer science, non-classical
mathematical logics have been actively studied [14]. The research interest on
the foundation of fuzzy logic has been growing rapidly. Several new logical
algebras playing roles of structures of truth values have been introduced
and extensively studied [13] [11] [5] [1] [2] [10]. In 1996, Wang [14] and [10]
proposed a formal deductive system L∗ for fuzzy propositional calculus, and
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introduced a new kind of algebraic structures called R0-algebras. This kind
of algebraic structures have been studied to some extends [7] [8].

The concept of fuzzy sets was introduced firstly by Zadeh in [15]. At
present, the concept of Zadeh’s have been applied to some kinds of alge-
braic structures. Hoo in [3] [4] applied the concept to MV/BCK-algebras and
proposed notions of fuzzy ideals, fuzzy prime ideals and fuzzy Boolean ide-
als. Liu and Li applied the concept to R0-algebras and proposed notions of
fuzzy implicative filters and fuzzy Boolean filters on R0-algebras in [6]. Xu
and Qin in [12] applied the concept to lattice implication algebras, proposed
the notion of fuzzy lattice implication algebra and discussed some properties
of them. In the present paper, to extent the concepts of fuzzy subalgebras
and fuzzy filters, we propose the concepts L-fuzzy subalgebras and L-fuzzy
filters of R0-algebras in terms of the concept of L-fuzzy sets in [9], where the
prefix L a lattice. It should be noticed that when L = [0, 1], then [0, 1]-fuzzy
sets are originally meant fuzzy sets. Since [0, 1] is a special completely dis-
tributive lattice, to investigate properties of L-fuzzy subalgebras, sometimes
we assume that the prefix L is a completely distributive lattice.

2 Preliminaries

Definition 1. [14] Let M be a (¬,∨,∧,→) type algebra, where ¬ is a unary
operation, ∨, ∧ and → are binary operations. If there is a partial ordering
� on M , such that (M,�) is a bounded distributive lattice, ∨ and ∧ are
supremum and infimum operations with respect to �, ¬ is an order-reversing
with respect to �, and the following conditions hold for any a, b, c ∈M :

(R1) ¬a→ ¬b = b→ a;
(R2) 1 → a = a, a→ a = 1;
(R3) b→ c � (a→ b)→ (a→ c);
(R4) a→ (b→ c) = b→ (a→ c);
(R5) a→ (b ∨ c) = (a→ b) ∨ (a→ c), a→ (b ∧ c) = (a→ b) ∧ (a→ c);
(R6) (a→ b) ∨ ((a→ b)→ (¬a ∨ b)) = 1.

where 1 is the largest element of M , then M is called an R0-algebra.

Lemma 1. [10] In an R0-algebra M , the following assertions hold for all
x, y, z ∈M :

(1) 0 → x = 1 and x→ 1 = 1;
(2) x � y if and only if x→ y = 1;
(3) ¬x = x→ 0;
(4) (x→ y) ∨ (y → x) = 1;
(5) x ∨ y = ((x→ y)→ y) ∧ ((y → x) → x);
(6) x � y implies y → z � x→ z and z → x � z → y.

Definition 2. [14] Let M be an R0-algebra and S a non-empty subset of
M . We say S a subalgebra of M if S is closed under the operations ¬,∨ and
→.
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Definition 3. [14] Let M1 and M2 are R0-algebras. A map f : M1 →M2 is
called an R0-algebra homomorphism if f(¬x) = ¬f(x), f(x∨y) = f(x)∨f(y)
and f(x→ y) = f(x)→ f(y) for any x, y ∈M1.

Remark 1. [14] If f is an R0-algebra homomorphism, then f(0) = 0, f(1) = 1.

Definition 4. [9] Let X be a non-empty set and L a lattice. A map A : X →
L is called an L-fuzzy subset of X . The set of all L-fuzzy subset of X is denoted
by FL(X). For A ∈ FL(X) and t ∈ L, the set At = {x ∈ M |A (x) � t} is
called a t−level set of A .

Let L be a lattice, A and B two L-fuzzy sets of X . Define the L-fuzzy
sets A ∪B and A ∩B such that for all x ∈ X ,

(A ∪B)(x) = A (x) ∨B(x), (A ∩B)(x) = A (x) ∧B(x).

Definition 5. Let M1 and M2 be two R0-algebras, L a complete lattice and
f : M1 → M2 an R0-algebra homomorphism. Then f induces two L-fuzzy
subsets f∗ : FL(M1) → FL(M2) and f−1

∗ : FL(M2) → FL(M1) such that for
all A ∈ FL(M1) and B ∈ FL(M2),

∀y ∈M2, f∗(A )(y) = ∨x∈M1{A (x)|f(x) = y} = ∨x∈f−1(y)A (x), (1)

∀x ∈M1, f−1
∗ (B)(x) = (B ◦ f)(x) = B(f(x)). (2)

Definition 6. [14] Let M be an R0-algebra. A nonempty subset F of X is
called an MP-filter of X if it satisfies (F-1) 1 ∈ F and (F-2) x ∈ F and
x→ y ∈ F imply y ∈ F for any x, y ∈ X .

3 L-Fuzzy Subalgebras of R0-Algebras

Definition 7. Let M be an R0-algebra and L a lattice. An L-fuzzy subset A

of M is called an L-fuzzy subalgebra of M if the following conditions hold.
(LFS-1) A (0) = A (1);
(LFS-2) A (x ∨ y) � A (x) ∧A (y) for any x, y ∈M ;
(LFS-3) A (x→ y) � A (x) ∧A (y) for any x, y ∈M .

Theorem 1. Let M be an R0-algebra and L a lattice. If A is an L-fuzzy
subalgebra of M , then the following statements hold for any x, y ∈M .

(LFS-4) A (0) = A (1) � A (x);
(LFS-5) A (x) = A (¬x);
(LFS-6) A (x ∧ y) � A (x) ∧A (y).

Proof. (1) By (R2), (LFS-1) and (LFS-3) we have A (0) = A (1) = A (x →
x) � A (x) ∧A (x) = A (x), i.e., (LFS-4) holds.

(2) On one hand, by (R1), (R2), (LFS-3) and (LFS-4) we have A (x) =
A (1 → x) = A (¬x → ¬1) � A (¬x) ∧A (0) � A (¬x) ∧ A (¬x) = A (¬x).
On the other hand, by Lemma 1(3), (LFS-3) and (LFS-4) we have A (¬x) =
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A (x → 0) � A (x) ∧A (0) � A (x) ∧ A (x) = A (x). So, it follows from the
above two aspects that A (x) = A (¬x) , i. e., (LFS-5) holds.

(3) By (LFS-2) and (LFS-5) we get A (x ∧ y) = A (¬(x ∧ y)) = A (¬x ∨
¬y) � A (¬x) ∧A (¬y) = A (x) ∧A (y), thus (LFS-6) holds. ✷

Theorem 2. Let M be an R0-algebra, L a lattice and A ∈ FL(M). Then
A is an L-fuzzy subalgebra of M iff for all t ∈ L, At is a subalgebra of M
whenever At �= ∅.

Proof. ⇒: Suppose that A ∈ FL(M) is an L-fuzzy subalgebra of M , t ∈ L
and At �= ∅. Then for any x, y ∈ At we have A (x) � t and A (y) � t. By
Definition 7 and Theorem 1 we can get that A (¬x) = A (x) � t,A (x∨ y) �
A (x)∧A (y) � t and A (x→ y) � A (x) ∧A (y) � t, i.e., At is closed under
operations ¬,∨ and →. So, At is a subalgebra of M by Definition 2.
⇐: Let At for any t ∈ L be a subalgebra of M whenever At �= ∅. Take

t = A (1). Then 1 ∈ At �= ∅ and At is a subalgebra of M by the assumption.
Thus 0 = ¬1 ∈ At and A (0) � t = A (1). Similarly, taking t = A (0), we have
A (1) � A (0) and A (0) = A (1). Let s = A (x)∧A (y) for all x, y ∈M . Then
A (x) � s and A (y) � s and x, y ∈ As �= ∅. It follows from the assumption
that As is a subalgebra of M and x ∨ y, x → y ∈ As. Furthermore, we have
A (x ∨ y) � s = A (x) ∧A (y) and A (x→ y) � s = A (x) ∧A (y). So, A is
an L-fuzzy subalgebra of M by Definition 7.

Corollary 1. Let L is a lattice. If A ∈ FL(M) is an L-fuzzy subalgebra of
R0-algebra M , then S = {x ∈M |A (x) = A (0)} is a subalgebra of M .

Proof. Obviously, by (LFS-4), S = AA (0) and S �= ∅ by (LFS-1), thus S is
a subalgebra of M By Theorem 2.

Theorem 3. Let L be a complete lattice and {Ai}i∈I a family of L-fuzzy
subalgebras of R0-algebra M . Then L-fuzzy subset ∩i∈IA is also an L-fuzzy
subalgebra of M .

Proof. Since L is a complete lattice and {Ai}i∈I a family of L-fuzzy subal-
gebras of R0-algebra M , we have that

(∩i∈IAi)(0) = ∧i∈IAi(0) = ∧i∈IAi(1) = (∩i∈IAi)(1),

and for any x, y ∈M we have

(∩i∈IAi)(x ∨ y) = ∧i∈IAi(x ∨ y) � ∧i∈I [Ai(x) ∧Ai(y)]

= [∧i∈IAi(x)] ∧ [∧i∈IAi(y)] = (∩i∈IAi)(x) ∧ (∩i∈IAi)(y),

(∩i∈IAi)(x→ y) = ∧i∈IAi(x→ y) � ∧i∈I [Ai(x) ∧Ai(y)]

= [∧i∈IAi(x)] ∧ [∧i∈IAi(y)] = (∩i∈IAi)(x) ∧ (∩i∈IAi)(y).

So, ∩i∈IA is also an L-fuzzy subalgebra of M by Definition 7.

Corollary 2. Let L be a lattice, A and B two L-fuzzy subalgebras of R0-
algebra M . Then L-fuzzy subset A ∩B is also an L-fuzzy subalgebra of M .
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Remark 2. In general, for two L-fuzzy subalgebras A and B, A ∪B may not
be an L-fuzzy subalgebra. For example, let X = {a, b, c} and M = P(X), the
power set of X , then M is an R0-algebra, where ¬A = X−A,A∨B = A∪B
and A→ B = ¬A ∨B for any A,B ∈ P(X). Take L = ([0, 1],max,min) and
define two [0,1]-fuzzy subsets A and B of M such that

A (∅) = A (X) = A ({a}) = A ({b, c}) = 1,

A ({b}) = A ({a, c}) = A ({c}) = A ({a, b}) = t1,

B(∅) = B(X) = B({b}) = B({a, c}) = 1,

B({a}) = B({b, c}) = B({c}) = B({a, b}) = t2,

where 0 < t2 < t1 < 1. It is easy to verify that A and B are [0,1]-fuzzy
subalgebras of M . But A ∪B is not a [0,1]-fuzzy subalgebra of M , for that
(A ∪B)({a} ∨ {b}) = t1 �� 1 = (A ∪B)({a}) ∧ (A ∪B)({b}).

This example shows that Theorem 3 is not true for ∨-operation in general.

Theorem 4. Let M1 and M2 be two R0-algebras, L a completely distributive
lattice and f : M1 →M2 an R0-algebra homomorphism.

(1) if A ∈ FL(M1) is an L-fuzzy subalgebra of M1, then f∗(A ) is an
L-fuzzy subalgebra of M2;

(2) if B ∈ FL(M2) is an L-fuzzy subalgebra of M2, then f−1
∗ (B) is an

L-fuzzy subalgebra of M1.

Proof. (1) By applying (LFS-4) to A , we have that

f∗(A )(0) = ∨x∈f−1(0)A (x) = A (0) = A (1) = ∨x∈f−1(1)A (x) = f∗(A )(1).

So, f∗(A ) satisfies (LFS-1) in Definition 7.
Since f is an R0-algebra homomorphism and L is completely distributive,

we have by Definition 5 and applying (LFS-2) to A that for all y1, y2 ∈M2,

f∗(A )(y1) ∧ f∗(A )(y2) = [∨x1∈f−1(y1)A (x1)] ∧ [∨x2∈f−1(y2)A (x2)]

= ∨x1∈f−1(y1), x2∈f−1(y2)A (x1) ∧A (x2)

� ∨x1∈f−1(y1), x2∈f−1(y2)A (x1 ∨ x2)

� ∨x∈f−1(y1∨y2)A (x) = f∗(A )(y1 ∨ y2).

This shows that f∗(A ) satisfies (LFS-2) in Definition 7.
Similar arguments can show that f∗(A )(y1 → y2) � f∗(A )(y1)∧f∗(A )(y2)

holds for any y1, y2 ∈M2, i. e., f∗(A ) satisfies also (LFS-3). So f∗(A ) is an
L-fuzzy subalgebra of M2 by Definition 7.

(2) Since f is an R0-algebra homomorphism, we have f(1) = 1 and f(0) =
0. Because that B ∈ FL(M2) is an L-fuzzy subalgebra of M2, we have that
f−1
∗ (B)(0) = (B ◦ f)(0) = B(f(0)) = B(0) = B(1) = B(f(1)) = (B ◦
f)(1) = f−1

∗ (B)(1), and that for any x, y ∈M1,

f−1
∗ (B)(x ∨ y) = (B ◦ f)(x ∨ y) = B(f(x ∨ y)) = B(f(x) ∨ f(y))
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� B(f(x)) ∧B(f(y)) = f−1
∗ (B)(x) ∧ f−1

∗ (B)(y),

f−1
∗ (B)(x→ y) = (B ◦ f)(x→ y) = B(f(x→ y)) = B(f(x) ∨ f(y))

� B(f(x)) ∧B(f(y)) = f−1
∗ (B)(x) ∧ f−1

∗ (B)(y).

So, f−1
∗ (B) is an L-fuzzy subalgebra of M1 by Definition 7.

Theorem 5. Let M be an R0-algebra, L1 and L2 two lattices. Let f : L1 →
L2 be a lattice homomorphism. If A is an L1-fuzzy subalgebra of M , then
f ◦A is an L2-fuzzy subalgebra of M .

Proof. Since A is an L1-fuzzy subalgebra and f a lattice homomorphism, we
have that (f ◦A )(0) = f(A (0)) = f(A (1)) = (f ◦A )(1), and

(f ◦A )(x∨ y) = f(A (x∨ y)) � f(A (x) ∧A (y)) = (f ◦A )(x) ∧ (f ◦A )(y),

(f ◦A )(x→ y) = f(A (x→ y)) � f(A (x)∧A (y)) = (f ◦A )(x)∧(f ◦A )(y).

for any x, y ∈M.So f ◦A is an L2-fuzzy subalgebra of M .

4 L-Fuzzy Filters of R0-Algebras

Definition 8. Let M be an R0-algebra and L a lattice. An L-fuzzy subset
A of M is said to be an L-fuzzy filter of M , if it satisfies

(LFF-1) For all x ∈M , A (1) � A (x) and
(LFF-2) For all x, y ∈M , A (y) � A (x) ∧A (x→ y).

Theorem 6. Let M be an R0-algebra, L a lattice and A an L-fuzzy filter
of M . Then for any x, y ∈ M , x � y implies A (x) � A (y), that is, A is
order-preserving.

Proof. If x, y ∈ M and x � y, then x → y = 1 by (R2). By (LFF-2) and
(LFF-1), we have that A (y) � A (x) ∧A (x→ y) = A (x) ∧A (1) = A (x).

Theorem 7. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset
of M . Then A is an L-fuzzy filter of M iff for any t ∈ L At is an MP-filter
whenever At �= ∅.

Proof. It proof is similar to that of Theorem2 and we hence omit the details.

Theorem 8. Let M be an R0-algebra and L a lattice, A ∈ FL(M). Then A

is an L-fuzzy filter of M iff x → (y → z) = 1 implies A (z) � A (x) ∧A (y)
for all x, y, z ∈M .

Proof. ⇒: Assume that A is an L-fuzzy filter on M . Then for all x, y, z ∈M ,
we have A (z) � A (y) ∧ A (y → z) and by (LFF-2), A (y → z) � A (x) ∧
A (x → (y → z)). If x → (y → z) = 1, then by (LFF-1), A (y → z) �
A (x) ∧A (1) = A (x). So, A (z) � A (x) ∧A (y).
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⇐: Assume that x → (y → z) = 1 implies A (z) � A (x) ∧ A (y), for
all x, y, z ∈ M . Since for any x ∈ M , x → (x → 1) = 1, we have A (1) �
A (x) ∧ A (x) = A (x) by the assumption, i.e., (LFF-1) holds. Furthermore,
by (R2), for any x, y ∈M one has (x→ y) → (x→ y) = 1. It follows by the
assumption that A (y) � A (x) ∧A (x→ y), i.e., (LFF-2) holds. So, A is an
L-fuzzy filter of M .

Theorem 9. Let M be an R0-algebra, L a lattice, A and B two L-fuzzy
filters of M . Then the L-fuzzy subset A ∩B is an L-fuzzy filter of M .

Proof. Suppose A and B are two L-fuzzy filters and for all x, y, z ∈ M ,
x → (y → z) = 1. Then by Theorem 8, we have A (z) � A (x) ∧A (y) and
B(z) � B(x) ∧B(y). So, (A ∩B)(z) = A (z) ∧B(z) � (A (x) ∧ A (y)) ∧
(B(x) ∧B(y)) = (A ∩B)(x) ∧ (A ∩B)(y). It follows from Theorem 8 that
A ∩B is an L-fuzzy filter of M .

Theorem 10. Let M be an R0-algebra, L a lattice and A ∈ FL(M) an
L-fuzzy filter of M , then F = {x ∈M |A (x) = A (1)} is an MP-filter of M .

Proof. Clearly, 1 ∈ F . If x ∈ F and x → y ∈ F for some x, y ∈ M , then
A (x) = A (1) and A (x→ y) = A (1). Since A ∈ FL(M) is an L-fuzzy filter
of M , by (LFF-2) we have A (y) � A (x)∧A (x→ y) = A (1)∧A (1) = A (1).
Thus y ∈ F , showing that F is an MP-filter of M .

Theorem 11. Let M1 and M2 be two R0-algebras, L a complete lattice and
f : M1 →M2 an R0-algebra homomorphism.

(1) if A ∈ FL(M1) is an L-fuzzy filter of M1 and f is an isomorphism,
then f∗(A ) is an L-fuzzy filter of M2;

(2) if B ∈ FL(M2) is an L-fuzzy filter of M2, then f−1
∗ (B) is an L-fuzzy

filter of M1.

Proof. (1) Straightforward.
(2) Since f is an R0-algebra homomorphism, we have f(1) = 1. It follows

from that B ∈ FL(M2) is an L-fuzzy filter of M2, for any x ∈ M1 we have
that f−1

∗ (B)(x) = (B ◦ f)(x) = B(f(x)) � B(1) = B(f(1)) = (B ◦ f)(1) =
f−1
∗ (B)(1). And for any x1, x2 ∈M1 we have that

f−1
∗ (B)(x2) = B(f(x2)) � B(f(x1)) ∧B(f(x1)→ f(x2))

=B(f(x1)) ∧B(f(x1 → x2)) = f−1
∗ (B)(x1) ∧ f−1

∗ (B)(x1 → x2).

Thus f−1
∗ (B) is an L-fuzzy filter of M1.

5 Concluding Remarks

In this paper, we introduced the notions of L-fuzzy subalgebras and L-fuzzy
filters of R0-algebras. We also characterized them and discussed their prop-
erties. The results obtained in this paper reflect interactions of algebraic
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method and fuzzifying method in the studies of logic problems. It should be
noticed that other types of logic algebras and L-fuzzy filters, such as L-fuzzy
prime filters, L-fuzzy boolean filters, L-fuzzy implicative filters can also be
considered. So, in the future research, it is hoped that more research topics
will arise with this work.

Acknowledgements. The work is supported by the NSF of China (61074129,
BK2010313).
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fuzzy set theory. The key notions of rough set theory are approximation
spaces of pairs (U,R) with R being an equivalence relation on U and ap-
proximation operators R and R. Let R be the family {(RX,RX)|X ⊆ U}
of approximations endowed with the pointwise order of set-inclusion. It is
known that R is a complete Stone lattice with atoms and is isomorphic to
the family of rough sets in the approximation space (U,R). This paper is de-
voted to investigate algebraicity and completely distributivity of R from the
view of domain theory. To this end, completely compact elements, compact
elements and atoms of R are represented. In terms of the representations
established in this paper, it is proved that R is isomorphic to a complete ring
of sets, consequently R is a completely distributive algebraic lattice. An ex-
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a sufficient and necessary condition for R being atomic is thus given.

Keywords: Rough set, Atom, Completely compact element, Complete ring
of sets.

Gaolin Li
Department of Mathematics, Yangzhou University, Yangzhou 225002, China
Department of Mathematics, Yancheng Teachers College, Yancheng 224002, China
e-mail: ligaolin1981@126.com

Luoshan Xu
Department of Mathematics, Yangzhou University, Yangzhou 225002, China
e-mail: luoshanxu@hotmail.com

S. Li (Eds.): Nonlinear Maths for Uncertainty and its Appli., AISC 100, pp. 675–682.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

ligaolin1981@126.com
luoshanxu@hotmail.com


676 G. Li and L. Xu

1 Introduction

The rough set theory, proposed by Pawlak [7] and developed by numerous
mathematicians and computer scientists, is fundamentally important in arti-
ficial intelligence and cognitive sciences. It has provide a more general frame-
work to express common sense reasoning and uncertainty reasoning, and re-
ceived wide attention on research areas in both of the real-life applications
and the theory itself. Many important research topics in rough set theory
such as various logics related to rough sets, connections between rough sets
and fuzzy sets [11, 16, 17], probabilistic approaches to rough sets [8, 14, 15],
and algebraic properties of rough sets [1,3,4,5,6,9,10,12,13] were presented
in the literature.

The key notions of rough set theory are approximation spaces of pairs
(U,R) with R being an equivalence relation on U and approximation oper-
ators R and R. Let R be the family {(RX,RX)|X ⊆ U} of approximations
endowed with the pointwise order of set-inclusion. It is known that R is a
complete Stone lattice with atoms and is isomorphic to the family of rough
sets in the approximation space (U,R). This paper is devoted to investi-
gate algebraicity and completely distributivity of the family of rough sets,
or equivalently of the family R of approximations from the view of domain
theory [2, 18]. In terms of some methods and technics of domain theory,
completely compact elements and atoms in R are characterized. With these
characterizations, we will prove that R is a molecular lattice in the sense
that every element can be represented as unions of co-primes in R, and that
R is isomorphic to a complete ring of sets. Consequently, R is a completely
distributive algebraic lattice. Besides, We will give an example to show that
R is not atomic nor Boolean in general, and give a sufficient and necessary
condition for R being atomic.

2 Preliminaries

In this section, we recall some fundamental notions and results of domain
theory and rough set theory. Other used but not stated basic concepts and
results please refer to [2, 7].

For a set U , a binary relation R on U is called

(1) reflexive if xRx for all x ∈ U ;

(2) transitive if xRy and yRz imply xRz for all x, y, z ∈ U ;

(3) symmetric if xRy implies yRx for all x, y ∈ U ;

(4) antisymmetric if xRy and yRx imply x = y for all x, y ∈ U .

A partially ordered set (poset, for short) is a nonempty set equipped with
a partial order of a reflexive, transitive and antisymmetric relation on the set.
We will use � to denote a partial order. A poset L is called a lattice, if for
any x, y ∈ L, the least upper bound x∨ y and the greatest lower bound x∧ y
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always exist. A poset L is called a complete lattice if every subset X ⊆ L has
the least upper bound ∨X and the greatest lower bound ∧X .

Definition 1. ( [2, 18]) Let L be a poset.
(1) A subset D of L is called directed if it is nonempty and every finite

subset of D has an upper bound in D.
(2) For two element x, y ∈ L, we say that x is way-below (resp., completely

way-below) y, written as x ≪ y (resp., x ⊳ y), if for all directed subsets
(resp., subsets) D ⊆ L, y � ∨D always implies the existence of d ∈ D with
x � d. The set of all the elements way-below (resp,.completely way-below) y
is denoted as ⇓ y (resp,.

�
y).

(3) An element k ∈ L is called compact (resp., completely compact) if
k ≪ k (resp., k ⊳ k). The set of all compact (resp., completely compact)
elements of L is denoted by K(L) (resp., CK(L)).

(4) A lattice is called distributive if for all x, y, z ∈ L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

(5) A complete lattice L is called completely distributive if for any family
{xi,j |j ∈ J, k ∈ K(j)} in L,

∧j∈J ∨k∈K(j) xj,k = ∨f∈M ∧j∈J xj,f(j),

where M is the set of choice functions defined on J with f(j) ∈ K(j).
(6) A complete lattice L is called algebraic if for all x ∈ L,

x = ∨{y ∈ K(L)|y � x}.

(7) A family F of subsets of a set is called a complete ring of sets if it is
closed under arbitrary intersections and unions.

Let L be a lattice with the small element 0. An element x∗ is called a
pseudocomplement of x if x∧ x∗ = 0 and x∧ a = 0 implies a � x∗. A lattice
is called pseudocomplemented if every element has a pseudocomplement. If
a lattice L with 0 and 1, the greatest element of L, is distributive, pseudo-
complemented and satisfies the Stone identity x∗ ∨ x∗∗ = 1 for any element
x ∈ L, then L is called a Stone lattice. Obviously, every Boolean lattice is a
Stone lattice.

For a set U , X ⊆ U , we write 2U to denote the power set of U , and Xc

to denoted the complement of X in U . If a relation R on U is reflexive,
symmetric and transitive, then R is called an equivalence. We use [x]R or [x]
to denote an equivalence class of R containing x. For any set X ⊆ U , the
lower and upper approximations of X are defined respectively as

RX = {x ∈ U |[x]R ⊆ X}, RX = {x ∈ U |[x]R ∩X �= ∅}.

Lower and upper approximation sets have the following properties.
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Lemma 1. [7] Let (U,R) be an approximation space. For all A,B ⊆ U we
have

(1) RA ⊆ A ⊆ RA;
(2) R∅ = R∅ = ∅, RU = RU = U ;
(3) A ⊆ B ⇒ RA ⊆ RB,RA ⊆ RB;
(4) R(A ∪B) = R(A) ∪R(B), R(A ∩B) = R(A) ∩R(B);
(5) R(Ac) = (RA)c, R(Ac) = (RA)c;
(6) R(RA) = R(RA) = RA,R(RA) = R(RA) = RA.

In [4], the pair (RX,RX) is called the approximation of X , the family of
all approximations is denoted by R, i.e., R = {(RX,RX)|X ⊆ U}. The set
R of approximations is ordered by

(RX,RX) � (RY,RY )⇔ RX ⊆ RY and RX ⊆ RY.

Two subsets of U are said to be roughly equivalent, denoted by X ≡ Y , if
RX = RY and RX = RY . The equivalence classes of the relation ≡ on 2U

are called rough sets. The family of all rough sets of (U,R) is denoted by R∗,
i.e., R∗ = {[X ]≡|X ⊆ U}. The set R∗ of rough sets is ordered by

[X ]≡ � [Y ]≡ ⇔ RX ⊆ RY and RX ⊆ RY.

It is well known that posets (R,�) and (R∗,�) are isomorphic. So each
approximation uniquely determines a rough set.

Lemma 2. [19] Let R be the family of all approximations of (U,R), S =
{x ∈ U |Card[x] = 1}. Then for any (X,Y ) ∈ 2U × 2U , (X,Y ) ∈ R iff
X ⊆ Y and (Y −X) ∩ S = ∅.

Lemma 3. [4] Let R be the family of all approximations of (U,R). Then
(R,�) is a complete Stone lattice such that

∨i∈I(RXi, RXi) = (∪i∈IRXi,∪i∈IRXi),

∧i∈I(RX,RX) = (∩i∈IRX,∩i∈IRX),

(RX,RX)∗ = ((RX)c, (RX)c),

where (RX,RX)∗ is the pseudocomplement of (RX,RX).

3 Completely Compact Elements in R

The following two propositions show that there are enough completely com-
pact elements in R.

Proposition 1. Let R be the family of all approximations of (U,R) and A ⊆
U . If there exists x ∈ U such that A ⊆ [x]R, then (RA,RA) is a completely
compact element, i.e., (RA,RA) ∈ CK(R).
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Proof. Let {(RXi, RXi)|i ∈ I} ⊆ R with (RA,RA) � ∨i∈I(RXi, RXi). We
divide the proof into three cases.

(1) If A = ∅, then (RA,RA) = (∅, ∅) and (RA,RA) � (RXi, RXi) for all
i ∈ I.

(2) If A �= ∅ and A ⊂ [x], then (RA,RA) = (∅, [x]) � (∪i∈IRXi,∪i∈IRXi),
thus there exists j ∈ I such that [x] ⊆ RXj) , hence (RA,RA) � (RXj , RXj).

(3) If A = [x], then (RA,RA) = ([x], [x]) � (∪i∈IRXi,∪i∈IRXi), thus
there is k ∈ I such that [x] ⊆ RXk ⊆ RXk and (RA,RA) � (RXk, RXk).

To sum up, there is some i ∈ I such that (RA,RA) � (RXi, RXi) and by
Definition 1 (3), (RA,RA) is a completely compact element. ✷

Proposition 2. Every element of R is a join of a set of completely compact
elements.

Proof. Let (RX,RX) ∈ R. Then it follows from Lemma 2 that (RX,RX)
and (∅, RX −RX) are both in R. Furthermore, we have

(RX,RX) = (RX,RX) ∨ (∅, RX −RX)

= (∪x∈RX [x],∪x∈RX [x]) ∨ (∪x∈RX−RXR{x},∪x∈RX−RXR{x})
= (∨{([x], [x])|x ∈ RX}) ∨ (∨{(R{x}, R{x})|x ∈ RX −RX}).

So, we have that (RX,RX) is a join of some completely compact elements
of R by Proposition 1. ✷

Next proposition characterizes the completely compact elements of R.

Proposition 3. Let R be the family of approximations of (U,R) and A ⊆ U .
Then (RA,RA) is a completely compact element iff there is x ∈ U such that
A ⊆ [x]R, that is

CK(R) = {(RA,RA)|A ⊆ [x] for some x ∈ U}.

Proof. It follows from Proposition 1 that

{(RA,RA)|A ⊆ [x] for some x ∈ U} ⊆ CK(R).

Conversely, for any (RX,RX) ∈ CK(R), by the proof of Proposition 2,
there is x ∈ U such that X ⊆ RX ⊆ [x], thus

CK(R) ⊆ {(RA,RA)|A ⊆ [x] for some x ∈ U}.

✷

Theorem 1. The family R is isomorphic to a completely ring of sets.

Proof. Define ϕ : R → 2CK(R) such that for all x ∈ R, ϕ(x) = {y ∈
CK(R)|y � x}. Then by Proposition 2, for any x, y ∈ R, x �= y ⇒ ϕ(x) �=
ϕ(y). Furthermore, for any X ⊆ R, we have
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ϕ(∨X) = {y ∈ CK(R)|y � ∨X} = ∪x∈X{y ∈ CK(R)|y � x} = ∪x∈Xϕ(x),

ϕ(∧X) = {y ∈ CK(R)|y � ∧X} = ∩x∈X{y ∈ CK(R)|y � x} = ∩x∈Xϕ(x).

This reveals that ϕ is a map into 2CK(R) preserving arbitrary sups and infs.
So, the image ϕ(R) of ϕ is a complete ring of sets. It is obvious that ϕ : R →
ϕ(R) is an isomorphism. ✷

It is well known that every complete ring of sets is a completely distributive
lattice. Furthermore, it follows from [2, Corollary I-4.14] that every complete
ring of sets is algebraic. So we have the following corollary.

Corollary 1. The family R is a completely distributive algebraic lattice.

4 Atoms in R

In section 3, it has been shown that there are enough completely compact
elements in R, therefor R is a molecular lattice in the sense of that every
element can be represented as unions of co-primes. However, in this section,
we shall show that R is not necessary atomic. The following proposition
characterizes the atoms of R.

Proposition 4. Let Atom (R) be the set of all atoms of R. Then

Atom(R) = {(R{x}, R{x})|x ∈ U}.

Proof. For every x ∈ U , since R{x} = [x], we have (∅, ∅) < (R{x}, R{x}).
Suppose that (RY,RY ) ∈ R such that (∅, ∅) < (RY,RY ) � (R{x}, R{x}).
Then we have Y �= ∅ and for every y ∈ Y , [y] ⊆ RY ⊆ R{x} = [x], thus
RY = R{x}. Next, we prove RY = R{x}. If Card[x] = 1, then Y = [x] =
{x}, thus RY = [x] = R{x}. If card[x] > 1, then RY ⊆ R{x} = ∅. Thus
(RY,RY ) = (R{x}, R{x}) and we have {(R{x}, R{x})|x ∈ U} ⊆ Atom(R).

Conversely, suppose that (RZ,RZ) ∈ Atom(R), then Z �= ∅ and for every
z ∈ Z, (∅, ∅) < (R{z}, R{z}) � (RZ,RZ). Since (RZ,RZ) ∈ Atom(R), we
have (RZ,RZ) = (R{z}, R{z}). So Atom(R) ⊆ {(R{x}, R{x})|x ∈ U}. ✷

Corollary 2. For the family of approximations R, we have that

Atom(R) ⊆ CK(R) ⊆ K(R).

Proof. It follows from Proposition 3, Proposition 4 and Definition 1 (3). ✷

The following example shows that although R is a Stone lattice with atoms,
R is not necessary atomic nor Boolean.

Example 1. Let U = {0, 1, 2}, U/R = {{0, 1}, {2}}. Then

R = {(∅, ∅), (∅, {0, 1}), ({0, 1}, {0, 1}), ({2}, {2}), ({2}, U), (U,U)}.
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R is presented in Fig.1. It is easy to see that Atom(R) = {(∅, {0, 1}), ({2},
{2})} and that ({0, 1}, {0, 1}) is not the supremum of any subsets of Atom(R).
Thus R is not atomic.

�
(U,U)

�

({0, 1}, {0, 1}) �

({2}, U)

�

(∅, {0, 1}) �

({2}, {2})
�

(∅, ∅)
�

��
❅

❅❅

❅
❅❅

�
�

�
�
�

�
��

Fig. 1.

Now, we give a necessary and sufficient condition under whichR is atomic.

Proposition 5. R is atomic iff the relation R is an identity.

Proof. ⇐: If R is identical, that is for all x, y ∈ U , xRy ⇔ x = y, then it is
easy to see that R ∼= 2U is an atomic Boolean lattice.
⇒: Suppose that R is atomic. Let S = {x ∈ U |Card[x] = 1}. Then

(U,U) = ∨x∈U (R{x}, R{x}) = (S,U) and S = U , showing that for all x ∈ U ,
[x] = {x}. So R is the identity. ✷

By Proposition 5, we see that normally the family R is a Stone lattice with
atoms, but not atomic nor Boolean.
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Weak Approximable Concepts and
Completely Algebraic Lattices

Hongping Liu, Qingguo Li, and Lankun Guo

Abstract. The notion of a weak approximable concept is introduced in this
paper, and the lattice consisting of weak approximable concepts is investi-
gated. It is shown that this concept lattice is a completely algebraic lattice,
and each completely algebraic lattice is isomorphic to such a concept lattice.

Keywords: Completely compact, Completely algebraic lattice, Formal con-
text, Weak approximable concept.

1 Introduction

Formal Concept Analysis (FCA) is a powerful tool for knowledge discovery,
information retrieval and data analysis (see [2,4]). In classical FCA, the basis
is a formal context, a formal concept and a concept lattice. A formal context
is commonly known as two universes with a binary relation between them,
and the knowledge is hidden in the formal context. In order to discovery it,
the notion of a formal concept is proposed (see [1, 3]), the cheerful result
is that the concept lattice is a complete lattice and each complete lattice is
isomorphic to a concept lattice. Since the definition of a formal concept is too
strict for excluding some important information, in [11], Zhang introduced
the notion of an approximable concept. It was shown that every approximable
concept lattice is an algebraic lattice and each algebraic lattice is isomorphic
to such a approximable concept lattice. After that, Hitzler and Krötzsch
deeply investigated them on the viewpoint of category ( [6]). Follow Zhang’s
idea, Lei and Luo developed the representation theory of algebraic lattices
by means of the definition of a rough approximable concept in [7].
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In this paper, we extend the approximable concept with another approx-
imable manner to a formal concept, and pose the notion of a weak approx-
imable concept. Then we study the lattice consisting of weak approximable
concepts, and show that it is a special algebraic lattice here called completely
algebraic lattice. Moreover, each completely algebraic lattice is isomorphic to
such a weak approximable concept lattice. So the representation theorem of
completely algebraic lattices is obtained.

The paper is organized as follows. Section 2 lists some necessary definitions
and results needed later on. In Section 3, we propose the notion of a weak
approximable attribute concept, prove the representation theorem of com-
pletely algebraic lattices. In Section 4, we define a weak approximable object
concept, and discuss the relationship between the two weak approximable
concepts.

2 Preliminaries

In this section, we recall some important concepts and well-known results
in domains and lattices theory, and also review the basic theory of formal
concept analysis.

2.1 Domains and Lattices Theory

Let (P,�) be a poset, a subset D ⊆ P is called directed if any finite set
F ⊆ P there is an element d ∈ D such that ∀f ∈ F , f � d. If

∨
D exists for

any directed set D ⊆ P , then (P,�) is said to be a dcpo, if
∨
S exists for

any subset S ⊆ P , then (P,�) is said to be a complete lattice. ∀x, y ∈ P ,
we say that x is way below y, in symbols x≪ y, if for every directed subset
D ⊆ P , y �

∨
D implies x � d for some d ∈ D. An element satisfying x≪ x

is said to be compact. The set of compact elements of P is denoted as K(P ).
In a poset (P,�), for any x ∈ P , ↓ x denotes the set {y ∈ P : y � x}. Unless
otherwise stated, (L,�) always denotes a complete lattice in this paper.

Definition 1. [1, 3, 5, 10] Let (L,�) be a complete lattice and x, y ∈ L. We
say that x is completely way below y, in symbols x ⊳ y, if for every subset
S ⊆ L, y �

∨
S implies x � s for some s ∈ S.

An element satisfying x ⊳ x is said to be completely compact. The set of
completely compact elements of L is denoted as CK(L).

Definition 2. [10] A complete lattice (L,�) is called a completely algebraic
lattice if, for each a ∈ L,

a =
∨
{k ∈ CK(L) : k � a} =

∨
(↓ a ∩ CK(L)).

Example 1. Let L = 2X for some non-empty set X . Then (L,⊆) is a com-
pletely algebraic lattice, and CK(L) = {{x} : x ∈ X}.
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Theorem 1. [5, 8, 9] Let (L,�) be a complete lattice. Then the following
conditions are equivalent:
(1) (L,�) is a completely distributive lattice,
(2) each a ∈ L has a minimal family,
(3) each a ∈ L has a maximal family,
(4) ∀a ∈ L, a =

∨{x ∈ L : x ⊳ a}.

Lemma 1. [10] Let (L,�) be a complete lattice. Then (L,�) is a completely
algebraic lattice iff it is algebraic and infinitely distributive.

From definitions and the above lemma , we can obtain the following theorem
immediately.

Theorem 2. Let (L,�) be a complete lattice. Then (L,�) is a completely
algebraic lattice iff it is algebraic and completely distributive.

Proof. Trivial. ✷

2.2 Formal Concepts and Approximable Concepts

In FCA, a formal context P is a triple (U, V,R), where U is a set of objects,
V is a set of attributes, and R is a binary relation between U and V with
xRy means “object x has attribute y”.

Definition 3. [1, 3] Let P = (U, V,R) be a formal context. Define two op-
erators as follows:

α : 2U −→ 2V , A −→ {b ∈ V : ∀a ∈ A, aRb},

ω : 2V −→ 2U , B −→ {a ∈ U : ∀b ∈ B, aRb}.
This pair (α, ω) plays an important role in FCA [3]. A pair of sets (A,B) is
called a (formal) concept, if A ⊆ U , B ⊆ V , α(A) = B and ω(B) = A. A is
the extent and B is the intent of (A,B). We use LP to denote the set of all
concepts of P = (U, V,R), and order it by (A1, B1) � (A2, B2)⇔ A1 ⊆ A2 ⇔
B2 ⊆ B1. Then it is easy to check that (LP,⊆) is a lattice called concept
lattice of P .

For any concept (A,B), the extent and the intent are determined by each
other, so we can only choose the extent A (the intent B) called the extent
concept (the intent concept) or just concept for simplicity when considering
a concept (A,B).

Theorem 3. [1,3] Let P = (U, V,R) be a formal context. Then the concept
lattice (LP,⊆) is a complete lattice with

∧

i∈I

(Ai, Bi) = (
⋂

i∈I

Ai, α(ω(
⋃

i∈I

Bi))),
∨

i∈I

(Ai, Bi) = (ω(α(
⋃

i∈I

Ai)),
⋂

i∈I

Bi).
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Theorem 4. [1,3] For every complete lattice (L,�), there is a formal context
PL such that L is order-isomorphic to LPL.

Definition 4. [11] Let P = (U, V,R) be a formal context. Y ⊆ V is called
an approximable (attribute) concept if for every finite subset F ⊆ Y , we have
α(ω(F )) ⊆ Y .

Theorem 5. [11] Let P = (U, V,R) be a formal context. Then the set of its
approximable concepts with inclusion order forms an algebraic lattice. Con-
versely, for every algebraic lattice L, there is a formal context P = (U, V,R)
such that L is isomorphic to the lattice consisting of its approximable concepts
under inclusion order.

3 Weak Approximable Attribute Concepts

In this section, we introduce a new approximable concept, and show that this
special approximable concept lattice is in one-to-one correspondence with a
completely algebraic lattice.

Definition 5. Let P = (U, V,R) be a formal context and Y ⊆ V a set of
attributes. If ∀y ∈ Y , α(ω(y)) ⊆ Y . Then Y is called a weak approximable
attribute concept of P .

We use AP and sometimes A for simplicity to denote the set of all weak
approximable attribute concepts of P .

By Definition 5, it is easy to see that a formal concept is an approx-
imable attribute concept, and an approximable attribute concept is a weak
approximable attribute concept. But the converse of this may not hold. Let
us consider the following example and Example 4.7 in [11].

Example 2. Let P = (U, V,R) be a formal context, where U = {x, y, z},
V = {a, b, c}, and the information presented in Table 1.

Table 1 Formal context P = (U, V, R)

elements a b c

x 1 0 0
y 1 1 1
z 0 1 1

Let Y = {a, b} ⊆ V . Then α(ω(a)) = {a} ⊆ Y , and α(ω(b)) = {b} ⊆ Y , so
Y is a weak approximable attribute concept. But Y is not an approximable
attribute concept since α(ω(Y )) = {a, b, c} � Y .
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Theorem 6. For any formal context P = (U, V,R), the set of its weak ap-
proximable attribute concepts AP forms a completely algebraic lattice under
⊆.

Proof. First, we check that (AP,⊆) is a complete lattice, it suffices to show
that AP is a closure system. Obviously, ∅ ∈ AP and V ∈ AP are the least
element and the greatest element of AP . Given any subset F ⊆ AP , and
∀f ∈ ⋂F . Then f ∈ F for each F ∈ F . Since F is a weak approximable
attribute concept, we have α(ω(f)) ⊆ F for each F ∈ F . Thus α(ω(f)) ⊆⋂

F . So
⋂

F ∈ AP and it implies AP is a closure system.

Second, we show that each Y ∈ AP , Y =
∨{αω(y) : y ∈ Y } and αω(y)

is a completely compact element of AP . Above all, ∀F ∈ AP , we have⋃
F ∈ AP which ensures

∨
F =

⋃
F (Since ∀x ∈ ⋃F , there exists some

F ∈ F such that x ∈ F , so αω(x) ⊆ F ⊆ ⋃
F ). For ∀y ∈ Y ∈ AP , we

can easily see that αω(y) ∈ AP , it implies that
⋂{αω(y) : y ∈ Y } ∈ AP

and
∨{αω(y) : y ∈ Y } =

⋃{αω(y) : y ∈ Y }. It is easy to check that
Y =

⋃{αω(y) : y ∈ Y }. Therefore, Y =
∨{αω(y) : y ∈ Y }. Moreover,

∀F ∈ AP and αω(y) ⊆ ∨F , we have y ∈ αω(y) ⊆ ⋃F . Then there exists
F0 ∈ F such that y ∈ F0. Thus αω(y) ⊆ F0 since F0 is a weak approximable
attribute concept. Hence, αω(y) is a completely compact element of AP .
Therefore, (AP,⊆) is a completely algebraic lattice by Definition 2. ✷

Theorem 7. (Representation Theorem slowromancapi@) For every completely
algebraic lattice (L,�), there is a formal context P = (U, V,R) such that
(L,�) is isomorphic to (AP,⊆).

Proof. Suppose (L,�) is a completely algebraic lattice. Construct a formal
context P = (U, V,R), with U = L and V = CK(L), where aRb iff b � a.
We want to show (AP,⊆) is isomorphic to (L,�).

Firstly note that ∀y ∈ V ,

αω(y) = {b ∈ CK(L) : ω(y) ⊆ Rb}
= {b ∈ CK(L) :↑ y ⊆↑ b}
= {b ∈ CK(L) : b � y}
= ↓ y ∩ CK(L).

Hence, for each Y ∈ A, we have

Y =
∨
{αω(y) : y ∈ Y }

=
⋃

y∈Y

(↓ y ∩CK(L))

= (
⋃

y∈Y

↓ y) ∩ CK(L)

= ↓ (
∨

Y ) ∩ CK(L).
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Thus, we can define a mapping f : (L,�) −→ (A,⊆) as f(x) =↓ x ∩ CK(L)
for each x ∈ L. From the above analysis, it is easy to check that f is a bijective
homomorphism such that f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).
This implies f is a isomorphism and (L,�) is isomorphic to (AP,⊆). ✷

4 Weak Approximable Object Concepts

Definition 6. Let P = (U, V,R) be a formal context and X ⊆ U a set of
objects. if ∀x ∈ X , ω(α(x)) ⊆ X . Then X is called a weak approximable
object concept of P .

We use OP and sometimes O for simplicity to denote the set of all weak
approximable object concepts of P .

By symmetry and the analysis in Section 3, the following lemma holds
immediately.

Lemma 2. For a formal context P = (U, V,R), we have
1 (OP,⊆) is a completely algebraic lattice,
2 for each completely algebraic lattice L, there is a a formal context P =
(U, V,R) such that L is isomorphic to OP ,
3 for any subset Y ⊆ V , ω(Y ) is a weak approximable object concept,
4 for any subset X ⊆ U , α(X) is a weak approximable attribute concept.

The relationship between (AP,⊆) and (OP,⊆) is stated in the following
theorem.

Theorem 8. With respect to a formal context P = (U, V,R), the mappings
ω : AP −→ OP and α : OP −→ AP give rise to a Galois connection.

Proof. It is trivial. ✷
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Ideal-Convergence in Quantales

Shaohui Liang

Abstract. In this paper, some important properties of points in quantale
are discussed. Based on which we constructed the convergence structure on
quantale by ideal and point, and some important properties are obtained.

Keywords: Quantale, Point, Ideal, Quantale homomorphism.

1 Introduction

Quantale was proposed by C.J.Mulvey in 1986 for studying the foundations
of quantum logic and for studying non-commutation C*-algebras. The term
quantale was coined as a combination of ”quantum logic” and ”locale” by
C.J.Mulvey in [18]. The systematic introduction of quantale theory came
from the book [29] , which written by K.I.Rosenthal in 1990. Since quantale
theory provides a powerful tool in studying noncommutative structures, it
has a wide applications, especially in studying noncommutative C*-algebra
theory [20], the ideal theory of commutative ring [21], linear logic [6] and so
on. So, the quantale theory has aroused great interests of many scholar and
experts, a great deal of new ideas and applications of quantale have been
proposed in twenty years [1-5, 7-17, 19, 22-31].

The study of complete Heyting algebra which regards as generalized topol-
ogy spaces goes back to the work of C.Ehresmann and J.Benabou, and later
the theory of locale developed by C.H.Dowker, D.P.Strauss and J.R.Isbell.
Some important topological properties on locales were obtained. Locale can
be thought of as lattice theoretic generalizations of the lattice of open
sets of a topological space. An outstanding introduction of locale theory in
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PT.Johnstone’s book Stone Space [8]. In paper, a series of topological prop-
erties of locale such as separation Axioms and limit structure in locale by
point approach. The study of the paper [11] was introduced convergence and
cauchy structure on locales, and given characterization of Hausdorff property
in locale by uniqueness of limit.

Quantale can be regard as the non-commutative generalization of frame.
The natural question arising in this context is the following: How to introduce
convergence structure, separation Axioms, and another properties in quan-
tales? In the paper, we have introduced convergence structures on quantales.
We obtained a series of results of properties of quantales, which generalize
some results of locales.

2 Preliminaries

Definition 1. [29] A quantale is a complete lattice Q with an associative
binary operation “&” satisfying:

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a),

for all a, bi ∈ Q, where I is a set, 0 and 1 denote the smallest element and
the greatest element of Q, respectively.

A quantale Q is said to be unital if there is an element u ∈ Q such that
u&a = a&u = a for all a ∈ Q.

Definition 2. [29] Let Q be a quantale and a ∈ Q.

(1) a is right− sided if and only if a&1 ≤ a.

(2) a is left− sided if and only if 1&a ≤ a.

(3) a is two − sided if and only if a is both right and left side.

(4) a is idempotent if and only if a&a = a.

Definition 3. [29] A quantale Q is commutative if and only if a&b = b&a
for all a, b ∈ Q.

Definition 4. [29] Let Q and P be quantales. A function f : Q −→ P is
a homomorphism of quantale if f preserves arbitrary sups and the operation
“&”. If Q and P are unital, then f is unital homomorphism if in addition to
being a homomorphism, it satisfies f(uQ) = uP , where uQ and uP are units
of Q and P , respectively.

Definition 5. [29] Let Q be a quantales. A subset S ⊆ Q is a subquantale
of Q iff the inclusion S →֒ Q is a quantale homomorphism, i.e., S is closed
under sups and “&”.

Definition 6. [29] Let Q be a quantales. A quantic nucleus on Q is a
closure operator j such that j(a)&j(b) ≤ j(a&b) for all a, b ∈ Q.

Definition 7. Let Q be a quantales, for any x ∈ Q, defined xT
r = ∨{y ∈ Q |

x&y = 0}, xT
r is said to be right pseudocomplemented of x.
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By the definition of right pseudocomplement, we know that (1) xT
r ∈ R(Q),

(2) x&xT
r = 0, (3) x ≤ y=⇒yT

r ≤ xT
r .

Definition 8. Let Q be a quantales. A non-empty subset I of Q said to be
ideal if it satisfies the following conditions:

(i) 1 �∈ I;

(ii) a ∨ b ∈ I for all a, b ∈ I;

(iii) x&r ∈ I and r&x ∈ I for all x ∈ Q, r ∈ I;

(iv) I is a down-set.

The set of all ideals of Q is denoted by Id(Q). Let I be a ideal of Q, then
I is said to be prime if a, b ∈ I and a&b ∈ I imply a ∈ I or b ∈ I. The set of
prime ideal of Q is denoted PId(Q).

Definition 9. Let Q be a quantales. A non-empty subset F of Q said to be
filter if it satisfies the following conditions:

(i) 0 �∈ F ;

(ii) a ∈ F, b ∈ Q, a ≤ b imply b ∈ F ;

(iii) a, b ∈ Q imply a&b ∈ F .

The set of all filters of Q is denoted by Fil(Q). The filter F of Q is said
to be prime if a ∨ b ∈ F imply a ∈ F or b ∈ F . The set of all prime filters of
Q is denoted by PFil(Q).

3 Ideal-Convergence in Quantales

Borceux and Vanden Bossche [3] introduced the concept of points of idem-
potent right-sided quantales, and gave some important results of points. In
this section, we generalize the concept of points to quantale, and discussed a
series of properties of points of quantales. Base on which we constructed the
convergence structure on quantale by ideal and point, and some important
properties are obtained.

Definition 1. Let Q be a quantale, an element p ∈ Q is called prime iff
p �= 1 and a&b ≤ p implies that a ≤ p or b ≤ p. The set of all prime two-sided
element of Q is denoted by TPr(Q).

Definition 2. Let Q be a quantale, 2 = {0, 1} is a quantale by taking x&y =
0 with x = 0 or y = 0 and 1&1 = 1. A point of Q is a onto homomorphism
of quantale from Q to 2. We shall denote the all points of Q by Pt(Q).

Remark 1. (1) Let P is a point of Q, then ∨p−1(0) ∈ Pr(Q), p−1(0) =↓
(∨p−1(0)), p−1(0) and p−1(1) is prime ideal and prime filter of Q, respectively.

(2) Let Q be a quantale, there is a one to one correspondence between
TPr(Q) and Pt(Q) by function f : TPr(Q) −→ Pt(Q) such that r −→
pr(x) =

{
0, x ≤ r
1, x �≤ r

for all r ∈ TPr(Q), x ∈ Q.
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(3) Let Q be a quantale, p is a point of Q, then x ∈ P−1(1) imply xT
r ∈

P−1(0).

Definition 3. Let Q be a quantale, I ∈ Id(Q), p ∈ Pt(Q).

(1) The point p is called a cluster point of I iff I ⊆ Pt(Q).
(2) Ideal I is converges to p iff p is a cluster point of I and xT ∈ I for all

x ∈ p−1(1).

(3) The point p is a strongly limit point of I if p is a cluster point of I
and ∀ x ∈ p−1(1), there exists a ∈ I such that a ∨ x = 1.

Remark 2. (i) If I is a prime ideal of qunatale Q and p is a cluster of I,
then p is a limit point of I.

(ii) If Q is a unital quantale with unit 1, then strong limit points =⇒ limit
points =⇒ cluster points.

Example 1. (1) Let Q = {0, a, b, c, 1}. The order relation of Q given by
figure 1. We define a binary operation “&” on Q satisfying the diagram 1.

❅
❅

�
�

�
�

❅
❅
• •

•

•
•

1

0

a cb

figure 1

& 0 a b c 1

0 0 0 0 0 0
a 0 b c a 1

b 0 c a b 1
c 0 a b c 1

1 0 1 1 1 1
diagram 1

It is easy to show that (Q, &) is a quantale. Now, we define p : Q −→ 2 such

that p(x) =

{
1, x ∈ {a, b, c, 1},
0, x=0.

Then p is a onto homomorphism of quantale.

Hence p ∈ Pt(Q). Let I = {0}, then I be a ideal of Q. We can prove that p
is a cluster of I. Since p−1(1) = {a, b, c, 1} and aT = bT = cT = 1T = 0 ∈ I,
therefore I converges to p.

(2) Let Q = {0, a, b, c, d, 1} be a quantale, the order relation and binary
operation “&” on Q given by the following figure 2 and diagram 2.

❅
❅

❅
❅

❅
❅
�

�

�
�

�
�

❅
❅
•

•

•
••

•

b

0

d c

a

1

figure 2

& 0 a b c d 1

0 0 0 0 0 0 0
a 0 a d 0 d a

b 0 d c c 0 b
c 0 0 c c 0 c

d 0 d 0 0 0 d

1 0 a b c d 1

diagram 2

We know that b is a prime element of Q, define mapping pb : Q −→ 2 such
that
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pb(x) =

{
0, x ≤ b,
1, otherwise.

By remark 1. we know that pb is an onto homomor-

phism of quantale, i.e., pb ∈ Pt(Q).
It is easy to verify that I =↓ b = {0, b, c, d} be a ideal of Q, and I ⊆ p−1

b (0),
then pb is a cluster point of I. ∀ t ∈ p−1

b (1), then t ∈ {a, 1}. We know that
aT = ∨{0, c} = c ∈ I, 1T = 0 ∈ I, then I converges to pb. Since I ′ = {0, c} is
a ideal of Q, and I ′ ⊆ p−1

b (0). Thus pb is a cluster point of I ′. By aT , 1T ∈ I ′,
then I ′ converges to pb. Since ∀ s ∈ p−1

b (1) = {a, 1} such that s ∨ c = 1,
which implies that pb is a strongly limit point of I and I ′.

Theorem 1. Let Q be a unital quantale with unit 1, and I be a ideal of Q.
I is the maximal ideal of Q iff there exist a ∈ Q such that a ∨ x �= 1 for all
x ∈ I, then a ∈ I.

Proof. Suppose I is not the maximal ideal of Q, then there exist I ∈ Id(Q)
such that I ⊆ I, I �= I. Thus there exists m ∈ I \ I. Since m ∨ x �= 1 for all
x ∈ I, then m ∈ I, which is a contradiction.

Conversely, let a ∈ Q such that a ∨ x �= 1 for all x ∈ Q, but a �∈ I. Put
Ia = I∪ ↓ {a ∨ x | x ∈ I}. Next, we will prove that Ia is a ideal of Q.

(1) It is easy to prove that Ia be a down set and 1 ∈ Q \ Ia;
(2) ∀ y ∈ Q, n ∈ Ia. If n ∈ I, then y&n, n&y ∈ Ia. If n ∈↓ {a∨ x | x ∈ I},

then there exists xn ∈ I such that n ≤ a ∨ xn. Thus y&n ≤ y&(a ∨ xn) ≤
1&(a ∨ xn) = a ∨ xn ∈ Ia. Therefore y&n ∈ Ia. Similarly n&y ∈ Ia. Hence,
Ia is a ideal of Q and Ia �= Q, which is a contradiction. We know that I is
the maximal ideal of Q. ✷

Corollary 1. Let Q be a unital quantale with unit 1. I be a maximal ideal
of Q. Then every cluster points of I is the strong limit points of I.

Combining the above corollary 1 and Remark 2.(ii), we can obtain the
following:

Theorem 2. Let Q be a unital quantale with unit 1. Then the following are
equivenlent:

(1) Every ideal of Q has cluster points;
(2) Every maximal ideal of Q has limit points;
(3) Every maximal ideal of Q has strongly limit points.
The proof is easy and is omitted.

Theorem 3. Let Q be a quantale, j be a nuclei of Q. Then the following
are true:

(i) Pr(Qj) = Pr(Q) ∩Qj ;

(ii) Pt(Qj) = {p |Qj : p ∈ Pt(Q),
Q∨
p−1(0) ∈ Qj}, where p |Qj denote the

restriction of p to Qj .

Proof. (i) ∀ r ∈ Pr(Qj) ⊆ Qj , x, y ∈ Q, if x&y ≤ r, then x&jy ≤ r by
j(x&y) ≤ r. Since r ∈ Pr(Qj), then j(x) ≤ r or j(y) ≤ r. By x ≤ j(x)
and y ≤ j(y) we know that x ≤ r or y ≤ r. Therefore r ∈ Pr(Q) ∩ Qj. So
Pr(Qj) ⊆ Pr(Q) ∩Qj. It is obvious that Pr(Q) ∩Qj ⊆ Pr(Qj).
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(2) Let p0 ∈ Pt(Qj), then r0 =
∨
Qj

p−1
0 (0) = j(

Q∨
p−1
0 (0)) ∈ Qj is a prime

element, which is corresponds to point p0. By (1) we know that pr0 is the

restriction of p to Qj . Thus Pt(Qj) ⊆ {p |Qj : p ∈ Pt(Q),
Q∨
p−1(0) ∈ Qj}.

Conversely, let p ∈ Pt(Q) and r =
Q∨
p−1
0 (0) ∈ Qj . We only need to show

p |Qj : Qj −→ 2 is a quantale homomorphism.
Firstly, we show that p |Qj preserve operation “&”, i.e., ∀ x, y ∈ Qj ,

p |Qj (x&jy) = p |Qj (x)&p |Qj (y).
If x&jy ≤ r, then x ≤ r or y ≤ r. Thus p |Qj (x&jy) = p |Qj (x)&p |Qj (y).

If x&jy �≤ r, then x �≤ r and y �≤ r. Otherwise, suppose x ≤ r or y ≤ r, then
x&jy ≤ x&jr ≤ r or x&jy ≤ r&jy ≤ r, which is a contradiction. Therefore,
p |Qj (x&jy) = p |Qj (x)&p |Qj (y).
∀ A ⊆ Qj, if A = ∅, then ∨A = j(0) ∈ Qj , and j(0) ≤ r. We know that

p |Qj (j(0)) ≤ p |Qj (r) = 0, then p |Qj (j(0)) = 0, therefore p |Qj preserve
empty sups.

Suppose A �= ∅, if
∨
Qj

A ≤ r, then p(
∨
Qj

A) ≤ p(r) = 0. Thus p |Qj (
∨
Qj

A) =

∨
a∈A

p |Qj (a).

If
∨
Qj

A �≤ r, then there exists a ∈ A such that a �≤ r, i.e., p(a) = 1. Thus

p |Qj (
∨
Qj

A) = 1 =
∨

a∈A

p(a). Therefore p |Qj preserve arbitrary sups. ✷

Theorem 4. Let Q be a quantale, j be a nuclei of Q, I ∈ Id(Qj). Thus
j−1(I) = {x ∈ Q | j(x) ∈ I} ∈ Id(Q).

Proof. Firstly, since j : Q −→ Qj is a surjective quantale homomorphism.
Thus j(1) is the greatest element of Qj . By I ∈ Id(Qj) we know that j(1) ∈
Qj \ I, therefore 1 ∈ Q \ j−1(I).

Secondly, let x ∈ Q, y ∈ j−1(I) with x ≤ y, then j(x) ≤ j(y) ∈ I, thus
j(x) ∈ I,i.e.,x ∈ j−1(I). Therefore j−1(I) is a down set.

At last, ∀ x ∈ Q, y ∈ j−1(I), we have j(x&y) = j(x)&jj(y) ∈ I. Thus
x&y ∈ j−1(I). Similarly, y&x ∈ j−1(I).

Therefore, j−1(I) is a ideal of Q by the proof above.

Theorem 5. Let Q be a quantale, j be a nuclei of Q, p ∈ Pt(Q) such that
p |Qj∈ Pt(Qj), I ∈ Id(Qj). Then the following are true:

(1) p |Qj is a cluster point of I in Qj iff p is a cluster point of j−1(I) in Q;
(2) If Qj is a dense quotient of Q, then I converges to p |Qj in Qj iff j−1(I)

converges to p in Q;
(3) If p−1(1) = p |−1

Qj
(1), then I strong converges to p |Qj in Qj iff j−1(1)

strong converges to p in Q.
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Proof. (1) Let p |Qj is a cluster point I in Qj, then I ⊆ p |−1
Qj

(1) =

p−1(0) ∩ Qj . ∀ x ∈ j−1(I), then j(x) ∈ I. Since x ≤ j(x), thus x ∈ p−1(0),
therefore p is a cluster point of j−1(I) in Q.

Conversely, since j(I) ⊆ I ⊆ Qj, thus I ⊆ j−1(I) ⊆ p |−1
Qj

(0). Hence

I ⊆ p |−1
Qj

(0). Therefore p |Qj is a cluster point of I in Qj.

(2) If I converges to p |Qj in Qj. By (1), we know that j−1(I) ⊆ p−1(0).
∀ x ∈ p−1(1), we have 1 = p(x) ≤ p(j(x)), i.e., j(x) ∈ p−1 ∩ Qj, thus

j(x)TQj ∈ I, where j(x)TQj denote the right pseudocomplement of j(x) in
Qj . Since j(x)&jj(x

T ) = j(j(x)&j(xT )) ≤ j(j(x&xT )) = j(j(0)) = j(0) = 0.
Thus j(xT ) ≤ j(x)Tj ∈ I. By I be a down set, we know that j(xT ) ∈ I, i.e.,
xT ∈ j−1(I). Thus j−1 converges to p in Q.

Conversely, if Qj is a dense quotient of Q, then j(0) = 0. Let j−1(I)
converge to p in Q,. By (1) we know that p |Qj is a cluster point of I in Qj .

∀ x ∈ (p |Qj )
−1(1) = p−1(1) ∩Qj, we have xTQj =

∨
Qj

{y ∈ Qj | x&jy = 0} =

j(
∨
Q

{y ∈ Qj | x&jy = 0}) ≤ j(xT ). Since xT ∈ j−1(I), and I be a down set,

thus xT
Qj
∈ I. Therefore I converge to p |Qj in Qj .

(3) Let I strongly converges to p |Qj . By (1) we know that p is a cluster

point of j−1(I) in Q. ∀ x ∈ p−1(1), since p−1(1) = p |−1
Qj

(1). Then there exists

a ∈ I such that a ∨ x = 1. By I ⊆ j−1(I), we know a ∈ j−1(I). Therefore
j−1(I) strongly converges to p in Q.

Conversely, let j−1(I) strongly converges to p in Q. By (1), we know that
p |Qj is a cluster point of I in Qj . ∀ y ∈ p |−1

Qj
(1). Since p−1(1) = p |−1

Qj
(1),

then there exists b ∈ j−1(I) such that b ∨ y = 1. By b ≤ j(b), we know that
j(b) ∨ y = 1. Therefore I strong converges to p |Qj in Qj.
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On the Factorization Theorem of a
Monotone Morphism in a Topos

Tao Lu and Hong Lu

Abstract. In this paper, we investigate the factorization of a monotone mor-
phism between two partially ordered objects in an arbitrary elementary topos
by means of diagram proof. And then a new factorization theorem in an ar-
bitrary elementary topos which is similar to the classical one is obtained.

Keywords: Partial order object, Monotone morphism, Topos.

1 Introduction and Preliminaries

Recall a topos E is a category which has finite limits and every object of E
has a power object. For a fixed object A of category E , the power object of
A is an object PA which represents Sub(− × A), so that HomE(−, PA) ≃
Sub(− × A) naturally. It says precisely that for any arrow B′ f ��B , the
following diagram commutes, where ϕ is the natural isomorphism.

HomE(B,PA)
ϕ(A,B) ��

HomE(f,PA)

��

Sub(B × A)

Sub(f×A)

��
HomE(B′, PA)

ϕ(A,B′) �� Sub(B′ ×A)

Fig. 1
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As a matter of fact, the category of sheaves of sets on a topological space
is a topos. In particular, the category of sets is a topos. For details of the
treatment of toposes and sheaves please see Johnstone [3], Mac and Moerdijk
[8], Joyal and Tierney [6], Johnstone and Joyal [5]. For a general background
on category theory please refer to [10], [7]

In [8], Lattice and Heyting Algebra objects in a topos are well defined. In
this paper we develop our study in the more general and more natural context
of partially ordered object and the factorization theorem in categorical sense.
More details about lattice and locale please see [1], [2], [9], [4].

2 Main Results

Definition 1. ( [8]) A subobject ≤L L × L is called an internal partial
order on L, provided that the following conditions are satisfied

1) Reflexivity: The diagonal L
δ ��L× L factors through ≤L

�� eL ��L× L ,
as in

L
δ ��

��

L× L

≤L

��
eL

��

Fig. 2 Reflexivity

2) Antisymmetry: The intersection ≤L ∩ ≥L is contained in the diagonal,
as in the following pullback

≤L ∩ ≥L
�� ��

��

��

≤L
��

eL

��

L ��
δ

����
��

��
��

≥L
�� �� L× L

Fig. 3 Antisymmetry

Where ≥L is defined as the composite ≤L
�� eL ��L× L

τ ��L× L with
τ as the twist map interchanging the factors of the product.

3) Transitivity: The subobject C �� 〈π1ev,π2eu〉��L× L factors through

≤L
�� eL ��L× L , as in
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C �� 〈π1ev,π2eu〉 ��

��

L× L

≤L

��
eL

����������

Fig. 4. Transitivity

where C is the following pullback

C

v

��

u �� ≤L
��
eL

��
L× L

π1

��
≤L

��
eL

�� L× L π2

�� L

Fig. 5. The definition of C

An object L endowed with an internal partial order ≤L is called a partially
ordered object.

Let L and M be two partially ordered objects. We can define the product
of partially ordered object L×M of L and M as the product object L×M
endowed with the “pointwise order” ≤L × ≤M L×L×M×M ≃ L×M×
L ×M . Also, a subobject B of a partially ordered object (L,≤L) is again a
partial order object endowed with the induced partial order ≤B, as in the
pullback

≤B
�� ��

��

��

≤L
��

��
B ×B �� �� L× L

Fig. 6. The induced partial order

Based on the above definitions, we now turn to the discussion of morphisms
between partial order objects.

Definition 2. ( [8]) Let L,M be two partially ordered objects with a pair of

morphisms L
f ��
g

��M . Then f ≤ g means L
〈f,g〉−−−→ M ×M factors through

≤M
�� eM ��M ×M , as in



702 T. Lu and H. Lu

L
〈f,g〉 ��

		

M ×M

≤M



 eM



��������

Fig. 7. The first definition of f ≤ g

Lemma 1. Let L,M be two partially ordered objects with a pair of morphisms

L
f ��
g

��M . Then f ≤ g if and only if fr ≤ gr for every morphism A
r ��L .

Proof. ⇒. Suppose f ≤ g, then there exists a morphism L
k �� ≤M such

that 〈f, g〉 = eMk. So 〈fr, gr〉 = 〈f, g〉r = eMkr, which means the outer
triangle of Figure 8 below is commutative, i.e., 〈fr, gr〉 factors through

≤M
�� eM ��M ×M .

A
<fr,gr> ��

r
��

��

		��
��

��

M ×M

L

<f,g>
�����



����

k

��
≤M

eM

��

Fig. 8. Equivelence of two definitions

⇐. Indeed, in order to verify this, we can take the fixed identity morphism

L
1L ��L , then f ≤ g is obvious. ✷

Corollary 1. Let L,M be two partially ordered objects and L
f ��M be a

morphism. Then f ≤ f .

Proof. Since pi〈f, f〉 = piδf with pi : M × M → M (i = 1, 2) being
projections, 〈f, f〉 = δf . And by Definition 1, we know δ factors through

≤M
�� eM ��M ×M . It follows that the outer square is commutative as in the

following Figure 9.

So we have that 〈f, f〉 factors through ≤M
�� eM ��M ×M , thus f ≤ f . ✷

L
〈f,f〉 ��

f

�
��

��
��

�

f �
��

��
��

�
M ×M

M

δ

�����������
�� ≤M

��

eM

����������

Fig. 9. Reflexivity of f
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Corollary 2. Let L,M be two partially ordered objects and f, g, h morphisms
between L and M . Then f ≤ g and g ≤ h imply f ≤ h.

Corollary 3. Let L,M be two partially ordered objects and f : L → M, g :
M → L be morphisms. Then f ≤ g and g ≤ f imply f = g.

Proof. g ≤ f implies that 〈g, f〉 : L → M × M can be factored through
≤M M ×M , equivalently, 〈f, g〉 can be factored through ≥M M ×M .
Thus 〈f, g〉 : L→M×M can be factored through δM =≤M ∩ ≥M M×M .
This shows f = g. ✷

The above argument shows that for two partially ordered objects L and M ,
the relation ≤ defined on the morphism set Mor(L,M) is a partial order
relation.

Definition 3. ( [8])Let L,M be two partially ordered objects in E . A mor-

phism L
f ��M is called order-preserving or monotone if the composite

≤L
�� eL ��L× L

f×f ��M ×M factors through ≤M , as in

≤L
�� eL ��

��

L× L

f×f

��
≤M

��
eM

�� M ×M

Fig. 10. The definition of a monotone morphism

Lemma 2. A morphism L
f ��M between two partial ordered objects is

order-preserving if and only if r ≤ s implies fr ≤ fs for every pair of parallel

morphisms A
r ��
s

��L.

Proof. ⇒. We first show 〈fr, fs〉 = f × f〈r, s〉. This may be pictured as in
the following Figure 11, where p1, p2, π1, π2 are projections.

A
〈fr,fs〉 ��

〈r,s〉
��

��

����
�

r

��

s

��

M ×M

π1

��

π2

��

L× L

f×f
				

��				

p1

��

p2

��

M

L

f

��											

Fig. 11. Universal property of product
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By the universal property of M ×M , it follows that fpi = πif × f , i =
1, 2. Similarly, r = p1〈r, s〉, s = p2〈r, s〉. Then fpi〈r, s〉 = πif × f〈r, s〉, so
fr = π1f × f〈r, s〉, fs = π2f × f〈r, s〉. By the universal property of M ×M ,
we also have fr = π1〈fr, fs〉, fs = π2〈fr, fs〉. So, π1 < fr, fs >= π1f ×
f〈r, s〉, π2〈fr, fs〉 = π2f × f〈r, s〉, thus 〈fr, fs〉 = f × f〈r, s〉.

Now suppose r ≤ s, then there exists a morphism A
k−→≤L with 〈r, s〉 =

eLk. It follows that the left triangle of in Figure 12 is commutative. Since
f is monotone, the right square of the Figure 12 is commutative, i.e., there

exists ≤L
m �� ≤M such that f × feL = eMm. So 〈fr, fs〉 = f × f〈r, s〉 =

f × feLk = eMmk, which means the outer of the Figure 12 is commutative.

A
〈fr,fs〉 ��

〈r,s〉
��

��

����
�

k

��

M ×M

L× L

f×f
				

��				

≤M

��

eM

��

≤L

m

��										
��

eL

��

Fig. 12 The relation between < fr, fs > and eM

Thus, 〈fr, fs〉 factors through ≤M
�� eM ��M ×M .

⇐. It suffices to show there exists ≤L
m �� ≤M with f × feL = eMm,

as in the Figure 13.

A 〈r,s〉

��
k

��

��

≤L

m

��

�� eL �� L× L

f×f

��
≤M

�� eM �� M ×M

Fig. 13 The existence of m

By Lemma 2, it is obvious that m exists. ✷

It is well known that the image of an arrow f is the smallest subobject (of
the codomain f) through which f can factor. And the factorization of f is
unique “up to isomorphism” as the following two Lemmas show.

Lemma 3. ( [8])In a topos, every morphism f has an image m and factors
as f = me, with e epi.
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Lemma 4. If f = me and f ′ = m′e′ with m, m′ monic and e, e′ epi, then
each map of the arrow f to the arrow f ′ extends to a unique map of m, e to
m′, e′.

Proof. A map of the arrow f to the arrow f ′ is a pair of arrows r, t which
make the following square commute.

A
f ��

r

��

B

t

��
A′

f ′
�� B′

Fig. 14

Given such a pair of arrows and the two e−m factorizations, it suffices to
construct a unique arrow s from m to m′ which makes both squares in the
following diagram commute.

A
e ��

r

��

h
��

C

s

��

m ��

k

��

B

t

��

P

l

��









n
��













A′
e′

�� C′
m′

�� B′

Fig. 15

Take the pullback P of t along m′, as is shown in the above diagram,
then l is monic. By the definition of the pullback and the Figure 14, then,
there exists the unique h such that f factors through l, i.e., f = lh. By the
minimal property of the image, then there exists one unique arrow k, such
that m = lk. Because l is monic, then h = ke. Let s = nk, then tm factors
through C′ via s, as tm = m′s, and the arrow s is unique because m′ is
monic. Moreover, we have se = e′r for the same reason, which means the left
hand square of the above diagram also commutes. ✷

Theorem 1. If a monotone morphism L
f ��M between two partially or-

dered objects factors as f = me with image m. Then m and e are monotone
morphisms.

Proof. Given L
f ��M , which factors as L

e ��I �� m ��M . The proof is
just a matter of observing the corresponding partial order on I. Construct
the following commutative Figure 16.
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≤L
�� eL ��

e′

		

��

L× L
p1 ��
p2

��

e×e

��
f×f

��

L

e
��

��

�
��

�f

��

≤I
�� eI ��

��
m′

��

I × I
t1 ��
t2

��
��

m×m

��

I��
m��

�

�����
�

≤M
�� eM �� M ×M

π1 ��
π2

�� M

Fig. 16 The partial order on I

By the definition of product L × L, M × M , I × I with projections
pi, πi, ti (i = 1, 2) respectively, we have fpi = πif × f , epi = tie × e,
mti = πim × m, i.e., the front, back, bottom faces of the right side of the
diagram are all commutative. Then, πif × f = fpi = mepi = πim×m · e× e,
so f × f = m×m · e× e, which means the middle triangle is commutative.
Since the smallestness of m×m is obvious, f × f = m×m · e× e is again an
epi-momo factorization, i.e., m×m is the image of f × f .

We take ≤I as the pullback of I × I → M × M along eM , that is,
≤I= (I × I)∩ ≤M . It is easy to prove that ≤I is just both the induced
partial order on I and the image of ≤L. This shows the back and the bot-
tom faces of the left side of the diagram are commutative, in other words,

≤I
�� eL ��I × I

m×m��M ×M and ≤L
�� eL ��L× L

e×e ��I × I factor through

≤M
�� eM ��M ×M and ≤I

�� eI ��I × I respectively. So m, e are all monotone
morphisms. ✷
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