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Preface

Computational modelling is becoming the third paradigm of modern sciences, as

predicted by the Nobel Prize winner Ken Wilson in 1980s at Cornell University. This

so-called third paradigm complements theory and experiment to problem solving. In

fact, a substantial amount of research activities in engineering, science and industry

today involves mathematical modelling, data analysis, computer simulations, and

optimization. The main variations of such activities among different disciplines are

the type of problem of interest and the degree as well as extent of the modelling

activities. This is especially true in the subjects ranging from engineering design to

industry.

Computational optimization is an important paradigm itself with a wide range

of applications. In almost all applications in engineering and industry, we almost

always try to optimize something - whether to minimize the cost and energy con-

sumption, or to maximize the profit, output, performance and efficiency. In real-

ity, resources, time and money are always limited; consequently, optimization is

far more important. The optimal use of available resources of any sort requires a

paradigm shift in scientific thinking, which is because most real-world applications

have far more complicated factors and parameters as well as constraints to affect the

system behaviour. Subsequently, it is not always possible to find the optimal solu-

tions. In practice, we have to settle for suboptimal solutions or even feasible ones

that are satisfactory, robust, and practically achievable in a reasonable time scale.

This search for optimality is complicated further by the fact that uncertainty al-

most always presents in the real-world systems. For example, materials properties

always have a certain degree of inhomogeneity. The available materials which are

not up to the standards of the design will affect the chosen design significantly.

Therefore, we seek not only the optimal design but also robust design in engineer-

ing and industry. Another complication to optimization is that most problems are

nonlinear and often NP-hard. That is, the solution time for finding optimal solu-

tions is exponential in terms of problem size. In fact, many engineering applications

are NP-hard indeed. Thus, the challenge is to find a workable method to tackle the
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problem and to search for optimal solutions, though such optimality is not always

achievable.

Contemporary engineering design is heavily based on computer simulations. This

introduces additional difficulties to optimization. Growing demand for accuracy and

ever-increasing complexity of structures and systems results in the simulation pro-

cess being more and more time consuming. Even with an efficient optimization

algorithm, the evaluations of the objective functions are often time-consuming. In

many engineering fields, the evaluation of a single design can take as long as sev-

eral hours up to several days or even weeks. On the other hand, simulation-based

objective functions are inherently noisy, which makes the optimization process even

more difficult. Still, simulation-driven design becomes a must for a growing number

of areas, which creates a need for robust and efficient optimization methodologies

that can yield satisfactory designs even at the presence of analytically intractable

objectives and limited computational resources.

In most engineering design and industrial applications, the objective cannot be

expressed in explicit analytical form, as the dependence of the objective on de-

sign variables is complex and implicit. This black-box type of optimization often

requires a numerical, often computationally expensive, simulator such as computa-

tional fluid dynamics and finite element analysis. Furthermore, almost all optimiza-

tion algorithms are iterative, and require numerous function evaluations. Therefore,

any technique that improves the efficiency of simulators or reduces the function

evaluation count is crucially important. Surrogate-based and knowledge-based op-

timization uses certain approximations to the objective so as to reduce the cost of

objective evaluations. The approximations are often local, while the quality of ap-

proximations is evolving as the iterations proceed. Applications of optimization in

engineering and industry are diverse. The contents are quite representative and cover

all major topics of computational optimization and modelling.

This book is contributed from worldwide experts who are working in these excit-

ing areas, and each chapter is practically self-contained. This book strives to review

and discuss the latest developments concerning optimization and modelling with a

focus on methods and algorithms of computational optimization, and also covers

relevant applications in science, engineering and industry.

We would like to thank our editors, Drs Thomas Ditzinger and Holger Schaepe,

and staff at Springer for their help and professionalism. Last but not least, we thank

our families for their help and support.

Slawomir Koziel

Xin-She Yang

2011
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Institute of Computational Science, University of Lugano, Via Giuseppe Buffi 13,

6906 Lugano, Switzerland (joerg.laessig@usi.ch)

Slawomir Koziel

Engineering Optimization & Modeling Center, School of Science and Engineering,

Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland (koziel@ru.is)

Oliver Kramer

UC Berkeley, CA 94704, USA, (okramer@icsi.berkeley.edu)

Leifur Leifsson

Engineering Optimization & Modeling Center, School of Science and Engineering,

Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland (leifurth@ru.is)

Alicia Lloro

Department of Economics, University of California, Irvine, 3151 Social Science

Plaza, Irvine CA 92697-5100, U.S.A. (alloro@uci.edu)

Alfredo Arias-Montaño

CINVESTAV-IPN, Departamento de Computación, Av. Instituto Politécnico Na-
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Chapter 1

Computational Optimization: An Overview

Xin-She Yang and Slawomir Koziel

Abstract. Computational optimization is ubiquitous in many applications in engi-

neering and industry. In this chapter, we briefly introduce computational optimiza-

tion, the optimization algorithms commonly used in practice, and the choice of an

algorithm for a given problem. We introduce and analyze the main components of a

typical optimization process, and discuss the challenges we may have to overcome

in order to obtain optimal solutions correctly and efficiently. We also highlight some

of the state-of-the-art developments in optimization and its diverse applications.

1.1 Introduction

Optimization is everywhere, from airline scheduling to finance and from the Internet

routing to engineering design. Optimization is an important paradigm itself with a

wide range of applications. In almost all applications in engineering and industry,

we are always trying to optimize something – whether to minimize the cost and

energy consumption, or to maximize the profit, output, performance and efficiency.

In reality, resources, time and money are always limited; consequently, optimization

is far more important in practice [1, 7, 27, 29]. The optimal use of available resources

of any sort requires a paradigm shift in scientific thinking, this is because most real-

world applications have far more complicated factors and parameters to affect how

the system behaves. The integrated components of such an optimization process are

the computational modelling and search algorithms.
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Computational modelling is becoming the third paradigm of modern sciences,

as predicted by the Nobel Prize winner Ken Wilson in 1980s at Cornell University.

This so-called third paradigm complements theory and experiment to problem solv-

ing. It is no exaggeration to say almost all research activities in engineering, science

and industry today involve a certain amount of modelling, data analysis, computer

simulations, and optimization. The main variations of such activities among differ-

ent disciplines are the type of problem of interest and the degree and extent of the

modelling activities. This is especially true in the subjects ranging from engineering

design to oil industry and from climate changes to economics.

Search algorithms are the tools and techniques of achieving optimality of the

problem of interest. This search for optimality is complicated further by the fact

that uncertainty almost always presents in the real-world systems. For example, ma-

terials properties such as Young’s modulus and strength always have a certain degree

of inhomogeneous variations. The available materials which are not up to the stan-

dards of the design will affect the chosen design significantly. Therefore, we seek

not only the optimal design but also robust design in engineering and industry. Op-

timal solutions, which are not robust enough, are not practical in reality. Suboptimal

solutions or good robust solutions are often the choice in such cases.

Contemporary engineering design is heavily based on computer simulations. This

introduces additional difficulties to optimization. Growing demand for accuracy and

ever-increasing complexity of structures and systems results in the simulation pro-

cess being more and more time consuming. In many engineering fields, the evalua-

tion of a single design can take as long as several days or even weeks. On the other

hand, simulation-based objective functions are inherently noisy, which makes the

optimization process even more difficult. Still, simulation-driven design becomes a

must for a growing number of areas, which creates a need for robust and efficient

optimization methodologies that can yield satisfactory designs even at the presence

of analytically intractable objectives and limited computational resources.

1.2 Computational Optimization

Optimization problems can be formulated in many ways. For example, the com-

monly used method of least-squares is a special case of maximum-likelihood for-

mulations. By far the most widely formulation is to write a nonlinear optimization

problem as

minimize fi(x), (i = 1,2, ...,M), (1.1)

subject to the constraints

h j(x), ( j = 1,2, ...,J), (1.2)

gk(x) ≤ 0, (k = 1,2, ...,K), (1.3)

where fi,h j and gk are in general nonlinear functions. Here the design vector

x = (x1,x2, ...,xn) can be continuous, discrete or mixed in n-dimensional space. The
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functions fi are called objective or cost functions, and when M > 1, the optimization

is multiobjective or multicriteria [21]. It is possible to combine different objectives

into a single objective, and we will focus on the single-objective optimization prob-

lems in most part of this book. It is worth pointing out that here we write the prob-

lem as a minimization problem, it can also be written as a maximization by simply

replacing fi(x) by − fi(x).
In a special case when K = 0, we have only equality constraints, and the opti-

mization becomes an equality-constrained problem. As an equality h(x) = 0 can be

written as two inequalities: h(x) ≤ 0 and −h(x) ≤ 0, some formulations in the opti-

mization literature use constraints with inequalities only. However, in this book, we

will explicitly write out equality constraints in most cases.

When all functions are nonlinear, we are dealing with nonlinear constrained prob-

lems. In some special cases when fi,h j,gk are linear, the problem becomes lin-

ear, and we can use the widely linear programming techniques such as the simplex

method. When some design variables can only take discrete values (often integers),

while other variables are real continuous, the problem is of mixed type, which is

often difficult to solve, especially for large-scale optimization problems.

A very special class of optimization is the convex optimization [2], which has

guaranteed global optimality. Any optimal solution is also the global optimum, and

most importantly, there are efficient algorithms of polynomial time to solve such

problems [3]. These efficient algorithms such the interior-point methods [12] are

widely used and have been implemented in many software packages.

On the other hand, some of the functions such as fi are integral, while others such

as h j are differential equations, the problem becomes an optimal control problem,

and special techniques are required to achieve optimality.

For most applications in this book, we will mainly deal with nonlinear con-

strained global optimization problems with a single objective. In one chapter by

Coello Coello, multiobjective optimization will be discussed in detail. Optimal con-

trol and other cases will briefly be discussed in the relevant context in this book.

1.3 Optimization Procedure

In essence, an optimization process consists of three components: model, optimizer

and simulator (see Fig. 1.1).

The mathematical or numerical model is the representation of the physical prob-

lem using mathematical equations which can be converted into a numerical model

and can then be solved numerically. This is the first crucial step in any modelling

and optimization. If there is any discrepancy between the intended mathematical

model and the actual model in use, we may solve the wrong mathematical model or

deal with a different or even wrong problem. Any mathematical model at this stage

should be double-checked and validated. Once we are confident that the mathemat-

ical model is indeed correct or right set of approximations in most cases, we can

proceed to convert it into the right numerical model so that it can be solved numeri-

cally and efficiently. Again it is important to ensure the right numerical schemes for
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dicretization are used; otherwise, we may solve a different problem numerically. At

this stage, we should not only ensure that numerical model is right, but also ensure

that the model can be solved as fast as possible.

model

optimizer simulator

Fig. 1.1 A typical optimization process

Another important step is to use the right algorithm or optimizer so that an op-

timal set of combination of design variables can be found. An important capability

of optimization is to generate or search for new solutions from a known solution

(often a random guess or a known solution from experience), which will lead to

the convergence of the search process. The ultimate aim of this search process is

to find solutions which converge at the global optimum, though this is usually very

difficult.

In term of computing time and cost, the most important step is the use of an effi-

cient evaluator or simulator. In most applications, once a correct model representa-

tion is made and implemented, an optimization process often involves the evaluation

of objective function (such as the aerodynamical efficiency of an airfoil) many times,

often thousands and even millions of configurations. Such evaluations often involve

the use of extensive computational tools such as a computational fluid dynamics

simulator or a finite element solver. This is the step that is most time-consuming,

often taking 50% to 90% of the overall computing time.

1.4 Optimizer

1.4.1 Optimization Algorithms

An efficient optimizer is very important to ensure the optimal solutions are reach-

able. The essence of an optimizer is a search or optimization algorithm implemented

correctly so as to carry out the desired search (though not necessarily efficiently).

It can be integrated and linked with other modelling components. There are many

optimization algorithms in the literature and no single algorithm is suitable for all

problems, as dictated by the No Free Lunch Theorems [24].
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Optimization algorithms can be classified in many ways, depending on the

focus or the characteristics we are trying to compare. Algorithms can be classified

as gradient-based (or derivative-based methods) and gradient-free (or derivative-free

methods). The classic method of steepest descent and Gauss-Newton methods are

gradient-based, as they use the derivative information in the algorithm, while the

Nelder-Mead downhill simplex method [18] is a derivative-free method because it

only uses the values of the objective, not any derivatives.

From a different point of view, algorithms can be classified as trajectory-based

or population-based. A trajectory-based algorithm typically uses a single agent or

solution point which will trace out a path as the iterations and optimization pro-

cess continue. Hill-climbing is trajectory-based, and it links the starting point with

the final point via a piecewise zigzag path. Another important example is the sim-

ulated annealing [13] which is a widely used metaheuristic algorithm. On the other

hand, population-based algorithms such as particle swarm optimization use multiple

agents which will interact and trace out multiple paths [11]. Another classic example

is the genetic algorithms [8, 10].

Algorithms can also be classified as deterministic or stochastic. If an algorithm

works in a mechanically deterministic manner without any random nature, it is

called deterministic. For such an algorithm, it will reach the same final solution

if we start with the same initial point. Hill-climbing and downhill simplex are good

examples of deterministic algorithms. On the other hand, if there is some random-

ness in the algorithm, the algorithm will usually reach a different point every time

we run the algorithm, even though we start with the same initial point. Genetic al-

gorithms and hill-climbing with a random restart are good examples of stochastic

algorithms.

Analyzing the stochastic algorithms in more detail, we can single out the type

of randomness that a particular algorithm is employing. For example, the simplest

and yet often very efficient method is to introduce a random starting point for a de-

terministic algorithm. The well-known hill-climbing with random restart is a good

example. This simple strategy is both efficient in most cases and easy to implement

in practice. A more elaborate way to introduce randomness to an algorithm is to use

randomness inside different components of an algorithm, and in this case, we of-

ten call such algorithm heuristic or more often metaheuristic [23, 26]. A very good

example is the popular genetic algorithms which use randomness for crossover and

mutation in terms of a crossover probability and a mutation rate. Here, heuristic

means to search by trial and error, while metaheuristic is a higher level of heuristics.

However, modern literature tends to refer all new stochastic algorithms as meta-

heuristic. In this book, we will use metaheuristic to mean either. It is worth pointing

out that metaheuristic algorithms form a hot research topics and new algorithms

appear almost yearly [25, 28].

Memory use can be important to some algorithms. Therefore, optimization algo-

rithms can also be classified as memoryless or history-based. Most algorithms do not

use memory explicitly, and only the current best or current state is recorded and all

the search history may be discarded. In this sense, such algorithms can thus be con-

sidered as memoryless. Genetic algorithms, particle swarm optimization and cuckoo
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search all fit into this category. It is worth pointing out that we should not confuse

the use of memory with the simple record of the current state and the elitism or se-

lection of the fittest. On the other hand, some algorithms indeed use memory/history

explicitly. In the Tabu search [9], tabu lists are used to record the move history and

recently visited solutions will not be tried again in the near future, and it encourages

to explore completely different new solutions, which may save computing effort

significantly.

Another type of the algorithm is the so-called mixed-type or hybrid, which uses

some combination of deterministic and randomness, or combines one algorithm

with another so as to design more efficient algorithms. For example, genetic al-

gorithms can be hybridized with many algorithms such as particle swarm optimiza-

tion; more specifically, may involve the use of generic operators to modify some

components of another algorithm.

From the mobility point of view, algorithms can be classified as local or global.

Local search algorithms typically converge towards a local optimum, not necessar-

ily (often not) the global optimum, and such algorithms are often deterministic and

have no ability of escaping local optima. Simple hill-climbing is an example. On

the other hand, we always try to find the global optimum for a given problem, and

if this global optimality is robust, it is often the best, though it is not always possi-

ble to find such global optimality. For global optimization, local search algorithms

are not suitable. We have to use a global search algorithm. Modern metaheuris-

tic algorithms in most cases are intended for global optimization, though not always

successful or efficiently. A simple strategy such as hill-climbing with random restart

may change a local search algorithm into a global search. In essence, randomization

is an efficient component for global search algorithms. A detailed review of opti-

mization algorithms will be provided later in the chapter on optimization algorithms

by Yang.

Straightforward optimization of a given objective function is not always prac-

tical. Particularly, if the objective function comes from a computer simulation,

it may be computationally expensive, noisy or non-differentiable. In such cases,

so-called surrogate-based optimization algorithms may be useful where the direct

optimization of the function of interest is replaced by iterative updating and re-

optimization of its model - a surrogate [5]. The surrogate model is typically con-

structed from the sampled data of the original objective function, however, it is

supposed to be cheap, smooth, easy to optimize and yet reasonably accurate so

that it can produce a good prediction of the function’s optimum. Multi-fidelity or

variable-fidelity optimization is a special case of the surrogate-based optimization

where the surrogate is constructed from the low-fidelity model (or models) of the

system of interest [15]. Using variable-fidelity optimization is particularly useful is

the reduction of the computational cost of the optimization process is of primary

importance.

Whatever the classification of an algorithm is, we have to make the right choice

to use an algorithm correctly and sometime a proper combination of algorithms may

achieve better results.
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1.4.2 Choice of Algorithms

From the optimization point of view, the choice of the right optimizer or algorithm

for a given problem is crucially important. The algorithm chosen for an optimiza-

tion task will largely depend on the type of the problem, the nature of an algorithm,

the desired quality of solutions, the available computing resource, time limit, avail-

ability of the algorithm implementation, and the expertise of the decision-makers

[27].

The nature of an algorithm often determines if it is suitable for a particular type

of problem. For example, gradient-based algorithms such as hill-climbing are not

suitable for an optimization problem whose objective is discontinuous. Conversely,

the type of problem we are trying to solve also determines the algorithms we pos-

sibly choose. If the objective function of an optimization problem at hand is highly

nonlinear and multimodal, classic algorithms such as hill-climbing and downhill

simplex are not suitable, as they are local search algorithms. In this case, global op-

timizers such as particle swarm optimization and cuckoo search are most suitable

[27, 28].

Obviously, the choice is also affected by the desired solution quality and com-

puting resource. As in most applications, computing resources are limited, we have

to obtain good solutions (not necessary the best) in a reasonable and practical time.

Therefore, we have to balance the resource and solution quality. We cannot achieve

solutions with guaranteed quality, though we strive to obtain the quality solutions

as best as we possibly can. If time is the main constraint, we can use some greedy

methods, or hill-climbing with a few random restarts.

Sometimes, even with the best possible intention, the availability of an algo-

rithms and the expertise of the decision-makers are the ultimate defining factors

for choosing an algorithm. Even some algorithms are better, we may not have that

algorithm implemented in our system or we do not have such access, which limits

our choice. For example, Newton’s method, hill-climbing, Nelder-Mead downhill

simplex, trust-region methods [3], interior-point methods [19] are implemented in

many software packages, which may also increase their popularity in applications.

Even we may have such access, but we may have not the experience in using

the algorithms properly and efficiently, in this case we may be more comfortable

and more confident in using other algorithms we have already used before. Our

experience may be more valuable in selecting the most appropriate and practical

solutions than merely using the best possible algorithms.

In practice, even with the best possible algorithms and well-crafted implementa-

tion, we may still do not get the desired solutions. This is the nature of nonlinear

global optimization, as most of such problems are NP-hard, and no efficient (in the

polynomial sense) exist for a given problem. Thus the challenge of the research

in computational optimization and applications is to find the right algorithms most

suitable for a given problem so as to obtain the good solutions, hopefully also the

global best solutions, in a reasonable timescale with a limited amount of resources.

We aim to do it efficiently in an optimal way.
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1.5 Simulator

To solve an optimization problem, the most computationally extensive part is prob-

ably the evaluation of the design objective to see if a proposed solution is feasible

and/or if it is optimal. Typically, we have to carry out these evaluations many times,

often thousands and even millions of times [25, 27]. Things become even more

challenging computationally, when each evaluation task takes a long time via some

black-box simulators. If this simulator is a finite element or CFD solver, the running

time of each evaluation can take from a few minutes to a few hours or even weeks.

Therefore, any approach to save computational time either by reducing the number

of evaluations or by increasing the simulator’s efficiency will save time and money.

1.5.1 Numerical Solvers

In general, a simulator can be a simple function subroutines, a multiphysics solver,

or some external black-box evaluators.

The simplest simulator is probably the direct calculation of an objective function

with explicit formulas, this is true for standard test functions (e.g, Rosenbrock’s

function), simple design problems (e.g., pressure vessel design), and many prob-

lems in linear programming [4]. This class of optimization with explicit objectives

and constraints may form the majority of optimization problems dealt with in most

textbooks and optimization courses.

In engineering and industrial applications, the objectives are often implicit and

can only be evaluated through a numerical simulator, often black-box type. For ex-

ample, in the design of an airfoil, the aerodynamic performance can only be eval-

uated either numerically or experimentally. Experiments are too expensive in most

cases, and thus the only sensible tool is a finite-volume-based CFD solver, which can

be called for a given setting of design parameters. In structural engineering, a design

of a structure and building is often evaluated by certain design codes, then by a finite

element software package, which often takes days or even weeks to run. The eval-

uation of a proposed solution in real-world applcations is often multidisciplinary, it

could involve stress-strain analysis, heat transfer, diffusion, electromagnetic waves,

electrical-chemistry, and others. These phenomena are often coupled, which makes

the simulations a daunting task, if not impossible. Even so, more and more opti-

mization and design requires such types of evaluations, and the good news is that

computing speed is increasing and many efficient numerical methods are becoming

routine.

In some rare cases, the optimization objective cannot be written explicitly, and

cannot be evaluated using any simulation tools. The only possibility is to use some

external means to carry out such evaluations. This often requires experiments,

or trial-or-error, or by certain combination of numerical tools, experiment and

human expertise. This scenario may imply our lack of understanding of the sys-

tem/mechanisms, or we may not formulate the problem properly. Sometimes, cer-

tain reformulations can often provide better solutions to the problem. For example,
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many design problems can be simulated by using neural networks and support

vector machines. In this case, we know certain objectives of the design, but the re-

lationship between the parameter setting and the system performance/output is not

only implicit, but also dynamically changing based on iterative learning/training.

Fuzzy system is another example, and in this case, special techniques and methods

are used, which is essentially forms a different subject.

In this book, we will mainly focus on the cases in which the objective can be

evaluated either using explicit formulas or using black-box numerical tools/solvers.

Some case studies of optimization using neural networks will be provided as well.

1.5.2 Simulation Efficiency

In terms of computational effort, an efficient simulator is paramount in controlling

the overall efficiency of any computational optimization. If the objectives can be

evaluated using explicit functions or formulas, the main barrier is the choice and use

of an efficient optimizer. In most cases, the evaluation via a numerical solver such

as FE/CFD package is very expansive. This is the bottleneck of the whole optimiza-

tion process. Therefore, various methods and approximations are designed either

to reduce the number of such expensive evaluations or to use some approximation

(though more often a good combination of both).

The main way to reduce the number of objective evaluations is to use an effi-

cient algorithm, so that only a small number of such evaluations are needed. In most

cases, this is not possible. We have to use some approximation techniques to esti-

mate the objectives, or to construct an approximation model to predict the solver’s

outputs without actual using the solver. Another way is to replace the original ob-

jective function by its lower-fidelity model, e.g., obtained from a computer simu-

lation based on coarsely-discretized structure of interest. The low-fidelity model is

faster but not as accurate as the original one, and therefore it has to be corrected.

Special techniques have to be applied to use an approximation or corrected low-

fidelity model in the optimization process so that the optimal design can be obtained

at a low computational cost. All of this falls into the category of surrogate-based

optimization[20, 14, 15, 16, 17].

Surrogate models are approximate techniques to construct response surface mod-

els, or metamodels [22]. The main idea is to approximate or mimic the system

behaviour so as to carry out evaluations cheaply and efficiently, still with accu-

racy comparable to the actual system. Widely used techniques include polynomial

response surface or regression, radial basis functions, ordinary Kriging, artificial

neural networks, support vector machines, response correction, space mapping and

others. The data used to create the models comes from the sampling of the de-

sign space and evaluating the system at selected locations. Surrogate models can

be used as predictive tools in the search for the optimal design of the system of

interest. This can be realized by iterative re-optimization of the surrogate (exploita-

tion), filling the gaps between sample points to improve glocal accuracy of the model
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(exploration of the design space) or a mixture of both [5]. The new data is used

to update the surrogate. A detailed review of surrogate-modeling techniques and

surrogate-base optimization methods will be given by Koziel et al. later.

1.6 Latest Developments

Computational optimization has been always a major research topic in engineering

design and industrial applications. New optimization algorithms, numerical meth-

ods, approximation techniques and models, and applications are routinely emerging.

Loosely speaking, the state-of-the-art developments can put into three areas: new al-

gorithms, new models, and new applications.

Optimization algorithms are constantly being improved. Classic algorithms such

as derivative-free methods and pattern search are improved and applied in new ap-

plications both successfully and efficiently.

Evolutionary algorithms and metaheuristics are widely used, and there are many

successful examples which will be introduced in great detail later in this book.

Sometimes, complete new algorithms appear and are designed for global optimiza-

tion. Hybridization of different algorithms are also very popular. New algorithms

such as particle swarm optimization [11], harmony search [6] and cuckoo search

[28] are becoming powerful and popular.

As we can see later, this book summarize the latest development of these algo-

rithms in the context of optimization and applications.

Many studies have focused on the methods and techniques of constructing ap-

propriate surrogate models of the high-fidelity simulation data. Surrogate modeling

methodologies as well as surrogate-based optimization techniques have improved

significantly. The developments of various aspects of surrogate-based optimization,

including the design of experiments schemes, methods of constructing and validat-

ing the surrogate models, as well as optimization algorithms exploiting surrogate

models, both function-approximation and physically-based will be summarized in

this book.

New applications are diverse and state-of-the-art developments are summa-

rized, including optimization and applications in network, oil industry, microwave

engineering, aerospace engineering, neural networks, environmental modelling,

scheduling, structural engineering, classification, economics, and multi-objective

optimization problems.
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Chapter 2

Optimization Algorithms

Xin-She Yang

Abstract. The right choice of an optimization algorithm can be crucially impor-

tant in finding the right solutions for a given optimization problem. There exist a

diverse range of algorithms for optimization, including gradient-based algorithms,

derivative-free algorithms and metaheuristics. Modern metaheuristic algorithms are

often nature-inspired, and they are suitable for global optimization. In this chapter,

we will briefly introduce optimization algorithms such as hill-climbing, trust-region

method, simulated annealing, differential evolution, particle swarm optimization,

harmony search, firefly algorithm and cuckoo search.

2.1 Introduction

Algorithms for optimization are more diverse than the types of optimization, though

the right choice of algorithms is an important issue, as we discussed in the first chap-

ter where we have provided an overview. There are a wide range of optimization al-

gorithms, and a detailed description of each can take up the whole book of more than

several hundred pages. Therefore, in this chapter, we will introduce a few important

algorithms selected from a wide range of optimization algorithms [4, 27, 31], with a

focus on the metaheuristic algorithms developed after the 1990s. This selection does

not mean that the algorithms not described here are not popular. In fact, they may

be equally widely used. Whenever an algorithm is used in this book, we will try to

provide enough details so that readers can see how they are implemented; alterna-

tively, in some cases, enough citations and links will be provided so that interested

readers can pursue further research using these references as a good start.
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2.2 Derivative-Based Algorithms

Derivative-based or gradient-based algorithms use the information of derivatives.

They are very efficient as local search algorithms, but may have the disadvantage

of being trapped in a local optimum if the problem of interest is not convex. It

is required that the objective function is sufficiently smooth so that its first (and

often second) derivatives exist. Discontinuity in objective functions may render such

methods unsuitable. One of the classical examples is the Newton’s method, while

a modern example is the method of conjugate gradient. Gradient-base methods are

widely used in many applications and discrete modelling [3, 20].

2.2.1 Newton’s Method and Hill-Climbing

One of the most widely used algorithms is Newton’s method, which is a root-finding

algorithm as well as a gradient-based optimization algorithm [10]. For a given func-

tion f (x), its Tayler expansions

f (x) = f (xn)+ (∇ f (xn))
T Δx +

1

2
ΔxT ∇2 f (xn)Δx + ..., (2.1)

in terms of Δx = x−xn about a fixed point xn leads to the following iterative formula

x = xn −H−1∇ f (xn), (2.2)

where H−1(x(n)) is the inverse of the symmetric Hessian matrix H = ∇2 f (xn), which

is defined as

H(x) ≡ ∇2 f (x) ≡

⎛

⎜

⎜

⎜

⎝

∂ 2 f

∂x2
1

... ∂ 2 f

∂x1∂xn

...
...

∂ 2 f

∂xn∂x1
. . . ∂ f 2

∂x2
n

⎞

⎟

⎟

⎟

⎠

. (2.3)

Starting from an initial guess vector x(0), the iterative Newton’s formula for the nth

iteration becomes

x(n+1) = x(n)−H−1(x(n))∇ f (x(n)). (2.4)

In order to speed up the convergence, we can use a smaller step size α ∈ (0,1] and

we have the modified Newton’s method

x(n+1) = x(n)−αH−1(x(n))∇ f (x(n)). (2.5)

It is often time-consuming to calculate the Hessian matrix using second derivatives.

In this case, a simple and yet efficient alternative is to use an identity matrix I to

approximate H so that H−1 = I, which leads to the quasi-Newton method

x(n+1) = x(n)−αI∇ f (x(n)). (2.6)

In essence, this is the steepest descent method.
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For a maximization problem, the steepest descent becomes a hill-climbing. That

is, the aim is to climb up to the highest peak or to find the highest possible value

of an objective f (x) from the current point x(n). From the Taylor expansion of f (x)
about x(n), we have

f (x(n+1)) = f (x(n) + Δs) ≈ f (x(n) +(∇ f (x(n)))T Δs, (2.7)

where Δs = x(n+1)−x(n) is the increment vector. Since we are trying to find a better

(higher) approximation to the objective function, it requires that

f (x(n) + Δs)− f (x(n)) = (∇ f )T Δs > 0. (2.8)

From vector analysis, we know that the inner product uT v of two vectors u and v is

the largest when they are parallel. Therefore, we have

Δs = α∇ f (x(n)), (2.9)

where α > 0 is the step size. In the case of minimization, the direction Δs is along

the steepest descent in the negative gradient direction.

It is worth pointing out that the choice of the step size α is very important. A very

small step size means slow movement towards the local optimum, while a large step

may overshoot and subsequently makes it move far away from the local optimum.

Therefore, the step size α = α(n) should be different at each iteration and should

be chosen so as to maximize or minimize the objective function, depending on the

context of the problem.

2.2.2 Conjugate Gradient Method

The conjugate gradient method is one of most widely used algorithms and it belongs

to a wider class of the so-called Krylov subspace iteration methods. The conjugate

gradient method was pioneered by Magnus Hestenes, Eduard Stiefel and Cornelius

Lanczos in the 1950s [13]. In essence, the conjugate gradient method solves the

following linear system

Au = b, (2.10)

where A is often a symmetric positive definite matrix. This system is equivalent to

minimizing the following function f (u)

f (u) =
1

2
uT Au−bT u+ v, (2.11)

where v is a vector constant and can be taken to be zero. We can easily see that

∇ f (u) = 0 leads to Au = b. In theory, these iterative methods are closely related to

the Krylov subspace Kn spanned by A and b as defined by

Kn(A,b) = { Ib,Ab,A2b, ...,An−1b } , (2.12)
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where A0 = I.

If we use an iterative procedure to obtain the approximate solution un to Au = b

at nth iteration, the residual is given by

rn = b−Aun, (2.13)

which is essentially the negative gradient ∇ f (un).
The search direction vector in the conjugate gradient method can subsequently

be determined by

dn+1 = rn −
dT

n Arn

dT
n Adn

dn. (2.14)

The solution often starts with an initial guess u0 at n = 0, and proceeds iteratively.

The above steps can compactly be written as

un+1 = un + αndn, rn+1 = rn −αnAdn, (2.15)

and

dn+1 = rn+1 + βndn, (2.16)

where

αn =
rT

n rn

dT
n Adn

, βn =
rT

n+1rn+1

rT
n rn

. (2.17)

Iterations stop when a prescribed accuracy is reached. In the case when A is not

symmetric, we can use other algorithms such as the generalized minimal residual

(GMRES) algorithm developed by Y. Saad and M. H. Schultz in 1986.

2.3 Derivative-Free Algorithms

Algorithms using derivatives are efficient, but may pose certain strict requirements

on the objective functions. In case of discontinuity exists in objective functions,

derivative-free algorithms may be more efficient and natural. Hooke-Jeeves pattern

search is among one of the earliest, which forms the basis of many modern vari-

ants of pattern search. Nelder-Mead downhill simplex method [19] is another good

example of derivative-free algorithms. Furthermore, the widely used trust-region

method use some form of approximation to the objective function in a local re-

gion, and many surrogate-based models have strong similarities to the pattern search

method.

2.3.1 Pattern Search

Many search algorithms such as the steepest descent method experience slow con-

vergence near the local minimum. They are also memoryless because the past in-

formation during the search is not used to produce accelerated moves in the future.

The only information they use is the current location x(n), gradient and value of the
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objective itself at step n. If the past information such as the steps at n− 1 and n is

properly used to generate a new move at step n+1, it may speed up the convergence.

The Hooke-Jeeves pattern search method is one of such methods that incorporate the

past history of iterations in producing a new search direction.

The Hooke-Jeeves pattern search method consists of two moves: exploratory

move and pattern move. The exploratory moves explore the local behaviour and

information of the objective function so as to identify any potential sloping valleys

if they exist. For any given step size (each coordinate direction can have a different

increment) Δi(i = 1,2, ..., p), exploration movement performs from an initial start-

ing point along each coordinate direction by increasing or decreasing ±Δi, if the

new value of the objective function does not increase (for a minimization problem),

that is f (x
(n)
i ) ≤ f (x

(n−1)
i ), the exploratory move is considered as successful. If it is

not successful, then a step is tried in the opposite direction, and the result is updated

only if it is successful. When all the d coordinates have been explored, the resulting

point forms a base point x(n).

The pattern move intends to move the current base x(n) along the base line (x(n)−
x(n−1)) from the previous (historical) base point to the current base point. The move

is carried out by the following formula

x(n+1) = x(n) +[x(n)− x(n−1)]. (2.18)

Then x(n+1) forms a new temporary base point for further new exploratory moves.

If the pattern move produces improvement (lower value of f (x)), the new base point

x(n+1) is successfully updated. If the pattern move does not lead to any improvement

or a lower value of the objective function, then the pattern move is discarded and

a new search starts from x(n), and the new search moves should use a smaller step

size by reducing increments Di/γ where γ > 1 is the step reduction factor. Iterations

continue until the prescribed tolerance ε is met.

2.3.2 Trust-Region Method

The so-called trust-region method is among the most widely used optimization al-

gorithms, and its fundamental ideas have developed over many years with many

seminal papers by a dozen of pioneers. A good history review of the trust-region

methods can be found [5, 6]. Then, in 1970, Powell proved the global convergence

for the trust-region method [22].

In the trust-region algorithm, a fundamental step is to approximate the nonlinear

objective function by using truncated Taylor expansions, often in a quadratic form

in a so-called trust region which is the shape of the trust region is a hyperellipsoid.

The approximation to the objective function in the trust region will make it sim-

pler to find the next trial solution xk+1 from the current solution xk. Then, we intend

to find xk+1 with a sufficient decrease in the objective function. How good the ap-

proximation φk is to the actual objective f (x) can be measured by the ratio of the

achieved decrease to the predicted decrease
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γk =
f (xk)− f (xk+1)

φk(xk)−φk(xk+1)
. (2.19)

If this ratio is close to unity, we have a good approximation and then should move

the trust region to xk+1. The trust-region should move and update iteratively until

the (global) optimality is found or until a fixed number of iterations is reached.

There are many other methods, and one of the most powerful and widely used is

the polynomial-time efficient algorithm, called the interior-point method [16], and

many variants have been developed since 1984.

All these above algorithms are deterministic, as they have no random

components. Thus, they usually have some disadvantages in dealing with highly

nonlinear, multimodal, global optimization problems. In fact, some randomization is

useful and necessary in algorithms, and metaheuristic algorithms are such powerful

techniques.

2.4 Metaheuristic Algorithms

Metaheuristic algorithms are often nature-inspired, and they are now among the

most widely used algorithms for optimization. They have many advantages over

conventional algorithms, as discussed in the first chapter for introduction and

overview. There are a few recent books which are solely dedicated to metaheuris-

tic algorithms [27, 29, 30]. Metaheuristic algorithms are very diverse, including ge-

netic algorithms, simulated annealing, differential evolution, ant and bee algorithms,

particle swarm optimization, harmony search, firefly algorithm, cuckoo search and

others. Here we will introduce some of these algorithms briefly.

2.4.1 Simulated Annealling

Simulated annealing developed by Kirkpatrick et al. in 1983 is among the first meta-

heuristic algorithms, and it has been applied in almost every area of optimization

[17]. Unlike the gradient-based methods and other deterministic search methods,

the main advantage of simulated annealing is its ability to avoid being trapped in

local minima. The basic idea of the simulated annealing algorithm is to use random

search in terms of a Markov chain, which not only accepts changes that improve the

objective function, but also keeps some changes that are not ideal.

In a minimization problem, for example, any better moves or changes that de-

crease the value of the objective function f will be accepted; however, some changes

that increase f will also be accepted with a probability p. This probability p, also

called the transition probability, is determined by

p = exp[− ΔE

kBT
], (2.20)
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where kB is the Boltzmann’s constant, and T is the temperature for controlling the

annealing process. ΔE is the change of the energy level. This transition probability

is based on the Boltzmann distribution in statistical mechanics.

The simplest way to link ΔE with the change of the objective function Δ f is to

use

ΔE = γΔ f , (2.21)

where γ is a real constant. For simplicity without losing generality, we can use

kB = 1 and γ = 1. Thus, the probability p simply becomes

p(Δ f ,T ) = e−Δ f/T . (2.22)

Whether or not a change is accepted, a random number r is often used as a threshold.

Thus, if p > r, or

p = e−Δ f/T > r, (2.23)

the move is accepted.

Here the choice of the right initial temperature is crucially important. For a given

change Δ f , if T is too high (T → ∞), then p → 1, which means almost all the

changes will be accepted. If T is too low (T → 0), then any Δ f > 0 (worse solution)

will rarely be accepted as p → 0, and thus the diversity of the solution is limited, but

any improvement Δ f will almost always be accepted. In fact, the special case T → 0

corresponds to the classical hill-climbing because only better solutions are accepted,

and the system is essentially climbing up or descending along a hill. Therefore, if T

is too high, the system is at a high energy state on the topological landscape, and the

minima are not easily reached. If T is too low, the system may be trapped in a local

minimum (not necessarily the global minimum), and there is not enough energy for

the system to jump out the local minimum to explore other minima including the

global minimum. So a proper initial temperature should be calculated.

Another important issue is how to control the annealing or cooling process so

that the system cools down gradually from a higher temperature to ultimately freeze

to a global minimum state. There are many ways of controlling the cooling rate or

the decrease of the temperature. geometric cooling schedules are often widely used,

which essentially decrease the temperature by a cooling factor 0 < α < 1 so that T

is replaced by αT or

T (t) = T0αt , t = 1,2, ...,t f , (2.24)

where t f is the maximum number of iterations. The advantage of this method is that

T → 0 when t → ∞, and thus there is no need to specify the maximum number of

iterations if a tolerance or accuracy is prescribed. Simulated annealling has been

applied in a wide range of optimization problems [17, 20].

2.4.2 Genetic Algorithms and Differential Evolution

Simulated annealing is a trajectory-based algorithm, as it only uses a single agent.

Other algorithms such as genetic algorithms use multiple agents or a population to
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carry out the search, which may have some advantage due to its potential paral-

lelism.

Genetic algorithms are a classic of algorithms based on the abstraction of Dar-

win’s evolution of biological systems, pioneered by J. Holland and his collaborators

in the 1960s and 1970s [14]. Holland was the first to use genetic operators such

as the crossover and recombination, mutation, and selection in the study of adaptive

and artificial systems. Genetic algorithms have two main advantages over traditional

algorithms: the ability of dealing with complex problems and parallelism. Whether

the objective function is stationary or transient, linear or nonlinear, continuous or

discontinuous, it can be dealt with by genetic algorithms. Multiple genes can be

suitable for parallel implementation.

Three main components or genetic operators in genetic algorithms are: crossover,

mutation, and selection of the fittest. Each solution is encoded in a string (often bi-

nary or decimal), called a chromosome. The crossover of two parent strings pro-

duce offsprings (new solutions) by swapping part or genes of the chromosomes.

Crossover has a higher probability, typically 0.8 to 0.95. On the other hand, muta-

tion is carried out by flipping some digits of a string, which generates new solutions.

This mutation probability is typically low, from 0.001 to 0.05. New solutions gen-

erated in each generation will be evaluated by their fitness which is linked to the

objective function of the optimization problem. The new solutions are selected ac-

cording to their fitness – selection of the fittest. Sometimes, in order to make sure

that the best solutions remain in the population, the best solutions are passed onto

the next generation without much change, this is called elitism.

Genetic algorithms have been applied to almost all area of optimization, design

and applications. There are hundreds of good books and thousand of research arti-

cles. There are many variants and hybridization with other algorithms, and interested

readers can refer to more advanced literature such as [12, 14].

Differential evolution (DE) was developed by R. Storn and K. Price by their nom-

inal papers in 1996 and 1997 [25, 26]. It is a vector-based evolutionary algorithm,

and can be considered as a further development to genetic algorithms. It is a stochas-

tic search algorithm with self-organizing tendency and does not use the information

of derivatives. Thus, it is a population-based, derivative-free method.

As in genetic algorithms, design parameters in a d-dimensional search space are

represented as vectors, and various genetic operators are operated over their bits

of strings. However, unlikely genetic algorithms, differential evolution carries out

operations over each component (or each dimension of the solution). Almost every-

thing is done in terms of vectors. For example, in genetic algorithms, mutation is

carried out at one site or multiple sites of a chromosome, while in differential evolu-

tion, a difference vector of two randomly-chosen population vectors is used to per-

turb an existing vector. Such vectorized mutation can be viewed as a self-organizing

search, directed towards an optimality.

For a d-dimensional optimization problem with d parameters, a population of n

solution vectors are initially generated, we have xi where i = 1,2, ...,n. For each

solution xi at any generation t, we use the conventional notation as
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xt
i = (xt

1,i,x
t
2,i, ...,x

t
d,i), (2.25)

which consists of d-components in the d-dimensional space. This vector can be

considered as the chromosomes or genomes.

Differential evolution consists of three main steps: mutation, crossover and

selection.

Mutation is carried out by the mutation scheme. For each vector xi at any time or

generation t, we first randomly choose three distinct vectors xp, xq and xr at t, and

then generate a so-called donor vector by the mutation scheme

vt+1
i = xt

p + F(xt
q − xt

r), (2.26)

where F ∈ [0,2] is a parameter, often referred to as the differential weight. This

requires that the minimum number of population size is n ≥ 4. In principle, F ∈

[0,2], but in practice, a scheme with F ∈ [0,1] is more efficient and stable.

The crossover is controlled by a crossover probability Cr ∈ [0,1] and actual

crossover can be carried out in two ways: binomial and exponential. Selection is

essentially the same as that used in genetic algorithms. It is to select the most fittest,

and for minimization problem, the minimum objective value. Therefore, we have

xt+1
i =

{

ut+1
i if f (ut+1

i ) ≤ f (xt
i),

xt
i otherwise.

(2.27)

Most studies have focused on the choice of F , Cr and n as well as the modifica-

tion of (2.26). In fact, when generating mutation vectors, we can use many different

ways of formulating (2.26), and this leads to various schemes with the naming con-

vention: DE/x/y/z where x is the mutation scheme (rand or best), y is the number

of difference vectors, and z is the crossover scheme (binomial or exponential). The

basic DE/Rand/1/Bin scheme is given in (2.26). Following a similar strategy, we can

design various schemes. In fact, 10 different schemes have been formulated, and for

details, readers can refer to [23].

2.4.3 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in

1995 [15], based on the swarm behaviour such as fish and bird schooling in nature.

Since then, PSO has generated much wider interests, and forms an exciting, ever-

expanding research subject, called swarm intelligence. PSO has been applied to al-

most every area in optimization, computational intelligence, and design/scheduling

applications. There are at least two dozens of PSO variants, and hybrid algorithms

by combining PSO with other existing algorithms are also increasingly popular.

This algorithm searches the space of an objective function by adjusting the tra-

jectories of individual agents, called particles, as the piecewise paths formed by

positional vectors in a quasi-stochastic manner. The movement of a swarming par-

ticle consists of two major components: a stochastic component and a deterministic
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component. Each particle is attracted toward the position of the current global best

g∗ and its own best location x ∗i in history, while at the same time it has a tendency

to move randomly.

Let xi and vi be the position vector and velocity for particle i, respectively. The

new velocity vector is determined by the following formula

vt+1
i = vt

i + αε1 ⊙ [g∗ − xt
i]+ β ε2 ⊙ [x∗i − xt

i]. (2.28)

where ε1 and ε2 are two random vectors, and each entry taking the values between

0 and 1. The Hadamard product of two matrices u⊙ v is defined as the entrywise

product, that is [u⊙ v]i j = ui jvi j. The parameters α and β are the learning parameters

or acceleration constants, which can typically be taken as, say, α ≈ β ≈ 2.

The initial locations of all particles should distribute relatively uniformly so that

they can sample over most regions, which is especially important for multimodal

problems. The initial velocity of a particle can be taken as zero, that is, vt=0
i = 0. The

new position can then be updated by

xt+1
i = xt

i + vt+1
i . (2.29)

Although vi can be any values, it is usually bounded in some range [0,vmax].
There are many variants which extend the standard PSO algorithm [15, 30, 31],

and the most noticeable improvement is probably to use inertia function θ (t) so that

vt
i is replaced by θ (t)vt

i

vt+1
i = θvt

i + αε1 ⊙ [g∗ − xt
i]+ β ε2 ⊙ [x ∗i − xt

i], (2.30)

where θ takes the values between 0 and 1. In the simplest case, the inertia function

can be taken as a constant, typically θ ≈ 0.5∼ 0.9. This is equivalent to introducing

a virtual mass to stabilize the motion of the particles, and thus the algorithm is

expected to converge more quickly.

2.4.4 Harmony Search

Harmony Search (HS) is a relatively new heuristic optimization algorithm and it

was first developed by Z. W. Geem et al. in 2001 [9]. Harmony search can be ex-

plained in more detail with the aid of the discussion of the improvisation process by

a musician. When a musician is improvising, he or she has three possible choices:

(1) play any famous piece of music (a series of pitches in harmony) exactly from

his or her memory; (2) play something similar to a known piece (thus adjusting the

pitch slightly); or (3) compose new or random notes. If we formalize these three op-

tions for optimization, we have three corresponding components: usage of harmony

memory, pitch adjusting, and randomization.

The usage of harmony memory is important as it is similar to choose the best fit

individuals in the genetic algorithms. This will ensure the best harmonies will be car-

ried over to the new harmony memory. In order to use this memory more effectively,
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we can assign a parameter raccept ∈ [0,1], called harmony memory accepting or

considering rate. If this rate is too low, only few best harmonies are selected and

it may converge too slowly. If this rate is extremely high (near 1), almost all the

harmonies are used in the harmony memory, then other harmonies are not explored

well, leading to potentially wrong solutions. Therefore, typically, raccept = 0.7 ∼

0.95.

To adjust the pitch slightly in the second component, we have to use a method

such that it can adjust the frequency efficiently. In theory, the pitch can be adjusted

linearly or nonlinearly, but in practice, linear adjustment is used. If xold is the current

solution (or pitch), then the new solution (pitch) xnew is generated by

xnew = xold + bp (2 ε −1), (2.31)

where ε is a random number drawn from a uniform distribution [0,1]. Here bp is the

bandwidth, which controls the local range of pitch adjustment. In fact, we can see

that the pitch adjustment (2.31) is a random walk.

Pitch adjustment is similar to the mutation operator in genetic algorithms. We

can assign a pitch-adjusting rate (rpa) to control the degree of the adjustment. If rpa

is too low, then there is rarely any change. If it is too high, then the algorithm may

not converge at all. Thus, we usually use rpa = 0.1 ∼ 0.5 in most simulations.

The third component is the randomization, which is to increase the diversity of

the solutions. Although adjusting pitch has a similar role, but it is limited to certain

local pitch adjustment and thus corresponds to a local search. The use of random-

ization can drive the system further to explore various regions with high solution

diversity so as to find the global optimality. HS has been applied to solve many

optimization problems including function optimization, water distribution network,

groundwater modelling, energy-saving dispatch, structural design, vehicle routing,

and others.

2.4.5 Firefly Algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang in 2007 [29, 32], which

was based on the flashing patterns and behaviour of fireflies. In essence, FA uses the

following three idealized rules:

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless

of their sex.

• The attractiveness is proportional to the brightness and they both decrease as their

distance increases. Thus for any two flashing fireflies, the less brighter one will

move towards the brighter one. If there is no brighter one than a particular firefly,

it will move randomly.

• The brightness of a firefly is determined by the landscape of the objective func-

tion.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, we can now define the variation of attractiveness β with the distance r by
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β = β0e−γr2
, (2.32)

where β0 is the attractiveness at r = 0.

The movement of a firefly i is attracted to another more attractive (brighter) firefly

j is determined by

xt+1
i = xt

i + β0e
−γr2

i j (xt
j − xt

i)+ α εt
i, (2.33)

where the second term is due to the attraction. The third term is randomization with

α being the randomization parameter, and ε t
i is a vector of random numbers drawn

from a Gaussian distribution or uniform distribution at time t. If β0 = 0, it becomes

a simple random walk. Furthermore, the randomization εt
i can easily be extended to

other distributions such as Lévy flights.

The Lévy flight essentially provides a random walk whose random step length is

drawn from a Lévy distribution

Lévy ∼ u = t−λ , (1 < λ ≤ 3), (2.34)

which has an infinite variance with an infinite mean. Here the steps essentially form

a random walk process with a power-law step-length distribution with a heavy tail.

Some of the new solutions should be generated by Lévy walk around the best solu-

tion obtained so far, this will speed up the local search.

A demo version of firefly algorithm implementation, without Lévy flights, can be

found at Mathworks file exchange web site.1 Firefly algorithm has attracted much

attention [1, 24]. A discrete version of FA can efficiently solve NP-hard scheduling

problems [24], while a detailed analysis has demonstrated the efficiency of FA over

a wide range of test problems, including multobjective load dispatch problems [1].

2.4.6 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,

developed in 2009 by Xin-She Yang and Suash Deb [34]. CS is based on the

brood parasitism of some cuckoo species. In addition, this algorithm is enhanced

by the so-called Lévy flights [21], rather than by simple isotropic random walks.

Recent studies show that CS is potentially far more efficient than PSO and genetic

algorithms [35].

Cuckoo are fascinating birds, not only because of the beautiful sounds they can

make, but also because of their aggressive reproduction strategy. Some species such

as the ani and Guira cuckoos lay their eggs in communal nests, though they may

remove others’ eggs to increase the hatching probability of their own eggs. Quite a

number of species engage the obligate brood parasitism by laying their eggs in the

nests of other host birds (often other species).

There are three basic types of brood parasitism: intraspecific brood parasitism,

cooperative breeding, and nest takeover. Some host birds can engage direct conflict

with the intruding cuckoos. If a host bird discovers the eggs are not their owns, they

1 http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
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will either get rid of these alien eggs or simply abandon its nest and build a new nest

elsewhere. Some cuckoo species such as the New World brood-parasitic Tapera have

evolved in such a way that female parasitic cuckoos are often very specialized in the

mimicry in colour and pattern of the eggs of a few chosen host species. This reduces

the probability of their eggs being abandoned and thus increases their reproductivity.

In addition, the timing of egg-laying of some species is also amazing. Parasitic

cuckoos often choose a nest where the host bird just laid its own eggs. In general, the

cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick

is hatched, the first instinct action it will take is to evict the host eggs by blindly

propelling the eggs out of the nest, which increases the cuckoo chick’s share of food

provided by its host bird. Studies also show that a cuckoo chick can also mimic the

call of host chicks to gain access to more feeding opportunity.

For simplicity in describing the Cuckoo Search, we now use the following three

idealized rules:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;

• The best nests with high-quality eggs will be carried over to the next generations;

• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird

can either get rid of the egg, or simply abandon the nest and build a completely

new nest.

As a further approximation, this last assumption can be approximated by a fraction

pa of the n host nests are replaced by new nests (with new random solutions).

For a maximization problem, the quality or fitness of a solution can simply be

proportional to the value of the objective function. Other forms of fitness can be

defined in a similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple represen-

tations that each egg in a nest represents a solution, and each cuckoo can lay only

one egg (thus representing one solution), the aim is to use the new and potentially

better solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously,

this algorithm can be extended to the more complicated case where each nest has

multiple eggs representing a set of solutions. For this present work, we will use the

simplest approach where each nest has only a single egg. In this case, there is no

distinction between egg, nest or cuckoo, as each nest corresponds to one egg which

also represents one cuckoo.

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be

summarized as the pseudo code shown in Fig. 2.1.

When generating new solutions x(t+1) for, say, a cuckoo i, a Lévy flight is

performed

x
(t+1)
i = x

(t)
i + α ⊕Lévy(λ ), (2.35)

where α > 0 is the step size which should be related to the scales of the problem

of interests. In most cases, we can use α = O(L/10) where L is the characteristic

scale of the problem of interest, while in some case α = O(L/100) can be more

effective and avoid flying to far. The above equation is essentially the stochastic
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Objective function f (x), x = (x1, ...,xd)T

Generate initial population of n host nests xi

while (t <MaxGeneration) or (stop criterion)

Get a cuckoo randomly/generate a solution by Lévy flights

and then evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly

if (Fi > Fj),

Replace j by the new solution

end

A fraction (pa) of worse nests are abandoned

and new ones/solutions are built/generated

Keep best solutions (or nests with quality solutions)

Rank the solutions and find the current best

end while

Fig. 2.1 Pseudo code of the Cuckoo Search (CS)

equation for a random walk. In general, a random walk is a Markov chain whose

next status/location only depends on the current location (the first term in the above

equation) and the transition probability (the second term). The product ⊕ means

entrywise multiplications. This entrywise product is similar to those used in PSO,

but here the random walk via Lévy flight is more efficient in exploring the search

space, as its step length is much longer in the long run. However, a substantial

fraction of the new solutions should be generated by far field randomization and

whose locations should be far enough from the current best solution, this will make

sure that the system will not be trapped in a local optimum [35].

The pseudo code given here is sequential, however, vectors should be used from

an implementation point of view, as vectors are more efficient than loops. A Matlab

implementation is given by the author, and can be downloaded.2

2.5 A Unified Approach to Metaheuristics

2.5.1 Characteristics of Metaheuristics

There are many other metaheuristic algorithms which are equally popular and pow-

erful, and these include Tabu search [11], ant colony optimization[7], artificial im-

mune system [8], bee algorithms, bat algorithm [33] and others [18, 31].

The efficiency of metaheuristic algorithms can be attributed to the fact that they

imitate the best features in nature, especially the selection of the fittest in biological

systems which have evolved by natural selection over millions of years.

Two important characteristics of metaheuristics are: intensification and diversi-

fication [2]. Intensification intends to search locally and more intensively, while

2 www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
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diversification makes sure the algorithm explores the search space globally

(hopefully also efficiently).

Furthermore, intensification is also called exploitation, as it typically searches

around the current best solutions and selects the best candidates or solutions. Simi-

larly, diversification is also called exploration, as it tends to explore the search space

more efficiently, often by large-scale randomization.

A fine balance between these two components is very important to the overall

efficiency and performance of an algorithm. Too little exploration and too much

exploitation could cause the system to be trapped in local optima, which makes it

very difficult or even impossible to find the global optimum. On the other hand, if

there is too much exploration but too little exploitation, it may be difficult for the

system to converge and thus slows down the overall search performance. A proper

balance itself is an optimization problem, and one of the main tasks of designing new

algorithms is to find a certain balance concerning this optimality and/or tradeoff.

Furthermore, just exploitation and exploration are not enough. During the search,

we have to use a proper mechanism or criterion to select the best solutions. The most

common criterion is to use the Survival of the Fittest, that is to keep updating the

the current best found so far. In addition, certain elitism is often used, and this is to

ensure the best or fittest solutions are not lost, and should be passed onto the next

generations.

2.6 Generalized Evolutionary Walk Algorithm (GEWA)

From the above discussion of all the major components and their characteristics, we

realized that a good combination of local search and global search with a proper

selection mechanism should produce a good metaheuristic algorithm, whatever the

name it may be called.

In principle, the global search should be carried out more frequently at the initial

stage of the search or iterations. Once a number of good quality solutions are found,

exploration should be sparse on the global scale, but frequent enough so as to escape

any local trap if necessary. On the other hand, the local search should be carried out

as efficient as possible, so a good local search method should be used. The proper

balance of these two is paramount.

Using these basic components, we can now design a generic, metaheuristic algo-

rithm for optimization, we can call it the Generalized Evolutional Walk Algorithm

(GEWA), which was first formulated by Yang [30] in 2010. Evolutionary walk is a

random walk, but with a biased selection towards optimality. This is a generalized

framework for global optimization.

There are three major components in this algorithm: 1) global exploration by

randomization, 2) intensive local search by random walk, and 3) the selection of

the best with some elitism. The pseudo code of GEWA is shown in Fig. 2.2. The

random walk should be carried out around the current global best g∗ so as to exploit

the system information such as the current best more effectively. We have
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xt+1 = g∗ + w, (2.36)

and

w = εd, (2.37)

where ε is drawn from a Gaussian distribution or normal distribution N(0,σ2), and

d is the step length vector which should be related to the actual scales of independent

variables. For simplicity, we can take σ = 1.

Initial a population of n walkers xi (i = 1,2, ...,n);
Evaluate fitness Fi of n walkers & find the current best g∗;

while (t <MaxGeneration) or (stop criterion);

Discard the worst solution and replace it by (2.38) or (2.39);

if (rand < α),

Local search: random walk around the best

xt+1 = g∗ + εd (2.38)

else

Global search: randomization (Uniform, Lévy flights etc)

xt+1 = L+(U −L)ε (uniform) (2.39)

end

Evaluate new solutions and find the current best gt
∗;

t = t +1;

end while

Postprocess results and visualization;

Fig. 2.2 Generalized Evolutionary Walk Algorithm (GEWA)

The randomization step can be achieved by

xt+1 = L+(U −L)εu, (2.40)

where εu is drawn from a uniform distribution Unif[0,1]. U and L are the upper and

lower bound vectors, respectively.

Typically, α ≈ 0.25∼ 0.7. We will use α = 0.5 in our implementation. Interested

readers can try to do some parametric studies.

Again two important issues are: 1) the balance of intensification and diversifica-

tion controlled by a single parameter α , and 2) the choice of the step size of the

random walk. Parameter α is typically in the range of 0.25 to 0.7. The choice of the

right step size is also important. Simulations suggest that the ratio of the step size to

its length scale can typically be around 0.001 to 0.01 for most applications.

Another important issue is the selection of the best and/or elitism, as we intend

to discard the worst solution and replace it by generating new solution. This may

implicitly weed out the least-fit solutions, while the solution with the highest fitness
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remains in the population. The selection of the best and elitism can be guaranteed

implicitly in the evolutionary walkers.

Furthermore, the number (n) of random walkers is also important. Too few walk-

ers are not efficient, while too many may lead to slow convergence. In general, the

choice of n should follow the similar guidelines as those for all population-based

algorithms. Typically, we can use n = 15 to 50 for most applications.

2.6.1 To Be Inspired or Not to Be Inspired

We have seen that nature-inspired algorithms are always based on a particular (often

most successful) mechanism of the natural world. Nature has evolved over billions

of years, she has found almost perfect solutions to every problem she has met. Al-

most all the not-so-good solutions have been discarded via natural selection. The

optimal solutions seem (often after a huge number of generations) to appear at the

evolutionarilly stable equilibrium, even though we may not understand how the per-

fect solutions are reached. When we try to solve engineering problems, why not

try to be inspired by nature’s success? The simple answer to the question ‘To be

inspired or not to be inspired?’ is ‘why not?’. If we do not have good solutions at

hand, it is always a good idea to learn from nature.

Nature provides almost unlimited ways for problem-solving. If we can observe

carefully, we are surely inspired to develop more powerful and efficient new gen-

eration algorithms. Intelligence is a product of biological evolution in nature. Ul-

timately some intelligent algorithms (or systems) may appear in the future, so that

they can evolve and optimally adapt to solve NP-hard optimization problems effi-

ciently and intelligently.
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Chapter 3  

Surrogate-Based Methods
*
 

Slawomir Koziel, David Echeverría Ciaurri, and Leifur Leifsson 

Abstract. Objective functions that appear in engineering practice may come from 

measurements of physical systems and, more often, from computer simulations. In 

many cases, optimization of such objectives in a straightforward way, i.e., by ap-

plying optimization routines directly to these functions, is impractical. One reason 

is that simulation-based objective functions are often analytically intractable (dis-

continuous, non-differentiable, and inherently noisy). Also, sensitivity information 

is usually unavailable, or too expensive to compute. Another, and in many cases 

even more important, reason is the high computational cost of measure-

ment/simulations. Simulation times of several hours, days or even weeks per ob-

jective function evaluation are not uncommon in contemporary engineering, de-

spite the increase of available computing power. Feasible handling of these 

unmanageable functions can be accomplished using surrogate models: the optimi-

zation of the original objective is replaced by iterative re-optimization and updat-

ing of the analytically tractable and computationally cheap surrogate. This chapter 

briefly describes the basics of surrogate-based optimization, various ways of creat-

ing surrogate models, as well as several examples of surrogate-based optimization 

techniques.  
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3.1   Introduction 

Contemporary engineering is more and more dependent on computer-aided design 

(CAD). In most engineering fields, numerical simulations are used extensively, 

not only for design verification but also directly in the design process. As a matter 

of fact, because of increasing system complexity, ready-to-use theoretical (e.g., 

analytical) models are not available in many cases. Thus, simulation-driven design 

and design optimization becomes the only option to meet the specifications  

prescribed, improve the system reliability, or reduce the fabrication cost. 

The simulation-driven design can be formulated as a nonlinear minimization 

problem of the following form 

* arg min ( )f=
x

x x , (3.1) 

where f(x) denotes the objective function to be minimized evaluated at the point 

x ∈ R
n
 (x is the design variable vector). In many engineering problems f is of the 

form f(x) = U(Rf(x)), where Rf ∈ R
m
 denotes the response vector of the system of in-

terest (in particular, one may have m > n or even m >> n [1]), whereas U is a given 

scalar merit function. In particular, U can be defined through a norm that measures 

the distance between Rf(x) and a target vector y. An optimal design vector is denoted 

by x
*
. In many cases, Rf is obtained through computationally expensive computer 

simulations. We will refer to it as a high-fidelity or fine model. To simplify notation, 

f itself will also be referred to as the high-fidelity (fine) model. 

Unfortunately, a direct attempt to solve (3.1) by embedding the simulator di-

rectly in the optimization loop may be impractical. The underlying simulations can 

be very time-consuming (in some instances, the simulation time can be as long as 

several hours, days or even weeks per single design), and the presence of massive 

computing resources is not always translated in computational speedup. This latter 

fact is due to a growing demand for simulation accuracy, both by including mul-

tiphysics and second-order effects, and by using finer discretization of the structure 

under consideration. As conventional optimization algorithms (e.g., gradient-based 

schemes with numerical derivatives) require tens, hundreds or even thousands of 

objective function calls per run (that depends on the number of design variables), 

the computational cost of the whole optimization process may not be acceptable. 

Another problem is that objective functions coming from computer simulations 

are often analytically intractable (i.e., discontinuous, non-differentiable, and in-

herently noisy). Moreover, sensitivity information is frequently unavailable, or too 

expensive to compute. While in some cases it is possible to obtain derivative in-

formation inexpensively through adjoint sensitivities [2], numerical noise is an 

important issue that can complicate simulation-driven design. We should also 

mention that adjoint-based sensitivities require detailed knowledge of and access 

to the simulator source code, and this is something that cannot be assumed to be 

generally available. 

Surrogate-based optimization (SBO) [1,3,4] has been suggested as an effective 

approach for the design with time-consuming computer models. The basic concept  
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of SBO is that the direct optimization of the computationally expensive model is 

replaced by an iterative process that involves the creation, optimization and updat-

ing of a fast and analytically tractable surrogate model. The surrogate should be a 

reasonably accurate representation of the high-fidelity model, at least locally. The 

design obtained through optimizing the surrogate model is verified by evaluating 

the high-fidelity model. The high-fidelity model data obtained in this verification 

process is then used to update the surrogate. SBO proceeds in this predictor-

corrector fashion iteratively until some termination criterion is met. Because most 

of the operations are performed on the surrogate model, SBO reduces the compu-

tational cost of the optimization process when compared to optimizing the high-

fidelity model directly, without resorting to any surrogate. 

In this chapter, we review the basics of surrogate-based optimization. We brief-

ly present various ways of generating surrogate models, and we emphasize on the 

distinction between models based on function approximations of sampled high-

fidelity model data and models constructed from physically-based low-fidelity 

models. A few selected surrogate-based optimization algorithms including space 

mapping [1,5,6], approximation model management [7], manifold mapping [8], 

and the surrogate-management framework [9], are also discussed. We conclude 

the chapter with some final remarks. 

3.2   Surrogate-Based Optimization 

As mentioned in the introduction, there are several reasons why the straightfor-

ward optimization of the high-fidelity model may not work or can be impractical. 

These reasons include high computational cost of each model evaluation, numeri-

cal noise and discontinuities in the cost function. Surrogate-based optimization 

[3,5] aims at alleviating such problems by using an auxiliary model, the surrogate, 

that is preferably fast, amenable to optimization, and yet reasonably accurate. One 

popular approach for constructing surrogate models is through approximations of 

high-fidelity model data obtained by sampling the design space using appropriate 

design of experiments methodologies [3]. Some of these strategies for allocating 

samples [10], generating approximations [3,4,10], as well as validating the surro-

gates are discussed in Section 3.3.  

The surrogate model optimization yields an approximation of the minimizer as-

sociated to the high-fidelity model. This approximation has to be verified by eva-

luating the high-fidelity model at the predicted high-fidelity model minimizer. 

Depending on the result of this verification, the optimization process may be ter-

minated. Otherwise, the surrogate model is updated using the new available high-

fidelity model data, and then re-optimized to obtain a new, and hopefully better, 

approximation of the high-fidelity model minimizer.  

 

The surrogate-based optimization process can be summarized as follows  

(Fig. 3.1): 

1. Generate the initial surrogate model. 

2. Obtain an approximate solution to (3.1) by optimizing the surrogate. 
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3. Evaluate the high-fidelity model at the approximate solution computed in 

Step 2. 

4. Update the surrogate model using the new high-fidelity model data. 

5. Stop if the termination condition is satisfied; otherwise go to Step 2. 

The SBO framework can be formulated as an iterative procedure [3,5]:  

( 1) ( )arg min ( )i i
s

+ =
x

x x . (3.2) 

This scheme generates a sequence of points (designs) x
(i)

 that (hopefully) converge 

to a solution (or a good approximation) of the original design problem (3.1). Each 

x
(i+1)

 is the optimal design of the surrogate model s
(i)

, which is assumed to be a 

computationally cheap and sufficiently reliable representation of the fine model f, 

particularly in the neighborhood of the current design x
(i)

. Under these assump-

tions, the algorithm (3.2) aims at a sequence of designs to quickly approach x
*
. 

Typically, and for verification purposes, the high-fidelity model is evaluated only 

once per iteration (at every new design x
(i+1)

). The data obtained from the valida-

tion is used to update the surrogate model. Because the surrogate model is compu-

tationally cheap, the optimization cost associated with (3.2) can—in many cases—

be viewed as negligible, so that the total optimization cost is determined by the 

evaluation of the high-fidelity model. Normally, the number of iterations often 

needed within a surrogate-based optimization algorithm is substantially smaller 

than for any method that optimizes the high-fidelity model directly (e.g., gradient-

based schemes with numerical derivatives) [5].  

If the surrogate model satisfies zero- and first-order consistency conditions with 

the high-fidelity model (i.e., s
(i)

(x
(i)

) = f
 
(x

(i)
) and ∇s

(i)
(x

(i)
) = ∇f(x

(i)
) [7]; it should 

be noticed that the verification of the latter requires high-fidelity model
 
 sensitivity 

data), and the surrogate-based algorithm is enhanced by, for example, a trust re-

gion method [11] (see Section 3.4.1), then the sequence of intermediate solutions 

is provably convergent to a local optimizer of the fine model [12] (some standard 

assumptions concerning the smoothness of the functions involved are also neces-

sary) [13]. Convergence can also be guaranteed if the SBO algorithm is embedded 

within the framework given in [5,14] (space mapping), [13] (manifold mapping) 

or [9] (surrogate management framework). A more detailed description of several 

surrogate-based optimization techniques is given in Section 3.4. 

Space mapping [1,5,6] is an example of a surrogate-based methodology that 

does not normally rely on using sensitivity data or trust region convergence safe-

guards; however, it requires the surrogate model to be constructed from a physi-

cally-based coarse model [1]. This usually gives remarkably good performance in 

the sense of the algorithm being able to locate a satisfactory design quickly. Un-

fortunately space mapping suffers from convergence problems [14] and it is sensi-

tive to the quality of the coarse model and the specific analytical formulation of 

the surrogate [15,16]. 
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Fig. 3.1 Flowchart of the surrogate-based optimization process. An approximate high-fidelity 

model minimizer is obtained iteratively by optimizing the surrogate model. The high-fidelity 

model is evaluated at each new design for verification purposes. If the termination condition is 

not satisfied, the surrogate model is updated and the search continues. In most cases the high-

fidelity model is evaluated only once per iteration. The number of iterations needed in SBO is 

often substantially smaller than for conventional (direct) optimization techniques. 

3.3   Surrogate Models 

The surrogate model is a key component of any SBO algorithm. It has to be com-

putationally cheap, preferably smooth, and, at the same time, reasonably accurate, 

so that it can be used to predict the location of high-fidelity model minimizers. We 

can clearly distinguish between physical and functional surrogate models. 

Physical (or physically-based) surrogates are constructed from an underlying 

low-fidelity (coarse) model. The low-fidelity model is a representation of the sys-

tem of interest with relaxed accuracy [1]. Coarse models are computationally 

cheaper than high-fidelity models and, in many cases, have better analytical prop-

erties. The low-fidelity model can be obtained, for example, from the same simu-

lator as the one used for the high-fidelity model but using a coarse discretization 

[17]. Alternatively, the low-fidelity model can be based on simplified physics 

(e.g., by exploiting simplified equations [1], or by neglecting certain second-order 

effects) [18], or on a significantly different physical description (e.g., lumped pa-

rameter versus partial differential equation based models [1]). In some cases, low-

fidelity models can be formulated using analytical or semi-empirical formulas 

[19]. The coarse model can be corrected if additional data from the high-fidelity 

model is available (for example, during the course of the optimization). 

In general, physical surrogate models are: 

• based on particular knowledge about the physical system of interest, 

• dedicated (reuse across different designs is uncommon), 

• more expensive to evaluate and more accurate (in a global sense) than 

functional surrogates. 
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It should be noticed that the evaluation of a physical surrogate may involve, for 

example, the numerical solution of partial differential equations or even actual 

measurements of the physical system. 

The main advantage of physically-based surrogates is that the amount of high-

fidelity model data necessary for obtaining a given level of accuracy is generally  

substantially smaller than for functional surrogates (physical surrogates inherently 

embed knowledge about the system of interest) [1]. Hence, surrogate-based opti-

mization algorithms that exploit physically-based surrogate models are usually 

more efficient than those using functional surrogates (in terms of the number of 

high-fidelity model evaluations required to find a satisfactory design) [5]. 

Functional (or approximation) surrogate models [20,4]: 

• can be constructed without previous knowledge of the physical system of 

interest, 

• are generic, and therefore applicable to a wide class of problems, 

• are based on (usually simple) algebraic models, 

• are often very cheap to evaluate but require considerable amount of data to 

ensure reasonable general accuracy. 

An initial functional surrogate can be generated using high-fidelity model data ob-

tained through sampling of the design space. Figure 3.2 shows the model construc-

tion flowchart for a functional surrogate. Design of experiments involves the use 

of strategies for allocating samples within the design space. The particular choice 

depends on the number of samples one can afford (in some occasions only a few 

points may be allowed), but also on the specific modeling technique that will be 

used to create the surrogate. Though in some cases the surrogate can be found us-

ing explicit formulas (e.g., polynomial approximation) [3], in most situations it is 

computed by means of a separate minimization problem (e.g., when using kriging 

[21] or neural networks [22]). The accuracy of the model should be tested in order 

to estimate its prediction/generalization capability. The main difficulty in obtain-

ing a good functional surrogate lies in keeping a balance between accuracy at the 

known and at the unknown data (training and testing set, respectively). The surro-

gate could be subsequently updated using new high-fidelity model data that is ac-

cumulated during the run of the surrogate-based optimization algorithm. 

In this section we first describe the fundamental steps for generating functional 

surrogates. Various sampling techniques are presented in Section 3.3.1. The surro-

gate creation and the model validations steps are tackled in Section 3.3.2 and Sec-

tion 3.3.3, respectively. If the quality of the surrogate is not sufficient, more data 

points can be added, and/or the model parameters can be updated to improve accu-

racy. Several correction methods, both for functional and physical surrogates, are 

described in Section 3.3.4. 
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Fig. 3.2 Surrogate model construction flowchart. If the quality of the model is not satisfac-

tory, the procedure can be iterated (more data points will be required). 

3.3.1   Design of Experiments 

Design of experiments (DOE) [23,24,25] is a strategy for allocating samples 

(points) in the design space that aims at maximizing the amount of information 

acquired. The high-fidelity model is evaluated at these points to create the training 

data set that is subsequently used to construct the functional surrogate model. 

When sampling, there is a clear trade-off between the number of points used and 

the amount of information that can be extracted from these points. The samples 

are typically spread apart as much as possible in order to capture global trends in 

the design space. 

Factorial designs [23] are classical DOE techniques that, when applied to dis-

crete design variables, explore a large region of the search space. The sampling of 

all possible combinations is called full factorial design. Fractional factorial de-

signs can be used when model evaluation is expensive and the number of design 

variables is large (in full factorial design the number of samples increases expo-

nentially with the number of design variables). Continuous variables, once discre-

tized, can be easily analyzed through factorial design. Full factorial two-level and 

three-level design (also known as 2
k
 and 3

k
 design) allows us to estimate main ef-

fects and interactions between design variables, and quadratic effects and interac-

tions, respectively. Figures 3.3(a) and 3.3(b) show examples of full two-level and 

fractional two-level design, respectively, for three design variables (i.e., n = 3). 

Alternative factorial designs can be found in practice: central composite design 

(see Figure 3.3(c)), star design (frequently used in combination with space map-

ping [26]; see Figure 3.3(d)), or Box-Behnken design (see Figure 3.3(e)). 
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      (a)                        (b)                          (c)                           (d)                          (e) 

Fig. 3.3 Factorial designs for three design variables (n = 3): (a) full factorial design, (b) 

fractional factorial design, (c) central composite design, (d) star design, and (e) Box-

Behnken design. 

If no prior knowledge about the objective function is available (typical while 

constructing the initial surrogate), some recent DOE approaches tend to allocate 

the samples uniformly within the design space [3]. A variety of space filling de-

signs are available. The simplest ones do not ensure sufficient uniformity (e.g., 

pseudo-random sampling [23]) or are not practical (e.g., stratified random sam-

pling, where the number of samples needed is on the order of 2
n
). One of the most 

popular DOE for (relatively) uniform sample distributions is Latin hypercube 

sampling (LHS) [27]. In order to allocate p samples with LHS, the range for each 

parameter is divided into p bins, which for n design variables, yields a total num-

ber of p
n
 bins in the design space. The samples are randomly selected in the design 

space so that (i) each sample is randomly placed inside a bin, and (ii) for all one-

dimensional projections of the p samples and bins, there is exactly one sample in 

each bin. Figure 3.4 shows a LHS realization of 15 samples for two design vari-

ables (n = 2). It should be noted that the standard LHS may lead to non-uniform 

distributions (for example, samples allocated along the design space diagonal sat-

isfy conditions (i) and (ii)). Numerous improvements of standard LHS, e.g., [28]-

[31], provide more uniform sampling distributions. 

Other DOE methodologies commonly used include orthogonal array sampling 

[3], quasi-Monte Carlo sampling [23], or Hammersley sampling [23]. Sample dis-

tribution can be improved through the incorporation of optimization techniques 

that minimize a specific non-uniformity measure, e.g., 2

1 1

p p

iji j i
d

−

= = +∑ ∑  [29], where 

dij is the Euclidean distance between samples i and j.  

 

 

Fig. 3.4 Latin hypercube sampling realization of 15 samples in a two-dimensional design 

space.  
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3.3.2   Surrogate Modeling Techniques 

Having selected the design of experiments technique and sampled the data, the 

next step is to choose an approximation model and a fitting methodology. In this 

section, we describe in some detail the most popular surrogate modeling tech-

niques, and we briefly mention alternatives.  

3.3.2.1   Polynomial Regression 

Polynomial regression [3] assumes the following relation between the function of 

interest f and K polynomial basis functions vj using p samples f(x
(i)

), i = 1, … , p:  

( ) ( )

1

( ) ( )
K

i i

j j

j

f vβ
=

=∑x x  .                                           (3.3) 

These equations can be represented in matrix form 

f = X β ,                                                          (3.4) 

where f = [f(x
(1)

)  f(x
(2)

)  …  f(x
(p)

)]
T
 , X is a p×K matrix containing the basis func-

tions evaluated at the sample points, and β = [β1  β2   …  βΚ]
T
. The number of 

sample points p should be consistent with the number of basis functions consid-

ered K (typically p ≥ K). If the sample points and basis function are taken arbitrar-

ily, some columns of X can be linearly dependent. If p ≥ K and rank(X) = K, a so-

lution of (3.4) in the least-squares sense can be computed through X 
+
, the 

pseudoinverse (or generalized inverse) of X [32]: 

β = X 
+
 = (X 

T
 X)

 -1 
X

 T
 f.                                              (3.5) 

The simplest examples of regression models are the first- and second-order order 

polynomial models  

1 2 0

1

( ) ([ ... ] )
n

T

n j j

j

s s x x x xβ β
=

= = +∑x  ,                                (3.6) 

1 2 0

1 1

( ) ([ ... ] )
n n n

T

n j j ij i j

j i j i

s s x x x x x xβ β β
= = ≤

= = + +∑ ∑∑x .                    (3.7) 

Polynomial interpolation/regression appears naturally and is crucial in developing 

robust and efficient derivative-free optimization algorithms. For more details, 

please refer to [33]. 

3.3.2.2   Radial Basis Functions 

Radial basis function interpolation/approximation [4,34] exploits linear combina-

tions of K radially symmetric functions φ 

( )

1

( ) (|| ||)
K

j

j

j

s λ φ
=

= −∑x x c ,                                             (3.8) 
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where λ = [λ1 λ2 … λK]
T
 is the vector of model parameters, and c

(j)
, j = 1, … , K, 

are the (known) basis function centers.   

As in polynomial regression the model parameters λ can be computed by 

1( )T T+ −= =λ Φ Φ Φ Φ f ,                                               (3.9) 

where again f = [f(x
(1)

)  f(x
(2)

)  …  f(x
(p)

)]
T
, and the p×K matrix Φ  is defined as  

(1) (1) (1) (2) (1) ( )

(2) (1) (2) (2) (2) ( )

( ) (1) ( ) (2) ( ) ( )

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)

K

K

p p p K

φ φ φ

φ φ φ

φ φ φ

⎡ ⎤− − −⎢ ⎥
− − −⎢ ⎥= ⎢ ⎥⎢ ⎥
− − −⎢ ⎥⎣ ⎦

x c x c x c

x c x c x c
Φ

x c x c x c

A
A

B B D B
A

.              (3.10) 

If we select p = K (i.e., the number of basis functions is equal to the number of 

samples), and if the centers of the basis functions coincide with the data points 

(and these are all different), Φ is a regular square matrix (and thus, λ = Φ–1 
f). 

Typical choices for the basis functions are φ(r) = r, φ(r) = r
3
, or φ(r) = r

2
lnr 

(thin plate spline). More flexibility can be obtained by using parametric basis 

functions such as φ(r) = exp(−r
2
/2σ2

) (Gaussian), φ(r) = (r
2
 + σ2

)
1/2

 (multi-

quadric), or φ(r) = (r
2
 + σ2

)
−1/2

 (inverse multi-quadric).  

3.3.2.3   Kriging 

Kriging is a popular technique to interpolate deterministic noise-free data 

[35,10,21,36]. Kriging is a Gaussian process [37] based modeling method, which 

is compact and cheap to evaluate. Kriging has been proven to be useful in a wide 

variety of fields (see, e.g., [4,38] for applications in optimization). 

In its basic formulation, kriging [35,10] assumes that the function of interest f is 

of the form 

( ) ( ) ( )T
f Z= +x g x β x ,                                                  (3.11) 

where g(x) = [g1(x)  g2(x)  …  gK(x)]
T
 are known (e.g., constant) functions, 

β = [β1 β2 … βK]
T
 are the unknown model parameters, and Z(x) is a realization of 

a normally distributed Gaussian random process with zero mean and variance σ2
.  

The regression part g(x)
Tβ approximates globally the function f, and Z(x) takes 

into account localized variations. The covariance matrix of Z(x) is given as  

( ) ( ) 2 ( ) ( )[ ( ) ( )] ([ ( , )])i j i j
Cov Z Z Rσ=x x R x x ,                              (3.12) 

where R is a p×p correlation matrix with Rij = R(x
(i)

,x
(j)

). Here, R(x
(i)

, x
(j)

) is the 

correlation function between sampled data points x
(i)

 and x
(j)

. The most popular 

choice is the Gaussian correlation function  

2

1
( , ) exp | |

n

k k kk
R x yθ

=
⎡ ⎤= − −⎣ ⎦∑x y  ,                                 (3.13) 

where θk are unknown correlation parameters, and xk and yk are the k
th

 component 

of the vectors x and y, respectively. 
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The kriging predictor [10,35] is defined as 

1( ) ( ) ( ) ( )T T
s

−= + −x g x β r x R f Gβ ,                                  (3.14) 

where r(x) = [R(x, x
(1)

) … R(x, x
(p)

)]
T
,  f = [f(x

(1)
)  f(x

(2)
)  …  f(x

(p)
)]

T
, and G is a 

p×K matrix with Gij = gj(x
(i)

).  

The vector of model parameters β can be computed as 

1 1 1( )T T− − −=β G R G G R f .                                           (3.15)  

An estimate of the variance σ2
 is given by 

2 11
ˆ ( ) ( )T

p
σ −= − −f Gβ R f Gβ .                                        (3.16) 

Model fitting is accomplished by maximum likelihood for θk [35]. In particular, the 

n-dimensional unconstrained nonlinear maximization problem with cost function  

2ˆ( ln( ) ln | |) / 2p σ− + R ,                                               (3.17) 

where the variance σ2
 and |R| are both functions of θk, is solved for positive values 

of θk as optimization variables. 

It should be noted that, once the kriging-based surrogate has been obtained, the 

random process Z(x) gives valuable information regarding the approximation error 

that can be used for improving the surrogate [4,35].  

3.3.2.4   Neural Networks 

The basic structure in a neural network [39,40] is the neuron (or single-unit per-

ceptron). A neuron performs an affine transformation followed by a nonlinear op-

eration (see Fig. 3.5(a)). If the inputs to a neuron are denoted as x1, …, xn, the neu-

ron output y is computed as 

1

1 exp( / )
y

Tη
=

+ −
 ,                                                (3.18) 

where η = w1x1 + … + wnxn + γ , with w1, …, wn being regression coefficients. 

Here, γ is the bias value of a neuron, and T is a user-defined (slope) parameter. 

Neurons can be combined in multiple ways [39]. The most common neural net-

work architecture is the multi-layer feed-forward network (see Fig. 3.5(b)). 

The construction of a functional surrogate based on a neural network requires 

two main steps: (i) architecture selection, and (ii) network training. The network 

training can be stated as a nonlinear least-squares regression problem for a number 

of training points. Since the optimization cost function is nonlinear in all the opti-

mization variables (neurons coefficients), the solution cannot be written using a 

closed-form expression, as it was the case before in (3.5) or in (3.9). A very popular 

technique for solving this regression problem is the error back-propagation algo-

rithm [10,39]. If the network architecture is sufficiently complex, a neural network  
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can approximate a general set of functions [10]. However, in complicated cases 

(e.g., nonsmooth functions with a large number of variables) the underlying re-

gression problem may be significantly involved. 

 

        

      (a)                                  (b) 

Fig. 3.5. Neural networks: (a) neuron basic structure; (b) two-layer feed-forward neural net-

work architecture. 

3.3.2.5   Other Techniques 

The techniques described in this section refer to some other approaches that are 

gaining popularity recently. One of the most prominent approaches, which has been 

observed as a very general approximation tool, is support vector regression (SVR) 

[41,42]. SVR resorts to quadratic programming for a robust solving of the underly-

ing optimization in the approximation procedure [43]. SVR is a variant of the sup-

port vector machines (SVMs) methodology developed by Vapnik [44], which was 

originally applied to classification problems. SVR/SVM exploits the structural risk 

minimization (SRM) principle, which has been shown (see, e.g., [41]) to be supe-

rior to the traditional empirical risk minimization (ERM) principle employed by 

several modeling technologies (e.g., neural networks). ERM is based on minimiz-

ing an error function for the set of training points. When the model structure is 

complex (e.g., higher order polynomials), ERM-based surrogates often result in 

overfitting. SRM incorporates the model complexity in the regression, and there-

fore yields surrogates that may be more accurate outside of the training set. 

Moving least squares (MLS) [45] is a technique particularly popular in aero-

space engineering. MLS is formulated as weighted least squares (WLS) [46]. In 

MLS, the error contribution from each training point x
(i)

 is multiplied by a weight 

ωi that depends on the distance between x and x
(i)

. A common choice for the 

weights is 

    ( ) ( ) 2(|| ||) exp( || || )i i

i
ω − = − −x x x x  .                                  (3.19) 

MLS is essentially an adapting surrogate, and this additional flexibility can be 

translated in more appealing designs (especially in computer graphics applications). 

However, MLS is computationally more expensive than WLS, since computing the 

approximation for each point x requires solving a new optimization problem. 
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Gaussian process regression (GPR) [47] is a surrogate modeling technique that, as 

kriging, addresses the approximation problem from a stochastic point view. From this 

perspective, and since Gaussian processes are mathematically tractable, it is relatively 

easy to compute error estimations for GPR-based surrogates in the form of uncer-

tainty distributions. Under appropriate conditions, Gaussian processes can be shown 

to be equivalent to large neural networks [47]. Nevertheless, Gaussian process 

modeling typically requires much less regression parameters than neural networks. 

3.3.3   Model Validation 

Some of the methodologies described above determine a surrogate model together 
with some estimation of the attendant approximation error (e.g., kriging or Gaus-
sian process regression). Alternatively, there are procedures that can be used in a 

stand-alone manner to validate the prediction capability of a given model beyond 
the set of training points. A simple way for validating a model is the split-sample 

method [3]. In this algorithm, the set of available data samples is divided into two 
subsets. The first subset is called the training subset and contains the points consid-
ered for the construction of the surrogate. The second subset is the testing subset 
and serves purely as a model validation objective. In general, the error estimated by 
a split-sample method depends strongly on how the set of data samples is parti-
tioned. We also note that in this approach the samples available do not appear to be 
put to good use, since the surrogate is based on only a subset of them. 

Cross-validation [3,48] is an extremely popular methodology for verifying the 
prediction capabilities of a model generated from a set of samples. In cross-
validation the data set is divided into L subsets, and each of these subsets is se-
quentially used as testing set for a surrogate constructed on the other L–1 subsets. 
If the number of subsets L is equal to the sample size p, the approach is called 
leave-one-out cross-validation [3]. The prediction error can be estimated with all 
the L error measures obtained in this process (for example, as an average value). 
Cross-validation provides an error estimation that is less biased than with the split-
sample method [3]. The disadvantage of this method is that the surrogate has to be 
constructed more than once. However, having multiple approximations may im-
prove the robustness of the whole surrogate generation and validation approach, 
since all the data available is used with both training and testing purposes. 

3.3.4   Surrogate Correction 

In the first stages on any surrogate-based optimization procedure, it is desirable to 
use a surrogate that is valid globally in the search space [4] in order to avoid being 
trapped in local solutions with unacceptable cost function values. Once the search 
starts becoming local, the global accuracy of the initial surrogate may not be bene-
ficial for making progress in the optimization1. For this reason, surrogate correc-
tion is crucial within any SBO methodology. 

                                                           
1 As mentioned in Section 3.2, when solving the original optimization problem in (3.1)  

using a surrogate-based optimization framework, zero- and first-order local consistency 

conditions are essential for obtaining convergence to a first-order stationary point. 
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In this section we will describe two strategies for improving surrogates locally. 

The corrections described in Section 3.3.4.1 are based on mapping objective func-

tion values. In some occasions, the cost function can be expressed as a function of 

a model response. Section 3.3.4.2 presents the space-mapping concept that gives 

rise to a whole surrogate-based optimization paradigm (see Section 3.4.2). 

3.3.4.1   Objective Function Correction 

Most of the objective function corrections used in practice can be identified in one 

of these three groups: compositional, additive or multiplicative corrections. We will 

briefly illustrate each of these categories for correcting the surrogate s
(i)

(x), and dis-

cuss if zero- and first-order consistency conditions with f(x) [7] can be satisfied. 

The following compositional correction [20] 

( 1) ( )( ) ( ( ))i i
s g s

+ =x x                                                  (3.20) 

represents a simple scaling of the objective function. Since the mapping g is a real-

valued function of a real variable, a compositional correction will not in general 

yield first-order consistency conditions. By selecting a mapping g that satisfies  

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
'( ( ))

( ) ( )

i i i T
i i

i i i i T

f s
g s

s s

∇ ∇
=

∇ ∇

x x
x

x x
,                                 (3.21) 

the discrepancy between ∇f(x
(i)

) and ∇s
(i+1)

(x
(i)

) (expressed in Euclidean norm) is 

minimized. It should be noticed that the correction in (3.21), as many transforma-

tions that ensure first-order consistency, requires a high-fidelity gradient, which 

may be expensive to compute. However, numerical estimates of ∇f(x
(i)

) may yield 

in practice acceptable results. 

The compositional correction can be also introduced in the parameter space [1] 

( 1) ( )( ) ( ( ))i i
s s

+ =x p x .                                                (3.22) 

If f(x
(i)

) is not in the range of s
(i)

(x), then the condition s
(i)

(p(x
(i)

)) = f(x
(i)

) is not 

achievable. We can overcome that issue by combining both compositional correc-

tions. In that case, the following selection for g and p 

( ) ( ) ( )( ) ( ) ( )i i i
g t t s f= − +x x ,                                            (3.23) 

( ) ( )( ) ( )i i= + −
p

p x x J x x ,                                              (3.24) 

where Jp is a n×n matrix for which Jp
T ∇s

(i)
=∇f(x

(i)
), guarantees consistency. 

Additive and multiplicative corrections allow obtaining first-order consistency 

conditions. For the additive case we can generally express the correction as  

( 1) ( )( ) ( ) ( )i i
s sλ+ = +x x x .                                                (3.25) 

The associated consistency conditions require that λ(x) satisfies 

( ) ( ) ( ) ( )( ) ( ) ( )i i i i
f sλ = −x x x ,                                             (3.26) 

and  
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( ) ( ) ( ) ( )( ) ( ) ( )i i i i

f sλ∇ = ∇ − ∇x x x .                                       (3.27) 

Those requirements can be obtained by the following linear additive correction: 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ( ) ( ))( ) ( )i i i i i i i i i
s f s f s s

+ = − + ∇ − ∇ − +x x x x x x x x .        (3.28) 

Multiplicative corrections (also known as the β-correlation method [20]) can be 

represented generically by 

( 1) ( )( ) ( ) ( )i i
s sα+ =x x x .                                              (3.29) 

Assuming that s
(i)

(x
(i)

) ≠ 0, zero- and first-order consistency can be achieved if 

( )
( )

( ) ( )

( )
( )

( )

i
i

i i

f

s
α =

x
x

x
,                                          (3.30) 

and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) [ ( ) ( ) / ( ) ( )] / ( )i i i i i i i i i
f f s s sα∇ = ∇ − ∇x x x x x x .              (3.31) 

The requirement s
(i)

(x
(i)

) ≠ 0 is not strong in practice since very often the range of 

f(x) (and thus, of the surrogate s
(i)

(x)) is known beforehand, and hence, a bias can 

be introduced both for f(x) and s
(i)

(x) to avoid cost function values equal to zero. 

In these circumstances the following multiplicative correction  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( 1) ( ) ( )

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ( ))

i i i i i i i
i i i

i i i i

f f s f s
s s

s s

+ ⎡ ⎤∇ − ∇
= + −⎢ ⎥⎣ ⎦

x x x x x
x x x x

x x
,   (3.32) 

is consistent with conditions (3.30) and (3.31).  

3.3.4.2   Space Mapping Concept 

Space mapping (SM) [1,5,6] is a well-known methodology for correcting a given 

(either functional or physical) surrogate. SM algorithms aim at objective functions 

f(x) that can be written as a functional U of a so-called system response Rf(x)∈R
m 

( ) ( ( ))ff U=x R x .                                               (3.33) 

The fine model response Rf(x)
 
is assumed to be accurate but computationally ex-

pensive. The coarse model response Rc(x)∈R
m
 is much cheaper to evaluate than 

the fine model response at the expense of being an approximation of it. SM estab-

lishes a correction between model responses rather than between objective func-

tions. The corrected model response will be denoted as Rs(x; pSM) ∈ R
m
, and pSM 

represents a set of parameters that describes the type of correction performed.
 

We can find in the literature four different groups of coarse model response 

corrections [1,5]:
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1. Input space mapping [1]. The response correction is based on an affine 

transformation on the low-fidelity model parameter space. Example: 

Rs(x; pSM) = Rs(x; B,c) = Rc(B x + c).  

2. Output space mapping [5]. The response correction is based on an affine 

transformation on the low-fidelity model response. Example: 

Rs(x; pSM) = Rs(x; A,d) = A Rc(x)+d. Manifold-mapping (see Section 3.4.3) 

is a particular case of output space mapping. 

3. Implicit space mapping [49]. In some cases, there are additional parameters 

xp ∈R
np in the coarse model response Rc(x; xp) that can be tuned for better 

aligning of the fine and coarse model responses. Example: 

Rs(x; pSM) = Rs(x; xp) = Rc(x; xp). These additional parameters are known in 

SM lexicon as pre-assigned parameters, and are in general different from 

the optimization variables x. 

4. Custom corrections that exploit the structure of the given design prob-

lem [1]. In many occasions the model responses are obtained through the 

sweeping of some parameter t:  

1 2
( ) ( ; ) [ ( ; ) ( ; ) ... ( ; )]T

f f f f f m
t R t R t R t= =R x R x x x x ,             (3.34) 

1 2
( ) ( ; ) [ ( ; ) ( ; ) ... ( ; )]T

c c c c c m
t R t R t R t= =R x R x x x x .              (3.35) 

 Examples of this situation appear when the parameter t represents time or 

frequency. The response correction considered in this case2 could be based 

on an affine transformation on the sweeping parameter space:  

0 1 0 1
( ; ) ( ; , ) ( ; )

s SM s c
r r r rt= = +R x p R x R x .                         (3.36) 

In Fig. 3.6 we illustrate by means of block diagrams the four SM-based correction 

strategies introduced above, together with a combination of three of them.
 

The surrogate response is usually optimized with respect to the SM parame-

ters pSM in order to reduce the model discrepancy for all or part of the data avail-

able Rf(x
(1)

), Rf(x
(2)

), … , Rf (x
(p)

): 

( ) ( ) ( )

1
arg min || ( ) ( ; ) ||

SM

p k k k

SM f s SMk
ω

=
= −∑

p
p R x R x p ,                           (3.37) 

where 0 ≤ ω(k)
 ≤ 1 are weights for each of the samples. The corrected surrogate 

Rs(x; pSM) can be used as an approximation to the fine response Rf(x) in the vicin-

ity of the sampled data. The minimization in (3.37) is known in SM literature as 

parameter extraction [1]. The solving of this optimization process is not exempt 

from difficulties, since in many cases the problem is ill-conditioned. We can find 

in [1] a number of techniques for addressing parameter extraction in a robust 

manner. 

 

                                                           
2 This type of space mapping is known as frequency space mapping [4], and it was origi-

nally proposed in microwave engineering applications (in these applications t usually  

refers to frequency). 
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(e)  

Fig. 3.6 Basic space-mapping surrogate correction types: (a) input SM, (b) output SM, (c) 

implicit SM, (d) frequency SM, and (e) composite using input, output and frequency SM.  

3.4   Surrogate-Based Optimization Techniques 

In this section, we will introduce several optimization strategies that exploit surro-

gate models. More specifically, we will describe approximation model manage-

ment optimization [7], space mapping [5], manifold mapping [8], and the  

surrogate management framework [9]. The first three approaches follow the sur-

rogate-based optimization framework presented in Section 3.2. We will conclude 

the section with a brief discussion on addressing the tradeoff between exploration 

and/or exploitation in the optimization process. 
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3.4.1   Approximation Model Management Optimization 

Approximation model management optimization (AMMO) [7] relies on trust-

region gradient-based optimization combined with the multiplicative linear surro-

gate correction (3.32) introduced in Section 3.3.4.1. 

The basic AMMO algorithm can be summarized as follows: 

1. Set initial guess x
(0)

, s
(0)

(x), and i = 0, and select the initial trust-region ra-

dius δ > 0. 

2. If i > 0, then s
(i)

(x) = α(x) s
(i-1)

(x). 

3. Solve h
*
 = argmin s

(i)
(x

(i)
 + h) subject to ||h||∞ ≤ δ . 

4. Calculate ρ = (f(x
(i)

) – f(x
(i)

 + h
*
))/(s(x

(i)
) – s

(i)
(x

(i)
 + h

*
)). 

5. If f(x
(i)

) >  f(x
(i)

 + h
*
), then set x

(i+1)
 = x

(i)
 + h

*
; otherwise x

(i+1)
 = x

(i)
. 

6. Update the search radius δ based on the value of ρ. 

7. Set i = i + 1, and if the termination condition is not satisfied, go to Step 2. 

Additional constraints can also be incorporated in the optimization through Step 3. 

AMMO can also be extended to cases where the constraints are expensive to 

evaluate and can be approximated by surrogates [50].  The search radius δ is up-

dated using the standard trust-region rules [11,51]. We reiterate that the surrogate 

correction considered yields zero- and first-order consistency with f(x). Since this 

surrogate-based approach is safeguarded by means of a trust-region method, the 

whole scheme can be proven to be globally convergent to a first-order stationary 

point of the original optimization problem (3.1).  

3.4.2   Space Mapping 

The space mapping (SM) paradigm [1,5] was originally developed in microwave 

engineering optimal design applications, and gave rise to an entire family of sur-

rogate-based optimization approaches. Nowadays, its popularity is spreading 

across several engineering disciplines [52,53,1]. The initial space-mapping opti-

mization methodologies were based on input SM [1], i.e., a linear correction of the 

coarse model design space. This kind of correction is well suited for many engi-

neering problems, particularly in electrical engineering, where the model discrep-

ancy is mostly due to second-order effects (e.g., presence of parasitic compo-

nents). In these applications the model response ranges are often similar in shape, 

but slightly distorted and/or shifted with respect to a sweeping parameter 

(e.g., signal frequency). 

Space mapping can be incorporated in the SBO framework by just identifying 

the sequence of surrogates with 

(0)
( ) ( ( ))cs U R=x x ,                                              (3.38) 

and 

( ) ( )
( ) ( ( ; ))

i i

s SMs U R=x x p ,                                              (3.39) 
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for i > 0. The parameters pSM
(i)

 are obtained by parameter extraction as in (3.37). 

The accuracy of the corrected surrogate will clearly depend on the quality of the 

coarse model response [16]. In microwave design applications it has been many 

times observed that the number of points p needed for obtaining a satisfactory SM-

based corrected surrogate is on the order of the number of optimization variables n 

[1]. Though output SM can be used to obtain both zero- and first-order consistency 

conditions with f(x), many other SM-based optimization algorithms that have been 

applied in practice do not satisfy those conditions, and in some occasions conver-

gence problems have been identified [14]. Additionally, the choice of an adequate 

SM correction approach is not always obvious [14]. However, in multiple occa-

sions and in several different disciplines [52,53,1], space mapping has been re-

ported as a very efficient means for obtaining satisfactory optimal designs. 

Convergence properties of space-mapping optimization algorithms can be 

improved when these are safeguarded by a trust region [54]. Similarly to AMMO, 

the SM surrogate model optimization is restricted to a neighborhood of x
(i)

 (this 

time by using the Euclidean norm) as follows 

( 1) ( ) ( ) ( )

2arg min ( ) subject to || ||
i i i i

s δ+ = − ≤
x

x x x x ,                      (3.40) 

where δ(i)
 denotes the trust-region radius at iteration i. The trust region is updated 

at every iteration by means of precise criteria [11]. A number of enhancements for 

space mapping have been suggested recently in the literature (e.g., zero-order and 

aproximate/exact first order consistency conditions with f(x) [54], or adaptively 

constrained parameter extraction [55]). 

The quality of a surrogate within space mapping can be assessed by means of 

the techniques described in [14,16]. These methods are based on evaluating the 

high-fidelity model at several points (and thus, they require some extra 

computational effort). With that information, some conditions required for 

convergence are approximated numerically, and as a result, low-fidelity models 

can be compared based on these approximate conditions. The quality assessment 

algorithms presented in [14,16] can also be embedded into SM optimization 

algorithms in order to throw some light on the delicate issue of selecting the most 

adequate SM surrogate correction.  

It should be emphasized that space mapping is not a general-purpose 

optimization approach. The existence of the computationally cheap and 

sufficiently accurate low-fidelity model is an important prerequisite for this 

technique. If such a coarse model does exist, satisfactory designs are often 

obtained by space mapping after a relatively small number of evaluations of the 

high-fidelity model. This number is usually on the order of the number of 

optimization variables n [14], and very frequently represents a dramatic reduction 

in the computational cost required for solving the same optimization problem with 

other methods that do not rely on surrogates. In the absence of the above-

mentioned low-fidelity model, space-mapping optimization algorithms may not 

perform efficiently.  
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3.4.3   Manifold Mapping 

Manifold mapping (MM) [8,56] is a particular case of output space mapping, that 

is supported by convergence theory [13,56], and does not require the parameter 

extraction step shown in (3.37). Manifold mapping can be integrated in the SBO 

framework by just considering s
(i)

(x) = U(Rs
(i)

(x)) with the response correction for 

i ≥ 0 defined as  

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i

s f c c= + −R x R x S R x R x ,                             (3.41) 

where S
(i)

, for i ≥ 1, is the following m×m matrix  

( ) †i = Δ ΔS F C ,                                                   (3.42) 

with 

( ) ( 1) ( ) (max{ ,0})[ ( ) ( ) ... ( ) ( )]i i i i n

f f f f

− −Δ = − −F R x R x R x R x ,                 (3.43) 

( ) ( 1) ( ) (max{ ,0})
[ ( ) ( ) ... ( ) ( )]

i i i i n

c c c c

− −Δ = − −C R x R x R x R x .                   (3.44) 

The matrix S
(0)

 is typically taken as the identity matrix Im. Here, 
†
 denotes the 

pseudoinverse operator defined for ΔC as 

† † T

Δ Δ ΔΔ = C C CC V Σ U ,                                                 (3.45) 

where UΔC, ∑ΔC, and VΔC are the factors in the singular value decomposition of 

ΔC. The matrix ∑ΔC
†  is the result of inverting the nonzero entries in ∑ΔC, leaving 

the zeroes invariant [8]. Some mild general assumptions on the model responses 

are made in theory [56] so that every pseudoinverse introduced is well defined.  

The response correction Rs
(i)

(x) is an approximation of  

* * * *
( ) ( ) ( ( ) ( ))s f c c= + −R x R x S R x R x ,                                 (3.46) 

with S 
*
 being the m×m matrix defined as 

* * † *( ) ( )
c

J J= fS x x ,                                                (3.47) 

where Jf (x
*
) and Jc(x

*
) stand for the fine and coarse model response Jacobian, re-

spectively, evaluated at x
*
. Obviously, neither x

*
 nor S 

*
 is known beforehand. 

Therefore, one needs to use an iterative approximation, such as the one in (3.41)-

(3.45), in the actual manifold-mapping algorithm. 

The manifold-mapping model alignment is illustrated in Fig. 3.7 for the least-

squares optimization problem 

2

2( ( )) || ( ) ||U = −f fR x R x y ,                                          (3.48) 

with y ∈ R
m
 being the design specifications given. In that figure the point xc

* 
de-

notes the minimizer corresponding to the coarse model cost function U(Rc(x)). We 

note that, in absence of constraints, the optimality associated to (3.48) is translated 

into the orthogonality between the tangent plane for Rf (x) at x
*
 and the vector 

Rf(x
*
) - y. 
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If the low-fidelity model has a negligible computational cost when compared to 

the high-fidelity one, the MM surrogate can be explored globally. The MM algo-

rithm is in this case endowed with some robustness with respect to being trapped 

in unsatisfactory local minima.  

For least-squares optimization problems as in (3.48), manifold mapping is sup-

ported by mathematically sound convergence theory [13]. We can identify four 

factors relevant for the convergence of the scheme above to the fine model opti-

mizer x
*
: 

1. The model responses being smooth. 

2. The surrogate optimization in (3.2) being well-posed. 

3. The discrepancy of the optimal model response Rf(x
*
) with respect to the 

design specifications being sufficiently small. 

4. The low-fidelity model response being a sufficiently good approximation 

of the high-fidelity model response.   

In most practical situations the requirements associated to the first three factors are 

satisfied, and since the low-fidelity models often considered are based on expert 

knowledge accumulated over the years, the similarity between the model re-

sponses can be frequently good enough for having convergence. 

Manifold-mapping algorithms can be expected to converge for a merit function 

U sufficiently smooth. Since the correction in (3.41) does not involve U, if the 

model responses are smooth enough, and even when U is not differentiable, mani-

fold mapping may still yield satisfactory solutions. The experimental evidence 

given in [57] for designs based on minimax objective functions indicates that the 

MM approach can be used successfully in more general situations than those for 

which theoretical results have been obtained. 

The basic manifold-mapping algorithm can be modified in a number of ways. 

Convergence appears to improve if derivative information is introduced in the al-

gorithm [13]. The incorporation of a Levenberg-Marquardt strategy in manifold 

mapping [58] can be seen as a convergence safeguard analogous to a trust-region 

method [11]. Manifold mapping can also be extended to designs where the con-

straints are determined by time-consuming functions, and for which surrogates are 

available as well [59]. 

3.4.4   Surrogate Management Framework 

The surrogate management framework (SMF) [9] is mainly based on pattern 

search. Pattern search [60] is a general set of derivative-free optimizers that can be 

proven to be globally convergent to first-order stationary points. A pattern search 

optimization algorithm is based on exploring the search space by means of a struc-

tured set of points (pattern or stencil) that is modified along iterations. The pattern 

search scheme considered in [9] has two main steps per iteration: search and poll. 

Each iteration starts with a pattern of size Δ centered at x
(i)

. The search step is op-

tional and is always performed before the poll step. In the search stage a (small) 

number of points are selected from the search space (typically by means of a sur-

rogate), and the cost function f(x) is evaluated at these points. If the cost function  
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fidelity model

y y
 

Fig. 3.7 Illustration of the manifold-mapping model alignment for a least-squares optimiza-

tion problem. The point xc
* denotes the minimizer corresponding to the coarse model re-

sponse, and the point y is the vector of design specifications. Thin solid and dashed straight 

lines denote the tangent planes for the fine and coarse model response at their optimal de-

signs, respectively. By the linear correction S *, the point Rc(x
*) is mapped to Rf(x

*), and 

the tangent plane for Rc(x) at Rc(x
*) to the tangent plane for Rf(x) at Rf(x

*) [13]. 

 
for some of them improves on f(x

(i)
) the search step is declared successful, the cur-

rent pattern is centered at this new point, and a new search step is started. Other-

wise a poll step is taken. Polling requires computing f(x) for points in the pattern. 

If one of these points is found to improve on f(x
(i)

), the poll step is declared suc-

cessful, the pattern is translated to this new point, and a new search step is per-

formed. Otherwise the whole pattern search iteration is considered unsuccessful 

and the termination condition is checked. This stopping criterion is typically based 

on the pattern size Δ [9,61]. If, after the unsuccessful pattern search iteration an-

other iteration is needed, the pattern size Δ is decreased, and a new search step is 

taken with the pattern centered again at x
(i)

. Surrogates are incorporated in the 

SMF through the search step. For example, kriging (with Latin hypercube sam-

pling) is considered in the SMF application studied in [61].  

In order to guarantee convergence to a stationary point, the set of vectors 

formed by each pattern point and the pattern center should be a generating (or 

positive spanning) set [60,61]. A generating set for R
n
 consists of a set of vectors 

whose non-negative linear combinations span R
n
. Generating sets are crucial in 

proving convergence (for smooth objective functions) due to the following prop-

erty: if a generating set is centered at x
(i)

 and ∇f(x
(i)

) ≠ 0, then at least one of the 

vectors in the generating set defines a descent direction [60]. Therefore, if f(x) is 

smooth and ∇f(x
(i)

) ≠ 0, we can expect that for a pattern size ∆ small enough, some 

of the points in the associated stencil will improve on f(x
(i)

). 

Though pattern search optimization algorithms typically require many more 

function evaluations than gradient-based techniques, the computations in both the 

search and poll steps can be performed in a distributed fashion. On top of that, the 

use of surrogates, as is the case for the SMF, generally accelerates noticeably the 

entire optimization process. 
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3.4.5   Exploitation versus Exploration  

The surrogate-based optimization framework starts from an initial surrogate model 

which is updated using the high-fidelity model data that is accumulated in the op-

timization process. In particular, the high-fidelity model has to be evaluated for 

verification at any new design x
(i) 

provided by the surrogate model. The new 

points at which we evaluate the high-fidelity model are sometimes referred to as 

infill points [4]. We reiterate that this data can be used to enhance the surrogate. 

The selection of the infill points is also known as adaptive sampling [4]. 

Infill points in approximation model management optimization, space mapping 

and manifold mapping are in practice selected through local optimization of the 

surrogate (global optimization for problems with a medium/large number of vari-

ables and even relatively inexpensive surrogates can be a time-consuming proce-

dure). The new infill points in the surrogate management framework are taken 

based only on high-fidelity cost function improvement. As we have seen in this 

section, the four surrogate-based optimization approaches discussed are supported 

by local optimality theoretical results. In other words, these methodologies intrin-

sically aim at the exploitation of certain region of the design space (the neighbor-

hood of a first-order stationary point). If the surrogate is valid globally, the first it-

erations of these four optimization approaches can be used to avoid being trapped 

in unsatisfactory local solutions (i.e., global exploration steps). 

The exploration of the design space implies in most cases a global search. If the 

underlying objective function is non-convex, exploration usually boils down to 

performing a global sampling of the search space, for example, by selecting those 

points that maximize some estimation of the error associated to the surrogate con-

sidered [4]. It should be stressed that global exploration is often impractical, espe-

cially for computationally expensive cost functions with a medium/large number 

of optimization variables (more than a few tens). Additionally, pure exploration 

may not be a good approach for updating the surrogate in an optimization context, 

since a great amount of computing resources can be spent in modeling parts of the 

search space that are not interesting from an optimal design point of view. 

Therefore, it appears that in optimization there should be a balance between ex-

ploitation and exploration. As suggested in [4], this tradeoff could be formulated 

in the context of surrogate-based optimization, for example, by means of a bi-

objective optimization problem (with global measure of the error associated to the 

surrogate as second objective function), by maximizing the probability of im-

provement upon the best observed objective function value, or through the maxi-

mization of the expected cost function improvement. As mentioned above, these 

hybrid approaches will find difficulties in performing an effective global search in 

designs with a medium/large number of optimization variables. 

3.5   Final Remarks 

In this chapter, an overview of surrogate modeling, with an emphasis on optimiza-

tion, has been presented. Surrogate-based optimization plays an important role in 
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contemporary engineering design, and the importance of this role will most likely 

increase in the near future. One of the reasons for this increase is the fact that 

computer simulations have become a major design tool in most engineering areas. 

In order for these simulations to be sufficiently accurate, more and more phenom-

ena have to be captured. This level of sophistication renders simulations computa-

tionally expensive, particularly when they deal with the time-varying three-

dimensional structures considered in many engineering fields. Hence, evaluation 

times of several days, or even weeks, are nowadays not uncommon. The direct use 

of CPU-intensive numerical models in some off-the-shelf automated optimization 

procedures (e.g., gradient-based techniques with approximate derivatives) is very 

often prohibitive. Surrogate-based optimization can be a very useful approach in 

this context, since, apart from reducing significantly the number of high-fidelity 

expensive simulations in the whole design process, it also helps in addressing im-

portant high-fidelity cost function issues (e.g., presence of discontinuities and/or 

multiple local optima).  
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Chapter 4

Derivative-Free Optimization

Oliver Kramer, David Echeverrı́a Ciaurri, and Slawomir Koziel

Abstract. In many engineering applications it is common to find optimization

problems where the cost function and/or constraints require complex simulations.

Though it is often, but not always, theoretically possible in these cases to ex-

tract derivative information efficiently, the associated implementation procedures

are typically non-trivial and time-consuming (e.g., adjoint-based methodologies).

Derivative-free (non-invasive, black-box) optimization has lately received consid-

erable attention within the optimization community, including the establishment of

solid mathematical foundations for many of the methods considered in practice. In

this chapter we will describe some of the most conspicuous derivative-free optimiza-

tion techniques. Our depiction will concentrate first on local optimization such as

pattern search techniques, and other methods based on interpolation/approximation.

Then, we will survey a number of global search methodologies, and finally give

guidelines on constraint handling approaches.

4.1 Introduction

Efficient optimization very often hinges on the use of derivative information of

the cost function and/or constraints with respect to the design variables. In the last
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decades, the computational models used in design have increased in sophistication

to such an extent that it is common to find situations where (reliable) derivative

information is not available. Although in simulation-based design there are method-

ologies that allow one to extract derivatives with a modest amount of additional com-

putation, these approaches are in general invasive with respect to the simulator (e.g.,

adjoint-based techniques [1]), and thus, require precise knowledge of the simulation

code and access to it. Moreover, obtaining derivatives in this intrusive way often

implies significant coding (not only at the code development stage, but also sub-

sequently, when maintaining or upgrading the software), and consequently, many

simulators simply yield, as output, the data needed for the cost function and/or con-

straint values. Furthermore, optimal design has currently a clear multidisciplinary

nature, so it is reasonable to expect that some components of the overall simula-

tion do not include derivatives. This situation is even more likely when commercial

software is used, since then the source code is typically simply inaccessible.

In this chapter we review a number of techniques that can be applied to gener-

ally constrained continuous optimization problems for which the cost function and

constraint computation can be considered as a black box system. We wish to clearly

distinguish between methods that aim at providing just a solution (local optimiza-

tion; see Section 4.3), and approaches that try to avoid being trapped in local optima

(global optimization; see Section 4.4). Local optimization is much easier to handle

than global optimization, since, in general, there is no algorithmically suitable char-

acterization of global optima. As a consequence, there are more theoretical results of

practical relevance for local than for global optimizers (e.g., convergence conditions

and rate). For more details on theoretical aspects of derivative-free optimization we

strongly recommend both the review [2] and the book [3]. The techniques are de-

scribed for continuous variables, but it is possible to apply, with care, extensions of

many of them to mixed-integer scenarios. However, since mixed-integer nonlinear

programming is still an emergent area (especially in simulated-based optimization),

we prefer not to include recommendations in this case.

In some situations, numerical derivatives can be computed fairly efficiently (e.g.,

via a computer cluster), and still yield results that can be acceptable in practice.

However, if the function/constraint evaluations are even moderately noisy, numer-

ical derivatives are usually not useful. Though methods that rely on approximate

derivatives are not derivative-free techniques per se, for example, in the absence of

noise, they can address optimization in a black box approach. We should note that

in addition to their inherent additional computational costs, numerical derivatives

very often imply the tuning of the derivative approximation together with the sim-

ulation tolerances, and this is not always easy to do. Implicit filtering [4, 5] may

somehow alleviate some of these issues. This approach is essentially a gradient-

based procedure where the derivative approximation is improved as the optimization

progresses. Implicit filtering has been recommended for problems with multiple lo-

cal optima (e.g., noisy cost functions). For more details on gradient-based method-

ologies the reader is encouraged to regard nonlinear optimization references (for

example, [6, 7]).
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Many derivative-free methods are easy to implement, and this feature makes them

attractive when approximate solutions are required in a short time frame. An obvi-

ous statement that is often neglected is that the computational cost of an iteration

of an algorithm is not always a good estimate of the time needed within a project

(measured from its inception) to obtain results that are satisfactory. However, one

important drawback of derivative-free techniques (when compared, for example,

with adjoint-based approaches) is the limitation on the number of optimization vari-

ables that can be handled. For example, in [3] and [2] the limit given is a few hundred

variables. However, this limit in the problem size can be overcome, at least to some

extent, if one is not restricted to a single sequential environment. For some of the

algorithms though, adequately exploiting parallelism may be difficult or even im-

possible. When distributed computing resources are scarce or not available, and for

simulation-based designs with significantly more than a hundred optimization vari-

ables, some form of parameter reduction is mandatory. In these cases, surrogates

or reduced order models [8] for the cost function and constraints are desirable ap-

proaches. Fortunately, suitable parameter and model order reduction techniques can

often be found in many engineering applications, although they may give rise to in-

accurate models. We should add that even in theory, as long as a problem with nons-

mooth/noisy cost functions/constraints can be reasonably approximated by a smooth

function (see [9], Section 10.6), some derivative-free optimization algorithms per-

form well with nonsmooth/noisy cost functions, as has been observed in practice

[2, 3].

In the last decade, there has been a renaissance of gradient-free optimization

methodologies, and they have been successfully applied in a number of areas. Exam-

ples of this are ubiquitous; to name a few, derivative-free techniques have been used

within molecular geometry [10], aircraft design [11, 12], hydrodynamics [13, 14],

medicine [15, 16] and earth sciences [17, 18, 19, 20]. These references include

generally constrained cases with derivative-free objective functions and constraints,

continuous and integer optimization variables, and local and global approaches. In

spite of all this apparent abundance of results, we should not disregard the general

recommendation (see [3, 2]) of strongly preferring gradient-based methods if accu-

rate derivative information can be computed reasonably efficiently and globally.

This chapter is structured as follows. In Section 4.2 we introduce the gen-

eral problem formulation and notation. A number of derivative-free methodologies

for unconstrained continuous optimization are presented in the next two sections.

Section 4.3 refers to local optimization, and Section 4.4 is devoted to global op-

timization. Guidelines for extending all these algorithms to generally constrained

optimization are given in Section 4.5. We bring the chapter to an end with some

conclusions and recommendations.

4.2 Derivative-Free Optimization

A general single-objective optimization problem can be formally stated as:

min
x∈Ω⊂Rn

f (x) subject to g(x) ≤ 0, (4.1)
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where f (x) is the objective function, x ∈ R
n is the vector of control variables, and

g : R
n → R

m represents the nonlinear constraints in the problem. Bound and linear

constraints are included in the set Ω ⊂R
n. For many approaches it is natural to treat

any constraints for which derivatives are available separately. In particular, bounds

and linear constraints, and any other structure than can be exploited, should be. So

for example, nonlinear least-squares problems should exploit that inherent structure

whenever possible (see e.g. [21]). We are interested in applications for which the

objective function and constraint variables are computed using the output from a

simulator, rendering function evaluations expensive and derivatives unavailable.

We will begin by discussing some general issues with respect to optimization

with derivatives since they have important relevancy to the derivative-free case.

Essentially all approaches to the former are somewhere between steepest descent

and Newton’s method, or equivalently use something that is between a linear and

a quadratic model. This is reinforced by the realization that almost all practical

computation is linear at its core, and (unconstrained) minima are characterized by

the gradient being zero, and quadratic models give rise to linear gradients. In fact,

theoretically at least, steepest descent is robust but slow (and in fact sometimes so

slow that in practice it is not robust) whereas Newton’s method is fast but may have

a very small radius of convergence. That is, one needs to start close to the solu-

tion. It is also computationally more demanding. Thus in a sense, most practical

unconstrained algorithms are intelligent compromises between these two extremes.

Although, somewhat oversimplified, one can say that the constrained case is dealt

with by being feasible, determining which constraints are tight, linearizing these

constraints and then solving the reduced problem determined by these linearizations.

Therefore, some reliable first-order model is essential, and for faster convergence,

something more like a second-order model is desirable. In the unconstrained case

with derivatives these are typically provided by a truncated Taylor series model (in

the first-order case) and some approximation to a truncated second-order Taylor se-

ries model. A critical property of such models is that as the step sizes become small

the models become more accurate. In the case where derivatives, or good approx-

imations to them, are not available, clearly, one cannot use truncated Taylor series

models. It thus transpires that, if for example, one uses interpolation or regression

models, that depend only on function values, one can no longer guarantee that as the

step sizes become small the models become more accurate. Thus one has to have

some explicit way to make this guarantee, at least approximately. It turns out that

this is usually done by considering the geometry of the points at which the func-

tion is evaluated, at least, before attempting to decrease the effective maximum step

size. In pattern search methods, this is done by explicitly using a pattern with good

geometry, for example, a regular mesh that one only scales while maintaining the a

priori good geometry.

In the derivative case the usual stopping criteria relates to the first-order optimal-

ity conditions. In the derivative-free case, one does not explicitly have these, since

they require (approximations to) the derivatives. At this stage we just remark that

any criteria used should relate to the derivative case conditions, so, for example one

needs something like a reasonable first-order model, at least asymptotically.



4 Derivative-Free Optimization 65

4.3 Local Optimization

The kernel of many optimizers are local methods. This is not surprising, since, as

we already mentioned, there is no suitable algorithmic characterization of global

optima unless one considers special situations such as where all local optima are

global, as for example in convex minimization problems. In this section we con-

centrate on local search methods based on pattern search and also on interpolation

and approximation models. Some constraint handling procedures are described in

Section 4.5.

4.3.1 Pattern Search Methods

Pattern search methods are optimization procedures that evaluate the cost function

in a stencil-based fashion determined by a set of directions with intrinsic prop-

erties meant to be desirable from a geometric/algebraic point of view. This sten-

cil is sequentially modified as iterations proceed. The recent popularity of these

schemes is due in part to the development of a mathematically sound convergence

theory [2, 3]. Moreover, they are attractive because they can relatively easily lever-

age the widespread availability of parallel computing resources. However, most

published computational results are not parallel exploiting.

4.3.1.1 Generalized Pattern Search

Generalized pattern search (GPS; [22, 23]) refers to a whole family of optimiza-

tion methods. GPS relies on polling (local exploration of the cost function on the

pattern) but may be enhanced by additional searches, see [23]. At any particular it-

eration a stencil (pattern) is centered at the current solution. The stencil comprises

a set of directions such that at least one direction is a descent direction. This is also

called a generating set (see e.g. [2]). If any of the points in the stencil represent an

improvement in the cost function, the stencil is moved to one of them. Otherwise,

the stencil size is decreased. The optimization progresses until some stopping crite-

rion is satisfied (typically, a minimum stencil size). Generalized pattern search can

be further generalized by polling in an asymptotically dense set of directions (this

set varies with the iterations). The resulting algorithm is the mesh adaptive direct

search (MADS; [24]). In particular, some generalization of a simple fixed pattern is

essential for constrained problems. The GPS method parallelizes naturally since, at a

particular iteration, the objective function evaluations at the polling points can be ac-

complished in a distributed fashion. The method typically requires on the order of n

function evaluations per iteration (where n is the number of optimization variables).

4.3.1.2 Hooke-Jeeves Direct Search

The Hooke-Jeeves direct search (HJDS; [25]) is another pattern search method and

was the first to use the term ‘direct search’ method and take advantage of the idea
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Fig. 4.1 Illustration of exploratory and pattern moves in Hooke-Jeeves direct search (modi-

fied from [19]). The star represents the optimum.

of a pattern. HJDS is based on two types of moves: exploratory and pattern. These

moves are illustrated in Figure 4.1 for some optimization iterations in R
2.

The iteration starts with a base point x0 and a given step size. During the ex-

ploratory move, the objective function is evaluated at successive changes of the

base point in the search (for example coordinate) directions. All the directions are

polled sequentially and in an opportunistic way. This means that if d1 ∈ R
n is the

first search direction, the first function evaluation is at x0 + d1. If this represents

an improvement in the cost function, the next point polled will be, assuming n > 1,

x0 + d1 + d2, where d2 is the second search direction. Otherwise the point x0 −d1

is polled. Upon success at this last point, the search proceeds with x0 −d1 + d2, and

alternatively with x0 +d2. The exploration continues until all search directions have

been considered. If after the exploratory step no improvement in the cost function is

found, the step size is reduced. Otherwise, a new point x1 is obtained, but instead of

centering another exploratory move at x1, the algorithm performs the pattern move,

which is a more aggressive step that moves further in the underlying successful di-

rection. After the pattern move, the next polling center x2 is set at x0 + 2(x1 −x0).
If the exploratory move at x2 fails to improve upon x1, a new polling is performed

around x1. If this again yields no cost function decrease, the step size is reduced,

keeping the polling center at x1.

Notice the clear serial nature of the algorithm. This makes HJDS a reason-

able pattern search option when distributed computing resources are not available.

Because of the pattern move, HJDS may also be beneficial in situations where an op-

timum is far from the initial guess. One could argue that initially pattern search tech-

niques should use a relatively large stencil size on the hope that this feature enables

them to avoid some local minima and, perhaps, some robustness against noisy cost

functions.
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4.3.2 Derivative-Free Optimization with Interpolation and

Approximation Models

The other major approach to derivative-free optimization is based on building mod-

els that are meant to approximate the functions and then make use of derivative

methods on the models. The advantage is that one is trying to take account of the

shape of the function rather than naively just using the function evaluations alone.

As our introductory remarks in Section 4.2 suggest we can expect our models to be

at least first-order models or better still, second-order.

A major drawback of this approach is that, since the models are not based upon

an a priori pattern, as with just polling, the geometry of the sample points used re-

quires special attention. Additionally, one pays for the extra sophistication of these

methods in that they are not obviously parallelizable. Some of the better known al-

gorithms in this class include DFO [3], NEWUOA [26] and BOOSTERS [27]. The

basic ideas will be given here but it is recommended that the diligent reader consult

Chapters 3-6 of [3].

First of all, what does good geometry mean? Essentially, for example, if one

wants to consider interpolation by a polynomial of degree d, where d = 1, that is

linear interpolation, one needs n + 1 points and good geometry means they do not

lie on or close to a linear surface. Similarly, if one wants to consider interpolation

by a polynomial of degree d, where d = 2, that is quadratic interpolation, one needs

(n + 1)(n + 2)/2 points and good geometry means they do not lie on or close to a

quadratic or linear surface. The extension to higher degree is clear. One can also

see why the problem goes away if one works with a suitable pattern, as in a pattern

search method.

Now, all three methods mentioned above are trust-region based. For an in-

troduction to trust-region techniques the readers are referred to [7], or [9] for a

monographic volume. In the case with derivatives the essential ingredients are the

following. Starting at a given point x0 one has a region about that point, coined

the trust region and denoted by Δ0. The trust region is typically a sphere in the

Euclidean or in the infinity norm. One then requires a model m(x) for the true ob-

jective function that is relatively easy to minimize within the trust region (e.g., a

truncated first-order Taylor series or an approximation to a truncated second-order

Taylor series, about the current point). A search direction from the current point is

determined based upon the model and one (approximately) minimizes the model

within the trust region.

The trust region can be updated in the following manner. Suppose y1 is the ap-

proximate minimizer of the model within the trust region Δ0. We then compare the

predicted reduction to truth in the sense that we consider

ρ =
f (x0)− f (y1)

m(x0)−m(y1)
.



68 O. Kramer, D. Echeverrı́a Ciaurri, and S. Koziel

Then typically one assigns some updating strategy to the trust-region radius Δ0

like

Δ1 =

⎧

⎨

⎩

2 · Δ0, if ρ > 0.9 ,
∆0, if 0.1 ≤ ρ ≤ 0.9 ,
0.5 ·∆0 if ρ < 0.1 ,

where ∆1 denotes the updated radius. In the first two cases x1 = y1 and in the third

case x1 = x0.

Thus, although oversimplified, if we are using Taylor series approximations for

our models, within the trust management scheme one can ensure convergence to a

solution satisfying first-order optimality conditions [9]. Perhaps the most important

difference once derivatives are not available is that we cannot take Taylor series

models and so, in general, optimality can no longer be guaranteed. In fact, we have

to be sure that when we reduce the trust-region radius it is because of the problem

and not just a consequence of having a bad model as a result of poor geometry of

the sampling points. So it is here that one has to consider the geometry. Fortunately,

it can be shown that one can constructively ensure good geometry, and with that,

support the whole derivative-free approach with convergence to solutions that satisfy

first-order optimality conditions. For details see [3], Chapter 6.

4.4 Global Optimization

In the previous section we have concentrated on local search methods. Unfortu-

nately, most real-world problems are multimodal, and global optima are generally

extremely difficult to obtain. Local search methods find local optima that are not

guaranteed to be global. Here we will give a short survey of global optimization

methods. However, the reader should take note of the following. In practice, often

good local optima suffice. If one is considering even a modest number of variables,

say fifty, it is generally very difficult, if not impossible, to ensure convergence to

a provable global solution, in a reasonable length of time, even if derivatives are

available, not to mention in the derivative-free case. Almost all algorithms designed

to determine local optima are significantly more efficient than global methods.

Many successful methods in global optimization are based on stochastic compo-

nents, as they allow to escape from local optima and overcome premature stagnation.

Famous classes of families of stochastic global optimization methods are evolution-

ary algorithms, estimation of distribution algorithms, particle swarm optimization,

and differential evolution. Further heuristics known in literature are simulated an-

nealing [28, 29], tabu search [30, 31], ant colony optimization [32, 33], and artificial

immune systems [34, 35]. In this section, we concentrate on the first four classes of

methods that have been successful in a number of practical applications.

4.4.1 Evolutionary Algorithms

A history of more than forty years of active research on evolutionary compu-

tation indicates that stochastic optimization algorithms are an important class of
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1 Start

2 Initialize solutions xi of population P

3 Evaluate objective function for the solutions xi in P

4 Repeat

5 For i = 0 To λ
6 Select ρ parents from P

7 Create new xi by recombination

8 Mutate xi

9 Evaluate objective function for xi

10 Add xi to P ′

11 Next

12 Select µ parents from P ′ and form new P

13 Until termination condition

14 End

Fig. 4.2 Pseudocode of a generic evolutionary algorithm.

derivative-free search methodologies. The separate development of evolutionary al-

gorithms (EAs) in the United States and Europe led to different kinds of algorithmic

variants. Genetic algorithms were developed by John Holland in the United States

at the beginning of the seventies. Holland’s intention was to exploit adaptive behav-

ior. In his book Adaptation in Natural and Artificial Systems [36] he describes the

development of genetic algorithms (GAs). His original algorithm is today known

as simple GA. Evolutionary programming by Fogel, Owens and Walsh [37] was

originally designed for optimization of the evolvement of deterministic finite au-

tomata, but has today been extended to numerical optimization. Evolution strate-

gies (ES) were developed by Rechenberg and Schwefel in the middle of the sixties

in Germany [38, 39, 40]. In the following, we introduce the idea of evolutionary

optimization, that is closely related to evolution strategies.

4.4.1.1 Algorithmic Framework

The basis of evolutionary search is a population P := {x1, . . . ,xλ} of candidate

solutions, also called individuals. Figure 4.2 shows the pseudocode of a general

evolutionary algorithm. The optimization process takes three steps. In the first step

the recombination operator (see Section 4.4.1.2) selects ρ parents and combines

them to obtain new solutions. In the second step the mutation operator (see Sec-

tion 4.4.1.3) adds random noise to the preliminary candidate solution. The objective

function f (x) is interpreted in terms of the quality of the individuals, and in EA

lexicon is called fitness. The fitness of the new offspring solution is evaluated. All

individuals of a generation form the new population P ′. In the third step, when

λ solutions have been produced, µ individuals, with µ < λ , are selected (see Sec-

tion 4.4.1.4), and form the new parental population of the following generation. The

process starts again until a termination condition is reached. Typical termination

conditions are the accomplishment of a certain solution quality, or an upper bound
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on the number of generations. We now concentrate on the stochastic operators that

are often used in evolutionary computation.

4.4.1.2 Recombination

In biological systems recombination, also known as crossover, mixes the genetic

material of two parents. Most EAs also make use of a recombination operator and

combine the information of two or more individuals into a new offspring solution.

Hence, the offspring carries parts of the genetic material of its parents. The use of

recombination is discussed controversially within the building block hypothesis by

Goldberg [41, 42], and the genetic repair effect by Beyer [43].

Typical recombination operators for continuous representations are dominant

and intermediary recombination. Dominant recombination randomly combines the

genes of all parents. If we consider parents of the form x = (x1, . . .xn), dominant re-

combination with ρ parents x1, . . . ,xρ creates the offspring vector x′ = (x′1, . . . ,x
′
n)

by random choice of the i-th component x′i:

x′i := xk
i , k ∈ random {1, . . . ,ρ}. (4.2)

Intermediate recombination is appropriate for integer and real-valued solution

spaces. Given ρ parents x1, . . . ,xρ each component of the offspring vector x′ is

the arithmetic mean of the components of all ρ parents. Thus, the characteristics of

descendant solutions lie between their parents:

x′i :=
1

ρ

ρ

∑
k=1

xk
i . (4.3)

Integer representations may require rounding procedures to produce intermediate

integer solutions.

4.4.1.3 Mutation

Mutation is the second main source for evolutionary changes. According to Beyer

and Schwefel [38], a mutation operator is supposed to fulfill three conditions. First,

from each point in the solution space each other point must be reachable. Second,

in unconstrained solution spaces a bias is disadvantageous, because the direction to

the optimum is not known. And third, the mutation strength should be adjustable

in order to adapt to solution space conditions. In the following, we concentrate on

the well-known Gaussian mutation operator. We assume that solutions are vectors

of real values. Random numbers based on the Gaussian distribution N (0,1) satisfy

these conditions in continuous domains. The Gaussian distribution can be used to

describe many natural and artificial processes. By isotropic Gaussian mutation each

component of x is perturbed independently with a random number from a Gaussian

distribution with zero mean and standard deviation σ .
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Fig. 4.3 Gaussian mutation: isotropic Gaussian mutation (left) uses one step size σ for each

dimension, multivariate Gaussian mutation (middle) allows independent step sizes for each

dimension, and correlated mutation (right) introduces an additional rotation of the coordinate

system

The standard deviation σ plays the role of the mutation strength, and is also

known as step size. The step size σ can be kept constant, but convergence can be

improved by adapting σ according to the local solution space characteristics. In

case of high success rates, i.e., a high number of offspring solutions being better

than their parents, large step sizes are advantageous in order to promote the explo-

ration of the search space. This is often the case at the beginning of the search.

Small step sizes are appropriate for low success rates. This is frequently adequate

in later phases of the search, when the optimization history can be exploited while

the optimum is approximated. An example for an adaptive control of step sizes is

the 1/5-th success rule by Rechenberg [39] that increases the step size if the success

rate is over 1/5-th, and decreases it, if the success rate is lower.

The isotropic Gaussian mutation can be extended to the multivariate Gaussian

mutation by introducing a step size vector σ with independent step sizes σi. Fig-

ure 4.3 illustrates the differences between isotropic Gaussian mutation (left) and

the multivariate Gaussian mutation (middle). The multivariate variant considers a

mutation ellipsoid that adapts flexibly to local solution space characteristics.

Even more flexibility can be obtained through the correlated mutation proposed

by Schwefel [44] that aligns the coordinate system to the solution space charac-

teristics. The mutation ellipsoid is rotated by means of an orthogonal matrix, and

this rotation can be modified along iterations. The rotated ellipsoid is also shown in

Figure 4.3 (right). The covariance matrix adaptation evolution strategies (CMA-ES)

and derivates [45, 46] are self-adapting control strategies based on an automatic

alignment of the coordinate system.

4.4.1.4 Selection

The counterpart of the variation operators mutation and recombination is selection.

Selection gives the evolutionary search a direction. Based on the fitness, a subset of

the population is selected, while the rest is rejected. In EAs the selection operator
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can be utilized at two points. Mating selection selects individuals for recombina-

tion. Another popular selection operator is survivor selection, corresponding to the

Darwinian principle of survival of the fittest. Only the individuals selected by sur-

vivor selection are allowed to confer genetic material to the following generation.

The elitist strategies plus and comma selection choose the µ best solutions and are

usually applied for survivor selection. Plus selection selects the µ best solutions

from the union P ∪ P
′ of the last parental population P and the current offspring

population P ′, and is denoted by (µ +λ )-EA. In contrast to plus selection, comma

selection, which is denoted by (µ ,λ )-EA, selects exclusively from the offspring

population, neglecting the parental population − even if individuals have superior

fitness. Though disregarding these apparently promising solutions may seem to be

disadvantageous, this strategy that prefers the new population to the old population

can be useful to avoid being trapped in unfavorable local optima.

The deterministic selection scheme described in the previous paragraph is a char-

acteristic feature of ES. Most evolutionary algorithms use selection schemes con-

taining random components. An example is fitness proportionate selection (also

called roulette-wheel selection) popular in the early days of genetic algorithms [41].

Another example is tournament selection, a widely used selection scheme for EAs.

Here, the candidate with the highest fitness out of a randomly chosen subset of the

population is selected to the new population. The stochastic-based selection schemes

permit survival of not-so-fit individuals and thus helps with preventing premature

convergence and preserving the genetic material that may come in handy at later

stages of the optimization process.

4.4.2 Estimation of Distribution Algorithms

Related to evolutionary algorithms are estimation of distribution algorithms (EDAs).

They also operate with a set of candidate solutions. Similar to ES, a random set of

points is initially generated, and the objective function is computed for all these

points. The core of EDAs are successive steps where distributions of the best solu-

tions within a population are estimated, and a new population is sampled according

to the previous distribution estimation.

The principle has been extended in a number of different manners. Most EDAs

make use of parametric distributions, i.e., the parameters of distribution functions

are determined in the estimation step. The assumption of a Gaussian distribution

is frequent in EDAs. EDAs may suffer from premature convergence. The weighted

variance estimator introduced in [47] has been observed to alleviate that conver-

gence issue. Adaptive variance scaling [48], i.e., the variance can be increased if

good solutions are found, otherwise it is decreased, has also been suggested to avoid

early stagnation. The sampling process can be enhanced by anticipated mean shift

(AMS; [49]). In this approach, about two thirds of the population are sampled regu-

larly, and the rest is shifted in the direction of a previously estimated gradient. If this

estimate is accurate, all the shifted individuals, together with part of the non-shifted
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individuals, may survive, and the variance estimate in the direction of the gradient

could be larger than without AMS.

4.4.3 Particle Swarm Optimization

Similar to evolutionary algorithms, particle swarm optimization (PSO) is a pop-

ulation approach with stochastic components. Introduced by Kennedy and Eber-

hart [50], it is inspired by the movement of natural swarms and flocks. The algorithm

utilizes particles with a position x that corresponds to the optimization variables, and

a speed v which is similar to the mutation strength in evolutionary computation. The

principle of particle swarm optimization is based on the idea that the particles move

in the solution space, influencing each other with stochastic changes, while previous

successful solutions act as attractors.

In each iteration the position of particle x is updated by adding the current

velocity v

x′ := x + v . (4.4)

The velocity is updated as follows

v′ := v + c1r1(x
∗
p −x)+ c2r2(x

∗
s −x) , (4.5)

where x∗p and x∗s denote the best previous positions of the particle and of the swarm,

respectively. The weights c1 and c2 are acceleration coefficients that determine the

bias of the particle towards its own or the swarm history. The recommendation given

by Kennedy and Eberhart is to set both parameters to one. The stochastic compo-

nents r1 and r2 are uniformly drawn from the interval [0,1], and can be used to

promote the global exploration of the search space.

4.4.4 Differential Evolution

Another population-based optimization approach is differential evolution (DE),

originally introduced by Storn and Price [51]. As the algorithms in the previous

three subsections, DE exploits a set of candidate solutions (agents in DE lexicon).

New agents are allocated in the search space by combining the positions of other ex-

isting agents. More specifically, an intermediate agent is generated from two agents

randomly chosen from the current population. This temporary agent is then mixed

with a predetermined target agent. The new agent is accepted for the next generation

if and only if it yields reduction in objective function.

The basic DE algorithm uses a random initialization. A new agent y = [y1, . . . ,yn]
is created from the existing one x = [x1, . . . ,xn] as indicated below.

1. Three agents a = [a1, . . . ,an], b = [b1, . . . ,bn] and c = [c1, . . . ,cn] are randomly

extracted from the population (all distinct from each other and from x).

2. A position index p ∈ {1, . . . ,N} is determined randomly.
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3. The position of the new agent y is computed by means of the following iteration

over i ∈ {1, . . . ,n}:

i) select a random number ri ∈ (0,1) with uniform probability distribution;

ii) if i = p or ri <CR let yi = ai +F(bi−ci), otherwise let yi = xi; here, F ∈ [0,2]
is the differential weight and CR ∈ [0,1] is the crossover probability, both

defined by the user;

iii) if f (y) < f (x) then replace x by y; otherwise reject y and keep x.

Although DE resembles some other stochastic optimization techniques, unlike tra-

ditional EAs, DE perturbs the solutions in the current generation vectors with scaled

differences of two randomly selected agents. As a consequence, no separate prob-

ability distribution has to be used, and thus the scheme presents some degree of

self-organization. Additionally, DE is simple to implement, uses very few con-

trol parameters, and has been observed to perform satisfactorily in a number of

multi-modal optimization problems [52].

4.5 Guidelines for Generally Constrained Optimization

We now describe nonlinear constraint handling techniques that can be combined

with the optimization methods presented in Sections 4.3 and 4.4.

4.5.1 Penalty Functions

The penalty function method (cf. [7]) for general optimization constraints involves

modifying the objective function with a penalty term that depends on the constraint

violation h : R
n → R. The original optimization problem in (4.1) is thus modified as

follows:

min
x∈Ω⊂Rn

f (x)+ ρ h(x) , (4.6)

where ρ > 0 is a penalty parameter. The modified optimization problem may still

have constraints that are straightforward to handle.

If the penalty parameter is iteratively increased (tending to infinity), the solution

of (4.6) converges to that of the original problem in (4.1). However, in certain cases,

a finite (and fixed) value of the penalty parameter ρ also yields the correct solution

(this is the so-called exact penalty; see [7]). For exact penalties, the modified cost

function is not smooth around the solution [7], and thus the corresponding optimiza-

tion problem can be significantly more involved than that in (4.6). However, one can

argue that in the derivative-free case exact penalty functions may in some cases be

attractive. Common definitions of h(x), where I and J denote the indices that refer

to inequality and equality constraints, respectively, are

h(x) = 1
2

(

∑
i∈I

max(0,gi(x))2 + ∑
j∈J

g2
i (x)

)



4 Derivative-Free Optimization 75

the quadratic penalty and

h(x) = ∑
i∈I

max(0,gi(x))+ ∑
j∈J

|gi(x)|

an exact penalty. It should be noticed that by these penalties, the search considers

both feasible and infeasible points. Those optimization methodologies where the

optimum can be approached from outside the feasible region are known as exterior

methods.

The log-barrier penalty (for inequality constraints)

h(x) = −∑
i∈I

log(−gi(x))

has to be used with a decreasing penalty parameter (tending to zero). This type of

penalty methods (also known as barrier methods) confines the optimization to the

feasible region of the search space. Interior methods aim at reaching the optimum

from inside the feasible region.

In [53], non-quadratic penalties have been suggested for pattern search tech-

niques. However, the optimizations presented in that work are somewhat simpler

than those found in many practical situations, so the recommendations given might

not be generally applicable. In future research, it will be useful to explore further

the performance of different penalty functions in the context of simulation-based

optimization.

4.5.2 Augmented Lagrangian Method

As mentioned above, in exterior penalty function methods, as ρ → ∞ the local mini-

mum is approached from outside the feasible region. Not surprisingly, there is a way

to shift the feasible region so one is able to determine the local solution for a finite

penalty parameter. See, for example, [54, 55] for original references, and also [7],

Chapter 17.

Augmented Lagrangian methods [56, 57] aim at minimizing, in the equality

constraint case, the following extended cost function

min
x∈Ω⊂Rn

f (x)+ 1
2 ρ ‖g(x)‖2

2 + λλλ T
g(x) , (4.7)

where ρ > 0 is a penalty parameter, and λλλ ∈ R
m are Lagrange multipliers. This cost

function can indeed be interpreted as a quadratic penalty with the constraints shifted

by some constant term [56]. As in penalty methods, the penalty parameter and the

Lagrange multipliers are iteratively updated. It turns out that if one is sufficiently

stationary for Equation (4.7), which is exactly when we have good approximations

for the Lagrange multipliers, then λλλ can be updated via

λλλ + = λλλ + ρ g(x) , (4.8)
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Fig. 4.4 An idealized (pattern search) filter at iteration k (modified from [19])

where λλλ +
denotes the updated Lagrange multipliers. Otherwise one should increase

the penalty parameter ρ (say by multiplying it by 10). The Lagrange multipliers are

typically initialized to zero. What is significant is that one can prove (see e.g. [56])

that after a finite number of iterations the penalty parameter is never updated, and

that the whole scheme eventually converges to a solution of the original optimization

problem in (4.1). Inequality constraints can also be incorporated in the augmented

Lagrangian framework by introducing slack variables and simple bounds [56]. The

augmented Lagrangian approach can be combined with most optimization algo-

rithms. For example, refer to [58] for a nonlinear programming methodology based

on generalized pattern search.

4.5.3 Filter Method

A relatively recent approach that avoids using a penalty parameter and has been

rather successful is the class of so-called filter methods [59, 7]. Using filters, the

original problem (4.1) is typically viewed as a bi-objective optimization problem.

Besides minimizing the cost function f (x), one also seeks to reduce the constraint

violation h(x). The concept of dominance, crucial in multi-objective optimization,

is defined as follows: the point x1 ∈ R
n dominates x2 ∈ R

n if and only if either

f (x1) ≤ f (x2) and h(x1) < h(x2), or f (x1) < f (x2) and h(x1) ≤ h(x2). A filter

is a set of pairs (h(x) , f (x)), such that no pair dominates another pair. In practice,

a maximum allowable constraint violation hmax is specified. This is accomplished

by introducing the pair (hmax,−∞) in the filter. An idealized filter (at iteration k) is

shown in Figure 4.4.

A filter can be understood as essentially an add-on for an optimization proce-

dure. The intermediate solutions proposed by the optimization algorithm at a given
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iteration are accepted if they are not dominated by any point in the filter. The filter

is updated at each iteration based on all the points evaluated by the optimizer. We

reiterate that, as for exterior methods, the optimization search is enriched by con-

sidering infeasible points, although the ultimate solution is intended to be feasible

(or very nearly so). Filters are often observed to lead to faster convergence than

methods that rely only on feasible iterates.

Pattern search optimization techniques have been previously combined with fil-

ters [60]. In Hooke-Jeeves direct search, the filter establishes the acceptance crite-

rion for each (unique) new solution. For schemes where, in each iteration, multiple

solutions can be accepted by the filter (such as in GPS), the new polling center must

be selected from the set of validated points. When the filter is not updated in a par-

ticular iteration (and thus the best feasible point is not improved), the pattern size is

decreased. As in [60], when we combine GPS with a filter, the polling center at a

given iteration will be the feasible point with lowest cost function or, if no feasible

points remain, it will be the infeasible point with lowest constraint violation. These

two points,
(

0, f F
k

)

and
(

hI
k, f I

k

)

, respectively, are shown in Figure 4.4 (it is assumed

that both points have just been accepted by the filter, and thus it makes sense to use

one of them as the new polling center). Refer to [60] and [61] for more details on

pattern search filter methods.

4.5.4 Other Approaches

We will now briefly overview a number of constraint handling methodologies that

have been proposed for evolutionary algorithms. Repair algorithms [62, 63] project

infeasible solutions back to the feasible space. This projection is in most cases ac-

complished in an approximate manner, and can be as complex as solving the op-

timization problem itself. Repair algorithms can be seen as local procedures that

aim at reducing constraint violation. In the so-called Baldwinian case, the fitness of

the repaired solution replaces the fitness of the original (infeasible) solution. In the

Lamarckian case, feasible solutions prevail over infeasible solutions.

Constraint-handling techniques borrowed from multi-objective optimization are

based on the idea of dealing with each constraint as an additional objective [64, 65,

66, 67, 68, 69]. Under this assumption, multi-objective optimization methods such

as NSGA-II [70] or SPEA [71] can be applied. The output of a multi-objective ap-

proach for constrained optimization is an approximation of a Pareto set that involves

the objective function and the constraints. The user may then select one or more so-

lutions from the Pareto set. A simpler but related and computationally less expensive

procedure is the behavioral memory method presented in [72]. This evolutionary

method concentrates on minimizing the constraint violation of each constraint se-

quentially, and the objective function is addressed separately afterwards. However,

treating objective function and constraints independently may yield in many cases

infeasible solutions.



78 O. Kramer, D. Echeverrı́a Ciaurri, and S. Koziel

Further constraint handling methods have been proposed in EA literature that

do not rely either on repair algorithms or multi-objective approaches. In [73] a

technique based on a multi-membered evolution strategy with a feasibility compari-

son mechanism is introduced. The dynamic multi-swarm particle optimizer studied

in [74] makes use of a set of sub-swarms that focus on different constraints, and is

coupled with a local search algorithm (sequential quadratic programming).

4.6 Concluding Remarks

In this chapter, we have concentrated on methods for solving optimization problems

without derivates. The existence of local optima makes a hard optimization problem

even harder. Many methods have been proposed to solve non-convex optimization

problems. The approaches range from pattern search for local optimization prob-

lems to stochastic bio-inspired search heuristics for multi-modal problems. Deter-

ministic local methods are guaranteed to find local optima, and restart variants can

be applied to avoid unsatisfactory solutions. Stochastic methods are not guaranteed

to find the global optimum, but in some practical cases they can be beneficial.

The hybridization between local and global optimizers has led to a paradigm

sometimes called memetic algorithms or hybrid metaheuristics [75, 76]. A number

of hybridizations have been proposed, but they are often tailored to specific prob-

lem types and search domains due to their specific operators and methods. In the

memetic method introduced in [77] for continuous search spaces, a gradient-based

scheme is combined with a deterministic perturbation component. The local opti-

mization procedure for real-valued variables described in [78] is based on variable

neighborhood search. It would be very useful if in future research some effort is

dedicated to better understand from a theoretical point of view the hybridization of

local and global optimization algorithms.

Most problems that can be found in practice present constraints. We have outlined

a number of constraint handling techniques that can be incorporated in a derivative-

free optimization framework. Though penalty functions are appealing due to their

simplicity, some of the other approaches mentioned here may be more efficient and

still of a relatively easy implementation.

Multi-objective optimization is an important challenge for derivative-free method-

ologies. Some of the evolutionary techniques mentioned above have performed suc-

cessfully in some not especially involved multi-objective test cases. Other areas

where derivative-free optimization could potentially be very helpful include dy-

namic optimization, mixed-integer nonlinear programming, and optimization under

uncertainty (stochastic programming).
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Chapter 5

Maximum Simulated Likelihood Estimation:
Techniques and Applications in Economics

Ivan Jeliazkov and Alicia Lloro

Abstract. This chapter discusses maximum simulated likelihood estimation when

construction of the likelihood function is carried out by recently proposed Markov

chain Monte Carlo (MCMC) methods. The techniques are applicable to parameter

estimation and Bayesian and frequentist model choice in a large class of multivariate

econometric models for binary, ordinal, count, and censored data. We implement the

methodology in a study of the joint behavior of four categories of U.S. technology

patents using a copula model for multivariate count data. The results reveal inter-

esting complementarities among several patent categories and support the case for

joint modeling and estimation. Additionally, we find that the simulated likelihood

algorithm performs well. Even with few MCMC draws, the precision of the likeli-

hood estimate is sufficient for producing reliable parameter estimates and carrying

out hypothesis tests.

5.1 Introduction

The econometric analysis of models for multivariate discrete data is often compli-

cated by intractability of the likelihood function, which can rarely be evaluated di-

rectly and typically has to be estimated by simulation. In such settings, the efficiency

of likelihood estimation plays a key role in determining the theoretical properties and

practical appeal of standard optimization algorithms that rely on those estimates. For

this reason, the development of fast and statistically efficient techniques for estimat-

ing the value of the likelihood function has been at the forefront of much of the

research on maximum simulated likelihood estimation in econometrics.

In this paper we examine the performance of a method for estimating the ordi-

nate of the likelihood function which was recently proposed in [8]. The method is

rooted in Markov chain Monte Carlo (MCMC) theory and simulation [3, 4, 15, 18],
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and its ingredients have played a central role in Bayesian inference in econometrics

and statistics. The current implementation of those methods, however, is intended to

examine their applicability to purely frequentist problems such as maximum likeli-

hood estimation and hypothesis testing.

We implement the methodology to study firm-level patent registration data in

four patent categories in the “computers & instruments” industry during the 1980s.

One goal of this application is to examine how patent counts in each category are

affected by firm characteristics such as sales, workforce size, and research & devel-

opment (R&D) capital. A second goal is to study the degree of complementarity or

substitutability that emerges among patent categories due to a variety of unobserved

factors, such as firms’ internal R&D decisions, resource concentration, managerial

dynamics, technological spillovers, and the relevance of innovations across category

boundaries. These factors can affect multiple patent categories simultaneously and

necessitate the specification of a joint empirical structure that can flexibly capture

interdependence patterns.

We approach these tasks by considering a copula model for multivariate count

data which enables us to pursue joint modeling and estimation. Because the out-

come probabilities in the copula model are difficult to evaluate, we rely on MCMC

simulation to evaluate the likelihood function. Moreover, to improve the perfor-

mance of the optimization algorithm, we implement a quasi-Newton optimization

method due to [1] that exploits a fundamental statistical relation to avoid direct

computation of the Hessian matrix of the log-likelihood function. The application

demonstrates that the simulated likelihood algorithm performs very well – even with

few MCMC draws, the precision of the likelihood estimate is sufficient for produc-

ing reliable parameter estimates and hypothesis tests. The results support the case

for joint modeling and estimation in our application and reveal interesting comple-

mentarities among several patent categories.

The remainder of this chapter is organized as follows. In Section 5.2, we present

the copula model that we use in our application and the likelihood function that we

use in estimation. The likelihood function is difficult to evaluate because it is given

by a set of integrals with no closed-form solution. For this reason, in Section 5.3,

we present the MCMC-based simulation algorithm for evaluating this function and

discuss how it can be embedded in a standard optimization algorithm to maxi-

mize the log-likelihood function and yield parameter estimates and standard errors.

Section 5.4 presents the results from our patent application and demonstrates the

performance of the estimation algorithm. Section 5.5 offers concluding remarks.

5.2 Copula Model

In analyzing multiple data series, it is typically desirable to pursue joint modeling

and estimation. Doing so allows researchers to investigate dependence structures

among the individual variables of interest, leads to gains in estimation efficiency,

and is also important for mitigating misspecification problems in nonlinear models.
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In many applications, however, a suitable joint distribution may be unavailable or

difficult to specify. This problem is particularly prevalent in multivariate discrete

data settings, and in cases where the variables are of different types (e.g. some con-

tinuous, some discrete or censored). One area of research where incorporating a flex-

ible and interpretable correlation structure has been difficult is the empirical analysis

of multivariate count data [2, 21]. As a consequence, models for multivariate counts

have typically sacrificed generality for the sake of retaining computational tractabil-

ity. To deal with the aforementioned difficulties, we resort to a copula modeling

approach whose origins can be traced back to [17].

Formally, a copula maps the unit hypercube [0,1]q to the unit interval [0,1] and

satisfies the following conditions:

1. C(1, . . . ,1,ap,1, . . . ,1) = ap for every p ∈ {1, . . . ,q} and all ap ∈ [0,1];
2. C(a1, . . . ,aq) = 0 if ap = 0 for any p ∈ {1, . . . ,q};

3. C is q-increasing, i.e. any hyperrectangle in [0,1]q has non-negative C-volume.

The generality of the approach rests on the recognition that a copula can be viewed

as a q-dimensional distribution function with uniform marginals, each of which

can be related to an arbitrary known cumulative distribution function (cdf) Fj(·),
j = 1, . . . ,q. For example, if a random variable u j is uniform u j ∼ U(0,1), and

y j = F−1
j (u j), then it is easy to show that y j ∼ Fj(·). As a consequence, if the vari-

ables y1, . . . ,yq have corresponding univariate cdfs F1(y1), . . . ,Fq(yq) taking values

in [0,1], a copula is a function that can be used to link or “couple” those univariate

marginal distributions to produce the joint distribution function F(y1, . . . ,yq):

F(y1, . . . ,yq) = C (F1(y1), . . . ,Fq(yq)) . (5.1)

A detailed overview of copulas is provided in [9], [13], and [20]. The key feature

that will be of interest here is that they provide a way to model dependence among

multiple random variables when their joint distribution is not easy to specify, in-

cluding cases where the marginal distributions {Fj(·)} belong to entirely different

parametric classes.

There are several families of copulas, but the Gaussian copula is a natural mod-

eling choice when one is interested in extensions beyond the bivariate case. The

Gaussian copula is given by

C(u|Ω) = Φq(Φ
−1(u1), . . . ,Φ

−1(uq)|Ω), (5.2)

where u = (u1, . . . ,uq)
′, Φ represents the standard normal cdf, and Φq is the cdf for

a multivariate normal vector z = (z1, . . . ,zq)
′, z ∼N(0,Ω), where Ω is in correlation

form with ones on the main diagonal. The data generating process implied by the

Gaussian copula specification is given by

yi j = F−1
i j {Φ(zi j)}, zi ∼ N(0,Ω), i = 1, . . . ,n, j = 1, . . . ,q, (5.3)
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where Fi j is a cdf specified in terms of a vector of parameters θ j and covariates xi j, q

is the dimension of each vector yi = (yi1, . . . ,yiq)
′, and n is the sample size. Note that

the correlation matrix Ω for the latent zi induces dependence among the elements

of yi and that the copula density will typically be analytically intractable.

The structures in 5.1, 5.2, and 5.3 are quite general and apply to both discrete

and continuous outcomes. However, it is important to recognize that the inverse cdf

mapping F−1
i j (·) in 5.3 is one-to-one when yi j is continuous and many-to-one when

yi j is discrete. Therefore, in the latter case it is necessary to integrate over the values

of zi that lead to the observed yi in order to obtain their joint distribution. In our

implementation, this integration is performed by MCMC methods.

In this chapter, we use the Gaussian copula framework to specify a joint model

for multivariate count data, where each count variable yi j ∈ {0,1,2, . . .} follows a

variable-specific negative binomial distribution

yi j ∼ NB(λi j,α j), (5.4)

with probability mass function (pmf) given by

Pr(yi j|λi j,α j) =
Γ (α j + yi j)r

α j

i j (1− ri j)
yi j

Γ (1 + yi j)Γ (α j)
, λi j > 0, α j > 0, (5.5)

where ri j = α j/(α j + λi j), and dependence on the covariates is modeled through

λi j = exp(x′i jβ j). Here, and in the remainder of this chapter, all vectors will be

taken to be column vectors. The distribution in 5.5 has mean λi j and variance

λi j(1 + λi j/α j), so that, depending on α j, it allows for varying degrees of over-

dispersion. The variance can be much larger than the mean for small values of α j,

but in the limit (as α j → ∞) the two are equal, as in the Poisson model where the

conditional variance equals the conditional mean. Negative binomial models are

carefully reviewed in [2], [6], and [21].

The cdf for the negative binomial distribution is obtained by summing the pmf

in 5.5 for values less than or equal to yi j:

Fj(yi j|λi j,α j) =
yi j

∑
k=0

Pr(k|λi j,α j). (5.6)

To relate the negative binomial distribution to the Gaussian copula, the pmf and

cdf computed in 5.5 and 5.6, respectively, can be used to find unique, recursively

determined cutpoints

γi j,U = Φ−1(Fj(yi j|β j,α j))
γi j,L = Φ−1(Fj(yi j|β j,α j)−Pr(yi j|λi j,α j))

(5.7)

that partition the standard normal distribution so that for zi j ∼ N(0,1), we have

Pr(zi j ≤ γi j,U ) = Fj(yi j|λi j,α j) and Pr(γi j,L < zi j ≤ γi j,U ) = Pr(yi j|λi j,α j). Hence,

the cutpoints in 5.7 provide the range Bi j = (γi j,L,γi j,U ] of zi j that is consistent with

each observed outcome yi j in 5.3. In turn, because zi = (zi1, . . . ,ziq)
′ ∼ N(0,Ω), the
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Gaussian copula representation implies that the joint probability of observing the

vector yi = (yi1, . . . ,yiq)
′ is given by

Pr(yi|θ ,Ω) =

∫

Biq

· · ·

∫

Bi1

fN(zi|0,Ω)dzi, (5.8)

in which fN(·) denotes the normal density and, for notational convenience, we let

θ = (θ ′
1, . . . ,θ

′
q)

′, where θ j = (β ′
j,α j)

′ represents the parameters of the jth marginal

model, which determine the regions of integration Bi j = (γi j,L,γi j,U ], j = 1, . . . ,q.

Figure 5.1 offers an example of how the region of integration is constructed in the

simple bivariate case. Because of the dependence introduced by the correlation ma-

trix Ω , the probabilities in 5.8 have no closed-form solution and will be estimated

by MCMC simulation methods in this chapter. Once computed, the probabilities

in 5.8, also called likelihood contributions, can be used to construct the likelihood

function

f (y|θ ,Ω) =
n

∏
i=1

Pr(yi|θ ,Ω). (5.9)

The likelihood function is then used in obtaining maximum likelihood estimates θ̂
and Ω̂ , standard errors, and in performing model comparisons and hypothesis tests.

Because the likelihood contributions are obtained by simulation, f (y|θ ,Ω) in 5.9

is referred to as the simulated likelihood function, and the estimates θ̂ and Ω̂ are

called maximum simulated likelihood estimates. We next discuss the simulation and

optimization techniques that are used to obtain those estimates.

 γ
i1,L

 γ
i1,U

 γ
i2,L

 γ
i2,U

z
1

z
2

Fig. 5.1 An example of the region of integration implied by a bivariate Gaussian copula

model
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5.3 Estimation Methodology

Estimation by maximum simulated likelihood requires evaluation of the outcome

probabilities for each observation vector yi. Because each outcome probability in 5.8

is defined by an analytically intractable multidimensional integral, in Section 5.3.1

we describe a method for evaluating the outcome probabilities which was introduced

in [8]. The method, called the Chib-Ritter-Tanner (CRT) method, stems from de-

velopments in MCMC simulation and Bayesian model choice and is well suited for

evaluating outcome probabilities that comprise the likelihood of a variety of discrete

data models. Because the CRT estimator produces continuous and differentiable es-

timates of 5.9, in Section 5.3.2 we describe how it can be applied in standard quasi-

Newton gradient-based optimization using the Berndt-Hall-Hall-Hausman (BHHH)

approach proposed in [1]. The BHHH approach exploits a fundamental statistical re-

lation to avoid direct computation of the Hessian matrix of the log-likelihood func-

tion in the optimization algorithm.

5.3.1 The CRT Method

The CRT method, proposed in [8], is derived from theory and techniques in MCMC

simulation and Bayesian model selection (see [3], [15]), where evaluation of mul-

tidimensional integrals with no analytical solution is routinely required. To under-

stand the approach, note that the outcome probability in 5.8 can be rewritten as

Pr(yi|θ ,Ω) =

∫
1{zi ∈ Bi} fN(zi|0,Ω)dzi =

1{zi ∈ Bi} fN(zi|0,Ω)

fT NBi
(zi|0,Ω)

, (5.10)

where Bi = Bi1 ×Bi2 × ·· ·×Biq and fT NBi
(·) represents the truncated normal den-

sity that accounts for the truncation constraints reflected in Bi. This representation

follows by Bayes formula because Pr(yi|θ ,Ω) is the normalizing constant of a trun-

cated normal distribution, and its representation in terms of the quantities in 5.10 is

useful for developing an estimation strategy that is simple and efficient. As discussed

in [3], this identity is particularly useful because it holds for any value of zi ∈ Bi and

therefore, given that the numerator quantities 1{z∗i ∈ Bi} and fN(z∗i |0,Ω) in 5.10 are

directly available, the calculation is reduced to finding an estimate of the ordinate

fT NBi
(z∗i |0,Ω) at a single point z∗i ∈ Bi, typically taken to be the sample mean of the

draws zi ∼ T NBi
(0,Ω) that will be simulated in the estimation procedure (details

will be presented shortly). The log-probability is subsequently obtained as

ln P̂r(yi|θ ,Ω) = ln fN(z∗i |0,Ω)− ln f̂T NBi
(z∗i |0,Ω), (5.11)

To estimate f̂T NBi
(z∗i |0,Ω) in 5.11, the CRT method relies on random draws zi ∼

T NBi
(0,Ω) which are produced by the Gibbs sampling algorithms of [5] or [16],

where a new value for zi is generated by iteratively simulating each element zi j

from its full-conditional density zi j ∼ f (zi j|yi j,{zik}k �= j,Ω) = TNBi j
(µi j,σ2

i j) for
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j = 1, . . . ,q. In the preceding, µi j and σ2
i j are the conditional mean and variance of

zi j given {zik}k �= j and are obtained by the usual formulas for a conditional Gaussian

density. MCMC simulation of zi ∼ T NBi
(0,Ω) is an important tool for drawing from

this density, which is non-standard due to the multiple constraints defining the set

Bi and the correlations in Ω .

The Gibbs transition kernel for moving from a point zi to z∗i is given by the

product of univariate truncated normal full-conditional densities

K(zi,z
∗
i |yi,θ ,Ω) =

J

∏
j=1

f (z∗i j|yi,{z∗ik}k< j,{zik}k> j,θ ,Ω). (5.12)

Because the full-conditional densities represent the fundamental building blocks of

the Gibbs sampler, the additional coding involved in evaluating 5.12 is minimized.

By virtue of the fact that the Gibbs sampler satisfies Markov chain invariance (see

[18, 4]), in our context we have that

fT NBi
(z∗i |0,Ω) =

∫
K(zi,z

∗
i |yi,θ ,Ω) fT NBi

(zi|0,Ω)dzi, (5.13)

a more general version of which was exploited for density estimation in [15]. There-

fore, an estimate of fT NBi
(z∗i |0,Ω) for use in 5.10 or 5.11 can be obtained by invok-

ing 5.13 and averaging the transition kernel K (zi,z
∗
i |yi,θ ,Ω) with respect to draws

from the truncated normal distribution z
(g)
i ∼ T NBi

(0,Ω), g = 1, . . . ,G, i.e.

f̂T NBi
(z∗i |0,Ω) =

1

G

G

∑
g=1

K(z
(g)
i ,z∗i |yi,θ ,Ω). (5.14)

When repeated evaluation of 5.13 is required, e.g. in evaluating derivatives of

f (y|θ ,Ω), one should remember to reset the random number generation seed used in

the simulations. The CRT method produces continuous and differentiable estimates

of Pr(yi|θ ,Ω) and can thus be applied directly in derivative-based optimization as

discussed next.

5.3.2 Optimization Technique

Let ψ represent the vector of parameters that enter the log-likelihood function

ln f (y|ψ). For the copula model that we considered in Section 5.2, ψ consists of

the elements of θ and the unique off-diagonal entries of Ω (recall that Ω is sym-

metric positive definite matrix with ones on the main diagonal) and the likelihood

function f (y|ψ) is given in 5.9. Standard Newton-Raphson maximization of the log-

likelihood function ln f (y|ψ) proceeds by updating the value of the parameter vector

in iteration t, ψt , to a new value, ψt+1, using the formula

ψt+1 = ψt −λ H−1
t gt , (5.15)
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where gt = ∂ ln f (y|ψt )/∂ψt and Ht = ∂ 2 ln f (y|ψt)/∂ψt∂ψ ′
t are the gradient vec-

tor and Hessian matrix, respectively, of the log-likelihood function at ψt and λ is a

step size. Gradient-based methods are widely used in log-likelihood optimization

because many statistical models have well-behaved log-likelihood functions and

gradients and Hessian matrices are often required for statistical inference, e.g. in ob-

taining standard errors or Lagrange multiplier test statistics. The standard Newton-

Raphson method, however, has well-known drawbacks. One is that computation

of the Hessian matrix can be quite computationally intensive. For a k dimensional

parameter vector ψ , computing the Hessian requires O(k2) evaluations of the log-

likelihood function. In the context of simulated likelihood estimation, where k can

be very large and each likelihood evaluation can be very costly, evaluation of the

Hessian presents a significant burden that adversely affects the computational effi-

ciency of Newton-Raphson. Another problem is that (−H) may fail to be positive

definite. This may be due to purely numerical issues (e.g. the computed Hessian may

be a poor approximation to the analytical one) or it may be caused by non-concavity

of the log-likelihood function. In those instances, the Newton-Raphson iterations

will fail to converge to a local maximum.

To deal with these difficulties, [1] noted that an application of a fundamental sta-

tistical relationship, known as the information identity, obviates the need for direct

computation of the Hessian. Because we are interested in maximizing a statistical

function given by the sum of the log-likelihood contributions over a sample of obser-

vations, it is possible to use statistical theory to speed up the iterations. In particular,

by definition we have ∫
f (y|ψ)dy = 1, (5.16)

where it is assumed that if there are any limits of integration, they do not depend on

the parameters ψ . With this assumption, an application of Leibniz’s theorem implies

that ∂{
∫

f (y|ψ)dy}/∂ψ =
∫

∂ f (y|ψ)/∂ψdy. Moreover, because ∂ f (y|ψ)/∂ψ =
{∂ ln f (y|ψ)/∂ψ} f (y|ψ), upon differentiation of both sides of 5.16 with appropri-

ate substitutions, we obtain

∫
∂ ln f (y|ψ)

∂ψ
f (y|ψ)dy = 0. (5.17)

Differentiating 5.17 with respect to ψ once again (recalling that under our assump-

tions we can interchange integration and differentiation), we get

∫ {
∂ 2 ln f (y|ψ)

∂ψ∂ψ ′
f (y|ψ)+

∂ ln f (y|ψ)

∂ψ

∂ f (y|ψ)

∂ψ ′

}
dy = 0, (5.18)

where, taking advantage of the equality ∂ f (y|ψ)/∂ψ = {∂ ln f (y|ψ)/∂ψ} f (y|ψ)
once again, we obtain the primary theoretical result underlying the BHHH approach

−
∫

∂ 2 ln f (y|ψ)

∂ψ∂ψ ′
f (y|ψ)dy =

∫
∂ ln f (y|ψ)

∂ψ

∂ ln f (y|ψ)

∂ψ ′
f (y|ψ)dy. (5.19)
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The left side of equation 5.19 gives E(−H), whereas on the right side we have

E(gg′) which also happens to be Var(g) because from 5.17 we know that E(g) = 0.

Now, because the log-likelihood is the sum of independent log-likelihood contribu-

tions, i.e. ln f (y|ψ) = ∑n
i=1 ln f (yi|ψ), it follows that

Var(g) =
n

∑
i=1

Var(gi) ≈
n

∑
i=1

gig
′
i,

in which gi = ∂ ln f (yi|ψ)/∂ψ . Therefore, the BHHH algorithm for maximizing the

log-likelihood function relies on the recursions

ψt+1 = ψt + λ B−1
t gt , (5.20)

where Bt = ∑n
i=1

[
∂ ln f (yi |ψt)

∂ψt

][
∂ ln f (yi|ψt)

∂ψt

]′
is used in lieu of −Ht in 5.15.

Working with the outer product of gradients matrix, Bt , has several important ad-

vantages. First, computation of the gradients requires O(k) likelihood evaluations

and hence yields significant computational benefits relative to direct evaluation of

Ht which requires O(k2) such evaluations. Note that {∂ ln f (yi|ψt)/∂ψt} are calcu-

lated anyway in computing gt and that obtaining Bt only involves taking their outer

product but requires no further evaluations of ln f (y|ψ). Second, Bt is necessarily

positive definite, as long as the parameters are identified, even in regions where

the log-likelihood is convex. Hence, the BHHH algorithm guarantees an increase

in ln f (y|ψ) for a small enough step size λ . Finally, Bt is typically more computa-

tionally stable than Ht , thereby reducing numerical difficulties in practice (e.g. with

inversion, matrix decomposition, etc.).

We make an important final remark about the interplay between simulation and

optimization in maximum simulated likelihood estimation: precise estimation of the

log-likelihood is essential for correct statistical inference. Specifically, it is crucial

for computing likelihood ratio statistics, information criteria, marginal likelihoods

and Bayes factors, and is also key to mitigating simulation biases in the maximum

simulated likelihood estimation of parameters, standard errors, and confidence inter-

vals (see [12], [19]). For instance, if the probabilities that enter f (y|ψ) are estimated

imprecisely, the maximum likelihood estimate will be biased (by Jensen’s inequal-

ity) and the estimates of {∂ ln f (yi|ψt)/∂ψt} will be dominated by simulation noise.

This adversely affects the estimated standard errors because Bt is inflated by simu-

lation noise rather than capturing genuine log-likelihood curvature. Hence, relying

on the modal value of B−1
t as an estimate of the covariance matrix of ψ̂ will produce

standard errors and confidence bands that are too optimistic (too small). In extreme

cases, parameters that are weakly identified may appear to be estimated well, due

entirely to the simulation noise. Such problems can be recognized by examining the

behavior of the estimated standard errors (square root of the diagonal of the modal

value of B−1
t ) for different values of the simulation size G in 5.14 to determine

whether they are stable or tend to decrease as G is increased.
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Table 5.1 Descriptive statistics for the explanatory variables in the patent count application

Variable Description Mean SD

ln(SALES) Log of real sales (millions) 6.830 1.703

ln(WF) Log of number of company employees 2.398 1.717

ln(RDC) Log of real R&D capital (millions) 5.593 1.815

5.4 Application

In this section, we implement the methodology developed earlier to study the joint

behavior of firm-level patent registrations in four technology categories in the “com-

puters & instruments” industry during the 1980s. We use the data sample of [10],

which consists of n = 498 observations on 254 manufacturing firms from the U.S.

Patent & Trademark Office data set discussed in [7] and [11]. The response variable

is a 4×1 vector yi (i = 1, . . . ,498) containing firm-level counts of registered patents

in communications (COM), computer hardware & software (CHS), computer pe-

ripherals (CP), and information storage (IS). The explanatory variables reflect the

characteristics of individual firms and, in addition to a category specific intercept,

include sales (SALES), workforce size (WF), and R&D capital (RDC). Sales are

measured by the annual sales revenue of each firm, while the size of the workforce

is given by the number of employees that the firm reports to stockholders. R&D

capital is a variable constructed from the history of R&D investment using inven-

tory and depreciation rate accounting standards discussed in [7]. All explanatory

variables, except the intercept, are measured on the logarithmic scale. Table 5.1

contains variable explanations along with descriptive statistics.

To analyze these multivariate counts, we use a Gaussian copula model with nega-

tive binomial marginals which was presented in Section 5.2. The negative binomial

specification is suitable for this application because patent counts exhibit a heavy

right tail, and hence it is useful to specify a model that can account for the possible

presence and extent of over-dispersion. In addition to examining how patents in each

category are affected by firm characteristics, joint modeling allows us to study the

interdependence of patent counts that emerges due to technological spillovers, man-

agerial incentives, and internal R&D decisions. For instance, technological break-

throughs and know-how in one area may produce positive externalities and spill

over to other areas. Moreover, significant discoveries may produce patents in multi-

ple categories, resulting in positive correlation among patent counts. Alternatively,

the advancement of a particular technology may cause a firm to re-focus and con-

centrate its resources to that area at the expense of others, thereby producing nega-

tive correlations. The dependence structure embodied in the correlation matrix Ω of

the Gaussian copula model that we consider is intended to capture these and other

factors that can affect multiple patent categories simultaneously.

We estimate the copula model by first estimating the parameters of each negative

binomial model separately by maximum likelihood and then using those estimates
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as a starting point for maximizing the copula log-likelihood. The individual nega-

tive binomial models have well-behaved log-likelihood functions and are relatively

fast and straightforward to estimate by standard optimization techniques such as

those presented in Section 5.3.2. Parameter estimates for the independent negative

binomial models and the joint Gaussian copula model are presented in Table 5.2.

Table 5.2 Maximum simulated likelihood estimates of independent negative binomial (NB)

models and joint Gaussian copula model with standard errors in parentheses

Independent NB Models Gaussian Copula Model

COM CHS CP IS COM CHS CP IS

Intercept 0.968 -1.712 -5.834 -2.105 0.917 -1.471 -6.099 -2.033

(0.993) (0.939) (1.682) (0.568) (1.040) (0.986) (1.645) (0.628)

ln(SALES) -0.297 -0.202 0.084 -0.190 -0.285 -0.194 0.242 -0.181

(0.254) (0.233) (0.423) (0.122) (0.270) (0.247) (0.417) (0.128)

ln(WF) 0.763 0.353 0.273 0.218 0.759 0.319 0.085 0.219

(0.210) (0.194) (0.378) (0.140) (0.222) (0.203) (0.376) (0.147)

ln(RDC) 0.081 0.611 0.717 0.631 0.078 0.580 0.665 0.608

(0.122) (0.091) (0.120) (0.080) (0.128) (0.105) (0.148) (0.089)

ln(α j) -0.174 -0.017 -0.564 -0.464 -0.184 0.026 -0.563 -0.451

(0.090) (0.091) (0.131) (0.110) (0.101) (0.098) (0.150) (0.119)

1.000

(0.000)

0.072 1.000

(0.070) (0.000)

Ω 0.119 0.313 1.000

(0.075) (0.053) (0.000)

-0.080 0.225 0.115 1.000

(0.074) (0.063) (0.080) (0.000)

The results in Table 5.2 largely accord with economic theory. Of particular in-

terest is the fact that in all cases the coefficients on ln(RDC) are positive, and for

CHS, CP, and IS, they are also economically and statistically significant. Specifi-

cally, those point estimates are relatively large in magnitude and lie more than 1.96

standard errors away from zero, which is the 5% critical value for a two-sided test

under asymptotic normality. This indicates that innovation in those categories is

capital-intensive and the stock of R&D capital is a key determinant of patenting ac-

tivity. The results also suggest that, all else being equal, the introduction of patents

tends to be done by large firms, as measured by the size of the company workforce

ln(WF). The coefficient on that variable in the communications category is large

and statistically significant, whereas in the other three categories the estimates are

positive but not significant at the customary significance levels. Interestingly, and

perhaps counter-intuitively, the coefficients on ln(SALES) in these categories are

predominantly negative (with the exception of computer peripherals), and none are

statistically significant. To explain this puzzling finding, economists have proposed
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a rationalization that has to do with signaling in the presence of asymmetric infor-

mation. In particular, firms that do not have steady sales revenue such as start-ups

that have yet to establish a reliable customer base, are often cash constrained and

may have to demonstrate their creditworthiness to potential lenders such as venture

capitalists, banks, and individual investors in order to obtain loans. One way for

such firms to exhibit their research innovations and overall productivity is to regis-

ter patents. In this case patents serve a dual role – they protect the firm’s innovations

from infringement and also send a positive signal to potential outside stakehold-

ers. In contrast, firms that have more reliable sources of revenue due to higher sales

have lower incentives to patent their innovations and may instead opt to protect their

intellectual property in other ways (e.g. by keeping trade secrets, entering into ex-

clusive agreements with potential users of their technology, etc.). These considera-

tions are especially relevant in the computers & instruments industry, where patents

have short life cycles and can often be circumvented by competitors who “innovate

around” registered research advances.

Table 5.2 also illustrates that over-dispersion is a common feature of all four

data series, as demonstrated by the low estimates of {ln(α j)} across all categories

in both the copula and univariate regression models. As a consequence, allowing

for over-dispersion by considering a negative binomial specification, as opposed to

estimating a Poisson model, appears well justified.

In Table 5.2, the estimated dependence matrix Ω in the Gaussian copula model

reveals interesting complementarities among patent categories and supports the case

for joint modeling and estimation. Specifically, the estimates suggest that patents in

the computer hardware & software category are highly correlated with counts in the

computer peripherals and information storage categories, while the correlation be-

tween patents in the communications category are relatively mildly correlated with

those in the remaining categories. To test formally for the relevance of the copula

correlation structure in this context, one can use the likelihood ratio and Lagrange

multiplier tests. The log-likelihood for the restricted model (the independent nega-

tive binomial specification) is LR =−4050.06 and for the unrestricted model (Gaus-

sian copula model), it is LU = −4020.98, leading to a likelihood ratio test statistic

−2(LR−LU) = 58.16. This test statistic has a χ2 distribution with 6 degrees of free-

dom (equal to the number of off-diagonal elements in Ω ) and a 5% critical value of

12.59, suggesting that the data strongly reject the restricted (independent negative

binomial) specification. The Lagrange multiplier test statistic is constructed from

the gradient gR = ∂ ln f (y|ψR)/∂ψ and curvature BR = ∑n
i=1

∂ ln f (yi|ψR)
∂ψ

∂ ln f (yi|ψR)
∂ψ ′

of the log-likelihood function of the Gaussian copula model, both evaluated at the

restricted maximum likelihood estimate ψR. Note that this corresponds to the case

when Ω is an identity matrix and the Gaussian copula model is equivalent to fitting

the four negative binomial models separately (in fact, these are the starting values

we use in optimizing the copula log-likelihood). The Lagrange multiplier test statis-

tic LM = {g′R(BR)−1gR} = 64.58 has the same asymptotic χ2 distribution as the

likelihood ratio statistic and also leads to strong rejection of the restricted model.

The parameter estimates and hypothesis tests presented above are based on

maximizing an MCMC-based estimate of the log-likelihood function because that
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Fig. 5.2 Numerical standard errors (NSE) of the log-likelihood estimate as a function of the

MCMC sample size in the CRT method (the axes, but not the values, are on the logarithmic

scale)

function is analytically intractable. However, because the variability intrinsic in

simulation-based estimation can affect the reliability of the results, it is important to

examine the extent to which the point estimates, standard errors, and test statistics

are affected by the performance of the simulated likelihood algorithm. In Figure 5.2,

we have plotted the numerical standard error of the estimated log-likelihood ordi-

nate ln f̂ (y|ψ) as a function of the simulation sample size G used in constructing

the average in 5.14. The numerical standard error gives a measure of the variability

of the estimated log-likelihood ordinate for fixed y and ψ if the simulation nec-

essary to evaluate ln f (y|ψ) were to be repeated using a new Markov chain. The

Figure demonstrates that the simulated likelihood algorithm performs very well –

even with few MCMC draws, the precision of estimating ln f̂ (y|ψ) is sufficient for

producing reliable parameter estimates and hypothesis tests. The low variability of

ln f̂ (y|ψ) in our example is especially impressive because the numerical standard

errors are obtained as the square root of the sum of variances of the n = 498 individ-

ual log-likelihood contributions. To be cautious, we have also verified the validity of

the point estimates by initializing the algorithm at different starting values and also

by estimating the model by Bayesian simulation methods similar to those proposed

in [10] and [14], which do not rely on maximizing the log-likelihood.

At the end of Section 5.3.2, we discussed the possibility that in maximum simu-

lated likelihood estimation the standard errors may be affected by simulation noise.

To examine the extent to which variability in the log-likelihood estimate translates

to downward biases in the standard errors of the parameter estimates, we com-

pute the standard errors across several settings of the simulation size G, namely
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Fig. 5.3 Boxplots of the ratios of parameter standard errors estimated for each MCMC sam-

ple size setting G relative to those for G = 1500; the lines in the boxes mark the quartiles, the

whiskers extend to values within 1.5 times the interquartile range, and outliers are displayed

by “+”

G ∈ {25,50,100,500,1500}. We then compare the behavior of the standard errors

for lower values of G relative to those for large G. Figure 5.3 presents boxplots of

the ratios of the parameter standard errors estimated for each setting of G relative

to those at the highest value G = 1500. The results suggest that while at lower val-

ues of G the standard error estimates are somewhat more volatile than at G = 1500,

neither the volatility nor the possible downward bias in the estimates represents a

significant concern. Because the CRT method produces very efficient estimates of

the log-likelihood ordinate, such issues are not problematic even with small MCMC

samples, although in practice G should be set conservatively high, subject to one’s

computational budget.

5.5 Concluding Remarks

This chapter has discussed techniques for obtaining maximum simulated likelihood

estimates in the context of models for discrete data, where the likelihood function

is obtained by MCMC simulation methods. These methods provide continuous and

differentiable estimates that enable the application of widely used derivative-based

techniques for obtaining parameter standard errors and test statistics. Because we

are maximizing a log-likelihood function, we rely on the BHHH outer product of

gradients method to simplify and speed up the computation of the Hessian matrix

of the log-likelihood. The methodology is applied in a study of the joint behavior of
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four categories of U.S. technology patents using a Gaussian copula model for multi-

variate count data. The results support the case for joint modeling and estimation of

the patent categories and suggest that the estimation techniques perform very well in

practice. Additionally, the CRT estimates of the log-likelihood function are very ef-

ficient and produce reliable parameter estimates, standard errors, and hypothesis test

statistics, mitigating any potential problems (discussed at the end of Section 5.3.2)

that could arise due to maximizing a simulation-based estimate of the log-likelihood

function.

We note that the simulated likelihood methods discussed here can be applied in

optimization algorithms that do not require differentiation, for example in simulated

annealing and metaheuristic algorithms which are carefully examined and summa-

rized in [22]. At present, however, due to the computational intensity of evaluating

the log-likelihood function at each value of the parameters, algorithms that require

numerous evaluations of the objective function can be very time consuming, espe-

cially if standard errors have to be computed by bootstrapping. Nonetheless, the

application of such algorithms is an important new frontier in maximum simulated

likelihood estimation.
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Chapter 6

Optimizing Complex Multi-location Inventory
Models Using Particle Swarm Optimization

Christian A. Hochmuth, Jörg Lässig, and Stefanie Thiem

Abstract. The efficient control of logistics systems is a complicated task. Analyti-

cal models allow to estimate the effect of certain policies. However, they necessitate

the introduction of simplifying assumptions, and therefore, their scope is limited.

To surmount these restrictions, we use Simulation Optimization by coupling a sim-

ulator that evaluates the performance of the system with an optimizer. This idea

is illustrated for a very general class of multi-location inventory models with lat-

eral transshipments. We discuss the characteristics of such models and introduce

Particle Swarm Optimization for their optimization. Experimental studies show the

applicability of this approach.

6.1 Introduction

Reducing cost and improving service is the key to success in a competitive economic

climate. Although these objectives seem contradictory, there is a way to achieve

them. Spreading of service locations improves service and pooling of resources

can decrease cost if lateral transshipments are allowed between the locations.

The design and control of such multi-location systems is an important non-trivial
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task. Therefore, we need suitable mathematical models – Multi-Location Inventory

Models with lateral Transshipments (MLIMT) – to describe the following situation

[14]. A given number of locations has to meet a demand for some products during

a defined planning horizon. Each location can replenish its stock either by order-

ing from an outside supplier or by transshipments from other locations. The prob-

lem arises to define such ordering and transshipment decisions (OD and TD) that

optimize defined performance measures for the whole system.

The MLIMT presented here has been developed with respect to three aspects.

First, we assume discrete review for ordering in conjunction with continuous review

for transshipments. Second, we propose an MLIMT simulator as general as possi-

ble to abandon restrictions of existing studies (see Section 6.2) and to ensure broad

applicability. Third, we follow a Simulation Optimization (SO) approach by itera-

tively connecting the MLIMT simulator with a Particle Swarm Optimization (PSO)

algorithm to investigate the search space. Hence, we contribute to the application of

SO by describing a multi-location inventory model that is far more general, and thus,

more complex than preceding models. We show that it is possible to evaluate, and

thus, to optimize policies for arbitrary demand processes as well as arbitrary order-

ing, demand satisfaction, pooling and transshipment modes. In fact, SO provides the

solution for the optimal control of complex logistics networks. Moreover, we con-

tribute to the methodology of SO by integrating a PSO algorithm for this specific ap-

plication. So far, PSO has been implemented for a Single-Warehouse, Multi-Retailer

system by Köchel and Thiem [23], and we aim to show its applicability for even more

complex logistics networks.

After a discussion of related work in Section 6.2 and a brief introduction of the

SO approach in Section 6.3, we present the characteristics of a general MLIMT

and delve into the implemented simulation model in Section 6.4. In Section 6.5 we

describe the applied PSO in detail. Experimental studies are discussed in Section

6.6, followed by concluding remarks in Section 6.7.

6.2 Related Work

At present a great variety of models and approaches exists dealing with this deci-

sion problem. The most common and broadest investigated class of models assumes

a single product, discrete review, independent and identically distributed demand,

backlogging, complete pooling, emergency lateral transshipments at the end of a

period, zero lead times, linear cost functions, and the total expected cost criterion as

performance measure (see Köchel [19], Chiou [3] for a review). However, MLIMTs

generally do not allow analytical solutions due to transshipments. TDs change the

state of the system and thereby influence the OD. Thus it is impossible to define

the total consequences of an OD. Approximate models and simulations are alterna-

tives, see e.g., Köchel [18, 19], Robinson [30]. Additional problems connected with

TDs arise for continuous review models. One is to prevent undesirable forth-and-

back transshipments. This is narrowly connected with the problem to forecast the
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demand during the transshipment time and the time interval elapsing from the re-

lease moment of a TD until the next order quantity will arrive. Therefore, continu-

ous review MLIMTs are usually investigated under several simplifying assumptions,

e.g., two locations [7, 33], Poisson demand [25], a fixed ordering policy not consid-

ering future transshipments [27], restriction to simple rules such as a one-for-one

ordering policy [25] and an all-or-nothing transshipment policy [7], or the limita-

tion that at most one transshipment with negligible time and a single shipping point

during an order cycle is possible [33]. Nowhere the question for optimal ordering

and transshipment policies has been answered. All models work with a given order-

ing policy and heuristic transshipment rules. In few cases simulation is used either

for testing approximate analytical models [27, 33] or for the definition of the best re-

order point s for a (s,S)-ordering policy [24] by linear search and simulation. Thus,

the investigations are restricted to small-size models. Herer et al. [12] calculates

optimal order-up-to levels S using a sample-path-based optimization procedure and

subsequently finds optimal transshipment policies for given ordering policies apply-

ing linear programming to a network flow model. Extensions include finite trans-

portation capacities [28] and positive replenishment lead times [10]. Furthermore,

we investigate the effect of non-stationary transshipment policies under continuous

review. Thus, the complexity of this general model motivates the application of

simulation-based optimization with PSO instead of gradient-based methods. In

this regard, we follow an approach similar to Arnold et al. [1], and recently Bel-

gasmi et al. [2], who analyze the effect of different parameters using evolutionary

optimization.

6.3 Simulation Optimization

The Simulation Optimization (SO) approach is well known in the field of In-

dustrial Engineering. Its key advantage is that various performance measures can

be optimized for in fact arbitrary models. Among many others, Guariso et al.

[11], Willis and Jones [32], Iassinovski et al. [15] introduce comprehensive SO

frameworks. Some notable examples are finding optimal order policies [8, 1], se-

quencing and lot-sizing in production [16], production planning and control in

remanufacturing [26], and optimizing multi-echelon inventory systems [22]. For

a review of SO in general and with regard to inventory problems see Köchel

[20].

In general SO comes in two distinguishable flavors. Non-iterative (non-recursive

or retrospective) SO decouples simulation and optimization, while iterative (recur-

sive or prospective) SO integrates both functional components into a self-adapting

search method. For an overview on SO approaches we refer to Fu et al. [9] and

Köchel [20]. In case of non-iterative SO, the objective function of the model is es-

timated by simulation prior to the optimization. Thus, to cover the search space

in sufficient accuracy, extensive simulation is necessary, especially if the objec-

tive function is unknown. In contrast, in case of iterative SO, simulation is used
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to evaluate actual solution candidates, and therefore, simulation is adapted to the

current state of the search. The general idea of iterative SO is outlined in Figure 6.1.

For a given decision problem an optimizer proposes candidate solutions. Using the

results of simulation experiments, the performance of these candidate solutions is

estimated. On the basis of the estimated performance, the optimizer decides to ac-

cept or reject the current decisions. Acceptance stops the search process whereas

rejection continues it.

Optimizer

Candidate

solutions

Performance

analysis

Simulator

Problem Solution

Fig. 6.1 Scheme for the iterative Simulation Optimization approach. The optimizer proposes

new candidate solutions for the given problem, whose performance are estimated by simula-

tion experiments. Depending on the estimated performance, the optimizer decides to either

accept the current decisions and stop the search process or to reject it and to continue

As seen from Figure 6.1, iterative SO is based upon two main elements – a sim-

ulator for the system to be investigated and an optimizer that finds acceptable solu-

tions. Generic simulators and optimizers are compatible, and thus SO is suited for

the solution of arbitrary complex optimization problems. In the past different appli-

cations of the outlined approach especially to inventory problems [21, 22, 16, 20]

have been implemented. In most cases Genetic Algorithms (GA) have been applied

so far. But just as GAs also Particle Swarm Optimization (PSO) is in fact suitable for

very general optimization problems. Contrary to gradient-based approaches, local

optima can be left. Hence, these methods are predestined for unknown or compli-

cated fitness landscapes. However, it is not guaranteed to find the global optimum,

but a very good solution is usually returned in reasonable time. Furthermore, they

rely only on a small amount of information and can be designed independently from

the application domain. It will be interesting to see if PSO deals as excellently with

the random output of stochastic simulation as GAs.
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6.4 Multi-Location Inventory Models with Lateral

Transshipments

6.4.1 Features of a General Model

A simulation model can in principle represent any real system with arbitrary accu-

racy. However, our objective is not to over-size a simulation model for all possible

inventory systems. Instead we develop a simulation model capable of evaluating so-

lutions for an important class of systems in reasonable time. First, we describe such

a general Multi-Location Inventory Model with Lateral Transshipments (MLIMT).

The visible complexity of an MLIMT is of course determined by its number of

locations N. With respect to the analytical tractability the cases N = 2 and N > 2

can be distinguished. Thus, the limitations of analytical models are obvious, and

in order to solve real-world problems, it is crucial to surmount this restriction. The

general case is illustrated in Figure 6.2.

1 2 . . . N

Orders Demand

Transshipments

Fig. 6.2 Logical view of a general Multi-Location Inventory Model with Lateral Transship-

ments (MLIMT). Each of the N locations may refill its stock either by ordering from an

outside supplier or by transshipments from other locations in order to meet the demand. The

locations are on an equal level without any predefined structure

Each of the N locations faces a certain demand for a single product or a finite

number of products. In the latter case a substitution order between products may be

defined. Most approaches assume a single product. For the consideration of multiple

products, sequential simulation and optimization is feasible, unless fixed cost or

finite resources are shared among products. However, this limitation is negligible

provided that shared fixed cost is insignificant relative to total fixed and variable

cost, and capacities for storage and transportation are considered to be infinite.

The ordering mode defines when to order, i.e., the review scheme, and what

ordering policy to use. The review scheme defines the time moments for order-

ing. Discrete and continuous review are the alternatives. Under the discrete review

scheme the planning horizon is divided into periods. Usually the ordering policy

is defined by its type and corresponding parameters (e.g., order-up-to, one-for-one,

(s,S), (R,Q)).
Central to the model specification is the definition of the demand process. It

may be deterministic or random, identical or different for all locations, station-

ary or non-stationary in time, independent or dependent across locations and time,
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with complete or incomplete information. To draw a reliable picture of the system

performance, it is crucial to assume a realistic demand process, and thus, to track

and to extrapolate orders in a real-word system.

Arriving demand is handled at each individual location according to the demand

satisfaction mode. It is common to assume a queue for waiting demand. By defin-

ing an infinite, finite or zero queueing capacity, the backlogging, intermediate and

lost-sales cases are distinguished. The service policy defines at what position an ar-

riving client is enqueued. Eventually, clients may leave the location after a random

impatient time if their demand is not or only partially served.

Clearly, it may be advantageous to balance excess and shortage among locations

to serve demand that would otherwise be lost. The pooling mode comprises all rules

by which the on-hand inventory is used to respond to shortages in the MLIMT.

Pooling may be complete or partial and defines which locations and what amount

of available product units is pooled. Furthermore, we distinguish between pooling

of stocks and pooling of residuals.

Still, it must be defined by the transshipment mode when to transship and what

transshipment policy to use. There may be preventive lateral transshipments to antic-

ipate a stock-out or emergency lateral transshipments after a stock-out is observed.

E.g., preventive lateral transshipments may be allowed at the beginning of a period

in a discrete review model, i.e., before demand realization, or at a given moment dur-

ing a period, i.e., after partially realized demand. Emergency lateral transshipments

are usually allowed at the end of a period after realization of the demand.

Transshipments are especially reasonable if the transshipment lead time is prac-

tically negligible. In general, lead times for orders and transshipments of product

units may be positive constants or random. Again, a distinction with respect to an-

alytical tractability can be made. Although the effect of lead times for real-world

systems may be pronounced, many analytical models assume zero lead times.

To measure the system performance, cost and gain functions are defined. There

may incur cost for ordering, storing and transhipping product units as well as for

waiting and lost demand. These functions may be linear, linear with set-up part,

or generally non-linear. A location may also earn gain from sold units. The cost is

tracked in a certain planning horizon, which may be finite or infinite. In case of

periodic review it may consist of a single period.

Finally, as optimization criterion various cost criteria can be used such as total

expected cost, total expected discounted cost, long-run average cost, and non-cost

criteria such as service rates or expected waiting times. Both criteria types can be

combined to formulate a multi-objective problem. Alternatively, one criterion is op-

timized while given restrictions must be satisfied for others, or different aspects such

as service are represented by cost functions, e.g., out-of-stock cost.

The most common class of models defines a single product, discrete review, de-

mand independent and identically distributed across time, backlogging, complete

pooling, emergency lateral transshipments at the end of a period, zero lead times,

linear cost functions, and a total expected cost criterion. However, even for that sim-

ple type of an MLIMT an analytical solution is not possible in general due to the

transshipments at the end of a period. Potential transshipments had to be taken into
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account for the ordering decision at the beginning of a period. But after the demand

realization at the end of a period the optimal transshipment decision results from

an open (linear) transportation problem. Such problems do not have closed form

solutions. Therefore, prior to the demand realization no expression is available for

the cost savings from transshipments. Both approximate models and simulation are

potential solutions, e.g., Köchel [18, 19] and Robinson [30].

6.4.2 Features of the Simulation Model

The simulation model offers features that allow the mapping of very general sit-

uations. The simulator is in principle suited for models with an arbitrary number

of independent non-homogeneous locations, a single product, constant location-

dependent delivery and transshipment lead times, and unlimited transportation re-

sources. The most important extensions of existing models are the following ones.

With regard to the ordering mode, we assume a periodic review scheme with

fixed length tP,i of the review period for orders at location i. In principle arbitrary

ordering policies can be realized within the simulation model and so far (si,Si)- and

(si,nQi)- ordering policies have been implemented.

ri(t),yi(t)

t

Si − ri(t)

yi(t)

ri(t)Si

si

Fig. 6.3 (si,Si)-ordering policy. If the inventory position ri of location i drops below the reorder

point si at the end of an order period, an order is released to the order-up-to level Si, i.e., Si − ri

product units are ordered. Analogously, but under continuous review, a transshipment order

(TO) of Hi − fTO,i(t) product units is released, if the state function fTO,i(t) falls below hi

Clients arrive at the locations according to a compound renewal demand process.

Such a process is described by two independent random variables Ti and Bi for the

inter-arrival time of clients at location i and their demand, i = 1 . . .N, respectively.

Thus, exact holding and penalty cost can be calculated, which is not the case for

models with discrete review, where the whole demand of a period is transferred to

the end of a period. That disadvantage does not exist for models with continuous
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review. However, in almost all such models a Poisson demand process is assumed –

a strong restriction as well.

Concerning the demand satisfaction mode, most models assume the back-order

or the lost-sales cases. An arriving client is enqueued according to a specific ser-

vice policy, such as First-In-First-Out (FIFO) and Last-In-First-Out (LIFO), sorting

clients by their arrival time, Smallest-Amount-Next (SAN) and Biggest-Amount-

Next (BAN), sorting clients by their unserved demand, and Earliest-Deadline-First

(EDF). In addition, a random impatient time is realized for each client.

To balance excess and shortage, the simulation model permits all pooling modes

from complete to time-dependent partial pooling. A symmetric N ×N matrix P =
(pi j) defines pooling groups in such a way that two locations i and j belong to the

same group if and only if pi j = 1, pi j = 0 otherwise. The following reflection is

crucial. Transshipments allow the fast elimination of shortages, but near to the end

of an order period transshipments may be less advantageous. Therefore, a parameter

tpool,i ∈ [0,tP,i] is defined for each location i. After the kth order request, location i

can get transshipments from all other locations as long as for the actual time t ≤
ktP,i + tpool,i holds. For all other times location i can receive transshipments only

from locations that are in the same pooling group. Thus, the transshipment policies

become non-stationary in time.

Transshipments are in fact in the spotlight of this chapter. Regarding the transship-

ment mode, our simulation model allows transshipments at any time during an order

cycle (continuous review) as well as multiple shipping points and partial deliveries

to realize a transshipment decision (TD). To answer the question when to transship

what amount between which locations, a great variety of rules can be defined. Broad

applicability is achieved by three main ideas – priorities, introduction of a state func-

tion and generalization of common transshipment rules. Difficulties are caused by

the problem to calculate the effects of a TD. Therefore, TDs should be based on ap-

propriate forecasts for the dynamics of the model, especially the stock levels. The

MLIMT simulator offers several possibilities. For each location transshipment orders

(TO) and product offers (PO) are distinguished. Times for TOs or POs are the arrival

times of clients or deliveries, respectively. Priorities are used to define the sequence of

transshipments in one-to-many and many-to-one situations. Because of continuous

time only such situations occur, and thus, all possible cases are considered. The three

rules, Biggest-Amount-Next (BAN), Minimal-Transshipment-Cost per unit (MTC)

and Minimal-Transshipment-Time (MTT) may be combined arbitrarily. State func-

tions are used to decide when to release a TO or PO. The following variables for each

location i and time t ≥ 0 are used in further statements:

yi(t) Inventory level

y±i (t) = max(±yi(t),0) On-hand stock (+) and shortage (−), respectively

bord,i(t) Product units ordered but not yet delivered

bord,ki Product units ordered in the k-th request

btr,i(t) Transshipments on the way to location i

ri(t) = yi(t)+ bord,i(t)+ btr,i(t) Inventory position
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tP,i Order period time

tA,i Delivery lead time of an order

nord,i = ⌊tA,i/tP,i⌋ Number of periods to deliver an order

To decide at time t in location i about a TO or PO, the state functions fTO,i(t)
and fPO,i(t) are defined based on the available stock plus expected transshipments

fTO,i(t) = yi(t)+ btr,i(t) and the on-hand stock fPO,i(t) = y+
i (t), respectively. Since

fixed cost components for transshipments are feasible, a heuristic (hi,Hi)-rule for

TOs is suggested in the following way, which is inspired by the (si,Si)-rule for or-

der requests (hi ≤ Hi).

If fTO,i(t) < hi

release a TO for Hi − fTO,i(t) product units.

However, in case of positive transshipment times it may be advantageous to take

future demand into account. Thus, a TO is released on the basis of a forecast of

the state function fTO,i(t
′) for a time moment t ′ ≥ t, and the transshipment poli-

cies become non-stationary in time. The MLIMT simulator offers three such time

moments: t ′ = t, the current time (i.e., no forecast), t ′ = t1, the next order review

moment, and t ′ = t2, the next potential moment of an order supply. For instance, the

state function fTO,i(t) = yi(t)+btr,i(t), t ≥ 0 is considered. Let ktP,i ≤ t < (k+1)tP,i,

i.e., we assume that we are in the review period after the kth order request. Then t1
is defined as follows.

t1 = (k + 1)tP,i . (6.1)

For t2 we introduce two events ev(t) ↔ {in the actual period there has not been an

order supply until t} and ev(t) ↔{there has been an order supply until t}.

t2 = (k−nord,i)tP,i + tA,i +

{

0 ev(t) ↔ t < (k−nord,i)tP,i + tA,i

tP,i ev(t) ↔ t ≥ (k−nord,i)tP,i + tA,i
. (6.2)

Using mi = 〈Bi〉/〈Ti〉 as long-run demand per time unit at location i, the following

forecasts are used, illustrated in Figures 6.4 and 6.5:

f̂TO,i(t) = fTO,i(t) = yi(t)+ btr,i(t) , (6.3)

f̂TO,i(t1) = fTO,i(t)−mi(t1 − t)+

{

bord,k′i, k′ = k−nord,i ev(t)

0 ev(t)
, (6.4)

f̂TO,i(t2) = fTO,i(t)−mi(t2 − t) . (6.5)

Thus, replacing function fTO,i(t) by various forecast functions, a great variety of

rules can be described to control the release of TOs. We remark that in case of lin-

ear transshipment cost functions without set-up part the (hi,Hi)-rule degenerates

to (Hi,Hi). A well-designed optimization algorithm will approximate that solution.

Therefore, we work generally with the (hi,Hi)-rule. To serve a TO, at least one loca-

tion has to offer some product quantity. To decide when to offer what amount, an ad-

ditional control parameter is introduced – the offering level oi, corresponding to the
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Fig. 6.4 Forecast functions for ev(t)↔ t < (k−nord,i)tP,i +tA,i. In the actual period there has

not been an order supply until t. Thus, the time moment t2 of the next order supply k−nord,i

is in the current period, and the supplied amount must be considered to forecast f̂i(t1)
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Fig. 6.5 Forecast functions for ev(t) ↔ t ≥ (k− nord,i)tP,i + tA,i. In the actual period there

has been an order supply until t, and thus, the time moment t2 of the next order supply

k +1−nord,i is in the next period, not affecting f̂i(t1)

hold-back level introduced by Xu et al. [33]. Since only on-hand stock can be trans-

shipped, the state function fPO,i(t) = y+
i (t) is defined. The offered amount y+

i (t)−oi

must not be smaller than a certain value ∆omin,i to prevent undesirably small and

frequent transshipments. Similar forecasts are applied to take future demand into

account with forecast moments t, t1, and t2. For details we refer to Hochmuth [13].

Thus, the PO rule is as follows.

If f̂PO,i(t)−oi ≥ ∆omin,i

release a PO for f̂PO,i(t)−oi product units.
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Thus, the set of available transshipment policies is extended, including all com-

monly used policies, and allowing multiple shipping points with partial deliveries.

In order to measure the system performance by cost and gain functions, order,

holding, shortage (waiting) and transshipment cost functions may consist of fixed

values, components linear in time, and components linear in time and units. Fixed

cost arises from each non-served demand unit. All cost values are location-related.

The gain from a unit, sold by any location, is a constant. To track cost for infi-

nite planning horizons, appropriate approximations must be used. The only problem

with respect to finite horizons is the increase in computing time to get a sufficiently

accurate estimate, although the extent can be limited using parallelization.

Choosing cost function components in a specific way, cost criteria as well as

non-cost criteria can be used, e.g., the average ratio of customers experiencing a

stock-out or the average queue time measured by out-of-stock cost, or the efficiency

of logistics, indicated by order and transshipment cost.

6.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO), originally proposed by Kennedy and Eberhart

[17], has been successfully applied to many real-world optimization problems in

recent years [34, 6, 29]. PSO uses the dynamics of swarms to find solutions to opti-

mization problems with continuous solution space. Meanwhile, many different ver-

sions and additional heuristics were introduced, where we restrict our considerations

here to the Standard PSO 2007 algorithm by Clerc [4].

PSO is, similar to Genetic Algorithms or ensemble-based approaches [31], an

iterative population-based approach, i.e., PSO works with a set of feasible solutions,

the swarm. Let N denote the number of swarm individuals (particles) or the swarm

size, respectively. The basic idea of PSO is that all swarm individuals move partly

randomly through the solution space S . Thereby individuals can share information

about their so far best previous position rbsf, where each particle has a number of K

informants. Additionally, each individual i has an internal memory to store its best

so far (locally best) solution rlbsf
i . In every iteration the movement of each individual

beginning from its actual position ri is then given by a trade off between its current

velocity vi, a movement in the direction of its locally best solution rlbsf
i (cognitive

component) and of its so far best known solution rbsf
i of its informants in the swarm

(social component). Thus, the equations of motion for one individual i and a discrete

time parameter t are given by

vt+1
i = w ·vt

i + c1 ·R1 ·
(

r
lbsf,t
i − rt

i

)

+ c2 ·R2 ·
(

r
bsf,t
i − rt

i

)

(6.6)

rt+1
i = rt

i + vt+1
i . (6.7)

The diagonal matrices R1 and R2 contain uniform random numbers in [0,1) and

thus randomly weight each component of the connecting vector (rlbsf
i − ri) from

the current position ri to the locally best solutions rlbsf
i . The vector (rbsf

i − ri) is

treated analogously. Since every component is multiplied with a different random
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number, the vectors are not only changed in length but also perturbed from their

original direction. The new position follows then from the superposition of the three

vectors. By choosing the cognitive parameter c1 and the social parameter c2, the

influence of these two components can be adjusted. The Standard PSO 2007 setup

uses c1 = c2 = 0.5+ ln(2)≃ 1.193 and w = 1/(2ln2)≃ 0.721 as proposed by Clerc

and Kennedy [5]. A number of N = 100 particles is chosen with a number of K = 3

informants.

The pseudo-code of the solution update for the swarm is shown in Algorithm 1.

The position and the velocity components for the different particles i and dimension

d are written as subscripts, i.e., vid is the d-th component of the velocity vector vi of

particle i. The iterative solution update of the vector vi is visualized in Figure 6.6.

Algorithm 1: Position and velocity update rule in PSO

Data: position ri, velocity vi, locally best position rlbsf
i and globally best position rbsf

i

for each particle i, cognitive parameter c1 and social parameter c2.

Result: {ri} with ri ∈ S and updated velocities {vi}.

begin1

forall particles i do2

forall dimensions d do3

R1 ← get uniform random number(0,1);4

R2 ← get uniform random number(0,1);5

vid ← w · vid +c1 ·R1 ·
(

rlbsf
id − rid

)

+c2 ·R2 ·
(

rbsf
id − rid

)

;6

rid ← rid +vid ;7

8

return {ri},{vi};9

end10

6.6 Experimentation

6.6.1 System Setup

Using the MLIMT simulator in combination with PSO, different scenarios are opti-

mized for the five-location model shown in Figure 6.7. We are particularly interested

in the effect of the following three factors that are tested in combination.

First, we test the two service policies First-In-First-Out (FIFO) and Earliest-

Deadline-First (EDF). Second, for the transshipment orders (TOs) we either monitor

the current time, i.e., t ′ = t, or we use forecasting with t ′ = t1, the next order review

moment. Third, for the pooling strategy two different policies are applied. For the

first option, the stocks of all locations i are completely pooled, i.e., tpool,i = tP,i. Thus,

only ordering and transshipment policies are optimized, not pooling. For the second

option, only locations next to each other in Figure 6.7 are in one pooling group, i.e.,

there are four different pooling groups. Therefore, lateral transshipments are limited

to adjacent locations at the end of an order period.
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Fig. 6.6 Iterative solution update of PSO in two dimensions. From the current particle posi-

tion rt
i the new position rt+1

i is obtained by vector addition of the velocity, the cognitive and

the social component

1

2

3

4

5

364.005

180.278

316.228

3
0
4.1

3
8

2
0
6
.1

5
5

304.138

141.421

206.155

Fig. 6.7 Topology of the five-location model. An edge between two locations indicates that

these belong to the same pooling group, i.e., lateral transshipments are feasible at all times.

Along the edges distances in kilometers are shown

The other parameters are identical for all optimization runs. All locations i use

an (si,Si)-ordering policy, where the initial reorder points are si = 0 and the initial

order-up-to levels are S1 = 600, S2 = 900, S3 = 1,200, S4 = 1,500 and S5 = 1,800.
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For all locations i an order period is equal to 10 days, i.e., tP,i = 10 days. The

distances between all locations are visualized in Figure 6.7, and the transship-

ment velocity is chosen to be 50.00 km/h. The state function chosen for TOs is

fTO,i(t) = yi(t)+ btr,i(t) and for POs fPO,i(t) = y+
i (t). To analyze the effect of fore-

casting demand for ordering transshipments, all combinations of the current time t

and the forecast moment t1 are compared for TOs. For offering product units, the

current time t is used. The priority sequence for TOs and POs is MTC, BAN, MTT.

The inter-arrival time of customers to a location i is an exponentially distributed

random variable with 〈Ti〉= 2h. The impatient time is triangularly distributed in the

interval (0h,8h), i.e., 〈Wi〉 = 4h. The customer demand is for all locations i uni-

formly distributed in [0,Bmax] but with different maximum values, i.e., Bmax,1 = 10,

Bmax,2 = 15, Bmax,3 = 20, Bmax,4 = 25, Bmax,5 = 30, respectively. The initial inven-

tory of the five locations i is chosen to be Istart,1 = 600, Istart,2 = 900, Istart,3 = 1,200,

Istart,4 = 1,500, Istart,5 = 1,800, respectively. However, the initialization values will

not have an influence after the transition time. The maximum capacity of the storage

is 10,000 product units for each location. The regular order delivery times at the end

of each period are location dependent as well. For location i the times are t1 = 2.0 d,

t2 = 2.5 d, t3 = 3.0 d, d4 = 3.5 d and t5 = 4.0 d.

The cost for storing product units is 1.00 e per unit and day, whereas the or-

der and transshipment cost is 1.00 e per unit and per day transportation time. The

fixed transshipment cost is 10.00 e for each location and the gain per unit sold is

100.00 e. The out-of-stock cost per product unit and waiting time are 1.00 e/h and

the out-of-stock cost for a canceling customer is 50.00 e. The fixed cost for each

periodic order is 500.00 e, and the order cost per product unit and day is 1.00 e.

The optimization criterion is the minimum total cost expected.

The simulation time is 468 weeks plus an additional transition time of 52 weeks

in the beginning. For optimization we use PSO with a population of 100 individuals

i, where an individual is a candidate solution ri, i.e., a real-valued vector of the

following policy parameters for each location i.

si Reorder point for periodic orders

Si Order-up-to level for periodic orders

hi Reorder point for transshipment orders

Hi Order-up-level for transshipment orders

oi Offer level

∆omin,i Minimum offer quantity

tpool,i Pooling time

The optimization stops if a new optimum has not occurred for the last 2,000 cy-

cles, but at least 10,000 cycles must be realized to prevent early convergence in

a local optimum. On machines with two dual-core Opteron 270 2GHz processors,

one iteration consumes about 15 seconds runtime. For all experiments total results,

optimized parameter values and cost function values are determined. After the op-

timization the minimum absolute values of all parameters not changing the cost

function values are determined using a binary search.
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6.6.2 Results and Discussion

Tables 6.1 and 6.2 show the total results for the service policies FIFO and EDF,

respectively. For each service policy all combinations of forecasting demand for

transshipment requests and assigning pooling groups are evaluated. Solutions 1 and

2 monitor the current net inventory level for deciding on transshipment orders, while

solutions 3 and 4 forecast demand to the time of the next order. Solutions 1 and 3

allow transshipments between all locations, while solutions 2 and 4 confine trans-

shipments to adjacent locations at the end of an order period. For each solution total

cost per annum and the number of optimization cycles are shown. The rank sorts the

eight systems from Tables 6.1 and 6.2 with respect to their solution quality.

Table 6.1 Overall results for the service policy First-In-First-Out (FIFO). Monitoring the

net-inventory level at the current time t while limiting transshipments to adjacent locations at

the end of the order period is the optimal policy

Transshipment order Pooling
Result Cycle

Rank
in e p.a. optimum (total)

1 current time t all −19,666,901.01 9,562 (11,562) 3

2 current time t adjacent −19,758,378.05 9,562 (11,562) 2

3 time of next order t1 all −19,530,460.22 9,562 (11,562) 8

4 time of next order t1 adjacent −19,562,191.79 9,562 (11,562) 7

Table 6.2 Total results for service policy Earliest-Deadline-First (EDF). Observing the cur-

rent net inventory level and restricting pooling dominates the other choices, while EDF is

even slightly better than FIFO

Transshipment order Pooling
Result Cycle

Rank
in e p.a. optimum (total)

1 current time t all −19,652,741.48 8,259 (10,259) 4

2 current time t next −19,762,585.05 8,259 (10,259) 1

3 time of next order t1 all −19,565,348.10 9,562 (11,562) 6

4 time of next order t1 next −19,587,244.27 9,562 (11,562) 5

Looking at the total results, there exists a lower bound regardless of the individual

policies. However, for both service policies solution 2 yields the best performance.

It is advantageous for this system to order transshipments based on the current net-

inventory level and to limit transshipments to adjacent locations at the end of an or-

der period. But even though the total results are similar, the optimal model structure

varies significantly. Therefore, all solutions are investigated in detail. The optimal

parameter values of the four considered systems are listed in Tables 6.3 and 6.4 for

FIFO and EDF, respectively. Pooling times tpool,i are optimized if transshipments

are restricted to adjacent locations, and set to the order period time tP,i otherwise.

The resulting flows are visualized in Figures 6.8–6.10 for the three best solutions.
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Fig. 6.8 Flows for solution 2 (rank 1) using the service policy Earliest-Deadline-First (EDF).

Locations 2 and 4 act as hubs. The volumes ordered per period are listed next to these loca-

tions, as well as the order frequency in square brackets. Transshipments are indicated by di-

rected edges, in conjunction with transshipment volumes and frequencies in square-brackets
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Fig. 6.9 Flows for solution 2 (rank 2) using the service policy First-In-First-Out (FIFO). This

solution is similar to EDF solution 2. Locations 2 and 4 act as hubs, while locations 1, 3 and

5 just receive transshipments, and thereby, act as spokes. Periodic order volumes are listed

next to the hubs, as well as transshipment volumes along the edges, and frequencies in square

brackets

The figures illustrate that the solutions 2 for FIFO and EDF, respectively, are

very similar. Moreover, there are two observations. First, there are locations period-

ically receiving and offering product units. These locations act as hubs in a hub-and-

spoke structure. Second, there are locations just receiving transshipments from other
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Fig. 6.10 Flows for (First-In-First-Out) FIFO solution 1 (rank 3). Location 1 is isolated,

ordering products as indicated by the periodic order volume and frequency in square brackets

next to the location, but not exchanging transshipments. The offcut network is integrated with

location 3 as a hub. Transshipments are visualized by directed edges along with volumes per

period and frequencies in square brackets.

locations, and thus, never receiving periodic orders. Thereby, these locations act as

spokes. In EDF solution 2 – the best solution – locations 2 and 4 are considered as

hubs, while locations 1, 3 and 5 are spokes, see Figure 6.8. Thus, transshipments

take the role of periodic orders rather than just eliminating shortages due to stochas-

tic demand. This is a consequence of the general definition of transshipments under

continuous review, fixed order cost, and order lead times.

Furthermore, some solutions show a specific characteristic. A particular location

is isolated, receiving periodic orders but never exchanging transshipments, e.g., lo-

cation 1 in FIFO solution 1, cp. Figure 6.10. That points to the limitations of the

proposed heuristic. Ordering and offering decisions are based upon the inventory

level, not differentiating between target locations. Therefore, in specific situations it

may be more economical not to exchange transshipments at all. Setting up pooling

groups is a potential way to limit the complexity and to guide the optimization pro-

cess in this case. Of course, complete linear optimization of the transport problem

would be feasible, too, but at the cost of continuous review.

After studying elaborate model structures, which solution should a user imple-

ment? Tables 6.1 and 6.2 show the individual overall cost function values of all

solutions for FIFO and EDF, respectively. By further evaluating specific cost func-

tions as presented in Tables 6.5 and 6.6, decisions are better informed. Low out-

of-stock cost corresponds to high service quality, and low order and transshipment

cost indicates efficient logistics, if the total results are comparable. FIFO solution 1

in Table 6.5 leads to the least out-of-stock cost for all considered systems. A case

in point for contradictive objectives is FIFO solution 4. Product units are constantly
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Table 6.3 Parameter values for the service policy First-In-First-Out (FIFO) corresponding

to the systems specified in Table 6.1. Prohibitive values, e.g., reorder points si never leading

to a positive ordering decision, are enclosed in square brackets. Thus, hubs can be identified

as locations which periodically order and offer product units. Spokes never receive periodic

orders but replenish their stock via transshipments

i
Periodic order Transshipment order Product offer Pooling

si Si hi Hi oi ∆omin,i tpool,i

1

1 457.52 849.45 [−22.49] [0.00] [799.91] [0.10] 10.00 d

2 [0.00] [0.10] 169.40 269.74 [0.00] [276.52] 10.00 d

3 1,980.59 6,305.89 [0.00] [0.10] 0.00 447.19 10.00 d

4 [0.00] [0.10] 822.94 948.94 0.00 616.75 10.00 d

5 [0.00] [0.10] 332.47 480.29 [0.00] [480.29] 10.00 d

2

1 [0.00] [0.10] 69.21 123.65 [0.00] [128.98] 0.00 d

2 1,896.58 5,075.77 [0.00] [0.10] 0.00 169.30 0.00 d

3 [0.00] [0.10] 156.17 219.60 [0.00] [219.60] 0.00 d

4 1,538.05 2,737.03 [−109.73] [0.00] 0.00 371.50 0.00 d

5 [0.00] [0.10] 173.15 222.02 [0.00] [222.02] 0.00 d

3

1 1,944.91 3,606.09 [0.00] [0.10] 0.00 580.69 10.00 d

2 [0.00] [0.10] 172.74 229.51 [0.00] [1,111.98] 10.00 d

3 835.21 1,739.77 [0.00] [0.10] [0.00] [1,696.18] 10.00 d

4 1,247.85 2,243.85 [−56.56] [0.00] [0.00] [2,063.09] 10.00 d

5 [0.00] [0.10] 693.24 693.35 [2,124.58] [36.83] 10.00 d

4

1 [−24.46] [0.00] −123.47 85.79 [0.00] [706.60] 0.00 d

2 2,218.16 7,367.75 936.48 4,158.19 252.98 6.99 0.00 d

3 [0.00] [0.10] 71.52 166.59 [0.00] [1,359.51] 0.00 d

4 [0.00] [0.10] 502.27 518.07 [1,624.89] [327.09] 5.89 d

5 [0.00] [0.10] 3,842.22 5,958.31 599.10 517.20 0.00 d
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Table 6.4 Parameter values for the service policy Earliest-Deadline-First (EDF) correspond-

ing to the systems specified in Table 6.2. Square brackets indicate prohibitive values, never

leading to a positive ordering or transshipment decision. Hence, analogous to FIFO, there are

hubs, that order periodically, and spokes, that receive transshipments but never periodically

orders

i
Periodic order Transshipment order Product offer Pooling

si Si hi Hi oi ∆omin,i tpool,i

1

1 [0.00] [0.10] 1,119.30 2,636.55 0.00 356.60 10.00 d

2 839.26 4,918.42 [0.00] [0.10] 943.20 0.10 10.00 d

3 [0.00] [0.10] 513.79 601.69 [0.00] [636.77] 10.00 d

4 1,276.91 2,272.90 [−133.33] [0.00] [1,462.34] [170.68] 10.00 d

5 [0.00] [0.10] 740.30 872.29 [0.00] [872.29] 10.00 d

2

1 [0.00] [0.10] 82.35 126.48 [0.00] [128.99] 0.00 d

2 1,826.91 5,069.91 [0.00] [0.10] 0.00 229.32 0.00 d

3 [0.00] [0.10] 128.96 240.01 [0.00] [240.02] 0.00 d

4 1,610.11 2,738.23 [−133.32] [0.00] 0.00 361.77 0.00 d

5 [0.00] [0.10] 171.41 226.53 [0.00] [226.54] 0.00 d

3

1 457.03 848.96 [−66.15] [−66.05] 0.00 834.33 10.00 d

2 [0.00] [0.10] 345.71 348.45 295.33 901.85 10.00 d

3 1,200.00 4,543.22 [0.00] [0.10] 461.66 411.10 10.00 d

4 1,242.79 2,238.78 [−219.85] [0.00] 270.82 1,251.48 10.00 d

5 [0.00] [0.10] 618.03 642.67 0.00 1,580.89 10.00 d

4

1 [0.00] [0.10] 239.10 239.46 [0.00] [697.94] 0.00 d

2 900.00 5,112.43 [0.00] [0.10] 919.15 145.43 0.00 d

3 756.54 1,658.42 [−122.57] [0.00] [1,125.11] [349.98] 0.00 d

4 [−26.06] [0.00] 522.87 623.86 893.38 485.86 6.01 d

5 [−55.03] [0.00] 1,015.13 1,015.24 0.00 1,679.06 0.00 d
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Table 6.5 Cost function values for service policy First-In-First-Out (FIFO) corresponding to

the systems specified in Table 6.1. Different performance aspects correlate with individual

cost functions, e.g., high service quality with low out-of-stock cost, and efficient logistics

with low order and transshipment cost

i

Inventory Out-of-stock Periodic order Transshipment
Gain

cost cost cost cost

in e p.a. in e p.a. in e p.a. in e p.a. in e p.a.

1

1 155,087.59 411.44 62,299.55 0.00 −2,208,904.47

2 69,562.63 1,255.94 0.00 0.00 −3,283,135.39

3 762,445.29 1,022.29 604,583.39 40,015.55 −4,400,362.71

4 283,973.96 28.74 0.00 2,260.93 −5,459,167.75

5 136,758.42 1,772.39 0.00 0.00 −6,436,808.79

∑ 1,407,827.89 4,490.79 666,882.94 42,276.48 −21,788,379.12

2

1 29,054.96 231.05 0.00 0.00 −2,210,119.90

2 725,377.76 3,427.50 402,704.69 46,190.34 −3,263,712.13

3 57,920.84 132.53 0.00 0.00 −4,408,758.96

4 426,709.86 2,336.54 240,136.41 3,281.27 −5,432,982.09

5 61,878.88 1,199.26 0.00 0.00 −6,443,386.84

∑ 1,300,942.30 7,326.86 642,841.09 49,471.61 −21,758,959.92

3

1 195,878.78 7,102.64 255,016.95 30,223.49 −2,160,377.96

2 181,524.08 5,197.14 0.00 0.00 −3,248,107.96

3 282,963.26 2,473.43 149,532.34 0.00 −4,385,451.48

4 356,317.34 2,970.94 207,771.43 0.00 −5,426,028.47

5 462,172.90 640.30 0.00 0.00 −6,450,279.37

∑ 1,478,856.36 18,384.46 612,320.71 30,223.49 −21,670,245.23

4

1 131,398.36 3,234.10 0.00 0.00 −2,189,556.93

2 77,948.69 2,580.25 560,777.79 356,487.74 −3,271,890.82

3 213,627.07 2,851.20 0.00 0.00 −4,379,903.26

4 328,564.02 527.37 0.00 0.00 −5,454,538.59

5 185,321.49 1,562.78 0.00 309,517.80 −6,440,700.86

∑ 936,859.63 10,755.70 560,777.79 666,005.55 −21,736,590.46

being shipped, and thus, inventory cost is low, while transshipment cost is excessive.

Therefore, it is reasonable to evaluate the comparative effects of all solutions in

certain aspects, if the total results are inconclusive. To emphasize the importance of

these aspects, the cost function coefficients are adjusted accordingly.
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Table 6.6 Cost function values for service policy Earliest-Deadline-First (EDF) correspond-

ing to the systems specified in Table 6.2. Out-of-stock cost monitor service quality, while

order and transshipment cost highlight logistics efficiency

i

Inventory Out-of-stock Periodic order Transshipment
Gain

cost cost cost cost

in e p.a. in e p.a. in e p.a. in e p.a. in e p.a.

1

1 365,747.27 1,146.62 0.00 27,696.44 −2,203,858.57

2 244,008.31 2,268.36 425,373.39 37,028.38 −3,274,103.38

3 165,081.55 1,631.23 0.00 0.00 −4,393,509.79

4 366,053.23 2,325.96 208,040.62 0.00 −5,433,807.75

5 245,453.35 1,407.04 0.00 0.00 −6,440,723.73

∑ 1,386,343.71 8,779.21 633,414.00 64,724.82 −21,746,003.22

2

1 31,999.32 175.38 0.00 0.00 −2,210,516.80

2 728,726.45 1,614.28 401,393.38 43,385.79 −3,279,887.25

3 56,645.58 284.35 0.00 0.00 −4,407,542.41

4 420,698.60 2,864.40 241,972.40 3,284.45 −5,425,756.66

5 62,273.66 1,816.12 0.00 0.00 −6,436,016.10

∑ 1,300,343.62 6,754.53 643,365.78 46,670.24 −21,759,719.22

3

1 154,912.34 419.23 62,298.78 0.00 −2,208,866.14

2 203,470.87 765.83 0.00 0.00 −3,287,028.57

3 332,156.91 2,131.02 440,773.80 20,136.40 −4,387,147.81

4 354,632.10 3,077.18 207,722.22 0.00 −5,424,566.47

5 391,085.60 2,037.10 0.00 0.00 −6,433,358.52

∑ 1,436,257.83 8,430.37 710,794.80 20,136.40 −21,740,967.51

4

1 142,997.01 314.92 0.00 0.00 −2,209,536.26

2 209,395.76 5,015.98 450,905.39 35,723.49 −3,249,231.08

3 257,170.43 5,751.66 148,471.55 0.00 −4,350,342.94

4 336,575.82 1,066.56 0.00 13,377.00 −5,448,040.82

5 478,784.82 2,159.82 0.00 13,033.75 −6,430,837.13

∑ 1,424,923.84 14,308.94 599,376.94 62,134.24 −21,687,988.22

6.7 Conclusion and Future Work

The Simulation Optimization approach is applicable to very general multi-location

inventory systems. The concept presented in this chapter iteratively combines a sim-

ulator with Particle Swarm Optimization. This concept allows the investigation of

complex models with few assumptions and is theoretically not limited to a loca-

tion count contrary to analytical approaches. Due to the complexity of the model, it

is difficult to understand the effect of certain policies. Therefore, valuable insights

regarding the dynamics of the system are obtained through simulation in addition

to the optimal parameter set. However, applying global optimization to complex

models still involves a certain risk to end in a local optimum. That risk is confined

by extending the simulation time and the optimization cycle count. The optimum
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depends on the model specification and shows a specific structure. The development

of such a structure is one of the most intriguing aspects, and the question arises, what

conditions have a promoting effect.

As aforementioned an advantage of the Simulation Optimization of multi-location

inventory systems with lateral transshipments is that the model itself is straightfor-

ward extendable. Functional extensions are, e.g., policies for periodic orders, trans-

shipment orders and product offers. Extending the parameter set itself, the capacity

of the locations can be optimized by introducing estate and energy cost for unused

storage. Thus, not only the flows of transshipments are optimized, but also the al-

location of capacities. In addition to static aspects of the model, the parameter set

may be extended by dynamic properties such as the location-specific order period

time. Besides these extensions there is an idea regarding orders from more than one

location at a time. Under specific circumstances one location evolves as a supplier,

ordering and redistributing product units. Therefore, the basic idea is to release an

order by several locations and to solve the Traveling Salesman Problem with mini-

mal cost. However, the existing heuristics already seem to approximate such a trans-

portation logic well, and thus, the inclusion of more elaborate policies is expected

just to increase complexity. Further research may also concentrate on characteristics

favoring demand forecast and promoting certain flows through a location network

leading to a structure.
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Chapter 7

Traditional and Hybrid Derivative-Free
Optimization Approaches for Black Box

Functions

Genetha Anne Gray and Kathleen R. Fowler

Abstract. Picking a suitable optimization solver for any optimization problem is

quite challenging and has been the subject of many studies and much debate. This

is due in part to each solver having its own inherent strengths and weaknesses. For

example, one approach may be global but have slow local convergence properties,

while another may have fast local convergence but is unable to globally search the

entire feasible region. In order to take advantage of the benefits of more than one

solver and to overcome any shortcomings, two or more methods may be combined,

forming a hybrid. Hybrid optimization is a popular approach in the combinatorial

optimization community, where metaheuristics (such as genetic algorithms, tabu

search, ant colony, variable neighborhood search, etc.) are combined to improve

robustness and blend the distinct strengths of different approaches. More recently,

metaheuristics have been combined with deterministic methods to form hybrids that

simultaneously perform global and local searches. In this Chapter, we will exam-

ine the hybridization of derivative-free methods to address black box, simulation-

based optimization problems. In these applications, the optimization is guided solely

by function values (i.e. not by derivative information), and the function values re-

quire the output of a computational model. Specifically, we will focus on improving

derivative-free sampling methods through hybridization. We will review derivative-

free optimization methods, discuss possible hybrids, describe intelligent hybrid ap-

proaches that properly utilize both methods, and give an examples of the successful

application of hybrid optimization to a problem from the hydrological sciences.
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7.1 Introduction and Motivation

Computer simulation is an important tool that is often used to reduce the costs as-

sociated with the study of complex systems in science and engineering. In recent

years, simulation has been paired with optimization in order to design and control

such systems. The resulting simulation-based problems have objective functions

and/or constraints which rely on the output from sophisticated simulation programs.

Often, a simulator is referred to as a black box since it is defined solely by its in-

put and output and not by the actual program being executed. In other words, the

underlying structure of simulation is unknown. In these applications, the problem

characteristics are mathematically challenging in the optimization landscapes may

be disconnected, nonconvex, nonsmooth, or contain undesirable, multiple local min-

ima. Gradient-based optimization methods are well known to perform poorly on

problems with these characteristics as derivatives are often unavailable and approx-

imations may be insufficient [14]. Moreover, it has been shown that derivative ap-

proximations of functions that incorporate noisy data may contain too much error to

be useful [56]. Instead, derivative-free optimization (DFO) methods, which advance

using only function values, are applied. A variety of DFO methods have emerged

and matured over the years to address simulation-based problems, and many are sup-

ported theoretically with convergence criteria established. In this Chapter, we will

review some such methods and demonstrate their utility on a water management ap-

plication proposed specifically in the literature as a simulation-based optimization

benchmarking problem.

To obtain a solution to a simulation-based problem, one seeks an optimization

algorithm that is (i) reliable in the sense that similar solutions can be obtained using

different initial points or optimization parameters, (ii) accurate in that a reasonable

approximation to the global minimum is obtained, and (iii) efficient with respect to

finding a solution using as few function calls as possible. The role of efficiency is

particularly important in simulation-based applications because the optimization is

guided solely by function values defined in terms of output from a black box. In

practice, the computational time required to complete these simulations can range

from a few seconds to a few days depending on the application and problem size.

Thus, parallel implementations of both the simulator and the optimization methods

are often essential for computational tractability of black-box problems.

Picking a suitable optimization algorithm that meets these criteria is quite chal-

lenging and has been the subject of many studies and much debate. This is be-

cause every optimization technique has inherent strengths and weaknesses. More-

over, some optimization algorithms contain characteristics which make them better

suited to solve particular kinds of problems. Hybridization, or the combining of two

or more complementary, but distinct methods, allows the user to take advantage

of the beneficial elements of multiple methods. For example, consider two meth-

ods A and B where method A is capable of handling noise and undefined points

and method B excels in smooth regions with small amounts of noise. In this case,

method A may be unacceptably slow to find a solution while method B may fail

in noisy or discontinuous regions of the domain. By forming a hybrid, method A
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can help overcome difficult regions of the domain and method B can be applied for

fast convergence and efficiency. This Chapter also explores the promise of hybrid

approaches and demonstrates some results for the water management problem.

Throughout this Chapter, the problem of interest is

min
x∈Ω

f (x), (7.1)

where the objective function is f : IRn → IRand Ω defines the feasible search space.

In practice, Ω may be comprised of component-wise bound constraints on the de-

cision variable x in combination with linear and nonlinear equality or inequality

constraints. Often, Ω may be further defined in terms of state variables determined

by simulation output. The example in this Chapter includes such constraints. In ad-

dition, integer and categorical variables (for example those which require a ‘yes’

or ‘no’) are present in many engineering applications. There are a variety of DFO

methods equipped to handle these classes of problems and several are discussed

later. For the application in this work, we consider both real-valued and mixed

integer problem formulations.

The rest of this Chapter is outlined as follows: In Section 2, an example of a

black box optimization problem from hydrology is introduced. Then, in Section

3, some DFO approaches are introduced including a genetic algorithm (GA), DI-

RECT, asynchronous parallel pattern search (APPS) and implicit filtering. In ad-

dition, these methods are demonstrated on the example introduced in Section 2.

Section 4 describes some hybrid methods created using the classical DFO methods

from Section 3, and describes their performance on the example problem. Finally,

Section 5 summarizes all the information given in this Chapter and gives some ideas

regarding future research directions for hybrid optimization.

7.2 A Motivating Example

To demonstrate the strengths and weaknesses of some DFO methods and to better

illustrate the utility of hybrids, this Chapter will focus on the results from a water

supply problem, notated WS in the remainder of this Chapter, which was described

in [72, 71]. Problem WS has been used as a benchmarking problem for optimization

methods [51, 32, 29, 50, 43], and was shown to be highly dependent on the formu-

lation of the feasible region Ω [50, 29]. Furthermore, the use if WS in a comparison

study of DFO methods in [29] showed that (1) there are multiple, undesirable lo-

cal minima that can trap local search methods and (2) the constraints on the state

variables are highly sensitive to changes in the decision variables.

The goal in the WS problem is to extract a quantity of water from a particular

geographic region, an aquifer, while minimizing the capital cost f c to install a well

and the operational cost f o to operate a well. Thus, the optimization problem is to

minimize the total cost of the well-field f T = f c + f o subject to bound constraints on

the decision variables, the amount of water extracted, and the physical properties of

the aquifer. The decision variables for this problem are the pumping rates {Qk}
n
k=1,
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the well locations {(x̂k, ŷk)}
n
k=1, and the number of wells n in the final design. A

negative pumping rate, Qk < 0 for some k, means that a well is extracting and a pos-

itive pumping rate, Qk > 0 for some k, means that a well is injecting. The objective

function and constraints of WS rely on the solution to a nonlinear partial differential

equation to obtain values of the hydraulic head, h, which determines the direction

of flow. Thus, h would be considered a state variable. In this example, for each well

k = 1 . . .n in a candidate set of wells, the hydraulic head hk must be obtained via

simulation.

The objective function, based on the one proposed in [72, 71] is given by

f T =
n

∑
k=1

Dk + ∑
k,Qk<0.0

c1|1.5Qk|
b1(zgs −hmin)b2

︸ ︷︷ ︸

f c

(7.2)

+

∫ t f

0

(

∑
k,Qk<0.0

c2Qk(hk − zgs)+ ∑
k,Qk>0.0

c3Qk

)

dt

︸ ︷︷ ︸

f o

,

where c j and b j are cost coefficients and exponents given in [71]. In the first f c term,

Dk is the cost to drill and install well k. The second term of f c includes the cost to

install a pump for each extraction well, and this cost is based on the extraction rate

and hmin = 10 m, the minimum allowable hydraulic head and the ground surface

elevation zgs. The calculation of f o is for t f = 5 years. The first part of the integral

includes the cost to lift the water to the surface which depends on the hydraulic head

hk in well k. The second part accounts for any injection wells, which are assumed to

operate under gravity. Details pertaining to the aquifer and groundwater flow model

are fully described in [72] and are not included here as they fall outside of the scope

of the application of optimization methods to solve the WS problem.

Note that although the well locations {(x̂k, ŷk)}
n
k=1 do not explicitly appear in

Equation (7.2), they enter through the state variable h as output from a simulation

tool. For this work, the U.S. Geological Survey code MODFLOW [92] was used to

calculate the head values. MODFLOW is a widely used and well supported block-

centered finite difference code that simulates saturated groundwater flow. Since the

well locations must lie on the finite difference grid, real-valued locations must be

rounded to grid locations for the simulation. This results in small steps and low

amplitude noise in the optimization landscapes.

The constraints for the WS application are given as limitations on the pumping

rates,

−0.0064 m3/s ≤ Qk ≤ 0.0064 m3/s,k = 1, ...,n, (7.3)

and impact on the aquifer in terms of the hydraulic head,

10 m ≤ hk ≤ 30 m,k = 1, ...,n. (7.4)



7 Traditional and Hybrid Derivative-Free Optimization Approaches 129

The constraints given in Equations (7.3) and (7.4) are enforced at each well. The

total amount of water to supply is defined by the constraint

n

∑
k=1

Qk ≤−0.032 m3/s. (7.5)

While the pumping rates and locations are real-valued, there are options for how to

define the variable which indicates the appropriate number of wells. One approach

is to start with a large number of candidate wells, Nw, and run multiple optimization

scenarios where at the end of each one, wells with sufficiently low pumping rates

are removed before the optimization routine continues. However, for realistic water

management problems, simulations are time-consuming so it is more attractive to

determine the number of wells as the optimization progresses. One way to do this is

to include integer variables {zi}
n
i=1 where each zi ∈ {0,1} is a binary indicator for

assigning a well as off or on. Since this formulation requires an optimization algo-

rithm that can handle integer variables, alternatives have been developed. In [50],

three formulations that implicitly determine the number of wells while avoiding the

inclusion of integer variables are compared. Two formulations are based on a multi-

plicative penalty formulation ([69]) and one is based on removing a well during the

course of the optimization if the rate becomes sufficiently low. This third technique

is implemented here using an inactive-well threshold given by

|Qk| < 10−6 m3/s,k = 1, . . . ,n. (7.6)

Note that the cost to install a well is roughly $20,000, and the operational cost is

about $1,000 per year. Thus, using as few wells as possible drives the optimiza-

tion regardless of the formulation. However, the inclusion of Equation (7.6) in the

formulation results in a narrow region of decrease for an optimization method to

find, but a large decrease in cost. Mathematically, using Equation (7.6) allows for

real-valued DFO methods, but adds additional discontinuities in the minimization

landscapes.

The implementation of the WS problem considered in this study was taken from

http://www4.ncsu.edu/˜ctk/community.htmlwhere the entire pack-

age of simulation data files and objective function/constraint subroutines are avail-

able for download. The final design solution is known to be five wells all operating

at Qi = −0.0064 m3/s with locations aligned with the north and east boundaries,

as shown in Table 1. See [32] for details. To study the DFO methods described in

this Chapter, a starting point with six candidate wells was used. In order to find

the solution, the optimization methods must determine that one well must be shut

off while simultaneously optimizing the rates and locations of the remaining wells.

Furthermore, the rates must lie on the boundary of the constraint in Equation(7.3) in

order to satisfy the constraint given in Equation (7.5). Thus, the WS problem con-

tains challenging features for simulation-based optimization problems that are not

unique to environmental engineering but that can be seen across many scientific and

engineering disciplines. To summarize, the challenges of the WS problem include a

black box objective function and constraints, linear and nonlinear constraints on the



130 G.A. Gray and K.R. Fowler

Table 7.1 Five well solution to WS with pumping rates Qi = −0.0064 m3/s, i = 1, . . . ,5

Well Number 1 2 3 4 5

x̂ [m] 350 788 722 170 800

ŷ [m] 724 797 579 800 152

decision and state variables, multiple problem formulations, low amplitude noise, a

discontinuous and disconnected feasible region, and multiple local minima.

7.3 Some Traditional Derivative-Free Optimization Methods

In this Section, we highlight some DFO approaches to solving the simulation-based

WS problem including two global methods (the genetic algorithm (GA) and DI-

viding RECTangles (DIRECT)), two local methods (asynchronous parallel pattern

search (APPS) and implicit filtering), and a statistical alternative which utilizes a

process Gaussian model. Global optimization methods seek the extreme value of a

given function in a specified feasible region. A global solution is optimal among all

possible solutions. In contrast, local methods identify points which are only optimal

within a neighborhood of that point. This Section is in no way an exhaustive list

of derivative-free methods, but instead are included to give an overview of the im-

portance of selecting a method appropriate for the application. The derivative free

optimization community remains active in algorithm development. Some examples

of ongoing development include: Design Explore [7] from the Boeing Company,

which incorporates surrogates in the search phase; NOMAD (Nonlinear Optimiza-

tion for Fixed Variables) [4, 2, 3], specifically designed to solve simulation-based

problems, and ORBIT (Optimization by Radial Basis Function Interpolation in Trust

Region) [77, 88] which makes use of radial basis functions. We encourage interested

readers to refer to the citations for more information and to investigate books such

as [14] which give a complete overview of the topic.

7.3.1 Genetic Algorithms (GAs)

Genetic algorithms [36, 53, 54] are one of the most widely-used DFO methods and

are part of a larger class of evolutionary algorithms called population-based, global

search, heuristic methods [36]. Population based GAs are based on biological pro-

cesses such as survival of the fittest, natural selection, inheritance, mutation, or re-

production. Heuristic methods, such as the GA, are experience based. They contrast

to deterministic methods which more systematically search the domain space.

The GA codes design points as “individuals” or “chromosomes”, typically as

binary strings, in a population. It is this binary representation that makes GAs at-

tractive for integer problems (such as WS) since the on-off representation is imme-

diate. Through the above biological processes, the population evolves through a user

specified number of generations towards a smaller fitness value. A simple GA can

be defined as follows:
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1. Generate a random/seeded initial population of size np

2. Evaluate the fitness of individuals in initial population

3. Iterate through the specified number of generations:

a. Rank fitness of individuals

b. Perform selection

c. Perform crossover and mutation

d. Evaluate fitness of newly-generated individuals

e. Replace non-elite members of population with new individuals

During the selection phase, better fit individuals are arranged randomly to form a

mating pool on which further operations are performed. Crossover attempts to ex-

change information between two design points to produce a new point that preserves

the best features of both ‘parent points,’ and this is illustrated for a binary string in

Figure 7.1. Mutation is used to prevent the algorithm from terminating prematurely

to a suboptimal point and is used as a means to explore the design space, and it is

illustration for a binary string in Figure 7.2. (Note that both Figure 7.1 and 7.2 were

taken from [49].) Termination of the algorithm is based on a prescribed number of

generations or when the highest ranked individual’s fitness has reached a plateau.

Fig. 7.1 The crossover process for a binary string ([49])

Often, GAs are criticized for their computational complexity and dependence on

optimization parameter settings, which are not known a priori [22, 42, 68]. Also,

since the GA incorporates a randomness to the search phase, multiple optimization

runs may be needed. However, if the user is willing to exhaust a large number of

function evaluations, a GA can help provide insight into the design space and locate

initial points for fast, local, single search methods. The GA has many alternate forms

and has been applied to a wide range of engineering design problems as shown in

references such as [60]. Moreover, hybrid GAs have been developed at all levels of

the algorithm and with a variety of other global and local search DFO methods. See

for example [6, 83, 76] and the references therein.
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Fig. 7.2 The mutation process for a binary string ([49])

In [32, 29, 50], the NSGA-II implementation [21, 93, 19, 20] of the GA was

used on the WS problem for both the mixed-integer formulation and the inactive

well-threshold to determine the wells. It was shown that for this problem the GA

performed better if (1) the number of wells was determined directly by including

the binary on-off switch compared to using the inactive well threshold and (2) if

the initial population was seeded with points that had at least five wells operating at

-0.0064 m3/s. If a random initial population was used, the algorithm could not iden-

tify the solution after 4,000 function evaluations. If the GA was seeded accordingly,

a solution was found within 161 function calls but the function evaluation budget

would be exhausted before the algorithm would terminate, which for that work was

set to 900.

7.3.2 Deterministic Sampling Methods

Another class of DFO methods is deterministic sampling methods [89, 67, 63, 75].

In general, these methods rely upon a direct search of the decision space and are

guided by a pattern or search algorithm. They differ from GAs in that there is no

randomness in the method, and rigorous convergence results exist. (See [63] and

references therein.)

7.3.2.1 Asynchronous Parallel Pattern Search (APPS)

Asynchronous Parallel Pattern Search (APPS) [55, 62] is a direct search methods

which uses a predetermined pattern of points to sample a given function domain.

APPS is an example of a generating set search (GSS), a class of algorithms for

bound and linearly constrained optimization that obtain conforming search direc-

tions from generators of local tangent cones [65, 64]. In the case that only bound

constraints are present, GSS is identical to a pattern search. The majority of the

computational cost of pattern search methods is the function evaluations, so parallel

pattern search (PPS) techniques have been developed to reduce the overall computa-

tion time. Specifically, PPS exploits the fact that once the points in the search pattern

have been defined, the function values at these points can be computed simultane-

ously [23, 84]. For example, for a simple two-dimensional function, consider the

illustrations in Figure 7.3. First, the points f , g, h, and i in the stencil around point

c are evaluated. Then, since f results in the smallest function value, the second
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Fig. 7.3 Illustration of the steps of Parallel Pattern Search (PPS) for a simple two-

dimensional function. On the left, an initial PPS stencil around starting point c is shown.

In the middle, a new stencil is created after successfully finding a new local min ( f ). On the

left, PPS shrinks the stencil after failing to find a new minimum

picture shows a new stencil around point f . Finally, in third picture, since none of

the iterates in this new stencil result in a new local minima, the step size of the

stencil is reduced.

The APPS algorithm is a modification of PPS that eliminates the synchronization

requirements that the function values of all the points in the current search pattern

must be completed before the algorithm can progress. It retains the positive features

of PPS, but reduces processor latency and requires less total time than PPS to return

results [55]. Implementations of APPS have minimal requirements on the number

of processors (i. e. 2 instead of n+1 for PPS) and do not assume that the amount of

time required for an objective function evaluation is constant or that the processors

are homogeneous.

The implementation of the APPS algorithm is more complicated than a basic GSS

in that it requires careful bookkeeping. However, the details are irrelevant to the

overall understanding of the method. Instead we present a basic GSS algorithm and

direct interested readers to [40] for a detailed description and analysis of the APPS

algorithm and corresponding APPSPACK software. The basic GSS algorithm is:

Let x0 be the starting point, ∆0 be the initial step size, and D be the set of positive

spanning directions.

While not converged Do

1. Generate trial points Qk = {xi + ∆̃kdi

∣
∣
∣ 1 ≤ i ≤ |D |} where ∆̃k ∈ [0,∆k] denotes

the maximum feasible step along di.

2. Evaluate trial points (possibly in parallel)

3. If ∃ xq ∈ Qk such that f (xq)− f (xk) < α∆ 2
k

Then xk+1 = xq (successful iteration)

Else xk+1 = xk (unsuccessful iteration) and ∆k+1 = ∆k/2 (step size

reduction)

Note that in a basic GSS, after a successful iteration (one in which a new best point

has been found), the step size is either left unchanged or increased. In contrast,
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when the iteration was unsuccessful, the step size is necessarily reduced. A defining

difference between the basic GSS and APPS is that the APPS algorithm processes

the directions independently, and each direction may have its own corresponding

step size. Global convergence to locally optimal points is ensured using a sufficient

decrease criteria for accepting new best points. A trial point xk + ∆di is considered

better than the current best xk point if

f (xk + ∆di)− f (xk) < α∆ 2, (7.7)

for α > 0. Because APPS processes search direction independently, it is possible

that the current best point is updated to a new better point before all the function

evaluations associated with a set of trial points Qk have been completed. These re-

sults are referred to as orphaned points as they are no longer tied to the current

search pattern and attention must be paid to ensure that the sufficient decrease cri-

teria is applied appropriately. The support of these orphan points is a feature of

the APPS algorithm which makes it naturally amenable to a hybrid optimization

structure. Iterates generated by alternative algorithms can be simply be treated as

orphans without the loss of favorable theoretical properties or local convergence the-

ory of APPS. It is important to note that this paradigm is in fact extensible to many

other optimization routines and makes the APPS algorithm particularly amenable to

hybridization in that it can readily accommodate externally generated points.

The APPS algorithm has been implemented in an open source software pack-

age called APPSPACK. It is written in C++ and uses MPI [47, 48] for parallelism.

APPSPACK performs function evaluations through system calls to an external ex-

ecutable which can written in any computer language. This simplifies its execution

and makes it amenable to customization. Moreover, it should be noted that the most

recent version of APPSPACK can handle linear constraints [64, 46], and a software

called HOPSPACK builds on the APPSPACK software and includes a GSS solver

that can handle nonlinear constraints [45, 74].

In [29], APPS was applied to WS problem using the constraint in Equation

(7.6). Like the GA, APPS was sensitive to the initialization of the optimiza-

tion and required a starting point as described above otherwise the algorithm

would converge to a suboptimal six well design. However, given good initial data

the algorithm converged to a comparable solution within 200 function evalua-

tions. APPS has also been successfully applied to problems in microfluidics, bi-

ology, thermal design, and forging. (See [40] and references therein and the URL

https://software.sandia.gov/appspack/ for user success stories and

detailed examples.)

7.3.2.2 Implicit Filtering

Implicit filtering is based on the notion that if derivatives were available and reli-

able, Newton-like methods would yield fast results. The method evaluates a stencil

of points at each iteration used simultaneously to form finite difference gradients and

as a pattern for direct search [35]. Then, a secant approach, called a quasi-Newton
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method, is used to solve the resulting system of nonlinear equations at each itera-

tion [61] to avoid finite difference approximations of the Hessian matrix. In contrast

to classical finite-difference based Newton algorithms, implicit filtering begins with

a much larger stencil to account for noise. This step-size is reduced as the opti-

mization progresses to improve the accuracy of the gradient approximation and take

advantage of the fast convergence of quasi-Newton methods near a local minimum.

To solve the WS problem, a FORTRAN implementation called IFFCO (Implicit

Filtering For Constrained Optimization) was used. IFFCO depends on a symmetric

rank one quasi-Newton update [11]. The user must supply an objective function and

initial iterate and then optimization is terminated based on a function evaluation

budget or by exhausting the number of times the finite difference stencil is reduced.

We denote the finite difference gradient with increment size p by ∇p f and the model

Hessian matrix as H. For each p, the projected quasi-Newton iteration proceeds

until the center of the finite difference stencil yields the smallest function value or

||∇p f || ≤ τ p, which means the gradient has been reduced as much as possible on

the current scale. After this, the difference increment is halved (unless the user has

specified a particular sequence of increments) and the optimization proceeds until

the function evaluation budget is met.

The general unconstrained algorithm can be outlined as follows:

While not converged

Do until ∇p f < τ p

1. Compute ∇p f

2. Find the least integer λ such that sufficient decrease holds

3. x = x−λ H−1∇p f (x)
4. Update H via a quasi-Newton method

Reduce p

This can be illustrated on an a small perturbation of a quadratic function as illus-

trated in Figure 7.4. Given an initial iterate x0 = −1.25 and p = 0.25, the resulting

centered finite difference stencil is shown on the left. The center of the stencil, f (x0)
is denoted with an “*” and f (x0 ± p) is denoted with “o”. Since the center of the

stencil has the lowest function value, the algorithm would proceed and take a decent

step. Then, suppose the next iterate is as in the center picture of Figure 7.4. Then,

the lowest function value occurs on the stencil at f (x1) and thus stencil failure has

occurred. In this case, p, is reduced by half. Then, the stencil would be as in the

right picture, and stencil failure would not occur, so the algorithm would proceed.

IFFCO was used to solve the WS problem in [32, 29] using the inactive-well

threshold and also in [50] a multiplicative penalty term to determine the number of

wells. The behavior for both implementations was similar to that of APPS in that a

good initial iterate was needed to identify the five well solution. With good initial

data, IFFCO identified the solution within 200 function evaluations.

IFFCO and the implicit filtering algorithm in general have been successfully ap-

plied to a variety of other challenging simulation-based optimization applications

including mechanical engineering [12], polymer processing [31], and physiological

modeling [30]. There are several convergence theorems for implicit filtering [13],
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Fig. 7.4 The illustration on the right shows the first implicit filtering stencil for a small

perturbation on a quadratic function. The center picture shows stencil failure and the picture

on the right illustrates a new stencil with a reduced step size

which was particularly designed for the optimization of noisy functions with bound

constraints [35].

Linear and nonlinear constraints may be incorporated into the objective function

via a penalty or barrier approach. The default in IFFCO is to handle constraint viola-

tions using an extreme barrier approach and simply assign a large function value to

any infeasible point. The performance of IFFCO on nonsmooth, nonconvex, noisy

problems and even those with disconnected feasible regions are strong but the de-

pendence on the initial starting point is well documented [8, 61]. Also, note that

IFFCO includes a projection operator to handle bound constraints.

7.3.2.3 DIRECT

DIRECT, an acronym for DIviding RECTangles, was designed for global optimiza-

tion of bound constrained problems as an extension of Shuberts Lipschitz optimiza-

tion method [58]. Since its introduction in the early 1990’s, a significant number of

papers have been written analyzing, describing, and developing new variations of

this highly effective algorithm. Some of these include [57, 34, 16, 5, 86, 80, 28, 10].

DIRECT is essentially a partitioning algorithm that sequentially refines the re-

gion defined by bound constraints at each iteration by selecting a hyper-rectangle to

trisect [27, 33, 58]. To balance the global and local search, at each iteration a set S of

potentially optimal rectangles is identified based on the function value at the center

of the rectangle and the size of the rectangle. The basic algorithm is as follows:

1. Normalize the bound constraints to form a unit hypercube search space with

center c1

2. Find f (c1), set fmin = f (c1), i = 0

3. Evaluate f (ci +
1
3 ei),1 ≤ i ≤ n where ei is the ith unit vector

4. While not converged Do

a. Identify the set S of all potentially optimal rectangles

b. For all j ∈ S, identify the longest sides of rectangle j, evaluate f at centers,

and trisect j into smaller rectangles

c. Update fmin, i = i+ 1
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Note that DIRECT requires that both the upper and lower bounds be finite. The al-

gorithm begins by mapping the rectangular feasible region onto the unit hypercube;

that is DIRECT optimizes the transformed problem

min
x̃∈IRn

f̃ (x̃) = f (Sx̃ + ℓ)

subject to 0 ≤ x̃ ≤ e,
(7.8)

where x̃ = S−1(x− ℓ) with S = diag(u1− ℓ1, . . . ,un− ℓn). Figure 7.5 illustrates three

iterations of DIRECT for a two dimensional example. At each iteration, a candidate,

potentially optimal, hyper-rectangle is selected and refined. Though other stopping

criteria exist, this process typically continues until a user defined budget of function

evaluations has been expended.

Fig. 7.5 For a two-dimensional problem, DIRECT iteratively subdivides the optimal hyper-

rectangle into thirds

The criteria for being a potentially optimal hyper-rectangle given a constant ε > 0

is as follows [58]: Suppose there are K enumerated hyper-rectangles subdividing

the unit hypercube from Equation ( 7.8) with centers ci, 1 ≤ i ≤ K. Let γi denote

the corresponding distance from the center ci to its vertices. A hyper-rectangle ℓ is

considered potentially optimal if there exists αK > 0 such that

f̃ (cℓ)−αKγℓ ≤ f̃ (ci)−αKγi, 1 ≤ i ≤ K (7.9)

f̃ (cℓ)−αKγℓ ≤ f̃min − ε| fmin|. (7.10)

The set of potentially optimal hyper-rectangles forms a convex hull for the set point

{ f̃ (ci),γi}. Figure 7.6 illustrates this. Notice that the user defined parameter ε con-

trols whether or not the algorithm performs more of a global or local search.

Although DIRECT has been shown to be highly effective for relatively small

problems and has proven global convergence, it does suffer at higher dimensions

[16, 87, 80, 28] and requires an exhaustive number of function evaluations. In [29],

DIRECT was unable to identify a five well solution to the WS problem when start-

ing with an initial six well configuration and using the constraint in Equation (7.6).

These results are not surprising given that the five well solution has all of the pump-

ing rates lying on the bound constraint. The sampling strategy of DIRECT does not

make it a good candidate for this problem.
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Fig. 7.6 Potentially optimal hyper-rectangles can be found by forming the convex hull of

the set { f (ci),γi}, where ci denotes the center point of the ith hyper-rectangle and γi the

corresponding distance to hyper-rectangle’s vertices

7.3.3 Statistical Emulation

An alternative approach to optimization is statistical emulation, wherein the previ-

ous runs of the computer code are used to train a statistical model, and the model

is used to draw inferences about the location of the optimum. The idea of using a

stochastic process to approximate an unknown function dates back as far as Poincaré

in the 19th century [24]. In particular, a Gaussian Process (GP) is typically used for

the emulation of computer simulators [78, 79]. The output of the simulator is treated

as a random variable Y (x) that depends on the input vector x such that the response

varies smoothly. This smoothness is given by the covariance structure of the GP.

The mean and covariance functions determine the characteristics of the process, as

any finite set of locations has a joint multivariate Gaussian distribution [18, 81]. A

Bayesian approach allows full estimation of uncertainty, which is useful when try-

ing to determine the probability that an unsampled location will be an improvement

over the current known optimum.

Specifically, the uncertainty about future computer evaluations can be quanti-

fied by finding the predictive distribution for new input locations conditional on the

points that have already been evaluated. Since this is now a full probabilistic model

for code output at new locations, any statistic depending upon this output is easily

obtained. The expected improvement at a point x, IE[min( fmin − f (x),0)], is a useful

criterion for choosing new locations for evaluation. The paper by [59] illustrates the

use of this statistic in optimization. Since the improvement is a random variable, this

criterion balances rewarding points where the output is highly uncertain, as well as

where the function is generally predicted to be better than the present best point. A

number of candidate locations are generated from an optimal space filling design.

Then, a GP model is fit to the existing output, and the expected improvement is
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calculated at each candidate location. The points with highest expected improve-

ment are selected as candidates for the new best point.

Standard GP models have several drawbacks, including strong assumptions of

stationarity and poor computational scaling. To reduce these problems, treed Gaus-

sian process (TGP) models partition the input space using a recursive tree structure;

and independent GP models are fit within each partition [37, 38]. Such models are

a natural extension of standard GP models, and combine partitioning ideas with

Bayesian methods to produce smooth fitted functions [9]. The partitions can be fit

simultaneously with the parameters of the embedded GP models using reversible

jump Markov chain Monte Carlo [41].

Note that the statistical emulation via TGP has the disadvantage of computa-

tional expense. As additional points are evaluated, the computational work load of

creating the GP model increases significantly. This coupled with some convergence

issues when TGP approaches the solution indicate that TGP alone is not an effec-

tive method for solving the WS problem. However, TGP is an excellent method for

inclusion in a hybrid because these disadvantages can be overcome.

7.4 Some DFO Hybrids

In order to both take advantage of the benefits of more than one optimization ap-

proach and to try to overcome method-specific shortcomings, two or more optimiza-

tion methods may be combined, forming a hybrid. Hybrid optimization is a popular

approach in the combinatorial optimization community, where metaheuristics (such

as GAs), are combined to improve robustness and blend the distinct strengths of

different approaches [83]. More recently, metaheuristics have been combined with

deterministic methods (such as pattern search) to form hybrids that simultaneously

perform global and local searches [73, 91, 90, 86, 26].

The use of hybrids in the combinatorial optimization community has grown to

include a categorization scheme for hybrids [76] which includes four main charac-

teristics: 1) class of algorithms used to form hybrids, 2) level of hybridization, 3)

order of execution, and 4) control strategy. Choosing algorithms to hybridize is a

significant challenge in forming hybrids. Methods that have complementary advan-

tages and are well suited to the problem of interest should be selected. Hybridization

levels include loosely or tightly coupled. In general, loosely coupled approaches re-

tain the individual identities of the methods being hybridized. In contrast, tightly

coupled hybrids exhibit a strong relationship between the individual pieces and may

share components or functions. Loosely coupled hybrids are advantageous from

both a software development and theoretical perspective. They do not require the

re-implementation of existing methods and also keep theoretical convergence prop-

erties of the individual methods intact. The order of execution of hybrid algorithms

can either be sequential or parallel. Sequentially hybrid methods string together a

set of algorithms head to tail, using the results of a completed run of one algorithm

to seed the next. From this perspective it is often unclear whether or not the previ-

ously executed algorithms should be viewed simply as a preprocessing step, or if
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ensuing algorithm runs should be viewed as post-processing. On the other hand,

parallel hybrids execute the individual methods simultaneously and can thus be

made to be collaborative and share information dynamically to improve perfor-

mance [1, 15]. The control strategy of hybrid algorithms can be either integrative

or collaborative. In a purely integrative approach, one individual algorithm is subor-

dinate to or an embedded component of another. Collaborative methods give equal

importance and control to both algorithms as algorithms merely exchange informa-

tion instead of being an integral part of one another.

Note that the effectiveness of a hybrid approach to optimization may be compro-

mised if the methods combined are not suited to one other or to the application of

interest. In this section, we discuss hybrid optimization in the context of the water

resources management problem WS. Four hybrid methods are described here, only

two of which are successful for the WS problem. We include the two unsuccessful

hybrids to demonstrate the efficacy of tailoring hybrids to address the characteristics

of the problem being solved. To test this design, the hybrids were applied to the WS

problem without a starting point.

7.4.1 APPS-TGP

Some optimization methods have introduced an oracle to predict additional points at

which a decrease in the objective function might be observed. Analytically, an oracle

is free to choose points by any finite process. (See [63] and references therein.)

The addition of an oracle is particularly amenable to a pattern search methods like

APPS. The iterate(s) suggested by the oracle are merely additions to the pattern.

Furthermore, the asynchronous nature of the APPSPACK implementation makes it

adept at handling the evaluation of the additional points. The idea of an oracle is

used as a basis for creating a hybrid optimization scheme which combines APPS

and the statistical emulator TGP.

In the APPS-TGP hybrid, the TGP statistical model serves as the an oracle. The

hopes in utilizing the TGP oracle include added robustness and the introduction of

some global properties to APPSPACK. When the oracle is called, the TGP algorithm

is applied to the set of evaluated iterates in order to choose additional candidate

points. In other words, APPSPACK is still optimizing as normal, but throughout

the optimization process, the iterate pairs (xi, f (xi)) are collected. Then, the TGP

model is fit to the existing output, and the expected improvement is calculated at

each candidate location. The points with highest expected improvement are passed

back to the APPS algorithm to determine if it is a new best point. If not, the point is

merely discarded and the APPS algorithm continues without any changes. However,

if a TGP point is a new best point, the APPSPACK search pattern continues from

that new location. The general flow of this algorithm is illustrated in Figure 7.7.

Note that both APPS and TGP generate points and both methods are informed of

the function values associated with these iterates.

This hybrid technique is loosely coupled as APPS and TGP run independently of

each other. Since the iterates suggested by the TGP algorithm are used in addition
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Fig. 7.7 The flow of the APPS-TGP hybrid. Both APPS and TGP generate iterates. The

iterates are merged into one list. Then, the function value of each iterate is either obtained

from cache or evaluated. Finally, the results are shared with both methods

to the iterates suggested by APPSPACK, there is no adverse affect on the local con-

vergence properties of APPS. As noted earlier, pattern search methods have strong

local convergence properties [25, 66, 85]. However, their weakness is that they are

local methods. In contrast, TGP performs a global search of the feasible region,

but does not have strong local convergence properties. Hence, using the hybridiza-

tion scheme, TGP lends a globalization to the pattern search and the pattern search

further refines TGP iterates by local search. This benefit is clearly illustrated on a

model calibration problem from electrical engineering in [82] and on a groundwater

remediation problem in [39].

APPS-TGP is also collaborative since APPS and TGP are basically run indepen-

dently of one another. From the perspective of TGP, a growing cache of function

evaluations is being cultivated, and the sole task of TGP is to build a model and se-

lect a new set of promising points to be evaluated. The TGP algorithm is not depen-

dent on where this cache of points comes from. Thus in this approach, we may eas-

ily incorporate other optimization strategies where each strategy is simply viewed

as an external point generating mechanism leveraged by TGP. From the perspective

of APPS, points suggested by TGP are interpreted in an identical fashion to other

trial points and are ignored unless deemed better than the current best point held

by APPS. Thus neither algorithm is aware that a concurrent algorithm is running in

parallel. However, the hybridization is integrative in the sense that points submitted

by TGP are given a higher priority in the queue of iterates to be evaluated. In the

parallel execution of APPS and TGP, TGP is given one processor (because it is com-

putationally prohibitive) while APPS directs the use of the remaining processors to

perform point evaluations. Communication between TGP and APPSPACK occurs

intermittently through out the optimization process, whenever TGP completes and

is ready to look at a new cache of points.
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The APPS-TGP method was specifically designed to address the disadvantages

associated with using a local method like APPS. Specifically, APPS usually requires

a “good” starting point to find an optimal solution and not become trapped in a local

minimum. This was demonstrated for the WS problem in [29] where APPS failed to

find the optimal 5-well solution for 100 alternative starting points. The addition of

TGP provides a global scope to help overcome the inherently local characteristics

of APPS. When APPS-TGP was applied to the WS problem, an optimal 5-well

solution was obtained with less than 500 function evaluations.

7.4.2 EAGLS

To address mixed-variable, nonlinear optimization problems (MINLPs) of the form

minimizex ∈ IRnr,z ∈ Z
nb f (z,x)

subject to c(z,x) ≤ 0

zℓ ≤ z ≤ zu

xℓ ≤ x ≤ xu.

(7.11)

where c(x) : IRn → IRm, consider a hybrid of a GA and a direct search. The APPS-GA

hybrid, commonly referred to as EAGLS (Evolutionary Algorithm Guiding Local

Search), uses the GA’s handling of integer and real variables for global search, and

APPS’s handling of real variables in parallel for local search [43].

As previously discussed, a GA carries forward a population of points that are it-

eratively mutated, merged, selected, or dismissed. However, individuals in the pop-

ulation are not given the opportunity to make intergeneration improvements. This

is not reflective of he real world, where an organism is not constant throughout its

life span, but instead can grow, improve, or become stronger. Improvements within

a generation are allowed in EAGLS. The GA still governs point survival, mutation,

and merging as an outer iteration, but, during an inner iteration, individual points

are improved via APPS applied to the real variables, with the integer variables held

fixed. For simplicity, consider the synchronous EAGLS algorithm:

1. Evaluate initial population

2. While not converged Do

a. Perform selection, mutation, crossover

b. Evaluate new points

c. Choose points for local search

d. Make multiple calls to APPS for real-valued subproblems

Of course, to allow the entire population to grow as such, would be computationally

prohibitive. Thus, EAGLS employs a ranking algorithm that takes in to account in-

dividual proximity to other, better points. The goal of this step is to select promising

individuals representing distinct subdomains. Note that the flow of the asynchronous

EAGLS algorithm is slightly different than that of APPS-TGP. In this case, NSGA-

II generates iterates and multiple instances of APPS also generate iterates. Returned
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Fig. 7.8 The flow of EAGLS. The NSGA-II algorithm generate iterates. Then, some iterates

are selected for refinement by multiple instances of APPS. The iterates are merged into one

list, and the function value of each iterate is either obtained from cache or evaluated. Finally,

the results are returned so that the APPS instances and the GA can proceed

function values are distributed to the appropriate instance of APPS or the GA. This

is illustrated in Figure 7.8.

Note that it is the combinatorial nature of integer variables that makes the solution

of MINLPs difficult. If the integer variables are relaxable (i.e. the objective function

is defined for rational variables), more sophisticated schemes such as branch and

bound may be preferred options. However, for simulation-based optimization prob-

lems, the integer variables often represent a descriptive category (ı.e. a color or a

building material) and may lack the natural ordering required for relaxation. That

is, there is may be no well-defined mathematical definition for what is meant by

“nearby.” In the WS problem, the number of wells is not a relaxable variable be-

cause, for example, one-half a well cannot be installed. The other results for the

WS problem given in this chapter consider the strictly real-valued WS formula-

tion. However, since EAGLS was designed to handle MINLPs, it was applied to the

MINLP formulation of WS. Moreover, EAGLS combines a global and local search

in order to take advantage of the global properties and overcome the computational

expense of the GA.

To illustrate the global properties of EAGLS, the problem was solved without

an initial point. In [43], EAGLS was able to locate a five well solution using only

random points in the initial GA population. Moreover, this was done in after about

65 function evaluations. This is an improvement both for the GA and for the local

search method APPS. The function evaluation budget was 3000 and roughly 1000

of those were spent on points that did not satisfy the linear constraint in Equation

(7.5) which means the simulator was never called.
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7.4.3 DIRECT-IFFCO

A simple sequential hybrid was proposed in [8] where the global search strengths

of DIRECT were used to generate feasible starting points for IFFCO. This hybrid

further addresses the weakness that DIRECT may require a large number of func-

tion evaluations to find a highly accurate solution. In that work, DIRECT and IF-

FCO, which was initialized using random points, were compared to the sequen-

tial pairing for a gas pipeline design application and a set of global test problems.

The pipeline problems were significantly challenging since the underlying objective

function would often fail to return a value. This is referred to as a hidden constraint

in simulation-based or black-box optimization. DIRECT showed some evidence of

robustness in terms of locating global minima but often required an excessive num-

ber of function evaluations. IFFCO alone showed mixed performance; sometimes

refining the best solution once a feasible point was located but often converging to

a suboptimal local minimum. For the hybrid, the results were promising. Even if

the function value at the end of the DIRECT iteration was high, IFFCO was able

to avoid entrapment in a local minima using the results. In fact, using DIRECT as

a generator of starting points for local searches has been actively studied over the

years and applied to a variety of applications. For example, in [17] DIRECT was

paired with a sequential quadratic programming method for the local search and

outperformed a variety of other global methods applied to an aircraft design prob-

lem and in [70] a gradient-based local search was shown to accelerate convergence

to the global minimum for a flight control problem.

A different idea was used in [29] where DIRECT was used in conjunction with

IFFCO to find starting points for the WS problem. In this case, DIRECT was used to

minimize an aggregate of constraint violation and thereby identify sets of feasible

starting points and then IFFCO was used to minimize the true objective function.

This approach was not successful in that the points identified by DIRECT were so

close to multiple local minima that IFFCO was unable to improve the objective func-

tion value. In particular, IFFCO would only converge if initial points contained five

wells operating on the bound constraint for their pumping rates, and DIRECT did

not identify any points of this sort. The advantages obtained by combining DIRECT

and IFFCO do not address the characteristics of the WS problem that make it diffi-

cult to solve. However, it should be noted that the idea of using DIRECT and IFFCO

together in this sort of bi-objective approach certainly warrants further investigation

despite the performance on the WS problem.

7.4.4 DIRECT-TGP

Another attempt to improve the local search of DIRECT involves TGP with a

gradient-based method on the surrogate model, which is cheap to minimize [52].

Hybridization in this case is performed at the iteration level in that the center of the

current rectangle is used as a starting point for a local search on the surrogate. Es-

sentially, the procedure for dividing hyper-rectangles in Step 4(b) in Section 2.2.3
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above is replaced with the following steps once the number of function evaluations

is larger than 2n + 1, which allows for the initial hypercube sampling:

1. Build TGP surrogate using all known function evaluations

2. Start local search on the surrogate, constrained to the rectangle, using the center

of the rectangle as the initial point

3. Evaluate f the local optimum, xloc

4. Return f (xloc) instead of f (ci)

The algorithm, although relatively new, has been tested on a suite of bound con-

strained and nonlinearly constrained problems and a cardiovascular modeling

problem proposed in [30].

These promising preliminary results indicate this new hybrid can improve the

local search capabilities of DIRECT. This is achieved without compromising the

computational efficiency and with practically no additional algorithmic parameters

to fine-tune. It should also be noted that other hybrids that attempt to improve the lo-

cal search of DIRECT have been proposed. For example, [44] proposes a DIRECT-

GSS hybrid. The resulting algorithm does show some promising results in terms

of reducing the computational workload required to solve the optimization prob-

lem, but it has only been investigated on test problems from the literature. Further

tests are needed to determine its applicability to engineering applications. Given the

performance of the DIRECT-IFFCO approach above, any local search hybrid with

DIRECT would likely not perform well on the WS problem.

7.5 Summary and Conclusion

The purpose of this Chapter is to introduce a number of derivative-free optimiza-

tion techniques available to address simulation-based problems in engineering. In

this Chapter, we have shown their effectiveness for a problem from hydrological

engineering. The purpose of this exercise was not to compare methods, but instead

to show the wide variety of options available. In addition, we showed that some

techniques do not address the characteristics of some problems. In Table 1, we sum-

marize these results.

Finally, we note that another utility of hybrid optimization methods could be to

inform the decision making processes. Currently, optimization algorithms accept

guesses (or iterates) based solely on some notion of (sufficient) increase or decrease

of the objective function. In order to serve as decision makers, next-generation al-

gorithms must also consider rankings and probability metrics. For example, com-

putational costs can be assessed so that iterates are only evaluated if they meet a

set computational budget. This is particularly important for the expensive objective

functions of simulation-based optimization problems. Moreover, hybridization opti-

mization algorithms can incorporate tools that will allow the user to dismiss subsets

of the domain that exhibit large variances or that exceed critical thresholds. In addi-

tion, hybrid algorithmic frameworks are a step towards finding methods capable of

generating a “robust” set of optimal solution options instead of a single optimum.
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Table 7.2 Summary of the Performance of some Derivative-Free Methods for the WS

Problem

Method Found 5-Well Number of Starting Pt

Solution Fn Evals Required

APPS Y 176 Y

IFFCO Y < 200 Y

DIRECT N – Y

GA Y 161 Y

APPS-TGP Y 492 N

EAGLS Y 65 N

The current state of the art is to accept an iterate as an optimum based on the inabil-

ity to find better guess within a decreasing search region. This may lead to solutions

to design problems that are undesirable due to a lack of robustness to small design

perturbations. Instead, algorithms that allow designers to choose a solution based

on additional criteria can be created in the hybrid framework. For example, a re-

gional optimum could be used to generate a set of multiple solutions from which

the designer can choose.
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Chapter 8  

Simulation-Driven Design in Microwave 
Engineering: Methods

*
 

Slawomir Koziel and Stanislav Ogurtsov 

Abstract. Today, electromagnetic (EM) simulation is inherent in analysis and de-

sign of microwave components. Available simulation packages allow engineers to 

obtain accurate responses of microwave structures. In the same time the task of 

microwave component design can be formulated and solved as an optimization 

problem where the objective function is supplied by an EM solver. Unfortunately, 

accurate simulations may be computationally expensive; therefore, optimization 

approaches with the EM solver directly employed in the optimization loop may be 

very time consuming or even impractical. On the other hand, computationally ef-

ficient microwave designs can be realized using surrogate-based optimization.  In 

this chapter, simulation-driven design methods for microwave engineering are de-

scribed where optimization of the original model is replaced by iterative re-

optimization of its surrogate, a computationally cheap low-fidelity model which, 

in the same time, should have reliable prediction capabilities. These optimization 

methods include space mapping, simulation-based tuning, variable-fidelity opti-

mization, and various response correction techniques. 

Keywords: computer-aided design (CAD), microwave design, simulation-driven 

optimization, electromagnetic (EM) simulation, surrogate-based optimization, 

space mapping, surrogate model, high-fidelity model, low-fidelity model.  

8.1   Introduction 

Computer-aided full-wave electromagnetic analysis has been used in microwave 

engineering for a few decades. Initially, its main application area was design  

verification. Electromagnetic (EM) simulations can be highly accurate but, at the 
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same time, they are computationally expensive. Automated EM-simulation-driven  

optimization was not possible until 1980s when faster CPUs as well as robust  

algorithms became available [1]. During the 1980s, commercial EM simulation 

software packages, e.g., those developed by Ansoft Corporation, Hewlett-Packard, 

and Sonnet Software, started appearing on the market. Formal EM-based optimi-

zation of microwave structures has been reported since 1994 [2]-[4].  

In many situations, theoretical models of the microwave structures can only be 

used to yield the initial designs that need to be further tuned to meet performance 

requirements. Today, EM-simulation-driven optimization and design closure be-

come increasingly important due to complexity of microwave structures and in-

creasing demands for accuracy. Also, EM-based design is a must for a growing 

number of microwave devices such as ultrawideband (UWB) antennas [5] and 

substrate-integrated circuits [6]. For circuits like these, no design-ready theoretical 

models are available, so that design improvement can be only obtained through 

geometry adjustments based on repetitive simulations.  

In this chapter, some major challenges of EM-simulation-driven microwave de-

sign are discussed, and traditional approaches that have been used over the years 

are reviewed. Certain microwave-engineering-specific approaches that aim at re-

ducing the computational cost of the design process (in particular, system decom-

position and co-simulation) are mentioned. We also characterize optimization 

techniques available in commercial EM simulation packages. 

The main focus of this chapter is on surrogate-based approaches that allow 

computationally efficient optimization. Fundamentals of surrogate-based micro-

wave design as well as popular strategies for building surrogate models are dis-

cussed.  Special emphasis is put on surrogates exploiting physics-based low-

fidelity models. 

8.2   Direct Approaches 

Microwave design task can be formulated as a nonlinear minimization problem 

( )*
arg min ( )

f

f
X

U
∈

∈
x

x R x                                                (8.1) 

where Rf ∈ R
m
 denotes the response vector of the device of interest, e.g., the 

modulus of the transmission coefficient |S21| evaluated at m different frequencies. U 

is a given scalar merit function, e.g., a minimax function with upper and lower 

specifications [7]. Vector x
*
 is the optimal design to be determined. Normally, Rf is 

obtained through computationally expensive electromagnetic simulation. It is re-

ferred to as the high-fidelity or fine model. 

The conventional way of handling the design problem (8.1) is to employ the EM 

simulator directly within the optimization loop as illustrated in Fig. 8.1. This direct 

approach faces some fundamental difficulties. The most important one is the compu-

tational cost. EM simulation of a microwave device at a single design can  
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take—depending on the system complexity—as long as several minutes, several 

hours or even a few days. On the other hand, the typical (e.g., gradient-based) opti-

mization algorithms may require dozens or hundreds of EM simulations, which 

makes the optimization impractical. Another difficulty is that the responses obtained 

through EM simulation typically have poor analytical properties. In particular, they 

contain a lot of numerical noise: discretization topology of the simulated structure 

may change abruptly even for small changes of the design variables which is caused 

by adaptive meshing techniques utilized by most modern EM solvers. This, in turn, 

results in the discontinuity of the response function Rf(x). Additional problem for di-

rect EM-based optimization is that the sensitivity information may not be available 

or expensive to compute. Only recently, computationally cheap adjoint sensitivities 

[8] started to become available in some major commercial EM simulation packages, 

although for frequency-domain solvers only [9], [10]. 

It has to be emphasized that probably the most common approach to simula-

tion-driven design used by engineers and designers these days is repetitive  

parameters sweeps. Typically, a number of EM analyses are carried out while 

varying a single design variable. Such a process is then repeated for other vari-

ables. The information obtained through such parameter sweeps is combined with 

engineering experience in order to yield a refined design that satisfies the pre-

scribed specifications. This process is quite tedious and time consuming and, of 

course, requires a substantial designer interaction. 
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Fig. 8.1 Conventional simulation-driven design optimization: the EM solver is directly em-

ployed in the optimization loop. Each modification of the design requires additional simula-

tion of the structure under consideration. Typical (e.g., gradient-based) optimization algo-

rithms may require tens or hundreds of computationally expensive iterations. 

In terms of automated EM-based design, conventional techniques are still in 

use including gradient-based methods (e.g., quasi-Newton techniques [11]), as 

well as derivative free approaches such as Nelder-Mead algorithm [12]. In some  
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areas, particularly for antenna design, population-based search techniques are used 

such as genetic algorithms [13], [14] or particle swarm optimizers [15], [16]. 

These algorithms are mostly exploited to handle issues such as multiple local op-

tima for antenna-related design problems, although they suffer from substantial 

computational overhead. Probably the best picture of the state of the art in the 

automated EM-simulation-based design optimization is given by the methods that 

are available in major commercial software packages such as CST Microwave 

Studio [9], Sonnet Software [17], HFSS [10], or FEKO [18]. All these packages 

offer traditional techniques including gradient-based algorithm, simplex search, or 

genetic algorithms. Practical use of these methods is quite limited. 

One of possible ways of alleviating the difficulties of EM-simulation-based de-

sign optimization is the use of adjoint sensitivities. The adjoint sensitivity ap-

proach dates back to the 1960s work of Director and Rohrer [8]. Bandler et al. 

[19] also addressed adjoint circuit sensitivities, e.g., in the context of microwave 

design. Interest in EM-based adjoint calculations was revived after the work [20] 

was published. Since 2000, a number of interesting publications addressed the ap-

plication of the so-called adjoint variable method (AVM) to different numerical 

EM solvers. These include the time-domain transmission-line modeling (TLM) 

method [21], the finite-difference time-domain (FDTD) method [22], the finite-

element method (FEM) [23], the method of moments (MoM) [24], the frequency 

domain TLM [25], and the mode-matching method (MM) [26]. These approaches 

can be classified as either time-domain adjoint variable methods or frequency-

domain adjoint variable methods. Adjoint sensitivity is an efficient way to speed 

up (and, in most cases, actually make feasible) gradient-based optimization using 

EM solvers, as the derivative information can be obtained with no extra EM simu-

lation of the structure in question. As mentioned before, adjoint sensitivities are 

currently implemented in some major commercial EM simulation packages, particu-

larly in CST Microwave Studio [9], and in HFSS [10]. As for now, adjoint sensitiv-

ity is only available for frequency-domain solvers; however, CST plans to imple-

ment it in time-domain in one of the next releases. 

Another way of improving efficiency of simulation-driven design is circuit de-

composition, i.e., breaking down an EM model into smaller parts and combining 

them in a circuit simulator to reduce the CPU-intensity of the design process [27]-

[29]. Co-simulation or co-optimization of EM/circuit is a common industry solu-

tion to blend EM-simulated components into circuit models. In general through, 

this is only a partial solution though because the EM-embedded co-simulation 

model is still subject to direct optimization. 

8.3   Surrogate-Based Design Optimization  

It appears that computationally efficient simulation-driven design can be per-

formed using surrogate models. Microwave design through surrogate-based opti-

mization (SBO) [7], [30], [31] is the main focus of this chapter. Surrogate-based  
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methods are treated in some detail in Chapter 3. Here, only some background  

information is presented. The primary reason for using SBO approach in micro-

wave engineering is to speed up the design process by shifting the optimization 

burden to an inexpensive yet reasonably accurate surrogate model of the device.  

The generic SBO framework described here that the direct optimization of the 

computationally expensive EM-simulated high-fidelity model Rf is replaced by an 

iterative procedure [7], [32] 

( )( 1) ( )arg min ( )i i

sU+ =
x

x R x                                               (8.2) 

that generates a sequence of points (designs) x
(i) ∈ Xf, i = 0, 1, …, being approxi-

mate solutions to the original design problem (1). Each x
(i+1)

 is the optimal design 

of the surrogate model Rs
(i) 

: Xs
(i)

 → R
m
, Xs

(i)
 ⊆ R

n
, i = 0, 1, … . Rs

(i)
 is assumed to 

be a computationally cheap and sufficiently reliable representation of the fine 

model Rf, particularly in the neighborhood of the current design x
(i)

. Under these 

assumptions, the algorithm (8.2) is likely to produce a sequence of designs that 

quickly approach xf
*
.  

Typically, Rf is only evaluated once per iteration (at every new design x
(i+1)

) for 

verification purposes and to obtain the data necessary to update the surrogate 

model. Since the surrogate model is computationally cheap, its optimization cost 

(cf. (2)) can usually be neglected and the total optimization cost is determined by 

the evaluation of Rf. The key point here is that the number of evaluations of Rf for 

a well performing surrogate-based algorithm is substantially smaller than for any 

direct optimization method (e.g., gradient-based one) [9]. Figure 8.2 shows the 

block diagram of the SBO optimization process. 

If the surrogate model satisfies zero- and first-order consistency conditions with 

the fine model, i.e., Rs
(i)

(x
(i)

) = Rf
 
(x

(i)
) and (∂Rs

(i)
/∂x)(x

(i)
) = (∂Rf/∂x)(x

(i)
) (verifica-

tion of the latter requires Rf
 
 sensitivity data), and the algorithm (2) is enhanced by 

the trust region method [33], then it is provably convergent to a local fine model op-

timum [34]. Convergence can also be guaranteed if the algorithm (2) is enhanced by 

properly selected local search methods [35]. Space mapping [7], [30], [36], [37], is 

an example of a surrogate-based methodology that does not normally rely on the 

aforementioned enhancements; however, it requires the surrogate model to be con-

structed from the physically-based coarse model [7]. This usually gives remarkably 

good performance in the sense of the space mapping algorithm being able to quickly 

locate a satisfactory design. Unfortunately space mapping suffers from convergence 

problems [38] and it is sensitive to the quality of the coarse model and the type of 

transformations used to create the surrogate [39]. 
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Fig. 8.2 Surrogate-based simulation-driven design optimization: the optimization burden is 

shifted to the computationally cheap surrogate model which is updated and re-optimized at 

each iteration of the main optimization loop. High-fidelity EM simulation is only performed 

once per iteration to verify the design produced by the surrogate model and to update the sur-

rogate itself. The number of iterations for a well-performing SBO algorithm is substantially 

smaller than for conventional techniques. 

8.4   Surrogate Models for Microwave Engineering 

There are a number of ways to create surrogate models of microwave and radio-

frequency (RF) devices and structures. They can be classified into two groups: 

functional and physical surrogates. Functional models are constructed from sam-

pled high-fidelity model data using suitable function approximation techniques. 

Physical surrogates exploit fast but limited-accuracy models that are physically re-

lated to the original structure under consideration. 

Functional surrogate models can be created using various function approxima-

tion techniques including low-order polynomials [40], radial basis functions [40], 

kriging [31], fuzzy systems [41], support-vector regression [42], [43], and neural 

networks [44]-[46], the last one probably being the most popular and successful 

approach in this group. Approximation models are very fast, unfortunately, to 

achieve good modeling accuracy, a large amount of training data obtained through 

massive EM simulations is necessary. Moreover, the number of data pairs neces-

sary to ensure sufficient accuracy grows exponentially with the number of the de-

sign variables. Practical models based on function approximation techniques may 

need hundreds or even thousands of EM simulations in order to ensure reasonable  
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accuracy. This is justified in the case of library models created for multiple usage 

but not so much in the case of ad hoc surrogates created for specific tasks such as 

parametric optimization, yield-driven design, and/or statistical analysis at a given 

(e.g., optimal) design. 

Physical surrogates are based on underlying physically-based low-fidelity mod-

els of the structure of interest (denoted here as Rc). Physically-based models de-

scribe the same physical phenomena as the high-fidelity model, however, in a 

simplified manner. In microwave engineering, the high-fidelity model describes 

behavior of the system in terms of the distributions of the electric and magnetic 

fields within (and, sometimes in its surrounding) that are calculated by solving the 

corresponding set of Maxwell equations [47]. Furthermore, the system perform-

ance is expressed through certain characteristics related to its input/output ports 

(such as so-called S-parameters [47]). All of these are obtained as a result of high-

resolution electromagnetic simulation where the structure under consideration is 

finely discretized. In this context, the physically-based low-fidelity model of the 

microwave device can be obtained through:  

• Analytical description of the structure using theory-based or semi-empirical 

formulas,  

• Different level of physical description of the system. The typical example in 

microwave engineering is equivalent circuit [7], where the device of interest 

is represented using lumped components (inductors, capacitors, microstrip 

line models, etc.) with the operation of the circuit described directly by im-

pedances, voltages and currents; electromagnetic fields are not directly  

considered,  

• Low-fidelity electromagnetic simulation. This approach allows us to use the 

same EM solver to evaluate both the high- and low-fidelity models, however, 

the latter is using much coarser simulation mesh which results in degraded 

accuracy but much shorter simulation time.  

The three groups of models have different characteristics. While analytical and 

equivalent-circuit models are computationally cheap, they may lack accuracy and 

they are typically not available for structures such as antennas and substrate-

integrated circuits. On the other hand, coarsely-discretized EM models are available 

for any device. They are typically accurate, however, relatively expensive. The cost 

is a major bottleneck in adopting coarsely-discretized EM models to surrogate-based 

optimization in microwave engineering. One workaround is to build a function-

approximation model using coarse-discretization EM-simulation data (using, e.g., 

kriging [31]). This, however, requires dense sampling of the design space, and 

should only be done locally to avoid excessive CPU cost. Table 8.1 summarizes the 

characteristics of the low-fidelity models available in microwave engineering. A 

common feature of physically-based low-fidelity models is that the amount of 

high-fidelity model data necessary to build a reliable surrogate model is much 

smaller than in case of functional surrogates [48]. 
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Table 8.1 Physically-based low-fidelity models in microwave engineering 

Model Type CPU Cost Accuracy Availability 

Analytical Very cheap Low Rather limited 

Equivalent circuit Cheap Decent Limited (mostly filters) 

Coarsely-discretized 

EM simulation 
Expensive 

Good to very 

good 

Generic: available for all 

structures 

 
Consider an example microstrip bandpass filter [48] shown in Fig. 8.3(a). The 

high-fidelity filter model is simulated using EM solver FEKO [18]. The low-

fidelity model is an equivalent circuit implemented in Agilent ADS [49]  

(Fig. 8.3(b)). Figure 8.4(a) shows the responses (here, the modulus of transmission 

coefficient, |S21|, versus frequency) of both models at certain reference design x
(0)

. 

While having similar shape, the responses are severely misaligned. Figure 8.4(b) 

shows the responses of the high-fidelity model and the surrogate constructed using 

the low-fidelity model and space mapping [48]. The surrogate is build using a sin-

gle training point – high-fidelity model data at x
(0)

 – and exhibits very good 

matching with the high-fidelity model at x
(0)

. Figure 8.4(c) shows the high-fidelity 

and surrogate model response at a different design: the good alignment between 

the models is still maintained. This comes from the fact that the physically-based 

low-fidelity model has similar properties to the high-fidelity one and local model 

alignment usually results in relatively good global matching. 
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Fig. 8.3 Microstrip bandpass filter [48]: (a) geometry, (b) low-fidelity circuit model. 
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Fig. 8.4 Microstrip bandpass filter [48]: (a) high- (—) and low-fidelity (- - -) model re-

sponse at the reference design x(0); (b) responses of the high-fidelity model (—) and surro-

gate model constructed from the low-fidelity model using space mapping (- - -) at x(0); (c) 

responses of the high-fidelity model (—) and the surrogate (- - -) at another design x. The 

surrogate model was constructed using a single high-fidelity model response (at x(0)) but a 

good matching between the models is preserved even away from the reference design, 

which is due to the fact that the low-fidelity model is physically based. 

8.5   Microwave Simulation-Driven Design Exploiting 

Physically-Based Surrogates 

In this section several techniques for computationally efficient simulation-driven 

design of microwave structures are presented.  The focus is on approaches that  

exploit the SBO framework (8.2) and the surrogate model constructed using an 

underlying physically-based low-fidelity model. Discussion covers the following 

methods: space mapping [7], [30], simulation-based tuning [50], shape-preserving 
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response prediction [51], variable-fidelity optimization [52], as well as optimiza-

tion through adaptively adjusted design specifications [53]. 

8.5.1   Space Mapping 

Space mapping (SM) [7], [30] is probably one of the most recognized SBO tech-

niques using physically-based low-fidelity (or coarse) models in microwave engi-

neering. Space mapping exploits the algorithm (8.2) to generate a sequence of ap-

proximate solutions x
(i)

, i = 0, 1, 2, …, to problem (8.1). The surrogate model at 

iteration i, Rs
(i)

, is constructed from the low-fidelity model so that the misalign-

ment between Rs
(i)

 and the fine model is minimized using so-called parameter ex-

traction process, which is the nonlinear minimization problem by itself [7]. The 

surrogate is defined as [30] 

( ) ( )

.( ) ( , )i i

s s g=R x R x p                                               (8.3) 

where Rs.g is a generic space mapping surrogate model, i.e., the low-fidelity model 

composed with suitable transformations, whereas  

( ) ( ) ( )

. .0
arg min || ( ) ( , ) ||

ii k k

i k f s gk
w

=
= −∑

p
p R x R x p                         (8.4) 

is a vector of model parameters and wi.k are weighting factors; a common choice 

of wi.k is wi.k = 1 for all i and all k. 

Various space mapping surrogate models are available [7], [30]. They can be 

roughly categorized into four groups: (i) Models based on a (usually linear) distor-

tion of coarse model parameter space, e.g., input space mapping of the form  

Rs.g(x, p) = Rs.g(x, B, c) = Rc(B·x + c) [7]; (ii) Models based on a distortion of the 

coarse model response, e.g., output space mapping of the form  

Rs.g(x, p) = Rs.g(x, d) = Rc(x) + d [30]; (iii) Implicit space mapping, where the pa-

rameters used to align the surrogate with the fine model are separate from the de-

sign variables, i.e., Rs.g(x, p) = Rs.g(x, xp) = Rc.i(x, xp), with Rc.i being the coarse 

model dependent on both the design variables x and so-called preassigned parame-

ters xp (e.g., dielectric constant, substrate height) that are normally fixed in the 

fine model but can be freely altered in the coarse model [30]; (iv) Custom models 

exploiting parameters characteristic to a given design problem; the most character-

istic example is the so-called frequency space mapping 

Rs.g(x, p) = Rs.g(x, F) = Rc.f(x, F) [7], where Rc.f is a frequency-mapped coarse 

model, i.e., the coarse model evaluated at frequencies different from the original 

frequency sweep for the fine model, according to the mapping ω → f1 + f2ω, with 

F = [f1  f2]
T
.  

Space mapping usually comprises combined transformations. At instance, a 

surrogate model employing input, output, and frequency SM transformations 

would be Rs.g(x, p) = Rs.g(x, c, d, F) = Rc.f(x + c, F) + d. The rationale for this is 

that a properly chosen mapping may significantly improve the performance of the 

space mapping algorithm, however, the optimal selection of the mapping type for 

a given design problem is not trivial [38]. Work has been done to ease the  
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selection process for a given design problem [39], [48]. However, regardless of 

the mapping choice, coarse model accuracy is what principally affects the per-

formance of the space mapping design process. One can quantify the quality of the 

surrogate model through rigorous convergence conditions [38]. These conditions, al-

though useful for developing more efficient space mapping algorithms and auto-

matic surrogate model selection techniques, cannot usually be verified because of 

the limited amount of data available from the fine model. In practice, the most im-

portant criterion for assessing the quality or accuracy of the coarse model is still vis-

ual inspection of the fine and coarse model responses at certain points and/or exam-

ining absolute error measures such as ||Rf(x) – Rc(x)||. 

The coarse model is the most important factor that affects the performance of 

the space mapping algorithm. The first stems from accuracy. Coarse model accu-

racy (more generally, the accuracy of the space mapping surrogate [38]) is the 

main factor that determines the efficiency of the algorithm in terms of finding a 

satisfactory design. The more accurate the coarse model, the smaller the number 

of fine model evaluations necessary to complete the optimization process. If the 

coarse model is insufficiently accurate, the space mapping algorithm may need 

more fine model evaluations or may even fail to find a good quality design. 

The second important characteristic is the evaluation cost. It is essential that the 

coarse model is computationally much cheaper than the fine model because both 

parameter extraction (8.4) and surrogate optimization (8.2) require large numbers 

of coarse model evaluations. Ideally, the evaluation cost of the coarse model 

should be negligible when compared to the evaluation cost of the fine model, in 

which case the total computational cost of the space mapping optimization process 

is merely determined by the necessary number of fine model evaluations. If the 

evaluation time of the coarse model is too high, say, larger than 1% of the fine 

model evaluation time, the computational cost of surrogate model optimization 

and, especially, parameter extraction, start playing important roles in the total cost 

of space mapping optimization and may even determine it. Therefore, practical ap-

plicability of space mapping is limited to situations where the coarse model is com-

putationally much cheaper than the fine model. Majority of SM models reported in 

the literature (e.g., [7], [30], [36]) concern microstrip filters, transformers or junc-

tions where fast and reliable equivalent circuit coarse models are easily available. 

8.5.2   Simulation-Based Tuning and Tuning Space Mapping 

Tuning is ubiquitous in engineering practice. It is usually associated with the 

process of manipulating free or tunable parameters of a device or system after that 

device or system has been manufactured. The traditional purpose of permitting 

tunable elements is (8.1) to facilitate user-flexibility in achieving a desired 

response or behavior from a manufactured outcome during its operation, or (8.2) 

to correct inevitable postproduction manufacturing defects, small due perhaps to 

tolerances, or large due perhaps to faults in the manufacturing process [54]. 

Tuning of an engineering design can be seen, in essence, as a user- or robot-

directed optimization process.  
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Tuning space mapping (TSM) [50] combines the concept of tuning, widely 

used in microwave engineering [55], [56], and space mapping. It is an iterative op-

timization procedure that assumes the existence of two surrogate models: both are 

less accurate but computationally much cheaper than the fine model. The first 

model is a so-called tuning model Rt that contains relevant fine model data (typi-

cally a fine model response) at the current iteration point and tuning parameters 

(typically implemented through circuit elements inserted into tuning ports). The 

tunable parameters are adjusted so that the model Rt satisfies the design specifica-

tions. The second model, Rc is used for calibration purposes: it allows us to trans-

late the change of the tuning parameters into relevant changes of the actual design 

variables; Rc is dependent on three sets of variables: design parameters, tuning pa-

rameters (which are actually the same parameters as the ones used in Rt), and SM 

parameters that are adjusted using the usual parameter extraction process [7] in 

order to have the model Rc meet certain matching conditions. Typically, the model 

Rc is a standard SM surrogate (i.e., a coarse model composed with suitable trans-

formations) enhanced by the same or corresponding tuning elements as the model 

Rt. The conceptual illustrations of the fine model, the tuning model and the cali-

bration model are shown in Fig. 8.5. 

The iteration of the TSM algorithm consists of two steps: optimization of the 

tuning model and a calibration procedure. First, the current tuning model Rt
(i)

 is 

built using fine model data at point x
(i)

. In general, because the fine model with in-

serted tuning ports is not identical to the original structure, the tuning model re-

sponse may not agree with the response of the fine model at x
(i)

 even if the values 

of the tuning parameters xt are zero, so that these values must be adjusted to, say, 

xt.0
(i)

, in order to obtain alignment [50]:  

( ) ( ) ( )

.0 arg min ( ) ( )
t

i i i

t f t t= −
x

x R x R x                                    (8.5) 

In the next step, one optimizes Rt
(i)

 to have it meet the design specifications. Op-

timal values of the tuning parameters xt.1
(i)

 are obtained as follows:  

( )( ) ( )

.1 arg min ( )
t

i i

t t t
U=

x
x R x                                            (8.6) 

Having xt.1
(i)

, the calibration procedure is performed to determine changes in the 

design variables that yield the same change in the calibration model response as 

that caused by xt.1
(i)

 – xt.0
(i)

 [50]. First one adjusts the SM parameters p
(i) 

of the 

calibration model to obtain a match with the fine model response at x
(i)

  

( ) ( ) ( ) ( )

.0arg min ( ) ( , , ) .i i i i

f c t= −
p

p R x R x p x                               (8.7) 

The calibration model is then optimized with respect to the design variables in or-

der to obtain the next iteration point x
(i+1)

  

( 1) ( ) ( ) ( ) ( )

.1 .0arg min ( ) ( , , ) .i i i i i

t t c t

+ = −
x

x R x R x p x                          (8.8) 

Note that  xt.0
(i)

 is used in (8.7), which corresponds to the state of the tuning model 

after performing the alignment procedure (8.5), and xt.1
(i)

 in (8.8), which  
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corresponds to the optimized tuning model (cf. (6)). Thus, (8.7) and (8.8) allow 

finding the change of design variable values x
(i+1)

 – x
(i)

 necessary to compensate 

the effect of changing the tuning parameters from xt.0
(i)

 to xt.1
(i)

.  
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(c)  

Fig. 8.5 Conceptual illustrations of the fine model, the tuning model and the calibration 

model: (a) the fine model is typically based on full-wave simulation, (b) the tuning model 

exploits the fine model “image” (e.g., in the form of S-parameters corresponding to the cur-

rent design imported to the tuning model using suitable data components) and a number of 

circuit-theory-based tuning elements, (c) the calibration model is usually a circuit equiva-

lent dependent on the same design variables as the fine model, the same tuning parameters 

as the tuning model and, additionally, a set of space mapping parameters used to align the 

calibration model with both the fine and the tuning model during the calibration process. 

It should be noted that the calibration procedure described here represents the 

most generic approach. In some cases, there is a formula that establishes an ana-

lytical relation between the design variables and the tuning parameters so that the 

updated design can be found simply by applying that formula [50]. In particular, 

the calibration formula may be just a linear function so that 

x
(i+1)

 = x
(i)

 + s
(i)

∗(xt.1
(i)

 – xt.0
(i)

), where s
(i)

 is a real vector and ∗ denotes a Hadamard 

product (i.e., component-wise multiplication) [50]. If the analytical calibration is 

possible, there is no need to use the calibration model. Other approaches to the 

calibration process can be found in the literature [50], [57]. In some cases (e.g., 

[57]), the tuning parameters may be in identity relation with the design variables, 

which simplified the implementation of the algorithm. 
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The operation of the tuning space mapping algorithm can be clarified using a 

simple example of a microstrip transmission line [50]. The fine model is imple-

mented in Sonnet em [17] (Fig. 8.6(a)), and the fine model response is taken as the 

inductance of the line as a function of the line’s length. The original length of the 

line is chosen to be x
(0)

 = 400 mil with a width of 0.635 mm. The goal is to find a 

length of line such that the corresponding inductance is 6.5 nH at 300 MHz. The 

Sonnet em simulation at x
(0) 

gives the value of 4.38 nH, i.e., Rf(x
(0)

) = 4.38 nH. 
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(d)  

Fig. 8.6 TSM optimization of the microstrip line [50]: (a) original structure of the micro-

strip line in Sonnet, (b) the microstrip line after being divided and with inserted the co-

calibrated ports, (c) tuning model, (d) calibration model. 

The tuning model Rt is developed by dividing the structure in Fig. 8.6(a) into two 

separate parts and adding the two tuning ports as shown in Fig. 8.6(b). A small induc-

tor is then inserted between these ports as a tuning element. The tuning model is im-

plemented in Agilent ADS [47] and shown in Fig. 8.6(c). The model contains the fine 

model data at the initial design in the form of the S4P element as well as the tuning 

element (inductor). Because of Sonnet’s co-calibrated ports technology [56], there is 

a perfect agreement between the fine and tuning model responses when the value of 

the tuning inductance is zero, so that xt.0
(0)

 is zero in this case. 

Next, the tuning model should be optimized to meet the target inductance of 6.5 

nH. The optimized value of the tuning inductance is xt.1
(0)

 = 2.07 nH. 

The calibration model is shown in Fig. 8.6(d). Here, the dielectric constant of the 

microstrip element is used as a space mapping parameter p. Original value of this 

parameter, 9.8, is adjusted using (8.7) to 23.7 so that the response of the calibration 
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model is 4.38 nH at 400 mil, i.e., it agrees with the fine model response at x
(0)

. 

Now, the new value of the microstrip length is obtained using (8.8). In particular, 

one optimizes x with the tuning inductance set to xt.0
(0)

 = 0 nH to match the total in-

ductance of the calibration model to the optimized tuning model response, 6.5 nH. 

The result is x
(1)

 = 585.8 mil; the fine model response at x
(1)

 obtained by Sonnet em 

simulation is 6.48 nH. This result can be further improved by performing a second 

iteration of the TSM, which gives the length of the microstrip line equal to 

x
(2)

 = 588 mil and its corresponding inductance of 6.5 nH. 

Simulation-based tuning and tuning space mapping can be extremely efficient 

as demonstrated in Chapter 12. In particular, a satisfactory design can be obtained 

after just one or two iterations. However, the tuning methodology has limited 

applications. It it well suited for structures such as microstrip filters but it can 

hardly be applied for radiating structures (antennas). Also, tuning of cross-

sectional parameters (e.g., microstrip width) is not straightforward [50]. On the 

other hand, the tuning procedure is invasive in the sense that the structure may 

need to be cut. The fine model simulator must allow such cuts and allow tuning 

elements to be inserted. This can be done using, e.g., Sonnet em [17]. Also, EM 

simulation of a structure containing a large number of tuning ports is computation-

ally far more expensive than the simulation of the original structure (without the 

ports). Depending on the number of design variables, the number of tuning ports 

may be as large as 30, 50 or more [50], which may increase the simulation time by 

one order of magnitude or more. Nevertheless, recent results presented in [58] indi-

cate possibility of speeding up the tuning process by using so-called reduced  

structures. 

8.5.3   Shape-Preserving Response Prediction 

Shape-preserving response prediction (SPRP) [51] is a response correction tech-

nique that takes advantage of the similarity between responses of the high- and 

low-fidelity models in a very straightforward way. SPRP assumes that the change 

of the high-fidelity model response due to the adjustment of the design variables 

can be predicted using the actual changes of the low-fidelity model response. 

Therefore, it is critically important that the low-fidelity model is physically based, 

which ensures that the effect of the design parameter variations on the model re-

sponse is similar for both models. In microwave engineering this property is likely 

to hold, particularly if the low-fidelity model is the coarsely-discretization struc-

ture evaluated using the same EM solver as the one used to simulate the high-

fidelity model. 

The change of the low-fidelidy model response is described by the translation 

vectors corresponding to a certain (finite) number of characteristic points of the 

model’s response. These translation vectors are subsequently used to predict the 

change of the high-fidelity model response with the actual response of Rf at the 

current iteration point, Rf(x
(i)

), treated as a reference. 

Figure 8.7(a) shows the example low-fidelity model response, |S21| in the fre-

quency range 8 GHz to 18 GHz, at the design x
(i)

, as well as the low-fidelity model 

response at some other design x. The responses come from the double folded stub 
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bandstop filter example considered in [51]. Circles denote characteristic points of 

Rc(x
(i)

), selected here to represent |S21| = –3 dB, |S21| = –20 dB, and the local |S21| 

maximum (at about 13 GHz). Squares denote corresponding characteristic points 

for Rc(x), while line segments represent the translation vectors (“shift”) of the 

characteristic points of Rc when changing the design variables from x
(i)

 to x. Since 

the low-fidelity model is physically based, the high-fidelity model response at the 

given design, here, x, can be predicted using the same translation vectors applied 

to the corresponding characteristic points of the high-fidelity model response at 

x
(i)

, Rf(x
(i)

). This is illustrated in Fig. 8.7(b).  

Rigorous formulation of SPRP uses the following notation concerning the re-

sponses: Rf(x) = [Rf(x,ω1) … Rf(x,ωm)]
T
 and Rc(x) = [Rc(x,ω1) … Rc(x,ωm)]

T
, where 

ωj, j = 1, …, m, is the frequency sweep. Let pj
f
 = [ωj

f
  rj

f
]
T
, pj

c0
 = [ωj

c0
 rj

c0
]
T
, and 

pj
c
 = [ωj

c
 rj

c
]

T
, j = 1, …, K, denote the sets of characteristic points of Rf(x

(i)
), Rc(x

(i)
) 

and Rc(x), respectively. Here, ω and r denote the frequency and magnitude compo-

nents of the respective point. The translation vectors of the low-fidelity model re-

sponse are defined as tj = [ωj
t
 rj

t
]
T
, j = 1,…, K, where ωj

t
 = ωj

c
 – ωj

c0
 and rj

t
 = rj

c
 – rj

c0
.  

The shape-preserving response prediction surrogate model is defined as follows 

( ) ( ) ( )

1( ) [ ( , ) ... ( , )]=i i i T

s s s mR Rω ωR x x x                                   (8.9) 

where 

( ) ( )

. 1 1( , ) ( , ( ,{ } )) ( ,{ } )i i t K t K

s j f i j k k j k kR R F R rω ω ω ω= == − +x x                  (8.10) 

for j = 1, …, m. Rf.i (x,ω1) is an interpolation of {Rf(x,ω1), …, Rf(x,ωm)} onto the 

frequency interval [ω1,ωm]. 

The scaling function F interpolates the data pairs {ω1,ω1}, {ω1
f
,ω1

f
–ω1

t
}, …, 

{ωK
f
,ωK

f
–ωK

t
}, {ωm,ωm}, onto the frequency interval [ω1,ωm]. The function R does a 

similar interpolation for data pairs {ω1,r1}, {ω1
f
,r1

f
–r1

t
}, …, {ωK

f
,rK

f
–rK

t
}, {ωm,rm}; 

here r1 = Rc(x,ω1) – Rc(x
r
,ω1) and rm  = Rc(x,ωm) – Rc(x

r
,ωm). In other words, the 

function F translates the frequency components of the characteristic points of 

Rf(x
(i)

) to the frequencies at which they should be located according to the transla-

tion vectors tj, while the function R adds the necessary magnitude component.  

It should be emphasized that shape-preserving response prediction a physically-

based low-fidelity model is critical for the method’s performance. On the other 

hand, SPRP can be characterized as a non-parametric, nonlinear and design-variable 

dependent response correction, and it is therefore distinct from any known space 

mapping approaches. Another important feature that differentiates SPRP from 

space mapping and other approaches (e.g., tuning) is implementation simplicity. 

Unlike space mapping, SPRP does not use any extractable parameters (which are 

normally found by solving a separate nonlinear minimization problem), the prob-

lem of the surrogate model selection [38], [39] (i.e., the choice of the transforma-

tion and its parameters) does not exist, and the interaction between the models is 

very simple (only through the translation vectors (8.3), (8.4)). Unlike tuning 

methodologies, SPRP does not require any modification of the optimized structure 

(such as “cutting” and insertion of the tuning components [50]).  
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Fig. 8.7 SPRP concept: (a) Example low-fidelity model response at the design x(i), Rc(x

(i)) 

(solid line), the low-fidelity model response at x, Rc(x) (dotted line), characteristic points of 

Rc(x
(i)) (circles) and Rc(x) (squares), and the translation vectors (short lines); (b) High-

fidelity model response at x(i), Rf(x
(i)) (solid line) and the predicted high-fidelity model response 

at x (dotted line) obtained using SPRP based on characteristic points of Fig. 8.1(a); characteristic 

points of Rf(x
(i)) (circles) and the translation vectors (short lines) were used to find the character-

istic points (squares) of the predicted high-fidelity model response; low-fidelity model responses 

Rc(x
(i)) and Rc(x) are plotted using thin solid and dotted line, respectively [51]. 

 
If one-to-one correspondence between the characteristic points of the high- and 

low-fidelity model is not satisfied despite use of the coarse-mesh EM-based low-

fidelity model, the sets of corresponding characteristic points can be generated 

based not on distinctive features of the responses (e.g., characteristic response lev-

els or local minima/maxima) but by introducing additional points that are equally 

spaced in frequency and inserted between well defined points [51]. These addi-

tional points not only ensure that the shape-preserving response prediction model 

(8.3), (8.4) is well defined but also allows us to capture the response shape of the 

models even though the number of distinctive features (e.g., local maxima and 

minima) is different for high- and low-fidelity models. 
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8.5.4   Multi-fidelity Optimization Using Coarse-Discretization 

EM Models 

As mentioned in Section 8.4, the most versatile type of physically-based low-

fidelity model in microwave engineering is the one obtained through EM simula-

tion of coarsely-discretized structure of interest. The computational cost of the 

model and its accuracy can be easily controlled by changing the discretization 

density. This feature has been exploited in the multi-fidelity optimization algo-

rithm introduced in [52]. 

The design optimization methodology of [52] is based on a family of coarse-

discretization models {Rc.j}, j = 1,…, K, all evaluated by the same EM solver as the 

one used for the high-fidelity model. Discretization of the model Rc.j+1 is finer than 

that of the model Rc.j, which results in better accuracy but also longer evaluation 

time. In practice, the number of coarse-discretization models is two or three. 

Having the optimized design x
(K)

 of the last (and finest) coarse-discretization 

model Rc.K, the model is evaluated at all perturbed designs around x
(K)

, i.e., at xk
(K)

 = 

[x1
(K)

 … xk
(K) 

+ sign(k)·dk … xn
(K)

]
T
, k = –n, –n+1, …, n–1, n. A notation of R

(k)
 = 

Rc.K(xk
(K)

) is adopted here. This data can be used to refine the final design without di-

rectly optimizing Rf. Instead, an approximation model involving R
(k)

  is set up and 

optimized in the neighborhood of x
(K)

 defined as [x
(K)

 – d, x
(K)

 + d], where d = [d1 d2 

… dn]
T
. The size of the neighborhood can be selected based on sensitivity analysis of 

Rc.1 (the cheapest of the coarse-discretization models); usually d equals 2 to 5 per-

cent of x
(K)

. 

Here, the approximation is performed using a reduced quadratic model q(x) = 

[q1 q2 … qm]
T
, defined as  

2 2

1 .0 .1 1 . . 1 1 .2
( ) ([ ... ] ) ... ...T

j j n j j j n n j n j n n
q q x x x x x xλ λ λ λ λ+= = + + + + + +x       (8.11) 

Coefficients λj.r, j = 1, …, m, r = 0, 1, …, 2n, can be uniquely obtained by solving 

the linear regression problems  
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( ) ( ) ( ) 2 ( ) 2
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              (8.12) 

where xk.j
(K)

 is a jth component of the vector xk
(K)

, and Rj
(k)

 is a jth component of 

the vector R
(k)

, i.e., 

In order to account for unavoidable misalignment between Rc.K and Rf, instead 

of optimizing the quadratic model q, it is recommended to optimize a corrected 

model q(x) + [Rf(x
(K)

) – Rc.K(x
(K)

)] that ensures a zero-order consistency [34] be-

tween Rc.K and Rf. The refined design can be then found as  

( ) ( )

* ( ) ( )

.arg min ( ( ) [ ( ) ( )])
K K

K K

f c KU
− ≤ ≤ +

= + −
x d x x d

x q x R x R x               (8.13) 
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This kind of correction is also known as output space mapping [30]. If necessary, 

the step (8.4) can be performed a few times starting from a refined design, i.e., 

x
*
 = argmin{x

(K)
 – d ≤ x ≤ x

(K)
 + d : U(q(x) + [Rf(x

*
) – Rc.K(x

*
)])} (each iteration 

requires only one evaluation of Rf). 

The design optimization procedure can be summarized as follows (input argu-

ments are: initial design x
(0)

 and the number of coarse-discretization models K): 

1. Set j = 1; 

2. Optimize coarse-discretization model Rc.j to obtain a new design x
(j)

 using 

x
(j–1)

 as a starting point; 

3. Set j = j + 1; if j < K go to 2; 

4. Obtain a refined design x
*
 as in (8.13); 

5. END; 

Note that the original model Rf is only evaluated at the final stage (step 4) of the 

optimization process. Operation of the algorithm in illustrated in Fig. 8.8. Coarse-

discretization models can be optimized using any available algorithm. 

x
(0)

x
(1)

x
(2)

x
(3)

x*

d1

d2

 
 

Fig. 8.8 Operation of the multi-fidelity design optimization procedure for K = 3 (three coarse-

discretization models). The design x(j) is obtained as the optimal solution of the model Rc.j, 

j = 1, 2, 3. A reduced second-order approximation model q is set up in the neighborhood of 

x(3) (gray area) and the final design x* is obtained by optimizing a reduced q as in (8.4). 

 
Typically, the major difference between the responses of Rf and coarse-

discretization models Rc.j is that they are shifted in frequency. This difference can 

be easily absorbed by frequency-shifting the design specifications while optimiz-

ing a model Rc.j. More specifically, suppose that the design specifications are de-

scribed as {ωk.L, ωk.H; sk}, k = 1, ..., ns, (e.g., specifications |S21| ≥ –3 dB for 3 GHz 

≤ ω ≤ 4 GHz, |S21| ≤ –20 dB for 1 GHz ≤ ω ≤ 2 GHz and |S21| ≤ –20 dB for 5 GHz 

≤ ω ≤ 7 GHz would be described as {3, 4; –3}, {1, 2; –20}, and {5, 7; –20}). If the 

average frequency shift between responses of Rc.j and Rc.j+1 is ∆ω, this difference 

can be absorbed by modifying the design specifications to {ωk.L – ∆ω, ωk.H – ∆ω; 

sk}, k = 1, ..., ns. 

As mentioned above, the number K of coarse-discretization models is typically 

two or three. The first coarse-discretization model Rc.1 should be set up so that its 

evaluation time is at least 30 to 100 times shorter than the evaluation time of the 

fine model. The reason is that the initial design may be quite poor so that the ex-

pected number of evaluations of Rc.1 is usually large. By keeping Rc.1 fast, one can 

control the computational overhead related to its optimization. Accuracy of Rc.1 is 

not critical because its optimal design is only supposed to give a rough estimate of  
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the fine model optimum. The second (and, possibly third) coarse-discretization 

model should be more accurate but still at least about 10 times faster than the fine 

model. This can be achieved by proper manipulation of the solver mesh density. 

8.5.5   Optimization Using Adaptively Adjusted Design 

Specifications 

The techniques described in Section 8.5.1 to 8.5.4 aimed at correcting the low-

fidelity model so that it becomes, at least locally, an accurate representation of the 

high-fidelity model. An alternative way of exploiting low-fidelity models in simu-

lation-driven design of microwave structures is to modify the design specifications 

in such a way that the updated specifications reflect the discrepancy between the 

models. This approach is extremely simple to implement because no changes of 

the low-fidelity model are necessary. 

The adaptively adjusted design specifications optimization procedure intro-

duced in [53] consists of the following two simple steps that can be iterated if  

necessary:  

1. Modify the original design specifications in order to take into account the 

difference between the responses of Rf and Rc at their characteristic points. 

2. Obtain a new design by optimizing the coarse model with respect to the 

modified specifications. 

Characteristic points of the responses should correspond to the design specifica-

tion levels. They should also include local maxima/minima of the respective re-

sponses at which the specifications may not be satisfied. Figure 8.9(a) shows fine 

and coarse model response at the optimal design of Rc, corresponding to the band-

stop filter example considered in [53]; design specifications are indicated using 

horizontal lines. Figure 8.9(b) shows characteristic points of Rf and Rc for the 

bandstop filter example. The points correspond to –3 dB and –30 dB levels as well 

to the local maxima of the responses. As one can observe in Fig. 8.9(b) the selec-

tion of points is rather straightforward. 

In the first step of the optimization procedure, the design specifications are modi-

fied (or mapped) so that the level of satisfying/violating the modified specifications 

by the coarse model response corresponds to the satisfaction/violation levels of the 

original specifications by the fine model response. 

More specifically, for each edge of the specification line, the edge frequency is 

shifted by the difference of the frequencies of the corresponding characteristic 

points, e.g., the left edge of the specification line of –30 dB is moved to the right 

by about 0.7 GHz, which is equal to the length of the line connecting the corre-

sponding characteristic points in Fig. 8.9(b). Similarly, the specification levels are 

shifted by the difference between the local maxima/minima values for the respec-

tive points, e.g., the –30 dB level is shifted down by about 8.5 dB because of the 

difference of the local maxima of the corresponding characteristic points of Rf and 

Rc. Modified design specifications are shown in Fig. 8.9(c). 

The coarse model is subsequently optimized with respect to the modified speci-

fications and the new design obtained this way is treated as an approximated  
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solution to the original design problem (i.e., optimization of the fine model with  

respect to the original specifications). Steps 1 and 2 (listed above) can be repeated 

if necessary. Substantial design improvement is typically observed after the first 

iteration, however, additional iterations may bring further enhancement [53]. 
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Fig. 8.9 Bandstop filter example (responses of Rf and Rc are marked with solid and dashed 

line, respectively): (a) fine and coarse model responses at the initial design (optimum of Rc) 

as well as the original design specifications, (b) characteristic points of the responses corre-

sponding to the specification levels (here, –3 dB and –30 dB) and to the local response 

maxima, (c) fine and coarse model responses at the initial design and the modified design 

specifications. 
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In the first step of the optimization procedure, the design specifications are 

modified (or mapped) so that the level of satisfying/violating the modified specifi-

cations by the coarse model response corresponds to the satisfaction/violation lev-

els of the original specifications by the fine model response. It is assumed that the 

coarse model is physically-based, in particular, that the adjustment of the design 

variables has similar effect on the response for both Rf and Rc. In such a case the 

coarse model design that is obtained in the second stage of the procedure (i.e., op-

timal with respect to the modified specifications) will be (almost) optimal for Rf 

with respect to the original specifications. As shown in Fig. 8.9, the absolute 

matching between the models is not as important as the shape similarity. 

In order to reduce the overhead related to coarse model optimization (step 2 of 

the procedure) the coarse model should be computationally as cheap as possible. 

For that reason, equivalent circuits or models based on analytical formulas are pre-

ferred. Unfortunately, such models may not be available for many structures in-

cluding antennas, certain types of waveguide filters and substrate integrated cir-

cuits. In all such cases, it is possible to implement the coarse model using the 

same EM solver as the one used for the fine model but with coarser discretization. 

To some extent, this is the easiest and the most generic way of creating the coarse 

model. Also, it allows a convenient adjustment of the trade-off between the quality 

of Rc (i.e., the accuracy in representing the fine model) and its computational cost. 

For popular EM solvers (e.g., CST Microwave Studio [9], Sonnet em [17], FEKO 

[18]) it is possible to make the coarse model 20 to 100 faster than the fine model 

while maintaining accuracy that is sufficient for the method SPRP. 

When compared to space mapping and tuning, the adaptively adjusted design 

specifications technique appears to be much simpler to implement. Unlike space 

mapping, it does not use any extractable parameters (which are normally found by 

solving a separate nonlinear minimization problem), the problem of the surrogate 

model selection [38], [39] (i.e., the choice of the transformation and its parameters) 

does not exist, and the interaction between the models is very simple (only through 

the design specifications). Unlike tuning methodologies, the method presented in this 

section does not require any modification of the optimized structure (such as “cut-

ting” and insertion of the tuning components [50]). The lack of extractable parame-

ters is its additional advantage compared to some other approached (e.g., space map-

ping) because the computational overhead related to parameter extraction, while 

negligible for very fast coarse model (e.g., equivalent circuit), may substantially in-

crease the overall design cost if the coarse model is relatively expensive (e.g., imple-

mented through coarse-discretization EM simulation). 

If the similarity between the fine and coarse model response is not sufficient the 

adaptive design specifications technique may not work well. In many cases, how-

ever, using different reference design for the fine and coarse models may help. In 

particular, Rc can be optimized with respect to the modified specifications starting 

not from x
(0)

 (the optimal solution of Rc with respect to the original specifications), 

but from another design, say xc
(0)

, at which the response of  Rc is as similar to the re-

sponse of Rf at x
(0) 

as possible. Such a design can be obtained as follows [7]:  
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(0) (0)arg min || ( ) ( ) ||c f c= −
z

x R x R z                                 (8.14) 

At iteration i of the optimization process, the optimal design of the coarse model 

Rc with respect to the modified specifications, xc
(i)

, has to be translated to the cor-

responding fine model design, x
(i)

, as follows x
(i)

 = xc
(i)

 + (x
(0)

 – xc
(0)

). Note that the 

preconditioning procedure (8.14) is performed only once for the entire optimiza-

tion process. The idea of coarse model preconditioning is borrowed from space 

mapping (more specifically, from the original space mapping concept [7]). In prac-

tice, the coarse model can be “corrected” to reduce its misalignment with the fine 

model using any available degrees of freedom, for example, preassigned parameters 

as in implicit space mapping [33]. 

8.6   Summary 

Simulation-driven optimization has become an important design tool in contempo-

rary microwave engineering. Its importance is expected to grow in the future due 

to the rise of the new technologies and the novel classes of devices and systems 

for which traditional design methods are not applicable. The surrogate-based  

approach and methods described in this chapter can make the electromagnetic-

simulation-based design optimization feasible and cost efficient. In Chapter 12, a 

number of applications of the techniques presented here are demonstrated in the 

design of common microwave devices including filters, antennas and interconnect 

structures. 
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Chapter 9 

Variable-Fidelity Aerodynamic Shape Optimization 

Leifur Leifsson and Slawomir Koziel
*
 

Abstract. Aerodynamic shape optimization (ASO) plays an important role in the 

design of aircraft, turbomachinery and other fluid machinery. Simulation-driven 

ASO involves the coupling of computational fluid dynamics (CFD) solvers with 

numerical optimization methods. Although being relatively mature and widely 

used, ASO is still being improved and numerous challenges remain. This chapter 

provides an overview of simulation-driven ASO methods, with an emphasis on 

surrogate-based optimization (SBO) techniques. In SBO, a computationally cheap 

surrogate model is used in lieu of an accurate high-fidelity CFD simulation in the 

optimization process. Here, a particular focus is given to SBO exploiting surrogate 

models constructed from corrected physics-based low-fidelity models, often  

referred to as variable- or multi-fidelity optimization. 

9.1   Introduction 

Aerodynamic and hydrodynamic design optimization is of primary importance in 

several disciplines [1-3]. In aircraft design, both for conventional transport aircraft 

and unmanned air vehicles, the aerodynamic wing shape is designed to provide 

maximum efficiency under a variety of takeoff, cruise, maneuver, loiter, and land-

ing conditions [1, 4-7]. Constraints on aerodynamic noise are also becoming in-

creasingly important [8, 9]. In the design of turbines, such as gas, steam, or wind 

turbines, the blades are designed to maximize energy output for a given working 

fluid and operating conditions [2, 10]. The shapes of the propeller blades of ships 

are optimized to increase efficiency [11]. The fundamental design problem, com-

mon to all these disciplines, is to design a streamlined wing (or blade) shape that 

provides the desired performance for a given set of operating conditions, while at 

the same time fulfilling one or multiple design constraints [12-20]. 
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Fig. 9.1 A CAD drawing of a typical transport aircraft with a turbofan jet engine. The air-

craft wing and the turbine blades of the turbofan engines are streamlined aerodynamic  

surfaces defined by airfoil sections 

In the early days of engineering design, the designer would have to rely on ex-

perience and physical experiments. Nowadays, most engineering design is per-

formed using computational tools, especially in the early phases, i.e., conceptual 

and preliminary design. This is commonly referred to as simulation-driven (or si-

mulation-based) design. Physical experiments are normally performed at the final 

design stages only, mostly for validation purposes. The fidelity of the computa-

tional methods used in design has been steadily increasing. Over forty years ago, 

the computational fluid dynamic (CFD) tools were only capable of simulating po-

tential flow past simplified wing configurations [1, 21]. Today’s commercial CFD 

tools, e.g., [22, 23], are capable of simulating three-dimensional viscous flows 

past full aircraft configurations using the Reynolds-Averaged Navier-Stokes 

(RANS) equations with the appropriate turbulence models [24]. 

The use of optimization methods in the design process, either as a design sup-

port tool or for automated design, has now become commonplace. In aircraft de-

sign, the use of numerical optimization techniques began in the mid 1970’s by 

coupling CFD tools with gradient-based optimization methods [1]. Substantial 

progress has been made since then, and the exploitation of higher-fidelity meth-

ods, coupled with optimization techniques, has led to improved design efficiency 

[4, 12-16]. An overview of the relevant work is provided in the later sections. In 

spite of being widespread, simulation-driven aerodynamic design optimization  

involves numerous challenges: 

• High-fidelity CFD simulations are computationally expensive. A CFD si-

mulation involves solving the governing flow equations on a computa-

tional mesh. The resulting system of algebraic equations can be very large, 

with a number of unknowns equal to the product of the number of flow va-

riables and the number of mesh points. For a three-dimensional turbulent 

RANS flow simulation with one million mesh points, and a two-equation 

turbulence model, there will be seven flow variables, leading to an alge-

braic system of seven million equations with seven million unknowns. De-

pending on the computational resources, this kind of simulation can take 
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many days on a parallel computer [25]. In the corresponding  

two-dimensional case, simulations on meshes with over one hundred thou-

sand mesh points are not uncommon. A single simulation in this case can 

take over one hour on a typical desktop computer. 

• Design optimization normally requires a large number of simulations. For 

example, even in the case of a two-dimensional airfoil shape optimization 

with three design variables, a gradient-based optimization method can re-

quire over one hundred function evaluations, and optimization process 

could take as long as one week [26]. For higher-dimensional problems, the 

required number function evaluations may be substantially larger. 

• A large number of design variables. Typically, an airfoil shape can be de-

scribed accurately with, say, ten to fifteen design variables [27]. An entire 

transport wing shape might require a few (say three to seven) airfoils at 

various spanwise locations, leading to at least thirty design variables, aside 

from the planform variables (e.g., span, sweep, twist) [4]. 

• Multiple operating conditions [15] (e.g., a range of Mach numbers) and 

multiple objectives (e.g., minimum take-off gross weight, minimum drag, 

minimum noise) [8] may need to considered in the design process. 

• Uncertainty in the operating conditions and in the airfoil shape may need to 

be taken into account, leading to the need of carrying out stochastic analysis, 

which is always more time consuming than a deterministic one [28]. 

• The simulation results normally include numerical noise [29]. This can be 

due to partially converged solutions or due to badly generated computa-

tional meshes. 

• The objectives, e.g., the drag force, can be numerically sensitive to mesh 

resolution [30]. 

• Coupling of the aerodynamics with other disciplines should be considered 

as well. For example, the coupling of the aerodynamic load with the wing 

structure by way of structural analysis [31]. This is referred to as multidis-

ciplinary design and optimization (MDO). 

The above remarks indicate that high-fidelity CFD simulations are computation-

ally far too expensive to be used in a direct, simulation-based design optimization, 

especially when using conventional, gradient-based techniques. Any further im-

provement to the overall efficiency of the design process can only be achieved by 

developing more efficient optimization methods, i.e., reducing the number of 

high-fidelity CFD simulations required to yield an optimized design, and/or em-

ploying more powerful computing resources. 

An important research area in the field of aerodynamic optimization is focused 

on employing the surrogate-based optimization (SBO) techniques [32, 33]. One of 

the major objectives is to reduce the number of high-fidelity model evaluations, 

and thereby making the optimization process more efficient. In SBO, the accurate 

but computationally expensive high-fidelity CFD simulations are replaced—in the 
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optimization process—by a cheap surrogate model. In this chapter, we provide a 

review of some representative works on aerodynamic shape optimization relating 

both to the direct [1, 4, 10, 12-21] and the surrogate-based optimization ap-

proaches [29, 31-33]. In particular, the main emphasis of the chapter is on the 

SBO approach exploiting surrogate models constructed from corrected physics-

based low-fidelity models [26, 34-38]. This is often referred to as variable- or 

multi-fidelity optimization. 

The chapter is organized as follows. In Section 9.2, we formulate the aerody-

namic shape optimization problem using the example of airfoil design. The basics 

of the CFD modeling and simulation process are described in Section 9.3. Direct 

CFD-driven optimization is discussed in Section 9.4, whereas the SBO method-

ologies are presented in Section 9.5. Section 9.6 concludes the chapter. 

9.2   Problem Formulation 

Aerodynamic design optimization includes a variety of specific problems ranging 

from two-dimensional airfoil shape optimization [13] to three-dimensional wing 

(or blade) design [4], involving one or several objective functions [19, 39], as well 

as one or multiple operating conditions [15, 27]. In this chapter, in order to high-

light the formulation, design challenges and solution methodologies, we concen-

trate on airfoil shape optimization for one representative operating condition, and 

with a single objective function. 

An airfoil is a streamlined aerodynamic surface such as the one shown in Fig. 9.2. 

The length of the airfoil is called the chord and is denoted by c. The thickness, de-

noted by t, varies along the chord line. The curvature, called the camber, described by 

the mean camber line, varies also along the chord line. The leading-edge (LE) is  

normally rounded and the trailing-edge (TE) is normally sharp, either closed or open. 

t

VV

l

d

c

x

z

p

LE
TE

Mean camber line
F

 

Fig. 9.2 A single-element airfoil section (this solid line) of chord length c and thickness t. 

V∞ is at an angle of attack α relative to the x-axis. F is the force acting on the airfoil due to 

the airflow, where the component perpendicular to V∞ is called the lift force l and the com-

ponent parallel to V∞ is called the drag force d. p is the pressure acting normal to a surface 

element of length ds, and τ is the viscous wall shear stress acting parallel to the surface 

element. θ  is the angle that p and τ make relative to the z- and x-axis, respectively, positive 

clockwise 
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The function of the airfoil is to generate a lift force l (a force component  

perpendicular to the free-stream) at a range of operating conditions (Mach number 

M∞, Reynolds number, angle of attack α). Normally, the drag force d (a force com-

ponent parallel to the free-stream) is to be minimized. These forces are due to the 

pressure distribution p (acting normal to the surface) and the shear stress distribu-

tion τ (acting parallel to the surface) over the surface of the airfoil. A detailed de-

scription of their calculation is given in Section 9.3.2.4. The forces are written in 

non-dimensional form. They are called the lift coefficient and the drag coefficient. 

The lift coefficient is defined as 

 

Sq

l
Cl

∞

≡

                                                         

(9.1) 

 

where l is the magnitude of the lift force, q∞ ≡ (1/2)ρ∞V∞
2

 
is the dynamic pressure, 

ρ∞ is the air density, V∞ is the free-stream velocity, and S is a reference surface. 

For a two-dimensional airfoil, the reference area is taken to be the chord length 

multiplied by a unit depth, i.e., S = c. Similarly, the drag coefficient is defined as 

 

Sq

d
Cd

∞

≡

                                                         

(9.2) 

 

where d is the magnitude of the drag force. 

There are two main approaches to airfoil design. One is to design the airfoil 

section in order to maximize its performance. This is called direct design, and the 

most common design setups include lift maximization, drag minimization, and 

lift-to-drag ratio maximization [14]. Another way is to define a priori a specific 

flow behavior that is to be attained. The airfoil shape is then designed to achieve 

this flow behavior. This is called inverse design and, typically, a target airfoil  

surface pressure distribution is prescribed [40]. 

Table 9.1 Typical problem formulations for two-dimensional airfoil shape optimization.  

Additionally a constraint on the minimum allowable airfoil cross-sectional area is included. 

Case f(x) g1(x)  

Lift maximization -Cl(x) Cd(x) – Cd
limit

 ≤ 0  

Drag minimization Cd(x) Cl
limit

 – Cl(x) ≤ 0  

L/D maximization -Cl(x)/Cd(x) Cl
limit

 – Cl(x) ≤ 0  

Inverse design ∫ − dsCC pp
2target ))((21 x    

In general, aerodynamic shape optimization can be formulated as a nonlinear 

minimization problem, i.e., for a given operating condition, solve 
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(9.3) 

 

where f(x) is the objective function, x is the design variable vector (parameters de-

scribing the airfoil shape), gj(x) are the design constraints, and l and u are the low-

er and upper bounds, respectively. The detailed formulation depends on the par-

ticular design problem. Typical problem formulations for two-dimensional airfoil 

optimization are listed in Table 9.1. Additional constraints are often prescribed. 

For example, to account for the wing structural components inside the airfoil, one 

sets a constraint on the airfoil cross-sectional area, which can be formally written 

as g2(x) = Amin – A(x) ≤ 0, where A(x) is the cross-sectional area of the airfoil for 

the design vector x and Amin is the minimum allowable cross-sectional area. Other 

constraints can be included depending on the design situation, e.g., a maximum 

pitching moment or a maximum local allowable pressure coefficient [41]. 

An aircraft wing and a turbomachinery blade are three-dimensional aerody-

namic surfaces. A schematic of a typical wing (or a blade) planform is shown in 

Fig. 9.3, where—at each spanstation (numbered 1 through 4)—the wing cross-

section is defined by an airfoil shape. The number of spanstations can be smaller 

or larger than four, depending on the design scenario. Between each station, there 

is a straight-line wrap. Parameters controlling the planform shape include the wing 

span, the quarter-chord wing sweep angle, the chord lengths and thickness-to-

chord ratio at each spanstation, the wing taper ratio, and the twist distribution. 

Numerical design optimization of the three-dimensional wing (or blade) is per-

formed in a similar fashion as for the two-dimensional airfoil [4]. In the problem for-

mulation, the section lift and drag coefficients are replaced by the overall lift and drag 

coefficients. However, the number of design variables is much larger and the fluid 

flow domain is three-dimensional. These factors increase the computational burden, 

and the setup of the optimization process becomes even more important [4]. 

V∞
y

x
b/2

1

2

3

4

Λ

 

Fig. 9.3 A schematic of a wing planform of semi-span b/2 and quarter chord sweep angle 

Λ. Other planform parameters (not shown) are the taper ratio (ratio of tip chord to root 

chord) and the twist distribution. V∞ is the free-stream speed 
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The problem formulations presented above apply to a single operating  

condition (Mach number, Reynolds number, angle of attack) and a single objec-

tive function. An airfoil optimized for a single operating point may have severe 

performance degradation for off-design points, or, in some cases, even a small de-

viation from the design point could result in a dramatic change in the lift and drag  

coefficients [15, 19, 28]. 

Robust optimization is employed to improve the general wing/blade perform-

ance at the optimal solution, in particular, to make it insensitive to small perturba-

tions of the design variables or the operating conditions. In robust optimization, 

the objective is to achieve consistent performance improvement over a given 

range of uncertainty parameters. Example work on this subject include the airfoil 

optimization for a consistent drag reduction over a Mach number range [28, 39], 

also called multi-point optimization, and the aerodynamic design of a turbine 

blade airfoil shape taking into account the performance degradation due to  

manufacturing uncertainties [42]. 

In many cases, several (often competing) objectives may have to be considered 

at the same time. This is referred to as multi-objective design optimization. For 

example, during the take-off and landing of an aircraft, limits on the external noise 

are becoming increasingly important, and have to be accounted for in the design 

process [8, 9]. On the other hand, the search for robust airfoil designs  

can be treated as multi-objective optimization, i.e., maximizing robustness and 

performance simultaneously (since these are very likely conflicting objectives) 

[42]. 

9.3   Computational Fluid Dynamic Modeling 

This section presents a brief introduction to the elements of a CFD analysis. We 

introduce the governing fluid flow equations and explain the hierarchy of simpli-

fied forms of the governing equations which are commonly used in aerodynamic 

design. The CFD process is then illustrated with an example two-dimensional  

simulation of the flow past an airfoil at transonic flow conditions. 

9.3.1   Governing Equations 

The fluid flow past an aerodynamic surface is governed by the Navier-Stokes equ-

ations. For a Newtonian fluid, compressible viscous flows in two dimensions, 

without body forces, mass diffusion, finite-rate chemical reactions, heat conduc-

tion, or external heat addition, the Navier-Stokes equations, can be written in  

Cartesian coordinates as [24] 

0=
∂

∂
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(9.4) 
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where U, E, and F are vectors given by 
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(9.5) 

Here, ρ is the fluid density, u and v are the x and y velocity components, respec-

tively, p is the static pressure, Et = ρ (e+V
2
/2) is the total energy per unit volume, e 

is the internal energy per unit mass, V
2
/2 is the kinetic energy, and τ is the viscous 

shear stress tensor given by [24] 
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(9.6) 

where µ  is the dynamic viscosity of the fluid. 

The first row of Eq. (9.6) corresponds to the continuity equation, the second 

and third rows are the momentum equations, and the fourth row is the energy 

equation. These four scalar equations contain five unknowns, namely (ρ, p, e, u, 

v). An equation of state is needed to close the system of equations. For most prob-

lems in gas dynamics, it is possible to assume a perfect gas, which is defined as a 

gas whose intermolecular forces are negligible. A perfect gas obeys the perfect gas 

equation of state [24] 

 

RTp ρ=

                                                           

(9.7) 

 

where R is the gas constant. 

The governing equations are a set of coupled, highly nonlinear partial differen-

tial equations. The numerical solution of these equations is quite challenging. 

What complicates things even further is that all flows will become turbulent above 

a critical value of the Reynolds number Re = VL/υ, where V and L are representa-

tive values of velocity and length scales and υ is the kinematical viscosity. Turbu-

lent flows are characterized by the appearance of statistical fluctuations of all the 

variables (ρ, p, e, u, v) around mean values. 

By making appropriate assumptions about the fluid flow, the governing equa-

tions can be simplified and their numerical solution becomes computationally less 

expensive. In general, there are two approaches that differ in either neglecting the 

effects of viscosity or including them into the analysis. The hierarchy of the gov-

erning flow equations depending on the assumptions made about the fluid flow 

situation is shown in Fig. 9.4. 
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Navier-Stoke Equations

Newtonian fluid, compressible, viscous, unsteady, heat-conducting

Direct

Numerical

Simulation

(DNS)

Euler Equations

Potential or Full Potential Equation

Laplace’s Equation

Prandtl-Glauert Equation

Transonic Small-Disturbance Equation

Large-Eddy Simulation (LES)

Reynolds Equations (RANS)

Thin Layer N-S Equations

Boundary Layer Equations

Inviscid flow assumption

Irrotational flow

Weak shocks

Incompressible flow
Small disturbance

approximation

DNS of large scale fluctuations

Model small scales

Treat turbulence via Reynolds

averaging and use a turbulence model

Restrict viscous effects to gradients

normal to bodies (directional bias)

Prandtl boundary layer assumption

(pressure constant across layer and

leading viscous term only)

  

Fig. 9.4 A hierarchy of the governing fluid flow equations with the associated assumptions 

and approximations 

Direct Numerical Simulation (DNS) has as objective to simulate the whole range 
of the turbulent statistical fluctuations at all relevant physical scales. This is a for-
midable challenge, which grows with increasing Reynolds number as the total 
computational effort for DNS simulations is proportional to Re

3
 for homogeneous 

turbulence [25]. Due to limitations of computational capabilities, DNS is not avail-
able for typical engineering flows such as those encountered in airfoil design for 
typical aircraft and turbomachinery, i.e., with Reynolds numbers from 10

5
 to 10

7
. 

Large-Eddy Simulation (LES) is of the same category as DNS, in that it com-
putes directly the turbulent fluctuations in space and time, but only above a certain 
length scale. Below that scale, the turbulence is modeled by semi-empirical laws. 
The total computational effort for LES simulations is proportional to Re

9/4
, which 

is significantly lower than for DNS [25]. However, it is still excessively high for 
large Reynolds number applications. 

The Reynolds equations (also called the Reynolds-averaged Navier-Stokes eq-

uations (RANS)) are obtained by time-averaging of a turbulent quantity into their 
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mean and fluctuating components. This means that turbulence is treated through 

turbulence models. As a result, a loss in accuracy is introduced since the available 

turbulence models are not universal. A widely used turbulence model for simula-

tion of the flow past airfoils and wings is the Spalart-Allmaras one-equation turbu-

lence model [43]. The model was developed for aerospace applications and is con-

sidered to be accurate for attached wall-bounded flows and flows with mild 

separation and recirculation. However, the RANS approach retains the viscous ef-

fects in the fluid flow, and, at the same time, significantly reduces the computa-

tional effort since there is no need to resolve all the turbulent scales (as it is done 

in DNS and partially in LES). This approach is currently the most widely applied 

approximation in the CFD practice and can be applied to both low-speed, such as 

take-off and landing conditions of an aircraft, and high-speed design [25]. 

The inviscid flow assumption will lead to the Euler equations. These equations 

hold, in the absence of separation and other strong viscous effects, for any shape 

of the body, thick or thin, and at any angle of attack [44]. Shock waves appear in 

transonic flow where the flow goes from being supersonic to subsonic. Across the 

shock, there is almost a discontinuous increase in pressure, temperature, density, 

and entropy, but a decrease in Mach number (from supersonic to subsonic). The 

shock is termed weak if the change in pressure is small, and strong if the change in 

pressure is large. The entropy change is of third order in terms of shock strength. 

If the shocks are weak, the entropy change across shocks is small, and the flow 

can be assumed to be isentropic. This, in turn, allows for the assumption of irrota-

tional flow. Then, the Euler equations cascade to a single nonlinear partial differ-

ential equation, called the full potential equation (FPE). In the case of a slender 

body at a small angle of attack, we can make the assumption of a small distur-

bance. Then, the FPE becomes the transonic small-disturbance equation (TSDE). 

These three different sets of equations, i.e., the Euler equations, FPE, and TSDE, 

represent a hierarchy of models for the analysis of inviscid, transonic flow past 

airfoils [44]. The Euler equations are exact, while FPE is an approximation (weak 

shocks) to those equations, and TSDE is a further approximation (thin airfoils at 

small angle of attack). These approaches can be applied effectively for high-speed 

design, such as the cruise design of transport aircraft wings [13, 14] and the design 

of turbomachinery blades [2]. 

There are numerous airfoil and wing models that are not typical CFD models, 

but they are nevertheless widely used in aerodynamic design. Examples of such 

methods include thin airfoil theory, lifting line theory (unswept wings), vortex lat-

tice methods (wings), and panel methods (airfoils and wings). These methods are 

out of the scope of this chapter, but the interested reader is directed to [45] and 

[46] for the details. In the following section, we describe the elements of a typical 

CFD simulation of the RANS or Euler equations. 

9.3.2   Numerical Modeling 

In general, a single CFD simulation is composed of four steps, as shown in  

Fig. 9.5: the geometry generation, meshing of the solution domain, numerical so-

lution of the governing fluid flow equations, and post-processing of the flow  
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results, which involves, in the case of numerical optimization, calculating the  

objectives and constraints. We discuss each step of the CFD process and illustrate 

it by giving an example two-dimensional simulation of the flow past the NACA 

2412 airfoil at transonic flow conditions. 

9.3.2.1   Geometry 

Several methods are available for describing the airfoil shape numerically, each 

with its own benefits and drawbacks. In general, these methods are based on two 

different approaches, either the airfoil shape itself is parameterized, or, given an 

initial airfoil shape, the shape deformation is parameterized. 

Evaluate objective(s) 

and constraints

Flow solution

Generate grid

Generate geometry

 

Fig. 9.5 Elements of a single CFD simulation in numerical airfoil shape optimization 

The shape deformation approach is usually performed in two steps. First, the 

surface of the airfoil is deformed by adding values computed from certain  

functions to the upper and lower sides of the surfaces. Several different types of 

functions can be considered, such as the Hicks-Henne bump functions [1], or the 

transformed cosine functions [47]. After deforming the airfoil surface, the compu-

tational grid needs to be regenerated. Either the whole grid is regenerated based on 

the airfoil shape deformation, or the grid is deformed locally, accounting for the 

airfoil shape deformation. The latter is computationally more efficient. An exam-

ple grid deformation method is the volume spline method [47]. In some cases, the 

first step described here above is skipped, and the grid points on the airfoil surface 

are used directly for the shape deformation [14]. 

Numerous airfoil shape parameterization methods have been developed. The 

earliest development of parameterized airfoil sections was performed by the Na-

tional Advisory Committee for Aeronautics (NACA) in the 1930’s [48]. Their de-

velopment was derived from wind tunnel experiments, and, therefore, the shapes 

generated by this method are limited to those investigations. However, only three 

parameters are required to describe their shape. Nowadays, the most widely used 

airfoil shape parameterization methods are the Non-Uniform Rational B-Spline 
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(NURBS) [27], and the Bézier curves [49] (a special case of NURBS). These me-

thods use a set of control points to define the airfoil shape and are general enough 

so that (nearly) any airfoil shape can be generated. In numerical optimization, 

these control points are used as design variables and they provide sufficient con-

trol of the shape so that local changes on the upper and lower surfaces can be 

made separately. The number of control points varies depending on how accu-

rately the shape is to be controlled. NURBS requires as few as thirteen control 

points to represent a large family of airfoils [27]. Other parameterization methods 

include the PARSEC method [50], which uses 11 specific airfoil geometry pa-

rameters (such as leading edge radius, and upper and lower crest location includ-

ing curvature), and the Bezier-PARSEC method [51], which combines the Bezier 

and PARSEC methods. 

In this chapter, for the sake of simplicity, we use the NACA airfoil shapes [48] 

to illustrate some variable-fidelity optimization methods. In particular, we use the 

NACA four-digit airfoil parameterization method, where the airfoil shape is de-

fined by three parameters m (the maximum ordinate of the mean camberline as a 

fraction of chord), p (the chordwise position of the maximum ordinate) and t/c (the 

thickness-to-chord ratio). The airfoils are denoted by NACA mpxx, where xx is the 

thickness-to-chord ratio, t/c. 

The NACA airfoils are constructed by combining a thickness function yt(x) 

with a mean camber line function yc(x). The x-coordinates are [48] 

θsin, tlu yxx ∓=

                                                     

(9.8) 

and the y-coordinates are 

θcos, tclu yyy ±=

                                                   

(9.9) 

where u and l refer to the upper and lower surfaces, respectively, yt(x) is the thick-

ness function, yc(x) is the mean camber line function, and 
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is the mean camber line slope. The NACA four-digit thickness distribution is given 

by 
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where a0 = 1.4845, a1 = 0.6300, a2 = 1.7580, a3 = 1.4215, a4 = 0.5075, and t is the 

maximum thickness. The mean camber line is given by 
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(9.12) 

Three example NACA four-digit airfoils are shown in Fig. 9.6. 
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Fig. 9.6 Shown are three different NACA four-digit airfoil sections. NACA 0012 (m = 0, p 

= 0, t/c = 0.12) is shown by a solid line (-). NACA 2412 (m = 0.02, p = 0.4, t/c = 0.12) is 

shown by a dash line (--). NACA 4608 (m = 0.04, p = 0.6, t/c = 0.08) is shown by a dash-

dot line (-⋅-) 

9.3.2.2   Computational Grid 

The governing equations are solved on a computational grid. The grid needs to re-

solve the entire solution domain, as well as the detailed airfoil geometry. Further-

more, the grid needs to be sufficiently fine to capture the flow physics accurately. 

For example, a fine grid resolution is necessary near the airfoil surface, especially 

near the LE where the flow gradients are large. Also, if viscous effects are in-

cluded, then the grid needs to be fine near the entire airfoil surface (and any other 

wall surface in the solution domain). The grid can be much coarser several chord 

lengths away from the airfoil and in the farfield. For a detailed discussion on grid 

generation the reader is referred to [24] and [25]. 

For illustration purposes, a typical grid for an airfoil used in aircraft design, 

generated using the computer program ICEM CFD [52], is shown in Fig. 9.7. This 

is a structured curvilinear body-fitted grid of C-topology (a topology that can be 

associated to the letter C, i.e., at the inlet the grid surrounds the leading-edge of 

the airfoil, but is open at the other end). The size of the computational region is 

made large enough so that it will not affect the flow solution. In this case, there are 

24 chord lengths in front of the airfoil, 50 chord lengths behind it, and 25 chord 

lengths above and below it. The airfoil leading-edge (LE) is located at the origin. 

9.3.2.3   Flow Solution 

Most commercially available CFD flow solvers are based on the Finite Volume 

Method (FVM). According to FVM, the solution domain is subdivided into a fi-

nite number of small control volumes (cells) by a grid. The grid defines the boun-

daries of the control volumes, while the computational node lies at the center of 

the control volume. Integral conservation of mass, momentum, and energy are sat-

isfied exactly over each control volume. The result is a set of linear algebraic eq-

uations, one for each control volume. The set of equations are then solved itera-

tively, or simultaneously. Iterative solution is usually performed with relaxation to 

suppress numerical oscillations in the flow solution that result from numerical er-

rors. The iterative process is repeated until the change in the flow variables in two 
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subsequent iterations becomes smaller than the prescribed convergence threshold. 

Further reading on the FVM and solution procedures can be found in [24, 25]. 

The iterative convergence is normally examined by monitoring the overall re-

sidual, which is the sum (over all the cells in the computational domain) of the L
2
 

norm of all the governing equations solved in each cell. Moreover, the lift and 

drag forces coefficients are monitored for convergence, since these are the figures 

interest in airfoil shape optimization. 
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Fig. 9.7 (a) An example computational grid for the NACA 0012 airfoil with a C-topology, 

(b) a view of the computational grid close to the airfoil 

As an illustration, we consider the FVM-based computer code FLUENT [22] 

for the fluid flow simulations. Compressible inviscid flow past the NACA 2412 

airfoil at Mach number M∞ = 0.75 and an angle of attack α = 1 degree is simulated 

using the Euler equations and a similar grid as shown in Fig. 9.7. The convergence 
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of the residuals for mass, momentum, and energy is shown in Fig. 9.8(a) and the 

convergence of the lift and drag coefficients is shown in Fig. 9.8(b). The limit on 

the residuals to indicate convergence was set to 10
-6

. The solver needed 216 itera-

tions to reach full convergence of the flow solution. However, only about 50 itera-

tions or so are necessary to reach convergence of the lift and drag coefficient. The 

Mach number contour plot of the flow field around the airfoil is shown in  

Fig. 9.9(a) and the pressure distribution on the airfoil surface is shown in  

Fig. 9.9(b). On the upper surface there is a strong shock with associated decrease 

in flow speed and an increase in pressure. 
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Fig. 9.8 (a) Convergence history of the simulation of the flow past the NACA 2412 at M∞ = 

0.75 and α = 1 deg., (b) convergence of the lift and drag coefficients. The converged values 

of the lift coefficient is Cl = 0.67 and the drag coefficient is Cd = 0.0261 
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9.3.2.4   Aerodynamic Forces 

The aerodynamic forces are calculated by integrating the pressure (p) and the vis-

cous wall shear stress (τ), as defined in Figure 9.2, over the surface of the airfoil. 

The pressure coefficient is defined as 

∞

∞−
≡

q

pp
Cp

                                                  

(9.13) 
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Fig. 9.9 (a) Mach contour plot of the flow past the NACA 2412 at M∞ = 0.75 and α = 1 

deg., (b) the pressure distribution on the surface of the airfoil. The lift coefficient is Cl = 

0.67 and drag coefficient Cd = 0.0261 
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where p∞ is the free-stream pressure. Similarly, the shear stress coefficient is  

defined as 

∞

≡
q

C f

τ

                                                     

(9.14) 

The normal force coefficient (parallel to the z-axis) acting on the airfoil is [46] 

∫ ∫ +++−= lfpufpn dsCCdsCCC
lluu

)sincos()sincos( θθθθ
              

(9.15) 

where ds is the length of a surface element, θ is the angle (positive clockwise) that 

p and τ make relative to the z- and x-axis, respectively. The subscripts u and l refer 

to the upper and lower airfoil surfaces, respectively. The horizontal force coeffi-

cient (parallel to the x-axis) acting on the airfoil is [46] 

 ∫ ∫ +++−= lfpufpa dsCCdsCCC
lluu

)cossin()cossin( θθθθ
         

(9.16) 

 

The lift force coefficient is calculated as 

 

αα sincos anl CCC −=
                                         

(9.17) 

 

where α is the airfoil angle of attack, and the drag force coefficient is calculated as 

 

αα cossin and CCC +=
                                       

(9.18) 

9.4   Direct Optimization 

The direct optimization is understood here as employing the high-fidelity simula-

tion model directly in the optimization loop. The flow of the direct optimization 

process is shown in Fig. 9.10 and can be described as follows. First, an initial de-

sign x
(0)

 is generated and the high-fidelity CFD simulation model is evaluated at 

that design, yielding values of the objective function and the constraints. Then, the 

optimization algorithm finds a new airfoil design, x, and the high-fidelity CFD 

simulation model is evaluated at that design and the objective and constraints are 

recalculated. Based on the improvement or deterioration in the objective function 

and the values of the constraints (fulfilled, critical, or violated), either the opti-

mizer finds another design to evaluate, or it uses the current design for the ith de-

sign iteration to yield design x
(i)

. The high-fidelity model can be evaluated several 

times during one design iteration. Now, this loop is repeated until a termination 

condition is met and an optimized design has been reached. The termination con-

dition could be, for example, based on the change in airfoil shape between two ad-

jacent design iterations x
(i)

 and x
(i+1)

. 
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Fig. 9.10 Flowchart of the direct optimization process 

9.4.1   Gradient-Based Methods 

The development of numerical optimization techniques pertaining to aircraft de-

sign began when Hicks and Henne [1] coupled a gradient-based optimization algo-

rithm with CFD codes to design airfoils and wings at both subsonic and transonic 

conditions. Substantial progress in gradient-based methods for aerodynamic de-

sign has been made since then. Jameson [12] introduced control theory and con-

tinuous adjoint methods to the optimal aerodynamic design for two-dimensional 

airfoils and three-dimensional wings, first using inviscid flow solvers [13, 14], and 

later using viscous flow solvers [4, 16]. The adjoint method is gradient-based, but 

it is very efficient since the computational expense incurred in the calculation of 

the gradient is effectively independent of the number of design variables. 

Eyi et al. [17] apply gradient-based optimization to the design of multi-element 

airfoils at high-lift conditions where the necessary gradients are obtained by finite-

difference methods. Nemec and Zingg apply a gradient-based Newton-Krylov algo-

rithm to high-lift system design [18], as well as transonic wing design [19], where the 

gradient of the objective function is computed using the discrete adjoint approach. 

Papadimitriou and Giannakoglou [10] apply continuous and discrete adjoint 

methods for the design optimization of a two-dimensional compressor and turbine 

cascades. They consider various problem formulations, such as inverse design and 

viscous losses minimization. 

Gradient-based methods are robust for local search. However, often a large 

number of function evaluations are needed, and since CFD simulations can be 

very expensive, the overall computational cost becomes prohibitive. Furthermore, 

results from CFD simulations include numerical noise, which is a serious issue for 

gradient-based algorithms. 
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9.4.2   Derivative-Free Methods 

Derivative-free approaches can be divided into two categories, local and global 

search methods. The local search methods include the pattern-search algorithm 

[53] and the Nelder-Mead algorithm [54]. Global search methods include Genetic 

Algorithms (GAs) [55], Evolutionary Algorithms (EAs) [56], Particle Swarm Op-

timization (PSO) [57, 58], and Differential Evolution (DE) [59], all of which are 

often referred to as meta-heuristic algorithms. Example applications to aerody-

namic shape optimization can be found, e.g., in [20], [49] and [51]. Another global 

search method is Simulated Annealing (SA) [60]. 

The main advantages of these methods are that they do not require gradient data 

and they can handle noisy/discontinuous objective functions. However, the afore-

mentioned derivative-free methods normally require a large number of function 

evaluations. 

9.5   Surrogate-Based Optimization 

In this section, we provide a brief overview of surrogate-based optimization 

(SBO) [32, 33]. We begin with presenting the concept of SBO. Then, we discuss 

the construction of the surrogate model, and, finally, we present a few popular  

surrogate-based optimization techniques. 

9.5.1   The Concept 

In many situations, the functions one wants to optimize are difficult to handle. 

This is particularly the case in aerodynamic design where the objective and con-

straint functions are typically based on CFD simulations. The major issue is com-

putational cost of simulation which may be very high (e.g., up to several days or 

even weeks for high-fidelity 3D wing simulation for a single design). Another 

problem is numerical noise which is always present in CFD tools. Also, simulation 

may fail for specific sets of design variables (e.g., due to convergence issues). In 

order to alleviate these problems, it is often advantageous to replace—in the opti-

mization process—the original objective function by its surrogate model. To make 

this replacement successful, the surrogate should be sufficiently accurate represen-

tation of the original function, yet analytically tractable (smooth), and, preferably 

computationally cheap (so that to reduce the overall cost of the optimization proc-

ess). In practice, surrogate-based optimization if often an iterative process, where 

the surrogate model is re-optimized and updated using the data from the original 

function that is accumulated during the algorithm run. 

The flow of a typical SBO algorithm is shown in Fig. 9.11. The surrogate 

model is optimized, in place of the high-fidelity one, to yield prediction of its mi-

nimizer. This prediction is verified by evaluating the high-fidelity model, which is 

typically done only once per iteration (at every new design x
(i+1)

). Depending on  
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the result of this verification, the optimization process may be terminated or may 

continue, in which case the surrogate model is updated using the new available 

high-fidelity model data, and then re-optimized to obtain a new, and hopefully bet-

ter approximation of the minimizer. For a well performing surrogate-based algo-

rithm, the number of iterations is substantially smaller than for most methods op-

timizing the high-fidelity model directly (e.g., gradient-based one).  
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Fig. 9.11 A flowchart of a typical surrogate-based optimization algorithm 

9.5.2   Surrogate Modeling 

The surrogates can be created either by approximating the sampled high-fidelity 

model data using regression (so-called function-approximation surrogates or func-

tional surrogates), or by correcting physics-based low-fidelity models, which are 

less accurate but computationally cheap representations of the high-fidelity ones 

[33]. 

9.5.2.1   Functional Surrogates 

Functional surrogate models are constructed without any particular knowledge of 

the physical system. The construction process can be summarized as follows: 

1. Design of Experiments (DoE): Allocate a set of points in the design space 

by using a specific strategy to maximize the amount of information gained  
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from a limited number of samples [61]. Factorial designs, are classical 

DoE techniques, and these techniques typically spread the samples apart 

as much as possible to reduce any random error (which is important when 

obtaining data from physical experiments) [62]. Nowadays, space filling 

designs are commonly used with Latin Hypercube Sampling being  

probably the most popular one [61]. 

2. Acquire data: Evaluate the high-fidelity model at the points specified in 

step 1. 

3. Model Selection and Identification: Choose the surrogate model and de-

termine its parameters. A number of models are available including poly-

nomial regression [32], radial basis functions [33], kriging [62], neural 

networks [62] and support vector regression [63]. 

4. Model validation: Estimate the model generalization error. The most pop-

ular method is cross-validation [32], where the data is split into k subsets, 

and a surrogate model is constructed k times so that k–1 subsets are used 

for training, and the remaining ones are used to calculate the generaliza-

tion error, averaged over all k combinations of training/testing data. 

 

The functional surrogate models are typically cheap to evaluate. However, a con-

siderable amount of data is required to set up the surrogate model that ensures rea-

sonable accuracy. The methodology of constructing the functional surrogates is 

generic, and, therefore, is applicable to a wide class of problems. 

9.5.2.2   Physics-Based Surrogates 

The physics-based surrogates are constructed by correcting an underlying  

low-fidelity model, which can be based on one of, or a combination of the  

following: 

• Simplified physics: Replace the set of governing fluid flow equations by a 

set of simplified equations, e.g., using the Euler equations in place of the 

RANS equations [35]. These are often referred to as variable-fidelity 

physics models. 

• Coarse discretization: Use the same fluid flow model as in the high-

fidelity model, but with a coarser computational mesh discretization [36]. 

Often referred to as variable-resolution models. 

• Relaxed convergence criteria: Reduce the number of maximum allowable 

iterations and/or reduce the convergence tolerance [63]. Sometimes  

referred to as variable-accuracy models. 

 

As the low-fidelity model enjoys the same underlying physics as the high-fidelity 

one, it is able to predict the general behavior of the high-fidelity model. However,  
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the low-fidelity model needs to be corrected to match the sampled data of the 

high-fidelity model to become a reliable and accurate predictor. Popular correction 

techniques include response correction [34] and space mapping [65]. One of the  

recent techniques is shape-preserving response prediction (SPRP) introduced in 

[26]. The application of this technique to the design of airfoil at high-lift and  

transonic conditions is given in the next chapter. 

The physics-based surrogates are typically more expensive to evaluate than the 

functional surrogates. Furthermore, they are problem specific, i.e., reuse across 

different problems is rare. On the other hand, their fundamental advantage is that 

much less high-fidelity model data is needed to obtain a given accuracy level than 

in case of functional surrogates. Some SBO algorithms exploiting physics-based 

low-fidelity models (often referred to as variable- or multi-fidelity ones) require 

just a single high-fidelity model evaluation per algorithm iteration to construct the 

surrogate [34, 38]. One of the consequences is that the variable-fidelity SBO me-

thods are more scalable to larger number of design variables (assuming that no  

derivative information is required) than SBO using functional surrogates. 

9.5.3   Optimization Techniques 

This section presents selected optimization techniques that employ physics-based 

low-fidelity surrogate models. We describe the Approximation Model Manage-

ment Optimization (AMMO) algorithm [34-36] and the Surrogate Management 

Framework (SMF) [38]. We also briefly mention a few other techniques. 

9.5.3.1   Approximation Model Management Optimization (AMMO) 

The AMMO algorithm is a general approach for controlling the use of variable-

fidelity models when solving a nonlinear minimization problem, such as Eq. (9.3), 

[34-36]. A flowchart of the AMMO algorithm is shown in Fig. 9.12. The opti-

mizer receives the function and constraint values, as well as their sensitivities, 

from the low-fidelity model. The response of the low-fidelity model is corrected to 

satisfy at least zero- and first-order consistency conditions with the high-fidelity 

model, i.e., agreement between the function values and the first-order derivatives 

at a given iteration point. The expensive high-fidelity computations are performed 

outside the optimization loop and serve to re-calibrate the low-fidelity model oc-

casionally, based on a set of systematic criteria. AMMO exploits the trust-region 

methodology [66], which is an adaptive move limit strategy for improving the 

global behavior of optimization algorithms based on local models. By combining 

the trust-region approach with the use of the low-fidelity model satisfying at least 

first-order consistency conditions, then convergence of AMMO to the optimum of 

the high-fidelity model can be guaranteed. 
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Fig. 9.12 A flowchart of the Approximation Model Management Optimization (AMMO)  

algorithm 

The AMMO methodology has been applied to various aerodynamic design 
problems [34-36]. In [36], AMMO is applied to both 2D airfoil shape optimization 
and 3D aerodynamic wing optimization, both at transonic operating conditions. 
The Euler equations are used as governing fluid flow equations for the both the 
high- and low-fidelity models at variable grid resolution, i.e., a fine grid for the 
high-fidelity model and a coarse grid for the low-fidelity model. The results 
showed a threefold improvement in the computational cost in the 3D wing design 
problem, when compared to direct optimization of the high-fidelity model, and a 
twofold improvement for the 2D airfoil design problem. In [35], AMMO is ap-
plied to 2D airfoil design at transonic conditions using the RANS equations (rep-
resenting viscous flow past the airfoil) as the high-fidelity model and the Euler 
equations (representing inviscid flow past the airfoil) for the low-fidelity model. 
The high-fidelity model is solved on a much finer mesh than the low-fidelity mod-
el. The results demonstrated a fivefold improvement when compared to direct  
optimization of the high-fidelity model. 

First-order consistency in variable-fidelity SBO can be insufficient to achieve 

acceptable convergence rates, which can be similar to those achieved by first-

order optimization methods, such as steepest-descent or sequential linear pro-

gramming [67]. More successful optimization methods, such as sequential quad-

ratic programming, use at least approximate second-order information to achieve 

super-linear or quadratic convergence rates in the neighborhood of the minimum. 

Eldred et al. [68] present second-order corrections methods for variable-fidelity 

SBO algorithms. The second-order corrections enforce consistency with the  
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high-fidelity model Hessian. However, since full second-order information is not  

commonly available in practical engineering problems, consistency can also be 

enforced to an approximation using finite difference, quasi-Newton, or Gauss-

Newton to the high-fidelity Hessian. The results show that all of these approaches 

outperform the first-order corrections. Then again, the second-order corrections 

come at a price, since additional function evaluations are required. Additionally, 

they can become impractical for large design problems, unless adjoint-based  

gradients are employed. Finally, the issue of how numerical noise affects the  

second-order corrected SBO process has not been addressed. 

9.5.3.2   Surrogate Management Framework (SMF) 

The Surrogate Management Framework (SMF) algorithm [38] is a mesh-based 

technique that uses the surrogate model as a predictive tool, while retaining the 

robust convergence properties of pattern-search methods for a local grid search. 

The SMF algorithm (Fig. 9.13) consists of the two steps, SEARCH and POLL. In 

the SEARCH step, the surrogate model is used to identify the set of points likely to 

minimize the objective function. The SEARCH can explore the surrogate model glob-

ally or locally. In any case, this step is not required for the algorithm convergence.  
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Fig. 9.13 A flowchart of the Surrogate Management Framework (SMF) 
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The convergence of the SMF is ensured by the POLL step, where the neighbors 

of the current best solution are evaluated using the high-fidelity model on the 

mesh in a positive spanning set of directions [69] to look for a local objective 

function improvement. In case the POLL step fails to improve the objective func-

tion value, the mesh is being refined and the new iteration begins starting with the 

SEARCH step. 

The surrogate model is updated in each iteration using all accumulated  

high-fidelity data. 

In [69], the SMF algorithm is applied to the optimal aeroacoustic shape design 

of an airfoil in laminar flow. The airfoil shape is designed to minimized total radi-

ated acoustic power while constraining lift and drag. The high-fidelity model is 

implemented through the solution to the unsteady incompressible two-dimensional 

Navier-Stokes equations with a roughly 24 hour analysis time for a single CFD 

evaluation. The surrogate function is constructed using kriging, which is typical 

when using the SMF algorithm. As the acoustic noise is generated at the airfoil 

TE, only the upper TE of the airfoil is parameterized with a spline using five con-

trol points. Optimal shapes that minimize noise are reported. Results show a  

significant reduction (as much as 80%) in acoustic power with reasonable  

computational cost (less than 88 function evaluations). 

9.5.3.3   Other Techniques 

Robinson et al. [70-72] presented a provably convergent trust-region model-

management (TRMM) methodology for variable-parameterization design models. 

This is an SBO method which uses a lower-fidelity model as a surrogate. How-

ever, the low-fidelity design space has a lower dimension than the high-fidelity 

design space. The design variables of the low-fidelity model can be a subset of the 

high-fidelity model, or they can be different from the high-fidelity model. The  

mathematical relationship between the design vectors is described by space map-

ping (SM) [65, 73-75]. Since SM does not provide provable convergence within a 

TRMM framework, but any surrogate that is first-order accurate does, they correct 

the space-mapping to be at least first-order, called corrected space-mapping. 

The TRMM method has been applied to several constrained design problems. 

One problem involves the design of a wing planform (minimize induce drag and 

constrain lift for a given wingspan) using a vortex-lattice method as the high-

fidelity model and a lifting-line method as the low-fidelity model. The results  

indicated over 76% savings in high-fidelity function calls as compared to direct 

optimization. Another problem involves the design of a flapping-wing where an 

unsteady panel-method is used as the high-fidelity model and the low-fidelity 

model is based on thin-airfoil theory and is assumed to be quasi-steady. Approxi-

mately 48% savings in high-fidelity function calls where demonstrated when 

compared to direct optimization. 

Several other optimization techniques are available that exploit a surrogate  

constructed from a physics-based low-fidelity model. In SM, the surrogate is a 

composition of the low-fidelity model and simple, usually linear, transformations 

that re-shape the model domain (input-like SM [65]), correct the model response  
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(output-like SM [74]) or change the overall model properties (implicit-like SM 

[74]) using additional variables that are not directly used in the optimization proc-

ess (so-called pre-assigned parameters). Manifold mapping (MM) [76] is a special 

case of output-like SM that aims at enforcing first-order consistency conditions 

using exact or approximate high-fidelity model sensitivity data. These methods 

are, however, not (yet) popular in the case of aerodynamic shape optimization. 

Shape-preserving response prediction (SPRP) is a relatively novel technique 

which was introduced in the field of microwave engineering [77], but it has been 

recently applied to airfoil shape optimization [26, 78]. This technique is described 

in detail in the next chapter. 

9.5.3.4   Exploration versus Exploitation 

One of the important steps of the SBO optimization process is to update the surro-

gate model using the high-fidelity model data accumulated during the algorithm 

run. In particular, the high-fidelity model is evaluated at any new design obtained 

from prediction provided by the surrogate model. The new points at which we 

evaluate the high-fidelity model are referred to as infill points [33]. Selection of 

these points is based on certain infill criteria. These criteria can be either exploita-

tion- or exploration-based. 

A popular exploitation-based strategy is to select the surrogate minimizer as the 

new infill point [33]. This strategy is able to ensure finding at least a local mini-

mum of the high-fidelity model provided that the surrogate model satisfies zero- 

and first-order consistency conditions. In general, using the surrogate model  

optimum as a validation point corresponds to exploitation of certain region of the 

design space, i.e., neighborhood of a local optimum. Selecting the surrogate mini-

mizer as the infill point is utilized by AMMO [34-36], SM [65, 73-75], MM [76], 

and can also be used by SMF [38]. 

In exploration-based strategies, the new sample points are located in between 

the existing ones. This allows building a surrogate model that is globally accurate. 

A possible infill criterion is to allocate the new samples at the points of maximum 

estimated error [33]. Pure exploration however, may not be a good way of updat-

ing the surrogate model in the context of optimization because the time spent on 

accurately modeling sub-optimal regions may be wasted if the global optimum is 

the only interest. 

Probably the best way of performing global search is to balance exploration and 

exploitation of the design space. The details regarding several possible approaches 

can be found in [33]. 

9.6   Summary 

Although aerodynamic shape optimization (ASO) is widely used in engineering 

design, there are numerous challenges involved. One of the biggest challenges is 

that high-fidelity computational fluid dynamic (CFD) simulations are (usually) 

computationally expensive. As a result, the overall computational cost of the  
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design optimization process becomes prohibitive since, typically, a large number 

of simulations are required. Therefore, it is impractical to employ the high-fidelity 

model directly in the optimization loop. 

One of the objectives of surrogate-based optimization (SBO) is to reduce the 

overall computational cost by replacing the high-fidelity model in the optimization 

loop by a cheap surrogate model. The surrogate models can be created by (9.1) 

approximating the sampled high-fidelity model data using regression (so-called 

function-approximation surrogates), or (9.2) by correcting physics-based low-

fidelity models which are less accurate but computationally cheap representations 

of the high-fidelity models. 

A variety of techniques are available to create the function-approximation sur-

rogate model, such as polynomial regression, and kriging. Function-approximation 

models are versatile, however, they normally require substantial amount of data 

samples to ensure good accuracy. The physics-based surrogates are constructed by 

correcting the underlying low-fidelity models, which can be obtained through 

(9.1) simplified physics models, (9.2) coarser discretization, and (9.3) relaxed con-

vergence criteria. These models are typically more expensive to evaluate than the 

function-approximation surrogates, but less high-fidelity model data is needed to 

obtain a given accuracy level. 

The low-fidelity models needs to be corrected to become an accurate and reli-

able representation of the high-fidelity model. Popular correction methods include 

response correction and space mapping. 

In SBO with physics-based low-fidelity models, called variable- or multi-

fidelity SBO, only a single high-fidelity model evaluation is typically required per 

algorithm iteration. Due to this the variable-fidelity SBO method is naturally scal-

able to larger numbers of design variables (assuming that no derivative informa-

tion is required). 

The Approximation and Model Management Optimization (AMMO) is a ge-

neric SBO approach. AMMO is based on ensuring zero- and first-order  

consistency conditions between the high-fidelity model and the surrogate by using 

a suitable correction term. This requires derivative information. Another SBO 

technique is the Surrogate Management Framework (SMF) algorithm. SMF is a 

mesh-based technique that uses the surrogate model as a predictive tool, while re-

taining the robust convergence properties of pattern search methods for a local 

grid search. Typically, the surrogate model is constructed using kriging and the 

surrogate is updated in each iteration using all accumulated high-fidelity data. 

Convergence (at least to a local minimum) is ensured by the pattern search. 
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Chapter 10

Evolutionary Algorithms Applied to
Multi-Objective Aerodynamic Shape

Optimization

Alfredo Arias-Montaño, Carlos A. Coello Coello, and Efrén Mezura-Montes

Abstract. Optimization problems in many industrial applications are very hard to

solve. Many examples of them can be found in the design of aeronautical systems.

In this field, the designer is frequently faced with the problem of considering not

only a single design objective, but several of them, i.e., the designer needs to solve

a Multi-Objective Optimization Problem (MOP). In aeronautical systems design,

aerodynamics plays a key role in aircraft design, as well as in the design of propul-

sion system components, such as turbine engines. Thus, aerodynamic shape opti-

mization is a crucial task, and has been extensively studied and developed. Multi-

Objective Evolutionary Algorithms (MOEAs) have gained popularity in recent years

as optimization methods in this area, mainly because of their simplicity, their ease of

use and their suitability to be coupled to specialized numerical simulation tools. In

this chapter, we will review some of the most relevant research on the use of MOEAs

to solve multi-objective and/or multi-disciplinary aerodynamic shape optimization

problems. In this review, we will highlight some of the benefits and drawbacks of

the use of MOEAs, as compared to traditional design optimization methods. In the

second part of the chapter, we will present a case study on the application of MOEAs

for the solution of a multi-objective aerodynamic shape optimization problem.

Alfredo Arias-Montaño · Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group),

Departamento de Computación, Av. IPN No. 2508,

Col. San Pedro Zacatenco, México D.F. 07360, Mexico
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10.1 Introduction

There are many industrial areas in which optimization processes help to find new

solutions and/or to increase the performance of an existing one. Thus, in many cases

a research goal can be translated into an optimization problem. Optimal design in

aeronautical engineering is, by nature, a multiobjective, multidisciplinary and highly

difficult problem. Aerodynamics, structures, propulsion, acoustics, manufacturing

and economics, are some of the disciplines involved in this type of problems. In

fact, even if a single discipline is considered, many design problems in aeronautical

engineering have conflicting objectives (e.g., to optimize a wing’s lift and drag or

a wing’s structural strength and weight). The increasing demand for optimal and

robust designs, driven by economics and environmental constraints, along with the

advances in computational intelligence and the increasing computing power, has

improved the role of computational simulations, from being just analysis tools to

becoming design optimization tools.

In spite of the fact that gradient-based numerical optimization methods have been

successfully applied in a variety of aeronautical/aerospace design problems,1 [30,

16, 42] their use is considered a challenge due to the following difficulties found in

practice:

1. The design space is frequently multimodal and highly non-linear.

2. Evaluating the objective function (performance) for the design candidates is usu-

ally time consuming, due mainly to the high fidelity and high dimensionality

required in the simulations.

3. By themselves, single-discipline optimizations may provide solutions which not

necessarily satisfy objectives and/or constraints considered in other disciplines.

4. The complexity of the sensitivity analyses in Multidisciplinary Design Optimiza-

tion (MDO2) increases as the number of disciplines involved becomes larger.

5. In MDO, a trade-off solution, or a set of them, are searched for.

Based on the previously indicated difficulties, designers have been motivated to

use alternative optimization techniques such as Evolutionary Algorithms (EAs)

[31, 20, 33]. Multi-Objective Evolutionary Algorithms (MOEAs) have gained an

increasing popularity as numerical optimization tools in aeronautical and aerospace

engineering during the last few years [1, 21]. These population-based methods

mimic the evolution of species and the survival of the fittest, and compared to tradi-

tional optimization techniques, they present the following advantages:

(a) Robustness: In practice, they produce good approximations to optimal sets of

solutions, even in problems with very large and complex design spaces, and are

less prone to get trapped in local optima.

1 It is worth noting that most of the applications using gradient-based methods have adopted

them to find global optima or a single compromise solution for multi-objective problems.
2 Multidisciplinary Design Optimization, by its nature, can be considered as a multi-

objective optimization problem, where each discipline aims to optimize a particular per-

formance metric.



10 Evolutionary Algorithms 213

(b) Multiple Solutions per Run: As MOEAs use a population of candidates, they are

designed to generate multiple trade-off solutions in a single run.

(c) Easy to Parallelize: The design candidates in a MOEA population, at each

generation, can be evaluated in parallel using diverse paradigms.

(d) Simplicity: MOEAs use only the objective function values for each design can-

didate. They do not require a substantial modification or complex interfacing

for using a CFD (Computational Fluid Dynamics) or CSD/M (Computational

Structural Dynamics/Mechanics) code.

(e) Easy to hybridize: Along with the simplicity previously stated, MOEAs also

allow an easy hybridization with alternative methods, e.g., memetic algorithms,

which additionally introduce specifities to the implementation, without

influencing the MOEA simplicity.

(f) Novel Solutions: In many cases, gradient-based optimization techniques con-

verge to designs which have little variation even if produced with very different

initial setups. In contrast, the inherent explorative capabilities of MOEAs allow

them to produce, some times, novel and non-intuitive designs.

An important volume of information has been published on the use of MOEAs in

aeronautical engineering applications (mainly motivated by the advantages previ-

ously addressed). In this chapter, we provide a review of some representative works,

dealing specifically with multi-objective aerodynamic shape optimization.

The remainder of this chapter is organized as follows: In Section 10.2, we present

some basic concepts and definitions adopted in multi-objective optimization. Next,

in Section 10.3, we review some of the work done in the area of multi-objective

aerodynamic shape optimization. This review covers: surrogate based optimization,

hybrid MOEA optimization, robust design optimization, multidisciplinary design op-

timization, and data mining and knowledge extraction. In Section 10.4 we present

a case study and, finally, in Section 10.5. we present our conclusions and final

remarks.

10.2 Basic Concepts

A Multi-Objective Optimization Problem (MOP) can be mathematically defined as

follows3:

minimize f(x) := [ f1(x), f2(x), . . . , fk(x)] (10.1)

subject to:

gi(x) ≤ 0 i = 1,2, . . . ,m (10.2)

hi(x) = 0 i = 1,2, . . . , p (10.3)

3 Without loss of generality, minimization is assumed in the following definitions, since any

maximization problem can be transformed into a minimization one.
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where x = [x1,x2, . . . ,xn]
T is the vector of decision variables, which are bounded

by lower (xl
i) and upper (xu

i ) limits which define the search space S , fi : IRn → IR,

i = 1, ...,k are the objective functions and gi,h j : IRn → IR, i = 1, ...,m, j = 1, ..., p

are the constraint functions of the problem.

In other words, we aim to determine from among the set F ⊆S (F is the feasi-

ble region of the search space S ) of all vectors which satisfy the constraints, those

that yield the optimum values for all the k objective functions, simultaneously. The

set of constraints of the problem defines F . Any vector of variables x which satis-

fies all the constraints is considered a feasible solution. In their original version, an

EA (and also a MOEA) lacks a mechanism to deal with constrained search spaces.

This has motivated a considerable amount of research regarding the design and im-

plementation of constraint-handling techniques for both EAs and MOEAs [10, 29].

10.2.1 Pareto Dominance

Pareto dominance is an important component of the notion of optimality in MOPs

and is formally defined as follows:

Definition 1. A vector of decision variables x ∈ IRn dominates another vector of de-

cision variables y ∈ IRn, (denoted by x � y) if and only if x is partially less than y,

i.e. ∀i ∈ {1, . . . ,k}, fi(x) ≤ fi(y)∧∃i ∈ {1, . . . ,k} : fi(x) < fi(y).

Definition 2. A vector of decision variables x ∈ X ⊂ IRn is nondominated with

respect to X , if there does not exist another x′ ∈ X such that f(x′) � f(x).

In order to say that a solution dominates another one, it needs to be strictly better in

at least one objective, and not worse in any of them.

10.2.2 Pareto Optimality

The formal definition of Pareto optimality is provided next:

Definition 3. A vector of decision variables x∗ ∈ F ⊆ S ⊂ IRn is Pareto optimal

if it is nondominated with respect to F .

In words, this definition says that x∗ is Pareto optimal if there exists no feasible vec-

tor x which would decrease some objective without causing a simultaneous increase

in at least one other objective (assuming minimization). This definition does not pro-

vide us a single solution (in decision variable space), but a set of solutions which

form the so-called Pareto Optimal Set (P∗), whose formal definition is given by:

Definition 4. The Pareto optimal set P∗ is defined by:

P
∗ = {x ∈ F |x is Pareto optimal}
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The vectors that correspond to the solutions included in the Pareto optimal set are

said to be nondominated.

10.2.3 Pareto Front

When all nondominated solutions are plotted in objective function space, the non-

dominated vectors are collectively known as the Pareto front (P F ∗).

Definition 5. The Pareto front P F ∗ is defined by:

P F
∗ = {f(x) ∈ IRk|x ∈ P

∗}

The goal on a MOP consists on determining P ∗ from F of all the decision variable

vectors that satisfy (10.2) and (10.3). Thus, when solving a MOP, we aim to find

not one, but a set of solutions representing the best possible trade-offs among the

objectives (the so-called Pareto optimal set).

10.3 Multi-Objective Aerodynamic Shape Optimization

10.3.1 Problem Definition

Aerodynamics is the science that deals with the interactions of fluid flows and ob-

jects. This interaction is governed by conservation laws which are mathematically

expressed by means of the Navier-Stokes equations, which comprise a set of partial

differential equations, being unsteady, nonlinear and coupled among them. Aero-

dynamicists are interested in the effects of this interaction, in terms of their aero-

dynamic forces and moments, which are the result of integrating the pressure and

shear stresses distributions that the flow excerses over the object with which it is in-

teracting. In its early days, aerodynamic designs were done by extensive use of ex-

perimental facilities. Nowadays, the use of Computational Fluid Dynamics (CFD)

technology to simulate the flow of complete aircraft configurations, has made it

possible to obtain very impressive results with the help of high performance com-

puters and fast numerical algorithms. At the same time, experimental verifications

are carried out in scaled flight tests, avoiding many of the inherent disadvantages

and extremely high costs of wind tunnel technology. Therefore, we can consider

aerodynamics as a mature engineering science.

Thus, current aerodynamic research focuses on finding new designs and/or im-

proving current ones, by using numerical optimization techniques. In the case of

multi-objective optimization, the objective functions are defined in terms of aero-

dynamic coefficients and/or flow conditions. Additionally, design constraints are

included to render the solutions practical or realizable in terms of manufacturing

and/or operating conditions. Optimization is accomplished by means of a more or

less systematic variation of the design variables which parameterize the shape to be
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optimized. A variety of optimization algorithms, ranging from gradient-based

methods to stochastic approaches with highly sophisticated schemes for the adap-

tation of the individual mutation step sizes, are currently available. From them,

MOEAs have been found to be a powerful but easy-to-use choice. Next, we will

briefly review some of the most representative works on the use of MOEAs for

aerodynamic design. The review comprises the following dimensions that are iden-

tified as the most relevant, from a practical point of view, for the purposes of this

chapter:

• Surrogate-based optimization,

• Hybrid MOEA optimization,

• Robust design optimization,

• Multidisciplinary design-optimization, and

• Data-mining and knowledge extraction.

10.3.2 Surrogate-Based Optimization

Evolutionary algorithms, being population-based algorithms, often require popula-

tion sizes, and a number of evolution steps (generations) that might demand tremen-

dous amounts of computing resources. Examples of these conditions are presented

by Benini [4], who reported computational times of 2000 hrs. in the multi-objective

re-design of a transonic turbine rotor blade, using a population with 20 design can-

didates, and 100 generations of evolution time, in a four-processors workstation.

Thus, when expensive function evaluations are required, the required CPU time may

turn prohibitive the application of MOEAs, even with today’s available computing

power.

For tackling the above problem, one common technique adopted in the field of

aerodynamic shape optimization problems, is the use of surrogate models. These

models are built to approximate computationally expensive functions. The main

objective in constructing these models is to provide a reasonably accurate ap-

proximation to the real functions, while reducing by several orders of magnitude

the computational cost. Surrogate models range form Response Surface Methods

(RSM) based on low-order polynomial functions, Gaussian processes or Kriging,

Radial Basis Funcions (RBFs), Artificial Neural Networks (ANNs), to Support Vec-

tor Machines (SVMs). A detailed description of each of these techniques is be-

yond the scope of this chapter, but the interested reader is referred to Jin [19] for a

comprehensive review of these and other approximation techniques.

In the context of aerodynamic shape optimization problems, some researchers

have used surrogates models to reduce the computational time used in the optimiza-

tion process. The following is a review of some representative research that has been

conducted in this area:

• Lian and Liou [26] addressed the multi-objective optimization of a three-dimen-

sional rotor blade, namely the redesign of the NASA rotor 67 compressor blade,

a transonic axial-flow fan rotor. Two objectives were considered in this case:
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(i) maximization of the stage pressure rise, and (ii) minimization of the entropy

generation. Constraints were imposed on the mass flow rate to have a difference

less than 0.1% between the new one and the reference design. The blade ge-

ometry was constructed from airfoil shapes defined at four span stations, with a

total of 32 design variables. The authors adopted a MOEA based on MOGA [14]

with real numbers encoding. The optimization process was coupled to a second-

order RSM, which was built with 1,024 design candidates using the Improved

Hypercube Sampling (IHS) algorithm. The authors reported that the evaluation

of the 1,024 sampling individuals took approximately 128 hours (5.33 days) us-

ing eight processors and a Reynolds-Averaged Navier-Stokes CFD simulation. In

their experiments, 12 design solutions were selected from the RSM-Pareto front

obtained, and such solutions were verified with a high fidelity CFD simulation.

The objective function values slightly differed from those obtained by the ap-

proximation model, but all the selected solutions were better in both objective

functions than the reference design.

• Song and Keane [46] performed the shape optimization of a civil aircraft en-

gine nacelle. The primary goal of the study was to identify the trade-off between

aerodynamic performance and noise effects associated with various geometric

features for the nacelle. For this, two objective functions were defined: i) scarf

angle, and ii) total pressure recovery. The nacelle geometry was modeled us-

ing 40 parameters, from which 33 were considered design variables. In their

study, the authors implemented the NSGA-II [12] as the multi-objective search

engine, while a commercial CFD software was used for evaluation of the three-

dimensional flow characteristics. A kriging-based surrogate model was adopted

in order to keep the number of designs being evaluated with the CFD tool to

a minimum. In their experiments, the authors reported difficulties in obtaining

a reliable Pareto front (there were large discrepancies between two consecutive

Pareto front approximations). They attributed this behavior to the large number

of variables in the design problem, and also to the associated difficulties to ob-

tain an accurate kriging model for these situations. In order to alleviate this, they

performed an analysis of variance (ANOVA) test to find the variables that con-

tributed the most to the objective functions. After this test, they presented results

with a reduced surrogate model, employing only 7 decision variables. The au-

thors argued that they obtained a design similar to the previous one, but requiring

a lower computational cost because of the use of a reduced number of variables

in the kriging model.

• Arabnia and Ghaly [2] presented the aerodynamic shape optimization of turbine

stages in three-dimensional fluid flow, so as to minimize the adverse effects of

three-dimensional flow features on the turbine performance. Two objectives were

considered: (i) maximization of isentropic efficiency for the stage, and (ii) mini-

mization of the streamwise vorticity. Additionally, constraints were imposed on:

(1) inlet total pressure and temperature, (2) exit pressure, (3) axial chord and

spacing, (4) inlet and exit flow angles, and (5) mass flow rate. The blade ge-

ometry, both for rotor and stator blades, was based on the E/TU-3 turbine which
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is used as a reference design to compare the optimization results. The multi-

objective optimization consisted of finding the best distribution of 2D blade sec-

tions in the radial and circumferential directions. The authors adopted NSGA

[47] as their search engine. Both objective functions were evaluated using a 3D

CFD flow simulation, taking an amount of time of 10 hours per design candidate.

The authors adopted an artificial neural network (ANN) based model. The ANN

model with backpropagation, contained a single hidden layer with 50 nodes, and

was trained and tested with 23 CFD simulations, sampling the design space us-

ing the Latin Hypercubes technique. The optimization process was undertaken

by using the ANN model to estimate both the objective functions, and the con-

straints. Finally, the nondominated solutions obtained were evaluated with the

actual CFD flow simulation. The authors indicated that they were able to obtain

design solutions which were better than the reference turbine design.

10.3.2.1 Comments Regarding Surrogate-Based Optimization

The accuracy of the surrogate model relies on the number and on the distribution

of samples provided in the search space, as well as on the selection of the appropri-

ate model to represent the objective functions and constraints. One important fact is

that Pareto-optimal solutions based on the computationally cheap surrogate model

do not necessarily satisfy the real CFD evaluation. So, as indicated in the previ-

ous references, it is necessary to verify the whole set of Pareto-optimal solutions

found from the surrogate, which can render the problem very time consuming. If

discrepancies are large, this condition might atenuate the benefit of using a surro-

gate model. The verification process is also needed in order to update the surrogate

model. This latter condition raises the question of how often in the design process it

is necessary to update the surrogate model. There are no general rules for this, and

many researchers rely on previous experiences and trial and error guesses.

CFD analyses rely on discretization of the flow domain and in numerical models

of the flow equations. In both cases, some sort of reduced model can be used as

fitness approximation methods, which can be further used to generate a surrogate

model. For example, Lee et al. [24] use different grid resolutions for the CFD sim-

ulations. Coarse grids are used for global exploration, while fine grids are used for

solution exploitation purposes.

Finally, many of the approaches using surrogates, build them, relating the design

variables with the objective functions. However, Leifsson and Koziel [25], have

recently proposed the use of physics-based surrogate models in which, they are

built relating the design variables with pressure distributions (instead of objective

functions). The premise behind this approach is that in aerodynamics, the objective

functions are not directly related with the design variables, but with the pressure

distributions. The authors have presented successful results using this new kind of

surrogate model for global transonic airfoil optimization. Its extension to multiob-

jective aerodynamic shape optimization is straightforward and very promising.
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10.3.3 Hybrid MOEA Optimization

One of the major drawbacks of MOEAs is that they are very demanding (in terms

of computational time), due to the relatively high number of objective function

evaluations that they typically require. This has motivated a number of approaches

to improve their efficiency. One of them consists in hybridizing a MOEA with a

gradient-based method. In general, gradient-based methods converge quickly for

simple topologies of the objective functions but will get trapped in a local optimum

if multi-modal objective functions are considered. In contrast, MOEAs can nor-

mally avoid local minima and can also cope with complex, noisy objective function

topologies. The basic idea behind this hybridization is to resort to gradient-based

methods, whenever the MOEA convergence is slow. Some representative works

using this idea are the following:

• Lian et al. [27] deal with a multi-objective redesign of the shape blade of a single-

stage centrifugal compressor. The objectives are: (i) to maximize the total head,

and (ii) to minimize the input power at a design point. These objectives are con-

flicting with each other. In their hybrid approach, they couple a gradient-based

method that uses a Sequential Quadratic Programming (SQP) scheme, with a

GA-based MOEA. The SQP approach works in a confined region of the de-

sign space where a surrogate model is constructed, and optimized with gradient-

based methods. In the hybrid approach of this example, the MOEA is used as a

global search engine, while the SQP model is used as a local search mechanism.

Both mechanisms are alternatively used under a trust-region framework until

Pareto optimal solutions are obtained. By this hybridization approach, favorable

characteristics of both global and local search are maintained.

• Chung et al. [9] address a multidisciplinary problem involving supersonic busi-

ness jet design. The main objective of this particular problem was to obtain a

trade-off design having good aerodynamic performances while minimizing the

intensity of the sonic boom signature at the ground level. Multiobjective opti-

mization was used to obtain trade-offs among the objective functions of the prob-

lem which were to minimize: (i) the aircraft drag coefficient, (ii) initial pressure

rise (boom overpressure), and (iii) ground perceived noise level. In this study,

the authors proposed and tested the Gradient Enhanced Multiobjective Genetic

Algorithm (GEMOGA). The basic idea of this MOEA is to enhance the non-

dominated solutions obtained by a genetic algorithm with a gradient-based local

search procedure. One important feature of this approach was that the gradient

information was obtained from the Kriging model. Therefore, the computational

cost was not considerably increased.

• Ray and Tsai [38] considered a multiobjective transonic airfoil shape design

optimization problem with two objectives to be minimized: (i) the ratio of the

drag to lift squared coefficients, and (ii) the squared moment coefficient. Con-

straints were imposed on the flow Mach number and angle of attack. The MOEA

used is a multi-objective particle swarm optimizer (MOPSO). This MOEA

was also hybridized with a gradient-based algorithm. Contrary to standard hy-

bridization schemes where gradient-based algorithms are used to improve the
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nondominated solutions obtained (i.e., as a local search engine), in this approach

the authors used the gradient information to repair solutions not satisfying the

equality constraints defined in the problem. This repairing algorithm was based

on the Marquardt-Levenberg algorithm. During the repairing process, a subset

of the design variables was used, instead of the whole set, in order to reduce the

dimensionality of the optimization problem to be solved.

10.3.3.1 Comments on Hybrid MOEA Optimization

Experience has shown that hybridizing MOEAs with gradient-based techniques can,

to some extent, increase their convergence rate. However, in the examples presented

above, the gradient information relies on local and/or global surrogate models. For

this, one major concern is how to build a high-fidelity surrogate model with the ex-

isting designs in the current population, since, their distribution in the design space

can introduce some undesired bias in the surrogate model. Additionally, there are

no rules for choosing the number of points for building the surrogate model, nor

for defining the number of local searches to be performed. These parameters are

emprirically chosen. Another idea that has not been explored in multi-objective

evolutionary optimization, is to use adjoint-based CFD solutions to obtain gradi-

ent information. Adjoint-based methods are also mature techniques currently used

for single objective aerodynamic optimization [28], and gradient information with

these techniques can be obtained with as much of an additional objective function

evaluation.

10.3.4 Robust Design Optimization

In aerodynamic optimization, uncertainties in the environment must be taken into

account. For example, the operating velocity of an aircraft may deviate from the

normal condition during the flight. This change in velocity can be so high that it

changes the Mach and/or Reynolds number for the flow. The variation of these pa-

rameters can substantially change the aerodynamic properties of the design. In this

case, a robust optimal solution is desired, instead of the optimal solution found for

ideal operating conditions. By robustness, it is meant in general that the perfor-

mance of an optimal solution should be insensitive to small perturbations of the

design variables or environmental parameters. In multiobjective optimization, the

robustness of a solution can be an important factor for a decision maker in choos-

ing the final solution. Search for robust solutions can be treated as a multiobjective

task, i.e., to maximize the performance and the robustness simultaneously. These

two tasks are very likely conflicting, and therefore, MOEAs can be employed to

find a number of trade-off solutions. In the context of multi-objective aerodynamic

shape optimization problems, we summarize next some work on robust design.

• Yamaguchi and Arima [51] dealt with the multi-objective optimization of a tran-

sonic compressor stator blade in which three objectives were minimized: (i) pres-

sure loss coefficient, (ii) deviation outflow angle, and (iii) incidence toughness.
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The last objective function can be considered as a robust condition for the de-

sign, since it is computed as the average of the pressure loss coefficients at two

off-design incidence angles. The airfoil blade geometry was defined by twelve

design variables. The authors adopted MOGA [14] with real-numbers encoding

as their search engine. Aerodynamic performance evaluation for the compressor

blade was done using Navier-Stokes CFD simulations. The optimization process

was parallelized using 24 processors in order to reduce the computational time

required.

• Rai [37] dealt with the robust optimal aerodynamical design of a turbine blade

airfoil shape, taking into account the performance degradation due to manufac-

turing uncertainties. The objectives considered were: (i) to minimize the vari-

ance of the pressure distribution over the airfoil’s surface, and (ii) to maximize

the probability of constraint satisfaction. Only one constraint was considered, re-

lated to the minimum thickness of the airfoil shape. The author adopted a multi-

objective version of the differential evolution algorithm and used a high-fidelity

CFD simulation on a perturbed airfoil geometry in order to evaluate the aerody-

namic characteristics of the airfoil generated by the MOEA. The geometry used

in the simulation was perturbed, following a probability density function that is

observed for manufacturing tolerances. This process had a high computational

cost, which the author reduced using a neural network surrogate model.

• Shimoyama et al. [44] applied a design for multi-objective six-sigma (DFMOSS)

[43] for the robust aerodynamic airfoil design of a Mars exploratory airplane.

The aim is to find the trade-off between the optimality of the design and its ro-

bustness. The idea of the DFMOSS methodology was to incorporate a MOEA to

simultaneously optimize the mean value of an objective function, while minimiz-

ing its standard deviation due to the uncertainties in the operating environment.

The airfoil shape optimization problems considered two cases: a robust design of

(a) airfoil aerodynamic efficiency (lift to drag ratio), and (b) airfoil pitching mo-

ment constraint. In both cases, only the variability in the flow Mach number was

taken into account. The authors adopted MOGA [14] as their search engine. The

airfoil geometry was defined with 12 design variables. The aerodynamic perfor-

mance of the airfoil was evaluated by CFD simulations using the Favre-Averaged

compressible thin-layer Navier-Stokes equations. The authors reported computa-

tional times of about five minutes per airfoil, and about 56 hours for the total

optimization process, using a NEC SX-6 computing system with 32 processors.

Eighteen robust nondominated solutions were obtained in the first test case. From

this set, almost half of the population attained the 6σ condition. In the second test

case, more robust nondominated solutions were found, and they satisfied a sigma

level as high as 25σ .

• Lee et al. [24] presented the robust design optimization of an ONERA M6 Wing

Shape. The robust optimization was based on the concept of the Taguchi method

in which the optimization problem is solved considering uncertainties in the de-

sign environment, in this case, the flow Mach number. The problem had two ob-

jectives: (i) minimization of the mean value of an objective function with respect

to variability of the operating conditions, and (ii) minimization of the variance
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of the objective function of each candidate solution, with respect to its mean

value. In the sample problems, the wing was defined by means of its planform

shape (sweep angle, aspect ratio, taper ratio, etc.) and of the airfoil geometry, at

three wing locations (each airfoil shape was defined with a combination of mean

lines and camber distributions), using a total of 80 design variables to define the

wing designs. Geometry constraints were defined by upper and lower limits of

the design variables. The authors adopted the Hierarchical Asynchronous Paral-

lel Multi-Objective Evolutionary Algorithm (HAPMOEA) algorithm [15], which

is based on evolution strategies, incorporating the concept of Covariance Matrix

Adaptation (CMA). The aerodynamic evaluation was done with a CFD simula-

tion. 12 solutions were obtained in the robust design of the wing. All the nondom-

inated solutions showed a better behavior, in terms of aerodynamic performance

(lift-to-drag ratio) with a varying Mach number, as compared to the baseline de-

sign. During the evolutionary process, a total of 1100 individuals were evaluated

in approximately 100 hours of CPU time.

10.3.4.1 Comments on Robust Design Optimization

As can be seen form the previous examples, robust solutions can be achieved in

evolutionary optimization in different ways. One simple approach is to add pertur-

bations to the design variables or environmental parameters before the fitness is

evaluated, which is known as implicit averaging [50]. An alternative to implicit av-

eraging is explicit averaging, which means that the fitness value of a given design

is averaged over a number of designs generated by adding random perturbations to

the original design. One drawback of the explicit averaging method is the number of

additional quality evaluations needed, which can turn the approach impractical. In

order to tackle this problem, metamodeling techniques have been considered [32].

10.3.5 Multi-Disciplinary Design Optimization

Multi-disciplinary design optimization (MDO) aims at incorporating optimization

methods to solve design problems, considering not only one engineering discipline,

but a set of them. The optimum of a multidisciplinary problem might be a compro-

mise solution from the multiple disciplines involved. In this sense, multi-objective

optimization is well suited for this type of problems, since it can exploit the interac-

tions between the disciplines, and can help to find the trade-offs among them. Next,

we present some work in which MOEAs have been used for aerodynamic shape

optimization problems, coupled with another discipline.

• Chiba et al. [8] addressed the MDO problem of a wing shape for a transonic

regional-jet aircraft. In this case, three objective functions were minimized: (i)

block fuel for a required airplane’s mision, (ii) maximum take-off weight, and

(iii) difference in the drag coefficient between transonic and subsonic flight con-

ditions. Additionally, five constraints were imposed, three of which were related
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to the wing’s geometry and two more to the operating conditions in lift coeffi-

cient and to the fuel volume required for a predefined aircraft mission. The wing

geometry was defined by 35 design variables. The authors adopted ARMOGA

[40]. The disciplines involved included aerodynamics and structural analysis and

during the optimization process, an iterative aeroelastic solution was generated

in order to minimize the wing weight, with constraints on flutter and strength

requirements. Also, a flight envelope analysis was done, obtaining high-fidelity

Navier-Stokes solutions for various flight conditions. Although the authors used

very small population sizes (eight individuals), about 880 hours of CPU time

were required at each generation, since an iterative process was performed in or-

der to optimize the wing weight, subject to aeroelastic and strength constraints.

The population was reinitialized at every 5 generations for range adaptation of

the design variables. In spite of the use of such a reduced population size, the au-

thors were able to find several nondominated solutions outperforming the initial

design. They also noted that during the evolution, the wing-box weight tended to

increase, but this degrading effect was redeemed by an increase in aerodynamic

efficiency, given a reduction in the block fuel of over one percent, which would

be translated in significant savings for an airline’s operational costs.

• Sasaki et al. [41] used MDO for the design of a supersonic wing shape. In this

case, four objective functions were minimized: (i) drag coefficient at transonic

cruise, (ii) drag coefficient at supersonic cruise, (iii) bending moment at the wing

root at supersonic cruise condition, and (iv) pitching moment at supersonic cruise

condition. The problem was defined by 72 design variables. Constraints were

imposed on the variables ranges and on the wing section’s thickness and camber,

all of them being geometrical constraints. The authors adopted ARMOGA [40],

and the aerodynamic evaluation of the design soutions, was done by high-fidelity

Navier-Stokes CFD simulations. No aeroelastic analysis was performed, which

considerably reduced the total computational cost. The objective associated with

the bending moment at wing root was evaluated by numerical integration of the

pressure distribution over the wing surface, as obtained by the CFD analysis. The

authors indicated that among the nondominated solutions there were designs that

were better in all four objectives with respect to a reference design.

• Lee et al. [23] utilized a generic Framework for MDO to explore the improve-

ment of aerodynamic and radar cross section (RCS) characteristics of an Un-

manned Combat Aerial Vehicle (UCAV). In this application, two disciplines were

considered, the first concerning the aerodynamic efficiency, and the second re-

lated to the visual and radar signature of an UCAV airplane. In this case, three

objective functions were minimized: (i) inverse of the lift/drag ratio at ingress

condition, (ii) inverse of the lift/drag ratio at cruise condition, and (iii) frontal

area. The number of design variables was of approximately 100 and only side

constraints were considered in the design variables. The first two objective func-

tions were evaluated using a Potential Flow CFD Solver (FLO22) [17] coupled to

FRICTION code to obtain the viscous drag, using semi-empirical relations. The

authors adopted the Hierarchical Asynchronous Parallel Multi-Objective Evolu-

tionary Algorithm (HAPMOEA) [15]. The authors reported a processing time
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of 200 hours for their approach, on a single 1.8 GHz processor. It is important

to consider that HAPMOEA operates with different CFD grid levels (i.e. ap-

proximation levels): coarse, medium, and fine. In this case, the authors adopted

different population sizes for each of these levels. Also, solutions were allowed

to migrate from a low/high fidelity level to a higher/lower one in an island-like

mechanism.

10.3.5.1 Comments on Multidisciplinary Design Optimization

The increasing complexity of engineering systems has raised the interest in multidis-

ciplinary optimization, as can be seen from the examples presented in this section.

For this task, MOEAs facilitate the integration of several disciplines, since they do

not require additional information other than the evaluation of the corresponding

objective functions, which is usually done by each discipline and by the use of sim-

ulations. Aditionally, an advantage of the use of MOEAs for MDO, is that they can

easily manage any combination of variable types, coming from the involved disci-

plines i.e., from the aerodynamic discipline, the variables can be continuous, but

for the structural optimization, it can happen that the variables are discrete. Kuhn

et al. [22] presented an example of this condition for the multi-disciplinary design

of an airship. However, one challenge in MDO is the increasing dimensionality at-

tained in the design space, as the number of disciplines also increases.

10.3.6 Data Mining and Knowledge Extraction

Data mining tools, along with data visualization using graphical methods, can help

to understand and extract information from the data contained in the Pareto opti-

mal solutions found using any MOEA. In this sense, Multi-Objective Design Ex-

ploration (MODE), proposed by Jeong et al. [18] is a framework to extract design

knowledge from the obtained Pareto optimal solutions such as trade-off informa-

tion between contradicting objectives and sensitivity of each design parameter to

the objectives. In the framework of MODE, Pareto-optimal solutions are obtained

by a MOEA and knowledge is extracted by analyzing the design parameter values

and the objective function values of the obtained Pareto-optimal solutions using data

mining approaches such as Self Organizing Maps (SOMs) and analysis of variance

(ANOVA). They also propose to use rough sets theory to obtain rules from the Pareto

optimal solutions. MODE has been applied to a wide variety of design optimization

problems as summarized next:

• Jeong et al. [18] and Chiba et al. [7, 6] explored the trade-offs among four aero-

dynamic objective functions in the optimization of a wing shape for a Reusable

Launch Vehicle (RLV). The objective functions were: (i) The shift of the aero-

dynamic center between supersonic and transonic flight conditions, (ii) Pitching

moment in the transonic flight condition, (iii) drag in the transonic flight condi-

tion, and (iv) lift for the subsonic flight condition. The first three objectives were

minimized while the fourth was maximized. These objectives were selected for
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attaining control, stability, range and take-off constraints, respectively. The RLV

definition comprised 71 design variables to define the wing planform, the wing

position along the fuselage and the airfoil shape at prescribed wingspan stations.

The authors adopted ARMOGA [40], and the aerodynamic evaluation of the RLV

was done with a Reynolds-Averaged Navier-Stokes CFD simulation. A trade-

off analysis was conducted with 102 nondominated individuals generated by the

MOEA. Data mining with SOM was used, and some knowledge was extracted

in regards to the correlation of each design variable to the objective functions

in [7]; with SOM, Batch-SOM, ANOVA and rough sets in [6]; and with SOM,

Batch-SOM and ANOVA in [18]. In all cases, some knowledge was extracted in

regards to the correlation of each design variable to the objective functions.

• Oyama et al. [35] applied a design exploration technique to extract knowledge in-

formation from a flapping wing MAV (Micro Air Vehicle). The flapping motion

of the MAV was analyzed using multi-objective design optimization techniques

in order to obtain nondominated solutions. Such nondominated solutions were

further analyzed with SOMs in order to extract knowledge about the effects of the

flapping motion parameters on the objective functions. The conflicting objectives

considered were: (i) maximization of the time-averaged lift coefficient, (ii) max-

imization of the time-averaged thrust coefficient, and (iii) minimization of the

time-averaged required power coefficient. The problem had five design variables

and the geometry of the flying wing was kept fixed. Constraints were imposed

on the averaged lift and thrust coefficients so that they were positive. The authors

adopted a GA-based MOEA. The objective functions were obtained by means of

CFD simulations, solving the unsteady incompressible Navier-Stokes equations.

Objective functions were averaged over one flapping cycle. The purpose of the

study was to extract trade-off information from the objective functions and the

flapping motion parameters such as plunge amplitude and frequency, pitching

angle amplitude and offset.

• Tani et al. [49] solved a multiobjective rocket engine turbopump blade shape op-

timization design which considered three objective functions: (i) shaft power, (ii)

entropy rise within the stage, and (iii) angle of attack of the next stage. The first

objective was maximized while the others were minimized. The design candi-

dates defined the turbine blade aerodynamic shape and consisted of 58 design

variables. The authors adopted MOGA [14] as their search engine. The objective

function values were obtained from a CFD Navier-Stokes flow simulation. The

authors reported using SOMs to extract correlation information for the design

variables with respect to each objective function.

10.3.6.1 Comments on Data Mining and Knowledge Extraction

When adopting the data mining techniques used in the above examples, in which

analyses are done, correlating the objective functions values, with the design param-

eter values of the Pareto optimal solutions, some valuable information is obtained.

However, in many other cases, for aerodynamic flows, the knowledge required is
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more related to the physics, rather than to the geometry, given by the design

variables. For example, for understanding the relation between the generation of

shock wave formation and aerodynamic characteristics in a transonic airfoil opti-

mization. For this, Oyama et al. [34], have recently proposed a new approach to ex-

tract useful design information from one-dimensional, two-dimensional, and three-

dimensional flow data of Pareto-optimal solutions. They use a flow data analysis

by Proper Orthogonal Decomposition (POD), which is a statistical approach that

can extract dominant features in the data by decomposing it into a set of optimal

orthogonal base vectors of decreasing importance.

10.4 A Case Study

Here, we present a case study of evolutionary multi-objective optimization for an

airfoil shape optimization problem. The test problem chosen corresponds to the

airfoil shape of a standard-class glider. The optimization problem aims at obtain-

ing optimum performance for a sailplane. In this study the trade-off among three

aerodynamic objectives is evaluated using a MOEA.

10.4.1 Objective Functions

Three conflicting objective functions are defined in terms of a sailplane average

weight and operating conditions [48]. They are formally defined as:

(i) Minimize CD/CL subject to CL = 0.63, Re = 2.04 ·106, M = 0.12

(ii) Minimize CD/CL subject to CL = 0.86, Re = 1.63 ·106, M = 0.10

(iii) Minimize CD/C
3/2
L subject to CL = 1.05, Re = 1.29 ·106, M = 0.08

In the above definitions, CD/CL and CD/C
3/2
L correspond to the inverse of the

glider’s gliding ratio and sink rate, respectively. Both are important performance

measures for this aerodynamic optimization problem. CD and CL are the drag and

lift coefficients. In the above objective function definitions, the aim is to maximize

the gliding ratio for objectives (i) and (ii), while minimizing the sink rate in objective

(iii). Each of these objectives is evaluated at different prescribed flight conditions,

given in terms of Mach and Reynolds numbers.

10.4.2 Geometry Parameterization

Finding an optimum representation scheme for aerodynamic shape optimization

problems is an important step for a successful aerodynamic optimization task. Sev-

eral options can be used for airfoil shape parameterization.

(a)The representation used needs to be flexible to describe any general airfoil shape.
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(b)The representation also needs to be efficient, in order that the parameterization

can be achieved with a minimum number of parameters. Inefficient representa-

tions may result in an unnecesarily large design space which, in consequence,

can reduce the search efficiency of an evolutionary algorithm.

(c)The representation should allow the use of any optimization algorithm to perform

local search. This requirement is important for refining the solutions obtained by

the global search engine in a more efficient way.

In the present case study, the PARSEC airfoil representation [45] is used. Fig. 10.1

illustrates the 11 basic parameters used for this representation: rle leading edge

radius, Xup/Xlo location of maximum thickness for upper/lower surfaces, Zup/Zlo

maximum thickness for upper/lower surfaces, Zxxup/Zxxlo curvature for upper/lower

surfaces, at maximum thickness locations, Zte trailing edge coordinate, ∆Zte trail-

ing edge thickness, αte trailing edge direction, and βte trailing edge wedge angle.

For the present case study, the modified PARSEC geometry representation adopted

allows us to define independently the leading edge radius, both for upper and lower

surfaces. Thus, 12 variables in total are used. Their allowable ranges are defined in

Table 10.1.

Table 10.1 Parameter Ranges for Modified PARSEC Airfoil Representation

rleup rlelo αte βte Zte ∆Zte Xup Zup Zxxup Xlo Zlo Zxxlo

min 0.0085 0.002 7.0 10.0 -0.006 0.0025 0.41 0.11 -0.9 0.20 -0.023 0.05

max 0.0126 0.004 10.0 14.0 -0.003 0.0050 0.46 0.13 -0.7 0.26 -0.015 0.20

Fig. 10.1 PARSEC airfoil parameterization

The PARSEC airfoil geometry representation uses a linear combination of shape

functions for defining the upper and lower surfaces. These linear combinations are

given by:

Zupper =
6

∑
n=1

anx
n−1

2 (10.4)
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Zlower =
6

∑
n=1

bnx
n−1

2 (10.5)

In the above equations, the coefficients an, and bn are determined as function of the

12 described geometric parameters, by solving the following two systems of linear

equations:
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It is important to note that the geometric parameters rleup/rlelo, Xup/Xlo, Zup/Zlo,

Zxxup/Zxxlo, Zte, ∆Zte, αte, and βte are the actual design variables in the optimization

process, and that the coeficients an, bn serve as intermediate variables for interpolat-

ing the airfoil’s coordinates, which are used by the CFD solver (we used the Xfoil

CFD code [13]) for its discretization process.
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10.4.3 Constraints

For this case study, five constraints are considered. The first three are defined in

terms of flight speed for each objective function, namely the prescribed CL values,

CL = 0.63 for objective (i), CL = 0.86 for objective (ii), and CL = 1.05 for objective

(iii), enable the glider to fly at a given design speed, and to produce the necessary

amount of lift to balance the gravity force for each design condition being analyzed.

It is important to note that prescribing the required CL, the corresponding angle of

attack α for the airfoil is obtained as an additional variable. For this, the flow solver,

given the design candidate geometry, solves the flow equations with a constraint on

the CL value, i.e., it additionally determines the operating angle of attack α . Two ad-

ditional constraints are defined for the airfoil geometry. First, the maximum airfoil

thickness range is defined by 13.0% ≤ t/c ≤ 13.5%. For handling this constraint,

every time a new design candidate is created by the evolutionary operators, its max-

imum thickness is checked and corrected before being evaluated. The correction is

done by scaling accordingly the design parameters Zup and Zlo, which mainly define

the thickness distribution in the airfoil. In this way, only feasible solutions are eval-

uated by the simulation process. The final constraint is the trailing edge thickness,

whose range is defined by 0.25%≤ ∆Zte ≤ 0.5%. This constraint is directly handled

in the lower and upper bounds by the corresponding ∆Zte design parameter.

10.4.4 Evolutionary Algorithm

For solving the above case study, we adopted MODE-LD+SS [3] as our search algo-

rithm. Additionaly, and for comparison purposes, we also used an implementation

of the SMS-EMOA algorithm [5]. This algorithm is based on the hypervolume per-

formance measure [53] and has also been used in the context of airfoil optimization

problems.

The Multi-objective Evolutionary Algorithm MODE-LD+SS (see Algorithm 1)

[3] adopts the evolutionary operators from differential evolution [36]. In the basic

DE algorithm, and during the offspring creation stage, for each current vector Pi ∈
{P}, three parents (mutually different among them) u1,u2,u3 ∈ {P} (u1 �= u2 �=
u3 �= Pi) are randomly selected for creating a mutant vector v using the following

mutation operation:

v ← u1 + F · (u2 −u3) (10.8)

F > 0, is a real constant scaling factor which controls the amplification of the differ-

ence (u2 −u3). Using this mutant vector, a new offspring P
′

i (also called trial vector

in DE) is created by crossing over the mutant vector v and the current solution Pi, in

accordance to:

P
′

j =
{ v j if (rand j(0,1) ≤CR or j = jrand

Pj otherwise
(10.9)
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Algorithm 1 MODE-LD+SS

1: INPUT:

P[1, . . . ,N] = Population

N = Population Size

F = Scaling factor

CR = Crossover Rate

λ [1, . . . ,N] = Weight vectors

NB = Neighborhood Size

GMAX = Maximum number of generations

2: OUTPUT:

PF = Pareto front approximation

3: Begin

4: g ← 0

5: Randomly create P
g
i , i = 1, . . . ,N

6: Evaluate P
g
i , i = 1, . . . ,N

7: while g < GMAX do

8: {LND} = {⊘}
9: for i = 1 to N do

10: DetermineLocalDominance(P
g
i ,NB)

11: if P
g
i is locally nondominated then

12: {LND}← {LND}∪P
g
i

13: end if

14: end for

15: for i = 1 to N do

16: Randomly select u1, u2, and u3 from {LND}
17: v ← CreateMutantVector(u1,u2,u3)

18: P
g+1
i ← Crossover(P

g
i ,v)

19: Evaluate P
g+1
i

20: end for

21: Q ← Pg ∪Pg+1

22: Determine z∗ for Q

23: for i = 1 to N do

24: P
g+1
i ← MinimumTchebycheff(Q,λ i,z∗)

25: Q ← Q\P
g+1
i

26: end for

27: PF ←{P}g+1

28: end while

29: ReturnPF

30: End

In the above expression, the index j refers to the jth component of the decision vari-

ables vectors. CR is a positive constant and jrand is a randomly selected integer in the

range [1, . . . ,D] (where D is the dimension of the solution vectors) ensuring that the

offspring is different at least in one component with respect to the current solution

Pi. The above DE variant is known as Rand/1/bin, and is the version adopted here.

Additionally, the proposed algorithm incorporates two mechanisms for improving

both the convergence towards the Pareto front, and the uniform distribution of
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nondominated solutions along the Pareto front. These mechanisms correspond to

the concept of local dominance and the use of an environmental selection based on

a scalar function. Below, we explain these two mechanisms in more detail.

As for the first mechanism, local dominance concept, in Algorithm 1, the solu-

tion vectors u1,u2,u3, required for creating the trial vector v (in equation (10.8)),

are selected from the current population, only if they are locally nondominated in

their neighborhood ℵ. Local dominance is defined as follows:

Definition 6. Pareto Local Dominance. Let x be a feasible solution, ℵ(x) be a

neighborhood structure for x in the decision space, and f(x) a vector of objective

functions.

- We say that a solution x is locally nondominated with respect to ℵ(x) if and only

if there is no x
′

in the neighborhood of x such that f(x
′
) ≺ f(x)

The neighborhood structure is defined as the NB closest individuals to a particular

solution. Closeness is measured by using the Euclidean distance between solutions

in the design variable space. The major aim of using the local dominance concept,

as defined above, is to exploit good individuals’ genetic information in creating DE

trial vectors, and the associated offspring, which might help to improve the MOEA’s

convergence rate toward the Pareto front. From Algorithm 1, it can be noted that

this mechanism has a stronger effect during the earlier generations, where the por-

tion of nondominated individuals is low in the global population, and progressively

weakens, as the number of nondominated individuals grows during the evolutionary

process. This mechanism is automatically switched off, once all the individuals in

the population become nondominated, and has the possibility of being switched on,

as some individuals become dominated.

As for the second mechanism, selection based on a scalar function, it is based on

the Tchebycheff scalarization function given by:

g(x|λ ,z∗) = max
1≤i≤m

{λ i| fi(x)− z∗i |} (10.10)

In the above equation, λ i, i = 1, . . . ,N represents the set of weight vectors used to

distribute the solutions along the entire Pareto front. In this case, this set is cal-

culated using the procedure described in [52]. z∗ corresponds to a reference point,

defined in objective space and determined with the minimum objective values of the

combined population Q, consistent on the actual parents and the created offspring.

This reference point is updated at each generation, as the evolution progresses. The

procedure MinimumTchebycheff(Q,λ i,z∗) finds, from the set Q, (the combined pop-

ulation consistent on the actual parents and the created offspring), the solution vec-

tor that minimizes equation (10.10) for each weight vector λ i and the reference

point z∗.

The second MOEA adopted is the SMS-EMOA, which is a steady-state algorithm

based on two basic characteristics: (1) non-dominated sorting is used as its ranking
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criterion and (2) the hypervolume4 is applied as its selection criterion to discard that

individual, which contributes the least hypervolume to the worst-ranked front.

The basic algorithm is described in Algorithm 2. Starting with an initial pop-

ulation of µ individuals, a new individual is generated by means of randomised

variation operators. We adopted simulated binary crossover (SBX) and polynomial-

based mutation as described in [11]. The new individual will become a member of

the next population, if replacing another individual leads to a higher quality of the

population with respect to the hypervolume.

Algorithm 2 SMS-EMOA

1: Po ← init() /* initialize random population of µ individuals */

2: t ← 0

3: repeat

4: qt+1 ← generate(Pt ) /* generate offspring by variation*/

5: Pt+1 ← reduce(Pt
⋃

{qt+1}) /* select µ best individuals */

6: until termination condition is fulfilled

The procedure Reduce used in Algorithm 2 selects the µ individuals of the sub-

sequent population; the definition of this procedure is given in Algorithm 3. The

algorithm fast-nondominated-sort used in NSGA-II [12] is applied to partition the

population into v sets R1, . . . ,Rv. The subsets are called fronts and are provided

with an index representing a hierarchical order (the level of domination) whereas

the solutions within each front are mutually nondominated. The first subset con-

tains all nondominated solutions of the original set Q. The second front consists of

individuals that are nondominated in the set (Q\R1), e.g. each member of R2 is

dominated by at least one member of R1. More general, the ith front consists of

individuals that are nondominated if the individuals of the fronts j with j < i were

removed from Q.

Algorithm 3 Reduce(Q)

1: {R1, . . . ,Rv}← f ast nondominated sort(Q) /* all v fronts of Q*/

2: r ← argmins∈Rv
[∆S (s,Rv)] /* s ∈ Rv with lowest ∆S (s,Rv)*/

3: return (Q\r)

The value of ∆S (s,Rv)] can be interpreted as the exclusive contribution of s to

the hypervolume value of its appropriate front. By definition of ∆S (s,Rv)], an in-

dividual, which dominates another is always kept and a nondominated individual

is replaced by a dominated one. This measure keeps those individuals which maxi-

mize the population’s S-Metric value, which implies that the covered hypervolume

4 The Hypervolume (also known as the S-metric or the Lebesgue Measure) of a set of

solutions measures the size of the portion of objective space that is dominated by those

solutions collectively.
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of a population cannot decrease by application of the Reduce operator. Thus, for

Algorithm 2 the following invariant holds:

S (Pt) ≤ S (Pt+1) (10.11)

Due to the high computational effort of the hypervolume calculation, a steady state

selection scheme is used. Since only one individual is created, only one has to be

deleted from the population at each generation. Thus, the selection operator has to

compute at most µ + 1 values of the S-Metric (exactly µ + 1 values in case all

solutions are nondominated). These are the values of the subsets of the worst ranked

front, in which one point of the front is left out, respectively. A (µ + λ ) selection

scheme would require the calculation of
(µ+λ

µ

)
possible S-Metric values to identify

an optimally composed population, maximising the S-Metric net value.

The parameters used for solving the present case study, and for each algorithm

were set as follows: N = 120 (population size) for both MOEAs, F = 0.5 (mutation

scaling factor for MODE-LD+SS), CR = 0.5 (crossover rate for MODE-LD+SS),

NB = 5 (neighborhood size for MODE-LD+SS), ηm = 20 (mutation index for SBX

in SMS-EMOA), and ηc = 15 (crossover index for SBX in SMS-EMOA).

10.4.5 Results

Both, MODE-LD+SS and SMS-EMOA were run for 100 generations. The simula-

tion process in each case took approximately 8 hrs of CPU time. Five independent

runs were executed for extracting some statistics. Figs. 10.2 to 10.3 show the Pareto

front approximations (of the median run) at different evolution times. For compar-

ison purposes, in these figures the corresponding objective functions of a reference

airfoil (a720o [48]) are plotted. At t = 10 generations (the corresponding figure is

not shown due to space constraints), the number of nondominated solutions is 26

for SMS-EMOA and 27 for MODE-LD+SS. With this small number of nondomi-

nated solutions is difficult to identify the trade-off surface for this problem. How-

ever, as the number of evolution steps increases, the trade-off surface is more clearly

revealed. At t = 50 generations (see Fig. 10.2), the number of nondominated solu-

tions is 120 for SMS-EMOA, and 91 for MODE-LD+SS. At this point, the trade-off

surface shows a steeper variation of objective (iii) toward the compromise region of

the Pareto front. Also, the trade-off shows a plateau where the third objective has a

small variation with respect to the other objectives. Finally, at t = 100 generations

(see Fig. 10.3), the shape of the trade-off surface is more clearly defined, and a clear

trade-off between the three objectives are evidenced. It is important to note in Fig.

10.3, that the trade-off surface shows some void regions. This condition is captured

by both MOEAs and is attributed to the constraints defined in the airfoil geome-

try. Table 10.2 summarizes the maximum possible improvement with respect to the

reference solution, that can be attained for each objective and by each MOEA.

In the context of MOEAs, it is common to compare results on the basis of some

performance measures. Next, and for comparison purposes between the algorithms
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Table 10.2 Maximum improvement per objective for the median run of each MOEA used

MOEA

SMS-EMOA MODE-LD+SS

Gen ∆Ob j1(%) ∆Ob j2(%) ∆Ob j3(%) ∆Ob j1(%) ∆Ob j2(%) ∆Ob j3(%)

10 11.43 10.19 5.43 11.93 10.38 5.47

50 12.84 10.67 6.06 13.22 10.67 6.21

100 12.75 10.79 6.28 13.63 10.80 6.40

used, we present the hypervolume values attained by each MOEA, as well as the val-

ues of the two set coverage performance measure C-M(A,B) between them. Next,

we present the definition for these two performance measures:

Hypervolume (Hv): Given a Pareto approximation set PFknown, and a reference

point in objective space zre f , this performance measure estimates the Hypervolume

attained by it. Such hypervolume corresponds to the non-overlaping volume of all

the hypercubes formed by the reference point (zre f ) and every vector in the Pareto

set approximation. This is mathematically defined as:

HV = {∪ivoli|veci ∈ PFknown} (10.12)

veci is a nondominated vector from the Pareto set approximation, and voli is the vol-

ume for the hypercube formed by the reference point and the nondominated vector

veci. Here, the reference point (zre f ) in objective space for the 3-objective MOPs

was set to (0.007610 , 0.005895 , 0.005236 ), which corresponds to the objective

values of the reference airfoil. High values of this measure indicate that the solu-

tions are closer to the true Pareto front and that they cover a wider extension of it.

Two Set Coverage (C-Metric): This performance measure estimates the coverage

proportion, in terms of percentage of dominated solutions, between two sets. Given

the sets A and B, both containing only nondominated solutions, the C-Metric is

mathematically defined as:

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|
(10.13)

This performance measure indicates the portion of vectors in B being dominated by

any vector in A. The sets A and B correspond to two different Pareto approximations,

as obtained by two different algorithms. Therefore, the C-Metric is used for pairwise

comparisons between algorithms.

For the hypervolume measure, SMS-EMOA attains a value of Hv = 1.5617 ·
10−10 with a standard deviation of σ = 2.4526 ·10−12, while MODE-LD+SS attains

a value of Hv = 1.6043 · 10−10 with a standard deviation of σ = 1.2809 · 10−12.

These results are the average of five independent runs executed by each algorithm.
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Fig. 10.2 Pareto front approximation at Gen = 50 (6000 OFEs)
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Fig. 10.3 Pareto front approximation at Gen = 100 (12000 OFEs)

As for the C-Metric, the corresponding values obtained are: C − M(SMS −
EMOA,MODE − LD + SS) = 0.07016 with a standard deviation of σ = 0.03134,

and C−M(MODE −LD + SS,SMS−EMOA) = 0.3533 with a standard deviation

of σ = 0.0510. These latter results are the average of all the pairwise combinations
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Fig. 10.4 Airfoil shape comparison

of the five independent runs executed by each algorithm. Our results indicate that

MODE-LD+SS converges closer to the true Pareto front, and provides more non-

dominated solutions than SMS-EMOA.

Finally, in Figure 10.4 are presented the geometries of the reference airfoil,

a720o, and two selected airfoils from the trade-off surface of this problem and ob-

tained by SMS-EMOA and MODE-LD+SS at t = 100 generations. These two latter

airfoil are selected as those with the closest distance to the origin of the objective

space, since they are considered to represent the best trade-off solutions.

10.5 Conclusions and Final Remarks

In this chapter we have presented a brief review of the research done on multi-

objective aerodynamic shape optimization. The examples presented cover a wide

range of current applications of these techniques in the context of aeronautical en-

gineering design, and in several design scenarios. The approaches reviewed include

the use of surrogates, hybridizations with gradient-based techniques, mechanisms

to search for robust solutions, multidisciplinary approaches, and knowledge extrac-

tion techniques. It can be observed that several Pareto-based MOEAs have been

successfully integrated in industrial problems. It can be anticipated that in the near

future, an extended use of these techniques will be a standard practice, as the com-

puting power available continues to increase each year. It is also worth noting that

MOEAs are flexible enough as to allow their coupling to both engineering models
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and low-order physics-based models without major changes. They can also be easily

parallelized, since MOEAs normally have low data dependency.

From an algorithmic point of view, it is clear that the use of Pareto-based MOEAs

remains as a popular choice in the previous group of applications. It is also evident

that, when dealing with expensive objective functions such as those of the above ap-

plications, the use of careful statistical analysis of parameters is unaffordable. Thus,

the parameters of such MOEAs were simple guesses or taken from values suggested

by other researchers. The use of surrogate models also appears in these costly ap-

plications. However, the use of other simpler techniques such as fitness inheritance

or fitness approximation [39] seems to be uncommon in this domain and could be

a good alternative when dealing with high-dimensional problems. Additionally, the

authors of this group of applications have relied on very simple constraint-handling

techniques, most of which discard infeasible individuals. Alternative approaches ex-

ist, which can exploit information from infeasible solutions and can make a more

sophisticated exploration of the search space when dealing with constrained prob-

lems (see for example [29]) and this has not been properly studied yet. Finally, it is

worth emphasizing that, in spite of the difficulty of these problems and of the evi-

dent limitations of MOEAs to deal with them, most authors report finding improved

designs when using MOEAs, even when in all cases a fairly small number of fit-

ness function evaluations was allowed. This clearly illustrates the high potential of

MOEAs in this domain.
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Chapter 11  

An Enhanced Support Vector Machines Model 
for Classification and Rule Generation 

Ping-Feng Pai and Ming-Fu Hsu
*
 

Abstract. Based on statistical learning theory, support vector machines (SVM) 
model is an emerging machine learning technique solving classification problems 
with small sampling, non-linearity and high dimension. Data preprocessing, pa-
rameter selection, and rule generation influence performance of SVM models a lot. 
Thus, the main purpose of this chapter is to propose an enhanced support vector 
machines (ESVM) model which can integrate the abilities of data preprocessing, 
parameter selection and rule generation into a SVM model; and apply the ESVM 
model to solve real world problems. The structure of this chapter is organized as 
follows. Section 11.1 presents the purpose of classification and the basic concept of 
SVM models. Sections 11.2 and 11.3 introduce data preprocessing techniques, 
metaheuristics for selecting SVM models. Rule extraction of SVM models is ad-
dressed in Section 11.4. An enhanced SVM scheme and numerical results are illus-
trated in Section 11.5 and 11.6. Conclusions are made in Section 11.7. 

Keywords: Support vector machines, Data preprocessing, Rule extraction,  
Classification. 

11.1   Basic Concept of Classification and Support Vector  

Machines 

The data mining technique observes enormous records comprising information 

about the target and input variables. Imagine that investors would like to classify 

the financial status based on characteristics of the firm, such as return on asset 
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(ROA), quick ratio, and return on investment (ROI). This is a classification task 

and data mining techniques are suitable for this task. The goal of data mining is to 

build up a suitable model for a labeling process that approximates the original 

process as closely as possible. Thus, investors can adopt the well-developed model 

to learn the status of firm.  

Support vector machines (SVM) were proposed by Vapnik [42, 43] originally 

for typical binary classification problems. The SVM implements the structural risk 

minimization (SRM) principle rather than the empirical risk minimization (ERM) 

principle employed by most traditional neural network models. The most impor-

tant concept of SRM is the minimization of an upper bound to the generalization 

error instead of minimizing the training error. In addition, the SVM will be equiv-

alent to solving a linear constrained quadratic programming (QP) problem, so that 

the solution for SVM is always unique and globally optimal [6, 12, 14, 41, 42, 43]. 

Given a training set of instance-base pairs (xi,yi), i = 1,…,m, where n

i Rx ∈  and 

yi ∈ {±1}, SVM determines an optimal separating hyperplane with the maximum 

margin by solving the following optimization problem: 
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where w denotes the weight vector, and g denotes the bias term. 

The Lagrange function’s saddle point is the solution to the quadratic optimiza-

tion problem: 
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where αi  is Lagrange multipliers and αi ≥ 0. 

To identify an optimal saddle point is necessary because the Lh  must be  

minimized with respect to the primal variable w and gand maximized the non-

negative dual variable αi. By discriminating w and g, and proposing the Karush 

Kuhn-Tucker (KKT) condition for the optimum constrained function, Lh is  

transformed to the dual Lagrangian ( )αEL : 
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Dual Lagrangian LE(α) must be maximized with respect to non-negative αi to 

identify the optimal hyperplane. The parameters w
*
 and g

*
 of the optimal hyper-

plane were determined by the solution αi for the dual optimization problem. 

Therefore, the optimal hyperplane ( ) ( )**
gxwsignxf +⋅=   can be illustrated as: 
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In a binary classification task, only a few subsets of the Lagrange multipliers αi 

usually tend to be greater than zero. These vectors are the closest to the optimal 

hyperplane. The respective training vectors having non-zero αi are called support 

vectors, as the optimal decision hyperplane f(x,α*
,g

*
) depends on them exclu-

sively. Figure 11.1 illustrates the basic structure of SVM. 

Very few data sets in the real world are linearly separable. What makes SVM 

so remarkable is that the basic linear framework is easily extended to the case 

where the data set is not linearly separable. The fundamental concept behind this 

extension is to transform the input space where the data set is not linearly  

separable into a higher-dimensional space, where the data are linearly separable. 

Figure 11.2 illustrates the mapping concept of SVM. 

Margin 

Support vector 

Support vector 

Optimal hyperplane 

 

Fig. 11.1 The basic structure of the SVM [12] 

Input space Feature space H
Transforming function 

 

Fig. 11.2 Mapping a non-linear data set into a feature space [6] 

In terms of the introduced slack variables, the problem of discovering the  

hyperplane with minimizing the training errors is illustrated as follows: 
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where C is a penalty parameter on the training error, and ξi  is the non-negative 

slack variable. The constant C used to determine the trade-off between margin size 
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and error. Observe that C is positive and cannot be zero; that is, we cannot simply 

ignore the slack variables by setting C = 0. With a large value for C, the optimiza-

tion will try to discover a solution with a small number of non-zero slack variables 

because errors are costly [14]. Above all, it can be concluded that a large C  

implies a small margin, and a small C implies a large margin. 

The Lagrangian method can be used to solve the optimization model, which is 

almost equivalent to the method for dealing with the optimization problem in the 

separable case. One has to maximize the dual variables Lagrangian: 
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A dual Largrangian LE(α) has to be maximized with respect to non-negativeαi un-

der the constraints
1

0
m

i ii
yα

=
=∑   and Ci ≤≤ α0  to determine the optimal hyper-

plane. The penalty parameter C is an upper bound on αi, and determined by the 

user. 

The mapping function Φ is used to map the training samples from the input 

space into a higher-dimensional feature space. In Eq.11.6, the inner products are 

substituted by the kernel function (Φ(xi)⋅ Φ(yi)) = K(xi,xj), and the nonlinear SVM 

dual Lagrangian LE(α) shown in Eq.(11.7) is similar to that in the linear general-

ized case: 
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Hence, followed the steps illustrated in the linear generalized case, we derive the 

decision function of the following form: 

( ) ( ) ( ) ( )* * * *
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m m
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The function K is defined as the kernel function for generating the inner products 

to construct machines with different types of nonlinear decision hyperplane in the 

input space. There are several kernel functions, depicted as follows. The  

determination of kernel function type depends on the problem’s complexity [12]. 

Radial Basis Function (RBF): ( ) { }22
2/exp, σii xxxxK −−=   

Polynomial kernel of degree d: ( ) ( )d

ii xxxxK ,, =  

Sigmoid kernel: ( ) ( )( )rxxKxxK ii += ,tanh,  
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11.2   Data Preprocessing 

Data sometimes are missing, noisy and inconsistent; and irrelevant or redundant 

attributes of data increase the computational complexity and decrease performance 

of data mining models. To be useful for data mining purposes, the original data 

need to be preprocessed in the form of cleaning, transformation, and reduction. 

The data without the preprocessing procedures would cause confusion for the data 

mining procedure and result in unreliable output.  

11.2.1   Data Cleaning 

The purpose of data cleaning is to fill in missing value, eliminate the noise (out-

liers), and correct the inconsistencies in the data. Let us look at the following ap-

proaches for missing value [9, 21, 35, 37]: 

” Ignore the missing value.  

” Fill in the missing value manually.  

” Apply a global constant to replace the missing value.  

” Apply the mean attribute to replace the missing value. 

” Apply the most probable value to fill in the missing value. 

Noise data (e.g., outlier) is a random error or variance in the measured data. Even 

a small number of extreme values can lead to different results and impair the con-

clusion. There are some smoothing methods (e.g., binning, regression and cluster-

ing) to offset the effect caused by a small number of extreme values [3, 28, 37, 

44]. Human error in data entry, deliberate errors and data decay are some of the 

reasons for inconsistent data. Missing values, noise, and inconsistent data lead to 

inaccurate results. Data cleaning is the first step to analyzing the original data 

which would lead to reliable mining result. Figure 11.3 illustrates the original data 

processed by the procedure of data cleaning [9, 36]. 

Original data Clean data 

 

Fig. 11.3 Data cleaning [12] 

11.2.2   Data Transformation 

Data transformation is used to transform or consolidate data into forms suitable for 

the data mining process. Data transformation consists of the following processes 

[15, 17, 36, 38, 39]:  

” Smoothing is employed to remove the noise from the data is illustrated in Fig. 11.4. 

” Aggregation aggregates the data to construct the data cube for analysis. 
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” Generalization replaces the lower-level data with higher-level data. 

” Normalization scales the attribute data to fall within a small specified range. 

Volumes 

Figures  
Outliers  

 

Fig. 11.4 The process of smoothing 

11.2.3   Data Reduction 

The purpose of the data reduction is to create a reduced representation of the data-

set which is much smaller in volume yet closely sustains the integrity of the raw 

data. Dealing with the reduced data set enhances efficiency while producing the 

same analytical results. Data reduction consists of the following process [1, 2, 4, 5, 

7, 18, 19, 24, 40, 45]:  

” The aggregation of the data cube is employed to construct a data cube which 

is illustrated in Fig. 11.5. 

” Attribute selection is used to remove the irrelevant, redundant or weak at-

tributes, as shown in Fig. 11.6. 

” Dimension reduction is used to reduce or compress the representation of the 

raw dataset. Raw data which can be reconstructed from the compressed data 

without losing any information is called lossless. In contrast, the approxima-

tion of the reconstructed raw data is called lossy. 
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Fig. 11.5 Aggregation of the data cube [12] 
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Fig. 11.6 Attribute selection [12] 
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11.3   Parameter Determination of Support Vector Machines by 

Meta-heuristics 

Appropriate parameter setting can improve the performance of SVM models. Two 

parameters (C and σ) have to be determined in the SVM model with RBF kernel. 

The parameter C is the cost of penalty which influences the classification per-

formance. If C is too large, the classification accuracy is very high in training data 

set, but very low in testing data set. If C is too small, the classification accuracy is 

inferior. The parameter σ has more influence than parameter C on classification 

outcome, because the value affects the partitioning outcome in the feature space. 

A large value for parameter σ leads to over-fitting, while a small value results in 

under-fitting [22]. The Grid search [24] is the most common approach to deter-

mine parameters of SVM models. Nevertheless, this approach is a local search 

technique, and tends to reach the local optima [20]. Furthermore, setting appropri-

ate search intervals is an essential problem. A large search interval increases the 

computational complexity, while a small search interval would cause an inferior 

outcome. Some metaheuristics were proposed to select satisfactory parameters of 

SVM models [29, 30, 31, 32, 33, 34, 35]. The basic concept is to transfer the fit-

ness functions of meta-heuristics into the forms of classification performance cri-

teria (classification accuracy or error) of the SVM models. The fitness function of 

proposed metahuristics is used to measure the classification accuracy of the SVM 

model. Making the classification performance criteria acceptable for the metaheu-

ristic algorithms is the most critical part of this procedure.  

11.3.1   Genetic Algorithm 

Holland [13] proposed the genetic algorithm (GA) to understand the adaptive 
processes of natural systems. Subsequently, they were employed for optimization 
and machine learning in the 1980’s. Originally, GA was associated with the use of 
binary representation, but currently we can find it used with other types of repre-
sentations and applied in many research domains. The basic principle is the prin-
ciple of survival of the fittest. It tries to keep genetic information from generation 
to generation. The major merits of GA are their ability to find optimal or near op-
timal solutions with relatively modest computational requirements. The concept is 
briefly illustrated as follows and illustrated in Fig. 11.7. :  

” Initialization: The initial population of chromosomes is established randomly. 

” Evaluating fitness: Evaluate the fitness of each chromosome. The classifica-

tion accuracy is used as the fitness function. 

” Selection: Select a mating pair for reproduction.  

” Crossover and mutation: Create new offspring by performing crossover and 

mutation operations.  

” Next generation: Create a population for the next generation.  

” Stop condition: If the number of generations equals a threshold, then the best 

chromosomes are presented as a solution; otherwise go back to step (b)  

[29, 31]. 
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Fig. 11.7 The architecture of GA to determine parameters of SVM 

11.3.2   Immune Algorithm 

The immune algorithm (IA) [10] was based on the natural immune systems which 

efficiently distinguish all cells within the body and classify those cells as self or 

non-self cells. Non-self cells trigger a defense procedure which defends against 

foreign invaders. The antibodies are expressed by two SVM parameters. The clas-

sification error of SVM is contained in the denominator part of the affinity for-

mula. Therefore, the reason for maximizing the affinity of IA is to minimize clas-

sification errors of the SVM model. IA search algorithm applied to determine the 

parameters of SVM is described as follows and illustrates in Fig. 11.8. : 

” Initialization: Both the initialized antibody population and the population of 

the initial antibody were created randomly. ” Evaluation fitness: The classification error (CE) was treated as the fitness of IA.  ” Affinity and similarity: When affinity values are high, the affinity and the 
similarity antibodies having higher activation levels of antigens are identi-
fied. To maintain the diversity of the antibodies stored in the memory cells, 
antibodies with a higher affinity value and a lower similarity value have a 
good likelihood of entering the memory cells. Eq. (11.9) is used to depict 
the affinity between the antibody and antigen:  

CEAntigen += 1/1                                                      (11.9) 

A smaller CE indicates a higher affinity value. Eq. (11.10) is applied to  

     illustrate the similarity between antibodies: 

ijGAntibodies += 1/1                                           (11.10) 

where Gij is the difference between the two classification errors  
     calculated by the antibodies inside and outside the memory cells.  
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” Selection: Select the antibodies in the memory cells. Antibodies with higher 

values of Antigen are treated as candidates to enter the memory cell. How-

ever, the antibody candidates with Antibodiesij values exceeding the thresh-

old are not qualified to enter the memory cell. 

” Crossover and mutation: The antibody population is undergoing crossover 

and mutation. Crossover and mutation are used to generate new antibodies. 

When conducting the crossover operation, strings representing antibodies 

are paired randomly. Segments of paired strings between two predetermined 

break-points are swapped. 

” Perform tabu search [11] on each antibody: Evaluate neighbor antibodies 

and adjust the tabu list. The antibody with the better classification error and 

not recorded on the tabu list is placed on the tabu list. If the best neighbor 

antibody is the same as one of the antibodies on the tabu list, then the next 

set of neighbor antibodies is generated and the classification error of the an-

tibody calculated. The next set of neighbor antibodies is generated from the 

best neighbor antibodies in the current iteration. 

” Current antibody selection by tabu search: If the best neighbor antibody is 

better than the current antibody, then the current antibody is replaced by the 

best neighbor antibody. Otherwise, the current antibody is retained. 

” Next generation: From a population for the next generation. 

” Stop criterion: If the number of epochs is equal to a given scale, then the 

best antibodies are presented as a solution; otherwise go to Step (b) [32, 33]. 

Parameters determination by  

IA/TS algorithms 

Prediction by tentative  

SVM models 

IA/TS stop condition? 
Classification accuracy calcu-

lation 

Finalized SVM models 

No 

Yes 

 

Fig. 11.8 The architecture of IA/TS to determine parameters of SVM 

11.3.3   Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm [16] is another population-based 

meta-heuristic inspired by swarm intelligence. It simulates the behavior of birds 

flocking to a promising position with sufficient food. A particle is considered as a 

point in a G-dimensional space and its status is characterized according to its posi-

tion yig and velocity sig. The G-dimensional position for the particle i at iteration t 

is expressed as yi
t
 = {yi1

t
,…, yiG

t
}. 

The velocity, which is also a G-dimensional vector, for particle i at iteration t is 

illustrated as si
t
 = {si1

t
,…, siG

t
}. Let bi

t
 = {bi1

t
,…, biG

t
} be the best solution that par-

ticle i has obtained until iteration t, and bm
t
 = {bm1

t
,…, bmG

t
}  represents the best 
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solution from bi
t
 in the population at iteration t. To search for an optimal solution, 

each particle changes its velocity according to cognition and sociality. Each parti-

cle then moves to a new potential solution. The use of PSO algorithm to select 

SVM parameters is described as follows. First, initialize a random population of 

particles and velocities. Second, define the fitness of each particle. The fitness 

function of PSO is represented as the classification accuracy of SVM models. 

Each particle’s velocity is expressed by Eq. (11.11). For each particle, the  

procedure then moves to the next position according to Eq. (11.12).  

( ) ( ) GgyBjcyBjcSS
t

mg

t

mg

t

ig

t

ig

t

ig

t

ig ,,1,2211

1 …=−+−+= −                      (11.11) 

where c1 is the cognitive learning factor, c2 is the social learning factor, and j1 and 

j2 are the random numbers uniformly distributed in U(0,1).  

GgSYY
t

ig

t

ig

t

ig ,,1,1 …=+=+                                           (11.12) 

Finally, if the termination criterion is reached, the algorithm stops; otherwise re-

turn to the step of fitness measurement [34]. The architecture of PSO is illustrated 

in Fig. 11.9. 

Give a population of practices with random position and velocity 

Prediction by tentative SVM models 

Determinate the parameters of SVM model 

Evaluate classification accuracy of SVM models 

Is stop condition satisfied? 

Finalized SVM models 

Yes  

No  

 

Fig. 11.9 The architecture of PSO to determine parameters of SVM 

11.4   Rule Extraction Form Support Vector Machines 

Support vector machines are state-of-the art data mining techniques which have 

proven their performance in many research domains. Unfortunately, while the 

models may provide a high accuracy compared to other data mining techniques, 

their comprehensibility is limited. In some areas, such as credit scoring, the lack of 

comprehensibility of a model is a main drawback causing reluctance of users to 

use the model [8]. Furthermore, when credit has been denied to a customer, the 

Equal Credit Opportunity Act of the US requires that the financial institution  
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provide specific reasons why the application was rejected; and indefinite and 

vague reasons for denial are illegal [23]. Comprehensibility can be added to SVM 

by extracting symbolic rules from the trained model. Rule extraction techniques 

would be used to open up the black box of SVM and generate comprehensible de-

cision rules with approximately the same detective power as the model itself. 

There are two ways to open up the black box of SVM, as shown in Fig. 11.10. 

The SVM model with the best 

cross validation result

Experimental rule extraction 

techniques by rule-based 

classifier 

Rule sets 

SVM 

De-compositional 

rule extraction techniques 

Rule sets 

A B 

 

Fig. 11.10 Experimental (A) and de-compositional (B) rule extraction techniques [23] 

The SVM with the best cross validation (CV) result is then fed into rule-based 

classifier (i.e., decision tree, rough set and so on) to derive the comprehensive de-

cision rules for humans to understand (experimental rule extraction technique). 

The concept behind this procedure is the assumption that the trained model can 

more appropriately represent the data than can the original dataset. This is to say 

that the data of the best CV result is cleaner and free of curial conflicts. The CV is 

a re-sampling technique which adopts multiple random training and test subsam-

ples to overcome the overfitting problem. Overfitting would lead to SVM losing 

its applicability, as shown in Fig. 11.11. The CV analysis would yield useful in-

sights on the reliability of the SVM model with respect to sampling variation. 

High  

Training error 

Testing error 

Optimal point 

Over-fitting point 
Model complexity 

Error 

High  

 

Fig. 11.11 Classification errors vs. model complexity of SVM models [12] 

Decompositional rule extraction was proposed by Nunez et al. [25, 26] and pro-

poses rule-defining regions based on the prototype and support vectors [23]. The 

representative of the obtained clusters is prototype vectors. The clustering task is 

overcome by vector quantization. There are two kinds of rules which can be  
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proposed: equation rules and interval rules, respectively corresponding to an ellip-

soid and interval region, which can be built in the following manner [18]. Apply-

ing the prototype vector as center, an ellipsoid is constructed where the axes are 

determined by the support vector within the partition lying the furthest from the 

center. The long axes of the ellipsoid are defined by the straight line connecting 

these two vectors. The interval regions are defined from ellipsoids parallel to the 

coordinate axes [23]. Figure 11.12 is used to illustrate the basic structure of SVM 

+ Prototype approach.  

If A1*age2+A2*income2+… 

then customer = good 

Income 

Age 

SVM + Prototype 

Equation rule Interval rule 
If ageŒ  [B1,B2] and incomeŒ  [B3,B4] 

then customer = good 
 

Fig. 11.12 SVM + Prototype model [25, 26] 

11.5   The Proposed Enhanced SVM Model 

In this section, the scheme of a proposed ESVM model is illustrated. Figure 11.13 

shows the flowchart of the ESVM model, including functions of data preprocess-

ing, parameter determination and rule generation. First, the raw data is processed 

by data-preprocessing techniques containing data cleaning, data transformation, 

feature selection, and dimension reduction. Second, the preprocessed data are di-

vided into two sets: training and testing data sets. The training data set is used to 

select a data set used for rule generation. To prevent overfitting, a cross-validation 

(CV) procedure is performed at this stage. The testing data set is employed to ex-

amine the classification performance of a well-trained SVM model. Sequentially, 

metaheuristics are used to determine the SVM parameters. The training errors of 

SVM models are formulated as forms of fitness function of metaheuristics. Thus, 

each succeeding iteration produces a smaller classification error. The parameter 

search procedure is performed until the stop criterion of the metaheuristic is 

reached. The two parameters resulting in the smallest training error are then em-

ployed to undertake testing procedures and therefore testing accuracy is obtained. 

Finally, the CV training data set with the smallest testing error is utilized to derive 

decision rules by rule extraction mechanisms. Accordingly, the proposed ESVM 

model can provide decision rules as well as classification accuracy for decision 

makers. 
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Fig. 11.13 The flowchart of the ESVM model 

11.6   A Numerical Example and Empirical Results 

A numerical example borrowed from Pai et al. [34] was used here to illustrate the 

classification and rule generation of SVM models. The original data used in this 

example contain 75 listed firms in Taiwan’s stock market. These firms were di-

vided into 25 fraudulent financial statement (FFS) firms and 50 non-fraudulent  

financial statement (non-FFS) firms. Published indication or proof of involvement 

in issuing FFS was found for the 25 FFS firms. The classification of a financial  
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statement as fraudulent is based on the Security of Futures Investor Protection 

Center in Taiwan (SFI) and the Financial Supervisory Commission of Taiwan 

(FSC) during the 1999-2005 reporting period. All the condition variables were 

used in the sample were generated from formal financial statements, such as bal-

ance sheets and income statements. The 18 features consist of 16 financial vari-

ables and two corporate governance variables were adopt in this study. The  

features selected by sequential forward selection (SFS) were illustrated in  

Table. 11.1. In addition, the grid search (GS) approach, genetic algorithms (GA), 

simulated annealing algorithms (SA) and particle swam optimization (PSO) were 

used to deal with the same data in selecting SVM parameters. The classification 

performances of four approaches in determining SVM parameters were summa-

rized in Table 11.2. It can be concluded that the PSO algorithm was superior to the 

other three approaches in terms of average testing accuracy in this study. To dem-

onstrate the generalization ability of SVM, three other classifiers, C4.5 decision 

tree (C4.5), multi-layer perception (MLP) neural networks, and RBF networks 

were examined. Table 11.3 indicates that the SVM model outperformed the other 

three classifiers in terms of testing accuracy. Moreover, the CART approach was 

used to derive “if-then” rules from the CV training data set with the best testing 

result. Thus, this procedure can help auditors to allocate limited audit resources. 

The decision rules derived from CART are listed in Table 11.4. It can be observed 

that the feature of “Pledged Share of Directors”is the first split point. This implies 

that shares pledged by directors are essential in detecting FFS by top management. 

Clearly, auditors have to concentrate on this critical signal in audit procedures. 

 

Table 11.1 The selected features by feature selection [34] 

Method Features 

SFS A1: Net income to Fixed asset; A2: Net profit to 

Total asset; A3: Earnings before Interest and Tax; 

A4: Inventory to Sales; A5: Total debt to Total 

Asset; A6: Pledged shares of Directors 
 

 

Table 11.2 Classification performance of four methods in determining SVM parameters 

[34] 

Methods  Cross-validation Accuracy (%) 

CV-1 CV-2 CV-3 CV-4 CV-5 

Grid 86.67 80 73.33 80 80 80 

GA 80 86.67 80 86.67 86.67 84 

SA 80 86.67 86.67 93.33 96.67 86.67 

PSO 93.33 80 93.33 93.33 93.33 92 
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Table 11.3 Testing accuracy of six classifiers [34] 

Classifier  Cross-validation Accuracy (%) 

CV-1 CV-2 CV-3 CV-4 CV-5 

C4.5 73.33 80 86.67 93.33 86.67 84 

MLP 73.33 86.67 80 86.67 86.67 82.67 

RBFNN 86.67 80 80 86.67 80 82.67 

SVM 93.33 86.67 93.33 93.33 93.33 92 
 

Table 11.4 Decision rules derived from CART [34] 

(1) If “pledged shares of directors” ‡  44.405 , then “FFS” 

(2) If “pledged shares of directors” >  44.405 and “net profit to total assets” > -

0.3229 , then “FFS”  

(3) If “pledged shares of directors” > 44.405 , “net profit to total assets” ‡ -0.3229 

and “net income to fixed assets” ‡ 0.0497 , then “non-FFS” 

(4) If “pledged shares of directors” > 44.405 , “net profit to total assets” ‡ -

0.3229, “net income to fixed assets” > 0.0497 and  “earnings before interest 

and tax” > -42220, then “non-FFS” 

(5) If “pledged shares of directors” > 44.405, “net profit to total assets” ‡ -0.3229, 

“net income to fixed assets” > 0.0497, “earnings before interest and tax” ‡ -

42220, and “total debt to total assets ” ‡ 1.48 then, “FFS” 

(6) If “pledged shares of directors”> 44.405, “net profit to total assets”‡ -0.3229, 

“net income to fixed assets”> 0.0497, “earnings before interest and tax”‡ -

42220, and “total debt to total assets”> 1.48 then, “non-FFS” 
 

11.7   Conclusion 

In this chapter, the three essential issues influencing the performance of SVM 

models were pointed out. The three issues are: data preprocessing, parameter de-

termination and rule extraction. Some investigations have been conducted into 

each issue respectively. However, this chapter is the first study proposing an en-

hanced SVM model which deals with three issues at the same time. Thanks to data 

preprocessing procedure, the computation cost decreases and the classification ac-

curacy increases. Furthermore, the ESVM model provides rules for decision mak-

ers. Rather than the expression of complicated mathematical functions, it is easy 

for decision makers to realize the relation and strength between condition attrib-

utes and outcome intuitively form a set of rules. These rules can be reasoned in 

both forward and backward ways. For the example in Section 11.6, the forward 

reasoning can provide a good direction for managers to improve the current finan-

cial status; and the backward reasoning can protect the wealth of investors and 

sustain the stability of financial market. 
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Chapter 12  

Benchmark Problems in Structural 
Optimization 

Amir Hossein Gandomi and Xin-She Yang* 

Abstract. Structural optimization is an important area related to both optimization 
and structural engineering. Structural optimization problems are often used as 
benchmarks to validate new optimization algorithms or to test the suitability of a 
chosen algorithm. In almost all structural engineering applications, it is very im-
portant to find the best possible parameters for given design objectives and con-
straints which are highly non-linear, involving many different design variables. 
The field of structural optimization is also an area undergoing rapid changes in 
terms of methodology and design tools. Thus, it is highly necessary to summarize 
some benchmark problems for structural optimization. This chapter provides an 
overview of structural optimization problems of both truss and non-truss cases. 

12.1   Introduction to Benchmark Structural Design 

New optimization algorithms are often tested and validated against a wide range 
of test functions so as to compare their performance. Structural optimization prob-
lems are complex and highly nonlinear, sometimes even the optimal solutions of 
interest do not exist. In order to see how an optimization algorithm performs, 
some standard structural engineering test problems are often solved. Many struc-
tural test functions exist in the literature, but there is no standard list or set of the 
functions one has to follow. Any new optimization algorithm should be tested us-
ing at least a subset of well-known, well-established functions with diverse  
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properties so as to make sure whether or not the tested algorithm can solve certain 
types of optimization efficiently. According to the nature of the structural optimi-
zation problems, we can first divide them into two groups: truss and non-truss de-
sign problems. The selected lists of the test problems for each optimization group 
are listed below: 

Truss design problems: 
10-bar plane truss 
25-space truss 
72-bar truss 
120-bar truss dome 
200-bar plane truss 
26-story truss tower 

Non-truss design problems: 
Welded beam 
Reinforced concrete beam 
Compression Spring 
Pressure vessel 
Speed reducer 
Stepped cantilever beam 
Frame optimization 

12.1.1   Structural Engineering Design and Optimization 

Many problems in structural engineering and other disciplines involve design op-
timization of dozens to thousands of parameters, and the choice of these parame-
ters can affect the performance or objectives of the system concerned. The optimi-
zation target is often measured in terms of objectives or cost functions in 
quantitative models. Structural engineering design and testing often require an it-
eration process with parameter adjustments. Optimization functions can generally 
be formulated as: 

Optimize: f (X),                                                       (12.1) 

Subject to:  

gi (X) ≥ 0, i = 1, 2, . . . ,N.                                        (12.2) 

hj (X) = 0, j = 1, 2, . . . ,M.                                       (12.3) 

where X = (x1, x2, . . . , xn), X v Ω (parameter space). 

Most design optimization problems in structural engineering involve many dif-
ferent design variables under complex constraints. These constraints can be writ-
ten either as simple bounds such as the ranges of material properties, or as non-
linear relationships including maximum stress, maximum deflection, minimum 
load capacity, and geometrical configuration. Such non-linearity often results in 
multimodal response landscape. 
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The basic requirement for an efficient structural design is that the response of 
the structure be acceptable for given various specifications. That is, a set of  
parameters should at least be in a feasible design. There can be a very large  
number of feasible designs, but it is desirable to choose the best of these designs. 
The best design can be identified using minimum cost, minimum weight, maxi-
mum performance or, a combination of these [1]. Obviously, parameters may have 
associated uncertainties, and in this case, a robust design solution, not necessarily 
the best solution, is often the best choice in practice.  As parameter variations are 
usually very large, systematic adaptive searching or optimization procedures are 
required. In the past several decades, researchers have developed many optimiza-
tion algorithms. Examples of conventional methods are hill climbing, gradient 
methods, random search, simulated annealing, and heuristic methods. Examples of 
evolutionary or biology-inspired algorithms are genetic algorithms [2], neural 
network [3], particle swarm optimization [4], firefly algorithm [5], cuckoo search 
[6], and many others. The methods used to solve a particular structural problem 
depend largely on the type and characteristics of the optimization problem itself. 
There is no universal method that works for all structural problems, and there is 
generally no guarantee to find the globally optimal solution in highly nonlinear 
global optimization problems. In general, we can emphasize on the best estimate 
or suboptimal solutions under given conditions. Knowledge about a particular 
problem is always helpful to make the appropriate choice of the best or most effi-
cient methods for the optimization procedure.  

12.2   Classifications of Benchmarks 

Generally, an optimization problem is classified according to the nature of equa-

tions with respect to design variables, the characteristics of the objectives and con-

straints. If the objective function and the constraints involving the design variable 

are linear, then the optimization is called a linear optimization problem. If even 

one of them is non-linear, it is classified as a non-linear optimization problem [1].  

Design variables can be continuous or discrete (integer on non-integer). In 

structural engineering, most problems are mixed variable problems, as they con-

tain both continuous and discrete variables. The structural optimization of bar or 

truss sections often includes a special set of variables which are integer multiples 

of certain sizes and dimensions.  

According to the number of variables, constraints, and objective function(s), an 

optimization problem can be classified as small scale, normal scale, large scale 

and very large scale. 

Nearly all design optimization problems in structural engineering are highly 

non-linear, involving many different design variables under complex, nonlinear 

constraints.  In this study, benchmark optimization problems are classified into 

two groups: truss and non-truss. First, we introduce truss design problems. Truss 

structures are designed to carry multiple loading conditions under static con-

straints concerning nodal displacements, stresses in the members and critical 

buckling loads. This class of problems was chosen because truss structures are 
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widely used in structural engineering [7, 8]. Also, examples of truss structure  

design optimization are extensively used in the literature to compare the efficiency 

of optimization algorithms [9-12]. Then, we introduce five examples of non-truss 

optimization problems under static constraints. 

12.3   Design Benchmarks 

12.3.1   Truss Design Problems 

Truss optimization is a challenging area of structural optimization, and many re-
searchers have tried to minimize the weight (or volume) of truss structures using 
different algorithms. For example, Maglaras et al. [13] compared probabilistic and 
deterministic optimization of trusses. They showed that probabilistic optimization 
provided a significant improvement. Hasancebi et al. [14] evaluated some well-
known metaheuristic search techniques in the optimum design of real trusses and 
they found that simulated annealing and evolution strategies perform well in this 
area. 

For most truss optimization problems, the objective function can be expressed 
as 

   minimize ∑
=

=
NM

i

iii LAAW
1

)( γ                                            (12.4) 

where W(A) is the weight of the structure; NM is the number of member in the 
structure; γi represents the material density of member i; Li is the length of mem-
ber i; Ai is the cross-sectional area of member i chosen between Amin and Amax (the 
lower bound and upper bound, respectively). Any optimal design also has to sat-
isfy some inequality constraints that limit design variable sizes and structural re-
sponses [15].   

The main issue in truss optimization is to deal with constraints because the 
weight of each truss structures can be simplified to an explicit formula [16]. Gen-
erally, a truss structure has one of the following three kinds of constraints: 

Stress constraints: each member is under tensile or compressive strength so for 
each member of the structure, the positive tensile stress should be less than the al-
lowable tensile stress (ımax), while the compressive stress should be less than the 
allowable compressive stress (ımin). In each truss optimization problem, we have 
2NM stress constraints. These constraints can be formulated as follow: 

ı i, min ≤ ıi ≤ ı i, max; i = 1, 2,..., NM                                     (12.5) 

Deflection constraints: The nodal deflections (displacement at each node) should 
be limited within the maximum deflection (δmax). When a truss has NM2=NM × 
NM nodes, it can be defined as: 

δj ≤ δj, max j = 1, 2,...,NM2                                                (12.6) 
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Buckling constraints: Buckling can be defined as the failure of a member due to a 
high compressive stress. In this case, the applied ultimate compressive stresses at 
the point of failure are higher than the bearing capacity of the member. When a 
member is in compression, the buckling status of the member is controlled accord-
ing to the buckling stress (ıb). Let NC denote the number of compression  
elements, and we have  

ık, b ≤ ık ≤ 0; k = 1, 2,..., NC                                            (12.7) 

For truss optimization problems, there are only two constant mechanical proper-

ties: elastic modulus (E), and material density (γ).  Structural analysis of each truss 

can readily be carried out using the finite element method. 

12.3.1.1   10-Bar Plane Truss 

This truss example is one of the most well-known structural optimization bench-

marks [17]. It has been widely used by many researchers as a standard 2D bench-

mark for truss optimization (e.g., [16-18]). The geometry and loading of a 10-bar 

truss is presented in Figure 12.1. This problem has many variations and has been 

solved with only continuous or discrete variables. The main objective is to find 

minimum weight of the truss by changing the areas of elements, so it has 10  

variables in total. 

 

Fig. 12.1 10-bar truss structure 

12.3.1.2   25-Bar Transmission Truss 

This spatial truss structure has been solved by many researchers as a benchmark 

structural problem [19]. The topology and nodal numbers of a 25-bar spatial truss 

structure are shown in Figure 12.2 where 25 members are categorized into eight 

groups, so it has eight individual variables. This problem has been solved with 

various loading conditions (e.g. [10, 11, 20, 21]). 
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Group Element(s) 

1 A1 

2 A2–A5 

3 A6–A9 

4 A10–A11 

5 A12–A13 

6 A14–A17 

7 A18–A21 

8 A22–A25 

 

Fig. 12.2 A twenty five-bar spatial truss [22] 

 

12.3.1.3   72-Bar Truss 

The 72-bar truss is a challenging benchmark that has also been used by many re-
searchers (e.g., [9, 18, 22, 23]). As shown in Figure 12.3, this truss has 16 inde-
pendent groups of design variables. It is usually subjected to two different loading 
inputs.  
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Group Element(s) 

1 A1–A4 

2 A5–A12 

3 A13–A16 

4 A17–A18 

5 A19–A22 

6 A23–A30 

7 A31–A34 

8 A35–A36 

9 A37–A40 

10 A41–A48 

11 A49–A52 

12 A53–A54 

13 A55–A58 

14 A59–A66 

15 A67–A70 

16 A71–A72 
 

Fig. 12.3 A 72-bar spatial truss [22] 

 

12.3.1.4   120-Bar Truss Dome 

The 120-bar truss dome is used as a benchmark problem in some researches (e.g., 

[10, 16]). This symmetrical space truss, shown in Figure 12.4, has a diameter of  

31.78 m, and its 120 members are divided into 7 groups, taking the symmetry of 

the structure into account.  Because of symmetry, the design of one-fourth of the 

dome is sufficient. The truss is subjected to vertical loading at all the unsupported 

joints. According to the American institute of steel construction (AISC) code for 

allowable stress design (ASD) [24] standards, the allowable tensile stress (ımax) is 

equal to 0.6Fy (Fy is the yield stress of the steel), and the allowable compressive 

stress (ımin) is calculated according to the slenderness. 
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Fig. 12.4 A 120-bar dome shaped truss [10] 

12.3.1.5   200-Bar Plane Truss 

The benchmark 200-bar plane truss structure shown in figure 12.5 which has been 
solved in many papers with different number of variables. The 200 structural 
members of this planar truss has been categorized as 29 [11], 96 [25] or 105 [26] 
groups using symmetry in the literature. Some researchers have also solved it with 
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200 variables when each member is considered as an independent design variables 
[27]. This planar truss problem has been solved with three or five independent 
loading conditions [28].  

 
Fig. 12.5 A 200 bar plane truss 

12.3.1.6   26-Story Truss Tower 

Figure 12.6 shows the geometry and the element groups of the recently developed 
26-story-tower space truss ([10, 11, 29-31]). This truss is a large-scale truss prob-
lem containing 244 nodes and 942 elements. In this truss structure, 59 element 
groups employ the symmetry of the structure. This problem has been solved as a 
continuous problem and as a discrete problem [30]. More details of this problem 
can be found in [31]. 
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Fig. 12.6 A 26-story-truss tower [10] 

12.3.1   Non-truss Design Problems 

12.3.1.1   Welded Beam 

The design of a welded beam which minimizes the overall cost of fabrication was 
introduced as a benchmark structural engineering problem by Rao [19].  
Figure 12.7 shows a beam of low-carbon steel (C-1010), welded to a rigid support. 
The welded beam is fixed and designed to support a load (P). The thickness of the 
weld (h), the length of the welded joint (12.l), the width of the beam (t) and the 
thickness of the beam (b) are the design variables. The values of h and l can only 
take integer multiples of 0.0065, but many researchers consider them continuous 
variables [32]. The objective function of the problem is expressed as follows: 

 



Benchmark Problems in Structural Optimization 269

 

 

Fig. 12.7 Welded beam design problem 

Minimize: ( ) ( ) ( )lLtbClhCbtLhf +++= 2
2

11,,,                          (12.8) 

subject to the following five constraints: 
shear stress(Ĳ) 

            01 ≥−= ττ dg                                                    (12.9) 

bending stress in the beam (ı) 

            02 ≥−= σσ dg                                                 (12.10) 

buckling load on the bar (Pc) 

            03 ≥−= hbg                                                     (12.11) 

deflection of the beam (δ) 

            04 ≥−= PPg c                                                 (12.12) 

side constraints 

            025.05 ≥−= δg
                                                

 (12.13) 

where 

( ) ( ) ( )( )2222
25.0/ thll ++′′′+′′+′= τττττ

                         
 (12.14) 

bt
2

504000
=σ                                                     (12.15) 

( ) 30282346.0164746 tbtPc −=                     (12.16) 

bt 3

1952.2
=δ

                                                    
 (12.17) 
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6000
=′τ                                                                  (12.18) 
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thlhl
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++

+++
=′′τ

          

 (12.19) 

The simple bounds of the problem are: 0.125 ≤ h ≤ 5, 0.1 ≤ l, t ≤ 10 and 0.1 ≤ b ≤ 
5. The constant values for the formulation are given in Table 12.2. 

Table 12.1 Constant values in the welded beam problem 

Constant Item Description Values 

 C1   cost per volume of the welded material  0.10471($/in3)   

 C2   cost per volume of the bar stock  0.04811($/in3)   

Ĳd design shear stress of the welded material  13600 (psi)   

ıd design normal stress of the bar material  30000 (psi)   

 δd   design bar end deflection 0.25 (in) 

 E Young’s modulus of bar stock    30×106 (psi)  

G shear modulus of bar stock    12×106 (psi)   

P loading condition 6000 (lb) 

L overhang length of the beam 14 (in) 

This problem has been solved by many researchers in the literature (e.g., [15, 
33, 34]) here are two different solutions presented. One has an optimal function 
value of around 2.38 and the other one (with a difference in one of the constraints) 
has an optimal function value of about 1.7. Deb and Goyal [35] extended this 
problem to choose one of the four types of materials of the beam and two types of 
welded joint configurations.   

12.3.1.2   Reinforced Concrete Beam 

The problem of designing a reinforced concrete beam has many variations and has 
been solved by various researchers with different kinds of constraints (e.g., [36, 37]). 
A simplified optimization problem minimizing the total cost of a reinforced concrete 
beam, shown in Figure 12.8, was presented by Amir and Hasegawa [38]. The beam is 
simply supported with a span of 30 ft and subjected to a live load of 2.0 klbf and a 
dead load of 1.0 klbf including the weight of the beam. The concrete compressive 
strength (ıc) is 5 ksi, and the yield stress of the reinforcing steel (Fy) is 50 ksi. The 
cost of concrete is $0.02/in2/linear ft and the cost of steel is $1.0/in2/linear ft.  The aim 
of the design is to determine the area of the reinforcement (As), the width of the beam 
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(b) and the depth of the beam (h) such that the total cost of structure is minimized. 
Herein, the cross-sectional area of the reinforcing bar (As) is taken as a discrete type 
variable that must be chosen from the standard bar dimensions listed in [38]. The 
width of concrete beam (b) assumed to be an integer variable, and the depth (h) of the 
beam is a continuous variable. The effective depth is assumed to be 0.8h.  

 
Fig. 12.8 Illustration of reinforced concrete beam 

Then, the optimization problem can be expressed as: 

Minimize: bhAhbAf ss 6.09.2),,( +=

                                    

(12.20) 

The depth to width ratio of the beam is restricted to be less than, or equal, to 4, so 
the first constraint can be written as: 

041 ≤−=
b

h
g                                                              (12.21) 

The structure should satisfy the American concrete institute (ACI) building code 
318-77 [39] with a bending strength: 

( ) ld
c

ys

ysu MM
bh

FA
hFAM 7.14.1

8.0
59.00.18.09.0 +≥⎟⎟⎠
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⎛
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(12.22) 

where Mu, Md and Ml are, respectively, the flexural strength, dead load and live 
load moments of the beam. In this case, Md = 1350 in.kip and Ml = 2700 in.kip. 
This constraint can be simplified as [40]: 

0375.7180
2

2 ≤−+= hA
b

A
g s

s

                     

 

(12.23) 

The bounds of the variables are b є {28, 29, …, 40} inches, 5 ≤ h ≤ 10 inches, and 
As is a discrete variable that must be chosen from possible reinforcing bars by 
ACI. The best solution obtained by the existing methods so far is 359.208 with  
h = 34, b = 8.5 and As = 6.32 (15#6 or 11#7) using firefly algorithm [41]. 

12.3.1.3   Compression Spring 

The problem of spring design has many variations and has been solved by various 
researchers. Sandgren [42] minimized the volume of a coil compression spring 
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with mixed variables and Deb and Goyal [35] tried to minimize the weight of a 
Belleville spring. The most well-known spring problem is the design of a tension–
compression spring for a minimum weight [43]. Figure 12.9 shows a tension–
compression spring with three design variables: the wire diameter (d), the mean 
coil diameter (D), and the number of active coils (N).  The weight of the spring is 
to be minimized, subject to constraints on the minimum deflection (g1), shear 
(g2), and surge frequency (g3), and to limits on the outside diameter (g4) [43].  
The problem can be expressed as follows:  

Minimize: ( ) 22),,( DdNdDNf ×+=

                      

(12.24) 

Subject to: 
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g                                                 (12.27) 
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where .1523.125.0,105.0 ≤≤≤≤≤≤ NandDd  

 

Fig. 12.9 Tension–compression spring 

Many researchers have tried to solve this problem (e.g., [33, 44, 45]) and it 
seems the best results obtained for this problem is equal to 0.0126652 with d = 
0.05169, D = 0.35673, N = 11.28846 using bat algorithm [46]. 

12.3.1.4   Pressure Vessel 

Pressure vessel is a closed container that holds gases or liquids at a pressure, typi-
cally significantly higher than the ambient pressure. A cylindrical pressure vessel 
capped at both ends by hemispherical heads is presented in Figure 12.10. The 
pressure vessels are widely used for engineering purposes and this optimization  
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problem was proposed by Sandgren [42]. This compressed air tank has a working 
pressure of 3000 psi and a minimum volume of 750 ft3, and is designed according 
to the American society of mechanical engineers (ASME) boiler and pressure ves-
sel code. The total cost, which includes a welding cost, a material cost, and a 
forming cost, is to be minimized. The variables are the thickness of shell (Ts), 
thickness of the head (Th), the inner radius (R), and the length of the cylindrical 
section of the vessel (L). The thicknesses (Ts and Th) can only take integer multi-
ples of 0.0625 inch.  

 

Fig. 12.10 Pressure Vessel 

Then, the optimization problem can be expressed as follows:  

Minimize: LTLTRTRLTLRTTf hshshs
222 84.191661.37781.16224.0),,,( +++=

 

(12.29) 

The constraints are defined in accordance with the ASME design codes where 
g3 represents the constraint function of minimum volume of 750 feet3 and others 
are the geometrical constraints. The constraints are as follow: 

00193.01 ≤+−= RTg s
                                                  (12.30) 

00095.02 ≤+−= RTg h
                                                  (12.31) 

011728750
3

4 32
3 ≤×+−−= RLRg ππ                          (12.32) 

02404 ≤−= Lg                                                            (12.33) 

where 1×0.0625 ≤ Ts, Th ≤ 99×0.0625, 10 ≤ R, and L ≤ 200. The minimum cost 
and the statistical values of the best solution obtained in about forty different stud-
ies are reported in [47]. According to this paper, the best results are a total cost of 
$6059.714. Although nearly all researchers use 200 as the upper limit of variable 
L, it was extended to 240 in a few studies (e.g., [41]) in order to investigate the 
last constrained problem region. Use this bound, the best result was decreased to 
about $5850. It seems this variation may be a new challenging benchmarking 
problem. It should also be noted that if an approximate value for π is used in the g3 

constraint calculation, then the best result cannot be achieved (actually a smaller 
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value will be obtain). Thus, the exact value of π should be used in this problem. 
From the implementation point of view, a more accurate approximation of π 
should be used.  

12.3.1.5   Speed Reducer 

A speed reducer is part of the gear box of mechanical system, and it also is used 
for many other types of applications. The design of a speed reducer is a more chal-
lenging benchmark [48], because it involves seven design variables As shown in 
Figure 12.11, these variables are the face width (b), the module of the teeth (m), 
the number of teeth on pinion (z), the length of the first shaft between bearings 
(l1), the length of the second shaft between bearings (l2), the diameter of the first 
shaft (d1), and the diameter of the second shaft (d2).  

 

Fig. 12.11 Speed Reducer 

The objective is to minimize the total weight of the speed reducer. There are 
nine constraints, including the limits on the bending stress of the gear teeth, sur-
face stress, transverse deflections of shafts 1 and 2 due to transmitted force, and 
stresses in shafts 1 and 2.  

The mathematical formulation can be summarized as follows: 
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In addition, the design variables are also subject to the simple bounds listed in col-
umn 2 of Table 12.2. This problem has been solved by many researchers (e.g., [49, 
50]) and it seems the best weight of the speed reducer is about 3000 (kg) [47, 51]. 
The corresponding values of this solution so far are presented in Table 12.2. 

Table 12.2 Variables of the speed reducer design example 

 Simple Bounds Variables of the best solution 

b [2.6 - 3.6] 3.50000 

m [0.7 - 0.8] 0.70000 

z [17 – 28] 17.0000 

l1 [7.3 - 8.3] 7.30001 

l2 [7.3 - 8.3] 7.71532 

d1 [2.9 - 3.9] 3.35021 

d2 [5.0 - 5.5] 5.28665 

12.3.1.6   Stepped Cantilever Beam 

This problem is a good benchmark to verify the capability of optimization meth-
ods for solving continuous, discrete, and/or mixed variable structural design prob-
lems. This benchmark was originally presented by Thanedar and Vanderplaats 
[52] with ten variables, and it has been solved with continuous, discrete and mixed 
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variables in different cases in the literature [8, 53]. Figure 12.12 illustrates a  
five-stepped cantilever beam with a rectangular shape. In this problem, the height 
and width of the beam in all five steps of the cantilever beam are the design vari-
ables, and the volume of the beam is to be minimized. The objective function is  
formulated as follows:  

Minimize: ( )555444333222111 lhblhblhblhblhbDV ++++=

  

             (12.44) 

 

Fig. 12.12 A stepped cantilever beam 

Subject to the following constraints: 

• The bending stress constraint of each of the five steps of the beam are to be less 

than the design stress (ıd): 
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• One displacement constraint on the tip deflection is to be less than the  

allowable deflection (Δmax): 
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• A specific aspect ratio of 20 has to be maintained between the height and width 

of each of the five cross sections of the beam: 
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The initial design space for the cases with continuous, discrete and, mixed variable 
formulations can be found in Thanedar and Vanderplaats [52].  

This problem can be used as a large-scale optimization problem if the number 

of segments of the beam is increased. When the beam has N segments, it has 

2N+1 constrains including N stress constraints, N aspect ratio constraints and a 

displacement constraint. Vanderplaats [54] solved this problem as a very large 

structural optimization up to 25,000 segments and 50,000 variables. 

12.3.1.7   Frame Structures 

Frame design is one of the popular structural optimization benchmarks. Many re-

searchers have attempted to solve frame structures as a real-world, discrete-

variable problem, using different methods (e.g., [55, 56]). The design variables of 

frame structures are cross sections of beams and columns which have to be chosen 

from standardized cross sections. Recently, Hasançebi et al. [57] compared seven 

well-known structural design algorithms for weight minimization of some steel 

frames, including ant colony optimization, evolution strategies, harmony search 

method, simulated annealing, particle swarm optimizer, tabu search and genetic 

algorithms. Among these algorithms, they showed that simulated annealing and 

evolution strategies performed best for frame optimization.  

One of the well-known frame structures was introduced by Khot et al. [58]. 

This problem has been solved by many researchers (e.g., [59, 60]), and now can 

be considered as a frame-structure benchmark. The frame has one bay, eight sto-

ries, and applied loads (see Figure 12.13). This problem has eight element groups. 

The values of the cross section groups are chosen from all 267 W-shapes of AISC. 
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Fig. 12.13 The benchmark frame 

12.4   Discussions and Further Research 

A dozen benchmark problems in structural optimization are briefly introduced 
here, and these benchmarks are widely used in the literature. Our intention is to in-
troduce each of these benchmarks briefly so that readers are aware of these prob-
lems and thus can refer to the cited literature for more details. The detailed de-
scription of each problem can be lengthy, here we only highlight the essence of 
the problems and provide enough references. 
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There are many other benchmark problem sets in engineering optimization, and 
there is no agreed upon guideline for their use. Interested readers can found more in-
formation about additional benchmarks in recent books and review articles [61, 62].  
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