

Steffen Rendle

Context-Aware Ranking with Factorization Models

Studies in Computational Intelligence,Volume 330

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our

homepage: springer.com

Vol. 308. Roger Nkambou, Jacqueline Bourdeau, and

Riichiro Mizoguchi (Eds.)

Advances in Intelligent Tutoring Systems, 2010

ISBN 978-3-642-14362-5

Vol. 309. Isabelle Bichindaritz, Lakhmi C. Jain, Sachin Vaidya,

and Ashlesha Jain (Eds.)

Computational Intelligence in Healthcare 4, 2010

ISBN 978-3-642-14463-9

Vol. 310. Dipti Srinivasan and Lakhmi C. Jain (Eds.)

Innovations in Multi-Agent Systems and

Applications – 1, 2010

ISBN 978-3-642-14434-9

Vol. 311. Juan D.Velásquez and Lakhmi C. Jain (Eds.)

Advanced Techniques in Web Intelligence, 2010

ISBN 978-3-642-14460-8

Vol. 312. Patricia Melin, Janusz Kacprzyk, and

Witold Pedrycz (Eds.)

Soft Computing for Recognition based on Biometrics, 2010

ISBN 978-3-642-15110-1

Vol. 313. Imre J. Rudas, János Fodor, and

Janusz Kacprzyk (Eds.)

Computational Intelligence in Engineering, 2010

ISBN 978-3-642-15219-1

Vol. 314. Lorenzo Magnani,Walter Carnielli, and

Claudio Pizzi (Eds.)

Model-Based Reasoning in Science and Technology, 2010

ISBN 978-3-642-15222-1

Vol. 315. Mohammad Essaaidi, Michele Malgeri, and

Costin Badica (Eds.)

Intelligent Distributed Computing IV, 2010

ISBN 978-3-642-15210-8

Vol. 316. Philipp Wolfrum

Information Routing, Correspondence Finding,and Object
Recognition in the Brain, 2010

ISBN 978-3-642-15253-5

Vol. 317. Roger Lee (Ed.)

Computer and Information Science 2010
ISBN 978-3-642-15404-1

Vol. 318. Oscar Castillo, Janusz Kacprzyk,

and Witold Pedrycz (Eds.)

Soft Computing for Intelligent Control
and Mobile Robotics, 2010

ISBN 978-3-642-15533-8

Vol. 319. Takayuki Ito, Minjie Zhang,Valentin Robu,

Shaheen Fatima, Tokuro Matsuo,

and Hirofumi Yamaki (Eds.)

Innovations in Agent-Based Complex
Automated Negotiations, 2010

ISBN 978-3-642-15611-3

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)

Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado (Eds.)

Fusion Methods for Unsupervised Learning Ensembles, 2010

ISBN 978-3-642-16204-6

Vol. 323.Yingxu Wang, Du Zhang, and Witold Kinsner (Eds.)

Advances in Cognitive Informatics, 2010

ISBN 978-3-642-16082-0

Vol. 324.Alessandro Soro,Vargiu Eloisa, Giuliano Armano,

and Gavino Paddeu (Eds.)

Information Retrieval and Mining in Distributed
Environments, 2010

ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)

Advances in Practical Multi-Agent Systems, 2010

ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)

Advanced Computational Intelligence Paradigms in

Healthcare 5, 2010

ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and

Ewa Napieralska-Juszczak (Eds.)

Computational Methods for the Innovative Design of

Electrical Devices, 2010

ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)

Nonlinear Dynamics in Human Behavior, 2010

ISBN 978-3-642-16261-9

Vol. 329. Santi Caballé, Fatos Xhafa, and Ajith Abraham (Eds.)

Intelligent Networking, Collaborative Systems and

Applications, 2010

ISBN 978-3-642-16792-8

Vol. 330. Steffen Rendle

Context-Aware Ranking with Factorization Models, 2010

ISBN 978-3-642-16897-0

Steffen Rendle

Context-Aware Ranking with
Factorization Models

123

Steffen Rendle

Universität Hildesheim

Wirtschaftsinformatik und

Maschinelles Lernen

Marienburger Platz 22

31141 Hildesheim

Germany

E-mail: srendle@ismll.de

ISBN 978-3-642-16897-0 e-ISBN 978-3-642-16898-7

DOI 10.1007/978-3-642-16898-7

Studies in Computational Intelligence ISSN 1860-949X

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Context-aware ranking is an important task with many applications like rec-
ommender systems or search engines. E.g. in recommender systems items
(products, movies, . . .) and for search engines webpages should be ranked.
In all these applications, the ranking is not global (i.e. always the same) but
depends on the context. Simple examples for context are the user for recom-
mender systems and the query for search engines. More complicated context
includes time, last actions, etc. In all of these settings, the variables (e.g.
customer, product) are defined over large categorical domains and the obser-
vations are combinations of the variables (e.g. a user buys a product). The
major problem is that typically the observations are very sparse and only
positive events are observed.

In this work, we develop a theory of context-aware ranking and methods
for solving this task. Our theory brings together tasks like item recommenda-
tion and tag recommendation that have been studied mostly isolated before.
We first investigate the general problem setting and show how pairwise rank-
ing constraints can be inferred from observations. Then, we develop Bayesian
Context-aware Ranking (BCR) which consists of a generic optimization and
learning method. BCR is both generic in terms of models and the type of
context. The optimization criterion BCR-Opt is the MAP estimator of a
parametrized model using the inferred ranking constraints. BCR-Learn is
a learning algorithm that maximizes BCR-Opt and is based on stochastic
gradient descent with bootstrap sampling of cases. As the variables are de-
fined over a categorical domain, we propose to use factorization models for
parametrizing the dependencies between variable instances. The Tucker de-
composition (TD) is a general linear factorization model subsuming parallel
factor analysis (PARAFAC). We discuss the problems of TD in terms of run-
time complexity for multi-mode problems and show that PARAFAC solves
this issue. We show that for our tasks both TD and PARAFAC empirically
have bad performance either in runtime or quality, and thus we develop the
PITF approach (a special case of PARAFAC) that models pairwise interac-
tions explicitly.

VI Preface

In a second part, we apply our theory of context-aware ranking with fac-
torization models to the tasks of item recommendation, tag recommendation
and sequential-set recommendation. For item recommendation and tag rec-
ommendation we apply the PITF model with BCR optimization directly. For
sequential-set recommendation, we extend the Markov chain model by per-
sonalization, i.e. each user can have an own transition graph. As this setting is
highly sparse, we model the transition cube with the PITF factorization and
show that our factorized, personalized Markov chain subsumes both the com-
mon matrix factorization model and a factorized standard (non-personalized)
Markov chain. In each of the tasks, we conduct a detailed empirically study
and show that our approaches outperform the state-of-the-art methods. More-
over, for the task of graph-based tag recommendation our approach won the
2009 ECML/PKDD Discovery Challenge.

Furthermore, two extensions are studied. First, a non-parametric method
for generating time-variant factor models is developed. Here, each factor is
decomposed into free parameters and a set of basis functions that are gener-
ated from the data using a kernel assumption. Finally, the binary maximum-
margin matrix factorization classifier is extended to settings where only one
class is observed.

Acknowledgements

I would like to thank my advisor Lars Schmidt-Thieme who has been guiding
my research since my master studies in Freiburg. I am also very grateful
to my second advisor Takashi Washio for his valuable feedback during my
stay in Japan. Without their continuing support and inspiration, this book
would not have been possible. Many thanks go to my colleagues and friends:
Leandro Balby Marinho, Christoph Freudenthaler, Zeno Gantner, Christine
Preisach and Karen Tso. This work is influenced by collaborations and many
discussions with them. Finally, I would like to express my profound gratitude
to my entire family for their encouragement and unconditional support.

Osaka, July 2010 Steffen Rendle

PhD-Thesis: Faculty of Mathematics, Natural Science, Economics and
Computer Science; University of Hildesheim

Thesis Committee: Lars Schmidt-Thieme (Chair & Reviewer), Takashi
Washio (Reviewer), Klaus Schmid, Tomáš Horváth

Contents

Part I: Overview

1 Introduction . 3
1.1 Overview . 5

1.1.1 Theory of Context-Aware Ranking 5
1.1.2 Application of Context-Aware Ranking 5
1.1.3 Extensions . 6

1.2 Contributions . 7
1.3 Published Work . 7
References . 8

2 Related Work . 9
2.1 Recommender Systems . 9

2.1.1 Two-Mode Recommender Systems 10
2.1.2 Context-Aware Recommender Systems 10

2.2 Factorization Models . 11
2.3 Ranking . 12

2.3.1 Global Ranking . 12
2.3.2 Context-Aware Ranking . 13

References . 14

Part II: Theory

3 Ranking from Incomplete Data . 19
3.1 Sparse Observations . 20

3.1.1 Variables . 20
3.1.2 Observations . 21
3.1.3 Prediction as Classification/Regression 22

VIII Contents

3.1.4 Sparsity . 23
3.2 Context-Aware Ranking . 24

3.2.1 Ranking . 24
3.2.2 Context . 25
3.2.3 Context-Aware Ranking . 25

3.3 Generating Ranking Constraints . 26
3.3.1 Training Data for Rankings . 26
3.3.2 Complexity . 29

3.4 Expressing Rankings by Real Valued Functions 31
3.4.1 Transformation of Rankings . 31
3.4.2 Expressiveness . 32
3.4.3 Discussion . 33

3.5 Evaluation Metrics . 33
References . 37

4 Learning Context-Aware Ranking . 39
4.1 Optimization Criterion (BCR-Opt) . 39

4.1.1 Distribution over Pairs . 40
4.1.2 Distribution over Context-Aware Ranking 40
4.1.3 Modelling Pairs . 41
4.1.4 Priors on Model Parameters . 41
4.1.5 BCR Optimization . 41

4.2 Learning Algorithm (BCR-Learn) . 42
4.2.1 Optimization by Gradient Descent 42
4.2.2 BCR-Learn . 44
4.2.3 Drawing of Training Cases . 44

4.3 Alternative Optimization Criteria . 45
4.3.1 Pairwise Losses . 46
4.3.2 Element-Wise Losses . 48

References . 49

5 Factorization Models . 51
5.1 Tucker Decomposition (TD) . 52

5.1.1 Model Equation . 52
5.1.2 Gradients . 53
5.1.3 Complexity . 53
5.1.4 Two-Mode Tucker Decomposition 54
5.1.5 Higher-Order SVD . 55

5.2 Parallel Factor Analysis (PARAFAC) . 55
5.2.1 Model Equation . 56
5.2.2 Gradients . 56
5.2.3 Complexity . 56
5.2.4 Two-Mode PARAFAC . 57

5.3 Pairwise Interaction Tensor Factorization (PITF) 57
5.3.1 Model Equation . 57

Contents IX

5.3.2 Gradients . 61
5.3.3 Complexity . 62
5.3.4 Two-Mode PITF . 62

5.4 Expressiveness . 63
5.5 Computational Aspects . 64
References . 65

Part III: Application

6 Item Recommendation . 69
6.1 Related Work . 69
6.2 Personalized Ranking from Implicit Feedback 70

6.2.1 Formalization . 71
6.2.2 Analysis of the Problem Setting 71

6.3 Learning Personalized Ranking . 73
6.3.1 Optimization Criterion (BPR-Opt) 73
6.3.2 Learning Algorithm (BPR-Learn) 73

6.4 Item Recommendation Models . 74
6.4.1 Matrix Factorization . 75
6.4.2 Adaptive k-Nearest-Neighbor . 76

6.5 Relations to Other
Methods . 77
6.5.1 Weighted Regularized Matrix

Factorization (WR-MF) . 77
6.5.2 Maximum Margin Matrix Factorization for Ordinal

Ranking . 78
6.6 Evaluation . 78

6.6.1 Datasets . 79
6.6.2 Evaluation Methodology . 79
6.6.3 Results and Discussion . 80
6.6.4 Non-personalized Ranking . 81
6.6.5 Practical Impact . 82

6.7 Conclusion . 82
References . 83

7 Tag Recommendation . 85
7.1 Related Work . 86

7.1.1 Personalized Tag Recommendation 86
7.1.2 Non-personalized Tag Recommendation 87

7.2 Personalized Tag Recommendation . 87
7.2.1 Formalization . 88
7.2.2 Data Analysis . 89

7.3 Bayesian Post-aware Ranking (BPoR) for Tag
Recommendation . 91

X Contents

7.3.1 Optimization Criterion (BPoR-Opt) 91
7.3.2 Learning Algorithm (BPoR-Learn) 91

7.4 Factorization Models for Tag Recommendation 93
7.4.1 Tucker Decomposition (TD) . 93
7.4.2 Parallel Factor Analysis (PARAFAC) 94
7.4.3 Pairwise Interaction Tensor Factorization (PITF) 95
7.4.4 Relation between TD, PARAFAC and PITF 96

7.5 Alternative Optimization for Tucker Decomposition 96
7.5.1 Higher-Order Singular Value

Decomposition (HOSVD) . 97
7.5.2 Optimizing the Ranking Statistic AUC per

Post (RTF) . 97
7.6 Evaluation . 102

7.6.1 Datasets . 102
7.6.2 Evaluation Methodology . 102
7.6.3 Results . 103

7.7 Conclusion . 109
References . 109

8 Sequential-Set Recommendation . 113
8.1 Related Work . 114
8.2 Item Recommendation from Sequential Set Data 114

8.2.1 Sequential vs. General Recommender 115
8.2.2 Formalization . 115
8.2.3 Modelling and Estimation . 116

8.3 Factorizing Personalized Markov Chains (FPMC) 117
8.3.1 Personalized Markov Chains for Sets 117
8.3.2 Factorizing Transition Graphs . 121
8.3.3 Summary of FPMC . 123

8.4 Item Recommendation with FPMC . 124
8.4.1 Optimization Criterion S-BPR . 124
8.4.2 Item Recommendation from Sequential Set Data

with FPMC . 125
8.4.3 Learning Algorithm . 127

8.5 Evaluation . 128
8.5.1 Dataset . 128
8.5.2 Evaluation Methodology . 129
8.5.3 Results . 129

8.6 Conclusion . 132
References . 132

Contents XI

Part IV: Extensions

9 Time-Variant Factorization Models . 137
9.1 Introduction . 137
9.2 Problem . 138

9.2.1 Time-Variant Relations . 138
9.2.2 Sparseness . 139
9.2.3 Context-Aware Ranking . 139

9.3 Time-Variant Factorization Models . 140
9.3.1 Time-Variant Tucker Decomposition 140
9.3.2 Time-Variant Factor Matrices . 141

9.4 Models for Time-Variant Factors . 141
9.4.1 General Decomposition Model . 142
9.4.2 Probabilistic Model . 142
9.4.3 Non-parametric Method for Generating

Time-Variant Basis Functions . 146
9.5 Evaluation . 150

9.5.1 Experimental Setup . 150
9.5.2 Results . 152

9.6 Conclusion . 153
References . 153

10 One-Class Matrix Factorization . 155
10.1 Introduction . 155
10.2 Related Work . 156
10.3 One-Class Problems . 157

10.3.1 Terminology . 157
10.3.2 Prior Information . 158

10.4 One-Class Matrix Factorization . 158
10.4.1 One-Class Maximum Margin Matrix Factorization

(1C-MMMF) . 159
10.4.2 Class Prior Regularization . 162
10.4.3 Class Prior Thresholding . 163
10.4.4 Scalable Learning . 164

10.5 Evaluation . 167
10.5.1 Dataset and Methodology . 167
10.5.2 Results . 167

10.6 Conclusion . 169
References . 170

XII Contents

Part V: Conclusion

11 Conclusion . 173
11.1 Summary of Contributions . 174
11.2 Future Directions . 175
References . 176

Glossary . 177

Index . 179

Part I

Overview

Chapter 1

Introduction

With the emerging growth of the Internet, a huge amount of information is available

to anyone. Even though everything could be accessed, the problem is to find relevant

information. There are many examples where assistance is needed:

• Online-Shopping: Finding the right product within a huge catalogue is time-

consuming for a user. Static online-shops organize their products within cate-

gories and hierarchies to facilitate browsing. Instead, personalized shops adapt

their website to individual customers by factoring in their past actions. This helps

the customer to find relevant products faster which leads to an increasing cus-

tomer satisfaction, a higher purchasing rate and thus more profit. A successful

example for such personalized recommender systems is Amazon1.

• Tagging: Tagging is a popular technology in the Web 2.0. Tags allow the user

to annotate items/ resources like songs, pictures, bookmarks, etc. with individual

keywords. Tagging helps the user to organize his items and facilitate e.g. brows-

ing and searching. But also in the process of tagging (that means annotating the

‘right’ keywords), assistance is important. Tag recommenders support the tag-

ging process of a user by suggesting him tags that he is likely to use for an item.

• Search Engines: Web search is one of the most important tools of the Internet.

It helps to find relevant information that is stored in the web. Typically, textual

queries are used to search for web pages. The search engine returns a ranked

list of pages that matches to the query. Most engines take the location of the user

into account. Some engines adapt the results also to the individual user (Sun et al,

2005; Jeh and Widom, 2003).

• Annotation: Collaborative creation of content is another recent trend. The online

encyclopedia Wikipedia2 is the most famous example. All content is generated

by the visitors and not by a small team of experts. Categorization of articles and

links between articles are essential for browsing such large websites. But as the

content is created by a large and diverse group of users, when editing content

it is hard to find the right categories and links. Tools can help this process by

suggesting categories or links.

1 http://www.amazon.com/
2 http://en.wikipedia.org/

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 3–8.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

http://www.amazon.com/
http://en.wikipedia.org/

4 1 Introduction

Table 1.1 Examples for scenarios of context-aware ranking

Scenario Entity to rank Context

Online Shopping products customer

Tagging tags user, bookmark/ song

Search Engine web pages search query, user

Wikipedia Annotation categories article

In all these examples, the problem is to rank entities given a context. Table 1.1 gives

examples for the entity to rank and the context for the scenarios mentioned before.

In this work, we develop statistical methods that generate such context-aware

rankings given observed data. Examples for this observed data are purchases in

online shops, clicks on search result lists or already assigned categories for the

wikipedia example. As we will discuss in detail in chapter 3, the problem setting

is challenging and differs from standard machine learning settings:

1. Instead of classification or regression, we are interested in the less studied task of

ranking. Moreover, unlike to the standard ranking literature, not a global ranking

has to be found but the rankings should be context-aware. That means for each

context another ranking is desired.

2. The observations are highly sparse and difficult to interpret. Sparseness means

that for most data no observations have been monitored. For example a user has

purchased only few products compared to the size of the whole catalogue. The

interpretation of the non-bought products is difficult: Not having bought an item

does not have to mean that the user dislikes this item but can also mean that he

does not know it yet. This is especially crucial as we are mostly interested in

ranking among the products a user has not bought yet.

3. The variables (e.g. user, product, web page, tag, . . .) are defined over categorical

domains with many levels. In contrast to real valued variables, we have no a

priori knowledge about the space of these domains. E.g. one does not know a

priori if two users are similar or not. This becomes even more crucial with the

high sparsity mentioned above.

To solve these issues, we present a data interpretation that generates pairwise prefer-

ences for training. We develop a generic optimization criterion from the maximum

a posteriori estimator of the pairwise interpretation. For learning model parameters,

we present a gradient descent based optimization algorithm. We tackle the spar-

sity with factorization models that find latent representations of variable instances.

These models allow to propagate information over variables, such that two ‘similar’

instances influence each other. Both the optimization framework and the proposed

factorization models can solve problems of any number of modes. That means un-

like traditional recommender systems that only work on two modes (e.g. user and

item), our approach works also on problems with more modes (e.g. user, items,

location, mood).

1.1 Overview 5

We provide case studies for item recommendation, tag recommendation and se-

quential set recommendation (item recommendation with time). Here, we compare

our approach to state-of-the-art methods in each of these fields. It is important to

note that our method of context-aware ranking is not limited to these applications.

But within this book, we can only cover a fraction of all possible scenarios. We are

confident that our method also works well in other applications and we are planing

to continue this study in future work.

1.1 Overview

This book is organized in the three main parts of theory and application of context-

aware ranking as well as general extensions.

1.1.1 Theory of Context-Aware Ranking

The first part deals with the general theory of context-aware ranking. In three chap-

ters we discuss the problem setting, the optimization approach and the modelling

with factorization models:

• Chapter 3: Ranking from Incomplete Data

In this chapter, we develop a general method for context-aware ranking. We start

with a detailed analysis of the observed incomplete data of a sparse relation over

categorical variables. Then we formalize the task of context-aware ranking and

show how pairwise preferences can be generated for obtaining training data. Af-

terwards we describe how a ranking relation can be expressed by a real valued

function or by a tensor in the case of finite, categorical variables. Finally, we

discuss evaluation metrics for ranking tasks.

• Chapter 4: Learning Context-Aware Ranking

This chapter introduces the framework for Bayesian context-aware ranking

(BCR). First, we derive the optimization criterion BCR-OPT which is the maxi-

mum a posteriori estimator. For optimizing models towards this criterion, we in-

troduce the learning algorithm BCR-LEARN that is based on stochastic gradient

descent with bootstrap sampling of training cases. We conclude with a compari-

son of BCR-OPT to other optimization criteria like element-wise losses and the

area under the ROC curve.

• Chapter 5: Factorization Models

As model, we propose factorization approaches which can model the latent in-

teractions between variables. We discuss the Tucker decomposition (TD) and the

PARAFAC model. From this we derive our pairwise interaction model (PITF)

which is a special case of both TD and PARAFAC. We discuss the expressive-

ness and complexity of these models in detail.

1.1.2 Application of Context-Aware Ranking

In the second part, we apply our theory of context-aware ranking to three scenarios

and compare our approaches to state-of-the-art methods within these fields.

6 1 Introduction

• Chapter 6: Item Recommendation

Item recommendation is the most well studied recommendation task for ranking.

It is a two mode problem over users and items. Online shopping is an example for

item recommendation. K-nearest neighbor and matrix factorization are the two

most popular approaches for this task. We show how to apply our BCR optimiza-

tion to both of these models. We compare BCR optimized models empirically to

two state-of-the-art approaches: i.e. cosine-similarity and weighted least-square

optimization.

• Chapter 7: Tag Recommendation

Tag recommendation is a rather new field of study. Nevertheless it has already

attracted a lot of research and many methods to solve this specific tasks have been

proposed. In this chapter, we introduce the application of tag recommendation in

detail and show how our context-aware ranking theory can be applied there. As

indicated before, tag recommendation is a three mode problem over users, items

and tags. We show empirically that our approach outperforms the current state-

of-the-art methods including Folkrank and HOSVD both in runtime and quality.

Furthermore our method was compared to many other approaches in the ECML/

PKDD Discovery Challenge 2009 where we achieved the best quality.

• Chapter 8: Sequential Set Recommendation

Time is a variable that is easy to track in almost all scenarios. In this chapter, we

investigate the three mode problem of item recommendation with time. In com-

parison to the categorical variables that we have used so far, time is real valued.

Thus, we have to treat it differently. Here, we examine sequences of shopping

carts which reflects the sequential nature of time. For modelling, we use Markov

chains. But instead of using standard chains, we introduce personalized (context-

aware) chains – i.e. per user one chain. To overcome the sparsity problem, we

factorize the chains. Empirically, we show that our new method of factorized

personalized Markov chains outperforms both standard Markov chains and time-

invariant factorization models.

1.1.3 Extensions

The third part covers two extensions that fall not directly under the theory of context-

aware ranking.

• Chapter 9: Time-variant Factorization Models

Instead of modelling the qualitative/ sequential aspect of time like in chapter 8, we

model the time quantitatively inside the factors. Therefore, we make the Tucker

decomposition time-variant by modelling each factor with a time-variant func-

tion. This function itself is factorized into basis functions and free parameters

that should be estimated. Instead of choosing the basis functions fixed, we sam-

ple them from the observed data using a kernel approach. Finally, we evaluate

time-variant models with Gaussian and exponential kernels on synthetic and real-

world data sets. Note that this whole chapter is a general study of time-variant

factors and not limited to context-aware ranking.

1.3 Published Work 7

• Chapter 10: One-Class Matrix Factorization

In the last chapter, we investigate a binary classification task over two modes

where only one class is observed. Maximum margin matrix factorization (MMMF)

is known to be a successful classifier for binary classification tasks over two modes

but it is unclear how to apply it to one-class problems. Support vector machines

(SVM) are another maximum-margin classifier that have already been applied for

one-class problems. We transfer these ideas from one-class SVM to MMMF and

propose one-class/ 1C-MMMF. Furthermore we extend it for cases where infor-

mation about the prior class distribution is available to 1C-prior MMMF.

1.2 Contributions

The core contributions of this book are:

1. We develop a unified theory of context-aware ranking that subsumes several

recommendation tasks including item, tag and context-aware recommendation.

2. BCR optimization and learning is proposed as a generic optimization frame-

work.

3. Factorization models are used for modelling and we develop the PITF model

for sparse problems.

4. Factorizing Personalized Markov Chains (FPMC) is introduced as an exten-

sion of Markov chains that also allows parameter estimation under sparsity.

5. We conduct empirical studies on the task of item recommendation, tag recom-

mendation and sequential set recommendation.

6. Time-aware factor models are developed as a time-variant extension of general

factorization models.

7. One-class matrix factorization with prior regularization is proposed to solve

large scale problems with balanced classes.

1.3 Published Work

This book generalizes and builds on the following publications:

• Rendle and Schmidt-Thieme (2008), Online-updating regularized kernel matrix

factorization models for large-scale recommender systems, in RecSys 08: Pro-

ceedings of the 2008 ACM conference on Recommender systems, ACM.

• Rendle, Marinho, Nanopoulos, and Schmidt-Thieme (2009), Learning optimal

ranking with tensor factorization for tag recommendation, in KDD 09: Proceed-

ing of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining, ACM, New York, NY, USA.

• Rendle, Freudenthaler, Gantner, and Schmidt-Thieme (2009), BPR: Bayesian

personalized ranking from implicit feedback, in Proceedings of the 25th Con-

ference on Uncertainty in Artificial Intelligence (UAI 2009).

8 1 Introduction

• Rendle and Schmidt-Thieme (2009), Factor models for tag recommendation in

bibsonomy, in Proceedings of the ECML-PKDD Discovery Challenge Work-

shop. ECML/PKDD 2009 Best Discovery Challenge Award

• Gantner, Freudenthaler, Rendle, and Schmidt-Thieme (2009), Optimal ranking

for video recommendation, in Personalization in Media Delivery Platforms Work-

shop at the International ICST Conference on User Centric Media (PerMeD

2009).

• Rendle and Schmidt-Thieme (2010), Pairwise interaction tensor factorization

for personalized tag recommendation, in Proceedings of the Third ACM Inter-

national Conference on Web Search and Data Mining (WSDM 2010), ACM.

WSDM 2010 Best Student Paper Award

• Rendle, Freudenthaler, and Schmidt-Thieme (2010), Factorizing personalized

markov chains for next-basket recommendation, in WWW 10: Proceedings of

the 19th international conference on World wide web, ACM, New York, NY,

USA. WWW 2010 Best Paper Award

References

Gantner, Z., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.: Optimal ranking for video

recommendation. In: Personalization in Media Delivery Platforms Workshop at the Inter-

national ICST Conference on User Centric Media (PerMeD 2009) (2009)

Jeh, G., Widom, J.: Scaling personalized web search. In: WWW 2003: Proceedings of the

12th International Conference on World Wide Web, pp. 271–279. ACM, New York (2003)

Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization

models for large-scale recommender systems. In: RecSys 2008: Proceedings of the 2008

ACM Conference on Recommender Systems, pp. 251–258. ACM, New York (2008)

Rendle, S., Schmidt-Thieme, L.: Factor models for tag recommendation in bibsonomy. In:

Proceedings of the ECML-PKDD Discovery Challenge Workshop (2009)

Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag

recommendation. In: WSDM 2010: Proceedings of the third ACM International Confer-

ence on Web Search and Data Mining, pp. 81–90. ACM, New York (2010)

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized

ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in

Artificial Intelligence (UAI 2009) (2009)

Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal rank-

ing with tensor factorization for tag recommendation. In: KDD 2009: Proceeding of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, New York (2009)

Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov chains

for next-basket recommendation. In: WWW 2010: Proceedings of the 19th International

Conference on World Wide Web, pp. 811–820. ACM, New York (2010)

Sun, J.T., Zeng, H.J., Liu, H., Lu, Y., Chen, Z.: Cubesvd: a novel approach to personalized

web search. In: WWW 2005: Proceedings of the 14th International Conference on World

Wide Web, pp. 382–390. ACM, New York (2005)

Chapter 2

Related Work

In this chapter, we introduce the general related work for context-aware ranking with

factorization models. Related work on specific issues like tag recommenders, Mar-

kov chains, etc. is discussed in detail in the corresponding chapters. Here, we discuss

three general topics. The first one is recommender systems because the standard

task of personalized item recommendation (a two mode problem) can be seen as

context-aware ranking where the context is the user. Nevertheless in recommender

systems, the term ‘context’ is usually used only for cases with at least three modes

and furthermore the first mode is typically assumed to be the user. Thus, in the

discussion about recommender systems we stick to the definition within the rec-

ommender community and use the term context-aware recommender system only

for ranking problems with at least three modes. In contrast to this, in this book we

use the term context-aware ranking for any number of modes. Secondly, we in-

vestigate factorization models on which our proposed approach is based. Finally,

we discuss the literature about ranking in general and context-aware ranking in

particular.

2.1 Recommender Systems

Traditionally, recommender systems are designed for two-mode problems. The task

is to predict how much a user likes an item. In context-aware recommender systems,

additional modes are available such as time, mood, etc.

Recommender settings can be distinguished into rating prediction (regression)

and item recommendation (ranking). Both settings differ in the type of observations

that are available. For rating prediction the observations are explicitly given real

values. Item recommendation problems usually have only implicit binary feedback –

where only positive feedback is observed. The later problem is the more challenging

one as the interpretation of the observation is difficult. Furthermore, it appears more

often in practice because implicit feedback is easy to gather – e.g. almost every

web server records implicit behavior in log files by default. This book focus on the

recommendation problem from implicit feedback.

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 9–15.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

10 2 Related Work

2.1.1 Two-Mode Recommender Systems

Recommender systems are a well-studied field with many different approaches.

One of the most popular approaches is k-nearest-neighbor collaborative filtering

(Sarwar et al, 2001). Recently, matrix factorization methods have become very pop-

ular because of their success on the Netflix challenge (Srebro et al, 2005; Koren,

2008). The item recommendation problem can also been transformed into a multi-

class classification problem and standard binary classifiers like SVMs can be applied

using the 1-vs-1 or 1-vs-rest scheme (Schmidt-Thieme, 2005). Other well-known

approaches for recommender systems are Boltzmann machines (Salakhutdinov et al,

2007) or the PLSA (probabilistic latent semantic analysis) model (Hofmann, 2004).

We will discuss these two-mode recommender systems in more detail in chapter 6.

2.1.2 Context-Aware Recommender Systems

In comparison to the vast literature in traditional recommender systems over two

modes, context-aware recommender systems over more modes have attracted much

less attention. Moreover, only simple methods have been presented so far for

context-aware recommender systems. The approaches for context-aware recom-

menders can be categorized into three types: (1) contextual pre-filtering, (2) con-

textual post-filtering and (3) contextual modelling.

2.1.2.1 Contextual Pre-filtering

Given a context, in contextual pre-filtering a relevant subset of the observations

of the past is generated. Then, a standard two-mode recommender method can be

applied on this subset – both for training and prediction. The advantage of this ap-

proach is that any traditional two-mode method can be used because the training set

is made context-aware and thus the method has not to be adjusted. But this approach

has two important limitations:

1. For each context, an own recommender model has to be applied. For lazy meth-

ods without a training phase (like typical cosine kNN) this is no problem. But for

parametrized models (that are known to provide better quality) like factorization

models, Boltzmann machines, etc. for each subset a model has to be learned. This

is not feasible for a huge number of context.

2. By creating a subset of the training data, a lot of information is withheld from

the recommender system. This is especially important as we deal with a highly

sparse setting. Furthermore the skipped data is supposed to contain important

information because observations between two context are not completely in-

dependent. To tackle the issue of sparsity, Adomavicius et al (2005) suggest to

generate a broader subset that includes data not only corresponding exactly to

the given context but also to other related context.

2.2 Factorization Models 11

2.1.2.2 Contextual Post-filtering

In contrast to pre-filtering, post-filtering takes the contextual information at the end

into account. First, all contextual information is discarded and a traditional two-

mode recommender system is applied. For predicting, the learned two-mode model

is used without contextual information. Context-awareness is ensured by post-

processing the recommender list. Panniello et al (2009) suggest to use a weighting

or filtering approach. For both approaches a contextual probability for the entity is

computed. In the weighting approach, the recommender list is reordered by multi-

plying with this probability. The filtering approach removes entities with a proba-

bility that is smaller than a certain threshold.

An advantage of contextual post-filtering is that in the first step any recommender

system can be used. And in comparison to pre-filtering only one model has to be

built which makes it more applicable. An open issue for post-filtering is how to

obtain the contextual probability. Panniello et al (2009) use a simple estimator by

counting occurrences of the item in identical context of users in the neighbourhood.

This estimator will be unreliable in sparse settings, because it matches for exact

context and items. Again a generalization of the context and/ or item might help.

Panniello et al (2009) have empirically compared the performance of pre- and

post-filtering. Their results indicate that neither of the two of them outperform the

other.

2.1.2.3 Contextual Modelling

Instead of using two-mode recommender systems and applying just a pre/post-

processor, in contextual modelling the recommender system uses context informa-

tion directly in the model.

Adomavicius et al (2005) present a multidimensional model based on OLAP

cubes. As sparsity is a main problem for generating estimations in context-aware

settings, aggregation of dimensions is used to generate more reliable estimations. In

total, this approach is rather simple because it does not subsume any strong (recom-

mender) model. Another approach is to apply SVMs where the context is part of the

feature space (Oku et al, 2006). In general, applying standard classifiers does not

scale because the categorical variables have to be encoded as many binary variables

resulting in a huge dataset even for mid-sized problems.

All the methods that we develop in this work can be classified as contextual

modelling. A strong point of our proposed approach is that it subsumes the best

performing methods for two-mode item recommendation and three-mode tag rec-

ommendation.

2.2 Factorization Models

Our context-aware models are based on factorization models. As we are dealing

with categorical variable domains, the problem can be seen as predicting the entries

12 2 Related Work

of a multi-mode tensor. With factorization models, each variable is described by a

vector of (latent) variables which are called the factors. The entries of a multi-mode

tensor can then be constructed by combining the factors. There are two things to

consider when applying factorization models: (1) How the factors interact – this is

determined by the model structure/ equation. (2) How the factors are obtained – this

is defined by the optimization criterion.

Tucker (1966) suggest to factorize the multi-mode tensor into a smaller core ten-

sor and one factor matrix for each mode. Higher-order singular value decomposition

(HOSVD) is one method for obtaining the factors (Lathauwer et al, 2000). HOSVD

corresponds to a least-square optimization on a tensor without missing values. Par-

allel factor analysis (PARAFAC) (Harshman, 1970; Carroll and Chang, 1970) is a

special case of the Tucker decomposition (TD) where the core tensor is diagonal.

The advantage of PARAFAC over TD is that the model equation has no nested sums

and thus is much faster. In the two-mode case PARAFAC corresponds to matrix

factorization (MF). Singular value decomposition (SVD) is well-known method for

estimating factors of a two-mode PARAFAC/ MF model. Analogously to HOSVD,

SVD also optimizes for least-square and does not allow missing values. Another

approach is to learn MF with a sparse optimization and ridge regression terms as

regularization. This has been introduced as maximum-margin matrix factorization

(Srebro et al, 2005) using the hinge loss.

For rating prediction in two-mode recommender systems, sparse matrix factoriza-

tion with regularization and least-square optimization is known to be one of the best

approaches (Koren, 2008). Salakhutdinov and Mnih (2008) have extended this to

Bayesian Probabilistic Matrix Factorization where the parameters are learned with

Markov Chain Monte Carlo (MCMC). For the three-mode problem of tag recom-

mendation, Symeonidis et al (2008) have used HOSVD. To apply this, the missing

values have been imputed with 0.

We will discuss factorization models in detail in chapter 5. The optimization is

discussed in chapter 4. Applications and comparisons to state-of-the-art models are

provided in part III.

2.3 Ranking

Besides recommender systems, there is several work on general ranking. First, we

discuss approaches that learn models for optimal ranking. Secondly, we investigate

context-aware approaches for ranking.

2.3.1 Global Ranking

There are several approaches that try to optimize models for ranking. Both

Kondor et al (2007) and Huang et al (2008) model distributions over permutations.

Burges et al (2005) optimize a neural network model for ranking using gradient de-

scent. All these approaches learn only one ranking – i.e. they are not context-aware.

In contrast to this, our models are collaborative models that learn context-aware

2.3 Ranking 13

rankings, i.e. one individual ranking per context. In the application part of this work,

we show empirically that in our settings it is important to take context into account

and that our BCR optimized factorization models outperform even the upper bound

for non context-aware ranking.

One way to make the global ranking models context-aware is to apply the idea

of contextual-prefiltering (see section 2.1.2.1). That means for each context an in-

dividual model is used. For example, for item recommendation each user has an

own model or for tag recommendation each post (user-item combination) has an

own model. Each individual model is learned from the subset of the training data

that matches to the model’s context. Obviously, the training data for each model

is very small which results in poor parameter estimates. The reason is that the pa-

rameters for each model are independently and thus no inference across context is

possible. Moreover this approach is not able to learn for unobserved context, e.g. an

unobserved post. In contrast to this, the factorization approach that we propose in

this book does not require that the values of a context have been jointly observed –

instead it can infer across context.

2.3.2 Context-Aware Ranking

On the other hand there are context-aware ranking approaches. Agrawal et al (2006)

investigate context-sensitive ranking. But their problem setting differs substantially

from ours. In addition to a dataset like in our case, they assume that a set of con-

textual preferences is given in advance (alternatively they can also be learned, e.g.

by association rule mining). A contextual preference is a binary relation over two

variable instances given a context. The type of context they investigate is given by

a conjunction of equality constraints. Thus it is possible that the context is sparse,

i.e. some of the variables are not defined. The task they solve is for a given query

(e.g. SQL) to take the contextual preferences into account and to rank the resulting

tuples. If we would apply this to our sparse problem setting, the where-clause of the

query would contain the complete context. As we are dealing with very sparse set-

tings, the selection would typically be empty, because it is very unlikely that there

are observations for exactly this context. Furthermore, we are not interested to rank

for context that has been observed already but rather in ranking for non-observed

context. In total, the problem settings of our work and in (Agrawal et al, 2006) are

too different and thus their method does not make sense in our setting and vice versa,

our approach is supposed to perform bad in their setting.

Haveliwala (2003) describes a context-sensitive extension of the famous Page-

rank (Brin and Page, 1998) algorithm. The idea is to generate a context-aware Page-

rank in three steps: (1) A small set of ‘topics’ (e.g. 16 in his experiments) is selected

and one Pagerank for each of these topics is generated. (2) A probabilistic classifier

is learned to map a context to the topics. For this they use a Naive Bayes classi-

fier. (3) The context-sensitive Pagerank is now the weighted average of the topic

Pageranks where the probabilities of the topic classifier are used as weights. In our

settings no topics are given in advance. Thus one could model the topics as latent

topics. The factorization dimensions of our factorization models can be seen as a

14 2 Related Work

kind of latent topics. Instead of finding latent topics just for the entities to rank, fac-

torization models also generate factors for the variables in the context. Furthermore,

our factorization models optimize all ‘topics’/ factors jointly and also do not need

to learn any mapping from topics to rankings.

References

Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual infor-

mation in recommender systems using a multidimensional approach. ACM Transactions

on Information Systems 23(1), 103–145 (2005)

Agrawal R, Rantzau R, Terzi E (2006) Agrawal, R., Rantzau, R., Terzi, E.: Context-sensitive

ranking. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international con-

ference on Management of data, pp. 383–394. ACM, New York (2006)

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In:

WWW7: Proceedings of the Seventh International Conference on World Wide Web, vol. 7,

pp. 107–117. Elsevier Science Publishers B. V, Amsterdam (1998)

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.:

Learning to rank using gradient descent. In: ICML 2005: Proceedings of the 22nd Inter-

national Conference on Machine Learning, pp. 89–96. ACM Press, New York (2005)

Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scaling via an

n-way generalization of eckart-young decomposition. Psychometrika 35, 283–319 (1970)

Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an ’ex-

ploratory’ multimodal factor analysis. UCLA Working Papers in Phonetics, 1–84 (1970)

Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web

search. IEEE Transactions on Knowledge and Data Engineering 15(4), 784–796 (2003)

Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1),

89–115 (2004)

Huang, J., Guestrin, C., Guibas, L.: Efficient inference for distributions on permutations. In:

Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Process-

ing Systems, vol. 20, pp. 697–704. MIT Press, Cambridge (2008)

Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of the sym-

metric group. In: Proceedings of the Eleventh International Conference on Artificial Intel-

ligence and Statistics, San Juan, Puerto Rico (2007)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In: KDD 2008: Proceeding of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York (2008)

Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

Oku, K., Nakajima, S., Miyazaki, J., Uemura, S.: Context-aware svm for context-dependent

information recommendation. In: MDM 2006: Proceedings of the 7th International Con-

ference on Mobile Data Management, p. 109. IEEE Computer Society, Washington (2006)

Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Experimental com-

parison of pre- vs. post-filtering approaches in context-aware recommender systems.

In: RecSys 2009: Proceedings of the third ACM conference on Recommender systems,

pp. 265–268. ACM, New York (2009)

Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain

Monte Carlo. In: Proceedings of the International Conference on Machine Learning,

vol. 25 (2008)

References 15

Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative

filtering. In: ICML 2007: Proceedings of the 24th International Conference on Machine

Learning, pp. 791–798. ACM, New York (2007)

Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommen-

dation algorithms. In: Proceedings of the 10th International Conference on World Wide

Web, pp. 285–295. ACM Press, New York (2001)

Schmidt-Thieme, L.: Compound classification models for recommender systems. In: IEEE

International Conference on Data Mining (ICDM 2005), pp. 378–385 (2005)

Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In: Ad-

vances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press,

Cambridge (2005)

Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor

dimensionality reduction. In: RecSys 2008: Proceedings of the 2008 ACM Conference on

Recommender Systems, pp. 43–50. ACM, New York (2008)

Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31,

279–311 (1966)

Part II

Theory

Chapter 3

Ranking from Incomplete Data

The most common classification setting is to predict labels from real-valued vectors,

e.g. logistic regression or Support Vector Machines (SVM) are designed for this pur-

pose. Our task differs from this: (1) The variables in our settings are defined over

categorical domains with very many levels and there is no a priori knowledge about

the space the variable instances lie in. (2) The observed data is highly sparse, non-

trivial to interpret and it makes statements rather about pairs of instances than about

a single instance. (3) The prediction problem is to rank the instances of one vari-

able given an instance vector (the ‘context’) of the other variables. As the ranking

should depend on the given instance vector, it is not a global ranking but a context

dependent one. In this chapter, we discuss these three issues and develop a theory

for context-aware ranking.

First, we formalize the problem in an abstract way and discuss the problem of

sparsity in the observations. Sparsity means that only for little instances feedback

is present. Furthermore, this feedback is always positive, i.e. no negative feedback

is directly observed. The interpretation of the non-observed instances is not trivial

as they contain both the negative instances and the missing positive instances which

should be found and ranked high.

Secondly, we introduce context-aware ranking which is formalized as finding a

total order on one variable given an instance of all other variables. Then we show

how training data for the ranking can be generated from the observed (positive)

instances. This is illustrated for the task of product recommendation and tag recom-

mendation.

Finally, we show how modelling rankings can be reformulated as modelling real

valued functions. This is important because modelling all constraints of a total order

is complicated whereas real valued functions are trivially transitive and connex.

We proof that every ranking can be expressed as a real valued function, but also

that there are many functions to represent one ranking. All methods in this work

are based on modelling such real valued functions instead of modelling a ranking

directly.

We conclude this chapter by introducing metrics to measure the empirical quality

of a predicted ranking. These measures will be used later to evaluate our proposed

ranking methods.

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 19–37.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

20 3 Ranking from Incomplete Data

In the next chapter, we will apply the ideas of this chapter and develop an op-

timization criterion and learning algorithm for y. Afterwards, factorization models

are introduced to represent y and to overcome the sparsity problem.

3.1 Sparse Observations

First, we investigate the problem setting. We formalize the problem in terms of

variables, relations over variables and instances of variables / relations. Then we

compare the problem setting with standard classification and regression problems.

The main problem we discuss in detail is how to interpret the observed sparse data.

We use two examples throughout this chapter for illustrating the problems: (1) An

online shop where customer buy products. The task is to recommend products to a

customer. (2) A social website with tagging capabilities like Last.fm where users

annotate items (e.g. songs) with tags. Each user can give individual keywords.

3.1.1 Variables

Let X1, . . . ,Xm be domains over which m variables are defined. In this work, the

domains are categorical that means a priori there is no relationship between elements

in X like an order nor are there any mathematical operations like ‘+’ defined over

two elements in X . The only exception that we discuss is time where the domain is

R with all properties like ordering etc.

Furthermore, we define the space X over the domains:

X := X1 × . . .×Xm (3.1)

We call the vector x = (x1, . . . ,xm)∈X an instance/ element of X and m the mode.

Examples

• Online shop: this example can be formalized with two categorical variables:

m = 2

X1 = {customer1,customer2, . . .}
X2 = {product1,product2, . . .}

Thus, the instance (customer1,product2) of the space X would mean that

customer1 has bought product2.

In an extended scenario, we could also model the time with an additional

variable over the real numbers:

3.1 Sparse Observations 21

m = 3

X1 = {customer1,customer2, . . .}
X2 = R

X3 = {product1,product2, . . .}

Here an instance of X would also state when the customer has bought the item.

• Tagging: for the tagging scenario, three variables over the following domains are

necessary:

m = 3

X1 = {user1,user2, . . .}
X2 = {item1, item2, . . .}
X3 = {tag1, tag2, . . .}

• Search-Engine: an additional example is a website of a search engine, where

visitors use queries to search and then click on links to web pages:

m = 3

X1 = {visitor1,visitor2, . . .}
X2 = {query1,query2, . . .}
X3 = {webpage1,webpage2, . . .}

3.1.2 Observations

Next, we define the observations that have been made in the past. Statistical methods

use these observations to learn regularities and generate recommendations/ rank-

ings. The observations are defined over X and each instance x ∈ X can occur

multiple times in the past.

(a) Online Shop (b) Tag Recommendation

Fig. 3.1 The observed data s of the past in an online shop (left) and tagging scenario (right).

Each relation customer× product and user× item× tag can be written as a tensor. For the

tagging scenario, the slices of the cube have been written next to each other.

22 3 Ranking from Incomplete Data

Let s be the function describing the observations in the past:

s : X → N (3.2)

Set Notation

Mostly, s is a binary function – i.e. s : X → {0,1}. Thus s can also be seen as a

set S:

S ⊆ X (3.3)

where S is the support of s:

S := sups := {x ∈ X |s(x) �= 0} (3.4)

or in our case equivalently:

x ∈ S :⇔ s(x) > 0 (3.5)

If for all instances x : s(x) ≤ 1 then with this transformation no information is lost

and we can use sets instead of functions.

Examples

Figure 3.1 shows an example for observed data in the online shopping and tagging

scenario.

• Online shop: In figure 3.1(a), the first customer has bought the second and third

products whereas the second customer has bought the first and last product, etc.

As every entry is smaller or equal to 1, we can use the set notation to formalize

S which defines the corresponding s:

S := {(customer1,product2),(customer1,product3), . . . ,(customer5,product3)}

• Tagging: In the tagging example, the first user has tagged the second item with

the first and third tag, etc. Again, the observed function is boolean and we can

write:

S := {(user1, item2, tag1),(user1, item2, tag3), . . .

. . . ,(user3, item4, tag4),(user3, item4, tag5)}

3.1.3 Prediction as Classification/Regression

At first glance, the task of recommending looks like a classification/ regression task

where the function s should be estimated. After having learned ŝ : X →R one might

3.1 Sparse Observations 23

rank the instances x by s(x). Learning s for regression can be done by optimizing a

model with respect to the least square loss – and for classification e.g. with respect

to the hinge loss. There are two problems with this approach:

1. The optimization criterion does not directly reflect the ranking task. That means

the optimization is done against another task than the one that is desired.

2. The characteristics of the data are not taken into account. The observed data s is

highly sparse with almost no training examples on instance level (per instance x).

That makes especially non-observed entries (s(x) = 0) hard to interpret. Further-

more as the non-observed entries are the ones a recommender system typically

is interested in recommending, optimizing a model for predicting all of them

as zero / negative will result in bad predictions given enough expressiveness of

the model. For example, a very simple 1-NN model would perfectly fit the ob-

servations (∀x ∈ X : ŝ(x) = s(x)), but obviously this model is useless for rec-

ommending. Besides this, the high sparsity in a classification/ regression setting

would mean high imbalance – i.e. the majority class (s(x) = 0) hugely dominates

the class with positive observations.

We will discuss the problem of sparsity in more detail next. Later, chapter 4 targets

the optimization task.

3.1.4 Sparsity

Usually, for most instances x there are no observations in the past and thus:

∑
x∈X

δ (s(x) > 0) = |sups| ≪ |X | (3.6)

or in set notation:

|S| ≪ |X | (3.7)

And often, if an instance x has been observed, it has rarely been observed multiple

times – e.g. a customer usually buys a certain product (e.g. a book) just once and a

user chooses a certain tag for an item just once. That means for almost all instances

x there is usually no observation, i.e. s(x) = 0. E.g. in chapter 7, for the (densi-

fied) Last.fm example, 99.998% of the values are unobserved; for the ECML/PKDD

Challenge datasets that is even more: 99.99993%! That means building regression

or classification models for approximating s directly is likely to fail because the sim-

ple estimator ∀x : ŝ(x) = 0 would be almost perfect in terms of accuracy or square

loss. But this estimator would obviously be useless for ranking.

Secondly, it is crucial to note that if an instance x has not been observed (s(x)= 0)

this does not mean that it won’t be observed in the future. Quite the contrary: these

instances are exactly those instances from which one has to choose the next actions.

This becomes more clear by the example of online shopping: even though the first

customer has not bought the first and forth item yet (see fig. 3.1(a)), it does not mean

that he will never buy them, but instead the recommender system should decide

24 3 Ranking from Incomplete Data

in which of the two of them he is more interested in1. Again, a classifier that fits

s perfectly (e.g. the 1-NN mentioned above) could not do any ranking on these

unobserved pairs as it predicts them all equally as 0.

The tagging example (see fig. 3.1(b)) makes a related problem obvious: even

though the first user has not given any tag to the first item yet, this does not mean

that the user has expressed that from his point of view all these tags are bad for

describing the item. A better interpretation would be that the user has not yet tagged

the item at all – e.g. because he is not interested in the item or has not found it

yet. That means it is a (weak) statement rather about the user-item pair than about

the tags.

Another reason why sparsity is a problem, are the categorical variables. Imag-

ine a classification example where two dimensional points over the reals should be

classified into the positive and negative class. When we draw cases from the pos-

itive class, it is also the case that no instance is observed twice (assuming that the

distribution is continuous). But this scenario with reals is different from our cate-

gorical domains, as the cases are defined over R
2. Assume we have observed that

(1.0,1.2) and (1.2,1.0) are positive, then it makes sense to follow that (1.1,1.1) is

also positive. This can be done because a priori knowledge over R
2 is present, such

as < relations or (e.g. euclidean) distance – this corresponds to a kind of smoothness

assumption. In our case with categorical variables, this knowledge is not given and

thus it is much harder to make inference over sparse elements in X .

In the following, we will show an alternative way of handling the sparsity. Instead

of seeing the problem as an element-wise classification task, we will formulate it

as a ranking task based on pairwise classification. We will start with introducing

context-aware ranking and then we show, how training data for the ranking can be

inferred from s.

3.2 Context-Aware Ranking

Recommendation tasks are rather a ranking than a classification/ regression prob-

lem. Instead of predicting one value per single instance x, ranking approaches pre-

dict an order over a set of instances. That means, the targets of the instances depend

on each other. We start by formalizing a ranking as a strict total order and then

extending it to context-awareness. This allows to change the ordering of instances

depending on a context. The following section then discusses how to generate train-

ing instances for the ranking from s.

3.2.1 Ranking

A ranking ≻ of the variable instances of a domain X is a strict total order on X .

Without loss of generality, we assume that xm is the target variable to rank.

1 Empirically, this has been observed in the failing of 1-vs-rest classification models whereas

1-vs-1 models work (Schmidt-Thieme, 2005).

3.2 Context-Aware Ranking 25

≻ ⊆ X2
m (3.8)

We write:

xa ≻ xb :⇔ (xa,xb) ∈≻ (3.9)

A strict total order has to be irreflexive, connex and transitive2:

∀xi ∈ Xm : ¬(xi ≻ xi) (3.10)

∀xi,x j ∈ Xm : xi ≻ x j ∨ x j ≻ xi ∨ xi = x j (3.11)

∀xi,x j,xk ∈ Xm : xi ≻ x j ∧ x j ≻ xk ⇒ xi ≻ xk (3.12)

Because of these axioms, we can define the inverse ranking ≺ as:

xa ≺ xb :⇔ xb ≻ xa (3.13)

3.2.2 Context

Instead of finding the same ranking ≻ for all context (e.g. all users), the ranking

should be context-sensitive – i.e. individual for each context. A context can be seen

as the situation under which a decision should be made, e.g. the time, place and an

individual person can be the context of ranking products. A context c ∈ C is defined

as a relation over all the remaining variables

C := X1 × . . .×Xm−1 (3.14)

And we will write c for the vector over an instance of C :

c = (x1, . . . ,xm−1) ∈ C (3.15)

Furthermore for easier readability, we sometimes write x′ = (c,xm) for an instance

x′ of X with x′1 = x1, . . . ,x
′
m−1 = xm−1,x

′
m = xm. This notation is useful when we

want to work with the context c of an instance x ∈ X .

3.2.3 Context-Aware Ranking

Now, the task of context-aware ranking is to find for each context c a ranking ≻c. In

total:

≻ ⊆ C ×X2
m (3.16)

Again, we write:

xa ≻c xb :⇔ (c,xa,xb) ∈≻ (3.17)

And also each ranking ≻c has to be a strict total order (see eqs. (3.10)-(3.12)).

2 Alternatively, one can define a strict total order with transitivity and trichotomy.

26 3 Ranking from Incomplete Data

Examples

• Online shop: In online shopping, the domain that should be ordered are the

products. The context is the customer. That means the task is to estimate a per-

sonalized ranking of products individually for each customer. E.g. for a customer

that usually buys classic novels, books like ‘Catch-22’ or ‘The Old Man and the

Sea’ will be ranked high whereas for parents usually buying books for their child,

books like ‘Winnie the Pooh’ might rank first.

• Tagging: For tagging, the domain to rank are the tags. Here the context is the

user and the item. That means for every user-item combination another ranking

of tags is generated. Having individual rankings per item (e.g. per song) obvi-

ously is important because the ranking of tags for a song by ‘The Beatles’ should

be different from the ranking of tags for classical music e.g. by Beethoven. But

furthermore also the user for which the tags are recommended is important be-

cause different users tag differently – e.g. their taste and purpose for tags differs

even for the same item.

• Time-awareness: If time is also monitored, the context should be extended by

time. Then the ranking is also time-dependent. E.g. in the online-shopping sce-

nario, one could rank items differently for Christmas than for Easter. Here, the

ranking of products would be both customer and time specific.

3.3 Generating Ranking Constraints

In section 3.1.4, we have shown that the observed data s is usually highly sparse and

for most instances x there are no observations (s(x) = 0). Furthermore, we are inter-

ested in generating context-aware rankings instead of classification. That means for

each context c, an order ≻c should be found. In the data are no direct observations

of ≻ but only s is observed. Now, we show how to derive training examples for ≻
from the observed data s.

As ≻ is a binary relation over C ×X2
m, the training data on ≻ is a function ds

holding information about empirically observed instances of ≻:

ds : C ×X2
m → N (3.18)

Next, we will show how to derive pairwise training data ds from s.

3.3.1 Training Data for Rankings

Training data for rankings is not directly observed. But the observed data s gives

for some of the triples (c,xA,xB) ∈ C ×X2
m an indication if xA ≻c xB or xB ≻c xA.

Imagine the case where a customer cust1 has bought the products p2 and p3 but

neither product p1 nor p4 (figure 3.2, top). This indicates that the customer prefers

p2 over p1, p2 over p4, p3 over p1 and p3 over p4 (3.2, middle). But no indication

whether he likes p1 or p4 better nor whether he likes p2 or p3 is present. In total,

3.3 Generating Ranking Constraints 27

Fig. 3.2 Online Shopping: generating training examples ds for ≻ from s. The topmost matrix

shows the observed data in the past (see figure 3.1(a)). Below there is one matrix for each

customer that indicates whether or not one can infer that the customer prefers one product

over the other. ‘+’ indicates that pA is preferred over pB, ‘-’ states that pB is preferred over

pA and ‘?’ means that no preference can be deduced. On the bottom is the inferred training

data ds for the relation ≻.

four training cases could be inferred for this customer: p2 ≻cust1 p1, p2 ≻cust1 p4,

p3 ≻cust1 p1, p3 ≻cust1 p4 (3.2, bottom).

Definition

This allows us to define the function ds using the observed data s:

ds(c,xi,x j) := δ (s(c,xi) > s(c,x j)) · (s(c,xi)− s(c,x j)) (3.19)

The δ -term selects only triples, where xi has been observed more often than x j. The

second term creates one pair for each time xi is observed more often than x j.

Set Notation

For a binary s, this can be rewritten in set notation:

DS ⊆ C ×X2
m (3.20)

28 3 Ranking from Incomplete Data

Fig. 3.3 Tag Recommendation: generating training examples ds for ≻ from s. The top shows

the observed data s in the past. In the middle are the inferred preferences over tags for each

user/ item combination (=context). Note that for context without observation (e.g. (u1, i1)),
no preferences can be deduced. The bottom contains the training data for ≻.

And:

DS := {(c,xi,x j) ∈ C ×X2
m : (c,xi) ∈ S∧ (c,x j) �∈ S} (3.21)

Example

• Online shop: Figure 3.2 shows an example for the online shopping case. Here,

the context is the customer. For each customer, the products are compared. If a

user has bought a product in the past, we assume that he prefers this product over

the products he has not bought in the past. No preference is inferred over product

pairs the user has both not bought in the past or product pairs he has both bought

in the past.

• Tag Recommender: In the case of tag recommender (fig. 3.3), the context con-

tains both the user and the item. That means for every user-item pair a compari-

son over tags is made. In contrast to the online shop scenario, here most context-

pairs (e.g. c = (u1, i1)) have no training data: ∀x ∈ Xm : s(c,x) = 0. In this case,

3.3 Generating Ranking Constraints 29

no training data ds for ranking is inferred. For context with observations (e.g.

c = (u1, i3)), the tags with observations within this context are preferred over

tags without observations within this context.

3.3.2 Complexity

In the following, we analyze the complexity of ds in terms of non-zero entries. This

complexity is important, as our optimization approach will iterate over these non-

zero entries. We start with an analysis with the special case of sets, i.e. S and DS.

|DS| = |{(c,xi,x j) ∈ C ×X2
m : (c,xi) ∈ S∧ (c,x j) �∈ S}|

= ∑
c∈C

|{(xi,x j) ∈ X2
m : (c,xi) ∈ S∧ (c,x j) �∈ S}| (3.22)

Let S+
c be the set of all instances x ∈ Xm that are observed and S−c be the unobserved

ones within the context c:

S+
c := {x ∈ Xm : (c,x) ∈ S} (3.23)

S−c := {x ∈ Xm : (c,x) �∈ S} = Xm \ S+
c (3.24)

This allows to rewrite eq. (3.22):

|DS| = ∑
c∈C

|S+
c | |S−c | (3.25)

And because the number of positive observations is usually very small compared to

all instances, i.e. |S| ≪ |X | and |S+
c | ≪ |Xm| we can approximate the size of S−

C
by

the size of Xm:

|DS| < ∑
c∈C

|S+
c | |Xm| = |Xm| ∑

c∈C

|S+
c | = |Xm| |S| (3.26)

That means the size of DS is linear in the number of non-zero observations in S and

linear in the size of variables to rank Xm.

Multiple observations

In case of multiple observations, where S is no longer a set but a function s, we can

make a similar analysis using sets as an upper bound for non-zero elements in ds.

The quantity of interest is:

|ds| := |{(c,xi,x j) ∈ C ×X2
m : ds(c,xi,x j) > 0}| (3.27)

using the definition of ds:

30 3 Ranking from Incomplete Data

|ds| = |{(c,xi,x j) ∈ C ×X2
m : δ (s(c,xi) > s(c,x j)) · (s(c,xi)− s(c,x j)) > 0}|

= |{(c,xi,x j) ∈ C ×X2
m : s(c,xi) > s(c,x j)}|

= ∑
c∈C

|{(xi,x j) ∈ X2
m : s(c,xi) > s(c,x j)}| (3.28)

Now let:

S+
c := {x ∈ Xm : s(c,x) > 0} (3.29)

S0
c := {x ∈ Xm : s(c,x) = 0} = Xm \ S+

c (3.30)

So we can bound the number of non-zero entries to:

|ds| ≤ ∑
c∈C

|S+
c ||S0

c | (3.31)

And again we can approximate this because in practice |S+
c | ≪ |Xm|:

|ds| ≤ ∑
c∈C

|S+
c ||Xm| = |Xm| ∑

c∈C

|S+
c | = |Xm| |S| (3.32)

That means again, the number of non-zero entries of ds is linear both in Xm and the

number of observed instances S.

Comparison to Element-wise Training Data

In the next chapter, we will describe how to optimize a model against the non-zero

elements in ds. We have seen, that there are approximately |S| |Xm| triples. Now we

want to compare this to a method that approximates the observations s directly. In

general, for learning a classifier for approximating s, one cannot just train on the

non-zero elements but optimization has to be done on X . In contrast when the

optimization is performed for ranking using ds, one can learn only on the non-zero

pairs because every positive pair induces also the negative counterpart.

In total, that means that naive reconstruction of s has |X | training instances

whereas learning on non-negative pairs has |Xm| |S| training instances. For two mode

cases, S is usually larger than C = X1 and thus the number of training instances for

the pair approach is larger than for the reconstruction approach, because |X2| |S| >
|X1| |X2| = |X |. For three or more modes, S is usually much smaller than |C | =
|X1| . . . |Xm−1| and thus the pair approach has less instances than reconstruction of s,

i.e. |Xm| |S| ≪ |X1| . . . |Xm−1| |Xm| = |X |.
For enhancing the reconstruction approach one could try to reconstruct only in-

stances within context that has some observations. In this case, the runtime of the

element-wise approach would be much smaller than |X |. But with this change, the

approach would not reconstruct s any more but it would solve another problem.

3.4 Expressing Rankings by Real Valued Functions 31

3.4 Expressing Rankings by Real Valued Functions

After we have described the task of ranking and how to generate pairwise training

data from s, we will next discuss how to reformulate the ranking problem such that

it can be modelled efficiently.

Modelling and estimating (strict) total orders on categorical domains (like Xm) is

difficult because the order is defined over binary pairs with constraints (eqs. (3.10)-

(3.12)). Instead, we propose to map the problem into the real values where a strict

total order exists trivially.

Let y be a function from X to the reals3:

y : X → R (3.33)

In the following, we will show how y and ≻ can be linked. Using y instead of ≻ has

the advantage that on R an order exists, that satisfies irreflexivity and transitivity.

On the other hand, there is no unique y to represent ≻.

3.4.1 Transformation of Rankings

First, we will show how to obtain a ranking ≻y from y. Then, we show that ≻y sat-

isfies transitivity and irreflexivity but does not have to be connex – i.e. two elements

can be placed on the same rank.

Let y : X → R be a function, then a context-aware ranking ≻y can be obtained

from y by:

∀c ∈ C ,xi,x j ∈ Xm : xi ≻y
c x j :⇔ y(c,xi) > y(c,x j) (3.34)

Lemma 3.1. For any function y, the ranking≻y satisfies transitivity and irreflexivity.

Proof. First, we show transitivity:

(
∀c ∈ C , ∀xi,x j,xk ∈ Xm : xi ≻y

c x j ∧ x j ≻y
c xk ⇒ xi ≻y

c xk

)

⇔(∀c ∈ C , ∀xi,x j,xk ∈ Xm :

y(c,xi) > y(c,x j)∧ y(c,x j) > y(c,xk) ⇒ y(c,xi) > y(c,xk))

This holds for any y because > on R is transitive.

Secondly for irreflexivity:

(
∀c ∈ C , ∀xi ∈ Xm : ¬(xi ≻y

c xi)
)

⇔(∀c ∈ C , ∀xi ∈ Xm : ¬(y(c,xi) > y(c,xi)))

As > is irreflexive on R, this always holds.

3 Note that the target of y is R and not N because y is used as a free scoring function and not

to estimate rank positions directly.

32 3 Ranking from Incomplete Data

Remark 3.1. The ranking ≻y defined by y is not always a strict total order.

Proof. This can be shown by contradiction. First, we define y:

y(x) := 0, ∀x ∈ X (3.35)

According to eq. (3.11), the ranking has to be connex:

(
∀c ∈ C , ∀xi,x j ∈ Xm : xi ≻y

c x j ∨ x j ≻y
c x j ∨ xi = x j

)

⇔(∀c ∈ C , ∀xi,x j ∈ Xm : y(c,xi) > y(c,x j)∨ y(c,x j) > y(c,xi)∨ xi = x j)

⇔(∀c ∈ C , ∀xi,x j ∈ Xm : (0 > 0)∨ (0 > 0)∨ xi = x j)

⇔(∀c ∈ C , ∀xi,x j ∈ Xm : xi = x j)

This obviously does not hold for any non-trivial domain (i.e. |Xm| > 1) and thus the

contradiction is shown.

In total, this means that every y defines a context-aware ranking but it might place

several variable instances on the ‘same’ rank. To overcome this, we assume a ran-

dom order for two instances with the same value y. With this modification ≻y is a

strict total order.

3.4.2 Expressiveness

Next, we discuss the expressiveness of using y to represent ≻ for countable4 Xm.

First we show that y can express any ≻ and secondly, we show that there are many

different y to express the same ≻.

Lemma 3.2. For countable Xm, y can express any ranking ≻.

Proof. Define y:

y(c,xi) := |{x j ∈ Xm : xi ≻c x j}| (3.36)

Now:

∀c ∈ C , xi,x j ∈ Xm : y(c,xi) > y(c,x j)

⇔|{xk ∈ Xm : xi ≻c xk}| > |{xk ∈ Xm : x j ≻c xk}|
⇔xi ≻c x j

Remark 3.2. There is no unique y to express ≻.

Proof. It is easy to show this by defining y′ := ay + b with a ∈ R
+,b ∈ R. But also

any other strictly monotonically increasing function f can be applied. Furthermore

4 Throughout this work, we always deal with countable domains to rank. Even more, Xm is

usually finite.

3.5 Evaluation Metrics 33

f can be individual for each c, i.e. it can differ. Let fc : R → R be a strictly mono-

tonically increasing function:

∀a,b ∈ R : fc(a) > fc(b) ⇔ a > b (3.37)

We define y′ as:

∀c ∈ C ,x ∈ Xm : y′(c,x) := fc(y(c,x)) (3.38)

Now it is easy to show that both y′ and y define the same ranking ≻:

∀c ∈ C ,xi,x j ∈ Xm : xi ≻c x j ⇔ y(c,xi) > y(c,x j)

⇔ fc(y(c,xi)) > fc(y(c,x j)) ⇔ y′(c,xi) > y′(c,x j)

3.4.3 Discussion

In this section, we have shown how to transform between rankings ≻ and real value

functions y. We have pointed out that (i) for every ranking ≻ there exists many dif-

ferent y and (ii) for every y there exists one ranking≻ – that does not have to be total,

i.e. it might place many instances on the same rank. To overcome this, instances on

the same rank are ordered randomly. This means a function y that assigns the same

value to all instances corresponds to a random ordering.

It is important to note the difference between y and s. One might express y by

s, but this would mean that all unobserved instances are placed randomly because

for all of them y(x) = s(x) = 0. Instead, y and s are not related directly with each

other. In particular, there is no direct observation of any value y. Instead, ds defines

pairwise observations for learning y – i.e. the (inferred) pair ds(c,xa,xb) = 1 defines

a relation between y(c,xa) and y(c,xb) that is y(c,xa)
!
> y(c,xb).

3.5 Evaluation Metrics

Finally, we describe common evaluation metrics for ranking problems. We will later

use these metrics to assess the empirical quality of our methods. We assume there is

a set C of context given for which the evaluation should be made:

C = {c1,c2, . . .} (3.39)

For each of these context, the ground truth of variable instances is given as Sc ⊆ Xm.

For example, in the online shopping scenario it is known that the customer u (the

context) buys a certain product i next; thus i ∈ Su. Or for tagging, it is known that

a user u tags a certain item i (user+item=context) with a set of tags {tA,tB}; that

means Su,i = {tA,tB}. Usually, the training data S and the evaluation data is disjoint.

34 3 Ranking from Incomplete Data

Our evaluation measures are all based on evaluating a ranking. With ŷ, we can

rank the instances of x ∈ Xm given a context c. Using ŷ, we can uniquely5 assign for

each instance x an estimated rank r̂c in the list sorted by ŷ:

r̂c : Xm → {1, . . . , |Xm|}, r̂c bijective (3.40)

with:

∀xi,x j ∈ Xm : r̂c(xi) < r̂c(x j) ⇔ ŷ(c,xi) > ŷ(c,x j) (3.41)

Note that r̂c is a bijective mapping.

Half-life-utility (HLU)

The HLU aka ‘Breese score’ (Breese et al, 1998) scores the elements with exponen-

tial decay:

HLU(Sc, r̂c) := 100
∑
|Xm|
r=1 δ (r̂−1

c (r) ∈ Sc)2−
r−1
α−1

∑
|Sc|
r=1 2−

r−1
α−1

(3.42)

The HLU is bound to [0,100], where 100 is a perfect score.

We will report the average HLU over the test context C:

HLU(C) :=
1

|C| ∑
c∈C

HLU(Sc, r̂c) (3.43)

Precision and recall

Often, a limited set of items is recommended. Precision and recall evaluate such

top-N lists. Therefore the first N predictions from the predicted list are taken and

compared to Sc. Precision measures the ratio of how many items in the predicted list

are in Sc. Whereas recall measures how many of the true items Sc are covered by the

top-N list:

Top(r̂c,N) := {r̂−1
c (1), . . . , r̂−1

c (N)} (3.44)

Precision(Sc, r̂c,N) :=
|Top(r̂c,N)∩Sc|

N
(3.45)

Recall(Sc, r̂c,N) :=
|Top(r̂c,N)∩Sc|

|Sc|
(3.46)

5 In case of identical values ŷ for two instances, we take an arbitrary fixed order within these

two instances.

3.5 Evaluation Metrics 35

Both precision and recall are bound to the interval [0,1] where the best value is 1.

In reality, the precision and recall are also bounded by fixing N. E.g. if N is fixed to

1 and |Sc| = 2, than the maximal achievable recall is 1
2
.

Besides average precision and average recall, we report the f-measure (harmonic

mean) over these mean values:

Precision(C,N) :=
1

|C| ∑
c∈C

Precision(Sc, r̂c,N) (3.47)

Recall(C,N) :=
1

|C| ∑
c∈C

Recall(Sc, r̂c,N) (3.48)

F-Measure(C,N) :=
2 ·Precision(C,N) ·Recall(C,N)

Precision(C,N)+ Recall(C,N)
(3.49)

Also for the F-Measure, the best value is 1 and the worst 0.

Area under the ROC curve (AUC)

The AUC measures the pairwise classification rate:

AUC(Sc, r̂c) :=
1

|Sc| · |Xm \ Sc| ∑
xi∈Sc

∑
x j∈Xm\Sc

δ (r̂c(i) < r̂c(j)) (3.50)

The AUC is bound to [0,1] where 1 is the best value. The AUC of a random order is

0.5.

Again, we report the average AUC over all given context:

AUC(C) :=
1

|C| ∑
c∈C

AUC(Sc, r̂c) (3.51)

Recently, Hand (2009) has shown that the AUC uses different missclassification cost

distributions for different classifiers when evaluating on the same problem. Never-

theless, we also use AUC as one of our evaluation measures because it is widely

used in the literature and AUC does not depend on an evaluation hyperparameter

like N for precision, recall and F-Measure or like α for the HLU.

Other measures

In the information retrieval community two further measures are used to evaluate

rankings:

• Mean average precision (MAP)

The average precision (Buckley and Voorhees, 2000) is defined as:

36 3 Ranking from Incomplete Data

AP(Sc, r̂c,N) :=
1

|Sc|
N

∑
i=1

Precision(Sc, r̂c, i) ·δ (r̂−1
c (i) ∈ Sc) (3.52)

where N is the list length. The mean average precision (MAP) is the average over

all given context:

MAP(C,N) :=
1

|C| ∑
c∈C

MAP(Sc, r̂c,N) (3.53)

One can set N = |Xm| to generate the average precision at all relevant items.

• Normalized discounted cumulative gain (NDCG)

Like HLU, in NDCG the weight of ranks decreases non-linear. The discounted

cumulative gain (DCG) is defined as:

DCG(Sc, r̂c,N) :=
N

∑
i=1

1

log2(1 + i)
δ (r−1

c (i) ∈ Sc) (3.54)

The NDCG is normalized by the ideal DCG (IDCG), i.e. the DCG of an optimal

ranking:

NDCG(Sc, r̂c,N) :=
DCG(Sc, r̂c,N)

IDCG(Sc, r̂c,N)
(3.55)

where

IDCG(Sc, r̂c,N) :=
min(N,|Sc|)

∑
i=1

1

log2(1 + i)
(3.56)

In our evaluations, we use HLU, F-Measure and AUC. The HLU and NDCG are

related because they assign non-linear decreasing weights to ranks and evaluate how

much weight the ranking r̂ has.

Overlapping Context

In case, a context is evaluated and for this context also training examples exists (i.e.

∃x ∈ Xm,c ∈C : s(c,x) > 0) we usually do not allow to rerecommend the instances

x that are already training examples for this context. Furthermore, we also do not

want to evaluate them. That means, instead of dealing with Xm on which rankings

should be made and evaluated, we use the subset X c
m of Xm that does not contain any

training examples:

X c
m := {x ∈ Xm : s(c,x) = 0} (3.57)

In such cases where we want to have this restriction, we use X c
m instead of Xm in the

equations (3.40), (3.42), (3.45), (3.46), (3.50), (3.52), (3.54) and (3.56).

References 37

References

Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for col-

laborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Arti-

ficial Intelligence (UAI 1998), pp. 43–52. Morgan Kaufmann, San Francisco (1998)

Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: SIGIR 2000: Pro-

ceedings of the 23rd Annual international ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 33–40. ACM, New York (2000)

Hand, D.J.: Measuring classifier performance: a coherent alternative to the area under the roc

curve. Machine Learning 77(1), 103–123 (2009)

Schmidt-Thieme, L.: Compound classification models for recommender systems. In: IEEE

International Conference on Data Mining (ICDM 2005), pp. 378–385 (2005)

Chapter 4

Learning Context-Aware Ranking

In this chapter, we propose a learning method for the problem setting of context-

aware ranking. This problem setting has been investigated in detail in the last chap-

ter. We have seen, that a context-aware ranking ≻: C ×X2
m can be modelled by a

real-valued function y : C ×Xm → R. Now, we will show how this function can be

optimized. The optimization will be done with respect to the pairwise training data

ds, that is inferred from the sparse and incomplete observations s. The whole chapter

assumes, that y can be expressed as a differentiable, non-recursive function with a

finite set of parameters Θ . This assumption holds for many models, including the

factorization models that we will introduce in the next chapter.

First, we propose an optimization criterion based on Bayesian Context-aware

Ranking (BCR). The optimization criterion BCR-OPT, is the maximum a posteriori

(MAP) estimator of the model parametersΘ . BCR-OPT tries to minimize the classi-

fication loss for context-aware ranking on the inferred training data ds. Furthermore

it contains a regularization term that prevents overfitting. Afterwards, we develop the

learning algorithm BCR-LEARN which performs the optimization of Θ with respect

to BCR-OPT. This algorithm is generic and can be adapted to many model classes

including matrix factorization, k-nearest-neighbor, tensor factorization and Markov

chains. BCR-LEARN is based on stochastic gradient descent, where the cases are

drawn by bootstrapping. This allows the algorithm to converge faster than typical

full gradient or context-wise stochastic gradient descent. We show, how samples for

BCR-LEARN can be drawn efficiently both in terms of runtime and memory con-

sumption. Finally, we discuss the relationships of BCR-OPT to other criteria like the

pairwise approach of AUC optimization or element-wise approaches like weighted

regularized least square.

Both the optimization criterion and the learning algorithm that we present here

are generic. Thus, this chapter does not discuss any specific model. This will be

done in the next chapter, where factorization models are proposed to model y.

4.1 Optimization Criterion (BCR-Opt)

In the last chapter we have shown that learning a ranking ≻ can be reformu-

lated as learning a function y. Now, we derive the maximum a posteriori estimator

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 39–50.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

40 4 Learning Context-Aware Ranking

for ŷ. We assume, that ŷ can be fully described by a finite set of parameters Θ – this

assumption holds for most methods in machine learning. Thus the estimation of ŷ

corresponds to estimating Θ .

The MAP estimator for Θ is:

argmax
Θ

p(Θ | ≻) = argmax
Θ

p(≻ |Θ) p(Θ) (4.1)

Next, we analyse both probabilities p(≻ |Θ) and p(Θ).

4.1.1 Distribution over Pairs

First, we investigate the probability of each triple (c,xi,x j) ∈ C ×X2
m because these

triples define the context-aware ranking ≻. Each pair xi ≻c x j ⇔ (c,xi,x j) ∈≻ can

be seen as a Bernoulli trial. Thus, we model the probability of a pair given the model

parameters by:

xi ≻c x j |Θ ∼ Bernoulli(pc,i, j) (4.2)

As the single pairs form a total order, we know:

p(xi ≻c x j |Θ) = 1− p(x j ≻c xi |Θ) (4.3)

And also:

δ (xi ≻c x j) = 1− δ (x j ≻c xi) (4.4)

4.1.2 Distribution over Context-Aware Ranking

The Bernoulli distributions can be used to express p(≻ |Θ). We assume pairwise

conditional independence of all c ∈ C given the model parameters Θ . As all vari-

ables are discrete, we can write:

p(≻ |Θ) = ∏
(c,xi ,x j)∈C×X2

m

p(xi ≻c x j |Θ)δ (xi≻cx j) · (1− p(xi ≻c x j |Θ))1−δ (xi≻cx j)

(4.5)

Due to eqs. (3.10)-(3.12) this simplifies to:

p(≻ |Θ) = ∏
(c,xi ,x j)∈C×X2

m

p(xi ≻c x j |Θ)δ (xi≻cx j) · p(x j ≻c xi |Θ)δ (x j≻cxi)

= ∏
(c,xi ,x j)∈C×X2

m

p(xi ≻c x j |Θ)2δ (xi≻cx j) (4.6)

4.1 Optimization Criterion (BCR-Opt) 41

4.1.3 Modelling Pairs

Now, we use our model ŷ to express p(xi ≻c x j |Θ). Because of eq. (3.34) we can

define the ranking ≻ given the model parameters Θ using ŷ:

xi ≻c x j|Θ :⇔ ŷ(c,xi) > ŷ(c,x j) ⇔ ŷ(c,xi)− ŷ(c,x j) > 0 (4.7)

With the logistic function σ , this can be transformed into a probability:

p(xi ≻c x j|Θ) := σ(ŷ(c,xi)− ŷ(c,x j)) (4.8)

4.1.4 Priors on Model Parameters

If the prior distribution of the model parameters is known, p(Θ) should be mod-

eled by this distribution. Otherwise, a common approach is to assume independent

Gaussian priors which leads to the L2-regularizer. We will use this approach in the

following.

First, we assume independence of all parameters θ . Secondly, we assume that

each θ follows a Normal distribution centered at 0:

θ ∼ N

(

0,
1

2λθ

)

(4.9)

with λθ ∈ R
+.

With these assumption, the prior probability of Θ is:

p(Θ) = ∏
θ∈Θ

√

λθ

π
exp

(
−λθ θ 2

)
(4.10)

In practice, it is common to treat λθ as a hyperparameter which is searched e.g. by a

holdout method. Secondly, not for every parameter θ an own hyperparameter λθ is

searched, but parameters can be grouped and the hyperparameter λ is shared among

parameters in the group. A reasonable grouping depends on the model – e.g. for

factorization models, the factors of each matrix might share the same regularization

parameter λ .

4.1.5 BCR Optimization

These definitions allow to derive the MAP estimator for Θ . As the true ranking ≻ is

unknown, we use the derived training data ds (see section 3.3.1). In total, the MAP

estimator is:

42 4 Learning Context-Aware Ranking

argmax
Θ

p(Θ | ≻) = argmax
Θ

p(≻ |Θ) p(Θ)

=argmax
Θ

∏
(c,xi,x j)∈C×X2

m

σ(ŷ(c,xi)− ŷ(c,x j))
2ds(c,xi,x j) · p(Θ)

=argmax
Θ

∑
(c,xi,x j)∈C×X2

m

2ds(c,xi,x j) lnσ(ŷ(c,xi)− ŷ(c,x j))+ ln p(Θ)

=argmax
Θ

∑
(c,xi,x j)∈C×X2

m

ds(c,xi,x j) lnσ(ŷ(c,xi)− ŷ(c,x j))− ∑
θ∈Θ

1

2
λθ θ 2

=:argmax
Θ

BCR-OPT (4.11)

BCR can be seen as a weighted regression on ‘pairs’ with regularization, where the

weights are ds. Furthermore, the instances within the pairs overlap in the context.

4.2 Learning Algorithm (BCR-Learn)

In the following, we introduce the learning algorithm BCR-LEARN that optimizes

the model parameters Θ for BCR-OPT. This algorithm is based on stochastic gradi-

ent descent, i.e. it updates the model parameters for each case instead of computing

the full gradient. We show that standard stochastic gradient descent that traverses the

data in a sorted way will result in poor convergence. Instead we propose a stochas-

tic gradient descent algorithm using bootstrap sampling from the training data. We

show how this sampling can be performed efficiently both in terms of memory and

runtime consumption.

4.2.1 Optimization by Gradient Descent

A popular and generic optimization method is gradient descent (for minimization)

and gradient ascent (for maximization). The idea of gradient descent methods is to

start with an initial guess of the parameters and then iteratively follow the gradients

of the objective criterion. In each iteration, the gradient of the objective criterion

with respect to the current model parameters is calculated and then a small step

into this direction is taken. If the step size is small enough and the problem convex,

gradient descent is guaranteed to reach the global optimum. In non-convex problems

a local optimum is reached that is not necessarily a global optimum.

The gradient of BCR-OPT with respect to each parameter θ is:

∂

∂θ
BCR-OPT = ∑

(c,xi ,x j)∈C×X2
m

δc,xi,x j

∂

∂θ
(ŷ(c,xi)− ŷ(c,x j))−λθ θ (4.12)

with

δc,xi ,x j
:= ds(c,xi,x j)(1−σ(ŷ(c,xi)− ŷ(c,x j))) (4.13)

4.2 Learning Algorithm (BCR-Learn) 43

0e+00 2e+09 4e+09 6e+09

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Convergence on Rossmann dataset

Number of single updates

A
U

C

BCR−Learn

user−wise stochastic gradient descent

Fig. 4.1 Empirical comparison of the convergence of typical context-wise stochastic gradi-

ent descent to our BCR-LEARN algorithm with bootstrap sampling. This example is from a

recommender system, where the context is personalization (user) and items should be recom-

mended (see chapter 6).

This full gradient approach leads to a descent in the ‘correct’ direction, but in our

case convergence is slow. As we have |ds| ≈ |S| · |Xm| non-zero training triples (i.e.

ds(c,xi,x j) > 0), computing the full gradient in each update step is not feasible

for mid to large scale problems. Furthermore, for optimizing BCR-OPT with full

gradient descent also the skewness in the training pairs leads to poor convergence.

Imagine one instance xi ∈ Xm that is often positive. Then we have many terms of the

form ŷc,xi
in the loss because for many different context c, xi is compared against

all negative instances x j ∈ Xm (the dominating class). Thus the gradient for model

parameters depending on xi would dominate largely the gradient. That means very

small learning rates would have to be chosen. Secondly, regularization is difficult as

the gradients differ much.

The other popular approach is stochastic gradient descent. In this case, for each

triple (c,xi,x j) ∈ C ×X2
m an update is performed. The gradient for each parameter

θ given this triple is:

∂

∂θ
BCR-OPT = δc,xi ,x j

∂

∂θ
(ŷ(c,xi)− ŷ(c,x j))−λθ θ (4.14)

In general, this is a good approach for our skew problem but the order in which the

training pairs are traversed is crucial. A typical approach that traverses the data in

any sorted way (e.g. by context) will lead to poor convergence as there are so many

consecutive updates on the same pairs (c,xi) – i.e. for one pair (c,xi) ∈ S there are

many x j ∈ Xm with ds(c,xi,x j) > 0.

To solve this issue we suggest to use a stochastic gradient descent algorithm that

chooses the triples randomly (uniformly distributed). With this approach the chances

to pick the same pair (c,xi) in consecutive update steps is small. We suggest to use a

bootstrap sampling approach with replacement because stopping can be performed

44 4 Learning Context-Aware Ranking

at any step. Abandoning the idea of full cycles through the data is especially useful

in our case as the number of examples is very large and for convergence often a

fraction of a full cycle is sufficient.

Figure 4.1 shows a comparison1 of a typical context-wise stochastic gradient

descent algorithm to our approach BCR-LEARN with bootstrapping. Both opti-

mization approaches use the same model (matrix factorization) and the hyperpa-

rameters have been optimized for both approaches independently. As you can see

BCR-LEARN converges much faster than user-wise gradient descent.

4.2.2 BCR-Learn

BCR-LEARN (algorithm 1) optimizes the model parameters Θ based on the ob-

servations s. The algorithm is general and can fit parameters for many different

models. In the chapters 6, 7 and 8, we will see examples for matrix factorization,

k-nearest-neighbor, tensor factorization and Markov chain models. In the first step

of the algorithm, the model parameters are initialized with a first guess. In general,

no information about the model parameters is available a priori and thus they are

initialized with random numbers, e.g. drawn from a normal distribution. Then, the

model parameters are iteratively fitted.

In each iteration one case (c,xi,x j) is drawn and the gradient (eq. (4.14)) is com-

puted. The δ -term can be seen as a parameter-independent weight for the update:

the larger the error, the larger the update. Then each parameter that is related to the

case is updated. Mostly only a small fraction of parameters has to be updated – e.g.

in factorization models, only the factors of the variable instances within the case

have a gradient larger than 0. Examples for this are shown in chapter 6, 7 and 8. The

gradient of ŷ depends on the model itself and has to be derived for each model class

individually.

The iterative fitting procedure is continued until a stopping criterion is reached. A

common approach for gradient descent algorithms is to iterate until the loss on the

training data converges. But in our case, we stop after a fixed number of iterations.

This number of iterations is chosen on a holdout set. An advantage of this approach

is that this ‘early stopping’ (before convergence of the loss) can help to prevent

overfitting. Thus it can be seen as an additional regularizer.

4.2.3 Drawing of Training Cases

In each iteration of BCR-LEARN, a triple (c,xi,x j) is drawn uniformly from C ×
X2

m. A straight-forward implementation would be to draw x1 ∈ X1, . . . ,xm−1 ∈ Xm−1

and xi,x j ∈ Xm independently. With this implementation, the probability for each

triple (c,xi,x j) is equal, i.e. we would have a uniform draw. On the other hand, we

know that the training pairs are very sparse (|ds| ≪ |C ×X2
m|) – see eq. (3.32). Thus

for a random draw it is very likely that ds(c,xi,x j) = 0. This means that this triple is

useless for making any informative update on the parameters.

1 Details about the dataset and evaluation method can be found in section 6.6.

4.3 Alternative Optimization Criteria 45

Algorithm 1 BCR-LEARN

Input: training data s, learning rate α , regularization parameters λθ

Output: model parameters Θ
1: initialize Θ from N (0,σ2)
2: repeat

3: draw (c,xi,x j) uniformly from C ×X2
m

4: δc,i, j ← ds(c,xi,x j)(1−σ(ŷ(c,xi)− ŷ(c,x j)))
5: for θ ∈Θ do

6: θ ← θ +α
(

δc,i, j
∂

∂ θ (ŷ(c,xi)− ŷ(c,x j))−λθ θ
)

7: end for

8: until convergence

9: return Θ

A naive solution would be to enumerate all triples (c,xi,x j) with ds(c,xi,x j) > 0

and then draw from this set uniformly. Even though this would guarantee that only

non-zero triples are drawn, enumerating all such triples is not feasible because the

number of these triples is large (|ds| ≈ |S| |Xm|).
Instead, we can change the drawing scheme such that only triples are drawn that

are likely to have ds(c,xi,x j) > 0. Analyzing the definition of ds (eq. 3.19), we

see that ds(c,xi,x j) > 0 only if s(c,xi) > 0. Thus, we can formulate an alternative

drawing scheme for triples that is based on rejection sampling:

1. repeat

a. draw (c,xi) uniformly from S (see eq. (3.5))

b. draw x j uniformly from Xm

2. until ds(c,xi,x j) > 0

This drawing scheme has two advantages: (1) there is no additional overhead for

storing triples, because the procedure works directly with the observations S. And

(2) it is very likely to find cases that are positive, such that a redraw is usually not

necessary. A redraw is only necessary if s(c,x j) ≥ s(c,xi). Usually within a context

c the set of observed instances is very small (|{x ∈ X : s(c,x) > 0}| ≪ |Xm|), thus it

is very unlikely to randomly select x j ∈ Xm that are observed (non-zero).

For cases with binary s, the proposed algorithm corresponds to drawing a positiv

case (c,xi) ∈ S and a negative one (c,x j) �∈ S.

4.3 Alternative Optimization Criteria

Next, we compare the BCR optimization criterion to other optimization approaches.

We start with other pairwise losses and show the relation of BCR-OPT to AUC

optimization. Then, we discuss several element-wise losses that try to reconstruct

the training data s.

46 4 Learning Context-Aware Ranking

−4 −2 0 2 4

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

Loss functions as Quality Measures

x

L
(x

)

log sigmoid

sigmoid

hinge

heaviside

square loss

Fig. 4.2 Comparison of loss functions. The heaviside-function is often approximated by the

sigmoid σ . For BCR, the MAP derivation suggests to use lnσ as loss functions.

4.3.1 Pairwise Losses

BCR-OPT can be seen as minimizing the error of ranking pairs within ds.

argmax
Θ

∑
(c,xi ,x j)∈C×X2

m

ds(c,xi,x j)L(ŷ(c,xi)− ŷ(c,x j))− ∑
θ∈Θ

1

2
λθ θ 2 (4.15)

where the loss L is the log-sigmoid:

L(x) = lnσ(x) (4.16)

This loss is justified by the Bayesian analysis where the MAP estimator leads to

this loss when the probabilities are modelled with σ . In general, also other losses

within BCR-OPT are possible. A graphical comparison of loss functions2 is shown

in figure 4.2.

Hinge-Loss

The hinge loss is used for example in maximum-margin classifiers like SVMs or

maximum margin matrix factorization (Srebro et al, 2005). The hinge loss is usually

defined as:

L∗(x) := max(0,1− x) (4.17)

When using the loss as a quality measure like in BCR, we can change it to:

L(x) = 1−L∗(x) = 1 + min(0,−1 + x) = min(1,x) (4.18)

2 Note that all ‘losses’ are transformed to quality measures, because BCR-OPT maximizes

the loss. Losses like square-loss and the hinge loss are typically used in minimizers.

4.3 Alternative Optimization Criteria 47

Analogies to Area-under the ROC curve optimization

Comparing the AUC quality measure (eq. (3.50)) with BCR-OPT (eq. (4.11)), it is

easy to grasp the analogies. First, we reformulate the AUC for a context c as:

AUC(Sc) :=
1

|Sc| · |Xm \ Sc| ∑
xi∈Sc

∑
x j∈Xm\Sc

δ (ŷ(c,xi) > ŷ(c,x j)) (4.19)

where Sc = {xi ∈ Xm : (c,xi) ∈ S}3. And the AUC over all context is:

AUC :=
1

|C | ∑
c∈C

1

|Sc| · |Xm \ Sc| ∑
xi∈Sc

∑
x j∈Xm\Sc

δ (ŷ(c,xi) > ŷ(c,x j)) (4.20)

With the observations DS, this can be rewritten as:

AUC := ∑
(c,xi,x j)∈DS

zc δ (ŷ(c,xi) > ŷ(c,x j)) (4.21)

where zc is a normalizing constant that assures that all context is given the same

weight.

Now besides the normalization constants zc, AUC and BCR-OPT differ only in

the loss function. For AUC, the loss is usually written as the Heaviside function H,

which can be expressed by the delta function:

L(x) := δ (x > 0) = H(x) :=

{

1, x > 0

0, else
(4.22)

Instead we use the differentiable loss lnσ(x). Replacing the non-differentiable

Heaviside function is common practice when optimizing for AUC

(Herschtal and Raskutti, 2004). Often the choice of the substitution is heuris-

tic and a similarly shaped function like σ is used for smoothing H (see figure 4.2).

Our derivation of BCR-OPT suggest the alternative substitution of H by lnσ(x)
that is motivated by the MLE.

Square-loss

The square-loss is typically used rather for regression than for classification. For the

pairwise approach the square loss has to be shifted to the positive side, such that

positive differences are enforced. E.g.:

L(x) := 1− (x−1)2 (4.23)

3 Note that the AUC is only defined for binary classes. Thus we assume here the training

data is set data S.

48 4 Learning Context-Aware Ranking

But the drawback of square-loss in all classification tasks is that it penalizes correct

decisions with large values. E.g. in our case if the training case (c,xi,x j) is correctly

classified as positive, square-loss would penalize this when the difference of both

values are large, i.e. y(c,xi) ≫ y(c,x j).

4.3.2 Element-Wise Losses

Next, we will discuss approaches that are not optimizing rankings but the recon-

struction of s.

Several work suggests to minimize the least-square error on s for learning fac-

torization models. This is usually motivated by the popular singular value decom-

position (SVD), that minimizes square loss. For example Symeonidis et al (2008)

use a higher-order SVD for tag recommendation or Hu et al (2008) use a weighted

regularized least-square approach for item recommendation. Pan and Scholz (2009)

use also a weighted regularized approach for item recommendation, where besides

least-square also the hinge-loss is proposed.

Dense Optimization

All approaches listed above, optimize on all elements of X :

argmin
Θ

∑
(c,xi)∈X

L(ŷc,xi
,δ (s(c,xi) > 0)) (4.24)

where L is a loss like square loss or hinge loss. That means on large data sets

or higher modes, the number of cases is huge. For sparse problems (i.e. many 0

values), there exists fast solvers for square loss problems. For higher-order SVD,

Lathauwer et al (2000) proposed an approximation based on unfolding the tensor

and solving for each mode a sparse two-mode SVD. Also fast least-square solver

with regularization for sparse two-mode settings are available (Hu et al, 2008).

Pan and Scholz (2009) extend the square-loss approach to hinge-loss but because

similar scaling approaches as for square-loss cannot be applied, they use subsam-

pling and ensemble several estimators.

But besides that the problem can be solved for least-square loss, all the issues

mentioned in section 3.1.4 are not addressed: (1) non-observed elements are not

necessarily negative, in contrast, the recommender has to choose among them in the

future; (2) the negative cases hugely dominate the observed ones and (3) optimiza-

tion is done for reconstruction, not for ranking.

Weighted Optimization

To overcome some of these problems, both Hu et al (2008) and Pan et al (2008) sug-

gest to weight each element of X . Extended to the general context-aware setting,

this can be written as:

References 49

argmin
Θ

∑
(c,xi)∈X

wc,xi
L(ŷc,xi

,δ (s(c,xi) > 0)) (4.25)

where wc,xi
is a predefined weight. Hu et al (2008) set the weight using the counts s:

wc,xi
= 1 + α s(c,xi) (4.26)

where α is a global hyperparameter. Pan et al (2008) suggest to set wc,xi
as a global

hyperparameter or as a user / item specific constant. The weighting approach might

solve the problem of imbalance as positive examples can be weighted higher than

negative ones.

Sparse Optimization

In addition to the ideas of Hu et al (2008) and Pan et al (2008), one could also use

the weights to make a sparse optimization, that only optimizes within context that

has some observations. This would prevent the element-wise approaches to fit com-

pletely unobserved context to zero:

wc,xi
=

{

1, if ∃x j ∈ Xm : s(c,x j) > 0

0, else
(4.27)

This might be extremely useful for settings with a larger number of modes (m > 2),

because (1) fitting only elements within observed context might improve quality and

(2) it reduces the number of training data. In total, this corresponds to the following

sparse optimization:

argmin
Θ

∑
c∈C :∃x j∈Xm,s(c,x j)>0

∑
xi∈Xm

L(ŷc,xi
,δ (s(c,xi) > 0)) (4.28)

Outlook

In chapter 6 and 7, we will compare element-wise optimization approaches to pair-

wise ranking approaches. For item recommendation, we will compare a matrix fac-

torization learned with BCR to learning with regularized weighted least-square and

standard least-square (SVD). For tag recommendation, we compare a BCR learned

tensor model to higher-order SVD and AUC optimization.

References

Herschtal, A., Raskutti, B.: Optimising area under the roc curve using gradient descent. In:

ICML 2004: Proceedings of the Twenty-First International Conference on Machine Learn-

ing, p. 49. ACM, New York (2004)

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: IEEE

International Conference on Data Mining (ICDM 2008), pp 263–272(2008)

50 4 Learning Context-Aware Ranking

Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

Pan, R., Scholz, M.: Mind the gaps: weighting the unknown in large-scale one-class col-

laborative filtering. In: KDD 2009: Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 667–676. ACM, New York

(2009)

Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R.M., Scholz, M., Yang, Q.: One-class col-

laborative filtering. In: IEEE International Conference on Data Mining (ICDM 2008),

pp. 502–511 (2008)

Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In: Ad-

vances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press,

Cambridge (2005)

Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor

dimensionality reduction. In: RecSys 2008: Proceedings of the 2008 ACM Conference on

Recommender Systems, pp. 43–50. ACM, New York (2008)

Chapter 5

Factorization Models

In the last chapters, it was shown that a context-aware ranking ≻ can be expressed

by a function y : X → R or equivalently by a tensor Y ∈ R
X in case of finite cate-

gorical domains Xi. Estimating the full parametrized tensor Y is infeasible because

(1) for real-world problems, the number of parameters (i.e. |X |) would be too large

– e.g. for the Netflix1 problem we would need billions of parameters – and (2) even

more important, that the observations are typically very sparse which results in poor

estimates without any generalization capabilities.

In this chapter, we discuss how to model the tensor Y by a factorization model

Ŷ . In factorization models, each variable instance xi is expressed by a real valued

vector v ∈ R
k of k factors. For reconstructing the tensor Ŷ , the factors v1, . . .vm of

each entry x = (x1, . . . ,xm) ∈ X are combined. This combination is defined by the

factorization model and consists usually of summations and multiplications.

We discuss linear models that are based on the Tucker decomposition which is a

tensor product of factorization matrices of each mode. The structure of the Tucker

decomposition is defined by its core tensor. This core tensor makes the reconstruc-

tion runtime of the Tucker decomposition exponential in the number of modes. By

choosing a special core tensor, the Tucker model simplifies to PARAFAC (paral-

lel factor analysis) which has only linear runtime. Furthermore, we will introduce

the more specialized model PITF (pairwise interaction tensor factorization) that is a

special case of PARAFAC. PITF models all pairwise interactions between variables

explicitly. Even though the number pairwise interactions has quadratic growth in the

number of modes, we show that for ranking problems the number is linear. We finish

our analysis with a comparison of the runtime and expressiveness of these models.

In this whole chapter, we assume that the domain of each Xi is finite. This holds

for most domains of our applications like users, items, tags, articles, web pages,

words, etc. But obviously this does not hold for continuous domains like time. In

chapter 8 and 9, we develop two methods for integrating time into factorization

models. The first one is based on a Markov chain and the second one of modelling

time variance within each factor.

1 http://www.netflixprize.com/

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 51–65.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

http://www.netflixprize.com/

52 5 Factorization Models

Fig. 5.1 Tucker decomposition (3-mode): The target Y is approximated by a factorization Ŷ

using a core tensor B and for each domain Xi one factor matrix Vi of dimensionality ki.

5.1 Tucker Decomposition (TD)

Tucker decomposition (Tucker, 1966) factorizes a higher-order tensor into a smaller

core tensor and one factor matrix for each mode. Figure 5.1 shows an example for

three modes (m = 3).

The Tucker decomposition (TD) is defined by the following tensor product:

Ŷ TD := B×1 V 1 . . .×m V m (5.1)

with model parameters:

B ∈ R
k1×...×km

V i ∈ R
|Xi|×ki , ∀i ∈ {1, . . . ,m} (5.2)

B is called the core tensor. Vi is the factor matrix for the categorical variable over

the domain Xi where each row vi
j describes one variable instance x j ∈ Xi. Each entry

vi
j, f in the matrix V i is called a factor. ki is the dimensionality of the factorization

for Xi. That means each variable instance is expressed by ki real numbers.

It is important to note that none of the factors are observed but they are estimated

from the data. The number of factors ki that should be used for describing a variable,

is a hyperparameter that is chosen e.g. by the holdout method.

5.1.1 Model Equation

The TD corresponds to the following model equation:

ŷTD
x1,...,xm

:=
k1

∑
f1=1

. . .
km

∑
fm=1

b f1,..., fm

m

∏
i=1

vi
xi, fi

(5.3)

As we have discussed before, the major problem in context-aware ranking tasks

is the sparsity of the data. Factorization models like TD solve this problem by

parametrizing variable instances instead of relation instances. The model equation

5.1 Tucker Decomposition (TD) 53

predicts relation instances by combining the individual parametrization of variable

instances. This way, the model can generalize to relation instances (combinations of

variable instances) that have never been observed jointly. During the learning stage,

the parameters for each variable instance are optimized such that using them in the

model equation (5.3) leads to an optimal prediction (in our case ranking) for the

observed cases (in our case ranking pairs).

5.1.2 Gradients

Learning of the model parameters can be done by gradient descent based algorithms

like BCR-LEARN (see section 4.2.2). To apply these algorithms, the partial deriva-

tives of the model equation have to be known. The gradients of eq. (5.3) for each

model parameter with respect to an instance x = (x1, . . . ,xm) are:

∂ ŷTD
x1,...,xm

∂b f1,..., fm

=
m

∏
i=1

vi
xi, fi

(5.4)

∂ ŷTD
x1,...,xm

∂v
j
x j , f j

=
k1

∑
f1=1

. . .

k j−1

∑
f j−1=1

k j+1

∑
f j+1=1

. . .
km

∑
fm=1

b f1,..., fm

m

∏
i=1,i�= j

vi
xi, fi

(5.5)

When x is given, the gradient of each parameter b of the core B is defined because

every factor of the core is always used in the model equation. In contrast to this, the

gradients of the factorization matrices are only defined (non zero) for the m rows of

the m variable instances in x. All other entries of the factor matrices are not updated

when x is fixed.

5.1.3 Complexity

Next, we analyse the complexity of TD in terms of number of parameters, number

of operations in the model equation and number of operations for updating with

respect to one instance x. An overview of this analysis for all models can be found

in table 5.1.

• Number of free parameters: The number of free parameters of eq. (5.2) is:

m

∑
i=1

ki |Xi|+
m

∏
i=1

ki (5.6)

The first term is the number of parameters for the factor matrices and the sec-

ond term is the number of core factors. To facilitate the analysis and for better

comparability, we assume that all factorization dimensions are equally large, i.e.

k1 = . . . = km =: k. Now the number of free parameters is:

k
m

∑
i=1

|Xi|+ km (5.7)

54 5 Factorization Models

As you can see, the number of parameters is exponential in m and polynomial

in k.

• Computation of Model Equation: Predicting one entry x of Y with eq. (5.3) re-

quires computing the m nested summations. In total, the number of operations is:

(k1 −1) · . . . · (km −1) ·m (5.8)

With the assumption of equal sized factor dimensions this is:

m(k−1)m ∈ O(mkm) (5.9)

Thus, prediction is exponential in the number of modes m and polynomial in the

number of factors.

• Computation of the Gradients: Also the computation complexity of the gradi-

ent for each parameter is in the same class. There are km core factors that are up-

dated; calculating each gradient requires (m−1) operations. Additionally, there

are k m factors in the matrices that require each (m− 1)(k− 1)m operations. In

total, this leads to:

(m2 −1)km ∈ O(m2 km) (5.10)

Storing intermediate gradients for each factor within a mode reduces this to

O(mkm).

According to this analysis, TD has problems to scale to problems with many modes

or large factor dimensions because the number of model parameters as well as pre-

diction and update is exponential in m and polynomial in k.

5.1.4 Two-Mode Tucker Decomposition

Next, we want to emphasise that TD for two mode problems is different from typical

matrix factorization (Srebro et al, 2005) where the model equation is defined as:

ŷMF
x1,x2

:=
k

∑
f

v1
x1, f · v2

x2, f

=
〈
v1

x1
,v2

x2

〉
(5.11)

The differences between TD and MF can be seen by writing the TD model equation

explicitly for m = 2:

ŷTD
x1,x2

:=
k1

∑
f1=1

k2

∑
f2=1

b f1, f2 · v1
x1, f1

· v2
x2, f2

(5.12)

Now, the differences are obvious: (1) 2-mode TD contains two nested sums and a

full parametrized core matrix. By setting the core matrix to a diagonal matrix, the

usual two-mode SVD-scheme UΣV is obtained, where U = V 1, B = Σ and V = V 2.

5.2 Parallel Factor Analysis (PARAFAC) 55

5.1.5 Higher-Order SVD

Higher-order singular value decomposition (HOSVD) uses the same model equa-

tion as TD but HOSVD implies also the choice of the optimization criterion that is

mean square error. Thus, HOSVD reconstructs a fully observed tensor Y for minimal

square loss. In our case with many missing values, the non-observed values have to

be imputed (e.g. by 0) which results in very huge sparsity (see section 3.1.4). We

will compare our approaches empirically to HOSVD and SVD in chapter 6 and 7.

5.2 Parallel Factor Analysis (PARAFAC)

The PARAFAC model (Harshman, 1970) is a special case of the Tucker decomposi-

tion that assumes a diagonal and constant core tensor. An example for three modes

(m = 3) is shown in figure 5.2.

Fig. 5.2 PARAFAC: The model has a diagonal core tensor and the factorization dimension-

ality is equal for all modes.

PARAFAC uses the same decomposition (eq. (5.1)) and parametrization (eq.

(5.2)) as TD but in PARAFAC, the dimensionalities of the factor matrices are

identical:

∀i ∈ {1, . . . ,m} : ki := k (5.13)

and the core tensor is diagonal:

b f1,..., fm :=

{

1, if f1 = . . . = fm

0, else
(5.14)

This leads to model equation where only the factors within the same dimension are

linked. This can be seen as a hard-wired core tensor that predefines the interactions

between factors whereas in TD this core structure is flexible.

56 5 Factorization Models

5.2.1 Model Equation

In total, the model equation for PARAFAC is:

ŷPARAFAC
x1,...,xm

:=
k

∑
f=1

m

∏
i=1

vi
xi, f (5.15)

Thus, in PARAFAC all factor values within a given dimension f are multiplied.

These products are built over all dimensions and summed up. Even though, the

factor matrices itself are not restricted, the model equation is simplified a lot by

keeping the core tensor diagonal and constant. Thus, in PARAFAC only the factor

matrices have to be learned.

5.2.2 Gradients

For optimizing the parameters of PARAFAC with a gradient descent based algo-

rithm, we state the derivates. The gradients of eq. (5.15) for each model parameter

with respect to an instance x = (x1, . . . ,xm) are:

∂ ŷPARAFAC
x1,...,xm

∂v
j
x j , f

=
m

∏
i=1,i�= j

vi
xi, fi

(5.16)

5.2.3 Complexity

Next, we will show the influence of fixing the core on the number of free parameters

and the computation of prediction and gradients.

• Number of free parameters: In general, PARAFAC uses the same decompo-

sition as TD, but by fixing the core tensor to a constant tensor eq. (5.14), the

number of free parameters is reduced to:

k
m

∑
i=1

|Xi| (5.17)

Now, the number of parameters is linear in k and the sizes of the domains.

• Computation of Model Equation: Predicting one entry x of Y with PARAFAC

(eq. (5.15)) requires summation over k products of size m. In total, the number of

operations is:

(k−1)(m−1)∈ O(k m) (5.18)

Thus, the computation of one element is both linear in k and m.

• Computation of the Gradients: For updating with respect to a fixed entry x,

all factors of the related variable instances are updated. In total, the number of

5.3 Pairwise Interaction Tensor Factorization (PITF) 57

updated factors is k ·m. And for each update with eq. (5.16), the number of oper-

ations to calculate the gradient is m−2. This results in a total number of update

operations of:

k ·m · (m−2)∈ O(k m2) (5.19)

By precalculating α f := ∏m
i=1 vi

xi, f for each factor, the calculation of the gradient

with respect to vi
xi, f can be performed in O(1) with

α f

vi
xi, f

. Thus the total runtime

for the update drops to O(k m).

This analysis shows that PARAFAC scales much better than TD with respect to m

and k. Even though PARAFAC and TD have similar model equations, by setting the

core tensor constant and diagonal the complexity drops largely because the interac-

tions between factors are reduced to interactions within the same dimension.

5.2.4 Two-Mode PARAFAC

In the case of two modes (m = 2), PARAFAC is identical to the popular Matrix

Factorization model (eq. (5.11)):

ŷPARAFAC
x1,x2

=
k

∑
f=1

2

∏
i=1

vi
xi, f =

k

∑
f=1

v1
x1, f · v2

x2, f = 〈v1
x1

,v2
x2
〉 = ŷMF

x1,x2
(5.20)

That means that PARAFAC is a higher-order counter part of matrix factorization. In

the following, we will present another model which is also a higher-order counter

part of MF.

5.3 Pairwise Interaction Tensor Factorization (PITF)

Instead of modelling an m-ary relation directly with one m-ary product like

PARAFAC, PITF models many pairwise relations. The idea is to model one in-

teraction explicitly for each variable pair (Rendle and Schmidt-Thieme, 2010). In

general, there are
m(m−1)

2
∈ O(m2) distinct pairs of variables. For higher order prob-

lems (i.e. large m), modelling all pairwise interactions independently is not feasible.

But, we will show that for learning ranking problems and optimizing with BCR,

both the prediction and learning is invariant to many of these interactions and thus

they can be dropped. In total, this will lead to only (m−1)∈ O(m) pairwise interac-

tions that are relevant for ranking. Furthermore, we will show that PITF is a special

case of PARAFAC and thus also of TD.

5.3.1 Model Equation

The general model equation for PITF without pruning is:

58 5 Factorization Models

ŷG-PITF
x1,...,xm

:=
m

∑
i=1

m

∑
j=i+1

〈vi, j
xi

,v j,i
x j
〉 =

m

∑
i=1

m

∑
j=i+1

ki, j

∑
f=1

v
i, j
xi, f · v

j,i
x j , f (5.21)

with model parameters:

V i, j ∈ R
|Xi|×ki, j , V j,i ∈ R

|X j |×ki, j , ∀i, j ∈ {1, . . . ,m}, i > j (5.22)

That means, there are
m(m−1)

2
factorization pairs.

5.3.1.1 Relationship to PARAFAC and TD

Next, we will discuss the relationship between PITF and both PARAFAC and TD.

Figure 5.3 shows how a general 3-mode PITF model can be expressed by the Tucker

Decomposition.

Lemma 5.1 (PITF is a special case of PARAFAC). Every PITF model can be ex-

pressed by a PARAFAC model with k = ∑m
i=1 ∑m

j=i+1 ki, j dimensions.

Proof. Assume, an arbitrary PITF model is given and let ki, j be its pairwise factor

dimensionality. The corresponding PARAFAC model of order k = ∑m
i=1 ∑m

j=i+1 ki, j

can be generated from the PITF model by setting parts of the feature matrices to

constant 1. To enhance readability of this proof, we denote parameters of the PITF

model by U and the parameters of the PARAFAC model by V .

Let Zp be the set of all ordered pairs:

Zp := {(i, j) | i, j ∈ {1, . . . ,m}, i > j} (5.23)

It is known that |Zp| = m(m−1)
2

. Now let Z be the set of all ordered index pairs with

indices over their factorization dimensionality in PITF:

Z := {(i, j, f) |(i, j) ∈ Zp, f ∈ {1, . . . ,ki, j}} (5.24)

Fig. 5.3 General PITF: Like in PARAFAC, the core tensor is diagonal, but in G-PITF one

third of each factor matrix Vi is fixed to constant 1. This results in three pairwise interactions:

(x1,x2), (x1,x3) and (x2,x3).

5.3 Pairwise Interaction Tensor Factorization (PITF) 59

The cardinality of Z is the size of the corresponding PARAFAC model:

|Z| = k =
m

∑
i=1

m

∑
j=i+1

ki, j (5.25)

Let φ be a bijective mapping from Z to {1, . . . , |Z|}. With this, we can rewrite the

PARAFAC model:

ŷPARAFAC
x1,...,xm

=
k

∑
f=1

m

∏
i=1

vi
xi, f = ∑

(i, j, f)∈Z

m

∏
l=1

vl
xl ,φ(i, j, f) (5.26)

Now, we set some of the parameters of the PARAFAC model to constants:

vl
xl ,φ(i, j, f) =

⎧

⎪⎨

⎪⎩

u
i, j
xi, f if l = i

u
j,i
x j , f if l = j

1, else

(5.27)

Subsituted in eq. (5.26) this leads to:

ŷPARAFAC
x1,...,xm

= ∑
(i, j, f)∈Z

m

∏
l=1

vl
xl ,φ(i, j, f) = ∑

(i, j, f)∈Z

u
i, j
xi, f u

j,i
x j , f =

m

∑
i=1

m

∑
j=i+1

ki, j

∑
f=1

u
i, j
xi, f u

j,i
x j , f

=
m

∑
i=1

m

∑
j=i+1

〈ui, j
xi

,u j,i
x j
〉 = ŷG-PITF

x1,...,xm
(5.28)

Note that this proofs shows that every PITF model can be expressed by a PARAFAC

model. It is important to note that the contradiction does not hold, i.e. a general

PARAFAC model of mode m �= 2 can not be represented by a PITF model.

5.3.1.2 PITF for Ranking

The general PITF model eq. (5.21) requires a large number of parameters, as the

number of variable pairs growths quadratic in m. Next, we show that when PITF is

used for ranking with respect to the variable domain Xm, many pairwise interactions

can be dropped without loosing expressiveness.

The model equation for ranking PITF is:

ŷPITF
x1,...,xm

:=
m−1

∑
i=1

〈vi,m
xi

,vm,i
xm
〉 (5.29)

with model parameters:

V i,m ∈ R
|Xi|×ki,m , V m,i ∈ R

|Xm|×ki,m , ∀i ∈ {1, . . . ,m−1} (5.30)

60 5 Factorization Models

Fig. 5.4 PITF for Ranking: From the general PITF, the interaction (x1,x2) can be removed

as it has no influence on ranking with respect to x3. This holds only for predicting rankings

and optimizing the parameters for ranking (like with BCR-OPT).

Before showing that this model is equivalent to the general PITF model for the

task of ranking, we first note the general expressiveness and the relationship to

PARAFAC and TD. (i) It is clear, that every ranking PITF model is also a gen-

eral PITF model. This can be seen by setting ki, j = 0,∀i �= m, j �= m. And (ii) thus

also every PITF is a special case of PARAFAC and TD. An example for three modes

is shown in figure 5.4.

Lemma 5.2 (Invariance of Pairs). The G-PITF (eq. (5.21)) and PITF (eq. (5.29))

model are invariant under ranking (eq. (3.34)) and learning with respect to BCR

(eq. (4.11)).

Proof. G-PITF can be rewritten as:

ŷG-PITF
x1,...,xm

= ŷPITF
x1,...,xm

+ zx1,...,xm−1
(5.31)

with

zx1,...,xm−1
:=

m−1

∑
i=1

m−1

∑
j=i+1

〈vi, j
xi

,v j,i
x j
〉 (5.32)

Now G-PITF consists of a term PITF that depends on xm and a term zc that depends

not on xm but only on the context c = (x1, . . . ,xm−1). The equivalence of PITF and

G-PITF with respect to ranking and learning with BCR is proofed by the following

stronger lemma.

Lemma 5.3 (Invariance of Additive Terms). ŷx1,...,xm and ŷ′x1,...,xm
:= ŷx1,...,xm + zc

are invariant to ranking and learning with BCR.

Proof. First, we show the invariance to ranking. Let ≻ be the ranking induced by ŷ

and ≻′ be the ranking induced by ŷ′:

5.3 Pairwise Interaction Tensor Factorization (PITF) 61

xi ≻c x j
eq.(3.34)⇔ ŷc,xi

> ŷc,x j

⇔ ŷc,xi
+ zc > ŷc,x j

+ zc

⇔ ŷ′c,xi
> ŷ′c,x j

eq.(3.34)⇔ xi ≻′
c x j

Secondly, we show the invariance for learning with BCR. Recall the definition of

BCR-OPT:

argmax
Θ

BCR-OPT

=argmax
Θ

∑
(c,xi ,x j)∈C×X2

m

ds(c,xi,x j) lnσ(ŷ(c,xi)− ŷ(c,x j))− ∑
θ∈Θ

1

2
λθ θ 2

The model Ŷ is only used as the difference of two variable instances xi,x j ∈ Xm.

Thus:

ŷ′(c,xi)− ŷ′(c,x j) = ŷ′c,xi
− ŷ′c,x j

= ŷc,xi
+ zc − ŷc,x j

− zc

= ŷc,xi
− ŷc,x j

= ŷ(c,xi)− ŷ(c,x j)

So the additional term zc vanishes completely in the optimization. That means it is

never used in the optimization function and thus it is also not updated with gradient

descent learning. In total, as the term zc is not regarded, the models Ŷ and Ŷ ′ are

invariant.

Note that this only holds for optimization with a ranking criterion like BCR. For

other optimization approaches like element-wise losses (e.g. LSE) the invariance

does not hold and thus the interactions can not be dropped. The reason is, that these

approaches try to estimate an absolute value and this value (largely) depends on the

context.

5.3.2 Gradients

For learning a PITF model with gradient descent, the partial derivatives of eq. (5.29)

for each model parameter with respect to an instance x = (x1, . . . ,xm) are:

∂ ŷPITF
x1,...,xm

∂v
i, j
xi , f

= v
j,i
x j , f ,

∂ ŷPITF
x1,...,xm

∂v
j,i
x j , f

= v
i, j
xi, f (5.33)

where for general PITF:

i, j ∈ {1, . . . ,m}, i < j (5.34)

and for ranking PITF:

i ∈ {1, . . . ,m−1}, j = m (5.35)

62 5 Factorization Models

5.3.3 Complexity

Next, we discuss the complexity of the ranking PITF model in terms of number of

free parameters, and number of operations for prediction and update:

• Number of free parameters: In ranking PITF, there is one factor matrix for each

variable but for the variable to rank, there are m−1 independent factor matrices.

In total, the number of free parameters is:

m−1

∑
i=1

ki,m (|Xi|+ |Xm|) (5.36)

With the assumption that all factorization dimensionalities are equal (i.e.

∀i ∈ {1, . . . ,m−1} : ki,m
!
= k), this simplifies to:

k
m

∑
i=1

|Xi|+ k (m−2) |Xm| (5.37)

That means like for PARAFAC, the number of free parameters for PITF is linear

in k and m. But there are k (m−2) |Xm| more parameters in the PITF model than

in PARAFAC, when the same k is chosen.

• Computation of Model Equation: Predicting one entry x of Y with PARAFAC

(eq. (5.15)) corresponds to (m− 1) summations over a scalar product of size k.

Thus the number of operations is:

(m−1)(2k−1)∈ O(k m) (5.38)

• Computation of the Gradients: Given a relation instance x, all factors of the

related variable instances are updated. That means, there are k m+ k (m−2) pa-

rameters to update. The gradient in eq. (5.33) requires no computation time, so

the number of basic operations is:

2k (m−1)∈ O(k m) (5.39)

Again, this is linear in both k and m.

5.3.4 Two-Mode PITF

Again for two-mode scenarios, general PITF and PITF for ranking is identical to

matrix factorization. The reason is, that for two modes, there is only one interaction

and thus:

ŷPITF
x1,x2

:= 〈v1,2
x1

,v2,1
x2
〉 = ŷMF

x1,x2
(5.40)

Furthermore this shows that PITF and PARAFAC have the same model equation for

two-mode problems.

5.4 Expressiveness 63

Table 5.1 Model complexity with respect to number of free parameters and computation

runtime for prediction and gradients.

Model Free Parameters Prediction Gradient

TD k ∑m
i=1 |Xi|+km mkm mkm

PARAFAC k ∑m
i=1 |Xi| mk mk

PITF k ∑m
i=1 |Xi|+k (m−2) |Xm| mk mk

5.4 Expressiveness

Now, we want to summarize the expressiveness of the approaches. We use M to

denote the model classes and we write M TD for Tucker Decomposition, M PARAFAC

for PARAFAC and M PITF for PITF. Let M (m) denote the model class for a specific

number of modes.

Two-Mode Problems

We have seen, that M PARAFAC(2) = M PITF(2) and also that they are equivalent

to usual matrix factorization M MF. Furthermore, we have shown, that M TD(2) ⊂
M MF because the core matrix of TD allows all possible interactions between factors

of different dimensions. In total, we have:

M
TD(2) ⊃ M

PARAFAC(2) = M
PITF(2) = M

MF (5.41)

Higher-order Problems (m ≥ 3)

The equivalence of PITF and PARAFAC only holds for m = 2. For higher dimen-

sions, PITF cannot express PARAFAC as it can only model two way interactions

(multiplications) directly. But we have seen, that every PITF model can be formu-

lated as a PARAFAC model. And furthermore, TD subsumes PARAFAC for any

number of modes (m ≥ 2). To summarize, the expressiveness is:

M
TD(m) ⊃ M

PARAFAC(m) ⊃ M
PITF(m), ∀m ≥ 3 (5.42)

Discussion

At first glance, one might think that reducing the expressiveness helps only in terms

of runtime. E.g. PARAFAC has a better prediction and update complexity than TD

(see table 5.1). If this would be the case, PITF models would not make any sense

as PARAFAC subsumes them and both have the same computational complexity.

But actually, choosing a model with less expressiveness does not have to lead to

worse prediction quality — i.e. that quality is traded in for e.g. runtime. We will

64 5 Factorization Models

show this in detail for tag recommenders (chapter 7). The reason is that e.g. PITF

explicitly models a structure that might be hard to find under sparsity for the TD

and PARAFAC approach. Especially, regularization approaches like ridge regres-

sion (see eq. (4.11)) which usually assume that the model parameters are normally

distributed with mean zero θ ∼ N

(

0, 1
2λθ

)

might fail to learn the structure mod-

eled explicitly. Thus, if a model structure is known a priori, it might be better to

model it explicitly than trying to learn it. This is especially important for our prob-

lem settings with large sparsity.

5.5 Computational Aspects

Finally, the costs of factorization models are discussed from a practical point of

view.

Memory usage

A huge advantage of factorization models is that they store for each variable instance

(e.g. each user) only a small number of factors (k). Such a small factor vector is the

only information needed to be stored (e.g. for a customer or a product) to make

predictions. Other information like the historical events (S) or user/ item attributes

(like name, brand) are not necessary for predictions. Clearly, storing a small number

of factors for each variable instance is feasible for any real world system – e.g.

online shops typically have to store already much more information per customer

or product (like name, age, address). Furthermore, factorization models allow to

control the trade-off between quality and memory consumption by increasing or

decreasing the number of latent factors (k).

Runtime

For the linear models (PARAFAC and PITF), prediction is fast as it only depends

linearly on the precomputed factors. Again, the prediction is independent of any

other information like the historical events (S) or other information about the vari-

able instances (e.g. the name of customer, the genre of a book). This is in contrast

to other models like kNN where the prediction depends on the historical events.

On the other hand, the fast prediction of factorization models comes to the prize

of training the model. But in an application, training is usually done offline. Further-

more, PARAFAC and PITF are easily parallelizable because their model equation

of two instances x and x′ does not share any parameters if xi �= x′i,∀i ∈ {1, . . . ,m}
– this holds for most instances when the domains are large. Additionally, the mod-

els can also be trained with online-updates. This is important in practice because

usually a model is trained offline, then it is deployed and updates should be per-

formed online. We have provided such a online-update algorithm for regularized

least-square matrix factorization (Rendle and Schmidt-Thieme, 2008) – a similar

References 65

algorithm can be used for BCR learning of PARAFAC or PITF. In the evaluation of

(Rendle and Schmidt-Thieme, 2008), online updating the factors of a user or item

on the large Netflix dataset (|S| ≈ 100,000,000) costs between 0ms and 15ms (de-

pending on the number of historical events for this user/ item). Moreover, it was

shown that for variable instances with a large history, online-updating after each

event is not necessary.

In all this shows that factorization models are highly applicable in practice be-

cause their memory storage is small, the predictions are fast and learning can be

done by online-updating the factors in real-time.

References

Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an ’ex-

ploratory’ multimodal factor analysis. UCLA Working Papers in Phonetics, 1–84 (1970)

Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization

models for large-scale recommender systems. In: RecSys 2008: Proceedings of the 2008

ACM Conference on Recommender Systems, pp. 251–258. ACM, New York (2008)

Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag

recommendation. In: WSDM 2010: Proceedings of the third ACM International Confer-

ence on Web search and Data Mining, pp. 81–90. ACM, New York (2010)

Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In: Ad-

vances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press,

Cambridge (2005)

Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31,

279–311 (1966)

Part III

Application

In this part, we apply the theory that has been developed in part II. We investigate

three scenarios for context-aware ranking.

The first scenario is personalization, where items should be ranked individually

for each user. The feedback of the user is implicit, e.g. the feedback corresponds

to the users actions in the past. This is a very important recommendation scenario

with applications to e.g. online shopping (customers buying products), DVD rental

(users renting DVDs) or IP-TV (users watching movies). Here, we will compare our

context-aware ranking methods to other state-of-the-art approaches like weighted

regularized matrix factorization or k-nearest neighbour.

Secondly, the theory of context-aware ranking is applied to tag recommendation.

In this case, the context consists of users and items (e.g. bookmarks, songs) and tags

should be recommended. Tagging plays an important role in the Web 2.0 and tag

recommenders help the user in the annotation process. Here, we apply the tensor

factorization models of chapter 5 and compare them to the competing approaches

Folkrank, Pagerank and HOSVD.

Finally, we investigate a scenario with time information. The data consists of

sequences of sets. For example, the shopping carts of a user over time can be seen

as a sequence of sets, where each shopping cart is one set. The context in this case

is the user and the time. And thus the ranking of the items (e.g. products) should

be both user and time specific. For capturing the time interactions, we develop a

personalized Markov chain model where the transitions are factorized to improve

the parameter estimation. We show that the standard matrix factorization model is a

special case of our factorized personalized Markov chain.

Chapter 6

Item Recommendation

Recommending content is an important task in many information systems. For ex-

ample online shopping websites like Amazon give each customer personalized rec-

ommendations of products that the user might be interested in. Other examples are

video portals like YouTube that recommend videos to visitors. Personalization is

attractive both for content providers, who can increase sales or views, and for cus-

tomers, who can find interesting content more easily. In this chapter, we focus on

item recommendation where the task is to create a user-specific ranking for a set of

items. Preferences of users about items are learned from the user’s past interaction

with the system – e.g. his buying history, viewing history, etc. Thus, the context in

item recommenders is the user and user-aware rankings should be generated.

Recommender systems are an active topic of research. Most recent work is on

scenarios where users provide explicit feedback, e.g. in terms of ratings. Never-

theless, in real-world scenarios most feedback is not explicit but implicit. Implicit

feedback is tracked automatically, like monitoring clicks, view times, purchases,

etc. Thus it is much easier to collect, because the user has not to express his taste

explicitly. In fact implicit feedback is already available in almost any information

system – e.g. web servers record any page access in log files.

We start with introducing the related work in the field of item recommendation.

Then, we discuss the problem setting and show how it fits into the context-aware

ranking framework. Afterwards, we apply the Bayesian Context-aware Ranking

(BCR) framework to personalization, thus we get Bayesian Personalized Ranking

(BPR). We show the optimization criterion and learning algorithm for this instance

of BCR. Then, we describe how the two popular item recommendation models

k-nearest neighbor and matrix factorization can be learned with BPR. In the eval-

uation, we compare the quality of these approaches to the state-of-the-art recom-

menders of weighted regularized matrix factorization and cosine kNN.

6.1 Related Work

The most popular model for recommender systems is k-nearest neighbor (kNN)

collaborative filtering (Deshpande and Karypis, 2004). Traditionally, the similarity

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 69–84.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

70 6 Item Recommendation

matrix of kNN is computed by heuristics – e.g. the Pearson correlation – but in re-

cent work (Koren, 2008) the similarity matrix is treated as model parameters and

is learned specifically for the task. Recently, matrix factorization (MF) has become

very popular in recommender systems both for implicit and explicit feedback. In

early work (Sarwar et al, 2002) singular value decomposition (SVD) has been pro-

posed to learn the feature matrices. MF models learned by SVD have shown to

be very prone to overfitting (Kurucz et al, 2007). Thus regularized learning meth-

ods have been proposed. For item prediction Hu et al (2008) and Pan et al (2008)

propose a regularized least-square optimization with case weights (WR-MF). The

case weights can be used to reduce the impact of negative examples. Hofmann

(2004) proposes a probabilistic latent semantic model for item recommendation.

Schmidt-Thieme (2005) converts the problem into a multi-class problem and solves

it with a set of binary classifiers.

Even though all the work on item prediction discussed above is evaluated on

personalized ranking datasets, none of these methods directly optimizes its model

parameters for ranking. Instead they optimize to predict if an item is selected by a

user or not. In our work we derive an optimization criterion for personalized rank-

ing that is based on pairs of items (i.e. the user-specific order of two items). We

will show how state-of-the-art models like MF or adaptive kNN can be optimized

with respect to this criterion to provide better ranking quality than with usual learn-

ing methods. A detailed discussion of the relationship between our approach and

the WR-MF approach of Hu et al (2008) and Pan et al (2008) as well as maximum

margin matrix factorization (Srebro et al, 2005; Weimer et al, 2008) can be found in

section 6.5.

In this paper, we focus on offline learning of the model parameters. Extending

the learning method to online learning scenarios – e.g. a new user is added and his

history increases from 0 to 1, 2, . . . feedback events – has already been studied

for MF for the related task of rating prediction Rendle and Schmidt-Thieme (2008).

The same fold-in strategy can be used for BPR.

There is also related work on learning to rank with non-collaborative models. One

direction is to model distributions on permutations (Kondor et al, 2007; Huang et al,

2008). Burges et al (2005) optimize a neural network model for ranking using gra-

dient descent. All these approaches learn only one ranking – i.e. they are non-

personalized. In contrast to this, our models are collaborative models that learn

personalized rankings, i.e. one individual ranking per user. In our evaluation, we

show empirically that in typical recommender settings our personalized BPR model

outperforms even the theoretical upper bound for non-personalized ranking.

6.2 Personalized Ranking from Implicit Feedback

The task of personalized ranking is to provide a user with a ranked list of items.

This is also called item recommendation. An example is an online shop that wants

to recommend a personalized ranked list of items that the user might want to buy.

6.2 Personalized Ranking from Implicit Feedback 71

In this work, we investigate scenarios where the ranking has to be inferred from the

implicit behavior (e.g. purchases in the past) of the user. Interesting about implicit

feedback systems is that only positive observations are available. The non-observed

user-item pairs – e.g. a user has not bought an item yet – are a mixture of real

negative feedback (the user is not interested in buying the item) and missing values

(the user might want to buy the item in the future).

6.2.1 Formalization

For easier readability, we adapt the formalization of chapter 3 to the special case of

item recommendation, e.g. we use the more meaningful symbols U for users and I

for items instead of X1 and X2.

Item recommendation is a two mode problem (m = 2). Let U = X1 be the set of

all users and I = X2 the set of all items. In our scenario, the observed training data is

binary set data – i.e. it can be written as S ⊆U × I (see the topmost matrix in figure

6.1). Examples for such feedback are purchases in an online shop, views in a video

portal or clicks on a website. The task of the recommender system is now to provide

the user with a personalized ranking ≻u⊂ I2 of all items.

6.2.2 Analysis of the Problem Setting

As we have indicated before, in implicit feedback systems only positive classes are

observed. The remaining data is a mixture of actually negative and missing values.

The most common approach for dealing with the missing value problem is to ignore

all of them but then typical machine learning models are unable to learn anything,

because they cannot distinguish between the two levels anymore. Machine learning

approaches for item recommenders (Hu et al, 2008; Pan et al, 2008) typically create

the training data from S by giving all pairs (u, i) ∈ S a positive class label and all

other combinations in (U × I)\S a negative one – that means they try to reconstruct

the observed data S of the past. As we have discussed in chapter 3, the problem with

this approach is that all elements the model should rank in the future ((U × I) \ S)

are presented to the learning algorithm as negative feedback during training. That

means a model with enough expressiveness (that can fit the training data exactly)

cannot rank at all as it predicts only negative class values. The only reason why such

machine learning methods can predict rankings are strategies to prevent overfitting,

like regularization.

Instead, our approach is to see the task as a ranking problem rather than a classifi-

cation problem and to create pairwise training data DS (see chapter 3). This process

is illustrated in figure 6.1. If an item i has been viewed by user u – i.e. (u, i) ∈ S –

then we assume that the user prefers this item over all other non-observed items.

E.g. in Figure 6.1 user u1 has viewed item i2 but not item i1, so we assume that this

user prefers item i2 over i1: i2 ≻u1
i1. For items that have both been seen by a user,

72 6 Item Recommendation

Fig. 6.1 Item Recommendation: the observed data S is binary (top). For each user, we try to

find indication in the data S if the user prefers one item over the other (middle). The inferred

training data DS is then shown at the bottom. In all figures, a ‘+’ means that the element is in

the set, a ‘-’ means it is not in the set and a ‘?’ means that it is unknown whether or not it is

in the set.

we cannot infer any preference. The same is true for two items that a user has not

seen yet (e.g. item i1 and i4 for user u1). Now, DS can be created according to eq.

(3.21), which reads the following for item recommendation:

DS := {(u, i, j) : (u, i) ∈ S∧ (u, j) �∈ S} (6.1)

Note that even though DS explicitly contains only positive pairs, it also contains

implicitly the negative ones because pairs are antisymmetric – but it does not contain

the pairs that are neither positive nor negative (missing values), see figure 6.1.

In total, our approach has two advantages:

1. The pairwise training data consists of both positive and negative pairs and miss-

ing values. The missing values between two non-observed items are exactly the

item pairs that have to be ranked in the future. That means from a pairwise point

of view the training data DS and the test data is disjoint. This does not hold for

the classification approach that tries to reconstruct S and (U × I)\ S.

2. The training data is created for the actual objective of ranking, i.e. the observed

subset DS of ≻u is used as training data.

6.3 Learning Personalized Ranking 73

6.3 Learning Personalized Ranking

In this section, we transfer the general BCR method to item recommendation. As

we have stated before, for item recommendation, the context is the user, i.e. C = U .

Thus, we refer to Bayesian Context-aware Ranking (BCR) as Bayesian Personalized

Ranking (BPR). We will both present the optimization criterion BPR-OPT and the

learning algorithm BPR-LEARN.

6.3.1 Optimization Criterion (BPR-OPT)

Analogous to BCR (see section 4.1), we can derive BPR-OPT which is the MAP

estimator for the model parameters Θ of an estimator ŷ:

argmax
Θ

p(Θ | ≻) = argmax
Θ

p(≻ |Θ) p(Θ) (6.2)

where the probability for ≻ is:

p(≻ |Θ) = ∏
(u,i, j)∈U×I2

p(i ≻u j |Θ)2δ (i≻u j) (6.3)

Again, we assume that ŷ is used as an estimator for ≻ (see section 4.1.3) and thus:

p(i ≻u j|Θ) := σ(ŷ(u, i)− ŷ(u, j)) (6.4)

And for the prior, we assume a normal distribution, thus:

p(Θ) = ∏
θ∈Θ

√

λθ

π
exp

(
−λθ θ 2

)
(6.5)

Putting everything together, leads to BPR-OPT which is defined as the MAP esti-

mator given the training data:

argmax
Θ

BPR-OPT := argmax
Θ

∑
(u,i, j)∈DS

lnσ(ŷ(u, i)− ŷ(u, j))− ∑
θ∈Θ

1

2
λθ θ 2 (6.6)

where λθ is a model specific regularization parameter.

6.3.2 Learning Algorithm (BPR-LEARN)

Next, we specialize BCR-LEARN to item recommendation to derive BPR-LEARN.

This algorithm is based on stochastic gradient descent where cases (u, i, j) ∈ DS are

drawn by bootstrapping. The benefits of a stochastic approach with bootstrapping

over the standard approach of computing the full gradient or user-wise stochastic

descent are discussed in section 4.2.1.

74 6 Item Recommendation

Gradients

For performing gradient descent, the partial derivative of BPR-OPT with respect to

the model parameters θ given a case (u, i, j) ∈ DS is:

∂

∂θ
BPR-OPT = δu,i, j

∂

∂θ
(ŷ(u, i)− ŷ(u, j))−λθ θ (6.7)

with:

δu,i, j := (1−σ(ŷ(u, i)− ŷ(u, j))) (6.8)

Drawing of Cases

It is not feasible to explicitly enumerate all triples in DS. Instead, we can draw cases

(u, i, j) from DS without enumerating them. This can be done by first drawing a tuple

(u, i) from S and then drawing a negative item j. The drawing of a negative item can

be performed by (1) drawing j from I and (2) rejecting it if (u, j) ∈ S. Rejection is

very unlikely because most items are not purchased/ bought/ etc. by the user. More

details about this can be found in section 4.2.3.

BPR-Learn

Algorithm 2 shows the learning method BPR-LEARN for optimizing the model

parameters Θ with respect to BPR-OPT. This algorithm is an adaption of BCR-

LEARN (see algorithm 1) to the context of personalization. After initializing the

model parameters Θ , the parameters are learned iteratively. First a case is drawn as

described before and then gradient descent is performed on the related parameters.

For termination of the main-loop, we searched the best number of iterations on a

holdout set. This corresponds to early stopping and can be seen as an additional

way of regularizing.

6.4 Item Recommendation Models

In the following, we describe two state-of-the-art model classes for item recom-

mendation and show how they can be learned with our proposed BPR methods.

We have chosen the two diverse model classes of matrix factorization (Hu et al,

2008; Rennie and Srebro, 2005) and learned k-nearest-neighbor (Koren, 2008).

Both classes try to model the hidden preferences of a user on an item. Their predic-

tion is a real number ŷ(u, i) per user-item-pair (u, i). As both U and I are categorical

domains, one can express y : U × I → R as a matrix Y ∈ R
|U|×|I|. Thus, we will use

this notation in the following and write yu,i := y(u, i).
It is important to note that even though we use the same models as in other

work, we optimize them against another criterion. This will lead to a better ranking

6.4 Item Recommendation Models 75

Algorithm 2 BPR-LEARN

Input: training data S, learning rate α , regularization parameters λθ

Output: model parameters Θ
1: initialize Θ from N (0,σ2)
2: repeat

3: draw (u, i) uniformly from S

4: draw j from {l : (u, l) �∈ S}
5: δu,i, j ← (1−σ(ŷ(u, i)− ŷ(u, j)))
6: for θ ∈Θ do

7: θ ← θ +α
(

δu,i, j
∂

∂ θ (ŷ(u, i)− ŷ(u, j))−λθ θ
)

8: end for

9: until convergence

10: return Θ

because our criterion is optimal for the ranking task. It does not try to regress a sin-

gle predictor ŷu,i to a single number but instead tries to classify the ranking of two

predictions, i.e. ŷu,i > ŷu, j.

6.4.1 Matrix Factorization

In chapter 5, we have presented three tensor factorization models and have shown

that for two mode tensors, PARAFAC and PITF corresponds to matrix factorization.

In this section, we show how the matrix factorization model can be used for item

recommendation.

The problem of predicting ŷu,i can be seen as the task of estimating a real valued

matrix Y ∈ R
|U|×|I|. With matrix factorization the target matrix Y is approximated

by the matrix product of two low-rank matrices W ∈ R
|U|×k and H ∈ R

|I|×k:

Ŷ := W ·Ht

where k is the dimensionality/rank of the approximation. Each vector/ row wu in W

can be seen as a feature vector describing a user u and similarly each row hi of H

describes an item i. Thus the prediction formula can also be written as:

ŷu,i = 〈wu,hi〉 =
k

∑
f=1

wu, f ·hi, f

Besides the dot product 〈·, ·〉 in general any kernel can be used like in

(Rendle and Schmidt-Thieme, 2008). The model parameters for matrix factoriza-

tion are Θ = (W,H).
In general the best approximation of Ŷ to Y with respect to dense element-wise

least-square is achieved by the singular value decomposition (SVD). For machine

learning tasks, it is known that SVD overfits (Kurucz et al, 2007) and therefore many

other matrix factorization methods have been proposed, including regularized least

square optimization, non-negative factorization, maximum margin factorization, etc.

76 6 Item Recommendation

For the task of ranking, i.e. estimating whether a user prefers one item over an-

other, a better approach is to optimize against the BPR-OPT criterion. This can be

achieved by using our proposed algorithm BPR-LEARN. As stated before for op-

timizing with BPR-LEARN, only the gradient of ŷu,i with respect to every model

parameter θ has to be known. For the matrix factorization model the derivatives

given a case (u, i, j) ∈ DS are:

∂

∂θ
(ŷu,i − ŷu, j) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(hi, f −h j, f) if θ is wu, f ,

wu, f if θ is hi, f ,

−wu, f if θ is h j, f ,

0 else

(6.9)

Furthermore, we use three regularization constants: one λW for the user features W ;

for the item features H we have two regularization constants, λH+ that is used for

positive updates on hi, f , and λH− for negative updates on h j, f .

6.4.2 Adaptive k-Nearest-Neighbor

In addition to the factorization models on which we are focused in this book, we de-

scribe here another modelling approach that can be applied for two-mode problems.

Nearest-neighbor methods are very popular in collaborative filtering. They rely

on a similarity measure between either items (item-based) or users (user-based). In

the following we describe item-based methods as they usually provide better results,

but user-based methods work analogously. The idea is that the prediction for a user

u and an item i depends on the similarity of i to all other items the user has seen in

the past – i.e. Iu:

Iu := {i : (u, i) ∈ S} (6.10)

Often only the k most similar items of Iu are regarded – the k-nearest neighbors.

If the similarities between items are chosen carefully, one can also compare to all

items in Iu. For item prediction the model of item-based k-nearest-neighbor is:

ŷu,i = ∑
l∈Iu∧l �=i

ci,l (6.11)

where C : I× I is the symmetric item-correlation/ item-similarity matrix. Hence the

model parameters of kNN are Θ = C.

The common approach for choosing C is by applying a heuristic similarity mea-

sure, e.g. cosine vector similarity:

ccosine
i, j :=

|Ui ∩U j|
√
|Ui| · |U j|

(6.12)

with:

6.5 Relations to Other Methods 77

Ul := {u : (u, l) ∈ S} (6.13)

A better strategy is to adapt the similarity measure C to the problem by learning it.

This can be either done by using C directly as model parameters or if the number

of items is too large, one can learn a factorization HHt of C with H ∈ R
|I|×k. In the

following and also in our evaluation we use the first approach of learning C directly

without factorizing it.

Again for optimizing the kNN model for ranking, we apply the BPR optimiza-

tion criterion and use the BPR-LEARN algorithm. For applying the algorithm, the

gradient of ŷu,i − ŷu, j with respect to the model parameters C is:

∂

∂θ
(ŷu,i − ŷu, j) =

⎧

⎪⎨

⎪⎩

+1 if θ ∈ {ci,l,cl,i}∧ l ∈ Iu ∧ l �= i,

−1 if θ ∈ {c j,l,cl, j}∧ l ∈ Iu ∧ l �= j,

0 else

We have two regularization constants, λ+ for updates on ci,l , and λ− for updates

on c j,l .

6.5 Relations to Other Methods

We discuss the relations of our proposed methods for ranking to two further item

recommendation models. The first one is an element-wise weighted least-square

error (eq. (4.25)) and the second one uses pairwise hinge loss (eq. (4.17)).

6.5.1 Weighted Regularized Matrix Factorization (WR-MF)

Both Pan et al (2008) and Hu et al (2008) have presented a matrix factorization

method for item prediction from implicit feedback. Thus the model class is the same

as we have described in section 6.4.1, i.e. Ŷ := WHt with the matrices W ∈ R
|U|×k

and H ∈ R
|U|×k . The optimization criterion and learning method differ substantially

from our approach. Their method is an adaption of an SVD, which minimizes the

square-loss. Their extensions are regularization to prevent overfitting and weights

in the error function to increase the impact of positive feedback. In total their opti-

mization criterion is:

∑
u∈U

∑
i∈I

cu,i (〈wu,hi〉− δ ((u, i) ∈ S))2 + λ ||W ||2f + λ ||H||2f (6.14)

where cu,i are not model parameters but apriori given weights for each tuple (u, i).
Hu et al. have additional data to estimate cu,i for positive feedback and they set

cu,i = 1 for the rest. Pan et al. suggest to set cu,i = 1 for positive feedback and

choose lower constants for the rest.

First of all, it is obvious that this optimization is on instance level (one item) in-

stead of pair level (two items) as BPR. Apart from this, their optimization is a least-

square which is known to correspond to the MLE for normally distributed random

78 6 Item Recommendation

variables. However, the task of item recommendation is actually not a regression

(quantitative), but a classification (qualitative) one, so the logistic optimization is

more appropriate.

A strong point of WR-MF is that it can be learned in O(iter(|S|k2 + k3 (|I|+
|U |))) provided that cu,i is constant for non-positive pairs. Our evaluation indicates

that BPR-LEARN usually converges after a subsample of |DS| single update steps

even though there are much more triples to learn from.

6.5.2 Maximum Margin Matrix Factorization for Ordinal

Ranking

Weimer et al (2008) use the maximum margin matrix factorization method

(MMMF) (Srebro et al, 2005) for ordinal ranking. Their MMMF is designed for sce-

narios with explicit feedback in terms of ratings. Even though their ranking MMMF

is not intended for implicit feedback datasets, one could apply it in our scenario by

giving all non-observed items the ‘rating’ 0 and the observed ones a 1. With these

modifications their optimization criterion to be minimized would be quite similar to

BPR applied for matrix factorization:

∑
(u,i, j)∈DS

max(0,1−
〈
wu,hi −h j

〉
)+ λw||W ||2f + λh||H||2f (6.15)

One difference is that the error functions differ – our hinge loss is smooth and mo-

tivated by the MLE. Additionally, our BPR-OPT criterion and BPR-LEARN al-

gorithm is generic and can be applied to several models, whereas their method is

specific for MF.

Besides this, their learning method for MMMF differs from our generic approach

BPR-LEARN. Their learning method is designed to work with sparse explicit data,

i.e. they assume that there are many missing values and thus they assume to have

much less pairs than in an implicit setting. But when their learning method is applied

to implicit feedback datasets, the data has to be densified like described above and

the number of training pairs DS is in O(|S| |I|) (see section 3.3.2). Our method BPR-

LEARN can handle this situation by bootstrapping from DS.

6.6 Evaluation

In our evaluation, we compare learning with BPR to other learning approaches.

We have chosen the two popular model classes of matrix factorization (MF)

and k-nearest-neighbor (kNN). Regularized MF models are known to outperform

(Rennie and Srebro, 2005) many other models including the Bayesian models URP

(Marlin, 2004) and PLSA (Hofmann, 2004) for the related task of collaborative rat-

ing prediction. In our evaluation, the matrix factorization models are learned by

three different methods, i.e. SVD-MF, WR-MF (Hu et al, 2008; Pan et al, 2008)

and our BPR-MF. For kNN (see eq. (6.11)), we compare cosine vector similarity

6.6 Evaluation 79

(Cosine-kNN) to a model that has been optimized using our BPR method (BPR-

kNN)1. Additionally, we report results for the baseline most-popular, that weights

each item user-independently, e.g.: ŷ
most-pop
u,i := |Ui|. Furthermore, we give the theo-

retical upper bound on the AUC for any non-personalized ranking method (npmax).

6.6.1 Datasets

We use two datasets of two different applications. The Rossmann dataset is from an

online drug store2. It contains the buying history of 10,000 users on 4000 items. In

total 426,612 purchases are recorded. The task is to predict a personalized list of

the items the user wants to buy next. The second dataset is the DVD rental dataset

of Netflix3. This dataset contains the rating behavior of users, where a user provides

explicit ratings 1 to 5 stars for some movies. As we want to solve an implicit feed-

back task, we removed the rating scores from the dataset. Now the task is to predict

which movies a user rates. Again we are interested in a personalized ranked list

starting with the movie that is most likely to be rated. For Netflix we have created a

subsample of 10,000 users, 5000 items containing 565,738 rating actions. We draw

the subsample such that every user has at least 10 items (∀u ∈ U : |Iu| ≥ 10) and

each item has at least 10 users (∀i ∈ I : |Ui| ≥ 10).

6.6.2 Evaluation Methodology

We use the leave-one-out evaluation scheme, where we remove for each user ran-

domly one action (one user-item pair) from his history, i.e. we remove one entry

from Iu per user u. This results in a disjoint train set Strain and test set Stest. The mod-

els are then learned on Strain and their predicted personalized ranking is evaluated

on the test set Stest by the average AUC statistic (see section 3.5). A higher value of

the AUC indicates a better quality. The trivial AUC of a random guess method is 0.5
and the best achievable quality is 1.

We repeated all experiments 10 times by drawing new train/test splits in each

round. The hyperparameters for all methods are optimized via grid search on the

train/test split of the first round and afterwards the hyperparameters are kept constant

in the remaining 9 repetitions.

On Netflix, the training runtime of the largest factorization models (k=128) was

174 minutes for BPR-MF (134 on Rossmann) and 117 minutes for WR-MF (97

on Rossmann). For BPR-kNN, the runtime was 68 minutes on Netflix and 139 on

Rossmann.

1 One might also apply the weighted regularized least square scheme of WR-MF to kNN

and obtain ‘WR-kNN’. To the best of our knowledge, this has not been done yet and there

is no proposal for a feasible learning algorithm for WR-kNN like there exists for WR-MF.

Without such a speedup, the WR-kNN iterates over the full matrix with |U ||I| entries.
2 http://www.rossmannversand.de/
3 http://www.netflix.com/

http://www.rossmannversand.de/
http://www.netflix.com/

80 6 Item Recommendation

10 20 50 100

0
.7

5
0
.8

0
0
.8

5
0
.9

0

Online shopping: Rossmann

k (number of dimensions)

A
U

C

BPR−MF

BPR−kNN

WR−MF

SVD−MF

Cosine−kNN
most popular
npmax

10 20 50 100

0
.8

0
0
.8

2
0
.8

4
0
.8

6
0
.8

8
0
.9

0
0
.9

2

Video Rental: Netflix

k (number of dimensions)

A
U

C

BPR−MF

BPR−kNN

WR−MF

SVD−MF

Cosine−kNN
most popular
npmax

Fig. 6.2 Area under the ROC curve (AUC) prediction quality for the Rossmann dataset and

a Netflix subsample. Our BPR optimization for matrix factorization BPR-MF and k-nearest

neighbor BPR-kNN are compared against weighted regularized matrix factorization (WR-

MF) (Hu et al, 2008; Pan et al, 2008), singular value decomposition (SVD-MF), k-nearest

neighbor (Cosine-kNN) (Deshpande and Karypis, 2004) and the most-popular model. For

the factorization methods BPR-MF, WR-MF and SVD-MF, the model dimensions are in-

creased from 8 to 128 dimensions. Finally, npmax is the theoretical upper bound for any

non-personalized ranking method.

6.6.3 Results and Discussion

Figure 6.2 shows the AUC quality of all models on the two datasets. First of all,

you can see that the two BPR optimized methods outperform all other methods in

prediction quality. Comparing the same models among each other one can see the

importance of the optimization method. For example all MF methods (SVD-MF,

WR-MF and BPR-MF) share exactly the same model, but their prediction quality

differs a lot. Even though SVD-MF is known to yield the best fit on the training data

with respect to element-wise least square, it is a poor prediction method for ma-

chine learning tasks as it overfits the training data. This can be seen as the quality

of SVD-MF decreases with an increasing number of dimensions (expressiveness).

WR-MF is a more successful learning method for the task of ranking. Due to regu-

larization its performance does not drop but steadily rises with an increasing number

of dimensions. But BPR-MF outperforms WR-MF clearly for the task of ranking on

both datasets. For example on Netflix a MF model with 8 dimensions optimized by

BPR-MF achieves comparable quality as a MF model with 128 dimensions opti-

mized by WR-MF.

To summarize, our results show the importance of optimizing model parameters

to the right criterion. The empirical results indicate that our BPR-OPT criterion

learned by BPR-LEARN outperforms the other state-of-the-art methods for person-

alized ranking from implicit feedback. The results are justified by the analysis of the

problem (see section 6.2.2) and by the theoretical derivation of BPR-OPT from the

MLE over pairs.

6.6 Evaluation 81

6.6.4 Non-personalized Ranking

Next, we compare the AUC quality of our personalized ranking methods to the best

possible non-personalized ranking method. In contrast to our personalized rank-

ing methods, a non-personalized ranking method creates the same ranking ≻ for

all users. We compute the theoretical upper-bound npmax for any non-personalized

ranking method by optimizing the ranking ≻ on the test set Stest. Figure 6.2 shows

that even simple personalized methods like Cosine-kNN outperform the upper-

bound npmax — and thus also all non-personalized methods — largely.

Computation of the AUC of npmax

Computing a global (non-personalized) ranking ŷ that is AUC-optimal on test is not

trivial because within a user the train examples are not allowed to be rerecommended

and different users have different training sizes. This leads to a slightly different

weighting in the AUC computation of pair comparisons for each user. So instead of

searching an optimal ŷ∗, we computed an upper-bound but non-tight estimate on the

AUC score of npmax.

First, we define the evaluation sets of items for each user and the set of all evalu-

ated users:

I+
u := {i ∈ I : (u, i) ∈ Stest ∧ (u, i) �∈ Strain} (6.16)

I−u := {i ∈ I : (u, i) �∈ Stest ∧ (u, i) �∈ Strain} (6.17)

U+ := {u ∈U : I+
u �= /0} (6.18)

With this, the AUC quality measure can be written as:

AUC(ŷ) =
1

|U+| ∑
u∈U+

1

|I+
u ||I−u | ∑

i∈I+u

∑
j∈I−u

δ (ŷ(u, i) > ŷ(u, j)) (6.19)

The best non-personalized ranking on test ŷ∗ depends not on the user and has the

following AUC:

AUC(ŷ∗) =
1

|U+| ∑
u∈U+

1

|I+
u ||I−u | ∑

i∈I+u

∑
j∈I−u

δ (ŷ∗(i) > ŷ∗(j)) (6.20)

Finding the best order is non-trivial. Instead, we create an upper-bound by evaluating

the contribution of a decision about a pair (i, j) ∈ I2 on the AUC. For each pair (i, j)
either i is ranked in front of j or vice versa. If the estimated ranking is i ≻ j then the

contribution on the AUC is:

ai, j =
1

|U+| ∑
u∈U+

1

|I+
u ||I−u |δ (i ∈ I+

u ∧ j ∈ I−u) (6.21)

82 6 Item Recommendation

The inverse ranking would have the contribution:

a j,i =
1

|U+| ∑
u∈U+

1

|I+
u ||I−u |δ (j ∈ I+

u ∧ i ∈ I−u) (6.22)

As the ranking npmax has to decide if i is preferred over j, only one of the two scores

can be used. This means, an upper bound estimate on the AUC is to use for each

comparison the larger value:

AUCupper bound =
1

2
∑
i∈I

∑
j∈I,i�= j

max(ai, j,a j,i) (6.23)

Note that this is a non-tight upper bound on the AUC as the pairwise decisions

might not be total (e.g. not transitive) and so this does not have to lead to a total

order (ranking).

In our experiments, this non-tight upper bound is close to the true AUC value of

npmax. This can be seen by calculating the interval where npmax is guaranteed to lie

in. AUCupper bound gives an upper bound; a lower bound can be computed by ranking

the items by how often they appear in the test set (‘most-popular on test’). In our

experiments both AUC scores are quite similar, e.g. on Netflix with most-popular

on test 0.8794 vs. AUCupper bound = 0.8801.

6.6.5 Practical Impact

Finally, we discuss the practical impact of the improvements. Linden et al (2003)

found that in the Amazon online shop, the conversion rates4 generated by a cosine-

knn recommender vastly exceed the ones of the most-popular recommender (top-

seller lists). Relating this finding with the ranking accuracy in our lab experiments

(e.g. on the Netflix dataset), it would mean that the difference of cosine-knn (11%

error) to most-popular (17% error) is likely to have a huge practical impact, so we

might conclude that a further decrease from 11% error (cosine-knn) to 8% error

(BPR-MF) has also a significant impact.

6.7 Conclusion

In this chapter, we have presented how to apply the context-aware ranking method to

item recommendation. We have shown that item recommendation is a context-aware

ranking problem from incomplete data. This allows to transfer the BCR-OPT and

BCR-LEARN methods to personalized ranking (BPR). We have demonstrated how

this generic method can be applied to the two state-of-the-art item recommender

models of matrix factorization and adaptive kNN. In our evaluation, we have shown

4 The convertion rate is one of the most important measures to assess the practical success

of a recommender system.

References 83

empirically that for the task of personalized ranking, models learned by BPR out-

perform the same models that are optimized with respect to other criteria. Our re-

sults show that the prediction quality does not only depend on the model but also

largely on the optimization criterion. Both our theoretical and empirical results in-

dicate that the BPR optimization method is the right choice for the important task

of item recommendation.

References

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.:

Learning to rank using gradient descent. In: ICML 2005: Proceedings of the 22nd Inter-

national Conference on Machine Learning, pp. 89–96. ACM Press, New York (2005)

Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. In: ACM Trans-

actions on Information Systems, vol. 22(1), Springer-Verlag, Heidelberg (2004)

Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1),

89–115 (2004)

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: IEEE

International Conference on Data Mining (ICDM 2008), pp 263–272 (2008)

Huang, J., Guestrin, C., Guibas, L.: Efficient inference for distributions on permutations. In:

Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Process-

ing Systems, vol. 20, pp. 697–704. MIT Press, Cambridge (2008)

Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of the sym-

metric group. In: Proceedings of the Eleventh International Conference on Artificial Intel-

ligence and Statistics, San Juan, Puerto Rico (2007)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In: KDD 2008: Proceeding of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York (2008)

Kurucz, M., Benczúr, A.A., Torma, B.: Methods for large scale svd with missing values. In:

KDDCup 2007 (2007)

Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative

filtering. Internet Computing 7(1), 76–80 (2003)

Marlin, B.: Modeling user rating profiles for collaborative filtering. In: Thrun, S., Saul, L.,

Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, MIT

Press, Cambridge (2004)

Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R.M., Scholz, M., Yang, Q.: One-class col-

laborative filtering. In: IEEE International Conference on Data Mining (ICDM 2008),

pp. 502–511 (2008)

Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization

models for large-scale recommender systems. In: RecSys 2008: Proceedings of the 2008

ACM Conference on Recommender Systems, pp. 251–258. ACM, New York (2008)

Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative pre-

diction. In: ICML 2005: Proceedings of the 22nd International Conference on Machine

Learning, pp. 713–719. ACM, New York (2005)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algo-

rithms for highly scalable recommender systems. In: Proceedings of the 5th International

Conference in Computers and Information Technology (2002)

Schmidt-Thieme, L.: Compound classification models for recommender systems. In: IEEE

International Conference on Data Mining (ICDM 2005), pp. 378–385 (2005)

84 6 Item Recommendation

Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In:

Advances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press,

Cambridge (2005)

Weimer, M., Karatzoglou, A., Smola, A.: Improving maximum margin matrix factorization.

Machine Learning 72(3), 263–276 (2008)

Chapter 7

Tag Recommendation

Tagging is an important feature of the Web 2.0. It allows the user to annotate items/

resources like songs, pictures, bookmarks, etc. with keywords. Tagging helps the

user to organize his items and facilitate e.g. browsing and searching. Tag recom-

menders assist the tagging process of a user by suggesting him a set of tags that he

is likely to use for an item. Personalized tag recommenders take the user’s tagging

behaviour in the past into account when they recommend tags. That means each user

is recommended a personalized list of tags – i.e. the suggested list of tags depends

both on the user and the item. Personalization makes sense as people tend to use

different tags for tagging the same item. This can be seen in systems like Last.fm

that have a non-personalized tag recommender but still the people use different tags.

For this, we will provide an empirical evaluation on a subset of Last.fm that shows,

that our proposed personalized tag recommender outperform even the theoretical

upper-bound for any non-personalized tag recommender.

In this work, we apply our context-aware ranking framework to tag recommenda-

tion. In tag recommendation, the context is the user/item-pair for which tags should

be recommended. E.g. when a user wants to annotate a bookmark, the system pro-

vides recommendations that are both suitable for the bookmark and the user. That

means in contrast to item recommendation where the context was just the user and

the items should be ranked (see chapter 6), now tags/ keywords should be ranked

for a context that includes both a user and an item. In total, tag recommendation is

a three-mode problem.

First, we will discuss the related work in the area of tag recommenders. Then, the

problem of tag recommendation is analyzed in detail and the relationship to context-

aware ranking is shown. Afterwards, we show how the BCR method can be applied

to tag recommendation. Here, we discuss both the optimization criterion BCR-OPT

and the learning algorithm BCR-LEARN. The factorization models of chapter 5

can be used to represent the latent interactions within the data. For tag recommen-

dation, the TD model has a cubic runtime in the factorization dimensionality (i.e.

O(k3)) and thus it is slow even for mid-sized dimensionalities. In contrast, the PITF

and PARAFAC models have linear runtime. Learning TD with other optimization

strategies than bootstrapped stochastic gradient descent can lead to faster learning.

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 85–111.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

86 7 Tag Recommendation

We will discuss therefore the relationships to Higher-Order-Singular-Value-

Decomposition (HOSVD) for tag recommendation (Symeonidis et al, 2008) which

corresponds to a dense least-square optimization. Furthermore, we describe post-

wise AUC optimization of the Tucker Decomposition, which was introduced by us

as Ranking Tensor Factorization (RTF) (Rendle et al, 2009). In the evaluation, we

compare the PITF and PARAFAC model learned by BCR to RTF, HOSVD (=least-

square TD) and the non-factorization approaches Folkrank and adapted Pagerank.

We will show, that our tensor factorization approaches RTF and BCR-PITF provide

the best quality improving both FolkRank and PageRank. Furthermore, we show

that factorization approaches have a better prediction runtime that FolkRank. Fi-

nally, our experiments indicate that our method BCR-PITF outperforms the best

quality method RTF-TD largely in runtime as the runtime drops from O(k3) to O(k)
— where k is the factorization dimension.

Besides lab experiments, our factorization models using the BCR-based opti-

mization provided the best results for the ECML/PKDD Discovery Challenge 2009

for graph-based tag recommendation. This challenge was won by our BCR-PITF

model (Rendle and Schmidt-Thieme, 2009).

7.1 Related Work

Even though tagging is a new trend in the WWW, tag recommendation has already

attracted much research. Next, we will discuss this research and categorize it in

personalized and non-personalized recommenders.

7.1.1 Personalized Tag Recommendation

Personalized tag recommendation is a recent topic in recommender systems. Folk-

Rank, an adaption of PageRank, was introduced by Hotho et al (2006). FolkRank

generates high quality recommendations (Jäschke et al, 2008) outperforming sev-

eral baselines like most-popular models and collaborative filtering (Jäschke et al,

2007). Even though FolkRank showed to provide high quality recommendations,

due to its very slow prediction runtime it is not applicable for large real-world sce-

narios. In contrast to this, the prediction runtime of factorization models are inde-

pendent of the number of users and items – after the model has been learned.

Recently, factorization models based on Tucker Decomposition (TD) have been

introduced to tag recommendation. Symeonidis et al (2008) apply a Higher-Order-

Singular-Value-Decomposition (HOSVD) (Lathauwer et al, 2000) for computing a

low rank approximation of the tensor of the observed data. This approach corre-

sponds to a TD model optimized for square-loss where all not observed values

are learned as 0s (see section 4.3.2). Thus, these dense square-loss approaches like

HOSVD or other least-square methods (Lathauwer et al, 2000b) do not lead to op-

timal factorizations for the task of tag recommendation as we will show both theo-

retically and empirically.

7.2 Personalized Tag Recommendation 87

Various methods have been proposed for tag recommendation at the ECML/

PKDD discovery challenge 2009 (DC09). We briefly describe the best performing

methods. Marinho et al (2009) present a recommender method based on relational

classification. A graph over posts is generated and tags are recommended based on

the tags of the related neighbours. The paper also describes a semi-supervised exten-

sion that makes use of the posts that should be labeled in the future. For weighting

the edges in the graph, several schemes based on cosine similarity are proposed.

Zhang et al (2009) ensemble a collaborative filtering model based on user similar-

ity with the FolkRank algorithm. The model in (Wetzker et al, 2009, 2010) is based

on the assumption that different users have different vocabularies (‘personomies’).

Their approach is a linear combination between the most popular tags for an item

and the estimated tags from the user’s vocabulary to this item.

In contrast to the methods described so far, other approaches make use of addi-

tional content information. (Lipczak et al, 2009) propose an ensemble of six basic

recommender which makes use of the text in the title and in URLs as well as re-

source related tags and the tags a user has given before. Similarly, Ju and Hwang

(2009) extract candidates from textual content information of an item. They estimate

the relevance of the candidates by their frequency and by matching them against the

historical tags. This is combined with the tags the user has given in the past and

the tags that were assigned to an item in the past. In section 7.6.3.1 our method is

empirically compared these approaches on task 2 of the DC09.

7.1.2 Non-personalized Tag Recommendation

A non-personalized tag recommender predicts the same list of tags for the same

item – i.e. it is independent of the user. There is several work on non-personalized

tag recommenders, e.g. (Heymann et al, 2008; Song et al, 2008b,a). For example,

Song et al (2008b) introduce an algorithm based on a Poisson mixture model. Al-

though the algorithm is able to make predictions nearly in linear time, it is not per-

sonalized since the training data is composed from (words, documents, tags) triples

containing no user specific information. Another difference to our work is that their

method is content aware. Song et al (2008a) cast the problem of tag recommenda-

tion as a multi-label ranking problem for document classification and a fast rec-

ommendation algorithm based on gaussian processes is proposed. The algorithm

provides linear time to train, proportional to the number of training samples, and

constant time to predict per test case. Again differently from us, this approach is

non-personalized since a given test document would be classified with the same set

of tags independently of the users. Our evaluation (see section 7.6.3.1) indicates that

if user information is present, our proposed personalized tag recommender outper-

forms any non-personalized tag recommender.

7.2 Personalized Tag Recommendation

Personalized tag recommendation is the task of recommending a list of tags to a

user for annotating (e.g. describing) an item. An example is a music website where

88 7 Tag Recommendation

Fig. 7.1 The observed positive examples (u, i,t) are a ternary relationship that can be seen as

a 3 dimensional tensor (cube). For each user a matrix is given that contains the tags given for

a specific item.

a listener (user) wants to tag a song (item) and the system recommends him a list

of keywords that the listener might want to use for this song. For inferring the rec-

ommendation list, a personalized tag recommender can use the historical data of the

system, i.e. the tagging behaviour of the past. E.g. the recommender can make use

of the tags that this user has given to other (similar) items in the past – or more

general of similar tags that similar users haven given to similar items.

7.2.1 Formalization

Next, we show how tag recommendation can be expressed as a context-aware rank-

ing problem of mode three (m = 3). For easier readability, we will use more mean-

ingful names than Xi for the variable domains: U = {u1,u2, . . .} is the set of all users,

I = {i1, i2, . . .} the set of all items and T = {t1,t2, . . .} the set of all tags. The histor-

ical tagging information of the past is given by S ⊆ U × I ×T . As this is a ternary

relation over categorical variables, it can be seen as a three-dimensional tensor (see

figure 7.1) where the triples in S are the positive observations in the past. For tag rec-

ommendation, we are interested in recommending for a given user-item pair (u, i) a

list of tags. That means, tag recommendation can be seen as context-aware ranking,

where the context are the user-item pairs:

C = U × I (7.1)

Following (Jäschke et al, 2007), we call each context c = (u, i) ∈ C a post and we

define the set of all observed posts PS:

PS := {(u, i)|∃t ∈ T : (u, i, t) ∈ S}

PS can be seen as a two-dimensional projection of S on the user/item dimension

using the OR operation.

Now, the task of tag recommendation is the task of finding a context-aware rank-

ing ≻c=≻u,i for each post. Like suggested in section 3.4, all of the models presented

here predict a scoring function ŷ : U × I × T → R which can be used to derive a

context-aware order according to eq. (3.34).

7.2 Personalized Tag Recommendation 89

7.2.2 Data Analysis

The main problem in applying machine learning techniques on tagging system is

that there are only observations S of positive tagging events (see figure 7.1). But it

is unclear how the rest of this relation (U × I×T)\ S should be interpreted.

7.2.2.1 0/1 Interpretation Scheme

A common interpretation scheme – we call it the 0/1 scheme – is to encode positive

feedback as 1 and interpret the remaining data as 0 (see figure 7.1). That means, the

observed data is directly used for optimization. This interpretation is e.g. used for

training tag recommenders using a HOSVD model (Symeonidis et al, 2008).

The 0/1 interpretation has three severe drawbacks:

1. The semantics are obviously incorrect. Imagine a user u has never tagged an

item i before (e.g. figure 7.1, first item for user 1). For training a model with

0/1 interpretation all tags of this item are encoded with 0 and for learning the

model is fitted to this data. So the model tries to predict a 0 for each case. The

only reason why the model can predict something else than 0 is that it usually

generalizes and does not fit exactly on the training data.

2. Also from a sparsity point of view the 0/1 scheme leads to a problem. If all

elements that are not in S are assumed to be 0, even for a small dataset like

Bibsonomy (see section 7.6.1), the 0 values dominate the 1 by many orders of

magnitude. To give a practical example, first the sparsity for 0/1 interpretation is:

1− |S|
|U | · |I| · |T | (7.2)

With this definition, for the BibSonomy 5-core dataset 99.94% elements are 0

and for the larger Last.fm 10-core dataset 99.998% are 0.

3. As one is interested in ranked lists, trying to fit to the numerical values of 1 and

0 is an unnecessary constraint. Instead only the qualitative difference between a

positive and negative example is important. That means ŷ of a positive example

should be larger than that of a negative example.

7.2.2.2 Post-based Ranking Interpretation Scheme

Instead, we propose to infer pairwise ranking constraints DS from S like we have

discussed in section 3.3.1. The idea is that within a post (u, i), one can assume that

a tag tA is preferred over another tag tB iff (u, i,tA) has been observed and (u, i,tB)
has not been observed. An example is given in figure 7.2. In total, the training data

DS for pairwise constraints is defined as:

DS := {(u, i,tA, tB) : (u, i,tA) ∈ S∧ (u, i,tB) �∈ S} (7.3)

90 7 Tag Recommendation

Fig. 7.2 Post-based ranking interpretation: From the observed data S, pairwise preferences

DS of tags can be inferred per post (user/ item combination). The figure shows examples for

four posts: (u1, i1), (u1, i3), (u3, i3) and (u3, i4). E.g. for post (u1, i3), the following positive

constraints can be inferred: t1 ≻u1,i3 t2, t1 ≻u1,i3 t3, t1 ≻u1,i3 t5, t4 ≻u1,i3 t2, t4 ≻u1,i3 t3, t4 ≻u1,i3
t5. For posts without any observed tag (like (u1, i1)), no constraints can be inferred.

The ranking relation tA
?≻u,i tB between two non-observed tags ((u, i,tA) �∈ S ∧

(u, i,tB) �∈ S) is the one that should be predicted in the future. The main advan-

tage of our approach is, that these pairs are treated as missing values (see the ‘?’s in

figure 7.2, second row). Other approaches like (Symeonidis et al, 2008) learn that

all these tags are not liked – i.e. they should have the same preference score 0. From

a semantical point of view our scheme makes more sense as the user/ item combi-

nations (posts) that have no tags (e.g. (u1, i1)), are the ones that the recommender

system will have to predict a ranking for in the future. With our interpretation we

treat this kind of data as missing values and do not use it as training data like in

the ‘0/1 scheme’. Also inside a given post the non-observed tags are not fitted to

0, instead we only require that the positive examples have a higher value than the

negative ones. This addresses the first two drawbacks of the ‘0/1 scheme’. The third

drawback is tackled by our scheme by allowing free values for y and only posing

pairwise ranking constraints (see eq. (3.34) and (7.3)). In all, a model for ‘post-based

ranking interpretation’ should be optimized to satisfy as many ranking constraints

as possible. In the following, we show how this can be done by the BCR method.

7.3 Bayesian Post-aware Ranking (BPoR) for Tag Recommendation 91

7.3 Bayesian Post-aware Ranking (BPoR) for Tag

Recommendation

As we have shown in the last section, the problem of tag recommendation can be

seen as an instance of context-aware ranking. Thus, the Bayesian Context-aware

Ranking method gives the MAP estimator for the ranking≻ that is defined by ŷ. Be-

cause the context is a post, we will refer to BCR for tag recommendation as Bayesian

Post-aware Ranking (BPoR). Next, we show how to apply the optimization criterion

BCR-OPT and the learning algorithm BCR-LEARN to tag recommenders.

7.3.1 Optimization Criterion (BPOR-OPT)

Like in section 4.1, the MAP estimator for the model parameters Θ that parametrize

ŷ is:

argmax
Θ

p(Θ | ≻) = argmax
Θ

p(≻ |Θ) p(Θ) (7.4)

where the probability for ≻ is defined over all context (i.e. combinations of users

and items) and pairs of tags:

p(≻ |Θ) = ∏
(u,i,tA,tB)∈U×I×T 2

p(tA ≻u,i tB |Θ)2δ (tA≻u,itB) (7.5)

The probability of each quadruple (u, i,tA,tB) can be defined using the estimator ŷ

for ≻ (see section 4.1.3) and thus:

p(tA ≻u,i tB|Θ) := σ(ŷ(u, i,tA)− ŷ(u, i,tB)) (7.6)

Again, gaussian priors are assumed over the model parameters:

p(Θ) = ∏
θ∈Θ

√

λθ

π
exp

(
−λθ θ 2

)
(7.7)

Putting everything together, leads to BPoR-Opt for tag recomendation which is de-

fined as the MAP estimator given the training data DS:

argmax
Θ

BPOR-OPT := argmax
Θ

∑
(u,i,tA,tB)∈DS

lnσ(ŷ(u, i,tA)− ŷ(u, i,tB))− ∑
θ∈Θ

1

2
λθ θ 2

(7.8)

where λθ are model specific regularization parameters.

7.3.2 Learning Algorithm (BPOR-LEARN)

Secondly, we derive a learning algorithm to optimize the model parameters Θ of ŷ

for BPOR-OPT. In general, optimizing BPOR-OPT is time consuming, as DS is very

92 7 Tag Recommendation

large – the size of DS is in O(|S| |T |). E.g. for the examples of our evaluation section

this would be about 3,299,006,344 quadruples for the ECML/PKDD Discovery

Challenge 09 and 449,290,590 quadruples for our Last.fm subset. Thus computing

the full gradients is very slow and normal gradient descent is not feasible. Also

stochastic gradient descent where the quadruples are traversed in a sorted way like

per post or per user will be slow – an example for this can be found in figure 4.1.

Instead, BPOR-LEARN draws quadruples by bootstrapping following the idea of

BCR-LEARN (see section 4.2.2).

Gradients

The gradient of BPOR-OPT given a case (u, i,tA,tB) with respect to a model param-

eter θ is:

∂

∂θ
BPOR-OPT = δu,i,tA,tB

∂

∂θ
(ŷ(u, i, tA)− ŷ(u, i, tB))−λθ θ (7.9)

with:

δu,i,tA,tB := (1−σ(ŷ(u, i,tA)− ŷ(u, i, tB))) (7.10)

That means, to apply BPOR-LEARN to a given model ŷ, only the gradient
∂

∂θ ŷ(u, i,t) has to be known. In the next section, we derive our factorization mod-

els and also show their gradients for optimization w.r.t. BPOR-OPT using BPOR-

LEARN.

Drawing of Cases

Like described before, the number of quadruples in DS is huge. Thus, it is not

feasible to explicitly enumerate all those quadruples. It is possible to draw cases

(u, i,tA,tB) from DS without enumerating them. The reason is, that DS consists of all

positive triples (u, i, tA) ∈ S combined with a negative example (u, i, tB) �∈ S. There-

fore, first a triple (u, i,tA) from S is drawn. From this a quadruple of DS can be cre-

ated by drawing a negative triple (u, i,tB) �∈ S. Such a negative triple can be drawn

without enumerating them, by (1) drawing tB ∈ T and (2) rejecting it, if (u, i, tB)∈ S.

This drawing scheme is effective because rejection is unlikely as most tags are not

observed within a given post (u, i).

BPoR-Learn

Algorithm 3 shows the generic learning method BPOR-LEARN for optimizing

BPOR-OPT for tag recommendation. Analogously to BCR-LEARN (algorithm 1) it

first initializes the model parameters with random values. Then the parameters are

learned iteratively by stochastic gradient descent. A case (u, i, tA,tB) ∈ DS is created

using the drawing approach described above. Then the derivatives are computed and

7.4 Factorization Models for Tag Recommendation 93

Algorithm 3 BPOR-LEARN

Input: training data S, learning rate α , regularization parameters λθ

Output: model parameters Θ
1: initialize Θ from N (0,σ2)
2: repeat

3: draw (u, i,tA) uniformly from S

4: draw tB from {t : (u, i,t) �∈ S}
5: δu,i,tA,tB ← (1−σ(ŷ(u, i,tA)− ŷ(u, i,tB)))
6: for θ ∈Θ do

7: θ ← θ +α
(

δu,i,tA,tB
∂

∂ θ (ŷ(u, i,tA)− ŷ(u, i,tB))−λθ θ
)

8: end for

9: until convergence

10: return Θ

a small step of length α towards maximizing the quality is taken. This is repeated

until a stopping criterion is met.

7.4 Factorization Models for Tag Recommendation

In the following, we apply three factorization models to tag recommendation:

Tucker decomposition (TD), Parallel factor analysis (PARAFAC) and our pairwise

interaction tensor factorization model (PITF) (see figure 7.3). We will show for each

model how it can be learned with BPoR and the relationships to the other models.

All of our factorization models predict a scoring function ŷ : U × I ×T → R which

can be seen as a three-dimensional tensor Y where the value of entry (u, i,t) is the

score ŷu,i,t .

7.4.1 Tucker Decomposition (TD)

Tucker decomposition (Tucker, 1966) factorizes a higher-order cube into a core ten-

sor and one factor matrix for each dimensions.

ŷTD
u,i,t :=

kU

∑
fU=1

kI

∑
fI=1

kT

∑
fT =1

b fU , fI , fT · vU
u, fU

· vI
i, fI

· vT
t, fT

(7.11)

or equivalently as tensor product (see figure 7.3):

Ŷ TD := B×U VU ×I V I ×T V T (7.12)

with model parameters:

VU ∈ R
|U|×kU , V I ∈ R

|I|×kI , V T ∈ R
|T |×kT ,

B ∈ R
kU×kI×kT , kU ,kI ,kT ∈ N

+ (7.13)

94 7 Tag Recommendation

Fig. 7.3 Tensor Factoriza-

tion models: B, VU , V I and

V T are the model parameters

(one tensor, three matrices).

In Tucker Decomposition

the core tensor B is vari-

able and the factorization

dimensions can differ. For

PARAFAC and Pairwise

Interactions the core is a

fixed diagonal tensor. In the

Pairwise Interaction model,

parts of the feature matrices

are fixed which corresponds

to modelling pairwise inter-

actions.

(a) Tucker Decomposition

(b) PARAFAC

(c) Pairwise Interactions

For learning such a TD model with BPOR-OPT, the partial derivatives of ŷTD given

a case (u, i,t) are:

∂ ŷTD
u,i,t

∂b fU , fI , fT

= vU
u, fU

· vI
i, fI

· vT
t, fT

(7.14)

∂ ŷTD
u,i,t

∂vU
u, fU

=
kI

∑
fI=1

kT

∑
fT =1

b fU , fI , fT · vI
i, fI

· vT
t, fT

(7.15)

∂ ŷTD
u,i,t

∂vI
i, fI

=
kU

∑
fU=1

kT

∑
fT =1

b fU , fI , fT · vU
u, fU

· vT
t, fT

(7.16)

∂ ŷTD
u,i,t

∂vT
t, fT

=
kU

∑
fU=1

kI

∑
fI=1

b fU , fI , fT · vU
u, fU

· vI
i, fI

(7.17)

As discussed in section 5.1, the drawback of TD is that the model equation is a

nested sum of degree 3 – i.e. it is cubic in k := min(ku,ki,kt) and so the runtime

complexity for predicting one triple (u, i,t) is in O(k3). Thus learning a TD model

is slow even for a small to mid-sized number of factorization dimensions.

7.4.2 Parallel Factor Analysis (PARAFAC)

The PARAFAC model is a special case of the general Tucker decomposition model.

7.4 Factorization Models for Tag Recommendation 95

ŷPARAFAC
u,i,t :=

k

∑
f=1

vU
u, f · vI

i, f · vT
t, f (7.18)

As we have shown in section 5.2, PARAFAC can be derived from the Tucker de-

composition model by setting B to the diagonal tensor.

The gradients of PARAFAC for tag recommendation are:

∂ ŷPARAFAC
u,i,t

∂vU
u, f

= vI
i, f · vT

t, f ,
∂ ŷPARAFAC

u,i,t

∂vI
i, f

= vU
u, f · vT

t, f ,
∂ ŷPARAFAC

u,i,t

∂vT
t, f

= vU
u, f · vI

i, f

(7.19)

Obviously, the PARAFAC model has a much better runtime complexity than TD

because the model equation contains no nested sums and thus is in O(k). A detailed

discussion can be found in section 5.2.

7.4.3 Pairwise Interaction Tensor Factorization (PITF)

PITF explicitly models the two-way interactions between users, tags and items by

factorizing each of the three relationships:

ŷPITF
u,i,t =

kU,T

∑
f=1

v
U,T
u, f · vT,U

t, f +
kI,T

∑
f=1

v
I,T
i, f · v

T,I
t, f +

kU,I

∑
f=1

v
U,I
u, f · v

I,U
i, f (7.20)

The user-item interaction vanishes for predicting rankings and for BPoR optimiza-

tion. The reason is that given a post (u, i), both the optimization criterion BPoR and

the ranking ignores any score on the user-item interaction (see lemma 5.2). This

results in the final model equation for PITF as follows:

ŷPITF
u,i,t =

kU,T

∑
f=1

v
U,T
u, f · vT,U

t, f +
kI,T

∑
f=1

v
I,T
i, f · v

T,I
t, f (7.21)

with model parameters:

VU,T ∈ R
|U|×kU,T , V T,U ∈ R

|T |×kU,T , kU,T ∈ N
+ (7.22)

V I,T ∈ R
|I|×kI,T , V T,I ∈ R

|T |×kI,T , kI,T ∈ N
+ (7.23)

As factorization dimensionality, we will always set k = kU,T = kI,T . In section 5.3,

we have shown that PITF is a special case of PARAFAC and that the complexity of

PITF is also in O(k).
The gradients for the PITF model given a case (u, i,t) are:

∂ ŷu,i,t

∂v
U,T
u, f

= v
T,U
t, f ,

∂ ŷu,i,t

∂v
T,U
t, f

= v
U,T
u, f ,

∂ ŷu,i,t

∂v
I,T
i, f

= v
T,I
t, f ,

∂ ŷu,i,t

∂v
T,I
t, f

= v
I,T
i, f (7.24)

96 7 Tag Recommendation

Algorithm 4 BPOR-LEARN-PITF

Input: training data S, learning rate α , regularization parameter λ
Output: model parameters VU,T ,V T,U ,V I,T ,V T,I

1: initialize VU,T ,V T,U ,V I,T ,V T,I from N (0,σ2)
2: repeat

3: draw (u, i,tA) uniformly from S

4: draw tB from {t : (u, i,t) �∈ S}
5: δu,i,tA,tB ← (1−σ(ŷ(u, i,tA)− ŷ(u, i,tB)))
6: for f ∈ 1, . . . ,k do

7: v
U,T
u, f

← v
U,T
u, f

+α
(

δu,i,tA,tB (vT,U
tA, f

−v
T,U
tB, f

)−λ θ
)

8: v
I,T
i, f ← v

I,T
i, f +α

(

δu,i,tA,tB (vT,I
tA, f −v

T,I
tB, f)−λ θ

)

9: v
T,U
tA, f ← v

T,U
tA, f +α

(

δu,i,tA,tB v
U,T
u, f −λ θ

)

10: v
T,U
tB, f ← v

T,U
tB, f +α

(

−δu,i,tA,tB v
U,T
u, f −λ θ

)

11: v
T,I
tA, f

← v
T,I
tA, f

+α
(

δu,i,tA,tB v
I,T
i, f

−λ θ
)

12: v
T,I
tB, f ← v

T,I
tB, f +α

(

−δu,i,tA,tB v
I,T
i, f −λ θ

)

13: end for

14: until convergence

15: return VU,T ,V T,U ,V I,T ,V T,I

Algorithm 4 shows the complete BPoR optimization method for PITF.

7.4.4 Relation between TD, PARAFAC and PITF

In chapter 5, we have shown that for m > 2 (note in tag recommendation m = 3), the

class of all PARAFAC models is a true subclass of TD and PITF is a true subclass

of PARAFAC. I.e. here:

M
TD ⊃ M

PARAFAC ⊃ M
PITF (7.25)

From the perspective of expressiveness and complexity analysis, it does not make

sense to use the PITF model. But in a sparse setting with little training data, it makes

sense to use less expressive models with a fixed instead of a variable structure if this

structure is carefully chosen. In our evaluation section, we empirically show that

PITF models outperform PARAFAC models for tag recommendation when using

Gaussian priors on the free model parameters like in eq. (7.7).

7.5 Alternative Optimization for Tucker Decomposition

Next, we want to discuss two alternative optimization criteria for TD models. The

first one is HOSVD which corresponds to a dense least-square optimization of the

TD parameters. The second one is RTF, a ranking optimization based on post-wise

AUC maximization.

7.5 Alternative Optimization for Tucker Decomposition 97

7.5.1 Higher-Order Singular Value Decomposition (HOSVD)

Singular Value Decomposition (SVD) is a well studied factorization method for two

mode problems. It creates the best k-rank approximation of a matrix with respect to

minimal least-square error. Higher-order singular value decomposition (HOSVD) is

an extension of SVD to problems of higher mode (m ≥ 3). The model equation of

HOSVD is the Tucker decomposition model. But using (HO)SVD always implies

that the optimization criterion is least square. Moreover (HO)SVD does not handle

any missing values, i.e. the least square of all elements in the tensor is calculated.

The optimization criterion for HOSVD for tag recommendation is:

argmin
B,VU ,V I ,V T

∑
(u,i,t)∈(U×I×T)

(ŷu,i,t − δ ((u, i, t) ∈ S))2
(7.26)

This corresponds to the 0/1 interpretation scheme, that we have discussed in section

7.2.2.1.

An advantage of HOSVD is that there are fast optimization algorithms for sparse

settings – here sparsity means many 0 values. Lathauwer et al (2000) introduce an

approximation that first generates three two-mode problems by unfolding the tensor.

Then each two-mode problem is solved with a sparse SVD solver. The factorization

matrices of the two-mode problems can be used as factorization matrices for the

original problem. Finally, the core tensor can be calculated from the factorization

matrices and the data.

In our evaluation, we will compare this approach to our proposed BPoR

optimization.

7.5.2 Optimizing the Ranking Statistic AUC per Post (RTF)

In (Rendle et al, 2009), we have developed an improvement of HOSVD for the task

of tag recommendation that optimizes the AUC on the observed posts. The method

was named RTF for ‘Ranking with Tensor Factorization’. In the following, we will

describe this method and show the similarities and differences to BCR.

7.5.2.1 Optimization Criterion

RTF uses the same pairwise data interpretation DS as in eq. (7.3). But the optimiza-

tion is done with respect to the AUC over each observed post instead of BCR:

argmax
B,VU ,V I ,V T

∑
(u,i)∈PS

AUC(u, i) (7.27)

with

AUC(u, i) :=
1

|T+
u,i||T−

u,i|
∑

tA∈T+
u,i

∑
tB∈T−

u,i

δ (ŷu,i,tA > ŷu,i,tB) (7.28)

98 7 Tag Recommendation

where:

T+
u,i := {t : (u, i,t) ∈ S}, T−

u,i := T \T+
u,i (7.29)

In section 4.3.1, we have shown that eq. (7.27) can be rewritten as:

argmax
B,VU ,V I ,V T

∑
(u,i,tA,tB)∈DS

zu,i δ (ŷu,i,tA > ŷu,i,tB) (7.30)

where zu,i is the normalization constant:

zu,i =
1

|T +
u,i||T−

u,i|
(7.31)

Regularization

The optimization criterion presented so far will lead to the best value given the train-

ing data. With high feature dimensions (i.e. high kU , kI , kT) an arbitrary small error

on the training data can be achieved. In general we are not interested in a low error

for the already observed data but in a low error over unseen data. Minimizing the

training error for models with a large number of parameters will lead to overfitting,

i.e. a small training error but a large error over new/ unseen data. A common way

to prevent this is to regularize the optimization criterion. Regularization is very suc-

cessful in related areas like rating prediction (Rennie and Srebro, 2005). Adding a

regularization objective to the optimization task in formula (7.27) leads to the fol-

lowing objective:

argmax
B,VU ,V I ,V T

∑
(u,i)∈PS

AUC(u, i)− 1

2

(
λB||B||2F + λU ||VU ||2F + λI||V I ||2F + λT ||V T ||2F

)

(7.32)

Where λU ,λI,λT ,λB ∈ R
+
0 are the regularization parameters for the the feature ma-

trices and core tensor respectively.

7.5.2.2 Learning Algorithm

For optimizing eq. (7.27), the δ -function is approximated by the differentiable σ -

function. As the AUC per observed post (u, i)∈ PS should be optimized, we perform

gradient descent per post, i.e. ∂
∂θ AUC(u, i) (see algorithm 5).

Gradients

The gradients for each model parameter given a post (u, i) are:

7.5 Alternative Optimization for Tucker Decomposition 99

Algorithm 5 RTF-LEARN

Input: training data S, learning rate α , regularization parameters λB ,λU ,λI ,λT

Output: model parameters B,VU ,V I ,V T

1: initialize B,VU ,V I ,V T from N (0,σ2)
2: repeat

3: for (u, i) ∈ PS do

4: for (fU , fI , fT) ∈ kU ×kI ×kT do

5: b fU , fI , fT
← b fU , fI , fT

+α
(

∂
∂ b fU , fI ,bT

AUC(u, i)−λB b fU , fI , fT

)

6: end for

7: for fU ∈ {1, . . . ,kU} do

8: vU
u, fU

← vU
u, fU

+α

(

∂
∂ vU

u, fU

AUC(u, i)−λU vU
u, fU

)

9: end for

10: for fI ∈ {1, . . . ,kI} do

11: vI
i, fI

← vI
i, fI

+α

(

∂
∂ vI

i, fI

AUC(u, i)−λI vI
i, fI

)

12: end for

13: for t ∈ T do

14: for fT ∈ {1, . . . ,kT } do

15: vT
t, fT

← vT
t, fT

+α

(

∂
∂ vT

t , fT

AUC(u, i)−λT vT
t, fT

)

16: end for

17: end for

18: end for

19: until convergence

20: return B,VU ,V I ,V T

∂

∂b fU , fI , fT

AUC(u, i) = zu,i ∑
tA∈T+

u,i

∑
tB∈T−

u,i

δu,i,tA,tB vU
u, fU

vI
i, fI

(vT
tA, fT

− vT
tB, fT

) (7.33)

∂

∂vU
u, fU

AUC(u, i) = zu,i ∑
tA∈T+

u,i

∑
tB∈T−

u,i

kI

∑
fI=1

kT

∑
fT =1

δu,i,tA,tB b fU , fI , fT vI
i, fI

(vT
tA , fT

− vT
tB, fT

)

(7.34)

∂

∂vI
i, fI

AUC(u, i) = zu,i ∑
tA∈T+

u,i

∑
tB∈T−

u,i

kU

∑
fU=1

kT

∑
fT =1

δu,i,tA,tB b fU , fI , fT vU
u, fU

(vT
tA, fT

− vT
tB, fT

)

(7.35)

with:

δu,i,tA,tB := σ (ŷu,i,tA − ŷu,i,tB) (1−σ (ŷu,i,tA − ŷu,i,tB)) (7.36)

The gradients for the tags depend on whether the tag t is observed t = tA ∈ T +
u,i or

not t = tB ∈ T−
u,i:

100 7 Tag Recommendation

∂

∂vT
tA, fI

AUC(u, i) = zu,i ∑
tB∈T−

u,i

kU

∑
fU=1

kI

∑
fI=1

δu,i,tA,tB b fU , fI , fT vU
u, fU

vI
i, fI

(7.37)

∂

∂vT
tB, fI

AUC(u, i) = −zu,i ∑
tA∈T+

u,i

kU

∑
fU=1

kI

∑
fI=1

δu,i,tA,tB b fU , fI , fT vU
u, fU

vI
i, fI

(7.38)

Fast Computation of Gradients

By storing intermediate results, these gradients can be calculated more efficiently.

For the updates on the user, item and core, we precalculate the vector γ ∈ R
kT :

γ fT := ∑
t+∈T+

u,i

∑
t−∈T−

u,i

δu,i,tA,tB(vT
tA, fT

− vT
tB, fT

) (7.39)

The computation of the whole vector γ can be performed in O(kT |T+| |T−|). Now

the gradients for the user, item and the core simplify to:

∂

∂b fU , fI , fT

AUC(u, i) = zu,iγ fT vU
u, fU

vI
i, fI

(7.40)

∂

∂vU
u, fU

AUC(u, i) = zu,i

kI

∑
fI=1

kT

∑
fT =1

γ fT b fU , fI , fT vI
i, fI

(7.41)

∂

∂vI
i, fI

AUC(u, i) = zu,i

ku

∑
fU=1

kT

∑
fT =1

γ fT b fU , fI , fT vU
u, fU

(7.42)

(7.43)

With this, updating the whole core tensor (kU · kI · kT factors) and updating the kU

factors of user u and kI factors of item i is in O(kT |T +| |T−|+ kU kI kT).
Similarly, for the tags the update can be simplified by storing the vector η ∈ R

kT :

η fT :=
kU

∑
fU =1

kI

∑
fI=1

b fU , fI , fT vU
u, fU

vU
u, fU

(7.44)

which can be computed for the whole vector in O(kU kI kT). Now the gradients for

the tags simplify to:

∂

∂vT
tA , fI

AUC(u, i) = zu,i ∑
tB∈T−

u,i

δu,i,tA,tB η fT (7.45)

∂

∂vT
tB , fI

AUC(u, i) = −zu,i ∑
tA∈T+

u,i

δu,i,tA,tB η fT (7.46)

7.5 Alternative Optimization for Tucker Decomposition 101

To update the kT factors for each of the |T +
u,i| tags that are observed, the complexity

is O(kU kI kT + |T+|kT |T−|). Similarly, for the |T +
u,i| negative tags, the complexity

is O(kU kI kT + |T−|kT |T +|).
In total, a gradient descent step for a whole post can be performed in O(kU kI kT +

kT |T +| |T−|). Mostly, the number of tags given |T +
u,i| is constant and independent

of |T | because the tags a user gives does not depend on how many tags (words)

there are in total. Furthermore, |T +
u,i| is typically small. Under these assumptions,

the complexity is in O(kU kI kT + kT |T |).

Fast Prediction with TD Models

For predicting ŷu,i,t with a TD model, formula (7.11) is used. The runtime complex-

ity for eq. (7.11) is O(kU ·kI ·kT) and thus the trivial upper bound of the runtime for

predicting a top-n list is O(|T | · kU · kI · kT). Though the runtime can be improved

largely by reordering the sums in eq. (7.11):

ŷu,i,t =
kU

∑
fU=1

kI

∑
fI=1

kT

∑
fT =1

b fU , fI , fT vU
u, fU

vI
i, fI

vT
t, fT

=
kT

∑
fT =1

vT
t, fT

kU

∑
fU=1

kI

∑
fI=1

b fU , fI , fT vU
u, fU

vI
i, fI

=
kT

∑
fT =1

vT
t, fT

ρ fT (7.47)

with:

ρ fT :=
kU

∑
fU=1

kI

∑
fI=1

b fU , fI , fT vU
u, fU

vI
i, fI

(7.48)

When making a top-n prediction for user u and item i instead of computing (7.11) for

each tag, the intermediate result vector ρ can be computed first in O(kU ·kI ·kT). The

top-n prediction can then be made using this intermediate result and the total runtime

of predicting top-n is then O(|T | · kT + kU · kI · kT). Thus the runtime for prediction

with the TD model is independent of the number of users, items and observations S.

It only depends on the dimensions of the factorization and the number of tags.

7.5.2.3 Comparison to BPoR

As we have described in section 4.3.1, the optimization criterion of AUC is related

to BPoR. The difference is the normalization constant zu,i of posts and that as er-

ror measure, σ (for AUC) instead of lnσ (for BPoR) is used. But RTF also differs

from BPoR in terms of the learning algorithm. For RTF, the post-wise AUC is di-

rectly optimized by performing gradient descent on posts (u, i) whereas for BPoR

102 7 Tag Recommendation

quadruples (u, i, tA,tB) are drawn. We will compare the empirical quality of BPoR,

RTF and HOSVD next.

7.6 Evaluation

In our evaluation, we investigate the learning runtime and prediction quality of our

proposed methods. For the runtime, we want to justify the results of the theoretical

complexity analysis (TD is in O(k3), PARAFAC/PITF in O(k)) by an empirical com-

parison of the TD model to the PARAFAC model and our PITF model. With respect

to prediction quality, we investigate empirically whether the speedup of PARAFAC/

PITF is paid with quality – i.e. if there is a trade-off between quality and runtime

between the model classes.

7.6.1 Datasets

We use three datasets for evaluation: Bibsonomy and Last.fm like in (Jäschke et al,

2007; Rendle et al, 2009) and the dataset from the ECML/ PKDD Discovery Chal-

lenge 20091. All datasets are p-cores2 – for BibSonomy the 5-core, for Last.fm the

10-core and for the ECML/PKDD Challenge the provided 2-core. The characteris-

tics of the datasets can be found in table 7.1.

Table 7.1 Dataset characteristics in terms of number of users, items, tags, tagging triples S

and posts.

Dataset Users |U | Items |I| Tags |T | Triples |S| Posts |PS|

BibSonomy 116 361 412 10,148 2,522

Last.fm 2,917 1,853 2,045 219,702 75,565

ECML/PKDD DC 09 1,185 22,389 13,276 248,494 63,628

7.6.2 Evaluation Methodology

For Bibsonomy and Last.fm we use the same protocol as described in (Jäschke et al,

2008) – i.e. per user one post is randomly removed from the training set Strain and

put into the test set Stest. We use exactly the same splits as in (Jäschke et al, 2008).

After the splits have been built, the recommenders are trained on the test set and then

the prediction quality on the test set is measured. As quality measure, we report the

F-Measure on top-N lists (see section 3.5). The experiments are repeated 10 times

by sampling new training/ test sets. We report the average over all runs.

For the ECML Challenge dataset, we use the protocol and split of the challenge

and report the official results.

1 http://www.kde.cs.uni-kassel.de/ws/dc09
2 The p-core of S is the largest subset of S with the property that every user, every item and

every tag has to occur at least p times.

http://www.kde.cs.uni-kassel.de/ws/dc09

7.6 Evaluation 103

Hyperparameters

The hyperparameters of all models are searched on the first training split. For the

RTF-TD model, the hyperparameters are: learning rate α = 0.5 for BibSonomy and

α = 0.1 for Last.fm; regularization γ = γc = 10−5 for BibSonomy and γ = γc = 10−6

for Last.fm; iterations iter = 500 for BibSonomy and iter = 600 for Last.fm. The

model parameters Θ are initialized with small random values drawn from the nor-

mal distribution N(0,0.1). For HOSVD we have a dimensionality of (kU ,kI ,kT) =
(60,105,225) for BibSonomy and (kU ,kI ,kT) = (875,556,614) for Last.fm. For

PITF the hyperparameters are λ = 5e− 05 and α = 0.05. For PARAFAC they are

λ = 0 and α = 0.01. The parameters of both PITF and PARAFAC are initialized

with N(0,0.01). For FolkRank and PageRank, we report the values obtained by

Jäschke et al (2008) as we use the same datasets and splits.

Implementations

The learning runtime measurements of RTF-TD, BPoR-PITF and BPoR-PARAFAC

were made with C++ implementations. The runtime measurement for predicting is

made with a Object Pascal implementation of RTF-TD and a C++ implementation of

Folkrank. In general, the experiments were run on a compute cluster with 200 cores

in total. Each compute node has identical hard- and software. Our implementations

use no parallelization neither over compute nodes nor within nodes – i.e. per run

only one processor core was used.

7.6.3 Results

We compare our factorization models BPoR-PITF, BPoR-PARAFAC and RTF-TD

to other state-of-the-art personalized tag recommender and the upper bound for non-

personalized tag-recommender. We investigate both the quality of the predictions

and the runtime for learning and predicting.

7.6.3.1 Prediction Quality

First of all, we compare the prediction quality of our factorization models BPoR-

PITF, BPoR-PARAFAC and RTF-TD to competing models. In figure 7.4, a compar-

ison to FolkRank, PageRank and HOSVD on Bibsonomy and Last.fm is shown. In

general, the factorization models result in the best prediction quality – only on the

very small Bibsonomy dataset FolkRank is competitive.

PITF vs. PARAFAC

When comparing the two factorization models with linear runtime in k – i.e.

PARAFAC and PITF – one can see that BPoR-PITF achieves on all datasets a higher

104 7 Tag Recommendation

2 4 6 8 10

0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5
0
.6

0

BibSonomy

Top n

F
−

M
e
a
s
u
re

BPoR−PITF128

BPoR−PARAFAC128

RTF−TD128

FolkRank

PageRank

HOSVD

2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

Last.fm

Top n

F
−

M
e
a
s
u
re

BPoR−PITF64

BPoR−PARAFAC64
RTF−TD64

FolkRank
PageRank

HOSVD
npmax

Fig. 7.4 Our factorization models (RTF-TD, BPoR-PARAFAC, BPoR-PITF) achieve the best

prediction quality outperforming other approaches like FolkRank, PageRank and HOSVD.

On the larger Last.fm dataset the BPoR-PITF model has the highest quality.

prediction quality than BPoR-PARAFAC. At first, this might be surprising because

PARAFAC is more general and includes PITF. But it seems that BPoR-PARAFAC

is unable to find the pairwise structure of PITF and to do regularization at the same

time. An indication for this is that for PARAFAC the ‘best’ regularization parameter

found by grid search is λ = 0.

PITF vs. RTF-TD

Next, we compare the prediction quality of the pairwise interaction model (BPoR-

PITF) to full Tucker decomposition (RTF-TD) (see figure 7.4 and 7.5). On the small

Bibsonomy dataset, on small top-N lists (1,2,3) RTF-TD outperforms BPoR-PITF

whereas on larger lists, the difference vanishes. In contrast to this on the larger

Last.fm dataset BPoR-PITF outperforms RTF-TD on all list sizes. These results

indicate that the learning speedup of BPoR-PITF models to RTF-TD does not come

to the prize of lower prediction quality. Rather, BPoR-PITF can even outperform

RTF-TD in quality on larger datasets.

RTF-TD vs. HOSVD

The prediction quality of RTF-TD is clearly superior to the one of HOSVD. On

BibSonomy even with a very small number of 8 dimensions, RTF-TD achieves

almost similar results as HOSVD with a dimensionality of (60,105,225) and

(875,556,614) for Last.fm respectively. Increasing the dimensions of RTF to 16

dimensions already largely outperforms HOSVD in quality. Note that for Last.fm

this means that for HOSVD there are 298,711,000 parameters to learn in the core

tensor – whereas for RTF8 there are only 512 and for RTF16 only 4,096 parameters.

7.6 Evaluation 105

2 4 6 8 10

0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5
0
.6

0

BibSonomy

Top n

F
−

M
e
a
s
u
re

RTF−TD 128

RTF−TD 64

RTF−TD 32

RTF−TD 16

RTF−TD 8

2 4 6 8 10

0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5
0
.6

0

BibSonomy

Top n

F
−

M
e
a
s
u
re

BPoR−PITF 256

BPoR−PITF 128

BPoR−PITF 64

BPoR−PITF 32

BPoR−PITF 16

BPoR−PITF 8

2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

Last.fm

Top n

F
−

M
e
a
s
u
re

RTF−TD 64

RTF−TD 32

RTF−TD 16

RTF−TD 8

2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

Last.fm

Top n

F
−

M
e
a
s
u
re

BPoR−PITF 256

BPoR−PITF 128

BPoR−PITF 64

BPoR−PITF 32

BPoR−PITF 16

BPoR−PITF 8

Fig. 7.5 PITF vs. RTF-TD for a varying number of factorization dimensions (k).

The empirical qualitative results match our discussion about the data interpretation

in section 7.2.2.1.

Even though RTF-TD and HOSVD have the same prediction method (the Tucker

decomposition) and thus prediction complexity, in practice RTF-TD models are

much faster in prediction than comparable HOSVD models, because RTF-TD mod-

els need much less dimensions than HOSVD for achieving better quality. A final

problem with HOSVD is that we found it to be very sensitive for the number of di-

mensions and that they have to be chosen carefully. Also HOSVD is sensitive to the

relations between the user, item and tag dimensions – e.g. choosing the same dimen-

sion for all three dimensions leads to poor results. In contrast to this, for RTF-TD we

can choose the same number of dimensions for user, item and tags. Furthermore for

RTF-TD, by increasing the number of dimensions we get better results. We expect

this behaviour due to the regularization of RTF-TD models.

106 7 Tag Recommendation

Table 7.2 Official results (top-6) from the ECML/ PKDD Discovery Challenge 2009.

Rank Method Top-5 F-Measure

1 BPoR-PITF + adaptive list size 0.35594

- BPoR-PITF (not submitted) 0.345

2 Relational Classification (Marinho et al, 2009) 0.33185

3 Content-based (Lipczak et al, 2009) 0.32461

4 Collaborative Filtering + FolkRank (Zhang et al, 2009) 0.32230

5 Content-based (Ju and Hwang, 2009) 0.32134

6 Personomy translation (Wetzker et al, 2009) 0.32124

.

Non-personalized Recommenders

In a last experiment, we compare the prediction quality of personalized tag recom-

menders to the best possible non-personalized tag recommender, i.e. the theoretical

upper bound for non-personalized tag recommendation npmax (see figure 7.4). The

weighting method for npmax is:

ŷ
npmax
u,i,t := |{u′|(u′, i,t) ∈ Stest}| (7.49)

That means, for each item the tags are ranked by counting how often a tag appears in

the test set. Please note that in practice ŷnpmax cannot be applied as Stest is unknown.

But here we use ŷnpmax as the theoretical upper bound for non-personalized recom-

menders because it creates the best non-personalized top-n list for the test set Stest

– every other method for non-personalized tag recommendation like Heymann et al

(2008); Song et al (2008b,a) is guaranteed to have a lower (or in the best case the

same) quality on Stest. As figure 7.4 shows, personalized tag recommenders like

FolkRank, PITF and RTF outperform npmax the theoretical upper bound for non-

personalized tag recommendation3. That means, in applications where personalized

information is present, personalized tag recommenders are supposed to outperform

non-personalized tag recommenders.

ECML / PKDD Discovery Challenge 09

In addition to the lab experiments, our BPoR-PITF model took also part in task 2 of

the ECML/PKDD Discovery Challenge 09 and achieved the highest prediction qual-

ity. Table 7.2 shows the final results4 listing the first six approaches. This evaluation

in a tag recommender challenge organized by a third party shows that BPoR-PITF

is able to create high quality predictions.

3 Evaluating npmax on the small BibSonomy dataset makes no sense because in the test sets

Stest of BibSonomy are rarely two posts with the same item.
4 http://www.kde.cs.uni-kassel.de/ws/dc09/results

http://www.kde.cs.uni-kassel.de/ws/dc09/results

7.6 Evaluation 107

FolkRank TD 8 TD 16 TD 32 TD 64

BibSonomy

Last.fm

Prediction runtime

Model

ru
n
ti
m

e
 i
n
 m

s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Fig. 7.6 Runtime comparison for predicting one ranked list of tags for the small BibSonomy

and the larger Last.fm dataset. FolkRank is compared to a Tucker decomposition (e.g. RTF,

HOSVD) with an increasing number of dimensions. On small datasets FolkRank’s runtime

is feasible but on larger datasets it gets impractical. In contrast to this, Tucker factorization

models only depend on the factorization dimensions and not on the size of the dataset.

Our approach at the ECML/PKDD Challenge (Rendle and Schmidt-Thieme,

2009) had two additions to the BPoR-PITF presented here: (1) In the challenge,

the recommender could benefit from suggesting lists with less than 5 tags – thus

we estimated how many tags to recommend. Even without this enhancement for the

challenge, our approach would still have the best score with 0.345. (2) We ensem-

bled many BPoR-PITF models to reduce variance in the ranking estimates. On our

holdout test, this improved the result only a little bit.

7.6.3.2 Runtime

Our results for the prediction quality indicate that BPoR-PITF and RTF-TD outper-

form other approaches. Next, we want to investigate the runtime for prediction and

learning.

Prediction runtime

Fast predictions are crucial for applying tag recommenders. We compare the factor-

ization model with the largest prediction complexity (i.e. Tucker decomposition) to

Folkrank which achieves the best quality among the non-factorization approaches.

The empirical runtime comparison for predicting a ranked list of tags for a post

can be found in figure 7.6. As you can see, the runtime of a TD model5 is dominated

by the dimension of the factorization and is more or less independent of the size of

the dataset. The runtime on the BibSonomy dataset and the 20 times larger Last.fm

dataset are almost the same – e.g. for k = 64 10.4 ms for BibSonomy and 12.4 ms

5 Note that the prediction runtime complexity of a Tucker decomposition model is indepen-

dent of the optimization (e.g. RTF, BPoR, HOSVD).

108 7 Tag Recommendation

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Last.fm: Prediction quality vs. learning runtime

Learning runtime in days

T
o
p
3
 F

−
M

e
a
s
u
re

BPoR−PITF 64

BPoR−PARAFAC 64

RTF−TD 64

0 20 40 60 80 100 120

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Last.fm: Prediction quality vs. learning runtime

Learning runtime in minutes

T
o
p
3
 F

−
M

e
a
s
u
re

BPoR−PITF 64

BPoR−PARAFAC 64

RTF−TD 64

Fig. 7.7 F-Measure on top-3 list after training a model for x days/ hours. Learning a high

quality TD model (RTF-TD) on a larger dataset like Last.fm takes several days. The PITF and

PARAFAC models give good prediction quality already after 20 and 40 minutes respectively.

for Last.fm. With smaller factorization, the number of tags has a larger influence on

the runtime – e.g. for k = 16 it is 0.3 ms vs. 1.1 ms. For the very large factorization

of k = 128 and the very small dataset of BibSonomy, the prediction runtime of TD

is worse than that of Folkrank (82.1 ms vs 19.1 ms). The reason is that the runtime

of FolkRank depends on the size of the dataset – i.e. the observations S – and on

the very small BibSonomy dataset that leads to a reasonable runtime but already

for the larger Last.fm dataset the runtime of FolkRank is not feasible any more for

real-time predictions. These results match to the theoretical prediction complexity

which is O(iter(|S|+ |U |+ |I|+ |T |)+ |T |N) for Folkrank (Jäschke et al, 2008) but

only O(|T | · kT + kU · kI · kT) for TD.

Another major advantage of factorization models is that the tradeoff between

quality and speed can be chosen by controlling the number of dimensions. That

means depending on the application one can chose if runtime is more important

than quality and thus reduce the number of dimensions. With FolkRank this tradeoff

cannot be controlled.

The drawback of factorization models in comparison to FolkRank is that they

need a training phase. But training is usually done offline and for online updating

a factorization model there are very promising results for the related model class

of regularized matrix factorization (Rendle and Schmidt-Thieme, 2008). Next, we

investigate the training speed of various factorization models.

Learning runtime

The comparison of the convergence of BPoR-PITF to BPoR-PARAFAC and RTF-

TD on the Last.fm dataset can be found in figure 7.7. Here you can see how the

prediction quality improves after training a model (k=64) for a given time span. The

References 109

left chart shows the quality over a span of 30 days. RTF-TD needs about 12 days

to achieve a prediction quality as good as BPoR-PARAFAC. Even after 30 days of

training, the quality of RTF-TD is still worse than BPoR-PITF.

In contrast to this, BPoR-PITF and BPoR-PARAFAC converge much faster. The

right chart shows the quality over the first two hours. BPoR-PITF and BPoR-

PARAFAC achieve convergence already after 20 and 40 minutes respectively. As

each iteration of RTF-TD takes more than 50 minutes, the progress is very slow.

When comparing BPoR-PITF and BPoR-PARAFAC among each other, one can see,

that BPoR-PITF converges faster. It is interesting to see that in the beginning BPoR-

PARAFAC seems to need several updates (18 minutes) before the quality improves

reasonably. One explanation could be that BPoR-PARAFAC is searching the struc-

ture among the three-way interactions whereas in BPoR-PITF this is already given

by the two pairwise interactions.

The worse empirical runtime results of RTF-TD in comparison to BPoR-

PARAFAC and BPoR-PITF match to the theoretical runtime complexity analy-

sis of the model equations (see chapter 5). Furthermore, learning for both BPoR-

PARAFAC and BPoR-PITF can be easily parallelized because quadruples of two

draws usually share no parameters – in contrast to this, all entries in RTF-TD share

the core tensor which makes it more difficult to parallelize RTF-TD.

7.7 Conclusion

In this work, we have applied the context-aware ranking framework to the task of tag

recommendation. Therefore, we have derived Bayesian Post-aware Ranking from

BCR which leads to the optimization criterion BPOR-OPT and the learning algo-

rithm BPOR-LEARN. As models we have applied the PITF and PARAFAC models

that have linear complexity. Furthermore, we have introduced RTF which optimizes

the TD model for post-wise AUC and have shown how to speedup learning for RTF.

We have compared our factorization approaches to the state-of-the-art person-

alized tag recommenders FolkRank, PageRank and HOSVD as well as to the up-

per bound for any non-personalized tag recommender. Our results indicate that

BPoR-PITF and RTF-TD have the best prediction quality outperforming all other

approaches. Furthermore, our factorization methods have a much better prediction

runtime which makes them applicable for real-world scenarios. Finally, we have

empirically shown that our model PITF largely outperforms RTF-TD in learning

runtime and achieves better prediction quality on datasets of large scale. The empir-

ical comparison was done on lab experiments and on the ‘ECML/ PKDD Discovery

Challenge 2009’, that PITF has won.

References

Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: SIGIR 2008:

Proceedings of the 31st annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 531–538. ACM, New York (2008)

110 7 Tag Recommendation

Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies:

Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,

pp. 411–426. Springer, Heidelberg (2006)

Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommenda-

tions in folksonomies. In: Proceedings of the 11th European Conference on Principles and

Practice of Knowledge Discovery in Databases (PKDD), Warsaw, Poland (2007)

Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations

in social bookmarking systems. AICOM (2008)

Ju, S., Hwang, K.B.: A weighting scheme for tag recommendation in social bookmarking

systems. In: Proceedings of the ECML-PKDD Discovery Challenge Workshop (2009)

Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(r1,r2,.,rn) approx-

imation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

Lipczak, M., Hu, Y., Kollet, Y., Milios, E.: Tag sources for recommendation in collaborative

tagging systems. In: Proceedings of the ECML-PKDD Discovery Challenge Workshop

(2009)

Marinho, L.B., Preisach, C., Schmidt-Thieme, L.: Relational classification for personalized

tag recommendation. In: Proceedings of the ECML-PKDD Discovery Challenge Work-

shop (2009)

Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization

models for large-scale recommender systems. In: RecSys 2008: Proceedings of the 2008

ACM Conference on Recommender Systems, pp. 251–258. ACM, New York (2008)

Rendle, S., Schmidt-Thieme, L.: Factor models for tag recommendation in bibsonomy. In:

Proceedings of the ECML-PKDD Discovery Challenge Workshop (2009)

Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal rank-

ing with tensor factorization for tag recommendation. In: KDD 2009: Proceeding of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, New York (2009)

Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative pre-

diction. In: ICML 2005: Proceedings of the 22nd International Conference on Machine

learning, pp. 713–719. ACM, New York (2005)

Song, Y., Zhang, L., Giles, C.L.: A sparse gaussian processes classification framework for fast

tag suggestions. In: CIKM 2008: Proceeding of the 17th ACM Conference on Information

and knowledge Management, pp. 93–102. ACM, New York (2008)

Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.C., Giles, C.L.: Real-time automatic

tag recommendation. In: SIGIR 2008: Proceedings of the 31st Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pp. 515–522.

ACM, New York (2008)

Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor

dimensionality reduction. In: RecSys 2008: Proceedings of the 2008 ACM Conference on

Recommender Systems, pp. 43–50. ACM, New York (2008)

Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31,

279–311 (1966)

Wetzker, R., Said1, A., Zimmermann, C.: Understanding the user: Personomy translation

for tag recommendation. In: Proceedings of the ECML-PKDD Discovery Challenge

Workshop (2009)

References 111

Wetzker, R., Zimmermann, C., Bauckhage, C., Albayrak, S.: I tag, you tag: translating tags

for advanced user models. In: WSDM 2010: Proceedings of the third ACM International

Conference on Web search and Data Mining, pp. 71–80. ACM, New York (2010)

Zhang, N., Zhang, Y., Tang, J.: A tag recommendation system based on graph. In: Proceedings

of the ECML-PKDD Discovery Challenge Workshop (2009)

Chapter 8

Sequential-Set Recommendation

Our methods so far ignore time which is an important variable that can be mon-

itored in almost any application. In this chapter, we extend item recommendation

(see chapter 6) with time information. In general, time is a continuous variable with

infinite support. Thus, our factorization models in chapter 5 cannot be applied di-

rectly as they assume a categorical domain. Also simple discretization of the domain

would not work because (1) factorization models assume no a priori relationship be-

tween two variable instances (e.g. two close points in time) and (2) the model could

not predict in the future as no observations for these variables are present. Thus, our

approach is different: we reformulate the problem with sequences and use the in-

dependence assumptions of Markov chains within our model. That means for each

user, we see his action of the past as a sequence – e.g. what products he has bought.

Typically, several products are bought at the same day and thus, we have per user

a sequences of sets (=baskets/ shopping carts). The Markov chain assumption is

now that the next action (=shopping cart) of the user depends only on a few of his

previous ones.

Markov chains (MC) and matrix factorization (MF) are two of the most popu-

lar approaches for item recommenders. As we have seen in chapter 6, MF methods

learn the general taste of a user by factorizing the matrix over observed user-item

preferences. On the other hand, MC methods model sequential behavior by learn-

ing a transition graph over items that is used to predict the next action based on

the recent actions of a user. Both MF and MC have their advantages: MF uses all

data to learn the general taste of the user whereas MC can capture sequence effects

in time by using a non-personalized transition matrix, i.e. the transition matrix is

learned over all data of all users. In this chapter, we present a method bringing both

approaches together. Our method is based on personalized transition graphs over

underlying Markov chains. That means for each user an own transition matrix is

learned – thus in total the method uses a transition cube. As the observations for es-

timating the transitions are usually very limited, our method factorizes the transition

cube with the pairwise interaction model. We show that our factorized personalized

MC (FPMC) model subsumes both a common Markov chain and the normal matrix

factorization model. For learning the model parameters, we introduce an adaption of

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 113–133.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

114 8 Sequential-Set Recommendation

the Bayesian Context-aware Ranking (BCR) for sequential basket data. Empirically,

we show that our FPMC model outperforms both the common matrix factorization

and the unpersonalized MC model learned with and without factorization.

In total the contributions are as follows:

• We introduce personalized Markov chains relying on personalized transition ma-

trices. This allows to capture both sequential effects and long term user-taste. We

show that this is a generalization of both standard MC and MF models.

• To deal with the sparsity for the estimation of transition probabilities, we intro-

duce a factorization model that can be applied both to personalized and normal

transition matrices. This factorization approach results in less parameters and due

to generalization to a better quality than full parametrized models.

• We empirically show that our model outperforms other state-of-the-art methods

on sequential data.

8.1 Related Work

Markov chains for recommender systems have been studied by several researchers.

Zimdars et al (2001) describe a sequential recommender based on Markov chains.

They investigate how to extract sequential patterns to learn the next state with a stan-

dard predictor – e.g. a decision tree. Mobasher et al (2002) use pattern mining meth-

ods to discover sequential patterns which are used for generating recommendations.

Shani et al (2005) introduce a recommender based on Markov decision processes

(MDP) and also a MC based recommender. To enhance the maximum likelihood

estimates (MLE) of the MC transition graphs, they describe several heuristic ap-

proaches like clustering and skipping. Instead of improving the MLE estimates with

heuristics, we use a factorization model that is learned for optimal ranking instead

of transition MLE. In total, the main difference of our work to all the previous ap-

proaches is the use of personalized transition graphs which bring together the ben-

efits of sequential, i.e. time-aware, MC with time-invariant user taste. Furthermore

factorizing transition probabilities and optimizing the parameters for ranking is new.

On the other hand, most of the recommender systems do not take sequential

patterns into account and recommend based on the whole user history. Besides a

very large literature on rating prediction (i.e. regression) emerging from the Net-

flix contest (e.g. Koren (2008, 2009)), item recommendation from implicit feed-

back has started to get more into the focus. Three recent methods (Hu et al, 2008;

Pan and Scholz, 2009; Rendle et al, 2009) are based on the matrix factorization

model that factorizes the matrix of user-item correlations (see chapter 6 for more

details). In this work, we will bring the advantages of these MF models together

with MC models.

8.2 Item Recommendation from Sequential Set Data

Item recommendation is the task of suggesting a personalized list of items (e.g.

products, songs) for a specific user. This can be seen as creating a personalized

8.2 Item Recommendation from Sequential Set Data 115

Fig. 8.1 Sequential basket

data with four users and five

items {a,b,c,d,e}. The task

is to recommend items at

time t given a basket history

Bt−1,Bt−2,

ranking on the items. Usually, recommender systems rely on statistical models that

use the event history (e.g. purchases, listening) of users on items to generate rec-

ommendations. Time and thus sequential behavior is an important additional infor-

mation that is tracked in almost any real-world application. Secondly, we consider

the problem setting with set data – e.g. in online-shopping usually a basket of prod-

ucts is bought at the same time. In total, our setting is item recommendation from

sequential set data. An example of such data can be found in figure 8.1.

8.2.1 Sequential vs. General Recommender

The most common approach to generate recommendations is to discard any sequen-

tial information and to learn what items a user is interested in in general. On the

other hand, recommendations of sequential methods (mostly relying on Markov

chains) are based only on the user’s last events by learning in general what some-

one buys next when he bought a certain item in the recent past. Both methods have

their strengths and disadvantages. Imagine a user that in general buys movies like

‘Star Trek’ and ‘Star Wars’. In contrast to his usual buying behavior, he recently has

purchased ‘Titanic’ and ‘Dirty Dancing’ to watch with his girlfriend. After that a

MC based recommender of length 2 would only recommend movies like ‘Notting

Hill’ and other romantic movies. In contrast, a global personalized recommender

would correctly factor in the general taste of the user and recommend also movies

like ‘Back To the Future’, ‘Alien’ or other science fiction movies. But there are also

examples where sequential recommenders have advantages: E.g. good recommen-

dations for a user that has recently bought a digital camera are accessories that other

users have bought after buying that camera – this is exactly what a Markov chain

model does. Global personalized recommender would not adapt directly to the re-

cent purchase (the digital camera) but would recommend items this user likes in

general.

8.2.2 Formalization

Item recommendation with time information is a three-mode problem (m = 3). We

will refer to the first domain as U = {u1,u2, . . .} (the users), the second one es T

116 8 Sequential-Set Recommendation

(the time) and the third one I = {i1, i2, . . .} (the items/ products). Here, the context

consists of a user u ∈U and a point in time t ∈ T :

C = U ×T (8.1)

The task of item recommendation is to find a user and time specific ranking ≻ of

the items:

≻⊂ U ×T × I2 (8.2)

Given observations S ⊆U ×T × I, we can formulate the concept of baskets B ⊆ I.

Now, the training data S can be seen as a set B of sequences of baskets:

B := {Bu1 , . . .Bu|U |} (8.3)

where Bu is the basket sequence of a user:

B
u = (Bu

t1
,Bu

t2
, . . .), ta < tb ⇔ a < b (8.4)

And each basket is defined by S:

Bu
t = {i : (u, t, i) ∈ S} (8.5)

In general, the time domain is continuous and infinite, i.e. T = R. In this work, we

are not interested in predicting rankings for a specific quantitative point in time (i.e.

1st January 2010), but only in qualitative ones – e.g. the first, second, etc. basket of

a user. For each user, we are interested in ranking his next basket – independently of

when ‘next’ happens exactly. This means, we can see the domain of T as the natural

numbers (T = N) where two points t1,t2 ∈ T only have a semantic within a user –

e.g. the third basket (Bu
3) of user u was bought after the second basket (Bu

2) of user

u, but we cannot say that it (Bu
3) was bought after the second basket (Bu′

2) of another

user u′.
Usually, time is observed as reals (T = R). But with a simple mapping, we can

transform this to our notation. Let φ be the user-specific time mapping φ : U ×R →
N from quantitative time to user-specific qualitative time:

φ(u,t) := |{t ′ ∈ (−∞, t) : (u,t ′, i) ∈ S}| (8.6)

Thus, in the following we will only work with the sequential view of the problem

and the task is to predict the next basket for a user at time t, where t ∈ N.

8.2.3 Modelling and Estimation

Like usual, we want to model and estimate a function y : U ×T × I → R that can be

used to express the context-aware ranking ≻ according to eq. (3.34). Even though

with the sequential view the time T is finite, modelling y directly with the tensor

8.3 Factorizing Personalized Markov Chains (FPMC) 117

factorization models (see chapter 5) makes no sense because the time T would be

handled wrong:

1. Factorization models assume that there is no a priori relation between two differ-

ent variable instances. E.g. a factorization model would not know that the baskets

Bu
4 and Bu

5 are related.

2. Even worse, factorization models assume that two identical variable instances

have identical factors. But by seeing time as a sequence per user, the t-th basket

of user u1 and t-th basket of u2 have a priori nothing to do with each other.

Instead, we model y by a Markov chain: the estimated basket at time t depends on

the basket of time t −1.

8.3 Factorizing Personalized Markov Chains (FPMC)

First, we introduce MC for sequential set data and extend this to personalized

MCs. We discuss the weakness of Maximum Likelihood Estimates for the transi-

tion cubes. To solve this, we introduce factorized transition cubes where informa-

tion among transitions is propagated. We conclude this section by combining both

ideas into FPMCs.

8.3.1 Personalized Markov Chains for Sets

Before introducing personalized MCs, we first describe how to model the unperson-

alized MC for sets with a reasonable state space. Then we show how to estimate

the parameters for this unpersonalized MC with the maximum likelihood estimator

(MLE). Afterwards, the extension of both the model and the estimation to personal-

ized MCs is simple. Finally, we will show the limitations of full parametrized transi-

tion graphs (i.e. one parameter per transition) and the MLE method for personalized

Markov chains.

8.3.1.1 Markov Chains for Sets

In general, a Markov chain of order q is defined as:

p(Zt = zt |Zt−1 = zt−1, . . . ,Zt−q = zt−q) (8.7)

Where Zt , . . . ,Zt−q are random variables and zt− j their realizations. In a recom-

mender application without sets, the random variables are defined over I – i.e. real-

izations are single items i ∈ I. But in our case, the variables are defined over P(I)
as the realizations are whole baskets B and thus the size of the state space is 2|I|.
Obviously, defining a long chain over the whole state space is not feasible for sets.

To handle this huge state space, we make two simplifications: (1) we use chains of

length q = 1 and (2) the transition probabilities are simplified.

118 8 Sequential-Set Recommendation

A Markov chain of order q = 1 for the basket problem is:

p(Bt |Bt−1) (8.8)

In recommender scenarios without sets, usually longer chains (e.g. q = 3) are prefer-

able (Shani et al, 2005) because a history with size q = 1 contains only one item.

In our case with sets, even a chain with length q = 1 is reasonable because it re-

lies already on many items (all items of the basket) – e.g. in the application of our

evaluation there are about 10 items on average (see table 8.1).

Markov chains of length q = 1 are described by their stochastic transition matrix

A over the state space. In our case the state space over sets is P(I) and thus the

dimensionality of the transition matrix would be 2|I|×2|I|. Thus, instead of modeling

transition over baskets, we model transitions over |I| binary variables that describe

a set/ basket:

al,i := p(i ∈ Bt |l ∈ Bt−1) (8.9)

Using this representation has the following implications:

• The state space is now I and thus the size of the transition matrix A is |I|2 – by

factorization, we will later further reduce the number of parameters needed to

represent this space from |I|2 to 2k |I| where k is the number of latent dimensions

used in the factorization model.

• The elements of the state space are i ∈ B which is a binary variable, thus p(i ∈
Bt |l ∈ Bt−1)+ p(i �∈ Bt |l ∈ Bt−1) = 1. This means, that the transition matrix A is

no longer stochastic, because ∑i∈I al,i = 1 does not hold.

For item recommendation (i.e. for estimating the ranking function y), we are inter-

ested in the probability of purchasing an item given the last basket of a user. This

can be defined as the mean over all transitions from the purchases of the last basket

to this item:

p(i ∈ Bt |Bt−1) :=
1

|Bt−1| ∑
l∈Bt−1

p(i ∈ Bt |l ∈ Bt−1) (8.10)

And the full Markov chain over baskets can be expressed by:

p(Bt |Bt−1) ∝ ∏
i∈I

p(i ∈ Bt |Bt−1) (8.11)

Note that in general we are not interested in the probabilities of the full Markov

chain (eq. (8.11)), but rather in the probabilities of single items given the last basket

(eq. (8.10)) because this can be used to recommend the most probable items.

8.3.1.2 Estimation of Transition Probabilities

To make predictions using the Markov chain in eq. (8.10), the transition probabili-

ties al,i have to be estimated. The maximum likelihood estimator for al,i given the

data B is:

8.3 Factorizing Personalized Markov Chains (FPMC) 119

âl,i = p̂(i ∈ Bt |l ∈ Bt−1) =
p̂(i ∈ Bt ∧ l ∈ Bt−1)

p̂(l ∈ Bt−1)

=
|{(Bt ,Bt−1) : i ∈ Bt ∧ l ∈ Bt−1}|

|{(Bt ,Bt−1) : l ∈ Bt−1}|
(8.12)

An example for such a non-personalized MLE can be seen in figure 8.2. Here, the

buying history for the four users of figure 8.1 are translated into transitions A of eq.

(8.10). The transition matrix can then be applied to predict which items should be

recommended given the last basket. E.g. for user 4, the probabilities would be:

p(a ∈ Bt |{c,e}) = 0.5(0.3 + 0.0) = 0.15

p(b ∈ Bt |{c,e}) = 0.5(0.7 + 0.0) = 0.35

p(c ∈ Bt |{c,e}) = 0.5(0.3 + 0.0) = 0.15

p(d ∈ Bt |{c,e}) = 0.5(0.0 + 0.0) = 0.00

p(e ∈ Bt |{c,e}) = 0.5(0.3 + 1.0) = 0.65

As the user has already bought item c and e, the best recommendation of unknown

items would be b and then a. Looking only at the items this and similar users have

bought in the past, one would expect, that item d might be a better recommendation.

8.3.1.3 Personalized Markov Chains for Sets

Until now, the MC has been defined unpersonalized, i.e. independently of the user.

Next, we extend this to a personalized MC per user:

p(Bu
t |Bu

t−1) (8.13)

Again, we represent each MC by the transitions over items, but now user-specific:

au,l,i := p(i ∈ Bu
t |l ∈ Bu

t−1) (8.14)

Fig. 8.2 Non-personalized Markov chain: The transition matrix contains the MLE estimates

for the probability p(i ∈ Bt |l ∈ Bt−1) using the data of figure 8.1. The column # states how

many observations were used to estimate this transition. In this example, the users 1 and 2 as

well as 3 and 4 share a similar taste for items a,c and items c,e respectively. Thus, one would

expect to find d before b in the recommendation list for user 4, but the MC would recommend

b as best unknown item.

120 8 Sequential-Set Recommendation

Fig. 8.3 Personalized Markov chains: For each user an individual transition matrix is given.

The transition matrices contain the MLE estimates for the probability p(i ∈ Bu
t |l ∈ Bu

t−1).
Entries with ? are missing values as there is no data to estimate the probabilities. Obviously,

estimating the personalized transition matrices directly results in very poor transitions as each

estimate is not reliable. This problem will be solved later by factorizing the transitions.

And thus also the prediction depends only on the user’s transitions:

p(i ∈ Bu
t |Bu

t−1) :=
1

|Bu
t−1|

∑
l∈Bu

t−1

p(i ∈ Bu
t |l ∈ Bu

t−1) (8.15)

Also MLE can be applied analogously but now the transitions for user u are only

estimated from his history Bu – that means u is not a free variable anymore:

âu,l,i = p̂(i ∈ Bu
t |l ∈ Bu

t−1) =
p̂(i ∈ Bu

t ∧ l ∈ Bu
t−1)

p̂(l ∈ Bu
t−1)

=
|{(Bu

t ,B
u
t−1) : i ∈ Bu

t ∧ l ∈ Bu
t−1}|

|{(Bu
t ,B

u
t−1) : l ∈ Bu

t−1}|
(8.16)

That means for each user we have an own transition matrix Au which in total gives

a transition tensor A ∈ [0,1]|U|×|I|×|I|
. Figure 8.3 shows the personalized transition

matrix of our example. Many of the parameters cannot be estimated because there

is no observation in the data. Also the transitions that are estimated are based only

on a small number of observations that means they are unreliable. At first glance,

using personalized MCs seems to be unreasonable. We will discuss next what are

the reasons for the poor estimations and show how to fix it.

8.3 Factorizing Personalized Markov Chains (FPMC) 121

Fig. 8.4 Personalized tran-

sition cube: Stacking all

transition matrices of the

individual users leads to a

transition cube. Instead of

a fully parametrized cube

which is very sparse, a

factored cube is used to

generate better transition

estimates.

8.3.1.4 Limitations of MLE and Full Parametrization

The problem of unreliable transition probabilities both for unpersonalized and even

more for personalized MCs lies in the fact that they work with a fully parametrized

transition graph (e.g. matrix and tensor respectively) and the way of parameter esti-

mation. Full parametrization means we have |I|2 and |U | |I|2 respectively indepen-

dent parameters for describing the transitions. Note that the MLE estimates each

transition parameter al,i independently from the others, i.e. none of the cooccur-

rences (l, i) will contribute to another transition probability estimator (l, j) but only

to p(i ∈ Bt |l ∈ Bt−1). This is even worse for personalized MCs as a triple (u, l, i)
does not contribute to the estimate of (u′, l, i). In addition, the important properties

of MLE (e.g. Gaussian distribution, unbiased estimator, minimal variance under all

unbiased estimators) only exist in asymptotic theory. In cases of less data they suf-

fer from underfitting. Since in our scenario the data is extremely sparse, Maximum

Likelihood Estimators easily fail.

To get more reliable estimates for the transitions, we factorize the transition cube

which breaks the independence of the parameters and the estimation. This way, each

transition is influenced by similar users, similar items and similar transitions because

information propagates through this model. In our evaluation, we show that this way

(1) better transition graphs than MLE can be generated for the non-personalized

setting and (2) that personalized MCs outperform both non-personalized factorized

MC and non-personalized full parameterized MLE MCs.

8.3.2 Factorizing Transition Graphs

In the following, we will derive a factorization model for the transition cube A . That

means we model the unobserved transition tensor A by a low rank approximation
ˆA . The advantage of this approach over a full parametrization is that it can handle

sparsity and generalizes to unobserved data because information propagates through

the model – i.e. parameters influence each other.

122 8 Sequential-Set Recommendation

8.3.2.1 Factorization of the Transition Cube

A general linear factorization model for estimating the tensor A is the Tucker De-

composition (TD):

ˆA := C ×U VU ×L V L ×I V I (8.17)

where C is a core tensor and VU is the feature matrix for the users, V L is the feature

matrix for the items in the last transition (outgoing nodes) and V I is the feature

matrix for the items to predict (ingoing nodes). They have the following structure:

C ∈ R
kU ,kL ,kI , VU ∈ R

|U|×kU ,V L ∈ R
|I|×kL , V I ∈ R

|I|×kI (8.18)

with the factorization dimensions kU , kL and kI . In chapter 5, we have shown that

the Tucker decomposition subsumes other factorization models like parallel factor

analysis (PARAFAC) and the pairwise interaction model (PITF).

As the observed transitions for A are very sparse, we use the PITF model:

âu,l,i := 〈vU,I
u ,vI,U

i 〉+ 〈vI,L
i ,vL,I

l 〉+ 〈vU,L
u ,vL,U

l 〉 (8.19)

or equivalently:

âu,l,i :=
kU,I

∑
f=1

v
U,I
u, f v

I,U
i, f +

kI,L

∑
f=1

v
I,L
i, f v

L,I
l, f +

kU,L

∑
f=1

v
U,L
u, f v

L,U
l, f (8.20)

This model directly models the pairwise interaction between all three modes of the

tensor, i.e. between U and I, U and J as well as J and I. In total for each mode (i.e.

user U , item I, item J), we have two factorization matrizes:

1. For the interaction between U and I: VU,I ∈ R
|U|×kU,I modelling the user features

and V I,U ∈ R
|I|×kU,I for the last item i.

2. For the interaction between I and L: V I,L ∈ R
|I|×kI,L for the next item i and V L,I ∈

R
|I|×kI,L for the last item l.

3. For the interaction between U and L: VU,L ∈ R
|U|×kU,L for the user features and

V L,U ∈ R
|I|×kU,L for the features of the last item l.

An advantage of this model over TD is that the prediction and learning complex-

ity is much lower than for TD (see table 5.1). Furthermore even though TD and

PARAFAC subsume the pairwise interaction model, with standard regularization

estimation procedures have problems identifying such a model (see chapter 7). Fi-

nally, by using PITF we will later show that the factorized personalized markov

chain subsumes the common matrix factorization model for item recommendation.

This would also hold when using TD or PARAFAC (because TD and PARAFAC

subsume PITF), but the analogies will be more obvious with PITF.

In section 8.4 we describe how to optimize the model parameters (factorization

matrices) for item recommendation.

8.3 Factorizing Personalized Markov Chains (FPMC) 123

8.3.2.2 Factorization of the Transition Matrix

The proposed model for factorizing transition cubes can also be applied to estimate

a transition matrix A (see formula (8.9)) for cases where no personalization of the

transition graph is desired. By skipping the user-interactions in equation (8.19), a

factorization model for normal transition graphs is obtained:

âl,i := 〈vI,L
i ,vL,I

l 〉 (8.21)

Also the parameter estimation method in section 8.4 can be used for optimizing the

factorization matrices.

8.3.3 Summary of FPMC

Bringing together the personalized set MC (eq. (8.15)) with the factorized transition

cube (eq. (8.19)) results in the factorized personalized Markov chain (FPMC):

p(i ∈ Bu
t |Bu

t−1) =
1

|Bu
t−1|

∑
l∈Bu

t−1

p(i ∈ Bu
t |l ∈ Bu

t−1) (8.22)

We model p(i ∈ Bu
t |l ∈ Bu

t−1) with the factorization cube ˆA :

p̂(i ∈ Bu
t |Bu

t−1) =
1

|Bu
t−1|

∑
l∈Bu

t−1

âu,l,i

=
1

|Bu
t−1|

∑
l∈Bu

t−1

(

〈vU,I
u ,vI,U

i 〉+ 〈vI,L
i ,vL,I

l 〉+ 〈vU,L
u ,vL,U

l 〉
)

(8.23)

And as the factorization (U, I) is independent of l, we can remove it from the sum:

p̂(i ∈ Bu
t |Bu

t−1) = 〈vU,I
u ,vI,U

i 〉+ 1

|Bu
t−1|

∑
l∈Bu

t−1

(

〈vI,L
i ,vL,I

l 〉+ 〈vU,L
u ,vL,U

l 〉
)

(8.24)

In the next section, we apply this model to the task of item recommendation. We will

show that in this case, the model can be simplified even more because the interaction

between U and L vanishes.

Besides better generalization of factorization models compared to a fully pa-

rametrized transition cube, a further advantage is that less parameters are needed.

Instead of |U | · |I|2 parameters in a full parametrized cube or |I|2 in a full param-

etrized matrix, the factorization model only needs 2 · kI,L · |I| parameters for the

non-personalized model and 2 ·kI,L · |I|+kU,I · (|U |+ |I|) parameters for the person-

alized model. This is especially important for applications with a high number of

items where a full parametrization with |I|2 parameters might not be feasible.

124 8 Sequential-Set Recommendation

8.4 Item Recommendation with FPMC

So far, a factorization model for personalized Markov chains has been introduced.

In the following, we will apply this model to the task of item recommendation.

That means, the model parameters should be optimized for ranking. First, we derive

S-BPR which is a general optimization criterion for item recommendation from

sequential set data. This optimization criterion is not limited to our FPMC model

and can be applied also to other models like kNN or standard MF. Secondly, we

apply S-BPR to FPMC and show how the model can be simplified in the case of

item recommendation using S-BPR. Afterwards we present a stochastic gradient

descent learning algorithm based on bootstrap sampling for optimizing the model

parameters with S-BPR.

8.4.1 Optimization Criterion S-BPR

As described in section 8.2, the goal of item recommendation from sequential bas-

ket data is to derive a ranking ≻u,t over the items. To model the ranking, we assume

there is an estimator ŷ : U ×T × I → R – e.g. the buying probability of the person-

alized Markov Chain – which is used to define the ranking:

i ≻u,t j :⇔ ŷ(u, t, i) > ŷ(u, t, j) (8.25)

See section 3.4 for more details.

Next, we derive the sequential BPR (S-BPR) optimization criterion analogously

to the general BCR approach (section 4.1). The probability of the model parameter

Θ given the ranking ≻u,t⊂ I × I for user u at time t can be formalized as:

p(Θ | ≻u,t) ∝ p(≻u,t |Θ) p(Θ) (8.26)

In our case the model parameters are Θ = {VU,I ,V I,U ,V L,I ,V I,L,VU,L,V L,U}.

Assuming independence of baskets and users given Θ , this leads to the maximum

a posteriori (MAP) estimator of the model parameters:

argmax
Θ

∏
u∈U

∏
Bt∈Bu

p(≻u,t |Θ) p(Θ) (8.27)

Expanding ≻u,t for all item-pairs (i, j) ∈ I2 and using the same assumptions as in

section 4.1, the probability of p(≻u,t |Θ) can be rewritten as:

∏
u∈U

∏
Bt∈Bu

∏
i∈Bt

∏
j �∈Bt

p(i ≻u,t j|Θ)2 (8.28)

Next we use the model definition of eq. (8.25) to express p(i ≻u,t j|Θ):

p(i ≻u,t j|Θ) = p(ŷ(u, t, i) > ŷ(u, t, j) |Θ) = p(ŷ(u,t, i)− ŷ(u,t, j) > 0 |Θ) (8.29)

8.4 Item Recommendation with FPMC 125

The model parameters Θ can be skipped as ŷ contains them implicitly – i.e.

ŷ = ŷ(Θ). And furthermore we define p(z > 0) := σ(z) using the logistic sigmoid

function σ :

p(i ≻u,t j|Θ) = σ(ŷ(u,t, i)− ŷ(u,t, j)) (8.30)

Furthermore, we assume Gaussian priors on the model parameters: θ ∼N (0, 1
2λθ

).

In total this leads to the MAP-estimator for sequential BPR:

argmax
Θ

ln p(≻u,t |Θ) p(Θ)

=argmax
Θ

ln ∏
u∈U

∏
Bt∈Bu

∏
i∈Bt

∏
j �∈Bt

σ(ŷ(u,t, i)− ŷ(u,t, j))2 p(Θ)

=argmax
Θ

∑
u∈U

∑
Bt∈Bu

∑
i∈Bt

∑
j �∈Bt

lnσ(ŷ(u, t, i)− ŷ(u, t, j))− ∑
θ∈Θ

1

2
λθ θ 2

=:argmax
Θ

SBPR-OPT (8.31)

This can also be written with our standard notation of DS (see section 3.3.1):

argmax
Θ

SBPR-OPT

=argmax
Θ

∑
(u,t,i, j)∈DS

lnσ(ŷ(u,t, i)− ŷ(u,t, j))− ∑
θ∈Θ

1

2
λθ θ 2 (8.32)

8.4.2 Item Recommendation from Sequential Set Data with

FPMC

For item recommendation with FPMC, we express ŷ by the FPMC model and apply

S-BPR. We will show that one of the pairwise effects of FPMC vanishes which leads

to a more compact model.

First, we use FPMC to express ŷ:

ŷ′(u,t, i) := p̂(i ∈ Bu
t |Bu

t−1)

= 〈vU,I
u ,vI,U

i 〉+ 1

|Bu
t−1|

∑
l∈Bu

t−1

(

〈vI,L
i ,vL,I

l 〉+ 〈vU,L
u ,vL,U

l 〉
)

(8.33)

Lemma 8.1 (Invariance of (U,L) decomposition). For ranking of items and opti-

mization with S-BPR, the FPMC model is invariant to the (U,L) decomposition, i.e.

ŷ′ is invariant to ŷ with:

ŷ(u,t, i) := 〈vU,I
u ,vI,U

i 〉+ 1

|Bu
t−1|

∑
l∈Bu

t−1

〈vI,L
i ,vL,I

l 〉 (8.34)

126 8 Sequential-Set Recommendation

Proof. Let c = (u, t), then:

ŷ′(c, i) = ŷ(c, i)+ ẑ(c) (8.35)

with:

ẑ(c) =
1

|Bu
t−1|

∑
l∈Bu

t−1

〈vU,L
u ,vL,U

l 〉 (8.36)

Now, we can apply lemma 5.2 because S-BPR is an instance of BCR.

The lemma shows that in our case the (U,L) interaction can be dropped. And thus

for item recommendation with FPMC the simpler model ŷ from eq. (8.34) should

be used.

8.4.2.1 Expressiveness

Next, we will show the analogies of the simplified FPMC model to standard matrix

factorization (MF) and a factorized Markov chain (FMC). First, we will recollect

the definitions of MF and FMC. In our notation, the standard Matrix factorization

model for item recommendation (see chapter 6) is:

ŷMF(u,t, i) := 〈vU,I
u ,vI,U

i 〉 (8.37)

where ŷ is independent of the sequential behaviour, i.e. independent of t.

Factorizing an unpersonalized Markov chain using equation (8.10) and (8.21)

leads to:

ŷFMC(u,t, i) :=
1

|Bt−1| ∑
l∈Bt−1

〈vI,L
i ,vL,I

l 〉 (8.38)

Thus FPMC (eq. (8.34)) is a linear combination of both models:

ŷFPMC(u,t, i) = ŷMF(u,t, i)+ ŷFMC(u,t, i) (8.39)

This means FPMC can express both models: By setting the factorization dimen-

sionality of (U,I) to zero (kU,I = 0) a pure FMC is obtained and analogously setting

kI,L = 0 leads to a pure MF model.

It is important to note, that even though the model equation for FPMC in the

case of item recommendation can be expressed by a combination of a MF and a

FMC model, it is different from a simple ensemble of a single MF with a single

FMC model because in our case the model parameters are learned jointly. Thus

the learned model parameters jointly represent the personalized Markov chain

instead of just pure user-item interactions and a global MC. This gets more obvi-

ous in the general case of FPMC where the model equation cannot be expressed by a

8.4 Item Recommendation with FPMC 127

linear combination of MC and FMC. Examples are (1) optimizing for another objec-

tive criterion (e.g. least-square) where the (U,L) decomposition cannot be dropped

because here the invariance to the objective (Lemma 8.1) does not hold like in S-

BPR. And (2) using another factorization model for A in FPMC than pairwise

interaction (e.g. PARAFAC or TD) also leads to a different model equation even for

item recommendation with S-BPR.

8.4.3 Learning Algorithm

Next, we adapt the learning algorithm BCR-LEARN to S-BPR and apply it to FPMC

(see algorithm 6). As FPMC subsumes MF and FMC, both of these models can also

be optimized for S-BPR with the provided algorithm. In each iteration a quadruple

(u, t, i, j) is drawn consisting of an item i in the basket Bu
t of user u at time t and

an item j that is not in this basket. Then gradient descent on S-BPR using this

quadruple is performed. The gradients of S-BPR with respect to a model parameter

θ and a given (u, t, i, j) are:

Algorithm 6 S-BPR-LEARN-FPMC

Input: training data S, learning rate α , regularization parameter λ
Output: model parameters VU,I ,V I,U ,V I,L,V L,I

1: draw VU,I ,V I,U ,V I,L,V L,I from N (0,σ2)
2: repeat

3: draw (u,t, i) uniformly from S

4: draw j uniformly from (I \Bu
t)

5: δ ← (1−σ(ŷ(u,t, i)− ŷ(u,t, j)))
6: for f ∈ {1, . . . ,kU,I} do

7: v
U,I
u, f ← v

U,I
u, f +α

(

δ (vI,U
i, f −v

I,U
j, f)−λ v

U,I
u, f

)

8: v
I,U
i, f ← v

I,U
i, f +α

(

δ v
U,I
u, f −λ v

I,U
i, f

)

9: v
I,U
j, f

← v
I,U
j, f

+α
(

−δ v
U,I
u, f

−λ v
I,U
j, f

)

10: end for

11: η ← 1
|Bu

t−1| ∑l∈Bu
t−1

v
L,I
l, f

12: for f ∈ {1, . . . ,kI,L} do

13: v
I,L
i, f ← v

I,L
i, f +α

(

δ η −λ v
I,L
i, f

)

14: v
I,L
j, f

← v
I,L
j, f

+α
(

−δ η −λ v
I,L
j, f

)

15: for l ∈ Bu
t−1 do

16: v
L,I
l, f

← v
L,I
l, f

+α

(

δ
v

I,L
i, f −v

I,L
j, f

|Bu
t−1|

−λ v
L,I
l, f

)

17: end for

18: end for

19: until convergence

20: return VU,I ,V I,U ,V I,L,V L,I

128 8 Sequential-Set Recommendation

∂

∂θ

(

lnσ(ŷ(u,t, i)− ŷ(u,t, j))− 1

2
λθ θ 2

)

=(1−σ(ŷ(u,t, i)− ŷ(u,t, j)))
∂

∂θ
(ŷ(u, t, i)− ŷ(u, t, j))−λθ θ (8.40)

with

∂

∂v
U,I
u, f

(ŷ(u, t, i)− ŷ(u,t, j)) = v
I,U
i, f − v

I,U
j, f (8.41)

∂

∂v
I,U
i, f

(ŷ(u, t, i)− ŷ(u,t, j)) = v
U,I
u, f (8.42)

∂

∂v
I,U
j, f

(ŷ(u, t, i)− ŷ(u,t, j)) = −v
U,I
u, f (8.43)

∂

∂v
L,I
l, f

(ŷ(u, t, i)− ŷ(u,t, j)) =
1

|Bu
t−1|

(vI,L
i, f − v

I,L
j, f) (8.44)

∂

∂v
I,L
i, f

(ŷ(u, t, i)− ŷ(u,t, j)) =
1

|Bu
t−1|

∑
l∈Bu

t−1

v
L,I
l, f (8.45)

∂

∂v
I,L
j, f

(ŷ(u, t, i)− ŷ(u,t, j)) = − 1

|Bu
t−1|

∑
l∈Bu

t−1

v
L,I
l, f (8.46)

The complexity of the algorithm is O(#it(kU,I + kI,L |B|)) where |B| is the average

basket size in B and #it is the number of iterations.

8.5 Evaluation

We empirically compare the recommender quality of our proposed factorized MC

methods (factorized personalized Markov chain (FPMC) and factorized Markov

chain (FMC)) to non-factorized Markov chain (‘MC dense’), matrix factorization

(MF) and the most-popular baseline – i.e. ranking all items by how often they have

been bought in the past. Note that this comparison includes the strong baseline

method BPR-MF (see chapter 6). As MF (kI,L = 0) and FMC (kU,I = 0) are a special

case of FPMC, we use the FPMC learning algorithm for all three methods.

8.5.1 Dataset

The evaluation is done on anonymized purchase data of an online drug store1. The

dataset we use is a 10-core subset, i.e. every user bought in total at least 10 items

(∑B∈Bu |B|) > 10 and vice versa each item was bought by at least 10 users. The

statistics of the dataset can be found in table 8.1. We also created a dense subset of

the 10-core dataset to study the effect of sparsity on the methods.

1 http://www.rossmannversand.de/

http://www.rossmannversand.de/

8.5 Evaluation 129

Table 8.1 Characteristics of the datasets in our experiments in terms of number of users,

items, baskets and triples (u, i,t) where t is the sequential time of the basket. The dense

dataset is a subset of the sparse one containing the 10,000 users with most purchases and the

1000 items the most purchased.

Dataset users items baskets avg. basket size avg. baskets / user triples

Drug store (sparse) 71,602 7,180 233,476 11.3 3.2 2,635,125

Drug store (dense) 10,000 1,002 90,655 9.2 9.0 831,442

8.5.2 Evaluation Methodology

We evaluated by splitting the dataset S into two non overlapping sets: a training set

Strain and a testing set Stest. This split is done by putting the last basket for each

user into Stest and the remaining ones into Strain. The recommenders were trained on

Strain and then the performance on Stest is measured. Hyperparameter search is done

by removing for each user the last basket of Strain and using these baskets for the

validation set.

Additionally, we removed those users from the evaluation that have bought less

then 10 different items in the past (i.e. Strain). Secondly, for each user we removed

all items from the test baskets (and the corresponding predictions) that this user has

already bought in the past – this is because we want to recommend to the user items

that are new/ unknown to him. Note that this makes the prediction task much harder

and explains the low f-measure of all methods in figure 8.5. Otherwise just rere-

commending already bought items would be a simple but very successful strategy

for non-durable products in drug stores like toothbrushes or cleaner. However, this is

not the task of recommender systems because they should help the user to discover

new things.

The quality is measured for each user u on the basket Bu in the test dataset. We

use the quality measures HLU, top-5 F-Measure and AUC to evaluate the estimated

ranking against the actual bought items (see section 3.5). The runtime of learning

the model parameters linearly depends on the number of factorization dimensions.

With our implementation, training of the largest models (k = 128) took about 4 hours

for MF, 31 hours for FMC and 34 hours for FPMC on the larger (sparse) dataset.

8.5.3 Results

In figure 8.5 you can see the quality on the sparse and dense online-shopping

dataset. For the factorization methods we run each method with kU,I = kI,L ∈
{8,16,32,64,128} factorization dimension. The x-axis of the diagrams reflects this

increasing dimensionality. As expected all methods outperform the most-popular

baseline clearly on both datasets and all quality measures. Secondly, with reason-

able factorization dimensions (e.g. 32) all the factorization methods outperform the

130 8 Sequential-Set Recommendation

20 40 60 80 100 120

3
4

5
6

7

Online−Shopping (sparse)

Dimensionality

H
a
lf
−

lif
e
 u

ti
lit

y
 (

H
L
U

)

SBPR−FPMC

SBPR−FMC

SBPR−MF

MC dense

most popular

20 40 60 80 100 120

4
5

6
7

8

Online−Shopping (dense)

Dimensionality

H
a
lf
−

lif
e
 u

ti
lit

y
 (

H
L
U

)

SBPR−FPMC

SBPR−FMC

SBPR−MF

MC dense

most popular

20 40 60 80 100 120

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

0
.0

4
0

0
.0

4
5

0
.0

5
0

Online−Shopping (sparse)

Dimensionality

F
−

M
e
a
s
u
re

 @
 T

o
p
5

SBPR−FPMC

SBPR−FMC

SBPR−MF

MC dense

most popular

20 40 60 80 100 120

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

0
.0

4
0

0
.0

4
5

0
.0

5
0

Online−Shopping (dense)

Dimensionality

F
−

M
e
a
s
u
re

 @
 T

o
p
5

SBPR−FPMC

SBPR−FMC

SBPR−MF

MC dense

most popular

20 40 60 80 100 120

0
.7

6
0
.7

8
0
.8

0
0
.8

2
0
.8

4

Online−Shopping (sparse)

Dimensionality

A
re

a
 u

n
d
e
r

R
O

C
 c

u
rv

e
 (

A
U

C
)

SBPR−FPMC

SBPR−FMC

SBPR−MF

MC dense

most popular

20 40 60 80 100 120

0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Online−Shopping (dense)

Dimensionality

A
re

a
 u

n
d
e
r

R
O

C
 c

u
rv

e
 (

A
U

C
)

SBPR−FPMC

SBPR−FMC

SBPR−MF

MC dense

most popular

Fig. 8.5 Comparison of factorized personalized Markov chains (FPMC) to a factorized Mar-

kov chain (FMC), matrix factorization (MF) (Rendle et al, 2009), a standard dense Markov

chain (MC dense) learned with Maximum Likelihood and the baseline ‘most-popular’. The

factorization dimensionality is increased from 8 to 128.

8.5 Evaluation 131

Table 8.2 Properties of the MC transition matrix estimated by the counting scheme. For the

sparse dataset, only 12% of the entries of the transition matrix are non-zero and non-missing.

For the dense subset, 88% are filled.

Dataset total missing values non-zero zero

Drug store (sparse) 51,552,400 1,041,100 (2.0%) 6,234,371 (12.1 %) 44,276,929 (85.9%)

Drug store (dense) 1,004.004 0 (0.0%) 889,419 (88.6 %) 114,585 (11.4%)

standard MC method. And in total, the factorized personalized MC (FPMC) outper-

forms all other methods.

8.5.3.1 MC vs. FMC

First, we want to discuss the advantage of factorization over a dense transition model

by comparing MC with non-personalized FMC. The results indicate that learning a

factorized transition matrix leads to better estimates than usual counting schemes.

Factorization has two advantages (1) it can densify a sparse transition matrix and

(2) it prevents overfitting of the estimates by using a low-rank approximation. The

sparseness of the transition matrix estimated by counting schemes can be seen in

table 8.2. In the dense setting also the transition matrix is filled in 88% whereas on

the sparse dataset this drops to 12%. Comparing the quality on the sparse and dense

setting in figure 8.5, one can see that the advantages of FMC over MC are much

higher in the sparse setting than in the dense one. But even in the dense setting

where also MC’s transition matrix is almost completely filled, FMC outperforms

MC because the factorization prevents overfitting by using less parameters.

8.5.3.2 MF vs. FMC vs. FPMC

Comparing the factorized Markov chain with the matrix factorization, one can see

that in the dense setting MF seems to outperform MC whereas in the sparse one

MC is superior. The reason could be that in the dense setting there is much more

information per user, thus the MF method using all the users purchase information

has advantages over the MC model that only relies on the last purchases. And the

other way around, MC has advantages on the sparse dataset. FPMF that combines

the advantages of both methods outperforms them on both datasets.

8.5.3.3 Dense vs. Sparse Data

On the dense data, all methods perform better with respect to HLU and top-5 F-

Measure. That means that for dense data it is easier to rank a match high in the result

list. On the other hand, for all methods the AUC is much higher on the sparse data.

132 8 Sequential-Set Recommendation

The reason is that AUC evaluates all positions equally and is not restricted to the top

positions. So, methods on the sparse dataset benefit from having many items that are

very rarely selected and thus it is easy to rank them low and increase the AUC. In

contrast to this the dense dataset contains only the ‘hard’ items (with more than 10

selections in train) and so the AUC is not increased by easy cases like in the sparse

data.

8.6 Conclusion

We have introduced a recommender method based on personalized Markov chains

over sequential set data. Instead of using the same transition matrix for all users,

this method uses an individual transition matrix for each user which in total re-

sults in a transition cube. As direct estimation (e.g. by Maximum Likelihood) over

a fully parametrized transition cube leads to very poor transitions, we introduce a

factorization model that gives a low-rank approximation to the transition cube. The

advantages of this approach is that each transition is influenced by transitions of

similar users, similar items and similar transitions. Thus the quality of the final tran-

sition graph is much higher than that of a fully parametrized model. Secondly, we

apply factorized personalized Markov chains (FPMC) to the task of item recom-

mendation with sequential set data by adapting the BCR framework. Additionally,

we show that FPMC subsumes the popular matrix factorization model and a non-

personalized factorized Markov chain. Due to the expressiveness of FPMC it com-

bines the advantages of both the state-of-the-art global personalized approach (MF)

and the sequential MC method. Empirically, we show on real-world data that FPMC

outperforms MF, FMC and normal MC both on sparse and dense data.

References

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: IEEE

International Conference on Data Mining (ICDM 2008), pp. 263–272 (2008)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In: KDD 2008: Proceeding of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York (2008)

Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD 2009: Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pp. 447–456. ACM, New York (2009)

Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Using sequential and non-sequential patterns

in predictive web usage mining tasks. In: ICDM 2002: Proceedings of the 2002 IEEE

International Conference on Data Mining, p. 669. IEEE Computer Society, Washington

(2002)

Pan, R., Scholz, M.: Mind the gaps: weighting the unknown in large-scale one-class col-

laborative filtering. In: KDD 2009: Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 667–676. ACM, New York

(2009)

References 133

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized

ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in

Artificial Intelligence (UAI 2009) (2009)

Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of

Machine Learning Research 6, 1265–1295 (2005)

Zimdars, A., Chickering, D.M., Meek, C.: Using temporal data for making recommendations.

In: UAI 2001: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,

pp. 580–588. Morgan Kaufmann Publishers Inc., San Francisco (2001)

Part IV

Extensions

Finally, we investigate two extensions of our work. The first one is a general ex-

tension of factorization models where the factors are time-variant. The second one

targets binary classification for two-mode settings where only one class is observed.

Even though both work is related to context-aware ranking with factorization mod-

els, they are neither a direct extension nor an application. Instead the focus is on

other aspects: (1) modelling time-aware factors in general and (2) solving balanced

one-class problems with matrix factorization.

First, we deal with the problem of modelling time-variance within factorization

models in general. Our approach is to make each factor (e.g. of the factorization ma-

trix) time-dependent. The idea is to model the time-variant factor with a linear com-

bination of a set of basis functions. This can be seen as factoring each time-variant

factor itself into time-independent parameters and the basis functions. Instead of us-

ing a predefined set of basis functions, we will generate them from the data using

a kernel approach. This way, most expressiveness in terms of time-variance is put

into regions of time where most observations were made.

Whereas the first extension focuses on the model, the second extension deals

with a special problem setting. The observed data in context-aware ranking can be

seen as a one-class problem. For example in item recommendation, we only observe

what a user has done – e.g. what products he buys. Then, the task is to predict what

products he buys next. For all context-aware ranking problems, the class imbalance

is huge – i.e. the products he will not buy largely dominate the products he will

buy. Thus, the task is to rank/ recommend the products instead of classifying them.

Here, we will deal with another problem setting, where the classes are more or less

balanced. That means even though, only examples of one class are observed, on

future test data the classes are balanced. To solve this issue, we will transfer ideas

of one-class support-vector-machines to matrix factorization.

Chapter 9

Time-Variant Factorization Models

All of our proposed factorization models so far do not model any time-variance

within factors. In this chapter, we develop a non-parametric approach that allows

to model changes in time for each factor. We will focus on the model itself which

is generic and not limited to any optimization task like ranking, classification or

regression. Even though, factor models for context-aware ranking can benefit from

these extensions, this work is not limited to the ranking task, but is more general.

That is why we describe the time-aware factorization models for typical problems

instead of limiting the discussion to context-aware ranking.

9.1 Introduction

Factorization models (FM) are the basis for many popular methods in ma-

chine learning, including maximum margin matrix factorization (Srebro et al,

2005), (higher-order) singular value decomposition (Lathauwer et al, 2000) or

principal component analysis. They subsume many models like Tucker decom-

position (Tucker, 1966), Parallel factor analysis/ PARAFAC (Harshman, 1970;

Carroll and Chang, 1970) or matrix factorization. The usual assumption for factor-

ization models is that the factors are independent of time. In this chapter, we extend

general FM to the case where factors are time-variant.

Analogously to the general idea of factorization models, we decompose each

time-variant factor into a time independent part and a time-variant part. The time-

variant part is a set of basis functions that is modelled explicitly. Instead of using

the same predefined set of time-variant functions for each factor, we generate these

functions from the data using a non-parametric kernel approach. This is done per

factor because in factorization problems among the variables the time points with

(latent) observations differ and also the number of observations differ. Our generated

functions make sure that the free model parameters that have to be estimated are

placed corresponding to the time points with observations of this variable – e.g.

regions with more observations get more parameters. This leads both to a closer

fit and less overfitting because the number of basis functions can be reduced and

related to the number of observations.

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 137–153.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

138 9 Time-Variant Factorization Models

First, we shortly introduce the general problem of modelling relations over high-

dimensional categorical domains with factorization models. Then, we introduce our

time-variant factorization model and show the decomposition of the time-variant

factors into free parameters and a set of basis functions. Then we develop a gen-

eral probabilistic model for this decomposition. This is used to derive simple basis

functions like time-invariant biases and single point estimates. After that we intro-

duce our generating approach that is based on a probabilistic kernel between two

points of time. Using this kernel the time-variant basis functions can be generated

by Gibbs sampling. Finally, we evaluate this approach on a real world dataset and

four artificial datasets with varying characteristics.

Besides the rich literature on time-independent factorization models, there is only

little research on time-variant settings. Recently, a time-variant matrix factorization

model for collaborative filtering has been introduced (Koren, 2009). Koren investi-

gates empirically several time models including bins, drift and a spline1. In contrast

to this, we introduce a generic model for factorization models (including higher-

order m > 2) and develop a method for generating the basis functions from the data.

9.2 Problem

Factorization models can model relations over categorical domains. For instance, the

matrix factorization model in chapter 6 models the interactions between users and

items – e.g. how much a user likes an item. It has been shown empirically (Koren,

2009) that this problem is time-variant and that e.g. a user’s taste changes over time.

9.2.1 Time-Variant Relations

We use the notation of chapter 3: Let X1, . . . ,Xm be the domains of m categori-

cal variables, i.e. Xi = {xi
1, . . . ,x

i
|Xi|}. Depending on the problem, variables with the

same domain are possible – e.g. for representing symmetric matrices like adjacency

graphs.

A time-variant relation Y over the categorical domains X1, . . . ,Xm can be repre-

sented as a function y:

y : X1 × ...×Xm×R → T (9.1)

where T is the target domain, e.g. T ⊆ R for regression problems or T = {−1,1}
for classification. Or alternatively in tensor notation:

Y : R → T |X1|×...×|Xm| (9.2)

We will use both notations yx1,...,xm(t) and y(x1, . . . ,xm,t).

1 This spline approach is related to our kernel method using a special kernel and sampling

independently of the observations.

9.2 Problem 139

9.2.2 Sparseness

We assume that only a small part S ⊂ (X1× . . .Xm×R) of the relation Y is observed.

Sparseness is assumed both in the dimensions of the variables and even more in

time. That means for each variable instance x ∈ X there are only limited points in

time where the relation Y is observed. These are the points Tx := {t| f̂ x
T (t)> 0}where

the empirical distribution f̂ x
T is non-zero:

f̂ x
T (t) :=

|(X1 × . . .{x}× . . .Xm ×{t})∩S|
|(X1 × . . .{x}× . . .Xm ×R)∩S| (9.3)

We assume that each variable instance x is observed at least once and thus the de-

nominator does not vanish. Furthermore, the empirical distribution over a relation

instance x = (x1, . . . ,xm) has only very small or no support as most relation instances

are never observed. Note that this makes the prediction task very hard, because it

means that time-variance is not observed directly on the relation instances but is

hidden within variable interactions. Thus the problem is more difficult than typical

time series problems.

9.2.3 Context-Aware Ranking

Now, we will briefly show how context-aware ranking fits into this setting.

Problem Setting

For ranking within a time-aware problem (eq. (9.1)), the context would be:

C = X1 × . . .×Xm−1 ×R (9.4)

And the target is to find a ranking on Xm given a context c ∈ C :

≻⊂ C ×X2
m (9.5)

Modelling

Like discussed in section 3.4, the ranking can be expressed by the function y (eq.

(9.1)). But now, y contains a variable (the time) that is not finite and thus the fac-

torization models of chapter 5 cannot be applied directly. Thus, in this chapter we

derive time-aware factorization models that can handle time. The rest of this chapter

focuses on this task.

Learning

The learning task is then to find a function y that generates a ranking ≻y which

satisfies the infered training data DS. E.g. by using BCR-OPT and BCR-LEARN.

140 9 Time-Variant Factorization Models

Sparseness

The semantics of S for the general case (see section 9.2.2) is different from the

training data in context-aware ranking. The reason is, that for context-aware ranking

there are no direct observations of y itself. Instead, training data is given on pairs

within DS which are direct training data for ≻ and thus DS is indirect training data

for y. Nevertheless, we will never need S from now on, but only f̂ x
T . This can be

defined for context-aware ranking as:

f̂ x
T (t) :=

⎧

⎪⎪⎨

⎪⎪⎩

|(C ×{x}×Xm×{t})∩DS|+ |(C ×Xm×{x}×{t})∩DS|
|(C ×{x}×Xm×R)∩DS|+ |(C ×Xm×{x}×R)∩DS|

if x ∈ Xm

|(X1 × . . .{x}× . . .X2
m ×{t})∩DS|

|(X1 × . . .{x}× . . .X2
m ×R)∩DS|

else

(9.6)

With these definitions, also context-aware ranking can be applied to the general

model on which we will focus from now on.

9.3 Time-Variant Factorization Models

In the following, we discuss approaches to model Y (t) by a factorization model

Ŷ (t). First, we introduce the time-variant factorization models and derive a general

way of modelling time-variant factors by decomposing them into latent parameters

Θ and a predefined time-structure H (t).

9.3.1 Time-Variant Tucker Decomposition

Based on the example of Tucker decomposition (TD), we introduce time-variant

factor models. The TD model of a tensor of mode m is defined as:

Ŷ := B×1 V 1 ×2 . . .×m V m (9.7)

B ∈ R
k1,...,km , V i ∈ R

|Xi|×ki (9.8)

Where V i is the factorization matrix for a variable Xi. For each variable instance

x ∈ Xi, V i contains one row with ki values that describe the factors of x. It is very

important to note that these factors are never observed, but have to be estimated

during the learning phase of the model. TD subsumes a variety of factorization

models including PARAFAC or matrix factorization. See chapter 5 for more details

about TD and PARAFAC.

A time-variant TD is modelled by making the factors depending on time:

Ŷ (t) := B(t)×1 V 1(t)×2 . . .×m V m(t) (9.9)

B : R → R
k1,...,km , V i : R → R

|Xi|×ki (9.10)

9.4 Models for Time-Variant Factors 141

The core tensor B is usually chosen fixed (e.g. diagonal for PARAFAC/ MF) or

for TD it can be computed directly from orthonormal factorization matrices. Thus,

we will concentrate on modelling time variant factorization matrices V i(t). As the

modelling is identical for all i ∈ {1, . . . ,m} and to shorten notation, we will drop

the index and write V (t) and X respectively. Recall that neither the factors nor the

time-variance on variable instances is ever directly observed.

9.3.2 Time-Variant Factor Matrices

Let V be a factorization matrix for a variable X . The task is to model changes in

time of V (t). Our idea is to decompose V (t) into value estimates Θ and general

time-variant functions H (t).

V̂ (t) := Θ ⊗∗
H (t) (9.11)

where Θ is a parameter tensor:

Θ ∈ R
|X |×k×l (9.12)

and H contains l basis functions that are assumed to describe the general-time

dependencies of the problem. In general, these time dependencies can be individual

per variable instance and factorization feature:

H : R → R
|X |×k×l (9.13)

And ⊗∗ is defined as the multiplication and contraction operation that multiplies

entries with identical index of X and k and contracts l:

v̂x, f (t) :=
l

∑
i=1

hx, f ,i(t)θx, f ,i (9.14)

In this model, Θ are the latent parameters to be estimated and H is a predefined

tensor of functions that is modelled explicitly. Thus with this approach, the task of

modelling V (t) is reduced to model H (t). In the following, we will describe how

to obtain models for each factor vx, f (t) ∈ V (t) – i.e. by defining the basis func-

tions hx, f ,i in the set Hx, f := {hx, f ,1, . . . ,hx, f ,l}. To shorten notation, we will skip all

indices x, f whenever possible and write v(t).

9.4 Models for Time-Variant Factors

First, we investigate the general model for v(t) that is described by a set H of time-

variant basis functions. Next, we derive a probabilistic model that can express any

bounded factor. Based on the assumption that the values of a factor at two simi-

lar points should be similar, we develop a non-parametric kernel based model that

generates the functions in H based on the observed data in S.

142 9 Time-Variant Factorization Models

9.4.1 General Decomposition Model

The general model for a time-variant factor is:

v̂(t) := ∑
h∈H

h(t)θh (9.15)

Where H is the set of basis functions for modelling the factor v.

Expressiveness

In the general case, H is not restricted:

Hgeneral ⊆ {h : R → R} (9.16)

Obviously, without a restriction on H, the model in eq. (9.15) can express any func-

tion v(t). This can easily be seen by:

H := {v(t)}, θ1 := 1 ⇒ v̂(t) = v(t) (9.17)

For sure this shows only the theoretical expressiveness as v is not known in practice.

Modelling Approaches

An example for H is the set of trigonometric functions:

H trig := {sin(nt), cos(nt) |n ∈ N} (9.18)

with this eq. (9.15) becomes a fourier series which is known to approximate any

function well within a fixed interval. Our approach is different from that. Rather

than taking the same fixed set of functions for all factors, we generate the functions

from the data. To derive these functions, we first formulate a probabilistic model.

9.4.2 Probabilistic Model

For the probabilistic analysis we use the following random variables:

• T ∈ R is the random variable for time – t is the realization.

• V ∈ R is the random variable of the factor – v is the realization.

• C ∈ {c1, . . . ,cl} is the random variable over a finite set of features for explaining

the time behaviour of V .

Keep in mind, that v is a shortcut for vx, f and also C is depending on (x, f) – i.e.

Cx, f .

9.4 Models for Time-Variant Factors 143

9.4.2.1 General Model for Bounded Factors

Similar to the algebraic decomposition of value estimation and time, we assume

conditional independence between factor V and time T given C that explains the

time variant behaviour:

p(v,t|c) !
= p(v|c) p(t|c) (9.19)

We will show in the following how to relate this model to the general model in

eq. (9.15). Afterwards, our kernel model will be a specialization of this general

probabilistic model.

Expectation Value E(v|t)

It is well known that the (conditional) expectation E(v|t) of a random variate is

minimizing the squared prediction error for any variable v at a predetermined point

of time t. Hence, a straightforward way of modelling the time-variant factor is:

v̂(t) := E(v|t) (9.20)

This expectation value can be expressed as a function of C.

Lemma 9.1. With eq. (9.19), the expected value for v at time point t is:

E(v|t) = ∑
c∈C

E(v|c) p(c|t) (9.21)

Proof. With the definition of expectation we have:

E(v|t) :=
∫

R

v p(v|t)dv (9.22)

Next, p(v|t) is transformed by marginalization with C:

p(v|t) = ∑
c∈C

p(v,c|t) = ∑
c∈C

p(v, t|c) p(c)

p(t)

(∗)
= ∑

c∈C

p(v|c) p(t|c) p(c)

p(t)
= ∑

c∈C

p(v|c) p(c|t) (9.23)

At (∗) the conditional independence of v and t given the time-effect variable c is

used. Substituting p(v|t) in the expectation leads to:

E(v|t) =

∫

R

v ∑
c∈C

p(v|c) p(c|t)dv

= ∑
c∈C

p(c|t)
∫

R

v p(v|c)dv

︸ ︷︷ ︸

E(v|c)

= ∑
c∈C

E(v|c) p(c|t) (9.24)

144 9 Time-Variant Factorization Models

Probabilistic Model

In total, the probabilistic model for the factor v is:

v̂(t) = ∑
c∈C

E(v|c) p(c|t) (9.25)

As discussed before, no parameter in our latent model is directly observed, so θc :=
E(v|c) has to be estimated in the model’s learning phase:

v̂(t) = ∑
c∈C

θc p(c|t) (9.26)

Comparing this to eq. (9.15) makes the semantics clear: the variables C with the

distribution pC|T correspond to H and θh is the expectation value E(v|c). Thus,

given pC|T , the function set H is defined as:

Hprob(p) := {p(c1|t), . . . , p(cl|t)} (9.27)

Expressiveness

With the probabilistic model, H is restricted to all conditional probability distribu-

tions over C:

Hprob ⊆
{

p
∣
∣∀t : ∑

c∈C

p(c|t) = 1, ∀c : p(c|t) ≥ 0

}

This model can express any time variant factor v(t) with a finite lower (ηl :=
mint v(t)) and upper bound (ηu := maxt v(t)). This can be seen by using the fol-

lowing example.

C := {c1,c2,c3}

p(c1|t) :=
0.5

ηu −ηl

(v(t)−ηl), θ1 := 2(ηu −ηl)

p(c2|t) := 0.5− p(c1|t), θ2 := 0

p(c3|t) := 0.5, θ3 := 2ηl

Now p is a probability distribution over C for each t and v̂(t) = v(t). Again, this

only shows the theoretical expressiveness of this model.

9.4.2.2 Basic Probabilistic Models

In the following, we derive concrete models for pC|T . To distinguish the distribu-

tions, we will use their random variables as index (e.g. pC|T) and use f for densities

and p distributions over discrete variables.

9.4 Models for Time-Variant Factors 145

Single Point Estimates

Recall, that for each variable instance x ∈ X there are only limited points in time

where the relation Y is observed (see eq. (9.3)). At these time points t ∈ Tx the latent

variable vx, f (t) can be estimated. Using one variable c for each time point t ∈ Tx a

point estimate for v(t) can be made:

|C| := |Tx|, φ : C → Tx, φ bijective (9.28)

∀c ∈C : p(c|t) := δ (φ(c) = t) (9.29)

where φ is the placement of the basis function δ via C on the time domain. Applying

this to equation (9.26) leads to:

v(t) = δ (t ∈ Tx)θφ−1(t) (9.30)

That means for each time with an observation of x, a time depending latent feature

is learned such that ŷ (see eq. (9.1)) can be reconstructed at that point of time. But

(i) no estimations for non observed points of time for this variable can be made

(besides the trivial estimate 0). Especially forecasting is not possible. And (ii) no

relationships between the values of v at two close points of time are made. Thus,

single point estimates might suffer from overfitting. In general this model is useful

to model noise on the observations.

Constant effects/ Bias

Often, the largest part of a latent feature is time-independent – i.e. the time-variance

is centered around a fixed bias. Modelling time-independence is done by:

C := {c}, p(c|t) := 1 (9.31)

Mixture effects

Mostly, an effect does not appear isolated but mixed with other effects. Two effects

(C1, p(C1|t)) and (C2, p(C2|t)) can be mixed by linearly combining both into a new

effect (C, p(C|t)):

C := C1 ∪C2 (9.32)

∀ci ∈C : p(ci|t) :=

{

α p(ci|t), if ci ∈C1

(1−α) p(ci|t), if ci ∈C2

where α ∈ [0,1] defines the weight for the combination. For sure, also more than

two effects can be mixed – e.g. by recursively applying eq. (9.32). For example a

reasonable mixture is a combination of a bias, noise (point estimates) and our non-

parametric model that we describe next.

146 9 Time-Variant Factorization Models

Fig. 9.1 Basis functions

Hv for a variable instance

x generated by our non-

parametric method. This

method is based on a kernel

function (here Gaussian

kernel) and the observed

time points of this variable

instance. Here, these time

points are plotted as dots on

the time-axis. As the factor

v should be approximated

by |H| basis functions, more

complexity is placed to

regions of time with more

(indirect) observations.

0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Generated functions h(t) − (|H|=2)

t (Time)

h
(t

)

0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Generated functions h(t) − (|H|=4)

t (Time)

h
(t

)

0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Generated functions h(t) − (|H|=8)

t (Time)

h
(t

)

9.4.3 Non-parametric Method for Generating Time-Variant Basis

Functions

In this section, we derive a method to generate for each variable instance x contin-

uous functions Hx from the observed data S. The model is based on the idea of a

continuous dependency K of two points of time – we call this dependency the ‘ker-

nel’. We will present how to model pC|T ∼= H only with this kernel assumption using

the data to ‘place’ the variables C in regions with many observations (see figure 9.1).

Continuous Time Dependency

The time-dependency of two points of time t1 and t2 is given as the density K(α)
over their difference α = t1 − t2. We denote this time dependency as K because we

will refer to it as a (time) kernel.

9.4 Models for Time-Variant Factors 147

Examples for time kernels are:

KGauss(α) :=
1√

2π σ2
exp

(

− α2

2σ2

)

(9.33)

KExp(α) := δ (α > 0)λ e−λ α (9.34)

KIdentity(α) := δ (α = 0) (9.35)

After a kernel has been chosen, it can be used to define the conditionals between

time t and the latent time variables C2:

fT |C(t|c) := K(t −φ(c)) (9.36)

Again, a mapping φ : C → R from time effect variables to the time domain is nec-

essary. We will later show how to obtain this mapping by Gibbs sampling. With this

definition, the exponential kernel can be seen as a causal kernel, because the sup-

port of K is only in the future of φ(c) – that means c influences only the future. E.g.

Poisson processes have the exponential kernel as density. The identity kernel leads

to single point estimates as described in eq. (9.30).

Kernel-based Model for pC|T

We can express pC|T by fT |C using the Bayes theorem:

pC|T (c|t) =
fT |C(t|c) pC(c)

∑c′∈C fT |C(t|c′) pC(c′)
(9.37)

Using the kernel definition and assuming pC to be uniformly distributed results in:

pC|T (c|t) =
1

Z(t)
K(t −φ(c)) (9.38)

with Z(t) := ∑
c∈C

K(t −φ(c))

which defines the basic functions H (eq. (9.27)). An example can be found in

figure 9.2. Here we have three variables that have been placed on time points

2,4,7. For each time t on the t-axis, the y-axis shows the probabilistic influence

pC|T (c|t) (i.e. the weight) of each variable c on v(t). In this figure, the basis func-

tions h1(t) := p(c1|t), h2(t) := p(c2|t) and h3(t) := p(c3|t) are stacked.

Placement φ of Latent Variables

Next, we show how to derive the placement of C on the time domain. It is based

on sampling |C| points of time using the empirical distribution over time f̂T and

2 As C is a finite set and K is usually a density, one cannot use K directly to express pC|T

148 9 Time-Variant Factorization Models

Fig. 9.2 Relationship be-

tween the kernel K and

pC|T (which defines the ba-

sis functions H). There are

three time variables c1,c2,c3

placed at time 2,4,7 with

their corresponding kernel.

The two figures show pC|T
for the Gaussian kernel (top)

and for an exponential ker-

nel (bottom). The shaded

areas show the weight of the

time variables c1,c2,c3. At

all points of time pC|T is a

probability distribution over

C. An example for gener-

ated functions H is shown in

figure 9.1.

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prob. weight of control points (gauss−kernel)

t (Time)

p
(c

|t
)

(W
e
ig

h
t)

c1=φ−1(2)
c2=φ−1(4)
c3=φ−1(7)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prob. weight of control points (exp−kernel)

t (Time)

p
(c

|t
)

(W
e
ig

h
t)

c1=φ−1(2)
c2=φ−1(4)
c3=φ−1(7)

the kernel. For each variable c, one sample tc is drawn that defines the target of the

mapping φ(c) := tc.

Let TC be the continuous random variable to describe the placement of C on the

time domain. By marginalization, one can express TC by:

fTC
(tc) =

∫

R

fTC ,T (tc,t)dt

=

∫

R

fTC |T (tc|t) fT (t)dt (9.39)

Sampling directly from the joint probability distribution fTC ,T is not possible as it is

unknown. Instead sampling from eq. (9.39) is possible, because the probability of

fT is empirically observed by f̂T (eq. (9.3)) and the conditional fTC |T is defined by

the kernel K according to eq. (9.36). Thus:

fTC
(tc) ≈

∫

R

K(t − tc) f̂T (t)dt (9.40)

Sampling from fTC
can be performed by Markov Chain Monte Carlo methods

(MCMC), i.e. a Gibbs sampler: (1) Sample t∗ from f̂T ; (2) Sample tc from K(t∗−tc).
Note that with eq. (9.38) and eq. (9.27), this corresponds to sampling functions h.

Generation Method

The complete procedure for generating for each variable instance x individual basis

functions Hx is:

9.4 Models for Time-Variant Factors 149

1. Choose a kernel function K.

2. Sample the mapping φ : C → T with eq. (9.40)

3. The basis functions Hx are defined by eq. (9.38) and eq. (9.27).

This approach automatically places most parameters Θ to the regions with most

observations f̂ x
T (see figure 9.1). The sampling process adapts automatically to the

kernel – e.g. with an identity kernel the Gibbs sampler corresponds to bootstrap-

ping. Furthermore, it is possible to use less parameters Θ for variables with only

little observations by sampling less functions3. This leads to a better generalization

capability and prevents overfitting.

The limitation of the kernel approach is that it does not infer from patterns in the

past to patterns in the future. E.g. if a sine-like curve has been learned within the

region of observations, this shape is not applied to the future. Instead, because of the

model assumption that values are similar to close points, the curve would converge

to the estimation θ of the last parameter – under the assumption of a decreasing

kernel like exponential or Gaussian; another kernel e.g. a damped sine-kernel would

behave differently and might correctly repeat the sine shape.

Expressiveness and Relation to ARIMA

If the kernel function can be chosen for each factor freely, because of eq. (9.37) the

expressiveness is the same as the general probabilistic model in eq. (9.26).

If we limit the kernel to a fixed one, like Gaussian or exponential, it is still pos-

sible to keep the expressiveness of an arbitrary pC|T as long as we use an infinite

number of parameters C and allow a free placement φ . For this proof, we quantise

time t = i∆ t (i ∈ Z, φ : C → Z) and get from eq. (9.26) and eq. (9.38):

v(i∆ t) = ∑
c∈C

θc g(i∆ t −φ(c)∆ t) (9.41)

with:

g(i∆ t −φ(c)∆ t) :=
1

Z(i∆ t)
K(i∆ t −φ(c)∆ t) (9.42)

Applying the Z-transform and using its property of linearity and time shifting, this

equation becomes:

v(z) = g(z)q(z) (9.43)

q(z) = ∑
c∈C

θc z−φ(c)∆ t (9.44)

Eq. (9.44) is a Laurent-series which converges to a holomorphic function on (a pos-

sibly empty) annulus around 0. Any function holomorphic on an annulus has a

3 In our evaluation, we sample #
γ
x times, where γ ∈ [0,1] is a hyperparameter that controls

the number of draws and #x is the number of observations for the variable instance x.

150 9 Time-Variant Factorization Models

convergent Laurent-series with respect to this annulus. Thus any (discrete) time

dependency such that the Z-transform is holomorphic on an annulus can be rep-

resented by a sum (9.41) with infinitely countable C. In this sense, a model of this

type is general enough.

A popular and generic time dependency of an output v(t) on its input is the Box-

Jenkins model (Ljung, 1999).

v(z) =
c(z)/d(z)

1−a(z)/b(z)
g(z) (9.45)

where a(z),b(z),c(z),b(z) are given by Laurent series, and thus
c(z)/d(z)

1−a(z)/b(z) is ratio-

nal. This model widely subsumes popular time series models including AR, ARMA

and ARIMA. Because any rational function is holomorphic, h(z) = c(z)/d(z)
1−a(z)/b(z) holds,

and we conclude that our model covers all major time dependency of v(t) as far as

we allow C infinite.

9.5 Evaluation

We study the effectiveness of our method on regression problems – i.e. the square

loss with L2-regularization is minimized:

argmin
Θ1,...,Θm

∑
(x1,...,xm,t)∈S

(yx1,...,xm(t)− ŷx1,...,xm(t))2 +Λ

(
m

∑
i=1

||Θi||2F

)

(9.46)

We optimize this function by stochastic gradient descent which is known to work

well on typical factorization problems (Koren, 2009). As factorization model we

use PARAFAC which corresponds to the popular MF for cases with more than two

modes.

9.5.1 Experimental Setup

9.5.1.1 Datasets

To get a deeper understanding of the effectiveness of our model, we use both

synthetic and real-world data. The synthetic data is generated by the following

PARAFAC-model.

yx1,...,xm(t) :=
k

∑
f=1

m

∏
i=1

vi
xi, f (t)+ εx1,...,xm(t) (9.47)

Where εx1,...,xm(t) ∼ N(0,0.1) is Gaussian noise. To prevent outliers from dominat-

ing the evaluation, all values of y are truncated to [−5,5] – i.e. we cut the tails of

the output distribution. Each of the factors vi
xi, f of the generating model has its own

time variance. We consider two types of time variances:

9.5 Evaluation 151

Fig. 9.3 Netflix 10M

dataset: PARAFAC vs. T-

PARAFAC (exp-kernel)

with an increasing number

of factorization dimensions

(k). The evaluation was

made for the last year in

the dataset: for each month

one model is learned on all

past data and the next month

is evaluated. The figure

shows the average of these

12 RMSE scores per model

type and dimensionality.
10 20 30 40 50 60

0
.9

0
4

0
.9

0
6

0
.9

0
8

0
.9

1
0

Dataset: Netflix 10M

k (Dimensionality)

a
v
g
.
R

M
S

E
 (

n
e
x
t
3
0
 d

a
y
s
)

PARAFAC

T−PARAFAC exp−kernel

• Stationary: The generating functions are sines.

vi
x, f := ai

x, f + bi
x, f sin

(

2π ci
x, f t

tmax
+ di

x, f

)

Where ai
x, f ∼ N(0,1), bi

x, f ∼ N(0,0.5), ci
x, f ∼ Exp(1), di

x, f ∼ N(0,π). Note that

this corresponds to an ARMA model without damping, i.e. an ARMA model

with strong memory and many parameters.

• Trend: The generating functions are linear trends:

vi
x, f := ai

x, f + bi
x, f t

Where ai
x, f ∼ N(0,0.75) and bi

x, f ∼ N(0,0.5/tmax).

We have generated 4 datasets: two 2-mode datasets with |X1|= |X2|= 1000 and two

3-mode datasets with |X1| = |X2| = |X3| = 100. For each dataset tmax = 1000 and

we sampled |S| = 100,000 observations. The stationary models have k = 4 and the

trend models k = 8 factors.

As real-world dataset we use a subset of the Netflix dataset with |S| ≈
10,000,000, |Xuser| = 40,000 and |Xitem| = 5000.

9.5.1.2 Evaluation Protocol

A forecasting problem is set up by splitting the datasets by time ts. All data before

ts (i.e. [−∞,ts)) is put into the training set S. And the data Stest of the time-span

[ts,ts + 30) is used for evaluation. The model is trained on S and the RMSE on Stest

is measured. By moving ts with a step length of 30, we have independent test sets and

overlapping training sets of increasing size. For the artificial datasets we increased

ts from 30 to 960 with the step length of 30. For the Netflix dataset we evaluated the

last 12 months starting from day 1842.

152 9 Time-Variant Factorization Models

200 400 600 800

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Dataset: #mode=2, stationary data

t (Time)

R
M

S
E

 (
n
e
x
t
3
0
 d

a
y
s
)

PARAFAC

T−PARAFAC exp−kernel

T−PARAFAC gauss−kernel

200 400 600 800

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Dataset: #mode=3, stationary data

t (Time)

R
M

S
E

 (
n
e
x
t
3
0
 d

a
y
s
)

PARAFAC

T−PARAFAC exp−kernel

T−PARAFAC gauss−kernel

200 400 600 800

0
.5

1
.0

1
.5

2
.0

Dataset: #mode=2, trend data

t (Time)

R
M

S
E

 (
n
e
x
t
3
0
 d

a
y
s
)

PARAFAC

T−PARAFAC exp−kernel

T−PARAFAC gauss−kernel

200 400 600 800

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

Dataset: #mode=3, trend data

t (Time)

R
M

S
E

 (
n
e
x
t
3
0
 d

a
y
s
)

PARAFAC

T−PARAFAC exp−kernel

T−PARAFAC gauss−kernel

Fig. 9.4 Artificial data: Models are trained on a history from time 0 to time t. With increas-

ing training data, T-PARAFAC (gaussian and exponential kernel) outperforms the standard

PARAFAC model.

For the artificial datasets we run the models with several combinations of hy-

perparameters (k was fixed to the dimensions of the generating process) and the

model selection at time t was to choose the hyperparameter combination that was

best in the previous one4. For Netflix, the hyperparameters were chosen just once

per holdout at the first time-split.

9.5.2 Results

Figure 9.3 compares on the Netflix dataset the average forecasting RMSE for the

PARAFAC and time-variant PARAFAC (T-PARAFAC) model by varying the fac-

torization dimensionality. As you can see, T-PARAFAC outperforms PARAFAC on

4 Note that this corresponds to parameter selection using a holdout split of the previous 30

days.

References 153

all dimensionalities. This observation matches with previous results on this dataset

(Koren, 2009).

Figure 9.4 shows how the next-month forecasting RMSE develops over time

under heavily time-variant data. On all datasets, the models need about 250 time

steps before enough data is accumulated to identify the factors. After that the T-

PARAFAC outperforms PARAFAC. On the stationary data, increasing data helps

the T-PARAFAC models to get more stable features whereas normal PARAFAC

alternates. On trend data, after identifying the factors, all models suffer from more

data. Still, T-PARAFAC has a better performance than PARAFAC as it seems to cap-

ture some of the time dependencies. We assume, that the reason why T-PARAFAC

cannot fully capture the trend is the limited amount of data and that the trend is not

explicitly modelled because the assumption of our model is that the future factors

are similar to the last ones.

9.6 Conclusion

In this chapter, we have introduced a general model for time-variant factorization.

The general model relies on decomposing a time-variant factor into a set of ba-

sis functions and time-invariant parameters. Based on the assumption that at two

close points of time, the values of the factor are close, we have developed a method

for generating the basis function for each variable instance individually. The gen-

erating process is based on a kernel that defines closeness and the time points of

observations of the variable instance. We have discussed the expressiveness of this

approach and the relations to ARMA models. In future work, we want to investi-

gate how to apply time-patterns learned within a factor to enhance extrapolation to

regions without observations. Furthermore, we want to apply the time-aware factor

model to context-aware ranking problems.

References

Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scaling via an

n-way generalization of eckart-young decomposition. Psychometrika 35, 283–319 (1970)

Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an ’ex-

ploratory’ multimodal factor analysis. UCLA Working Papers in Phonetics, 1–84 (1970)

Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD 2009: Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pp. 447–456. ACM, New York (2009)

Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

Ljung, L. (ed.): System identification (2nd ed.): theory for the user. Prentice Hall PTR,

Englewood Cliffs (1999)

Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In: Ad-

vances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press,

Cambridge (2005)

Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31,

279–311 (1966)

Chapter 10

One-Class Matrix Factorization

The second topic, we are investigating is binary classification with matrix factoriza-

tion models where only observations of one class are available. But in contrast to the

problem settings we have discussed so far (see chapter 3), we now deal with a binary

classification problem where the classes are more or less balanced. Context-aware

ranking like item recommendation (see chapter 6) differs from this because it is a

ranking task. Even when seeing it as a binary classification task, the problem differs

substantially because the classes are typically hugely imbalanced: e.g. a customer

buys much less books than he does not buy, a user listens to much less songs than

he never listens to, etc.

Matrix factorization (MF) methods – e.g. based on maximum-margin learning

(MMMF (Srebro et al, 2005)) – are known to be one of the best approaches for

classification over two categorical variables. But sometimes only observations of

one class are monitored and available to the learning algorithm, e.g. a website mon-

itors what a user likes but not what he dislikes. In this chapter, we develop a MF

method for solving such tasks where two-class methods are not applicable any

more. We transfer the ideas of 1C-SVM to one-class maximum margin MF (1C-

MMMF) which means biasing the classification to the unobserved class. We proof

that 1C-MMMF is invariant to the particular size of this bias and that 1C-MMMF

and 2C-MMMF have identical objective criteria. To solve this, we introduce a sec-

ond regularizer based on the class prior of the unlabeled data, e.g. the test set. Our

experiments indicate that our method outperforms the other approaches in quality

and scales to problem sizes that are infeasible for 1C-SVM.

10.1 Introduction

Matrix factorization methods (MF) are well-studied for the task of predicting values

of a binary relation over two categorical variables. They can solve both classifica-

tion and regression problems of large scale with a high dimensionality of the two

variable domains (Rennie and Srebro, 2005). In this chapter, we study the classifi-

cation setting where only one class is observed and propose a one-class approach

for matrix factorization models.

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 155–170.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

156 10 One-Class Matrix Factorization

In general, 2C-MMMF can be seen as the counterpart of linear 2C-SVM for

the task of classification over two categorical domains because both are maximum-

margin classifiers with soft margins as can be seen from their objective criteria. As

SVMs have already been adapted to one-class problems (Schölkopf et al, 2001), we

first transfer 1C-SVM to 1C-MMMF. The idea of 1C-SVM is to bias the prediction

to the non-observed class and to optimize simultaneously this bias and the classi-

fication loss under maximum margin. We show that 1C-MMMF is invariant to the

size/length of this bias and the optimization (but not the prediction) is equivalent to

2C-MMMF. Hence, 1C-MMMF is unable to identify the factorization dimensions

because only positive examples are used during learning. To solve this, we intro-

duce an additional regularizer on the class prior of an unlabeled set and derive 1C

prior MMMF (1C-PMMMF). This method is motivated by the fact that in matrix

factorization tasks (i.e. classification over two categorical domains) always a finite

set of unlabeled (i.e. nonobserved) data points is present that contains all the possi-

ble examples of any test set. We assume there is some knowledge about the general

class distribution and include this as a regularizer. This prior value can be either

given by a domain expert or handled as a hyperparameter. We compare our class

prior regularization approach to the simpler baselines of class prior thresholding.

In total our contributions are:

1. We transfer the idea of 1C-SVM to 1C-MMMF and show that here the size of

the bias is invariant both under optimization and prediction.

2. 1C-MMMF is extended by class prior regularization to 1C-PMMMF.

3. An optimization algorithm for 1C-PMMMF that scales to large problems is

developed.

4. We empirically show that 1C-PMMMF can outperform 1C-SVM in quality and

can scale to problems that are infeasible for 1C-SVM.

10.2 Related Work

Recommender Systems

Item prediction from implicit feedback is similar to the problem we address here.

The parallels are that also a binary relation over two high dimensional categori-

cal domains is predicted and only positive feedback is given. The difference be-

tween matrix factorization techniques for the recommendation task (Hu et al, 2008;

Pan et al, 2008) and our work is that they impute all non-observed values with neg-

ative class labels. That means that their approach assumes that the prior class value

on the test set is 0. In contrast to this, we regularize the average binary predictions

of an unlabeled set to a given class prior.

Outlier Detection & Semi-Supervised Learning

Binary classification using only feedback of one class is related to outlier detec-

tion (Hawkins, 1980) where the instances of the second (unobserved) class are the

10.3 One-Class Problems 157

outliers. In 1C-PMMMF also information about the class distribution on a second

set –most importantly the test set– is taken into account which makes it a semi-

supervised method since knowledge about the unlabeled test data is used during

learning. Similar to (Belkin et al, 2006) we exploit distributional properties of the

unlabeled data (in our case: the prior class distribution) for regularization. In con-

trast to them we do not use geometric information since our task does not provide

such information. In all, 1C-PMMMF can be seen as a semi-supervised outlier de-

tection method (Hodge and Austin, 2004) for the extreme case where only one class

is observed and the task is to define boundaries between this standard class and the

outlier class using information about the prior class distribution on the unobserved

data points.

One-Class Support Vector Machines

1C-SVMs (Schölkopf et al, 2001) are classifiers over numerical feature vectors. The

standard approach to apply them to categorical variables is to use one indicator

variable per level. For the Netflix example in our evaluation, that means there are

412,814 variables (for each of the 395,063 users and 17,751 items one variable)

and every of the 36,915,512 cases is sparse as for each case only 2 variables are

1 and the remaining 412,812 variables are 0. In our evaluation, we use libSVM

(Chang and Lin, 2001) that supports a sparse format.

10.3 One-Class Problems

One class problems are (binary) classification problems where only instances of one

class are observed. Usually, the reason for observing only one class is the selection

process of training examples, e.g. the system is only able to collect positive feed-

back. For example in Facebook there is only a ‘like’-button but no ‘hate’-button.

In this chapter, we investigate one-class problems over two categorical variables

(m = 2) with many levels. For easier readability, we refer to the first domain (X1)

as I and to the second one (X2) as J. The task is to predict if a pair (i, j) ∈ I × J is

positive or negative – e.g. if a user i loves a song j. All our problems are extremely

sparse which means that only a small fraction of I × J is observed and of interest.

Note that sparseness in this context means missing values and not that values are

zeros.

10.3.1 Terminology

The following terminology is used: I := {i1, . . . , im} and J := { j1, . . . , jn} are sets of

objects. Y : I× J →{−1,1} is the target relation or equivalently Y is a binary m×n

matrix: Y : {−1,1}m×n. Depending on the context, we switch between both nota-

tions: yi, j = y(i, j). S ⊆ I× J is the set of observed pairs. In the one-class problems,

we assume without loss of generality that only positive pairs are observed.

158 10 One-Class Matrix Factorization

10.3.2 Prior Information

Even though, in one-class problems no training instances of negative classes are

available, it is assumed that there might be negative examples in the future test set

– otherwise running a classifier would not make much sense. Here, we investigate

scenarios where a prior probability pD ∈ [0,1] on the class distribution on some set

D ⊆ I × J is available. Some special cases of D are:

• D = I × J: pD is given on all data. As I and J are finite sets, also the set of all

pairs is finite. Note that this differs from standard classification scenarios from

real-valued feature data, where the set of all possible realizations is infinite.

• D = (I× J)\S: pD is given on all unlabeled data. As the prior on S for one-class

problems is pS = 1, prior information pD′ on D′ = I × J can be transformed to

prior information on D = (I× J)\ S and vice versa.

• D = Stest: pD is given on all test examples. Knowing the test examples (but not

their individual class label) makes it similar to semi-supervised learning.

In total, all three are scenarios where unlabeled data is taken into account.

10.4 One-Class Matrix Factorization

We start with introducing 2C-MMMF (Srebro et al, 2005) and 1C-SVM

(Schölkopf et al, 2001). Then, we combine both ideas to 1C-MMMF and show the

invariance to the bias. To solve this issue, we extend 1C-MMMF by a regularizer

over the class prior of unlabeled data (1C-PMMMF). Then we compare this to a

simpler approach of class prior thresholding.

Matrix Factorization (MF)

The matrix factorization model relies on approximating a partially observed matrix

Z by the matrix product of two lower dimensional matrices:

Ẑ := W ·HT (10.1)

or equivalently:

ẑi, j := 〈wi,h j〉 (10.2)

with factorization matrices:

W ∈ R
m×k, H ∈ R

n×k, (10.3)

where k is the number of factorization dimensions.

As described in chapter 5, matrix factorization is the two-mode equivalent of

PARAFAC and PITF. In contrast to the notation in chapter 5, we use W := V I and

H := V J as feature matrices. The reason is, that we deal with a two-mode problem

and here getting rid of the indices enhances readability.

10.4 One-Class Matrix Factorization 159

Table 10.1 Prediction and optimization for 2C-MMMF (Srebro et al, 2005) and 1C-SVM

(Schölkopf et al, 2001).

Method Prediction Optimization

2C-SVM ŷ(x) = sgn(〈w,φ(x)〉) argmin
w

1

2
||w||2+

1

ν l

l

∑
i=1

max(0,1− yi 〈w,φ(xi)〉)

1C-SVM ŷ(x) = sgn(〈w,φ(x)〉−ρ) argmin
w,ρ

1

2
||w||2+

1

ν l

l

∑
i=1

max(0,ρ −〈w,φ(xi)〉)−ρ

2C-MMMF ŷi, j = sgn(〈wi,h j〉) argmin
W,H

1

2
(||W ||2F + ||H||2F)

+
1

ν · |S| ∑
(i, j)∈S

max(0,1− yi, j〈wi,h j〉)

2C-MMMF

The classification rule of Maximum Margin Matrix Factorization for binary classifi-

cation (2C-MMMF) (Srebro et al, 2005) and its optimization criterion can be found

in table 10.1.

1-Class Support Vector Machines (SVM)

As SVM are classifiers over real valued vectors, we use the following notation:

there are observations {(x1,y1), . . . (xl,yl)} where for each observation (x,y) ∈
(Rn ×{−1,1}). Let φ : R

n → F be a mapping from the original feature space to

the space F .

Table 10.1 shows the optimization criterion and prediction formula of 1C-SVM

and 2C-SVM. In contrast to normal 2C-SVM, in 1C-SVM the prediction function

is shifted by a bias ρ : And the optimization criterion differs from 2C-SVM by the

additional maximization w.r.t. ρ .

10.4.1 One-Class Maximum Margin Matrix Factorization

(1C-MMMF)

To apply the ideas of 1C-SVM to MMMF, the classification rule of 1C-MMMF is

biased with ρ ∈ R
+ to the negative class:

ŷi, j = sgn(〈wi,h j〉−ρ) (10.4)

Now, the optimization task is to maximize the bias like in 1C-SVM and simultane-

ously minimize the classification loss and the norm of W and H like in 2C-MMMF:

160 10 One-Class Matrix Factorization

Fig. 10.1 1C-MMMF finds for each categorical variable a representation in R
k – here k=2

(see left side). The correlation 〈wi,h j〉 of the representation of a pair (i, j) has to exceed a

bias ρ to be classified as positive (see right side). 1C-MMMF tries to minimize the overall

length of all representations and to maximize the number of positive classifications (ŷi, j = 1)

for the observed positive elements (i, j) ∈ S – here S = {(1,1),(2,1)}.

argmin
W,H,ξ ,ρ

1

2
(||W ||2F + ||H||2F)+

1

ν · |S| ∑
(i, j)∈S

ξi, j −ρ

subject to

∀(i, j) ∈ S : 〈wi,h j〉 ≥ ρ − ξi, j, ξi, j ≥ 0

⇔∀(i, j) ∈ S : ξi, j ≥ ρ −〈wi,h j〉, ξi, j ≥ 0

⇔∀(i, j) ∈ S : ξi, j ≥ max(0,ρ −〈wi,h j〉)

where ξi, j are slack variables. Obviously this function is minimal if we have equal-

ity:

argmin
W,H,ρ

1

2
(||W ||2F + ||H||2F)+

1

ν · |S| ∑
(i, j)∈S

max(0,ρ −〈wi,h j〉)−ρ (10.5)

This means, a ‘simple’ (short) representationW for elements in I and H for elements

in J should be found such that the dot product of observed pairs (i, j) ∈ S exceeds

the classification threshold ρ (see figure 10.1). Until now, we have applied the same

steps as in 1C-SVM to derive 1C-MMMF. Next, we show that for 1C-MMMF the

particular choice of ρ is unimportant as long as ρ is positive and not equal to zero1.

10.4.1.1 Scaling Invariance of the Bias ρ

The reason of the invariance of 1C-MMMF to the choice of the bias is that both the

loss (eq. (10.5)) and the prediction formula (eq. (10.4)) can be scaled whereas in

1C-SVM this is not possible.

1 It is important to note, that this does not mean, that the bias ρ can be skipped completely

but only that the size/ length is unimportant – e.g. ρ = 1 can be chosen.

10.4 One-Class Matrix Factorization 161

Lemma 10.1 (Loss under Scaling). For any positive constant c, the loss is propor-

tional to its rescaled variant:

∀c ∈ R
+ : cL(W,H,ρ) = L(

√
cW,

√
cH,cρ)

Proof

L(
√

cW,
√

cH,cρ)

=
1

2
(||
√

cW ||2F + ||
√

cH||2F)− cρ +
1

ν · |S| ∑
(i, j)∈S

max(0,cρ −〈
√

cwi,
√

ch j〉)

=
c

2
(||W ||2F + ||H||2F)− cρ +

c

ν · |S| ∑
(i, j)∈S

max(0,ρ −〈wi,h j〉)

=cL(W,H,ρ)

Lemma 10.2 (Prediction under Scaling). The parameter settings (W,H,ρ) and

(
√

cW,
√

cH,cρ) are equivalent under prediction.

Proof

∀(i, j) ∈ I × J : ŷi, j(
√

cW,
√

cH,cρ) = sgn(〈
√

cwi,
√

ch j〉− cρ)

= sgn(c〈wi,h j〉− cρ) = sgn(〈wi,h j〉−ρ)

= ŷi, j(W,H,ρ)

From both lemmas follows, that for any two biases ρ1 ∈ R
+ and ρ2 = cρ1 ∈ R

+,

there are parameters (W ∗
1 ,H∗

1) for ρ1 and (W ∗
2 ,H∗

2) for ρ2 minimizing the loss in

eq. (10.5) that are equivalent under prediction. Due to this scaling invariance of the

solutions, ρ can be set to an arbitrary positive value. In the following, we fix ρ = 1.

This simplifies the optimization criterion to:

argmin
W,H

1

2
(||W ||2F + ||H||2F)+

1

ν · |S| ∑
(i, j)∈S

max(0,1−〈wi,h j〉) (10.6)

Comparing this to the optimization of 2C-MMMF (table 10.1) one can see that

both are equal when only positive training instances are used for 2C-MMMF2. That

means one can optimize 1C-MMMF problems with a 2C-MMMF solver to find W

and H.

But optimizing (eq. (10.6)) with only one-class data will lead to a degenerate

solution requiring only one latent dimension (see figure 10.3). The reason is that

both feature matrices W and H are free in contrast to the 1C-SVM case where the

feature matrix X is given. That means there is no need for (eq. (10.6)) to distin-

guish between feature dimensions because only positive training data is given. The

Tikhonov regularization alone does not solve this problem because it just tries to

2 Note that even though the optimization criterion is equivalent, the prediction of 1C-

MMMF (eq. (10.4)) is different from 2C-MMMF (table 10.1) as it has a bias ρ = 1.

162 10 One-Class Matrix Factorization

Fig. 10.2 1C-PMMMF takes prior knowledge about the class distribution pD on unlabeled

data D (here {(1,2),(1,3),(3,2)}) into account. 1C-PMMMF tries additionally to find rep-

resentations such that the average classification of all values in D is close to pD. E.g. for

pD = 0.66, 1C-PMMMF might try to find different feature vectors (left side) so that also

ŷ1,3 > ρ (right side).

minimize W and H. That is why, we will introduce a more selective regularization

that demands negative classifications on unlabeled data which leads to an identifi-

cation of factorization dimensions.

10.4.2 Class Prior Regularization

1C-MMMF is extended by a regularization term that makes use of additional infor-

mation on the class prior distribution pD on an unlabeled set D (see section 10.3.2).

Thus, the model is called one-class prior MMMF (1C-PMMMF).

First, we define the estimated class prior p̂D of the classifier ŷ on D ⊂ I× J as:

p̂D :=
1

|D| ∑
(i, j)∈D

(
1

2
ŷi, j +

1

2

)

(10.7)

Note that p̂D is an average over binary class values (ŷi, j ∈ {−1,1}).

Now, we add an additional regularizer to the optimization that punishes devia-

tions of the predicted class prior p̂D from the prior knowledge pD (see figure 10.2).

This results in the following optimization task3:

argmin
W,H,ξ ,ζ

1

2
(||W ||2F + ||H||2F)+

1

ν · |S| ∑
(i, j)∈S

ξi, j −ρ +
ρ

µ
ζ

subject to

3 We have chosen to make the additional prior constraint ζ linearly dependent on ρ like all

other parameters are (see section 10.4.1.1).

10.4 One-Class Matrix Factorization 163

∀(i, j) ∈ S : 〈wi,h j〉 ≥ ρ − ξi, j, ξi, j ≥ 0

ζ ≥ (p̂D − pD)2

where µ ∈ R
+ controls the importance of the error of the prior estimate. Again, ξi, j

are the slack variables.

It is easy to show that all the arguments for the invariance of the loss to ρ for

1C-MMMF are also met here and so, the final optimization task is:

argmin
W,H

1

2
(||W ||2F + ||H||2F)+

1

ν · |S| ∑
(i, j)∈S

max(0,1−〈wi,h j〉)+
1

µ
(p̂D − pD)2

Please note that the class prior regularizer does not try to give each ŷi, j a specific

value (e.g. pD) instead it makes a less restrictive statement about the average classi-

fication of all pairs (i, j) ∈ D.

In the following, we will use an equivalent formulation of this optimization for-

mula that makes the trade-off between the three terms (max-margin regularization,

classification loss and class prior regularization) more obvious. Instead of ν and µ ,

we will use the two hyperparameters η and λ :

η :=
µ

µ + ν
, λ :=

µ ν

µ + ν

η can be interpreted as how much the classification loss should be favored over the

class prior regularization. η ∈ [0,1] because µ ∈ R
+ and ν ∈ R

+. The hyperparam-

eter λ can be interpreted as how strong the maximum margin regularization term

should be. With these definitions, the minimization task is:

argmin
W,H

λ
1

2
(||W ||2F + ||H||2F)+

η

|S| ∑
(i, j)∈S

max(0,1−〈wi,h j〉)+ (1−η)(p̂D− pD)2

(10.8)

10.4.3 Class Prior Thresholding

A simpler approach than using pD for regularization is to use it as a threshold for

post-processing. Given any scoring function ẑ : I × J → R and a prior probability

pD on a set D, we can create a simple threshold method that classifies all values

exceeding the threshold θD as positive and the rest as negative:

ŷi, j := sgn(ẑi, j −θD) (10.9)

The value of θD can be found by ordering the elements of D by ẑ and then the

value of θD is the one where pD · |D| values are larger. This is the value minimizing

(p̂D − pD)2.

164 10 One-Class Matrix Factorization

Every estimator ẑ can be used with this threshold method. Among these are:

1C-MMMF

The difference between 1C-MMMF with prior thresholding to prior regularization

(1C-PMMMF) is that with thresholding the prior information is only used after

the factors are learned. That means only the one-dimensional decision boundary

(threshold) can be shifted, whereas 1C-PMMMF can use the prior information to

learn other factorizations. Our evaluation shows that this is an important differ-

ence. Furthermore, 1C-MMMF with prior thresholding and 2C-MMMF with prior

thresholding are equivalent because (i) we already have shown that the optimiza-

tion is equivalent and (ii) now also the prediction gets the same as both are shifted

(θ 2C-MMMF
D = θ 1C-MMMF

D + 1).

Row/ Column Estimators

An even simpler estimator for scoring a pair (i, j) is to count how often other ele-

ments in the same row i are positive. This might be done either row-wise or column-

wise or both can be linearly ensembled:

ẑi, j := |{(i, j′) ∈ S}|+ |{(i′, j) ∈ S}|

k-Nearest Neighbour

This method weights the entries either over rows or columns using a similarity mea-

sure (e.g. cosine similarity):

ẑi, j := ∑
(i, j′)∈S

|{i′|(i′, j) ∈ S∧ (i′, j′) ∈ S}|
√

|{i′|(i′, j) ∈ S}| · |{i′|(i′, j′) ∈ S}|

10.4.4 Scalable Learning

In the following, we will present a scalable method for learning a 1C-PMMMF

model. As 1C-MMMF is a special case of 1C-PMMMF (η = 1), this algorithm also

covers the simpler model class. Our proposed algorithm is based on stochastic gra-

dient descent. Applying typical stochastic gradient descent to eq. (10.8) is difficult,

as there are two pools of cases: S and D. Our approach is to split the minimization

criterion into two losses and alternate between them (see algorithm 7).

First we split the loss of 1C-PMMMF (eq. (10.8)) into:

L(W,H) = ηLC(W,H)+ (1−η)LP(W,H)

10.4 One-Class Matrix Factorization 165

Algorithm 7 LEARN1CPMMMF

Input: training data S, prior information pD on D, learning rate α
Output: model parameters W,H
1: initialize W,H
2: repeat

3: draw xη ∼U(0,1)
4: if xη ≤ η then

5: draw (i, j) uniformly from S

6: for f ∈ {1, . . . ,k} do

7: wi, f ← wi, f −α ∂
∂ wi, f

LC(W,H)

8: h j, f ← h j, f −α ∂
∂ h j, f

LC(W,H)

9: end for

10: else

11: draw (i, j) uniformly from D

12: for f ∈ {1, . . . ,k} do

13: wi, f ← wi, f −α ∂
∂ wi, f

LP(W,H)

14: h j, f ← h j, f −α ∂
∂ h j, f

LP(W,H)

15: end for

16: end if

17: until stopping criterion is met

18: return W,H

where

LC(W,H) := λ
1

2
(||W ||2F + ||H||2F)+

1

|S| ∑
(i, j)∈S

max(0,1−〈wi,h j〉)

LP(W,H) := λ
1

2
(||W ||2F + ||H||2F)+ (p̂D − pD)2

Because η ∈ [0,1], we propose to alternate between optimizing LC and LP by draw-

ing cases (i, j) from S and D respectively where the probability of drawing from S

is η .

Given a case (i, j) ∈ S, the gradients for LC are:

∂

∂wi, f

LC(W,H) = λ wi, f +

{

0, if 〈wi,h j〉 > 1

−h j, f , else

∂

∂h j, f

LC(W,H) = λ hi, f +

{

0, if 〈wi,h j〉 > 1

−wi, f , else

where f is the index over the factorization features. If the case is drawn from D, the

gradients for LP are:

166 10 One-Class Matrix Factorization

∂

∂wi, f

LP(W,H) = λ wi, f +(p̂D − pD)
∂

∂wi, f

ŷi, j

∂

∂h j, f

LP(W,H) = λ h j, f +(p̂D − pD)
∂

∂h j, f

ŷi, j

As ŷi, j = sgn(〈wi,h j〉−1) is not differentiable, we replace sgn(x) with the logistic

function σ(x) = 1
1+e−x . To ensure same scales as sgn(x), we use the scaled sigmoid

function 2σ(x)− 1. With this definition, the smooth gradients of ŷi, j are approxi-

mated by:

∂

∂wi, f

ŷi, j ≈ 2h j, f σ(〈wi,h j〉−1)(1−σ(〈wi,h j〉−1))

∂

∂h j, f

ŷi, j ≈ 2wi, f σ(〈wi,h j〉−1)(1−σ(〈wi,h j〉−1))

The learning rate α can easily be found by trying several values and testing the

convergence of L for each choice. The computational complexity of the described

algorithm is O(qkC(p̂D) |S|) – where q is the number of iterations4, k the factor-

ization dimension and C(p̂D) the complexity of computing p̂D. As the problems are

usually very sparse, S is typically much smaller than m ·n – see the example in our

evaluation. The only bottleneck so far is the calculation of p̂D because it is defined

as the expectation value over the classification over all elements in D and thus its

exact computation complexity is in O(|D|). Thus in the following, we will describe

a way of estimating p̂D in O(1) which leads to an overall complexity of O(qk |S|)
for our proposed learning algorithm – i.e. it is linear in the number of observations

|S| and the dimensionality of the factorization k.

10.4.4.1 Calculation of p̂D

As the changes in p̂D after a single update step are small, one can recalculate p̂D only

after a certain number of iterations (e.g. 1000). Secondly, if D is large, a subsample

D∗ ⊂ D can be used to estimate p̂D. We suggest to draw D∗ uniformly from D and

use p̂D∗ to estimate p̂D.

Lemma 10.3 (Statistical properties of p̂D∗). Based on uniformly (with replace-

ment) sampled instances (i, j) from D the estimator p̂D∗ := 1
|D∗| ∑D∗

ŷi, j+1

2
is an un-

biased estimator for p̂D with variance Var(p̂D∗) = p̂D(1− p̂D)
|D∗|

Since D∗ is a uniformly sampled subset of the population D of stochastically inde-

pendent binary random variables ŷi, j for different pairs (i, j)5 unbiasedness and vari-

ance result from elementary probability theory. Note that the probability p(ŷi, j = 1)

4 We define an iteration as performing |S| stochastic updates.
5 Note that ŷi, j is a random variable defined on pairs (i, j). Therefore this random variable is

independent for any other pair (k, l) where at least one of the two indices is different (i.e.

i �= k or j �= l).

10.5 Evaluation 167

Table 10.2 Characteristics of the evaluated datasets.

Dataset n (user) m (items) |S| (events)

Netflix 395,063 17,751 36,915,512

Movielens 6,040 3,952 383,972

of sampling a positive variable is p̂D. Moreover, p̂D∗ is asymptotically normal dis-

tributed with mean µ = p̂D and variance σ2 = 1
|D∗| p̂D(1− p̂D). Hence, subsampling

the data (e.g. |D∗| = 1000) reduces the time-complexity of the proposed learning

algorithm considerably to constant time while the thereof provoked additional error

is neglectable and independent of |D|.

10.5 Evaluation

Next, we compare 1C-PMMMF to 1C-SVM, 1C-MMMF and the prior-based

threshold methods k-nearest-neighbor (‘θp kNN’) and an ensemble over row- and

column-weighting (‘θp Ensemble’). We also apply the prior-threshold method to

1C-MMMF (‘θp 1C-MMMF’) which is the same as (‘θp 2C-MMMF’) – see the

discussion in section 10.4.3.

10.5.1 Dataset and Methodology

We convert the Netflix6 and Movielens7 datasets into a binary prediction problem of

‘hating’ (1 or 2 stars) or ‘loving’ (5 stars) a movie. Afterwards, we create a 10-core

subset, i.e. users with less than 10 ratings and movies with less than 10 ratings are

removed. The characteristics can be found in table 10.2.

The datasets are split into a training set S and test set Stest =: D of same size

and all observations with the negative class label are removed from the training

set. We repeat all experiments 5 times with new training/ test splits and report the

mean accuracy. Note that our experiments are quite extensive as more than 320

different factorization models had to be trained; half of them on the large-scale

Netflix dataset. For 1C-SVM, 1C-PMMMF and 1C-MMMF, we search for the best

regularization ν and λ respectively on the first fold and use this on the remaining

folds.

10.5.2 Results

Figure 10.3 compares all methods with varying hyperparameters. With a reason-

able factorization dimension and prior estimate, 1C-PMMMF outperforms the other

methods.

6 http://www.netflixprize.com/
7 http://www.grouplens.org/

http://www.netflixprize.com/
http://www.grouplens.org/

168 10 One-Class Matrix Factorization

1 2 5 10 20 50

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Netflix: Accuracy vs. Dim. k (pD=0.61, η=0.5, λ=k*1e−5/0)

Dimensionality k

A
c
c
u
ra

c
y

1C−PMMMF

1C−MMMF
θp 1C−MMMF
θp kNN

θp Ensemble

constant pos.

1 2 5 10 20 50

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Movielens: Accuracy vs. Dim. k (pD=0.58, η=0.5, λ=k*5e−5/0

Dimensionality k

A
c
c
u
ra

c
y

1C−PMMMF

1C−MMMF
θp 1C−MMMF
θp kNN

θp Ensemble

1C−SVM
constant pos.

0.2 0.4 0.6 0.8

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Netflix: Accuracy vs. Class prior pD (k=16, η=0.5,λ=0.00016/0

pD(class prior)

A
c
c
u
ra

c
y

1C−PMMMF

1C−MMMF
θp 1C−MMMF
θp kNN

θp Ensemble

constant pos.

0.2 0.4 0.6 0.8

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Movielens: Accuracy vs. Class prior pD (k=16, η=0.5,λ=0.0008

pD(class prior)

A
c
c
u
ra

c
y

1C−PMMMF

1C−MMMF
θp 1C−MMMF
θp kNN

θp Ensemble

1C−SVM
constant pos.

0.2 0.4 0.6 0.8

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Netflix: Accuracy vs. η (k=16, λ=0.00016/0, pD=0.61)

η

A
c
c
u
ra

c
y

1C−PMMMF

1C−MMMF
θp 1C−MMMF
θp kNN

θp Ensemble

constant pos.

0.2 0.4 0.6 0.8

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

Movielens: Accuracy vs. η (k=16, λ=0.0008/0, pD=0.58)

η

A
c
c
u
ra

c
y

1C−PMMMF

1C−MMMF
θp 1C−MMMF
θp kNN

θp Ensemble

1C−SVM
constant pos.

Fig. 10.3 Comparison of 1C-PMMMF with class prior regularization to 1C-MMMF, 1C-

SVM (Schölkopf et al, 2001) and class prior thresholding for the methods 1/2C-MMMF, kNN

and a row/ column ensemble. With a reasonable chosen prior, 1C-PMMMF outperforms all

other methods in quality. Note that we cannot state results for 1C-SVM on Netflix because

training did not converge even after 100 days of runtime.

10.6 Conclusion 169

10.5.2.1 Class Prior Regularization vs. Thresholding

Comparing class prior regularization (1C-PMMMF) to thresholding (θp methods),

one can see that 1C-PMMMF outperforms all thresholding methods for almost any

choice of hyperparameters. Especially this shows that for matrix factorization, class

prior regularization (1C-PMMMF) leads to a different (better) factorization than

class prior thresholding. Furthermore, the results of 1C-MMMF for the dimension-

ality experiment matches our hypothesis (see section 10.4.1) that 1C-MMMF cannot

benefit from more factorization dimensions because it cannot identify any ‘seman-

tics’ in the dimensions. The class prior regularization solves this issue.

10.5.2.2 1C-PMMMF vs. 1C-SVM

Applying 1C-SVM with binary indicator variables leads to good results on the small

Movielens dataset. But if the class prior is estimated good enough (here ca. ±0.1),

1C-PMMMF gives better quality. For the larger Netflix dataset, 1C-SVM is not

feasible and very slow. In contrast to this, training 1C-PMMMF with k = 16 takes

only several hours on Netflix.

10.5.2.3 Sensitivity to Hyperparameters

All class prior methods are sensitive to how good the provided hyperparameter pD

matches to the real class prior (0.61 for Netflix, 0.58 for Movielens). On Netflix

it is interesting to see that 1C-PMMMF seems to be much less sensitive than the

thresholding methods. Another interesting result is that 1C-PMMMF is not sensitive

to the choice of η within [0.1,0.9] – for η = 1 1C-PMMMF corresponds to 1C-

MMMF. Remember that η is used as alternating probability between class prior

regularization and classification error minimization. Finally, both 1C-PMMMF and

1C-SVM are sensitive to the choice of λ and ν respectively. But with 1C-PMMMF

good results are also obtained with λ = 0 provided that k is chosen small (e.g. 8-32).

10.6 Conclusion

We have introduced a matrix factorization method for one-class classification over

two high-dimensional categorical variables. First, we have applied the ideas of 1C-

SVM to obtain 1C-MMMF. Then we have argued that 1C-MMMF alone is not ap-

plicable as it is not able to identify the ‘semantics’ of any dimension. We there-

fore introduced a regularization term that is based on the class prior and show the

difference to prior thresholding. Furthermore a scalable learning algorithm for 1C-

PMMMF has been introduced that is able to solve large scale problems over thou-

sands of variable levels and millions of observations where 1C-SVM is not appli-

cable any more. The empirical results indicate that 1C-PMMMF is able to generate

high quality predictions for one-class problems outperforming other methods like

prior-threshold based methods or 1C-SVM.

170 10 One-Class Matrix Factorization

In contrast to context-aware ranking from implicit feedback, we assume that the

class distribution is not heavily biased to the non-observed (negative) class. That

means, the one-class methods of this chapter are applicable for more or less balanced

classification problems whereas the context-aware ranking methods introduced be-

fore (like item recommmendation, chapter 6) are suitable for heavily unbalanced

problems, where the target is ranking instead of classification.

References

Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for

learning from labeled and unlabeled examples. Journal of Machine Learning Research 7,

2399–2434 (2006)

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software

available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm

Hawkins, D.: Identification of Outliers. Chapman and Hall, Boca Raton (1980)

Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2),

85–126 (2004)

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: IEEE

International Conference on Data Mining (ICDM 2008), pp. 263–272 (2008)

Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R.M., Scholz, M., Yang, Q.: One-class col-

laborative filtering. In: IEEE International Conference on Data Mining (ICDM 2008),

pp. 502–511 (2008)

Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative pre-

diction. In: ICML 2005: Proceedings of the 22nd International Conference on Machine

Learning, pp. 713–719. ACM, New York (2005)

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the

support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)

Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In: Ad-

vances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press,

Cambridge (2005)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Part V

Conclusion

Chapter 11

Conclusion

In this book, we have studied multi-mode prediction problems. The focus was on

problem settings with large categorical domains and high sparsity. Due to the spar-

sity and usually high imbalance, we are not interested in classification but in ranking

the entities of one of the modes. Instead of creating one global ranking, the rank-

ings should be context-aware – i.e. we create many rankings that depend on a given

context. Important applications for this setting are recommender systems. There

exist several recommender tasks, two of the most well studied ones are personal-

ization and tag recommendation. Our developed method of context-aware ranking

subsumes both of them and includes also other settings like time-awareness. More-

over other well-known applications like web search or multi-label classification (e.g.

annotation, wikipedia categorization) can be seen as an instance of context-aware

ranking.

Based on these ideas, we have introduced the theory of context-aware ranking.

From a Bayesian analysis, we have derived the optimization criterion BCR-OPT

which is the general MAP estimator of a parametrized model. The learning algo-

rithm BCR-LEARN is a maximization procedure for BCR-OPT. As it is based on

stochastic gradient descent, any model that can be expressed as a differentiable, non-

recursive function with a finite set of parameters can be optimized. The bootstrap-

ping approach with the proposed drawing schemes makes it applicable even in cases

where the number of ranking triples is huge. We have demonstrated the usefulness

of BCR on the task of item recommendation, tag recommendation and sequential

set recommendation. Here, we have applied BCR to a wide variety of models in-

cluding several factorization models (matrix factorization, TD, PARAFAC, PITF),

k-nearest-neighbour and Markov chains. Throughout these experiments, BCR opti-

mization has outperformed other state-of-the-art approaches like weighted regular-

ized least-square in quality. These results indicate that choosing the right optimiza-

tion criterion is important. Furthermore, it shows that BCR is generic and a good

choice for many applications.

With respect to modelling, we have focused on factorization models. For two-

mode problems, matrix factorization models are known to generate high quality

predictions (e.g. for regression or binary classification). In this book, we extended

S. Rendle: Context-Aware Ranking with Factorization Models, SCI 330, pp. 173–176.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

174 11 Conclusion

these factorization approaches to multi-mode problems. The Tucker decomposition

and the PARAFAC model are such multi-mode factorization models. We have dis-

cussed their strength and limitations in detail showing that TD results in slow run-

time for our multi-mode settings. Furthermore our empirical results indicate that

optimizing model parameters for both TD and PARAFAC with standard Gaussian

priors (aka ridge regression) can result in bad prediction quality. Our assumption is

that in sparse settings, both of these models are too expressive and lack an a priori

structure. To solve this, we propose the more restricted model PITF that explicitly

models pairwise-interactions. We have shown that both TD and PARAFAC subsume

this model. But in our evaluation, PITF outperforms both TD and PARAFAC. Thus

our empirical results indicate that restricting the expressiveness and predefining a

structure on TD models makes sense in sparse settings.

General factorization models like TD assume finite variable domains. For han-

dling infinite domains like time, we present two extensions. The first one is a Markov

chain, where sequential pattern can be found. Here, we extend the general Markov

chain with personalization and secondly we model the transition cube with a factor-

ization model (e.g. TD/PARAFAC/PITF). We have shown that this model subsumes

both standard MCs and the standard non-time-aware factorization models. The sec-

ond kind of time-variance we investigate, is variance within factors. Each factor is

modelled time-dependent by decomposing it into basis functions and free parame-

ters. We have shown, how these basis functions can be generated/ sampled from the

observed data using a kernel approach.

11.1 Summary of Contributions

In total, the contribution of this book are:

1. Theory of Context-Aware Ranking

We introduce context-aware ranking. This subsumes many important tasks like

item recommendation and tag recommendation. Although each of these tasks

has attracted a lot of research, they are usually studied isolated of each other. Our

work brings them together which allows to transfer results from one domain to

the other.

2. BCR optimization and learning

We develop the Bayesian Context-aware Ranking (BCR) method that consists of

a new optimization criterion BCR-OPT and a learning algorithm BCR-LEARN.

BCR-OPT is the MAP estimator of the model parameters given context-aware

ranking constraints that are derived from sparse observations. BCR-LEARN is a

generic learning algorithm for context-aware ranking that is based on stochastic

gradient descent with bootstrap sampling.

3. Factorization Models (PITF)

For modelling the multi-mode data, we suggest to use factorization models based

on Tucker decomposition. We discuss the practical limitations of general Tucker

decomposition in terms of runtime and regularization. To solve this, we have

11.2 Future Directions 175

developed the pairwise interaction model PITF and shown that for ranking prob-

lems, the model complexity is linear.

4. Factorizing Personalized Markov Chains

Moreover, we have extended Markov chain models by personalization and fac-

torization. Personalization allows each user to have an individual Markov chain

– i.e. own transition probabilities. By factorizing transition cubes, we solve the

problem of sparsity in the data. That means, information propagates over the

whole transition cube and the estimation gets more reliable than MLE with full

parametrized models.

5. Empirical Studies & Applications

We have applied our theory of context-aware ranking, the BCR optimization

method and the factorization models to several applications: (1) online shop-

ping, movie rental and online TV (Gantner et al, 2009) (item recommendation),

(2) bookmark and music tagging (tag recommendation) and (3) sequential basket

recommendation. In all of these applications, our proposed models have shown

to outperform current state-of-the art methods. Furthermore our method has won

the tag recommender challenge of the 2009 ECML/PKDD Discovery Challenge.

6. Time-aware Factor Model

For handling time variance, we have extended the general factorization model

with time-variant factors. This is done by decomposing each factor into a set of

basis functions and free parameters. We provide a method for generating the set

of basis functions from the observed data using a kernel assumption.

7. One-Class Matrix Factorization

We extend the binary Maximum Margin Matrix Factorization classifier to handle

one-class problems. This is done by transferring ideas from one-class support

vector machines to matrix factorization. We show that the optimization of 1C-

MMMF is invariant to the size of the bias and thus can be kept constant. We

extend this model by prior regularization to 1C-PMMMF which allows to take

assumptions about the class distribution prior into account.

11.2 Future Directions

Besides the directions that have been mentioned for specific tasks throughout this

work, we see three major directions of future work:

• Multirelational Prediction

The settings of this work can be seen as single relational. That means that there is

one relation (e.g. a customer buys a product) and this relation should be predicted

– i.e. the instances of one variable should be ranked given the others. But often

additional information is available like information about products (price, cate-

gory, . . .) or information about customers (gender, age, . . .). Especially in sparse

settings, this additional information might be helpful to create better predictions

of the target relation. There is already much work (Tso and Schmidt-Thieme,

2006; Agarwal and Chen, 2009; Tso-Sutter et al, 2008) on special cases (e.g.

attribute-aware or tag-aware recommender systems) but only limited one for the

176 11 Conclusion

general case (Lin et al, 2009). Thus, one direction of future work is to develop

a generic method for multi-relational settings and to integrate it in our work on

context-aware ranking.

• Regularization

As the empirical results for tag recommendation have shown, the restricted PITF

is able to outperform PARAFAC and Tucker decomposition. But both PARAFAC

and TD subsume PITF, so they should be able to generate at least as good pre-

dictions as PITF. We have argued that the reason might be the regularization

together with the sparsity. Thus, a very interesting topic would be to investigate

other regularization methods than 0-based Gaussian priors. Solving this problem

would help to build better factorization models where the structure of the model

is chosen data-dependent.

• Applications

In this book we could only investigate some applications of context-aware rank-

ing. Due to the success of our approach in our selected applications, we assume

that it might also improve results on other tasks. Examples for further applica-

tions are: (1) personalized web-search, where web pages are suggested for a user

given a query, (2) context-aware advertising, where ads are ranked based on a

context like user, web page, last actions, (3) annotation like wikipedia catego-

rization or (4) multi-label classification in general.

References

Agarwal, D., Chen, B.C.: Regression-based latent factor models. In: KDD 2009: Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 19–28. ACM, New York (2009)

Gantner, Z., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.: Optimal ranking for video

recommendation. In: Personalization in Media Delivery Platforms Workshop at the Inter-

national ICST Conference on User Centric Media (PerMeD 2009) (2009)

Lin, Y.R., Sun, J., Castro, P., Konuru, R., Sundaram, H., Kelliher, A.: Metafac: community

discovery via relational hypergraph factorization. In: KDD 2009: Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

527–536. ACM, New York (2009)

Tso, K., Schmidt-Thieme, L.: Evaluation of attribute-aware recommender system algorithms

on data with varying characteristics. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K.

(eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 831–840. Springer, Heidelberg (2006)

Tso-Sutter, K., Marinho, L., Schmidt-Thieme, L.: Tag-aware recommender systems by fusion

of collaborative filtering algorithms. In: Proceedings of 23rd Annual ACM Symposium on

Applied Computing (SAC 2008), Fortaleza, Brazil (to appear) (2008)

Glossary

Definition Description

||X ||2F := ∑
i, j

x2
i, j Frobenius norm

δ (b) :=

{

1, if b is true

0, else
Delta function

σ(x) :=
1

1 + e−x
Sigmoid/ logistic function

〈x,y〉 := ∑
i=1

xi · yi Dot product

Index

Symbols

δ , see delta function

〈·, ·〉, see dot product

σ , see logistic function

A

area under ROC curve, 35, 47, 79, 129

AUC, see area under ROC curve

B

basis function, 141

Bayesian Context-aware Ranking, 39, 73,

91, 124

Bayesian Personalized Ranking, 73

Bayesian Post-aware Ranking, 91

BCR, see Bayesian Context-aware Ranking

Bibsonomy, 102

BPoR, see Bayesian Post-aware Ranking

BPR, see Bayesian Personalized Ranking

Breese score, see half-life utility

C

Canonical Decomposition, see Parallel

Factor Analysis

categorical domain, 20

categorical variable, 20

CD, see Parallel Factor Analysis

class prior, 158

complexity

factorization model, 63

ranking, 29

context, 25

context-aware ranking, 25, 39

context-aware recommender system, 10

contextual post-filtering, 11

contextual pre-filtering, 10

D

δ -function, see delta function

delta function, 177

Discovery Challenge, 102

dot product, 177

E

element-wise loss, 48

evaluation metric, 33

expressiveness

factorization model, 63

FPMC, 126

ranking, 32

time-variant factor, 149

F

f-measure, 34, 102, 129

factorization model, 11, 51

factorized personalized Markov chain, 123

FolkRank, 104

FPMC, see factorized personalized Markov

chain

Frobenius norm, 177

G

global ranking, 12, 24, 81

180 Index

H

half-life utility, 34, 129

Higher-Order Singular Value Decomposi-

tion, 55, 97

hinge loss, 46

HLU, see half-life utility

HOSVD, see Higher-Order Singular Value

Decomposition

I

indicator function, see delta function

item recommendation, 69

K

k-Nearest-Neighbor, 76

kNN, see k-Nearest-Neighbor

L

Last.fm, 102

logistic function, 177

M

Markov Chain, 117

Matrix Factorization, 57, 62, 75, 126, 158

maximum a posteriori estimator (MAP), 40

Maximum-Margin Matrix Factorization, 78,

159

MC, see Markov Chain

mean average precision, 35

MF, see Matrix Factorization

MMMF, see Maximum-Margin Matrix

Factorization

mode, 20, 52

N

NDCG, see normalized discounted

cumulative gain

Netflix, 79, 151, 167

non-personalized ranking, 81, 106

normalized discounted cumulative gain, 36

O

one-class classification, 157

1C-MMMF, 159

optimization, 39

P

Pagerank, 13, 104

Pairwise Interaction Tensor Factorization,

57–62, 95, 122

pairwise loss, 46

PARAFAC, see Parallel Factor Analysis

Parallel Factor Analysis, 55–57, 94

personalization, 69, 113

PITF, see Pairwise Interaction Tensor

Factorization

precision, see f-measure

R

ranking, 24, 39

recall, see f-measure

recommender system, 9, 69, 85, 113

regularization

class prior, 162

early stopping, 44

Gaussian priors, 41

RTF, 97

runtime, 64, 107

S

S-BPR, see Sequential Bayesian Personal-

ized Ranking

scalar product, see dot product

Sequential Bayesian Personalized Ranking,

124

sequential-set recommendation, 113

σ -function, see logistic function

sigmoid function, see logistic function

Singular Value Decomposition, 75

sparsity, 23, 121, 139

square loss, 47

SVD, see Singular Value Decomposition

T

tag recommendation, 85

TD, see Tucker Decomposition

time-variant factor, 141

training data, 26

transition graph, 118

Tucker Decomposition, 52–55, 93, 96, 140

W

weighted least square, 48, 77

	Part I Overview
	Introduction
	Overview
	Theory of Context-Aware Ranking
	Application of Context-Aware Ranking
	Extensions

	Contributions
	Published Work
	References

	Related Work
	Recommender Systems
	Two-Mode Recommender Systems
	Context-Aware Recommender Systems

	Factorization Models
	Ranking
	Global Ranking
	Context-Aware Ranking

	References

	Part II Theory
	Ranking from Incomplete Data
	Sparse Observations
	Variables
	Observations
	Prediction as Classification/Regression
	Sparsity

	Context-Aware Ranking
	Ranking
	Context
	Context-Aware Ranking

	Generating Ranking Constraints
	Training Data for Rankings
	Complexity

	Expressing Rankings by Real Valued Functions
	Transformation of Rankings
	Expressiveness
	Discussion

	Evaluation Metrics
	References

	Learning Context-Aware Ranking
	Optimization Criterion (BCR-Opt)
	Distribution over Pairs
	Distribution over Context-Aware Ranking
	Modelling Pairs
	Priors on Model Parameters
	BCR Optimization

	Learning Algorithm (BCR-Learn)
	Optimization by Gradient Descent
	BCR-Learn
	Drawing of Training Cases

	Alternative Optimization Criteria
	Pairwise Losses
	Element-Wise Losses

	References

	Factorization Models
	Tucker Decomposition (TD)
	Model Equation
	Gradients
	Complexity
	Two-Mode Tucker Decomposition
	Higher-Order SVD

	Parallel Factor Analysis (PARAFAC)
	Model Equation
	Gradients
	Complexity
	Two-Mode PARAFAC

	Pairwise Interaction Tensor Factorization (PITF)
	Model Equation
	Gradients
	Complexity
	Two-Mode PITF

	Expressiveness
	Computational Aspects
	References

	Part IIIApplication
	Item Recommendation
	Related Work
	Personalized Ranking from Implicit Feedback
	Formalization
	Analysis of the Problem Setting

	Learning Personalized Ranking
	Optimization Criterion (BPR-Opt)
	Learning Algorithm (BPR-Learn)

	Item Recommendation Models
	Matrix Factorization
	Adaptive k-Nearest-Neighbor

	Relations to Other Methods
	Weighted Regularized Matrix Factorization (WR-MF)
	Maximum Margin Matrix Factorization for Ordinal Ranking

	Evaluation
	Datasets
	Evaluation Methodology
	Results and Discussion
	Non-personalized Ranking
	Practical Impact

	Conclusion
	References

	Tag Recommendation
	Related Work
	Personalized Tag Recommendation
	Non-personalized Tag Recommendation

	Personalized Tag Recommendation
	Formalization
	Data Analysis

	Bayesian Post-aware Ranking (BPoR) for Tag Recommendation
	Optimization Criterion (BPoR-Opt)
	Learning Algorithm (BPoR-Learn)

	Factorization Models for Tag Recommendation
	Tucker Decomposition (TD)
	Parallel Factor Analysis (PARAFAC)
	Pairwise Interaction Tensor Factorization (PITF)
	Relation between TD, PARAFAC and PITF

	Alternative Optimization for Tucker Decomposition
	Higher-Order Singular Value Decomposition (HOSVD)
	Optimizing the Ranking Statistic AUC per Post (RTF)

	Evaluation
	Datasets
	Evaluation Methodology
	Results

	Conclusion
	References

	Sequential-Set Recommendation
	Related Work
	Item Recommendation from Sequential Set Data
	Sequential vs. General Recommender
	Formalization
	Modelling and Estimation

	Factorizing Personalized Markov Chains (FPMC)
	Personalized Markov Chains for Sets
	Factorizing Transition Graphs
	Summary of FPMC

	Item Recommendation with FPMC
	Optimization Criterion S-BPR
	Item Recommendation from Sequential Set Data with FPMC
	Learning Algorithm

	Evaluation
	Dataset
	Evaluation Methodology
	Results

	Conclusion
	References

	Part IVExtensions
	Time-Variant Factorization Models
	Introduction
	Problem
	Time-Variant Relations
	Sparseness
	Context-Aware Ranking

	Time-Variant Factorization Models
	Time-Variant Tucker Decomposition
	Time-Variant Factor Matrices

	Models for Time-Variant Factors
	General Decomposition Model
	Probabilistic Model
	Non-parametric Method for Generating Time-Variant Basis Functions

	Evaluation
	Experimental Setup
	Results

	Conclusion
	References

	One-Class Matrix Factorization
	Introduction
	Related Work
	One-Class Problems
	Terminology
	Prior Information

	One-Class Matrix Factorization
	One-Class Maximum Margin Matrix Factorization (1C-MMMF)
	Class Prior Regularization
	Class Prior Thresholding
	Scalable Learning

	Evaluation
	Dataset and Methodology
	Results

	Conclusion
	References

	Part VConclusion
	Conclusion
	Summary of Contributions
	Future Directions
	References

	Cover
	Front Matter
	Part I Overview
	Introduction
	Overview
	Application of Context-Aware Ranking
	Theory of Context-Aware Ranking
	Extensions

	Published Work
	Contributions
	References

	Related Work
	Recommender Systems
	Two-Mode Recommender Systems
	Context-Aware Recommender Systems

	Factorization Models
	Ranking
	Global Ranking
	Context-Aware Ranking

	References

	Part II Theory
	Ranking from Incomplete Data
	Sparse Observations
	Variables
	Observations
	Prediction as Classification/Regression
	Sparsity

	Context-Aware Ranking
	Ranking
	Context
	Context-Aware Ranking

	Generating Ranking Constraints
	Training Data for Rankings
	Complexity

	Expressing Rankings by Real Valued Functions
	Transformation of Rankings
	Expressiveness

	Evaluation Metrics
	Discussion

	References

	Learning Context-Aware Ranking
	Optimization Criterion (BCR-Opt)
	Distribution over Pairs
	Distribution over Context-Aware Ranking
	Priors on Model Parameters
	BCR Optimization
	Modelling Pairs

	Learning Algorithm (BCR-Learn)
	Optimization by Gradient Descent
	BCR-Learn
	Drawing of Training Cases

	Alternative Optimization Criteria
	Pairwise Losses
	Element-Wise Losses

	References

	Factorization Models
	Tucker Decomposition (TD)
	Model Equation
	Complexity
	Gradients
	Two-Mode Tucker Decomposition

	Parallel Factor Analysis (PARAFAC)
	Higher-Order SVD
	Complexity
	Model Equation
	Gradients

	Pairwise Interaction Tensor Factorization (PITF)
	Model Equation
	Two-Mode PARAFAC
	Gradients
	Two-Mode PITF
	Complexity

	Expressiveness
	Computational Aspects
	References

	Part IIIApplication
	Item Recommendation
	Related Work
	Personalized Ranking from Implicit Feedback
	Formalization
	Analysis of the Problem Setting

	Learning Personalized Ranking
	Optimization Criterion (BPR-Opt)
	Learning Algorithm (BPR-Learn)

	Item Recommendation Models
	Matrix Factorization
	Adaptive k-Nearest-Neighbor

	Relations to Other Methods
	Weighted Regularized Matrix Factorization (WR-MF)

	Evaluation
	Maximum Margin Matrix Factorization for Ordinal Ranking
	Evaluation Methodology
	Datasets
	Results and Discussion
	Non-personalized Ranking

	Conclusion
	Practical Impact

	References

	Tag Recommendation
	Related Work
	Personalized Tag Recommendation

	Personalized Tag Recommendation
	Non-personalized Tag Recommendation
	Formalization
	Data Analysis

	Bayesian Post-aware Ranking (BPoR) for Tag Recommendation
	Learning Algorithm (BPoR-Learn)
	Optimization Criterion (BPoR-Opt)

	Factorization Models for Tag Recommendation
	Tucker Decomposition (TD)
	Parallel Factor Analysis (PARAFAC)
	Pairwise Interaction Tensor Factorization (PITF)

	Alternative Optimization for Tucker Decomposition
	Relation between TD, PARAFAC and PITF
	Higher-Order Singular Value Decomposition (HOSVD)
	Optimizing the Ranking Statistic AUC per Post (RTF)

	Evaluation
	Datasets
	Evaluation Methodology
	Results

	Conclusion
	References

	Sequential-Set Recommendation
	Related Work
	Item Recommendation from Sequential Set Data
	Sequential vs. General Recommender
	Formalization
	Modelling and Estimation

	Factorizing Personalized Markov Chains (FPMC)
	Personalized Markov Chains for Sets
	Factorizing Transition Graphs
	Summary of FPMC

	Item Recommendation with FPMC
	Optimization Criterion S-BPR
	Item Recommendation from Sequential Set Data with FPMC
	Learning Algorithm

	Evaluation
	Dataset
	Evaluation Methodology
	Results

	Conclusion
	References

	Part IVExtensions
	Time-Variant Factorization Models
	Introduction
	Problem
	Time-Variant Relations
	Sparseness
	Context-Aware Ranking

	Time-Variant Factorization Models
	Time-Variant Tucker Decomposition

	Models for Time-Variant Factors
	Time-Variant Factor Matrices
	General Decomposition Model
	Probabilistic Model
	Non-parametric Method for Generating Time-Variant Basis Functions

	Evaluation
	Experimental Setup
	Results

	References
	Conclusion

	One-Class Matrix Factorization
	Introduction
	Related Work
	One-Class Problems
	Terminology

	One-Class Matrix Factorization
	Prior Information
	One-Class Maximum Margin Matrix Factorization (1C-MMMF)
	Class Prior Regularization
	Class Prior Thresholding
	Scalable Learning

	Evaluation
	Dataset and Methodology
	Results

	Conclusion
	References

	Part VConclusion
	Conclusion
	Summary of Contributions
	Future Directions
	References

	Back Matter

