

High-Level Verification

Sudipta Kundu • Sorin Lerner • Rajesh K. Gupta

High-Level Verification

Methods and Tools for Verification
of System-Level Designs

With Chapter 6 contributed by Malay K. Ganai
and Chapter 8 contributed by Zachary Tatlock

123

Sudipta Kundu
Synopsys Inc.
NW Thorncroft Dr. 2174
97124 Hillsboro
USA
sudiptakundu@gmail.com

Sorin Lerner
Department of Computer Science
and Engineering
University of California, San Diego
Gillman Drive 9500
92093-0404 La Jolla
USA
lerner@ucsd.edu

Rajesh K. Gupta
Department of Computer Science
and Engineering
University of California, San Diego
Gillman Drive 9500
92093-0404 La Jolla
USA
rgupta@ucsd.edu

ISBN 978-1-4419-9358-8 e-ISBN 978-1-4419-9359-5
DOI 10.1007/978-1-4419-9359-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011928550

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

sudiptakundu@gmail.com
lerner@ucsd.edu
rgupta@ucsd.edu
www.springer.com

Preface

Given the growing size and heterogeneity of Systems on Chip (SOC), the design

process from initial specification to chip fabrication has become increasingly com-

plex. The growing complexity provides incentive for designers to use high-level

languages such as C, SystemC, and SystemVerilog for system-level design. While a

major goal of these high-level languages is to enable verification at a higher level of

abstraction, allowing early exploration of system-level designs, the focus so far has

been on traditional testing techniques such as random testing and scenario-based

testing.

This book focuses on the rapidly growing area of high-level verification. We

envision a design methodology that relies upon advances in synthesis techniques as

well as on incremental refinement of the design process. These refinements can be

done manually or through elaboration tools. In this book, we discuss verification of

specific properties in designs written using high-level languages as well as checking

that the refined implementations are equivalent to their high-level specifications.

The novelty of each of these techniques is that they use a combination of formal

techniques to do scalable verification of system designs completely automatically.

The verification techniques fall into two categories: (a) methods for verifying

properties of high-level designs and (b) methods for verifying that the translation

from high-level design to a low-level Register Transfer Language (RTL) design pre-

serves semantics. Taken together, these two parts guarantee that properties verified

in the high-level design are preserved through the translation to low-level RTL.

By performing verification on the high-level design, where the design description

is smaller in size and the design intent information is easier to extract, and then

checking that all refinement steps are correct, we describe a hardware develop-

ment methodology that provides strong and expressive guarantees that are difficult

to achieve by directly analyzing the low-level RTL code.

We expect the reader to gain appreciation and knowledge of the recent advances

in raising the abstraction for design verification tasks. While the complexity of the

problem is not lost on a typical reader, this book would ultimately present a posi-

tive outlook on the engineering solutions to the problem that the reader can use in

practice.

v

Acknowledgments

Acknowledgment is not a mere formality but a genuine opportunity to express the

sincere thanks to all those; without whose active support and encouragement this

book would not have been successful.

This book would not have been possible without contribution from Dr. Malay K.

Ganai and Mr. Zachary Tatlock. Dr. Ganai shared his expertise on bounded model

checking in Chap. 6 and Mr. Tatlock shared his knowledge on once-and-for-all ver-

ification techniques in Chap. 8.

Significant part of this book is based on Dr. Sudipta Kundu’s doctoral dissertation

work. To this end, we express our thanks to Prof. Ranjit Jhala, Prof. Ingolf Krueger,

Prof. Bill Lin, Dr. Yuvraj Agarwal, Federic Doucet, Ross Tate, and Pat Rondon

and to all the faculty members, staffs, and graduate students of the Department of

Computer Science and Engineering for their continuous help and support.

Our sincere thanks to Chao Wang, Nishant Sinha, Aarti Gupta, and all other

members of the System LSI and Software Verification group at NEC Laboratories

America for uncountably many interesting discussion and explanation of key con-

cepts in Verification.

We thank Prof. Alan J. Hu for his valuable insights and comments on the initial

version of the translation validation part of this book.

We also thank the members of the MESL and Progsys group for their cease-

less effort, constant encouragement, and also for the endless good times during the

making of this book.

We also agree that words are not enough to express our indebtedness and grati-

tude toward our families, to whom we owe every success and achievements of our

life. Their constant support and encouragement under all odds has brought us where

we stand today.

vii

Contents

1 Introduction . 1

1.1 Overview of High-Level Verification . 2

1.2 Overview of Techniques Covered in this Book . 4

1.2.1 High-Level Property Checking . 4

1.2.2 Translation Validation . 5

1.2.3 Synthesis Tool Verification . 6

1.3 Contributions of the Book .. 7

1.4 Book Organization .. 8

2 Background . 11

2.1 High-Level Design. 11

2.2 RTL Design . 12

2.3 High-Level Synthesis . 12

2.4 Model Checking . 15

2.4.1 Simple Elevator Example .. 16

2.4.2 Property Specification . 18

2.4.3 Reachability Algorithm .. 19

2.5 Concurrent Programs . 20

2.5.1 Representation of Concurrent Programs . 20

2.5.2 Partial-Order Reduction . 21

2.6 Summary .. 23

3 Related Work . 25

3.1 High-Level Property Checking.. 25

3.1.1 Explicit Model Checking . 25

3.1.2 Symbolic Model Checking . 27

3.2 Translation Validation . 29

3.2.1 Relational Approach . 29

3.2.2 Model Checking.. 30

3.2.3 Theorem Proving .. 31

ix

x Contents

3.3 Synthesis Tool Verification .. 31

3.3.1 Formal Assertions . 32

3.3.2 Transformational Synthesis Tools . 33

3.3.3 Witness Generator . 33

3.4 Summary .. 35

4 Verification Using Automated Theorem Provers . 37

4.1 Satisfiability Modulo Theories . 38

4.2 Hoare Logic . 39

4.3 Weakest Preconditions.. 40

4.4 Additional Complexities for Realistic Programs . 44

4.4.1 Path-Based Weakest Precondition .. 44

4.4.2 Pointers . 46

4.4.3 Loops . 49

5 Execution-Based Model Checking for High-Level Designs 51

5.1 Verification of Concurrent Programs . 51

5.2 Overview of SystemC . 52

5.3 Problem Statement. 52

5.4 Overview of Execution-Based MC for SystemC Designs 52

5.5 SystemC Example . 53

5.6 SystemC Simulation Kernel . 55

5.6.1 Nondeterminism . 55

5.7 State Transition System . 56

5.8 The EMC-SC Approach .. 58

5.8.1 Static Analysis . 59

5.8.2 The Explore Algorithm . 60

5.9 The Satya Tool . 63

5.10 Experiments and Results . 64

5.10.1 FIFO Benchmark.. 64

5.10.2 TAC Benchmark . 65

5.11 Further Reading .. 65

5.12 Summary .. 66

6 Bounded Model Checking for Concurrent Systems:

Synchronous Vs. Asynchronous . 67

6.1 Introduction . 67

6.1.1 Synchronous Models. 69

6.1.2 Asynchronous Models . 70

6.1.3 Outline . 71

6.2 Concurrent System . 72

6.2.1 Interleaving (Operational) Semantics . 72

6.2.2 Axiomatic (Non-Operational) Semantics . 74

6.2.3 Partial Order . 74

Contents xi

6.3 Bounded Model Checking.. 75

6.4 Concurrent System: Model . 76

6.5 Synchronous Modeling .. 77

6.6 BMC on Synchronous Models . 79

6.6.1 BMC Formula Sizes . 81

6.7 Asynchronous Modeling . 81

6.8 BMC on Asynchronous Models: CSSA-Based Approach 83

6.8.1 Thread Program Constraints: ΩT P . 83

6.8.2 Concurrency Constraints: ΩCC . 83

6.8.3 BMC Formula Sizes . 84

6.9 BMC on Asynchronous Models: Token-Based Approach 84

6.9.1 MAT-Based Partial Order Reduction . 86

6.9.2 Independent Modeling .. 89

6.9.3 Concurrency Constraints . 90

6.9.4 BMC Formula Sizes . 91

6.10 Comparison Summary .. 92

6.11 Further Reading .. 93

6.12 Summary .. 93

7 Translation Validation of High-Level Synthesis . 97

7.1 Overview of Translation Validation . 97

7.2 Overview of the TV-HLS Approach . 98

7.3 Illustrative Example . 99

7.3.1 Translation Validation Approach .. .101

7.3.2 Simulation Relation .101

7.3.3 Checking Algorithm .103

7.3.4 Inference Algorithm .103

7.4 Definition of Refinement .106

7.5 Simulation Relation .108

7.6 The Translation Validation Algorithm .. .109

7.6.1 Checking Algorithm .109

7.6.2 Inference Algorithm .112

7.7 Equivalence of Transition Diagrams .115

7.8 Experiments and Results .116

7.8.1 Automatic Refinement Checking of CSP Programs116

7.8.2 SPARK: High-Level Synthesis Framework.118

7.9 Further Reading .. .120

7.10 Summary .. .121

8 Parameterized Program Equivalence Checking .123

8.1 Overview of Synthesis Tool Verification .123

8.1.1 Once-And-For-All Vs. Translation Validation124

8.2 Overview of the PEC Approach .. .124

xii Contents

8.3 Illustrative Example .125

8.3.1 Expressing Loop Pipelining .126

8.3.2 Parameterized Programs .. .126

8.3.3 Side Conditions .127

8.3.4 Executing Optimizations .127

8.3.5 Proving Correctness of Loop Pipelining .128

8.3.6 Parameterized Equivalence Checking .. .128

8.3.7 Bisimulation Relation .128

8.3.8 Generating Constraints .130

8.3.9 Solving Constraints .131

8.4 Parameterized Equivalence Checking .132

8.4.1 Bisimulation Relation .133

8.4.2 Architectural Overview .. .133

8.5 GenerateConstraints Module .134

8.6 SolveConstraints Module.. .137

8.7 Permute Module .137

8.8 Experiments and Results .140

8.9 Execution Engine .142

8.10 Further Reading .. .143

8.11 Summary .. .144

9 Conclusions and Future Work .147

9.1 High-Level Property Checking.. .147

9.2 Translation Validation .148

9.3 Synthesis Tool Verification .. .148

9.4 Future Work .148

References .151

Index .163

Acronyms

ATP Automated Theorem Prover

BDD Binary Decision Diagram

BMC Bounded Model Checking

CCFG Concurrent Control Flow Graph

CDFG Control Data Flow Graph

CEGAR Counter Example Guided Abstraction Refinement

CFG Control Flow Graph

CSG Conflict Sub-Graph

CSP Communicating Sequential Processes

CSSA Concurrent Static Single Assignment

CTL Computation Tree Logic

FIFO First In First Out

FSM Finite State Machine

FSMD Finite State Machine with Datapath

GALS Globally Asynchronous Locally Synchronous

HDL Hardware Description Language

HLD High-Level Design

HLS High-Level Synthesis

HLV High-Level Verification

HTG Hierarchical Task Graph

ICs Integrated Circuits

LLS Language of Labeled Segments

LTL Linear Temporal Logic

MAT Mutually Atomic Transaction

MC Model Checking

OSCI Open SystemC Initiative

PEC Parameterized Equivalence Checking

POR Partial-Order Reduction

RTL Register Transfer Level

SAT SATisfiability

SMC Symbolic Model Checking

SMT Satisfiability Modulo Theory

TLM Transaction Level Modeling

TV Translation Validation

xiii

Chapter 1

Introduction

The quantitative changes brought about by Moore’s law in design of integrated

circuits (ICs) affect not only the scale of the designs, but also the scale of the pro-

cess to design and validate such chips. While designer productivity has grown at an

impressive rate over the past few decades, the rate of improvement has not kept pace

with chip capacity growth leading to the well known design-productivity-gap [105].

The problem of reducing the design-productivity-gap is crucial in not only handling

the complexity of the design, but also combating the increased fragility of the

composed system consisting of heterogeneous components. Unlike software pro-

grams, integrated circuits are not repairable. The development costs are so high that

multiple design spins are ruled out, a design must be correct in the one and often the

only one design iteration to implementation.

High-Level Synthesis (HLS) [61, 62, 82, 84, 136, 147, 148, 203] is often seen as

a solution to bridge the design-productivity-gap. HLS is the process of generating

the Register Transfer Level (RTL) design consisting of a data path and a control

unit from the behavioral description of a digital system, expressed in languages

like C, C++ and Java. The synthesis process consists of several inter dependent sub-

tasks such as: specification, compilation, scheduling, allocation, binding and control

generation. HLS is an area that has been widely explored and relatively mature im-

plementations of various HLS algorithm have started to emerge [82, 84, 136, 203].

This shift in design paradigm enables designers to avoid many low-level design is-

sues early in the design process. It also enables early design space exploration, and

faster functional verification time. However, for verification of high-level designs,

the focus so far has been on traditional testing techniques such as random testing

and scenario-based testing. Over the last few decades we have seen many unfortu-

nate examples of hardware bugs (like Pentium FDIV bug, Killer poke, and Cyrix

coma bug) that have eluded testing techniques. Recently, many techniques inspired

from formal methods have emerged as an alternative to ensure the correctness of

these high-level designs, overcoming some of the limitations of traditional testing

techniques.

The new techniques and methodology for verification and validation at higher

level of abstraction are collectively called high-level verification techniques. We di-

vide the process of high-level verification into two parts. The first part deals with

verifying properties of high-level designs. The methods for verifying high-level

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 1,

c© Springer Science+Business Media, LLC 2011

1

2 1 Introduction

designs allow designers to check for certain properties such as functional behavior,

absence of deadlocks and assertion violations in their designs. Once the properties

are checked, the designers refine their design to low-level RTL manually or using a

HLS tool.

HLS tools are large and complex software systems, and as such they are prone to

logical and implementation errors. Errors in these tools may lead to the synthesis of

RTL designs with bugs in them. As a result, the second part deals with verifying that

the translation from high-level design to low-level RTL preserves semantics. Taken

together, these two parts guarantee that properties satisfied by the high-level design

are preserved through the translation to low-level RTL.

Unfortunately, despite significant amount of work in the area of formal verifica-

tion we are far from being able to prove automatically that a given design always

functions as intended, or a given synthesis tool always produces target programs

that are semantically equivalent to their source versions. Yet, there have been recent

advances: using practical applications of SAT solvers [74, 151], automated theorem

proving [75,164,165], and model checking [23,29,196], where researchers are able

to prove that the designs satisfy important properties. Also, in many cases they are

able to guarantee the functional equivalence between the initial behavioral descrip-

tion and the RTL output of the HLS process.

We argue that despite these advances in verification, the potential for their im-

pact on chip design largely remains unrealized. For the same reason, we argue

that high-level synthesis has not made significant impact on practice, that is, they

have not advanced together. Indeed, we view synthesis and verification as two sides

of the design methodology coin, both equally important and need to advance to-

gether to make a practical impact on the design process. A chip design process is

inherently one of elaboration, one of filling in design details to architectural and

micro-architectural scaffolding. Thus, an effective design methodology incremen-

tally refines a design as it moves through the design process. These refinements can

be done manually or through elaboration tools. The chapters in this book address

verification of specific properties in high-level languages as well as checking that

the refined implementations are equivalent to their high-level specifications. While

various literature and our experience shows that no single technique (including the

ones developed specifically for high-level verification) can be universally useful, in

general an intelligent combination of a number of these techniques driven by well

considered heuristics is likely to prove parts of a design or tool correct, and also

in many cases find bugs in them. The key contribution of this book is that it ex-

plores and describes a combination of formal techniques to do scalable verification

of system designs completely automatically.

1.1 Overview of High-Level Verification

The HLS process consists of performing stepwise transformations from a behavioral

specification into a structural implementation (RTL). The main benefit of HLS is

that it provides faster time to RTL and faster verification time. Figure 1.1 shows

1.1 Overview of High-Level Verification 3

High-Level

Synthesis

High-Level

Property Checking

Property

Synthesis Tool

Verification
Translation

Validation

Design Flow

RTL

Property Checking

Property

Traditional Verification

RTL

Design

High-

Level

Design

Fig. 1.1 Overview of high-level verification

the various components involved in high-level verification and how they interact.

The design flow from high-level specification to RTL is shown along with various

verification tasks. These tasks can be broadly classified as follows:

1. High-level property checking

2. Translation validation

3. Synthesis tool verification

4. RTL property checking

Traditionally, designers start their verification efforts directly for RTL designs.

However, with the popularity of HLS, these efforts are moving more toward their

high-level counterparts. This is particularly interesting because it allows faster

(sometimes by three orders of magnitude [201]) functional verification time, when

compared to a more detailed low-level RTL implementation. Furthermore, it en-

ables more elaborate design space exploration, which in turn leads to better quality

of design. Since RTL property checking techniques is a widely explored sub-

ject [81, 110, 142], here we focus only on the first three verification tasks.

The first category of methods, high-level property checking, allow various

properties to be verified on the high-level designs. Once the important proper-

ties that the high-level components need to satisfy have been checked, various other

4 1 Introduction

techniques are used in order to prove that the translation from high-level design to

low-level RTL is correct, thereby also guaranteeing that the important properties of

the components are preserved.

The second category translation validation include techniques that try to show,

for each translation that the HLS tool performs, that the output program produced by

the tool has the same behavior as the original program. Although this approach does

not guarantee that the HLS tool is bug free, it does guarantee that any errors in trans-

lation will be caught when the tool runs, preventing such errors from propagating

any further in the hardware fabrication process.

The third category synthesis tool verification consists of techniques whose goal is

to prove automatically that a given optimizing HLS tool itself is correct. Although,

these techniques have same goal as translation validation, i.e., to guarantee that a

given HLS tool produces correct result, these techniques are different because they

can prove the correctness of parts of the HLS tool once and for all, before they are

ever run.

In this book, we have explored techniques for each one of the three areas outlined

above, namely high-level property checking, translation validation, and synthesis

tool verification. In the following section we briefly describe the various techniques

from each of these areas that we will cover in details in the later chapters, thereby

outlining the connections and trade-offs between them.

1.2 Overview of Techniques Covered in this Book

As mentioned in the previous section the approaches described in this book falls

into three categories. The key insight behind these approaches is that by perform-

ing verification on the high-level design, where the design description is smaller in

size and the design intent information is easier to extract, and then checking that

all refinement steps are correct, these approaches expand current hardware develop-

ment methodology to provide strong and expressive guarantees that are difficult to

achieve by directly analyzing the low-level RTL code. In the following sections we

briefly discuss each of these techniques that are developed specifically for high-level

verification.

1.2.1 High-Level Property Checking

Starting with a high-level design, we will first discuss model checking techniques to

verify that the design satisfies a given property such as the absence of deadlocks or

assertion violations. Model checking in its pure form suffers from the well-known

state explosion problem. To cope with this problem, some systems give up complete-

ness of the search and focus on the bug finding capabilities of model checking. This

line of thought lead to execution-based model checking approach, which for a given

test input and depth, systematically explores all possible behaviors of the design

(due to asynchronous concurrency). The most striking benefit of execution-based

1.2 Overview of Techniques Covered in this Book 5

model checking approach is that it can analyze feature-rich programming languages

like C++, as it sidesteps the need to formally represent the semantics of the pro-

gramming language as a transition relation. Another key aspect of this approach is

the idea of stateless search, meaning it stores no state representations in memory

but only information about which transitions have been executed so far. Although

stateless search reduces the storage requirements, a significant challenge for this

approach is how to handle the exponential number of paths in the program. To

address this, one can use dynamic partial-order-reduction (POR) techniques to

avoid generation of two paths that have the same effect on the design’s behavior.

Intuitively, POR techniques exploit the independence between parallel threads to

search a reduced set of paths and still remain provably sufficient for detecting dead-

locks and assertion violations.

In Chap. 5 we describe an approach on execution-based model checking. This ap-

proach is implemented in Satya, a query-based model checking tool that combines

static and dynamic POR techniques along with high-level semantics of SystemC to

intelligently explore all possible behaviors of a SystemC design. During exploration

the runtime overhead is reduced (without significant loss of precision) by computing

the dependency information statically. To illustrate its value we describe an exam-

ple, where Satya was able to automatically find an assertion violation in the FIFO

benchmark (distributed as a part of the OSCI repository), which may not have been

found by simulation.

Another approach for model checking is to use symbolic algorithms that manip-

ulate sets of states instead of individual states. These algorithms avoid ever building

the complete state graph for the system; instead, they represent the graph implic-

itly using a formula in propositional logic. Bounded Model Checking (BMC) is one

such algorithm that unrolls the control flow graph (loop) for a fixed number of steps

(say k) and checks whether a property violation can occur in k or fewer steps. This

typically involves encoding the bounded model as an instance of Satisfiability (SAT)

problem. This problem is then solved using a SAT or SMT (Satisfiability Modulo

Theory) solver. A key challenge for BMC is to generate efficient verification condi-

tions that can be easily solved using the appropriate solver.

Chapter 6 (contributed by Dr. Malay Ganai) discusses and compares the state-

of-the-art BMC techniques for concurrent programs. In particular, it compares the

synchronous and asynchronous modeling styles used in formulating the decision

problems, and also the sizes of the corresponding formulas. For synchronous model

it discusses the partial-order based BMC technique as presented in [205] and for

asynchronous model it presents two approaches namely CSSA-based (Concurrent

Static Single Assignment) [174, 204] approach and token-based [67] approach.

1.2.2 Translation Validation

Once the important properties of the high-level components have been verified, the

translation from the high-level design to low-level RTL still needs to be proven

correct, thereby guaranteeing that the important properties of the components are

6 1 Introduction

preserved. One approach to prove that the translation from high-level design to low-

level RTL is correct is to show – for each translation that the HLS tool performs – the

output program produced by the tool has the same behavior as the original program.

In Chap. 7, we describe a translation validation algorithm that uses a bisimulation

relation approach to automatically prove the equivalence between two concurrent

systems. We discuss the implementation of the above algorithm in a system called

Surya. Furthermore, we describe our experience to use it for validating the synthesis

process of Spark [84], a parallelizing HLS framework. Surya validates all the code

transformation phases (except for parsing, binding and code generation) of Spark

against the initial behavioral description. The experiments with Surya showed that

with only a fraction of the development cost of Spark, it can validate the transla-

tions performed by Spark, and it even uncovered two previously unknown bugs that

eluded testing and long-term use.

1.2.3 Synthesis Tool Verification

In order to make a practical impact on improving the level at which designs are done

it is important that both synthesis and verification methods are targeted at high-level

design. Practically, this means verifying not only the design but also the process that

produces such designs. While validation of manual parts of the design process is out

of scope here, we focus on methods that guarantee that the (high-level) synthesis

tool itself is correct. This approach to validation of both process and product are

at the core of our incremental refinement methodology that builds upon advances

in translation validation and synthesis tool verification. Chapter 8 (contributed by

Zachary Tatlock) discuss an approach that verifies the correctness of critical parts

of a synthesis tool. Because some of the most error prone parts of an HLS tool

are its optimizations, this approach proves the correctness of optimizations using

Parameterized Equivalence Checking (PEC) [120]. Moreover, the PEC approach is

not limited to only HLS tools; it can be used for any domain that transforms an input

program using semantics-preserving optimizations, such as optimizers, compilers,

and assemblers.

The PEC technique is a generalization of translation validation that proves the

equivalence of parameterized programs. A parameterized program is a partially

specified program that can represent multiple concrete programs. For example, a

parameterized program may contain a section of code whose only known property

is that it does not modify certain variables. To highlight the power of PEC, a

domain-specific language is designed for implementing complex optimizations us-

ing many-to-many rewrite rules. This language is used to implement a variety of

optimizations including software pipelining, loop unrolling, and loop unswitching.

The PEC implementation was able to automatically verify that all the optimizations

implemented in this language preserve program behavior.

1.3 Contributions of the Book 7

1.3 Contributions of the Book

The primary contribution of this book is to explore various formal techniques that

can be used for high-level verification. We believe by performing verification on the

high-level design, and then checking that all refinement steps are correct, the domain

of high-level verification can provide strong and expressive guarantees that would

have been difficult to achieve by directly analyzing the low-level RTL code. The

goal is to move the functional verification tasks earlier in the design phase, thereby

allowing faster verification time and possibly quicker time to market.

To systematically explore the domain of high-level verification, we classified the

various verification tasks into three main parts, namely high-level property check-

ing, translation validation, and synthesis tool verification. We describe approaches

for each of the above mentioned verification tasks. The novelty of these approaches

is that they combine a number of formal techniques along with well considered

heuristics to do scalable verification of high-level designs completely automatically.

We discuss the implementation of some of these high-level verification ap-

proaches into prototype tools. We also describe the complemented methodology

to use these tools. The tools are: Satya for high-level property checking, Surya

for translation validation, and PEC for synthesis tool verification. These tools use

state-of-the-art techniques from areas such as model checking, theorem proving,

satisfiability modulo theories, static analysis and compiler correctness. Apart from

these tools, this book also covers a comparison of recent BMC techniques for con-

current programs.

The techniques presented here exploits structures specific to high-level designs,

thereby in many cases simplifying the algorithms and improving their performance.

For example, Satya exploits SystemC specific semantics to efficiently explore a

reduced set of possible executions, and Surya relies on structure preserving trans-

formations that are predominantly used in HLS.

The prototype tools enables experimentation with large “real-world” designs and

tools. The key characteristics of the high-level verification approaches covered are

as follows:

Scalable: Most of the techniques discussed here are modular as they work on one

entity at a time. For example, Surya works on one procedure at a time, and PEC

works on one transformation at a time. Furthermore, in the cases where the entire

design have to analyzed, various reduction techniques like partial-order reduction,

context bounding, and program structure based reduction (e.g. lock-unlock, fork-

join, wait-notify, etc.) is applied. While these software engineering decisions and

reductions theoretically limits the scope of the verification tasks on a given design,

it is rarely an issue in practice as it follows the designer’s and tool developer’s pro-

gramming abstractions.

Practical: The prototype tools are practical enough to be applied to industrial

strength designs and tools. For instance, Satya was used to check an industrial

benchmark namely the TAC platform [149], and Surya is being used to validate the

synthesis process of Spark [84], a state-of-the-art academic HLS framework.

8 1 Introduction

Useful: The tools are able to automatically guarantee the correctness of various

properties and transformations. Apart from correctness guarantee, these tools are

also quite useful for finding bugs. For example, Satya was able to automatically

find an assertion violation in the FIFO benchmark (distributed as a part of the OSCI

repository), and Surya was able to uncover two previously unknown bugs in the

Spark HLS framework.

1.4 Book Organization

The organization of this book is shown in Fig. 1.2. Chapter 2 presents a brief

overview of the three different parts of high-level verification on which the ap-

proaches are applied. More specifically, we present a brief introduction of high-level

designs, RTL designs, and high-level synthesis. We also introduce in this chapter the

concepts of model checking, partial-order reduction and a representation of concur-

rent programs, which we use in the rest of this book.

In Chap. 3, we present a detailed discussion of the related works in the area of

high-level verification. In particular, we divide the related works in to three main ar-

eas, namely high-level property checking, translation validation, and synthesis tool

Chapter 3: Related Work

Chapter 2: Background

High-Level

Synthesis

High-Level

Property Checking

Property

Synthesis Tool

Verification

RTL

Property Checking

Property

RTL

Design

High-

Level

Design

Chapter 5: Execution-based MC

for High-Level Designs

Chapter 6: BMC for Concurrent

Systems

Chapter 7: Translation Validation

of HLS

Chapter 8: Parameterized

Equivalence Checking

Chapter 9: Conclusion and Future Work

Translation

Validation

Chapter 4: Verification using ATPs

Chapter 1: Introduction

Fig. 1.2 Book organization

1.4 Book Organization 9

verification. We discuss the various tools and techniques explored in these areas.

Apart from these related works, in each of the following chapters we again point the

reader to further readings that are specific to the chapter.

The next chapter (Chap. 4) describes in details two core verification techniques

that uses Automated Theorem Provers (ATP). It first provides a brief introduction

to Satisfiability Modulo Theories (SMT) and then discusses two formal techniques,

namely Hoare Logic and Weakest Preconditions, which are extensively used in high-

level verification.

Chapters 5 and 6 discuss two high-level property checking techniques. In

Chap. 5, we present an execution-based model checking approach for the high-

level language SystemC. This approach starts with a design written in SystemC,

and then intelligently explore a subset of the possible executions till a certain depth

to verify that the design satisfies a given property such as absence of deadlocks

or assertion violations. Chapter 6, on the other hand discuss symbolic analysis

approaches for concurrent programs. It compares state-of-the-art synchronous and

asynchronous BMC approaches for performance and scalability.

Chapter 7 discusses a translation validation approach that proves the translation

from high-level design to the scheduled design is correct. We describe in detail

an algorithm that uses a bisimulation relation approach to automatically prove the

equivalence between two concurrent programs. In this chapter, we also report our

efforts to validate the synthesis process of Spark, a parallelizing HLS framework.

In Chap. 8 we describe another approach that also proves the result of HLS pro-

cess is correct. This approach called Parameterized Equivalence Checking falls in

the synthesis tool verification category. This technique generalizes the translation

validation technique of Chap. 7 to prove that the optimizations performed by a

HLS tool is correct once and for all. We describe the details of the algorithm and

experiments.

Finally, Chap. 9 wraps-up the book with a conclusion and a discussion of future

work on high-level verification.

Chapter 2

Background

We envision a design methodology that is built around advances in high-level design

and verification to improve the quality and time to design microelectronic sys-

tems. In this chapter, we will present a brief overview of the three different parts

of high-level verification as shown in Fig. 1.1 on which the verification algorithms

are applied. We first present in Sect. 2.1 and in Sect. 2.2 a description of high-level

designs and RTL designs respectively. We then in Sect. 2.3 give a brief introduction

of high-level synthesis. In the next two sections we introduce the concept of model

checking, and our program representation scheme that is used throughout the book.

2.1 High-Level Design

A high-level design is a behavioral or algorithmic specification of a system. This

specification typically is written in a high-level language such as behavioral VHDL,

C and C++ (and variants). The main reason to use a high-level language is to be

able to describe both the hardware and software components of a design, and to

allow large system designs to be modeled uniformly. The enormous flexibility in

describing computations in a high-level language enables a designer to capture de-

sign description at multiple levels of abstraction from behavioral descriptions to

transaction level modeling (TLM) [27, 78, 192]. Intuitively, high-level design gives

an abstract view of the system. When describing behaviors in a high-level language,

designers often use programming constructs such as conditionals and loops for pro-

gramming convenience often with no notion of how these constructs may affect

synthesis results. For example, SystemC [78] TLM supports new synchronization

procedures such as wait-notify, which makes current techniques for synthesis in-

applicable. One of the key aspects of high-level design is the ability to provide a

golden reference of the system in an early phase of the development process.

In this book, we use various high-level languages as input for the verifica-

tion techniques. In Chap. 5 we will discuss a property checking approach for the

SystemC language. In Chap. 6 we describe various BMC techniques that work

on concurrent C programs. Also, the translation validation approach described in

Chap. 7 uses two high-level languages namely, C and CSP.

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 2,

c© Springer Science+Business Media, LLC 2011

11

12 2 Background

2.2 RTL Design

At the current state of practice, RTL designs are generally considered low-level

designs consisting of structural implementation details. The RTL describes the ex-

act behavior of the digital circuits on the chip, as well as the interconnections to

inputs and outputs. The structural implementation usually consists of a data path,

a controller and memory elements. Figure 2.2 shows the controller and data path

for a RTL design. The data path consists of component instances such as ALU,

multiplier, registers, and multiplexers selected from a RTL component library. The

controller is a finite-state machine (FSM) describing an ordering of the operations in

the data path. A tiny functional error in the RTL design can sometimes make the en-

tire chip inoperable. Furthermore, writing RTL designs are often tedious, complex,

and error-prone as such it is desirable to have a good high level design and then use

incremental refinement process to generate the final RTL.

In this book, we do not consider RTL property verification. However, for the

purpose of translation validation we want to check the equivalence between a pair of

high-level design and RTL design. Unfortunately, checking equivalence between the

high-level design and RTL design is a hard problem. As such in Chap. 7 we describe

an approach that validates the equivalence between a high-level design written in C

and the scheduled design (described in the next section), which is an intermediate

low-level design.

2.3 High-Level Synthesis

HLS can be seen as stepwise transformation of a high-level design into a RTL design

as shown in Fig. 2.1. Figure 2.2 shows the RTL design for the example in Fig. 2.1.

Different HLS tool produces different RTL design for the same high-level input as it

minimizes various metrics like area, power and timing. HLS starts by capturing the

behavioral description in an intermediate representation, usually a control data flow

graph (CDFG). Thereafter the HLS problem has usually been solved by dividing the

problem into several sub-tasks [84]. Typically the sub-tasks are:

1. Allocation: This task consists of determining the number of resources that need

to be allocated to synthesize the hardware circuit (not shown in the figure). Typ-

ically, designers can specify an allocation in terms of the number of resources

of each resource type. Resources consist of functional units (like adders and

multipliers), registers and interconnection components (such as multiplexers and

buses). The allocated resources constitute the resource library for the design.

In our example (Figs. 2.1 and 2.2), the resource library contains a multiplier,

an ALU, 2 multiplexers, 4 registers, 2 buses and a memory component (not all

components are shown in the figure). Usually, a designer chooses these compo-

nents based on several design constraints like area, performance and power.

2.3 High-Level Synthesis 13

…
.

x
 =

 a
 *

 b
;

c
 =

 a
 <

 b
;

if
 (

c
)

th
e
n

a
 =

 b
 –

x
;

e
ls

e

a
 =

 b
 +

 x
;

a
 =

 a
 +

 x
;

b
 =

 b
 *

 x
;

…
.

x
 =

 a
 *

 b

c
 =

 a
 <

 b

c

I
f
N

o
d
e

a
 =

 b
 –

x

b
 =

 b
 *

 x
a
 =

 b

+

x

b
 =

 b
 *

 x

a
 =

 a
 +

x

T
F

c
 =

 a
 <

 b

c

I
f
N

o
d
e

x
 =

 a
 *

 b

a
 =

 b
 -

x
a
 =

 b
 +

 x

b
 =

 b
 *

 x

a
 =

 a
 +

 x

T
F

B
e
h

a
v
io

u
ra

l

S
p

e
c
if

ic
a
ti

o
n

In
it

ia
l
C

D
F

G
S

c
h

e
d

u
le

d
 C

D
F

G

2
.
S

c
h

e
d

u
li
n

g

5
.
C

o
n

tr
o

l
G

e
n

e
ra

ti
o

n

a
n

d
 O

p
ti

m
iz

a
ti

o
n

A
rc

h
it

e
c
tu

re

M
 e

 m
 o

 r
 y

Controller

M
u
lt

M
u

x
R

A
lu

R
e
s
o

u
rc

e
 L

ib
ra

ry

D
 a

 t
 a

 p
 a

 t
 h

D
 a

 t
 a

 p
 a

 t
 h

3
.
R

e
s
o

u
rc

e
 S

e
le

c
ti

o
n

4
.
B

in
d

in
g

 a
n

d
 O

p
ti

m
iz

a
ti

o
n

F
ig

.
2
.1

S
te

p
w

is
e

tr
an

sf
o
rm

at
io

n
d
u
ri

n
g

h
ig

h
-l

ev
el

sy
n
th

es
is

p
ro

ce
ss

14 2 Background

MULT ALU

Data path

B

M2M1

X

MT_CS

M1_CS

A C
A_WR C_WR

B_WR

M2_CS

X_WR

ADD_CS

flag

B2_CS

A_WR

B_WR

X_WR

C_WR

M1_CS

M2_CS

MT_CS

ADD_CS

B2_CS

flag

B1_CS

B1_CS

M1_CS <= ‘1’; M2_CS <= ‘1’;

MT_CS <= ‘1’; B1_CS <= ‘1’;

B2_CS <= ‘1’; A_WR <= ‘1’;

B_WR <= ‘1’; C_WR <= ‘0’;

X_WR <= ‘0’; ADD_CS <= ‘-’;

C
o

n
tr

o
ll

e
r

S0

S1

S2

S3

S4

M1_CS <= ‘0’; M2_CS <= ‘1’;

MT_CS <= ‘1’; B1_CS <= ‘1’;

B2_CS <= ‘1’; A_WR <= ‘0’;

B_WR <= ‘0’; C_WR <= ‘1’;

X_WR <= ‘1’; ADD_CS <= ‘<’;

flag
!flag

M1_CS <= ‘1’; M2_CS <= ‘1’;

MT_CS <= ‘1’; B1_CS <= ‘1’;

B2_CS <= ‘1’; A_WR <= ‘1’;

B_WR <= ‘1’; C_WR <= ‘0’;

X_WR <= ‘0’; ADD_CS <= ‘+’;

M1_CS <= ‘0’; M2_CS <= ‘0’;

MT_CS <= ‘0’; B1_CS <= ‘0’;

B2_CS <= ‘1’; A_WR <= ‘1’;

B_WR <= ‘0’; C_WR <= ‘0’;

X_WR <= ‘0’; ADD_CS <= ‘+’;

Fig. 2.2 The controller and the data path for the example in Fig. 2.1

2. Scheduling: This step determines the time step or the clock cycle in which each

operation of the design executes. The ordering between the “scheduled” oper-

ations is constrained by the data (and possibly control) dependencies between

the operations. Scheduling is often done under constraints on the number of re-

sources.

Resource constraint scheduling algorithms are highly dependent on the re-

source allocation task. For example, since in the allocation step the designer

chose a multiplier and an ALU, we were able to schedule both the statements

(x = a∗b and c = a < b) in one cycle (C1). In contrast, if only an ALU is chosen

then both the operations have to be scheduled in different cycles.

Schedulers also do code motions to enhance concurrency and hence improv-

ing resource utilization. In our example, the statement b = b∗x has been moved

inside the ‘if block’ by the scheduler to schedule it in cycle C2 instead of cycle C3.

3. Resource selection: This task determines the resource type from the resource li-

brary that an operation executes on. The need for this task arises because there

are several resources of different types (and different area and timing) that an

operation may execute on. For example, an addition may execute on an adder,

an ALU, or a multiply-accumulate unit. Resource selection must make a judi-

cious choice between different resources such that a metric like area or timing is

minimized.

In the example, all multiplication operations are done using the multiplier and

the addition and comparison operations are executed in the ALU (see Figs. 2.1

and 2.2).

4. Binding and Optimization: This task determines the mapping between the op-

erations, variables and data (and control) transfers in the design graph and

the specific resources in the resource library. Hence, operations are mapped

2.4 Model Checking 15

to functional units, variables to registers and data/control transfers to intercon-

nection components. Optimizations deals with the minimization of the physical

components in the synthesized design.

In our case, the variables a,b,c,and x in the behavioral description are bound

to the registers A,B,C,and X respectively. Figure 2.1 shows the binding of the

variable a to the register A and the operation + to the ALU. Notice that multi-

ple operations can be bound to the same resource. The complete binding of the

operations and the data/control transfers to functional units and interconnection

components are shown in Fig. 2.2.

5. Control Generation and Optimization: Control synthesis generates a control unit

(usually FSM) that implements the schedule. This control unit generates control

signals that control the flow of data through the data path (i.e. through the mul-

tiplexers). Control optimization deals with minimizing metrics such as area and

power.

Operations in the scheduled CDFG are replaced by the concrete values of con-

trol signals going to the data path. Thus, for example the concurrent operations

(x = a ∗ b and c = a < b) are replaced by the following signals.

M1 CS <= ‘0’, M2 CS <= ‘1’, MT CS <= ‘1’,

B1 CS <= ‘1’, B2 CS <= ‘1’, A WR <= ‘0’,

B WR <= ‘0’, C WR <= ‘1’, X WR <= ‘1’,

ADD CS <= ‘<’

According to these control signals, the contents of the registers A and B are simul-

taneously fed as inputs to the MULT and the ALU units and then the result of

MULT and ALU is saved in the registers X and C respectively.

HLS is an area that has been widely explored and relatively mature implemen-

tations of various HLS algorithm have started to emerge [84, 136, 203]. These tools

are usually very large and complex piece of software, as such their implementa-

tion are prone to errors. In Chap. 7 we discuss an approach that validates parts of

a parallelizing HLS tool called Spark [84]. Furthermore, in Chap. 8 we describe

a technique that can once-and-for-all prove the correctness of important parts of a

HLS tool.

2.4 Model Checking

Does the design satisfy a given property (specification)? This is one of the key

question that every hardware designer have to answer. Fortunately, in the last two

decades, researchers have made tremendous progress in developing tools and tech-

niques for verifying properties and design. Although, it is hard to prove if a design

satisfy a given specification that is written in English, it is possible for specifications

that are formulated using unambiguous formal language. Model Checking [101] is

16 2 Background

the most successful approach in this direction. Given a model of a system, it tests au-

tomatically whether this model satisfy a given specification (Fig. 2.3). Typically, the

model of the (hardware) system is represented using a Finite State Machine (FSM)

and the specification is formulated in temporal logic [169] formula. The FSM is a

directed graph consisting of nodes (or vertices) and edges.

2.4.1 Simple Elevator Example

This section describes how we can use model checking to verify properties of a sim-

ple two floor elevator example, which is shown in Fig. 2.4 using a C-style language.

The program has a main function Elevator (lines 5–11) and a helper function Move

(lines 12–19). The global variables of the program are shown in lines 1–4. The pro-

gram uses an enum variable currFloor to keep track in which floor the elevator is

currently located. It also use a boolean array doorOpen to indicate if the door of

the elevator is open in the corresponding floor and a boolean variable moving to

represent if the elevator is currently moving or is stopped. The Elevator function

in an infinite loop sets the doorOpen variable for the current floor to false and the

moving variable to true and then calls the helper function Move. The Move function

depending on the current floor where the elevator is present changes the currFloor

Model

Checking

Tool

Property

(Specification)

Design

(Model)

If the model satisfy the specification

Counter-example if the model does

not satisfy the specification

Fig. 2.3 The model checking approach

Fig. 2.4 Simple elevator example

2.4 Model Checking 17

variable up or down and then sets the state of the doorOpen of that floor to open and

the state of the elevator to stop. Although this example may appear trivial, it can be

easily extended to one with many floors, fire emergency state, and priority of floors,

thereby increasing the complexity of the elevator controller.

A data state for this example is defined by a tuple of values for each of the three

global variables. For example, one particular data state is

〈currFloor = 1,doorOpen[2] = (true, f alse),moving = f alse〉

For brevity we use the notation 〈1,(T,F),F〉 to represent the above data state. An

assignment statement in Fig. 2.4 defines how the data state of the program changes.

The data-state space of our example along with their possible transitions is shown

in Fig. 2.5. Not all data states are valid initial data state. For example, let us assume

that when the system starts the elevator is not moving and both the doors are closed.

For this assumption, the possible reachable data states are shown within the dotted

line in Fig. 2.5. A program state is defined as a data state along with the valuation

of another variable the program counter (or program location) pc. The variable pc

defines the possible locations of the program. Informally, the different values of pc

is given in terms of the line number of the program. For our example, the variable

pc can take values in the range [5–19] and it’s initial value is 5.

An important concept in model checking is that of an execution sequence

(also referred as execution path). Starting from a given initial program state an

<1, (T, F), T>

<1, (T, T), F> <1, (T, T), T>

<1, (F, T), F> <1, (F, T), T>

<2, (T, F), F><2, (T, F), T>

<2, (T, T), F><2, (T, T), T>

<2, (F, T), T>

<1, (T, F), F> <1, (F, F), F> <1, (F, F), T>

<2, (F, F), F>

<2, (F, F), T>

<2, (F, T), F>

Fig. 2.5 A FSM of the data-state space for the simple elevator example

18 2 Background

execution sequence is informally defined as the possibly infinite sequence of states

obtained by following the transitions in the FSM. Note that for concurrent pro-

grams this concept of execution sequence is generalized into an execution tree

as from any state there are many possible next states. In general, there are many

possible execution sequences for a given program. The goal of model checking

is to check whether or not the execution sequences satisfies a user-given property

specification.

2.4.2 Property Specification

A property is usually expressed using a formula specified using boolean proposi-

tional logic. For programs we also need to specify properties involving execution

paths. Some form of temporal logic is usually suitable for specifying such prop-

erties. Computation Tree Logic (CTL) is a branching time temporal logic that has

been extensively used by model checking tools for this purpose.

In CTL formulas are composed of path quantifiers and temporal operators. There

are two path quantifiers – A (for all paths) and E (for some path) – for specifying

properties of (all or some) paths beginning from a state. There are five temporal

operators – X (next state), F (for some state), G (for all states), U (until), and R

(release) – that describes properties of (all or some) states of a path. These quanti-

fiers and operators are summarized as follows:

Path Quantifiers:

A φ φ holds on all paths starting from the current state.

E φ There exists at least one path starting from the current state where φ holds.

Temporal Operators:

X φ φ holds at the next state.

G φ φ holds on all states for the entire subsequent path.

F φ φ eventually holds on some state on the subsequent path.

φ U ψ φ holds until at some state ψ holds and eventually ψ holds.

φ R ψ ψ holds until and including the state where φ holds, however, φ is not

required to hold eventually.

Some examples of properties are as follows:

• EF(moving∧ currFloor == 1): It is possible to get to a state where the elevator

is moving and it is at the first floor.

• AG(EF(¬doorOpen[0])): From any state it is possible to get to a state where the

door of the first floor is closed.

• AG(moving ⇒ AF(¬moving)): If the elevator is moving then it will be eventu-

ally stopped.

2.4 Model Checking 19

2.4.3 Reachability Algorithm

Given a temporal logic formula φ and a model of the program in some form of FSM

M , a simple model-checking algorithm essentially reduces to a graph reachabil-

ity algorithm that examines every reachable node of M to check if it satisfies the

formula φ .

For example, consider a property EF f where f is a boolean propositional formula

not involving any temporal quantifiers or operators. Let the FSM M be a tuple

M = (N ,I ,E), where N is a set of nodes, I ⊆ N is a set of initial nodes,

and E ⊆ N ×N is a set of edges. The nodes represent program states, and the

edges represent possible transitions which may alter the state. The property EF f is

satisfied in M if there exists some state in M that is reachable from the initial states

and the formula f is true in that state.

Figure 2.6 shows the algorithm CheckEF, a procedure that traverses the graph to

check if the formula f holds in any state of the graph. The algorithm maintains a set

reach of reachable states and a set worklist of states that are found to be reachable

but whose successors may not have been explored. Initially, the set reach is empty,

and the set worklist contains all the initial states. The main loop of the algorithm

starts by picking a state from the worklist. If the formula f holds in that state then

we know that the property EF f is satisfied in M , and the algorithm ends. Otherwise,

if the state has not been visited before, the successors of the state are added to the

worklist. The process is repeated until all reachable states have been explored, which

happens when the worklist becomes empty. At this point, reach contains exactly the

set of reachable states and the formula f does not hold in any of these states. Hence,

the property EF f is not satisfied in M . The loop in the algorithm terminates for all

programs with finite reachable states.

In practice, model-checking algorithms are far more complex, they use intelli-

gent heuristics and efficient data structures to prune the state space to avoid checking

those parts where the property is guaranteed to be true. Recent model checkers are

also able to verify properties of state spaces of size as large as 1020 states [23].

Pioneering work on model checking was done by E.M. Clarke, E.A. Emerson

and A.P. Sistla [32, 33, 52] and by J.P. Queille and J. Sifakis [173]. E.M. Clarke,

Fig. 2.6 Algorithm for

checking if EF f is satisfied

in M

20 2 Background

E.A. Emerson, and J. Sifakis shared the 2007 Turing Award for their work on model

checking. In Chap. 3 we will cover some of the advances in model checking and pro-

vide pointers for them. In Chaps. 5 and 6 we present two model-checking algorithms

that are related to high-level verification.

2.5 Concurrent Programs

A concurrent program usually consists of a set of processes or components that

interact with each other. The execution semantics of a concurrent program can be

broadly divided into two types: asynchronous and synchronous. In asynchronous (or

interleaved) mode of execution only one atomic statement of a process is executed

at any time. In synchronous mode of execution an atomic statement from each of

the processes is execute at the same time. For example, consider a simple program

of two processes P1 and P2 interacting with shared variables y and z. The processes

have only one statement each as shown below.

Process P1 Process P2

y := z z := y

In asynchronous mode of execution only one process is executed at any time. There-

fore, at the end of the execution either both shared variables y and z will have the

old value of z (if P1 is executed first) or both variables will have the old value of y

(if P2 is executed first). On the other hand, in synchronous mode of execution the

values of y and z will be swapped (exchanged).

Apart from the mode of execution, two concurrent programs can also differ based

on their mode of communications. Concurrent programs can again be synchronous

(blocking) or asynchronous (non-blocking) based on their mode of communica-

tion. In synchronous mode, communication between processes is unbuffered, and

processes wait (or block) until the data between them has been transferred. In asyn-

chronous mode, communication between processes is buffered and the processes do

not wait after sending or before receiving data.

2.5.1 Representation of Concurrent Programs

Unless otherwise specified all of the programs we consider are Globally Asyn-

chronous Locally Synchronous (GALS). This means that the programs consists of

components that are asynchronous (interleaved), however within a component there

can be statements that are synchronous (i.e. multiple statements can be executed

at the same time). We visually represent a concurrent program using an internal

Concurrent Control Flow Graph (CCFG) representation. Concurrent behavior of

programs can be modeled as synchronous or asynchronous. The CCFG of a simple

2.5 Concurrent Programs 21

Fig. 2.7 Our Concurrent

Control Flow Graph (CCFG)

representation
0

p = 0

1

k=p p = 10

||

6
Process P1

2

3

sum = 0

(k < 10) ¬ (k < 10)

p

7

Process P2

4

5

k = k + 1

sum = sum + k

example is shown in Fig. 2.7. In general, we omit the details of the actual code,

because the CCFG representation is complete. This example consist of two pro-

cesses P1 and P2. We use a node with the symbol || to denote the asynchronous

parallel composition of child processes (components). Statements on the same edge

are executed at the same time (i.e. synchronously). The example computes the sum

from 1 to 10 in the variable sum if the process P1 is executed before P2, otherwise

sum is 0.

2.5.2 Partial-Order Reduction

In this section, we provide an overview of the partial-order reduction (POR) tech-

nique, which is used in almost all approaches discussed in this book. Verification

of asynchronous concurrent programs is hard due to various possible interleavings

between the processes. The verification model is typically obtained by composing

individual process models using interleaving semantics. Thus, in the worst case, the

global state space can be the product state space of the individual processes. To

combat this state explosion problem, most methods employ POR techniques to re-

strict the state-traversal to only a representative subset of all interleavings, thereby,

avoiding exploring the redundant interleaving among independent transitions [70].

POR in its most simple form exploit the commutativity of concurrently exe-

cuted transitions, which result in the same state when executed in different orders.

22 2 Background

Fig. 2.8 Possible data states due to executing three concurrent statements

For example, consider a simple program of three processes P1, P2, and P3. The pro-

cesses have only one statement each as shown here.

Process P1 Process P2 Process P3

a ++ b ++ c ++

Let the initial data state of the program be 〈a = 0,b = 0,c = 0〉 (for brevity we use

the notation 〈0,0,0〉). Figure 2.8 shows the various possible data states that can be

reached from the initial state due to interleavings. The three statements in this ex-

ample are independent, i.e., their order of execution does not change the final state.

Now, if the property we are considering is only dependent on the final state, then

during exploration using POR we only need to traverse one of these interleavings.

POR techniques are extensively used by software model checkers for reducing

the size of the state space of concurrent system [71,94]. Other state space reduction

techniques, such as slicing [88, 184] and abstraction [9], are orthogonal and can be

used in conjunction with POR. The POR techniques can be divided in two main

categories: static [70] and dynamic [57].

The main static POR techniques are persistent/stubborn sets and sleep sets [70].

Intuitively, the persistent/stubborn set techniques compute a provably sufficient sub-

set of the enabled transitions in each visited states such that if a selective search is

done using only the transitions from these subsets the detection of all the deadlocks

and safety property violations is guaranteed. All these algorithms infer the persistent

sets from the static structure (code) of the system being verified. On the other hand,

the sleep set techniques exploits independences between the transitions in the per-

sistent sets to reduce interleavings. Both these techniques are orthogonal and can be

2.6 Summary 23

applied simultaneously [70]. In contrast, the dynamic POR technique evaluates the

dependency relation dynamically between the enabled and executed transitions for

a given execution. In particular, it starts by executing the program until completion,

and then infers the persistent sets dynamically by collecting information about how

threads have communicated during this specific execution trace. This technique is

particularly important as we will see later that most of the approaches discussed in

this book uses some form of POR.

2.6 Summary

In this chapter, we presented a brief overview of the three main concepts related to

our formulation of high-level verification namely, high-level design, RTL design,

and HLS. We first presented a description of high-level design and RTL design in

Sects. 2.1 and 2.2. We also mentioned the different high-level languages and RTL

representation that we use in this book. We then briefly discussed in Sect. 2.3 the

various steps of HLS using a simple example. We also provided a brief introduction

to model checking in Sect. 2.4. Finally, in Sect. 2.5, we introduced the concurrent

program representation and describe an important technique called partial-order

reduction that we use throughout this book.

Chapter 3

Related Work

Each one of the three areas of high-level verification outlined in Chap. 1, namely

high-level property checking, translation validation, and synthesis tool verification,

have been explored in a wide variety of research efforts. In this chapter, we discuss

various techniques from each of these areas that are directly relevant to this book.

3.1 High-Level Property Checking

The high-level designs written using languages like C, SystemC, SystemVerilog

are mostly software programs with support for specialized hardware data types and

other hardware features like synchronous concurrency, synchronization, and tim-

ing [83]. Thus, many efforts to use software verification tools to verify these designs

have been explored. Model checking is the most prevalent automatic verification

technique for software and hardware. It is a technique for verifying that a hardware

or software system satisfy a given property (specification). These properties, which

are usually expressed in temporal logic, typically encode deadlock and safety prop-

erties (e.g. assertion violations). In this section, we survey several software model

checking techniques grouped as explicit and symbolic techniques.

3.1.1 Explicit Model Checking

In explicit state enumeration model checking, the reachable states of a design are

generated using an exhaustive search algorithm. This technique explicitly stores the

entire state space in memory and checks if certain error states are reachable. For

finite state system this technique is both sound (i.e. whenever model checking can-

not reach a given error state, it is guaranteed to not reach that error state ever in

real execution) and complete (i.e. whenever model checking finds an error, it is

guaranteed to be an error in real execution). However, as the size of the finite state

spaces grow larger and larger, this technique suffers from the well known state ex-

plosion problem. To address the state explosion problem, researchers use techniques

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 3,

c© Springer Science+Business Media, LLC 2011

25

26 3 Related Work

to construct the state space on-the-fly [94] during the search, rather than generating

all the states and transitions before the search. In addition, they use bit-state hash-

ing [94], in which the hash value of the reachable state is stored, instead of the state

itself. Due to possible hash collision the bit-state hashing technique is unsound.

Other techniques include partial-order-reduction [70], symmetry reduction [35, 53]

and compositional techniques [34].

Intuitively, the partial-order reduction technique exploits the independence be-

tween parallel threads to compute a provably sufficient subset of the enabled

transitions in each visited states such that if a selective search is done using only

the transitions from these subsets the detection of all the deadlocks and safety

property violations is guaranteed. Symmetry reduction on the other hand exploits

symmetries in the program, and explores one element from each symmetry class.

Compositional techniques decompose the original verification problem to related

smaller problems such that the result of the original problem can be obtained by

combining the smaller ones.

The most popular finite state explicit model checker for concurrent programs are

SPIN [94] and MURPHI [46]. Both tools have been successfully used for verifica-

tion of sequential circuits and protocols.

Moreover, in order to achieve scalability some systems give up completeness

of the search and focus on the bug finding capabilities of model checking. For in-

stance, one can bound the depth of the search and/or bound the number of context

switches [156]. This line of thought also leads to the execution-based model check-

ing approach. These methods are typically used for improving the coverage of a test.

Traditionally, in testing the user writes a test bench and runs it. Typically, the oper-

ating system scheduler executes only one fixed schedule out of the many possible

behaviors. However, the scheduler of the execution based model checker system-

atically explore all possible behaviors of the program for a given test input and

depth. The most striking benefit of this approach is the ease of implementing it, as it

sidesteps the need to formally represent the semantics of the programming language

as a transition relation. Another key aspect of this method is the idea of stateless [71]

search, i.e., it stores no state representations in memory but only information about

which transitions have been executed so far. Although stateless search reduces the

storage requirements, a significant challenge for this approach is how to handle the

exponential number of paths in the program. Here again various reduction tech-

niques like symmetry, partial-order [57], and abstraction have been explored.

Verisoft [71] is the first tool in this domain, and it explores arbitrary code

written in full fledged programming language like C or C++. It does so by modi-

fying the OS scheduler and systematically exploring all possible interleavings. Java

PathFinder [202] is a tool for Java programs that uses the virtual machine rather than

OS scheduler to explore the different behaviors. CMC [155] is another tool for C

programs that improves the efficiency of the search by storing a hash of each visited

state. Dynamic validation using execution-style model checking is also well adapted

for validating SystemC designs [89].

3.1 High-Level Property Checking 27

3.1.2 Symbolic Model Checking

The above reduction techniques like partial-order, address the state explosion prob-

lem for asynchronous concurrent systems (by reducing the number of interleavings

that need to be explored). However, they are not so effective in the case of syn-

chronous concurrent systems, which do not involve interleaving. Symbolic model

checking techniques, on the other hand, are quite effective for both synchronous

and asynchronous concurrent systems. Furthermore, the reduction techniques dis-

cussed in Sect. 3.1.1 including partial-order reduction are orthogonal and can be

used in conjunction with symbolic techniques.

Symbolic algorithms manipulate sets of states, instead of individual states. These

algorithms avoid ever building the complete state graph for the system; instead,

they represent the graph implicitly using a formula in propositional logic. They

can also represent infinite states using a single formula. For example the predicate

(x > 1∧y > 1) denotes the set of all states in which the value of the variables x and

y are both greater than 1. The first major step toward symbolic representation is the

use of Binary Decision Diagrams (BDD) [22]. BDDs are a canonical form represen-

tation for boolean formulas, and are particularly important for finite state programs,

as these programs can be represented using boolean variables. BDDs are used in

symbolic model checker like SMV [144] and have been instrumental in verifying

hardware designs with very large state spaces [23].

As in explicit model checking, one sometimes trades off completeness for

bug finding capabilities of symbolic model checking. Bounded Model Checking

(BMC) [15] is one such algorithm that unroll the control flow graph (loop) for a

fixed number of steps (say k), and check whether a property violation can occur in k

or fewer steps. This typically involves encoding the restricted model as an instance

of Satisfiability (SAT) problem. This problem is then solved using a SAT [151] or

SMT (Satisfiability Modulo Theory) [152] solver. BMC tools like CBMC [31] and

FSoft-BMC [97] use iterative deepening depth-first search so that the above process

can be repeated with larger and larger values of k until all possible violations have

been ruled out.

Another area that has recently received lot of attention is abstract model check-

ing, which trades off precision for efficiency. Abstraction [39, 41] attempts to prove

properties of a program by first simplifying it. Next, the reachability analysis is per-

formed on the simplified (or abstract) domain, which usually satisfies some, but not

all the properties of the original (or concrete) program. Generally, one requires the

abstract domain and its semantics to be sound (i.e. the properties proved in the ab-

stract semantics implies properties in the concrete semantics). However, typically,

the abstraction is not complete (i.e. not all true properties in the concrete semantics

are true in the abstract semantics). An example of abstraction is, to only consider

boolean variables and the control flow of a program and ignore the values of non

boolean variables. Although, such an abstraction may appear coarse, it is sometimes

sufficient to prove properties like mutual exclusion.

The polyhedral abstract domain has been successfully used to check for ar-

ray bounds violations [42]. Another interesting domain, predicate abstraction

28 3 Related Work

[9, 43, 76, 122] is parameterized by a fixed finite set B = {B1,B2, . . . ,Bk} of first-

order formulas (predicates) over the program variables, and consists of the lattice of

Boolean formulas over B ordered by implication. A cube over B is a conjunction

of possibly negated predicates from B. The domain of predicate abstraction is the

set of all cubes, and one cube is computed at each program point.

The goal of predicate abstraction is to compute a set of predicates from B at

every program point. Thus, given a set of predicates B, a program statement s, and

a cube over B flowing into the statement, it computes the cube over B that flows out

of the statement. For example, consider the set of predicates B = {B1,B2}, where

B1 ≡ (a = b) and B2 ≡ (a = b + 1). Given the cube B1 ∧¬B2 and the statement

a := b+1, then predicate abstraction would compute that the cube ¬B1 ∧B2 should

be propagated after the statement.

A problem with abstract model checking is that although the abstraction simu-

lates the concrete program, when the abstraction does not satisfy a property, it does

not mean that this property actually fails in the concrete program. When a prop-

erty fails, the model checker produces a counterexample. A counterexample can be

genuine, i.e., can be reproduced on the concrete program, or spurious, i.e., does not

correspond to a real computation but arises due to the imprecision in the analysis.

Counterexamples are checked against the real state space to make sure they are gen-

uine. In the case when it is spurious, methods have been developed to automatically

refine the abstract domain and get a more precise analysis which rules out the current

counterexample and possibly many others, without losing soundness. This iterative

strategy is called Counter Example Guided Abstraction Refinement (CEGAR).

SLAM [9] is a popular CEGAR based model checker for C programs. It was

used successfully within Microsoft for device driver verification [8] and has been

developed into a commercial product (Static Driver Verifier, SDV). BLAST [14]

is also a CEGAR based model checker that uses lazy abstraction [90]. The main

idea of Blast is the observation that the computationally intensive steps of abstrac-

tion and refinement can be optimized by a tighter integration which would allow

it to reuse the work performed in one iteration toward subsequent iterations. Lazy

abstraction tightly couples abstraction and refinement by constructing the abstract

model on-the-fly, and locally refining the model on-demand. MAGIC [28] is an-

other CEGAR based compositional model checking framework for concurrent C

programs. Using MAGIC, the problem of verifying a large implementation can be

naturally decomposed into the verification of a number of smaller, more manageable

fragments. These fragments can be verified separately, enabling MAGIC to scale up

to industrial size programs.

Advances in model checking and related techniques in the past several decades

have allowed researchers to verify increasingly ambitious properties of software

programs including device drivers, operating systems code, and large commercial

applications. They have also enabled the verification of large hardware components

like microprocessors. Although this is a significant step forward toward reducing

the design-productivity-gap, state-of-the-art verification techniques are still far away

from proving full correctness of programs.

3.2 Translation Validation 29

3.2 Translation Validation

Once the design has been checked to satisfy certain properties using techniques dis-

cussed in Sect. 3.1, the next step is to make sure that those properties are preserved

through the synthesis process. In this section we discuss a category of methods

called translation validation which guarantee the preservation of safety properties

through the synthesis process. Translation validation techniques are employed dur-

ing synthesis to check that each transformation performed by the HLS tool preserves

the semantics of the initial design. The initial design is called specification and the

transformed design is called implementation. The validation step check for either

refinement or equivalence. Typically, the implementation is said to be a refinement

of the specification if the set of execution traces of the implementation is a subset of

the set of execution traces of the specification. They are equivalent when the two sets

are equal. In this section, we discuss different techniques for translation validation.

Depending upon the core approach these techniques are primarily based on, they

are divided into three categories: relational approach, model checking, and theorem

proving.

3.2.1 Relational Approach

Relational approaches [18, 47, 106, 111] are used to check the correctness of the

synthesis process by establishing a functional equivalence between the Control-Data

Flow Graphs (CDFG) of the program, before and after each step of HLS. The equiv-

alence is defined on some predefined observable events that are preserved across the

transformations. Intuitively, the idea is to show that there exists a simulation relation

R that matches a given program state in the implementation with the corresponding

state in the specification. This simulation relation guarantees that for each execution

sequence of observable events in the implementation, a related and equivalent exe-

cution sequence exists in the specification. The relation R⊆ State1×State2 operates

over the program states State1 of the specification and the program states State2 of

the implementation. If Start1 is the set of start states of the specification, Start2 is

the set of start states of the implementation, and σ →e σ ′ denotes state σ stepping

to state σ ′ with observable event e, then the following conditions summarize the

requirements for a correct refinement:

∀σ2 ∈ Start2 . ∃σ1 ∈ Start1 . R(σ1,σ2)

∀σ1 ∈ State1,σ2 ∈ State2,σ
′
2 ∈ State2 .

σ2 →
e σ ′

2 ∧R(σ1,σ2) ⇒

∃σ ′
1 ∈ State1 . σ1 →

e σ ′
1 ∧R(σ ′

1,σ
′
2)

These conditions respectively state that (1) for each starting state in the implemen-

tation, there must be a related state in the specification; and (2) if the specification

30 3 Related Work

and the implementation are in a pair of related states, and the implementation can

proceed to produce observable events e, then the specification must also be able to

proceed, producing the same events e, and the two resulting states must be related.

The above conditions are the base case and the inductive case of a proof by induction

showing that the implementation is a refinement of the specification.

One example of using the relational approach is Karfa et al.’s technique [106] for

establishing the equivalence between the initial Finite State Machine with Datapath

(FSMD) and a scheduled FSMD. The technique introduces cut-points in the orig-

inal and transformed FSMD automatons, which allows computations through the

original and transformed FSMD to be seen as the concatenation of paths from cut-

points to cut-points. The technique then establishes the equivalence by exploiting

the structural similarities between related cut-points using weakest pre-condition.

Another example of the relational approach can be found in Dushina et al.’s pro-

posed method [47] for checking the functional equivalence between a scheduled

abstract FSM and the corresponding RTL after binding. The method establishes the

equivalence transition by transition. In particular, for each transition in the RTL

controller, it performs a symbolic execution of the associated RTL data path. The

symbolic execution results are then syntactically compared with the data operations

specified in the equivalent transition of the abstract FSM.

In general, relational approaches work well when the transformations preserve

most of the program’s control flow structure. Such transformations are called

structure-preserving [212] transformations. Unfortunately, relational approaches

tend to be ineffective in the face of non structure-preserving transformations like

loop unrolling, loop tiling and loop reordering. Despite these limitations, relational

approaches are very useful in practice: as with only a fraction of the development

cost of an HLS tool, they can uncover bugs that elude testing.

3.2.2 Model Checking

Techniques involving model checking [6,17] are used for verifying register-transfer

logic against its scheduled behavior. The key idea is to partition the equivalence

checking task into two simpler subtasks, verifying the validity of register shar-

ing/binding, and verifying correct synthesis of the RTL interconnect and control.

The success of these methods can be attributed to the observation that the state

space explosion in most designs is caused by the data path registers rather than the

number of control states.

The following algorithm outlines the method of verifying the validity of register

sharing.

• Identify paths in the scheduled graph along which potential conflicts can occur.

During this step no interpretation of the data path is done. If no conflict is iden-

tified then verification successfully terminates.

• Otherwise for each violation the set of all conflict paths is summarized in a re-

duced Conflict Sub-Graph (CSG).

3.3 Synthesis Tool Verification 31

• The reduced CSG is then checked to find out if the conflict was benign. If a con-

flict is detected during the checking, then a logically possible path with incorrect

register binding has been detected. In this case the appropriate path is shown to

the user as a counterexample.

• Else, if it ends without any conflict detected, all possible conflict paths are logi-

cally impossible and the verification algorithm successfully terminates.

Ashar et al. [6] analyzed potential conflicts by means of structural methods,

and then the reduced CSG is checked for satisfiability by the VIS model

checker [196]. Whereas Blank [17] identifies possible conflicts using a symbolic

model checker [23]. The result of the analysis is summarized in a reduced internal

representation called Language of Labeled Segments (LLS) [91], which is then

checked by symbolic simulation [150]. However, symbolic simulation allows rea-

soning for a defined finite number of steps. Thus, loops in the program cannot be

verified for an arbitrary number of iterations.

Ashar et al. also presented an algorithm to verify the correct synthesis of the

RTL interconnect and control [6]. This part of equivalence checking is done state-

by-state, i.e., for each state in the schedule, the computations performed in that state

are shown to be equivalent to those performed in the RTL implementation for the

same state. The equivalence is shown using symbolic simulation.

3.2.3 Theorem Proving

Although most of the translation validation approaches discussed so far use theorem

provers in some way, the theorem prover is not at the center of the approach. The

Correctness Condition Generator [138], on the other hand, is primarily based on

a theorem proving technique. This approach assumes that the synthesis tool can

identify the binding relation between specification variables and registers in the

RTL design, and between the states in the behavior and the corresponding states

in the RTL design. A correctness condition generator is tightly integrated with the

high-level synthesis tool to automatically generate (1) formal specifications of the

behavior and the RTL design including the data path and the controller, (2) the cor-

rectness lemmas that establish equivalence between the synthesized RTL design and

its behavioral specification, and (3) proof scripts for these lemmas that can be sub-

mitted to a higher-order logic proof checker without further human interaction. The

tight integration of the synthesis process with the theorem prover allows the theorem

prover to gather information about what kinds of transformations were performed,

and therefore better reason about them.

3.3 Synthesis Tool Verification

Another attractive way of proving that an HLS tool produces correct RTL is to verify

the correctness of HLS tool once and for all, before it is ever run once.

32 3 Related Work

One can categorize such techniques into three broad classes: (1) formal asser-

tions, which can be used to guarantee the correctness of the synthesis tool, (2)

transformational synthesis tools, which are correct by construction, and (3) witness

generators, which recreate the steps that an existing HLS tool has performed using

formally verified transformations.

3.3.1 Formal Assertions

Narasimhan et al. proposed a Formal Assertions approach [157–159] to building

a verified high-level synthesis system, called Asserta. The approach works un-

der the following premise: If each stage in the system, like scheduling, register

optimization, interconnect optimization etc. can be verified to perform correct trans-

formations on the input specification, then by compositionality, we can assert that

the resulting RTL design is equivalent to its input specification. This technique has

the following four main steps.

1. Characterization: A base specification model is identified for each synthesis task.

The base specification model is usually a tight set of correctness properties that

completely characterizes the synthesis task.

2. Formalization: The base specification model is then formalized as a collection of

theorems in a higher order logic theorem proving environment, which form the

base formal assertions. An algorithm is also chosen to realize the corresponding

synthesis task and is described in the same formal environment.

3. Verification: The formal description of the algorithm is verified against the base

theorems. Inconsistencies in the base model are identified during the verifica-

tion exercise. Furthermore, the model is enhanced with several additional formal

assertions derived during verification. The formal assertions now represent the

invariants in the algorithm.

4. Formal Assertions Embedding: In the next step a software implementation of

the algorithm that was formally verified in the previous stage is developed. The

much enhanced and formally verified set of formal assertions is then embedded

within this software implementation as program assertions.

During synthesis, the implementation of each task is continually evaluated against

its specification model specified by these assertions and any design error during

synthesis can be detected.

Asserta [157] is a high-level synthesis system developed to show the effective-

ness of assertion-based verification techniques to generating first-time correct RTL

designs. The synthesis engine has three main stages, namely scheduling, register

optimization and interconnect generation. The proof effort was conducted using

Prototype Verification System (PVS) [164], a higher order logic theorem prover.

Since the main tasks of Asserta have been verified, it can be used with an in-

creased degree of confidence. This approach is also not affected by the state space

or complexities of any synthesized RTL design. However, the correctness of the

3.3 Synthesis Tool Verification 33

system depends on the completeness and correctness of the base assertions. Another

concern is that during the formal assertions embedding step, due to difference in the

expressive power of logic and software program, the translation process often could

get quite complicated and finally, the correctness of the method hinges on this trans-

lation process. It is also hard to generate a tight base specification for all the steps of

the synthesis process. Thus, although Asserta is a first step toward achieving correct

synthesis, verifying large synthesis programs is quite tedious and complex.

3.3.2 Transformational Synthesis Tools

The basic idea of this method is to determine a set of transformations, which when

applied to an initial specification, transform the source into the required implemen-

tation. This transformations are then embedded in a theorem prover to prove their

correctness. The correctness of the HLS system thus follows from a ‘correct by

construction’ argument.

Transformational synthesis is an area that has been widely explored [51, 87, 98,

126, 176, 185]. Various tools have been developed in the recent past, which mainly

differ in the expressiveness of their input language, the theorem prover used and

the type of transformations allowed. Sharp et al. [185] developed the T-Ruby de-

sign system, where the Ruby language is used for specifying VLSI circuits and

the theorem prover Isabelle [165] is used to formalize the correctness-preserving

transformations. DDD [98] is another system, which is a based on functional al-

gebra. Both systems uses hardware specific calculus to describe a design. The

following are few systems based on behavioral transformations. Veritas [87] is a

theorem prover based on an extension of typed higher order logic, which provides

an interactive environment for converting the specification into an implementation.

Larsson [126] presented a transformational approach to digital system design based

on the HOL proof system [75]. Hash [51] is another system based on the theorem

prover HOL [75]. McFarland [141] investigated the correctness of behavioral trans-

formations using behavior expressions. Rajan [176] on the other hand, used the

PVS [164] theorem proving system to specify and verify behavioral transformations.

However, unlike the formal assertion technique presented in Sect. 3.3.1, tech-

niques based on transformational synthesis reason only about the specification of

the transformations, not their software implementations, which is where many of

the bugs arise.

3.3.3 Witness Generator

The main idea behind witness generator techniques [54, 146, 175] is to use a set of

behavior-preserving elementary transformations for validating an existing non trans-

formational synthesis system by discovering and to some extent isolating software

errors.

34 3 Related Work

Behavior Specification

(VHDL, Verilog, C)

Front End

Binding Data

Structures

CDFG

Elementary

Structural

Transformations

Witness

Generator
Synthesis

Software
Sequence of

Transforms

RTL Design /

Error TraceRTL Design

Fig. 3.1 Using a witness generator system to validate synthesis tools

Figure 3.1 shows an overview of the witness generator approach. The source

program is first converted into a CDFG, after which point the CDFG passes through

a regular unverified HLS process. Following the regular HLS process, the CDFG

is also passed to a transformational system that consists of a set of elementary

structural transformations, all of which have been formally verified given a set of

preconditions. These transformations are sequenced together by the witness gen-

erator, whose goal is to find a sequence of elementary transformations which when

applied to the initial design, achieve the same RTL outcome. For this technique to be

broadly applicable, the set of elementary transformations must collectively capture

a wide variety of synthesis algorithms.

The task of the witness generator is facilitated by the following information,

which is provided by the synthesis tool:

• The outcome of a synthesis task can be captured by a simple data structure (bind-

ing data structure) such that any algorithm for this task can record its outcome

in this data structure. For example, the outcome of any scheduling algorithm

can be recorded as a schedule table which records the mapping between opera-

tions to control steps and the outcome of any register allocation algorithm can be

recorded as mapping from variables to registers.

• It is possible to generate a sequence of elementary transformations to perform

the same task by examining this data structure, without any knowledge of the

synthesis algorithm used to perform the task.

When a precondition fails during the execution of the sequence of transformations

identified by the witness generator, the sequence applied so far forms a counter-

example that can be presented to the user.

Radhakrishnan et al. [175] identified a set of six elementary transformations

which were sufficient to emulate the effect of many existing high-level synthesis

3.4 Summary 35

algorithms. Each of these transformations is mechanically proved in PVS [164] to

preserve the computational behavior.

Eveking et al. [54] uses a similar approach to verify the correctness of various

scheduling algorithms. They represented the initial CDFG using the LLS [91] inter-

nal language. After that, the process of equivalence verification consists of a number

of computationally equivalent LLS transformation steps which assimilate the origi-

nal design to the scheduled design.

Recently, Mendı́as et al. [146] used equational specification to describe behaviors

and/or structures, in a elaborate formal framework called Fresh. In Fresh, seven for-

mal derivation rules, classified into structural and behavioral were used to transform

the initial design to the RTL design.

The above systems essentially recreate, within a formal framework, each of the

design decisions taken by an external (and potentially incorrect) HLS algorithm.

The latest HLS tools are complex and use a variety of transformations to optimize

the synthesis result for metrics like area, performance and power. As a result, it is

becoming increasingly difficult to find a small set of correct transformations that

can recreate all the design decisions taken by external HLS tools.

3.4 Summary

In this chapter we discussed various state-of-the-art related work in the area of

high-level verification. The last decade witnessed great improvements in formal

methods and HLS. Recently, many commercial formal verification tools for system-

level designs such as Hector [112], SLEC [193], SCADE Design Verifier [194], and

Statemate [38] have become available. However, their adoption is in the early stages

and believe that we will see more of such tools in the coming years.

Acknowledgments This chapter in part, has been published as:

“High-Level Verification” by Sudipta Kundu, Sorin Lerner and Rajesh Gupta in IPSJ Transactions

on System LSI Design Methodology [118].

Chapter 4

Verification Using Automated Theorem Provers

An automated theorem prover is a tool that determines, automatically or semi-

automatically, the validity of formulas in a particular logic. Automated theorem

provers have been put to use in many applications. They have been used to solve

open problems in mathematics, such as Robbin’s problem in boolean algebra [140],

which was open since the 1930s, and various open problems about quasi-

groups [188]. They have also been used to prove interesting properties about real-

world systems, properties that would have been hard, difficult or tedious to prove

by hand. For example, automated theorem provers have been used to verify micro-

processors [19,20,164], communication protocols [20], concurrent algorithms [20],

and various properties of software systems [9, 58, 100, 130, 132, 164, 168].

From the perspective of this book, we are interested in this later use of automated

theorem provers: verification of systems. Within this space, there are two broad cat-

egories of automated theorem provers. First, there are interactive theorem provers.

Examples of such theorem provers include Coq [13], NuPrl [36], ACL2 [20], and

Twelf [168]. Such theorem provers are essentially proof assistants that allow the

programmer to state and prove theorems interactively. The mode and level of hu-

man interaction varies by theorem prover. For example, in the Coq theorem prover,

the proof is built up in full detail by the programmer using a scripting language. In

ACL2, the programmer provides hints in the form of annotations and in the form

of helper lemmas that the theorem prover should attempt to prove first. Such in-

teractive theorem provers have been used to establish the correctness of software

systems, some notable examples including an entire compiler and an entire database

management system. Such proof efforts require an inordinate amount of manual

work, since they require formalizing every last detail in full formal logic. However,

precisely because of this level of detail, once the verification is done, it provides a

very high-level of assurance.

At the other end of the automation spectrum, one finds fully automated theo-

rem provers, which are the theorem provers we will be interested in for this book.

Such theorem provers simply take a formula, typically in some restricted logic, and

return either valid or invalid. If valid is returned, then we know that the original

formula is a tautology. If invalid is returned, then we learn different things depend-

ing on the completeness of the theorem prover: if the theorem prover is complete,

we learn that the formula is not a tautology; otherwise we learn nothing – the

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 4,

c© Springer Science+Business Media, LLC 2011

37

38 4 Verification Using Automated Theorem Provers

formula may actually be valid, but the theorem prover was simply not able to

prove it. Although such fully automated theorem provers cannot prove theorems

whose proofs require real insight, they are very good at quickly grinding through

the large and tedious case analysis required in proofs about programs. As a re-

sult, fully automated theorem provers are very specialized tools, and as such, they

are typically combined with other tools that process the system being verified in

various ways to generate the actual queries to the automated theorem prover. For

example, SLAM [9] repeatedly sends queries to an automated theorem prover to

perform predicate abstraction within a larger outer loop of counter-example guided

abstraction refinement. Cobalt [131], Rhodium [133] and PEC [120] attempts to

verify the correctness of compiler optimizations by querying a theorem prover with

various logical formulas generated from optimizations written in a domain-specific

language.

Within fully automated theorem provers, the kinds of formulas that typically arise

in program verification are first-order logic formulas that make use of various the-

ories, for example the theory of integers, reals, arrays, lists, or bit-vectors. Such

formulas are known to be instances of a problem called Satisfiability Modulo Theo-

ries, or SMT. As a result, so-called SMT solvers are the most common kind of fully

automated theorem prover used in program verification. Two prominent examples

of such SMT solvers include SIMPLIFY [44] and Z3 [152]. For the remaining of this

chapter, we first give an overview of SMT solvers (Sect. 4.1), then cover two of the

main verification techniques used in combination with SMT solvers, namely Hoare

logic (Sect. 4.2) and weakest preconditions (Sect. 4.3), and finally, we cover several

additional complexities that arise in realistic programs (Sect. 4.4).

4.1 Satisfiability Modulo Theories

Formulas that typically arise during system verification typically involve several the-

ories. SMT solvers are meant to determine the validity of precisely such formulas.

An SMT solver typically has a decision procedure for each theory that it handles.

A decision procedure for a theory is simply an algorithm for determining the validity

of logical formulas in that theory. Having individual decision procedures, however,

is not enough, since the formulas such as the one above span multiple theories.

An SMT solver must therefore also have an approach for combining individual de-

cision procedures. The predominant approach for doing this is the Nelson–Oppen

approach [161], used both in SIMPLIFY and Z3. In this approach, the individual

theories simply communicate with each other by propagating equalities between

variables.

In addition to combining theories, SMT solvers must also have a way to han-

dle quantifiers, namely ∀ and ∃. The main challenge in doing so is to figure out

when and how to instantiate universally quantified assumptions. One of the common

techniques for doing this is a heuristic called matching. Suppose for example that

4.2 Hoare Logic 39

∀x1 . . .xn.P is known to hold. The goal then is to find substitutions θ giving values to

x1 . . .xn such that θ (P) will be useful in the proof. The general idea in matching is to

pick a term t from P called a trigger, and to instantiate P with a substitution θ if θ (t)
is a term that the prover is likely to require information about. Each prover has its

own way of deciding when it wants information about a term θ (t). In SIMPLIFY and

Z3, the theorem prover checks to see if θ (t) is represented in a data structure called

the E-graph, which stores all the currently know equalities. The intuition of why

matching is a good heuristic is that, since P contains the term t, θ (P) will provide

information about θ (t), and this is likely to be useful since the prover wants infor-

mation about θ (t). The choice of a trigger is obviously important. Various heuristic

can be used to determine a trigger automatically, for example by picking the small-

est term, or set of terms, that cover all the quantified variables. Many SMT solvers

also supports user-defined triggers.

We have now seen an overview of SMT solvers. However, a system developer

does not typically interact with the SMT solver directly. Instead, an automated tool

usually sits between the developer and the SMT solver. Such tools process the sys-

tem being verified to generate queries to the SMT solver. In doing so, these tools

make use of variety of formal techniques to guarantee that the formulas established

by the SMT solver really do imply that the system being verified has the properties

it is meant to have. We will next cover two of these formal techniques: Hoare Logic

and Weakest Preconditions.

4.2 Hoare Logic

Hoare logic (sometimes also called Floyd–Hoare logic) is a formal system intro-

duced by C. A. R. Hoare in 1969 [92], following ideas published earlier by Robert

Floyd in 1967 [60]. Hoare logic can be used to reason formally about the correct-

ness of programs by specifying precisely what conditions on entry to a program

guarantee what conditions on exit.

Hoare logic makes use of assertions to specify conditions at the entry and exit

points of a program. An assertion is simply a predicate over a program state. Exam-

ples of assertions include: x> 5, x= y, or x= y+z. Each one of these assertions

evaluates to either true or false in a program state. For example, in a simple pro-

gramming language with no heap, the program state simply indicates what value

each variables has. Consider the program state where x has the value 1, y has the

value 2, and z has the value 3; in this program state, x > 5 does not hold, x = y
does not hold, and z= x+y holds.

The main judgment of Hoare logic is a Hoare triple {P} S {Q}, where P and Q

are assertions as explained above, and S is a program. The Hoare triple {P} S {Q}
states that if S starts in a state satisfying P, and it terminates, then it terminates in

40 4 Verification Using Automated Theorem Provers

a state satisfying Q. The assertion P is called the precondition, and Q is called the

postcondition. Some examples of Hoare triples include:

{true} x := 5 {x= 5}

{x= 0} x := 5 {x= 5}

{x= 5} z := 0 {x= 5}

{x= 1} y := x+ 1 {y= 2}

{x≤ 7} x := x+ 1 {x≤ 8}

{x= 1∧ y ≤ 9} x := x+ 1; y := y−2 {x= 2∧ y ≤ 7}

{x= y+z} x := x+ 1; y := y−2 {x= y+z+ 3}

One thing to notice about the above examples is that one statement, for example

x := 5, can satisfy many Hoare triples. The relation between all the Hoare triples

for a given statement is captured by what is known as the rule of consequence:

if P′ ⇒ P and {P} S {Q} and Q ⇒ Q′ then {P′} S {Q′} (4.1)

This rule states that if we have {P} S {Q}, then we can always replace P with

something that implies P and Q with something that Q implies.

In general, this is just one of many rules that as a whole form Hoare logic.

Whereas the above rule of consequence is geared towards relating all the Hoare

triples for an arbitrary statement S, the other rules in Hoare logic are geared towards

defining Hoare triples for the specific kinds of statements in a language (for example

assignment, conditionals, loops). However, we will actually not go into the details

of the other rules of Hoare logic here, because we will instead use a reformulation

of Hoare logic based on the notion of weakest precondition.

4.3 Weakest Preconditions

Weakest preconditions, which were introduced by Edsger W. Dijkstra in 1975 [45],

provide an alternate view of Hoare Logic. Even though Hoare Logic provides rules

for showing that a Hoare triple holds, it does not by itself define an algorithm for

automatically combining these rules to show that a particular Hoare triple holds.

Weakest preconditions, on the other hand, do precisely this: they provide a mech-

anism for automatically finding a valid way to combine Hoare rules to establish a

Haore triple.

However, we’re not quite ready yet to define weakest preconditions. Before doing

that, we must first define the notion of stronger and weaker predicates. In particular,

if P ⇒ Q, then we say that P is stronger than Q, and Q is weaker than P. In essence,

P imposes more restrictions on the state, and Q imposes less restrictions. The

strongest predicate is false (since false implies anything) and the weakest predicate

is true (since any predicate implies true).

4.3 Weakest Preconditions 41

Having seen what weaker/stronger predicates are, we can now define weakest

preconditions. In particular, the weakest precondition of a predicate Q with respect

to a program S, denoted by wp(S,Q), is the weakest predicate P such that {P} S {Q}.

More specifically, wp(S,Q) = P if and only if the following two conditions hold:

{P} S {Q} (4.2)

for all P′ such that {P′} S {Q}, P′ ⇒ P (4.3)

Immediately from this definition of wp, we see that:

{P′} S {Q} if and only if P′ ⇒ wp(S,Q) (4.4)

Property (4.4) is at the core of many verification algorithms. Before seeing how

this property is used, let’s see why it holds. In particular, we’ll show the left-to-

right direction and then the right-to-left direction of the “if and only if” in (4.4). In

both of these directions, let P = wp(S,Q). In the left-to-right direction, we assume

{P′} S {Q} and we need to show P′ ⇒P. From part two of the wp definition, namely

condition (4.3), and from {P′} S {Q}, we immediately get P′ ⇒ P. In the right-to-

left direction, we assume P′ ⇒ P and we need to show {P′} S {Q}. From part one

of the wp definition, namely condition (4.2), we have {P} S {Q}. Using the rule of

consequence (4.1), combined with P′ ⇒ P, we then get {P′} S {Q}.

To see how property (4.4) can be used for verification, let’s assume for now that

we have an automated way of computing wp, and that we have an SMT solver of the

kind described in Sect. 4.1. Then property (4.4) gives us a way of performing auto-

mated program verification: to establish {P} S {Q}, all we need to do is compute

wp(S,Q), and then ask the SMT solver to show P ⇒ wp(S,Q).
This verification approach sounds simple, elegant, and in the end quite appealing.

However, in presenting the approach, we made one huge assumption, which is that

wp can be computed. We need to carefully revisit this assumption. After all, the

definition of wp given so far is descriptive, in that it tells us the properties that wp

must satisfy, but it is not prescriptive, in that it does not tell us how to compute

wp(S,Q). So, can wp(S,Q) be computed? Unfortunately, in the general case, the

answer is no – computing wp(S,Q) in general is undecidable. However, it turns out

that the main source of undecidability lies in looping constructs, and although loops

are important, for the sake of simplicity, we will first present the case without loops,

and then discuss loops later.

If we ignore loops, then wp(S,Q) becomes computable using very simple syn-

tactic rules. Each statement kind in the programming language has an associated

rule. We cover here the most important statement kinds: assignment, sequences of

statements, and conditionals.

Skip. The simplest weakest precondition rule is for the no-op statement skip:

wp(skip,Q) = Q

42 4 Verification Using Automated Theorem Provers

Assignment. Assignment, on the other hand, is more complicated. The weakest pre-

condition for assignments is given by:

wp(X := E,Q) = Q[X �→ E]

In the above, X is a variable, E is a pure expression with no side-effects, and

Q[X �→ E] stands for the predicate Q with every occurrence of the variable X re-

placed with the expression E . To see why this rule works, note that whenever the

postcondition Q refers to X , it is referring to the value of X after the assignment.

Thus, the weakest precondition before the assignment is that Q must hold, but on

the value of X after the assignment. The problem here is that before the assignment,

any references to X refer, not surprisingly, to the value of X before the assignment.

So to make Q in the precondition refer to the value of X after the assignment, we

simply replace X with E , its value after the assignment.

Here are several examples of computing the weakest precondition for

assignments:

wp(x := 5,x= 5) = 5 = 5

wp(z := 0,x= 5) = x= 5

wp(y := x+ 1,y= 2) = x+ 1 = 2

wp(x := x+ 1,x≤ 8) = x+ 1 ≤ 8

wp(z := x+y,z≤ 8) = x+y≤ 8

Sequencing. The weakest precondition for sequences of statements is given by:

wp(S1;S2,Q) = wp(S1,wp(S2,Q))

Essentially, we first compute the weakest precondition with respect to S2, and then

with respect to S1. Here are several examples:

wp(x := x+ 1; y := y−2, x= 2∧ y ≤ 7) = x+ 1 = 2∧ y−2≤ 7

= x= 1∧ y ≤ 9

wp(x := x+ 1; y := y−2, x= y+z+ 3) = x+ 1 = y−2 +z+ 3

= x= y+z

Conditionals. The weakest precondition for conditionals is given by:

wp(if B then S1 else S2,Q) = (B ⇒ wp(S1,Q))∧ (¬B ⇒ wp(S2,Q))

The intuition is that if B holds, then S1 executes and so wp(S1,Q) must hold; if B

does not hold, then S2 executes and wp(S2,Q) must hold. For example:

4.3 Weakest Preconditions 43

wp(if a< 0 then a := −a else skip,a= 5)

= (a< 0 ⇒ wp(a := −a,a= 5))∧ (¬(a< 0) ⇒ wp(skip,a= 5))

= (a< 0 ⇒−a= 5)∧ (¬(a< 0) ⇒ a= 5)

= (a< 0 ⇒ a= −5)∧ (¬(a< 0) ⇒ a= 5)

This is equivalent to (a< 0 ⇒ a= −5)∧ (a≥ 0 ⇒ a= 5), which in turn, is equiv-

alent to a= −5∨a= 5.

Recap Example. We now show an example that puts together all the statement kinds

we’ve seen so far, and shows how we can use weakest preconditions and an SMT

solver to perform program verification.

Say we want to establish the following Hoare triple:

{true}

S1 : a := x;

S2 : if a< 0 then a := −a else skip;

S3 : if z> 0 then z := z−1 else skip

{a≥ 0}

The above code computes the absolute value of x and stores the result in a. It also

decrements z. The Hoare triple states that after this computation, the value in a
(which is the absolute value of x) must be positive, no matter what the original

value of x is.

First, we start by systematically computing the weakest precondition with respect

to the above program, using the rules we have already seen:

wp(S1;S2;S3,a≥ 0)

= wp(S1,wp(S2;S3,a≥ 0))

= wp(S1,wp(S2,wp(S3,a≥ 0)))

= wp(S1,wp(S2,(z> 0 ⇒ a≥ 0)∧ (¬(z> 0) ⇒ a≥ 0)))

= wp

(

S1,

[

(a< 0 ⇒ ((z> 0 ⇒−a≥ 0)∧ (¬(z> 0) ⇒−a≥ 0))) ∧

(¬(a< 0) ⇒ ((z> 0 ⇒ a≥ 0)∧ (¬(z> 0) ⇒ a≥ 0)))

])

=

[

(x< 0 ⇒ ((z> 0 ⇒−x≥ 0)∧ (¬(z> 0) ⇒−x≥ 0))) ∧

(¬(x< 0) ⇒ ((z> 0 ⇒ x≥ 0)∧ (¬(z> 0) ⇒ x≥ 0)))

]

Then, recall that to establish the Hoare triple, our verification strategy is to make

use of (4.4). Thus, we ask an SMT solver to show that the precondition implies the

weakest precondition, namely:

true ⇒ wp(S1;S2;S3,a≥ 0)

44 4 Verification Using Automated Theorem Provers

The above condition, which is sent to the SMT solver to discharge, is in general

called a verification condition. That is to say, a verification condition is a condition

that, if established, will guarantee the property we are aiming to show about our

program. The process of computing the verification condition is typically called

verification condition generation, sometimes abbreviated as VCGen.

In our case, let’s take the above verification condition, and convert it into the input

format of an SMT solver. For example, in SIMPLIFY’s input format, the verification

condition would look like:

(IMPLIES TRUE
(AND (IMPLIES (< x 0)

(AND (IMPLIES (> z 0) (>= (- 0 x) 0))
(IMPLIES (<= z 0) (>= (- 0 x) 0))))

(IMPLIES (>= x 0)
(AND (IMPLIES (> z 0) (>= x 0))

(IMPLIES (<= z 0) (>= x 0))))))

The above query is actually a rather simple SMT query, and if we send it to

any of the prominent SMT solvers, for example Z3 [152] or SIMPLIFY [44], we

would get back valid, indicating that the condition holds. Thus, using simple syn-

tactic techniques for computing the weakest precondition, combined with an SMT

solver, we are able to automatically establish the above Hoare triple. This verifica-

tion technique of using weakest preconditions combined with an SMT solver is in

fact at the core of several important program verification tools such as ESCJava [58]

and Boogie [11], and several translation validation tools [116, 117] (which will be

covered later in the book).

4.4 Additional Complexities for Realistic Programs

4.4.1 Path-Based Weakest Precondition

In some cases, including many of the techniques described in this book, it is easier

to perform weakest preconditions along the paths of the control flow graph (CFG),

rather on the syntactic structure of the program. In general, given a point in the CFG,

the weakest precondition at that point is the conjunction of all the weakest precondi-

tions along the CFG paths that start at that point. We will make this clearer in just a

moment with an example, but before going through an example we must first intro-

duce a new statement kind that is necessary for path-based weakest preconditions.

In particular, to model assumptions along a path (due to conditionals for exam-

ple), we introduce a special statement assume B, where B is a boolean condition.

This statement encodes the fact that during verification we are allowed to assume

4.4 Additional Complexities for Realistic Programs 45

that B holds at the point where the assume statement is found. An assume state-

ment is useful in verification when B is somehow known to hold from somewhere

outside of the verification framework, and we want to allow the verification to take

advantage of this. The most common form of assume comes from conditionals:

once we are in the true side of a conditional, we can assume that the branch con-

dition holds; similarly, on the false side of a conditional, we can assume that the

negation of the branch condition holds. Thus, if we look at a conditional statement

if B then S1 else S2, and we convert this to a CFG with assume statements, there

would be two paths through this statement: (1) assume B;S1 and (2) assume ¬B;S2.

As with any other statement kind, assume statements also have a weakest pre-

condition rule. In particular:

wp(assume B, Q) = B ⇒ Q

This encodes precisely the idea that we are allowed to assume B when trying to

establish the property Q after the statement assume B.

Now that we have seen what assume statements are and how to compute their

weakest preconditions, let’s return to path-based weakest preconditions. We had

stated previously that the weakest precondition at a point in the CFG is the conjunc-

tion of all the weakest preconditions along the CFG paths that start at that point. As

an example, let’s try to derive the weakest precondition rule for conditionals that we

have already seen using a path-based approach.

So consider the conditional statement if B then S1 else S2. As we saw before,

there are two paths through this conditional, and so using the path-based approach to

weakest preconditions, we would take the conjunction of the weakest precondition

along the two paths:

wp(if B then S1 else S2,Q)

= wp(assume B;S1,Q)∧wp(assume ¬B;S2,Q)

= wp(assume B,wp(S1,Q))∧wp(assume ¬B,wp(S2,Q))

= B ⇒ wp(S1,Q)∧¬B ⇒ wp(S2,Q)

This coincides precisely with the rule we had previously seen for conditionals. Al-

though we only show one example here, the path-based approach combined with

assume statements generalizes to many different kinds of common control-flow, all

of which insert assumptions along various paths, for example switch statements,

pattern matching, and object oriented dynamic dispatch. In additional, assume state-

ments are useful in many other settings, and so one typically has to have the

infrastructure to deal with them anyway. For these reasons, many of the techniques

presented in this book in fact use the path-based approach to weakest preconditions.

46 4 Verification Using Automated Theorem Provers

4.4.2 Pointers

The examples we have seen so far used a very simple language with variables,

constants and primitive operations like + and −. Realistic languages have addi-

tional features such as pointers which complicate the computation of the weakest

precondition.

Consider for example wp(x := ∗y+ 1,x= 5). Here we assume for the moment

that pointers such as y can point only to variables. The regular assignment rules

tells us to replace x with ∗y+1 in the postcondition, which gives us ∗y+1 = 5 (in

turn this is equivalent to ∗y= 4). It turns out that this is in fact the correct weakest

precondition, and so we may be tempted to think that the regular rules work even in

the face of pointers.

However, unfortunately, this is not the case. Note how in the previous example

we started with a predicate x = 5 that did not contain a pointer, but we finished

with a predicate ∗y= 4 that does. So let’s see what happens when we start with a

predicate that contains a pointer. For example, consider wp(x := ∗y+1,x= ∗y+1).
The regular assignment rule tells us to replace x with ∗y+ 1 in the postcondition,

which gives us ∗y+ 1 = ∗y+ 1, which in turn is equivalent to true. In other words,

no matter what the starting state is, the postcondition holds. But this is completely

wrong: if y happens to point to x, then the postcondition is x = x+ 1, which can

never be true (x can never be equal to itself plus one). So at the very least, the

precondition should state that y cannot point to x. In fact, in this example, this is

precisely the weakest precondition: y
= &x.

To see why this is the weakest precondition, we can do a case analysis on whether

y points to x or to some other variable (say z), and then in each case do the weakest

precondition using the regular rules. In particular:

wp(x := ∗y+ 1,x= ∗y+ 1)

=

[

(y= &x⇒ wp(x := x+ 1,x= x+ 1)) ∧

(y= &z⇒ wp(x := z+ 1,x= z+ 1))

]

=

[

(y= &x⇒ x+ 1 = x+ 1 + 1) ∧

(y= &z⇒ z+ 1 = z+ 1)

]

= (y= &x⇒ false)∧ (y= &z⇒ true)

= y
= &x

This example suggests one approach for handling pointers, which is to perform

case analysis on all the possible aliasing scenarios. Assuming we are computing

wp(S,Q), let X be the set of variables used in S or Q, and P be the set of variables

that are dereferenced in S or Q (that is to say the variables p such that ∗p occurs

in S or Q). Note that P is a subset of X . Starting with the original set X , we add to

X one fresh variable that is different from all other variables in X , representing the

case where a pointer points to none of the variables in the statement or postcondition.

4.4 Additional Complexities for Realistic Programs 47

We now have one case for each possible assignment of variables in P to the address

of variables in X . Note that there are | P ||X | cases, since there are | P | pointers, each

of which can point to | X | variables. For each case, the aliasing becomes clear, and

so the weakest precondition is computable as before. The results for all the cases

are combined in the same way as in the example above, using implication (⇒) and

conjunction (∧).

Although this approach is feasible, it is complex to implement, it does not gen-

eralize easily to other kinds of aliasing such as arrays and dynamically allocated

heaps, and it leads to a large number of cases in the weakest precondition formula.

For example, if the statement is ∗x := ∗y+∗z, then | P |= 3, | X |= 4, and so there

are 34 = 81 cases.

There is another approach to dealing with aliasing that is much simpler and

avoids the above drawbacks. The key insight in this approach is that by making

the program data state explicit, rather than implicit, we can get a simpler formula-

tion of the weakest precondition computations. Indeed, up until now, when we said

that a predicate holds (for example x= 5), we left it implicit in what program data

state it holds. If the predicate was used as a postcondition, then it would hold in the

state after the statement; if it was used as a precondition, then it would hold in the

state before the statement. We never gave formal names to the program data states

before and after the statement, and they never appeared in the formalism. Alterna-

tively, one can make the program data state explicit in the formalism, by remarking

that a predicate is simply a unary relation on states, or equivalently a function from

states to booleans. We use σ for a program data state, and so a predicate Q is a func-

tion that takes a program data state σ and returns the boolean Q(σ) stating whether

Q holds in that state.

In addition to the change from implicit states to explicit states, we also make use

of a function step, which implements the forward semantics of statements in the

programming language. In particular, given a program data state σ and a program

S, step(S,σ) returns the program data state that results from executing S starting in

state σ .

With this new definition of program data states, and with the new step function,

we can express the weakest precondition computation as follows:

wp(S,Q)(σ) = Q(step(S,σ)) (4.5)

This basically states that for the weakest precondition wp(S,Q) to hold on a state

σ right before executing S, the postcondition Q must hold on the state resulting

from executing S starting in σ – in other words, the weakest precondition holds on

precisely those states that make the postcondition hold after executing S.

As an example, we show how to use this new formulation of weakest precon-

ditions to compute wp(∗x := y+ 1,y= 5). Because the program data state is now

explicit, the predicate y= 5 must be re-expressed as a predicate Q over a state σ . We

do this using the map theory from SMT solvers. The map theory represents maps

from indices to values. It has two operators, select and store. The term select(m, i)
represents the value in map m at index i. The term store(m, i,v) represents a new

48 4 Verification Using Automated Theorem Provers

map that is identical to m, except that index i is updated to contain v. There are two

axioms that govern the theory of maps:

i = j ⇒ select(store(m, i,v), j) = v

i
= j ⇒ select(store(m, i,v), j) = select(m, j)

The first axiom, a shorter version of which is select(store(m, i,v), i) = v, states that

if we store a value at a given index, then reading at the same index will return the

original value. The second axiom states that if we store a value at a given index, then

reading at a different index returns the value from the original map, before the store.

The map theory is commonly used theory in formal verification, and SMT solvers

have become very effective at reasoning about maps.

Returning to our example, we represent a program data state σ as a map from

program variables to values, and we use select/store to model variable reads/writes.

For example, the predicate y = 5 would be expressed as Q(σ)=[select(σ ,y)=5].

Since for simplicity we assume that our programs only have variables and no dy-

namically allocated memory, a pointer value is simply the name of a variable. For

example, a use of ∗y would be expressed as select(σ ,select(σ ,y)).
We now need to understand more carefully what step does. In general, step just

implements an operational semantics for the language, by simply defining how to

run statements in the language. For example, for the assignment ∗x := y+ 1, step

needs to first read the value of x – this value, call it v, is the variable in σ where the

result of y+1 should be stored. The step function should then read y from σ , add 1

to this value, and then store the result in σ at v. This can be formalized using select

and store as follows:

step(∗x := y+ 1,σ) = store(σ ,select(σ ,x),select(σ ,y)+ 1)

Here we only show the definition of step for the assignment ∗x := y+1, but in gen-

eral step is straightforward to define for other cases, even in the presence of pointers,

arrays and heaps – step just formalizes our common intuition of how statements in

the language run.

We are now ready to apply (4.5) to compute the weakest precondition for our

example:

wp(∗x := y+ 1,Q)(σ) where Q(σ) = [select(σ ,y) = 5]

= Q(step(∗x := y+ 1,σ))

= select(step(∗x := y+ 1,σ),y) = 5

= select(store(σ ,select(σ ,x),select(σ ,y)+ 1),y) = 5

4.4 Additional Complexities for Realistic Programs 49

4.4.3 Loops

So far, we have dealt with loop-less code. The Hoare logic rule for loops is:

if {P∧B} S {P} then {P} while B do S end {¬B∧P} (4.6)

In the above rule, P is a loop invariant, which is a predicate that holds at each it-

eration of a loop. Indeed, {P∧B} S {P} essentially guarantees that the body S of

the loop while B do S end preserves P: if P holds before executing S, it will also

hold after executing S, which means it will hold at the beginning of the next iter-

ation. The addition of B in {P∧B} S {P} accounts for the fact that when we are

about to execute S, we just tested the loop condition B and it must have evaluated

to true (note that we could alternatively have used an assume statement, as such:

{P} assume B;S {P}).

Rule (4.6) states that if P is a loop invariant, meaning that {P∧B} S {P} holds,

then if P holds going into the loop, P will be preserved throughout the loop and

hold after the loop, giving us {P} while B do S end {¬B∧P}. The addition of ¬B

is justified by the fact that once the loops exits, we know that B must have just

evaluated to false.

The Hoare rule for loops is very simple, but computing weakest preconditions

for loops can be challenging. Consider for example:

wp(while x> 0 do x := x−1;y := y−1 end,y = 0)

According to the definition of wp, we therefore want to compute the weakest P such

that:

{P} while x> 0 do x := x−1;y := y−1 end {y = 0}

According to rule (4.6), we may be tempted to try y = 0 as the loop invariant. Unfor-

tunately y = 0 is simply not a loop invariant for this loop. It turns out that the correct

loop invariant in this case is x = y∧ x ≥ 0, and this is also the weakest precondition

P we are seeking. Indeed, note that x = y∧x ≥ 0 is preserved through the loop body:

{x = y∧ x ≥ 0∧ x > 0} x := x−1;y := y−1 {x = y∧ x ≥ 0}

As a result, rule (4.6) gives us:

{x = y∧x ≥ 0} while x> 0 do x := x−1;y := y−1 end {¬(x > 0)∧x = y∧x ≥ 0}

Now note that ¬(x > 0)∧x = y∧x ≥ 0 is equivalent to x ≤ 0∧x = y∧x ≥ 0, which

implies y = 0. Thus the rule of consequence (4.1) gives us:

{x = y∧ x ≥ 0} while x> 0 do x := x−1;y := y−1 end {y = 0}

50 4 Verification Using Automated Theorem Provers

The important lesson of this example is that to find the weakest precondition,

we had to find the right loop invariant, and unfortunately the post-condition y = 0

did not directly provide us this loop invariant. Instead, we had to strengthen the

postcondition y = 0 to something which, combined with the knowledge that loop

exited, would imply y = 0. In our case, this strengthening lead us to x = y∧ x ≥ 0,

but in general, if the language we are dealing with is Turing complete, then it is

undecidable to automatically find the weakest loop invariant that is strong enough to

establish a given postcondition. For this reason, computing the weakest precondition

through loops is undecidable.

Now, for verification, we actually don’t always need to find the weakest pre-

condition. Often, it is enough to just find some precondition. Unfortunately, it is

even undecidable to just determine whether there exists some invariant that is strong

enough to establish the postcondition. So in the end, we are left with designing

heuristics for finding loop invariants, where we use “heuristics” to indicate that

these are not algorithms. However, do not be fooled, these techniques often use

very principled approaches, founded in well-established theory, including abstract

interpretation [39, 40], predicate abstraction [43], and SMT solvers. In fact, there

has been a huge amount of work in finding loop invariants, and many verification

problems in the end boil down to finding good invariants. Not surprisingly then, the

techniques described in Chaps. 7 and 8 will in part cover some simple techniques

for finding such loop invariants.

Chapter 5

Execution-Based Model Checking
for High-Level Designs

In this chapter, we present an high-level property checking approach. We begin with

a general description of verification of concurrent programs, and then describe it for

a high-level language called SystemC [78]. In this approach, we start with a design

written in SystemC, and then use model checking techniques to verify that the design

satisfies a given property such as the absence of deadlocks or assertion violations.

5.1 Verification of Concurrent Programs

Verification of multi-threaded concurrent programs is hard due to complex and

unexpected interleaving between the threads. In general, the problem of verifying

two-threaded programs (with unbounded stacks) is undecidable [177]. Therefore for

practical reasons, the verification techniques often trades off completeness or preci-

sion or sometimes both, to address the scalability of the problem, thereby focusing

only on their bug finding capabilities. The verification model is typically obtained by

composing individual thread models using interleaving semantics, and model check-

ers are applied to systematically explore the global state space. Due to the potentially

large number of interleavings of transitions from different threads, the global state

space can be, in the worst case, the product state space of individual thread state

space. To combat the state explosion problem, most methods employ partial-order

reduction (POR) techniques to restrict the state-traversal to only a representative

subset of all interleavings, thereby, avoiding exploring the redundant interleaving

among independent transitions [70]. Explicit model checkers [46, 57, 71, 94] ex-

plore the states and transitions of concurrent system by explicit enumeration, while

symbolic model checkers [3, 67, 103, 174, 205] manipulate sets of states, instead of

individual states. Symbolic algorithms avoid explicitly building the complete state

graph for the system; instead, they represent the state space implicitly using a for-

mula in decidable subset of first-order logic. This formula is then solved using a SAT

or SMT solver. In this chapter, we discuss an explicit model checking technique for

SystemC designs, and in the next chapter we focus on a symbolic approach based

on BMC.

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 5,

c© Springer Science+Business Media, LLC 2011

51

52 5 Execution-Based Model Checking for High-Level Designs

5.2 Overview of SystemC

SystemC is a system description language that enables a designer to write designs at

various levels of abstraction. These are particularly useful in behavioral/algorithmic

and transaction level modeling (TLM) [27, 78, 192]. The idea of SystemC TLM is

to provide a golden reference of the system in an early phase of the development

process and allow fast simulation. This design abstraction supports new synchro-

nization procedures such as wait-notify, which make current techniques for RTL

validation inapplicable. SystemC is a set of library routines and macros imple-

mented in C++, which makes it possible to simulate concurrent processes, each

described by ordinary C++ syntax. Instantiated in the SystemC framework, the

processes described in this manner may communicate in a simulated real-time envi-

ronment, using shared variables, events and signals. SystemC is both a description

language and a simulation kernel. The code written will compile together with the li-

brary’s simulation kernel to give an executable that behaves like the described model

when it is run. In Sects. 5.5 and 5.6 we will discuss some more language features of

SystemC.

5.3 Problem Statement

Simulation has so far been the “workhorse” for validating SystemC designs. As

pointed out in [201], adapting software formal verification techniques to Sys-

temC has been a formidable task, mainly due to its object-oriented nature and its

support for both synchronous and asynchronous semantics of concurrency along

with a notion of time. Furthermore, SystemC allows features such as co-operative

multitasking, delayed/immediate notification, wait-to-wait atomicity, blocking and

non-blocking variable updates. In the absence of accepted formal semantics, Sys-

temC models and methods attempt to speed up simulation. However, simulation can

not guarantee completeness without being exhaustive, hence the need for formal

verification techniques to improve system level simulation coverage.

5.4 Overview of Execution-Based MC for SystemC Designs

The goal of the Execution-based MC approach for SystemC designs (EMC-SC)

[115] is to devise methods to check all possible execution traces of a SystemC de-

scription. It focuses on using formal verification techniques developed for software

to extend dynamic validation of SystemC TLM designs. EMC-SC use an execution-

based MC approach, which for a given test input and depth, systematically explores

all possible behaviors of the design (due to asynchronous concurrency). The most

striking benefit of this approach is that it can analyze feature-rich programming

languages like C++, as it sidesteps the need to formally represent the semantics of

5.5 SystemC Example 53

the programming language as a transition relation. Another key aspect of this ap-

proach is the idea of stateless [71] search, meaning it stores no state representations

in memory but only information about which transitions have been executed so far.

Although stateless search reduces the storage requirements, a significant challenge

for this approach is how to handle the exponential number of paths in the program.

In what follows, EMC-SC assumes the representative inputs are already provided,

possibly using techniques presented in [77] and the execution terminates. Thus, we

focus our discussion mainly on detecting deadlocks, write-conflicts and safety prop-

erty violations such as assertion violations. Note that termination can be guaranteed

in SystemC by bounding the execution length during simulation.

To cope with the exponential number of paths, EMC-SC use a combination

of static and dynamic POR techniques. In particular, it first uses static analysis

techniques to compute if two atomic blocks are independent, meaning that their

execution does not interfere with each other, and changing their order of execution

will not alter their combined effect. Next, it starts by executing one random trace of

the program until completion, and then dynamically compute backtracking points

along the trace that identify alternative transitions that need to be explored because

they may lead to different final states. However, unlike dynamic techniques [57,89]

EMC-SC use the information obtained by static analysis in a query-based approach,

rather than dynamically collecting the information and analyzing it during runtime.

Using static information trades off precision for performance. This is particularly

suitable for this approach because for most SystemC designs the dependency re-

lation can be found quite precisely by using static analysis only. Intuitively, this

approach infers the persistent sets dynamically using information obtained by static

analysis (see Sect. 2.5.2 for an introduction to POR).

Moreover, EMC-SC adapts the POR techniques for SystemC specific semantics,

thereby improving the efficiency of the algorithms. Adaptations are needed be-

cause in SystemC: processes are co-operatively multitasking; supports the concept

of δ -cycle, which reduces the analysis of backtracking points immensely; supports

signal variables that do not change values until an update phase; synchronization

is done using events instead of locks; and enabled processes cannot be disabled by

another one. This synchronous semantics of SystemC reduces the size of persistent

set and consequently reduces the analysis of backtracking points immensely.

5.5 SystemC Example

Let us start by examining the salient features of SystemC using a simple producer–

consumer example shown in Fig. 5.1. Though this example is simple, it highlights

the kind of synchronization you will normally expect in a high-level-design lan-

guage. As mentioned, SystemC is essentially a C++ library that provides macros and

APIs to model hardware and software systems. A SystemC program is a set of inter-

connected modules communicating through channels using transactions, events and

shared variables collectively called communication objects. A module comprises of

54 5 Execution-Based Model Checking for High-Level Designs

Fig. 5.1 Simple producer–consumer example

a set of ports, variables, processes and methods. Processes are small pieces of code

that run concurrently with other processes and are managed by a non-preemptive

scheduler. The semantics of concurrency is cooperatively multitasking: a type of

multitasking in which the process currently executing must offer control to other

processes. As such, a wait-to-wait block in a process is atomic. The processes ex-

change data between themselves using shared variables (signals and non-signals).

During the execution of a SystemC design, all signal values are stable until all pro-

cesses reach the waiting state. When all processes are waiting, signals are updated

with the new values (see Update Phase in Sect. 5.6). In contrast, the non-signal vari-

ables are standard C++ variables which are updated immediately during execution.

For clarity the syntactic details of SystemC are not shown in Fig. 5.1. It has three

processes namely P 1 (lines 5–10), P 2 (lines 11–19) and C1 (lines 20–31). The global

variables of the program are shown in lines 1–4. The program uses a shared array

buf as a buffer, and an integer idx, which indicates the total number of elements

in the buffer. The producer P1 in a loop writes to the buffer and then synchronizes

by waiting (or blocking) (line 9) on time for 4 nanoseconds (SC NS). Similarly,

producer P2 writes to the buffer and if flag is set then notifies the event e and then

synchronizes using time. The consumer C1 on the other hand, waits (or blocks)

(line 25) on the event e when the buffer is empty, until the notify (line 17) on e

is invoked in the P2 process. If there are elements in the buffer then C1 consumes

it and synchronizes on time like the other processes. For synchronization SystemC

uses wait-notify on events and time. In what follows, we will use this example to

guide our discussion.

5.6 SystemC Simulation Kernel 55

5.6 SystemC Simulation Kernel

The illusion of concurrency is provided to the user by a simulation kernel imple-

menting a discrete event scheduler. Simulation involves the execution of a discrete

event scheduler, which in turn triggers or resumes the execution of processes within

the application. The functionality of the scheduler (as per IEEE 1666 Language

Reference Manual for SystemC [95]) can be summarized as follows:

1. Initialization Phase: Initialize every eligible method and thread process instance

in the object hierarchy to the set of runnable processes.

2. Evaluation Phase: From the set of runnable processes, select a process instance

in an unspecified order and execute it non-preemptively. This can, in turn, notify

other events, which can result in new processes being ready to run. Continue this

step until there are processes ready to run.

3. Update Phase: Update values of the signal variables for all processes in step 2,

that requested for it.

4. δ -Notification Phase: Trigger all pending δ -delayed notifications, which in turn

can wake up new processes and make them ready to run. If, at the end of this

phase, the set of runnable processes is non-empty, go back to the evaluation phase

(Step 2).

5. Timed-Notification Phase (τ): If there are pending timed notification, advance

simulation time to the earliest deadline. Determine the set of runnable processes

that are ready to run at this time and go to step 2. Otherwise, end simulation.

To simulate synchronous concurrent reactions on a sequential computer SystemC

supports the concept of δ -cycle. A δ -cycle is an event cycle (consisting of evaluate,

update and δ -notification phase) that occurs in 0 simulation time.

5.6.1 Nondeterminism

For a given input, a SystemC program can produce different output behavior due

to nondeterministic scheduling. The election algorithm of the SystemC simulator

makes the output of a program deterministic. Thus even exhaustive simulation of

a SystemC program cannot guarantee correctness due to its inability to produce all

possible behaviors. To illustrate this let us consider the processes P1 and C1 from

the example in Sect. 5.5 with MAX = 2 and x = 4 (line 20). It has the following 4

possible executions, where τ denotes a time elapse:

• P1C1τP1C1τP1C1 and P1C1τP1C1τC1P1 leads to a successful termination of the

program with 2 A’s being produced and consumed.

• P1C1τC1P1 leads to a deadlock situation. Since the process C1 is waiting for the

event e (line 25) and the process P1 has terminated.

• C1(P1τ)∗ leads to an array bound violation as the process C1 waits for the event

e and the process P1 goes on producing in the array buf .

56 5 Execution-Based Model Checking for High-Level Designs

In general, a simulator will execute only one of the 4 possible executions. For in-

stance with the reference OSCI simulation kernel [95], only the first execution will

be scheduled and the other buggy executions will be ignored. Thus, it is important

to test all possible execution of a SystemC design.

Now let us consider the same example with all 3 processes and MAX = 8 and

x = 2 (line 20). It has 3701 possible executions. A naive algorithm will try to ex-

plore all possible executions one by one and will face scalability issues. A technique

which for most practical cases allows to cope with this scalability problem is POR.

In the following sections we discuss EMC-SC, an approach that adapts POR tech-

niques for SystemC, while exploring all possible behaviors of the SystemC design.

For our example, this approach will explore only 767 executions and still remain

provably sufficient for detecting deadlocks and assertion violations.

5.7 State Transition System

In this section, we describe some standard definitions used in the context of

POR [57, 70, 89], which have been adapted here for SystemC.

We represent the behavior of a concurrent program using a state transition sys-

tem. Semantically a concurrent program in our case consists of a set of processes

(threads). The control structure of a program is represented in terms of generalized

program locations. A generalized program location represents a point of control in

the program (possibly concurrent). A generalized program location can either be a

node identifier, or it can be a pair of two generalized program locations, representing

the state of two processes running in parallel. For instance, a generalized program

location for the example in Fig. 5.5 is ((9,18),30), which means the control of the

program is at location 9 and 18 in processes P1 and P2 respectively and at location

30 in C1.

Let L denote the finite set of generalized program locations, VAR denote the set

of variables and VAL denote the domain of values. We define a program state to be

a function VAR×L → VAL, assigning values to variables and program locations.

A transition then describes how the system moves from one state to a subsequent

state. In SystemC there are three types of transitions:

1. Immediate-transition change the state by executing a finite sequence of oper-

ations of a chosen process followed by a wait operation or termination of the

same process.

2. δ -transition change the state by updating all the signals, and by triggering all the

δ -delayed notification that were requested in the current δ -cycle.

3. A time-transition change the system state by updating the simulation time.

Let T denote the set of all transitions of the system and Σ the set of all program

states. An ith transition of process P is denoted by Pi. For t = Pi ∈ T we denote,

Process(t) as the process P.

5.7 State Transition System 57

Definition 1 (Runnable). A transition t ∈ T is runnable in state σ ∈ Σ , written

t ∈ runnable(σ) if it can be executed in σ .

If t ∈ runnable(σ), then we say the execution of t from σ produces a successor

state σ ′, written σ
t

−→σ ′. We write σ
w

=⇒σ ′ to mean that the execution of the finite

sequence w ∈ T ∗ leads from σ to σ ′. A state σ , where runnable(σ) = /0 is called

a deadlock, or a terminating state. Formally a state transition system is defined as

follows.

Definition 2 (State Transition System). A state transition system is a tuple

M = (Σ ,σ0,∆), where σ0 is the initial state of the system and ∆ ⊆ Σ × Σ is

the transition relation defined by

(σ ,σ ′) ∈ ∆ iff ∃ t ∈ T : σ
t

−→ σ ′

Definition 3 (Co-Runnable). Two transitions t1,t2 ∈ T are co-runnable, written

CoRunnable(t1,t2) if ∃ σ ∈ Σ such that both t1,t2 ∈ runnable(σ).

Note that in SystemC two transitions of the same process cannot be co-runnable.

We define an execution of the program as a trace of the system.

Definition 4 (Trace). A trace φ ∈ T ∗ of M is a finite (possibly empty) sequence

of transitions t0, . . . ,tn where there exists states σ0, . . .σn+1 such that σ0 is the initial

state of M and σ0
t0−→ σ1 · · ·

tn−→ σn+1.

For a given trace φ = t0, . . . ,tn:

• φi represents the transition ti.

• φ0...i denotes the trace t0, . . . ,ti.
• Pre(φ , i) denotes the state σi and Post(φ , i) denotes the state σi+1.

The goal of EMC-SC is to explore all possible behavior of the system M . How-

ever, M typically contains many traces that are simply different execution order

of uninteracting transitions that leads to the same final state. This observation has

been exploited by POR techniques to explore a subset of the possible traces [70].

The following definition states the condition when two transitions are independent,

meaning that they result in the same state when executed in different orders.

Definition 5 (Independence Relation). A relation I ⊆ T ×T is an indepen-

dence relation of M if I is symmetric and irreflexive and the following conditions

hold for each σ ∈ Σ and for each (t1,t2) ∈ I :

1. if t1,t2 ∈ runnable(σ) ∧ σ
t1−→ σ ′ then t2 ∈ runnable(σ ′)

2. if t1,t2 ∈ runnable(σ), then there is a unique state σ ′ such that σ
t1t2=⇒ σ ′ ∧

σ
t2t1=⇒ σ ′

58 5 Execution-Based Model Checking for High-Level Designs

Transitions t1,t2 ∈ T are independent in M if (t1,t2) ∈ I . Thus, a pair of inde-

pendent transitions cannot make each other runnable when executed and runnable

independent transition commute. The complementary dependence relation D is

given by (T ×T)−I .

Two traces are said to be equivalent if they can be obtained from each other by

successively permuting adjacent independent transitions. Thus, given a valid inde-

pendence relation, traces can be grouped together into equivalence classes. For a

given trace, we define a happens-before relation between its transitions as follows:

Definition 6 (Happens-before). Let φ = t0 . . .tn be a trace in M . A happens-

before relation ≺φ is the smallest relation on {0 . . .n} such that:

1. if i ≤ j and (φi,φ j) ∈ D then i ≺φ j.

2. ≺φ is transitively closed.

This happens-before relation is a partial order relation also known as Mazurkiewicz’s

traces [70]. The correspondence between equivalence classes of traces and the par-

tial order relation ≺φ is that the equivalence class containing the trace φ is the set of

all linearizations of the partial order. The EMC-SC algorithm described here use a

variant of the above happens-before relation which is defined as follows: for a given

trace φ = t0 . . . tn in M and i ∈ {0 . . .n}, i happens-before process P, written, i ≺φ P

if either

1. Process(φi) = P or

2. ∃k ∈ {i+ 1, . . . ,n} such that i ≺φ k ∧ Process(φk) = P.

5.8 The EMC-SC Approach

In EMC-SC [115] approach, the partial-order information of runnable processes is

obtained statically by identifying the dependent transitions. A transition in SystemC

is an atomic block, which in turn is a non-preemptive sequence of operations be-

tween wait to wait. Note, due to branching within an atomic block, such blocks may

not be derived statically. An atomic execution is dependent on another atomic exe-

cution if it is enabled or disabled by the other or there exists read-write conflicts on

the shared variable accesses in these blocks. EMC-SC first derives wait-notify con-

trol skeleton of the SystemC design, and then enumerates all possible atomic blocks.

It then performs dependency analysis on the set of atomic blocks, and represents the

information symbolically. These static information are used later, while exploring

the different executions of the design. In particular, this approach queries to check

if a given pair of atomic blocks (corresponding to the runnable processes) need to

be interleaved. If not, it does not consider that interleaving of runnable processes.

Another alternative is to compute the partial-order information dynamically while

exploring the different executions of the design [89]. The main difference between

these two approaches is that the first trades off precision for runtime performance

and the later trades of performance for precision. In the following sections we de-

scribe the EMC-SC algorithm in more details.

5.8 The EMC-SC Approach 59

5.8.1 Static Analysis

The goal of EMC-SC is to execute only one trace from each equivalence class

for a given dependence relation. Thus, the first step is to compute this dependence

relation. As discussed earlier EMC-SC uses static analysis techniques to compute

if two transitions are dependent. Intuitively, two transitions are dependent if they

operate on some shared communication objects. In particular, the following rules

are used to compute the dependence relation D , i.e. ∀ t1,t2 ∈ T ,(t1, t2) ∈ D if any

of the following holds:

1. A write on a shared non-signal variable v in transition t1 and a read or a write on

the same variable v in the other transition t2.

2. A write on a shared signal variable s in transition t1 and a write on the same

variable s in transition t2.

3. A wait on an event e in transition t1 and an immediate notification on the same

event e in transition t2.

Note here that the order in which the statements occur within a transition does

not matter. For each transition t ∈ T , EMC-SC maintains four sets – read and

write sets for shared non-signal variables and shared signal variables (written,

Rt,ns,Wt,ns,Rt,s,Wt,s respectively). Thus, rule 1 can be re-written as,

(Wt1,ns ∩Rt2,ns)∪ (Wt1,ns ∩Wt2,ns) �= /0

And rule 2 can be re-written as,

Wt1,s ∩Wt2,s �= /0

In the rules mentioned above, in general, two transitions with write operations on

a shared variable are dependent. But to exercise more independency special cases of

write operations (called symmetric write) can be considered as being independent

(applying Definition 5). For instance, two constant addition or constant multipli-

cation with the same variable can be considered as being independent. Moreover,

static slicing techniques can be used to remove irrelevant operations to further ex-

tract more independency between the transitions [88]. Intuitively, if a statement does

not influence the property that is being checked then that statement can be removed

in the sliced program.

To illustrate the above rules, consider the example from Fig. 5.1. Consider the

wait to wait atomic transition consisting of the lines (6–9) in process P1 and the

transition consisting of the lines (12–18) in process P2. In general, these two tran-

sitions are dependent because they both write to the variable buf and idx. However,

if the property that we are checking is the assertion in line 27 then we can get a

sliced program by removing the statements inside the boxes, while still remaining

correct for detecting the assertion violation. Now, if we consider only the rules 1, 2

and 3 from above then the two transitions are still dependent in the sliced program

because they both write to the variable idx. But, notice that both the writes to the

60 5 Execution-Based Model Checking for High-Level Designs

variable idx are symmetric (increment). Thus, we have that the two transitions are

independent if the property that we are checking is only the assertion (idx ≥ 0) at

line 27.

5.8.2 The Explore Algorithm

The Ex plore algorithm shown in lines 5–19 of Fig. 5.2, explores a reduced set of

possible executions of a SystemC design. This algorithm is stateless [71], i.e., it

stores no state representations in memory but only information about which transi-

tions and traces have been executed so far. Although, this approach will be slower

than an algorithm that maintains full state information, it requires considerably less

amount of memory, especially when the design has a large number of variables. It

explores each non-equivalent trace of the system by re-executing the design from

its initial state.

The algorithm maintains a sequence sched of type Schedule. A Schedule is a

sequence of SchedulerStates. Each SchedulerState σ is a 3-tuple (Runnable, Todo,
Sleep) where, Runnable is a sequence of Transitions that are runnable in state σ ,

Todo is a set of Transitions that needs to be explored from σ , and Sleep is the set of

Transitions that are no longer needed to be explored from σ .

The algorithm also uses a function Simulate (not shown here) that takes as input

a prefix schedule and then executes it according to the trace corresponding to the

schedule. Once the prefix trace ends, it randomly chooses a runnable transition that

is not in the Sleep set of the current state and executes it. The function continues the

Fig. 5.2 The Explore algorithm

5.8 The EMC-SC Approach 61

above step till completion of the simulation and returns the schedule for the current

execution. The Simulate function computes the Sleep set for each scheduler state in

the same way as explained in VeriSoft [70,71]. The use of Sleep sets in the algorithm

help to further reduce the explored transitions.

The Explore function starts by executing a random schedule (as the prefix trace

is /0) and returns the schedule in sched (line 6). Next the algorithm traverses the

execution-tree bottom up and depth maintains the position in the tree such that

the sub-tree below depth has been fully explored. Note that by traversing the

execution-tree bottom-up the Explore algorithm needs to maintain very little state

information. While the algorithm has not traversed the entire execution-tree, let

sched = σ0, . . .σdepth, . . .σn and φ = t0, . . . ti, . . . tn−1 (line 9) is the trace correspond-

ing to sched such that φi = σi.Runnable.At(0) and σ = σdepth (line 10). Using the

computed trace φ , Explore then finds out the transitions that can be dependent with

the transition φdepth using the function Analyze (line 11) and adds those in the Todo

set of the corresponding state. Next, if there exists any transition t ∈ Todo\Sleep in

the state σ (line 12), then the Explore function swap the transition t with the first

element of Runnable in state σ (line 13), copies the prefix schedule (line 14) and

simulate it using the Simulate function (line 15). Otherwise, it has explored all re-

quired transitions in the sub tree below depth and now will explore all the transitions

in the sub tree below depth−1 (line 18).

The Analyze function shown in lines 20–32 of Fig. 5.3 takes as argument a trace

φ and an integer depth. Next, it finds the start of the δ -cycle to which φdepth belongs

(line 21). Then, for each transition φi such that i < depth and belongs to the same

delta cycle (line 22), it checks if φi and φdepth are dependent using a query function

and may be co-runnable (line 23). If true, then it computes the state σ = Pre(φ , i)
and p as the process to which the transition φdepth belongs. Next, if there exists a

transition of p that is runnable at σ (line 26) then it adds that transition to the Todo

set of σ (line 27). Else, if there exists j > i such that j ≺t0···depth
p (see Definition 6)

and the runnable set of σ contains a transition that belongs to the process to which φj

belongs (line 28) then it adds that transition to the Todo set of σ (line 29). Otherwise,

it adds all runnable transitions to the Todo set of σ (line 31).

Fig. 5.3 The Analyze function

62 5 Execution-Based Model Checking for High-Level Designs

Fig. 5.4 A partial

execution-tree showing only

the first δ -cycle

-c
y
c
le

..
.

..
.

..
.

P
1

1

P
2

2

P
2

2

P
1

1

P
1

1

P
2

1

P
2

1

C
1

2

P
1

2

P
1

2

C
1

1

C
1

1

C
1

1

P
2

1

101

0

6

2

3

4 11

125

79

8

Not explored due to Sleep Set

Not explored due to Dynamic Persistent Set

To review the EMC-SC approach, consider the example from Fig. 5.1 with all

3 processes and MAX = 1 and x = 2 (line 20). A partial execution-tree for this

example consisting of only the first δ -cycle is shown in Fig. 5.4. The jth transition

of the process Proc is given by Proc j. In particular, Fig. 5.4 shows the following

wait to wait atomic transitions P1
1 (lines 6–9), P2

1 (lines 6, 10), P1
2 (lines 12–18), P2

2

(lines 12, 19), C1
1 (21, 22, 26–30) and C2

1 (21–25). Using static analysis (as explained

in Sect. 5.8.1), the following independence relation is obtained.

I = {(P1
2 ,P1

1),(P1
1 ,P1

2),(P2
2 ,P2

1),(P2
1 ,P2

2)}.

If two transitions t1 and t2 are such that (t1, t2) /∈ I , then t1 and t2 are dependent.

Note that slicing of buf and symmetric writes on idx is used to determine the inde-

pendency relation.

For a given data-input, let φ be a trace (P1
1 ,C1

1 ,P1
2 , . . .) and its corresponding state

sequence be (σ0,σ1,σ2,σ3, . . .). Using the trace φ , we present an overview of the

algorithm to explore all possible behaviors of a design for a given data-input. The

state σ0 is the initial state with three runnable processes, i.e., P1,P2,C1.

The Explore algorithm examines the current trace bottom up and restrict its anal-

ysis for adding backtracking points within a δ -cycle. Intuitively, for every state σi,

it checks if the transition φi, which is executed from state σi is dependent on any

other transition φ j for j < i, i.e., in its prefix trace, that belongs to the same δ -cycle

(see Analyze function (lines 20–32)). If true, then it finds the runnable transition tk
in the pre-state σ j of φ j (see Definition 4), which has a causal order with φi and

5.9 The Satya Tool 63

adds tk to the backtracking set of σ j. For example, when the algorithm examines the

state σ2, it adds P1
2 to the backtracking set of σ1 (since, P1

2 and C1
1 are dependent).

Next, when it analyzes the state σ1 the algorithm adds C2
1 to the backtracking set of

σ0 and then explores the trace ψ = (P1
1 ,P1

2 ,C1
1 , . . .) (as P1

2 was in σ1’s backtracking

set). Next, it analyzes the new trace ψ in a similar fashion. The algorithm continues

in this way, till it reach state σ7, at this point P1
2 is added to the backtracking set of

σ0. The transition and state shown in dashed line is not explored. The state σ8 is a

deadlock state. Note that the transition P1
1 is not explored in the state σ10 because it

is in the Sleep set of σ10 (as P1
1 and P1

2 are independent). The EMC-SC algorithm

explores only 4 different traces out of the 8 possible traces for this example.

5.9 The Satya Tool

In this section, we discuss the implementation of the EMC-SC algorithm in a proto-

type tool called Satya. The implementation of Satya consists of 2 main modules –

a static analyzer and a verification module. The Satya software tool is over 18,000

lines of C++ code and uses the EDG C++ front-end parser [50] and the OSCI

SystemC simulator [95]. Of those, about 17,500 lines are the intermediate repre-

sentation (IR) and utility functions needed by the static analyzer and the verification

module (explore and query engine) is only about 800 lines.

Figure 5.5 presents an overview of the Satya tool. It takes a SystemC design as

input – currently with the restriction of no dynamic casting and no dynamic process

creation. After parsing the design description, it captures the EDG intermediate lan-

guage into its own IR that consists of basic blocks encapsulated in Hierarchical Task

Graphs (HTGs) [69]. The choice of HTG over other IR’s like CDFG have certain

benefits as HTG maintains the hierarchical structuring of the design such as if-then-

else blocks and for- and while-loops which are used during static analysis. The static

SYSTEMC

DESIGN

Front End

Parser

(EDG)

Intermediate

Representation

(HTG)

Modified SystemC

Kernel

Static

AnalyzerExplore

Engine

Partial

Order

Information

Query

Engine

Verification Module

Fig. 5.5 The Satya prototype tool

64 5 Execution-Based Model Checking for High-Level Designs

analyzer work on the HTGs in a modular way to generate the dependency relation,

which is then used by the query engine. The implementation of the explore engine

follows closely the algorithm described in Sect. 5.8.2.

The SystemC design is compiled with the verification module which contains

a modified OSCI’s SystemC kernel. The modified kernel implements the Simulate

function of the Explore algorithm (Fig. 5.2). It takes as input a prefix schedule and

executes it till completion such that the prefix of the executed trace is same as the

trace corresponding to the input prefix schedule. The modifications are still in com-

pliance with the SystemC specification [95]. In particular, the modifications are to

replace the election algorithm of the scheduler by one, which takes as input a prefix

trace that acts as a golden reference for that run and execute it till completion.

5.10 Experiments and Results

In this section, we report the results of using Satya on two benchmark designs. To

compare the performance improvement due to POR, the experiments have two set-

tings – one which uses the EMC-SC algorithm (POR) and the other which explores

all possible execution traces (no-POR). The following metric for performance im-

provement (PI) due to POR is computed for the benchmarks. Let for a given set of

traces, τi denote the time for executing the ith trace. Also, let for a given design, n be

the total number of possible traces, g be the total number of reduced traces explored

by Satya and ε be the overhead due to the query. Then,

PI =

(

1−
∑

g
i=1 τi + ε

∑n
i=1 τi

)

×100 %

5.10.1 FIFO Benchmark

The first benchmark is a FIFO channel example obtained from the OSCI’s example

repository [95]. The example has an hierarchical FIFO channel. To use the FIFO

channel it uses a producer–consumer scenario. The example works fine when exe-

cuted in one producer and one consumer scenario. However, if we use two producers

writing to the channel and one consumer reading from that channel then we have an

assertion violation. Moreover, since this bug is not visible in every trace of the exam-

ple, simulation may not find it. Satya was able to find the bug and consequently we

changed the code to correct it. The following results are measured on the corrected

example. The example has 3 processes executing concurrently. The total number of

possible traces is directly proportional to the number of elements produced by the

producers. To quantify the scalability of the tool, we report in Table 5.1 for different

number of elements produced by the two producers, the time required using POR

and the number of reduced traces explored by Satya, along with the total number

of possible traces and the time required without POR.

5.11 Further Reading 65

Table 5.1 Results for the FIFO benchmark

Reduced Time (POR) Total Time (no-POR)

Elements #traces ∑
g
i=1 τi + ε #traces ∑n

i=1 τi PI

produced g secs n secs %

14 6 00.0 8 00.0 30.4

28 42 00.3 80 00.5 43.5

44 318 02.3 992 06.3 63.5

62 2514 19.0 13376 93.6 79.7

Fig. 5.6 SystemC TAC

benchmark Memory1

Router

Memory2

Traffic

Generator2

Traffic

Generator1
Timer

5.10.2 TAC Benchmark

The second benchmark is the industrial Transaction Accurate Communication

(TAC) example [149] developed by ST Microelectronics, which includes a platform

composed of the following 6 modules: two traffic generators, two memories, a timer

and a router to connect them as shown in Fig. 5.6. These modules are based on

the TAC protocol built on top of OSCI’s TLM standard. This benchmark is over

12,000 lines of SystemC code and consists of 349 functions. The example can be

executed for certain number of transactions. A transaction is a read or write by the

masters, namely the two traffic generators. When executed for 80,000 transactions,

there are 12,032 total possible traces. It took 89.47 min to explore all these traces. In

contrast, while checking for deadlocks in the program, we did a static slicing of the

router and then Satya found that all these traces are equivalent to one trace, which

is executed in 1.3 s. It is interesting that all the different traces of the program is

equivalent to one trace for this benchmark. This is because the way this benchmark

is written the traffic generator1 writes only to memory1 and traffic generator2 writes

only to memory2, and as such there are no conflict between them. Furthermore, note

that for this example simulation has same coverage as Satya, however simulation

cannot provide the correctness guarantee that is provided by Satya.

5.11 Further Reading

In this section we mention some of the recent works that are related to this chapter.

These are also very interesting further readings.

66 5 Execution-Based Model Checking for High-Level Designs

Partial-Order Reduction: POR techniques are extensively used by software

model checkers for reducing the size of the state space of concurrent system

at the implementation level [71, 94]. Other state space reduction techniques,

such as slicing [88, 184] and abstraction [9], are orthogonal and can be used in

conjunction with POR. The POR techniques can be divided in two broad cat-

egories, namely static [70] and dynamic [57]. The main static POR techniques

are persistent/stubborn sets and sleep sets [70]. In contrast, the dynamic POR

technique evaluates the dependency relation dynamically between the enabled

and executed transitions for a given execution.

SystemC Verification: Recent work on SystemC focuses mainly on improving

simulation performance [145] and generating representative inputs for the de-

sign [77] and formalizing the semantics of SystemC [86,114,153,186]. Another

approach that uses dynamic POR techniques for automatically generating all

valid scheduling of the design [89] is also quite an interesting read.

5.12 Summary

In this chapter, we have discussed EMC-SC, a scalable approach for testing Sys-

temC designs. This approach combines static and dynamic POR techniques to

reduce the number of interleavings required to expose all behaviors of a SystemC

design. Furthermore, the algorithm presented here exploits SystemC specific se-

mantics to reduce the number of backtracking points, and thereby improving the

efficiency of the approach. We also discussed the implementation of the EMC-SC

algorithm in a query-based tool called Satya. The experiments performed using

Satya shows the efficacy of this approach and also found bugs that may not have

been found using a simulator.

Acknowledgments This chapter in part, has been published as:

“Partial Order Reduction for Scalable Testing of SystemC TLM Designs”, by Sudipta Kundu,

Malay Ganai and Rajesh Gupta in DAC 08: Proceedings of the 45th annual conference on Design

Automation [115].

Chapter 6

Bounded Model Checking for Concurrent
Systems: Synchronous Vs. Asynchronous

Malay K. Ganai1

Concurrent systems are hard to verify due to complex and unintended asynchronous

interactions. Exploring the state space of such a system is a daunting task. Model

checking techniques that use symbolic search and partial-order reduction are gain-

ing popularity. In this chapter, we focus primarily on bounded model checking

(BMC) approaches that use decision procedures to search for bounded length

counter-examples to safety properties such as data races and assertion violations

in multi-threaded concurrent systems. In particular, we contrast several state-of-the-

art approaches based on the synchronous and asynchronous modeling styles used in

formulating the decision problems, and the sizes of the corresponding formulas.

6.1 Introduction

The growth of cheap and ubiquitous multi-processor systems and concurrent library

support are making concurrent programming very attractive. However, verification

of multi-threaded concurrent systems remains a daunting task especially due to

complex and unexpected interactions between asynchronous threads. Exposing con-

currency related bugs – such as atomicity violations and data races – require not

only bug-triggering inputs but also bug-triggering thread interleavings. Exploring

the global state space for every interleaving on every data input is often practically

impossible. In general, the problem of verifying two-threaded programs (with un-

bounded stacks) is undecidable [177].

In practice, verification efforts often use incomplete methods, or imprecise mod-

els, or sometimes both, to address the scalability problem. The verification model is

typically obtained by composing individual thread models using interleaving seman-

tics, and model checkers are applied to systematically explore the global state space.

Such exhaustive exploration often encounters the unavoidable state explosion,

which is mainly due to: (a) non-deterministic choice of thread interleaving, (b) non-

deterministic choice of data values as provided explicitly in the program.

1 NEC Labs America, 4 Independence Way, Princeton, NJ 08540 USA. (malay@nec-labs.com)

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 6,

c© Springer Science+Business Media, LLC 2011

67

68 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

To combat the state explosion problem due to thread interleaving, most model

checking methods employ partial-order reduction (POR) techniques to restrict the

traversal to only a representative subset of all interleavings, thereby, avoiding

the redundant interleavings among independent transitions [70, 166, 200]. Veri-

fication of concurrent software predominately employs explicit model checkers

such as [4, 57, 71, 80, 94] that explore the states and transitions of a concur-

rent system by explicit enumeration. These methods were successfully applied

to verify programs with multiple threads by exploiting POR efficiently, but were

severely limited when applied to systems with a significant amount of data. To

overcome the state explosion due to a large set of data values, employing sym-

bolic data structures and methods [16, 143] can lead to more efficient reasoning

on variables with large domains than performing explicit enumeration. In hard-

ware domain, such methods have been successfully applied to verify systems that

are clearly out-of-reach of any explicit-state model checkers with state space that

goes beyond 1020 states. Influenced by such successes, various symbolic meth-

ods [3,37,64,67,79,103,104,129,174,205] were proposed for verifying concurrent

software. However, combining classical POR methods with symbolic algorithms

turns out to be non-trivial, especially due to the fact that symbolic methods implic-

itly manipulate large set of states, wherein capturing and identifying independent

transitions for a set of states is much harder than for each individual state.

In this chapter, we focus primarily on symbolic techniques that combine POR

with symbolic manipulation of data for efficient state space search. Specifically, we

discuss bounded model checking (BMC) approaches that use decision procedures to

search for bounded length counter-examples to safety properties such data races and

assertions. BMC [16] has been successfully applied to verify real-world designs.

Strengths of BMC are manifold: First, expensive existential quantification used in

BDD-based symbolic model checking [143] is avoided. Second, reachable states

are not stored (symbolically or explicitly), avoiding the blow-up of intermediate

state representation. Third, modern SAT solvers are able to search through the

relevant paths of the program even though the paths get longer with the each BMC

unrolling [63].

BMC is a model checking technique where the falsification of a given LTL prop-

erty φ is checked at a given sequential depth. Typically, it consists of the following

steps: unrolling of the design for k time frames, translating the BMC instance into

a decision problem ψ such that ψ is satisfiable iff the property φ has a counter-

example of depth (less than or) equal to k, and using a decision procedure to check

if ψ is satisfiable. In Satisfiability Modulo Theory (SMT)-based BMC [5], ψ is a

quantifier-free formula in a decidable subset of first order logic, and it is checked by

an SMT solver. With the growing use of high-level design abstraction to capture to-

day’s complex design features, the focus of verification techniques has been shifting

towards using SMT solvers [21, 48, 162]. SMT-based BMC [5, 66] is a potentially

more scalable alternative method to SAT-based [63] or BDD-based methods [143].

We focus on using SMT-based symbolic approaches to generate efficient formu-

las to check for bounded length witness traces. Based on how verification models

are built, symbolic approaches can be broadly classified into two categories: syn-

chronous (i.e., with scheduler) and asynchronous (i.e., without scheduler).

6.1 Introduction 69

6.1.1 Synchronous Models

In this category of symbolic approaches [3,37,79,103,104,129,205], a synchronous

model of a concurrent program is constructed with a scheduler as shown in Fig. 6.1.

Such a model is constructed based on interleaving (operational) semantics, where at

most one thread transition is scheduled to execute at a time. The scheduler is then

constrained – by guard strengthening – to explore only a subset of interleavings.

Verification using BMC comprises unrolling such a model for a certain depth, and

generating SAT/SMT formula with the property constraints.

To guarantee correctness (i.e., cover all necessary interleavings), the sched-

uler must allow context-switch between accesses that are conflicting, i.e., accesses

whose relative execution order can produce different global system states. One

determines conservatively which pair-wise locations require context switches, us-

ing persistent [70]/ample [101] set computations. One can further use lock-set

and/or lock-acquisition history analysis [59, 103, 135, 191], and conditional depen-

dency [72, 205] to reduce the set of interleavings need to be explored (i.e., remove

redundant interleavings).

Even with the above-mentioned state reduction methods, the scalability problem

remains. To overcome that, some researchers have employed sound abstraction [4]

with bounded number of context switches [172] (i.e., under-approximation), while

T1 Tn

Solver

Verification Model

Synchronous

composition with a

scheduler

Unroll

Translate

to SAT/SMT formula

M1 Mn

scheduler

Include scheduler

constraints to disallow

redundant interleaving

(POR)

Property Bug/No Bug

Interacting

threads

Fig. 6.1 Synchronous modeling and model checking concurrent system

70 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

others have used finite-state model abstractions [37], combined with proof-guided

method to discover the context switches [79].

In another approach [205], an optimal reduction in interleaved state space is

achieved for two threaded system, which was extended for a multi-threaded sys-

tem in [104]. Note, these approaches achieve state space reduction at the expense of

increased BMC formula size.

6.1.2 Asynchronous Models

In the synchronous modeling-based state-reduction approaches, the focus has been

more on the reduction of state space, and not so much on the reduction of model size.

The overhead of adding static constraints to the formula seems to abate the potential-

benefit of less state-space search. Many of the constraints are actually never used,

resulting in wasted efforts.

There is a paradigm shift in model checking approaches [64,67,174,205] where

the focus is now on generating efficient verification conditions without constructing

a synchronous models, and that can be solved easily by the decision procedures.

The concurrency semantics used in these modeling are based on sequential consis-

tency [124]. In this semantics, the observer has a view of only the local history of

the individual threads where the operations respect the program order. Further, all

the memory operations exhibit a common total order that respect the program order

and has the read value property, i.e., the read of a variable returns the last write on

the same variable in that total order. In the presence of synchronization primitives

such as locks/unlocks, the concurrency semantics also respects the mutual exclu-

sion of operations that are guarded by matching locks. Sequential consistency is the

most commonly used concurrency semantics for software development due to ease

of programming, especially to obtain correctly synchronized threads.

Asynchronous modeling paradigm has advantages over synchronous model-

ing, and have been shown to suit better for SAT/SMT encoding. To that effect,

the symbolic approaches such as CSSA-based (Concurrent Static Single Assign-

ment) [174, 204] and token-based [67] generate verification conditions directly

without constructing a synchronous model of concurrent programs, i.e., without

using a scheduler as shown in Fig. 6.2. The concurrency constraints that maintain

sequentially consistency are included in the verification conditions for a bounded

depth analysis.

Specifically, in the CSSA-based approach [174, 204], read-value constraints are

added between each read and write accesses (on a shared variable), combined with

happens-before constraints ordering other writes (on the same variable) relative to

the pair. Context-bounding [172] are also added to reduce the interleavings to be

explored in the verification conditions.

In the token-based approach [67], a single-token system of decoupled threads

is constructed first, and then token-passing and memory consistency constraints

are added between each pair of accesses that are shared in the multi-threaded

6.1 Introduction 71

T1 Tn

Solver

Verification Model Decoupled

independent thread models

Unroll

Translate to SAT/SMT

formula

M1 Mn

Exclude constraints

that allow redundant

interleavings (POR)

Property Bug/No Bug

Add concurrency

model constraints

Interacting

threads

Fig. 6.2 Asynchronous modeling and model checking concurrent system

system. The constraints ensures a total order in the token passing events so that

the synchronization of the localized (shared) variables takes place at each such

event. Such a token-based system guarantees completeness, i.e., only allows traces

that are sequentially consistent [125], and adequacy i.e., captures all the interleav-

ings present in the original multi-threaded system. For effective realization, the

constraints are added lazily and incrementally at each BMC unrolling depth, and

thereby, reduced verification conditions are generated with a guarantee of complete-

ness and adequacy. For further reduction of the size of the verification conditions,

the approach uses lockset analysis to reduce the pair-wise constraints between the

accesses that are provably unreachable (such as by static analysis).

In [64], a state-reduction based on partial-order technique has been exploited in

the token-based modeling approach [67] to exclude the concurrency constraints that

allow redundant interleavings, and thereby, reduce the search space and the size of

the formula.

6.1.3 Outline

In Sect. 6.2, we provide the operational and non-operational concurrency semantics,

and modeling based on such semantics. This is followed by an overview of BMC in

72 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

Sect. 6.3 and concurrent modeling in Sect. 6.4. In the following sections, we contrast

three representative approaches based on aforementioned concurrency semantics.

Specifically, in Sects. 6.5, 6.6, we discuss modeling, BMC encoding, and the for-

mula size in synchronous modeling-based approach that uses optimal POR [205].

In Sect. 6.7, we discuss the essence of asynchronous modeling. In Sect. 6.8, we

discuss a CSSA-based (asynchronous) BMC encoding, and formula size in asyn-

chronous modeling approaches [174, 205]. In Sect. 6.9, we discuss token-based

modeling [67] approach for BMC, combined with partial order reduction [64]. We

contrast these approaches in Sect. 6.10. We provide pointers for further reading in

Sect. 6.11, followed by our summary discussion in Sect. 6.12.

6.2 Concurrent System

A multi-threaded concurrent program P comprises a set of threads and a set of

shared variables, some of which, such as locks, are used for synchronization. Let

Mi (1 ≤ i ≤ n) denote a thread model represented by a control and data flow graph

of the sequential program it executes. Let Vi be a set of local variables in Mi and

V be a set of (global) shared variables. Let Ci be a set of control states in Mi.

Let S be the set of global states of the system, where a state s ∈ S is a valua-

tion of all local and global variables of the system. Let VLi denote a set of tuple

values for local data state variables in Vi, and VG denote a set of tuple values

for shared variables in V . A global state s of P is a tuple 〈s1, . . . ,sn,v〉 ∈ S =
(C1 ×VL1) · · ·× (Cn ×VLn)×VG where si ∈ Ci ×VLi is a local state, and v ∈ VG

denotes the values of the shared variables. Note, si denotes the local state tuple

〈ci,xi〉 where ci ∈ Ci represents the local control state, and xi ∈ VLi represents the

local data state.

6.2.1 Interleaving (Operational) Semantics

A thread transition t is a 4-tuple 〈c,g,u,c′〉 that corresponds to a thread Mi, where

c,c′ ∈ Ci represent the control states of Mi, g is an enabling condition (or guard)

defined on Vi ∪V , and u is a set of update assignments of the form v := exp where

variable v and variables in expression exp belong to the set Vi ∪V . We use operator

next(v) to denote the next state update of variable v.

Let pci denote a thread program counter of thread Mi. For a given transition

t = 〈c,g,u,c′〉, and a state s ∈ S , if g evaluates to true in s, and pci = c, we say

that t is enabled in s. Let enabled(s) denote the set of all enabled transitions in s.

We assume each thread model is deterministic, i.e., at most one local transition of a

thread can be enabled.

6.2 Concurrent System 73

The interleaving semantics of concurrent system is a model in which precisely

one local transition is scheduled to execute from a state.2 Formally, a global tran-

sition system for P is an interleaved composition of the individual thread models,

where a global transition consists of firing of a local transition t ∈enabled(s) from

state s to reach a next state s′, denoted as s
t

−→s′.

A schedule of the concurrent program P is an interleaving sequence of thread

transitions ρ = t1···tk. An event e occurs when a unique transition t is fired, which

we refer as the generator for that event, and denote it as t = gen(P,e). A run (or

concrete execution trace) σ = e1···ek of a concurrent program P is an ordered se-

quence of events, where each event ei corresponds to firing of a unique transition

ti = gen(P,ei).
3 We illustrate the differences between schedules and runs in Sect. 6.4.

Let begin(t) and end(t) denote the beginning and the ending control states of t =
〈c,g,u,c′〉, respectively. Let tid(t) denote the corresponding thread of the transition

t. We assume each transition t is atomic, i.e., uninterruptible, and has at most one

shared memory access. Let Ti denote the set of all transitions of Mi, and T =
⋃

i Ti

be the set of all transitions.

A transaction is an uninterrupted sequence of transitions of a particular thread.

For a transaction tr = t1···tm, we use |tr|to denote its length, and tr[i] to denote the

ith transition where i ∈{1, . . . ,|tr|}. We define begin(tr) and end(tr) as begin(tr[1])
and end(tr[|tr|]), respectively. In the sequel, we use the notion of transaction to

denote an uninterrupted sequence of transitions of a thread as observed in a system

execution.

We say a transaction (of a thread) is atomic w.r.t. a schedule, if the corresponding

sequence of transitions are executed uninterrupted, i.e., without an interleaving of

another thread in-between. For a given set of schedules, if a transaction is atomic

w.r.t. all the schedules in the set, we refer to it as an independent transaction w.r.t.

the set.4

Given a run σ for a program P we say e happens-before e′, denoted as e ≺σ e′

if i < j, where σ [i] = e and σ [j] = e′, with σ [i] denoting the ith access event in σ .

Let t = gen(P,e) and t′= gen(P,e′). We say t ≺σ t′iff e≺σ e′. For some σ , if e≺σ e′

and tid(t) = tid(t′), we say e ≺po e′and t ≺po t′, i.e., the events and the transitions

are in thread program order.

2 Step semantics [102], in contrast to interleaving semantics, allows more than one local transitions

of different thread models to be scheduled as long as no reachable state is lost. It is an optimization

step to reduce the set of interleavings to explore.
3 Firing of generator transitions may correspond to instances of the same thread transition when

it is fired in a thread loop. Note that during BMC unrolling, each thread transition in a loop is

instantiated uniquely. In the sequel, we use a thread transition to refer to such an instance.
4 We compare the notion of atomicity used here, vis-a-vis previous works [56, 182, 206]. Here the

atomicity of transactions corresponds to the observation of the system, which may not correspond

to the user intended atomicity of the transactions. Previous work assume that the atomic trans-

actions are system specification that should always be enforced, whereas here atomic (or rather

independent) transactions is inferred from the given system under test, and are used to reduce the

search space of symbolic analysis.

74 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

A data race corresponds to a global state where two different threads can access

the same shared variable simultaneously, and at least one of them is a write.

6.2.2 Axiomatic (Non-Operational) Semantics

Concurrency semantics for shared memory multi-thread concurrent program can

also be expressed in an axiomatic style [209] based on the execution effect of such

a system on the underlying shared memory. The most commonly used semantics in

software development is sequential consistency.

A schedule is sequentially consistent [125] iff it satisfies the following rules:

Program Order Rule Transitions of the same thread are in a thread program

order.

Read Value Rule Each shared variable read access gets the last data writ-

ten at the same memory address location.

Total Order Rule Transitions corresponding to shared variable accesses

across all threads are in a total order.

Mutual Exclusion Rule Synchronization semantics is maintained. For example,

the same locks are not acquired in a row without a cor-

responding release in between.

Intuitively, such a semantics allows analyzing a concurrent system without a

scheduler. Many approaches have used this basic idea to overcome state explosion

problem.

6.2.3 Partial Order

Definition 7 (Dependency Relation (D)). Given a set T of transitions, we say a

pair of transitions (t,t ′)∈T ×T is dependent, i.e. (t,t ′)∈D iff one of the following

conditions hold: (a) t ≺po t ′, (b) (t,t ′) is conflicting, i.e., accesses are on the same

global variable, may be co-enabled (i.e., simultaneously enabled), and at least one

of them is a write access.

If (t,t ′)
∈ D, we say the pair is independent. The dependency relation in general,

is hard to obtain; however, one can obtain such relation conservatively using static

analysis [70], which may result in a larger dependency set than actual.

One can also define independency relation equivalently in an operational se-

mantics. The transitions t,t ′ are said to be independent for all state s ∈ S iff

t,t ′ ∈ enabled(s), and there is a unique state s′ ∈ S such that s
t·t′
−→ s′ and s

t′·t
−→ s′.

In other words, independent transitions can neither disable or enable each other, and

enabled independent transitions commute. To obtain a more precise independency

relation, one can define such a relation with respect to a particular state s ∈ S

6.3 Bounded Model Checking 75

(as opposed to all states) i.e., 〈t,t ′,s〉 [72, 107]. Such a relation is referred as

conditionally independent. An independent relation can also be defined [205] over

a set of states as represented by a predicate G over local and global variables, i.e.,

〈t,t ′,G〉. In other words, t,t ′ are independent for states in which the predicate G

holds. Such a relation is referred as guarded independent relation.

Definition 8 (Equivalency Relation (≃)). We say two schedules ρ1 = t1 · · · ti ·
ti+1 · · ·tn and ρ2 = t1 · · · ti+1 · ti · · · tn are equivalent (Mazurkiewicz’s trace the-

ory [139]), denoted as ρ1 ≃ ρ2, if (ti,ti+1)
∈ D.

An equivalent class of schedules can be obtained by iteratively swapping the con-

secutive independent transitions in a given schedule. Final values of both local and

shared variables remains unchanged when two equivalent schedules are executed.

Note, if (t,t ′) ∈ D, all equivalent schedules agree on either t ≺ t ′ or t ′ ≺ t, but not

both.

Definition 9 (Partial Order). A partial order is a relation R ⊆ T ×T on a set of

transition T , that is reflexive, antisymmetric, and transitive.

A partial order is also a total order if, for all t,t ′ ∈T , either (t,t ′) ∈ R, or (t ′,t)∈ R.

Partial order-based reduction (POR) methods [70] avoid exploring all possible in-

terleavings of shared accesses by exploiting the commutativity of the independent

transitions. Thus, instead of exploring all interleavings that realize these partial or-

ders it is adequate to explore just the representative interleaving of each equivalence

class.

6.3 Bounded Model Checking

Let si denote a state and T (si,si+1) denote the state transition relation of a concur-

rent system. A path is a finite sequence π0,k = (s0, . . . ,sk) satisfying the following

predicate:

T 0,k de f
=

∧

0≤i<k

T (si,si+1) (6.1)

where T 0,0 de f
= true. A path has length k if it makes k transitions. In bounded model

checking, whether an LTL property φ can be falsified in k execution steps from some

initial state ψ is formulated as a satisfiability problem [16]:

BMCk(ψ ,φ)
de f
= ψ(s0)∧T 0,k ∧¬φ(sk) (6.2)

where φ(sk) means that φ holds in state sk, and ψ(s0) means ψ holds in state s0.

Given a predetermined bound d, BMC iteratively checks the satisfiability of BMCk

for 0 ≤ k ≤ d using a SAT/SMT solver.

76 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

6.4 Concurrent System: Model

We contrast synchronous and asynchronous modeling of a concurrent system

informally, where we motivate our readers with an example. We use that example

to guide the rest of our discussion.

Consider a system P comprising interacting threads Ma and Mb with local vari-

ables ai and bi, respectively, and shared variables X ,Y,Z,L. This is shown in

Fig. 6.3a where threads are synchronized with Lock/Unlock. Thread Mb is created

and destroyed using fork-join primitives. The concurrent control flow graph (CCFG)

of the program P is shown in Fig. 6.3b. A thread transition (2a,true,a1 = Z,3a) (also

represented as 2a
a1=Z
→ 3a) can be viewed as a generator of access event R(Z)a cor-

responding to the read access of the shared variable Z. Each node in CCFG denotes

a thread control state (and the corresponding thread location), and each edge repre-

sents one of the following: thread transition, a context switch, a fork, and a join. To

not clutter up the figure, we do not show edges that correspond to possible context

switches (30 in total).

Figure 6.4 is the lattice representing the complete interleaving space of the pro-

gram. Each node in the lattice denotes a global control state, shown as a pair of

2a

3a

4a

1a

X = a1+1

||

0
b

a

Thread M
a

x = [0,2], y= [0,2], z = [0,2]

a1 = Z

2b

3b

4b

1b

b1 = Y

b2 = X

Z = b2-1

Thread M
b

Lock(L)

6b

assert (y 5)

Fork

5a

Y = a1

5b

Y = b1+b2

Unlock(L)

Join

Lock(L)

Unlock(L)

Jb
Ja

Fig. 6.3 (a) Concurrent system P with threads Ma, Mb and local variables ai, bi respectively,

communicating with shared variable X,Y,Z,L, (b) CCFG of the program P

6.5 Synchronous Modeling 77

Fig. 6.4 Lattice and a run σ highlighted in bold

the thread local control states. An edge denotes a shared write/read access of global

variable, labeled with W (.)/R(.) or Lock(.)/Unlock(.). Note, some interleavings are

not feasible due to Lock/Unlock, which we crossed out (×) in the figure. We also

labeled all possible context switches with cs. The highlighted interleaving corre-

sponds to a concrete execution (run) of program P

σ = R(Y)b ·Lock(L)a · · ·Unlock(L)a ·Lock(L)b · · ·W (Z)b ·W(Y)a ·Unlock(L)b ·W(Y)b

where the suffices a,b denote the corresponding thread accesses.

The corresponding schedule ρ of the run σ is

ρ =
(

1b
b1=Y
→ 2b

)

(

1a
Lock(L)
→ 2a

)

· · ·

(

4a
Unlock(L)

→ 5a

)(

2b
Lock(L)
→ 3b

)

· · ·
(

6b
Y=b1+b2→ Jb

)

In the next two sections, we discuss the synchronous modeling and model check-

ing in detail.

6.5 Synchronous Modeling

One obtains a synchronous execution model for P by defining a scheduling function

E : M ×S �→ {0,1} such that ti ∈ Ti is said to be executed at global state s, iff

ti ∈ enabled(s) and E(Mi,s) = 1. Note that in the interleaving semantics, at most one

78 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

enabled transition will be executed at a global state s. In this synchronous execution

model, each thread local state si (with shared access) has a wait-cycle, i.e., a self-

loop to allow all possible interleavings. To model such a scheduler, one can add

a variable sel whose domain is the set of thread indices {1,2, . . . ,n}. A enabled

transition t ∈ Ti is executed only when sel = i. The transition relation of such a

synchronous model is computed as follows:

T (s,s′) =
n

∨

i=1

((sel = i)∧Ti(s,s
′)) (6.3)

A synchronous model for the concurrent system with threads models Ma and Mb,

is shown in Fig. 6.5a with a scheduler E . It is obtained by inserting a wait-cycle,

i.e., a self-loop at each control state of model Ma and associating the edge with

a Boolean guard ¬Ea such that Ea = 1 iff E(Ma,s) = 1 (and similarly, for model

Mb). To understand the need for such wait-cycles, consider a global state s with

thread control states at 1a and 1b, respectively. To explore both the interleaving

Lock(L)a ·R(Y)b and R(Y)b ·Lock(L)a from s, each thread needs to wait when the

other makes the transition.

2a

3a

4a

1a

X = a1+1

||

0

Thread M
a

x = [0,2], y= [0,2], z = [0,2]

a1 = Z

2b

3b

4b

1b

b1 = Y

b2 = X

Z = b2−1

Thread M
b

Lock(L)

6b

assert (y 5)

Fork

5a

Y = a1

5b

Y = b1+b2

Unlock(L)

Join

Lock(L)

a

Unlock(L)

Jb
Ja

¬Ea

¬Ea

¬Ea

¬Ea

¬Ea

¬Ea

¬Eb

¬Eb

¬Eb

¬Eb

¬Eb

¬Eb

¬Eb

E

Ea Eb

b
Set of reachable control states pairs

with independent transitions I

1a, 1b , 2a, 1b , 3a, 1b , 4a, 1b

5a, 1b , Ja, 1b , 1a, 2b , 2a, 2b

3a, 2b , 5a, 2b , Ja, 2b , 1a, 3b

5a, 3b , Ja, 3b , 1a, 4b , 5a, 4b

Ja, 4b , 5a, 5b , Ja, 5b , 1a, 6b

2a, 6b , 3a, 6b , 4a, 6b , Ja, 6b

1a,Jb , 2a,Jb , 3a,Jb , 4a,Jb

Ja,Jb

POR constraints on scheduler E:

∀ i, j IPCa= i∧PCb= j→ ¬(Eb ∧next(Ea))

Fig. 6.5 (a) Synchronous model of P with scheduler E (b) POR constraints on the scheduler

E [205]

6.6 BMC on Synchronous Models 79

Symbolic model checking techniques such as [63,143] can be directly applied on

such synchronous models. However, without any partial order reduction, sel takes

arbitrary values at every step. This corresponds to exploring all interleavings, lead-

ing to state explosion. Partial order reduction can be implemented to alleviate that

situation by adding constraints to the scheduler so that it disallows redundant in-

terleavings. As shown in Fig. 6.5b, for a given set I of reachable control state pairs

(obtained conservatively), the scheduler is constrained with the following set of con-

straints:

∀〈i, j〉∈I (PCa = i∧PCb = j) →¬(Eb ∧next(Ea))

where next(Ea) corresponds to next state value of Ea. Such a set of constraints allow

the SAT/SMT formula to capture only representative interleavings, as claimed in

Theorem 6.1 (provided in the next section).

6.6 BMC on Synchronous Models

We now discuss the essential steps in the partial-order based bounded model check-

ing for two threads, as presented in [205]. We skip the discussion of the general

approach [104] for more than two threads.

Let V = V ∪
⋃

i Vi, where V denote the global variables, and Vi denote the lo-

cal variables in Mi. For every local (global) program variable, a state variable is

introduced in Vi(V). For each thread model Mi, a program counter variable PCi

is introduced to track the local control state. To model the non-determinism in the

scheduler, a sel variable is introduced whose domain is the set of thread indices

{1, . . . ,n}. A Boolean predicate E j
de f
= (sel = j) is defined such that a transition in

Tj is executed when E j is true.

At every time frame, fresh copies of the set of state variables are added. Let

vi ∈V i denote the copy of v ∈V at the ith time frame. All interleavings of k-length

can be represented as k unrolling of the transition relation (6.3).

T 0,k(s0,sk+1) =
k∧

i

POR(V i)∧

(
n∨

j

(Ek
j ∧Tj(s

k,sk+1)∨¬Ek
j ∧ (V i+1

j = V i
j))

)

(6.4)

When Ek
j is not true, then variables in V j do not change values. This corresponds to a

wait-cycle, as shown in Fig. 6.5. Without any partial order reduction, Ek
j can be true

at any step for any thread. Such an unrestricted choice captures all interleavings.

For t1,t2 ∈ enabled(si), let ent1(V
i) and ent2(V

i) denote the enabling condition

for transitions t1 and t2 at ith time frame, and 〈t1,t2,G〉 denote the guarded indepen-

dent relation where G denote the corresponding state predicate. Let RG denote the

set of such tuples of guarded independent pair-wise transitions.

80 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

A partial-order reduction can be achieved by adding the following constraints for

each 〈t1,t2,G〉 ∈ RG

POR(V i)
de f
=

∨

〈t1,t2,G〉∈RG

(ent1(V
i)∧ ent2(V

i)∧G(V i)) →¬(E i
tid(t2) ∧E i+1

tid(t1)) (6.5)

where tid(t1) < tid(t2). Such a constraint would forbid any schedule with transition

order t2 · t1. By giving priority to lower thread index, such constraints would allow

all and only representative interleavings as stated in the following theorem. Such a

scheme was referred as peep-hole partial order reduction.

Theorem 6.1 (Wang 08). For two-threaded system, the peephole partial order re-

duction removes all and only redundant interleavings.

For the running example, the total number of allowed context-switching by

peep-hole partial reduction is 15. These are shown as cs in Fig. 6.6. The high-

lighted interleaving Lock(L)a · · ·Unlock(L)a ·R(Y)b ·W (Y)a ·Lock(L)b · · ·W (Y)b, is

the representative interleaving equivalent to the interleaving highlighted in Fig. 6.4.

For more than two threads, peephole does not guarantee removal of all redundant

interleavings. However, an approach proposed in [104] guarantees the removal of

all and only redundant interleavings.

Fig. 6.6 Possible context switches after Peep-hole POR [205]

6.7 Asynchronous Modeling 81

6.6.1 BMC Formula Sizes

For n threads each with m transitions, the size of the added scheduler constraints is

O(n2 ·m2). For an unrolling of depth d, the size of thread transition constraints is

O(n ·m ·d) and the size of scheduler constraints is O(n2 ·m2 ·d).
A witness trace of length n · k of interleaved transitions, where the number of

transitions per thread is k, would require a BMC unrolling of depth n ·k in the worst

case. Thus, the size of BMC formula would be O(n3 · k3).
In the next three sections, we discuss the essence of asynchronous modeling,

followed by two state-of-the-art BMC approaches based on such models.

6.7 Asynchronous Modeling

Multi-thread concurrent systems are inherently asynchronous. Instead of using op-

erational semantics, one can use axiomatic (non-operational) semantics to model the

system, where only sequential consistent schedules are modeled. The basic model-

ing steps are two folds:

• The individual thread models are first decoupled, wherein the global shared vari-

ables are localized by renaming, and every shared read access is modeled using

symbolic input values. Note, the thread models so obtained are independent as

the transition relation of each thread model depends only local variables and

symbolic input values.

• Due to non-deterministic reads, the individual threads model, so obtained, have

additional behaviors due to unconstrained symbolic input values. To eliminate

that, concurrency constraints are added to capture inter- and intra-thread de-

pendencies. These constraints are added on-the-fly during BMC unrolling. The

added concurrency constraints (over the symbolic input values) maintains the se-

quential consistency semantics, i.e., the read value and total order properties. As

the thread models are decoupled, they can be unrolled at different depths during

BMC unrolling (unlike synchronous modeling approaches). The constraints due

to the transitions relation of each thread model ensures that memory accesses

within the thread follow the program order.

In the next two sections we discuss two such approaches, namely (a) CSSA-

based modeling, and (b) token-based modeling. The former approach, as presented

in [174, 205], uses concurrent static single assignment (CSSA) form, inspired

by [128]. Such a translation is shown in Fig. 6.7. The latter approach, as presented

in [67], uses decoupled CFG of the thread models as shown in Fig. 6.8, and com-

bines partial-order reduction technique to obtain reduction in state space as well as

formula size. Note that these models do not have a scheduler or self-loop.

82 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

Fig. 6.7 CSSA form of the concurrent program P

Fig. 6.8 Token-based asynchronous modeling of the concurrent program P

6.8 BMC on Asynchronous Models: CSSA-Based Approach 83

6.8 BMC on Asynchronous Models: CSSA-Based Approach

The approach discussed here is a CSSA-based encoding presented in [174, 204].

Both of these approaches transforms the concurrent program directly into a CSSA

form, where the program is unrolled for a bounded depth. The constraints are gener-

ated directly from the CSSA, which are then given to a decision procedure to solve.

The transition relation constraints comprise two components:

T 0,k de f
= ΩT P ∧ΩCC (6.6)

where ΩT P encodes the thread programs in CSSA forms, and ΩCC encodes the

concurrency constraints.

6.8.1 Thread Program Constraints: ΩT P

We give the basic description of a CSSA form (more details can be found in [128,

204]). A variable v is said to be defined when the variable is updated (i.e., appears

in left-hand-side of assignment), and is said to be used when the variable appears in

an update or guarded expression (i.e., appears in a right-hand-side of assignment or

in a condition). In CSSA form, each variable is defined exactly once.

A statement in a thread program is executed when all conditionals that lead to it

are evaluated true. In CSSA (similar to SSA for sequential program), guard variables

are introduced that are associated with a conjunction of all the conditions that lead

to the statement.

Each use of shared variable v ∈ V is preceded immediately by a non-

deterministic function ND(). This modeling allows mapping multiple definitions

due to thread interleavings.

A CSSA form of the running example is shown in Fig. 6.7. Each local and shared

variables have unique names. Each use of local variable is replaced with the most

recent definition. Lock/Unlock are modeled using assume and define.

The thread program constraints comprise translation of the CSSA form into a

quantifier-free first-order logic formula. The constraints also capture the program

order of local thread events (i.e., order of use and definitions).

6.8.2 Concurrency Constraints: ΩCC

In the above model, the newly introduced non-deterministic functions (ND()) add

additional behaviors. To eliminate that a π(v1, . . . ,vl)-function is introduced to con-

straint the non-deterministic function, where each vi,1 ≤ i ≤ l is the most recent

definition of v in some thread.

84 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

The semantics of π-function that is that it returns exactly one parameter so as to

satisfy read value property in a total ordered interleaving. Let t be transition where v

is used. Let v′ represent the corresponding new variable introduced in CSSA encod-

ing. Then v′ is mapped with vi iff event ti, which defines vi, is executed (happens)

before event t, and any event t j that defines v j,1 ≤ j ≤ l, j
= i is executed before

the definition ti or after the use of t. Thus, for each v′ ← π(v1 · · ·vl) the following

constraints are added

ΩCC=
∧

v′←π(v1···vl)

⎛

⎝

l∨

i=1

(v′=vi)∧ path(ti)∧HB(ti,t)∧
l∧

j=1, j
=i

(HB(t j,ti)∨HB(t,t j))

⎞

⎠

(6.7)

where path(t) is the enabling path condition such that t is executed iff path(t) is

true, and HB(t,t ′) is an order constraint to denote that event t is executed before t ′.

The constraints corresponding to π-function are added on-the-fly during BMC

unrolling. Note that with BMC unrolling, the set of definitions of variable increases,

and hence the π-function constraints changes with unrolling depth.

6.8.3 BMC Formula Sizes

For m transitions in the unrolled BMC instances, the CSSA-based encoding pro-

duces a formula size of O(m3) in the worst case when there are O(m) read/write

accesses on a single shared variable.

A witness trace of length n · k of interleaved transitions, where the number of

transitions per thread is k, would require a BMC unrolling of depth k. Thus, the size

of BMC formula would be O(n3 ·k3), as the number of transitions would be O(n ·k).
In the next section, we discuss another asynchronous modeling approach that

would generate formula of size quadratic in the number of events. Further, such an

approach also benefits from partial-order reduction techniques.

6.9 BMC on Asynchronous Models: Token-Based Approach

The main idea of token-passing model (TPM) is to introduce a single Boolean token

TK and a clock vector CV in a model, and then manipulate the passing of the token

between inter-thread control states to capture all necessary interleavings in the given

system. The semantics of the token assertion by a thread is that all the last writes

to shared memory are visible to the thread. The clock vector records the number of

times the token TK is passed. Unlike a synchronous model, TPM does not have a

scheduler in the model. The total ordering is achieved by updating the clock vec-

tor when the token is passed. Following theorem provides the basis for generating

verification model based on token-based approach.

6.9 BMC on Asynchronous Models: Token-Based Approach 85

Theorem 6.2 (Ganai, 2008 [67]). The token-based model is both complete, i.e., it

allows only sequentially consistent traces, and sound, i.e., captures all necessary

interleaving, for a bounded unrolling of threads. Further, the size of pair-wise con-

straints added grow quadratically (in the worse case) with the unrolling depth.

The main goal of the token-based approach is to generate verification conditions

that capture necessary interleaving for some bounded unrolling of the threads, aimed

at detecting reachability properties such as data races and assertion violations. These

verification conditions together with the property constraints are encoded and solved

by an SMT solver. A satisfiable result is typically accompanied by a trace – com-

prising data input valuations, and a total-ordered thread interleaving – that is witness

to the reachability property. On the other hand, an unsatisfiable result is followed by

these steps (a)–(c): (a) increase unroll depths of the threads, (b) generate verifica-

tion conditions for increased depths, and (c) invoke SMT solver on these conditions.

Typically, the search process (i.e., to find witnesses) is terminated when a resource –

such as time, memory or bound depth – reaches its limit. For effective implementa-

tion, these verifications constraints are added on-the-fly, lazily and incrementally at

each unrolled depth. The transition relation constraints comprise two components:

T 0,k de f
= ΩT P ∧ΩCC (6.8)

where ΩT P corresponds to transition relation of independent thread models and ΩCC

corresponds to concurrency constraints.

The token-based approach has been recently augmented with a partial-order re-

duction technique [64] to remove all the redundant interleavings but to keep the

necessary ones for a given unroll bound. Such a POR technique is also targeted to

reduce the size of verification conditions (as opposed to increase in the verifica-

tion formula size in the case of synchronous modeling). Specifically, the size of the

formula ΩCC is reduced by identifying redundant context switches.

The verification model is obtained in three phases: In the first phase, for a given

set of unrolled threads, a partial order technique referred as Mutually Atomic Trans-

action analysis (MAT, in short) [64] is used to identify a subset of possible context

switches such that all and only representative schedules are permissible. Using such

analysis, a set of so-called independent transaction is obtained. Recall, an indepen-

dent transaction is atomic with respect to a set of schedules (Sect. 6.2).

In the second phase, the goal is to obtain abstract and decoupled thread models.

Each thread is decoupled from the other threads by localizing all the shared vari-

ables. Each model is then abstracted by allowing renamed (i.e., localized) variables

to take non-deterministic values at every shared access. To achieve that, each in-

dependent transaction is instrumented with a pre-access atomic transition referred

as read sync access (denoted as rs) and a post-access atomic transition referred

as write sync access (denoted as ws). In read sync access, all localized shared

variables get non-deterministic values. We show such a token-passing model in

the Fig. 6.8. Note, the transition (update) relation for each localized shared vari-

able depends only on other local variables, thereby, making the model independent

86 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

(i.e., decoupled). However, due to non-deterministic read values, the model have

additional behaviors, hence, it is an abstract model. The constraints corresponding

to independent thread models capture the program order property.

In the third phase, the goal is to remove the imprecision caused due to abstraction.

In this phase, the constraints are added to restrict the introduced non-determinism

and to capture the necessary interleavings. More specifically, for each pair of inter-

thread control states (identified in MAT analysis) token-passing constraints are

added to allow passing of the token from one thread to another, giving a total or-

der in the shared accesses. Furthermore, these constraints allow the values of the

localized shared variables to synchronize between threads. These constraints satisfy

the read value and total order property.

6.9.1 MAT-Based Partial Order Reduction

Consider a pair (tam1 ,tbm1), shown as the shaded rectangle m1 in Fig. 6.9a, where

tam1 ≡ Lock(L)a ·R(Z)a · · ·W (Y)a and tbm1 ≡ R(Y)b are transactions of threads Ma

and Mb, respectively. For the ease of readability, we use an event to imply the cor-

responding generator transition.

Note that from the control state pair (1a,1b), the pair (Ja,2b) can be reached

by one of the two representative interleavings tam1 · tbm1 and tbm1 · tam1 . Such a

transaction pair (tam1 ,tbm1) is atomic pair-wise as one avoids interleaving them

in-between, and hence, referred as Mutually Atomic Transaction (MAT) [64]. Note

that in a MAT only the last transition pair have shared accesses on the same variable,

maybe co-enabled, and at least one of them being write. Other MATs m2 · · ·m5 are

similar. In general, transactions associated with different MATs are not mutually

atomic. For example, tam1 in m1 is not mutually atomic with tbm3 in m3, where

tbm3 ≡ Lock(L)b · · ·W (Y)b.

The basic idea of MAT-based partial order reduction [64] is to restrict context

switching only between the two transactions of a MAT. A context switch can only

occur from the ending of a transaction to the beginning of the other transaction in

the same MAT. Such a restriction reduces the set of necessary thread interleavings.

For a given MAT α = (fi · · · li, f j · · · l j), we define a set T P(α) of possible context

switches as ordered pairs, i.e., TP(α) = {(end(li),begin(f j)),(end(l j),begin(fi))}.

Note that there are exactly two context switches for any given MAT.

Let T P5 denote a set of possible context switches. For a given unrolled thread

CFGs, we say the set T P is adequate iff for every feasible thread schedules of the

unrolled CFGs there is an equivalent schedule that can be obtained by choosing

context switching only between the pairs in T P. Given a set MAT of MATs,

we define TP(MAT) =
⋃

α∈MAT T P(α). A set MAT is called adequate iff

5 In the token-passing model, as we see later, TP is exactly the set such that the token passes from

a to b iff (a,b) ∈ TP.

6.9 BMC on Asynchronous Models: Token-Based Approach 87

Fig. 6.9 (a) MATs {m1, . . .,m5}, (b) A run of GenMAT

T P(MAT) is adequate. For a given unrolled CFGs, one can use an algorithm

GenMAT [64] (not shown) to obtain an adequate set of MAT that allows only

representative thread schedules, as claimed in the following theorem.

Theorem 6.3 (Ganai, 2009). GenMAT generates a set of MATs that captures all

(i.e., adequate) and only (i.e., optimal) representative thread schedules. Further, its

running cost is O(n2 · k2), where n is number of threads, and k is the maximum

number of shared accesses in a thread.

88 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

The GenMAT algorithm on the running example proceeds as follows. It starts

with the pair (1a,1b), and identifies two MAT candidates: (1a · · ·Ja,1b · 2b) and

(1a ·2a,1b · · ·6b). By giving Mb higher priority over Ma, it selects a MAT uniquely

from the MAT candidates. The choice of Mb over Ma is arbitrary but fixed through-

out the MAT computation, which is required for the optimality result. After selecting

MAT m1, it inserts in a queue Q, three control state pairs (1a,2b),(Ja,2b),(Ja,1b)
corresponding to the begin and the end pairs of the transactions in m1. These corre-

spond to the three corners of the rectangle m1. In the next step, it pops out the pair

(1a,2b) ∈ Q, selects MAT m2 using the same priority rule, and inserts three more

pairs (5a,2b),(5a,6b),(1a,6b) in Q. Note that MAT (1a · · ·5a,2b ·3b) is ignored as

the interleaving 2b ·3b ·1a · · ·5a is infeasible [65]. Note that if there is no transition

from a control state such as Ja, no MAT is generated from (Ja,2b). The algorithm

terminates when all the pairs in the queue (denoted as • in Fig. 6.9a) are processed.

We present the run of GenMAT in Fig. 6.9b. The table columns provide each

iteration step (#I), the pair p ∈ Q selected, the chosen MAT ab, and the new pairs

added in Q (shown in bold).

Note that the order of pair insertion in the queue can be arbitrary, but the

same pair is never inserted more than once. For the running example, a set

MAT ab = {m1, · · ·m5} of five MATs is generated. Each MAT is shown as a

rectangle in Fig. 6.9a. The total number of context switches allowed by the set,

i.e., T P(MAT ab) is 8. These context switches are marked as cs in Fig. 6.10.

Fig. 6.10 Possible context switches (denoted as cs) after MAT-based POR [64]

6.9 BMC on Asynchronous Models: Token-Based Approach 89

The highlighted interleaving (shown in Fig. 6.4) is equivalent to the representative

interleaving tbm1 · tam1 · tbm3 , highlighted in Fig. 6.10. One can verify (the op-

timality) that this is the only representative schedule (of this equivalence class)

permissible by the set T P(MAT ab).

6.9.2 Independent Modeling

Given a set of MATs, we obtain a set of independent transactions of a thread Mi,

denoted as ATi, by splitting the pair-wise atomic transactions of the thread Mi as

needed into multiple transactions such that a context switching (under MAT-based

reduction) can occur either to the beginning or from the end of such transactions.

For the running example, the sets of independent transactions corresponding to

MAT ab are ATa = {1a · · ·5a,5a · Ja} and ATb = {1b ·2b,2b · · ·6b,6b · Jb}. These

are shown as outlines of the lattice in Fig. 6.9b.

Using independent transactions, the independent thread models, denoted as LMi,

are obtained from corresponding thread model Mi as follows:

• Token: A global Boolean variable, a token T K, is introduced to signify that the

thread with the token can execute a shared access operation and commit its cur-

rent shared state to be visible to the future transitions. Initially, only one thread,

chosen non-deterministically, is allowed to assert T K. Later, this token is passed,

from one thread to another, i.e., de-asserted in one thread and asserted by the

other thread, respectively.

• Logical clock: To obtain a total ordering on token passing events, a clock vec-

tor CV = 〈CS1 · · ·CSn〉 is introduced to represent the logical clock [124]. These

variables are initialized to 0. Whenever a token T K is acquired by a thread LMi,

CSi is incremented by 1 in LMi. The variable CSi keeps track of the number of

occurrences of token passing events wherein thread LMi acquires the token from

another thread LM j, j
= i.

• Localization: For each thread, the global variables are localized by renaming. We

use the corresponding thread subscript to denote such variables. For example,

TKi represents the localized variable T K in thread i. Similarly, CS ji represent the

localized variable CS j in thread i. For each thread model LMi, a program counter

PCi is introduced to track the thread local control state. A Boolean predicate

Bci

de f
= (PCi = ci) encodes that current PCi is ci.

• Atomic procedures: For every independent transaction c
t···t′
→ c′, two atomic

thread-specific procedures i.e., read sync (rs) and write sync (ws)

are added before and after the transaction, respectively. It is denoted as

c
rs
→ cr

t···t′
→ cw

ws
→ c′, where cr and cw represent the control state post read sync

procedure and control state pre write sync procedure, respectively. In

read sync procedure, each localized shared variable gets a non-deterministic

value, (ND), while in the write sync procedure TK gets an ND value.

90 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

• Synchronization primitives: Operations Lock(L) and Unlock(L) are

modeled as atomic operations {assume(L = 0); L=1} and {assume(L = 1);

L=0}, respectively. To maintain synchronization semantics, only wait-free exe-

cution are considered where the acquisition of the same lock twice is disallowed

in a row without an intermediate unlock. Note, this consideration is sufficient to

find all data races.

6.9.3 Concurrency Constraints

Given independent abstract models, obtained as above, the concurrency constraints

are added incrementally, and on-the-fly to each BMC instance, in addition to the

transition constraints of the individual thread models and property constraints. The

concurrency constraints capture inter- and intra-thread dependencies due to inter-

leavings, and thereby, eliminate additional behaviors in the models up to a bounded

depth.

The pair-wise constraints are added only between the inter-thread control states

as identified by the set of possible context-switches TP(MAT). For an indepen-

dent transaction, c
rs
→ cr

t···t′
→ cw

ws
→ c′, the control state c is designated to receive a

token, and the control state cw is designated to send a token. We use NTRi to rep-

resent the set of control states of LMi that can receive token, and NT Si to represent

the set of control states of LMi that can send token.

The concurrency constraints ΩCC comprise of four components:

ΩCC = ΩTPM ∧ΩNTR ∧ΩNTS ∧ΩST (6.9)

where ΩTPM corresponds to token-passing constraints, ΩNTR corresponds to con-

straints when no token is received, ΩNTS corresponds to constraints when no token

is sent, and ΩST corresponds to single token constraint allowing only one thread,

chosen non-deterministically, to have token.

For every token-passing pair of control states (c j,ci)∈T P(MAT), correspond-

ing to thread models LM j,LMi, following token-passing modeling constraint is

added.

ΩTPM =
∨

(c j ,ci)∈T P(MAT)

Token−passing Enabling Constraints
︷ ︸︸ ︷

Bci
∧Bc j

∧¬TKi ∧TK j ∧CSii = CSij

→
∧

v∈V

(next(vi) = v j)∧next(TKi)∧¬next(T K j)

n∧

q=1,q
=i

next(CSqi) = CSqj ∧ (next(CSii) = CSii + 1) (6.10)

Note, c j refers to the control state before write sync access, and vi,v j refer to

the localized global variable v in thread model LMi,LM j, respectively.

6.9 BMC on Asynchronous Models: Token-Based Approach 91

The token passing condition is enabled when (a) the read sync access is enabled

at state ci in thread model LMi which does not hold the token, (b) the write sync

access is enabled at state c j in thread model LM j which holds the token, and (c) the

thread model LM j has the latest value of clock variable of LMi, and both threads

agree on that. If the token is passed, then each localized shared variable of LMi

gets the current state value of the corresponding localized shared variable of LM j.

The next state of token in LMi is constraint to true, while it is constraint to false

in LM j. The next state value of clock variable of LMi is incremented by 1, while

the remaining clock variables in LMi are synchronized with the respective values in

LM j. Note that these constraints ensure that the token passing will be enabled for at

most one pair of read sync and write sync accesses.

When no token is received, following constraints are added to ensure that the

next state values of each localized shared variable remain unchanged, and the token

remains asserted.

ΩNTR =
n

∨

i=1

∨

c∈NTRi

(Bc ∧TKi) →

(

next(T Ki)∧
∧

v∈V

(next(vi) = vi)

∧
n∧

j=1

next(CSji) = CSji

)

(6.11)

When no token is sent, following constraints are added to ensure that the token

remains asserted.

ΩNT S =
n∨

i=1

∨

c∈NT Si

(Bc ∧TKi) → next(TKi) (6.12)

Single token constraint is added to ensure that initially exactly one thread model

has the token, i.e.,

ΩST =

(
n∨

i=1

T K0
i

)

∧

(
∧

i
= j

T K0
i →¬T K0

j

)

(6.13)

where T K0
i is the initial token value of a thread i.

Combining Theorems 6.2 and 6.3, we have

Theorem 6.4. The token-based model with MAT analysis allows only and all

sequentially consistent representative interleavings for a bounded unrolling of

threads. Further, the size of pair-wise constraints added grow quadratically (in the

worse case) with the unrolling depth.

6.9.4 BMC Formula Sizes

For m transitions per unrolled thread, and n threads, token-based approach adds

concurrency constraints of size O(n2 ·m2) and thread transition constraints of size

O(n ·m).

92 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

For a given BMC depth k and n concurrent threads, the token-based approach

guarantees finding a witness trace (if it exists), i.e., a sequence of global interleaved

transitions, of length ≤ n · k, where the number of local thread transitions is at most

k. In contrast, in a synchronous modeling approach using BMC [205], an unrolling

depth of n ·k is needed for such a guarantee. Thus, there is a reduction of memory use

by a factor of n ·k using token-based approach over synchronous modeling approach.

6.10 Comparison Summary

The comparisons between synchronous and asynchronous modeling based BMC

approaches are summarized in Fig. 6.11. One can relate synchronous modeling with

interleaving (operational) semantics, where each thread model wait in a self-loop for

its turn to execute. In contrast, one can relate asynchronous modeling with axiomatic

(non-operational) semantics, where the constraints are added between the thread

models, which are otherwise decoupled, to maintain the sequential consistency.

In the former approach, the scheduler can be constrained to remove redundant inter-

leaving during POR, but this is often at the increased cost in the formula size. In the

latter approach, the constraints are added to allow necessary interleavings. Further,

one can reduce the constraints added using partial order reduction techniques. The

latter approach often leads to smaller formula size compared to the former. We also

compare the various BMC approaches discussed, in Fig. 6.12.

Synchronous Modeling Asynchronous Modeling

With scheduler: execution model Without scheduler: axiomatic model

Models are coupled Models are de-coupled

Constraints are added to remove

redundant interleavings

Constraints are added to allow

necessary interleavings

Focuses on reducing interleaved

space using added constraints

Focuses on reducing formula

(and interleaving space)

BMC unrolling depth for

each thread same

BMC unrolling can

be different

Fig. 6.11 Comparing synchronous and asynchronous modeling

Features Peep-hole [205] CSSA-encoding [174, 204] Token-based Model [67, 64]

Modeling Synchronous Asynchronous Asynchronous

POR Yes (optimal) No Yes (Optimal)

Size cubic cubic quadratic

Fig. 6.12 Comparing state-of-the-art BMC approaches for concurrent verification

6.12 Summary 93

6.11 Further Reading

In this section, we discuss relationship between the presented work and related

state-of-the-art approaches. We present in Fig. 6.13 a tree-diagram showing the

relationship between the approaches.

Model checkers such as SPIN [94], Verisoft [71], Zing [4] explore states and

transitions of the concurrent system using explicit enumeration. They use state

reduction techniques based on partial order methods [70,166,200] and transactions-

based methods [59, 135, 190, 191]. These methods explore only a subset of transi-

tions (such as persistent set [70], stubborn set [200]), and sleep set [57]) from a given

global state. One can obtain a persistent set using conservative static analysis. Since

static analysis does not provide precise dependency relation (i.e., hard to obtain in

practice), a more practical way would be to obtain the set dynamically [57]. One can

also use a sleep set [70] to eliminate redundant interleaving not eliminated by per-

sistent set. Additionally, one can use conditional dependency relation to declare two

transitions being dependent with respect to a given state [72]. In previous works,

researchers have also used lockset-based transactions to cut down interleaving be-

tween access points that are provably unreachable [59, 103, 135, 190, 191]. Some of

these methods also exploit the high level program semantics based on transactions

and synchronization to reduce the set of representative interleavings.

Symbolic model checkers such as BDD-based SMV [143], and SAT-based

BMC [63] use symbolic representation and traversal of state space, and have been

shown to be effective for verifying synchronous hardware designs. There have been

some efforts [3,103,129,174] to combine symbolic model checking with the above

mentioned state-reduction methods for verifying concurrent software using inter-

leaving semantics. To improve the scalability of the method, some researchers have

employed sound abstraction [4] with bounded number of context switches [172],

while some others have used finite-state model [79, 174] or Boolean program ab-

stractions with bounded depth analysis [37]. This is also combined with a bounded

number of context switches known a priori [174] or a proof-guided method to dis-

cover them [79].

There have been parallel efforts [2, 24, 208] to detect bugs for weaker memory

models. As shown in [209], one can check these models using axiomatic memory

style specifications combined with constraint solvers. Note, though these methods

support various memory models, they check for bugs using given test programs.

6.12 Summary

We presented an overview of the state-of-the-art bounded model checking tech-

niques for concurrent programs. These techniques can be classified into two main

categories: synchronous modeling and asynchronous modeling. The synchronous

modeling approach combines two advanced techniques, i.e., symbolic model check-

ing for synchronous models and partial-order reduction. However, as the concurrent

94 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

C
o

n
c

u
rr

e
n

t
P

ro
g

ra
m

 V
e

ri
fi

c
a

ti
o

n

E
x

p
li

c
it

 –
s

ta
te

m
o

d
e

l
c

h
e

c
k

in
g

S
y

m
b

o
li

c
 m

o
d

e
l

c
h

e
c

k
in

g

A
s

y
n

c
h

ro
n

o
u

s
 M

o
d

e
l

(w
it

h
o

u
t

s
c

h
e

d
u

le
r)

C
S

S
A

-b
a

s
e

d

[R
a

b
in

o
v

it
z
 e

t
a

l

C
A

V
0

5
,

W
a

n
g

 e
t

a
l

F
M

0
9

]

P
O

R

[A
lu

r
e

t
a

l
C

A
V

9
7

,
L

e
rd

a
 e

t
a

l
E

N
T

C
S

0
3

,

C
o

o
k

 e
t

a
l

S
P

IN
0

5
,

K
a

h
lo

n
 e

t
a

l
C

A
V

0
6

]

U
n

d
e

r-
a

p
p

ro
x

/

W
id

e
n

in
g

[G
ru

m
b

e
rg

e

t
a

l

P
O

P
L

0
5

]

O
p

ti
m

a
l

P
O

R

[W
a

n
g

 e
t

a
l

T
A

C
A

S
0

8
,

K
a

h
lo

n
 e

t
a

l

C
A

V
0

9
]

S
y

n
c

h
ro

n
o

u
s

 M
o

d
e

l

(w
it

h
 s

c
h

e
d

u
le

r)
S

ta
ti

c
 P

O
R

[G
o

d
e

fr
o

id

T
h

e
s

is
9

5
]

D
y

n
a

m
ic

 P
O

R

[F
la

n
a

g
a

n
 e

t.

a
l.

P

O
P

L
0

5
,

G
u

e
ta

 e
t

a
l

S
P

IN
0

7
]

T
o

k
e

n
-p

a
s

s
in

g

c
o

n
s

tr
a

in
ts

[G
a

n
a

i
e

t
a

l
S

P
IN

0
8

]

O
p

ti
m

a
l

P
O

R

[G
a

n
a

i
e

t
a

l
S

P
IN

0
9

]

F
ig

.
6
.1

3
M

o
d
el

ch
ec

k
in

g
co

n
cu

rr
en

t
sy

st
em

6.12 Summary 95

system are inherently asynchronous, such synchronous modeling based approach

has inherent limitations. Addition of constraints to prune search space works in prin-

ciple, but in practice it often leads to lower performance of the decision procedures.

To overcome that, researchers have been actively pursuing techniques that optimize

model checking without modeling the system synchronously. The asynchronous

modeling techniques focus primarily on generating smaller size verification con-

ditions that can be solved easily by the decision procedures.

Acknowledgements This chapter is based on the following publications:

“Bounded Model Checking of Concurrent Programs”, by I. Rabinovitz and O. Grumberg in CAV

2005: Proceedings of 17th International Conference of Computer-Aided Verification [174].

“Peephole Partial Order Reduction”, by C. Wang, Z. Yang, V. Kahlon, and A. Gupta in TACAS

2008: Proceedings of 14th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems [205].

“Efficient Modeling of Concurrent Systems in BMC”, by M. K. Ganai and A. Gupta in SPIN 2008:

Proceedings of 15th International SPIN Workshop on Model Checking of Software [67].

“Reduction of Verification Conditions for Concurrent System using Mutually Atomic Transac-

tions”, by M. K. Ganai and S. Kundu in SPIN 2009: Proceedings of 16th International SPIN

Workshop on Model Checking of Software [64].

“Symbolic predictive analysis for concurrent programs” by C. Wang, S. Kundu, M. Ganai, and

A. Gupta in FM 2009: Proceedings of 16th International Symposium on Formal Methods [204].

Chapter 7

Translation Validation of High-Level Synthesis1

Once the important properties of the high-level components have been verified

possibly using techniques presented in Chaps. 5 and 6, the translation from the

high-level design to low-level RTL still needs to be proven correct, thereby also

guaranteeing that the important properties of the components are preserved. In this

chapter we will discuss an approach that proves that the translation from high-level

design to a scheduled design is correct, for each translation that the HLS tool per-

forms. In the next chapter we will describe another approach that will allow us to

write part of these tools in a provably correct manner.

7.1 Overview of Translation Validation

HLS tools are large and complex software systems, often with hundreds of thou-

sands of lines of code, and as with any software of this scale, they are prone to

logical and implementation errors. Apart from applying a monolithic tool, HLS pro-

cess is characterized by significant user intervention from recoding to directing the

synthesis goals. Consequently, the HLS process, even with automated HLS tools,

is error prone and may lead to the synthesis of RTL designs with bugs in them,

which often have expensive ramifications if they go undetected until after fabrica-

tion or large-scale production. Hence, correctness of the HLS process (manual or

automatic) has always been an important concern.

In general, proving that the HLS process always produces target RTL designs

that are semantically equivalent or refinement to their source versions is usually very

hard. However, even if one cannot prove the HLS process correct once and for all,

one can try to show, for each translation that HLS performs, that the output program

produced by these steps has the same behavior as the original program. Although

this approach does not guarantee that the HLS process is bug free, it does guarantee

that any errors in translation will be caught when the particular steps of HLS are

1 c© 2010 IEEE. Reprinted, with permission, from (IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, DOI: 10.1109/TCAD.2010.2042889 [119]).

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 7,

c© Springer Science+Business Media, LLC 2011

97

98 7 Translation Validation of High-Level Synthesis

performed, preventing such errors from propagating any further in the hardware

fabrication process. This approach to verification, called translation validation, has

previously been applied with success in the context of optimizing compilers [73,

160, 170, 178, 212].

7.2 Overview of the TV-HLS Approach

During the HLS process, an engineer starts with a high-level description of the de-

sign, usually called a specification, which is then refined into progressively more

concrete implementations. Checking correctness of these refinement steps has many

benefits, including finding bugs in the translation process, while at the same time

guaranteeing that properties checked at higher-levels in the design are preserved

through the refinement process, without having to recheck them at lower levels.

For example, if one checks that a given specification satisfies a safety property, and

that an implementation is a correct trace refinement of the specification, then the

implementation will also satisfy the safety property. In this chapter, we discuss an

approach TV-HLS [116, 117, 119] that describes how translation validation can ef-

fectively be implemented in a HLS process. The novelty of this approach comes

from the fact that it can account for concurrency which is inherent in hardware

design. The TV-HLS approach deals with this concurrency using standard tech-

niques for computing weakest preconditions and strongest postconditions of parallel

programs [30].

The TV-HLS algorithm uses a simulation relation approach to prove refinement.

The algorithm consists of two components. The first component is given a relation,

and checks that this relation satisfies the properties required for it to be a correct re-

finement simulation relation. The second component automatically infers a correct

simulation relation just from the specification and the implementation programs.

In particular, the inference algorithm automatically establishes a relation that states

what points in the implementation program are related to what points in the spec-

ification program. This relation guarantees that for each execution sequence in the

implementation, an equivalent execution sequence exists in the specification. Apart

from refinement checking, TV-HLS also generalize both the checking and inference

algorithms to prove equivalence between the specification and the implementation

programs using a bisimulation relation approach.

Toward the end of this chapter we discuss an implementation of this algorithms

in a validating system called Surya. We then report the results of using Surya to

check the correctness of a variety of refinements of infinite state concurrent systems

represented using Communicating Sequential Processes (CSP) [93] programs. Next,

we discuss the results of using Surya to validate a HLS tool. In particular, Surya

validates all the phases (except for parsing, binding and code generation) of the

Spark HLS tool [84] against the initial behavioral description. With over 4,000

downloads, and over 100 active members in the user community, Spark is a widely

used tool. Although commercial HLS tools exists, these tools are not available for

academic experimentation – Spark represents the state of the art in the academic

community.

7.3 Illustrative Example 99

The TV-HLS verification approach is modular as it works on one procedure at

a time. Furthermore, for the experiments on Spark, Surya took on average 6 s to

run per procedure, showing that translation validation of HLS transformations can

be fast enough to be practical. Finally, in running Surya, two failed validation runs

have directed us to discover two previously unknown bugs in the Spark tool. These

bugs cause Spark to generate incorrect RTL for a given high-level program. This

demonstrates that translation validation of the HLS process can catch bugs that even

testing and long-term use may not uncover.

7.3 Illustrative Example

At the heart of a HLS process is a model of a system consisting of concurrent

pieces of functionality, often expressed as sequential program-like behavior, along

with synchronous or asynchronous interactions [127, 183]. CSP is a calculus for

describing such concurrent systems as a set of processes that communicate syn-

chronously over explicitly named channels. In this chapter we describe the TV-HLS

algorithm using CSP-style concurrent programs. While CSP presents a good model

for a large number of hardware models described using Hardware Description Lan-

guages (HDLs), we note that the core algorithms of the TV-HLS approach does not

depend on the choice of the input language. For example, in the experiment section,

the TV-HLS approach is used for programs that may include arrays, and function

calls that are generally not part of CSP programs.

We start out by describing the salient features of CSP required for understanding

the examples in this chapter. A CSP program is a set of (possibly mutually recursive)

process definitions. An asynchronous parallel composition of two processes P and Q

is written as (P || Q). Asynchronous parallel processes in this version of CSP (and

Hoare’s original version [93]) can only communicate through messages on channels.

Although there are no explicit shared variables, these can easily be simulated using

a process that stores the value of the shared variable, and that services reads and

writes to the variable using messages. c?v denotes reading a value from a channel

c into a variable v and c!v denotes writing a variable v to a channel c. Reads and

writes are synchronous. Channels can be visible or hidden. Visible channels are

externally observable, and these are the channels whose behavior is preserved when

checking for correctness. Furthermore, the TV-HLS algorithms also allow simple C-

style control instructions and synchronous parallel composition. By allowing both

asynchronous (inherent in CSP) and synchronous semantics of concurrency the TV-

HLS approach support system designs which are Globally Asynchronous Locally

Synchronous (GALS).

We now present a simple example that illustrates the approach (Fig. 7.1). For

now ignore the dashed lines in the figure. The specification is a sequential process

X shown in Fig. 7.1a using our internal Concurrent Control Flow Graph (CCFG)

representation after tail recursion elimination has been performed. We omit the de-

tails of the actual CSP code, because the CCFG representation is complete, and we

100 7 Translation Validation of High-Level Synthesis

Fig. 7.1 CCFGs of our running example along with a simulation relation

Fig. 7.2 Communication

diagrams of our running

example
X

inp outp

Specification

a b

Implementation

Y Z

ack

outp
mid

inp

believe the CSP code only makes the example harder to follow. This process is con-

tinually reading values from an input channel called inp into a variable p and then

computes the sum from (2×p+1) to 10 using a loop. Finally, it writes the sum out

to a channel named outp. In refinement based hardware development, the designer

often starts with such a high-level description of a sequential design, refining the

details of the implementation later on.

An implementation (Fig. 7.1b) may use two separate parallel processes (compo-

nents) Y and Z, communicating via a hidden channel mid and an acknowledgment

channel ack as shown in Fig. 7.2b. Like its specification it also takes a value from

the inp channel into a variable p and outputs the sum from (2×p+ 1) to 10 in the

outp channel. However, now it does so in 2 steps, first the process Y multiplies p

by 2 and sends it to the component Z then process Z computes the sum and writes

it to the outp channel. One additional subtlety of this example is that, in order for

the refinement to be correct, an additional channel needs to be added for sending

an acknowledgment token (in this case the value 1) back to the process Y, so that a

new value isn’t read from the inp channel until the current value has been written

out to the outp channel. The value read from the ack channel is not used, and so we

use an “ ” for the variable being read. Instructions on the same transition edge are

executed in parallel (synchronously).

7.3 Illustrative Example 101

Apart from the architectural differences, the loop-structure in the implementation

is different from the one in the specification in several ways. First, a loop-shifting

transformation has moved the operation i4 from the beginning of the loop body to

the end of the loop body (j42), while also placing a copy of the operation in the loop

header (j41) using the temporary variable t. The effect of this loop-shifting trans-

formation is a form of software pipelining [123]. Note that without this pipelining

transformation it would not have been possible to schedule the operation i4 and i5 to-

gether due to the data dependence between them. In addition to loop-shifting, a copy

propagation of instruction j4 to j5 and j42 are also performed. This ability to make

large scale code transformations via parallelizing code transformations as shown

here is an important aspect of parallelizing HLS implemented in SPARK. Even with-

out HLS tools, similar source-level transformations are often done manually by the

designer to optimize the generated code as a part of high-level design process.

7.3.1 Translation Validation Approach

The TV-HLS [116, 117, 119] translation validation approach consists of two parts,

which theoretically are independent, but for practical reasons, one part subsumes

the other as explained below. The first part is a checking algorithm that, given a

relation, determines whether or not it satisfies the properties required for it to be

a valid simulation relation. The second part is an inference algorithm that infers a

relation given two programs, one of which is a specification, and the other is an

implementation. To check that one program is a refinement to another, one therefore

runs the inference algorithm to infer a relation, and then one uses the checking

algorithm to verify that the resulting relation is indeed the required relation. Because

the inference algorithm does a similar kind of exploration as the checking algorithm,

this leads to duplicate work. To reduce this work, the inference algorithm has been

made to also perform checking, with only a small amount of additional work. This

avoids having the checking algorithm duplicate the exploration work done by the

inference algorithm. The checking algorithm is nonetheless useful by itself, in case

the inference algorithm is not capable of finding an appropriate relation, and the

relation is manually provided by the system designer.

7.3.2 Simulation Relation

The goal of the simulation relation in this approach is to guarantee that the spec-

ification and the implementation interact in the same way with any surrounding

environment that they would be placed in. The simulation relation guarantees that

the set of execution sequences of visible instructions in the implementation is a sub-

set of the set of execution sequences in the specification. In what follows, let us

102 7 Translation Validation of High-Level Synthesis

Table 7.1 A simulation

relation for our running

example

(gl1,gl2,φ)

A. (a0,b0, true)

B. (a2, (b2,b5),ps = pi)

C. (a4, (b4,b7),ks = ni ∧ sums = sumi ∧ (ks +1) = ti)

D. (a7, (b4,b9),sums = sumi)

consider the visible instructions to be read and write operations to visible channels.

However, in Sect. 7.8.2, we will use visible instructions to be function calls and

return statements.

The simulation relation (defined formally in Sect. 7.5) consists of a set of entries

of the form (gl1,gl2,φ), where gl1 and gl2 are program locations in the specification

and implementation respectively, and φ is a predicate over variables of the spec-

ification and implementation. The pair (gl1,gl2) captures how the control state of

the specification is related to the control state of the implementation, whereas φ

captures how the data is related. For our running example, the entries in the simu-

lation relation are labeled A through D in Fig. 7.1, and each entry has a predicate

associated with it as shown in Table 7.1.

The first entry ‘A’ in the simulation relation relates the start location of the speci-

fication and the implementation. For this entry, the relevant data invariant is true, as

we have no information about the states of the programs in those locations. The sec-

ond entry ‘B’ shows the specification just as it finishes reading a value from the inp

channel. The corresponding control state of the implementation has the Y process in

the same state, just as it finishes reading from the inp channel and the other process

Z is at the top of its loop. We use subscript s to denote variables in the specification

and subscript i for variables in the implementation. For this entry, the relevant data

invariant is ps = pi, which states that the value of p in the specification is equal to the

value of p in the implementation. This is because both the specification and the im-

plementation have stored in p the same value from the surrounding environment. In

the Sect. 7.3.4, we explain in further detail how this algorithm models the environ-

ment as a set of separate processes that are running in parallel with the specification

and the implementation. For now we hide these additional processes for clarity of

exposition.

The next entry ‘C’ in the simulation relation relates the loop head (a4) in the

specification with the loop head (b7) of the Z process in the implementation. This

entry represent two loops that run in synchrony, one loop being in the specification

and the other being in the implementation. The invariant can be seen as a loop in-

variant across the specification and the implementation, which guarantee that the

two loops produce the same effect on the visible instructions. The data part of this

entry guarantee that the two loops are in fact synchronized. Nominally, we need at

least one entry in the simulation relation that “cuts through” every loop pair, in the

same way that there must be at least one invariant through each loop when reasoning

about a single sequential program.

The last entry ‘D’ in the simulation relation relates the location a7 in the

specification with the location (b4,b9) of the implementation. The relevant invariant

7.3 Illustrative Example 103

for this entry is sums = sumi, since the specification is about to write sums to the

externally visible outp channel and the implementation is about to write sumi to the

same channel (our correctness criterion).

Simultaneous execution from the last entry ‘D’ can reach back to ‘B’, establish-

ing the invariant ps= pi, since by the time execution reaches the second entry again,

both the specification and the implementation would have read the next value from

the environment (details of how the algorithm establishes that the two next values

read from the environment processes are equal is explained in the Sect. 7.3.4).

7.3.3 Checking Algorithm

The entries in the simulation relation must satisfy some simple local requirements

(which are made precise in Sect. 7.5). Intuitively, for any entry (gl1,gl2,φ) in the

simulation relation, if the specification and implementation start executing in paral-

lel at control locations gl1 and gl2 in states where φ holds, and they reach another

simulation entry (gl′1,gl′2,φ
′), then φ ′ must hold in the resulting states.

Given a simulation relation, the checking algorithm checks each entry in the

relation individually. For each entry (gl1,gl2,φ), it finds all other entries that are

reachable from (gl1,gl2), without going through any intermediate entries. For each

such entry (gl′1,gl′2,ψ), it then checks using a theorem prover that if (1) φ holds at

gl1 and gl2, (2) the specification executes from gl1 to gl′1 and (3) the implementation

executes from gl2 to gl′2, then ψ will hold at gl′1 and gl′2.

For our example, the traces in the implementation and the specification from

B to C and the traces from C to itself are shown in Fig. 7.3a and b respectively.

The communication events have been transformed into assignments and the original

communication events are shown in parenthesis.

For the B - C path shown in Fig. 7.3a, the checking algorithm uses a theorem

prover to validate that if ps= pi holds before the two traces, then (ks= ni∧ sums=
sumi∧(ks+1) = ti) holds after the traces have been executed. Recall in Chap. 4 we

discussed how an automated theorem prover can be used to verify the above condi-

tion. Similarly, the theorem prover checks the traces from C to C shown in Fig. 7.3b

and also all the other entries in the simulation relation. If there were multiple paths

from an entry, then the algorithm checks all of them.

7.3.4 Inference Algorithm

The inference algorithm starts by finding the pairs of locations in the implementation

and the specification that need to be related in the simulation. In the given example,

the algorithm first adds (a0,b0) as a pair of interest, which is the entry location of

both programs. Then it moves forward simultaneously in the implementation and

the specification until it reaches a branch or an operation (read or write) on a visible

104 7 Translation Validation of High-Level Synthesis

Fig. 7.3 Checking the simulation relation. (a) Traces from B to C (b) Traces from C to C

Table 7.2 Iterations for computing the simulation relation

(gl1,gl2) 1st iteration 2nd iteration 3rd iteration (φ)

A. (a0,b0) true true true

B. (a2, (b2,b5)) ps = pi ps = pi ps = pi

C. (a4, (b4,b7)) ks = ni ks = ni ∧ sums = sumi ks = ni ∧ sums = sumi

∧(ks +1) = ti ∧(ks +1) = ti

D. (a7, (b4,b9)) sums = sumi sums = sumi sums = sumi

channel. In the example from Fig. 7.1, the algorithm finds that there is a branch,

an input and an output event that must be matched (the specification events inp?p

and outp!sum should match, respectively, with the implementation events inp?p and

outp!sum). This amounts to computing the first column of Table 7.2. While finding

these pairs of locations, the inference algorithm also does two more things. First,

it correlates the branch in the specification and the implementation (details of how

branch correlations are established is explained in Sect. 7.6). Next, it finds the local

conditions that must hold for the visible events to match. For events that output

to externally visible channels, the local condition states that the written values in

the specification and the implementation must be the same. For example, the local

condition for the output event is sums = sumi.

For events that read from externally visible channels, the local condition states

that the specification and the implementation are reading from the same point

7.3 Illustrative Example 105

in the conceptual stream of input values. To achieve this, the algorithms use an

environment process that models each externally visible input channel c as an un-

bounded array values of input values, with an index variable i stating which value

in the array should be read next. This environment process runs an infinite loop

that continually outputs values[i] to c and increments i. Assuming that i and j are

the index variables from the environment processes that model an externally visible

channel c in the specification and the implementation, respectively, then the local

condition for matching events c?a (in the specification) and c?b (in the implemen-

tation) would then be is = ji. The equality between the index variables implies that

the values being read are the same, and since this fact is always true, the algorithms

directly add this to the generated local condition, producing is = ji ∧as = bi.

Once the related pairs of locations have been collected the inference algorithm

defines, for each pair of locations (gl1,gl2), a constraint variable ψ(gl1,gl2) to repre-

sent the state-relating formula that will be computed in the simulation relation for

that pair. It then defines a set of constraints over these variables to ensure that the

would-be simulation relation is a simulation.

There are two kinds of constraints. First, for each pair of locations (gl1,gl2)
that are related, we want ψ(gl1,gl2) to imply that the local condition at those loca-

tions hold. For example, ψ(a7,(b4,b9)) should imply sums = sumi, so that the output

values are the same. Such constraints guarantee that the computed simulation re-

lation is strong enough to show that the visible instructions behave the same way

in the specification and the implementation. A second kind of constraint is used to

state the relationship between one pair of related locations and other pairs of related

locations. For example, if starting at (gl1,gl2) in states satisfying ψ(gl1,gl2), the spec-

ification and implementation can execute in parallel to reach another related pair of

locations (gl′1,gl′2), then ψ(gl′1,gl′2) must hold in the resulting states. As shown later

in Sect. 7.6, such constraints can be stated over the variables ψ(gl1,gl2) and ψ(gl′1,gl′2)

using the weakest precondition operator (wp). This second kind of constraint guar-

antees that the computed simulation relation is in fact a simulation.

Once the constraints are generated, next the algorithm solves them using an iter-

ative algorithm that starts with all constraint variables set to true and then iteratively

strengthens the constraint variables until a theorem prover is able to show that all

constraints are satisfied. Although in general this constraint-solving algorithm is

not guaranteed to terminate, in practice it can quickly find the required simulation

relation.

The constraint solving for our example is shown in Table 7.2. The algorithm

first initializes the constraint variables with the local conditions that are required

for the visible instructions to be equivalent (second column of Table 7.2). In par-

ticular, it initializes A with true as both the programs are at their entry locations,

B with ps = pi for input matching, C with ks = ni for branch correlation, and

D with sums = sumi for output matching. The algorithm next chooses any en-

try from the table, say C and finds the entries that can reach it (i.e. C and B).

Consider the synchronized loop from C to C shown in Fig. 7.4a. The algorithm

computes the weakest precondition of the formula at the bottom (ks = ni) over the

instructions in the implementation and in the specification, which happens to be

106 7 Translation Validation of High-Level Synthesis

Fig. 7.4 Steps of the 2nd iteration for computing the simulation relation

δ = [(ks < 10) ⇒ (n i < 10) ⇒ (ks + 1) = ti] (recall from Sect. 4.3, how to compute

weakest precondition). Next, it asks a theorem prover if the condition at the top,

i.e., ks = ni implies δ . Since it does not, the algorithm strengthens the constraint

variable at the top with (ks +1) = ti which is a stronger condition than δ . A similar

pass through Fig. 7.4b strengthens the constraint variable at C with (sums = sumi).
For the other paths B - C, D - B, and A - B shown in Fig. 7.4 the theorem prover

is able to validate the implication, and as such it does not need to strengthen. The

constraint solving continues in this manner until a fixpoint is reached.

7.4 Definition of Refinement

We now present a formal description of the approach that builds upon the illustration

discussed in the previous section. The TV-HLS approach verifies each procedure

in the specification against the corresponding procedure in the implementation.

Semantically a concurrent program in the TV-HLS approach consists of a set of

processes. For simplicity, let us assume that the programs are single-entry-single-

exit programs.

In this chapter, we represent each process in the specification and the

implementation using a transition diagram that describes the control structure

of the process in terms of generalized program locations and program transi-

tions. A generalized program location represents a point of control in the (possibly

7.4 Definition of Refinement 107

concurrent) program. A generalized program location is either a node identifier, or

a pair of two generalized program locations, representing the state of two processes

running in parallel. A transition describes how the program state changes from one

program location to another. We represent these transitions by instructions.

Let L denote the finite set of generalized program locations, VAR denote the set

of variables and VAL denote the domain of values.

More formally, we define a data state to be a function VAR → VAL assigning

values to variables. We denote by Σ the set of all data states. We define an in-

struction to be a pair (c, f) where c : Σ → B is a predicate and f : Σ → Σ is a

state transformation function. The predicate c is the condition under which the state

transformation function f can happen. For instance, in Fig. 7.1 the instruction i3 has

c(σ) = (σ(k) < 10) and f (σ) = σ , whereas the instruction i2 has c(σ) = true and

f (σ) = σ [sum �→ 0]. Finally a transition diagram is defined as follows.

Definition 10 (Transition Diagram). A transition diagram π is a tuple (L ,I ,→,
ι,ε), where I is a finite set of instructions, → ⊆ L ×I ×L is a finite set of

triples (gl, i,gl′) called transitions, ι ∈L is the entry location, and ε ∈L is the exit

location. We write gl
i

−→ gl′ to denote (gl, i,gl′) ∈→.

Definition 11 (Configuration). Given a transition diagram π = (L ,I ,→, ι,ε),
we define a configuration to be a pair 〈gl,σ〉, where gl ∈ L and σ ∈ Σ .

Definition 12 (Semantic Step). Given a transition diagram π = (L ,I ,→, ι,ε),
two configurations 〈gl,σ〉 and 〈gl′,σ ′〉, and an instruction i ∈ I , the semantic step

relation is defined as follows:

〈gl,σ〉
i

� 〈gl′,σ ′〉 iff gl
i

−→ gl′ ∧ i = (c, f) ∧ c(σ) = true ∧ σ ′ = f (σ).

Definition 13 (Execution Sequence). For a given transition diagram π =
(L ,I ,→, ι,ε), an execution sequence η starting in configuration 〈gl0,σ0〉 is a

sequence of configurations such that:

〈gl0,σ0〉
i1
� 〈gl1,σ1〉

i2
� · · ·

in
� 〈gln,σn〉

We denote by N the set of all execution sequences. We use the shorthand notation

η〈π ,gl0,σ0〉 to represent an execution sequence η starting in configuration 〈gl0,σ0〉
in π .

We define ϑ to be the set of visible instructions. These are the instructions whose

semantics are preserved between the specification and implementation. Because the

TV-HLS algorithm is parameterized by the set ϑ of visible instructions, we can

apply this approach to various settings. For example, in this discussion we consider

visible instructions to be input and output to visible channels. In Sect. 7.8.2, however

we define visible instructions to be function calls and return statements. For v1,v2 ∈
ϑ , we write 〈v1,σ1〉 ≡ 〈v2,σ2〉 to represent that v1 in state σ1 is equivalent to v2 in

states σ2. In the case of channels, two visible instructions are equivalent iff they both

are inputs, or both outputs on the same channel and their values are the same. In the

case of function calls and returns, we say that two function calls are equivalent iff the

108 7 Translation Validation of High-Level Synthesis

state of globals, the arguments and the address of the called function are the same.

Furthermore, we say that two returns are equivalent iff the returned value and the

state of the globals are the same. This concept of equivalence for visible instruction

can be extended to execution sequences as follows.

Definition 14 (Equivalence of Execution Sequences). Two execution sequences

η1 ∈N and η2 ∈N are said to be equivalent, written η1 ≡η2, if the two sequences

contain visible instructions that are pairwise equivalent.

Definition 15 (Refinement of Transition Diagrams). Given two transition dia-

grams π1 = (L1,I1,→1, ι1,ε1) and π2 = (L2,I2,→2, ι2,ε2), we define π1 to be a

refinement of π2 (written π1 ⊑ π2) iff for every σ1 ∈ Σ and η1〈π1, ι1,σ1〉 ∈N there

exists σ2 ∈ Σ and η2〈π2, ι2,σ2〉 ∈ N such that η1 ≡ η2.

7.5 Simulation Relation

A verification relation between two transition diagrams π1 and π2 is a set of triples

(gl1,gl2,φ), where gl1 ∈ L1, gl2 ∈L2 and φ is a predicate over the variables live at

locations gl1 and gl2. Let the set of such predicates be denoted by Φ
de f
= Σ ×Σ →B.

We write φ(σ1,σ2) = true to indicate that φ is satisfied in (σ1,σ2) ∈ Σ ×Σ .

Simulation relations are verification relations with a few additional properties. To

define these properties, we make use of a cumulative semantic step relation �
+,

which works like �, except that it can take multiple steps at once, and it accumu-

lates the steps taken into an execution sequence.

Definition 16 (Cumulative Semantic Step). Given configurations 〈gl0,σ0〉 and

〈gln,σn〉, and an execution sequence η that contains at least one transition, we define

�
+ as follows:

〈gl0,σ0〉
η

�
+ 〈gln,σn〉 iff η = 〈gl0,σ0〉

i1
� · · ·

in
� 〈gln,σn〉

Definition 17 (Simulation Relation). A simulation relation R for two transition

diagrams π1 = (L1,I1,→1, ι1,ε1) and π2 = (L2,I2,→2, ι2,ε2) is a verification

relation such that:

R(ι1, ι2, true)

∀gl2,gl′2 ∈ L2,gl1 ∈ L1,σ1,σ2,σ
′
2 ∈ Σ ,φ ∈ Φ,η2 ∈ N .

⎡

⎣

〈gl2,σ2〉
η2

�
+
2 〈gl′2,σ

′
2〉 ∧

R(gl1,gl2,φ)∧φ(σ1,σ2) = true

⎤

⎦

⇒∃gl′1 ∈ L1,σ
′
1 ∈ Σ ,φ ′ ∈ Φ,η1 ∈ N .

⎡

⎣

〈gl1,σ1〉
η1

�
+
1 〈gl′1,σ

′
1〉∧

R(gl′1,gl′2,φ
′)∧φ ′(σ ′

1,σ
′
2) = true∧η1 ≡ η2

⎤

⎦

7.6 The Translation Validation Algorithm 109

Intuitively, these conditions respectively state that (1) the entry location of π1 must

be related to the entry location of π2; and (2) if π1 and π2 are in a pair of related

configurations, and π2 can proceed one or more steps producing an execution se-

quence η2, then π1 must also be able to proceed one or more steps, producing a

sequence η1 that is equivalent to η2, and the two resulting configurations must be

related.

The following lemma and theorem connect the above relation with our definition

of refinement for transition diagrams (Definition 15).

Lemma 7.1 (Refinement). If R is a simulation relation for π1,π2, then for each

element (gl1,gl2,ψ) ∈ R, σ2 ∈ Σ , and η2〈π2,gl2,σ2〉 ∈ N , there exists σ1 ∈ Σ , and

η1〈π1,gl1,σ1〉 ∈ N such that η1 ≡ η2 ∧ ψ(σ1,σ2) = true.

Theorem 7.1 (Refinement). If there exists a simulation relation for π1,π2, then

π2 ⊑ π1.

The conditions from Definition 17 are used as the base case and the inductive

case of a proof by induction showing that π2 is a refinement of π1. Thus, a simulation

relation is a witness that π2 is a refinement of π1.

7.6 The Translation Validation Algorithm

The TV-HLS translation validation algorithm consists of two parts, checking and

inference. To show that a transition diagram is a refinement of another transition

diagram, it shows there exist a simulation relation between them. In the following

sections we describe the algorithms for computing a simulation relation.

Given a transition diagram π and a set of locations S, we define the skipping tran-

sition relation −֒→, which is a version of −→ that skips over all locations not in S.

This transition allows us to focus our attention on only those locations that are in S.

Definition 18 (Skipping Transition). Let π = (L ,I ,→, ι,ε) be a transition dia-

gram, gl,gl′ ∈ S, and w ∈ I
∗, where w = i0 · · · in. We define the skipping transition

relation −֒→ for π as follows:

gl
(w,S)
−֒→π gl′ iff ∃gl1, . . . ,gln ∈ (L −S). gl

i0−→ gl1 · · ·gln
in−→ gl′

Throughout the rest of this chapter, we assume that π1 = (L1,I1,→1, ι1,ε1)
represents the procedure in the specification, and π2 = (L2,I2,→2, ι2,ε2) repre-

sents the corresponding procedure in the implementation. Thus, the goal here is to

show that π2 is a refinement of π1 (i.e. π2 ⊑ π1).

7.6.1 Checking Algorithm

In this section, we present the details of the checking algorithm that checks

whether a verification relation is indeed a correct simulation relation. We let

110 7 Translation Validation of High-Level Synthesis

R ⊆ L1 ×L2 ×Φ to be the verification relation that needs to be checked. We then

define two sets of locations P1 and P2, which are of interest to the algorithm.

P1 = {gl1 | ∃gl2,φ . (gl1,gl2,φ) ∈ R}

P2 = {gl2 | ∃gl1,φ . (gl1,gl2,φ) ∈ R}

To focus our attention on only those locations in P1 and P2, we use the skipping

transition relation −֒→. In this section, we use the shorthand notation gl1
w1

−֒→1 gl′1

for gl1
(w1,P1)
−֒→π1

gl′1, and gl2
w2

−֒→2 gl′2 for gl2
(w2,P2)
−֒→π2

gl′2.

Given an entry in R, we then define the next transition relation −→−→, which

traverses the two transition diagrams π1 and π2 simultaneously to the next entries

reachable from it.

Definition 19 (Next Transition). Given (gl1,gl2,φ) ∈ R, (gl′1,gl′2,ψ) ∈ R, w1 ∈
I ∗

1 and w2 ∈ I ∗
2 , we define −→−→ as follows:

(gl1,gl2,φ)
(w1,w2)
−→−→ (gl′1,gl′2,ψ) iff gl1

w1
−֒→1 gl′1 ∧gl2

w2
−֒→2 gl′2

For the verification relation R to be a simulation relation we require it to satisfy

certain conditions. In particular, we want the conditions to make sure that the entry

locations are related, and the exit locations are related. Furthermore, the conditions

should make sure that for every path in the implementation there is a correspond-

ing path in the specification (our refinement criterion). These conditions are made

precise by the following definition of well-formed relation. If the relation R is

not well-formed, then the checking algorithm immediately rejects the verification

relation R.

Definition 20 (Well-Formed Relation). We define the relation R to be well

formed if the following holds:

1. (ι1, ι2, true) ∈ R

2. ∃φ ∈ Φ. (ε1,ε2,φ) ∈ R

3. ∀(gl1,gl2,φ) ∈ R,gl′2 ∈ P2,w2 ∈ I ∗
2

gl2
w2

−֒→2 gl′2 =⇒ ∃gl′1 ∈ P1,ψ ∈ Φ,w1 ∈ I ∗
1 . gl1

w1
−֒→1 gl′1 ∧ (gl′1,gl′2,ψ) ∈ R

The checking algorithm is shown in Fig. 7.5. The CheckRelation procedure takes

as input a well-formed relation R, and verifies each entry in the verification relation

individually. For each possible entry (line 2), the algorithm iterates through all the

next transitions as shown in line 3. In doing this search, infeasible paths are pruned

out on line 4.

The IsInfeasible function (lines 9–10), checks using an automated theorem prover

(ATP) whether or not it is in fact feasible for the specification to follow trace w1 and

the implementation to follow w2. The trace combination is infeasible if the strongest

7.6 The Translation Validation Algorithm 111

Fig. 7.5 Algorithm for checking a simulation relation

postconditions (computed using the sp function) with respect to w2 and then with

respect to w1 is inconsistent. This takes care of pruning within a single program, but

also across the specification and the implementation. For a given formula φ and trace

w, the strongest postcondition sp(w,φ) is the strongest formula ψ such that if the

instructions in the trace w are executed in sequence starting in a program state satis-

fying φ , then ψ will hold in the resulting program state. The sp computation itself is

standard, except for the handling of communication events, which are simulated as

assignments. When computing sp with respect to one sequence, the algorithm treats

all variables from the other sequence as constants. As a result, the order in which it

processes the two sequences does not matter.

Once the algorithm has identified that the two sequences w1 and w2 may be a

feasible combination, it then checks that they are well paired using the WellPaired

predicate (lines 5–6). The WellPaired predicate (not shown here) checks that there

is at most one visible instruction in the sequences w1 and w2. It also checks that the

visible instructions are equivalent.

Next, for well paired sequences, it checks that if we start at states that satisfy

the predicate φ and execute w1 in π1 and w2 in π2 then the resulting states should

satisfy the predicate ψ . To do this it first computes the weakest precondition of ψ

with respect to the two traces, and then asks an ATP to show φ implies the weakest

precondition (line 7). For a given formula ψ and trace w, the weakest precondition

wp(w,ψ) is the weakest formula φ such that executing the trace w in a state satisfy-

ing φ leads to a state satisfying ψ . Here again, the wp computation itself is standard,

and the order in which it processes the two traces does not matter. Recall from

Chap. 4 how weakest precondition and Hoare logic can be used for verification using

ATP. If at the end of the algorithm there is no error then the verification relation is

indeed a simulation relation.

There are additional optimizations which are performed in the TV-HLS algo-

rithm. These optimizations are not explicitly shown in the algorithm from Fig. 7.5.

However, these are important in improving the efficiency of the refinement check-

ing process. For example, when exploring the control state (both in the checking

and in the inference algorithm), the algorithm performs a simple partial order re-

duction [167] that is very effective in reducing the size of the control state space: if

112 7 Translation Validation of High-Level Synthesis

two communication events happen in parallel, but they do not depend on each other,

and they do not involve externally visible channels, then it only considers one or-

dering of the two events.

7.6.2 Inference Algorithm

Since there can be many possible paths through a loop, writing simulation relations

by hand can be tedious, time consuming and error prone. We therefore want methods

for generating (inferring) these relations automatically, not just checking them. This

will in turn also be able to automate the validation process entirely. Nevertheless, the

checking algorithm is useful by itself, in case the inference algorithm is not capable

of finding an appropriate relation, and a human wants to provide the relation by

hand.

Here again to focus our attention on only those locations for which the approach

infers the relation entries, we define two sets of locations Q1 and Q2 for the transi-

tion diagrams π1 and π2 respectively. These include all locations corresponding to

visible instructions and also all locations before branch statements. In this section,

we do notation abuse by re-using the shorthand gl1
w1

−֒→1 gl′1 for gl1
(w1,Q1)
−֒→π1

gl′1, and

gl2
w2

−֒→2 gl′2 for gl2
(w2,Q2)
−֒→π2

gl′2.

We now define a parallel transition relation −֒→−֒→ that essentially traverses the two

transition diagrams (specification and implementation) in synchrony, while focusing

on only those locations for which this approach infers the relation entries.

Definition 21 (Parallel Transition). Given (gl1,gl2) ∈Q1 ×Q2, (gl′1,gl′2) ∈Q1 ×
Q2, w1 ∈ I ∗

1 and w2 ∈ I ∗
2 , we define −֒→−֒→ as follows:

(gl1,gl2)
(w1,w2)
−֒→−֒→ (gl′1,gl′2) iff

gl1
w1

−֒→1 gl′1 ∧ gl2
w2

−֒→2 gl′2 ∧ Rel(w1,w2,gl1,gl2) ∧ WellMatched(w1,w2).

We now describe the two predicates Rel and WellMatched used in the above

definition. The predicate Rel : I ∗ ×I ∗ ×Q1 ×Q2 → B is a heuristic that tries

to estimate when a path in the specification is related to a path in the implemen-

tation. Consider for example the branch in the specification of Fig. 7.1 and the

corresponding branch in the implementation. For any two such branches, the Rel

function uses heuristics to guess a correlation between them: either they always go

in the same direction, or they always go in opposite direction. Using these correla-

tions, Rel(w1,w2,gl1,gl2) returns true only if the paths w1 and w2 follow branches

in a correlated way.

The implementation of TV-HLS described in Sect. 7.8 implements the predicate

Rel in such a way that it correlates branches in two ways. First, using the results

of a strongest postcondition pre-pass over the specification and the implementation,

Rel tries to use a theorem prover to prove that certain branches are correlated. If the

7.6 The Translation Validation Algorithm 113

theorem prover is not able to determine a correlation, Rel uses the structure of the

branch predicate and the structure of the instructions on each side of the branch

to guess a correlation. For instance, in the example of Fig. 7.1, since the strongest

postcondition involves the input parameter p, the theorem prover is unable to reason

about it. However, because the structure of the branch predicate is not changed in the

implementation, Rel can conclude that the two branches go in the same direction.

The other predicate WellMatched : I ∗ ×I ∗ → B prunes some of these pair

of transitions if the sequence of instructions are not similar (well-matched). We

define two sequences (w1,w2) of instructions are well-matched if neither of them

contain a visible instruction or they each contains a single visible instruction of the

same type; i.e. they are both input or both output on the same channel. Although

Rel and WellMatched make guesses about the correlation of branches and visible

instructions, the later constraint solving phase of the inference algorithm makes sure

that these guesses are correct.

We now define the relation R ⊆ Q1 ×Q2 of location pairs that will form the

entries of our simulation relation.

Definition 22 (Pairs of Interest). The relation R ⊆ Q1 ×Q2 is defined to be the

minimal relation that satisfies the following three properties:

R(ι1, ι2)

R(ε1,ε2)

R(gl1,gl2) ∧ (gl1,gl2)
(w1,w2)
−֒→−֒→ (gl′1,gl′2) =⇒ R(gl′1,gl′2)

The set R defined above can easily be computed by starting with the empty set, and

applying the above three rules exhaustively.

For this approach to successfully infer a simulation relation, the computed set R

must cover every path in the implementation (our refinement criterion). This condi-

tion is made precise by the following definition of well-formed pairs of interest. The

well-formed condition here is similar to the one described in Definition 20, except

that now it is for the pairs of interest relation R. We do not need the first two con-

ditions here as they are satisfied by construction. Here again if the computed set R

is not well-formed, then the validation approach immediately rejects the translation

from specification to implementation.

Definition 23 (Well-Formed Pairs of Interest). We define the pairs of interest

relation R to be well formed if the following holds:

∀(gl1,gl2) ∈ R,gl′2 ∈ Q2,w2 ∈ I
∗

2

gl2
w2

−֒→2 gl′2 =⇒ ∃gl′1 ∈ Q1,w1 ∈ I
∗

1 . gl1
w1

−֒→1 gl′1 ∧ (gl′1,gl′2) ∈ R.

We now describe the inference algorithm in terms of constraint solving. In par-

ticular, for each (gl1,gl2) ∈ R we define a constraint variable ψ(gl1,gl2) representing

the predicate that will be computed for the simulation entry (gl1,gl2). We denote

114 7 Translation Validation of High-Level Synthesis

by Ψ the set of all such constraint variables. Using these constraint variables, the

final simulation relation will have the form:

{(gl1,gl2,ψ(gl1,gl2)) | R(gl1,gl2)}

To compute the predicates that the constraint variables ψ(gl1,gl2) stand for, we de-

fine a set of constraints on these variables, which are then used during the constraint

solving phase. The constraints are defined as follows.

Definition 24 (Constraint). A constraint is a formula of the form ψ1 ⇒ f (ψ2),
where ψ1,ψ2 ∈Ψ , and f is a boolean function.

Definition 25 (Set of Constraints). The set C of constraints is defined by:

For each (gl1,gl2)
(w1,w2)
−֒→−֒→ (gl′1,gl′2):

[

ψ(gl1,gl2) ⇒ CreateSeed(w1,w2)
]

∈ C

[

ψ(gl1,gl2) ⇒ wp(w1,wp(w2,ψ(gl′1,gl′2)))
]

∈ C

The CreateSeed function above creates for each pair of instruction sequences

(w1,w2) a formula, which does not refer to any constraint variables. There are two

cases either they are well-matched or they are branches (Definition 21). If the in-

structions are well-matched, then the formula returned by CreateSeed states that the

visible instructions in them are equivalent as defined in Sect. 7.4; and if they are

branches, then the formula states the two branches are correlated (either they both

go in the same direction, or in opposite directions).

The other function wp used above computes the weakest precondition with re-

spect to w2 and then with respect to w1. The weakest precondition computation is

the same as the one described in Sect. 7.6.1.

Having created a set of constraints C , the validation approach now solves these

constraints using the algorithm in Fig. 7.6. The algorithm starts by setting each

constraint variable to true (line 13) and initializing a worklist with the set of all

Fig. 7.6 Algorithm for solving constraints

7.7 Equivalence of Transition Diagrams 115

constraints (line 14). Next, while the worklist is not empty, it removes a constraint

from the worklist (line 16), and checks using a theorem prover if it is Valid (line 17).

If not, then it appropriately strengthens the left-hand-side variable of the constraint

(line 20) and adds to the worklist all the constraints that have this variable in the

right-hand side (line 21). Finally, if at the end of the algorithm there is no error then

it has inferred a simulation relation.

7.7 Equivalence of Transition Diagrams

Apart from checking refinements, we also sometimes want to check equivalence

between two transition diagrams. In this section, we describe how we can general-

ize the TV-HLS algorithms to check for equivalence. We first define two transition

diagrams to be equivalent as follows:

Definition 26 (Equivalence of Transition Diagrams). Two transition diagrams π1

and π2 are said to be equivalent iff π1 ⊑ π2 and π2 ⊑ π1.

We then define a bisimulation relation using the definition of simulation relation.

Definition 27 (Bisimulation Relation). A verification relation R is a bisimulation

relation for π1,π2 iff R is a simulation relation for π1,π2 and R−1 = {(gl2,gl1,φ) |
R(gl1,gl2,φ)} is a simulation relation for π2,π1.

The following theorem connects the above relation with our definition of equiv-

alence for transition diagrams.

Theorem 7.2 (Equivalence). If there exists a bisimulation relation for π1,π2, then

π1 and π2 are equivalent.

Like simulation relation, a bisimulation relation is a witness that two transition

diagrams are equivalent. Therefore, to check if the specification is equivalent to the

implementation the algorithms now have to show that there exists a bisimulation

relation between them. Both the checking and inference algorithms can be easily

extended for this purpose with just slight modifications.

For the checking algorithm, we only have to strengthen the definition of

well-formed relation (Definition 20) with this fourth condition.

∀(gl1,gl2,φ) ∈ R,gl′1 ∈ P1,w1 ∈ I ∗
1

gl1
w1

−֒→1 gl′1 =⇒ ∃gl′2 ∈ P2,ψ ∈ Φ,w2∈I ∗
2 . gl2

w2
−֒→2 gl′2 ∧ (gl′1,gl′2,ψ) ∈ R.

Similarly, for the inference algorithm, we only have to strengthen the definition

of well-formed pairs of interest (Definition 23) with this condition.

∀(gl1,gl2) ∈ R,gl′1 ∈ Q1,w1 ∈ I ∗
1

gl1
w1

−֒→1 gl′1 =⇒ ∃gl′2 ∈ Q2,w2 ∈ I ∗
2 . gl2

w2
−֒→2 gl′2 ∧ (gl′1,gl′2) ∈ R.

116 7 Translation Validation of High-Level Synthesis

7.8 Experiments and Results

In this section, we discuss the implementation of the TV-HLS algorithm in a pro-

totype tool called Surya that uses the Simplify ATP [44]. We have used Surya to

validate programs in two different settings. First, we used it to automatically check

refinements of various concurrent programs, written in CSP. Next, we used Surya

to validate the result of the high-level synthesis framework Spark.

7.8.1 Automatic Refinement Checking of CSP Programs

For refinements, the goal is to infer a simulation relation. The visible events in this

case are input and output on visible channels. We wrote a variety of CSP refine-

ments, and checked them for correctness automatically. The refinements that we

checked are shown in Table 7.3, along with the number of parallel threads, the num-

ber of instructions, the number of simulation relation entries, the number of calls

to the theorem prover, and the time required to automatically check them. Apart

from the theorem prover calls discussed in this chapter, Surya also use the theorem

prover to reduce the size of the formulas described in the algorithms. The number

of calls to the theorem prover mentioned in Table 7.3 include all these calls.

The first 11 refinements were inspired from examples that come with the FDR

tool [137]. FDR is a state-of-the-art tool to check CSP refinements. The approach

that FDR uses for checking refinement is to perform an exhaustive search of the

implementation-specification combined state space. Although in its pure form this

approach only works for finite state systems, there is one way in which it can be

Table 7.3 Timings for the refinement examples checked using Surya

Description T I SRE TP Time mins

1. Simple buffer 7 29 3 14 00.00

2. Simple vending machine 2 20 9 32 00.00

3. Cyclic scheduler 6 65 157 11082 00.49

4. Student tracking system 3 63 12 115 00.01

5. 1 comm link 11 54 3 14 00.01

6. 2 parallel comm links 18 105 37 486 00.04

7. 3 parallel comm links 25 144 45 1861 00.21

8. 4 parallel comm links 32 186 124 7228 01.11

9. 5 parallel comm links 39 228 315 24348 02.32

10. 6 parallel comm links 46 270 762 74991 08.29

11. 7 parallel comm links 53 312 1785 217131 37.28

12. SystemC refinement 8 39 3 14 00.00

13. EP2 system 3 173 208 5648 01.47

T: Number of parallel Threads; I: Number of Instructions; SRE: Number of Simulation Relation

Entries; TP: Number of Theorem Prover calls

7.8 Experiments and Results 117

extended to infinite systems. In particular, if an infinite state system treats all the data

it manipulates as black boxes, then one can use skolemization and simply check the

refinement for one possible value. Such systems are called data-independent, and

FDR can check the refinement of these systems using the skolemization trick, even

if they are infinite [180].

Unfortunately, for high-level programs, there are many refinement examples that

are not finite, because they do not specify the bit-width of integers (in particu-

lar, we want the refinement to work for any integer size). Nor are the processes

data-independent, as they manipulate the data during the refinement process. In par-

ticular, our example from Fig. 7.1 is neither finite nor data-independent, since both

the specification and the implementation are “inspecting” the variables when manip-

ulating them. Indeed, it would not at all be safe to simply check the refinement for

any one particular value, since, if we happen to pick 0 for p, and the implementation

erroneously sets the output to 4 times the input (instead of 2 times), we would not

detect the error. FDR cannot check the refinement of such infinite data-dependent

CSP systems, except by restricting them to a finite subset first, for example by pick-

ing a bit-width for the integers, and then doing an exhaustive search. Not only would

such an approach not prove the refinement for any bit-width, but furthermore, de-

spite many techniques that have been developed for checking larger and larger finite

state spaces [23, 35, 167, 181], the state space can still grow to a point where au-

tomation is impossible. For example, we tried checking the refinement example ‘2

parallel comm links’ from Table 7.3 in FDR using 32-bit integers as values, and the

tool had to be stopped because it ran out of memory after several hours (Surya, in

contrast, is able to check this example for any sized integers, not just 32-bit integers,

in about 4 s).

We implemented generalizations of these 11 FDR examples to make them

data-dependent and operate over infinite domains. Surya was able to check these

generalized refinements that FDR would not be able to check.

The 12th refinement in the list is a hardware refinement example taken from

a SystemC book [78]. This example models the refinement of an abstract FIFO

communication channel to an implementation that uses a standard FIFO hardware

channel, along with logic to make the hardware channel correctly implement the

abstract communication channel.

In the 13th refinement from Table 7.3, we checked part of the EP2 system [1],

which is a new industrial standard for electronic payments. We followed the im-

plementation of the data part of the EP2 system found in the paper on CSP-

PROVER [96]. The EP2 system states how various components, including service

centers, credit card holders, and terminals, interact.

In all of the above examples, we used Surya to check for trace subset refine-

ment (see Definition 15). Since trace subset refinement preserves safety properties,

we can also conclude that the implementation has all the safety properties of the

specification.

118 7 Translation Validation of High-Level Synthesis

7.8.2 SPARK: High-Level Synthesis Framework

Spark is a C-to-VHDL parallelizing high-level synthesis framework that employs a

set of compiler, parallelizing compiler, and synthesis transformations to improve the

quality of high-level synthesis results. Figure 7.7 shows an overview of the Spark

HLS framework. What makes Spark an excellent candidate for experimenting is not

only the easy availability of source code but also the fact that it uses a single inter-

mediate representation, called Hierarchical Task Graphs (HTGs) [69]. Spark starts

with a behavioral description in ANSI-C as input – currently with the restrictions of

no pointers, no recursion, and no irregular control-flow jumps. It converts the input

program into its own IR, and then applies a set of code transformations, including

loop unrolling, loop fusion, common sub-expression elimination, copy propagation,

dead code elimination, loop-invariant code motion, induction variable analysis, and

operation strength reduction. Following these transformations, Spark performs a

scheduling phase using resource allocation information provided by the user. This

scheduling phase also performs a variety of transformations, including speculative

code motion, dynamic renaming of variables, dynamic branch balancing, chaining

of operations across conditional blocks, and scheduling on multi-cycle operations.

The scheduling phase is followed by a resource binding phase and finally by a back-

end code generation pass that produces RTL VHDL.

Surya in this setting takes as input the IR program that is produced by the parser,

and the IR program right before resource binding (see Fig. 7.7), and verifies that the

Fig. 7.7 Overview of the Spark framework along with Surya

7.8 Experiments and Results 119

Table 7.4 Spark benchmarks successfully checked

Benchmarks

No. of bisimulation

relation entries

No. of calls to

theorem prover

Time

secs

1. Incrementer 6 9 00.52

2. Integer-sum 6 20 00.81

3. Array-sum 6 24 00.83

4. Diffeq 7 41 01.68

5. Waka 11 79 02.61

6. Pipelining 12 75 02.30

7. Rotor 14 71 02.57

8. Parker 26 281 05.23

9. S2r 27 570 26.73

10. Findmin8 29 787 14.86

two are equivalent by showing that there exist a bisimulation relation. It therefore

validates the entire HLS process of Spark, except for parsing, resource binding

and code generation. Note that Surya is around 7,500 lines of C++ code, whereas

Spark’s implementation excluding the parser consists of over 125,000 lines of C++

code. Thus, with around 15 times less effort compared to Spark’s implementation

we can build a tool that validates its synthesis process.

We tested Surya on 12 benchmarks obtained from Spark’s test suite. Of these

benchmarks, 10 passed and 2 failed. The benchmarks that were successfully checked

are shown in Table 7.4, along with the number of bisimulation relation entries, the

number of calls to the theorem prover, and the time required to check each bench-

mark. All these benchmarks are single threaded. For the ones that passed, Surya

was able to quickly find the bisimulation relation, taking on average around 6 sec-

onds per procedure, and a maximum of 27 s for the largest procedure (80 lines of

code). Furthermore, the computed bisimulation relations were small, ranging in size

from 6 to 29 entries, with an average of about 14. To infer these bisimulation re-

lations, Surya made an average of 189 calls to the theorem prover per procedure

(with a minimum of 9 and a maximum of 797). The TV-HLS approach is composi-

tional since it works on one procedure at a time, and the above results show that this

approach can handle realistically size procedures.

As mentioned previously, two benchmarks failed the validation test. Upon further

analysis each of them lead us to discover previously unknown bugs in Spark. One

bug occurs in a particular corner case of copy propagation for array elements. The

other bug is in the implementation of the code motion algorithm in the scheduler.

The fact that Surya found two previously unknown bugs in a widely-used HLS

framework emphasizes the usefulness and bug-isolating capabilities of the TV-HLS

approach.

In general, the TV-HLS approach work well when the transformations that

are performed preserve most of the program’s control flow structure. Such trans-

formations are called structure-preserving transformations [212]. The only non

structure-preserving transformation that Spark performs is loop unrolling, but in

the above examples this transformation did not trigger.

120 7 Translation Validation of High-Level Synthesis

7.9 Further Reading

The approach described in this chapter is related to translation validation [73, 116,

160, 170, 178, 212, 213], relational approaches to reasoning about programs [12, 25,

55, 99, 121], CSP refinement checking [49, 96, 137, 195], and HLS verification [6,

54, 111, 117, 158]. We now discuss each area in more detail and point the readers to

few interesting readings.

Translation Validation: The inference algorithm of the TV-HLS approach was in-

spired by Necula’s translation validation algorithm for inferring simulation relations

that prove equivalence of sequential programs [160]. Necula’s approach collects a

set of constraints in a forward scan of the two programs, and then solves these

constraints using a specialized solver and expression simplifier. However, unlike

Necula’s approach, the TV-HLS algorithm must take into account statements run-

ning in parallel, since hardware is inherently concurrent and one of the main tasks

that HLS tools perform is to schedule statements for parallel execution.

Relational Approaches: Relational approaches are a common tool for reasoning

about programs, and they have been used for a variety of verification tasks, including

model checking [25, 55], translation validation [160, 170], CSP refinement check-

ing [99] and reasoning about optimizations once and for all [12, 121].

CSP Refinement Checking: There has been a long line of work on reasoning about

refinement of CSP programs. One of the most used tool for CSP refinement checking

is FDR [137], which uses various intelligent techniques to exhaustively explore the

state space.

Various interactive theorem provers have been extended with the ability to rea-

son about CSP programs. As one example, Dutertre and Schneider [49] reasoned

about communication protocols expressed as CSP programs using the PVS theorem

prover [163]. As another example, Tej and Wolff [195] have used the Isabelle theo-

rem prover [165] to encode the semantics of CSP programs. Isabelle has also been

used by Isobe and Roggenbach to develop a tool called CSP-PROVER [96] for prov-

ing properties of CSP programs. All these uses of interactive theorem provers follow

a common high-level approach: the semantics of CSP is usually encoded using the

native logic of the interactive theorem prover, and then a set of tactics are defined

for reasoning about this semantics. Users of the system can then write proof scripts

that use these tactics, along with built-in tactics from the theorem prover, to prove

properties about particular CSP programs. Although these interactive theorem prov-

ing approaches have extensive formal underpinnings, they all require some amount

of human intervention.

The TV-HLS approach checks one particular property of CSP programs, namely

trace subset refinement. This kind of refinement only preserves safety properties.

Algorithms and tools exist for checking other kinds of refinements. For example,

CSP-PROVER [96] can check refinements using a failures semantics that preserves

liveness properties and deadlock freedom (in addition to safety properties). The

FDR [137] tool can also check refinements in a failures/divergence model, which

can also preserve livelock freedom.

7.10 Summary 121

HLS Verification: Techniques like correctness-preserving transformations [54], for-

mal assertions [158], symbolic simulation [7], and relational approaches for func-

tional equivalence of FSMDs [106, 111] have been used to validate the scheduling

step of HLS. Another interesting work that is complementary to the approach pre-

sented in this chapter uses model checking to validate the binding step of HLS [6],

which is the only internal step of Spark that Surya does not validate.

7.10 Summary

In this chapter, we have presented an automated algorithm for translation valida-

tion of the HLS process (TV-HLS). We also discussed the implementation of the

TV-HLS approach in a validation system called Surya and demonstrated its ef-

fectiveness through its application in two different settings. The experiments with

Spark showed that with only a fraction of the development cost of Spark, this algo-

rithm can validate the translations performed by Spark, and it also uncovered bugs

that eluded long-term use. The work presented in this chapter also solves the critical

problem of handling more sophisticated datatypes than finite bit-width enumeration

types associated with typical RTL code and thus enables stepwise refinement of

system designs expressed using high-level languages.

Acknowledgments This chapter in part, has been published as:

“Automated Refinement Checking of Concurrent Systems”, by Sudipta Kundu, Sorin Lerner and

Rajesh Gupta in ICCAD 07: Proceedings of the 2007 IEEE/ACM International Conference on

Computer Aided Design [116].

“Validating High-Level Synthesis”, by Sudipta Kundu, Sorin Lerner and Rajesh Gupta in CAV 08:

Proceedings of the 20th international conference on Computer Aided Verification [117].

“Translation Validation of High-Level Synthesis”, by Sudipta Kundu, Sorin Lerner and Rajesh

Gupta in TCAD 10: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems [119].

Chapter 8

Parameterized Program Equivalence Checking

Zachary Tatlock1

In the previous chapter we discussed an approach to verify if two programs are

equivalent, thereby proving that the translation (performed by an HLS tool) from

high-level design to low-level design is correct. In this chapter, we discuss another

approach that guarantees correctness of the translation from high-level design to

low-level design, by proving the HLS tool itself correct. Unlike translation valida-

tion, this approach proves the correctness of an HLS tool once and for all, before

it is ever run. In the following sections we describe in details an approach called

Parametrized Equivalence Checking [120] (PEC) that generalizes the translation

validation approach discussed in the previous chapter to automatically establish the

correctness of semantics preserving transformations once and for all.

8.1 Overview of Synthesis Tool Verification

HLS tools are a fundamental component of the tool chains hardware designers rely

on for system-level designs. As a result, correctness of HLS tool is crucially im-

portant. A bug in a HLS tool can in turn introduce errors in each generated RTL.

Furthermore, HLS tool bugs can invalidate strong guarantees that were established

on the original source program (discussed in Chaps. 5 and 6). Unfortunately, as dis-

cussed throughout this book building reliable compilers is difficult, error-prone, and

requires significant manual effort.

One of the most error prone parts of a HLS tool is its optimization phase. Many

optimizations require an intricate sequence of complex transformations. Often these

transformations interact in unexpected ways, leading to a combinatorial explosion

in the number of cases that must be considered to ensure that the optimization phase

is correct.

1 University of California San Diego, La Jolla, CA 92093 USA. (ztatlock@cs.ucsd.edu)

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 8,

c© Springer Science+Business Media, LLC 2011

123

124 8 Parameterized Program Equivalence Checking

8.1.1 Once-And-For-All Vs. Translation Validation

Existing techniques for providing correctness guarantees for optimizations can be

divided into two categories: once and for all and translation validation.

The primary advantage of once-and-for-all techniques is that they provide a very

strong guarantee: optimizations are known to be correct when the tool is built, be-

fore they are run even once. In contrast, translation validation provides a weaker

correctness guarantee. This is because translation validation guarantees that only a

particular run of the optimization is correct. Tools that include translation valida-

tion may still contain bugs and it is unclear what a designer should do when the

translation validator flags a particular translation to be incorrect.

On the other hand, translation validation techniques have a clear advantage over

once-and-for-all techniques in terms of automation. Most of the techniques that

provide once-and-for-all guarantees require user interaction. Those that are fully

automated, for example Cobalt [131] and Rhodium [133] approaches for compilers,

work by having programmers implement optimizations in a domain-specific lan-

guage using flow functions and single-statement rewrite rules. Unfortunately, the set

of optimizations that these techniques can prove correct has lagged behind transla-

tion validation. In particular, translation validation can already handle complex loop

optimizations like skewing, splitting and interchange, which have thus far eluded

automated once-and-for-all approaches. A common intuition is that once-and-for-

all proofs are harder to achieve because they must show that any application of the

optimization is correct, as opposed to a single instance.

8.2 Overview of the PEC Approach

In this chapter, we present a technique for proving optimizations correct called

Parameterized Equivalence Checking [120] (PEC) that bridges the gap between

translation validation and once-and-for-all techniques. PEC generalizes translation

validation to handle parameterized programs, which are partially specified programs

that can represent multiple concrete programs. For example, a parameterized pro-

gram may contain a section of code whose only known property is that it does not

define or use a particular variable.

The key insight of PEC is that existing translation validation techniques can be

adapted to work in the broader setting of parameterized programs. This allows trans-

lation validation techniques, which have traditionally been used to prove concrete

programs equivalent, to prove parameterized programs equivalent. Most impor-

tantly, because optimizations can be expressed as nothing more than parameterized

transformation rules, using before and after parameterized code patterns, PEC can

prove once and for all that such optimizations preserve semantics.

At the core of the PEC system is a domain-specific programming language that

was especially designed for writing optimizations. Although the original motivation

of PEC was compiler optimizations, many HLS optimizations bear a huge amount

8.3 Illustrative Example 125

of similarity to compiler optimizations, and so the PEC language, and the approach

in general, can be fruitfully applied to the context of HLS.

The PEC language for writing optimizations is much more expressive than pre-

vious such optimization languages, like Cobalt [131] and Rhodium [133]: whereas

Cobalt and Rhodium only supported local rewrites of a single statement to another,

the PEC language supports many-to-many rewrite rules. Such rules are able to re-

place an entire set of statements, even entire loops and branches, with a completely

different set of statements. Using these rules, one can express many more optimiza-

tions than in Cobalt and Rhodium.

Once optimizations are expressed in this domain-specific language, the PEC sys-

tem can automatically check them for correctness using Parameterized Equivalence

Checking. In particular, an automated tool parses the optimizations, and processes

them using the PEC approach to generate several obligations for an automated theo-

rem prover. The PEC approach guarantees that, if the theorem prover can discharge

these obligations, then the transformations will be semantics preserving. It is impor-

tant to realize that, unlike in translation validation, these obligations are generated

and verified before the HLS tool even runs once, thus providing a once and for all

guarantee.

8.3 Illustrative Example

In the previous chapter we discussed the validation of the Spark [84] HLS tool. In

Spark it was shown that compiler optimizations and various other source-to-source

transformations can be extremely useful for generating highly parallel designs. In

this section we illustrate the main ideas of the PEC approach through one such com-

piler optimizations: loop pipelining. Loop pipelining can break dependencies inside

a loop body without increasing the code size of the loop body, and thus provides

more flexibility during the scheduling phase of HLS.

As an example, consider the code in Fig. 8.1a. The statements in the original

loop cannot be scheduled together (to be executed in parallel) as there is a depen-

dency between them – the instruction b[i]+=a[i] must wait until the instruction

a[i]+=1 finishes. Figure 8.1b shows the result of applying loop pipelining on

this loop. The statements in this transformed loop does not depend on each other

Fig. 8.1 Loop pipelining: (a) original code, and (b) optimized code

126 8 Parameterized Program Equivalence Checking

Fig. 8.2 Loop pipelining

transformation

and can be scheduled together. In particular, the instruction b[i]+=a[i] can be

scheduled with the instructions i++;a[i]+=1. However, to make this transfor-

mation correct, one has to add a prologue at the beginning of the transformed loop

in order to setup the pipelining effect. There is also an epilogue after the loop to

execute the remaining instructions.

8.3.1 Expressing Loop Pipelining

Loop pipelining can be implemented in the PEC language as shown in Fig. 8.2.

The transformation simply moves some instructions (namely S1) from the current

iteration to the next iteration. Optimizations in the PEC language are written as pa-

rameterized rewrite rules with side conditions: P1 =⇒ P2 where φ , where P1 and P2

are parameterized programs, and φ is a side condition that states when the rewrite

rule can safely be fired. An optimization P1 =⇒ P2 where φ states that when a con-

crete program is found that matches the parameterized program P1, it should be

transformed to P2 if the side condition φ holds.

8.3.2 Parameterized Programs

A parameterized program is a partially specified program that can represent mul-

tiple concrete programs. For example, in the original and transformed programs

from Fig. 8.2, S1 ranges over concrete statements (including branches, loops, and

sequences of statements) that are single-entry-single-exit code; I ranges over con-

crete program variables; and E ranges over concrete expressions. Because variables

like S1, I and E range over the syntax of concrete programs, such variables are

called meta-variables. To simplify exposition, rather than provide explicit types for

all meta-variables, we instead use the following naming conventions: meta-variables

starting with S range over statements, meta-variables starting with E range over ex-

pressions, and meta-variables starting with I range over variables.

8.3 Illustrative Example 127

Fig. 8.3 Meanings of some

facts used in the PEC system

8.3.3 Side Conditions

The side conditions are boolean combinations of facts that must hold at certain

points in the original program. For example the side condition DoesNotModify(S1,I)
@L2 in Fig. 8.2 states that at location L2 in the original program, S1 should not

modify I. In general, side conditions are first-order logic formulas with facts like

DoesNotModify(S1,I)@L1 as atomic predicates.

Each fact used in the side condition must have a semantic meaning, which is a

predicate over program states. Figure 8.3 gives the semantic meanings for the two

primary facts used in the PEC system. In general, meanings can be first-order logic

formulas with a few special function symbols: (1) σ is a term that represents the

program state at the point where the fact holds. (2) eval evaluates an expression in a

program state and returns its value; (3) step executes a statement in a program state

and returns the resulting program state.

The semantic meanings are used by the PEC algorithm to determine the semantic

information that can be inferred from the side conditions when proving correct-

ness. Although optimization writers must provide these meanings, there is a small

number of common facts used across many different optimizations (for example

DoesNotModify), and since these meanings only need to be written once, the effort

in writing meanings is not onerous.

8.3.4 Executing Optimizations

Optimizations written in the PEC language are meant to be executed by an ex-

ecution engine. When running an optimization P1 =⇒ P2 where φ , the execution

engine must find concrete program fragments that match P1. Furthermore, it must

perform some program analysis to determine if the facts in the side condition φ

hold. One option for implementing these program analysis is to use a general pur-

pose programming language. Although this provides the most flexibility, it does not

guarantee that the facts in the side condition are computed correctly. Alternatively,

if one wants stronger correctness guarantees, the facts in the side conditions can be

computed in a way that guarantees that their semantic meanings hold, for exam-

ple using the Rhodium system of Lerner et al. [133], or using Leroy’s Compcert

system[134]. Note that it is straightforward to see how the rewrite rule in Fig. 8.2

performs loop pipelining on the example from Fig. 8.1.

128 8 Parameterized Program Equivalence Checking

8.3.5 Proving Correctness of Loop Pipelining

The goal of PEC is to show that the loop pipelining optimization written in the

PEC language is correct, once and for all, before it is even run once. To do this,

one must show that the rewrite rule from Fig. 8.2 satisfies the following property:

given the side conditions, the original parameterized program and the transformed

parameterized program have the same behavior. We next discuss the details of the

PEC approach.

8.3.6 Parameterized Equivalence Checking

In Chap. 7 we discussed Translation Validation (TV), a technique that proves con-

crete, fully specified programs equivalent. In the setting of this chapter, the goal is

to prove parameterized programs equivalent. Parameterized Equivalence Checking

(PEC) achieves this goal by generalizing traditional TV techniques to the setting of

parameterized programs.

There are two simple observations that intuitively explain why techniques from

translation validation can be generalized to parameterized programs. The first obser-

vation is that if a program fragment S in the original program executes in a program

state σ , and the same program fragment S executes in the transformed program in

the same state σ , then we know that the two resulting states are equal. This shows

that we can reason about state equality even if we don’t know what the program

fragments are. The second observation is that when proving equivalence, we are

usually interested in some key invariants that justify the optimization. The insight is

that the semantic meaning of the side condition captures precisely when these key

invariants can be propagated throughout statements that are not fully specified. For

example, if the correctness of an optimization really depends on I not being modi-

fied in a region of code, the side condition will allow us to know this fact, and thus

reason about I across such unknown statements.

8.3.7 Bisimulation Relation

PEC proves equivalence using bisimulation relation (Definition 27). Recall that

bisimulation relation is defined in terms of the more basic concept of verification

relation, which is a set of entries of the form (gl1,gl2,φ), where each entry relates

a program point gl1 in the original program with a corresponding program point

gl2 in the transformed program, and the predicate φ indicates how the state of the

two programs are related at that point. Moreover, a bisimulation relation is simply a

verification relation that satisfies the property that the predicate on any entry in the

relation implies the predicate on all entries reachable from it. In the following we

denote the original parameterized program as the specification and the transformed

parameterized program as the implementation.

8.3 Illustrative Example 129

The PEC approach generalize the inference algorithm described in the previous

chapter. Similar to the TV algorithm, the PEC approach works in two steps. Broadly

speaking, the first step generates a set of constraints, and the second step solves

these constraints. More specifically, the first step (constraint generation) starts by

finding pairs of locations in the specification and the implementation that need to

be related in the bisimulation and then for each pair of locations (gl1,gl2), it defines

a constraint variable ψ(gl1,gl2) to represent the state-relating formula that will be

computed in the bisimulation relation for that pair. The final part of constraint gen-

eration is to actually generate a set of constraints over these variables that must be

satisfied in order for the would-be bisimulation relation to in fact be a bisimulation.

The second step then proceeds to solve these constraints using an iterative algorithm.

Figure 8.4 shows the concurrent control flow graph (CCFG) for the two param-

eterized programs of the running example, along with the related locations that

the PEC approach generates. The related locations are shown using a dashed line

(labelled A – F), and each entry has a predicate associated with it which is shown in

Fig. 8.4 CCFGs of running example with the related locations

130 8 Parameterized Program Equivalence Checking

Table 8.1 A bisimulation

relation for the running

example

(gl1,gl2) φ

A. (a0,b0) σ1 = σ2

B. (a2,b1) σ1 = σ2 ∧ I1 < E1

C. (a3,b3) σ1 = σ2 ∧ I1 < E1 ∧ I2 < E2 −1

D. (a2,b5) σ1 = σ2 ∧ I1 < E1 ∧ I2 < E2

E. (a3,b6) σ1 = σ2 ∧ I1 < E1 ∧ I2 ≥ E2 −1

F. (a5,b8) σ1 = σ2

Table 8.1. These predicates operate over the program states σ1 and σ2 of the speci-

fication and implementation programs. To make the notation cleaner, we use some

shorthand notation. For example, E1 means eval(σ1,E). Using this notation, the

predicate at C states that (1) the two programs states σ1 and σ2 are equal, (2) I < E

holds in σ1 and (3) I < E− 1 holds in σ2. Together the related locations and the

predicates form the bisimulation relation for this example.

8.3.8 Generating Constraints

The PEC algorithm first relates the start locations of the two programs and then adds

the constraint that the constraint variable at A (ψ(a0,b0)) should imply the predicate

σ1 = σ2; this indicates that we can assume the program states are equal at the start of

the two code fragments. Similarly, it also adds the constraint ψ(a5,b8) ⇒ (σ1 = σ2)
corresponding to the end locations (F); this constraint indicates that we must estab-

lish that the program states are equal after the two programs execute. To generate

the locations in between, the PEC algorithm traverses both programs in parallel

from the top entry. Each time a statement is reached like S1, and S2, the algorithm

finds the corresponding location in the other program, and adds a relation entry

between the two locations with the corresponding constraint variable implying the

predicate σ1 = σ2 (since this is the only mechanism we have to preserve equivalence

of arbitrary statements). Apart from these, the PEC algorithm also generates con-

straints such that the constraint variable for each related pair that is under a branch,

implies the strongest post condition of the branch condition. These constraints lead

to the various predicates relating I and E in Table 8.1. This allows entries in the

bisimulation relation to encode information about what branch conditions they are

under, thereby pruning some pair of paths that are simultaneously unreachable.

Recall from Sect. 7.3.4 that the constraints described above are the one that en-

sures the predicate at a pair of locations (gl1,gl2) imply that any visible instructions

about to execute at (gl1,gl2) behave the same way. The visible instruction in this

case are the parameterized statement variables like S1, and S2. The intuition behind

choosing these statements as visible instructions is that since very little is known

about them, one would predict they should behave in the same way in the two

programs.

Apart from the above kind of constraint there is another kind of constraint, which

is used to state the relationship between one pair of related locations and other pairs

8.3 Illustrative Example 131

of related locations. For example, if starting at (gl1,gl2) in states satisfying ψ(gl1,gl2),

the specification and implementation can execute in parallel to reach another related

pair of locations (gl′1,gl′2), then ψ(gl′1,gl′2) must hold in the resulting states. As shown

in Sect. 7.6.2 and again here in Sect. 8.6, such constraints can be stated over the

constraint variables ψ(gl1,gl2) and ψ(gl′1,gl′2) using the weakest precondition operator

(wp). This second kind of constraint guarantees that the computed bisimulation re-

lation is in fact a bisimulation. In the example from Fig. 8.4, the paths that the PEC

algorithm would discover between relation entries are as follows: A to B, B to E, B

to C, C to D, D to C, D to E, and E to F.

During this step the PEC algorithm also prunes infeasible paths. For example,

when starting at E, it is impossible for the specification to stay in the loop – it must

exit to F. The PEC algorithm can determine this from the predicate corresponding

to the branch condition at E. In particular, let i and e be the original values of I and

E at E (in either σ1 or σ2 since they are equal). The value e does not change through

the loop as stated by the side conditions. If the original program chooses to stay in

the loop, the assume(I < E) would lead to i+1 < e (where the “+1” comes from the

increment of I and the fact that S2 does not modify I). This would be inconsistent

with the assumption from E stating that i ≥ e−1, and thus the path is pruned.

8.3.9 Solving Constraints

Once the constraints are generated, they can be solved using an iterative algorithm

that starts with all the constraint variables set to true and then iteratively strengthens

the constraint variables until a theorem prover is able to show that all constraints

are satisfied. The PEC algorithm first initializes the constraint variables with the

conditions that are required for the visible instructions to be equivalent, thereby

solving all the constraints of the first kind. Then it chooses any constraint of the

second kind and iteratively solves it till it reaches a fix-point.

As an example, consider the constraint corresponding to the B-C path, the

PEC tool would ask a theorem prover to show that, for any σ1 and σ2: if (1)

ψ(a2,b1) := (σ1 = σ2 ∧eval(σ1,I) < eval(σ1,E)) holds and (2) the original program

executes [S1] and (3) the transformed program executes [S1;assume(I < E− 1)],
then ψ(a3,b3) := (σ1 = σ2∧eval(σ1,I) < eval(σ1,E)∧eval(σ2,I) < eval(σ2,E)−1)
will hold after the two statements have executed. In this case, the implication fol-

lows immediately from the assume and the fact that S1 produces the same program

state if started in the same program state. In fact for this example, the value of the

constraint variable after solving the constraints of the first kind is indeed the bisim-

ulation relation. If for some path pair X to Y, the implication does not hold (this is

not the case in Fig. 8.4), the PEC algorithm would strengthen the current value of

the constraint variable at X with the weakest precondition of the current value of the

constraint variable at Y. Using such iterative strengthening, the PEC algorithm tries

to convert the original guessed relation into a bisimulation relation.

132 8 Parameterized Program Equivalence Checking

8.4 Parameterized Equivalence Checking

We now describe the PEC approach in more detail. Recall that the goal is to show

that two parameterized programs P1 and P2 are equivalent under side conditions φ .

We represent each program P as a transition diagram (Definition 10), which we

denote by π = (L ,I ,→, ι,ε). In particular, we assume that π1 = (L1,I1,→1

, ι1,ε1) is the transition diagram of the original program, and π2 = (L2,I2,→2

, ι2,ε2) is the transition diagram of the transformed program.

PEC uses a stronger definition of equivalence (defined below) between two pa-

rameterized program, because parts of these programs are unknown. Furthermore,

the programs considered by PEC are deterministic, meaning that starting at a con-

figuration 〈ι,σ〉 there is at most one execution sequence that end in the exit location

ε of the program.

Definition 28 (Final State). Given a transition diagram π = (L ,I ,→, ι,ε) and a

state σ ∈ Σ , we use the notation π(σ) to represent the final state after executing π

starting in state σ . i.e.

π(σ) = σ ′ iff ∃ η . 〈ι,σ〉
η

�
+ 〈ε,σ ′〉

Definition 29 (Equivalence). Given two transition diagram π1 and π2, we define

π1 to be equivalent to π2 if for any state σ ∈ Σ , we have π1(σ) = π2(σ).

The above definition of equivalence allows PEC optimizations to be used anywhere

inside of a program: by establishing program state equivalence, PEC guarantees

that the remainder of the program, after the optimization, runs the same way in

the original and the transformed programs. Observable events such as IO can be

modeled using heap updates. For example, a call to printf can just append its

arguments to a linked list on the heap. In this setting, the PEC approach guarantees

that the order of IO events is preserved.

The instructions in a PEC transition diagram are taken from a concrete program-

ming language of instructions, extended with meta-variables. The main components

of the PEC approach do not depend on the choice of the concrete language of

instructions: this language can for example include pointers, arrays, and function

calls. The PEC approach does however make one exception to this rule: it assumes

the existence of assume instructions. In particular, conditionals are modeled using

assume instructions on the transitions that flow away from a branch location (as

shown for the example in Fig. 8.4). Such assume instructions are also used to insert

the information from side conditions into the original or transformed program as

needed, so that the PEC tool can reason about the side conditions. The choice of

concrete language only affects the semantics of instructions, which is entirely mod-

ularized in a function called step (which we have already seen). The only part of

the system that knows about step is the theorem prover, which is given background

axioms about the semantics of instructions (so that it knows for example how I++
updates the store). All other parts of the system treat step as a black box.

8.4 Parameterized Equivalence Checking 133

8.4.1 Bisimulation Relation

The PEC approach is based on using a bisimulation relation to relate the execution

of the original program and the transformed program. We use the same definitions

as described in Sect. 7.4, however we redefine some of them again here to adapt

them in the setting of parameterized programs. The PEC system considers visi-

ble instructions to be the statement meta-variables (e.g. S1,S2 ∈ ϑ). We define two

statement meta-variables to be equivalent if the variable name and the state of the

program are the same. We also slightly modify the definition of simulation relation

(Definition 17) to reflect the stronger definition of equivalence defined above.

Definition 30 (Simulation Relation). A simulation relation R for two transition

diagrams π1 = (L1,I1,→1, ι1,ε1) and π2 = (L2,I2,→2, ι2,ε2) is a verification

relation such that:

R(ι1, ι2,σ1 = σ2) and R(ε1,ε2,σ1 = σ2).

∀gl2,gl′2 ∈ L2,gl1 ∈ L1,σ1,σ2,σ
′
2 ∈ Σ ,φ ∈ Φ,η2 ∈ N .

⎡

⎣

〈gl2,σ2〉
η2

�
+
2 〈gl′2,σ

′
2〉 ∧

R(gl1,gl2,φ)∧φ(σ1,σ2) = true

⎤

⎦ ⇒

∃gl′1 ∈ L1,σ
′
1 ∈ Σ ,φ ′ ∈ Φ,η1 ∈ N .

⎡

⎣

〈gl1,σ1〉
η1

�
+
1 〈gl′1,σ

′
1〉∧

R(gl′1,gl′2,φ
′)∧φ ′(σ ′

1,σ
′
2) = true∧η1 ≡ η2

⎤

⎦

The definition of bisimulation relation in this context is the same as in

Definition 27. Furthermore, from Theorem 7.2 we know that if there exists a

bisimulation relation between π1 and π2 then π1 and π2 are equivalent. Thus, a

bisimulation relation is a witness that two transition diagrams are equivalent. The

PEC approach is based on Theorem 7.2. In particular, the general approach is to try

to infer a bisimulation relation to show that π1 and π2 are equivalent.

8.4.2 Architectural Overview

Figure 8.5 shows the pseudo-code of the PEC approach. There are three steps:

the Permute module, the GenerateConstraints module and the SolveConstraints

module. The Permute module runs as a pre-processor before the main bisimulation-

based approach is performed. The Permute module applies a general form of the

Permute theorem that has been used in translation validation of loop optimiza-

tions [73], but it does so on parameterized programs. The Permute module allow

us to prove certain non-structure preserving transformations that is not possible

using the bisimulation-based approach. After the Permute module has run, the

134 8 Parameterized Program Equivalence Checking

Fig. 8.5 Parameterized

Equivalence Checking

G enerateConstraints and SolveConstraints module implement the bisimulation ap-

proach. These modules are similar to the one presented in Sect. 7.6. In particular,

the GenerateConstraints module first generates a set of pair-of-interest locations

R from the two transition diagrams π1 and π2, and then generates a set of con-

straints C . The SolveConstraints module next solves these constraints such that

the properties from Definitions 30 and 27 hold, possibly strengthening the relation

in order to guarantee property 3 of Definitions 30. The next three sections of this

chapter describe each of these modules of the PEC system. We first describe the

GenerateConstraints and SolveConstraints modules, which are at the heart of the

PEC approach, and then move on the Permute module, which acts as a preprocess-

ing step.

8.5 GenerateConstraints Module

To prove that two parameterized programs are equivalent the PEC approach

attempts to discover a bisimulation relation between them. To do this, the

GenerateConstraints module computes a set of constraints for the set of pair-

of-interests, which will then be strengthened to a bisimulation relation by the

SolveConstraints module.

Here again to focus our attention on only those locations for which the PEC ap-

proach infers the relation entries, we define two sets of locations Q1 and Q2 for

the transition diagrams π1 and π2 respectively. These are the locations that imme-

diately precede a statement meta-variable. We use the skipping transition relations

gl1
(w1,Q1)
−֒→π1

gl′1 and gl2
(w2,Q2)
−֒→π2

gl′2 (Definition 18) that skips over all locations not in

Q1 and Q2 respectively. We also use the definition of parallel transition relation

−֒→−֒→ (Definition 21) that essentially traverses the two transition diagrams (speci-

fication and implementation) in synchrony, while focusing on only those locations

that are in Q1 and Q2 respectively.

The predicate Rel : I ∗ ×I ∗ ×Q1 ×Q2 → B used in the parallel transition

definition checks if the pair of paths are feasible. To do this the PEC algorithm

conservatively determines if two paths are infeasible, and if not then we say they are

feasible i.e.

Rel(w1,w2,gl1,gl2) = ¬Infeasible(w1,w2,gl1,gl2)

For infeasibility check, the PEC system first defines two sets of locations A1 and

A2 for π1 and π2 respectively. These sets consists of locations that immediately

precede an assume statement. We define for each pair (gl1,gl2)∈Q1×Q2 a variable

X(gl1,gl2) such that:

8.5 GenerateConstraints Module 135

X (gl1,gl2) = Post(gl1,A1,π1)∧Post(gl2,A2,π2)∧σ1 = σ2 and

Post(gl,A ,π) =
∨

{gl′
(w,A)
−֒→π gl}

sp(w, true)

Here X(gl1,gl2) computes a conservative formula over σ1 and σ2 that should hold

when π1 and π2 are at locations gl1 and gl2 respectively. Within X , the predicate

Post(gl,A ,π) is the disjunction of the strongest post conditions with respect to true

over paths w for which there exists some gl′ such that gl′
(w,A)
−֒→π gl.

The PEC implementation of the Infeasible function can be succinctly represented

as follows:

ATP(¬(sp(w1,X(gl1,gl2))∧ sp(w2,X(gl1,gl2)))) = Valid

Infeasible first computes the strongest postcondition of w1 and w2 with respect to

the formula X(gl1,gl2). If an automated theorem prover (ATP) can show that the

two post-conditions are inconsistent, then the combination of those two paths is

infeasible, and can be pruned. The Infeasible function performs the pruning that

was intuitively described for the loop pipelining example in Sect. 8.3.5.

The other predicate WellMatched : I ∗×I ∗ → B in the definition of parallel

transition −֒→−֒→ checks if the two sequences w1 and w2 of instructions are well-

matched, i.e., neither of them contain a statement meta-variable or they each con-

tains the same statement meta-variable. Using these definitions of Rel, WellMatched

and relation −֒→−֒→, we now use the relation R ⊆ Q1 ×Q2 of location pairs that will

form the entries of the bisimulation relation (see Definition 22). As before the set

R can easily be computed by starting with the empty set, and applying the three

rules exhaustively. The PEC algorithm then checks if the computed set R is a well-

formed pairs of interest relation using Definition 23.

To uniformly handle the side conditions φ , PEC inserts the side condition

assumptions into the original and transformed programs in the form of assume

statements. An assume statement takes as argument a predicate over the program

state σ that occurs at the point where the assume holds. To ease presentation, we

make the simplifying assumption that φ = φ1@L1 ∧ . . .∧φn@Ln (the PEC imple-

mentation handles the general case). For each side condition φi, we define �φi� to

be a predicate over σ that directly encodes the side condition’s meaning provided

by the optimization writer. Then for each φi@Li, the PEC system finds the location

Li in either the original or the transformed program, and insert assume(�φi�) at that

location.

Similar to Sect. 7.6.2, we now describe the PEC algorithm in terms of constraint

solving. In particular, for each (gl1,gl2)∈R we define a constraint variable ψ(gl1,gl2)

(Definition 24) representing the predicate that should be computed for the bisimula-

tion entry (gl1,gl2). Using these constraint variables, the final bisimulation relation

will have the form:

{(gl1,gl2,ψ(gl1,gl2)) | R(gl1,gl2)}

136 8 Parameterized Program Equivalence Checking

To compute the predicates that the constraint variables ψ(gl1,gl2) stand for, the

PEC algorithm generates a set of constraints on these variables, and then solves the

constraints. We use a slightly modified version of Definition 25 to compute the set

of constraints C .

Definition 31 (Set of Constraints). The set C of constraints is defined by:

[

ψ(ι1,ι2) ⇒ σ1 = σ2

]

∈ C and
[

ψ(ε1,ε2) ⇒ σ1 = σ2

]

∈ C

For each (gl1,gl2) in R:
[

ψ(gl1,gl2) ⇒ X(gl1,gl2)

]

∈ C

For each (gl1,gl2)
(w1,w2)
−֒→−֒→ (gl′1,gl′2):

[

ψ(gl1,gl2) ⇒ pwp(w1,w2,ψ(gl′1,gl′2))
]

∈ C

There are three kinds of constraints. The first kind of constraints make sure that if

the two parameterized programs start in equal states then they end in equal states.

The next kind of constraints implies that for each pair of locations (gl1,gl2) the

instructions about to execute at gl1 and gl2 are equivalent. This condition in the

PEC setting is captured using the formula X(gl1,gl2).

The last kind of constraints state that for each pair of paths between two entries

in R, the predicate at the beginning of the paths must imply the predicate at the end

of the paths. We express this condition using the weakest precondition computation

pwp, which is a parameterized version of the regular weakest precondition.

The main challenge in expressing this weakest precondition is that the traditional

formulation of weakest precondition depends on the structure of the statements be-

ing processed. As a result, it is difficult to use this definition for statements like

S1 and S2 in parameterized programs, because the precise structure of these state-

ments is not known. To address this challenge, the PEC system use an alternate yet

equivalent definition of weakest precondition. In particular, consider the traditional

weakest precondition computation, and assume that the predicate we are computing

is a function from program states to booleans. Then the traditional weakest precon-

dition wp can be expressed as:

wp(S,ϕ)(σ) = ϕ(step(σ ,S))

If we assume that the program state σ is simply a free variable in the predicate ϕ ,

then wp can be expressed as:

wp(S,ϕ) = ϕ [σ �→ step(σ ,S)]

This is precisely the alternate definition of weakest preconditions that was developed

at the end of Sect. 4.4 to address the complexities of pointers.

Generalizing this to two parallels paths in two different programs, the predicates

now have free variables σ1 and σ2, and we can express pwp as follows:

pwp(w1,w2,ϕ) = ϕ [σ1 �→ step(σ1,w1),σ2 �→ step(σ2,w2)]

8.7 Permute Module 137

8.6 SolveConstraints Module

Once the set of constraints C have been generated, the SolveConstraints module

tries to solve these constraints iteratively by starting with all the constraint vari-

ables initialized to true, and iteratively strengthening the constraint variables in the

relation until all the constraints are satisfied. The SolveConstraints function used

here is the exact function presented in Fig. 7.6. As before one subtlety is that one

cannot strengthen the relation at the entry points ι1, ι2. If the algorithm ever tries to

do this, it produces an error. Here again because SolveConstraints is trying to com-

pute a fixed-point over the very flexible but infinite domain of boolean formulas,

it may not terminate. However, the PEC experiments have shown that in practice

SolveConstraints can quickly find a fix-point.

8.7 Permute Module

The main technique for PEC to prove equivalence relies on the bisimulation ap-

proach mentioned above. However, the bisimulation approach has some known

limitations. In particular, bisimulation relations are not well suited for proving the

correctness of non-structure preserving transformations, which are transformations

that change the execution order of code across loop iterations. Previous work on

translation validation has devised a technique called Permute [213] for handling

such transformations on concrete programs. PEC adapts this technique to the set-

ting of parameterized programs.

The Permute module runs as a pre-pass to the bisimulation relation approach.

Permute looks for loops in the original and transformed programs that it can prove

equivalent, and for the ones it can, it replaces them with a new fresh variable S,

which will then allow the bisimulation relation part of the PEC approach to see that

they are equivalent.

The Permute algorithm tries to find a general nested loop of the following form,

where the symbol ≺L denotes a total order on L.

for i1 ∈ I1 by ≺I1 do

. . .

for in ∈ In by ≺In do

B(i1, . . . , in) ;

where I j is the domain of the index variable i j

The relation ≺I j
represents the order in which the index variable i j is traversed.

The above general nested loop can be represented more compactly as follows:

138 8 Parameterized Program Equivalence Checking

for i ∈ I by ≺I do B(i) ;

where I = I1 ×·· ·× In and

i ≺I j ⇐⇒
n

∨

k=1

(i1, . . . , ik−1) = (j1, . . . , jk−1)∧ ik ≺Ik jk

The relation ≺I above is the lexicographic order on I.

The algorithm tries to find a loop structure as above in the original program and

in the transformed program, and for each such pair, it tries to show that the following

loop reordering transformation is correct:

for i1 ∈ I1 by ≺I1
do B(i1)

⇓

for i2 ∈ I2 by ≺I2
do B(F(i2)) (8.1)

The above transformation may change the order of the index variables by chang-

ing the domain I1 to I2 and the relation ≺I1
to ≺I2

and also possibly changing the

loop’s body by applying a linear transformation from B(i1) to B(F(i2)).
To show that the above transformation is correct, we need to ensure that the

transformed loop executes the same instances of the loop body in an order that

preserves the body’s behavior. In order to define the conditions under which this

happens, we first define when two program fragments commute.

Definition 32 (Commute). We say two program fragments S1 and S2 commute,

written S1 ≈ S2, if starting from an arbitrary initial state, the resultant state of exe-

cuting S1 and then S2 is the same as executing S2 and then S1.

We can now guarantee that the original and transformed loops are equivalent by

requiring the following properties to hold:

1. There exists a 1-1 correspondence between I1 and I2.

2. For every i1, i2 ∈ I1, if B(i1) executes before B(i2) in the original program and

B(i2) executes before B(i1) in the transformed program then B(i1) and B(i2)
commute, i.e. B(i1) ≈ B(i2)

The first property above can be established by showing that the linear function

F : I2 −→ I1 is a bijective function, i.e. F is one-to-one and onto. This in turn can be

guaranteed by defining an inverse function F−1 : I1 −→ I2. The above observations

are summarized in the following Permute Theorem.

Theorem 8.1 (Permute). A loop reording transformation of the form shown in

Formula (8.1) preserves semantics if the following hold:

1. ∀i2 ∈ I2. F(i2) ∈ I1

2. ∀i1 ∈ I1. F−1(i1) ∈ I2

3. ∀i2 ∈ I2. i2 = F−1(F(i2))
4. ∀i1 ∈ I1. i1 = F(F−1(i1))
5. ∀i1, i

′
1 ∈ I1. i1 ≺I1

i′1 ∧F−1(i′1) ≺I2
F−1(i1) =⇒ B(i1) ≈ B(i′1)

8.7 Permute Module 139

Fig. 8.6 Loop interchange

example using Permute

module

Theorem 8.1 was introduced and proved in previous work [171, 179, 213]. The

Permute module tries to apply Theorem 8.1 by asking an automated theorem prover

to discharge the preconditions of the theorem assuming the side conditions given in

the transformation. As an example, consider the simple loop interchange optimiza-

tion shown in Fig. 8.6. For clarity and ease of explanation, the example is simplified

here to have constant bounds (L1,U1,L2,U2) instead of arbitrary expressions.

The Permute module first transforms the original and transformed programs into

the canonical representations of loops. In particular, the original program is summa-

rized as

I1 = {(i, j) | i ∈ [L1,U1], j ∈ [L2,U2]}

and B((i, j)) = S[i, j]

and ≺I1
is the lexicographic order on I1

and the transformed program is represented as

I2 = {(i, j) | i ∈ [L2,U2], j ∈ [L1,U1]}

and B((i, j)) = S[j, i]

and ≺I2
is the lexicographic order on I2

Since there is one loop in the original program and one in the transformed

program, Permute tries to prove them equivalent. In order to apply the Permute

Theorem, the PEC tool needs to infer the two mapping functions F and F−1, and

prove properties 1–4 of Theorem 8.1. Permute infers these functions automatically

using a simple heuristic that runs a range analysis over the original and transformed

140 8 Parameterized Program Equivalence Checking

programs, and uses the results of the upper and lower bounds on index variables to

infer F and F−1. For this loop interchange optimization, the PEC tool automati-

cally infers that the two functions are: F((i, j)) = (j, i), and F−1((i, j)) = (j, i). The

above heuristic infers the appropriate mapping functions in all the optimizations that

uses the Permute module and are presented in Sect. 8.8. However, the PEC tool also

provide the ability for the programmer to provide F and F−1 in the case where the

above heuristic cannot find the appropriate functions.

The purpose of the side conditions of loop interchange is to allow the theorem

prover to show property 5 of Theorem 8.1. One option for expressing the side con-

dition is to use the Commute fact as shown here:

fact Commute(S1,S2)

has meaning step(step(σ ,S1),S2) = step(step(σ ,S2),S1)

This fact directly gives a predicate that is very close to property 5. However, we now

need to use a heavyweight analysis when the compiler runs to establish Commute

(for example a theorem prover, the Omega test [171], or more generally dependence

analysis [154]). Another option, which is shown in Fig. 8.6 illustrates the flexibility

of the PEC approach. It provides a more syntactic definition of commutativity, using

two new facts: DoesNotModify, which holds when a statement does not modify

the variables or heap locations that another may read, and DoesNotInterfere, which

holds when a statement does not modify the variables or heap locations that another

may write to. The notation σ1|
σ2
S represents the state σ1 projected onto the variables

and heap locations that S modifies if it executes starting in state σ2. The benefit

of using the more syntactic DoesNotModify and DoesNotInterfere facts is that they

can more easily be implemented using simple Rhodium dataflow functions, which in

turn can be proved correct automatically. In this way we will know that the computed

facts when the compiler runs imply the semantic meanings that the PEC technique

assumed when proving the correctness of loop interchange once and for all.

8.8 Experiments and Results

The PEC algorithm was implemented using Simplify theorem prover [44] to realize

the ATP module from Sect. 8.5. The PEC system has been used to express and prove

correct a variety of transformations, including: copy propagation, constant propaga-

tion, loop invariant code hoisting, conditional speculation, software pipelining, loop

unswitching, loop unrolling, loop fusion and loop splitting.

Figure 8.7 lists a selection of optimizations that were proved correct using

PEC. For each optimization the figure lists the time it took to carry out PEC and

8.8 Experiments and Results 141

Fig. 8.7 Optimizations

proven correct using PEC.

Category 1: expressible and

provable in Rhodium;

Category 2: provable in

Rhodium, but the PEC
version is more general and

easier to express; Category 3:

not expressible or provable in

Rhodium

the number of queries to the theorem prover. To be clear about the contribution

compared to the Rhodium system for automatically proving optimizations correct,

Fig. 8.7 partitions the optimizations into three categories.

Category 1: Optimizations that were also expressed and proved correct in

Rhodium, and whose PEC formulation is equivalent to the Rhodium formulation.

Category 2: Optimizations that could have been expressed and proved correct in

Rhodium, but the PEC versions are much more general than the Rhodium ver-

sion, and also much easier to express. For example, in the case of loop invariant

code hoisting, PEC can prove the correctness of hoisting loop-invariant branches

or even entire loops, while the Rhodium version could only hoist loop-invariant as-

signments. Furthermore, these optimizations are much easier to express in the PEC

formulation because of the explicit support for many-to-many rewrites. In contrast,

implementing these optimizations in Rhodium would require an expert to carefully

craft sequences of local statement rewrites that achieves the intended effect. For ex-

ample, moving a statement in Rhodium requires inserting a duplicate copy of the

statement at the target location, and then removing the original statement in a sepa-

rate pass.

Category 3: Optimizations that cannot be proved correct, or even expressed, in

Rhodium. The support for many-to-many rewrite rules makes it easy to express

these optimizations, and the PEC technique is general enough to handle their cor-

142 8 Parameterized Program Equivalence Checking

rectness proofs. For example, in the case of software pipelining PEC is able to prove

the transformation is correct even though the loop bodies of the original and trans-

formed programs are not identical which changes the structure of the computation

between loop iterations.

The trusted computing base for the PEC system includes: (1) the PEC checker,

comprising 2,408 lines of OCaml code (2) the Simplify automated theorem prover,

a widely used and well tested theorem prover, and (3) the execution engine that

will run the optimizations. Within the execution engine, the trust can be further sub-

divided into two components. The first component of the execution engine must

perform the syntactic pattern matching for rewrite rules, and apply rewrite rules

when they fire. This part is always trusted. The second component of the execution

engine must perform program analysis to check each optimization’s side-conditions

in a way that guarantees their semantic meaning. Here the PEC system offers

a choice. These analysis can either be trusted and thus implemented inside the

compiler using arbitrarily complex analysis, or untrusted and implemented using

a provably safe analysis system like Rhodium.

8.9 Execution Engine

In this section we discuss the implementation of a prototype execution engine that

runs optimizations checked by PEC. Although PEC can be applied to any in-

termediate representation for which weakest preconditions can be computed, this

prototype execution engine transforms programs written in a C-like intermediate

language including arrays and function calls. This prototype is able to run all the

optimizations described in the previous section. Although the execution engine is a

prototype, it demonstrates how optimizations can be incorporated into a compiler,

and also shows that the optimizations that are checked execute as expected.

The execution engine is embodied in a function called Apply, which takes as input

a program p, a transformation rule [P1 ⇒ P2 where φ], and a profitability heuristic

ρ , and returns a transformed program. The Apply function first uses pattern match-

ing to find all locations in the program p where the pattern P1 occurs. Then for

each match that is found, Apply evaluates the side condition φ to make sure that

the match is valid. The current prototype checks side conditions conservatively us-

ing read/write sets. For example, to guarantee that a statement s1 does not modify

another statement s2, it checks that WriteSet(s1)∩ReadSet(s2) = /0.

For each match that is found where the side condition holds, Apply builds a sub-

stitution θ that records information about the match: θ maps the free variables in P1

to concrete fragments of p, and it also records the location where the match occurred

in p. Apply collects the resulting substitutions θ into a set Θ , and then it calls the

profitability heuristic ρ with Θ as a parameter. The role of the profitability heuristic

ρ is to select from the set Θ of all substitutions that have been found (representing all

the possible applications of the transformation rule) those substitutions that it wants

to apply. Because all the substitutions in Θ represent correct transformations, it does

8.10 Further Reading 143

Fig. 8.8 Implementation of

Loop Pipelining using Apply

not matter which subset the profitability heuristic chooses, and so the profitability

heuristic can perform arbitrary computation without being trusted. The above ap-

proach to profitability heuristic uses the generate-and-test approach presented in the

Cobalt system [131]. Alternatively, an execution engine could also employ the more

demand-driven approach used in the Rhodium system [133], where side conditions

directly refer to profitability facts, thus constraining which matches are explored.

Once the profitability heuristic has selected the set of substitutions it wants to

apply, the Apply function performs the corresponding transformations. If the prof-

itability heuristic returns substitutions that overlap in the program fragments they

match, then the Apply function picks an order to apply the substitutions in, and only

applies a substitution θ if no previously applied substitution has transformed ele-

ments mentioned in θ .

As an example, Fig. 8.8 shows a function LoopPipe that uses Apply to perform

loop pipelining. Let t represent the loop pipelining transformation from Fig. 8.2.

The LoopPipe function uses Apply to repeatedly apply t. The loop pipelining prof-

itability heuristic ρl p is applied after t has run. The prototype implements ρl p by

selecting matches that reduce the number of dependencies between instructions in

loop bodies.

8.10 Further Reading

The PEC work presented in this chapter is related to long lines of work in translation

validation, proving loop optimizations correct, automated correctness checking of

optimizations, human-assisted correctness checking of optimizations, and languages

for expressing optimizations. We now discuss each area in more detail.

Translation Validation: As has been made clear several times before, the PEC

approach is heavily inspired by the work that has been done on translation vali-

dation [73, 116, 117, 160, 170, 178]. However, unlike previous translation validation

approaches, the PEC equivalence checking algorithm addresses the challenge of

reasoning about statements that are not fully specified. As a result, the PEC ap-

proach is a generalization of traditional translation validation techniques that allows

optimizations to be proved correct once and for all.

Proving Loop Optimizations Correct: The Permute approach discussed in this

chapter, for reasoning about loop reordering transformations by having a single

canonical representation for all these transformations is similar to the translation val-

idation work of Zuck et al. [73] and the legality check approach of Kelly et al. [109].

144 8 Parameterized Program Equivalence Checking

Automated Correctness Checking of Optimizations: As with the PEC algorithm,

the Cobalt [131] and Rhodium [133] systems are able to check the correctness of

optimizations once and for all. However, Cobalt and Rhodium only support rewrite

rules that transform a single statement to another statement, thus limiting the kinds

of optimizations they can express and prove correct. The PEC approach can handle

complex many-to-many rewrite rules explicitly, allowing it to prove many more

optimizations correct.

Human-Assisted Correctness Checking of Optimizations: A significant amount of

work has been done on manually proving optimizations correct, including abstract

interpretation [39, 41], the work on the VLISP compiler [85], Kleene algebra with

tests [113], manual proofs of correctness for optimizations expressed in temporal

logic [121, 189], and manual proofs of correctness based on partial equivalence

relations [12]. Analyses and transformations have also been proven correct mechan-

ically, but not automatically: the soundness proof is performed with an interactive

theorem prover that requires guidance from the user. For example, Young [211] has

proven a code generator correct using the Boyer–Moore theorem prover enhanced

with an interactive interface [108]. As another example, Cachera et al. [26] show

how to specify static analyses and prove them correct in constructive logic using

the Coq proof assistant. Via the Curry–Howard isomorphism, an implementation

of the static analysis algorithm can then be extracted from the proof of correctness.

Leroy’s Comcert project [134] has also used a similar technique to manually develop

a semantics preserving, optimizing compiler for a large subset of C. The Comcert

compiler provides an end-to-end correctness guarantee, and does not just focus on

optimizations, as we do in our approach. Tristan et al. has also proved that certain

translation validators are correct once and for all, but here again by implementing

the proof manually [198, 199]. In all these cases, however, the proof requires help

from the user. In contrast to these approaches, the PEC system aims to be fully au-

tomated but trusts that the side conditions are computed correctly when the compiler

executes.

Languages for Expressing Optimizations: The idea of analyzing optimizations writ-

ten in a specialized language was introduced by Whitfield and Soffa with the

Gospel language [207]. Many other frameworks and languages have been pro-

posed for specifying dataflow analyses and transformations, including Sharlit [197],

System-Z [210], languages based on regular path queries [187], and temporal logic

[121, 189]. Although these systems all provide various benefits, none of them ad-

dress automated correctness checking of the specified optimizations.

8.11 Summary

In this chapter we presented Parameterized Equivalence Checking (PEC), a tech-

nique for automatically proving optimizations correct once and for all. PEC

bridges the gap between translation validation and once-and-for-all techniques.

8.11 Summary 145

The PEC approach generalizes previous translation validation techniques to handle

parameterized programs, which are partially specified programs that can represent

multiple concrete programs, thereby adapting them to provide once and for all

correctness proofs. Furthermore, PEC’s use of expressive many-to-many rewrite

rules and a robust proof technique enables PEC to automatically prove correct

optimizations that have been difficult or impossible to prove in other systems.

Acknowledgments This chapter in part, has been published as:

“Proving Optimizations Correct using Parameterized Program Equivalence” by Sudipta Kundu,

Zachary Tatlock, and Sorin Lerner in PLDI 09: Proceedings of the 2009 ACM SIGPLAN confer-

ence on Programming Language Design and Implementation [120].

Chapter 9

Conclusions and Future Work

We have addressed the need for high-level verification methodologies that allows us

to do functional verification early in the design phase and then iteratively use cor-

rect refinement steps to generate the final RTL design. We believe that by performing

verification on the high-level design, where the design description is smaller in size

and the design intent information is easier to extract, and then checking that all re-

finement steps are correct, the domain of high-level verification can provide strong

and expressive guarantees that would have been difficult to achieve by directly ana-

lyzing the low-level RTL code.

The high-level verification methods can be broadly seen as methods for verifying

properties of high-level designs and methods for verifying that the translation from

high-level design to low-level RTL preserves semantics. We classified the high-

level verification area into three main parts, namely high-level property checking,

translation validation, and synthesis tool verification. In this book we have explored

techniques in each of the above three areas.

9.1 High-Level Property Checking

For high-level property checking, we discussed model checking techniques to verify

that a design satisfies a given property such as absence of deadlocks or assertion

violations. In particular, we explored two techniques one on execution-based model

checking and the other on symbolic model checking.

We described the implementation of Satya, an execution-based model checking

tool that combines static and dynamic POR techniques along with high-level seman-

tics of SystemC to intelligently explore all possible behaviors of a SystemC design.

This approach reduce the runtime overhead by conservatively computing the depen-

dency information statically and using it during runtime, without significant loss of

precision. During experiments Satya was able to automatically find an assertion vi-

olation in the FIFO benchmark (distributed as a part of the OSCI repository), which

may not have been found by simulation (Sect. 5.10).

We also compared various recent state-of-the-art BMC techniques for con-

current programs. We discussed the operational and non-operational concurrency

S. Kundu et al., High-Level Verification: Methods and Tools for Verification

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5 9,

c© Springer Science+Business Media, LLC 2011

147

148 9 Conclusions and Future Work

semantics. Based on such semantics, we discussed two types of BMC modeling,

namely synchronous and asynchronous. For synchronous modeling, we described

a representative POR based BMC [205] approach. For asynchronous modeling,

we describe two representative approaches, one based on CSSA [204] and another

based on token-passing [64,67]. We provide a comparison for their relative formula

size and encoding style.

9.2 Translation Validation

To verify the translation from the high-level design to low-level RTL is correct,

we described a translation validation tool called Surya. This algorithm uses a

bisimulation relation approach to automatically prove the equivalence between two

concurrent systems represented as transition diagrams. Surya is used to validate the

synthesis process of Spark, a parallelizing HLS framework. Surya validates all the

phases (except for parsing, binding and code generation) of Spark against the initial

behavioral description. The experiments showed that with only a fraction of the de-

velopment cost of Spark, Surya can validate the translations performed by Spark,

and it even uncovered two previously unknown bugs that eluded long-term use.

9.3 Synthesis Tool Verification

For synthesis tool verification, we described a technique that proves the correctness

of optimizations using Parametrized Equivalence Checking (PEC). This approach

proves the correctness of the optimizations once and for all, before it is ever run.

The PEC technique is a generalization of translation validation that proves the

equivalence of parameterized programs. To highlight the power of PEC, a lan-

guage is designed for implementing complex optimizations using many-to-many

rewrite rules. This language is then used to implement a variety of optimizations

including software pipelining, loop unrolling, and loop unswitching. The PEC im-

plementation (described in this book) was able to automatically verify that all the

optimizations we implemented using this language preserve program behavior.

9.4 Future Work

In this book we focused on exploring techniques in the area of high-level verifi-

cation. Recent advances in formal methods and HLS have invigorated interest in

high-level verification both in industry and academics. Various verification tools

and techniques focused toward high-level design are starting to emerge. However,

their adoption is in the early stages and the tools are often limited in the quality

9.4 Future Work 149

of the results and the kinds of correctness guarantees that are provided. Naturally

there are many things to be done in this area. In this section we discuss promising

future research areas in verification of high-level designs and the tools associated

with them.

Hardware–Software Modeling: High-level hardware languages support many fea-

tures that are useful for both software and hardware designs. For example, SystemC

allows both asynchronous and synchronous semantics of concurrency, and also both

software and hardware data types. However, existing symbolic analysis tools includ-

ing the ones discussed here often either target software or hardware. For example,

most software model checkers only support software data types and asynchronous

semantics of concurrency, and most hardware model checker only support hardware

data types and synchronous semantics of concurrency. As a result, researchers often

use abstraction or complicated techniques while modeling the non-supported fea-

tures of a given model checker. This gap points to a possible research direction that

would unify techniques for hardware models and techniques for software models

into combined methodology for reasoning about hardware–software models.

Compositional Techniques: Although many techniques presented in this book use

compositional methods to make the verification problem tractable, these techniques

are still limited in their application. Even after decomposition using the current tech-

niques the problem is still quite large and complex. Advanced and more efficient

methods are needed for decomposing a computationally demanding global property

into local properties whose verification is simpler.

Modular Framework: One observation of this book is that there are variety of

overlap between various verification techniques. However, each verification tool is

highly tuned toward the particular problem it is solving with its own input language

or API, and as such it is hard to modify or extend. Hence, every time a new method-

ology is proposed a new tool has to be written, often from scratch. Unfortunately,

the tools discussed in this book are not designed from a software engineering per-

spective. Thus, there is a need for a modular and reusable framework, which can be

quickly used to prototype new ideas and test them.

Debugging: The tools discussed in this book provide only limited feedback to the

user. When a bug is found, these tools cannot typically pin-point the error in the

code. All the methods are able to output an error trace, but figuring out the cause

of the error from it, is not straightforward and requires expertise in formal meth-

ods. Although not directly related to high-level verification, there has been work in

this area [10], however adapting such techniques to this domain is still a challenge.

Another limitation of our methods is that they often stop searching when a bug is

found, rather than providing a list of all bugs. More broadly, the goal should be to fit

formal verification into the regular develop–edit–debug flow, which would require

the development of verification tools for speed and ease of use.

Synthesis-For-Verification: HLS process focuses mainly on three design con-

straints: area, timing and power. These methodologies tend to ignore verification,

150 9 Conclusions and Future Work

which takes about 70% of the design cycle, as a constraint. Recently, Ganai

et al. [68] proposed a new paradigm ‘Synthesis-For-Verification’ which involves

synthesizing “verification-aware” designs that are more suitable for functional veri-

fication. Therefore, another research direction may be to use existing infrastructure

of HLS to generate “verification friendly” models that are relatively easier to verify

using state-of-the-art techniques.

Compiler Techniques: Many techniques used in HLS are similar to those used for

compilers. As a result, advances in fields like compiler correctness can provide

inspiration for developing techniques for high-level verification. For example, the

translation validation and synthesis tool verification work presented here are in-

spired from the work done in the area of compiler correctness such as Necula’s

translation validation technique [160], Zuck et al. [73] work on proving various

non-structure preserving transformation, and Lerner et al. [131,133] approach to au-

tomatically prove the correctness of compiler optimizations once and for all. There

are many other techniques that have been successfully applied to the compiler do-

main, and can provide new directions for verification of the HLS process.

References

1. EP2: Electronic Payment 2. www.eftpos2000.ch

2. Adve, S.V., Hill, M.D., Miller, B.P., Netzer, R.H.B.: Detecting data races on weak memory

systems. SIGARCH Computer Architecture News 19(3), 234–243 (1991). DOI http://doi.

acm.org/10.1145/115953.115976

3. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction

in symbolic state-space exploration. Formal Methods System Design 18(2), 97–116 (2001).

DOI http://dx.doi.org/10.1023/A:1008767206905

4. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: Exploiting program struc-

ture for model checking concurrent software. In: CONCUR 04: 15th International Conference

on Concurrency Theory, LNCS, vol. 3170, pp. 1–15. Springer Verlag (2004)

5. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using smt

solvers instead of sat solvers. Int. J. Softw. Tools Technol. Transf. 11(1), 69–83 (2009). DOI

http://dx.doi.org/10.1007/s10009-008-0091-0

6. Ashar, P., Bhattacharya, S., Raghunathan, A., Mukaiyama, A.: Verification of RTL generated

from scheduled behavior in a high-level synthesis flow. In: ICCAD ’98: Proceedings of the

1998 IEEE/ACM International Conference on Computer-Aided Design, pp. 517–524 (1998).

URL citeseer.ist.psu.edu/ashar98verification.html

7. Ashar, P., Raghunathan, A., Gupta, A., Bhattacharya, S.: Verification of scheduling in the

presence of loops using uninterpreted symbolic simulation. In: ICCD ’99: Proceedings of

the 1999 IEEE International Conference on Computer Design, pp. 458–466. IEEE Computer

Society, Washington, DC, USA (1999)

8. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,

Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: EuroSys ’06:

Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Sys-

tems 2006, pp. 73–85. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/

1217935.1217943

9. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstraction of C pro-

grams. In: PLDI ’01: Proceedings of the 2001 ACM SIGPLAN conference on Programming

Language Design and Implementation (2001). URL citeseer.ist.psu.edu/ball01automatic.html

10. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterex-

ample traces. In: Proceedings of the 30th ACM Symposium on Principles of Programming

Languages, pp. 97–105 (2003)

11. Barnett, M., yuh Evan Chang, B., Deline, R., Jacobs, B., Leino, K.R.: Boogie: A modular

reusable verifier for object-oriented programs. In: Formal Methods for Components and Ob-

jects: 4th International Symposium, FMCO 2005, volume 4111 of Lecture Notes in Computer

Science, pp. 364–387. Springer (2006)

12. Benton, N.: Simple relational correctness proofs for static analyses and program transforma-

tions. In: Proceedings of the 31st ACM Symposium on Principles of Programming Languages

(2004)

S. Kundu et al., High-Level Verification: Methods and Tools for Verification 151

of System-Level Designs, DOI 10.1007/978-1-4419-9359-5,

c© Springer Science+Business Media, LLC 2011

www.eftpos2000.ch
http://doi.acm.org/10.1145/115953.115976
http://doi.acm.org/10.1145/115953.115976
http://dx.doi.org/10.1023/A:1008767206905
http://dx.doi.org/10.1007/s10009-008-0091-0
citeseer.ist.psu.edu/ashar98verification.html
http://doi.acm.org/10.1145/1217935.1217943
http://doi.acm.org/10.1145/1217935.1217943
citeseer.ist.psu.edu/ball01automatic.html

152 References

13. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Springer-

Verlag (2004)

14. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker blast:

Applications to software engineering. International Journal on Software Tools for Technol-

ogy Transfer 9(5), 505–525 (2007). DOI http://dx.doi.org/10.1007/s10009-007-0044-z

15. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using sat

procedures instead of bdds. In: DAC ’99: Proceedings of the 36th ACM/IEEE conference on

Design automation, pp. 317–320. ACM, New York, NY, USA (1999). DOI http://doi.acm.org/

10.1145/309847.309942

16. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In:

TACAS ’99: Proceedings of the 5th International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pp. 193–207. Springer-Verlag, London, UK (1999)

17. Blank, C.: Formal verification of register binding. In: WAVE ’00: Proceedings of the Work-

shop on Advances in Verification (2000)

18. Borrione, D., Dushina, J., Pierre, L.: A compositional model for the functional verification

of high-level synthesis results. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 8(5), 526–530 (2000). DOI http://dx.doi.org/10.1109/92.894157

19. Boyer, R., Moore, J.: A Computational Logic. Academic Press (1979)

20. Boyer, R., Moore, J.: A Computational Logic, Second Edition. Academic Press (1998)

21. Bozzano, M., Bruttomesso, R., Cimatti, R., Junttila, T., Rossum, P.V., Schulz, S.,

Sebastiani, R.: The mathsat 3 system. In: Automated Deduction: Proceedings of the 20th In-

ternational Conference, volume 3632 of Lecture Notes in Computer Science, pp. 315–321.

Springer (2005)

22. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM

Computing Surveys 24(3), 293–318 (1992)

23. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic Model Checking: 1020

States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-

puter Science, pp. 1–33. IEEE Computer Society Press, Washington, D.C. (1990). URL

citeseer.ist.psu.edu/burch90symbolic.html

24. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of concurrent

data types on relaxed memory models. In: PLDI ’07: Proceedings of the 2007 ACM SIG-

PLAN conference on Programming Language Design and Implementation, pp. 12–21. ACM,

New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1273442.1250737

25. Bustan, D., Grumberg, O.: Simulation based minimization. In: D.A. McAllester (ed.) Pro-

ceedings of the International Conference on Automated Deduction, LNCS, vol. 1831,

pp. 255–270. Springer Verlag (2000)

26. Cachera, D., Jensen, T., Pichardie, D., Rusu, V.: Extracting a data flow analyser in construc-

tive logic. In: Proceedings of the 13th European Symposium on Programming (ESOP 2004),

Lecture Notes in Computer Science, vol. 2986. Springer-Verlag (2004)

27. Cai, L., Gajski, D.: Transaction Level Modeling: an overview. In: Proceedings of International

Conference on Hardware-Software Codesign and System Synthesis (CODES+ISSS) (2003)

28. Chaki, S., Clarke, E., Groce, A.: Modular verification of software components in C. In: IEEE

Transactions on Software Engineering, pp. 385–395 (2003)

29. Chaki, S., Ouaknine, J., Yorav, K., Clarke, E.: Automated compositional abstraction refine-

ment for concurrent C programs: A two-level approach. In: Proceedings of the Workshop

on Software Model Checking (SoftMC), ENTCS, vol. 89 (2003). URL citeseer.ist.psu.edu/

chaki03automated.html

30. Chandy, K.M.: Parallel program design: a foundation. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA (1988)

31. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of c and verilog programs using

bounded model checking. In: DAC ’03: Proceedings of the 40th Conference on Design au-

tomation, pp. 368–371. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/

775832.775928

http://dx.doi.org/10.1007/s10009-007-0044-z
http://doi.acm.org/10.1145/309847.309942
http://doi.acm.org/10.1145/309847.309942
http://dx.doi.org/10.1109/92.894157
citeseer.ist.psu.edu/burch90symbolic.html
http://doi.acm.org/10.1145/1273442.1250737
citeseer.ist.psu.edu/chaki03automated.html
citeseer.ist.psu.edu/chaki03automated.html
http://doi.acm.org/10.1145/775832.775928
http://doi.acm.org/10.1145/775832.775928

References 153

32. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using

branching-time temporal logic. In: Logic of Programs, Workshop, pp. 52–71. Springer-

Verlag, London, UK (1982)

33. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Transactions on Programming Languages

and Systems 8(2), 244–263 (1986)

34. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. Tech. Rep. CMS-

CS-89-145, School of Computer Science, Canergie Mellon University (1989)

35. C.N. Ip, D.L. Dill: Better verification through symmetry. In: D. Agnew, L. Claesen,

R. Camposano (eds.) Computer Hardware Description Languages and their Applications,

pp. 87–100. Elsevier Science Publishers B.V., Amsterdam, Netherland, Ottawa, Canada

(1993). URL citeseer.ist.psu.edu/ip96better.html

36. Constable, R., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W.,

Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Imple-

menting Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ (1986)

37. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous boolean

programs. In: SPIN ’05: Proceedings of the 12th international workshop on Model Checking

Software, pp. 75–90 (2005)

38. Corporation, I.: Rational Statemate. www.telelogic.com/products/statemate

39. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM

Symposium on Principles of Programming Languages, pp. 238–252. Los Angeles CA (1977)

40. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings

of the 6th ACM Symposium on Principles of Programming Languages, pp. 269–282. San

Antonio, Texas (1979)

41. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks by abstract

interpretation. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages. Portland OR (2002)

42. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a pro-

gram. In: Proceedings of the 5th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pp. 84–97. ACM Press, New York, NY, Tucson, Arizona (1978)

43. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: CAV ’99: Proceedings

of the 11th International Conference on Computer Aided Verification, pp. 160–171. Springer-

Verlag, London, UK (1999)

44. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Journal

of the Association for Computing Machinery 52(3), 365–473 (2005)

45. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM 18(8), 453–457 (1975). DOI http://doi.acm.org/10.1145/360933.360975

46. Dill, D.L.: The murphi verification system. In: CAV ’96: Proceedings of the 8th Interna-

tional Conference on Computer Aided Verification, pp. 390–393. Springer-Verlag, London,

UK (1996)

47. Dushina, J., Borrione, D., Jerraya, A.A.: Formal verification of the allocation step in high

level synthesis. In: Forum on Design Languages (FDL’98). Lausanne, Switzerland (1998).

URL citeseer.ist.psu.edu/57380.html

48. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Proceedings

of the 18th Computer-Aided Verification conference, LNCS, vol. 4144, pp. 81–94. Springer-

Verlag (2006)

49. Dutertre, B., Schneider, S.: Using a PVS embedding of CSP to verify authentication protocols.

In: TPHOLs ’97: Proceedings of the 10th International Conference on Theorem Proving in

Higher Order Logics, Lecture Notes in Artificial Intelligence. Springer-Verlag (1997)

50. (EDG), E.D.G.: C/C++ Front End (1992). www.edg.com

51. Eisenbiegler, D., Blumenröhr, C., Kumar, R.: Implementation issues about the embedding

of existing high level synthesis algorithms in hol. In: TPHOLs ’96: Proceedings of the

9th International Conference on Theorem Proving in Higher Order Logics, pp. 157–172.

Springer-Verlag, London, UK (1996)

citeseer.ist.psu.edu/ip96better.html
www.telelogic.com/products/statemate
http://doi.acm.org/10.1145/360933.360975
citeseer.ist.psu.edu/57380.html
www.edg.com

154 References

52. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs

using fixpoints. In: Proceedings of the 7th Colloquium on Automata, Languages and Pro-

gramming, pp. 169–181. Springer-Verlag, London, UK (1980)

53. Emerson, F.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in Sys-

tem Design: An International Journal 9(1/2), 105–131 (1996). URL citeseer.ist.psu.edu/

emerson94symmetry.html

54. Eveking, H., Hinrichsen, H., Ritter, G.: Automatic verification of scheduling results in high-

level synthesis. In: DATE ’99: Proceedings of the conference on Design, automation and test

in Europe, p. 12. ACM Press, New York, NY, USA (1999). DOI http://doi.acm.org/10.1145/

307418.307449

55. Fisler, K., Vardi, M.Y.: Bisimulation and Model Checking. In: Proceedings of the 10th Con-

ference on Correct Hardware Design and Verification Methods. Bad Herrenalb Germany CA

(1999)

56. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multithreaded pro-

grams. Sci. Comput. Program. 71(2), 89–109 (2008). DOI http://dx.doi.org/10.1016/j.scico.

2007.12.001

57. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In:

Proceedings of the 32nd ACM Symposium on Principles of Programming Languages (2005)

58. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended

static checking for Java. In: PLDI ’02: Proceedings of the 2002 ACM SIGPLAN conference

on Programming Language Design and Implementation (2002)

59. Flanagan, C., Qadeer, S.: Transactions for software model checking. Electronic Notes in The-

oretical Computer Science 89 (2003). URL citeseer.ist.psu.edu/flanagan03transactions.html

60. Floyd, R.W.: Assigning meanings to programs. In: J.T. Schwartz (ed.) Mathematical Aspects

of Computer Science, Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32.

American Mathematical Society, Providence, Rhode Island (1967)

61. Gajski, D.D., Dutt, N.D., Wu, A.C.H., Lin, S.Y.L.: High-Level Synthesis: Introduction to

Chip and System Design. Kluwer Academic (1992)

62. Gajski, D.D., Ramachandran, L.: Introduction to high-level synthesis. IEEE Design and Test

of Computers 11(4), 44–54 (1994). DOI http://dx.doi.org/10.1109/54.329454

63. Ganai, M., Gupta, A.: SAT-Based Scalable Formal Verification Solutions (Series on Integrated

Circuits and Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

64. Ganai, M., Kundu, S.: Reduction of Verification Conditions for Concurrent System using

Mutually Atomic Transactions. In: SPIN ’09: Proceedings of the 16th International SPIN

Workshop on Model Checking of Software (2009)

65. Ganai, M., Wang, C.: Interval Analysis for Concurrent Trace Programs using Transaction

Sequence Graphs. In: Proceedings of Runtime Verification (2010)

66. Ganai, M.K., Gupta, A.: Accelerating high-level bounded model checking. In: ICCAD ’06:

Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design,

pp. 794–801. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1233501.

1233664

67. Ganai, M.K., Gupta, A.: Efficient modeling of concurrent systems in bmc. In: SPIN

’08: Proceedings of the 15th international workshop on Model Checking Software,

pp. 114–133. Springer-Verlag, Berlin, Heidelberg (2008). DOI http://dx.doi.org/10.1007/

978-3-540-85114-1 10

68. Ganai, M.K., Mukaiyama, A., Gupta, A., Wakabayshi, K.: Synthesizing “verification aware”

models: Why and how? VLSI Design ’07: 20th International Conference on VLSI Design 0,

50–56 (2007). DOI http://doi.ieeecomputersociety.org/10.1109/VLSID.2007.151

69. Girkar, M., Polychronopoulos, C.D.: Automatic extraction of functional parallelism from or-

dinary programs. IEEE Transaction on Parallel Distributed Systems (1992)

70. Godefroid, P.: Partial-order methods for the verification of concurrent systems: an approach

to the state-explosion problem. Ph.D. thesis, Univerite De Liege (1995). URL citeseer.ist.psu.

edu/godefroid95partialorder.html

71. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Proceedings

of the 24th ACM Symposium on Principles of Programming Languages (1997)

citeseer.ist.psu.edu/emerson94symmetry.html
citeseer.ist.psu.edu/emerson94symmetry.html
http://doi.acm.org/10.1145/307418.307449
http://doi.acm.org/10.1145/307418.307449
http://dx.doi.org/10.1016/j.scico.2007.12.001
http://dx.doi.org/10.1016/j.scico.2007.12.001
citeseer.ist.psu.edu/flanagan03transactions.html
http://dx.doi.org/10.1109/54.329454
http://doi.acm.org/10.1145/1233501.1233664
http://doi.acm.org/10.1145/1233501.1233664
http://dx.doi.org/10.1007/978-3-540-85114-1_10
http://dx.doi.org/10.1007/978-3-540-85114-1_10
http://doi.ieeecomputersociety.org/10.1109/VLSID.2007.151
citeseer.ist.psu.edu/godefroid95partialorder.html
citeseer.ist.psu.edu/godefroid95partialorder.html

References 155

72. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verification meth-

ods (extended abstract). In: CAV ’93: Proceedings of the 5th International Conference on

Computer Aided Verification, pp. 438–449. Springer-Verlag, London, UK (1993)

73. Goldberg, B., Zuck, L., Barrett, C.: Into the loops: Practical issues in translation validation

for optimizing compilers. Electronic Notes in Theoretical Computer Science 132(1), 53–71

(2005)

74. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Applied Mathe-

matics 155(12), 1549–1561 (2007). DOI http://dx.doi.org/10.1016/j.dam.2006.10.007

75. Gordon, M.: HOL: A proof generating system for higher-order logic. In: G. Birtwistle,

P. Subrahmanyam (eds.) VLSI Specification Verification and Synthesis, pp. 73–128. Kluwer

Academic Publishers (1988)

76. Graf, S., Saidi, H.: Construction of abstract state graphs of infinite systems with PVS. In: CAV

’97: Proceedings of the international conference on Computer Aided Verification (1997)

77. Grobe, D., Ebendt, R., Drechsler, R.: Improvements for constraint solving in the SystemC

verification library. In: GLSVLSI ’07: Proceedings of the 17th ACM Great Lakes symposium

on VLSI, pp. 493–496. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/

1228784.1228901

78. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer Academic

Publishers (2002)

79. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-

widening for multi-process systems. In: POPL ’05: Proceedings of the 32nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pp. 122–131. ACM, New

York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1040305.1040316

80. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction. In: SPIN

’07: Proceedings of the 14th International SPIN Workshop on Model Checking of Software,

pp. 95–112 (2007)

81. Gupta, A.: Formal hardware verification methods: a survey. Formal Methods in System

Design 1(2-3), 151–238 (1992). DOI http://dx.doi.org/10.1007/BF00121125

82. Gupta, R., Brewer, F.: High-Level Synthesis: A Retrospective. In: High-Level Synthesis from

Algorithm to Digital Circuit. Springer (2008)

83. Gupta, R.K., Liao, S.Y.: Using a programming language for digital system design. IEEE

Design and Test 14(2), 72–80 (1997). DOI http://dx.doi.org/10.1109/54.587745

84. Gupta, S., Dutt, N., Gupta, R., Nicolau, A.: Spark: A high-level synthesis framework for ap-

plying parallelizing compiler transformations. In: International. Conference on VLSI Design

(2003). URL citeseer.ist.psu.edu/gupta03spark.html

85. Guttman, J., Ramsdell, J., Wand, M.: VLISP: A verified implementation of Scheme. Lisp and

Symbolic Computation 8(1-2), 33–110 (1995)

86. Habibi, A., Tahar, S.: Design for verification of SystemC Transaction Level Models. In:

DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe,

pp. 560–565. IEEE Computer Society, Washington, DC, USA (2005). DOI http://dx.doi.org/

10.1109/DATE.2005.112

87. Hanna, F.K., Daeche, N., Longley, M.: Formal Synthesis of Digital Systems. In: L. Claesen

(ed.) Proc IFIP International Workshop on Applied Formal Methods for Correct VLSI De-

sign, pp. 532–548. Elsevier (1989). URL http://www.cs.kent.ac.uk/pubs/1989/422. Leuven,

Belgium

88. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction. Higher

Order Symbolic Computation 13(4), 315–353 (2000). DOI http://dx.doi.org/10.1023/A:

1026599015809

89. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic generation of

schedulings for improving the test coverage of Systems-on-a-Chip. In: FMCAD ’06: Pro-

ceedings of the Formal Methods in Computer Aided Design, pp. 171–178. IEEE Computer

Society, Washington, DC, USA (2006). DOI http://dx.doi.org/10.1109/FMCAD.2006.10

90. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the

29th ACM Symposium on Principles of Programming Languages (2002)

http://dx.doi.org/10.1016/j.dam.2006.10.007
http://doi.acm.org/10.1145/1228784.1228901
http://doi.acm.org/10.1145/1228784.1228901
http://doi.acm.org/10.1145/1040305.1040316
http://dx.doi.org/10.1007/BF00121125
http://dx.doi.org/10.1109/54.587745
citeseer.ist.psu.edu/gupta03spark.html
http://dx.doi.org/10.1109/DATE.2005.112
http://dx.doi.org/10.1109/DATE.2005.112
http://www.cs.kent.ac.uk/pubs/1989/422
http://dx.doi.org/10.1023/A:1026599015809
http://dx.doi.org/10.1023/A:1026599015809
http://dx.doi.org/10.1109/FMCAD.2006.10

156 References

91. Hinrichsen, H.: Language of labelled segments documentation. Tech. rep., Darmstadt Univer-

sity of Technology (1998). URL http://www.rs.e-technik.tudarmstadt.de/∼hinni/document/

index.html

92. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580 (1969). DOI http://doi.acm.org/10.1145/363235.363259

93. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International (1985)

94. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295 (1997).

URL citeseer.ist.psu.edu/holzmann97model.html

95. Initiative, O.S.: IEEE Standard 1666 SystemC Language Reference Manual (2005). www.

systemc.org

96. Isobe, Y., Roggenbach, M.: A generic theorem prover of CSP refinement. In: TACAS ’05: Pro-

ceedings of the 11th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, Lecture Notes in Computer Science (LNCS), vol. 1503, pp. 103–123.

Springer-Verlag (2005)

97. Ivanicic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient sat-based bounded model

checking for software verification. Theoretical Computer Science 404(3), 256–274 (2008).

DOI http://dx.doi.org/10.1016/j.tcs.2008.03.013

98. Johnson, S., Bose, B.: DDD — a system for mechanized digital design derivation. In:

ACM/SIGDA Workshop on Formal Methods in VLSI Design. Miami, Florida (1991). URL

citeseer.ist.psu.edu/johnson97ddd.html

99. Josephs, M.B.: A state-based approach to communicating processes. Distributed Computing

3(1), 9–18 (1988)

100. Joshi, R., Nelson, G., Randall, K.: Denali: a goal-directed superoptimizer. In: Proceedings of

the ACM SIGPLAN ’02 Conference on Programming Language Design and Implementation.

Berlin, Germany (2002)

101. Jr., E.M.C., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

102. Jussila, T., Niemel, I.: Parallel program verification using bmc. In: In: ECAI 2002 Workshop

on Model Checking and Artificial Intelligence, pp. 59–66 (2002)

103. Kahlon, V., Gupta, A., Sinha, N.: Symbolic Model Checking of Concurrent Programs Using

Partial Orders and On-the-Fly Transactions. In: CAV ’06: Proceedings of the 18th interna-

tional conference on Computer Aided Verification, pp. 286–299 (2006)

104. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: An optimal symbolic

partial order reduction technique. In: CAV ’09: Proceedings of the 21st International Con-

ference on Computer Aided Verification, pp. 398–413. Springer-Verlag, Berlin, Heidelberg

(2009). DOI http://dx.doi.org/10.1007/978-3-642-02658-4 31

105. Kahng, A.B.: Design technology productivity in the DSM era (invited talk). In: ASP-

DAC ’01: Proceedings of the 2001 conference on Asia South Pacific design automation,

pp. 443–448. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/370155.

370510

106. Karfa, C., Mandal, C., Sarkar, D., Pentakota, S.R., Reade, C.: A formal verification method

of scheduling in high-level synthesis. IEEE International Symposium on Quality Electronic

Design 0, 71–78 (2006). DOI http://doi.ieeecomputersociety.org/10.1109/ISQED.2006.10

107. Katz, S., Peled, D.: Defining conditional independence using collapses. Theor. Comput. Sci.

101(2), 337–359 (1992). DOI http://dx.doi.org/10.1016/0304-3975(92)90054-J

108. Kauffmann, M., Boyer, R.: The Boyer-Moore theorem prover and its interactive enhancement.

Computers and Mathematics with Applications 29(2), 27–62 (1995)

109. Kelly, W., Pugh, W.: Finding legal reordering transformations using mappings. In: Proceed-

ings of Languages and Compilers for Parallel Computing (1994)

110. Kern, C., Greenstreet, M.R.: Formal verification in hardware design: a survey. ACM Trans-

actions on Design Automation of Electronic Systems (TODAES) 4(2), 123–193 (1999). DOI

http://doi.acm.org/10.1145/307988.307989

111. Kim, Y., Kopuri, S., Mansouri, N.: Automated formal verification of scheduling process using

finite state machines with datapath (fsmd). In: ISQED ’04: Proceedings of the 5th Inter-

national Symposium on Quality Electronic Design, pp. 110–115. IEEE Computer Society,

Washington, DC, USA (2004)

http://www.rs.e-technik.tudarmstadt.de/~hinni/document/index.html
http://www.rs.e-technik.tudarmstadt.de/~hinni/document/index.html
http://doi.acm.org/10.1145/363235.363259
citeseer.ist.psu.edu/holzmann97model.html
www.systemc.org
www.systemc.org
http://dx.doi.org/10.1016/j.tcs.2008.03.013
citeseer.ist.psu.edu/johnson97ddd.html
http://dx.doi.org/10.1007/978-3-642-02658-4_31
http://doi.acm.org/10.1145/370155.370510
http://doi.acm.org/10.1145/370155.370510
http://doi.ieeecomputersociety.org/10.1109/ISQED.2006.10
http://dx.doi.org/10.1016/0304-3975(92)90054-J
http://doi.acm.org/10.1145/307988.307989

References 157

112. Koelbl, A., Burch, J.R., Pixley, C.: Memory modeling in ESL-RTL equivalence checking. In:

DAC ’07: Proceedings of the 44th annual conference on Design automation, pp. 205–209.

ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1278480.1278530

113. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Langauges and

Systems 19(3), 427–443 (1997)

114. Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hardware/software

partitioning. In: Proceedings of Third ACM-IEEE International Conference on Formal Meth-

ods and Models for Codesign (MEMOCODE) (2005)

115. Kundu, S., Ganai, M., Gupta, R.: Partial Order Reduction for Scalable Testing of SystemC

TLM Designs. In: DAC ’08: Proceedings of the 45th annual conference on Design Au-

tomation, pp. 936–941. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/

1391469.1391706

116. Kundu, S., Lerner, S., Gupta, R.: Automated Refinement Checking of Concurrent Systems.

In: ICCAD ’07: Proceedings of the 2007 IEEE/ACM International Conference on Computer-

Aided Design, pp. 318–325. IEEE Press, Piscataway, NJ, USA (2007)

117. Kundu, S., Lerner, S., Gupta, R.: Validating High-Level Synthesis. In: CAV ’08: Proceedings

of the 20th international conference on Computer Aided Verification, pp. 459–472. Springer,

Princeton, NJ, USA (2008)

118. Kundu, S., Lerner, S., Gupta, R.: High-Level Verification. IPSJ Transactions on System LSI

Design Methodology (2009). (Invited Paper)

119. Kundu, S., Lerner, S., Gupta, R.: Translation Validation in High-Level Synthesis. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems 29, 566 – 579 (2010)

120. Kundu, S., Tatlock, Z., Lerner, S.: Proving Optimizations Correct using Parameterized Pro-

gram Equivalence. In: PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on

Programming Language Design and Implementation (2009)

121. Lacey, D., Jones, N.D., Wyk, E.V., Frederiksen, C.C.: Proving correctness of compiler opti-

mizations by temporal logic. In: Proceedings of the 29th ACM Symposium on Principles of

Programming Languages (2002)

122. Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. In:

CAV ’05: Proceedings of the 17th International Conference on Computer Aided Verification,

pp. 24–38 (2005)

123. Lam, M.: Software pipelining: an effective scheduling technique for VLIW machines. In:

PLDI ’88: Proceedings of the 1988 ACM SIGPLAN conference on Programming Language

Design and Implementation (1988)

124. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM

21(7), 558–565 (1978). DOI http://doi.acm.org/10.1145/359545.359563

125. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

program. IEEE Transactions on Computers 28(9), 690–691 (1979). DOI http://dx.doi.org/10.

1109/TC.1979.1675439

126. Larsson, M.: Improving the result of high-level synthesis using interactive transformational

design. In: TPHOLs ’96: Proceedings of the 9th International Conference on Theorem Prov-

ing in Higher Order Logics, pp. 299–314. Springer-Verlag, London, UK (1996)

127. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of compu-

tation. IEEE Transactions on CAD of Integrated Circuits and Systems 17(12), 1217–1229

(1998)

128. Lee, J., Padua, D.A., Midkiff, S.P.: Basic compiler algorithms for parallel programs.

SIGPLAN Not. 34(8), 1–12 (1999). DOI http://doi.acm.org/10.1145/329366.301105

129. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. Electronic

Notes in Theoretical Computer Science 89(3), 480–498 (2003). DOI:10.1016/

S1571-0661(05)80008-8. URL http://www.sciencedirect.com/science/article/B75H1-

4G6H70X-8/2/789a8a6cd28544600d61a7540d5a51b8. SoftMC 2003, Workshop on Soft-

ware Model Checking (Satellite Workshop of CAV ’03)

130. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of compiler

optimizations. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation. San Diego CA (2003)

http://doi.acm.org/10.1145/1278480.1278530
http://doi.acm.org/10.1145/1391469.1391706
http://doi.acm.org/10.1145/1391469.1391706
http://doi.acm.org/10.1145/359545.359563
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://doi.acm.org/10.1145/329366.301105
DOI: 10.1016/S1571-0661(05)80008-8
DOI: 10.1016/S1571-0661(05)80008-8
http://www.sciencedirect.com/science/article/B75H1-
4G6H70X-8/2/789a8a6cd28544600d61a7540d5a51b8

158 References

131. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of compiler

optimizations. In: PLDI ’03: Proceedings of the 2003 ACM SIGPLAN conference on Pro-

gramming Language Design and Implementation (2003)

132. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for dataflow

analyses and transformations via local rules. In: Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. Long Beach CA (2005)

133. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for dataflow

analyses and transformations via local rules. In: Proceedings of the 32nd ACM Symposium

on Principles of Programming Languages (2005)

134. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a

proof assistant. In: Proceedings of the 33rd ACM Symposium on Principles of Programming

Languages (2006)

135. Levin, V., Palmer, R., Qadeer, S., Rajamani, S.K.: Sound transaction-based reduction with-

out cycle detection. In: SPIN ’05: Proceedings of the 12th international workshop on Model

Checking Software, pp. 106–122 (2005)

136. Lin, Y.L.: Recent developments in high-level synthesis. ACM Transactions on Design Au-

tomation of Electronic Systems. 2(1), 2–21 (1997). URL citeseer.ist.psu.edu/lin97recent.html

137. Ltd., F.S.E.: Failures-divergence refinement: FDR2 user manual. Oxford, England, June 2005.

138. Mansouri, N., Vemuri, R.: Automated correctness condition generation for formal verification

of synthesized RTL designs. Formal Methods in System Design: An International Journal

16(1), 59–91 (2000). URL citeseer.ist.psu.edu/mansouri99automated.html

139. Mazurkiewicz, A.: Trace theory. In: Advances in Petri nets 1986, part II on Petri nets: appli-

cations and relationships to other models of concurrency, pp. 279–324. Springer-Verlag New

York, Inc., New York, NY, USA (1987)

140. McCune, W.W.: Solutions of the Robbins problem. Journal of Automated Reasoning 19(3),

262–276 (1997)

141. McFarland, M.C.: Formal analysis of correctness of behavioral transformations. For-

mal Methods in System Design 2(3), 231–257 (1993). DOI http://dx.doi.org/10.1007/

BF01384133

142. McFarland, M.C.: Formal verification of sequential hardware: A tutorial. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 12(5), 654–663 (1993)

143. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,

USA (1993)

144. McMillan, K.L.: A methodology for hardware verification using compositional model check-

ing. Science of Computer Programming 37(1-3), 279–309 (2000)

145. Meftali, S., Vennin, J., Dekeyser, J.L.: A fast SystemC simulation methodology for Multi-

Level IP/SoC design. In: IFIP International Workshop on IP Based SoC Design (2003)

146. Mendı́as, J.M., Hermida, R., Molina, M.C., Penalba, O.: Efficient verification of scheduling,

allocation and binding in high-level synthesis. In: DSD ’02: Proceedings of the Euromicro

Symposium on Digital Systems Design, p. 308. IEEE Computer Society, Washington, DC,

USA (2002)

147. Micheli, G.D.: Guest editorial: High-level synthesis of digital circuits. IEEE Transactions on

Design Test 7(5), 6–7 (1990)

148. Micheli, G.D.: Synthesis and Optimization of Digital Circuits. McGraw-Hill (1994)

149. Microelectronics, S.: Transaction Accurate Communication (TAC) platform (2005). www.

greensocs.com/TACPackage

150. Moore, J.S.: Symbolic simulation: An acl2 approach. In: Proceedings of Formal Methods

in Computer-Aided Design, pp. 334–350 (1998). URL citeseer.ist.psu.edu/moore98symbolic.

html

151. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference (DAC’01)

(2001). URL citeseer.ist.psu.edu/moskewicz01chaff.html

152. Moura, L.D., Bjrner, N.: Z3: An efficient smt solver. In: TACAS ’08: Proceedings of the

14th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (2008)

citeseer.ist.psu.edu/lin97recent.html
citeseer.ist.psu.edu/mansouri99automated.html
http://dx.doi.org/10.1007/BF01384133
http://dx.doi.org/10.1007/BF01384133
www.greensocs.com/TACPackage
www.greensocs.com/TACPackage
citeseer.ist.psu.edu/moore98symbolic.html
citeseer.ist.psu.edu/moore98symbolic.html
citeseer.ist.psu.edu/moskewicz01chaff.html

References 159

153. Moy, M., Maraninchi, Maillet-Contoz: Lussy: A toolbox for the analysis of Systems-on-a-

Chip at the Transactional Level. In: Proceedings of International Conference on Application

of Concurrency to System Design (ACSD) (2005)

154. Muchnick, S.: Advanced Compiler Design And Implementation. Morgan Kaufmann Publish-

ers (1997)

155. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: A pragmatic approach

to model checking real code. In: Proceedings of the Fifth Symposium on Operating Systems

Design and Implementation (2002)

156. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded

programs. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Program-

ming Language Design and Implementation, pp. 446–455. ACM, New York, NY, USA (2007)

157. Narasimhan, N.: Theorem proving guided development of formal assertions and their embed-

ding in a high-level vlsi synthesis system. Ph.D. thesis, University of Cincinnati (1998)

158. Narasimhan, N., Teica, E., Radhakrishnan, R., Govindarajan, S., Vemuri, R.: Theorem

proving guided development of formal assertions in a resource-constrained scheduler for

high-level synthesis. Formal Methods in System Design 19(3), 237–273 (2001). DOI http://

dx.doi.org/10.1023/A:1011250531814

159. Narasimhan, N., Vemuri, R.: On the effectiveness of theorem proving guided discovery of

formal assertions for a register allocator in a high-level synthesis system. In: J. Grundy,

M. Newey (eds.) Theorem Proving in Higher Order Logics: 11th International Conference,

TPHOLs ’98, pp. 367–386. Springer-Verlag, Canberra, Australia (1998). URL citeseer.ist.

psu.edu/341177.html

160. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI ’00: Proceedings of

the 2000 ACM SIGPLAN conference on Programming Language Design and Implementation

(2000)

161. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transac-

tions on Programming Languages and Systems 1(2), 245–257 (1979)

162. Nieuwenhuis, R., Oliveras, A.: Dpll(t) with exhaustive theory propagation and its application

to difference logic. In: In CAV05 LNCS 3576, pp. 321–334. Springer (2005)

163. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining specification,

proof checking, and model checking. In: Proceedings of Computer-Aided Verification, CAV

’96, Lecture Notes in Computer Science, vol. 1102, pp. 411–414. Springer-Verlag, New

Brunswick, NJ (1996)

164. Owre, S., Rushby, J.M., , Shankar, N.: PVS: A prototype verification system. In: D. Kapur

(ed.) Proceedings of 11th International Conference on Automated Deduction (CADE), Lec-

ture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer-Verlag, Saratoga, NY

(1992). DOI http://www.csl.sri.com/papers/cade92-pvs/

165. Paulson, L.C.: Isabelle: A generic theorem prover, Lecure Notes in Computer Science,

vol. 828. Springer Verlag (1994)

166. Peled, D.: All from one, one for all: on model checking using representatives. In: CAV

’93: Proceedings of the 5th International Conference on Computer Aided Verification,

pp. 409–423. Springer-Verlag, London, UK (1993)

167. Peled, D.: Ten years of partial order reduction. In: CAV ’98: Proceedings of the international

conference on Computer Aided Verification (1998)

168. Pfenning, F., Schurmann, C.: Sytsem description: Twelf – A meta-logical framework for de-

ductive systems. In: H. Ganzinger (ed.) Proceedings of the 16th International Conference

on Automated Deduction (CADE-16), Lecture Notes in Artificial Intelligence, vol. 1632,

pp. 202–206. Springer-Verlag (1999)

169. Pnueli, A.: The temporal logic of programs. In: SFCS ’77: Proceedings of the 18th An-

nual Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer Society,

Washington, DC, USA (1977). DOI http://dx.doi.org/10.1109/SFCS.1977.32

170. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS ’98: Proceedings of

the 4th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, Lecture Notes in Computer Science, vol. 1384, pp. 151–166 (1998)

http://dx.doi.org/10.1023/A:1011250531814
http://dx.doi.org/10.1023/A:1011250531814
citeseer.ist.psu.edu/341177.html
citeseer.ist.psu.edu/341177.html
http://www.csl.sri.com/papers/cade92-pvs/
http://dx.doi.org/10.1109/SFCS.1977.32

160 References

171. Pugh, W.: The omega test: a fast and practical integer programming algorithm for dependence

analysis. Communications of the ACM 8, 4–13 (1992)

172. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:

TACAS’05: Proceedings of the 11th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pp. 93–107. Springer (2005)

173. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in cesar. In: Pro-

ceedings of the 5th Colloquium on International Symposium on Programming, pp. 337–351.

Springer-Verlag, London, UK (1982)

174. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs. In: CAV ’05:

Proceedings of the 17th international conference on Computer Aided Verification, pp. 82–97

(2005)

175. Radhakrishnan, R., Teica, E., Vermuri, R.: An approach to high-level synthesis system val-

idation using formally verified transformations. In: HLDVT ’00: Proceedings of the IEEE

International High-Level Validation and Test Workshop (HLDVT’00), p. 80. IEEE Computer

Society, Washington, DC, USA (2000)

176. Rajan, S.P.: Correctness of transformations in high level synthesis. In: S.D. Johnson (ed.)

CHDL ’95: 12th Conference on Computer Hardware Description Languages and their Ap-

plications, pp. 597–603. Chiba, Japan (1995). URL citeseer.ist.psu.edu/rajan95correctness.

html

177. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM

Transactions on Programing Language Systems 22(2), 416–430 (2000). DOI http://doi.acm.

org/10.1145/349214.349241

178. Rinard, M., Marinov, D.: Credible compilation. In: Proceedings of the FLoC Workshop Run-

Time Result Verification (1999)

179. Rinard, M.C., Diniz, P.C.: Commutativity analysis: a new analysis framework for parallelizing

compilers. In: PLDI ’96: Proceedings of the 1996 ACM SIGPLAN conference on Program-

ming Language Design and Implementation (1996)

180. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier Science

Publishers B. V., Amsterdam, The Netherlands, The Netherlands (2001)

181. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M., Scattergood,

J.B.: Hierarchical compression for model-checking csp or how to check 1020 dining philoso-

phers for deadlock. In: TACAS ’95: Proceedings of the First International Workshop on Tools

and Algorithms for Construction and Analysis of Systems, pp. 133–152. Springer-Verlag,

London, UK (1995)

182. Sadowski, C., Freund, S.N., Flanagan, C.: Singletrack: A dynamic determinism checker for

multithreaded programs. In: ESOP ’09: Proceedings of the 18th European Symposium on Pro-

gramming Languages and Systems, pp. 394–409. Springer-Verlag, Berlin, Heidelberg (2009).

DOI http://dx.doi.org/10.1007/978-3-642-00590-9 28

183. Sander, I., Jantsch, A.: System modeling and transformational design refinement in forsyde

[formal system design]. IEEE Transactions on CAD of Integrated Circuits and Systems 23(1),

17–32 (2004)

184. Sen, A., Garg, V.K.: Formal verification of simulation traces using computation slicing. IEEE

Transactions on Computers (2007)

185. Sharp, R., Rasmussen, O.: The T-Ruby design system. Formal Methods in System Design: An

International Journal 11(3), 239–264 (1997). URL citeseer.ist.psu.edu/article/sharp95truby.

html

186. Shyamasundar, R., Doucet, F., Gupta, R., Kruger, I.: Compositional reactive semantics of

SystemC and verification with RuleBase. In: Proceedings of the GM R&D Workshop (2007)

187. Sittampalam, G., de Moor, O., Larsen, K.F.: Incremental execution of transformation speci-

fications. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. Venice Italy (2004)

188. Slaney, J.K., Fujita, M., Stickel, M.E.: Automated reasoning and exhaustive search: Quasi-

group existence problems. Compuers and Mathematics with Applications 29(2), 115–132

(1995)

citeseer.ist.psu.edu/rajan95correctness.html
citeseer.ist.psu.edu/rajan95correctness.html
http://doi.acm.org/10.1145/349214.349241
http://doi.acm.org/10.1145/349214.349241
http://dx.doi.org/10.1007/978-3-642-00590-9_28
citeseer.ist.psu.edu/article/sharp95truby.html
citeseer.ist.psu.edu/article/sharp95truby.html

References 161

189. Steffen, B.: Data flow analysis as model checking. In: T. Ito, A. Meyer (eds.) Theoretical

Aspects of Computer Science (TACS), Sendai (Japan), Lecture Notes in Computer Science

(LNCS), vol. 526, pp. 346–364. Springer-Verlag (1991)

190. Stoller, S.D.: Model-checking multi-threaded distributed java programs. In: International

Journal on Software Tools for Technology Transfer, pp. 224–244. Springer (2000)

191. Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction. For-

mal Methods in System Design 28(3), 263–289 (2006). DOI http://dx.doi.org/10.1007/

s10703-006-0003-4

192. Swan, S.: Systemc transaction level models and rtl verification. In: DAC ’06: Proceedings of

the 43rd annual conference on Design automation, pp. 90–92. ACM, New York, NY, USA

(2006). DOI http://doi.acm.org/10.1145/1146909.1146937

193. Systems, C.D.: Slec system. www.calypto.com/slecsystem.php

194. Technologies, E.: Scade design verifier. www.esterel-technologies.com/

195. Tej, H., Wolff, B.: A corrected failure divergence model for csp in isabelle/hol. In: FME ’97:

Proceedings of the 4th International Symposium of Formal Methods Europe on Industrial Ap-

plications and Strengthened Foundations of Formal Methods, pp. 318–337. Springer-Verlag,

London, UK (1997)

196. The VIS Group, R.K.B., Sangiovanni-Vincentelli, A.L.: Vis: A system for verification and

synthesis. Tech. Rep. UCB/ERL M95/104, EECS Department, University of California,

Berkeley (1995). URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2923.html

197. Tjiang, S.W.K., Hennessy, J.L.: Sharlit – A tool for building optimizers. In: PLDI ’92: Pro-

ceedings of the 1992 ACM SIGPLAN conference on Programming Language Design and

Implementation, pp. 82–93 (1992)

198. Tristan, J.B., Leroy, X.: Verified validation of lazy code motion. In: Proceedings of the 35th

ACM Symposium on Principles of Programming Languages (2008)

199. Tristan, J.B., Leroy, X.: Formal verification of translation validators: a case study on in-

struction scheduling optimizations. In: PLDI ’09: Proceedings of the 2009 ACM SIGPLAN

conference on Programming Language Design and Implementation (2009)

200. Valmari, A.: Stubborn sets for reduced state space generation. In: Proceedings of the 10th

International Conference on Applications and Theory of Petri Nets, pp. 491–515. Springer-

Verlag, London, UK (1991)

201. Vardi, M.Y.: Formal techniques for SystemC verification. In: DAC ’07: Proceedings of the

44th annual conference on Design Automation (2007)

202. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: Automated Soft-

ware Engineering Journal, pp. 3–12. Press (2000)

203. Walker, R., Camposano, R.: A Survey of High-Level Synthesis Systems. Kluwer Academic

Publishers, Boston, MA, USA (1991)

204. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic predictive analysis for concur-

rent programs. In: FM ’09: Proceedings of the 2nd World Congress on Formal Methods,

pp. 256–272. Springer-Verlag, Berlin, Heidelberg (2009). DOI http://dx.doi.org/10.1007/

978-3-642-05089-3 17

205. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In: TACAS ’08:

Proceedings of the 14th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pp. 382–396 (2008)

206. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors in con-

current programs. In: PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium

on Principles and practice of parallel programming, pp. 137–146. ACM, New York, NY, USA

(2006). DOI http://doi.acm.org/10.1145/1122971.1122993

207. Whitfield, D.L., Soffa, M.L.: An approach for exploring code improving transformations.

ACM Transactions on Programming Languages and Systems 19(6), 1053–1084 (1997)

208. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race analysis. In:

ICFEM ’04: Proceedings of 6th International Conference on Formal Engineering Methods,

pp. 30–45 (2004)

http://dx.doi.org/10.1007/s10703-006-0003-4
http://dx.doi.org/10.1007/s10703-006-0003-4
http://doi.acm.org/10.1145/1146909.1146937
www.calypto.com/slecsystem.php
www.esterel-technologies.com/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2923.html
http://dx.doi.org/10.1007/978-3-642-05089-3_17
http://dx.doi.org/10.1007/978-3-642-05089-3_17
http://doi.acm.org/10.1145/1122971.1122993

162 References

209. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for axiomatic

and executable specifications of memory consistency models. In: International Parallel and

Distributed Processing Symposium (IPDPS) (2003)

210. Yi, K., Harrison III, W.L.: Automatic generation and management of interprocedural program

analyses. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pp. 246–259 (1993)

211. Young, W.D.: A mechanically verified code generator. Journal of Automated Reasoning 5(4),

493–518 (1989)

212. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A methodology for the translation

validation of optimizing compilers. Journal of Universal Computer Science 9(3), 223–247

(2003)

213. Zuck, L., Pnueli, A., Goldberg, B., Barrett, C., Fang, Y., Hu, Y.: Translation and run-time

validation of loop transformations. Formal Methods in System Design 27(3), 335–360 (2005).

DOI http://dx.doi.org/10.1007/s10703-005-3402-z

http://dx.doi.org/10.1007/s10703-005-3402-z

Index

A

Abstraction, 1, 7, 11, 22, 26–28, 30, 38, 50, 52,

66, 68–70, 85, 86, 90, 93, 117, 144, 149

Abstract model checking, 27, 28, 70, 86, 90

ACL2, 37

Allocation, 1, 12–14, 34, 47, 48, 118

Analyze function, 61, 62, 142

Apply function, 142, 143

Asserta, 32, 33

Asynchronous communication, 20, 99

Asynchronous model, 5, 67, 69–72, 76, 78,

81–93, 95, 148

Asynchronous mode of execution, 20

Atomic transaction, 85, 86, 89

Automated theorem prover (ATP), 2, 9, 37–50,

103, 110, 111, 125, 135, 139, 142

Axiomatic semantics, 74, 81, 92

B

Bijective function, 138

Binary decision diagram (BDD), 27, 68, 93

Binding, 1, 6, 14, 15, 30, 31, 34, 98, 118, 119,

121, 148

Bisimulation relation, 6, 9, 98, 115, 119,

128–131, 133–135, 137, 148

Bit-state hashing, 26

Boogie, 44

Bounded model checking (BMC), 5, 7, 9, 11,

27, 51, 67–95, 147, 148

C

CBMC, 27

CCFG. See Concurrent control flow graph

CDFG. See Control data flow graph

CEGAR. See Counter example guided

abstraction refinement

CFG. See Control flow graph

Checking algorithm, 19, 20, 101, 103,

109–112, 115, 143

CMC, 26

Cobalt, 38, 124, 125, 143, 144

Communicating sequential processes (CSP),

11, 98, 99, 100, 116–117, 120

Communication diagrams, 100

Commute, 58, 74, 138, 140

Compcert, 127

Complete, 2, 5, 7, 15, 21, 25, 27, 32, 37, 46,

50, 51, 67, 76, 85, 99, 125

Compositional techniques, 26, 149

Computation tree logic (CTL), 18

Concurrency constraints, 70, 71, 81, 83–85,

90–91

Concurrent control flow graph (CCFG), 20, 21,

76, 99, 100, 129

Concurrent static single assignment (CSSA),

5, 70, 72, 81–84, 92, 148

Concurrent system, 6, 22, 27, 51, 66–95, 98,

99, 148

Conditional dependency analysis, 69, 93

Conditionally independent, 75

Configuration, 107–109, 132

Conflicting access, 69, 74

Conflict sub-graph (CSG), 30, 31

Constraint, 12, 14, 69–71, 78–81, 83–86,

90–95, 105, 106, 113–115, 120,

134–137, 149–150

variable, 105, 106, 113, 114, 129–131,

135–137

Context bounding, 7, 70

Control data flow graph (CDFG), 12, 15, 29,

34, 35, 63

Control flow graph (CFG), 5, 27, 44, 45, 81,

86, 87

Control generation, 1, 15

Controller, 12, 13, 17, 30, 31

163

164 Index

Control state, 30, 72, 73, 76–79, 84, 86, 88–90,

102, 111

Co-operative multitasking, 52–54

Coq, 37, 144

Correctness Condition Generator, 31

Co-Runnable, 57, 61

Counter example, 28, 31, 34, 38, 67, 68

Counter example guided abstraction refinement

(CEGAR), 28, 38

CreateSeed function, 114

CSG. See Conflict sub-graph

CSP. See Communicating sequential processes

CSP-PROVER, 117, 120

CSSA. See Concurrent static single assignment

CSSA-based approach, 5, 70, 72, 81,

83–84

CTL. See Computation tree logic

Cumulative semantic step, 108

Curry–Howard isomorphism, 114

D

Data-independent system, 117

Data path, 1, 12, 14, 15, 30, 31

Data state, 17, 22, 47, 48, 72, 107

Debugging, 149

Dependency relation, 23, 53, 62, 64, 66,

74–75, 93

Design-productivity-gap, 1, 28

Domain-specific language, 6, 38,

124, 125

Dynamic POR, 5, 23, 53, 66, 147

E

E-graph, 39

EMC-SC, 52, 53, 56–64, 66

Equivalence, 2, 29–31, 35, 98, 105, 107–109,

111, 114, 115, 119–121, 128, 130, 132,

133, 137, 144, 148

checking, 6, 9, 12, 30, 31, 115, 123–145

classes, 58, 59, 75, 89

Equivalency relation, 75

ESCJava, 44

eval function, 127, 130, 131

Execution

based model checking, 4–5, 9, 26, 51–66,

147

engine, 127, 142–143

path, 17, 18

sequence, 17, 18, 29, 98, 101, 107–109,

132

tree, 18, 61, 62

Explicit model checking, 25–27, 51

Explore algorithm, 60–64

F

Failure-divergence refinement (FDR), 116,

117, 120

Final State, 22, 53, 57, 132

Finite State Machine (FSM), 12, 15–19, 30

Finite State Machine with Datapath (FSMD),

15, 30, 121

First In First Out (FIFO), 5, 8, 64–65, 117, 147

First-order logic, 38, 51, 83, 127

Fixpoint algorithm, 106, 131

Formal assertions, 32–33, 121

FSMD. See Finite State Machine with

Datapath

FSoft-BMC, 27

G

GALS. See Globally asynchronous locally

synchronous

Generalized program locations, 56, 106, 107

Generate-and-test approach, 143

Generating constraints algorithm, 130–131

GenMAT algorithm, 87–89

Globally asynchronous locally synchronous

(GALS), 20, 99

Golden reference, 11, 52, 64

Guarded independent relation, 75, 79

H

Happens-before relation, 58, 70

Hardware Description Language (HDL), 99

Hardware-software modeling, 149

Hierarchical task graphs (HTGs), 63–64, 118

Higher-order logic (HOL) theorem prover, 32,

33

High-level design (HLD), 1–9, 11–12, 23, 25,

51–66, 68, 97, 101, 123, 147–149

High-level property checking, 3–5, 7–9, 11,

25–28, 51, 147–148

High-level synthesis (HLS), 1–4, 6–9, 12–15,

23, 25, 29–35, 97–121, 123–125,

148–150

High-level verification (HLV), 1–4, 7–9, 11,

20, 23, 25, 35, 147–150

Hoare logic, 9, 38–40, 49, 111

Hoare triple, 39–40, 43, 44

HTGs. See Hierarchical task graphs

I

Independence relation, 57–58, 62

Independent modeling, 89–90

Independent transaction, 73, 85, 89, 90

Index 165

Independent transition, 21, 51, 58, 68, 74, 75

Infeasible paths, 110, 131, 134, 135

Inference algorithm, 98, 101, 103–106, 109,

111–115, 120, 129

Interactive theorem provers, 33, 37,

120, 144

Interleaving semantics, 21, 51, 69, 72–74, 77,

93

Intermediate representation, 12, 63, 68, 118,

142

Inverse function, 138

Isabelle, 33, 120

L

Language of labeled segments (LLS), 31, 35

Lattice, 29, 76, 77, 89

Lazy abstraction, 28

Levels of abstraction, 1, 11

Linear function, 138

Linear temporal logic (LTL), 68, 75

LLS. See Language of labeled segments

Localization, 71, 81, 85, 86, 89–91

Lock-acquisition history analysis, 69–71

Lock-set analysis, 69

Logical clock, 89

Loop interchange, 124, 139, 140

Loop invariant, 49, 50, 102, 118, 140, 141

Loop pipelining, 125–128, 135, 143, 148

LTL. See Linear temporal logic

M

MAGIC, 28

Many-to-many rewrite, 6, 125, 141, 144, 145,

148

Map theory, 47, 48

MAT. See Mutually atomic transaction

Matching heuristic, 38, 39, 112

Model checking (MC), 2, 4, 5, 7–9, 11, 15–20,

23, 25–31, 51, 67, 68, 70, 71, 77, 94,

95, 120, 121, 147

MURPHI, 26

Mutual exclusion rule, 27, 70, 74

Mutually atomic transaction (MAT), 85–89, 91

N

Nelson–Oppen approach, 38

Next transition, 110

Non-determinism, 55–56, 79, 86

Non-operational semantics, 74, 81, 92

Non-preemptive scheduler, 54

NuPrl, 37

O

Observable events, 29, 30, 132

Once and for all techniques, 124, 144

On-the-fly, 26, 28, 81, 84, 85, 90

Open SystemC Initiative (OSCI), 5, 8, 56,

63–65, 147

Operational semantics, 48, 69, 71–74, 92, 147

P

Pairs of interest, 113–115, 135

Parallel transition, 112–113, 134, 135

Parameterized equivalence checking (PEC), 6,

7, 9, 38, 123–145, 148

Parameterized programs, 6, 123–145

Partial order, 5, 27, 58, 71, 74–75, 79, 85, 93

Partial-order reduction (POR), 5, 7, 8, 21–23,

26, 27, 51, 53, 56, 57, 64–68, 72, 75,

78–81, 84–89, 92, 93, 111, 147, 148

Path-based weakest precondition, 44–45

PathFinder, 26

Path quantifiers, 18

PEC. See Parameterized equivalence checking

Peephole partial order reduction, 80

Permute module, 133, 134, 137–140

Permute theorem, 133, 138, 139

Persistent sets, 22, 23, 53, 66, 69, 93

Polyhedral abstract domain, 27

POR. See Partial-order reduction

Postcondition, 40, 42, 46, 47, 50, 98, 111–113,

130, 135

Precondition, 34, 40, 42, 43, 46, 47, 50, 139

Predicate abstraction, 27, 28, 38, 50

Program order rule, 74

Program state, 17, 19, 27–29, 39, 56, 107, 111,

127, 128, 130–132, 135, 136

Program transitions, 106

Proof-guided method, 70, 93

Property specification, 15, 18, 25

Propositional logic, 5, 18, 27

Prototype verification system (PVS), 32, 33,

35, 120

Q

Query-based approach, 53

R

Reachability algorithm, 19–20

Read value rule, 74

Refinement, 2, 4, 6, 7, 12, 28–30, 38, 97, 98,

100, 101, 106–111, 113, 121, 147

checking, 98, 111, 116–117, 120

166 Index

Register transfer level (RTL), 1–3, 6–8, 11, 12,

23, 30–32, 34, 35, 52, 97, 99, 118, 121,

123, 147, 148

Relational approach, 29–30, 120, 121

Resource selection, 14

Rhodium, 38, 124, 125, 127, 140–144

RTL. See Register transfer level

RTL property checking, 3, 12

Rule of consequence, 40, 49

Runnable, 55, 57, 58, 60–62

S

Satisfiability (SAT), 2, 5, 7, 9, 27, 38–39, 51,

68–70, 75, 79, 93

Satisfiability Modulo Theory (SMT), 5, 7, 9,

27, 38–39, 41, 43, 44, 47, 48, 50, 51,

68–71, 75, 79, 85

Satya, 5, 7, 8, 63–66, 147

Schedule, 1, 9, 12, 14, 15, 26, 30–32, 34,

35, 54–56, 60, 61, 64, 68–70, 73–75,

77–81, 84–87, 89, 92, 97, 101, 116,

118–121, 125, 126

Scheduling, 1, 13, 14, 32, 34, 35, 55, 66, 77,

118, 121, 125

SDV. See Static driver verifier

Semantics-preserving optimizations, 6

Semantic step, 107, 108

Sequential consistency, 70, 71, 74, 81, 85, 91,

92

Side conditions, 126–128, 131, 132, 135, 139,

140, 142–144

SIMPLIFY, 38, 39, 44

Simulate function, 60, 61, 64

Simulation kernel, 52, 55–56

Simulation relation, 29, 98, 100–106, 108–116,

119, 120

Skipping transition, 109, 110, 134

Skolemization, 117

SLAM, 28, 38

Sleep sets, 22, 60, 61, 63, 64, 93

Slicing, 22, 59, 62, 65, 66

SMC. See Symbolic model checking

SMT. See Satisfiability modulo theory

SMV, 27, 93

Software pipelining, 6, 101, 140, 142, 148

Solve constraints algorithm, 93, 133, 134, 137

Sound approach, 41

Spark, 6–9, 15, 98, 99, 101, 114, 118–119,

121, 125, 148

SPIN, 1, 26, 93

State explosion problem, 4, 21, 25, 27, 51, 67,

68, 74, 79

Stateless, 5, 26, 53, 60

State transition system, 56–58

Static driver verifier (SDV), 28

Static partial-order-reduction (POR), 5, 22–23,

53, 66, 147

Static POR. See Static partial-order-reduction

Step function, 47, 48

Strongest postcondition, 98, 110–113, 130,

135

Structure-preserving transformations, 7, 30,

119

Stubborn sets, 22–23, 66, 93

Surya, 6–8, 98, 99, 116–119, 121, 148

Symbolic algorithms, 5, 27, 51, 68

Symbolic model checking (SMC), 27–28, 68,

79, 93, 94, 147

Symbolic simulation, 31, 121

Symmetric write, 59, 62

Symmetry reduction, 26

Synchronous communication, 20

Synchronous model, 5, 20, 69–70, 72, 76–81,

84, 85, 92–95, 148

Synchronous mode of execution, 20

Synthesis-for-verification, 149–150

Synthesis tool verification, 3, 4, 6–9, 31–35,

123–124, 148, 150

SystemC, 5, 7, 9, 11, 25, 26, 51–58, 60, 63–66,

116, 117, 147, 149

T

TAC. See Transaction accurate communication

Temporal operators, 18

TLM. See Transaction level modeling

Token-based approach, 5, 70–72, 84–92

Total order rule, 74

Trace, 23, 29, 52, 53, 57–65, 68, 71, 75, 81,

84, 85, 92, 98, 103–104, 110–111, 117,

120, 149

Trace-subset refinement, 117, 120

Transaction accurate communication (TAC), 7,

65

Transaction level modeling (TLM), 11, 52, 65

Transactions, 53, 65, 73, 85, 86, 88–90, 93

Transformational synthesis tools, 32, 33

Transition diagram, 106–110, 112, 115,

132–134, 148

Translation validation (TV), 3–9, 11, 12,

29–31, 97–121, 124, 125, 128, 129,

133, 137, 143–145, 148, 150

TV-HLS, 98–99, 101, 106, 107, 109, 111, 112,

115, 116, 119–121

V

VCGen, 44

Verification condition, 5, 44, 70, 71, 85, 95

Index 167

Verisoft, 26, 61, 93

Visible instructions, 101, 102, 105, 107, 108,

111–114, 130, 131, 133

VIS model checker, 31

W

Weakest precondition, 9, 30, 38–50, 98, 105,

111, 114, 131, 136, 142

Well-formed pairs of interest, 113–115, 135

Well-formed relation, 110–112, 115

Witness generators, 32–35

Z

Z3, 38, 39, 44

Zing, 93

	High-Level Verification
	Preface
	Acknowledgments
	Contents
	Acronyms

	Chapter 1 Introduction

	1.1 Overview of High-Level Verification
	1.2 Overview of Techniques Covered in this Book
	1.2.1 High-Level Property Checking
	1.2.2 Translation Validation
	1.2.3 Synthesis Tool Verification

	1.3 Contributions of the Book
	1.4 Book Organization

	Chapter 2 Background

	2.1 High-Level Design
	2.2 RTL Design
	2.3 High-Level Synthesis
	2.4 Model Checking
	2.4.1 Simple Elevator Example
	2.4.2 Property Specification
	2.4.3 Reachability Algorithm

	2.5 Concurrent Programs
	2.5.1 Representation of Concurrent Programs
	2.5.2 Partial-Order Reduction

	2.6 Summary

	Chapter 3 Related Work

	3.1 High-Level Property Checking
	3.1.1 Explicit Model Checking
	3.1.2 Symbolic Model Checking

	3.2 Translation Validation
	3.2.1 Relational Approach
	3.2.2 Model Checking
	3.2.3 Theorem Proving

	3.3 Synthesis Tool Verification
	3.3.1 Formal Assertions
	3.3.2 Transformational Synthesis Tools
	3.3.3 Witness Generator

	3.4 Summary

	Chapter 4 Verification Using Automated Theorem Provers

	4.1 Satisfiability Modulo Theories
	4.2 Hoare Logic
	4.3 Weakest Preconditions
	4.4 Additional Complexities for Realistic Programs
	4.4.1 Path-Based Weakest Precondition
	4.4.2 Pointers
	4.4.3 Loops

	Chapter 5 Execution-Based Model Checking for High-Level Designs

	5.1 Verification of Concurrent Programs
	5.2 Overview of SystemC
	5.3 Problem Statement
	5.4 Overview of Execution-Based MC for SystemC Designs
	5.5 SystemC Example
	5.6 SystemC Simulation Kernel
	5.6.1 Nondeterminism

	5.7 State Transition System
	5.8 The EMC-SC Approach
	5.8.1 Static Analysis
	5.8.2 The Explore Algorithm

	5.9 The Satya Tool
	5.10 Experiments and Results
	5.10.1 FIFO Benchmark
	5.10.2 TAC Benchmark

	5.11 Further Reading
	5.12 Summary

	Chapter 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous

	6.1 Introduction
	6.1.1 Synchronous Models
	6.1.2 Asynchronous Models
	6.1.3 Outline

	6.2 Concurrent System
	6.2.1 Interleaving (Operational) Semantics
	6.2.2 Axiomatic (Non-Operational) Semantics
	6.2.3 Partial Order

	6.3 Bounded Model Checking
	6.4 Concurrent System: Model
	6.5 Synchronous Modeling
	6.6 BMC on Synchronous Models
	6.6.1 BMC Formula Sizes

	6.7 Asynchronous Modeling
	6.8 BMC on Asynchronous Models: CSSA-Based Approach
	6.8.1 Thread Program Constraints: TP
	6.8.2 Concurrency Constraints: CC
	6.8.3 BMC Formula Sizes

	6.9 BMC on Asynchronous Models: Token-Based Approach
	6.9.1 MAT-Based Partial Order Reduction
	6.9.2 Independent Modeling
	6.9.3 Concurrency Constraints
	6.9.4 BMC Formula Sizes

	6.10 Comparison Summary
	6.11 Further Reading
	6.12 Summary

	Chapter 7 Translation Validation of High-Level Synthesis

	7.1 Overview of Translation Validation
	7.2 Overview of the TV-HLS Approach
	7.3 Illustrative Example
	7.3.1 Translation Validation Approach
	7.3.2 Simulation Relation
	7.3.3 Checking Algorithm
	7.3.4 Inference Algorithm

	7.4 Definition of Refinement
	7.5 Simulation Relation
	7.6 The Translation Validation Algorithm
	7.6.1 Checking Algorithm
	7.6.2 Inference Algorithm

	7.7 Equivalence of Transition Diagrams
	7.8 Experiments and Results
	7.8.1 Automatic Refinement Checking of CSP Programs
	7.8.2 SPARK: High-Level Synthesis Framework

	7.9 Further Reading
	7.10 Summary

	Chapter 8 Parameterized Program Equivalence Checking

	8.1 Overview of Synthesis Tool Verification
	8.1.1 Once-And-For-All Vs. Translation Validation

	8.2 Overview of the PEC Approach
	8.3 Illustrative Example
	8.3.1 Expressing Loop Pipelining
	8.3.2 Parameterized Programs
	8.3.3 Side Conditions
	8.3.4 Executing Optimizations
	8.3.5 Proving Correctness of Loop Pipelining
	8.3.6 Parameterized Equivalence Checking
	8.3.7 Bisimulation Relation
	8.3.8 Generating Constraints
	8.3.9 Solving Constraints

	8.4 Parameterized Equivalence Checking
	8.4.1 Bisimulation Relation
	8.4.2 Architectural Overview

	8.5 GenerateConstraints Module
	8.6 SolveConstraints Module
	8.7 Permute Module
	8.8 Experiments and Results
	8.9 Execution Engine
	8.10 Further Reading
	8.11 Summary

	Chapter 9 Conclusions and Future Work

	9.1 High-Level Property Checking
	9.2 Translation Validation
	9.3 Synthesis Tool Verification
	9.4 Future Work

	References
	Index
	Cover
	High-Level Verification
	Preface
	Acknowledgments
	Contents
	Acronyms

	Chapter 1 Introduction
	1.1 Overview of High-Level Verification
	1.2 Overview of Techniques Covered in this Book
	1.2.1 High-Level Property Checking
	1.2.2 Translation Validation
	1.2.3 Synthesis Tool Verification

	1.3 Contributions of the Book
	1.4 Book Organization

	Chapter 2 Background
	2.1 High-Level Design
	2.2 RTL Design
	2.3 High-Level Synthesis
	2.4 Model Checking
	2.4.1 Simple Elevator Example
	2.4.2 Property Specification
	2.4.3 Reachability Algorithm

	2.5 Concurrent Programs
	2.5.1 Representation of Concurrent Programs
	2.5.2 Partial-Order Reduction

	2.6 Summary

	Chapter 3 Related Work
	3.1 High-Level Property Checking
	3.1.1 Explicit Model Checking
	3.1.2 Symbolic Model Checking

	3.2 Translation Validation
	3.2.1 Relational Approach
	3.2.2 Model Checking

	3.3 Synthesis Tool Verification
	3.2.3 Theorem Proving
	3.3.1 Formal Assertions
	3.3.3 Witness Generator
	3.3.2 Transformational Synthesis Tools

	3.4 Summary

	Chapter 4 Verification Using Automated Theorem Provers
	4.1 Satisfiability Modulo Theories
	4.2 Hoare Logic
	4.3 Weakest Preconditions
	4.4 Additional Complexities for Realistic Programs
	4.4.1 Path-Based Weakest Precondition
	4.4.2 Pointers
	4.4.3 Loops

	Chapter 5 Execution-Based Model Checking for High-Level Designs
	5.1 Verification of Concurrent Programs
	5.2 Overview of SystemC
	5.4 Overview of Execution-Based MC for SystemC Designs
	5.3 Problem Statement
	5.5 SystemC Example
	5.6 SystemC Simulation Kernel
	5.6.1 Nondeterminism

	5.7 State Transition System
	5.8 The EMC-SC Approach
	5.8.1 Static Analysis
	5.8.2 The Explore Algorithm

	5.9 The Satya Tool
	5.10 Experiments and Results
	5.10.1 FIFO Benchmark

	5.11 Further Reading
	5.10.2 TAC Benchmark

	5.12 Summary

	Chapter 6 Bounded Model Checking for Concurrent Systems: Synchronous Vs. Asynchronous
	6.1 Introduction
	6.1.1 Synchronous Models
	6.1.2 Asynchronous Models
	6.1.3 Outline

	6.2 Concurrent System
	6.2.1 Interleaving (Operational) Semantics
	6.2.3 Partial Order
	6.2.2 Axiomatic (Non-Operational) Semantics

	6.3 Bounded Model Checking
	6.4 Concurrent System: Model
	6.5 Synchronous Modeling
	6.6 BMC on Synchronous Models
	6.7 Asynchronous Modeling
	6.6.1 BMC Formula Sizes

	6.8 BMC on Asynchronous Models: CSSA-Based Approach
	6.8.2 Concurrency Constraints: CC
	6.8.1 Thread Program Constraints: TP

	6.9 BMC on Asynchronous Models: Token-Based Approach
	6.8.3 BMC Formula Sizes
	6.9.1 MAT-Based Partial Order Reduction
	6.9.2 Independent Modeling
	6.9.3 Concurrency Constraints
	6.9.4 BMC Formula Sizes

	6.10 Comparison Summary
	6.12 Summary
	6.11 Further Reading

	Chapter 7 Translation Validation of High-Level Synthesis
	7.1 Overview of Translation Validation
	7.2 Overview of the TV-HLS Approach
	7.3 Illustrative Example
	7.3.1 Translation Validation Approach
	7.3.2 Simulation Relation
	7.3.3 Checking Algorithm
	7.3.4 Inference Algorithm

	7.4 Definition of Refinement
	7.5 Simulation Relation
	7.6 The Translation Validation Algorithm
	7.6.1 Checking Algorithm
	7.6.2 Inference Algorithm

	7.7 Equivalence of Transition Diagrams
	7.8 Experiments and Results
	7.8.1 Automatic Refinement Checking of CSP Programs
	7.8.2 SPARK: High-Level Synthesis Framework

	7.9 Further Reading
	7.10 Summary

	Chapter 8 Parameterized Program Equivalence Checking
	8.1 Overview of Synthesis Tool Verification
	8.2 Overview of the PEC Approach
	8.1.1 Once-And-For-All Vs. Translation Validation

	8.3 Illustrative Example
	8.3.2 Parameterized Programs
	8.3.1 Expressing Loop Pipelining
	8.3.4 Executing Optimizations
	8.3.3 Side Conditions
	8.3.6 Parameterized Equivalence Checking
	8.3.7 Bisimulation Relation
	8.3.5 Proving Correctness of Loop Pipelining
	8.3.8 Generating Constraints
	8.3.9 Solving Constraints

	8.4 Parameterized Equivalence Checking
	8.4.1 Bisimulation Relation
	8.4.2 Architectural Overview

	8.5 GenerateConstraints Module
	8.6 SolveConstraints Module
	8.7 Permute Module
	8.8 Experiments and Results
	8.9 Execution Engine
	8.10 Further Reading
	8.11 Summary

	Chapter 9 Conclusions and Future Work
	9.1 High-Level Property Checking
	9.3 Synthesis Tool Verification
	9.2 Translation Validation
	9.4 Future Work

	References
	Index

