

Sven Helmer,Alexandra Poulovassilis, and Fatos Xhafa

Reasoning in Event-Based Distributed Systems

Studies in Computational Intelligence,Volume 347

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 324.Alessandro Soro,Vargiu Eloisa, Giuliano Armano, and
Gavino Paddeu (Eds.)
Information Retrieval and Mining in Distributed Environments,

2010
ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)
Advances in Practical Multi-Agent Systems, 2010
ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in Healthcare
5, 2010
ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and
Ewa Napieralska-Juszczak (Eds.)
Computational Methods for the Innovative Design of Electrical

Devices, 2010
ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)
Nonlinear Dynamics in Human Behavior, 2010
ISBN 978-3-642-16261-9

Vol. 329. Santi Caballé, Fatos Xhafa, and Ajith Abraham (Eds.)
Intelligent Networking, Collaborative Systems and Applications,

2010
ISBN 978-3-642-16792-8

Vol. 330. Steffen Rendle
Context-Aware Ranking with Factorization Models, 2010
ISBN 978-3-642-16897-0

Vol. 331.Athena Vakali and Lakhmi C. Jain (Eds.)
New Directions in Web Data Management 1, 2011
ISBN 978-3-642-17550-3

Vol. 332. Jianguo Zhang, Ling Shao, Lei Zhang, and
Graeme A. Jones (Eds.)
Intelligent Video Event Analysis and Understanding, 2011
ISBN 978-3-642-17553-4

Vol. 333. Fedja Hadzic, Henry Tan, and Tharam S. Dillon
Mining of Data with Complex Structures, 2011
ISBN 978-3-642-17556-5

Vol. 334. Álvaro Herrero and Emilio Corchado (Eds.)
Mobile Hybrid Intrusion Detection, 2011
ISBN 978-3-642-18298-3

Vol. 335. Radomir S. Stankovic and Radomir S. Stankovic
From Boolean Logic to Switching Circuits and Automata, 2011
ISBN 978-3-642-11681-0

Vol. 336. Paolo Remagnino, Dorothy N. Monekosso, and Lakhmi
C. Jain (Eds.)
Innovations in Defence Support Systems – 3, 2011
ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in

Healthcare 6, 2011
ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, Eugene V.Aidman, and
Canicious Abeynayake (Eds.)
Innovations in Defence Support Systems – 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and
Detlef Zuehlke (Eds.)
Model-Driven Development of Advanced User Interfaces, 2011
ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)
New Horizons in Evolutionary Robotics, 2011
ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros
Mining and Control of Network Traffic by Computational
Intelligence, 2011
ISBN 978-3-642-18083-5

Vol. 343. Kurosh Madani,António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2011
ISBN 978-3-642-20205-6

Vol. 344.Atilla Elçi, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)
Semantic Agent Systems, 2011
ISBN 978-3-642-18307-2

Vol. 345. Shi Yu, Léon-Charles Tranchevent,
Bart De Moor, and Yves Moreau
Kernel-based Data Fusion for Machine Learning, 2011
ISBN 978-3-642-19405-4

Vol. 346.Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)
Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1

Vol. 347. Sven Helmer,Alexandra Poulovassilis, and Fatos Xhafa
Reasoning in Event-Based Distributed Systems, 2011
ISBN 978-3-642-19723-9

Sven Helmer,Alexandra Poulovassilis, and Fatos Xhafa

Reasoning in Event-Based
Distributed Systems

123

Dr. Sven Helmer
University of London
Dept. of Computer Science and Inf. Systems,
Birkbeck
Malet Street
London WC1E 7HX
UK
E-mail: sven@dcs.bbk.ac.uk

Prof.Alexandra Poulovassilis
University of London
London Knowledge Lab, Birkbeck
23-29 Emerald Street
London WC1N 3QS
UK
E-mail: ap@dcs.bbk.ac.uk

Dr. Fatos Xhafa
University of London
London Knowledge Lab, Birkbeck
23-29 Emerald Street
London WC1N 3QS
UK
E-mail: fatos@lsi.upc.edu

ISBN 978-3-642-19723-9 e-ISBN 978-3-642-19724-6

DOI 10.1007/978-3-642-19724-6

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011923800

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general
use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Fatos Xhafa dedicates this book to the memory of his father.

Preface

Event-based distributed systems are playing an ever increasing role in
areas such as enterprise management, information dissemination, finance,
environmental monitoring and geo-spatial systems. Event-based processing
originated with the introduction of Event-Condition-Action (ECA) rules to
database systems in the 1980s. Since then, the use of ECA rules and the re-
active computing paradigm has spread widely into middleware, stream pro-
cessing, wireless sensor networks and radio frequency identification (RFID).

The wide propagation of event-based processing spanning numerous
application domains explains why many different distributed architectures
are being used for event-based systems, including publish-subscribe, Peer-to-
Peer, Grid, event-stream processing and message queues. As such systems
become more complex and more pervasive, intelligent techniques are needed
for detecting and processing events that are of interest to users from the pos-
sibly huge volumes of low-level event occurrences. Complex Event Process-
ing aims to correlate simple event occurrences into more meaningful derived
events and is the topic of several chapters of this book. Other research issues
include detection of new or unusual events, optimisation of event process-
ing, event consumption policies, privacy and security, system dynamicity and
responsiveness, and quality of service guarantees.

Intelligent and logic-based approaches provide sound foundations for ad-
dressing many of the research challenges, and this book covers a broad
range of recent advances contributed by leading experts in the field. Rea-
soning about the properties and behaviour of event-based distributed sys-
tems presents significant challenges beyond those of centralised systems due
to their greater complexity and dynamicity, and their temporal, spatial and
context-aware characteristics. Nevertheless, this also opens up opportunities
for building highly scalable and adaptable systems. The fundamental concepts
presented in this book are illustrated with examples drawn from applications
in areas such as supply chain management, environmental and traffic mon-
itoring, patient monitoring, data centre and network monitoring, fraud de-
tection, smart homes, role-based access control, spacecraft and satellite data

VIII Preface

monitoring, online collaboration in virtual organisations, monitoring market
data, and monitoring business processes.

The target audience of the book are senior year undergraduate and grad-
uate students, as well as instructors, researchers and industry professionals.
The book covers theoretical approaches, architectural frameworks, system
implementations and applications. The first three chapters provide founda-
tional material which gives the necessary background for reading the other
chapters for those who are unfamiliar with the subject. The chapters have
been contributed by many leading experts in the field and we hope that the
book will be become a useful reference and resource for those who are already
working in this exciting and rapidly evolving field or are moving into it.

Acknowledgment

The editors are grateful to the authors of this volume for their contributions.
We would like to thank Professor Janusz Kacprzyk (Editor-in-Chief, Springer
Studies in Computational Intelligence Series) for the the support and encour-
agement and to Dr. Thomas Ditzinger (Springer Engineering Inhouse Editor,
Studies in Computational Intelligence Series), and Ms. Heather King (Edi-
torial Assistant, Springer Verlag, Heidelberg) for their support and excellent
collaboration during the edition of the book.

Fatos Xhafa’s work was undertaken during his stay at Birkbeck, University
of London, UK (on leave from Technical University of Catalonia, Spain) and
was supported by the General Secretariat of Universities of the Ministry of
Education, Spain.

December 2010
Sven Helmer

Alex Poulovassilis
Fatos Xhafa

Contents

Introduction to Reasoning in Event-Based Distributed
Systems . 1
Sven Helmer, Alex Poulovassilis, Fatos Xhafa

Distributed Architectures for Event-Based Systems 11
Valentin Cristea, Florin Pop, Ciprian Dobre, Alexandru Costan

A CEP Babelfish: Languages for Complex Event Processing
and Querying Surveyed . 47
Michael Eckert, François Bry, Simon Brodt, Olga Poppe,

Steffen Hausmann

Two Semantics for CEP, no Double Talk: Complex
Event Relational Algebra (CERA) and Its Application to
XChangeEQ

. 71
Michael Eckert, François Bry, Simon Brodt, Olga Poppe,

Steffen Hausmann

ETALIS: Rule-Based Reasoning in Event Processing 99
Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer,

Nenad Stojanovic, Rudi Studer

GINSENG Data Processing Framework . 125
Zbigniew Jerzak, Anja Klein, Gregor Hackenbroich

Security Policy and Information Sharing in Distributed
Event-Based Systems . 151
Brian Shand, Peter Pietzuch, Ioannis Papagiannis, Ken Moody,

Matteo Migliavacca, David M. Eyers, Jean Bacon

Generalization of Events and Rules to Support Advanced
Applications . 173
Raman Adaikkalavan, Sharma Chakravarthy

X Contents

Pattern Detection in Extremely Resource-Constrained
Devices . 195
Michael Zoumboulakis, George Roussos

Smart Patient Care . 217
Diogo Guerra, Pedro Bizarro, Dieter Gawlick

The Principle of Immanence in Event-Based Distributed
Systems . 239
Pascal Dugenie, Stefano A. Cerri

Context-Based Event Processing Systems . 257
Opher Etzion, Yonit Magid, Ella Rabinovich, Inna Skarbovsky,

Nir Zolotorevsky

Event Processing over Uncertain Data . 279
Avigdor Gal, Segev Wasserkrug, Opher Etzion

Index . 305

Author Index . 309

List of Contributors

Raman Adaikkalavan

Computer Science & Informatics,

Indiana University South Bend

e-mail: raman@cs.iusb.edu

Darko Anicic

FZI Forschungszentrum Informatik,

Haid-und-Neu-Str. 10-14, 76131

Karlsruhe, Germany

e-mail: darko.anicic@fzi.de

Jean Bacon

Computer Laboratory, University of

Cambridge, JJ Thomson Avenue,

Cambridge CB3 0FD, UK

e-mail: jean.bacon@cl.cam.ac.uk

Pedro Bizarro

University of Coimbra, Portugal

e-mail: bizarro@dei.uc.pt

Simon Brodt

Institute for Informatics, University

of Munich, Oettingenstr. 67, 80538

Munich, Germany

e-mail: brodt@pms.ifi.lmu.de

Francois Bry

Institute for Informatics, University

of Munich, Oettingenstr. 67, 80538

Munich, Germany

e-mail: bry@pms.ifi.lmu.de

Stefano A. Cerri

CNRS, Centre National de Recher-

che Scientifique, LIRMM, Labora-

toire d’Informatique de Robotique et

de Microelectronique de Montpellier

161 rue Ada, 34392 Montpellier

Cedex 5 France

e-mail: cerri@lirrm.fr

Sharma Chakravarthy

Computer Science and Engineering,

The University of Texas At

Arlington

e-mail: sharma@cse.uta.edu

Alexandru Costan

University Politehnica of Bucharest,

313 Splaiul Independentei, 060042

Bucharest, Romania

e-mail: alexandru.costan@cs.pub.ro

Valentin Cristea

University Politehnica of Bucharest,

313 Splaiul Independentei, 060042

Bucharest, Romania

e-mail: valentin.cristea@cs.pub.ro

Ciprian Dobre

University Politehnica of Bucharest,

313 Splaiul Independentei, 060042

Bucharest, Romania

e-mail: ciprian.dobre@cs.pub.ro

Pascal Dugenie

CNRS, Centre National de Recher-

che Scientifique, LIRMM, Labora-

toire d’Informatique de Robotique et

de Microelectronique de Montpellier

161 rue Ada, 34392 Montpellier

Cedex 5 France

e-mail: dugenie@lirmm.fr

XII List of Contributors

Michael Eckert

TIBCO Software, Balanstr. 49,

81669 Munich, Germany

e-mail: meckert@tibco.com

Opher Etzion

IBM Haifa Research Lab, Haifa,

Israel

e-mail: opher@il.ibm.com

David M. Eyers
Computer Laboratory, University of

Cambridge, JJ Thomson Avenue,

Cambridge CB3 0FD, UK

e-mail: david.eyers@cl.cam.ac.uk

Avigdor Gal

Technion –Israel Institute of Tech-

nology, Faculty of Industrial Engi-

neering & Management, Technion

City, 32000 Haifa, Israel

e-mail: avigal@ie.technion.ac.il

Dieter Gawlick

Oracle, California

e-mail: dieter.gawlick@oracle.com

Diogo Guerra
FeedZai, Portugal

e-mail:

diabetesogo.guerra@feedzai.com

Paul Fodor
Stony Brook University, Stony

Brook, NY 11794, U.S.A.

e-mail: pfodor@cs.sunysb.edu

Gregor Hackenbroich

SAP Research Dresden, Chemnitzer

Straße 48, 01187 Dresden, Germany

e-mail:

gregor.hackenbroich@sap.com

Steffen Hausmann

Institute for Informatics, University

of Munich, Oettingenstr. 67, 80538

Munich, Germany

e-mail: hausmann@pms.ifi.lmu.de

Sven Helmer

Department of Computer Science

and Information Systems, Birkbeck,

University of London, UK

e-mail: sven@dcs.bbk.ac.uk

Zbigniew Jerzak

SAP Research Dresden, Chemnitzer

Straße 48, 01187 Dresden, Germany

e-mail: zbigniew.jerzak@sap.com

Anja Klein
SAP Research Dresden, Chemnitzer

Straße 48, 01187 Dresden, Germany

e-mail: anja.klein@sap.com

Yonit Magid

IBM Haifa Research Lab, Haifa,

Israel

email: yonit@il.ibm.com

Matteo Migliavacca

Department of Computing, Imperial

College London, 180 Queen's Gate,

London SW7 2AZ, UK

e-mail: migliava@doc.ic.ac.uk

Ken Moody
Computer Laboratory, University of

Cambridge, JJ Thomson Avenue,

Cambridge CB3 0FD, UK

e-mail: ken.moody@cl.cam.ac.uk

Ioannis Papagiannis

Department of Computing, Imperial

College London, 180 Queen's Gate,

London SW7 2AZ, UK

e-mail: ip108@doc.ic.ac.uk

Peter Pietzuch
Department of Computing, Imperial

College London, 180 Queen's Gate,

List of Contributors XIII

London SW7 2AZ, UK

e-mail: prp@doc.ic.ac.uk

Florin Pop

University Politehnica of Bucharest,

313 Splaiul Independentei, 060042

Bucharest, Romania

e-mail: florin.pop@cs.pub.ro

Olga Poppe

Institute for Informatics, University

of Munich, Oettingenstr. 67, 80538

Munich, Germany

e-mail: poppe@pms.ifi.lmu.de

Alex Poulovassilis
London Knowledge Lab, Birkbeck,

University of London

e-mail: ap@dcs.bbk.ac.uk

Ella Rabinovich

IBM Haifa Research Lab, Haifa,

Israel

e-mail: ellak@il.ibm.com

George Roussos

Birkbeck College, University of

London, WC1E 7HX

e-mail: gr@dcs.bbk.ac.uk

Sebastian Rudolph

Karlsruhe Institute of Technology,

Germany

e-mail: rudolph@kit.edu

Brian Shand

CBCU / Eastern Cancer Registry

and Information Centre, National

Health Service, Unit C –Magog

Court, Shelford Bottom, Hinton

Way, Cambridge CB22 3AD, UK

e-mail: Brian.Shand@cbcu.nhs.uk

Inna Skarbovsky

IBM Haifa Research Lab, Haifa,

Israel

e-mail: inna@il.ibm.com

Roland Stühmer

FZI Forschungszentrum Informatik,

Germany

e-mail: stuehmer@fzi.de

Nenad Stojanovic

FZI Forschungszentrum Informatik,

Germany

e-mail: nenad.stojanovic@fzi.de

Rudi Studer

FZI Forschungszentrum Informatik,

Germany

e-mail: studer@fzi.de

Segev Wasserkrug
IBM Haifa Research Lab, Haifa,

Israel

e-mail: segevw@il.ibm.com

Fatos Xhafa

Department of Languages and

Informatics Systems, Technical

University of Catalonia, Spain

e-mail: fatos@lsi.upc.edu

Nir Zolotorevsky

IBM Haifa Research Lab, Haifa,

Israel

e-mail: nirz@il.ibm.com

Michael Zoumboulakis

Birkbeck College, University of

London, WC1N 3QS

e-mail: mz@dcs.bbk.ac.uk

Introduction to Reasoning in Event-Based

Distributed Systems

Sven Helmer, Alex Poulovassilis, and Fatos Xhafa

1 Event-Based Distributed Systems

Event-based distributed systems have played an important role in distributed com-

puting in the recent past and their influence is steadily increasing. With the rapid

development of Internet technologies, such systems are gaining in importance in a

broad range of application domains, including enterprise management, environmen-

tal monitoring, information dissemination, finance, pervasive systems, autonomic

computing, geo-spatial systems, collaborative working and learning, and online

games. Event-based computing is becoming a central aspect of emerging large-scale

distributed computing paradigms such as Grid, Peer-to-Peer and Cloud computing,

wireless networking systems, and mobile information systems.

The general motivation for distributed processing (which applies also to event-

based distributed systems) is that it allows for more scalable and more reliable

systems. Moreover, in the context of event-based distributed systems specifically,

events occurring over a wide area can be partially filtered and aggregated locally

before being shipped to their destination, i.e. to the component or components of

Sven Helmer

Department of Computer Science and Information Systems, Birkbeck,

University of London, UK

Tel.: +44 (0)20 7631 6718; Fax: +44 (0)20 7631 6727

e-mail: sven@dcs.bbk.ac.uk

Alex Poulovassilis

London Knowledge Lab, Birkbeck, University of London

Tel.: +44 (0)20 7631 6705 / (0)20 7763 2120; Fax: +44 (0)20 7631 6727

e-mail: ap@dcs.bbk.ac.uk

Fatos Xhafa

Department of Languages and Informatic Systems, Technical University of Catalonia, Spain

Tel.: +34 93 4137880; Fax: +34 93 4137833

e-mail: fatos@lsi.upc.edu

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 1–10.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

sven@dcs.bbk.ac.uk
ap@dcs.bbk.ac.uk
fatos@lsi.upc.edu

2 S. Helmer, A. Poulovassilis, and F. Xhafa

the system responsible for processing information about event occurrences and re-

acting appropriately.

In event-based systems, an ‘event’ can take many forms. However, common to all

events is that they are abstractions of observations made in a certain environment.

Event-based processing originated in the area of active databases in the 1980s with

the introduction of triggers to database systems (we refer readers to [9, 11] for an

overview of active databases). A trigger is an Event-Condition-Action (ECA) rule

which is checked by the DBMS whenever an event occurs that matches the Event

part of the rule. The Condition part of the rule acts as a sentinel filtering out events

that are not relevant, and only those events satisfying the condition cause the Action

part of the rule to be executed. Since these early beginnings, ECA rules have be-

come a reactive computing paradigm in their own right, independent of their use in

database systems. For example, the ECA concept has been applied in the context of

middleware architectures such as CORBA [6], J2EE [2] and TIBCO [4], in stream

processing [5], reactive web-based applications [8], wireless sensor networks [1]

and radio frequency identification [10]. We refer readers to [3] for an overview of

the development of the ECA paradigm in databases during the 1980s and 1990s,

and a discussion of its more recent use in areas such as distributed event specifica-

tion and detection, information filtering, web page change monitoring, stream data

processing, role-based access control and autonomic computing.

What are some of the reasons for the popularity of event-based processing?

Firstly, it offers a lot of flexibility to applications that need to monitor an envi-

ronment and react to the occurrence of significant events. Event-based systems rely

mainly on asynchronous communication to do this. In contrast to synchronous com-

munication, processes do not have to stop working while waiting for data. Gen-

erally this means that event sources ‘push’ data about event occurrences to event

consumers. Moreover, developers are able to build more loosely-coupled systems,

as system components only need minimum knowledge about each other. Different

levels of coupling are possible, ranging from fixed point-to-point communications

to a network of brokers.

Event-based processing began with systems that handled simple events, such as

the insertion of a tuple into a database table or the reading of a temperature value

by a sensor. However, as systems are processing increasing volumes of events, users

are not necessarily interested in keeping track of thousands or even millions of sim-

ple events, but rather in seeing and handling the ‘big picture’. This can be achieved

by employing intelligent techniques for deriving events at higher levels of abstrac-

tion. For example, the area of Complex Event Processing (CEP), which is the focus

of several of the chapters in this book, aims to correlate simple events temporally

and/or spatially in order to infer more meaningful composite events. CEP comes

with a trade-off, though, in that a balance needs to be struck between the expres-

siveness of CEP languages on the one hand and the performance of CEP systems

processing them on the other: the more expressive a language, the more powerful

the event processing engine needs to be.

Many different architectures, languages and technologies have been and are be-

ing used for implementing event-based distributed systems — we refer readers to [7]

Introduction to Reasoning in Event-Based Distributed Systems 3

for an overview of the range of technologies used and an analysis of common re-

search issues arising across different application domains. This large variability is

due to the fact that much of the development of such systems has been undertaken

independently by different communities. While there is some overlap in the dif-

ferent approaches, often the main driving force during development has been the

needs and requirements of specific application domains. Although a merging and

generalisation of concepts is under way, c.f. [7], this will still take some time to

accomplish. In the meantime, Chapters 2 and 3 of this book present an overview

of distributed architectures for event-based systems (Chapter 2) and languages for

specifying and detecting complex events (Chapter 3), aiming to allow the reader to

gain an understanding of the state-of-the-art in these two fundamental areas of the

field.

Many research challenges are being addressed by the event-based distributed

computing research community, ranging from the detection of events of interest, to

filtering, aggregating, dissemination and querying of event data, and more advanced

topics relating to the semantics of event languages and issues such as performance

and optimisation of event processing, specification and implementation of event

consumption policies (i.e. policies for consuming simple events during the deriva-

tion of composite events), handling event data arising from heterogeneous sources,

resource management, ensuring the privacy and security of information, and qual-

ity of service guarantees. Intelligent techniques are playing an important role in

addressing these challenges. In particular, reasoning and logic-based approaches

provide fundamental principles for tackling these research issues and developing

solutions on the basis of formal, yet powerful, foundations. Chapters 4 to 9 of the

book describe a broad range of current research in this direction. Chapters 12 and 13

focus on two specialist topics, namely the role of context in event-based distributed

systems, and the handling of uncertainty in the detection of simple events and the

inference of higher-level derived events from simple events.

Event-based systems can serve as a basis for the development of advanced appli-

cations in diverse domains, ranging from traditional areas of logistics and produc-

tion to more recent mobile and pervasive applications. As event-based processing

is often application-driven, the concepts presented in the book are illustrated us-

ing examples from a broad range of application scenarios in areas such as supply

chain management, environmental and traffic monitoring, patient monitoring, data

centre and network monitoring, fraud detection, smart homes, access control, space-

craft and satellite data monitoring, online collaboration, monitoring market data, and

monitoring business processes. Chapters 9, 10 and 11 focus specifically on applica-

tions in event-based pervasive computing, patient care, and collaboration in social

organisations.

2 Reasoning in Event-Based Distributed Systems

Reasoning about the properties and behaviour of event-based distributed systems

differs in many ways from reasoning about traditional event management systems

4 S. Helmer, A. Poulovassilis, and F. Xhafa

due to their greater complexity and dynamicity as well as their temporal, spatial,

domain-specific and context-sensitive characteristics. A variety of different event

types may arise in event-based distributed systems, including signal, textual, visual

and other kinds of events. The time associated with an event may be a single time

point or a time interval. Reasoning in event-based distributed systems thus needs to

address new issues and research challenges including:

• correlating simple distributed events and reasoning about them in real-time;

• spatio-temporal reasoning over events, with both point and interval semantics;

• reasoning about uncertain events and under real-time constraints;

• reasoning about events in continuous time;

• context-aware reasoning.

Depending on the application supported by an event-based system, different archi-

tectures and models are being used, including publish-subscribe, Peer-to-Peer (P2P),

Grid computing, event-stream processing, and message queues. A common factor

across different application domains is an ever-increasing complexity. Users and de-

velopers expect that modern systems are able to cope with not only simple events

reporting a change in a single data item but also composite events, i.e. the detection

of complex patterns of event occurrences that are possibly spatially distributed and

may span significant periods of time. This gives rise to the need for development of

• semantic foundations for event-based distributed systems;

• formal models and languages for expressing composite events;

• reasoning techniques for such models and languages;

• formal foundations for event consumption policies;

• data mining and machine learning techniques for detecting new or unusual event

patterns;

• scalable techniques for processing efficiently large volumes of complex dis-

tributed events.

The event-based approach is becoming a central aspect of new Grid and P2P sys-

tems, ubiquitous and pervasive systems, wireless networking, and mobile informa-

tion systems. The architectures and middleware of such systems use event-based

approaches not only to support efficiency, scalability and reliability but also to

support a new class of demanding applications in a variety of domains. Event-

based approaches are showing their usefulness not only for stand-alone platforms

and applications but also for achieving interoperability between, and integration of,

different event-based applications, particularly in the business domain. Research

challenges here include:

• development of distributed architectures for supporting intelligent event

processing;

• development of event-driven Service Oriented Architectures to support interop-

erability and integration of distributed applications;

• handling the heterogeneity that arises when event data is produced by different

sources, e.g. by enriching the data with additional semantic metadata or through

ontology-based mediation services;

Introduction to Reasoning in Event-Based Distributed Systems 5

• developing techniques for specifying, analysing and enforcing policies for re-

source management, security and privacy;

• monitoring and delivering quality of service requirements.

Further research issues are identified in Chapter 2 of this book, which gives an

overview of the architectural aspects of event-based distributed systems, focusing

particularly on the intelligent and reasoning techniques incorporated within such

systems. Some of these are explored in more detail in later chapters of the book,

including:

• optimisation of event processing in the face of large numbers of distributed

users, high volumes of distributed event data, and the need for timely response

with low resource consumption;

• dynamic adaptation to new situations as applications are executing, e.g. changes

in the availability of resources, the types of event data being produced, the com-

plex events that need to be detected, or the quality of service requirements;

• specifying, implementing and reasoning with policies for security and access

control to physical and virtual environments and resources;

• responsiveness to the requirements of diverse users, for example through rule-

based mechanisms for capturing different users needs and preferences and mak-

ing recommendations to users.

3 Overview of the Book

This book aims to give a comprehensive overview of recent advances in intelligent

techniques and reasoning in event-based distributed systems. It divides roughly into

five sections:

(i) Chapters 2 and 3 survey different architectures for event-based distributed sys-

tems and different languages for complex event processing, covering founda-

tional material that is developed further in subsequent chapters of the book.

(ii) Chapters 4, 5 and 6 explore in more detail some of the event language

paradigms identified in Chapter 3, addressing issues such as semantics, per-

formance and optimisation of event-based processing.

(iii) Chapters 7 and 8 focus on security and access control in event-based dis-

tributed systems.

(iv) Chapters 9, 10 and 11 discuss the requirements for intelligent processing in

several application domains and the development of techniques targeting these

domains: event detection in pervasive computing environments, emergency pa-

tient care, and online collaboration in social organisations.

(v) Chapters 12 and 13 conclude by addressing two specialist aspects of reason-

ing in event-based distributed systems: handling of context and handling of

uncertainty.

6 S. Helmer, A. Poulovassilis, and F. Xhafa

Overview of the Chapters

Chapter 2, “Distributed architectures for event-based systems”, gives an overview

of the architectural aspects of event-based distributed systems. The authors present

a logical architecture that comprises the main components involved in generating,

transmitting, processing and consuming event data, based on the ECA paradigm.

They discuss the nature of primitive, composite and derived events, and the ways

in which these are processed in this logical architecture. They then describe how to

realise the archetypal logical architecture in a variety of settings. The alternative sys-

tem architectures they present are discussed within five themes — Complex Event

Processing, Service Oriented Architectures, Grid Architectures, P2P Architectures

and Agent-based Architectures. For each of these themes, the authors discuss previ-

ous work, recent advances, and future research trends.

Chapter 3, “A CEP Babelfish: Languages for Complex Event Processing and

Querying Surveyed”, describes five commonly used approaches for specifying and

detecting event patterns: (i) event query languages based on a set of event composi-

tion operators, (ii) data stream query languages, (iii) production rules, (iv) state ma-

chines, and (v) logic languages. The authors illustrate each of these approaches by

means of a use case in Sensor Networks and discuss appropriate application areas for

each approach. They note that there is no single best approach that fits all application

requirements and settings, and that therefore commercial CEP products tend to adopt

multiple approaches within one system or even combined within one language.

The next three chapters explore some of the language approaches (i)-(v) above in

more detail. Chapter 4, “Two Semantics for CEP, no Double Talk: Complex Event

Relational Algebra (CERA) and its Application to XChangeEQ”, discusses the se-

mantics of Event Query Languages, from both declarative and operational perspec-

tives. The authors note that for such languages the declarative semantics serve as a

reference for a correct operational semantics, and also as the basis for developing

optimisation techniques for event query evaluation. The chapter focuses particularly

on the XChangeEQ event query language, which is based on the event composition

operators approach. The authors adopt a model-theoretic approach for the declara-

tive semantics, and an event relational algebra as the basis for the operational se-

mantics, and hence for event query evaluation and optimisation. They confirm the

relationship between the two versions of the semantics by sketching a proof of the

correctness of the operational semantics with respect to the declarative semantics.

Chapter 5, “ETALIS: Rule-Based Reasoning in Event Processing”, presents a

logic language for specifying complex events. Similarly to Chapter 4, the authors

give both a model-theoretic declarative semantics for their language and a rule-based

operational semantics. There is a detailed discussion of event consumption policies,

defined over both time points and time intervals. Their language is compiled into

Prolog for execution, and the authors compare the event detection performance of

two Prolog implementations of their approach with a state machine-based imple-

mentation. A brief discussion follows of how a logic-based approach can support

reasoning over complex events, for example as relating to their relative order and

other more complex relationships between events.

Introduction to Reasoning in Event-Based Distributed Systems 7

Chapter 6, “GINSENG Data Processing Framework”, describes a hybrid

approach to distributed complex event processing, combining the capabilities and

benefits of publish/subscribe, event stream processing (ESP) and business rule pro-

cessing (BRP). The authors describe the GINSENG modular middleware architec-

ture for distributed event processing, which supports the integration of a variety of

event producing and event consuming external components through its extensible

content-based publish/subscribe mechanism. The middleware handles the stateless

parts of business rules close to the data sources through the publish/subscribe mech-

anism, while the stateful parts of rules are handled by the ESP and BRP engines. The

authors describe the implementation of these two engines, and focuses particularly

on performance monitoring and control. They discuss data quality-driven optimisa-

tion of event stream processing, using an evolutionary approach. They also mention

the possibility of using temporal reasoning to identify event occurrences that can

no longer match any rule and can therefore be garbage-collected. The chapter con-

cludes with a review of related work in middleware technology, publish/subscribe,

ESP and BRP.

Chapter 7, “Security Policy and Information Sharing in Distributed Event-Based

Systems”, discusses security policies and information sharing in event-based dis-

tributed systems, using health care service provision as the motivating application.

The authors assume a publish/subscribe mechanism for event-based communica-

tion, and they discuss how role-based access control can be used to enforce autho-

risation policies at the client level, while taking context into account as well. They

discuss additional requirements for providing secure information flow between dis-

tributed system components, both within and between administrative domains, and

how these requirements can be implemented. They describe how reasoning tech-

niques can be applied to formal policy specifications, so as to infer information

about the flow of data within the system and the confidentiality and integrity prop-

erties of the system.

Chapter 8, “Generalization of Events and Rules to Support Advanced Applica-

tions”, proposes extensions to ECA rule syntax and semantics in order to support

the requirements of advanced applications, exemplifying these requirements with

examples drawn from the specification and implementation of policies for access

control to physical spaces. The ECA rule extensions include: specification of alter-

native actions to be undertaken when the event part of a rule is detected but the con-

dition is false; generalisation of event specification and detection using constraints

expressed on the attributes of events; and detection of partial and failed complex

events. The chapter discusses event detection techniques for handling these exten-

sions, possible alternative implementations for distributed event detection, previous

work on reasoning with ECA rules, and open questions relating to reasoning using

the extended ECA rules.

Chapter 9, “Pattern Detection in Extremely Resource-Constrained Devices”,

focuses on the challenges of detecting event patterns in distributed resource-

constrained devices comprising a wireless network of sensors and actuators. Such

pervasive computing environments pose particular problems due to the resource con-

straints of the devices and the lack of reliable communication and synchronisation

8 S. Helmer, A. Poulovassilis, and F. Xhafa

capabilities in the network. The chapter discusses online data mining approaches

to detecting anomalous or novel event patterns in the sensor data. The authors also

present their own approach which combines concepts from data mining, machine

learning and statistics and offers a variety of algorithms for both (i) detecting known

patterns of interest in the sensor data, as specified by users, and (ii) detecting pre-

viously unknown event patterns by a phase of training on normal sensor data and

then online detection of deviations from the learned patterns.

Chapter 10, “Smart Patient Care”, describes a prototype system for monitor-

ing patients in emergency care units with the aim of predicting if they will have a

cardiac arrest in the next 24 hours. The system merges real-time patient data with

historical data, medical knowledge in the form of rules, and data mining models, in

order to generate appropriate alarms customised according to the patient and also

doctor’s preferences. The system combines several Oracle products to achieve this

functionality: Total Recall for managing the history of data changes, Continuous

Query Notification for detecting changes in the data, Oracle Data Mining (ODM)

for detecting complex patterns in the data, and Business Rules Manager for complex

event processing.

Chapter 11, “The principle of immanence in event-based distributed systems”,

focuses on collaborative Grid-based environments, and on the emergence of the

principle of ‘immanence’ from the activities of collaborating partners in virtual or-

ganisations. It discusses how the AGORA Grid-based platform has been extended

with agent-based mechanisms to foster the emergence of collaborative behaviours

and to reflect information about the emergence of such behaviours back into the

system architecture, with the aim of improving the self-organisation capabilities of

the system and the collaborating community that it supports.

Chapter 12, “Context-based event processing systems”, discusses the role of

context in event processing systems, identifying four main uses of context in such

systems: temporal context, spatial context, segmentation-oriented context and state-

oriented context. A survey is given of these different types of context. Events may

be processed differently depending on their context. Event processing applications

may use combinations of such context, and the chapter also discusses composing

contexts. A survey is given of how context is supported in five commercial event

processing systems.

The final chapter, “Event Processing over Uncertain Data”, identifies alternative

approaches for capturing uncertainty in the detection of simple event occurrences

and their attribute values, and in the inference of derived events. A taxonomy for

event uncertainty is presented as is an analysis of the various causes of event un-

certainty. Two models are proposed for representing uncertainty in simple events,

based on probability theory and fuzzy set theory. Handling uncertainty in the in-

ference of derived events is discussed with respect to a simple event language em-

ploying a Bayesian network inference model. Several open research questions are

highlighted: identifying the most suitable approach, or approaches, for specific ap-

plication requirements; specifying or automatically deriving appropriate inference

rules and the probabilities associated with them; and achieving scalable implemen-

tations of the inference algorithms.

Introduction to Reasoning in Event-Based Distributed Systems 9

4 Concluding Remarks

This book aims to give readers an insight into the rapidly evolving field of reason-

ing in event-based distributed systems. Due to its fast, and sometimes uninhibited,

growth this area faces the challenge of having to consolidate existing approaches

and paradigms while at the same time integrating newly emerging application re-

quirements, such as uncertainty, security and resource constraints. Nevertheless, the

developments in this field have shown great potential for building effective and effi-

cient distributed systems.

Logic-based approaches are being used for the specification and detection of

complex events, giving a sound basis for reasoning about event properties and for

scalable implementations of event detection mechanisms, possibly in combination

with event stream processing middleware. Defining denotational semantics for event

query languages provides an implementation-independent reference point for prov-

ing the correctness of implementations and developing optimisations. Data mining,

machine learning and statistical approaches are being used to discover event patterns

in high-volume event streams. Rule-based specifications of security policies make

possible context-aware reasoning about information access and flow in distributed

applications. Probabilistic approaches provide promising foundations for handling

uncertainty in event detection and inference. Agent-based processing is being used

to foster the emergence of online collaboration in social organisations through the

interaction of intelligent agents that can adapt and evolve their behaviour over time.

The general approach of event-based distributed processing allows developers to

create loosely-coupled and reconfigurable systems that offer scalability and adapt-

ability, two of the most critical properties of modern information systems. Event

processing can be monitored with respect to specific quality factors and this infor-

mation be fed back into the system for dynamic quality improvement. Declarative

languages for specifying resource management policies offer the potential for for-

mal policy analysis and policy evolution. Rule-based mechanisms can be used to

capture different users’ needs and preferences in order to support personalisation of

users’ interaction with the system. Another important goal is the provision of ver-

satile and powerful middleware components that support the rapid development of

reliable distributed applications. Finally, we must state that event-based distributed

processing and reasoning may still need some more time to mature, but we believe

that it will be an exciting area to work in for the years to come.

References

1. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y.: A survey on sensor networks. IEEE

Communications Magazine 40(8), 102–114 (2002)

2. Bodoff, S., Armstrong, E., Ball, J., Carson, D.B.: The J2EE Tutorial. Addison-Wesley

Longman, Boston (2004)

3. Chakravarthy, S., Adaikkalavan, R.: The Ubiquitous Nature of Event-Driven

Approaches: A Retrospective View. In: Event Processing, Dagstul Seminar Proceed-

ings 07191 (2007)

10 S. Helmer, A. Poulovassilis, and F. Xhafa

4. Chan, A.: Transactional publish/subscribe: the proactive multicast of database changes.

ACM SIGMOD Record 27(2), 521 (1998)

5. Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system

for internet databases. In: ACM SIGMOD Conf. 2000, Dallas, TX, pp. 379–390 (2000)

6. Harrison, T., Levine, D., Schmidt, D.: The design and performance of a real-time

CORBA event service. In: 12th ACM SIGPLAN Conf. on Object-Oriented Program-

ming, Systems, Languages and Applications (OOPSLA), Atlanta, GA, pp. 184–200

(1997)

7. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Technolo-

gies. In: 3rd ACM Int. Conf. on Distributed Event-Based (DEBS), Nashville, TN, pp.

1–15 (2009)

8. Levene, M., Poulovassilis, A. (eds.): Web Dynamics — Adapting to Change in Content,

Size, Topology and Use. Springer, Berlin (2004)

9. Paton, N.W. (ed.): Active Rules in Database Systems. Springer, New York (1999)

10. Roussos, G.: Networked RFID: Systems, Software and Services. Springer, London

(2008)

11. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules for Advanced

Database Processing. Morgan Kaufmann, San Francisco (1994)

Distributed Architectures for Event-Based

Systems

Valentin Cristea, Florin Pop, Ciprian Dobre, and Alexandru Costan

Abstract. Event-driven distributed systems have two important characteristics,

which differentiate them from other system types: the existence of several soft-

ware or hardware components that run simultaneously on different inter-networked

nodes, and the use of events as the main vehicle to organize component intercom-

munication. Clearly, both attributes influence event-driven distributed architectures,

which are discussed in this chapter. We start with presenting the event-driven soft-

ware architecture, which describes various logical components and their roles in

events generation, transmission, processing, and consumption. This is used in early

phases of distributed event-driven systems’ development as a blueprint for the whole

development process including concept, design, implementation, testing, and main-

tenance. It also grounds important architectural concepts and highlights the chal-

lenges faced by event-driven distributed system developers. The core part of the

chapter presents several system architectures, which capture the physical realization

of event-driven distributed systems, more specifically the ways logical components

are instantiated and placed on real machines. Important characteristics such as per-

formance, efficient use of resources, fault tolerance, security, and others are strongly

determined by the adopted system architecture and the technologies behind it. The

most important research results are organized along five themes: complex event pro-

cessing, Event-Driven Service Oriented Architecture (ED-SOA), Grid architecture,

Peer-to-Peer (P2P) architecture, and Agent architecture. For each topic, we present

previous work, describe the most recent achievements, highlight their advantages

and limitations, and indicate future research trends in event-driven distributed sys-

tem architectures.

Valentin Cristea · Florin Pop · Ciprian Dobre · Alexandru Costan

University Politehnica of Bucharest, 313 Splaiul Independentei,

060042 Bucharest, Romania

e-mail: valentin.cristea@cs.pub.ro,florin.pop@cs.pub.ro,
ciprian.dobre@cs.pub.ro,alexandru.costan@cs.pub.ro

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 11–45.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

valentin.cristea@cs.pub.ro, florin.pop@cs.pub.ro,

12 V. Cristea et al.

1 Introduction and Motivation

Many distributed systems use the event-driven approach in support of monitoring

and reactive applications. Examples include: supply chain management, transaction

cost analysis, baggage management, traffic monitoring, environment monitoring,

ambient intelligence and smart homes, threat / intrusion detection, and so forth.

In e-commerce applications, the business process can be managed in real time by

generated events that inform each business step about the status of previous steps,

occurrence of exceptions, and others. For example, events could represent order

placements, fall of the inventory below a specific optimal threshold, high value or-

ders, goods leaving the warehouse, goods delivery, and so forth. An event-driven

system detects different events generated by business processes and responds in real

time by triggering specific actions.

Event-driven solutions satisfy also the requirements of large scale distributed

platforms such as Web-based systems, collaborative working and learning systems,

sensor networks, pervasive computing systems, Grids, per-to-peer systems, wireless

networking systems, mobile information systems, and others, by providing support

for fast reaction to system or environment state changes, and offering high quality

services with autonomic behavior. For example, large scale wireless sensor net-

works can be used for environment monitoring in some areas. A large number of

different events can be detected (such as heat, pressure, sound, light, and so forth)

and are reported to the base stations that forward them to event processors for com-

plex event detection and publication. Appropriate event subscriber processes are

then activated to respond to event occurrences. They can set alarms, store the event

data, start the computation of statistics, and others.

Event-driven distributed architectures help in solving interoperability, fault tol-

erance, and scalability problems in these systems. For example, Grid systems are

known for their dynamic behavior: users can frequently join and leave their vir-

tual organizations; resources can change their status and become unavailable due

to failures or restrictions imposed by the owners. To cope with resource failure sit-

uations, a Grid monitoring service can log specific events and trigger appropriate

controls that perform adaptive resource reallocation, task re-scheduling, and other

similar activities. A large number of different event data are stored in high volume

repositories for further processing to obtain information offered to Grid users or ad-

ministrators. Alternatively, the data collected can be used in automatic processes for

predictive resource management, or for optimization of scheduling .

Most important, event-driven distributed architectures simplify the design and

development of systems that react faster to environment changes, learn from past

experience and dynamically adapt their behavior, are pro-active and autonomous,

and support the heterogeneity of large scale distributed systems.

The objective of this chapter is to give the reader an up-to-date overview of

modern event-driven distributed architectures. We discuss the main challenges, and

present the most recent research approaches and results adopted in distributed sys-

tem architectures, with emphasis on incorporating intelligent and reasoning tech-

niques that increase the quality of event processing and support higher efficiency of

Distributed Architectures for Event-Based Systems 13

the applications running on top of distributed platforms. Future research directions

in the area of event-driven distributed architectures are highlighted as well.

2 Background

Events are fundamental elements of event-driven systems. An event is an occurrence

or happening, which originates inside or outside a system, and is significant for, and

consumed by, a system’s component. Events are classified by their types and are

characterized by the occurrence time, occurrence number, source (or producer), and

possible other elements that are included in the event specification. Events can be

primitive, which are atomic and occur at one point in time, or composite, which

include several primitive events that occur over a time interval and have a specific

pattern. A composite event has an initiator (primitive event that starts a compos-

ite event) and a terminator (primitive event that completes the composite event).

The occurrence time can be that of the terminator (point-based semantics) or can

be represented as a pair of times, one for the initiator event, and the other for the

terminator event [43, 21]. The interval temporal logic [1] is used for deriving the

semantics of interval based events when combining them by specific operators in a

composite event structure.

Event streams are time-ordered sequences of events, usually append-only (events

cannot be removed from a sequence). An event stream may be bounded by a time in-

terval or by another conceptual dimension (content, space, source, certainty) or can

be open-ended and unbounded. Event stream processing handles multiple streams,

aiming at identifying the meaningful events and deriving relevant information from

them. This is achieved by means of detecting complex event patterns, event corre-

lation and abstraction, event hierarchies, and relationships between events such as

causality, membership, and timing. So, event stream processing is focused on high

speed querying of data in streams of events and applying transformations to the

event data. Processing a stream of events in order of their arrival has some advan-

tages: algorithms increase the system throughput since they process the events “on

the fly”; more specifically, they process the events in the stream when they occur and

send the results immediately to the next computation step. The main applications

benefiting from event streams are algorithmic trading in financial services, RFID

event processing applications, fraud detection, process monitoring, and location-

based services in telecommunications.

Temporal and causal dependencies between events must be captured by specifi-

cation languages and treated by event processors. The expressivity of the specifi-

cation should handle different application types with various complexities, being

able to capture common use patterns. Moreover, the system should allow com-

plete process specification without imposing any limiting assumptions about the

concrete event process architecture, requiring a certain abstraction of the modeling

process. The pattern of interesting events may change during execution; hence the

event processing should allow and capture these changes through a dynamic behav-

ior. The usability of the specification language should be coupled with an efficient

14 V. Cristea et al.

implementation in terms of runtime performance: near real-time detection and non-

intrusiveness [40]. Distributed implementations of event detectors and processors

often achieve these goals. We observe that, by distributing the composite event de-

tection, scalability is also achieved by decomposing complex event subscriptions

into sub-expressions and detecting them at different nodes in the system [4]. We

add to these requirements the fault tolerance constraints imposed on event composi-

tion, namely that correct execution in the presence of failures or exceptions should

be guaranteed, based on formal semantics. One can notice that not all these require-

ments can be satisfied simultaneously: while a very expressive composite event ser-

vice may not result in an efficient or usable system, a very efficient implementation

of composite event detectors may lead to systems with low expressiveness. In this

chapter, we describe the existing solutions that attempt to balance these trade-offs.

Composite events can be described as hierarchical combinations of events that

are associated with the leaves of a tree and are combined by operators (specific to

an event algebra) that reside in the other nodes. Another approach is continuous

queries, which consists of applying queries to streams of incoming data [17]. A

derived event is generated from other events and is frequently enriched with data

from other sources. The representation of the event must completely describe the

event in order to make this information usable to potential consumers without the

need to go back to the source to find other information related to the event.

Event-driven systems include components that produce, transmit, process, and

consume events. Events are generated by different sources — event producers, and

are propagated to target applications — event consumers. Producers and consumers

are loosely coupled by the asynchronous transmission and reception of events. They

do not have to know and explicitly refer each other. In addition, the producers do

not know if the transmitted events are ever consumed. What the system does is to

offer the events to the interested consumers. To do this, other components are used

such as the event channel and the event processing engine. To them must be added

components for event development, event management, and for the integration of

the event-driven system with the application (Figure 1). We next describe briefly the

roles of these components.

Fig. 1 Components of the event-driven systems

Distributed Architectures for Event-Based Systems 15

Event producers vary from one application to another. For example, mobile lo-

cation sensors (GPS) or readers of mobile RFID tags are frequently used in loca-

tion detection for context aware applications [18]. Web tracking services crawl the

Internet to find new postings and generate events accordingly. RFID tag readings

combined with information from a company’s database can generate events for sup-

ply chain management. Mobile sensors can be used for health monitoring systems.

Stationary sensors for detecting the presence of persons or sensing the ambient con-

ditions are used in smart home applications. The event producer can also be an

application, data store, service, business process, medical equipment, IC card, PC,

phone, TV, PDA, notebook, smart phone, and so forth. It is not surprising that vari-

ous event categories correspond to these sources: temporal, absolute or logical posi-

tioning events, change of status events, interval events, event strings, homogeneous

or heterogeneous composite events, and others. In addition, events carry contextual

information such as social context and group membership [27]. The producer can

be a collaboration support service such as Instant Messaging or email. As we can

see, there is a large variety of event producers, which generate events in different

formats. Consequently, the events need to be converted, prior transmission, to the

format accepted by the event channel. In distributed systems, the producer could

also include a local event processor that has the role of selecting events for trans-

mission over the event channel based on specific rules, or of detecting composite

events. For example, if a temperature sensor generates an event each minute, a local

event filter could select and send on the event channel only the events with tempera-

tures greater than a threshold T. Since, in distributed systems, event producers might

be spread over a large geographic area, filtering helps to reduce the traffic injected

in the transport network that supports the event channels. Also, the producer can

generate composite events out of workflows or message streams. For example, the

application might want to know when the average temperature for each sequence of

ten events “greater than T” events becomes larger than a limit T’. So, an event pro-

cessor local to the producer calculates the average for each group of ten events and

generates a new event when this average is greater than T’. This approach aims to re-

duce the network traffic and the load of the event processing engine by performing,

at the place of the event source, some simple event processing operations.

Event consumers are system components such as software, services, humans,

intelligent applications, business processes, performance dashboards, automated

agents, actuators, or effectors. They receive events communicated by the event pro-

cessing engine and react to these events. The reaction might include the generation

of new events, so that consumers can be event producers as well.

The event processing engine receives events via defined channels, processes

them according to specific rules, and initiates actions on behalf of event consumers.

Processing can be event aggregation, classification, and abstraction, which are used

for generating higher level complex events. For example, event combinations can

be a disjunction or a conjunction of two events, a sequence of two events, occur-

rence of an aperiodic event in a time interval, periodic occurrence of an event, non-

occurrence, and temporal [12]. To these operations, event monitoring, tracking, and

16 V. Cristea et al.

discovery can be added. Finally, event handling (for example event rating) can be

used for situation detection and prediction purposes.

Engines can process the events individually, one at a time, or in the context of

former events. The second approach is known as Complex Event Processing (CEP)

and aims at identifying event patterns by processing multiple events. Detecting event

patterns can determine the generation of new events or trigger actions of event con-

sumers. Intelligent event processing engines base their decisions on AI techniques

and knowledge processing, in which case their behavior adapts continuously to the

changing environment they monitor. Engine actions might include event logging,

which keeps information about the time at which the event occurred. For composite

events, the log preserves the constituent events in the order they were produced. The

event processing can be centralized in a single engine or can be distributed to a net-

work of cooperative event processing agents. Both solutions are used in distributed

systems and have advantages and disadvantages that will be discussed further in this

chapter.

Several models have been proposed for complex event detection. An early ap-

proach was extending finite state automata with support for temporal relationships

between events [40]. A complex event detection automaton has a finite set of states,

including an initial state in which the detection process is started, and generative

states, each one corresponding to a complex event. Transitions between states are

fired by events from an event input alphabet, which are consumed sequentially by

the automaton. When the automaton reaches a generative state a complex event is

detected. This approach provides efficiency through its direct support for event pro-

cessing distribution since detectors can subscribe to composite events detected by

other automata. Finite automata have several advantages: they are a well-understood

model with simple implementations; their restricted expressive power has the benefit

of limited, predictable resource usage; regular expression languages have operators

that are tailored for pattern detection, which avoids redundancy and incompleteness

when defining a new composite event language; complex expressions in a regular

language may easily be decomposed for distributed detection.

Many event processing engines are built around the Event, Condition, Action

(ECA) paradigm [13], which was firstly used in Data Base Management Systems

(DBMS) and was then extended to many other categories of system. These elements

are described as a rule that has three parts: the event that triggers the rule invocation;

the condition that restricts the performance of the action; and the action executed

as a consequence of the event occurrence. To fit this model, the event processing

engine includes components for complex event detection, condition evaluation,

and rule management. In this model, event processing means detecting complex

events from primitive events that have occurred, evaluating the relevant context in

which the events occurred, and triggering some actions if the evaluation result sat-

isfies the specified condition. Event detection uses an event graph, which is a merge

of several event trees [15]. Each tree corresponds to the expression that describes

a composite event. A leaf node corresponds to a primitive event while intermediate

nodes represent composite events. The event detection graph is obtained by merging

common sub-graphs. When a primitive event occurs, it is sent to its corresponding

Distributed Architectures for Event-Based Systems 17

leaf node, which propagates it to its parents. When a composite event is detected,

the associated condition is submitted for evaluation. The context, which can have

different characteristics (e.g. temporal, spatial, state, and semantic) is preserved in

variables and can be used not only for evaluation of the condition but also in the

performance of the action.

In distributed systems, channels are used for event notification or communica-

tion. Events are communicated as messages by using negotiated protocols and lan-

guages such as the FIPA ACL (FIPA Agent Communication Language) used for

inter-agent communication. Protocols can be push-based, in which producers dis-

tribute the events to consumers, or pull-based, in which consumers request the infor-

mation. In the publish-subscribe paradigm [27], producers place notifications into

a channel while consumers subscribe for notifications to specific channels. When

an event is published, all entities that subscribed to that specific event category

are automatically notified. As an alternative, content-based publish-subscribe [47]

mechanisms use the body of the event description for routing the information from

producers to consumers. Finally, concept-based publish-subscribe [19] uses ontolo-

gies and context information to decide on the routing. The publish-subscribe model

has at least two advantages: first, it supports event delivery to multiple consumers;

second, it decouples the event consumers from the rest of the system, with beneficial

effects on scalability and on simplifying systems’ design and implementation.

Event development tools are used for the specification of events and rules. Event

management tools are used for the administration and monitoring of the processing

infrastructure and of the event flows. The integration module includes interface

modules for the invocation and publish-subscribe actions, access to application data,

and adapters for event producers.

3 Event-Driven Distributed System Architectures

The concrete realization of a system requires the instantiation of the abstract archi-

tecture, placement of components on real machines, protocols to sustain the interac-

tions, and so forth, using specific technologies and products [53]. Such an instance

is called system architecture.

Event-driven distributed system architectures must respond to users’ quality re-

quirements, and to problems raised by the distributed nature of platforms and ap-

plications. One challenge is the scale in number of users and resources that are

distributed over large geographic areas. They generate a huge number of events that

must be efficiently processed. For example, in a transaction cost analysis applica-

tion, hundreds of thousands of events per second of transaction records must be

processed [27]. To support such and similar tasks, the distributed system is required

to process composite events with the minimum delay and with minimum resource

consumption, which might require a very careful placement of event services on

available resources, based on load balancing and replication techniques [58]. An-

other challenge is presented by fault tolerance, which requires component replica-

tion combined with recovery techniques and the use of persistent memory for events.

18 V. Cristea et al.

Yet another challenge is the dynamic nature of the context in which the applications

are running. Typical context aware applications are those based on wireless sensor

networks or mobile ad-hoc networks for traffic monitoring, which require a greater

adaptivity that can be supported by AI and knowledge-based techniques. Last but

not least, systems must respond to the needs of large communities of users with dif-

ferent profiles and backgrounds, by offering expressive tools for specifying complex

events, and using intelligent techniques for the manipulation of event patterns.

3.1 Complex Events Detection

Distributed event processing is based on decomposing complex event expressions

into parts that can be detected separately in a distributed approach. An optimal strat-

egy must be used for the distribution of event processing services between clients

and servers or among peers of a distributed system. This is guided by optimization

criteria, which can be a tradeoff between a low latency in event processing and low

resource consumption. It takes into account the characteristics of systems’ infras-

tructure and of the applications, which in most cases are dynamically changing and

ask for flexible and adaptive mechanisms. For example, the policy could encourage

the reuse of an existing complex event detector for several other complex events. In

other cases, it could be more useful to replicate services to support fault tolerance

and reliability or to gain in performance by placing the event processing closer to

the consumers.

In many systems, the generation of new inferred events is based on other events

and some mechanisms for predefined event pattern specifications. A widespread

model that supports the dynamic modification of complex events is the rule based

paradigm, which currently relies on expressive definition of the relevant events and

the update of rules over time. The model uses a set of basic events along with their

inter-relationships and event-associated parameters. A mechanism for automating

the inference of new events [54] combines partial information provided by users

with machine learning techniques, and is aimed at improving the accuracy of event

specification and materialization. It consists of two main repetitive stages, namely

rule parameter prediction and rule parameter correction. The former is performed

by updating the parameters using available expert knowledge regarding the future

changes of parameters. The latter stage utilizes expert feedback regarding the event

occurrences and the events materialized by the complex events processing frame-

work to tune rule parameters. There are some important directions which are worth

exploring, for example casting the learning problem as an optimization one. This can

be achieved by attaching a metric to the quality of the learned results and by using

generic optimization methods to obtain the best values. For example, transforming

rule trees into Bayesian Networks enables the application of learning algorithms

based on the last model [56].

Event workflows are a natural choice for the composition of tasks and activities,

and are used to orchestrate event interactions in distributed event driven systems.

They can be based on associating components into groups or scopes, which induce

Distributed Architectures for Event-Based Systems 19

an hierarchical organization. Two components are visible to each other if there is a

scope that contains them. When a component publishes an event, this is delivered to

all visible subscribers. Each component relies on an interface specifying the types

of events the component publishes (out-events), and the events the component sub-

scribes to (in-events). Scopes are considered components as well. Each scope has

an interface specifying the in- and out-events of the whole group. It regulates the

interchange of events with the rest of the system. Exchange of events can be further

controlled with selective and imposed interfaces that allow a scope to orchestrate the

interactions between components within the scope. In event-driven workflow exe-

cution, ECA rules are fundamental for defining and enforcing workflow logic. Fault

tolerance is supported by exception event notification mechanisms which, combined

with rules, are used in reacting to workflow execution errors. However, further work

remains to be done on how to specify and implement semantic recovery mecha-

nisms based on rules. Also, the specific workflow life-cycle needs to be addressed,

particularly with respect to long running workflows and organizational changes.

The advent of stream processing based on sensor and other data generated on a

continuous basis enhances the role of events in critical ways. Currently, event stream

technologies converge with classic publish/subscribe approaches for event detection

and processing. The key applications of the event stream processing technologies

rely on the detection of certain event patterns (usually corresponding to the appli-

cations domain). However, efficient evaluation of the pattern queries over streams

requires new algorithms and optimizations since the conventional techniques for

stream query processing have proved inadequate [9]. We note that applications may

cope differently with performance requirements on event streams: while some appli-

cations require a strict notion of correctness that is robust relative to the arrival order

of events, others are more concerned with high throughput. An illustration of such

systems that integrate both event streams and publish/subscribe technologies and

support different precise notions of consistency is CEDR, Complex Events Detec-

tion and Response [9]. The proposed model introduces a temporal data dimension

with clear separation of different notions of time in streaming applications. This

goal is supported by a declarative query language able to capture a wide range of

event patterns under temporal and value correlation constraints. A set of consistency

levels are defined to deal with inherent stream imperfections, like latency or out-of-

order of delivery and to meet applications’ quality of service demands. While most

stream processing solutions rely on the notion of stream tuples seen as points, in

CEDR each tuple has a validity interval, which indicates the range of time when the

tuple is valid from the event provider’s perspective. Hence, a data stream is modeled

as a time varying relation with each tuple in the relation being an event. Stream pro-

cessing faces some particular issues in the context of large-scale events processing.

The high volume of streams reaches rates of thousands of detected events per sec-

ond in large deployments of receptors. Also, extracting events from large windows

is a difficult task when relevant events for a query are widely dispersed across the

window.

In various event-driven systems, information is combined from different sources

to produce events with a higher level of abstraction. When the sources are

20 V. Cristea et al.

heterogeneous the events must be meaningfully enriched, possibly by adding meta-

data that is often automatically extracted from semi-structured data [10, 26]. Event

enrichment involves understanding the semantics of the events and of the exter-

nal sources of information. Depending on the degree of abstract knowledge needed,

the event-driven system might generate recommendations automatically, which in

response might call for human involvement. Other approaches to addressing hetero-

geneity of event sources are based on the use of an intermediary ontology-based trans-

lation layer. Such systems include an additional layer of mediation that intelligently

resolves semantic conflicts based on dynamic context information (history of events

or state-context or any other information) and an ontology service [19]. The concept-

based publish/subscribe mechanism is part of the event processing layer. If notifica-

tions are to be routed in the same context then no additional mediation is needed. If

publisher and subscriber use different contexts, an additional mediation step is used.

Therefore, concept-based publish/subscribe can be implemented on top of any other

publish/subscribe methods (channel-based, content-based, subject-based).

3.2 Classes of Event-Driven Distributed Architectures

There are two large classes of event-driven distributed system architectures: client-

server and peer-to-peer. Systems in the first category are based on the asymmetric

relation between clients and servers that run on different machines. A client can ac-

tively invoke a service and waits for the response. The server, passively waits for

invocations, executes the requested service and sends the results back to the client.

Since the server can be client for another server, the possible client-server topologies

can be very diverse. The client-server model has several sub-categories. Web-based

applications use the browser as client and the Web server as broker for message ex-

changes with the application server. This sub-model has several advantages: there

is no need to build special clients for application servers; new application services

can be easily deployed without changing the client; the client’s functionality can

be enriched by downloading code from the server, and executing it in the browser.

Both entities (client and server) can have an event-driven orientation as is illustrated

in the sequel. A second sub-model is the event-driven Service Oriented Architec-

ture (event-driven SOA) in which an event, possibly produced by a client’s action,

can trigger the invocation of one or several services. In turn, service execution can

produce new events that are propagated to other services that contribute to solving

the client’s request. This sub-model is more flexible than the previous one since the

client does not have to know the server in advance. Instead, the server publishes

its interface, and a lookup service allows clients to retrieve the interface description

and formulate service requests according to this description. In addition, the use

of the publish-subscribe paradigm allows clients to be notified when new services

are made available. Clearly, the use of the same paradigm for events and services

simplifies the development of event-driven SOA systems, mainly in enterprise en-

vironments. Some authors [39] consider that event-driven SOA is nothing else than

another style of SOA, two primary styles being “composite application” and “flow”.

Distributed Architectures for Event-Based Systems 21

The event-driven SOA has proved to be very useful in Grid computing, for enhanc-

ing the performance of Grid services in several respects. One is for improving the

collaborative activity in Virtual Organizations, in which partner processes can be-

come more reactive to cooperation events. Another one is in monitoring and con-

trol of data Grid components engaged in performing complex processing on high

volumes of data.

For the second architectural category, we mention multi-agent and peer-to-peer

systems. Entities (agents or peers) have equal capabilities and develop symmetric

relations. In multi-agent systems, both the event processing and business processing

are distributed to agents that can be specialized to different functionalities and inter-

act to perform the specific tasks that correspond to their roles. By definition, agents

react to events that correspond to environment changes. So, agents are reactive, but

they are also proactive, autonomous, adaptive, communicative, and mobile. Con-

sequently, multi-agent systems are attractive for many applications in which these

characteristics are important. Peer-to-peer systems can also base their collabora-

tion, processing and content distribution activities on the event paradigm. They are

very large scale systems capable of self-organizing in the presence of failures and

fluctuations in the population of nodes. They have the advantage that ad hoc admin-

istration and maintenance are distributed among the users, which reduces the cost

of collaboration, communication, and processing.

In the sequel, the discussion is focused on the architectures of intelligent event-

driven distributed systems including service-oriented, Web-based, Grid, multi-agent,

and P2P systems. It aims at analyzing research issues related to the development of

these systems, and to the integration of intelligent and reasoning techniques in dis-

tributed platforms. The impact of these techniques on the efficiency, scalability and

reliability of stand-alone and business integrated platforms is also presented.

3.3 Event-Driven SOA

The event-driven SOA architecture is an extension of the SOA architecture with

event processing capabilities. Services are entities that encapsulate business func-

tionalities, offered via described interfaces that are published, discovered and used

by clients [57]. Complex distributed systems are built as collections of loosely

coupled, technologically neutral, and location independent services that belong

to middleware and application levels. Traditionally, enterprise distributed system

components interact by sending invocations to other components and receiving re-

sponses. Complex interactions are controlled by orchestration (centralized coordi-

nation of services) and choreography (distributed collaboration among services that

are aware of the business process). Events introduce a different interaction model in

which event channels allow consumers to subscribe for specific events, and receive

them when such events are published by producers. This mechanism is adopted in

open standards (e.g. CORBA), and in products or platforms (such as .NET, web-

sphere Business Events, Oracle CEP application server, and others) with the aim

of simplifying the design of complex interactions and supporting interoperability.

22 V. Cristea et al.

Services can be event producers and consumers, but can also act as re-usable com-

ponents for event processing, such as Rule service, Decision service, Invocation

service, and Notification service (see Figure 2).

Fig. 2 Services of the event-driven SOA

The Enterprise Service Bus (ESB) architecture defines facilities for business

events handling and complex event processing, along with message routing, trans-

port protocol conversion, and message splitting / aggregation to support powerful,

flexible, and real-time component interaction. ESB accommodates business rules,

policy driven behavior (particularly at the service level), and advanced features such

as pattern recognition. ESB has a hierarchical structure determined by horizontal

causality of events that are produced and consumed by entities residing in the same

architectural layer [23].

The ESB Core Engine is responsible for event processing and uses the Trans-

formation, message Routing, and Exception Management modules depicted in Fig-

ure 3. Routing and addressing services provide location transparency by controlling

service addressing and naming, and supporting several messaging paradigms (e.g.

request / response or publish / subscribe).

The growing needs of the modern business environment have resulted in new

standards, products and platforms. New emerging technologies are used in Event-

Driven Business Process Management (EDBPM) as an enrichment of BPM with

new concepts of Event Driven Architecture (EDA), Software as Service, Business

Activity Monitoring, and Complex Event Processing (CEP). New standards for EDA

have been defined or are under development by OASIS and OMG:

• Enterprise Collaboration Architecture is a model driven architecture approach for

specifying Enterprise Distributed Object Computing systems; it supports event

driven systems;

Distributed Architectures for Event-Based Systems 23

Fig. 3 ESB Components

• Common Alerting Protocol is a data interchange standard for alerting and event

notification applications;

• WS-Notification is a family of three specifications (WS-BaseNotification, WS-

BrokeredNotification, and WS-Topics) that define a Web services approach to

notification using a topic-based publish/subscribe pattern;

• Notification / JMS Interworking refer to event message mapping, event and

message filtering, automatic federation between a Notification Service channel

concept and topic/queue concepts;

• Production Rules Representation relates to support for specifying Event - Condi-

tion - Action rule sets;

• Document Object Model Level 2 and 3 Events Specification refers to the reg-

istration of event handlers, describes event flows, and provides basic contextual

information for events.

Specific products and platforms have been developed based on these standards.

The Oracle Event-Driven Architecture Suite with Oracle Fusion Middleware prod-

ucts allow customers to sense, identify, analyze and respond to business events in

real-time. Oracle R©EDA is compliant with SOA 2.0, the next-generation of SOA

that defines how events and services are linked together to deliver a truly flexible

and responsive IT infrastructure [38]. Event-driven workload automation, added in

IBM R©Tivoli Workload Scheduler 8.4, performs on-demand workload automation

and plan-based job scheduling [29]. This defines rules that can trigger on-demand

workload automation.

24 V. Cristea et al.

Web services add to SOA their own set of event related standards, WS-Eventing

[28] and WS-Addressing [7], targeting the implementation of event driven service-

oriented ubiquitous computing systems. WS-Addressing offers endpoint descrip-

tions of service partners for synchronous and asynchronous communication.

WS-Eventing defines messaging protocols for supporting the publish/subscribe

mechanism between web service applications. Event notifications are delivered via

SOAP, and the content of the notifications can be described without restrictions for

a specific application.

Much research is directed towards increasing the Web’s (and Web applications’)

reactivity, which means disseminating information about data updates. This can be

realized with events that are combined, transmitted, detected, and used by different

Web servers. Events could be as simple as posting new discounts for flights that

should be notified to interested customers or complex combinations of events that

could happen in a more complex Web-based service. One solution to cope with the

complexity and scale of the Web environment is the use of event-driven declarative

approaches and languages. XChange [44] is a language and an associated runtime

environment that supports the detection of complex events on the web and the sep-

aration between two data categories, namely persistent data (XML or HTML docu-

ments) and volatile data (event data communicated between XChange programs).

Fig. 4 RIA client architecture

Events can increase the reactivity of Rich Internet Applications (RIAs). These

are the Web-based counterparts of many applications that are available on desk-

tops. Clearly, to compete with local desktop environments, they have very high QoS

requirements concerning the client - server interactivity. To respond to these require-

ments, RIAs adopt the fat client model, which implements in the browser the user

Distributed Architectures for Event-Based Systems 25

interface, and uses an asynchronous client-server interaction with reduced waiting

times on both client and server.

Adding the capabilities of event processing and declarative rule execution on the

client side leads to intelligent RIA (IRIA) that benefits from increased reactivity,

greater adaptability to complicated requirements, and higher scalability. The sys-

tem’s architecture (Figure 4) presented in [49] supports the event-condition-action

(ECA) paradigm by including a complex event detector, condition evaluator, rule en-

gine, together with adapters for the event sources and the rule language. A rule is im-

plemented as an object in JSON, which contains the triple (event, condition, action).

The event expression uses the operators defined in Snoop [14]. The condition part

introduces restrictions on the set of composite events that are permitted by the event

expression. It uses filters and joins similar to production systems. The action part

includes one or more JavaScript code blocks. The system accepts events from local

sources (resulting from user-browser interaction, Document Object Model events,

and temporal events) and events coming from the network via servers (a stream of

stock market events provided by a Comet server, and events resulting from polling

RSS feeds). Incoming events are forwarded to the complex event detector, which

uses an event detection graph. When a composite event is detected, the associated

condition is evaluated. A Rete network [22] is used as the matching algorithm to

find patterns in a set of objects contained in the Working memory. If a match for

the condition is found, the action is triggered. The action may be the execution of

JavaScript code, the triggering of a new event or the modification of the working

memory used by the condition evaluator. The system has been tested and has shown

that the use of declarative event patterns is able to process continuous event streams

and makes RIAs more reactive and adaptive. Future work is needed to formalize the

JSON ECA rule language. Also, the efficiency of using the active rules on the client

side requires further experimentation in a larger application spectrum.

Event-driven SOA has moved into the sphere of ubiquitous computing. The first

step in this direction was the integration of Web services in small devices and wire-

less network by the definition of a Universal Plug and Play (UPnP) architecture for

direct device interconnections in home and office networks [42]. The second step

was the addition of event-driven capabilities, which give support for context-based

applications by using the sensing services offered by a multitude of ambient device

types (sensors, mobile phones, PDAs, medical instruments, and so forth). Clearly,

the highly heterogeneous devices handle various sets of data that are carried in the

event parameters. The use of WS-Eventing for event notification in embedded ser-

vices is shown in Figure 5 [30]. ECA rules are expressed in WS-ECA, an XML-

based ECA rule description language for web service-enabled devices. Several event

types are accepted: time, service, external, and internal. They can be combined in

complex events with disjunction, conjunction, sequence, and negation operators.

The condition is implemented by an XPath expression. The action part is a con-

junction or disjunction of several primitive or composite actions. Primitive actions

can be a service invocation, the creation and publishing of an external event or the

creation of an internal event and triggering other rules on the same device. WS-ECA

26 V. Cristea et al.

suffers of possible static or dynamic conflicts (several rules triggered by an event

may execute conflicting service actions). Some solutions for conflict detection and

resolution have been proposed [34].

Fig. 5 The use of WS-ECA rules for embedded systems

When event processing is human-centered, the event description technique and

the architecture supporting it must be carefully tailored to include context informa-

tion in a readable form. In the architecture proposed in [31], a statement description,

named Five W’s and one H, includes context information which indicates: the device

that created the statement (Who); the place in which the statement is valid (Where);

the time or period in which the statement is valid (When); the name of the data,

such as ’temperature’ (What); the value domain of the data, for example the set of

natural numbers (How); and the identifier of the previous statement on which the

current statement causally depends. A primitive event is a sequence of one or more

statements in which specific conditions are satisfied.

A composite event expression uses disjunction, conjunction, serialization, and

negation operators. The framework architecture (Figure 6) includes the ubiquitous

centralized server u-Server that receives reports from, and transmits commands to,

several access points, APs, that connect to service nodes. Reports and commands

are transmitted as statements. The event detector in the u-Server transmits detected

events to a Context analyzer (the context is represented by statements received be-

fore the time of the event) which triggers the active rules. The Rule manager gener-

ates commands for the control part of the service nodes.

The statement descriptions can be mapped to the event-condition-action (ECA)

model and can be integrated with WS-Eventing and WS-ECA event technologies

for the implementation of event-driven SOA-based context-aware distributed plat-

forms. While being focused on statement-driven event descriptions, this work opens

Distributed Architectures for Event-Based Systems 27

Fig. 6 Event processing framework architecture

new directions for further research towards an easier adaptation of the u-Server to

dynamic changes of the context by adopting intelligent approaches in the u-Server

functionality.

3.4 Event-Driven Collaboration

Events can be used also in Computer Supported Cooperative Work (CSCW) and

Collaborative Working Environment (CWE), which have evolved from simple forms

of groupware to more recent Virtual Organizations (VOs) used in both scientific

and enterprise environments. A VO is composed of people from different organiza-

tions, working together on a common project, and sharing resources for this purpose.

The collaboration between VO members can be supported by specific tools, which

implement collaboration models adapted to the specific features of distributed sys-

tems, such as forums, chats, shared whiteboards, negotiation support, group building

tools, and so forth. Such collaborations are routine and can take place according to

well established patterns, which are recurring segments of collaboration that can

be captured, encapsulated as distinct components, and used as solutions for further

collaboration problems. Examples of such patterns could be “Team organization”,

“Project plan development”, “Collaborative task execution”, “Report elaboration”,

“Final result analysis” and others. Each pattern can be characterized by some trig-

gering event (for example a specific time or the completion of a specific set of tasks),

by the use of specific collaboration tools (forums, chats, videoconferences, shared

repositories, and so forth), and by the nature and order of activities (one time, repeti-

tive, scheduled, ad-hoc, and so forth). For example, when organizing a project team,

the project leader might publish the number and skills of people needed, and then

candidates make offers. The leader could interview the candidates, make a selec-

tion, notify selected people, and have a meeting with them. During the meeting, the

leader could find out that some of the selected people are not available for the entire

duration of the project. To replace them, the leader can restart the process from the

selection activity.

28 V. Cristea et al.

Some collaborative activities are dynamic and cannot be captured in fixed pre-

defined patterns. Instead, abstract high level patterns can be dynamically adapted to

the continuous changes of the context they are used in by services that exploit col-

laboration knowledge bases and intercommunicate by events [55]. A Recommender

service can provide the actions to be executed and the collaboration tools to be used.

Awareness services process the events and give information about the collaboration

work. Using the monitored events, Analytics services offer statistics about past and

present collaborations. The collaboration patterns must be described in terms of the

collaboration problems solved, the context they work in, the precondition and post

condition of their use, the triggering event, and other relevant features.

The system architecture is presented in Figure 7. The Event and Service Bus

links the event sensors to the Complex Event Processing Engine. Simple events are

accepted by the Event Reasoner, which detects complex events using information

from its Pattern Base. When a pattern is detected, the Event Reasoner notifies the

Rule Engine. This engine uses facts about the collaboration, from the Collaboration

Knowledge, and retrieves the collaboration pattern whose preconditions and triggers

match these facts. Usually, collaboration patterns are combined in workflows and

are mixed with user actions. Based on monitoring the collaboration, the system can

make changes to the current collaboration pattern or recommend another pattern to

replace it.

Fig. 7 Collaborative system architecture

The main contribution of this architecture [55] is the use of collaborative pat-

terns in conjunction with knowledge-based event-driven architectures for coping

with challenging problems of dynamic Virtual Organizations. Future experiments

carried out on platforms that implement the above presented concepts will help to

Distributed Architectures for Event-Based Systems 29

determine the viability of the approach. Also, the development of an ontology [45]

that will provide different levels of abstraction of collaboration patterns could have

an impact on pattern integration in collaborative platforms. Another issue is the ex-

ploitation of the knowledge accumulated in knowledge bases for synthesizing new

high performance collaboration patterns.

3.5 Event-Driven Grids

Event Processing in Policy Oriented Data Grids. Event processing is useful in

Data Grids, which allow users to access and process large amounts of diverse

data (files, databases, video streams, sensor streams, and so forth) stored in dis-

tributed repositories. Data Grids include services and infrastructure made available

to user applications for executing different operations such as data discovery, access,

transfer, analysis, visualization, transformation, and others. Several specific features

influence the Data Grid architecture: users and resources are grouped in Virtual Or-

ganizations, large collections of data must be shared by VO members, access to data

can be restricted, a unified namespace is used to identify each piece of data, differ-

ent meanings can be associated with the same data set due to the use of different

metadata schemas, and others. In order to support data sharing, protection, and fault

tolerance, several services are offered for concurrency, data replication, placement

and backup, resource management, scheduling of processing tasks, user authenti-

cation and authorization and so on. In addition, data consumers and data providers

can specify requirements and constraints on data access and use. The contextual in-

formation about data, users, resources, and services is stored in persistent databases

and is used in management activities related to the data life cycle.

In the Integrated Rule-Oriented Data System, iRODS [46], a Data Grid complex

operation is an event that triggers a sequence of actions and other events. An event

has a name and is represented as an extended ECA-style rule:

A : −C|M1, . . . ,Mn|R1, . . . ,Rn,

in which A is the triggering event, C is the condition for activating the rule, Mi is an

action (named a micro-service) or a “sub”-rule, and Ri is a recovery micro-service.

More than one rule can be defined for an event, in which case the rules are tried

in a priority order. If the condition evaluation (based on the context) is successful,

the sequence of actions is executed atomically. Subsequently, if the execution of an

action fails, the recovery micro-services are executed to roll back the effect of the

performed actions, and another rule is considered for activation.

These extended ECA rules give more flexibility to the system. Even if the set

of rules that applies in a user’s session is fixed, different users and groups can use

different rules. In addition, users and administrators are permitted to define rules and

publish them for use by other users or administrators. The conditions, which are part

of the rules, adapt rule execution to the context. The following example, reproduced

from [46], explains the role of contextual information for a rule that refers to an

ingestion event for uploading a data set into the iRODS data grid:

30 V. Cristea et al.

(a) OnIngest :- userGroup == astro
| findResource, storeFile, regInIcat, replFile
| nop, removeFile, rollback, unReplicate.

(b) OnIngest :- userGroup == seismic && size > 1GB
| findTapeResource, storeFile, regInIcat, seisEv1
| nop, removeFile, rollback.

(c) OnIngest :- userGroup == seismic && size <= 1GB
| findTinyResource, storeFile, regInIcat, seisEv2
| nop, removeFile, rollback.

The format respects the rule structure previously described and includes the event

and condition (on the first line), the action (the second line), and the recovery ser-

vices (the third line). In the three rules, the context is represented by the “user group”

and by the “size” of the data set being processed.

Fig. 8 iRODS architecture

The iRODS architecture is shown in Figure 8. When a user invokes a service, a

rule is fired that activates micro-services. To do this, the rule engine uses informa-

tion from the rule base and Current State. The micro-services can run in parallel

or at different times and can intercommunicate by using a Messaging Server. They

check the conditions and execute operations on data resources (for example copying

a file) or on the MetaData Base. The modifications of the MetaData Base are persis-

tent and can be viewed by other services and by other subsequently executed rules.

Micro-services can also intercommunicate by means of a white-board that keeps the

local context information. Micro-services can have side-effects outside the iRODS

system. For example, the creation of a file can be such a side-effect. Sending an

e-mail is another example. The two mentioned operations behave differently with

respect to recovery: while a created file can be destroyed, a sent mail cannot be

cancelled although a separate mail could be sent to ask the receiver to discard it.

Distributed Architectures for Event-Based Systems 31

While the intelligent event-driven paradigm can be found in other works related

to processing high data volumes [51], iRODS is, to our knowledge, the first at-

tempt to use this paradigm in a Data Grid. The rule-based event processing engine

has been successfully integrated with the Data Grid at San Diego Supercomputer

Center (SDSC), and it is expected that further experiments will help to improve its

performance and adding new features to the platform.

Grid Event Driven Monitoring. The Global Grid Forum elaborated a Grid

Monitoring Architecture (GMA) model [5] as a reference to encourage monitoring

systems implementations in Grid environments. GMA has several components: a

producer, which implements at least one Application Programming Interface (API)

for providing events; a consumer that uses an implementation of at least one con-

sumer API; a registry (or lookup service). After discovering each other through

the registry, producers and consumers communicate directly. GMA defines several

types of interactions between producers and consumers: publish/subscribe, notifica-

tion, and query/response. It also defines a republisher and a schema repository. The

republisher implements producer and consumer interfaces for filtering, aggregating,

summarizing, broadcasting, and caching, which correspond to the reactive and pro-

cessing component of composite event driven models. The schema repository holds

the event schema, as a collection of defined event types. A system that supports an

extensible event schema must have an interface for dynamic and controlled addition,

modification and removal of event types.

A relevant implementation of this model is MonALISA [35], a system able to

monitor and control large-scale distributed systems. MonALISA is designed as an

ensemble of autonomous self-describing agent-based dynamic services. These ser-

vices are able to collaborate and cooperate in performing a wide range of distributed

event detection, filtering and processing. The system’s architecture is based on four

layers of services, closely coupled with the GMA model and the abstract model

of composite event-driven systems. The first layer is the lookup services network,

which provides dynamic registration and discovery for all other services and agents.

The second layer represents the event producers. They provide the execution en-

gine that accommodates many monitoring modules, event detectors and a variety of

loosely coupled agents that analyze the collected information in real-time. Dynam-

ically loadable agents and filters are able to process the events locally and commu-

nicate with other services or agents in order to perform global optimization tasks

according to some sets of specified rules. The use of dynamic remote event sub-

scription allows a service to register an interest in a selected set of event types, even

in the absence of a notification provider at registration time. Proxy services make

up the third layer of the MonALISA framework (Figure 9). They provide intelligent

multiplexing of the events requested by the clients or other services and are used for

reliable communication among agents. Higher-level services and clients (the event

consumers) access the detected events using the proxy layer and thus can obtain real-

time or historical data by using a predicate mechanism for requesting or subscribing

to selected events and for imposing additional conditions or constraints for inter-

esting events. Once subscribed, consumers receive a stream of relevant events that

32 V. Cristea et al.

are stored and processed. The high level services allow filtering of these events and

implement a custom aggregation mechanism to support complex composite events

and present global views.

Fig. 9 MonALISA architecture

MonALISA further supports the reactive component of the abstract model, using

the detected and processed events to improve the monitored system. The automated

management framework implemented within MonALISA represents the first step

toward the automation of decisions that can be made based on the monitored events.

Actions can be performed at two key points: locally, close to the event producers

(in the MonALISA service) where simple actions can be executed; and globally, in

a central event consumer (client) where the logic for triggering the actions can be

more sophisticated, as it can depend on several flows of events. Hence, the central

consumer is equipped with several decision-making agents that help in operating

complex systems: restarting remote services when they do not pass functional tests,

sending alerts when automatic restart procedures do not fix problems, managing the

DNS-based load balancing of the central machines, automatically executing stan-

dard applications when CPU resources are idle, and supporting scheduling decisions

based on real-time events.

3.6 P2P Systems

Peer-to-peer (P2P) systems consist of interconnected nodes that have similar func-

tions and execute similar tasks. Peers directly share resources such as content, CPU

Distributed Architectures for Event-Based Systems 33

cycles, storage and bandwidth, without requiring the support of a global centralized

server. Instead, they cooperate by means of events that take the form of messages

exchanged between peers. P2P systems are capable of adapting to failures and dy-

namic populations of nodes while maintaining acceptable performance. P2P sys-

tems are used to support application services for communication and collaboration,

distributed computation, content distribution, and so forth, and middleware services

like routing and location, anonymity, and privacy.

While resource sharing is based on direct communication between peers, lookup

and locating the peer to communicate with are supported by different mechanisms,

which use an overlay network that connects all peers and supports the exchange of

events between peers. The overlay is built on top of a physical computer network

such as the Internet but has a different topology. Also, the mechanisms depend on

the category of P2P network. In unstructured networks, the placement of resources

is not related to the overlay topology. By contrast, structured networks map keys that

reflect resource characteristics (or content) to node addresses where the resource is

located [3].

In unstructured P2P networks, a flooding mechanism is used for event transmis-

sion. Each event is transmitted by a peer to all neighboring peers in the overlay. Each

receiving peer processes the event (for example, discards the event if it is not inter-

ested in it or stores it for further tracking). If the event is addressed to the receiving

peer, the event detector processes it, decides on the rule to be executed, and performs

the corresponding actions. If the event should be made known to other peers then

the current peer forwards it to its neighbors in the overlay network. This approach

is used in Gnutella [60] and other similar P2P systems. Routes can be computed

by a central event dispatcher (ED). Peers are autonomous computational units that

interact with other peers by explicitly producing and consuming events. An event is

generated by a peer and sent to the ED, which computes the route that includes all

subscriber nodes. The event then traverses this predetermined path. Since the solu-

tion is based on a central ED node, is not scalable and does not tolerate faults [20].

Better approaches are offered by structured P2P networks, consisting of transmit-

ting an event only to those neighbors situated on the path towards its subscribers.

Traffic reduction is particularly important when events need to be transmitted to

a small number of subscriber peers. One solution is to arrange the subscribers into

logical clusters such that the event routing is performed by a small number of nodes.

When an event is produced by node A (see Figure 10), it is transmitted to one

node in the cluster of subscriber peers (peer B in the figure), which in turn transmits

it further to other subscribers (nodes C and D in the figure).

A publish-subscribe architecture based on node clustering (see Figure 11) could

include two layers. One is concerned with the management of subscription groups;

the other deals with routing events within the network. Subscription groups are

formed based on the events’ content (the content-based model) or the category they

should belong to (the topic-based model). In each node, an Event Handler trans-

mits events, publishes them and notifies subscribers. A Subscription Lookup &

34 V. Cristea et al.

Fig. 10 The topology of the event-driven overlay network systems

Partition Merging component uses a catalogue to map event topics to node addresses

for transmitting events. A Subscription Handler performs the node clustering men-

tioned earlier. The Multicast component connects the event clustering logic to the

P2P network overlay underneath.

Fig. 11 A general node architecture

Scribe [11] implements this publish/subscribe architecture for managing sub-

scription groups and the multicast communication necessary to send an event to its

subscribers. It is constructed on top of Pastry, a P2P location and routing platform

Distributed Architectures for Event-Based Systems 35

that achieves peer clustering based on the similarity of 128-bit keys used as node

identifiers. The routing is performed by always sending an event message to the

neighbor identified by a key being numerically closest to the key of the destination

subscriber. In Scribe each subscription group has a unique groupID. The node with

the ID numerically closest to the groupID acts as the rendezvous point for the associ-

ated group. Each node having an interest in receiving a particular flow of events joins

a corresponding group. Each event is routed to the rendezvous node, which further

sends it in the form of a multicast message to all members of that group. A similar

approach is used in Bayeux [61]. These systems suffer from high cost of maintain-

ing the publish/subscribe groups. Also, each group is accessed through one ren-

dezvous node, which is a communication bottleneck and a single-point-of-failure.

TERA [6] avoids this disadvantage by introducing several Access Point Lookup

components per group, which are able to receive and route events to the appropriate

subscribers.

In mobile environments, producers must be able to send events even to sub-

scribers that are permanently on the move. A notification service has to store all

events while subscribers are offline. Once a peer is reachable again, large amounts of

data associated with the saved events have to be delivered to it. The peer would have

to process them locally in order to extract relevant information [50]. However, in

some mobile environments, such as Intelligent Transportation Systems, peers have

only a few seconds of connectivity and very limited bandwidth [59]. This may lead

to loss of high priority events, such as safety-critical driver warnings, with effects

on the system’s effectiveness and efficiency. Solutions have been proposed such as

using a combination of Distributed Hash Tables (DHTs) with Aspect-oriented Space

Containers [33]. The Space Container is a storage and retrieval component for struc-

tured, spatial-temporal distributed data. Aspects are components with customizable

application logic executed either before or after the operation on the Space Con-

tainer for event processing. Aspects are executed on the peer where the Space Con-

tainer is located and can be triggered by operations on the Space Container. A peer

(e.g. a vehicle) subscribes for events by deploying a Space Container, installing

an Aspect, and publishing it in the DHT network. The Aspect registers itself as a

subscriber and, independently of the connectivity mode of the original subscriber,

receives events, processes them and stores the results in the Space Container for the

use of the original peer.

Most of the available P2P systems are research prototypes, which concentrate on

scalability and reliability rather than on durability in P2P environments. Durability

refers to the capability to correctly send the events to all subscribers, even if nodes

or links in the underlying communication layer fail. In these P2P systems, some

nodes may be involved in subscription groups receiving many events, while others

may rarely receive any event. So, load balancing of subscriber groups among all

peers in the network is also an issue. The separation of the communication layer

from the subscription management layer presents another problem: in these systems

events are sent to nodes that are not necessarily interested in receiving them.

36 V. Cristea et al.

3.7 Agent Systems

Software agents react in response to other agents and to environment changes, and

can act independently (are autonomic). In addition, agents initiate actions that affect

the environment (are pro-active), are flexible (able to learn) and cooperate with other

agents in multi-agent systems. Some agents are mobile (can migrate from one place

to another). Agent architectures are distributed, robust, and fault tolerant.

Fig. 12 Event-driven Agent architecture

These characteristics make agents suitable for distributed system middleware,

more specifically for parallel execution of tasks, event monitoring, load balancing,

trust evaluation, intrusion detection, routing, and other tasks that benefit from the

combination of agent distribution and intelligent techniques to obtain optimal solu-

tions.

This section presents relevant architectural features of agents and multi-agent

platforms in relation to their role in event-driven distributed systems. The general

event-driven agent architecture is presented in Figure 12. The main components

are the event processor (EP), a rule base (RB), and a knowledge base (KB). The

occurrence of an event is detected by the event processor and is stored in the knowl-

edge base, which then activates a specific rule or set of rules from the rule base.

The actions that correspond to the activated business rules are then executed. Com-

plex control functions or computations result from cooperation among agents in the

multi-agent system.

Distributed Architectures for Event-Based Systems 37

In reactive agent architectures, the event processor includes modules that are

also typically found in other distributed architectures: The adapter transforms mes-

sages, coming from the environment or other agents, to the format required by the

event processor. The pattern matcher receives events from the adapter, combines

them and detects complex events with the help of a pattern repository. To ease this

process, the subscriber inspects the pattern repository, determines the set of interest-

ing possible future events, and subscribes for them. Other features might be present

in specific contexts, for example those related to exception patterns [16]. An ex-

ception pattern Eex for E is obtained by complementing E and eliminating events

that cannot happen or are not relevant for the complemented pattern. Thus, Eex rep-

resents all the conditions that make E not happen. The agent must include internal

policies that are triggered when exceptions are detected. Pattern matching is per-

formed by residuating all event patterns found in the pattern repository with the

event that has occurred. For example, for the event pattern E = a ·b ·c (meaning that

event a must be followed by b and then by c), the residual with a is E/a = b · c,

which is the pattern left to be satisfied after the occurrence of the event a.

Intelligent pro-active agents have additional capabilities for interpreting percep-

tions, drawing inferences, taking decisions, planning actions, and scheduling their

execution. They act upon the environment to fulfill the goal for which they were

designed. This goal-oriented reasoning allows the agent to commit to the course of

action that best accomplishes its task. Intelligent agents have additional capabilities

such as supporting contradictory rules, learning, social abilities, natural language

processing capabilities and others.

In multi-agent architectures, capabilities are distributed, giving rise to different

agent types. The authors of [32] present a design in which three primary types

of intelligent agents are used: reasoning, learning and evolving agents. Reasoning

agents have the ability to make inferences by following a chain of predefined rules,

and can be proactive in their behavior. Learning agents are capable of following a

set of rules, and also improving their responses by learning from their experience

(for example, by dynamically weighting their decisions). Evolving agents improve

their behavior with each successive generation. Agents can play other roles too in

event-driven architectures [25]. For example, event processing agents [36, 37] act as

event detectors, while routing agents are used to construct different types of event

channels [24].

Learning is at the base of agent adaptation as response to unexpected events or

to dynamic environments. For example, multi-agent systems should adapt to agent

failures. They should also support events that occur randomly, events with fluctu-

ating priorities (importance), the inclusion of new information sources and agents,

and so forth. The architecture of CyberARIES [48] has an agent part, and a dis-

tribution layer. The distribution layer manages the event flows between agents and

determines which agents should assist other agents during perception. Agents re-

ceive continuous flows of images from one or more camera, filter images and select

motion events. They use a motion detection algorithm to acquire a model of the en-

vironment. The first step is the construction of a background model from successive

frames, using an Auto Regressive filter. In addition, the motion detection algorithm

38 V. Cristea et al.

classifies moving objects either as people (single or in groups), vehicles or unknown

objects. The agents act together as a neural network, permanently adapting the clas-

sification algorithm based on their previous experience. The final result can be con-

figured dynamically, for example calling a service if a person is noticed or adjusting

the movement trajectory based on obstacles noticed. Improvements have been added

to this work in [41] who include a surveillance system composed of mobile path-

planning robots. The system, called CyberScout, produces a timely interpretation of

the environment using feedback from perception processes.

Cooperation abilities (mentioned previously) of agents are important in many

other systems, such as those for tracking moving targets. In a sensor-based agent

infrastructure for tracking [52], each sensor, which is fixed at a specific physical

location, collaborates with neighboring sensors to triangulate their measurements

and obtain an accurate estimate of the position and velocity of the mobile targets

passing through their coverage area. As more targets appear in the area, the sensors

need to decide which ones to track and when to track them, always being aware

of the status and usage of sensor resources. Since accurate target tracking requires

triangulation, an agent that finds a potential target must contact other agents to ask

for their help. AI methods are used to optimize the selection of objects to track

and also of the neighbors to help triangulating positions while minimizing resource

consumption.

Scalability is an important requirement for interactive intelligent multi-agent

systems. In EVA (Evolutionary Virtual Agent) conversational system, a virtual as-

sistant, also called a conversational creature [2], undertakes a dialogue in natural

language. EVA has a 3D face with real-time animations and is able to support nat-

ural language interactions. EVA’s goals are very ambitious: to correctly answer the

user’s questions in minimal time, avoid some inappropriate questions, achieve tasks

that the user seems interested in, and build a user profile. The cognitive part of

EVA consists of a natural language processing module, a reasoning module, and a

learning module. The reasoning module is a multi-agent system with a pro-active

architecture based on a combination of an active layer and a reactive layer. The ac-

tive layer includes a plan agent (which creates sequences of actions for achieving a

goal) and a strategy agent (which adapts the layer’s behavior to the environment). To

ensure pro-activeness, the active layer reconfigures the priorities of the agents in the

reactive layer when specific events occur. The decisions are based on measuring the

values of some parameters that characterize the environment. For learning, a classi-

fier system is introduced to express agent behaviors and activate specific procedures

accordingly.

Integrating the event-driven component with the business part of the system

can be a challenge especially when both parts have high performance requirements.

This is the case, for example, in a virtual reality environment for training or com-

puter games, in which AI and Virtual Reality techniques are used to simulate the

real world inhabited by autonomous intelligent entities [8]. The system incorporates

capabilities for simulating intelligent autonomous entities and, at the same time,

for responding to high performance demands of visualizing the virtual world. In a

high performance implementation, each agent can have its own computer to run on

Distributed Architectures for Event-Based Systems 39

independently of the visualization module. This is made possible due to a frame-

work that includes three modules: a FIPA compliant multi-agent platform that acts

as middleware, a multi-agent system (MAS) that runs on top of the multi-agent

platform, and a visualization module. MAS uses two classes of agents: inhabitant

agents simulate beings in the virtual environment and execute actions that change

the state of the virtual world; and a simulation controller maintains consistency and

synchronization between the inhabitant agents and the virtual world.

The simulation controller has a 3-layer architecture. The simulation layer con-

tains the world’s knowledge base that maintains the data representing the virtual

world state, and the simulator’s logic manager module that controls the simulation.

The reactive layer contains the sensory responder module that captures events from

the environment, performs agents’ actions, modifies the world’s knowledge base and

sends the changes to other agents involved; it also has a second component which

sends information to several graphic viewers that are connected to the simulation.

The social layer supports interaction with other agents.

Inhabitant agents have also a 3-layer architecture. The physical environment layer

connects to the virtual world through sensors (that capture events in the virtual

world) and effectors (that send actions to the simulation controller). The cognitive

layer has a memory module (knowledge base), a decision module (with a reactive

sub-module for immediate reactions and a deliberative sub-module for better solu-

tions based on the use of the knowledge base), and a perform module with a list of

tasks, a scheduler and a dispatcher. The social layer supports interaction with other

agents.

Since many results presented previously refer to pilot implementations of event-

driven distributed systems, further work is needed to reinforce the results obtained

so far. Important research issues include: ensuring platform independence of event-

based multi-agent systems, supporting high scalability, resolving issues related to

uncertain environments by new facilities for trust estimation, increasing reliabil-

ity, confidence support, resistance to security attacks, and others. More efforts are

needed in understanding the role of agent mobility and self-replication for ensur-

ing multi-agent systems resistance to external attacks. Also, improved collaborative

methods leading to better perception of environment changes are needed.

4 Conclusions and Future Work

This chapter focuses on distributed intelligent event processing in Web, Grid, P2P,

and agent-based systems. Previous work and research for solving scalability, in-

teroperability, and fault tolerance problems are discussed, with emphasis on those

solutions that ensure high reactivity and adaptability to environment changes, pro-

active and autonomous behavior, learning and social abilities. For each major topic

the impact, strengths, weaknesses, and possible improvements are presented.

Adopting event processing in distributed systems is supported by specific mod-

els such as the ECA rules paradigm. The capacity to describe the composition

and derivation of complex events supports reasoning over event relationships and

40 V. Cristea et al.

distribution of the event detection functionality. In addition, the declarative nature

of the rules facilitates adaptation to new and evolving situations.

Event-driven capabilities have been added to distributed systems by extensions

to traditional architectures. The extension of SOA has benefited from the publish /

subscribe mechanism included in the original SOA model. In addition, the SOA ori-

entation towards open standards has stimulated the development of standards related

to events and event services, as well.

The Web has been extended by adding event processing capabilities to servers

and clients (browsers) with the aim of making them more responsive to dynamic

changes of Web resources (data) and increasing interactivity in user dialogues. Web

monitoring services allow users to express their interests and respond by sending

alerts or executing other activities. For example, Google Alerts sends users email

notifications of events related to their interests.

Event driven capabilities are used in collaborative VOs to help users cooperate

for achieving common tasks, or for Grid performance optimization. P2P networks

have adopted new models for distributed event transmission and routing, and for

event detection that exploit the collaboration of nodes with similar capabilities. Last

but not least, multi-agent systems have innate capabilities (pro-activeness, learning,

social abilities, and so forth) that make them suitable for perceiving and processing

environment events.

Event-based distributed systems are an active research field with many contrib-

utors. New ideas have been recently proposed and tested, which show the feasi-

bility of solutions based on the new concepts. Nevertheless, these proposals need

further evaluation studies to confirm their validity and performance in more signif-

icant, larger scale environments, and for a larger application spectrum. This will

require the development of specific evaluation models and metrics for event-based

distributed systems. While some results have been reported in the literature [27],

more efforts and collaboration with neutral benchmark organizations, like TPC and

SPECS, will be needed.

Clearly, testing and evaluation are just two steps of the complex software and

system development process for event-driven distributed systems. An important

trend will be moving the interest from the development of individual pilot systems

to methodologies, software engineering methods, models, and frameworks for the

whole software process, which includes requirements specification, design, imple-

mentation, deployment, maintenance, policy statement, and system administration.

Techniques and methods to develop high performance distributed event detectors

and rule-based systems are important subjects for future research. Also, since the

design patterns approach has been successfully used in different domains, it is ex-

pected that more effort will be directed towards understanding and formalizing the

architectural features of the event-driven distributed systems developed so far, and

deriving design patterns for different application domains.

Further work on event formalization is also needed, including formal specifica-

tion and verification of models used in complex event processing. Research and

development in several other directions could also be of interest. One is related

to information produced by heterogeneous sources. In order to combine them for

Distributed Architectures for Event-Based Systems 41

deriving meaningful complex events, context information (metadata) might be

added to better understand the semantics of events and also of the event sources.

Context information is also needed in adaptive pervasive systems in which event

and context semantics play an important role for the discovery and composition of

services. More work is needed in the development of event, context, and service on-

tologies. Also, future research will be focused on classifying events and developing

discriminant functions for event classes. Developing new methods for exploiting

knowledge bases and learning processes could help in improved event detection

and replace the human intervention that is used in some systems. Another issue

is related to enhancing the event life cycle model with new approaches for event

replication, logging, disregarding, consumption, and others to develop a common

consistent framework for the operational semantics of event-driven systems [27].

Since wireless and mobile event-driven systems are expected to cover large-area

applications, issues related to high variations of connectivity and unreliable data

communication will be an important research subject. New policies, event seman-

tics, state synchronization methods on reconnection, late event delivery, security,

and others will have to be considered in the design of event-driven systems based

on wireless and low capability devices.

Another topic of interest, which goes beyond the borders of event-based systems,

will be security such as privacy and protection of producers and consumers. These

issues are augmented by the use of profiling techniques for enhancing the perfor-

mance and precision of event processing engines, and of portable devices used in

tracking services. More research will be focused on techniques and methods for en-

suring anonymity and for controlling access to sensitive information. Also, more

work will be required in finding solutions for reducing the vulnerabilities due to the

distribution of system components over large geographic areas, the broadcast com-

munication, and the reduced capabilities of low-end equipment used frequently as

event producers or consumers.

References

1. Allen, J., Gerguson, G.: Action and Events in Interval Temporal Logic. Journal of Logic

and Computation 4(5), 31–79 (1994)

2. Ameur, R., Heudin, J.-C.: Interactive Intelligent Agent Architecture. In: Proceedings of

the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology (WI-IATW 2006), pp. 331–334. IEEE Computer Society, Washington

(2006)

3. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of Peer-to-Peer Content Distribution

Technologies. ACM Computing Surveys 36(4), 335–371 (2004)

4. Anicic, D., Fodor, P., Stojanovic, N., Stühmer, R.: Computing complex events in an

event-driven and logic-based approach. In: Proceedings of the Third ACM international

Conference on Distributed Event-Based Systems (DEBS 2009), Nashville, Tennessee,

USA, pp. 1–2 (2009)

42 V. Cristea et al.

5. Aydt, R., Smith, W., Swany, M., Taylor, V., Tierney, B., Wolski, R.: A Grid Monitoring

Architecture. GWDPerf-16-3, Global Grid Forum (2001),

http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/
GWD-GP-16-3.pdf (retrieved on February 02, 2010)

6. Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci Piergiovanni, S.: A Scalable

p2p Architecture for Topic-Based Event Dissemination. Technical report, Universita di

Roma “La Sapienza” (2007)

7. Bank, D.: Web Services Eventing, W3C Member Submission (2006), http://
www.w3.org/Submission/WS-Eventing (retrieved February 26, 2010)

8. Barella, A., Carrascosa, C., Botti, V.: Agent Architectures for Intelligent Virtual En-

vironments. In: 2007 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT 2007), pp. 532–535 (November 2007)

9. Barga, R.S., Goldstein, J., Ali, M., Hong, M.: Consistent Streaming Through Time: A Vi-

sion for Event Stream Processing. In: Proc. of the 3rd Biennial Conference on Innovative

Data Systems Research (CIDR), Asilomar, California, USA, pp. 363–374 (2007)

10. Blanco, R., Wang, J., Alencar, P.: A metamodel for distributed event based systems. In:

Proceedings of the Second international Conference on Distributed Event-Based Systems

(DEBS 2008), vol. 332, pp. 221–232. ACM, New York (2008)

11. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and

decentralized application-level multicast infrastructure. IEEE JSAC 20(8), 1489–1499

(2002)

12. Chakravarthy, S., Adaikkalavan, R.: Provenance and Impact of Complex Event Process-

ing (CEP): A Retrospective View. In: Buchmann, A., Koldehofe, B. (eds.) Special Issue

of IT - Complex Event Processing, vol. 51(5), pp. 243–249. Oldenbourg Publications

(September 2009)

13. Chakravarthy, S., Adaikkalavan, R.: Ubiquitous Nature of Event-Driven Approaches: A

Retrospective View (Position Paper). In: Proceedings of the Dagstuhl Seminar 07191

(2007), http://drops.dagstuhl.de/volltexte/2007/1150/pdf/
07191.ChakravarthySharma.Paper.1150.pdf (retreived January 10, 2010)

14. Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification language for ac-

tive databases. Data Knowledge Engineering 14(1), 1–26 (1994)

15. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite Events for Active

Databases: Semantics, Contexts and Detection. In: Proceedings of the 20th International

Conference on Very Large Data Bases, pp. 606–617. Morgan Kaufmann Publishers Inc.,

San Francisco (1994)

16. Chakravarty, P., Singh, M.P.: An event-driven approach for agent-based business process

enactment. In: Proceedings of the 6th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), Article No.: 214, Honolulu, Hawaii, pp.

1261–1263 (May 2007)

17. Chandrasekaran, S., Franklin, M.: Streaming queries over streaming data. In: Proc. of

the 28th Int. Conference on Very Large Data Bases (VLDB 2002), pp. 203–214 (2002)

18. Cheng, S., Jih, W., Hsu, J.Y.: Context-aware Policy Matching in Event-driven Architec-

ture. In: AAAI 2005 Workshop: Contexts and Ontologies: Theory, Practice and Applica-

tions, Pittsburgh, Pennsylvania, USA, pp. 140–141 (2005)

19. Cilia, M., Antollini, M., Bornovd, C., Buchman, A.: Dealing with heterogeneous data

in pub/sub systems: The Concept-Based approach. In: International Workshop on Dis-

tributed Event-Based Systems (DEBS 2004), Edinburgh, Scotland (2004),

http://www.dvs.tu-darmstadt.de/publications/pdf/
Concept-based04.pdf (retrieved 10 January, 2010)

http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://www.w3.org/Submission/WS-Eventing
http://www.w3.org/Submission/WS-Eventing
http://drops.dagstuhl.de/volltexte/2007/1150/pdf/07191.ChakravarthySharma.Paper.1150.pdf
http://drops.dagstuhl.de/volltexte/2007/1150/pdf/07191.ChakravarthySharma.Paper.1150.pdf
http://www.dvs.tu-darmstadt.de/publications/pdf/Concept-based04.pdf
http://www.dvs.tu-darmstadt.de/publications/pdf/Concept-based04.pdf

Distributed Architectures for Event-Based Systems 43

20. Cugola, G., Di Nitto, E., Fuggetta, A.: The jedi event-based infrastructure and its appli-

cation to the development of the OPSS WFMS. IEEE Trans. Softw. Eng. 27(9), 827–850

(2001)

21. Dasgupta, S., Bhat, S., Lee, Y.: Event Semantics for Service Composition in Pervasive

Computing. In: Intelligent Event processing - AAAI Spring Symposium 2009, pp. 27–

37. AAAI Press, Menlo Park (2009)

22. Doorenbos, R.B.: Production Matching for Large Learning Systems, PhD Thesis (1995),

http://reports-archive.adm.cs.cmu.edu/anon/1995/
CMU-CS-95-113.pdf (retrieved March 11, 2010)

23. Ermagan, V., Krüger, I.H., Menarini, M.: Aspect-oriented modeling approach to define

routing in enterprise service bus architectures. In: Proceedings of the 2008 International

Workshop on Models in Software Engineering (MiSE 2008), Leipzig, Germany, pp. 15–

20 (2008)

24. Etzion, O.: Event Cloud. Encyclopedia of Database Systems, 1034–1035 (2009)

25. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight DSC-

based agents for MAS modelling. International Journal on Agent Oriented Software En-

gineering (IJAOSE) 4(2), 113–140 (2010)

26. Hinze, A., Michel, Y., Schlieder, T.: Approximative filtering of XML documents in a

publish/subscribe system. In: 29th Australasian Computer Science Conference, ACSC

2006, pp. 177–185 (2006)

27. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Technolo-

gies. In: Proc. of the 3rd ACM International Conference on Distributed Event-Based

Systems (DEBS 2009), Nashville, TN, USA (2009), Session Keynote papers, Article

No.: 1. http://delivery.acm.org/10.1145/1620000/1619260/
a1-buchmann.pdf?key1=1619260&key2=9544530821
&coll=GUIDE&dl=GUIDE&CFID=98611992&CFTOKEN=93216417 (retrieved

January 15, 2010)

28. Huang, Y., Gannon, D.: A Comparative Study of Web Services-based Event Notifica-

tion Specifications. In: Proceedings of the 2006 international Conference Workshops on

Parallel Processing (ICPPW), pp. 7–14. IEEE Computer Society, Washington (2006)

29. IBM. IBM Tivoli Workload Scheduler Version 8.2: New Features and Best Practices.

IBM Press (2004)

30. Jung, J., Park, J., Han, S., Lee, K.: An ECA-based framework for decentralized coordi-

nation of ubiquitous web services. Inf. Softw. Technol. 49(11-12), 1141–1161 (2007)

31. Jung, J.-Y., Hong, Y.-S., Kim, T.-W., Park, J.: Human-Centered Event Description for

Ubiquitous Service Computing. In: Proc. of International Conference on Multimedia

and Ubiquitous Engineering, International Conference on Multimedia and Ubiquitous

Engineering (MUE 2007), Seoul, Korea, pp. 1153–1157 (2007)

32. Khalifa, Y.M.A., Okoene, E., Al-Mourad, M.B.: Autonomous Intelligent Agent-Based

Tracking Systems, Recent Developments. ICGST-ACSE Journal 7(1), 21–31 (May

2007)

33. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C., Bessler, S., Tomic, S.: Aspect-

Oriented Space Containers for Efficient Publish/Subscribe Scenarios in Intelligent Trans-

portation Systems. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS,

vol. 5870, pp. 432–448. Springer, Heidelberg (2009)

34. Lee, W.-s., Lee, S.-y., Lee, K.-c.: Conflict Detection and Resolution method in WS-ECA

framework. In: Proc. of The 9th International Conference on Advanced Communication

Technology, vol. 1, pp. 786–791 (2007)

http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://delivery.acm.org/10.1145/1620000/1619260/a1-buchmann.pdf?key1=1619260\&key2=9544530821\&coll=GUIDE\&dl=GUIDE\&CFID=98611992\&CFTOKEN=93216417
http://delivery.acm.org/10.1145/1620000/1619260/a1-buchmann.pdf?key1=1619260\&key2=9544530821\&coll=GUIDE\&dl=GUIDE\&CFID=98611992\&CFTOKEN=93216417
http://delivery.acm.org/10.1145/1620000/1619260/a1-buchmann.pdf?key1=1619260\&key2=9544530821\&coll=GUIDE\&dl=GUIDE\&CFID=98611992\&CFTOKEN=93216417

44 V. Cristea et al.

35. Legrand, I.C., Cirstoiu, C., Grigoras, C., Betev, L., Costan, A.: Monitoring, account-

ing and automated decision support for the alice experiment based on the MonALISA

framework. In: Proceedings of the 2007 Workshop on Grid Monitoring (GMW 2007),

Monterey, California, USA, pp. 39–44 (2007)

36. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems, May 18. Addison-Wesley Professional, Reading (2002)

37. Luckham, D., Schulte, R. (eds.): Event Processing Glossary - Version 1.1, Event Process-

ing Technical Society (July 2008), http://www.ep-ts.com/ (retrieved January 10,

2010)

38. Memon, A., Xie, Q.: Using Transient/Persistent Errors to Develop Automated Test Ora-

cles for Event-Driven Software. In: Proceedings of the 19th IEEE international Confer-

ence on Automated Software Engineering. ASE, pp. 186–195. IEEE Computer Society,

Washington (2004)

39. Michelson, B.M.: Event-Driven Architecture Overview. Patricia Seybold Group /

Business-Driven ArchitectureSM, February 2, pp. 1–8 (2006),

http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf (Re-

trieved January 10, 2010)

40. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, Heidelberg

(2006)

41. Oliver, C.S.: Autonomous Mission Planning for a Distributed Surveillance System. Mas-

ter Thesis: Department of Electrical and Computer Engineering. Carnegie Mellon Uni-

versity, USA (2000)

42. OMA. OMA Web Services Enabler (OWSER): Overview. OMA-AD-OWSER

Overview-V1 1-20060328-A (2006),

http://www.openmobilealliance.org/releaseprogram/
owserv11.html (retrieved March 20, 2010)

43. Paschke, A.: Design Patterns for Complex Event Processing. In: Proceedings of the

2nd International Conference on Distributed Event-Based Systems (DEBS 2008), Rome,

Italy (2008), http://arxiv.org/ftp/arxiv/papers/0806/
0806.1100.pdf (retrieved Januaruy 15, 2010)

44. Pătrânjan, P.L.: The Language XChange: A Declarative Approach to Reactivity on the

Web. PhD thesis. University of Munich, Germany (September 2005)

45. Pattberg, J., Fluegge, M.: Towards an ontology of collaboration patterns. Lecture

Notes in Informatics, vol. 120 (2007), pp. 85–96 (2009), http://subs.emis.de/
LNI/Proceedings/Proceedings120/gi-proc-120-007.pdf (retrieved

February 1, 2010)

46. Rajasekar, A., Moore, R., Wan, M.: Event Processing in Policy Oriented Data Grids. In:

Proc. of Intelligent Event Processing AAAI Spring Symposium, Stanford, California,

USA, pp. 61–66 (2009)

47. Rosenblum, D., Wolf, A.: A design framework for internet-scale event observation and

notification. ACM SIGSOFT Software Engineering Notes 22(6), 344–360 (1997)

48. Saptharishi, M., Bhat, K., Diehl, C., Oliver, C., Savvides, M., Soto, A., Dolan, J.,

Khosla, P.: Recent Advances in Distributed Collaborative Surveillance. In: Proceedings

of SPIE’s 14 Annual Conference on Aerospace-Defense Sensing, Simulation and Con-

trols, AeroSense, Orlando, USA, pp. 129–208 (2000)

49. Schmidt, K.-U., Stühmer, R., Stojanovic, L.: Gaining Reactivity for Rich Internet Appli-

cations by Introducing Client-side Complex Event Processing and Declarative Rules. In:

Proc. of the Intelligent Event Processing - AAAI Spring Symposium, pp. 67–72. Stan-

ford University, USA (2009)

http://www.ep-ts.com/
http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://www.openmobilealliance.org/releaseprogram/owserv11.html
http://www.openmobilealliance.org/releaseprogram/owserv11.html
http://arxiv.org/ftp/arxiv/papers/0806/0806.1100.pdf
http://arxiv.org/ftp/arxiv/papers/0806/0806.1100.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings120/gi-proc-120-007.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings120/gi-proc-120-007.pdf

Distributed Architectures for Event-Based Systems 45

50. Schwiderski-Grosche, S., Moody, K.: The SpaTeC composite event language for spatio-

temporal reasoning in mobile systems. In: Proceedings of the Third ACM international

Conference on Distributed Event-Based Systems (DEBS 2009), Nashville, Tennessee,

USA, pp. 1–12 (2009)

51. Seufert, A., Schiefer, J.: Enhanced Business Intelligence - Supporting Business Processes

with Real-Time Business Analytics. In: Proceedings of the 16th International Workshop

on Database and Expert Systems Applications (DEXA 2005), pp. 919–925 (2005)

52. Soh, L., Tsatsoulis, C.: Reflective Negotiating Agents for Real-Time Multisensor Target

Tracking. International Journal Conference on Artificial Intelligence, 1121–1127 (2001)

53. Tanenbaum, A.S., van Steen, M.: Distributed Systems. Principles and paradigms, 2nd

edn. Prentice-Hall, Englewood Cliffs (2007)

54. Turchin, Y., Gal, A., Wasserkrug, S.: Tuning complex event processing rules using the

prediction-correction paradigm. In: Proceedings of the Third ACM international Con-

ference on Distributed Event-Based Systems (DEBS 2009), Nashville, Tennessee, USA,

pp. 1–12 (2009)

55. Verginadis, Y., Apostolou, D., Papageorgiou, N., Mentzas, G.: Collaboration Patterns in

event-driven environments for Virtual Organizations. In: Intelligent Event Processing -

AAAI Spring Symposium 2009, Atlanta, US, pp. 92–97 (2009)

56. Vijayakumar, N., Plale, B.: Missing Event Prediction in Sensor Data Streams Using

Kalman Filters. In: Ganguly, A.R., Gama, J., Omitaomu, O.A., Gaber, M.M., Vatsavai,

R.R. (eds.) Knowledge Discovery From Sensor Data, pp. 149–170. CRC Press, Boca

Raton (2009)

57. von Ammon, R., Emmersberger, C., Ertlmaier, T., Etzion, O., Paulus, T., Springer, F.: Ex-

isting and future standards for event-driven business process management. In: Gokhale,

A., Schmidt, D.C. (eds.) Proceedings of the Third ACM International Conference on

Distributed Event-Based Systems 2009, pp. 1–5. ACM, New York (2009)

58. Xhafa, F., Paniagua, C., Barolli, L., Caballé, S.: A Parallel Grid-based Implementation

for Real Time Processing of Event Log Data in Collaborative Applications. Int. J. Web

and Grid Services, IJWGS 6(2) (2010) (in press)

59. Zaera, M.: Wave-based communication in vehicle to infrastructure real-time safety-

related traffic telematics. Master’s thesis, Telecommunication Engineering. University

of Zaragoza (August 2008)

60. Zhao, S., Stutzbach, D., Rejaie, R.: Characterizing files in the modern Gnutella network:

A measurement study. In: Proc. Multi-media Computing and Networking Conf., San

Jose, CA, USA, pp. 267–280 (2006)

61. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: an ar-

chitecture for scalable and fault-tolerant wide-area data dissemination. In: Proc. of the

11th International Workshop on. Network and Operating Systems Support for Digital

Audio and Video (NOSSDAV 2001), Danfords on the Sound, Port Jefferson, New York,

USA, pp. 11–20 (2001)

A CEP Babelfish: Languages for Complex Event

Processing and Querying Surveyed

Michael Eckert, François Bry, Simon Brodt, Olga Poppe, and Steffen Hausmann

Abstract. Complex Event Processing (CEP) denotes algorithmic methods for mak-

ing sense of events by deriving higher-level knowledge, or complex events, from

lower-level events in a timely fashion and permanently. At the core of CEP are

queries continuously monitoring the incoming stream of “simple” events and rec-

ognizing “complex” events from these simple events. Event queries monitoring in-

coming streams of simple events serve as specification of situations that manifest

themselves as certain combinations of simple events occurring, or not occurring,

over time and that cannot be detected solely from one or parts of the single events

involved.

Special purpose Event Query Languages (EQLs) have been developed for the ex-

pression of the complex events in a convenient, concise, effective and maintainable

manner. This chapter identifies five language styles for CEP, namely composition

operators, data stream query languages, production rules, timed state machines,

and logic languages, describes their main traits, illustrates them on a sensor net-

work use case and discusses suitable application areas of each language style.

1 Introduction

Event-driven information systems demand a systematic and automatic processing

of events. Complex Event Processing (CEP) encompasses methods, techniques,

and tools for processing events while they occur, i.e., in a continuous and timely

fashion. CEP derives valuable higher-level knowledge from lower-level events; this

Michael Eckert

TIBCO Software, Balanstr. 49, 81669 Munich, Germany

e-mail: meckert@tibco.com

François Bry · Simon Brodt · Olga Poppe · Steffen Hausmann

Institute for Informatics, University of Munich, Oettingenstr. 67, 80538 Munich, Germany

e-mail: {bry,brodt,poppe,hausmann}@pms.ifi.lmu.de

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 47–70.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

meckert@tibco.com
{bry,brodt,poppe,hausmann}@pms.ifi.lmu.de

48 M. Eckert et al.

knowledge takes the form of so called complex events, that is, situations that can

only be recognized as combinations of several events.

The term Complex Event Processing was popularized in [51]; however, CEP has

many independent roots in different research fields, including discrete event simula-

tion, active databases, network management, and temporal reasoning. Only in recent

years, has CEP emerged as a discipline of its own and as an important trend in the

industry. The founding of the Event Processing Technical Society [23] in early 2008

underlines this development.

Important application areas of CEP are the following:

Business activity monitoring aims at identifying problems and opportunities in

early stages by monitoring business processes and other critical resources. To this

end, it summarizes events into so-called key performance indicators such as, e.g.,

the average run time of a process.

Sensor networks transmit measured data from the physical world to, e.g., Super-

visory Control and Data Acquisition systems that are used for monitoring of indus-

trial facilities. To minimize measurement and other errors, data of multiple sensors

frequently has to be combined. Further, higher-level situations (e.g., fire) usually

have to be derived from raw numerical measurements (e.g., temperature, smoke).

Market data such as stock or commodity prices can also be considered as events.

They have to be analyzed in a continuous and timely fashion in order to recognize

trends early and to react to them automatically, for example, in algorithmic trading.

The situations (specified as complex events) that need to be detected in these ap-

plications and the information associated with these situations are distributed over

several events. Thus CEP can only derive such situations from a number of cor-

related (simple) events. To this end many different languages and formalisms for

querying events, the so called Event Query Languages (EQLs), have been devel-

oped in the past.

There are also some surveys in the realm of CEP. For example, in [61, 60],

rule-based approaches for reactive event processing are classified according to their

origins. In [12], EQLs are divided into groups depending on the kind of system

architecture they are used in. The survey of EQLs described in [70] distinguishes

between a non-logic and logic-based view on handling the event triggered reactiv-

ity. There are also comparisons of different single CEP products, e.g., [35]. Both the

multitude of EQLs and the diversity of surveys on event processing and reactivity

can be attributed in part to the fact that CEP has many different roots and is only

now recognized as an independent field.

To the best of our knowledge, there are no comprehensive surveys so far that

(1) classify different EQLs into groups according to the language “style” or “fla-

vor” and (2) compare the groups by means of the same example queries with re-

spect to their expressivity, ease of use and readability, formal semantics, success in

the industry and some other features. This chapter surveys the state of the art in

CEP regarding these two points. Since CEP is a field that is very broad and without

Languages for CEP and Querying Surveyed 49

clear-cut boundaries, this chapter focuses strongly on languages specified for query-

ing events. Other, less developed aspects of CEP such as detecting unknown events

using approaches like machine learning and data mining on event streams, are not

discussed here.

The contributions of this chapter are:

1. Identification and abstract description of five language styles, namely composi-

tion operators, data stream query languages, production rules, timed state ma-

chines, and logic languages

2. Illustration of each language style on a sensor network use case

3. Discussion on suitable application areas of each language style

4. Abstract description of some of the combined approaches

2 Terminology

Since CEP has evolved from many different research areas, a standard terminology

has not yet established and found broad adoption. For example, what is called a

(complex) event query might also be called a complex event type, an event profile,

or an event pattern, depending on the context. We will therefore devote this section

to the basic notions and our informal definitions of them.

An event is a message indicating that something of interest happens, or is con-

templated as happening. Events can be represented in different data formats such

as relational tuples, XML documents or objects of an object-oriented programming

language (e.g., Java).

In this chapter, we use the following presentation of events: event type (attribute

name1 (attribute value1) , . . . , attribute namen (attribute valuen)) . An event type

specifies an event structure, similar to a relational database schema specifying the

structure of tuples of a relation. For example, high temp(area) is an event type of an

event high temp(area(a)) indicating high temperature in area a. In this event, area

is an attribute and a is its value. (In the following, capital letters denote variables

and small letters denote literals.) An event attribute is a component of the structure

of an event. It can be an entry of a tuple, an XML fragment, or a field of an object,

depending on the event representation. The set of attribute values of an event is

called event data.

The formalism introduced here is by no means compulsory. One could prefer to

use an unnamed perspective identifying attribute values by their positions or tuse

any alternative event representation instead. Since in all languages proposed so far,

events are flat or structured records or tuples, the formalism adopted for this chapter

is no restriction.

Since events happen at particular time which is essential for event process-

ing, all events must have a possibly implicit attribute called event occurrence

time. An event occurrence time is a time point or time interval indicating when

this event happens. A time interval is described by two timestamps indicating its

50 M. Eckert et al.

bounds. A time point is described by a single timestamp. We shall see below

that using time points or time intervals has far reaching consequences for event

processing.

Timing and event order are difficult issues of distributed systems. Each node

(computer, device, etc.) in a distributed system has its own local clock and the

clocks of different nodes are hard to be synchronized perfectly [19]. Furthermore

the transmission time of messages varies depending on sender and receiver, routing,

network load, and other factors. Therefore the reception order of some events may

differ from their emission order [48]. These issues are ignored in this chapter for the

sake of simplicity.

Another characteristic feature of events is event identification. For example, one

can assign an identifier t to the event high temp(area(a)), written as t : high temp

(area(a)). We will see the advantages of this feature below.

Events are sent by event producers (e.g., sensors) to event consumers (e.g., Su-

pervisory Control and Data Acquisition system) on so called event streams.

In order to react to an event e (e.g., turn on air conditioning in an area if an event

indicating high temperature in the area arrives) or to derive a new event from another

event e (e.g., derive an event indicating high temperature from an event containing

a temperature measurement if the measurement is considered to be high), an event

query which matches e is specified in an event query language. An Event Query

Language (EQL) is a high level programming language (possibly of limited ex-

pressivity) for querying events. A simple event query is a specification of a certain

kind of single events by means of an event query language. A complex event query

is a specification of a certain combination of events using multiple simple event

queries and conditions describing the correlation of the queried events.

A simple event is either an event arriving on the event stream or an event derived

by a simple event query (i.e., from a single event). A complex event is an event

derived by a complex event query (i.e., from a certain combination of at least two

events occurring or not occurring over time). In the EPTS Glossary [23] many other

kinds of events are defined, such as composite event, virtual event, derived event,

raw event and some others.

Note that the occurrence time of a complex event e comprises the occurrence time

of all events e it has been derived from. For example, a complex event f:fire(area(a))

indicating fire can be derived from two simple events s:smoke(area(a)) and t:

high temp(area(a)) indicating smoke and high temperature respectively. f begins

as soon as s or t begins and it ends as soon as both simple events are over.

The derivation of complex events is called Complex Event Processing. Complex

Event Processing (CEP) denotes algorithmic methods for making sense of base

events (low-level knowledge) by deriving complex events (high-level knowledge)

from them in a timely fashion and over periods of time.

These are the most important notions in the field of event processing. In this

chapter we will also need some other notions which will be informally introduced

before using them.

Languages for CEP and Querying Surveyed 51

3 Identification of Language Styles

To bring some order into the multitude of EQLs, we try to group languages with a

similar “style” or “flavor” together. We will focus on the general style of the lan-

guages and the variations within a style, rather than discussing each language and

its constructs separately. It turns out most approaches for querying events fall into

one of the following five categories:

1. languages based on composition operators (sometimes also called composite

event algebras or event pattern languages),

2. data stream query languages (usually based on SQL),

3. production rules,

4. timed (finite) state machines, and

5. logic languages.

As we will see, the first, the second and the fifth approaches are languages explicitly

developed for specifying event queries, while the third one is only a clever way

to use the existing technologies of production rules to implement event queries.

Similarly, the fourth approach is the use of an established technology to model event

queries in a graphical way.

In Sections 4–8, we will describe each language style individually, mentioning

the respective important languages from the research and industry. We will also

discuss the strengths and weaknesses of each style and illustrate them on a sensor

network use case which can be implemented using, e.g., TinyDB [52]. Section 9

summarizes the comparison by a discussion on suitable application areas of each

language style. It is further worth mentioning that many industry products follow

approaches where several languages of different flavors are supported or a single

language combines aspects of several flavors. Section 10 will therefore be devoted

to hybrid approaches. Section 11 concludes this chapter.

4 Composition Operators

4.1 General Idea

The first group of languages that we discuss builds complex event queries from

simple event queries using composition operators. Historically, these languages

have their roots primarily in Active Database Systems [64], though newer sys-

tems like Amit [4] run independently from a database. Some examples include: the

COMPOSE language of the Ode active database [32, 33, 34], the composite event

detection language of the SAMOS active database [30, 31], Snoop [17] and its suc-

cessor SnoopIB [2, 3], GEM [53], SEL [76], CEDR [7], ruleCore [72, 57], the SASE

Event Language [75], the Cayuga Event Language [20], the original event specifi-

cation language of XChange [21, 13, 14], and the unnamed languages proposed in

the following papers: [66], [55], [37], [15], [8], [68, 67].

52 M. Eckert et al.

Complex event queries are expressed by composing single events using different

composition operators. Typical operators are conjunction of events (all events must

happen, possibly at different times), sequence (all events happen in the specified or-

der), and negation within a sequence (an event does not happen in the time between

two other events). Consider the use of the operators in the sensor network use case

below.

4.2 Sensor Network Use Case

Since different composition-operator-based EQLs have very different and rather un-

readable syntax we formulate the example queries in pseudo code in Figure 1. The

pseudo code illustrates the idea of this kind of EQLs but it does not mean that each

of the queries in Figure 1 can be analogously formulated in every composition-

operator-based EQL.

Composition fire(area(A)) = (smoke(area(A))∧high temp(area(A)))1 min

Sequence fire(area(A)) = (smoke(area(A)); high temp(area(A)))1 min

or

fire(area(A)) = s:smoke(area(A)); high temp(area(A)); s+1 min

Negation failure(sensor(S)) = t:temp(sensor(S)); not temp(sensor(S)); t+12 sec

Aggregation –

Fig. 1 Example queries in pseudo code for composition operators

The first query in Figure 1 triggers fire alarm for an area when smoke and

high temperature are both detected in the area within 1 minute, in other words the

query derives a complex event fire(area(A)) from the two events smoke(area(A)) and

high temp(area(A)). The events smoke(area(A)) and high temp(area(A)) are joined

on variable A. Their order does not matter but it is important that both events ap-

pear within 1 minute, indicated by the time window specification (. . .)1 min. This is

a typical example of event composition realized by the conjunction operator ∧ and

a time window specification.

The second example is similar to the first one but the events in the event query

are connected by the sequence operator ; denoting that the order of events is impor-

tant, i.e., the event smoke(area(A)) must appear before the event high temp(area(A)).

Only if the events appear within 1 minute and in the right order is the complex event

fire(area(A)) derived.

Alternatively if a composition-operator-based EQL supports event identification

and relative timer events, this query can be formulated by means of the event iden-

tifier s for the event smoke(area(A)) and a relative timer event s+1 min. In this case

Languages for CEP and Querying Surveyed 53

an EQL must decide whether the complex event f ire(area(A)) is derived after the

event high temp(area(A)) or after the event s+ 1 min.

The sequence operator is not as intuitive as it seems at first sight. Let A,B and

C be simple event queries. Under time point semantics (A;B);C is not equivalent

to A;(B;C), i.e., both queries do not yield the same answers. Let b,a,c be events

arriving in this order and matching B, A, and C, respectively. They yield an answer

for the query A;(B;C) since b and c satisfy (B;C) with the occurrence time (point)

of c which is later than that of a. b happens before a which is not allowed by the

query (A;B);C.

Under time interval semantics A;(B;C) and (A;B);C are equivalent. They both

match events a,b,c arriving only in this order. (B;C) matches b,c and has the oc-

curence time interval starting as soon as b begins and ending as soon as c ends.

Furthermore A;(B;C) requires that a is over before b begins. This query matches

a,b,c arriving exclusively in this order. Analogously (A;B) matches a,b and has the

time interval described by two time points, namely the begin of a and the end of

b. Consequently (A;B);C requires that c begins after b is over. This query can also

match only the events a,b,c arriving in this order. Hence, using time points or time

intervals has far reaching consequences [28].

The third example in Figure 1 shows how negation can be expressed by means of

composition operators. The query uses event identification and relative timer events.

It demonstrates the necessity for event identification if two events of the same type

are used within one query and it has to be distinguished between them.

Assume all sensors of our network send temperature measurements every 12 sec-

onds. The third query detects a failure of a sensor when its measurement is missing,

i.e., the query derives a complex event failure(sensor(S)) when there is an event

temp(sensor(S)) which is not followed by another event temp(sensor(S)) within 12

seconds.

Another feature which must be supported by an EQL is aggregation. Aggrega-

tion means collection of data satisfying certain conditions, analysis of the data and

construction of new data containing the result of the analysis. An example of aggre-

gation in our use case is the computation of the average temperature reported by a

sensor during the last minute every time a temperature measurement from the sen-

sor arrives. Such a query is unfortunately not expressible by means of composition

operators (compare Figure 1).

Nesting of expressions makes it possible to specify more complicated queries but

we restrict ourselves to simple examples which should illustrate the main ideas of

the language styles without embracing their whole expressivity.

4.3 Summary

Many composition-operator-based EQLs support restrictions on which events should

be considered for the composition of a complex event. Event instance selection, for

example, allows selection of only the first or last event of a particular type [77, 4, 37].

54 M. Eckert et al.

Event instance consumption prevents the reuse of an event for further complex

events if it has already been used in another, earlier complex event [31, 77].

Composition operators offer a compact and intuitive way to specify complex

events. Particularly temporal relationships and negation are well-supported. Event

instance selection and consumption are features that are not present in the other

approaches. Yet, there are hidden problems with the intuitive understanding of

operators sometimes, e.g., several variants of the interpretation of a sequence

(amongst others, interleaved with other events or not). Further, event data (i.e., ac-

cess to the attribute values of an event) is often neglected in languages of this style,

in particular regarding composition and aggregation.

Currently only very few CEP products are based on composition operators,

among them IBM Active Middleware Technology (Amit) [4] and ruleCore [72, 57].

5 Data Stream Query Languages

5.1 General Idea

The second style of languages has been developed in the context of relational data

stream management systems. Data stream management systems are targeted at sit-

uations where loading data into a traditional database management system would

consume too much time. They are particularly targeted at nearly real-time applica-

tions where a reaction to the incoming data would already be useless after the time

it takes to store it in a database. A typical example of data stream query languages is

the Continuous Query Language (CQL) that is used in the STREAM system [6]. The

general ideas behind CQL apply to a number of open-source and commercial lan-

guages and systems including Esper [24], StreamSQL [73, 40, 1], PIPES [42, 43],

TelegraphCQ [18, 65], the CEP and CQL component of the Oracle Fusion Middle-

ware [58], and Coral8 [56]. See also [44, 50] for recent research in the field of data

stream query languages.

Data stream query languages are based on the database query language SQL and

the following general idea: Data streams carry events represented as tuples. Each

data stream corresponds to exactly one event type. The streams are converted into

relations which essentially contain (parts of) the tuples received so far. On these

relations a (almost) regular SQL query is evaluated. The result (another relation) is

then converted back into a data stream. Conceptually, this process is done at every

point of time. Note that this implies a discrete time axis. (See however [39] for

variations.)

For the conversion of streams into relations, stream-to-relation operators like time

windows such as “all events of the last hour” or “the last 10 events” are used. For the

conversion of the result relation back into a stream there are three options: “Istream”

stands for “insert stream” and contains the tuples that have been added to the relation

compared to the previous state of the relation, “Dstream” stands for “delete stream”

and contains the tuples that have been removed from the relation compared to its

previous state, and “Rstream” stands for “relation stream” and contains simply every

tuple of the relation. In the following we only use “Istream”.

Languages for CEP and Querying Surveyed 55

5.2 Sensor Network Use Case

Figure 2 shows equivalent example queries as Figure 1 but in Continuous Query

Language (CQL). A CQL query is very similar to an SQL query. The FROM part

of a CQL query is a cross product of relations, the optional WHERE part defines

selection conditions, and the SELECT part is a usual projection.

For example, the FROM part of the first query in Figure 2 joins two relations

smoke and high temp which were generated out of event streams of type smoke and

high temp respectively by means of time windows. Generally there are several types

of time windows. For the sake of brevity only two of them are explained here.

The first one is a simple sliding window. The resulting relation contains all stream

tuples of a particular type between now–d and now where now is the current time

point and d is a duration such as “1 Minute” or “12 Seconds”. The syntax for a

sliding window of duration d is T [Range d] where T is an event type and the name of

the resulting relation. For example, the notation smoke [Range 1 Minute] produces

the relation smoke containing tuple representations of all events of type smoke which

happened in the last minute.

The second time window that we explain here is a now window. The resulting

relation contains only the stream tuples of a particular type with the occurrence

time now where now denotes the current time point. The syntax for this window

is T [Now] where T is the event type and the name of the resulting relation. For

example, the result of the expression high temp [Now] is the relation high temp

containing tuple representations of all events of type high temp which happened at

the current moment. Note that T [Range 0 Minutes] is equivalent to T [Now].

Consider the first example in Figure 2. Remember that the first query triggers fire

alarm for an area when smoke and high temperature were both detected in the area

within one minute. This temporal condition can be intuitively formulated by means

of 1 minute-long simple sliding windows restricting the smoke and the high temp

streams. The join condition is specified in the WHERE block of the query.

When the order of queried events is important the same query becomes less intu-

itive. Consider the second example in the figure. The query triggers fire alarm for an

area when high temperature is being measured in the area now and smoke has been

detected in the same area during the last minute.

The definition of correct time windows is essential as it has semantic conse-

quences such as differentiation between an unordered composition and a sequence.

Observe that a sequence of more than two events can only be expressed by means of

rule chaining. For example, the sequence of three events e1,e2,e3 can be expressed

in the following way: The first query guarantees that e1 happens before e2 and gen-

erates a complex event e as an intermediate result. The second rule queries events e

and e3 in this order and derives the resulting event.

Negation is hard to express in CQL (as well as in SQL) because the negated tuples

have to be queried by an auxiliary query which is nested in the WHERE block of

the main query and must be empty to let the main query produce an answer. For

example, the third rule in the figure reports a failure of a sensor when it does not

send a temperature measurement every 12 seconds.

56 M. Eckert et al.

Composition SELECT Istream s.area
FROM smoke [Range 1 Minute] s,

high_temp [Range 1 Minute] t
WHERE s.area = t.area

Sequence SELECT Istream s.area
FROM smoke [Range 1 Minute] s,

high_temp [Now] t
WHERE s.area = t.area

Negation SELECT Istream t1.sensor
FROM temp [Now] t1
WHERE NOT EXISTS (SELECT *

FROM temp [Range 12 Seconds] t2
WHERE t1.sensor = t2.sensor)

Aggregation SELECT Istream t1.sensor, avg(t1.value)
FROM temp [Range 1 Minute] t1,

temp [Now] t2
WHERE t1.sensor = t2.sensor

Fig. 2 Example queries in Continuous Query Language

Aggregation is well supported by the language as shown by the last example in

Figure 2. Every time a temperature measurement from a sensor arrives the query

computes the average temperature reported by the sensor during the last minute.

5.3 Summary

Data stream query languages are very suitable for aggregation of event data, as par-

ticularly necessary for market data, and offer a good integration with databases.

Expressing negation and temporal relationships, on the other hand, is often cum-

bersome. The conversion from streams to relations and back may be considered

somewhat unnatural, as may the prerequisite of a discrete time axis.

SQL-based data stream query languages are currently the most successful ap-

proach commercially and are supported in several efficient and scalable industry

products. The better known ones are Oracle CEP, Coral8, StreamBase, Aleri and the

open-source project Esper. However, there are big differences between the various

projects and there also exist important extensions that go beyond the general idea

that has been discussed here.

Languages for CEP and Querying Surveyed 57

6 Production Rules

6.1 General Idea

Production rules are not an event query language as such, however they offer a

fairly convenient and very flexible way of implementing event queries. The first suc-

cessful production rule engine has been OPS [26], in particular in the incarnation

OPS5 [25]. Since then, many others have been developed in the research and indus-

try, including systems like Drools (also called JBoss Rules) [41], ILOG JRules [38],

and Jess [69]. While the general ideas of production rules will be explained here,

we refer the reader to [9] for a deeper introduction.

Production rules, which nowadays are mainly used in business rule management

systems like Drools or ILOG JRules, are not EQLs in the narrower sense. The rules

are usually tightly coupled with a host programming language (e.g., Java) and spec-

ify actions to be executed when certain states are entered [9]. The states are ex-

pressed as conditions over objects in the so-called working memory. These objects

are also called facts.

Besides their use in business rule management systems that are not focused on

events, production rules are also an integral part of the CEP product TIBCO Busi-

ness Events, which also offers more CEP-specific features such as support for tem-

poral aspects or modelling of event types and data.

The incremental evaluation (e.g., with Rete [27]) of production rules makes them

also suitable for CEP. Whenever an event occurs, a corresponding fact must be cre-

ated. Event queries are then expressed as conditions over these facts. In doing so,

the programmer has much freedom but little guideline.

6.2 Sensor Network Use Case

Figure 3 contains our four example queries in the open source production rule sys-

tem Drools. In Drools all events are represented as Java objects. Every time an event

arrives some Java method has to convert it into an object, insert the object into the

working memory, and call the rule engine to perform the rule evaluation (more pre-

cisely, fire all rules until no rule can fire). Note that in CEP-tailored systems such as

TIBCO Business Events this happens automatically. If a complex event is derived

by a rule it is also saved as an object in the working memory. We assume that in this

case the insert-method sets the occurrence time of a complex event.

The occurrence time is a usual attribute of an object. This is actually a problem

because every method can change every occurrence time inadvertently. This in turn

leads to incorrect answers.

For the sake of simplicity we use time point semantics, assume that timestamps

are given in seconds since the epoch (i.e., since the midnight of January 1, 1970) and

we do not perform any garbage collection (i.e., deletion of events). These assump-

tions are not suitable for real-life applications but they help to keep the examples

simple. Under the above assumptions we can express the temporal relations be-

tween events as simple comparisons of numbers. In real-life applications temporal

58 M. Eckert et al.

relations would have to be programmed as Java methods that are called in Drools

rules.

A Drools rule consists of two parts. The WHEN part is an event query, it speci-

fies both the types of queried events and conditions on the events. The THEN part

derives an object representing the complex event, sets its occurrence time, and saves

the object into the working memory. This newly asserted object can then also acti-

vate further rules.

Composition when s: Smoke()
High_temp(area == s.area &&

timestamp >= (s.timestamp - 60) &&
timestamp <= (s.timestamp + 60))

then insert(new Fire(s.area));

Sequence when s: Smoke()
High_temp(area == s.area &&

timestamp > s.timestamp &&
timestamp <= (s.timestamp + 60))

then insert(new Fire(s.area));

Negation when t: Temp()
not(exists(Temp(sensor == t.sensor &&

timestamp >= t.timestamp &&
timestamp <= (t.timestamp + 12))))

then insert(new Failure(t.sensor));

Aggregation when t: Temp()
a: Avg() from accumulate(

Temp(sensor == t.sensor &&
timestamp >= (t.timestamp - 60) &&
timestamp <= t.timestamp &&
v: value),

average(v))
then insert(new Avg_temp(t.sensor, a));

Fig. 3 Example queries in Drools

Remember that the first rule detects fire in an area when smoke and high tem-

perature are both detected in this area within one minute (consider the first rule in

Figure 3). These conditions are coded into the specification of a High temp object.

Its attribute values are compared with the respective attribute values of a Smoke ob-

ject s. In particular a High temp event may happen at most one minute before or

after a Smoke event.

Languages for CEP and Querying Surveyed 59

In the second rule of the figure the order of the queried events is relevant. Smoke

appears before high temperature is measured in the area. This is expressed by chang-

ing one of the conditions on the occurrence time of a High temp object.

Negation is supported in Drools as shown by the third query. Recall that the

query reports a failure of a sensor when the sensor does not send a temperature

measurement every 12 seconds.

Aggregation of events is also supported. Consider the last rule in Figure 3. Every

time a sensor sends a temperature measurement the query computes the average

temperature reported by the sensor during the last minute. As this example illustrates

aggregation is hard to express in Drools because the result of aggregation must be

represented as an object in the WHEN part of a rule (an Avg() object in this case)

to be used as a parameter of an object representing the complex event in the THEN

part of a rule (an Avg temp() object in this case).

As the examples show all relations between events must be programmed man-

ually and even simple temporal conditions (already in our strongly simplified time

model) require low-level code which is hard to read.

6.3 Summary

CEP with production rules is very flexible and well integrated with existing pro-

gramming languages. However, it entails working on a low abstraction level that is

— since it is primarily state and not event oriented — somewhat different from other

EQLs. Especially aggregation and negation are therefore hard to express. Garbage

collection, i.e., the removal of events from the working memory, has to be pro-

grammed manually. (See however [74] for work towards an automatic garbage col-

lection.) Production rules are considered to be less efficient than data stream query

languages; this is however tied to the flexibility they add in terms of combining

queries (in rule conditions) and reactions (in rule actions).

7 Timed State Machines

7.1 General Idea

State machines are usually used to model the behavior of a stateful system that

reacts to events. The system is modelled as a directed graph. The nodes of the graph

represent the possible states of the system. Directed edges are labeled with events

and temporal conditions on them. The edges specify the transitions between states

that occur in reaction to in-coming events.

State machines are founded formally on deterministic or non-deterministic fi-

nite automata (DFAs or NFAs). Since states in a state machine are reached by

particular sequences of multiple events occurring over time, they implicitly define

complex events. Timed Büchi Automata (TBA) [5] were the first attempt to extend

automata to temporal aspects for modelling real-time systems. In a TBA each tran-

sition between states depends not only on the type of arriving events but also on

60 M. Eckert et al.

their occurrence time. For this, temporal conditions are added to transitions. Other

examples of this kind of EQLs are UML state diagrams and regular real-time lan-

guages [36]. Many representatives of this language style were developed to achieve

a particular task or solve a problem of real-time distributed systems, examples being

Timed abstract state machine language for real-time system engineering [59], Timed

automata approach to real time distributed system verification [47], and Timed-

constrained automata for reasoning about time in concurrent systems [54].

7.2 Sensor Network Use Case

In this chapter we do not describe different kinds of real-time automata but ex-

plain their common principle. Figure 4 contains our example queries in a pseudo

code for timed state machines. The pseudo code is an extension of Timed Büchi

Automata [5]. The first extension is the consideration of event data. The second ex-

tension is the representation of complex events as automata in such a way that only

if the end state of an automaton is reached the respective complex event is derived.

A complex event can determinate a transition between states of another automaton

so that arbitrary levels of abstraction can be achieved.

Composition

Sequence

Negation

Aggregation –

Fig. 4 Example queries in pseudo code for timed state machines

Languages for CEP and Querying Surveyed 61

Remember that our first example derives a complex event fire(area(A)) out of

two events smoke(area(A)) and high temp(area(A)) if these events happen within

one minute. Their order does not matter. Since an automaton implicitly describes

an ordered sequence we have to specify both acceptable orders of queried events.

Consider the first query in Figure 4. The longer the composition of events the more

acceptable orders (all possible permutations of events) must be considered by the

machine, i.e., a simple composition query provokes a complicated automaton (ex-

ponential blow-up).

The events smoke(area(A)) and high temp(area(A)) must happen within one

minute. This condition is expressed using event identifiers, an auxiliary function

end(i) which returns the end timestamp of event i and a global clock x. (As men-

tioned above, we do not consider such problems as clock synchronization in this

chapter and refer the reader to [49].) Note that both events smoke(area(A)) and

high temp(area(A)) are joined upon the value of attribute area. If the end state of

the state machine is reached the complex event fire(area(A)) is derived.

The second query describes the sequence of events smoke(area(A)) and high temp

(area(A)). The latter must happen at most one minute after the former to let the au-

tomaton reach its end state, i.e., to derive the complex event fire(area(A)). This is a

very intuitive presentation.

Aggregation is not supported by timed state machines. Negation is also not sup-

ported but can be simulated by a failure state without outgoing edges and with an

incoming edge which is labeled by a temporal condition and an event which should

not arrive for the query to return an answer. For example, the third machine in

Figure 4 detects a failure of a sensor when it does not send a temperature mea-

surement every 12 seconds. If a temperature measurement comes within 12 seconds

after the last measurement the state machine goes into the failure state, meaning

that the end state is unreachable and the complex event failure(sensor(S)) cannot

be derived anymore. If 12 seconds since the last temperature measurement are over

(consider the temporal condition of the incomimg edge of the end state) and no new

measurement has arrived during this time, the state machine goes into the end state

and derives the complex event failure(sensor(S)).

7.3 Summary

Though timed state machines provide intuitive visualization of complex events their

expressivity is limited. They do not support aggregation. Negation and even com-

position of events are cumbersome. Conditions on the event data which are more

complex than equi-joins (e.g., an attribute value must grow) cannot be expressed.

To overcome deficits of the theoretical automata, state machines are usually com-

bined with languages of other styles. An example of this is the combination of state

machines with production rules in TIBCO Business Events. There, a transition be-

tween two states is specified with a production rule. The condition of the production

rule expresses when the transition is activated. Frequently reactions to the complex

events that are implicit in a state machine are desirable. These can be specified for

62 M. Eckert et al.

a transition (in the action part of the production rule) as well as for the entry or exit

of states.

8 Logic Languages

8.1 General Idea

Logic languages express event queries in logic-style formulas. An early representa-

tive of this language style is the event calculus [45]. While event calculus is not an

event query language per se, it has been used to model event querying and reasoning

tasks in logic programming languages such as Prolog or Prova [46]. The latter com-

bines the benefits of declarative and object-oriented programming by merging the

syntaxes of Prolog and Java. Prova is used as a rule-based backbone for distributed

Web applications in biomedical data integration. One of the key advantages of Prova

is its separation of logic, data access, and computation.

XChangeEQ [10, 22] also adopts some ideas from event calculus-like approaches,

but extends and tailors them to the needs of an expressive high-level event query

language. XChangeEQ identifies and supports the following four complementary di-

mensions (or aspects) of event queries: data extraction, event composition, temporal

(and other) relationships between events, and event accumulation. Its language de-

sign enforces a separation of the four querying dimensions.

A further example of this language style is Reaction RuleML [63, 62] combining

derivation rules, reaction rules and other rule types such as integrity constraints into

the general framework of logic programming.

8.2 Sensor Network Use Case

Figure 5 contains our four example queries in XChangeEQ. An XChangeEQ rule

consists of two parts. The ON part, i.e., the rule body, is a complex event query

which is a conjunction or disjunction of simple or complex event queries and an

optional WHERE block containing temporal and other conditions on the queried

events. The DETECT part, i.e., the rule head, is a construction of a complex event

using the variable bindings returned by the respective event query.

Note that events are neither converted to relational tuples nor to objects of an

object-oriented programming language. Furthermore, it is not possible to manip-

ulate event timestamps neither consciously nor unwittingly. Finally, relative timer

events are supported by XChangeEQ.

Event query specifications are very intuitive and flexible in XChangeEQ. There

are four types of event queries charaterized by different kinds of brackets. Single

brackets denote a complete event query, i.e., the query matches only those events

which do not have attributes other than the ones specified in the query. In contrast

double brackets denote an incomplete event query, i.e., events matched by the query

may have additional attributes. Curly brackets denote an unordered query, i.e., the

order of attributes does not matter. Square brackets denote an ordered event query.

Languages for CEP and Querying Surveyed 63

Hence, there are four possible combinations of brackets, i.e., four types of event

queries (ordered complete, unordered complete and so on).

Consider the first rule in Figure 5. Its complex event query is a conjunction of

two simple incomplete and unordered event queries event s: smoke{{ area{{ var A

}} }} and event t: high temp{{ area{{ var A }} }} where variable A is bound to the

value of attribute area. Since the same variable is used in both queries the queried

events are joined on the value of this variable.

The WHERE block of the first rule in Figure 5 contains the additional tempo-

ral condition that both events, i.e., smoke and high temperature, appear within one

minute. Note the use of event identifiers s and t. Note also that the temporal condi-

tions (like before and within) are built-in into the language and must not be manually

programmed.

The second query contains the additional temporal condition that the smoke event

must appear before the high temperature event. The effect that the additional tem-

poral condition is mapped to an additional statement in the query is an outstanding

feature of XChangeEQ.

Composition DETECT fire { area { var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: high_temp {{ area {{ var A }} }}
} where { {s,t} within 1 min }

END

Sequence DETECT fire { area{ var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: high_temp {{ area {{ var A }} }}
} where { s before t, {s,t} within 1 min }

END

Negation DETECT failure { sensor { var S } }
ON and { event t: temp {{ sensor {{ var S }} }},

event i: timer:from-end [event t, 12 sec],
while i: not temp {{ sensor {{ var S }} }} }

END

Aggregation DETECT avg_temp { sensor{ var S }, value { avg(all var T) } }
ON and { event t: temp {{ sensor {{ var S }} }},

event i: timer:from-start-backward [event t, 1 min],
while i: collect temp {{ sensor {{ var S }},

value {{ var T }} }} }
END

Fig. 5 Example queries in XChangeEQ

64 M. Eckert et al.

Negation and aggregation of events are supported as shown by the last two exam-

ples in Figure 5. Both negation and aggregation are restricted to finite time intervals.

In the examples, the time intervals are given by relative timer events which are de-

fined as follows:

• timer:from-end[event e, d] the relative timer t extends over the length of duration

d starting at the end of e, i.e., begin(t):=end(e), end(t):=end(e)+d

• timer:from-start-backward[event e, d] the relative timer t extends over the length

of duration d ending at the start of e, i.e., begin(t):=begin(e)–d, end(t):=begin(e)

In the above we write begin(t) and end(t) to denote the beginning and the end of

event t respectively. There are of course many other relative timer events which are

not discussed here, see [22].

Recall that the third example detects a failure of a sensor when it does not send a

temperature measurement every 12 seconds, i.e., the query derives a complex event

failure{ sensor{ var S } } when there is an event temp{{ sensor{{ var S }} }} which

is not followed by another temp{{ sensor{{ var S }} }} event within 12 seconds.

The last query of the figure computes average temperature reported by a sen-

sor during the last minute every time the sensor sends a temperature measurement.

More precisely, every time an event t: temp{{ sensor{{ var S }} }} arrives, a rel-

ative timer event i denoting the time interval of one minute before t, is defined, all

events happening during i and matched by the query temp{{ sensor{{ var S }},

value{{ var T }} }} are collected and a complex event avg temp{ sensor{ var S },

value{ avg(all var T) } } containing the average temperature from the sensor S, is

derived.

8.3 Summary

As the simple examples above demonstrate, logic languages offer a natural and con-

venient way to specify event queries. The main advantage of logic languages is their

strong formal foundation, an issue which is neglected by many languages of other

styles. (The chapter “Two Semantics for CEP, no Double Talk” in this volume de-

scribes a general, easily transferable approach for defining both the declarative and

operational semantics of an EQL). Thanks to the separation of different dimensions

of event processing, logic languages are highly expressive, extensible and easy to

learn and use. Some languages of this style, e.g. XChangeEQ support an automatic

garbage collection of events [11].

9 Application Areas of the Language Styles

Having described the strengths and weaknesses of the five language styles, we

summarize the comparison by a discussion on suitable application areas of each

language style.

Languages for CEP and Querying Surveyed 65

Composition operators allow an intuitive specification of event patterns. This

makes them attractive in scenarios where business users should be allowed to

define event patters, such as real-time promotions and upselling (e.g., send three

text messages within one hour to receive a free ringtone).

Data stream query languages are very suitable for aggregation of event data, as

particularly necessary for applications involving market data (e.g., average price

over 21 day sliding window), such as algorithmic trading. They also usually offer a

good integration with databases, sharing in particular the common basis of SQL.

Production rules are very flexible and well integrated with existing programming

languages. Since they allow the specification of actions to be executed when certain

states are reached, they are particularly useful for applications involving tracking of

stateful objects such as track and trace in logistics (maintain and react upon changes

of the state of packages, containers, etc.) or monitoring of business processes and

objects (also called Business Activity Monitoring). Due to their wide-spread use in

business rules management systems, production rules often offer some support for

exposing part of the logic to business users such as decision tables or trees.

Timed state machines also offer an easy and convenient way to maintain the cur-

rent state. However they are limited to a finite set of states (e.g., “shipped”, “deliv-

ered”). This makes them suitable, e.g., for monitoring of processes (which typically

have a well-defined, finite number of states), but not suitable for applications involv-

ing infinite state spaces (e.g., a temperature control system where the temperature is

a numeric value).

Logic languages have strong formal foundations, allow an intuitive specifica-

tion of complex temporal conditions and account for event data. They could be

successfully used in medical applications or emergency management in critical

infrastructures.

Combination of different language styles in one approach allows to benefit from

their strengths. This is the main reason why hybrid approaches are most successful

in the industry. The next section is devoted to the combined approaches.

10 Combination of Different Language Styles

A comparison of the different language styles shows that so far there is no one-fits-

all approach to querying events. Hence particularly industry products tend towards

hybrid approaches, where several languages of different styles are supported or as-

pects of different styles are combined within one language. Hybrid approaches in-

clude the introduction of pattern matching into data stream query languages as in

Oracle CEP [58], Esper [24], and some CQL dialects like the one used in [71], the

use of composition operators on top of data stream queries [29, 16], the addition of

composition operators to production rules [74], the combination of production rules

and state machines, e.g., in TIBCO Business Events (see Section 7), and the decou-

pled use of different languages (and possibly evaluation engines) that communicate

only by means of exchanging events (derived as answers to queries).

66 M. Eckert et al.

11 Conclusion

CEP is an industrial growth market as well as an important research area that is

emerging from coalescing branches of other research fields.

Even though the prevalent event query languages can be categorized roughly into

five families as we have done in this article, there are significant differences between

the individual languages of a family. Whether a convergence to a single, dominant

query language for CEP is possible and advisable is currently in no way agreed

upon.

Efforts towards a standard for a SQL-based data stream query language are on

the way [39], but not yet within an official standardization body. A standardized

XML syntax for production rules is being developed by the W3C as part of the

Rule Interchange Format (RIF); however, the special requirements of CEP are not

considered there yet. The same applies to the Production Rule Representation (PRR)

by the OMG.

Activities of the Event Processing Technical Society (EPTS) [23] aim at a coor-

dination and harmonization, with the work on a glossary of CEP notions, the inter-

operability analysis of Event Processing systems from different vendors, a common

reference architecture or framework of architectures that handles current and envi-

sioned Event Processing architectures, the analysis of the application areas of CEP,

and the creation of business value for users in order to increase the adoption of Event

Processing in the business and industry. The EPTS has also a working group for the

analysis of EQLs.

Acknowledgements

This research has been founded in part by the European Commission within the the project

“EMILI — Emergency Management in Large Infrastructures” under grant agreement number

242438 and by the German Research Foundation (Deutsche Forschungsgemeinschaft) within

the project “QONCEPT — Query Optimization in Complex Event Processing Technologies”

under reference number BR 2355/1-1.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,

M., Tatbul, N., Zdonik, S.B.: A new model and architecture for data stream management.

The VLDB Journal 12(2), 120–139 (2003)

2. Adaikkalavan, R., Chakravarthy, S.: Formalization and detection of events using interval-

based semantics. In: Proc. Int. Conf. on Management of Data (COMAD), pp. 58–69.

Computer Society of India (2005)

3. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-based event specification and de-

tection for active databases. Data and Knowledge Engineering 1(59), 139–165 (2006)

4. Adi, A., Etzion, O.: Amit — the situation manager. The VLDB Journal 13(2), 177–203

(2004)

Languages for CEP and Querying Surveyed 67

5. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M. (ed.)

ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

6. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: Semantic founda-

tions and query execution. The VLDB Journal 15(2), 121–142 (2006)

7. Barga, R.S., Caituiro-Monge, H.: Event correlation and pattern detection in CEDR. In:

Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan,

P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254,

pp. 919–930. Springer, Heidelberg (2006)

8. Bernauer, M., Kappel, G., Kramler, G.: Composite events for XML. In: Proc. Int. Conf.

on World Wide Web, pp. 175–183. ACM, New York (2004)

9. Berstel, B., Bonnard, P., Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactive rules on the web.

In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L.,

Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 183–239. Springer, Heidel-

berg (2007)

10. Bry, F., Eckert, M.: Rule-Based Composite Event Queries: The Language XChangeEQ

and Its Semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007.

LNCS, vol. 4524, pp. 16–30. Springer, Heidelberg (2007)

11. Bry, F., Eckert, M.: On static determination of temporal relevance for incremental evalu-

ation of complex event queries. In: Proc. Int. Conf. on Distributed Event-Based Systems,

pp. 289–300. ACM, New York (2008)
12. Bry, F., Eckert, M., Etzion, O., Paschke, A., Riecke, J.: Event processing language tu-

torial. In: 3rd ACM Int. Conf. on Distributed Event-Based Systems, ACM, New York

(2009)

13. Bry, F., Eckert, M., Pătrânjan, P.-L.: Querying composite events for reactivity on the web.

In: Shen, H.T., Li, J., Li, M., Ni, J., Wang, W. (eds.) APWeb Workshops 2006. LNCS,

vol. 3842, pp. 38–47. Springer, Heidelberg (2006)

14. Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactivity on the Web: Paradigms and applications

of the language XChange. J. of Web Engineering 5(1), 3–24 (2006)

15. Carlson, J., Lisper, B.: An event detection algebra for reactive systems. In: Proc. ACM

Int. Conf. On Embedded Software, pp. 147–154. ACM, New York (2004)
16. Chakravarthy, S., Adaikkalavan, R.: Events and streams: Harnessing and unleashing their

synergy! In: Proc. Int. Conf. on Distributed Event-Based Systems, pp. 1–12. ACM, New

York (2008)

17. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite events for active

databases: Semantics, contexts and detection. In: Proc. Int. Conf. on Very Large Data

Bases, pp. 606–617. Morgan Kaufmann, San Francisco (1994)

18. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong,

W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Telegraphcq: Con-

tinuous dataflow processing for an uncertain world. In: CIDR (2003)

19. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design,

3rd edn. Addison-Wesley, Reading (2001)

20. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga:

A general purpose event monitoring system. In: CIDR, pp. 412–422 (2007)

21. Eckert, M.: Reactivity on the Web: Event Queries and Composite Event Detection in

XChange. Master’s thesis (Diplomarbeit), Institute for Informatics. University of Munich

(2005)

22. Eckert, M.: Complex Event Processing with XChangeEQ: Language Design, Formal Se-

mantics and Incremental Evaluation for Querying Events. PhD thesis, Institute for Infor-

matics. University of Munich (2008)

23. Event Processing Technical Society (EPTS), http://www.ep-ts.com

http://www.ep-ts.com

68 M. Eckert et al.

24. EsperTech Inc. Event stream intelligence: Esper & NEsper,

http://esper.codehaus.org
25. Forgy, C.: OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie Mellon

University (1981)

26. Forgy, C., McDermott, J.P.: OPS, a domain-independent production system language.

In: Proc. Int. Joint Conf. on Artificial Intelligence, pp. 933–939. William Kaufmann, San

Francisco (1977)
27. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match prob-

lem. Artificial Intelligence 19(1), 17–37 (1982)
28. Galton, A., Augusto, J.C.: Two approaches to event definition. In: Hameurlain, A., Cic-

chetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556. Springer,

Heidelberg (2002)

29. Garg, V., Adaikkalavan, R., Chakravarthy, S.: Extensions to stream processing architec-

ture for supporting event processing. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA

2006. LNCS, vol. 4080, pp. 945–955. Springer, Heidelberg (2006)
30. Gatziu, S., Dittrich, K.R.: Events in an active object-oriented database system. In: Proc.

Int. Workshop on Rules in Database Systems, pp. 23–39. Springer, Heidelberg (1993)
31. Gatziu, S., Dittrich, K.R.: Detecting composite events in active database systems us-

ing petri nets. In: Proc. Int. Workshop on Research Issues in Data Engineering: Active

Database Systems, pp. 2–9. IEEE, Los Alamitos (1994)

32. Gehani, N.H., Jagadish, H., Shmueli, O.: Event specification in an active object-oriented

database. In: Proc. Int. ACM Conf. on Management of Data (SIGMOD), pp. 81–90.

ACM, New York (1992)

33. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite event specification in active

databases: Model & implementation. In: Proc. Int. Conf. on Very Large Data Bases,

pp. 327–338. Morgan Kaufmann, San Francisco (1992)

34. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Compose: A system for composite specifica-

tion and detection. In: Adam, N.R., Bhargava, B.K. (eds.) Advanced Database Systems.

LNCS, vol. 759, pp. 3–15. Springer, Heidelberg (1993)

35. Gualtieri, M., Rymer, J.R.: The Forrester WaveTM: Complex Event Procecessing (CEP)

Platforms,

http://www.forrester.com/rb/Research/wave%26trade%B
complex event processing cep platforms%2C q3/q/id/48084/t/2

36. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In:

Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–

591. Springer, Heidelberg (1998)

37. Hinze, A., Voisard, A.: A parameterized algebra for event notification services. In: Proc.

Int. Symp. on Temporal Representation and Reasoning, pp. 61–65. IEEE, Los Alamitos

(2002)

38. ILOG. ILOG JRules, http://www.ilog.com/products/jrules
39. Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel,

U., Cherniack, M., Tibbetts, R., Zdonik, S.: Towards a streaming SQL standard. In: Proc.

Int. Conf. on Very Large Data Bases. VLDB Endowment, vol. 1, pp. 1379–1390 (2008)

40. Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel,

U., Cherniack, M., Tibbetts, R., Zdonik, S.B.: Towards a streaming sql standard.

PVLDB 1(2), 1379–1390 (2008)

41. JBoss.org. Drools, http://www.jboss.org/drools
42. Krämer, J., Seeger, B.: Pipes: a public infrastructure for processing and exploring

streams. In: Proceedings of the 2004 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD 2004, pp. 925–926. ACM, New York (2004)

http://esper.codehaus.org
http://www.forrester.com/rb/Research/wave%26trade%B_complex_event_processing_cep_platforms%2C_q3/q/id/48084/t/2
http://www.forrester.com/rb/Research/wave%26trade%B_complex_event_processing_cep_platforms%2C_q3/q/id/48084/t/2
http://www.ilog.com/products/jrules
http://www.jboss.org/drools

Languages for CEP and Querying Surveyed 69

43. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window

queries over data streams. ACM Trans. Database Syst. 34, 4:1–4:49 (2009)

44. Kersten, M., Liarou, E., Goncalves, R.: A query language for a data refinery cell. In:

Proc. Int. Workshop on Event-Driven Architecture, Processing and Systems (2007)

45. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Com-

pututing 4(1), 67–95 (1986)

46. Kozlenkov, A., Penaloza, R., Nigam, V., Royer, L., Dawelbait, G., Schröder, M.: Prova:

Rule-based java scripting for distributed web applications: A case study in bioinformat-

ics. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S.,

Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,

vol. 4254, pp. 899–908. Springer, Heidelberg (2006)

47. Krákora, J., Waszniowski, L., Hanzálek, Z.: Timed automata approach to real time dis-

tributed system verification. In: Proc. of EEE Int. Workshop on Factory Communication

Systems (WFCS), pp. 407–410 (2004)

48. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commu-

nications of the ACM 21(7), 558–565 (1978)

49. Li, Q., Rus, D.: Global clock synchronization in sensor networks. IEEE Transactions on

Computers 55(2), 214–226 (2006)

50. Liarou, E., Goncalves, R., Idreos, S.: Exploiting the power of relational databases for

efficient stream processing. In: Int. Conf. on Extending Database Technology (EDBT),

vol. 360, pp. 323–334. ACM, New York (2009)

51. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems. Addison-Wesley, Reading (2002)

52. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An acquisitional

query processing system for sensor networks. ACM Transactions on Database Sys-

tems 30(1), 122–173 (2005)

53. Mansouri-Samani, M., Sloman, M.: GEM: A generalized event monitoring language for

distributed systems. Distributed Systems Engineering 4(2), 96–108 (1997)

54. Merritt, M., Modugno, F., Tuttle, M.R.: Time-constrained automata. In: Groote, J.F.,

Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 408–423. Springer, Heidel-

berg (1991)

55. Moreto, D., Endler, M.: Evaluating composite events using shared trees. IEE Proceedings

— Software 148(1), 1–10 (2001)

56. Morrell, J., Vidich, S.D.: Complex Event Processing with Coral8. White Paper (2007),

http://www.coral8.com/system/files/assets/pdf/
Complex Event Processing with Coral8.pdf

57. MS Analog Software. ruleCore(R) Complex Event Processing (CEP) Server,

http://www.rulecore.com
58. Oracle Inc. Complex Event Processing in the real world. White Paper,

http://www.oracle.com/technologies/soa/docs/
oracle-complex-event-processing.pdf

59. Ouimet, M., Lundqvist, K.: The timed abstract state machine language: Abstract

state machines for real-time system engineering. Journal of Universal Computer Sci-

ence 14(12), 2007–2033 (2008)

60. Paschke, A., Boley, H.: Rules capturing events and reactivity. In: Handbook of Research

on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches,

pp. 215–252. IGI Global (2009)

61. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: Gov-

ernatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 53–66.

Springer, Heidelberg (2009)

http://www.coral8.com/system/files/assets/pdf/Complex_Event_Processing_with_Coral8.pdf
http://www.coral8.com/system/files/assets/pdf/Complex_Event_Processing_with_Coral8.pdf
http://www.rulecore.com
http://www.oracle.com/technologies/soa/docs/oracle-complex-event-processing.pdf
http://www.oracle.com/technologies/soa/docs/oracle-complex-event-processing.pdf

70 M. Eckert et al.

62. Paschke, A., Kozlenkov, A., Boley, H.: A homogenous reaction rule language for Com-

plex Event Processing. In: In Proc. 2nd Int. Workshop on Event Drive Architecture and

Event Processing Systems (2007)

63. Paschke, A., Kozlenkov, A., Boley, H., Tabet, S., Kifer, M., Dean, M.: Reaction RuleML

(2007), http://ibis.in.tum.de/research/ReactionRuleML/
64. Paton, N.W. (ed.): Active Rules in Database Systems. Springer, Heidelberg (1998)

65. Reiss, F., Stockinger, K., Wu, K., Shoshani, A., Hellerstein, J.M.: Enabling real-time

querying of live and historical stream data. In: SSDBM, p. 28 (2007)

66. Roncancio, C.: Toward duration-based, constrained and dynamic event types. In: An-

dler, S.F., Hansson, J. (eds.) ARTDB 1997. LNCS, vol. 1553, pp. 176–193. Springer,

Heidelberg (1999)

67. Sánchez, C., Sankaranarayanan, S., Sipma, H., Zhang, T., Dill, D.L., Manna, Z.: Event

correlation: Language and semantics. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,

vol. 2855, pp. 323–339. Springer, Heidelberg (2003)

68. Sánchez, C., Słanina, M., Sipma, H.B., Manna, Z.: Expressive completeness of an

event-pattern reactive programming language. In: Wang, F. (ed.) FORTE 2005. LNCS,

vol. 3731, pp. 529–532. Springer, Heidelberg (2005)

69. Sandia National Laboratories. Jess, the rule engine for the Java(TM) platform,

http://herzberg.ca.sandia.gov/
70. Schmidt, K.-U., Anicic, D., Stühmer, R.: Event-driven reactivity: A survey and require-

ments analysis. In: SBPM2008: 3rd Int. Workshop on Semantic Business Process Man-

agement in Conjunction with the 5th European Semantic Web Conf. (ESWC 2008).

CEUR Workshop Proceedings (2008)

71. Seeger, B.: Kontinuierliche kontrolle. IX: Magazin für Professionelle Informationstech-

nik 2 (2010)

72. Seiriö, M., Berndtsson, M.: Design and implementation of an ECA rule markup lan-

guage. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp.

98–112. Springer, Heidelberg (2005)

73. StreamBase Systems. StreamSQL Guide (2011),

http://streambase.com/developers/docs/
latest/streamsql/index.html

74. Walzer, K., Breddin, T., Groch, M.: Relative temporal constraints in the Rete algorithm

for complex event detection. In: Proc. Int. Conf. on Distributed Event-Based Systems,

pp. 147–155. ACM, New York (2008)

75. Wu, E., Diao, Y., Rizvi, S.: High-performance Complex Event Processing over streams.

In: Proc. Int. ACM Conf. on Management of Data (SIGMOD), pp. 407–418. ACM, New

York (2006)

76. Zhu, D., Sethi, A.S.: SEL, a new event pattern specification language for event corre-

lation. In: Proc. Int. Conf. on Computer Communications and Networks, pp. 586–589.

IEEE, Los Alamitos (2001)

77. Zimmer, D., Unland, R.: On the semantics of complex events in active database man-

agement systems. In: Proc. Int. Conf. on Data Engineering, pp. 392–399. IEEE, Los

Alamitos (1999)

http://ibis.in.tum.de/research/ReactionRuleML/
http://herzberg.ca.sandia.gov/
http://streambase.com/developers/docs/latest/streamsql/index.html
http://streambase.com/developers/docs/latest/streamsql/index.html

Two Semantics for CEP, no Double Talk:

Complex Event Relational Algebra (CERA)
and Its Application to XChangeEQ

Michael Eckert, François Bry, Simon Brodt, Olga Poppe, and Steffen Hausmann

Abstract. Complex Event Processing (CEP) denotes algorithmic methods for deriv-

ing higher-level knowledge, or complex events, from a stream of lower-level events

in a continuous and timely fashion. High-level Event Query Languages (EQLs) are

designed for expressing complex events in a convenient, concise, effective and main-

tainable manner. CEP differs fundamentally from traditional database or Web query-

ing, as CEP continuously evaluates standing queries against a stream of incoming

event data whereas traditional querying evaluates incoming ad hoc queries against

(more or less) standing data.

However EQLs and traditional query languages share a need for clear formal

semantics which typically consist of two parts: A declarative semantics specifying

what the answer of a query should be and an operational semantics telling how this

answer is actually computed. The declarative semantics serves as reference for the

operational semantics which is the basis for query evaluation and optimization.

While formal semantics is well-understood for traditional query languages it has

been rather neglected for EQLs so far. In this chapter we use the EQL XChangeEQ

to demonstrate a general, easily transferable approach for defining both, the declar-

ative and operational semantics of an EQL. The operational semantics on the one

hand, bases on CERA, a tailored variant of relational algebra, and incremantal eval-

uation of query plans. Although the basic idea might sound familiar from previous

approaches like [3, 12, 16], the way it is realized here is significantly different. The

declarative semantics on the other hand, is defined using a Tarski-style model theory

with accompanying fixpoint theory.

Michael Eckert

TIBCO Software, Balanstr. 49, 81669 Munich, Germany

e-mail: meckert@tibco.com

François Bry · Simon Brodt · Olga Poppe · Steffen Hausmann

Institute for Informatics, University of Munich, Oettingenstr. 67, 80538 Munich, Germany,

e-mail: {bry,brodt,poppe,hausmann}@pms.ifi.lmu.de

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 71–97.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

meckert@tibco.com
{bry, brodt, poppe, hausmann}@pms.ifi.lmu.de

72 M. Eckert et al.

1 Introduction

In databases, relational algebra describes the order in which operators are applied

to relations to compute answers for queries. It serves as a theoretical fundament

for the operational semantics of database query languages (e.g., SQL) and query

optimization.

A recent trend in information systems are continuous queries against event (or

data) streams. This continuous querying of events is fundamentally different from

the traditional ad hoc querying of databases or Web data, since event queries are

standing queries evaluated continuously over time against changing event data re-

ceived as an incoming stream.

Querying events often involves the notion of Complex Event Processing (CEP)

which denotes algorithmic methods for making sense of events by deriving higher-

level knowledge, or complex events, from lower-level events in a timely

fashion and permanently. We refer the reader to the chapter “A CEP Babelfish: Lan-

guages for Complex Event Processing and Querying Surveyed”, in this volume,

for a discussion of Event Query Languages (EQLs). Specific evaluation methods

have been conceived for the efficient, stepwise evaluation of complex event queries

against event data streams. We demonstrate the usage of one of these languages,

XChangeEQ [5, 11], in a sensor network use case in Section 2.

We present Complex Event Relational Algebra (CERA), an extended and tailored

variant of relational algebra, to represent execution plans for complex event queries

in Section 3. Starting out with relational algebra and thus building on the founda-

tion of database queries is not just helpful for understandability, it also lets event

queries benefit from many results in database research (e.g., join algorithms, adap-

tive query evaluation). Further, the uniformity in the foundations of event queries

and traditional queries is beneficial in systems and languages where event and non-

event data is processed together — and queries should be optimized and evaluated

together. This is quite common, especially for Event Condition Action (ECA) rules,

where the E part is an event query, the C part a traditional query, and the parts share

information through variable bindings.

The basic idea of transferring relational algebra to CEP is not new [3, 12, 16].

However we propose a significantly different way of doing so. Previous approaches

like CQL [3, 12, 16] use stream-to-relation operators like time windows to concep-

tually convert the stream into a finite relation for each point of time. After that, quite

ordinary relational algebra expressions are applied to this finite relation. In contrast

to that, CERA views the whole stream as one potentially infintite relation. Tailored

variants of relational operators are then applied to this infinite relation. The trick

is that these operators are restricted in such a way that for each point of time it is

sufficient to know the finite available part of the stream to compute the result up to

that time point (see Section 3.4.1). Therefore CERA is suitable for an incremental,

step-wise evaluation as required for complex event queries.

Complex Event Relational Algebra 73

We illustrate CERA by its application to XChangeEQ [5, 11] which is one of the

recently developed, expressive and easy-to-use high-level EQLs. We also provide

details on how XChangeEQ rules are translated into CERA expressions and how

query plans consisting of CERA expressions can be optimized and incrementally

evaluated.

An important aspect of any query evaluation method is its correctness. Yet, this

aspect has often been neglected in CEP so far. Proving the correctness of an opera-

tional semantics, which focuses on how an answer for a query is computed, entails

the existence of a declarative semantics, which focuses on what the answers should

be. To this end, in Section 4 we introduce a declarative semantics for XChangeEQ

that is quite natural for event streams and in Section 5 we sketch a proof of the cor-

rectness of the operational semantics based on CERA with respect to the declarative

semantics. Section 6 concludes this chapter.

The contributions of this chapter are:

1. Formal definition of CERA as the first corner stone of the operational semantics

for EQLs

2. Description of incremental evaluation of query plans with materialization points

as the second corner stone of the operational semantics for EQLs

3. Formal definition of the declarative semantics for EQLs by a Tarski-style model

theory with accompanying fixpoint theory

4. Illustration of both semantics by an XChangeEQ program in the realm of sensor

network use case

5. Proof of the correctness, i.e., soundness and completeness of the operational se-

mantics for EQLs with respect to their declarative semantics

2 CEP Examples

Figure 1 contains an XChangeEQ program P which will be used as an example

throughout this chapter. In this section we briefly describe the program and refer the

reader to the chapter on “A CEP Babelfish: Languages for Complex Event Process-

ing and Querying Surveyed”, in this volume, for the informal definitions of the basic

notions in the realm of CEP (Section 2), the explanation of the syntax of XChangeEQ

(Section 8), and the description of the sensor network use case (Section 1).

The first rule of the program in Figure 1 triggers fire alarm for an area if smoke

and high temperature were measured in the area within one minute. For the second

rule, assume all sensors of our network send their temperature measurements every

12 seconds. The second rule of the program infers that a sensor has been burnt down

if it measured high temperature and did not send its measurements afterwards. And

the last query computes the average temperature reported by a sensor during the last

minute every time the sensor sends a temperature measurement.

74 M. Eckert et al.

DETECT fire { area { var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: temp {{ area {{ var A }}, value {{ var T }} }}
} where { s before t, {s,t} within 1 min, var T > 40 }

END

DETECT burnt_down { sensor { var S } }
ON and { event n: temp {{ sensor {{ var S }}, value {{ var T }} }},

event i: timer:from-end [event n, 12 sec],
while i: not temp {{ sensor {{ var S }} }}

} where { var T > 40 }
END

DETECT avg_temp { sensor { var S }, value { avg(all var T) } }
ON and { event m: temp {{ sensor {{ var S }} }},

event i: timer:from-start-backward [event m, 1 min],
while i: collect temp {{ sensor {{ var S }}, value {{ var T }} }} }

END

Fig. 1 XChangeEQ program P

3 CERA: An Operational Semantics for Event Query

Languages

This section is devoted to the formal definition of the operational semantics for

EQLs. In Section 3.1 we clarify the purpose of an operational semantics for query

languages in general and describe its desiderata for an EQL in particular. Com-

plex Event Relational Algebra (CERA) builds the first corner stone of the opera-

tional semantics. CERA is based on relational algebra and extends it with operators

which are able to treat notions specific for events such as event occurrence time. In

Section 3.2 we define the operators formally and illustrate their usage by translating

the XChangeEQ rules in Figure 1 into CERA expressions. Section 3.3 is devoted to

the formal specification of the translation of a single XChangeEQ rule into a CERA

expression. But keep in mind that CERA is independent from a particular EQL. Fi-

nally, Section 3.4 explains how query plans consisting of CERA expressions can be

optimized and incrementally evaluated (the second corner stone of the operational

semantics).

3.1 Purpose and Desiderata

In general, the purpose of an operational semantics is to provide an abstract de-

scription of an implementation of the evaluation engine of a language. For EQLs in

particular, an operational semantics must fulfill the following core desiderata:

1. It should be an incremental, data-driven evaluation method storing and updating

intermediate results instead of computing them anew in each step. The notion

Complex Event Relational Algebra 75

“incremental” derives from the idea that in each step we compute only the

changes relative to the previous steps.

2. Since the incoming event stream is unbounded, a naive query evaluation engine

storing all intermediate results forever, runs out of memory sooner or later. Hence

an operational semantics must enable garbage collection of irrelevant events, i.e.,

events which cannot contribute to a new answer any more. For the sake of brevity,

we do not formalize garbage collection of events in this chapter and refer the

reader to [7].

3. An operational semantics should provide a framework for query optimization

since it must be able to capture the whole space of different query plans. In this

chapter we only provide a general idea of event query optimization and refer the

reader to [6, 4, 10, 18] for more details.

4. An operational semantics for EQLs must be correct with respect to the declarative

semantics of EQLs and it must terminate for each incremental step.

3.2 CERA: Complex Event Relational Algebra

For the operational semantics we will restrict ourselves to hierarchical rule pro-

grams, i.e., programs that are free of any recursion of rules (see [11] for the formal

definition). Note that this is a common restriction not just for event queries but also

database views and queries, and causes no problems in most practical applications.

We want to base CERA on traditional relational algebra. There are three problems

arising when doing so: the treatment of XML data carried by events, the incorpo-

ration of the time axis and the infinity of streams. We approach these problems in

the following way: Streams are regarded from an omniscient perspective, i.e. as if

all events ever arriving on the stream were already known. From this point of view

the (complete infinite) stream is just a relation with tuples representing the events

arriving on the stream. Each tuple representing an event consists of two timestamp

attributes representing the begin and end of the occurrence interval of the event and a

data-term attribute representing the XML data carried by the event. Of course this re-

lation is potentially infinite and never known completely at any point of time. How-

ever this can be ignored for now. We will see below that due to a special property of

CERA called “temporal preservation” (Section 3.4.1) and the “finite differencing”

technique (Section 3.4.3), the evaluation is nevertheless able to incrementally com-

pute the desired result working only on the finite part of the relation known up to

some point of time.

All three points, the integration of XML-data, the explicit representation of the

time axis by means of timestamp attributes and the way to cope with the infin-

ity of streams, are fundamentally different to previous approaches. The chapter

“A CEP Babelfish: Languages for Complex Event Processing and Querying Sur-

veyed”, in this volume, shows that composition operator based languages, data

stream languages and production rule languages have none or only weak support for

XML. These language groups also lack an explicit representation of time (though

time plays a role of course) limiting the temporal relations expressible in these

76 M. Eckert et al.

approaches. Data stream languages like CQL also tend to use a kind of relational

algebra for their semantics, however they approach the infinity of streams by (con-

ceptually) converting parts of the stream into a finite relation for every point of time

by, for example, time windows. After that, relational algebra is applied and the re-

sulting relation is then converted back into a stream using another operator. (We

refer the reader to the chapter “A CEP Babelfish: Languages for Complex Event

Processing and Querying Surveyed”, in this volume, for more details). This signifi-

cantly differs from our approach as we do not do any conversion at all but just view

the complete potentially infinite stream as a relation and directly apply relational

algebra to that relation.

With regards to the XML integration we are not finished yet at this point as we

need the possibility to access the data contained in the data-term attribute of an

event (or its tuple respectively), for example, for selections or joins. Therefore we

introduce the matching operator QX which extracts the desired data into attributes

of the resulting relation. The complementary operator to QX is the construction

operator CX which is used to construct the new data-terms for the derived complex

events from a number of attributes of a relation. It will be explained more closely

on Page 80. In this way applying a complete CERA expression, i.e., an expression

with QX at the bottom and CX at the top, to an event stream, or more precisely to the

relation representing the stream, results in a relation with the same schema, or an

event stream, again. Thus CERA is answer-closed. In the following we will mainly

describe the effect of QX and CX on the schema of a relation, as XML matching

and construction are not in the focus here. For details on the exact semantics of the

XML matching in QX and XML construction in CX see [11].

The event matching operator QX takes two arguments, an event stream (i.e. the

corresponding relation) and a simple event query event i : q. The result of applying

QX to the event stream E using the simple event query event i : q is the relation

Ri = QX
[i: q](E). Each event (or tuple) in the stream (or relation) matched by q

corresponds to one or many tuples in Ri (see the definition of QX in [11]).

The schema sch(Ri) of Ri corresponds directly to the free variables of q. Each

free variable of q is a data attribute of Ri. Furthermore Ri contains an event refer-

ence attribute i.re f identifying the event a tuple was derived from, and two times-

tamp attributes i.begin, i.end representing the occurrence time interval of this event.

Consequently, Ri has the schema sch(Ri) = { i.begin, i.end, i.ref ,X1, . . . ,Xn } , where

X1, . . . ,Xn are the free variables of q. We denote the set of data attributes of Ri with

schdata(Ri), the set of timestamp attributes with schtime(Ri) and the set of event ref-

erence attributes with schref (Ri).
Note that we use the named perspective on relations here, i.e., tuples are viewed

as functions that map attribute names to values. This is more intuitive than the un-

named perspective identifying attribute values by their positions in ordered tuples.

The XChangeEQ program P in Figure 1 gives rise to the relations in Figure 2.

These relations will be the input for the CERA expressions into which we will trans-

late the rules of P.

Complex Event Relational Algebra 77

Smokes = QX
[s: smoke{{area{{var A}}}}](E), sch(Smokes) = {s.begin,s.end,

s.re f ,A}

Tempt = QX
[t: temp{{area{{var A}},value{{var T}}}}](E), sch(Tempt) = {t.begin, t.end,

t.re f ,A,T}

Tempn = QX
[n: temp{{sensor{{var S}},value{{var T}}}}](E), sch(Tempn) = {n.begin,n.end,

n.re f ,S,T}

Tempv = QX
[v: temp{{sensor{{var S}}}}](E), sch(Tempv) = {v.begin,v.end,

v.re f ,S}

Tempm = QX
[m: temp{{sensor{{var S}}}}](E), sch(Tempm) = {m.begin,m.end,

m.re f ,S}

Tempw = QX
[w: temp{{sensor{{var S}},value{{var T}}}}](E), sch(Tempw) = {w.begin,w.end,

w.re f ,S,T}

Fig. 2 Input relations for the CERA expressions for the program P in Figure 1

Besides the relations shown in Figure 2, the program P makes use of relative

timer events. Figure 3 contains generic definitions of the relative timer events used

in P. Relative timer events are expressed by means of auxiliary event streams S and

auxiliary relations X. The definitions take an event stream E and a relative timer

specification as parameters. Each auxiliary event stream S contains one relative

timer event s for each event r of the event stream E. The timestamps of s are de-

fined relatively to the timestamps of r. The matching operator QX sets the value of

attribute j.re f of X to a reference to event r (denoted re f (r)). We need the attribute

j.re f to join X with another relation to drop superfluous tuples of X.

X[i: from-end[j,d]](E) := QX
[i: rel-timer-event[var j.ref]](S[from-end[d]](E)), where

S[from-end[d]](E) := {s | ∃ r ∈ E with s :=

s(begin) = r(end),

s(end) = r(end)+d,

s(term) = rel-timer-event(re f (r))

}

X[i: from-start-backward[j,d]](E) := QX
[i: rel-timer-event[var j.ref]](S[from-start-backward[d]](E)), where

S[from-start-backward[d]](E) := {s | ∃ r ∈ E with s :=

s(begin) = r(begin)−d,

s(end) = r(begin),

s(term) = rel-timer-event(re f (r))

}

Fig. 3 Generic definitions of the relative timer events used in the program P in Figure 1

Besides event matching, QX, CERA allows the following operators: natural join

⋊⋉, selection σ , projection π , temporal join ⋊⋉i⊒ j, temporal anti-semi join ⋉i⊒ j,

merging of time intervals µ , renaming ρ , and event construction CX. The definitions

of natural join, selection and projection are just the same as in traditional relational

algebra. There is only one important limitation of projection. It is allowed to discard

data attributes (e.g., X), but it is not allowed to discard time attributes (e.g., i.begin)

and event references (e.g., i.re f).

78 M. Eckert et al.

The translation of while/collect in XChangeEQ is expressed by temporal join.

Temporal join is a new operator of CERA, it does not exist in traditional relational

algebra and cannot be expressed as a combination of operators of traditional rela-

tional algebra. Let R and S be relations. In a temporal join R ⋊⋉θ S, the condition θ

has the form i.begin ≤ j.begin☎ j.end ≤ i.end, where { i.begin, i.end } ⊆ schtime(R)
and { j.begin, j.end } ⊆ schtime(S). We abbreviate these conditions with i ⊒ j. To

achieve the right implicit groupng by event references (see the description of the

event construction operator CX below), the reference j.re f must be dropped. This is

possible because the temporal restriction i ⊒ j guarantees that the groups stay finite

after j.re f is dropped.

Definition 1 (Temporal join). Let R and S be relations such that {i.begin, i.end}⊆
schtime(R), i.re f ∈ schre f (R), { j.begin, j.end}⊆ schtime(S), and j.re f ∈ schre f (S).

R ⋊⋉i⊒ j S = {o | ∃r ∈ R ∃s ∈ S such that

r(X) = s(X) if X ∈ sch(R)∩Sch,
r(i.begin) ≤ s(j.begin) and s(j.end) ≤ r(i.end),
o(X) = r(X) if X ∈ sch(R) and o(X) = s(X) if X ∈ Sch,
o(X) = ⊥ otherwise },

where Sch := sch(S)\ { j.begin, j.end, j.re f},

sch(R ⋊⋉i⊒ j S) = sch(R)∪Sch.

In order to express negation of an event in CERA we introduce a θ -anti-semi-

join that uses the θ condition to define the event accumulation window (anal-

ogously to the above definition of temporal join). The temporal anti-semi-join

R ⋉i⊒ j S takes two relations R and S as input, where {i.begin, i.end} ⊆ schtime(R)
and { j.begin, j.end}= schtime(S). (Note that it is “⊆” for the timestamps of the left

side of the anti-semi-join and “=” for timestamps on the right side!) Its output is R

with those tuples r removed that have a “partner” in S, i.e., a tuple s ∈ S that agrees

on all shared attributes with r and whose timestamps s(j.begin), s(j.end) are within

the time bounds r(i.begin), r(i.end).

Definition 2 (Temporal anti-semi-join). Let R and S be relations with {i.begin,
i.end} ⊆ schtime(R) and { j.begin, j.end} = schtime(S).

R ⋉i⊒ j S = {r ∈ R |� ∃s ∈ S such that ∀X ∈ sch(R)∩ sch(S). r(X) = s(X)
and r(i.begin)≤ s(j.begin), s(j.end) ≤ r(i.end)},

sch(R ⋉i⊒ j S) = sch(R).

In contrast to temporal join and temporal anti-semi-join, natural join maintains the

time attributes of both input relations in order to ensure temporal preservation, an

important property of CERA operators allowing them to work on finite available

Complex Event Relational Algebra 79

parts of streams.1 But as the reader will see in Section 3.4.1, to guarantee tem-

poral presevation, CERA operators must not maintain all timestamps of an input

event but only the greatest timestamp of each input event. To reduce the num-

ber of timestamps of an event, a merging operator is used. It computes a single

time interval of an event out of many time intervals it carries. Let R be a relation.

A merging operator µ [[begin,end] ← j1 ⊔ ·· · ⊔ jn](R) computes a new time inter-

val [begin,end] from existing ones j1, . . . , jn so that the time interval [begin,end]
covers all the intervals j1, . . . , jn, i.e., begin = min{ j1.begin, . . . , jn.begin} and

end = max{ j1.end, . . . , jn.end}. Further, the merging operator extracts the begin-

ning begin and the end end of the new time interval as well as all attributes of R

except j1.begin, j1.end, ..., jn.begin, jn.end in the manner of a projection. Merging

of time intervals is not really a new operation in CERA. It is equivalent to an ex-

tended projection [14], a common practical extension of relational algebra used to

compute new attributes from existing ones.

Definition 3 (Merging of time intervals). Let R be a relation and j1, . . . , jn time

intervals such that { j1.begin, j1.end, . . . , jn.begin, jn.end}⊆ schtime(R). Merging of

j1, . . . , jn is a relation defined as follows:

µ [[begin,end]← j1 ⊔·· ·⊔ jn](R) = {t | ∃r ∈ R with

t(begin) = min{r(j1.begin), . . . ,r(jn.begin)},
t(end) = max{r(j1.end), . . . ,r(jn.end)},
t(X) = r(X) if X ∈ sch(R)\ {begin,end, j1.begin, j1.end, . . . , jn.begin, jn.end},
t(X) = ⊥ otherwise},

sch(µ [[begin,end]← j1 ⊔·· ·⊔ jn](R)) =
{begin,end}∪ (sch(R)\ { j1.begin, j1.end, . . . , jn.begin, jn.end}).

For technical reasons (i.e., usage of natural join), the named perspective of relational

algebra sometimes requires a renaming operator, which changes the names of at-

tributes without affecting their values. Renaming is denoted by ρ [a′1 ← a1, . . . ,a
′
n ←

an](R). It renames attributes a1, . . . ,an of the relation R to a′1, . . . ,a
′
n respectively.

Note that if an attribute ai is a data attribute of R it must be a data attribute in the

resulting relation, if it is a timestamp, then a′i must also be a time attribute, and if it is

an event reference so also a′i. Note also that timestamps must always occur pairwise;

accordingly, they can only be renamed pairwise.

Definition 4 (Renaming). Let R be a relation such that {a1, . . . ,an} ⊆ sch(R) and

{a′1, . . . ,a′n}∩ sch(R) = /0.

ρ [a′1 ← a1, . . . ,a
′
n ← an](R) = {t | ∃r ∈ R such that t(a′i) = r(ai) and

∀X �∈ {a1, . . . ,an}. t(X) = r(X)},

1 Temporal restriction of temporal join and temporal anti-semi-join ansures temporal

preservation.

80 M. Eckert et al.

∀i ∈ {1, . . . ,n}. ai ⊆ schtime(R) iff a′i ⊆ schtime (ρ [a′1 ← a1, . . . ,a
′
n ← an](R)),

ai ⊆ schre f (R) iff a′i ⊆ schre f (ρ [a′1 ← a1, . . . ,a
′
n ← an](R)),

ai ⊆ schdata(R) iff a′i ⊆ schdata (ρ [a′1 ← a1, . . . ,a
′
n ← an](R)),

j.s ← i.s ∈ {a′1 ← a1, . . . ,a
′
n ← an} iff j.e ← i.e ∈ {a′1 ← a1, . . . ,a

′
n ← an},

where {i.s, i.e} ⊆ schtime(R) and { j.s, j.e} ⊆ schtime(ρ [a′1 ← a1, . . . ,a
′
n ← an](R)),

sch(ρ [a′1 ← a1, . . . ,a
′
n ← an](R)) = (sch(R)\ {a1, . . . ,an})∪{a′1, . . . ,a

′
n})

We will see the necessity of the operator in Section 3.4.

Finally, the event construction operator CX undertakes the construction of the

data-terms carried by the derived complex events. The output schema of CX is the

same as the input schema of QX, i.e. the output relation of CX can be regarded

as a stream of derived events. The operator takes two arguments, a relation R with

schtime(R) = {begin,end} and a rule head h. The result of applying CX to the relation

R using the rule head h is the stream (or relation) E ′ = CX
[h](R). One event (or tuple)

in E ′ corresponds to one or many tuples in R depending on whether h contains

grouping and aggregation constructs or not.

If h does not contain grouping and aggregation constructs like all, then CX con-

structs for each tuple r ∈ R one event represented as the data term annotated with

the time interval [r(begin),r(end)]. The data term results from substituting each free

variable X of h by r(X), i.e., by the value of attribute X of the tuple r.

CX
[f ire{area{var A}}](

µ[[begin,end] ← s⊔ t](
σ [max{s.end,t.end}−min{s.begin,t.begin} ≤ 1 min](

σ [s.end < t.begin](
σ [T > 40](

Smokes ⋊⋉ Tempt)))))

Fig. 4 CERA expression for the first rule of the program P in Figure 1

For example, the first rule of the program P in Figure 1 corresponds to the CERA

expression in Figure 4. Remember that the query triggers fire alarm for an area when

smoke and high temperature are both detected in the area within one minute. Note

that all temporal conditions (such as s before t and {s,t} within 1 min) of the query

have been turned into selections. Because temporal information is simply data in

tuples (as s.begin, s.end, etc.), no special temporal operators are needed as part of

the algebra; e.g., there is no need for a sequence operator as found in many event

algebras.

The second rule of the program P corresponds to the CERA expression in

Figure 5. Recall that the rule infers that a sensor had burnt down if it reported high

temperature and did not send its measurements afterwards any more. For this rule

we assume that all temperature sensors send their measurements every 12 seconds.

Complex Event Relational Algebra 81

CX
[burnt down{sensor{var S}}](

µ[[begin,end] ← n⊔ i⊔ v](
σ [T > 40](

(Tempn ⋊⋉ X[i: from-end[n,12 sec]](E)) ⋉i⊒v Tempv)))

Fig. 5 CERA expression for the second rule of the program P in Figure 1

If the rule head h contains grouping and aggregation constructs, the operator CX

does the required grouping of tuples and computes the values of aggregation func-

tions. Note that explicit grouping happens after an implicit grouping of the tuples

of R by event references and time attributes. (Since time attributes are functionally

dependent on event references, they do not have any effect on the result of grouping

but they must be part of each resulting tuple to guarantee temporal preservation.) As

temporal joins are restricted to finite time intervals and projections may not discard

event references, after the implicit grouping by event references and time attributes,

each group is finite (but there may be of course infinitely many groups because the

stream is potentially infinite). Therefore grouping initiated by h does not need any

treatment specific for CEP.

CX
[avg temp{sensor{var S},value{avg(all var T)}}](

µ[[begin,end] ← m⊔ i⊔w](
(Tempm ⋊⋉ X[i: from-start-backward[m,1 min]](E)) ⋊⋉i⊒w Tempw))

Fig. 6 CERA expression for the third rule of the program P in Figure 1

Consider the last rule of P in Figure 1 corresponding to the CERA expression in

Figure 6. Recall that the rule computes the average temperature reported by a sensor

during the last minute every time the sensor sends a temperature measurement. CX

takes the tuples of the joined input relations, groups them, first implicitly by the

event references and time attributes and then according to the value of attribute

S (denoting a sensor). For each group the average value of attribute T (denoting

a temperature measurement) is computed and saved as the value of data attribute

value of the resulting event.

3.3 Translation into CERA

We now turn to the formal specification of the translation of a single XChangeEQ

rule into a CERA expression. The rules are first normalized, which means that or
is eliminated and the literals in the rule body are ordered in a specific way. Figure 7

shows the general structure of a normalized XChangeEQ rule.2 Note that all rules of

the program in Figure 1 are normalized.

2 Note that the normalization of a single rule usually yields a set of rules not a single rule

due to the elmination of or.

82 M. Eckert et al.

DETECT

h

ON

and{b1, . . . ,bis
︸ ︷︷ ︸

Simple
Event

Queries

,bis+1, . . . ,bit
︸ ︷︷ ︸

Relative
Timer
Spec

,bit +1, . . . ,bia
︸ ︷︷ ︸

Accumulation
for

Collection

,bia+1, . . . ,bn
︸ ︷︷ ︸

Accumulation
for

Negation

} where{c1, . . . ,ck}

END

Fig. 7 Normalized XChangeEQ rule

Figure 8 shows the translation of a single normalized XChangeEQ rule. The trans-

lation of rule sets requires additionally the notion of query plans which will be in-

troduced in Section 3.4.2.

b1 �→ B1

b1, . . . ,bi+1 �→ Bi+1

and{b1, . . . ,bn} �→ Bn

and{b1, . . . ,bn} where{c1, . . . ,ck} �→ C

DETECT h ON and{b1, . . . ,bn} where{c1, . . . ,ck} END �→ Q

B1 := QX
[j: q] for b1 = event j : q

Bi+1 :=

Bi ⋊⋉ QX
[j: q] if bi+1 = event j : q

Bi ⋊⋉ X[j: REL-TIMER-SPEC[j′,d]] if bi+1 = event j : REL-TIMER-SPEC[j′,d]

Bi ⋊⋉ j⊒i′ QX
[i′: q] if bi+1 = while j : q

Bi ⋉ j⊒i′ QX
[i′: q] if bi+1 = while j : not q

where 1 ≤ i < n and i′ is a fresh event identifier

C := σ [c′1 ∧·· ·∧ c′q](Bn) where c′i is the translation of ci (see Figure 13.4 in [11] for details)

Q := CX
h (µ[[begin,end]← j1 ⊔·· ·⊔ jl](C))

Fig. 8 Translation of a single normalized XChangeEQ rule into a CERA expression

3.4 Incremental Evaluation

Till now we pretended to have a kind of “omniscience”: The relations contain con-

ceptually all events that ever happen and are probably infinite for that reason. In the

actual evaluation of event queries it is not possible to foresee future events. Event

queries are evaluated incrementally on finite event histories. This section explains

the details on incremental evaluation of programs in an EQL. We start with temporal

preservation of CERA, a property allowing incremental evaluation of CERA expres-

sions (Section 3.4.1). Then, we introduce the notion of query plans with materializa-

tion points (Section 3.4.2) and explain their incremental evaluation (Section 3.4.3).

Complex Event Relational Algebra 83

3.4.1 Temporal Preservation

The restrictions that CERA imposes on expressions (compared to an unrestricted

relational algebra) make this approach reasonable since we do not need any knowl-

edge about future events when we want to obtain all results of an expression with

an occurrence time until now. More precisely, to compute all results of a CERA

expression Q with an occurrence time before or at time point now, we need to know

(the finite part of) its input relations up to this time point now. In order to formally

define and prove this property of CERA, called temporal preservation, we need the

following auxiliary definition.

Definition 5 (Occurrence time of a tuple). The occurrence time of a tuple r in the

result of a CERA expression Q is a time interval given by

occtime(r) = [min{r(i.begin) | i.re f ∈ schre f (Q)},
max{r(i.end) | i.re f ∈ schre f (Q)}]

To refer to the end of the occurrence time of a tuple, i.e., end(occtime(r)) in

selections we introduce the shorthand ENDQ := max{ i1.end, . . . , in.end } where

{ i1.end, . . . , in.end }∪{ i1.begin, . . . , in.begin } = schtime(Q).3

Theorem 1 (Temporal preservation). Let Q be a CERA-expression with input re-

lations R1, . . . ,Rn. Then for all time points now : σ [ENDQ ≤ now](Q) = Q’, where

Q’ is obtained from Q by replacing each Rk with R′
k := {r ∈ Rk | end(occtime(r)) ≤

now}.

Proof (Sketch). By induction. For event matching, event construction, selection, and

projection, the claim is obvious since timestamps are not changed at all. By defini-

tion, natural join maintains the timestamps of both input relations without change.

By definition, merging does not change the maximum value over all timestamps.

Temporal join and temporal anti-semi-join are only allowed with temporal restric-

tions that also ensure that the maximum value is maintained. We refer to [11] for

details.

3.4.2 Query Plans with Materialization Points

In traditional relational databases, a query plan describes the order in which op-

erators are applied to base relations to compute answers for queries and serves

as a basis for query optimization techniques such as “push selection” and storage

and reuse of shared subqueries. In CEP, queries are evaluated continuously over

time against changing event data received as an incoming stream and therefore a

query plan should additionally account for storage of intermediate results of CERA

expressions to avoid their re-computation in later evaluation steps. To this end,

query plans with so-called materialization points are introduced in this section. A

3 Note that ENDQ is a syntactical expression which can be used in selections whereas

end(occtime(r)) denotes a mathematical function on the semantic level.

84 M. Eckert et al.

materialization point is a relation which saves and updates the results of a CERA

expression instead of computing them anew in each evaluation step.

Definition 6 (Query plan with materialization points). A query plan is a sequence

QP = 〈M1 := Q1, . . . ,Mn := Qn〉 of materialization point definitions Mi := Qi. Mi is

called a materialization point. Qi is either a basic stream,4 a CERA (sub-) expres-

sion or a union R1∪ . . .∪Rn of materialization points. Each materialization point Mi

is defined only once in QP, i.e., Mi �= M j for all 1 ≤ i < j ≤ n. The materialization

point definitions must be acyclic, i.e., if M j occurs in Qi then j < i for all 1 ≤ i ≤ n

and all 1 ≤ j ≤ n.

Since a query plan is acyclic, its semantics is straightforward: compute the results

of its expressions from left to right, replacing references to materialization points

with their (already computed) result.

Firef := CX
[f ire{area{var A}}](

µ[[begin,end] ← s⊔ t](
σ [max{s.end,t.end}−min{s.begin,t.begin} ≤ 1 min](

σ [s.end < t.begin](
σ [T > 40](

Smokes ⋊⋉ Tempt)))))

Burnt downb := CX
[burnt down{sensor{var S}}](

µ[[begin,end] ← n⊔ i⊔ v](
σ [T > 40](

(Tempn ⋊⋉ X[i: from-end[n,12 sec]](E)) ⋉i⊒v Tempv)))

Avg tempa := CX
[avg temp{sendor{var S},value{avg(all var T)}}](

µ[[begin,end] ← m⊔ i⊔w](
(Tempm ⋊⋉ X[i: from-start-backward[m,1 min]](E)) ⋊⋉i⊒w Tempw))

Fig. 9 Query plan for the program P in Figure 1

Figure 9 shows a query plan for the program P. The plan can be significantly

improved. First, it does not account for the materialization of shared subqueries.

Relations Tempn in the second expression and Tempw in the third expression are

equal except for the names of time attributes and event references, i.e., Tempw =
ρ [w.begin← n.begin,w.end ← n.end,w.re f ← n.re f](Tempn). (Compare their sim-

ple event queries in Figure 2.) But the same tuples of the relations are computed and

saved twice. To avoid this, we introduce a new relation Tempn’ (where n’ is a fresh

event identifier), save all the respective tuples only once in it, and use this relation

in both expressions.

4 When translating an XChangeEQ program, the basic streams are the incoming event stream

E and the auxiliary streams for relative timer events.

Complex Event Relational Algebra 85

The same holds for the relations Tempv in the second expression and Tempm in

the third expression, i.e., Tempv = ρ [v.begin ← m.begin,v.end ← m.end,v.re f ←
m.re f](Tempm). We use the relation Tempm’ (where m’ is a fresh event identifier)

in both expressions.

Second, selections should be as near to their respective relations as possible to re-

duce the number of tuples which must be further considered (e.g., joined with tuples

of other relations). This optimization technique, usually called “push selection”, is

adopted from the traditional relational algebra. To this end we apply the selection

σ [T > 40] to the relation Tempt before Tempt is joined with the relation Smokes in

the first expression of the query plan. We analogously modify the second expression

of the query plan.

Third, intermediate results of a query should be materialized to avoid their re-

computation in later evaluation steps. For example, in the first query, if a new event

arrives and is saved in the relation Smokes we have to compute σ [T > 40](Tempt)
anew in order to join it with the changed relation Smokes. To avoid this re-

computation we define a new materialization point At := σ [T > 40](Tempt) and

join it with the relation Smokes. To avoid re-computations in the other expressions

we introduce the materialization points Bn’,i,Cn’, and Dm’,i. Consider Figure 10 for

the improved query plan.

Firef := CX
[f ire{area{var A}}](

µ[[begin,end] ← s⊔ t](
σ [max{s.end,t.end}−min{s.begin,t.begin} ≤ 1 min](

σ [s.end < t.begin](
Smokes ⋊⋉ At)))), where

At := σ [T > 40](Tempt)

Burnt downb := CX
[burnt down{sensor{var S}}](

µ[[begin,end] ← n′ ⊔ i⊔m′](
Bn’,i ⋉i⊒m′ Tempm’)), where

Bn’,i := Cn’ ⋊⋉ X[i: from-end[n’,12 sec]](E), where

Cn’ := σ [T > 40](Tempn’)

Avg tempa := CX
[avg temp{sendor{var S},value{avg(all var T)}}](

µ[[begin,end] ← m′⊔ i⊔n′](
Dm’,i ⋊⋉i⊒n′ Tempn’)), where

Dm’,i := Tempm’ ⋊⋉ X[i: from-start-backward[m’,1 min]](E),

Fig. 10 Improved query plan for the program P in Figure 1

86 M. Eckert et al.

So far it might seem that this is just an insignificant change in notation. How-

ever, it will become clear in the next section that only those intermediate results

are “materialized”, i.e., remembered across individual evaluation steps, that have a

materialization point. Therefore the query plans in Figures 9 and 10 are different in

terms of incremental evaluation, although of course both yield the same results for

the program P. Note that the efficiency of a query plan depends on characteristics of

its event streams and there is no general principle to tell which one is more efficient.

3.4.3 Finite Differencing

Evaluation of an event query program, or rather its query plan QP, over time is a

step-wise procedure. A step is initiated by some base event (an event which is not de-

rived by a rule) happening at the current time, which we denote now. Then for each

materialization point M in QP, the required output for this step is the set of all com-

puted answers (tuples r representing materialized intermediate results and derived

events) that “happen” at this current time now, i.e., where end(occtime(r)) = now.

In other words in each step, we are not interested in the full result of M, but only in

△M := σ [ENDQ = now](M).5

A naive, non-incremental way of query evaluation would be: Maintain a stored

version of each base event relation across steps. In each step simply insert the

new event into its base relation and evaluate the query plan from scratch ac-

cording to its non-incremental semantics (previous section). Then apply the se-

lection σ [ENDQ = now] to each materialization point to output the result of the

step. This is, however, inefficient since we compute not only the required result

△M = σ [ENDQ = now](M), but also all results from previous steps, i.e., also

σ [ENDQ < now](M).
It is more efficient to use an incremental approach, where we (1) store not only

base relations but also some intermediate results, namely those of each materializa-

tion point M across steps and then (2) in each step only compute the changes of M

that result from the step. It turns out that due to the temporal preservation of CERA

(see Theorem 1), the change to each M involves only inserting new tuples into M

and that these tuples are exactly the ones from △M.

We can compute △M efficiently using the changes △Ri of the input relations

Ri of M := Q, together with ◦Ri = σ [ENDQ < now](Ri), their materialized states

from the previous evaluation steps.6 Using finite differencing, we can derive a

5 We assume for simplicity here that the base events are processed in the temporal order in

which they happen, i.e., with ascending ending timestamps. Extensions where the order

of events is “scrambled” (within a known bound) are possible, however. Note that while

the time domain can be continuous (e.g., isomorphic to the real numbers), the number of

evaluation steps is discrete since we assume a discrete number of incoming events.
6 Note that some previous results can become irrelevant in later evaluation steps, i.e., they

cannot contribute to new answers any more. Therefore they should be deleted to speed up

the later evaluation steps. See [7] for the formal definition of garbage collection enabled

by CERA.

Complex Event Relational Algebra 87

CERA-expression △Q so that △Q involves only △Ri and ◦Ri and △Q = △M (for

each step). Finite differencing pushes the differencing operator△ inwards according

to the equations in Figure 11.

△QX(Q) = QX(△Q) ◦QX(Q) = QX(◦Q)

△CX(Q) = CX(△Q) ◦CX(Q) = CX(◦Q)
△σC(Q) = σC(△Q) ◦σC(Q) = σC(◦Q)
△ρA(Q) = ρA(△Q) ◦ρA(Q) = ρA(◦Q)
△πP(Q) = πP(△Q) ◦πP(Q) = πP(◦Q)
△µM(Q) = µM(△Q) ◦µM(Q) = µM(◦Q)
△(Q1 ⋊⋉ Q2) =△Q1 ⋊⋉ ◦Q2 ∪△Q1 ⋊⋉ △Q2 ∪ ◦(Q1 ⋊⋉ Q2) = ◦Q1 ⋊⋉ ◦Q2

∪◦Q1 ⋊⋉ △Q2

△(Q1 ⋊⋉i⊒ j Q2) =△Q1 ⋊⋉i⊒ j ◦Q2 ∪△Q1 ⋊⋉i⊒ j △Q2 ◦(Q1 ⋊⋉i⊒ j Q2) = ◦Q1 ⋊⋉i⊒ j ◦Q2

△(Q1 ⋉i⊒ j Q2) =△Q1 ⋉i⊒ j ◦Q2 ∪△Q1 ⋉i⊒ j △Q2 ◦(Q1 ⋊⋉i⊒ j Q2) = ◦Q1 ⋊⋉i⊒ j ◦Q2

Fig. 11 Equations for finite differencing

Finite differencing is a method originating in the incremental maintenance of ma-

terialized views in databases, which is a problem very similar to incremental event

query evaluation. We refer the reader to [11, 7] for more information on incremental

evaluation and garbage collection enabled by CERA.

4 A Declarative Semantics for Event Query Languages

Section 4.1 explains the purpose and necessity of a declarative semantics for a

programming language in general and its desiderata for an EQL in particular.

Section 4.2 is devoted to the formal definition of the declarative semantics of

XChangeEQ with a model-theoretic approach in order to prove the correctness of

its operational semantics (Section 5).

4.1 Purpose, Necessity and Desiderata

In general, a declarative semantics relates the syntax of a language to mathematical

objects and expressions that capture the intended meaning. In other words, a declar-

ative semantics focuses on expressing what a sentence in the language means, rather

than how that sentence might be evaluated (which is the purpose of an operational

semantics).

A declarative semantics thus provides a convenient basis to prove the correct-

ness of various operational semantics. In particular in the area of query languages

there are usually a myriad of equivalent ways to evaluate a given query, that is, of

possible operational semantics. If, on the other hand, the formal semantics of a lan-

guage were specified only in an operational way, proving the correctness of other

operational semantics would be significantly harder: since an operational semantics

focuses on how the result is computed not on what is the result, we have to reason

88 M. Eckert et al.

about the equivalence of two computations. When we prove correctness of an op-

erational semantics with respect to a declarative semantics, we instead just reason

about properties of the output of one computation. This use of a declarative seman-

tics to prove correctness of evaluation methods is particularly useful in research on

optimization.

Declarative semantics have often been neglected in EQLs so far. Our goal is a

declarative semantics that is natural on event streams, i.e., does not require a con-

version from streams to relations and back, like SQL-based EQLs do [3, 12, 16],

and is as declarative as possible and thus avoids any notion of state.

Because of these reasons we specify the declarative semantics by a Tarski-style

model theory with accompanying fixpoint theory in Section 4.2. This approach has

another important advantage, namely it accounts well for data in events and rule

chaining, two aspects that have often been neglected in the semantics of EQLs till

now.

4.2 Model Theory and Fixpoint Theory

While the model-theoretic approach is well-established for traditional, non-event

query and rule languages, its application to EQLs is novel and we highlight the

extensions that are necessary in this section. We also show that our declarative se-

mantics is suitable for querying events that arrive over time in unbounded event

streams and illustrate this statement by the declarative semantics of the XChangeEQ

program P in Figure 1.

The idea of a model theory, as it is used in traditional, non-event query lan-

guages [15, 1, 17], is to relate expressions to an interpretation by defining an en-

tailment relation. Expressions are syntactic fragments of the query language such

as rules, queries, or facts viewed as logic sentences. The interpretation contains all

facts that are considered to be true. The entailment relation indicates whether a given

interpretation entails a given sentence in the language, that is, if the sentence is log-

ically true under this interpretation. For the semantics of a given query program

and a set of base facts are those interpretations of interest that (1) satisfy all rules

of the program and (2) contain all base facts. Because it satisfies all rules, such an

interpretation particularly contains all facts that are derived by rules. We call these

interpretations models.

When we replace facts that are true with events that happen, this approach can

also be applied to EQLs. The problem, of course, is that events are associated with

occurrence times and event queries are evaluated over time against a potentially

infinite event stream. At each time point during the evaluation we know only which

events have happened (i.e., been received in the event stream) so far, not any events

that might happen in the future. We start off with some basic definitions that explain

how we represent time and events in the semantics of XChangeEQ.

Time is represented by a linearly ordered set of time points (T,<). The set

of time intervals is TI = {t = [begin,end] | begin ∈ T,end ∈ T,begin ≤ end}.

For an interval t, begin(t) denotes its beginning and end(t) its end, i.e., t =

Complex Event Relational Algebra 89

[begin(t),end(t)]. We omit t in the notation if the interval is clear from the context,

i.e., we write begin and end instead of begin(t) and end(t) respectively.

The set of data terms is denoted DataTerms (see [17, 13] for the full grammar

of Xcerpt data terms). Recall that data terms are used to represent data and type

information for events. An event is a tuple of a time interval t and a data term e,

written et . The set of events is denoted Events; Events = DataTerms×TI. Let E ⊆
Events denote an event stream and EventIdenti f iers the set of event identifiers.

To explain how simple event queries are matched against incoming events and

how events derived by rules are constructed, we have to explain some concepts

of the Web query language Xcerpt, whose query and construct terms are used in

XChangeEQ. We try to keep these explanations brief and refer the reader to [9, 17]

for details.

An Xcerpt query term is a pattern that accesses data to extract relevant portions

of it. An Xcerpt construct term is a pattern that constructs new data. Consider

the first rule in Figure 1. fire{area{var A}} is a construct term, smoke{{area{{var

A}}}} and temp{{ area{{var A}},value{{var T}}}} are query terms. Since query

and construct terms of a rule contain variables (A and T in this case) that are bound

to values during the application of the rule, we need the concept of substitution.

Let Vars denote the set of variable names. A substitution σ is a partial mapping

from variable names to data terms, i.e., σ : Vars → DataTerms. We write substitu-

tions as σ = {X1 �→ v1, . . . ,Xn �→ vn}, meaning that σ(Xi) = vi for i ∈ {1, . . . ,n} and

σ(Y) = ⊥ for Y �∈ {X1, . . . ,Xn}.

The application of a substitution σ to a query term q replaces the occurrences

of variables V in q with their values σ(V). The result is denoted σ(q). If σ(q) is a

ground term, i.e., a term without variables, we call σ a grounding substitution of

q.

Simple event queries in XChangeEQ are Xcerpt query terms that are matched

against data terms e of incoming events et . This matching of simple event queries is

based on simulation between ground terms as defined for Xcerpt [9, 17]. Intuitively,

a ground query term q simulates into a data term d, denoted q � d, if the nodes

and the structure of the graph that q represents, can be found in the graph of d.

This simulation relationship of Xcerpt is especially designed for the variations and

incompleteness in semi-structured data.

A non-ground query term q′ simulates into a data term d, q′ � d, if there is a

grounding substitution σ such that σ(q′) � d. Note that for a given non-ground

query term q′ and a given data term d, there are often several substitutions that

allow a simulation between the two. We denote the substitution set of q′ and d by

Σ := {σ | σ(q′) � d}.

An XChangeEQ rule head contains an Xcerpt construct term h for constructing

new, derived events. This construction uses the substitution set Σ obtained from the

evaluation of the query in the respective rule body to replace variables with values.

Application of Σ to h, defined in [17], returns a set of data terms representing derived

events.

Now we can define interpretation and entailment, which are the core of the model

theory of XChangeEQ.

90 M. Eckert et al.

I,σ ,τ |= qt iff ∃et ′ ∈ I such that t ′ = t and σ(q) � e

I,σ ,τ |= (event i : q)t iff ∃et ′ ∈ I such that τ(i) = et ′ , t ′ = t and σ(q) � e

M |= (q1 ∧q2)
t iff ∃t1,t2 such that t = t1 ⊔ t2, M |= q

t1
1 and M |= q

t2
2

M |= (q1 ∨q2)
t iff M |= qt

1 or M |= qt
2

I,σ ,τ |= (Q where C)t iff I,σ ,τ |= Qt and Wσ ,τ (C) = true

I,σ ,τ |= (while j : not q)t iff ∃et ′ ∈ I such that τ(j) = et ′ and t ′ = t,

and � ∃t ′′ ⊑ t such that I,σ ,τ |= qt ′′

I,σ ,τ |= (while j : collect q)t iff ∃et ′ ∈ I such that τ(j) = et ′ and t ′ = t,

and ∃t ′′ ⊑ t such that I,σ ,τ |= qt ′′

I,σ ,τ |= (h ← B)t iff ∀τ ′ : Στ ′ = /0 or Στ ′(h) ⊆ I

with Στ ′ := {σ ′ | I,σ ′,τ ′ |= Bt}

Fig. 12 Entailment relation defining the model theory for XChangeEQ

Definition 7 (Interpretation). An interpretation for a given XChangeEQ query,

rule, or program is a 3-tuple M = (I,σ ,τ) where:

1. I ⊆ Events is the set of events et that “happen,” i.e., are either in the stream of

incoming events or derived by some rule.

2. σ is a grounding substitution for (data) variables.

3. τ : EventIdenti f iers → Events is a substitution for event identifiers.

The substitution τ for event identifiers is, compared to model theories of traditional,

non-EQLs, unusual. It is needed for evaluating temporal conditions and relative

timer events. Since τ signifies the events that contribute to the answer of some query,

we also call it an “event trace.”

The entailment (or satisfaction) M |= F t of an XChangeEQ expression F over a

time interval t in an interpretation M is defined in Figures 12 and 13. (We require

the programs to be range restricted [8].)

Figure 12 defines the more salient cases of the model theory. For the sake of

brevity, the expressions in this figure use binary “and” with symbol ∧ and binary

“or” with symbol ∨ instead of the multi-ary and{ . . .} and or{ . . .}. Also, rules are

written as h ← B instead of DETECT h ON B END.

Figure 13 defines entailment of the relative timer events used in the program in

Figure 1. (See [11] for the complete version of the figure.) For the sake of brevity,

the prefix “timer:” and the keyword “event” within the relative timer specification

have been skipped.

Our entailment relation uses a fixed interpretation W for all conditions that can

occur in the where-clause of a query. This includes the temporal relations like before

Complex Event Relational Algebra 91

I,σ ,τ |= (event i : from-end[j,d])t iff exists et ′ with τ(j) = et ′ ,

τ(i) = rel-timer-event(e,t ′)t ,

begin(t) = end(t ′), end(t) = end(t ′)+d

I,σ ,τ |= (event i : from-start-backward[j,d])t iff exists et ′ with τ(j) = et ′ ,

τ(i) = rel-timer-event(e,t ′)t ,

begin(t) = begin(t ′)−d, end(t) = begin(t ′)

Fig. 13 Entailment of the relative timer events in XChangeEQ used in Figure 1

Wσ ,τ (i before j) = true iff end(τ(i)) < begin(τ(j))

Wσ ,τ ({i1, . . . , in} within d) = true iff E −B ≤ d with E := max{end(τ(i1)), . . . ,end(τ(in))}
and B := min{begin(τ(i1)), . . . ,begin(τ(in))}.

Fig. 14 Fixed interpretation for conditions in the where clause used in Figure 1

as well as conditions on data such as arithmetic comparisons. This fixed interpre-

tation of the temporal conditions is another feature of our model theory that is not

common in model theories for traditional, non-EQLs.

W is a function that maps a substitution σ , an event trace τ , and an atomic condi-

tion C to a Boolean value (true or false). We usually write σ and τ in the subscript

of W . Wσ ,τ extends straightforwardly to Boolean formulas of conditions. Figure 14

gives the definitions of W for the temporal conditions of XChangeEQ that have been

used in Figure 1. (See [11] for the complete version of the figure.) The definition of

W is deliberately left outside the “core model theory” to make it more modular and

demonstrate that it is easy to integrate further conditions or even a separate, external

temporal reasoner.

Recall our primary goal in specifying declarative semantics for XChangeEQ:

given an XChangeEQ program P and an event stream E , we want to find out all

events that are derived by the rules of P. This means that we must find an interpre-

tation that contains the event stream E and satisfies all rules of P. Such an interpre-

tation is called a model.

Definition 8 (Model). Given an XChangeEQ program P and a stream of incoming

events E, we call an interpretation M = (I,σ ,τ) a model of P under E if

•M satisfies all rules r = (h ← B) ∈ P for all time intervals t, i.e., M |= rt for all

t ∈ TI and all r = (h ← B) ∈ P, and

•M contains the stream of incoming events, i.e., E ⊆ I.

On close inspection of the entailment relation, we can see that σ and τ are actually

irrelevant to whether a given interpretation M is a model or not; it depends only

on I. We therefore can identify the notion of a model with just the I part of an

interpretation, M = I.

92 M. Eckert et al.

Consider the XChangeEQ program P in Figure 1 and the event stream

E = { temp { area{a}, sensor{s}, value{40} } [60,63],

smoke { area {a} } [65,68],

temp { area{a}, sensor{s}, value{41} } [70,80] }.

We assume timestamps to be time intervals. The bounds of the intervals denote

minutes since the beginning of the current 10-minutes-long-window. In this case an

event with timestamp [0,0] happens 10 minutes before an event with timestamp

[599,599]. The lifetime of all events is restricted to the window they happened

within. These assumptions are not suitable for real-life applications but they help

to keep the example simple.

The interpretation

M1 = {

temp{area{a},sensor{s},value{40}}[60,63], fire{area{a}}[65,80],

smoke{area{a}}[65,68], burnt down{sensor{s}}}[70,92],

temp{area{a},sensor{s},value{41}}[70,80], avg temp{sensor{s},value{40}}[10,80]

}

is a model for P under E: by applying the recursive definition of |= we can check

that M1 |= rt for all t ∈ TI, r ∈ P, and we also have E ⊆ M1. Note that each rule of

P derives exactly one complex event of M1 and the timestamp of a complex event

comprises the timestamps of all events this complex event was derived from. Note

also that the second temperature measurement does not fall into the time window for

aggregation of the last rule of P. That is why the avarage temperature is 40, not 40,5.

The interpretation

M2 = {

temp{area{a},sensor{s},value{40}}[60,63], fire{area{a}}[65,80],

smoke{area{a}}[65,68], burnt down{sensor{s}}}[70,92],

temp{area{a},sensor{s},value{41}}[70,80], avg temp{sensor{s},value{40}}[10,80],

temp{area{b},sensor{t},value{20}}[1,2]

}

where we “added” the event temp{area{b},sensor{t},value{20}}[1,2] in compari-

son to M1, is also a model of P under E . Clearly, however, M2 is not the model we

intend for our program to have, because the “additional” event is “unjustified.” More

precisely, this event is neither in the event stream E nor derived by a rule of P. M1

is the intended model, because all events in it are justified.

To unambiguously settle on a single, intended model, we will use the fixpoint

theory which builds upon the model theory. Note that the problem of specifying the

intended model out of the (infinitely) many possible models is also a common part

of the traditional model-theoretic approach. It is not specific for EQLs.

Complex Event Relational Algebra 93

The intended model is the (least) fixpoint of the immediate consequence operator,

which derives new events from known events (based on the model theory). Non-

monotonic features such as negation and aggregation introduce well-known issues

when they are combined with recursion of rules. In particular, there might be no

fixpoint or several. To ensure that a single fixpoint exists, we restrict XChangeEQ

programs to be stratifiable. Stratification restricts the use of recursion in rules by

ordering the rules of a program P into so-called strata (sets Pi of rules with P =
P1 ⊎ ·· · ⊎Pn) such that a rule in a given stratum can only depend on (i.e., access

results from) rules in lower strata (or the same stratum, in some cases).

Restriction to stratifiable programs is a common approach from logic program-

ming introduced first in [2]. But in contrast to logic programming, in CEP three

types of stratification are required:

1. Negation stratification: Events that are matched by a negative simple event query

of a rule r (e.g., not temp{{sensor{{var S}}}} of the second rule in Figure 1)

may only be constructed by rules in lower strata than the stratum of r. Events

which are matched by a positive simple event query of a rule r may be constructed

by rules in lower strata or the same stratum as that of r.

2. Grouping stratification: Rules r with grouping constructs like all in the construc-

tion may only query events constructed by rules in lower strata than the stratum

of r. Therefore the last rule in Figure 1 must be in a higher stratum then all rules

the head of which is matched by temp{{sensor{{var S}}, value {{var T}} }}.

3. Temporal stratification: If a rule r defines a relative timer event, e.g., timer: from-

end [event n, 12 sec] in the second rule in Figure 1, then the anchoring event

(here: n) may only be constructed by rules in lower strata than the stratum of r.

While negation and grouping stratification are fairly standard, temporal stratification

is a requirement specific to complex event query programs like those expressible in

XChangeEQ. We are not aware of former consideration of the notion of temporal

stratification. See [11] for the formal definitions of the notions.

The basic idea for obtaining the fixpoint interpretation of a stratifiable XChangeEQ

program is to apply the rules stratum by stratum: first apply the rules in the lowest

stratum to the incoming event stream, then apply the rules in the next higher stratum

to the result, and so on until the highest stratum. This requires the definition of the

immediate consequence operator TP for an XChangeEQ program.

Definition 9 (Immediate consequence operator). The immediate consequence op-

erator TP for an XChangeEQ program is defined as:

TP(I) = I∪{et | there exist a rule h ← B ∈ P, and τ such that e ∈ Στ(h)
where Στ := {σ | I,σ ,τ |= Bt} }

The operator is obviously monotonic [8]. Hence according to the Knaster-Tarski the-

orem, it has a fixpoint [8]. The repeated application of TP until a fixpoint is reached

is denoted T ω
P . A fixpoint means here an interpretation I such that TP(I) = I.

94 M. Eckert et al.

Definition 10 (Fixpoint interpretation). Let Pi =
⋃

j≤ j Pj denote the set of all rules

in strata Pi and lower. The fixpoint interpretation MP,E of an XChangeEQ program

P with stratification P = P1 ⊎·· ·⊎Pn under event stream E is defined by computing

fixpoints stratum by stratum:

M0 = E = T ω
/0 (E),

M1 = T ω
P1

(M0),

. . . ,
MP,E = Mn = T ω

Pn
(Mn−1).

The fixpoint interpretation MP,E is also called the intended model of P under E and

specifies the declarative semantics.

Consider, for example, the XChangeEQ program P in Figure 1 and the event stream

E above.

M0 = E = { temp { area{a}, sensor{s}, value{40} [60,63],

smoke { area {a} } [65,68],

temp { area{a}, sensor{s}, value{41} } [70,80] } = T ω
/0 (E)

MP,E = M1 = M0 ∪ { fire { area {a} } [65,80],

burnt down { sensor {s} } } [70,92],

avg temp { sensor {s}, value{40} } [10,80] } = T ω
P1

(M0)

In addition to giving unambiguous semantics to stratifiable XChangeEQ programs,

the fixpoint theory also describes an abstract, simple, forward-chaining evaluation

method, which can easily be extended to work incrementally as it is required for

event queries.

5 Two Semantics, no Double Talk

We now want to show that the semantics of XChangeEQ, the declarative one from

Section 4.2 and the operational semantics given by the translation to CERA in

Section 3.3, are equivalent. In other words we now want to show the correctness

of the translation of a normalized rule h ← B.7 We only give the main ideas here,

for details see [11].

We consider only hierarchical programs with a single rule.7 Recall that the declar-

ative semantics for a program {h ← B} with a single rule h ← B is given by

M{h←B},E . Therefore we have

M{h←B},E = T ω
{h←B}(E) = T{h←B}(E)

7 Note that the proof for a hierarchical program with a single rule immediately applies to

arbitrary hierarchical programs. The reason is that there exits a topological ordering of the

rules for hierarchical programs. Applying the proof for a single rule to the rules of the hi-

erarchical program in topological order yields a proof for arbitrary hierarchical programs.

Complex Event Relational Algebra 95

meaning that the semantics is given by applying the fixpoint operator to the program

{h ← B} and the event stream E once. That is, the declarative semantics of a single

rule h ← B is given by:

T{h←B}(E) = E ∪{et | ∃τ such that e ∈ Στ(h) where Στ := {σ | I,σ ,τ |= Bt}}

Let Q be the CERA expression that translates the rule h ← B. We identify events et

with tuples r of Q(E) and E by r(begin) = begin(t), r(end) = end(t), r(term) = e.

In the other direction we identify tuples r with events r(term)[r(begin),r(end)]. With

this identification correctness of the translation means that

Q(E)∪E = T{h←B}(E).

For this it suffices to show that

Q(E) = {et | ∃τ such that e ∈ Στ (h) where Στ := {σ | I,σ ,τ |= Bt}} (*)

Next, we have to find a correspondence between the elements r of the relations S(E)
generated by subexpressions S of Q, i.e., B1, . . . ,Bn,C defined in Section 3.3, and

the combined σ ,τ used by the declarative semantics in Section 4.2. In other words

we want to have a corresponding tuple rσ ,τ for each pair σ ,τ and a corresponding

pair σr,τr for each tuple r. Figure 15 shows the correspondence.

rσ ,τ :=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r(X) = σ(X) for all X ∈ schdata(S)

r(j.ref) = ref (τ(j)) for all i.ref ∈ schref (S)

r(j.begin) = begin(τ(j)) for all i.begin ∈ schtime(S)

r(j.end) = end(τ(j)) for all i.end ∈ schtime(S)

r(X) = ⊥ otherwise

σr :=

{

σr(X) = r(X) for all X ∈ schdata(S)

σr(X) = X otherwise

τr :=

{

τr(i) = si(term)[si(begin),si(begin)] for all i.ref ∈ schref (S) , where si := ref −1(i.ref)

τr(i) = ⊥ otherwise

Fig. 15 Correspondence between tuples and substitutions

We use this correspondence to show a lemma about each subexpression S of Q

that translates a subexpression F of the rule body B (see Figure 8).

Lemma 1 (Equivalence of subexpressions). Let F be the subexpression translated

by S and be t = occtime(r). Then following equivalence holds:

r ∈ S(E) ⇔ E,σr,τr |= Ft

96 M. Eckert et al.

The left to right part of Lemma 1 is soundness (“results produced by the operational

semantics are results according to the declarative semantics”). The right to left part is

completeness (“results according to the declarative semantics are actually produced

by the operational semantics”).

Consider the definitions of Bn and C in Figure 8. The proof of Lemma 1 is by

induction on n over Bn, and then by additionally showing that Lemma 1 also holds

for C.

The proof of (*) is by applying Lemma 1 to rule body B as used in (*) and the

translation C of B as defined in Figure 8. The details of the proof are given in [11].

6 Conclusion and Outlook

In this chapter, we have formally defined the operational and declarative seman-

tics for XChangeEQ, illustrated them on the sensor network use case and proved

their equivalence. Both semantics are generic and easily transferable to an arbitrary

EQL. On the basis of the approach described here, some other points essential for

CEP can be immediately implemented. Two of them, garbage collection and query

optimization, are addressed in this section.

As mentioned above, evaluation of complex event queries over time involves stor-

ing events in materialization points. Naive query evaluation simply stores all events

forever. Since the event stream is not bounded into the future every naive query

evaluation engine can run out of memory sooner or later. Therefore there is a need

for garbage collection of irrelevant events, i.e., events which cannot contribute to

the derivation of new events (any more). We refer the reader to [7] for an approach

to static determination of temporal relevance for incremental evaluation of complex

event queries. Temporal relevance is particularly suitable for garbage collection be-

cause one of the main principles of a reasonable CEP engine is that no rule must

wait for an event for ever.

The so-called general relevance of events including temporal, causal, structural

relevance as well as relevance with regards to event data, addresses query optimiza-

tion. In addition to the consideration of general relevance, automatic query opti-

mization is possible by means of application specific knowledge formalized as a

model. With the help of the model one can, e.g., recognize the unsatisfiability of a

(sub-) query in order to suspend or delete it and to avoid the storage of irrelevant

events.

Acknowledgements

This research has been founded in part by the European Commission within the the project

“EMILI — Emergency Management in Large Infrastructures” under grant agreement number

242438 and by the German Research Foundation (Deutsche Forschungsgemeinschaft) within

the project “QONCEPT — Query Optimization in Complex Event Processing Technologies”

under reference number BR 2355/1-1.

Complex Event Relational Algebra 97

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading

(1995)
2. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foun-

dations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kauf-

mann, San Francisco (1988)
3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: Semantic founda-

tions and query execution. The VLDB Journal 15(2), 121–142 (2006)
4. Babu, S., Srivastava, U., Widom, J.: Exploiting k-constraints to reduce memory overhead

in continuous queries over data streams. ACM Transactions on Database Systems 29(3),

545–580 (2004)
5. Bry, F., Eckert, M.: Rule-Based Composite Event Queries: The Language XChangeEQ

and Its Semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007.

LNCS, vol. 4524, pp. 16–30. Springer, Heidelberg (2007)
6. Bry, F., Eckert, M.: Temporal order optimizations of incremental joins for composite

event detection. In: Proc. Int. Conf. on Distributed Event-Based Systems, ACM, New

York (2007)
7. Bry, F., Eckert, M.: On static determination of temporal relevance for incremental evalu-

ation of complex event queries. In: Proc. Int. Conf. on Distributed Event-Based Systems,

pp. 289–300. ACM, New York (2008)
8. Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R., Wei,

F.: Foundations of rule-based query answering. In: Antoniou, G., Aßmann, U., Baroglio,

C., Decker, S., Henze, N., Patranjan, P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS,

vol. 4636, pp. 1–153. Springer, Heidelberg (2007)
9. Bry, F., Schaffert, S.: Towards a declarative query and transformation language for

XML and semistructured data: Simulation unification. In: Stuckey, P.J. (ed.) ICLP 2002.

LNCS, vol. 2401, p. 255. Springer, Heidelberg (2002)
10. Ding, L., Chen, S., Rundensteiner, E.A., Tatemura, J., Hsiung, W.-P., Candan, K.S.: Run-

time semantic query optimization for event stream processing. In: Proc. Int. Conf. on

Data Engineering, pp. 676–685. IEEE Computer Society, Los Alamitos (2008)
11. Eckert, M.: Complex Event Processing with XChangeEQ: Language Design, Formal Se-

mantics and Incremental Evaluation for Querying Events. PhD thesis, Institute for Infor-

matics, University of Munich (2008)
12. EsperTech Inc. Event stream intelligence: Esper & NEsper,

http://esper.codehaus.org
13. Furche, T.: Implementation of Web Query Languages Reconsidered: Beyond Tree and

Single-Language Algebras at (Almost) No Cost. PhD thesis, Institute for Informatics.

University of Munich (2008)
14. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.

Prentice-Hall, Englewood Cliffs (2001)
15. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1993)
16. Morrell, J., Vidich, S.D.: Complex Event Processing with Coral8. White Paper (2007),

http://www.coral8.com/system/files/assets/pdf/
Complex Event Processing with Coral8.pdf

17. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the Web.

PhD thesis, Institute for Informatics. University of Munich (2004)
18. Tucker, P.A., Maier, D., Sheard, T., Stephens, P.: Using production schemas to charac-

terize strategies for querying over data streams. IEEE Transactions on Knowledge and

Data Engineering 19(9), 1227–1240 (2007)

http://esper.codehaus.org
http://www.coral8.com/system/files/assets/pdf/Complex_Event_Processing_with_Coral8.pdf
http://www.coral8.com/system/files/assets/pdf/Complex_Event_Processing_with_Coral8.pdf

ETALIS: Rule-Based Reasoning in Event

Processing

Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer,

Nenad Stojanovic, and Rudi Studer

Abstract. Complex Event Processing (CEP) is concerned with timely detection of

complex events within multiple streams of atomic occurrences, and has useful appli-

cations in areas including financial services, mobile and sensor devices, click stream

analysis and so forth. In this chapter, we present ETALIS Language for Events. It

is an expressive language for specifying and combining complex events. For this

language we provide both a syntax as well as a clear declarative formal semantics.

The execution model of the language is based on a compilation strategy into Prolog.

We provide an implementation of the language, and present experimental results

of our running prototype. Further on, we show how our logic rule-based approach

compares with a non-logic approach in respect of performance.

1 Introduction

There has recently been a significant paradigm shift toward real-time computing.

Databases and data warehouses are concerned with looking at what happened in

the past. On the other hand, Complex Event Processing (CEP) is concerned with

processing real-time events, i.e., CEP is concerned with what has just happened or

what is about to happen in the future.

An event represents something that occurs, happens or changes the current state

of affairs. For example, an event may signify a problem or an impending problem, a

Darko Anicic · Roland Stühmer · Nenad Stojanovic · Rudi Studer

FZI Forschungszentrum Informatik, Germany

e-mail: {darko.anicic,stuehmer,nenad.stojanovic,studer}@fzi.de

Paul Fodor

Stony Brook University, Stony Brook, NY 11794, U.S.A.

e-mail: pfodor@cs.sunysb.edu

Sebastian Rudolph

Karlsruhe Institute of Technology, Germany

e-mail: rudolph@kit.edu

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 99–124.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{darko.anicic,stuehmer,nenad.stojanovic,studer}@fzi.de
pfodor@cs.sunysb.edu
rudolph@kit.edu

100 D. Anicic et al.

threshold, an opportunity, some information becoming available, a deviation and so

forth. An event can also represent something that did not happen (i.e., an absence of

an event in certain time).

We distinguish between atomic and complex events. An atomic event is defined

as an instantaneous occurrence of interest at a point in time. In order to describe

more complex dynamic matters that involve several atomic events, formalisms have

been created which allow for combining atomic into complex events, using different

event operators as well as temporal, causal and semantic relationships. The field of

CEP has the task of processing streams of atomic events with the goal of detecting

complex events according to meaningful event patterns.1

Our own work in the CEP area is based on logic programming and a rule-based

approach for event processing. There has been recently renewed interest in using

logic programming in many areas outside the traditional knowledge representation

area. Examples include work on cloud computing [5], declarative networking sys-

tems [10], natural language processing [12] and so forth.

We have observed that logic programming can be useful with respect to many

concepts of CEP. First, a rule-based formalism (like the one we present in this

chapter) is expressive enough and convenient to represent diverse complex event

patterns. Also declarative rules are free of side-effects. Second, integration of query

processing, that is essential in many event-based applications, with event processing

is easy and natural. Third, our experience with use of logic programing in imple-

mentation of the main constructs in CEP as well as in providing extensibility of a

CEP system is very positive and encouraging (e.g., number of code lines in logic

programming is significantly smaller than in procedural programming). Ultimately,

a logic-based event model enables reasoning over events, their relationships, entire

state, and possible contextual knowledge. This knowledge captures the domain of in-

terest, or context related to business critical actions and decisions (that are triggered

in real-time by complex events). Its purpose is to be evaluated during detection of

complex events in order to enrich recorded events with background information; to

detect more complex situations; to propose certain intelligent recommendations in

real-time; or to accomplish complex event classification, clustering, filtering and so

forth. CEP, integrated with real-time knowledge evaluation, can potentially enable

a new generation of programmers to innovate on novel event-driven applications in

Artificial Intelligence (AI).

In this chapter, we propose a new event processing approach in which complex

events are deduced or derived from simpler events. Complex events are defined as

deductive rules, and events are represented as facts. Every time an atomic event

(relevant with respect to the set of monitored complex events) occurs, the system

updates the knowledge base, i.e., it adds a respective fact to the internal state of

complex events. Essentially, this internal state encodes what atomic events have al-

ready happened and what are still missing for the completion of a certain complex

event. Complex events are detected as soon as the last event required for their de-

tection has occurred. Descriptions telling which occurrence of an event furthers the

1 Apart from this task (also known as pattern matching), CEP further addresses other issues

like event filtering, routing, transformation and so forth.

ETALIS: Rule-Based Reasoning in Event Processing 101

detection of complex events (including the relationships between complex events,

events they consist of, or additional domain knowledge) are given by deductive rules

and facts. Consequently, detection of complex events then amounts to an inferencing

problem.

The contribution of this chapter consists of a novel event-driven approach for

Complex Event Processing based on logic programming. We define an expressive

complex event description language with a rule-based syntax and a clear declarative

formal semantics. The language is found on a new execution model that compiles

complex event patterns into logic rules and enables timely, event-driven detection

of complex events. We also describe an implementation of the language, and show

experimental results of our evaluation with respect to a non logic programming CEP

system.

The chapter is organized as follows. Section 2 specifies the problem that we ad-

dress in this chapter. In Section 3, we introduce a new language for event processing

and define its syntax. Section 4 defines the declarative semantics of the language.

We discuss implementation details of our formalism, and give performance results

of a prototype implementation in Section 7. Section 8 reviews existing work in this

area, and compares it to ours. Finally, Section 9 summarizes the chapter, and give

an outline of the future work.

2 Problem Statement

The general task of Complex Event Processing can be described as follows. Within

some dynamic setting, events take place. Those atomic events are instantaneous (i.e.,

they happen at one specific point in time and have a duration of zero). Notifications

about these event occurrences together with their timestamps and possibly further

associated data (such as involved entities, numerical parameters of the event, or

provenance data) enter the CEP system in the order of their occurrence.2

The CEP system further features a set of complex event descriptions, by means of

which complex events can be specified as temporal constellations of atomic events.

The complex events thus defined can in turn be used to compose even more complex

events and so forth. As opposed to atomic events, those complex events are not

considered instantaneous but are endowed with a time interval denoting when the

event started and when it ended.

The purpose of the CEP system is now to detect complex events within this in-

put stream of atomic events. That is, the system needs to notify that the occurrence

of a certain complex event has been detected, as soon as the system is notified of

an atomic event that completes a sequence which makes up the complex event ac-

cording to the complex event description. This notification may be accompanied by

additional information composed from the atomic events’ data. As a consequence

of this detection (and depending on the associated data), corresponding actions can

be taken, yet this is outside the scope of this chapter.

2 The phenomenon of out-of-order events meaning delayed notification about events that

have happened earlier, is outside the focus of this chapter.

102 D. Anicic et al.

In summary, the problem we address in our approach is to detect complex events

(specified in an appropriate formal language) within a stream of atomic events.

Therefore we assume that the timeliness of this detection is crucial and algorith-

mically optimize our method towards a fast response behavior.

3 Syntax

In this section we present the formal syntax of the ETALIS Language for Events,

while in the remaining sections of the chapter we will gradually introduce other

aspects of the language (i.e., the declarative and operational semantics as well as the

performance of a prototype based on the language3).

The syntax of ETALIS Language for Events allows for the description of time

and events. We represent time instants as well as durations as nonnegative rational

numbers q ∈ Q+. Events can be atomic or complex. An atomic event refers to an

instantaneous occurrence of interest. Atomic events are expressed as ground atoms

(i.e., predicates followed by arguments which are terms not containing variables).

Intuitively, the arguments of a ground atom describing an atomic event denote in-

formation items (i.e., event data) that provide additional information about that

event.

Atomic events can be composed to form complex events via event patterns. We

use event patterns to describe how events can (or have to) be temporally compared

to other events or absolute time points. The language P of event patterns is formally

defined by

P ::= PR(t1, . . . ,tn) | P WHERE t | q | (P).q
| P BIN P | NOT(P).[P,P]

Here PR is a predicate name with arity n, ti denote terms, t is a term of type boolean,

q is a nonnegative rational number, and BIN is one of the binary operators SEQ, AND,

PAR, OR, DURING, MEETS, EQUALS, STARTS, or FINISHES. As a side condition,

in every expression P WHERE t, all variables occurring in t must also occur in the

pattern P.

Finally, an event rule is defined as a formula of the form PR(t1, . . . ,tn)← P where

P is an event pattern containing all variables occurring in PR(t1, . . . ,tn).
After introducing the formal syntax of our formalism, we will give some exam-

ples to provide some intuitive understanding before proceeding with the formal se-

mantics in the next section. According to a stock market scenario, one instantaneous

event (not requiring further specification) might be Market closes(). Other events

with additional information associated via arguments would be Bankrupt(lehman)
or Buys(citigroup,wachovia). Within patterns, variables instead of constants may

occur as arguments, whence we can write Bankrupt(X) as a pattern matching all

bankruptcy events irrespective of the victim.

3 Our prototype, ETALIS, is an open source project, available at:

http://code.google.com/p/etalis

http://code.google.com/p/etalis

ETALIS: Rule-Based Reasoning in Event Processing 103

Fig. 1 Language for Event Processing - Composition Operators

Figure 1 demonstrates the various ways of constructing complex event descrip-

tions from simpler ones in ETALIS Language for Events. Moreover, the figure in-

formally introduces the semantics of the language, which will further be defined in

Section 4.

Let us assume that instances of three complex events, P1,P2,P3, are occurring in

time intervals as shown in Figure 1. Vertical dashed lines depict different time units,

while the horizontal bars represent detected complex events for the given patterns.

In the following, we give the intuitive meaning for all patterns from the figure:

•(P1).3 detects an occurrence of P1 if it happens within an interval of length 3, i.e.,

3 represents the (maximum) time window.

•P1 SEQ P3 represents a sequence of two events, i.e., an occurrence of P1 is fol-

lowed by an occurrence of P3; here P1 must end before P3 starts.

•P2 AND P3 is a pattern that is detected when instances of both P2 and P3 occur no

matter in which order.

•P1 PAR P2 occurs when instances of both P2 and P3 happen, provided that their

intervals have a non-zero overlap.

•P2 OR P3 is triggered for every instance of P2 or P3.

•P1 DURING (0 SEQ 6) happens when an instance of P1 occurs during an interval;

in this case, the interval is built using a sequence of two atomic time-point events

(one with q = 0 and another with q = 6, see the syntax above).

•P3 STARTS P1 is detected when an instance of P3 starts at the same time as an

instance of P1 but ends earlier.

•P1 EQUALS P3 is triggered when the two events occur exactly at the same time

interval.

104 D. Anicic et al.

•NOT(P3).[P1,P1] represents a negated pattern. It is defined by a sequence of events

(delimiting events) in the square brackets where there is no occurrence of P3 in

the interval. In order to invalidate an occurrence of the pattern, an instance of

P3 must happen in the interval formed by the end time of the first delimiting

event and the start time of the second delimiting event. In this example delimiting

events are just two instances of the same event, i.e., P1. Different treatments of

negation are also possible, however we adopt one from [2].

•P3 FINISHES P2 is detected when an instance of P3 ends at the same time as an

instance of P2 but starts later.

•P2 MEETS P3 happens when the interval of an occurrence of P2 ends exactly when

the interval of an occurrence of P3 starts.

It is worth noting that the defined pattern language captures the set of all possible

13 relations on two temporal intervals as defined in [4]. The set can also be used for

rich temporal reasoning.

In this example, event patterns are considered under the unrestricted policy. In

event processing, consumption policies deal with an issue of selecting particular

events occurrences when there are more than one event instance applicable and

consuming events after they have been used in patterns. We will discuss different

consumption policies and their implementation in ETALIS Language for Events in

Section 6.

It is worthwhile to briefly consider the modeling capabilities of the presented pat-

tern language. For example, one might be interested in defining an event matching

stock market working days:

WorkingDay() ←
NOT(MarketCloses())[MarketOpens(),MarketCloses()].

Moreover, we might be interested in detecting the event of two bankruptcies hap-

pening on the same market working day:

DieTogether(X ,Y) ←
(

Bankrupt(X) SEQ Bankrupt(Y)
)

DURING WorkingDay().

This event rule also shows, how event information (about involved institutions,

provenance, and so forth) can be “passed” on to the defined complex events by

using variables. Furthermore, variables may be employed to conditionally group

events into complex ones if they refer to the same entity:

IndirectlyAcquires(X ,Y) ← Buys(Z,Y) AND Buys(X ,Z)

Even more elaborate constraints can be put on the applicability of a pattern by en-

dowing it with a boolean type term as filter.4 Thus, we can detect a stock prize

increase of at least 50% in a time frame of 7 days.

RemarkableIncrease(X) ←
(

Price(X ,Y1) SEQ Price(X ,Y2)
)

.7 WHERE Y2 > Y1 ·1.5

4 Note that also comparison operators like =,< and > can be seen as boolean-typed binary

functions and, hence, fit well into the framework.

ETALIS: Rule-Based Reasoning in Event Processing 105

4 Declarative Semantics

We define the declarative formal semantics of ETALIS Language for Events in a

model-theoretic way.

Note that we assume a fixed interpretation of the occurring function sym-

bols, i.e., for every function symbol f of arity n, we presume a predefined func-

tion f ∗ : Conn → Con. That is, in our setting, functions are treated as built-in

utilities.

As usual, a variable assignment is a mapping µ : Var → Con assigning a value

to every variable. We let µ ∗ denote the extension of µ to terms defined in the usual

way:

µ ∗ :

⎧

⎨

⎩

v �→ µ(v) if v ∈Var,
c �→ c if c ∈Con,

f (t1, . . . ,tn) �→ f ∗(µ∗(t1), . . . ,µ∗(tn)) otherwise.

In addition to the set of rules R, we define an event stream. The event stream is for-

malized as a mapping ε : Ground → 2Q+
from ground predicates into sets of non-

negative rational numbers. It thereby indicates at what time instants what elementary

events occur. As a side condition, we require ε to be free of accumulation points,

i.e., for every q ∈ Q+, the set {q′ ∈Q+ | q′ < q and q′ ∈ ε(g) for some g ∈ Ground}
is finite.

Now, we define an interpretation I : Ground → 2Q+×Q+
as a mapping from the

ground atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every

〈q1,q2〉 ∈ I (g) for all g ∈ Ground.

Given an event stream ε , an interpretation I is called a model for a rule set R –

written as I |=ε R – if the following conditions are satisfied:

C1〈q,q〉 ∈ I (g) for every q ∈ Q+ and g ∈ Ground with q ∈ ε(g)
C2for every rule Atom ← Pattern and every variable assignment µ we have

Iµ(Atom) ⊆ Iµ(Pattern) where Iµ is inductively defined as displayed in

Fig. 2.

Given an interpretation I and some q ∈ Q+, we let I |q denote the interpretation

defined by I |q(g) = I (g)∩{〈q1,q2〉 | q2−q1≤ q}.

Given two interpretations I and J , we say that I is preferred to J if there

exists a q ∈ Q+ with I |q ⊂ J |q. In words, a model is preferred to another model

if it contains less events of duration ≤ q.

A model I is called minimal if there is no other model preferred to I . It is easy

to show that for every event stream ε and rule set R there is a unique minimal model

I ε,R . Essentially, this model can be obtained by starting from ε and applying the

rules in ascending order w.r.t. the duration of the event generated by the rule.5

5 Note that we deviate from the standard minimal-model semantics for Horn logic in order

to properly handle negation introduced via NOT.

106 D. Anicic et al.

pattern Iµ(pattern)

PR(t1, . . . ,tn) I (PR(µ ∗ (t1), . . . ,µ ∗ (tn)))

P WHERE t Iµ(P) if µ ∗ (t) = true

/0 otherwise.

q {〈q,q〉} for all q∈Q+

(P).q Iµ(P)∩{〈q1,q2〉 | q2 −q1 = q}

P1 SEQ P2 {〈q1,q4〉 | 〈q1,q2〉∈Iµ(P1) and 〈q3,q4〉∈Iµ(P2) and q2<q3}

P1 AND P2 {〈min(q1,q3),max(q2,q4)〉 | 〈q1,q2〉∈Iµ(P1) and 〈q3,q4〉∈Iµ(P2)}

P1 PAR P2 {〈min(q1,q3),max(q2,q4)〉 | 〈q1,q2〉∈Iµ(P1)
and 〈q3,q4〉∈Iµ(P2) and max(q1,q3)<min(q2,q4)}

P1 OR P2 Iµ(P1)∪Iµ(P2)

P1 EQUALS P2 Iµ(P1)∩Iµ(P2)

P1 MEETS P2 {〈q1,q3〉 | 〈q1,q2〉∈Iµ(P1) and 〈q2,q3〉∈Iµ(P2)}

P1 DURING P2 {〈q3,q4〉 | 〈q1,q2〉∈Iµ(P1) and 〈q3,q4〉∈Iµ(P2) and q3<q1<q2<q4}

P1 STARTS P2 {〈q1,q3〉 | 〈q1,q2〉∈Iµ(P1) and 〈q1,q3〉∈Iµ(P2) and q2<q3}

P1 FINISHES P2 {〈q1,q3〉 | 〈q2,q3〉∈Iµ(P1) and 〈q1,q3〉∈Iµ(P2) and q1<q2}

NOT(P1).[P2,P3] Iµ(P2 SEQ P3)\Iµ(P2 SEQ P1 SEQ P3)

Fig. 2 Definition of extensional interpretation of event patterns. We use P(x) for patterns,

q(x) for rational numbers, t(x) for terms and PR for event predicates.

Finally, given an atom A and two rational numbers q1,q2, we say that the event

A[q1,q2] is a consequence of the event stream ε and the rule base R (written ε,R |=

A[q1,q2]), if 〈q1,q2〉 ∈ I ε,R
µ (A) for some variable assignment µ .

It can be easily verified that the behavior of the event stream ε beyond the time

point q2 is irrelevant for determining whether ε,R |= A[q1,q2] is the case.6 This jus-

tifies taking the perspective of ε being only partially known (and continuously un-

veiled along a time line) while the task is to detect event-consequences as soon as

possible.

5 Operational Semantics

In Section 4 we have defined complex event patterns formally. This section describes

how complex events, described in ETALIS Language for Events, can be detected at

run-time (following the semantics of the language). Our approach is established

on goal-directed, event-driven rules and decomposition of complex event patterns

into two-input intermediate events (i.e., goals). Goals are automatically asserted by

rules as relevant events occur. They can persist over a period of time “waiting”

to support detection of a more complex goal. This process of asserting more and

6 More formally, for any two event streams ε1 and ε2 coinciding up to timepoint q2 (i.e.,

ε1(g)∩{〈q,q′〉 | q′ ≤ q2} = ε2(g)∩{〈q,q′〉 | q′ ≤ q2} for all g ∈ Ground) we have that

ε1,R |= A[q1,q2] exactly if ε2,R |= A[q1,q2].

ETALIS: Rule-Based Reasoning in Event Processing 107

more complex goals shows the progress towards detection of a complex event. In

the following subsection, we give more details about a goal-directed, event-driven

mechanism with respect to event pattern operators (formally defined in Section 4).

Sequence of Events. Let us consider a sequence of events represented by rule (1),

i.e., E is detected when an event A7. is followed by B, and followed by C. We can

always represent the above pattern as E ← ((A SEQ B) SEQ C). In general, rules (2)

represent two equivalent rules.8

E ← A SEQ B SEQ C. (1)

E ← P1 BIN P2 BIN P3... BIN Pn.
E ← (((P1 BIN P2) BIN P3)... BIN Pn).

(2)

We refer to this kind of “events coupling” as binarization of events. Effectively, in

binarization we introduce two-input intermediate events (goals). For example, now

we can rewrite rule (1) as IE1 ←A SEQ B, and the E ← IE1 SEQ C. Every monitored

event (either atomic or complex), including intermediate events, will be assigned

with one or more logic rules, fired whenever that event occurs. Using the binariza-

tion, it is more convenient to construct event-driven rules for three reasons. First,

it is easier to implement an event operator when events are considered on a “two

by two” basis. Second, the binarization increases the possibility for sharing among

events and intermediate events, when the granularity of intermediate patterns is re-

duced. Third, the binarization eases the management of rules. As we will see later

in this section, each new use of an event (in a pattern) amounts to appending one or

more rules to the existing rule set. However it is important that for the management

of rules, we do not need to modify existing rules when adding new ones9.

In the following, we give more details about assigning rules to each monitored

event. We also provide an algorithm (using Prolog syntax) for detecting a sequence

of events.

Algorithm 5.1 accepts as input a rule referring to a binary sequence

IEi ← A SEQ B, and produces Event-Driven Backward Chaining Rules (EDBCR),

i.e., executable rules for the sequence pattern. The binarization step must precede

the rule transformation. Rules, produced by Algorithm 5.1, belong to one of two

different classes of rules. We refer to the first class as goal inserting rules. The

second class corresponds to checking rules. For example, rule (4) belongs to the

first class as it inserts goal(B(,),A(T1,T2), IE1(,). The rule will fire when A

occurs, and the meaning of the goal it inserts is as follows: “an event A has occurred

7 More precisely, by “an event A” is meant an instance of the event A
8 If no parentheses are given, we assume all operators to be left-associative. While in some

cases, like SEQ sequences, this is irrelevant, other operators such as PAR are not asso-

ciative, whence the precedence matters.
9 This holds even if patterns with negated events are added.

108 D. Anicic et al.

at [T1,T2],
10 and we are waiting for B to happen in order to detect IE1”. The goal

does not carry information about times for B and IE1, as we do not know when they

will occur. In general, the second event in a goal always denotes the event that has

just occurred. The role of the first event is to specify what we are waiting for to

detect an event that is on the third position.

Algorithm 5.1 Sequence.

Input: event binary goal IE1 ← A SEQ B.

Output: event-driven backward chaining rules for SEQ operator.

Each event binary goal IE1 ← A SEQ B is converted into: {
A(T1,T2) : − f or each(A,1, [T1,T2]).
A(1,T1,T2) : −assert(goal(B(,),A(T1,T2), IE1(,))).
B(T3,T4) : − f or each(B,1, [T3,T4]).
B(1,T3,T4) : −goal(B(T3,T4),A(T1,T2), IE1),T2 < T3,

retract(goal(B(T3,T4),A(T1,T2), IE1(,))), IE1(T1,T4).
}

f or each(Pred,N,L) : −((FullPred = ..[Pred,N,L]),
event trigger(FullPred),(N1isN + 1), f or each(Pred,N1,L))∨ true.

(3)

A(1,T1,T2) : −assert(goal(B(,),A(T1,T2), IE1(,))). (4)

B(1,T3,T4) : −goal(B(T3,T4),A(T1,T2), IE1),T2 < T3,
retract(goal(B(T3,T4),A(T1,T2), IE1(,))), IE1(T1,T4).

(5)

Rule (5) belongs to the second class being a checking rule. It checks whether cer-

tain prerequisite goals already exist in the database, in which case it triggers the

more complex event. For example, rule (5) will fire whenever B occurs. The rule

checks whether goal(B(T3,T4),A(T1,T2), IE1) already exists (i.e., A has previously

happened), in which case the rule triggers IE1 by calling IE1(T1,T4). The time oc-

currence of IE1 (i.e., T1,T4) is defined based on the occurrence of constituting events

(i.e., A(T1,T2), and B(T3,T4), see Section 4). Calling IE1(T1,T4), this event is effec-

tively propagated either upward (if it is an intermediate event) or triggered as a

finished complex event.

We see that our backward chaining rules compute goals in a forward chaining

manner. The goals are crucial for computation of complex events. They show the

current state of progress toward matching an event pattern. Moreover, they allow for

determining the “completion state” of any complex event, at any time. For instance,

we can query the current state and get information how much of a certain pattern

is currently fulfilled (e.g., what is the current status of certain pattern, or notify me

if the pattern is 90% completed). Further, goals can enable reasoning over events

(e.g., answering which event occurred before some other event, although we do not

10 Apart from the timestamp, an event may carry other data parameters. They are omitted

here for the sake of readability.

ETALIS: Rule-Based Reasoning in Event Processing 109

know a priori what are explicit relationships between these two; correlating complex

events to each other; establishing more complex constraints between them and so

forth). Goals can persist over a period of time. It is worth noting that checking rules

can also delete goals. Once a goal is “consumed”, it is removed from the database11.

In this way, goals are kept persistent as long as (but not longer) than needed. In

Section 6, we will return to different policies for removing goals from the database.

Finally, in Algorithm 5.1 there exist more rules than the two mentioned types

(i.e., rules inserting goals and checking rules). We see that for each different event

type (i.e., A and B in our case) we have one rule with a f or each predicate. It is

defined by rule (3). Effectively, it implements a loop, which for any occurrence

of an event goes through each rule specified for that event (predicate) and fires it.

For example, when A occurs, the first rule in the set of rules from Algorithm 5.1

will fire. This first rule will then loop, invoking all other rules specified for A

(those having A in the rule head). In our case, there is only one such a rule, namely

rule (4). However, in general, there may be as many of these rules as usages of a

particular event in an event program. Let us observe a situation in which we want

to extend our event pattern set with an additional pattern that contains the event

A (i.e., additional usage of A). In this case, the rule set representing a set of event

patterns needs to be updated with new rules. This can be done even at runtime. Let

us assume the additional pattern to be monitored is IE j ← K SEQ A. Then the only

change we need to make is to add one rule to insert a goal and one checking rule (in

the existing rule set). The change is sketched as an update of Algorithm 5.1 below12.

Updating rules from Algorithm 5.1 to accommodate an additional usage of the event A.

A(2,T1,T2) : −assert(goal(B(,),A(T1,T2), IE1(,))).
A(3,T1,T2) : −goal(A(,),K(T3,T4), IE j(,)),T4 < T1,

retract(goal(A(,),K(T3,T4), IE j(,))), IE j(T3,T2).

So far, we have described in detail a mechanism for event processing with data or

event-driven backward chaining rules (EDBCR). We have also described the trans-

formation of event pattern rules into rules for real-time events detection using the

sequence operator. In general, for a given set of rules (defining complex patterns)

there will be as many transformed rules as there are usages of distinct atomic events.

Some rules however may be shared among different patterns. As said, the binariza-

tion brakes up patterns into binary sub-patterns (intermediate events). If two or more

patterns share the same sub-patterns, they will also share the same set of EDBCR.

That is, during the transformation, only one set of EDBCR will be produced for a

distinct event binary goal (no matter how many times the goal is used in the whole

event program). In large programs (e.g., where event patterns are built incremen-

tally, i.e., one pattern upon another one) such a sharing may improve the overall

system performance as the execution of redundant rules is avoided.

11 Removal of “consumed” goals is typically needed for space reasons but might be omitted

if events are required in a log for further processing or analyzing.
12 Note that an id of rules is incremented for each next rule being added (i.e., 2,3...).

110 D. Anicic et al.

The set of transformed rules is further accompanied by rules to implement loops

(as many as there are distinct atomic events). The same procedure is repeated for

intermediate events (for example, IE1, IE2). The complete transformation is propor-

tional to the number and length of user defined event pattern rules, hence such a

transformation is linear, and moreover is performed at design time.

Conceptually, our backward chaining rules for the sequence operator look very

similar to rules for other operators. In the remaining part of this section we show the

algorithms for other event operators, and briefly describe them.

Conjunction of Events. Conjunction is another typical operator in event pro-

cessing. An event pattern based on conjunction occurs when all events which

comprise that conjunction occur. Unlike the sequence operator, here the constitutive

events can happen at times with no particular order between them. For example,

IE1 ← A AND B defines IE1 as conjunction of A and B.

Algorithm 5.2 Conjunction.

Input: event binary goal IE1 ← A AND B.

Output: event-driven backward chaining rules for AND operator.

Each event binary goal IE1 ← A AND B is converted into: {
A(T1,T2) : − f or each(A,1, [T1,T2]).
A(1,T3,T4) : −goal(A(,),B(T1,T2), IE1(,)),retract(goal(A(,),B(T1,T2), IE1(,))),
T5 = min{T1,T3},T6 = max{T2,T4}, IE1(T5,T6).
A(2,T1,T2):−¬(goal(A(,),B(T1,T2), IE1(,))),assert(goal(B(,),A(T1,T2), IE1(,))).
B(T3,T4) : − f or each(B,1, [T3,T4]).
B(1,T3,T4) : −goal(B(,),A(T1,T2), IE1(,)),retract(goal(B(,),
A(T1,T2), IE1(,))),T5 = min{T1,T3},T6 = max{T2,T4}, IE1(T5,T6).
B(2,T1,T2):−¬(goal(B(,),A(T1,T2), IE1(,))),assert(goal(A(,),B(T1,T2), IE1(,))).

}

Algorithm 5.2 shows the output of a transformation of conjunction event pat-

terns into EDBCR (for conjunction). The procedure for dividing complex event

rules into binary event goals is the same as in Algorithm 5.1. However, rules for

inserting and checking goals are different. Both classes of rules are specific to

conjunction. We have a pair of these rules created for both an event A as well

as for B. Whenever A occurs (denoted as some interval (T1,T2)) the algorithm

checks whether an instance of B has already happened (see rule (6) from Algo-

rithm 5.2). An instance of B has already happened if the current database state con-

tains goal(A(,),B(T1,T2), IE1(,)). In this case the event IE1(T5,T6) is triggered

(i.e., a call for IE1(T5,T6) is issued). Otherwise, a goal which states that an in-

stance of A has occurred, is inserted (i.e., assert(goal(B(,),A(T1,T2), IE1(,)))
is executed by rule (7)). Now if an instance of B happens later (at some (T3,T 4)),
rule (8) will succeed (if A has previously happened). Otherwise rule (9) will insert

goal(A(,),B(T1,T2), IE1(,)).

A(1,T3,T4) : −goal(A(,),B(T1,T2), IE1(,)),retract(goal(A(,),
B(T1,T2), IE1(,))),T5 = min{T1,T3},T6 = max{T2,T4}, IE1(T5,T6).

(6)

ETALIS: Rule-Based Reasoning in Event Processing 111

A(2,T1,T2) : −¬(goal(A(,),B(T1,T2), IE1(,))),
assert(goal(B(,),A(T1,T2), IE1(,))).

(7)

B(1,T3,T4) : −goal(B(,),A(T1,T2), IE1(,)),retract(goal(B(,),
A(T1,T2), IE1(,))),T5 = min{T1,T3},T6 = max{T2,T4}, IE1(T5,T6).

(8)

B(2,T1,T2) : −¬(goal(B(,),A(T1,T2), IE1(,))),
assert(goal(A(,),B(T1,T2), IE1(,))).

(9)

Concurrency. A concurrent or parallel composition of two events (IE1 ← A PAR B)

is detected when events A and B both occur, and their intervals overlap (i.e., we also

say they happen synchronously).

Algorithm 5.3 shows what is an output of automated transformation of a con-

current event pattern into rules which serve a data-driven backward chaining event

computation. The procedure for dividing complex event rules into binary event

goals is the same (as already described), and takes place prior to the transformation.

Rules for inserting and checking goals are similar to those in Algorithm 5.2. The

only change in Algorithm 5.3 is a sufficient condition, ensuring the interval overlap

(i.e., T3 < T2).

Algorithm 5.3 Concurrency.

Input: event binary goal IE1 ← A PAR B.

Output: event-driven backward chaining rules for PAR operator.

Each event binary goal IE1 ← A PAR B is converted into: {

A(T3,T4) : − f or each(A,1, [T3,T4]).

A(1,T3,T4) :−goal(A(,),B(T1,T2), IE1(,)),T3 < T2,retract(goal(A(,),B(T1,T2), IE1(,))),

T5 = min{T1,T3},T6 = max{T2,T4}, IE1(T5,T6).

A(2,T3,T4) : −¬(goal(A(,),B(T1,T2), IE1(,))),T3 < T2,

assert(goal(B(,),A(T3,T4), IE1(,))).

B(T3,T4) : − f or each(B,1, [T3,T4]).

B(1,T3,T4) :−goal(B(,),A(T1,T2), IE1(,)),T3 < T2,retract(goal(B(,),A(T1,T2), IE1(,))),

T5 = min{T1,T3},T6 = max{T2,T4}, IE1(T5,T6).

B(2,T3,T4) : −¬(goal(B(,),A(T1,T2), IE1(,))),T3 < T2,

assert(goal(A(,),B(T3,T4), IE1(,))).

}

Disjunction. An algorithm for detecting disjunction (i.e., OR) of events is trivial.

The disjunction operator divides rules into separate disjuncts, where each disjunct

triggers the parent (complex) event. Therefore we omit presentation of the algorithm

here, but later in Section 7 we present experimental results also using an implemen-

tation of this operator.

Negation. Negation in event processing is typically understood as absence of an

event that is negated. In order to create a time interval in which we are interested to

112 D. Anicic et al.

detect absence of an event, we define a negated event in the scope of other complex

events. Algorithm 5.4 describes how to handle negation in the scope of a sequence.

It is also possible to detect negation in an arbitrarily defined time interval.

Algorithm 5.4 Negation.

Input: event pattern IE1 ← NOT(C).[A,B].
Output: event-driven backward chaining rules for negation.

Each event binary goal IE1 ← NOT(C).[A,B] is converted into: {
A(T1,T2) : − f or each(A,1, [T1,T2]).
A(1,T1,T2) : −assert(goal(B(,),A(T1,T2), IE1(,))).
B(T3,T4) : − f or each(B,1, [T3,T4]).
B(1,T5,T6) : −goal(B(,),A(T1,T2), IE1(,)),¬(goal(,C(T3,T4),)),
T2 < T5,T2 < T3,T4 < T5,retract(goal(B(,),A(T1,T2), IE1(,))), IE1(T1,T6))).
C(T1,T2) : − f or each(C,1, [T1,T2]).
C(1,T1,T2) : −assert(goal(,C(T1,T2),)).

}

Rules for detection of negation are similar to rules from Algorithm 5.1. We need

to detect a sequence (i.e., A SEQ B), and additionally to check whether an occurrence

of C happened in-between the event A and B. That is why a rule B(1,T5,T6) needs

to check whether ¬(goal(,C(T3,T4),)) is true. If yes, this means that an C has not

happened during a detected sequence (i.e., A(T1,T2) SEQ B(T5,T6)), and IE1(T1,T6)
will be triggered. It is worth noting that a non-occurrence of C is monitored from

the time when A has been detected until the beginning of an interval which the event

B is detected on.

In the following part of this section we provide brief descriptions for the remain-

ing relations between two intervals. Each relation is easily checkable with one rule.

Duration. An event happens during (i.e., DURING) another event if the interval of

the first is contained in the interval of the second. Rule (10) takes two intervals as

parameters13. First, it checks whether all parameters are intervals using rule (11).

Then it compares whether the start of the second interval (TI2 S) is less than the

start of the first interval (TI1 S). Additionally it checks whether the end of the first

interval (T I1 E) is less than the end of the second interval (TI2 E).

duration(TI1,T I2) : −
T I1 = [T I1 S,T I1 E],validTimeInterval(TI1),
T I2 = [T I2 S,T I2 E],validTimeInterval(TI2),
T I2 S@ < T I1 S,TI1 E@ < T I2 E.

(10)

validTimeInterval(TI) : −TI = [TI S,TI E],T I S@ < TI E. (11)

Start Relation. We say that an event starts another if an instance of the first event

starts at the same time as an instance of the second event, but ends earlier. Therefore

13 Symbol ’@’ is used in Prolog built-in predicates (>,<,≥ etc.) to compare terms alphabet-

ically or numerically. When this symbol is omitted, terms are compared arithmetically.

ETALIS: Rule-Based Reasoning in Event Processing 113

rule (12) checks whether the start of both intervals are equal and whether the end of

the first event is smaller than the end of the second one.

starts(TI1,T I2) : −
T I1 = [T I1 S,T I1 E],validTimeInterval(TI1),
T I2 = [T I2 S,T I2 E],validTimeInterval(TI2),
T I1 S = T I2 S,TI1 E@ < TI2 E.

(12)

Equal Relation. Two events are equal if they happen right at the same time. Rule

(13) implements this relation.

equals(TI1,T I2) : −
T I1 = [T I1 S,T I1 E],validTimeInterval(TI1),
T I2 = [T I2 S,T I2 E],validTimeInterval(TI2),
T I1 S = T I2 S,TI1 E = T I2 E.

(13)

Finish Relation. One event finishes another one if an occurrence of the first ends at

the same time as an occurrence of the second event, but starts later. Rule (14) check

this condition.

f inishes(T I1,T I2) : −
T I1 = [T I1 S,T I1 E],validTimeInterval(TI1),
T I2 = [T I2 S,T I2 E],validTimeInterval(TI2),
T I2 S@ < T I1 S,TI1 E = TI2 E.

(14)

Meet Relation. Two events meet each other when the interval of the first ends ex-

actly when the interval of the second event starts. Hence, the condition T I1 E =
T I2 S in rule (15) is sufficient to detect this relation.

meets(TI1,T I2) : −
T I1 = [T I1 S,T I1 E],validTimeInterval(TI1),
T I2 = [T I2 S,T I2 E],validTimeInterval(TI2),
T I1 E = T I2 S.

(15)

6 Event Consumption Policies

When detecting a complex event, there may be several event occurrences (of the

same type), that could be used to form that complex event. Consumption policies

(or event contexts) deal with the issue of selecting particular occurrence(s), which

will be used in the detection of a complex event. For example, let us consider rule

(1) from Section 5, and a sequence of atomic events that happened in the following

order: A(1),A(2),A(3),B(4),B(5),C(6) (where an event attribute denotes a time

point when an event instance has occurred). We expect that, when an event of type B

occurs, an intermediate event IE1 must be triggered. However, the question is, which

occurrence of A will be selected to build that event, A(1), A(2) or A(3)? Different

consumption policies define different strategies. Here, we illustrate three widely

114 D. Anicic et al.

used consumption policies: recent, chronological, and unrestricted policy [8, 23],

and show how they can be naturally implemented by rules in our framework.

6.1 Consumption Policies Defined on Time Points

In the above example, we assumed that the stream of events A(1),A(2),A(3),B(4),
B(5),C(6) contains only atomic events.

Recent Policy. The most recent event of its type is considered to construct com-

plex events. In our example, when B(4) occurs, A(3) will be selected to compose

IE1(3,4). After a more recent occurrence B(5) occurs, older (which are less re-

cent) occurrences of B are deleted (i.e., they are no longer eligible for further com-

positions). The next pair, A(3),B(5), is selected to form IE1(3,5). It replaces the

less recent occurrence IE1. Finally, when C(6) occurs, it will trigger E(3,6) (using

IE1(3,5) as the more recent occurrence of IE1 in comparison to IE1(3,4)).
The recent policy can be easily implemented in our framework. Let us con-

sider Algorithm 5.1, particularly the rule which inserts a goal (in our example,

goal(B,A, IE1)). Whenever an instance of A occurs, there will be a new goal in-

serted with a corresponding timestamp. E.g., for A(1), goal(B(),A(1), IE1(,)) is

added; for A(2), goal(B(),A(2), IE1(,)), and so forth). If we insert these goals

into the database using LIFO (Last In First Out) structure, we obtain the recent pol-

icy. In our prototype implementation, this is done with a rule of the following form:

assert(goal(X)) : −assertA(goal(X)). (16)

asserta is a standard Prolog built-in that adds a term to the beginning of the database.

Whenever a goal is inserted to the database, it is put on the top of a relation. Hence

whenever we read a goal, the one inserted last will be returned.

Chronological Policy. This policy “consumes” the events in chronological order. In

our example, this means that A(1) and B(4) will form IE1(1,4), and further A(2)
followed by B(5) will trigger IE1(2,5). When C(6) happens, it will trigger E(1,6).

It is straightforward to implement the chronological policy, too. Now, the goals

in Algorithm 5.1 are inserted in a FIFO (First In First Out) mode. Equivalently, we

use the following rule to realize the chronological policy:

assert(goal(X)) : −assertz(goal(X)). (17)

assertz is a standard Prolog built-in that adds a term to the end of the database.

Whenever a goal is inserted to the database, it is put at the end of a relation. Conse-

quently, whenever we read a goal, the first inserted goal will be returned first.

Unrestricted Policy. In this policy, all occurrences are valid. Consequently, no event

is consumed (and no event is deleted), which makes this policy not suitable for

practical use. Going back to our example, this implies that we detect the following

ETALIS: Rule-Based Reasoning in Event Processing 115

instances of IE1: IE1(1,4), IE1(2,4), IE1(3,4), IE1(1,5), IE1(2,5), IE1(3,5). The

event E will be triggered just as many times, that is: E(1,6), E(2,6), E(3,6)...
We obtain the unrestricted policy simply by not using the construct for delet-

ing goals (i.e., retract) from the database. If we replace the rule for B(1) in Algo-

rithm 5.1 with rule (18), even consumed goals will not be deleted from the database.

Hence they will be available for future compositions.

B(1) : −goal(B,A, IE1) SEQ IE1. (18)

Consumption policies are an important part of an event processing framework. We

notice that different policies change the semantics of event operators. For example,

with the same operator we have detected different complex events (the recent policy

detects E(2,6), while the chronological policy detects E(1,6)).

6.2 Consumption Policies Defined on Time Intervals

We have so far discussed consumption policies assuming that we consider atomic

events (in an input stream). As atomic events happen in time points, it is possible

to establish a total order of their occurrences. Consequently it is easy to answer

which event instance, out of two, happened more recently. When we deal with com-

plex events (T1 �= T2), a total order is not always possible. This subsection provides

possible options in defining consumption policies in such a case.

Recent Policy. Let us consider the following sequence of input events: A(1,30),
A(15,30), B(35,50). In our example rule (1) (from Section 5), the question now

is which instance of A is more recent, A(1,30) or A(15,30)? In our opinion, this

question depends on the particular application domain. There are three possible

options. First, an event detected on a longer event duration is selected to be the

recent one (i.e., A(1,30)). This option is suitable when aggregation functions (for

example, sum, average and so forth) are applied along time windows. Hence, events

detected on longer durations possibly reflect more accurate results. The second op-

tion is to choose an event with a shorter duration (i.e., A(15,30)). This preference

is, for example, suitable when indeed more recent events are desired. For exam-

ple, we are interested in data (carried by events) that are as up to date as possible.

Finally, the third possibility is to pick up an event instance based on data value se-

lection i.e., non-temporal properties. For instance, events ending at the same time,

A(1,30,X ,Vol = 1000) and A(15,30,X ,Vol = 10000), are selected based on an at-

tribute value (for example, greater Volume).

We implement these three cases with rules (19)-(21). When an A occurs, there is

a policy check performed. In rule (19), for two events with the same ending (i.e.,

A(T1,T3) and A(T2,T3)) we make sure that one with a longer path (T1 > T2) is se-

lected. In rule (20), we replace goals if the time condition is opposite (T1 < T2).

Finally, in data value (or attribute value) selection, we distinguish based on a chosen

attribute (e.g., Vol1 > Vol2).

116 D. Anicic et al.

event trigger(A(T1,T3,Vol1)) : −
goal(,A(T2,T3, ,),) SEQ T1 > T2 SEQ assert(goal(,A(T 3,T4, ,),))
SEQ assert(goal(,A(T 1,T3,Vol1),)).

(19)

event trigger(A(T1,T3,Vol1)) : −
goal(,A(T2,T3, ,),) SEQ T1 < T2 SEQ retract(goal(,A(T 3,T 4, ,),))
SEQ assert(goal(,A(T1,T 3,Vol1),)).

(20)

event trigger(A(T1,T3,Vol1)) : −
goal(,A(T2,T3,Vol2),) SEQ Vol1 > Vol2 SEQ retract(goal(,A(T 3,T4,Vol2),))
SEQ assert(goal(,A(T 1,T3,Vol1),)).

(21)

Policy rules (19)-(21) are fired before inserting a new goal. It is worth noting that

such an update of a goal is performed incrementally. We pay an additional price

for forcing a particular consumption policy. However, the policy rules (19)-(21) are

rather simple rules. In return, they ensure that no more than one goal with the same

timestamp (with respect to certain policy) is kept in memory (during processing).

Hence the rules enable a better memory management in our framework.

Chronological Policy. The main principle in the implementation of this policy is the

same as in the recent policy. The only difference is that now we consider the same

start and the different ending in multiple event occurrences (A(T 1,T2),A(T1,T 3)).
To implement this policy, rule (19) will now contain the time condition from rule

(20), and vice versa. Rule (21) remains unchanged, as well as unrestricted policy

(which is the same as for the case with atomic events, see Subsection 6.1).

7 Implementation and Experimental Results

The execution model of ETALIS Language for Events is established on goal-

directed EDBCR and decomposition of complex event patterns into two-input in-

termediate events (i.e., goals). Goals are automatically asserted by rules as relevant

events occur. They can persist over a period of time “waiting” to support detection

of a more complex goal. This process of asserting more and more complex goals

shows the progress towards detection of a complex event. Important characteristics

of these goals are that they are asserted only if they are used later on (to support

a more complex goal or an event pattern), goals are all unique, and persist as long

as they remain relevant (after that they can be deleted). Goals are asserted by rules

which are executed in the backward chaining mode. The notable property of these

rules is that they are event-driven. Hence, although the rules are executed backwards,

overall they exhibit a forward chaining behavior.

As a proof of concept, we have provided a prototype implementation of the lan-

guage. In this section, we present experimental results of our logic programming

based implementation in comparison to Esper 3.3.014. Esper is an engine primarily

14 Esper: http://esper.codehaus.org

http://esper.codehaus.org

ETALIS: Rule-Based Reasoning in Event Processing 117

relying on state machines, i.e., a different paradigm that is today widely used in CEP

systems [11, 3].

The test cases presented here were carried out on a workstation with Intel Core

Quad CPU Q9400 2,66GHz, 8GB of RAM, running Windows Vista x64. Since our

prototype automatically compiles the user-defined complex event descriptions into

Prolog rules, we used SWI Prolog version 5.6.6415 and YAP Prolog version 5.1.316.

All tested engines ran in a single dedicated CPU core.

To run tests, we have implemented an event stream generator, which creates time

series data with probabilistic values. Event streams are generated so that every event

in a stream is used for detection of one or more complex events (except the test

defined by rule (22)). Such streams put the maximum workload on tested engines.

The whole output generated from all tests is validated, so we have made sure that

all tested systems produce the same, correct, results.

0

5

10

15

20

25

30

35

25 50 75 100

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c Esper 3.3.0 P-SWI P-YAP

0

50

100

150

200

250

300

350

400

450

500

10% 50% 100%

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-YAP

Fig. 3 Experiments for sequence operator - (a) Throughput (b) Throughput vs. Predicate

Selectivity

C(Id,X ,Y) : −A(Id,X) SEQ B(Id,Y) WHERE (Y < K). (22)

Figure 3 shows experimental results we obtained for the sequence operator

(SEQ). In particular, Figure 3(a) shows the throughput measurements for a pattern

that exhibits a sequence of three events and the join operation on their Id attribute,

see rule (1) from Section 5. The Y-axis shows the event throughput achieved by the

three different CEP systems: Esper 3.3.0, and our prototype (P) running on SWI and

YAP Prolog, denoted as P-SWI and P-YAP respectively). The X-axis shows differ-

ent sizes of event streams, used for detection of complex events, defined by rule (1).

In this test, our system outperforms Esper. The throughput achieved by the YAP

engine is more than twice as big as the one produced by Esper. Also comparing YAP

and SWI, our implementation is significantly faster on YAP. This happens because

YAP implements several optimizations to improve indexing. In Figure 3(b) we have

15 SWI Prolog http://www.swi-prolog.org/.
16 YAP Prolog: http://www.dcc.fc.up.pt/˜vsc/Yap/. Our prototype ran by YAP

was using Windows x32, as we could not find YAP version x64 available. Other two sys-

tems (Esper and SWI) were running on Windows x64.

http://www.swi-prolog.org/
http://www.dcc.fc.up.pt/~vsc/Yap/

118 D. Anicic et al.

evaluated the patterns which (apart from the join operation) also contain a selec-

tion parameter K (see rule (22)). K varies the selectivity of the Y attribute, ranging

from 10% till 100%. When 10%-50% of the input events are selected, Esper shows

significant advantage over our system. Hence in the future we need to review our

implementation so to select events as early as possible. When all events are taken

into account (100% selectivity), our system running on YAP is slightly better than

Esper. We did this test on a stream of 25K events.

In Figure 4(a) we extended the tests (for 100% selectivity) to check out whether

the system throughput will remain constant for bigger streams (for example, 50K-

100K).

0

5

10

15

20

25

30

25 50 75 100

Event stream size x 1000

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-YAP

0

5

10

15

20

25

30

35

40

45

10 50 100

Selectivity of negated events

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-Yap

Fig. 4 (a) Sequence - Throughput vs. Workload Change (b) Negation - Throughput vs.

Selectivity

Figure 4(b) presents experimental results for negation (NOT). The figure shows

results obtained by evaluating a negated pattern from rule (23). The pattern is de-

tected when an instance of A is followed by an occurrence of B with no C in between

the two events. We have generated input event streams with different percentage of

occurrences of events of type C (that is, 10%-100%). We see that our prototype

(either run by SWI or YAP) dominates over Esper. We also notice that the through-

put increases as the percentage of C occurrences increases. This is happening as

the number of detected complex events decreases by increasing the frequency of

occurrences of C. The test is computed on a stream of 25K.

D(Id,X ,Y) : −NOT(C(Id,Z)).[A(Id,X),B(Id,Y)]. (23)

Figure 5(a) shows that the throughput does not go down even though we increased

the stream size (for example, 50K-100K).

We have tested the conjunction operator too. The pattern is specified by rule (24),

and results are presented in Figure 5(b). Esper was faster in this test. Our algorithm

for handling conjunction contains twice as many rules as the algorithm for sequence

(that is, two events in a conjunct may occur in any order). As a future work, we will

try to improve the implementation of conjunction by simplifying the event-driven

backward chaining rules in this algorithm.

D(Id,X ,Y) : −A(Id,X) AND B(Id,Y) AND C(Id,Z). (24)

ETALIS: Rule-Based Reasoning in Event Processing 119

0

5

10

15

20

25

30

35

40

45

50

25K 50K 75K 100K

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-Yap

0

5

10

15

20

25

30

35

40

25K 50K 75K 100K

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 Etalis - SWI Etalis - Yap

Fig. 5 (a) Negation - Throughput vs. Workload Change (b) Conjunction - Throughput.

Figure 6(a) shows results for disjunction, and evaluation of rule (25). In this test our

system running on YAP was the most effective. The throughput for this test is similar

to results for sequence (Figure 3(a)); this means that the presence of a disjunct does

not affect the performance of the sequence. We have also tested computation of

the transitive closure (see rule (26)). The throughput change for different sizes of

event streams are presented in Figure 6(b). Evaluation results were obtained under

chronological consumption policy. Our system on YAP was the fastest, however the

difference between evaluations running on YAP and SWI was huge (as discussed

earlier, due to better optimizations for indexing in YAP).

Finally, Figure 7 compares the tested systems with respect to event plan sharing.

We have run an event program containing the same pattern (similar to rule (1) from

Section 5) multiplying the pattern 1, 8, and 16 times. The focus was on examin-

ing how well the systems can exhibit computation sharing among patterns. In our

prototype, we have implemented a plan sharing by decoupling events in a complex

event pattern. A pattern is represented as a set of binary events, and each couple can

be shared among multiply complex event patterns. Despite this feature, our system

run by YAP was not resistant to increase of pattern rules. However our prototype

executed on SWI was still faster than Esper, see Figure 7.

D(Id,X ,Y) : −A(Id,X) SEQ (B(Id,Y) OR C(Id,Y)). (25)

TC(X ,Y) : −A(X ,Y).
TC(X ,Y) : −TC(X ,Z) SEQ A(Z,Y).

(26)

At the end, let us mention that the cost of compilation of an event program (written

in the proposed language) into Prolog rules is minor. Typically a program is com-

piled in few micro seconds. Hence the compilation phase does not cause a significant

overhead.

In this section, we have provided measurement results of our running CEP en-

gine. Even though there is a lot of room for improvements, preliminary results show

that logic-based event processing has the capability to achieve significant perfor-

mance. Working one 18 months on this project, we have managed to develop a CEP

120 D. Anicic et al.

0

5

10

15

20

25

30

25K 50K 75K 100K

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-Yap

0

10

20

30

40

50

60

70

80

90

100

2500 5000 7500 10000

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0

 x
 E

v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-Yap

Fig. 6 (a) Experiments for Disjunction Operator - Throughput (b) Evaluation of Transitive

Closure.

0

5

10

15

20

25

30

1 8 16

Number of queries

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 x

 E
v
e

n
ts

/S
e

c

Esper 3.3.0 P-SWI P-Yap

Fig. 7 Experiment for Testing Computation Sharing for Sequence Operator

language and a corresponding system that is competitive to mature CEP engines

such as Esper 3.3.0. Taking inference capability into account, logic-based CEP goes

beyond the state-of-the art in providing a powerful combination of deductive ca-

pabilities and temporal features17, while at the same time exhibiting competitive

run-time characteristics.

8 Related Work

In order to capture relevant changes in a system and respond to those changes ad-

equately, a number of formal reactive frameworks have been proposed. Work on

modeling behavioral aspects of an application (using various forms of reactive

rules) started in the Active Database community a long time ago. Different aspects

have been studied extensively, ranging from modeling and execution of rules to dis-

cussing architectural issues [21]. However, what is missing in this work is a clean

integration of active behavior with pure deductive and temporal capabilities.

A lot of work [19, 17, 20, 7] in the area of rule-based CEP has been carried out,

proposing various kinds of logic rule-based approaches to process complex events.

17 We have skipped comparative tests requiring interval-based operators (for example, PAR ,

DURING and so forth), as Esper language semantics is based on time points.

ETALIS: Rule-Based Reasoning in Event Processing 121

As pointed out in [7], rules can be effectively used for describing so-called “virtual”

event patterns. There exist a number of other reasons to use rules: Rules serve as

an abstraction mechanism and offer a higher-level event description. Also, rules

allow for an easy extraction of different views of the same reactive system. Rules

are suitable to mediate between the same events differently represented in various

interacting reactive systems. Finally, rules can be used for reasoning about causal

relationships between events.

To achieve the aforementioned aims, these approaches all represent complex

events as rules (or queries). Rules can then be processed either in a bottom-up man-

ner [22], a top-down manner [9, 1], or in a manner that combines both [6]. However,

all these evaluation strategies have not particularly been designed for event-driven

computation. They are rather suited for a request-response paradigm. That is, given

(and triggered by) a request, an inference engine will search for and respond with an

answer. This means that, for a given event pattern, an event inference engine needs

to check if this pattern has been satisfied or not. The check is performed at the time

when such a request is posed. If satisfied by the time when the request is processed,

a complex event will be reported. If not, the pattern is not detected until the next

time the same request is processed (though it can become satisfied in between the

two checks, being undetected for the time being). For instance, [20] follows the

mentioned request-response (or so called query-driven18) approach. It proposes to

define queries that are processed repetitively at given intervals, e.g., every 10 sec-

onds, trying to discover new events. However, generally events are not periodic or if

so might have differing periods, and nevertheless complex events should be detected

as soon as they occur (not in a predefined time window). This holds in particular for

time-critical scenarios such as monitoring stock markets or nuclear power plants.

To overcome this issue, in [7], an incremental evaluation was proposed. The ap-

proach is aimed at avoiding redundant computations (particularly re-computation of

joins) every time a new event arrives. The authors suggest utilizing relational algebra

evaluation techniques such as incremental maintenance of materialized views [14].

Prova [16] is close to our approach in sense that it supports declarative rules. On

the other hand it is a reactive system, supporting agent programming. Complex event

patterns can be created in Prova as Event Condition Action (ECA) rules. The Prova

language however does not provide event operators (e.g., SEQ , AND , OR etc.); they

rather need to be encoded as ECA rules. ETALIS is a dedicated CEP system where

complex event patterns are defined as rules. ETALIS Language for Events defines a

set of operators and enables the specification of complex events from other atomic

or complex events. ETALIS is grounded on EDBCR, and is a logic-programming

system. Prova combines imperative, declarative and functional programming styles,

and unlike ETALIS (which is a Prolog-based system), Prova is implemented in Java.

A big portion of related work in the area of rule-based CEP is grounded on the

Rete algorithm [13]. Rete is an efficient pattern matching algorithm, and it has been

the basis for many production rule systems. The algorithm creates a decision tree

that combines the patterns in all the rules of the knowledge base. Rete was intended

18 If a request is represented as a query (what is a usual case).

122 D. Anicic et al.

to improve the speed of forward chained production rule systems at the cost of space

for storing intermediate results. Production rules can be utilized to form complex

event patterns, in which case a Rete-based production rule system is used as a CEP

engine. Thanks to forward chaining of rules, Rete is also event-driven (data-driven).

Close to our approach is [15]. It is an attempt to implement business rules also

with a Rete-like algorithm. However, the work proposes the use of subgoals and

data-driven backward chaining rules. It has deductive capabilities, and detects sat-

isfied conditions in business rules (using backward chaining), as soon as relevant

facts become available. In our work, we focus rather on complex event detection,

and enable a framework for event processing in pure Logic Programming style [18].

Our framework can accommodate not only events but conditions and actions (i.e.,

reactions on events), too. As this is not a topic of this chapter, an interested reader

is referred to our previous work for details.

Concluding this section, many mentioned studies aim to use more formal seman-

tics in event processing. Our approach based on ETALIS Language for Events may

also be seen as an attempt towards that goal. It features data-driven computation of

complex events as well as rich deductive capabilities.

9 Conclusions and Future Work

We have proposed a language for Complex Event Processing based on deductive

rules. The language comes with a clear declarative, formal semantics for complex

event patterns. Further, our contribution includes an execution model which detects

complex events in a data-driven fashion (based on goal-directed event-driven rules).

We have also provided a prototype implementation of our approach, which allows

for specification of complex events and their detection at occurrence time. The ap-

proach substantiates existing event-driven systems with declarative semantics, and

extends them with the power of deductive reasoning. A logic-based CEP enables

reasoning over events, their relationships, and possible contextual knowledge avail-

able for a particular domain of interest. Although, so far, this feature has not been

utilized enough, potentially it can enable a new generation of programmers to in-

novate in novel event-driven applications in AI. We believe that the proposed rule-

based approach is also more pragmatic from the implementation and optimization

point of view (as many techniques from logic programming and deductive databases

are also applicable here). Extensibility of deductive rule systems is also higher than

for systems based on imperative programming. Our experimental results presented

in the chapter are encouraging.

As the next steps, we plan to investigate how our approach may show clear ad-

vantages over non-logic-based CEP. In particular, we plan to investigate how a rule

representation of complex events (in large pattern bases) may help in verification

of event patterns (e.g., discovering patterns that can never be detected according

to inconsistency problems). Further, event revision is another area where logic rea-

soning may help in discovering consequences when certain events are retracted.

Out-of-order events can also be handled in a logic CEP framework. Event retrac-

ETALIS: Rule-Based Reasoning in Event Processing 123

tion and out-of-order events can be seen as facts being retracted or added late to

an event processing knowledge base, respectively. Hence an inference system can

be deployed to reason about logical consequences of retracted or events added late

on the whole pattern detection process. Dynamic event pattern management (i.e.,

patterns are created or discarded on-the-fly when certain situations are detected)

is another interesting topic where the logic approach may help to control such an

event-driven computation.

Acknowledgments

This work was supported by European Commission funded project SYNERGY (FP7-

216089). We thank Ahmed Khalil Hafsi and Jia Ding for their help in the implementation

and testing of ETALIS prototype.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading

(1995)

2. Adaikkalavan, R., Chakravarthy, S.: Snoopib: Interval-based event specification and de-

tection for active databases. In: Data Knowledge Engineering. Elsevier Science Publish-

ers B. V., Amsterdam (2006)

3. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over

event streams. In: SIGMOD (2008)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the

ACM 26(11), 832–843 (1983)
5. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.C.: Boom:

Data-centric programming in the datacenter. Technical Report UCB/EECS-2009-113,

EECS Department. University of California, Berkeley (2009)

6. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways

to implement logic programs. In: PODS 1986, Massachusetts, United States, ACM,

New York (1986)
7. Bry, F., Eckert, M.: Rule-based composite event queries: The language xChangeEQ and

its semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS,

vol. 4524, pp. 16–30. Springer, Heidelberg (2007)

8. Chakravarthy, S., Mishra, D.: Snoop: an expressive event specification language for

active databases. In: Data Knowledge Engineering, Elsevier Science Publishers B. V.,

Amsterdam (1994)
9. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs.

Journal of the ACM (1996)

10. Condie, T., Chu, D., Hellerstein, J.M., Maniatis, P.: Evita raced: metacompilation for

declarative networks. In: Proc. VLDB Endow (2008)

11. Demers, A.J., Gehrke, J., et al.: Cayuga: A general purpose event monitoring system. In:

CIDR. Stanford University, USA (2007)

12. Eisner, J., Goldlust, E., Smith, N.A.: Compiling comp ling: Weighted dynamic program-

ming and the dyna language. In: Proc. HLT-EMNLP (2005)

13. Forgy, C.L.: Rete: A fast algorithm for the many pattern/ many object pattern match

problem. Artificial Intelligence (1982)

124 D. Anicic et al.

14. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques and

applications. IEEE Data Engineering Bulletin (1995)

15. Haley, P.: Data-driven backward chaining. In: International Joint Conferences on Artifi-

cial Intelligence, Milan, Italy (1987)

16. Kozlenkov, A., Penaloza, R., Nigam, V., Royer, L., Dawelbait, G., Schröder, M.: Prova:

Rule-based java scripting for distributed web applications: A case study in bioinformat-

ics. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S.,

Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,

vol. 4254, pp. 899–908. Springer, Heidelberg (2006)

17. Lausen, G., Ludäscher, B., May, W.: On active deductive databases: The statelog ap-

proach. In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Semi-

nar 1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, p. 69. Springer,

Heidelberg (1998)

18. Lloyd, J.W.: Foundations of Logic Programming. Computer Science Press, Rockville

(1989)

19. Motakis, I., Zaniolo, C.: Composite temporal events in active database rules: A logic-

oriented approach. In: Ling, T.-W., Vieille, L., Mendelzon, A.O. (eds.) DOOD 1995.

LNCS, vol. 1013, Springer, Heidelberg (1995)

20. Paschke, A., Kozlenkov, A., Boley, H.: A homogenous reaction rules language for com-

plex event processing. In: EDA-PS. ACM, New York (2007)

21. Paton, N.W., Dı́az, O.: Active database systems. ACM Comput. Surv. (1999)

22. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, 2nd edn., vol. I and

II. W. H. Freeman & Co., New York (1990)

23. Yoneki, E., Bacon, J.M.: Unified semantics for event correlation over time and space

in hybrid network environments. In: Chung, S. (ed.) OTM 2005. LNCS, vol. 3760, pp.

366–384. Springer, Heidelberg (2005)

Acronyms

CEP Complex Event Processing . 99

AI Artificial Intelligence .100

EDBCR Event-Driven Backward Chaining Rules . 107

ECA Event Condition Action . 121

GINSENG Data Processing Framework

Zbigniew Jerzak, Anja Klein, and Gregor Hackenbroich

Abstract. For many applications guided by sensor networks, such as production

automation and health monitoring, an efficient data processing with performance

assurance is crucial, especially for metrics such as delay and reliability. Our study

of current middleware approaches showed that they do not allow a sophisticated

complex event processing, neither the performance monitoring. In this chapter

we present the GINSENG middleware architecture that provides a 3-tier data pro-

cessing framework to exploit the benefits of basic publish/subscribe systems, tradi-

tional event stream processing and complex business rule processing. Furthermore,

the GINSENG middleware architecture provides performance control mechanisms,

i.e., monitoring metrics and improvement methods, both of the underlying sensor

network and the middleware itself. Finally, it supports the constraints of indus-

trial environments by allowing for the distributed middleware deployment and data

processing.

1 Introduction and Motivation

The overall goal of the GINSENG project is to develop a Wireless Sensor Network

(WSN) that meets application-specific performance targets and integrates existing

industry resource management systems. In order to achieve this goal, the GINSENG

project focuses not only on the development of the physical sensor network but also

on the development of a middleware platform which gathers and processes informa-

tion coming from wireless sensors and connects them to ERP systems.

The target application of the GINSENG project is pipe and oil tank monitoring

in a refinery environment. Here, pressure, volume flow, and tank level sensors are

applied to control the status and enable the predictive maintenance of pipelines and

Anja Klein · Zbigniew Jerzak · Gregor Hackenbroich

SAP Research Dresden, Chemnitzer Straße 48, 01187 Dresden, Germany

e-mail: {zbigniew.jerzak,anja.klein,gregor.hackenbroich}@sap.com

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 125–150.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{zbigniew.jerzak,anja.klein,gregor.hackenbroich}@sap.com

126 Z. Jerzak, A. Klein, and G. Hackenbroich

tanks. Moreover, refinery employees may be equipped with mobile sensors to mea-

sure gas leakages and raise warnings in case of hazardous situations. In these scenar-

ios a continuous performance control of all involved systems is crucial in order to

prevent undetected emergencies. Such emergencies can be a result of simple delays

concerning data transfer or data processing. Further performance-critical applica-

tion areas relevant for the GINSENG project include: fire detection, energy manage-

ment in manufacturing plants or health care, where status of patients is monitored at

intensive care units.

Beyond the continuous performance control, these scenarios require also the anal-

ysis of temporal relationships between incoming events as well as continuous data

stream processing. Moreover, all information has to be processed as close to the

source as possible. This reduces the transferred data volume and minimizes the con-

gestion probability for the limited bandwidth wireless sensor networks. Finally, the

physical distribution of sensors requires a distributed middleware deployment.

To meet these constraints, the GINSENG project is developing a modular, hier-

archical middleware architecture. The GINSENG middleware can be deployed in a

distributed manner on three different levels (sensor node, gateway and central server)

providing a flexible platform for distributed data processing – the GINSENG Data

Processing Framework.

The remainder of this chapter is structured as follows. In Section 2 we present

the overall architecture of the GINSENG middleware. Subsequently, in Section 3,

we focus on the GINSENG Data Processing Framework: a 3-tier architecture for

distributed data processing. In Section 4 we describe how the GINSENG Data Pro-

cessing Framework is extended to monitor the performance of the wireless sensor

network and the GINSENG middleware. Finally, in Section 5, we summarize the re-

lated work in the field of middleware technologies, publish/subscribe mechanisms,

event stream and business rule processing. We conclude with a summary of this

chapter and an outlook on future work in Section 6.

2 System Architecture

This section gives a brief overview of the GINSENG middleware architecture with

specific focus on the event processing. The GINSENG middleware architecture is

driven by two important factors: (i) it provides an event-based middleware which

(ii) decouples GINSENG components from each other.

The event-based middleware of GINSENG equips the application programmer

with an extensive functionality for the creation of distributed systems. Through its

components the GINSENG middleware allows the programmer to collect, process

and reason on the data as it moves through the system. Moreover, the GINSENG

middleware supports a many-to-many interaction scheme overcoming the shortcom-

ings (tight coupling, inflexibility) of the traditional request-reply schemes [39].

The GINSENG middleware is an event-based system which provides a strong

notion of decoupling which applies to both internal middleware components and

external components which communicate using the GINSENG middleware. The

GINSENG Data Processing Framework 127

WSNOther data sources

executionmanagement

Backend applications

Service & Update
Manager

P
e
rfo

rm
a
n
c
e
 M

o
n
ito

rin
gDevice Manager Adapter Framework 3rd Party Connectivity

Data
Processing
FrameworkEvent Flow

Monitoring

C
o

n
te

n
t-b

a
s
e

d
P

u
b

lis
h

/S
u

b
s
c
rib

e

Query Processing & Distribution

ERP System 1 ERP System 2 ERP System 3

Event
Stream

Processing

Business
Rules

Engine

Fig. 1 The architecture of the GINSENG middleware – centralized deployment

external components include Wireless Sensor Networks (or other data sources) and

Business Applications (or visualization components) – see Figure 1. Internal com-

ponents include query processing and distribution, and the adapter framework.

The decoupling of GINSENG components is provided by the underlying commu-

nication scheme: the publish/subscribe system. Using the publish/subscribe scheme,

components can register their interest for particular data and receive asynchronous

notifications about events matching their interest. This type of communication is re-

alized by all components within the GINSENG middleware. This approach is also

aligned with the asynchronous (push-based) creation of events by wireless sensors.

Figure 1 shows the details of the GINSENG middleware architecture. The

GINSENG middleware is split in two parts: (i) design-time components for all man-

agement functionality and (ii) runtime components that are relevant during the ex-

ecution. The design time components provide user interfaces for all administrative

tasks and thus allow the monitoring and configuration of the runtime components.

2.1 Core Components

All core components of the GINSENG middleware are connected using the Content-

based Publish/Subscribe system. The publish/subscribe system plays a crucial role

in the GINSENG middleware as it not only delivers events, but also takes part in the

filtering of the information, allowing movement of the computation to within the

proximity of the data sources.

The Adapter Framework is a pluggable infrastructure which allows the GIN-

SENG middleware to connect to arbitrary data (event) sources. Any required

3rd party driver or service enabling the connectivity can be dynamically plugged

into the adapter framework as an independent module. Such modules provide

128 Z. Jerzak, A. Klein, and G. Hackenbroich

connectivity not only to SQL-databases, the SAP Business Suite (e.g., an ERP sys-

tem) or arbitrary web services, but also to smart items such as wireless sensor nodes

or smart meters.

The Data Processing Framework acts as a foundation which allows for plugging

of arbitrary Event Stream Processing (ESP) and Business Rules (BR) engines to ben-

efit from existing well-known and well-tested complex event processing techniques

and to support declarative as well as rule-based event processing.

Finally, the Query Processing and Distribution controls the ESP and BR en-

gine(s). It is plays a significant role in distributed deployments (see Figure 2) of the

GINSENG middleware as it allows optimization of the distributed query execution.

It also provides a single, generic query language to the user or backend application

to encapsulate the applied ESP engine and performance-related meta-information.

The Performance Monitoring is a cross-cutting component. The Performance

Monitoring receives relevant meta-information (e.g., latency, packet loss, processing

time) from all middleware components, provides them to the interested user and

triggers activities for performance improvement.

2.2 Core Technology

The component infrastructure of the GINSENG middleware is developed based

on the OSGi Service Platform [59] – a dynamic module system for Java. Each

GINSENG middleware component is developed as two OSGi bundles1 – one for

the design-time configuration and one for the runtime execution. The design-time

bundle exposes the administration interface by component-specific User Interfaces

which are incorporated into the Management Console – see Figure 2. The Man-

agement Console connects to the Central Instance which is a single stop for master

copies of all configuration data and the runtime component code.

The runtime system consists of one or more middleware nodes. Each node pro-

vides a middleware runtime environment, where components’ runtime bundles re-

sponsible for device connectivity, system integration, data processing, data querying,

performance monitoring and performance improvement are deployed and executed.

The runtime bundle of a component is a piece of Java code that communicates with

a real world entity or external application via the content-based publish/subscribe

system.

Each middleware node may run on a regular personal computer, on an embedded

system, or within a virtual machine. The middleware runtime environment is built

on Java technology and therefore platform-independent. All agents deployed within

a node run in an OSGi environment (Eclipse Equinox [35]) which enables dynamic

remote code modifications, without requiring a reboot. This OSGi functionality en-

ables a minimal footprint for the runtime. Only bundles required for the specific ap-

plication scenario are deployed and executed. Nevertheless, it allows this footprint

1 An OSGi bundle consists of Java classes and other resources that deliver functions of a

specific application (component) to application users, as well as providing services and

packages to other bundles.

GINSENG Data Processing Framework 129

Local Monitoring and Control

Central Management

Central
Instance

Middleware
Node

Management
Console

Middleware
Node

Middleware
Node

Middleware
Node

Middleware
Node

Fig. 2 The distributed deployment of the GINSENG middleware

to grow according to the changing requirements. The OSGi environment allows the

deployment of additional bundles, e.g., adapters to connect new data sources, during

runtime. Of course, the lightweight implementation of runtime bundles is a key to

optimal middleware footprint, that developers need to keep in mind.

3 Data Processing Framework

The GINSENG data processing framework advances the current state of the art in

that it combines three technologies to build a unified data processing framework.

The three technologies are a content-based publish/subscribe communication sys-

tem, Event Stream Processing (ESP) engine and Business Rules Engine (BRE). To

the best of our knowledge it is the first approach which combines these technologies

to build a unified, event-driven data processing framework – see Figure 3.

Events created by wireless sensors are transformed using the Adapter Framework

of the GINSENG middleware into the internal GINSENG middleware event format,

which is used by all middleware components. Events in this format are subsequently

passed to the data processing framework which is responsible for stateful processing

of events according to the specified rules. The result of the stateful event processing

in the data processing framework (see Figure 3) is a set of complex (business) events

which are consumed by the backend applications and/or management components.

The data processing framework in the GINSENG middleware consists of two

main parts: the stateless and the stateful part. The input to the data processing

framework consists of simple events produced by the adapter framework. Within the

GINSENG middleware the content-based publish/subscribe system is considered as

the part of the data processing framework. However, since the publish/subscribe sys-

tem is also used to handle events leaving the data processing framework we indicate

this fact by placing it as a separate component in Figure 1.

130 Z. Jerzak, A. Klein, and G. Hackenbroich

stateful
ESP Engine

(Complex Event Processing)

Content-based Publish/Subscribe
(Filtering and Transport)

Business Rules Engine
(Inference Engine)

stateless
rules

Event Flow

stateful
rules

complex
events

filtered
events

business
events

business
rules

stateless
events

Fig. 3 Data processing framework in the GINSENG middleware

The data processing framework follows the principle of upstream evaluation and

downstream replication, which is a well established concept in the literature [10].

Following this principle the GINSENG middleware routes an event in one copy as

far as possible and replicates events only downstream. This means events are repli-

cated as close as possible to the interested components (downstream replication).

Filters and rules are applied, and patterns are assembled upstream, i.e., as close as

possible to the sources of events (upstream evaluation).

The upstream evaluation and downstream replication principle has the following

impact on the GINSENG middleware: stateful patterns and business rules entering

the GINSENG middleware are evaluated as close to the source of relevant events

as possible. However, since publish/subscribe systems are not well suited for han-

dling of stateful rules, the GINSENG middleware decomposes the business rules

into stateless and stateful parts, pushing the processing of the stateless rules within

the proximity of the data producers.

The stateless event processing in the data processing framework is therefore han-

dled by the content-based publish/subscribe system. Publish/subscribe systems use

stateless filters to decide upon the destination of events. In case no destination

matches a given event it is dropped – thus reducing the workload on the stateful

parts of the data processing framework.

The stateful part of the data processing framework consists of two processing

engines: the Event Stream Processing engine (based on the PIPES [33] system)

and the Business Rules Processing engine (based on the JBoss Drools [27]). This

GINSENG approach is aligned with the vision of ESP and BRE approaches merging

into unified CEP platform [7]. The GINSENG vision is driven by the fact that

GINSENG Data Processing Framework 131

Business Rules Engines expose a more mature interface for the non-technical users

while Event Stream Processing engines provide better performance for operations

on multiple sources of homogeneous events.

In addition to the above, the GINSENG middleware extends this approach by as-

serting that the future data processing frameworks will be based on an asynchronous,

data oriented communication protocol: the content-based publish/subscribe system.

The three technologies: ESP, BRE and publish/subscribe share a set of similarities

which further underline the applicability the GINSENG approach. All three tech-

nologies are event-based. They are inherently asynchronous and very well suited

for the processing of large quantities of events. In what follows we describe in de-

tail our effort of merging the three data driven techniques.

3.1 Business Rules Engine

Business rules engines rely on the Rete algorithm [22] to process incoming events

against a set of user-defined rules – see Section 5.4 for details. In the GINSENG

middleware we apply the Business Rules Management System (BRMS) JBoss

Drools [27], where events are represented by Java classes. Every event in JBoss

Drools can be equipped with meta-data which can state the role of the event, a times-

tamp (time-point), duration or an expiration time. JBoss Drools processes events as

they arrive, and due to the ability to perform temporal reasoning it has a built-in

mechanism for garbage collection of events that can no longer match any existing

rule.

The heart of the JBoss Drools system is the fast ReteOO algorithm, which pro-

vides support for sliding windows and temporal operators (before, after, coincide,

during, finishes, finished by, includes, meets, met by, overlaps, overlapped by, starts,

started by) for temporal reasoning. Rules can be specified either using the Drools

Listing 1 Two example JBoss Drools rules

1 define rule1:
2 if s1.val>5
3 && s2.val<8
4 && s3.tmp=5
5 && s1.loc=s2.loc
6 && s2.loc=s3.loc
7 then alarm()
8 end

10 define rule2:
11 if s1.val>5
12 && s2.val<8
13 && s1.qos=s2.qos
14 then alarm()
15 end

132 Z. Jerzak, A. Klein, and G. Hackenbroich

く
n

e
tw

o
rk

g
n

e
tw

o
rk

s3?

s1.val>5? s2.val<8? s3.tmp=5?

s1?

s2.loc=
=s3.loc

s1.qos=
=s2.qos

true
s1.loc=
=s2.loc

rule1rule2

s2?

root

Fig. 4 The Rete network containing rules depicted in Listing 1

native procedural rule language, or via the use of a custom defined domain specific

language (DSL). Within the GINSENG project we are developing a GINSENG do-

main specific language, tailored for use within a refinery environment, with specific

focus on the oil tank and pipe monitoring. The use of the GINSENG DSL allows

building of an interface between the non-technical refinery personnel and the rule

engine.

The basic idea of the Rete algorithm is to create a directed acyclic graph of rule

conditions, a so-called Rete network. Nodes in the graph represent rule conditions,

e.g., a node can realize a selection operator that filters data based on certain con-

straints. Whenever a new event appears or the state of the network changes a repre-

sentation of the event, a so-called working memory element (WME) is created. The

WME is then propagated through the Rete network. This is performed in a forward-

chaining fashion from the root to the leaf nodes of the network. During this process,

every node in the network checks conditions or performs joins and only matching

WMEs are passed on to child nodes. Every WME or tuple of WMEs that reaches a

leaf node represents a match and results in an activation of the corresponding rule.

A rule firing can influence the working memory, i.e., it can change events. If this

is the case, the system again creates WMEs from these events and propagates them

through the network.

Let us consider the set of rules specified in Listing 1. The rule rule1 states that

if an event of type s1 and field val greater than 5 and an event of type s2 and field

GINSENG Data Processing Framework 133

Table 1 Filters and events in predicate-based semantics

Node Description

Root
Starts each Rete network (root). It has no ancestor nodes.

Type

Distinguishes between different event types (e.g. s1?). Type node has only

one input, and acts as a filter by passing only events matching the type of the

node. The number of type nodes is equal to the number of event types occurring

in rules.

Alpha (α)

Performs stateless filtering similar to a selection in relational algebra (e.g.

s1.val>5?).

Beta (β)

Combines two different types of WMEs to produce a joined result (e.g.

s1.loc==s2.loc). Beta nodes usually perform joins, however, extensions

to realize a universal quantifier, an existential quantifier, a negation and differ-

ent aggregation functions are available.

Terminal

A leaf node in the Rete network (e.g. rule2). If an event reaches the terminal

node, this represents the fulfillment of the corresponding rule. Therefore, the

number of terminal nodes is equal to the total number of rules.

val less than 8 and an event of type s3 and field tmp equal 5 all have the field loc
set to the same value than the alarm() function should be called. Similarly, the

rule rule2 states that if an event of type s1 and field val greater than 5 and an

event of type s2 and field val less than 8 have the same value of field qos than the

alarm() function should be called as well.

The set of rules specified in the Listing 1 after loading into the working memory

of the Rete algorithm is presented in Figure 4. The description of each of the node

types which are illustrated in the Figure 4 are presented in Table 1.

3.2 BRM and Publish/Subscribe

For the evaluation of the Business Rules Engine we have used the Linear Road

Benchmark [5] – see Figure 5. The Linear Road Benchmark simulates a tolling sys-

tem on a fictional expressway, where every car is equipped with a transponder which

every 30 seconds emits a car’s position. Position reports are used to generate traf-

fic statistics which in turn determine the toll charges. Our evaluation has indicated

that the GINSENG Data Processing Framework requires additional mechanisms to

lower the memory consumption of the rules processing engine. We have developed

a two-stage strategy for coping with this issue. The first stage encompasses the use

of the publish/subscribe layer while the second (currently in development) extends

this approach to embrace event stream processing engines.

134 Z. Jerzak, A. Klein, and G. Hackenbroich

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
m

em
o
ry

 [
M

B
]

p
ro

ce
ss

in
g
 d

el
ay

 [
s]

number of position reports

used memory
allocated memory
processing delay

Fig. 5 Linear Road Benchmark – memory consumption using the Drools business rules

engine

For the first stage – using the publish/subscribe layer – we exploit the nodes

available in the α network in order to drive the processing in the publish/subscribe

layer. Specifically, we extract the stateless conditions contained within α network

and re-use them in the publish/subscribe layer. We extract both type and α nodes

and use their conditions as topics and filters within the publish/subscribe system,

respectively.

For example, let us consider the leftmost branch of the α network depicted in the

Figure 4. This branch will be converted to an OSGi filter with following properties

(props):

Listing 2 OSGi filter

1 Properties p = new Properties();
2 p.put(EventConstants.EVENT_TOPIC, "ginseng/events/s1");
3 p.put(EventConstants.EVENT_FILTER, "s1.val>5");
4 context.registerService(EventHandler.class.getName(), this, p);

The important aspect of the extraction process is that the filters are not removed

from the α network. Instead, filter copies are extracted and following the upstream

evaluation principle moved to within the proximity of the data producer. We have

decided to use this approach for pre-processing of the business rules as it allows us

to exploit the rule parsing and merging mechanism within the Rete network.

GINSENG Data Processing Framework 135

3.3 BRE and ESP

The second stage aiming at the optimization of the event processing within the

GINSENG Data Processing Framework involves event stream processing engines.

Our initial experiments have shown that performing operations like joins on simple

events consumes less memory if done within the Event Stream Processing network

than within the Business Rules Engine. Therefore, we the goal of the second stage

is to migrate parts of the β network into the event stream processing system.

The migration of the β network nodes imposes several implications for the BRE.

The most important issue is the need to change the corresponding parts of the Rete

network. The reason for the change is the fact that execution of the operators within

the β network results in the creation of new event types. This in turn, invalidates

both the α and the β network constructs as new events appear at the input of the BRE.

For example, let us assume that β node s1.loc==s2.loc visible in Figure 4 has

been migrated to an ESP system. This implies that ESP system produces a new type

of event which is a join between events of type s1 and s2. This in turn requires

the creation of new α node in the Rete network which would detect such a new

compound even type.

We are currently evaluating the set of operators and corresponding event types

which pose the best candidates for the migration from the BRM into the ESP system.

In order to provide a general framework we will perform tests using not only the

GINSENG specific data, but also the general benchmarking systems [5].

3.4 Domain Specific Languages for Rule Definitions

In order to shield users from changes in the underlying system GINSENG provides

a domain specific language (DSL) which allows non-technical users to specify new

and modify existing rules. The GINSENG DSL is based on an existing set of tested

rules, which constitute the GINSENG knowledge base. Based on these rules a set

of DSL queries is developed. As an example let us consider the following rule

expressed using the Drools native procedural rule language:

1 If WSNMessage(TankLevel<20, GenTimestamp>152467362)
2 then System.out.println("Oil tank is almost empty.");

The above rule monitors the level of a tank in the refinery. It states that messages

of type WSNMessage contain information with respect to the generation time stamp

(GenTimestamp) and current tank level – TankLevel. The above rule fires, i.e.,

produces a message Oil tank is almost empty, whenever the tank level

is below 20 and the generation time stamp is newer than 152467362. It can be

translated into a DSL rule using the following specification:

136 Z. Jerzak, A. Klein, and G. Hackenbroich

1 [when] If a message indicates that=WSNMessage()
2 [when] - oil tank level is lower than
3 {EnteredLevel}=TankLevel>{EnteredLevel}
4 [when] - and it was generated no later than at
5 {EnteredTimestamp}=GenTimestamp<{EnteredTimestamp}
6 [then] then log
7 "{Message}"=System.out.println("{Message}");

In the above specification first a test for a correct message type (line 1) is ex-

ecuted. Subsequently (lines 2–3), it is tested whether the user entered tank level

(EnteredLevel) is lower than the one contained in the message and (lines 4– 5)

and whether the user entered time stamp (EnteredTimestamp) is newer than

the one contained in the message. Finally (lines 6–7) a user entered message

(Message) is displayed whenever the previous conditions are met. The final rule

written in the GINSENG Domain Specific Language can take the following – easy

to write and understand – form:

1 If a message indicates that
2 - oil tank level is lower than 20
3 - and it was generated no later than at 152467362
4 then log "Oil tank is almost empty."

The DSL definition of the rule acts like a template for the technical definitions,

which allows the business user not only to understand the rule meaning, but also

frees him from the underlying implementation details, simultaneously providing

the ability to modify the DSL rules. In the example above users can select single

constraints in DSL rules, allowing them to, e.g., test only for the tank level without

performing the test for generation time.

4 Performance Control in Data Processing Framework

The first step towards a comprehensive performance monitoring is the collection

and definition of available and required performance parameters. To evaluate the

performance and quality of the event streams, we identified three classes of perfor-

mance and data quality indicators: (i) event latency, (ii) event loss (reliability), and

(iii) event content quality.

The metadata dimensions detailing these classes depend on (i) application require-

ments and (ii) used sensor nodes and their capabilities of metadata provisioning. To al-

low the comprehensive evaluation of the data quality of sensor measurement streams,

we propose a set of 13 data quality (DQ) and performance dimensions derived from

the DQ categories provided by [52]. We show these in Tables 2, 3, and 4. The

source of the respective metadata item is either the sensor node (S) or the middleware

(MW) itself. Further metadata dimensions can be calculated (C) based on other per-

formance information, allowing easy extension of the provided list. This calculation

is performed by the GINSENG middleware, when the respective meta-information

is required. This list can be easily extended by deriving further dimensions.

GINSENG Data Processing Framework 137

Table 2 List of performance dimensions for event latency

Dimension Description Source

GenerationTimestamp
Timestamp of event message generation, e.g., times-

tamp of sensor measurement
S

MwArrivalTimestamp
Timestamp, indicating the event’s arrival at the middle-

ware
MW

MwLeavingTimestamp
Timestamp, indicating the event is leaving the middle-

ware layer towards an application
MW

NetworkLatency
Time interval required for transferring this specific event

message within the WSN
C

NodeLatency
Average time interval required for transferring events

from the source mote of this event
C

MWLatency
Time interval required for transferring and processing

this event in the middleware
C

Table 3 List of performance dimensions for event loss (reliability)

Dimension Description Source

PacketLossPerMote

Number of message packets lost during data transmission in

the WSN per mote (calculated based on the MoteID and Mes-

sageID)

C

PacketLossAvg Average packet loss over all sensor motes C

Table 4 List of performance dimensions for event content quality

Dimension Description Source

Timeliness
Age of this event message since its generation, calculated as dif-

ference of current system time and generationTimestamp
C

Completeness Fraction of original sensor values C

Accuracy Maximal systematic numeric error of a sensor measurement MW

Confidence Maximal statistical error of a sensor measurement C

DataBasis
Amount of raw data underlying a data processing result or com-

plex event
C

138 Z. Jerzak, A. Klein, and G. Hackenbroich

4.1 Performance Monitoring Infrastructure

To record and manage the above listed parameters within the WSN and the middle-

ware, event messages have to be enriched with performance information. However,

the metadata dimensions listed above would significantly increase the data volume.

Thus, within the GINSENG middleware we apply the window-based approach (first

proposed in [30]) for the data quality management in data streams. To allow for

efficient data quality management, the event stream D, comprising a continuous

stream of m events consisting of n attribute values Ai(1 ≤ i ≤ n), is partitioned into

κ consecutive, non-overlapping data quality windows wi(k)(1 ≤ k ≤ κ), each of

which is identified by its starting point tb, its end point te, the window size ω and

the corresponding attribute Ai. In addition to the event data ei(j)(tb ≤ j ≤ te), the

window contains a set of d performance and data quality information items, each de-

scribing one performance dimension. Each window-wise performance information

item is calculated as an average of the original event-wise meta-information items.

For example, Figure 6 shows the window’s network latency lW SN,w(k) the window

accuracy aw(k) and the window completeness cw(k) with ω = 5.

The window size ω can be defined independently for each event attribute and/or

window. Small jumping windows result in high-granularity performance informa-

tion at the expense of a higher data overhead. A wider window definition guarantees

the important resource savings that are essential for data stream environments; this

happens by risking information with lower granularity and decreased correctness

due to error deviations introduced by the window-wise metadata aggregation.

4.2 Performance and Data Quality Algebra

To compute the performance and quality of event steam processing results, the tradi-

tional stream operators have to be extended as illustrated in Figure 7. For each data

processing function F consisting of operators o ∈ O, a metadata function FM has to

be composed of the data quality operators oM ∈ OM to compute the metadata MY ,

describing the derived knowledge Y = F(X).
Table 5 lists the operators o extracted from traditional event stream processing

engines and the GINSENG application scenarios, for which metadata operators oM

have to be described. The data quality algebra defines how operators influence each

DQ dimension. For a more detailed description the reader is referred to [32].

Generation Timestamp … 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

Pressure … 180 178 177 175 176 181 189 201 204 190 194 192 189 183 215 210 211 199 187 184

Network Latency …

Completeness …

Accuracy … 3 3,9 2,78 2,86

12,92 13,34 12,1 12,12

0,9 0,8 0,9 0,99

Fig. 6 Window-based approach for an event stream sample

GINSENG Data Processing Framework 139

F FM

describes

Sensor Data X Meta Information MX

Y = F(X) MY = FM (MX)

Fig. 7 Generic metadata algebra

Table 5 Data quality algebra operators

Type Operators

Numeric Operators Unary operators (e.g., square root); Binary operators (e.g., addition)

Signal Analysis Sampling; Interpolation; Frequency analysis; Frequency filtering

Relational Algebra Projection; Selection; Aggregation; Join

Rule-based Operators Set operators (e.g., union); Boolean operators; Threshold comparison

4.3 Performance Improvement

In [31], we present the quality-driven optimization of stream processing that im-

proves the resulting quality of data and service. We identify the targeted quality-

driven process optimization as multi-objective, non-linear, continuous optimization

problem with side conditions. We define the optimization objectives (for each data

quality dimension) and optimization parameters (that configure the required stream

processing operators). In the following, we briefly describe the developed generic

optimization framework and discuss major evaluation results.

4.3.1 Optimization Framework

The optimization framework is illustrated in Figure 8. The data quality-driven opti-

mization is executed continuously to tune the data stream processing during system

runtime. As soon as an optimal parameter set is found and deployed, it has to be

checked against the currently processed data stream. The online tuning allows the

seamless adaptation to varying stream rates, measurement values and data quality

requirements.

First, the system evaluates by means of static information like maximal sensor

stream rate or sensor precision, if the user-defined quality requirements can be ac-

complished or if conflicts exclude a realization of all sub-objectives. In the latter

case, the conflict is reported to the user. To check the satisfiability of DQ require-

ments, no access to streaming data is needed.

140 Z. Jerzak, A. Klein, and G. Hackenbroich

Fig. 8 Optimization framework

As the optimization must not interfere with the ongoing data stream processing,

it is separated into an independent system component. To execute the optimization

in parallel with the traditional data stream processing, the processing path with all

its operators is copied into the optimization component. To execute the optimiza-

tion, the framework applies a heuristic optimization algorithm (see Section 4.3.2 for

comparison of different algorithms). In each algorithm iteration, solution individu-

als, defining the stream operators’ configuration, have to be applied, evaluated and

compared. The solution individuals are ranked according to the achieved fitness,

that summarizes all sub-objectives of the optimization problem, and the best solu-

tions are used to start the next iteration. Step by step, the resulting fitness and, thus,

the configuration of the stream operators is improved.

Each solution is evaluated by directing a representative data stream partition

through the copied processing path in the optimization component. This stream

partition for optimization constitutes a data stream window of n data tuples. It may

either be selected in batch-mode at the beginning of each optimization run and used

in each iteration without changes. On the other hand, the partition can be updated

for each algorithm iteration with current tuples from the original stream, to reflect

the dynamic progression of the data stream and allow the continuous optimization.

After the stream partition is completely processed, the fitness of the tested configu-

ration is calculated.

As soon as the fitness accomplishes the user requirements, the optimization prob-

lem is solved. The new parameter setting is applied to the original processing path.

The sampling operators are updated with the optimized sampling rates rsa,opt . The

frequency analyses and aggregations are updated with the determined group sizes

GINSENG Data Processing Framework 141

lopt . Finally, the data quality initialization at the sensor nodes is re-configured with

the new window sizes ωopt .

The logical distinction between optimization and processing enables also their

physical separation, for example on a distinct server node. Thus, the optimiza-

tion task has no negative impact on the performance of the traditional data stream

processing.

4.3.2 Evaluation Results

The evaluation of the optimization framework showed that the processing time rises

nearly linearly for small to medium partition lengths of 100 to 1000 stream tuples.

Only for very large stream partitions does the iteration duration exhibit an expo-

nential character. Further, we can prove linear scalability for increasing processing

complexity. The time required for one algorithm iteration rises linearly with increas-

ing numbers of sensors as data sources and operators in the processing path.

Besides the evaluation of the generic framework, we compared different opti-

mization algorithms. The Monte-Carlo-Search (MC) performs a random search

over the problem domain and serves as reference value defining the lower perfor-

mance bound [38]. The single-objective optimization using the heuristic Evolution

Strategy [36] is executed with randomly chosen weights (SO-R) as well as optimal

weights (SO-O), which determine a well-balanced objective compromise. Finally,

the multi-objective optimization (MO) approximates the Pareto front of all optimal

compromises.

We evaluated the overall time performance of single- and multi-objective opti-

mization with respect to the achieved quality improvement for 16 sensor data sources

and 10 randomly inserted aggregations. The quality improvement is expressed as

percentage value (qbe f ore − qa f ter)/qbe f ore. The Monte-Carlo-Search performs worst

followed by the randomly initiated single-objective optimization, requiring 5.2 and

2.9 seconds, respectively, for a DQ improvement of 10%. The single-objective opti-

mization executed with well-balanced weights performs best (1.6s for 10%). How-

ever, the definition of these weights requires multiple optimization runs and has to

be adapted as soon as stream characteristics or user requirements change. The multi-

objective optimization (MO) is a little slower (1.9s) due to the complex computation

of the Pareto front. However, the result comprises the complete set of all optimal

compromises and no pre-processing to determine optimal weights is necessary.

The evaluation showed that the designed quality-driven optimization provides

good scalability with regard to the applied stream partition length as well as in-

creasing complexity of the data stream processing. Data quality and quality of

service could be improved within a few seconds. Further, we deduce that the single-

objective optimization in batch mode is the best choice for constant user require-

ments and steady data streams. If streaming data values present high fluctuations

or user requirements are often adjusted, the multi-objective optimization constitutes

the better option.

142 Z. Jerzak, A. Klein, and G. Hackenbroich

4.3.3 Open Issues

The research work presented above provides a good starting point toward perfor-

mance control in the GINSENG middleware. We need to extend this quality-driven

optimization framework towards a performance-driven optimization. The optimiza-

tion objectives have to be extended to cover the performance AND data quality

indicators defined above. Further, the applied optimization algorithms, e.g., the evo-

lution strategy, has to be adapted to embrace these novel objectives and the related

optimization parameters. After that, the optimization framework can be applied

without modifications to enable the performance maximization of event stream pro-

cessing in the GINSENG middleware.

5 Related Work

This section provides an overview of the state-of-the art concerning middleware

developments. Further, we discuss publish/subscribe systems and event- and rule-

based processing engines applicable to our processing framework.

5.1 Middleware Technology

In this section we analyze a representative set of existing middleware approaches

with regard to performance control and data processing supported. The project on

Wireless Accessible Sensor Populations (WASP) addresses the energy-efficient and

secure integration of Wireless Sensor Networks (WSN) into applications like traffic

and herd control and integrates data cleansing techniques for data quality improve-

ment [58]. WASP fulfills business applications requirements related to communica-

tion (e.g. on demand, event based sensor data acquisition, WSN discovery), but does

not support time synchronization. With respect to sensor data processing, WASP is

restricted to a basic operator set and does not support complex event processing, nor

performance or quality-guided stream processing.

The middleware developed within the project on PROduct lifecycle Management

and Information tracking using Smart Embedded systems (PROMISE) allows man-

agers, designers, and operators to track, manage and control product information at

any phase of its lifecycle (design, manufacturing, maintenance, recycling), at any

time and anywhere in the world [40]. However, PROMISE does not provide any

tools or components for performance or quality management and monitoring.

The Collaborative Business Items (CoBIs) project [14] provides a service-oriented

approach to support business processes that involve physical entities (goods, tools,

etc.) in large-scale enterprise environments in a transparent way. The CoBIs project

primarily focuses on the design of a service-oriented middleware for deploying, run-

ning, and querying services on sensor nodes and does not support data and event

processing as proposed by the GINSENG approach.

The SAP Auto-ID Infrastructure (AII) enables the integration of all automated

communication and sensing devices (e.g., RFID, Bluetooth and bar-code devices)

GINSENG Data Processing Framework 143

as well as intelligent programmable language controls [45]. SAP AII provides func-

tionalities for the data transfer from sensor motes to backend applications, but does

not include any data processing and performance monitoring technology.

Beyond this small excerpt of existing middleware systems, our comprehensive

analysis showed that middleware approaches for connecting field devices with back-

end systems only support basic pre-processing of sensor data and do not provide

any quality and/or performance control mechanism required by the industrial appli-

cations, where unreliable or deferred data may risk a system breakdown or even per-

sonal injuries. The GINSENG middleware addresses the performance assurances

(reliability, timeliness and precision) and control related issues. Moreover, it pro-

vides a) an abstraction to conceal the heterogeneity of underlying sensor motes, b) a

complex data stream and event processing engine, c) a robust monitoring and man-

agement of application logic.

5.2 Publish/Subscribe Communication

The GINSENG middleware uses the OSGi-based publish/subscribe paradigm as its

underlying communication infrastructure. In what follows we give a brief overview

of the existing approaches towards the design and implementation of publish/sub-

scribe systems.

Publish/subscribe is the first communication paradigm to unify three important

decoupling properties: space, time and synchronization decoupling [21] which

allows for a flexible communication between content producers (publishers) and

content consumers (subscribers). The decoupling properties ensure that the commu-

nication is anonymous (space decoupling), asynchronous (synchronization decou-

pling) and communicating parties do not need to be active at the same time (time

decoupling).

The above properties position pub/sub paradigm as a very attractive interaction

scheme for building loosely coupled, event driven applications. Moreover, due to

the decoupling properties publish/subscribe can act as a enabling technology for

higher level dynamic and distributed event-driven services, like Complex Event Pro-

cessing or Business Rules Processing. It is strictly for this reason that we design

the GINSENG middleware to rely on the publish/subscribe paradigm as its basic

communication primitive.

The basic interaction scheme of the publish/subscribe system is based on the

well known observer pattern [24]. Data consumers express their interest using sub-

scriptions. The first publish/subscribe systems started appearing over two decades

ago. One of the first publish/subscribe systems was Information Bus [37] which is

similar in concept to the generative communication model of tuple spaces [9]. The

Information Bus implements a topic-based publish/subscribe paradigm, i.e., filters

in subscription events took a form of fixed topics. The Information Bus and other

topic-based publish/subscribe systems [49, 6] allow content consumers to dynami-

cally specify topics which segment the information into channels. Publishers can

144 Z. Jerzak, A. Klein, and G. Hackenbroich

specify to which channel the produced information belong, thus allowing interested

subscribers to receive it.

The increasing need for heterogeneity and expressiveness among publish/sub-

scribe systems has lead to the development of the content-based [41] and type-

based [20] systems. Type-based systems provide type safety and encapsulation by

using the hierarchy of the class structure to filter events. Content-based systems pro-

vide a much greater degree of flexibility by relying on arbitrary filter expressions

(often in form of conjunctions of predicate functions [10, 29]) in order to select

events of interest to the subscribers.

Parallel to the academic development of the publish/subscribe communication

systems, the industry has started the adoption and standardization of the publish/-

subscribe communication. One of the first widely recognized and available speci-

fications was the Java Message Service [26] (JMS) which has been implemented

in multiple commercial, e.g., SonicMQ [51], and open source products, e.g., Hor-

netQ [28]. Other publish/subscribe specifications are WS-Eventing [17] and WS-

Notification [12, 25]. WS-Eventing and WS-Notification standards are not limited

to topic-based subscriptions (like JMS), allowing the definition of arbitrary filters in

form of XPath [18] queries in case of WS-Eventing or user defined queries (includ-

ing, e.g., XPath) in case of WS-Notification.

The OSGi publish/subscribe system has been proposed by the OSGi Alliance

in the Service Platform Specification [53]. The publish/subscribe communication

scheme implemented in the GINSENG middleware is defined within the Event Ad-

min service specification [54] and provides a topic-based publish/subscribe system

with additional ability to increase the filter selectivity (content-based publish/sub-

scribe) by using a LDAP-style filter specification [50].

5.3 Event Stream Processing

The author in [34] states that CEP systems process incoming raw events from mul-

tiple data sources in real-time using algorithms and rules to determine correlations,

trends and patterns expressed in outgoing complex events. This goal is achieved by

handling the correlation of temporal as well as other events which occur simultane-

ously and in high volumes [7]. While the Event Stream Processing (ESP) part of

the CEP technology is relatively new to the market with first commercial offerings

appearing in 2004 [46] the Business Rules part of the CEP technology is already

familiar to most organizations [44].

The event stream processing systems can perform filtering, correlation, trans-

formation and aggregation operations on multiple event streams. There exist a

number of academic prototypes which have also been partially transformed into

commercial offerings. Examples include Aurora/Borealis [1, 2] (commercialized by

Coral8 [15]), TelegraphCQ [11] (commercialized by Truviso [56]) and PIPES [33]

(commercialized by RTM Realtime Monitoring GmbH [42]). The processing of

data within ESP engines is driven by queries which can take be either declarative,

GINSENG Data Processing Framework 145

e.g., CQL: The Continuous Query Language [4], or procedural, e.g., SQuAl [2].

Declarative queries resemble the standard SQL syntax with event stream specific

extensions (e.g. support for windows), while procedural approaches allow for com-

position of queries out of well known building blocks (operators).

In recent years due to the distributed nature of data sources and the increasing

availability of the on-demand resources [16] the distributed ESP approaches have

been the focus of academic research. Recent developments include systems like Bo-

realis [1], System S [3] and NextCEP [47]. The focus of the distributed ESP research

lies on the scalability (via load and query distribution across multiple system nodes)

and fault tolerance (in most cases via state-machine replication [13, 48]) issues.

In what follows we give a brief descriptions of two open source ESP systems

which are used within the GINSENG middleware. The first system we use is

PIPES [33]. PIPES is a flexible and extensible infrastructure providing fundamen-

tal building blocks to implement a data stream management system. It constructs

directed acyclic query graphs based on a publish/subscribe mechanism which is inte-

grated into the graph nodes. PIPES is based on XXL [8] – a Java library that contains

a rich infrastructure for implementing advanced query processing functionality.

The second ESP system which is used in the GINSENG middleware is Esper [19].

Esper implements an Event Query Language (EQL) which allows for registering

of queries in the engine. A listener class is called by the engine when the EQL

condition is matched as events flow in. The EQL enables the expression of com-

plex matching conditions that include temporal windows, joining of different event

streams, as well as filtering, aggregation, and sorting. Esper statements can also

be combined together with “followed by” conditions thus deriving complex events

from more simple events. Events can be represented as Java classes, XML docu-

ments or java.util.Map, which promotes reuse of existing systems acting as

messages publishers. Esper also includes a historical data access layer to connect to

databases, combining historical data and real time data in one single query.

5.4 Business Rules Engines

Business Rules Management Systems (BRMS) provide the ability to easily ex-

press the rules in a simple and understandable way by using abstractions, such as

flowcharts, decision trees and decision tables as well as scoring models and textual

if-then rules [7]. Therefore, the benefit of BRMS lies in the fact that a change in

the rules can be easily reflected in the system by a non-technical user. BRMS, in

contrast to CEP solutions, are a mature offering with good market penetration.

Business rules engines (BRE), which constitute the core of the BRMS offerings,

are in most cases designed to accept discrete events which typically have a complex

payload (multiple elements) [7]. There exist currently a number of commercial of-

ferings for business rules platforms, including, but not limited to, Tibco Business

Events [55], UC4 Automation Engine [57] and ruleCore CEP Server [43]. There ex-

ist also non-commercial or open source systems, examples being JBoss Drools [27]

146 Z. Jerzak, A. Klein, and G. Hackenbroich

and Jess [23]. The common denominator for most of the business rules engines is

the use of the Rete algorithm [22] to process incoming events against the stored

rules. The use of the Rete algorithm allows reuse of the common parts of rules

and thus reducing the number of operations which are necessary to match incoming

events.

6 Summary

In this chapter, we presented the GINSENG middleware which closes the gap be-

tween (wireless) sensors networks and arbitrary backend applications, such as the

monitoring tool for a manufacturing site, the health care system at an intensive

care unit in a hospital or a zoological warehouse to track the routes of endangered

animals.

After a short description of the overall GINSENG architecture, the main part of

this chapter focused on the distributed event stream processing. With the presented

3-tier data processing framework composed of a low-level publish/subscribe system,

an exchangeable event stream processing engine and the high-level business rule

processing engine, we enabled the seamless integration of raw sensor events into

the complex business rule evaluation.

As GINSENG targets performance-critical application scenarios where long data

transfer delays, and missing or incorrect events may be hazardous, we proposed

mechanisms for the on-the-fly performance monitoring. Besides metrics for the ba-

sic performance measurement, a performance algebra to compute the accuracy of

event processing results and methods for the eventual performance improvement

were illustrated. Finally, we gave an overview of related work concerning middle-

ware approaches, as well as publish/subscribe, event and rule-based processing en-

gines applicable to our processing framework.

In further work, we will investigate and refine the integration between the event

processing engine and the business rules system. Moreover, the data quality driven

optimization of the event stream processing will be extended to cover all dimensions

listed in Tables 2, 3, and 4 as well as the GINSENG domain specific query language.

Finally, we will evaluate the GINSENG middleware against existing middleware,

event stream and business rules approaches to demonstrate the advantages of the

3-tier processing architecture over stand-alone processing engines.

Acknowledgments

The research leading to these results has received funding from the European Community’s

Seventh Framework Program (FP7/2007-2013) under grant agreement No. 224282. We

would also like to thank Sebastian Weng for his support with the execution of the Linear

Road benchmark.

GINSENG Data Processing Framework 147

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H.,

Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.:

The design of the borealis stream processing engine. In: CIDR 2005: Second Biennial

Conference on Innovative Data Systems Research, pp. 277–289 (2005)

2. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,

M., Tatbul, N., Zdonik, S.B.: Aurora: a new model and architecture for data stream

management. VLDB J. 12(2), 120–139 (2003)

3. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of extreme-

scale stream processing systems. In: ICDCS 2006: 26th IEEE International Conference

on Distributed Computing Systems, Lisboa, Portugal, July 2008, p. 71. IEEE Computer

Society, Los Alamitos (2006)

4. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic founda-

tions and query execution. The VLDB Journal 15(2), 121–142 (2006)

5. Arasu, A., Cherniack, M., Galvez, E.F., Maier, D., Maskey, A., Ryvkina, E., Stonebraker,

M., Tibbetts, R.: Linear road: A stream data management benchmark. In: Nascimento,

M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.)

VLDB, pp. 480–491. Morgan Kaufmann, San Francisco (2004)

6. Baldoni, R., Beraldi, R., Quéma, V., Querzoni, L., Piergiovanni, S.T.: Tera: topic-based

event routing for peer-to-peer architectures. In: Jacobsen, H.-A., Mühl, G., Jaeger, M.A.

(eds.) DEBS 2008: Proceedings of the 2007 Inaugural International Conference on Dis-

tributed Event-Based Systems, Toronto, Ontario, Canada, June 2007. ACM International

Conference Proceeding Series, vol. 233, pp. 2–13. ACM, New York (2007)

7. Brett, C., Gualtieri, M.: Must you choose between business rules and complex event

processing platforms? Forrester Research (January 2009)

8. Cammert, M., Heinz, C., Krämer, J., Schneider, M., Seeger, B.: A status report on xxl

- a software infrastructure for efficient query processing. IEEE Data Eng. Bull. 26(2),

12–18 (2003)

9. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)

10. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event

notification service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001)

11. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong,

W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Telegraphcq:

Continuous dataflow processing for an uncertain world. In: CIDR 2003: First Biennial

Conference on Innovative Data Systems Research (2003)

12. Chappell, D., Liu, L.: Web Services Brokered Notification. 1.3 (2006),

http://docs.oasis-open.org/wsn/wsn-ws brokered
notification-1.3-spec-os.htm

13. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: UpRight

cluster services. In: Proceedings of the 22 nd ACM Symposium on Operating Systems

Principles (SOSP), pp. 277–290 (2009)

14. CoBIs. Collaborative Business Items, http://www.cobis-online.de/
15. Coral8 Inc. Complex event processing with coral8,

http://download.microsoft.com/.../complex event
processing with coral8 final.pdf

16. Creeger, M.: Cloud computing: An overview. Queue 7(5), 3–4 (2009)

17. Davis, D., Malhotra, A., Warr, K., Chou, W.: Web service eventing, w3c working draft

(2009), http://www.w3.org/tr/2009/wd-ws-eventing-20090317/

http://docs.oasis-open.org/wsn/wsn-ws$_$brokered$_$notification-1.3-spec-os.htm
http://docs.oasis-open.org/wsn/wsn-ws$_$brokered$_$notification-1.3-spec-os.htm
http://www.cobis-online.de/
http://download.microsoft.com/.../complex$_$event$_$processing$_$with$_$coral8$_$final.pdf
http://download.microsoft.com/.../complex$_$event$_$processing$_$with$_$coral8$_$final.pdf
http://www.w3.org/tr/2009/wd-ws-eventing-20090317/

148 Z. Jerzak, A. Klein, and G. Hackenbroich

18. DeRose, J.C.S.: Xml path language, xpath (1999),

http://www.w3.org/tr/xpath
19. EsperTech. Esper reference documentation (1999),

http://esper.codehaus.org/esper-3.3.0/doc/reference/en/
pdf/esper reference.pdf

20. Eugster, P.: Type-based publish/subscribe: Concepts and experiences. ACM Transac-

tions on Programming Languages and Systems 29(1), 1–50 (2007)

21. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/-

subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

22. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem.

Artif. Intell. 19(1), 17–37 (1982)

23. Friedman-Hill, E.: Jess, http://www.jessrules.com/
24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable

Object-Orineted Software. Addison-Wesley Professional, Reading (1995)

25. Graham, S., Hull, D., Murray, B.: Web Services Brokered Notification. 1.3. Web

Services Base Notification. 1.3 (2006), http://docs.oasis-open.org/wsn/
wsn-ws base notification-1.3-spec-os.htm

26. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java message service (April

2002), http://java.sun.com/products/jms/
27. JBOSS. Drools, http://labs.jboss.com/drools
28. JBoss. Hornetq, http://www.jboss.org/hornetq
29. Jerzak, Z., Fetzer, C.: Bloom filter based routing for content-based publish/subscribe. In:

DEBS 2008: Proceedings of the second international conference on Distributed event-

based systems, Rome, Italy, July 2008, pp. 71–81. ACM, New York (2008)

30. Klein, A.: Incorporating quality aspects in sensor data streams. In: Proceedings of the

1st ACM Ph.D. Workshop in CIKM (PIKM), pp. 77–84 (2007)

31. Klein, A., Lehner, W.: How to optimize the quality of sensor data streams. In: ICCGI

2009: Proceedings of the 2009 Fourth International Multi-Conference on Computing in

the Global Information Technology, pp. 13–19. IEEE Computer Society, Los Alamitos

(2009)

32. Klein, A., Lehner, W.: Representing data quality in sensor data streaming environments.

J. Data and Information Quality 1(2), 1–28 (2009)

33. Kraemer, J., Seeger, B.: Pipes - a public infrastructure for processing and exploring

streams. In: Weikum, G., Koenig, A.C., Deßloch, S. (eds.) Proceedings of the 9th ACM

SIGMOD International Conference on Management of Data, pp. 925–926. ACM, New

York (2004)

34. Leavitt, N.: Complex-event processing poised for growth. Computer 42(4), 17–20

(2009)

35. McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating Highly Modular

Java Systems. Addison-Wesley Professional, Reading (2010)

36. Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Programs.

Springer, Heidelberg (1994)

37. Oki, B.M., Pflügl, M., Siegel, A., Skeen, D.: The information bus – an architecture for

extensible distributed systems. In: Liskov, B. (ed.) Proceedings of the 14th Symposium

on the Operating Systems Principles, pp. 58–68. ACM Press, New York (1993)

38. Patel, N.R., Smith, R.L., Zabinsky, Z.B.: Pure adaptive search in monte carlo optimiza-

tion. Mathematical Programing 43(3), 317–328 (1989)

39. Pietzuch, P.R.: Hermes: A Scalable Event-Based Middleware. PhD thesis, Computer

Laboratory, Queens’ College. University of Cambridge (February 2004)

http://www.w3.org/tr/xpath
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/pdf/esper_reference.pdf
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/pdf/esper_reference.pdf
http://www.jessrules.com/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.htm
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.htm
http://java.sun.com/products/jms/
http://labs.jboss.com/drools
http://www.jboss.org/hornetq

GINSENG Data Processing Framework 149

40. PROMISE. PROduct lifecycle Management and Information tracking using Smart Em-

bedded system, http://www.promise.no/
41. Rosenblum, D.S., Wolf, A.L.: A design framework for internet-scale event observation

and notification. SIGSOFT Softw. Eng. Notes 22(6), 344–360 (1997)

42. RTM Realtime Monitoring GmbH, http://www.realtime-monitoring.de/
43. ruleCore. Cep server, http://rulecore.com/
44. Rymer, J.R., Gualtieri, M., Brown, M., Salzinger, C.: The forrester wave: Business rules

platforms, q2 2008 (April 2008)

45. SAP AG. SAP Auto-ID Infrastructure, http://www.sap.com/platform/
netweaver/autoidinfrastructure.epx

46. Schulte, W., Blechar, M., Jones, T., Sholler, D., Thompson, J., Malinverno, P., Gassman,

B.: The growing impact of commercial complex-event processing products. Gartner

Research (October 2009)

47. Schultz-Moller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event process-

ing with query rewriting. In: DEBS 2009: Proceedings of the 2009 International Confer-

ence on Distributed Event-Based Systems, pp. 1–12 (2009)

48. Singh, A., Fonseca, P., Kuznetsov, P., Rodrigues, R., Maniatis, P.: Zeno: eventually

consistent byzantine-fault tolerance. In: NSDI 2009: Proceedings of the 6th USENIX

Symposium on Networked Systems Design and Implementation, pp. 169–184. USENIX

Association, Berkeley (2009)

49. Skeen, M.D., Bowles, M.: Apparatus and method for providing decoupling of data ex-

change details for providing high performance communication between software pro-

cesses. U.S. Patent No. 5,557,798 (July 1989)

50. Smith, M., Howes, T.: Lightweight directory access protocol (ldap): String representa-

tion of search filters. Request for Comments: 4515 (2006)

51. SonicMQ, http://web.progress.com/en/sonic/
52. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Communications of the

ACM 40(5), 103–110 (1997)

53. The OSGi Alliance. Osgi service platform - core specification (2009),

http://www.osgi.org/
54. The OSGi Alliance. Osgi service platform - service compendium (2009),

http://www.osgi.org/
55. TIBCO. Businessevents, http://www.tibco.com/software/

complex-event-processing/businessevents
56. Truviso. Web analytics software, http://www.truviso.com/
57. UC4. Automation engine, http://www.uc4.com/products-solutions/

automation-engine.html
58. WASP. Wireless Accessible Sensor Populations.,

http://www.wasp-project.org/
59. Wütherich, G., Hartmann, N., Kolb, B., Lübken, M.: Die OSGi Service Platform: Eine

Einführung mit Eclipse Equinox. dpunkt, Heidelberg (2008)

http://www.promise.no/
http://www.realtime-monitoring.de/
http://rulecore.com/
http://www.sap.com/platform/netweaver/autoidinfrastructure.epx
http://www.sap.com/platform/netweaver/autoidinfrastructure.epx
http://web.progress.com/en/sonic/
http://www.osgi.org/
http://www.osgi.org/
http://www.tibco.com/software/complex-event-processing/businessevents
http://www.tibco.com/software/complex-event-processing/businessevents
http://www.truviso.com/
http://www.uc4.com/products-solutions/automation-engine.html
http://www.uc4.com/products-solutions/automation-engine.html
http://www.wasp-project.org/

150 Z. Jerzak, A. Klein, and G. Hackenbroich

Glossary

GINSENG The goal of the EU-project GINSENG is the development of a performance-

controlled wireless sensor network.

WSN A Wireless Sensor Network is a network of sensor nodes that communicate

wirelessly.

Middleware The middleware is a computer software that connects software components

or applications.

Publish/-

Subscribe

Publish/Subscribe (or pub/sub) is a messaging paradigm where senders

(publishers) broadcast messages that are only received by Subscribers who

defined their interest in advance.

BR Business Rules are application- or domain-specific rules defining the selec-

tion of alternative execution paths in complex business processes.

BRP The Business Rule Processing evaluates incoming business and/or event

data against business rules to guide business processes.

BRM The Business Rule Management includes the definition, management and

processing of business rules.

ESP The Event Stream Processing embraces all techniques and methods for the

real-time processing of continuous or discrete event data.

CEP The Complex Event Processing combines and evaluates incoming raw

events against rules or patterns to create outgoing complex events.

DSL A Domain Specific Language is a programming or specification language

dedicated to a particular problem domain, a particular problem representa-

tion technique, and/or a particular solution technique.

DQ The Data Quality defines the appropriateness of a given data item for a

specific task, expressed e.g., as accuracy or completeness.

Performance The performance of a system describes its non-functional ability to solve a

specific task, expressed e.g., as latency or reliability.

Performance

Control

The performance control includes the monitoring of the current system per-

formance as well as methods for the performance improvement.

MO The Multi-objective Optimization targets for the Pareto front of optimal

compromises between all involved sub-objectives.

SO The Single-objective Optimization summarizes all sub-objectives in one ob-

jective function, which is optimized afterwards.

MC The Monte-Carlo-Search performs a random search over all possible solu-

tions to find the optimal one.

Security Policy and Information
Sharing in Distributed Event-Based
Systems

Brian Shand, Peter Pietzuch, Io annis Papag iannis, Ken Moody,
Matteo Mig liavacca , David M. Eyers, and Jean Bacon

Abstract. Linking security po licy into event-based systems a llows fo rma l
reasoning about info rmation security. In the applica tions we address, highly
confidentia l data must be shared both dynamica lly and for histo rica l ana l-
ysis. Principa ls with rights to access the data may be widely distributed,
existing in a federation o f independent administra tive domains. Domain man-
agers are responsible fo r the data held within domains and transmitted from
them; security po licy must be specified and enforced in order to meet these
oblig a tions. We motivate the event-driven paradigm and take hea lthcare as a
running example, because the confidentia lity o f hea lthcare data must be guar-
anteed over many years. We first consider how to enforce authorisation po licy
at the client level through parametrised ro le-based access contro l (RBAC),
taking context into account. We then discuss the additional requirements
for secure information flow through the infrastructure components that con-
tribute to communication within and between distributed domains. Finally,
we show how this approach supports reasoning about event security in large-
scale distributed systems.

Brian Shand
CBCU / Eastern Cancer Registry and Information Centre, National Health Service,
Unit C – Magog Court, Shelford Bottom, Hinton Way, Cambridge CB22 3AD, UK
e-mail: Brian.Shand@cbcu.nhs.uk

Peter Pietzuch · Ioannis Papagiannis · Matteo Migliavacca
Department of Computing, Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, UK
e-mail: {prp,ip108,migliava}@doc.ic.ac.uk

Ken Moody · David M. Eyers · Jean Bacon
Computer Laboratory, University of Cambridge, JJ Thomson Avenue,
Cambridge CB3 0FD, UK
e-mail: first.last@cl.cam.ac.uk

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 151–172.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

Brian.Shand@cbcu.nhs.uk
{prp,ip108,migliava}@doc.ic.ac.uk
first.last@cl.cam.ac.uk

152 B. Shand et al.

1 Introduction

Large event-based computer systems must protect the confidentia lity and
integrity of data as it passes through them. This task is to o large and dynamic
to be done in an ad hoc or centralised way: instead, access must be controlled
through explicit, distributed security policy. At the same time, policy enables
formal reasoning about the security of information within the event system.

In this chapter, we show how security policy support and enforcement can
be embedded into event-based systems. By adding fine-gra ined Distributed
Information Flow Contro l restrictions, we enhance end-to-end security; this
a llows security analysis to extend beyond the boundaries o f the event-based
middleware.Reasoning about event security can then support system-wide se-
curity audit and information governance, and protect sensitive data in large-
scale distributed systems.

Many large-sca le distributed applications are best modelled as a federation
of domains. A domain is defined as an independently administered unit in
which a domain manager has, or may delegate, responsibility for naming and
policy specification. The naming of individual users, groups and roles forms
the basis o f authentication and authorisation.

For example, a nationa l hea lth service comprises many independently ad-
ministered hospita ls, clinics, primary-carepractices, etc. The care of a patient
may move between domains, from primary care to treatment in hospita l. Spe-
cia lists may be asso ciated with more than one domain, such as hospita ls and
clinics. Researchers may need to perform statistica l analysis on health data .
Records may need to be transmitted to auditors and universally accessible
Electronic Health Record services. Patient treatment may necessitate the
ordering o f medication or services from separate domains. Communication
within and between domains must therefore be supported, but because of
the sensitivity of the data must be strictly contro lled.

In such applications the need to communicate is driven by the actions of
people (administration of treatment, taking medication), observations (de-
rived automatically from sensors, laboratory test results), and changes in
patient state or context (that might indicate emergency situations). Commu-
nication is naturally event-driven, requiring the asynchronous transmission
of data that captures the nature of some occurrence according to application-
specific event-naming, specification and management. In some domains pa-
tient treatment records are held in databases and the entry of a record may
trigger communication. We shall not focus on this particular source of com-
munication; details of how to integrate databases with event-based commu-
nication are given in [1, 2, 3].

Security models must reflect the structure and requirements of the appli-
cation environment. When security policy is enforced within a federation of
domains it must be clear where responsibility for each data item lies, and do-
main managers must be accountable for the information they generate, hold
and are obliged to share. General rules may hold about the data that can be

Security Policy and Information Sharing 153

sent from the domain responsible for it to other specific domains. Complete
data may be sent to a patient’s primary care practice and current hospita l
clinician, but certa in attributes may be withheld from other domains, such
as pharmacy and audit. Medica l data to be used for research purposes must
be de-identified, but it must be possible to relate the different records of a
g iven person.

Traditional access control mechanisms tend to fo cus on authentication
and authorisation of individual clients. In highly dynamic, distributed ap-
plications, context becomes increasingly important; and the circumstances
in which access is appropriate may also need to be captured. Context may
include abso lute and relative times, prerequisite actions and procedures, cre-
dentia l checks, the relationship between the principal accessing the data and
the principal to whom the data relates, any individual exclusions that may
have been placed on the data and whether an emergency situation exists.

Often data is highly sensitive, and must be protected, yet must also be
delivered in a timely manner to those parties that have a need and right to
know, for example, clinicians carrying out emergency procedures. Security
policy enforcement must not unduly delay the transmission o f data . Heavy-
weight security procedures tend to be bypassed by human users when there
is an option.

Data must be protected, not only from inappropriate clients end-to-end,
but also during transmission or pro cessing by intermediate infrastructure
components. Data may remain confidentia l for as long as a human lifetime,
or longer.

In summary, policy specification and enforcement must therefore capture:
(1) Data is communicated asynchronously in the form of messages that em-
body events. (2) Security policy must ensure that event type names and
specifications are unique within a system and that their evolution is con-
trolled. (3) When events are structured, separate components of events may
need different protection. (4) Security policy must specify the principals that
are authorised to access data. In an event-based system, control is enforced
in terms of who can send and receive events. (5) Parametrised RBAC has the
required properties of simple administration and subtle expression of policy.
In a multi-domain system, inter-domain negotiation establishes access rights
in terms of roles within domains. (6) It must be possible to qualify access
rights by context. (7) Domain managers must be supported in their obliga-
tions to protect data. General domain-level rules must be established and
enforced on transmitted data. (8) Mechanisms must be in place to secure the
flow of data through infrastructure components. (9) Security policy enforce-
ment must not delay communication unduly. Real-time communication may
be required by some clients. (10) Security policy should support analysis and
reasoning about event security.

Section 2 of this chapter presents our model of event-based communication,
showing how access control policy can be incorporated. In Section 3, we
address the challenges of secure event type management for Internet-scale

154 B. Shand et al.

environments. Section 4 extends event access controls, to give end-to-end
event security protection, even inside event broker nodes and event recipients.
Section 5 demonstrates how security policy can allow formal reasoning about
event security, and shows how end-to-end security enhances this. We conclude
in Section 6.

This chapter focuses on policy expression and enforcement. As we intro-
duce topics, we outline briefly the assumptions we make about the system
architecture and implementation within which policy must be enforced. Other
papers on the architecture and engineering of distributed event-based systems
give further detail [4, 5, 6].

2 Integrating Access Control into Event-Based Systems

In this section we discuss both client-level and communication security. First
we cover how the event data, that is to be communicated and accessed, is
defined, named uniquely, and its evolution controlled.

2.1 Event Type Specification and Ownership in a
Single Domain

Before events can be advertised, published or subscribed-to they must be
defined and their specification made available system-wide. We assume that
each event type has an owner who registers the type definition with the local
domain’s secure server. We assume a secure server per domain capable of
supporting a Public Key Infrastructure (PKI). When a type is registered, a
public/private key-pair is associated with it and the public key is bound into
its definition; the type owner holds the private key. The management of the
type, for example any changes that need to be made to its specification, are
controlled within this PKI.

We model events as structures consisting of multiple named parts (or at-
tributes). This fine-grained structure is useful for characterising event filters,
and for restricting which subscribers may receive which parts of an event.

In Section 3.1 we discuss how events may be made known system-wide in a
multi-domain system. We can then assume that event type specifications are
available to all application domains, statically through a registration service,
and dynamically when publishers advertise that they are live and ready to
publish. First, we describe the basic communication mechanism and access
control policy and mechanisms.

2.2 Event Communication: Advertise, Publish and
Subscribe

Having defined event types, communication can then take place. We assume a
publish/subscribe paradigm for event-based communication, [7]. Much of our

Security Policy and Information Sharing 155

research has been based on a large-scale pub/sub architecture Hermes, [8, 9].
The assumption is that event transmission is carried out by a shared event
broker network, independent of, and shared by, the client domains that use
it. An overview of the approach to secure transmission in Hermes is given
in [10].

Here, we modify our assumptions about the broker network for applica-
tions with long-term confidentiality requirements as described in Section 1.
We do not envisage a large-scale broker network independent of the appli-
cation domains; each broker belongs to an application domain, from which
its security properties, including trust, are inherited. A client-hosting broker
acts on behalf of publishers and subscribers in its domain and enforces the
security policy of the domain. For load balancing, more than one broker per
domain can be used.

An event publisher, that becomes ready to publish, multicasts an advertise-
ment system-wide via its domain-local event broker. The broker checks and
enforces authorisation policy relating to the advertisement, see Section 2.5.
Initial authentication of publishers, subscribers and brokers is done using
public key pairs bound to identity certificates (e.g. X.509) [5]. There can be
any number of publishers per event type and their advertisements make them
known to the event-brokers.

Principals with an interest in receiving events of an advertised type (sub-
scribers) issue a subscription, together with a subscription filter, via their
domain-local event broker. Again the broker checks that the subscriber is
authorised to make the subscription, see Section 2.5.

Subscriptions are routed to the relevant publishers’ brokers. When an event
is published, it is matched against the subscription filters and sent to those
subscribers whose filters match the event attributes.

For example, a pathology laboratory would advertise its intention to pub-
lish pathology reports to its event broker, and would then publish each pathol-
ogy report as an event. Authorised doctors and clinical researchers would
subscribe to pathology events, with subscription filters for their patients or
research studies.

We now describe how this procedure is qualified by security policy enforce-
ment, controlling who can publish and subscribe and the data that can leave
a domain and be sent to each destination domain.

2.3 Role-Based Access Control

Role-Based Access Control (RBAC) [11] is a standard technique for simplify-
ing scalable security administration by introducing roles as a linking concept
between principals (i.e. users and their agents) and privileges. Privileges, such
as the right to use a service or to access an object managed by a service, are
assigned to roles. Separately, principals are associated with roles. This sepa-
rates the administration of people, and their association with roles, from the

156 B. Shand et al.

control of privileges for the use of services (including service-managed data).
The motivation is that users join, leave and change roles in an organization
frequently, and the policy of services is independent of such changes. Service
developers need only be concerned with specifying access policy in terms of
roles, and not with individual users.

RBAC is particularly suitable for securing event-based systems because
the process of agreeing the notions of role between decoupled participants
within an event-based system closely parallels the process by which those
same decoupled participants must agree on how to interpret events. Both are
well suited to operation in widely distributed, multi-domain systems. Here
we focus on securing access to the communication service using RBAC.

Authentication into roles must be securely enforced to control the use of all
protected services and access to the data they manage [12]. Domain managers,
or their delegates, specify communication policy in terms of message types
and roles; that is, which roles may create, advertise, send and receive which
types of message, see Section 2.2.

Inter-domain communication is achieved through negotiated agreements,
expressed as access control policy, on which roles of one domain may receive
(which attributes of) which types of message of another. This negotiation
must also take into account any general domain-level policies regarding data
transfer, see Section 3.2.

Standard RBAC causes principals to be anonymous (i.e. the privi-
leges available to role holders do not depend on their identity), whereas
parametrised RBAC gives the option of anonymity or identification, for
example, treating-doctor(hospital-ID, doctor-ID, patient-ID). By means of
parametrised RBAC it is possible to capture relationships and patient-
specified exclusions, as may be required by law. The use of parametrised
roles can also help to avoid an explosion in the number of roles required
when RBAC is used in large systems. For the communication service, RBAC
policy indicates the visibility (to roles, intra- and inter-domain) of specified
attributes of message types.

The fact that advertisement is required before messages can be pub-
lished, and that both are RBAC-controlled, prevents the spam that
pervades email communication between humans. Without such control,
denial-of-service through publication or subscription flooding could degrade
large-scale inter-software communication in the same way that it consumes
resources in email management. With our approach, a spammer could only
be an authorised, authenticated member of a role and therefore could be held
accountable.

2.4 OASIS Role-Based Access Control

In this section we provide a brief introduction to the Open Architecture
for Secure Interworking Services (OASIS) [12], developed at Cambridge and

Security Policy and Information Sharing 157

used as the basis for our research. OASIS provides a comprehensive rule-based
means to check that users can only acquire the privileges that authorise them
to use services by activating appropriate roles. Although we use OASIS policy
in subsequent sections, we aim to highlight fundamental principles that must
guide any policy implementation.

A role activation policy comprises a set of rules, where a role activation
rule for a (target) role rt takes the form

r1, .., rn, a1, .., am, e1, .., el ⊢ rt

where ri are prerequisite roles, ai are appointment certificates (most often
persistent credentials) and ei are environmental constraints. The latter allow
restrictions to be imposed on when and where roles can be activated (and
privileges exercised), for example at restricted times or from a restricted set of
computers. Any predicate that must remain true for the principal to remain
active in the role is tagged as a role membership condition. Such predicates
are monitored, and their violation triggers revocation of the role and related
privileges from the principal.

For example, a role activation rule could support patient referral between
consultants, by allowing dynamic assignment of a treating-doctor target role,
given an appropriate consultant-referral appointment certificate.

An authorisation rule for some privilege p takes the form

r, e1, .., el ⊢ p

An authorisation policy comprises a set of such rules. OASIS has no negative
rules, and satisfying any one rule indicates success.

In our example, role authorisation rules could allow treating doctors and
clinical researchers respectively the privilege priv-clinical of reading clinical
data for the appropriate patients.

OASIS roles and rules are parametrised. This allows fine-grained policy
requirements to be expressed and enforced, such as exclusion of individuals
and relationships between principals, for example treating-doctor(hospital-ID,
doctor-ID, patient-ID), as outlined in Section 2.3.

2.5 Access Control Policy for Publish/Subscribe
Clients

The most general access control requirement in pub/sub relates to how clients
connect to the pub/sub service (e.g. a local broker of a distributed broker
network), and make requests using its API. This implements security at the
pub/sub network edge. Many pub/sub systems [7, 13] include the following
service methods in one form or another:

define(message-type)
advertise(message-type)
publish(message-type, attribute-values)
subscribe(message-type, filter-expression-on-attributes)

158 B. Shand et al.

Some policy languages will only be able to provide a coarse specification of the
client privileges required to use the API. In OASIS RBAC, the authorisation
policy for any service specifies how it can be used in terms of roles and
environmental constraints, and parametrised roles can be used to effect fine-
grained control.

OASIS policy indicates, for each method, the role credentials, each with
associated environmental constraints, that authorise invocation. OASIS role
parameters can be used to limit privileges to particular message-types. The
define method is used to register a message type with the service and specify
its security requirements at the granularity of attributes. On advertise, publish
and subscribe, these requirements are enforced. We can therefore support
secure publish/subscribe within a domain in which roles are named, activated
and administered.

3 Multi-domain Security Architecture

Multi-domain systems can be structured as a federation of autonomous do-
mains. This distributed approach requires a model for secure event type def-
inition and management, and an approach to inter-domain communication
control. Before covering these issues, we first clarify our domain model.

A domain-structured OASIS system is engineered with a per-domain, se-
cure OASIS server, see [4] for details. Also, each domain has a policy store
containing all the role activation and service-specific authorisation policies.
This avoids the need for every service to independently perform authenti-
cation and secure role activation, allowing simple service implementation.
The domain’s OASIS server carries out all per-domain role activation and
monitors the role membership rule conditions while the roles are active. This
effectively concentrates role dependency maintenance within a single server
and provides a single, per-domain, secure service for managing inter-domain
authorisation policy specification and enforcement. For robustness, this would
typically be a replicated service, with fail-over to a hot standby server.

3.1 Management of Event Names, Types and Policies

As introduced in Section 2.1, a mechanism is needed to agree on the naming of
event types, when constructing policy-secured, pub/sub systems. Extending
for multiple domains, we assume that domains are allocated unique names
within the system as a whole and that roles are named and managed within
a domain. Each domain provides a management interface through which role
activation policies and service authorization policies can be specified and
maintained.

A group of domains may have a parent domain from which an initial
set of role names and policies is obtained. For example, health service do-
mains may start from an initial national role-set. The domain management

Security Policy and Information Sharing 159

Table 1 Contents of a secure event type definition

Name tuple:

{ 1 Type issuer’s public key
2 User-friendly name
3 Version number

Body:

{

4 Attributes

Digital signature:

{

5 Delegation certificates
6 Digital signature

interface allows local additions and updates, for example when national gov-
ernment policy needs to be customised for implementation regionally. As
mentioned above, parametrised roles allow domain-specific parameters, for
example treating-doctor(hospital-ID, doctor-ID, patient-ID). This allows rela-
tionships and exclusions to be captured as well as avoiding excessive numbers
of roles in large-scale systems.

For a multi-domain pub/sub system, we introduce a format of event type
definition that binds the type name and definition together in a secure
manner. Public key cryptography is used to guarantee the authenticity and
integrity of this type information. To achieve this we require that all partic-
ipating brokers in the pub/sub system have a key-pair. We can thus require
that event-type issuers incorporate this public key into the type name. This
facilitates an event naming scope for each particular type issuer. Since event
type names include a public key, it is intuitive that the event type definitions
should be signed by the corresponding private key. This binds the type def-
inition to the type name, and facilitates verification of event type integrity
and issuer authenticity. Thus we protect the system against forged or tam-
pered event type definitions. We also reduce the chance of accidental name
collisions, and provide a unique handle through which policy can refer to the
names of types and attributes. An outline is given below and further details
are in [14, 15, 16, 10].

The six items that make up a secure event type definition are shown in
Table 1. Items 1–3 identify the name of the type. The Attributes item 4
indicates the core event type definition, and items 5 and 6 contain a digital
signature of the event type. Table 2 illustrates this for a pathology report
type.

Adding a public key to the type name eliminates event name conflicts.
While this is desirable, a user-friendly name is also maintained. The user-
friendly name is able to encode useful aspects, such as hierarchical nam-
ing, e.g. uk.nhs.path report. This enables administrative grouping of type
definitions across multiple event type owners. Orthogonal to both of those
concerns is type evolution, hence the provision of a version number. Releas-
ing a new version of an event type definition will not conflict with previous
instances still in use within the publish/subscribe system. Indeed, to avoid

160 B. Shand et al.

Table 2 Example of a secure event type definition for pathology reports

1 Type issuer’s public key
-----BEGIN PGP PUBLIC KEY BLOCK-----

Comment: Public key for NHS Information Authority . . .

2 User-friendly name
uk.nhs.path report

3 Version number
31ab47dc-4e52-4509-92ec-39f6e603d6e6

4 Attributes
patient-ID 0640d3d2-0b2b-45db-b66b-0f4200cd8358 String

patient-name de312646-e940-466d-a71f-fa9122891d5a String

hospital-ID e4ab7b23-87dc-44ca-bf7c-cba5cc5ce6f7 String

lab-number 1dd5f593-1bc6-4f53-89ef-5f2a38b1d4ec String

sample-receipt-date a273e069-7cb6-48ca-b827-9bb11d449dbf Date

path-report-text b831c325-4d63-4d98-b7c0-782a1d4a1c44 Binary

SNOMED-CT-codes 3514a33d-5173-453c-8b5a-11e8ead71761 String

5 Delegation certificates
[Delegation certificate from NHS root to NHS Information Authority]

6 Digital signature
-----BEGIN PGP SIGNATURE----- . . .

race conditions for version numbers when multiple type managers are releas-
ing updated event definitions, a UUID scheme is used for version numbers.
UUIDs are 128-bit values, generated by a collision-avoiding algorithm.

Item 4 in the event type definition describes the event type structure.
Each attribute definition itself consists of a user-friendly name, a unique
identifier (UUID), and an attribute type identifier. The set of types sup-
ported depends on the subscription filter language used. Friendly names for
attributes are intended to be used by clients of the publish/subscribe sys-
tem, e.g. path-report-text, whereas the UUID is used by intermediate brokers
during distributed event routing. The friendly names only need to be unique
within the context of one particular version of an event type definition. When
a publisher-hosting broker receives an event to route, it looks up the friendly
names used by its client using the publisher’s event type definition. This al-
lows the UUID fields to be correctly populated. The reverse of this process
occurs at subscriber-hosting brokers. The UUIDs allow multiple versions of
an event type to exist within the publish/subscribe system at a point in time.

The digital signature of an event type provides a guarantee of the authen-
ticity and integrity of the type definition. The signature is calculated over
items 1–4 in Table 1. It thus binds the type definition and the name tuple.

The delegation certificates (item 5) facilitate Internet-scale management
of event types. Since key-pairs are involved in signing event types, without
delegation certificates the type owner would need to re-sign all updates to
the type. Delegation certificates facilitate a digitally-signed path of trust from

Security Policy and Information Sharing 161

the original event type owner to type managers: parties that are allowed to
update event types on their behalf. In Table 2, the UK National Health Ser-
vice (NHS) authorises the NHS Information Authority to securely manage
certain event types. The delivery of delegation certificates to type managers
can be performed out-of-band, e.g. by secure email. The delegation certifi-
cates also provide the means to specify fine-grained access rights. Our pro-
totype implementations have typically supported rights such as addAttribute,
removeAttribute, editAttributeName and editAttributeType.

3.2 Inter-domain Communication Control

When security policy is enforced within a federation of domains, the man-
ager of each domain is responsible, and accountable, for the information held
within it and propagated to other domains. Encryption can be used to pro-
tect data during communication but the confidentiality of healthcare data
persists for as long as a human lifetime, or longer. On that timescale, encryp-
tion keys may be compromised by being exposed or becoming insufficiently
secure to withstand attacks from the increased computing power available.

Under these requirements, some of the much-researched optimisations ad-
vocated for publish/subscribe systems become problematic. Use of a shared
external broker network, with content-based routing, is ill-advised and di-
rect communication between domains is preferable. We envisage that a given
message will be sent to a handful of domains, unlike in global-scale pub/sub
information dissemination.

Some data may have a short lifetime, such as that transmitted in battlefield
scenarios and emergency situations. In these situations it may be appropriate
to use an external broker network, perhaps assembled in an ad hoc fashion
from mobile components. Messages in transit are assumed to be protected
by a standard, link-level scheme such as TLS [17]. At the client level, the
attributes of messages may be encrypted separately and decrypted by brokers
on behalf of their authorised clients. Some brokers may be less trustworthy
than others. Here, client-level encryption is appropriate, and essential, so that
untrusted brokers cannot decrypt highly sensitive attributes. Details of how
this can be achieved are summarised in [16].

Sensitive data should not be communicated to principals in other domains
unless authorised by policy. This can be established when RBAC-based au-
thorisation is set up by negotiation between domains. Rather than sending
entire events, containing attributes that are sensitive but protected by en-
cryption, it may be preferable to remove or to lower the precision of some of
the attributes. Similarly, brokers receiving events from other domains should
enforce client access rights according to RBAC policy. These issues have been
explored in detail in [2, 3].

162 B. Shand et al.

4 End-to-End Security with Information Flow Control

Thus far, we have outlined a security model for event-based systems, in which
multi-domain RBAC protects access to both individual events and the event
type system. This approach of integrating access control into event-based
systems provides strong, consistent security at the boundaries between pub-
lishers, event broker nodes and subscribers, and between federated domains.
However, it has limitations too:

• A large base of event broker code must be trusted not to leak information,
e.g. accidentally disclosing events to unauthorised subscribers, or disclosing
one subscriber’s subscriptions to another subscriber.

• If services such as network monitoring or complex event detection are
added to the event brokers, they need to be trusted too.

• Once data is released to a subscriber, information about its security is lost,
limiting the potential for end-to-end security, e.g. in follow-on messages.

In this section, we show how these limitations can be overcome, using Dis-
tributed Information Flow Control (DIFC) to guard all event processing
within the event broker nodes. This approach also enhances long-term data
security, because unauthorised data cannot be accessed or stored within a
DIFC framework, even in encrypted form.

Figures 1a and 1b illustrate this distinction, between security controls
at the boundaries of the event system, and continuous, end-to-end security
tracking with DIFC. In both figures, publishers and subscribers communi-
cate via trusted event brokers in two domains. Two publishers in Domain 1
send Event A and Event B respectively. The subscriber in Domain 2 has a
subscription which matches both events, but Event A is blocked for security
reasons. On receiving Event B, the subscriber attempts to save it to a file,
and republish it as Event C – both of which actions should be blocked for
security reasons. At the same time, a monitor component Σ in Domain 2
emits an event count, which is triggered by Event A, but not Event B. In the
figures, the large circles represent the boundaries of the event brokers, and a
shaded background marks trusted code. Event flows with the same line style
are protected with the same security restrictions. Tap icons show potential
data leaks. Solid small circles are security checks.

In Figure 1a, security is enforced only at the boundaries of the event bro-
kers. This correctly blocks Event A from the subscriber, and allows Event B
through. However, the subscriber can then republish or leak to a file the con-
fidential contents of Event B. Furthermore, there is no straightforward way
to ensure that the event count contains no confidential data.

In Figure 1b, DIFC tags allow continuous end-to-end tracking of data se-
curity. These not only correctly block and allow Events A and B respectively,
but also ensure that subsequent uses of Event B retain the same security
properties (dashed lines), preventing republishing or saving to a file. Further-
more, the event count can be shielded from confidential data, by using a small,

Security Policy and Information Sharing 163

Σ

Event A

Event B

Publisher

Publisher

Domain 1 Domain 2

Event count (Potential leak)

(Blocked at boundary)

Event C

Subscriber/

Publisher

Trusted
Trusted

broker

code
broker

code

File

Boundary security checks

Key:

Fig. 1a Boundary security between event publishers, brokers and subscribers

DIFC tag additions and checks on communication

Key:

Event A

Event B

Publisher

Publisher

Domain 1 Domain 2

Event count

Trusted

matcher

module

Trusted

matcher

module

RBAC RBAC

Σ

(Anonymiser) (No leak)

Subscriber/

Publisher

Event C

(Protected) File

(Blocked by DIFC tags)

(Blocked)

Fig. 1b End-to-end security with Distributed Information Flow Control

isolated anonymiser component before computing the sum; this reduces the
need for trusted code in the event broker.

4.1 Distributed Information Flow Control

Information Flow Control [18] is a security technique that uses security labels
to track and guard all information and processing. Information, that must
have a security label, can flow only to processes with compatible security
labels, and any resulting information is restricted by the labels of both the
process and the original information – unless special privileges are exercised,
such as declassification. For example, this could block confidential patient
data from a process with insufficient confidentiality privileges.

164 B. Shand et al.

Distributed Information Flow Control (DIFC) [19, 20] applies this technique
to distributed systems, by allowing new security label constituents to be cre-
ated dynamically by processes, instead of relying on a centrally predefined set.

We express each security label as a set of tags, each representing an atomic
security concern. Each tag is used either for confidentiality or integrity pur-
poses: data may ordinarily only increase in confidentiality, and decrease in
integrity as it is processed, unless special privileges are exercised for declas-

sification (lowering confidentiality) or endorsement (higher integrity).
Notationally, we write a DIFC security label as (S, I) with confidentiality

component S and integrity component I, where S and I are each sets of
tags. Information may flow from a to b with labels (Sa, Ia) and (Sb, Ib) only
if Sa ⊆ Sb and Ia ⊇ Ib. For example, this restriction would guard receipt of
event data by a process. To gain access to data, the process may need to use
privileges to increase its confidentiality (or secrecy), or lower its integrity –
these privileges are considered weaker than their opposites, declassification
and endorsement above.

To illustrate this practically, we use the following clinical example:

At a surgical outpatient appointment at Addenbrooke’s Hospital, the
consultant Miss Ali takes a biopsy from a patient (Mr Patterson), and
sends it to the pathology service for further analysis. When she receives
the results two days later, she refers the patient to Dr Brown, a consul-
tant oncologist, for chemotherapy, including the pathology report and
her own comments. The pathology report is also released to a cancer
researcher, Dr Chen, for analysis in an anonymised patient cohort.

The three events in this example are: e1: the pathology request sent in
conjunction with the physical biopsy, e2: the pathology report, a uk.nhs.

path report event as in Table 2, and e3: the pathology report with comments.
Here, a confidentiality tag tidentifiable could be used to restrict access

to the identifiable patient data in the pathology report event e2, such as
the patient-name or patient-ID attributes. Non-identifiable data, such as
SNOMED-CT-codes and path-report-text could be restricted with other confi-
dentiality tags. Finally, the pathology laboratory would add an integrity tag
tpathlab to all attributes which it added, to demonstrate the authenticity of
the report.

The overhead of DIFC label checks is small [21]. Computationally, the
complexity is linear in the number of labels; results can be cached for
efficiency.

In a distributed environment, we treat tags as local entities, ensuring that
network outages need not stall the event processing system. Tags are created
within an event broker node, and the creator of a tag can delegate privi-
leges to other processes, for adding the tag to labels or removing it from
them. (In [21], we detail how we can do this in an IFC-safe way, i.e. without
the privilege delegations themselves leaking information.) When event bro-
ker nodes exchange labelled data, they need to translate any tags with global

Security Policy and Information Sharing 165

meaning into the local representation, e.g. using DNS-backed URIs as global
names. However, the extra communication overhead is small, and local DIFC
checks can then efficiently treat all tags as local.

4.2 Event Security with DIFC

DIFC is well-suited to event processing systems: DIFC can protect all event-
based communication; any remaining communication channels or storage
mechanisms that persist between events should be blocked or DIFC mediated.
This combines nicely with our model of multi-part events in Section 2.1, as
each event part (or attribute) can have its own security label. By restricting
event handling to a controlled API, this allows code within an event broker
to access only those parts of an event for which it has tag privileges. The
existence of any other parts will effectively be hidden.

For efficient operation, we allow processes within an event broker to specify
in advance that they will always release an event (possibly modified) for other
processes to operate on [21]. Without this mechanism, all event parts would
need to be labelled with all of the confidentiality tags (and only a subset of
the integrity tags) from the releasing process’s label, resulting in unnecessary
complexity of design and operation.

DIFC for events improves the security of general purpose event processing
systems, including event-based middleware, offering strong protection against
communication leaks, and efficient end-to-end-security. The bulk of the event
processing system can consist of code with only limited privileges.

Figure 1b illustrates the effect of DIFC tracking within an event broker:
the security labels of multi-part events are tracked throughout an event-based
system, both within and between event brokers (shown by the different line
styles). If publishers and subscribers use a DIFC-enforcing API to interact
with events, then all of their subsequent operations are protected too – event
publication C must respect event B’s security and integrity labels, unless
additional declassification or endorsement privileges are exercised.

4.3 Enforcing OASIS Security with DIFC

Event systems can enforce Role-Based Access Control using DIFC restric-
tions. Our approach to this supports dynamic role assignment and revoca-
tion, and parametrised roles. We illustrate this using OASIS RBAC (outlined
in Section 2.4), thus providing end-to-end DIFC support within the multi-
domain security architecture of Section 3.

In essence, whenever an OASIS role is activated, DIFC confidentiality tags
are created for the resulting privileges, and any event-handling processes that
need access to the data are granted the appropriate confidentiality tag priv-
ilege. Trusted processes, such as broker-to-broker communication or shared

166 B. Shand et al.

matching, may need to be granted declassification privileges too, depending
on the event system design.

In our example from Section 4.1, Miss Ali submits a subscription for all
clinical events at Addenbrooke’s Hospital pertaining to patient Mr Patterson.
The policy for this message-type requires that a subscriber must have privilege
priv-clinical(patient-ID) to receive events with the corresponding patient-ID.

Mr Patterson’s pathology report is published by the pathology lab: the
identifiable patient data is labelled with confidentiality tag tidentifiable, and
the clinical details have tag tMrPatterson corresponding to the privilege of
being able to handle clinical data with Mr Patterson’s patient-ID, i.e. priv-
clinical(“Mr Patterson”). Relevant parts of the pathology event are shown
in Table 3. Creation of this event was OASIS-mediated; the trusted OASIS
support code retains the right to grant privileges over tMrPatterson on the local
event broker node.

Table 3 A multi-part pathology report with security labels

Label (S, I) Event part name Event data

({tidentifiable}, {}) patient-ID 1234567768
({tidentifiable}, {}) patient-name Roger John Patterson
({}, {}) hospital-ID RGT01
({}, {tpathlab}) lab-number A10/21367
({}, {tpathlab}) sample-receipt-date 2010-02-04
({tMrPatterson}, {tpathlab}) path-report-text CASE HISTORY: Large solid

tumour with some papillary el-
ements on right side of trigone.
Query TCC.
MACROSCOPIC: . . .

({tMrPatterson}, {tpathlab}) SNOMED-CT-codes 302512001 | Bladder | , . . .

When the event broker receives the pathology report, the event sub-
scription causes role treating-doctor(“Addenbrooke’s Hospital”, “Miss Ali”,
“Mr Patterson”) to be activated, yielding privilege priv-clinical(“Mr Patter-
son”). The corresponding DIFC tag tMrPatterson is retrieved, and the subscrip-
tion’s process is granted access to it. More precisely, the process receives the
privilege to add tMrPatterson to its confidentiality component, and effectively
spawns a lightweight copy of itself, allowing it to inspect the event contents
without prejudicing its ability to operate with a lower confidentiality level on
subsequent events.

When Miss Ali refers the patient to Dr Brown, he too obtains the appro-
priate treating-doctor role, and thus the right to read the pathology report
in question, as well as the patient demographics tagged tidentifiable. The re-
searcher, Dr Chen will only be granted privilege priv-clinical(“Mr Patterson”)
to read the pathology report, but no access to the identifiable patient data. If

Security Policy and Information Sharing 167

patient linkage is required for the research, a trusted process can anonymise
the patient-ID, adding a new event part anonymised-ID that Dr Chen can
read.

Dynamic privilege assignment adds an extra complexity glossed over above:
instead of using a single tag t for a privilege at all points in time, a sequence of
tags t1, t2, t3, . . . is created as needed whenever the roles actively supporting the
privilege change. This is needed to enforce OASIS privilege revocation, with-
out mandatory revocation of DIFC tag privileges (as such a mechanism would
violate DIFC restrictions). Therefore, when a role is revoked, a new DIFC tag
tn+1 is used for subsequent data, essentially making the revokee’s existing tag
tn worthless, except for processing that has already been authorised.

DIFC tags provide efficient, local enforcement of privileges. The additional
overheads of tag management are minor, as they affect only the relatively
expensive OASIS-mediated activities of exercising privileges and roles, and
role revocation. OASIS policy also provides effective translation between local
DIFC tags and domain-level privileges.

We have shown that DIFC enforcement of RBAC restrictions can provide
fine-grained end-to-end security for event flows, both within event processing
broker nodes, and for event publishers and subscribers subject to DIFC re-
strictions. This also reduces the trusted code footprint of the event processing
system, supporting the principle of least privilege.

As the following section shows, OASIS privileges or DIFC tags in the
application domain integrate well with other aspects of secure system design,
such as physical security.

5 Reasoning about Event Security

A policy-based approach to event security enables formal reasoning about
information flow in an event-based system. This reasoning can be performed
either at the level of the policy language, such as OASIS rules (Section 2.4),
or in terms of their projection into DIFC labels, where DIFC enforces event
security (Section 4.3). Policy language reasoning is generally simpler, but
DIFC reasoning offers extra flexibility, such as integration with multiple pol-
icy languages, direct links to environmental factors such as physical location,
and better support for end-to-end policy enforcement.

5.1 Policy-Based Reasoning

Linking RBAC privileges to particular message-types (Section 2.5) immedi-
ately allows straightforward reasoning about certain security properties. For
example, suppose the pathology message-type’s policy requires privilege priv-
clinical(patient-ID) to access the event part named “path-report-text”, for
events with that patient-ID, and the only OASIS policy rules yielding priv-
clinical permissions are:

168 B. Shand et al.

treating-doctor(hospital-ID, doctor-ID, patient-ID)⊢priv-clinical(patient-ID)

clinical-researcher(study-ID, researcher-ID, patient-ID)⊢priv-clinical(patient-ID)

Then we can reason that only treating doctors and authorised clinical re-
searchers can access the pathology text, as long as the assignment of the
treating-doctor and clinical-researcher roles is suitably restricted.

Similarly, if consultants can refer patients to each other through consultant-
referral role appointment certificates, then these can be supported with the
following OASIS policy rule:

treating-doctor(referring-hospital-ID, referring-doctor-ID, patient-ID),

consultant-doctor(hospital-ID, doctor-ID),

consultant-referral(referring-doctor-ID, doctor-ID, patient-ID)

⊢ treating-doctor(hospital-ID, doctor-ID, patient-ID)

We can then conclude that the consultant referral from Miss Ali to Dr Brown
described in Section 4.1’s example will enable Dr Brown to read the pathology
report’s text when the patient is referred – as long as he receives a copy, and
his treating-doctor role is still valid.

This sort of reasoning focuses principally on confidentiality restrictions, i.e.
guaranteeing that data will not be received by unauthorised recipients. This
focus is appropriate for our target scenarios, such as protecting healthcare
data against disclosure. However, protecting integrity and availability are
equally important for safety-critical systems.

Integrity can be linked to the event type, implying that all publications
of a particular message-type are of high integrity, or that only high-integrity
messages will have certain attributes set. Limited integrity restrictions can
also be implemented indirectly in OASIS, by treating them each as a forced
low-integrity role that is held by all principals except for a few high-integrity
entities, like the high-integrity pathology lab in our example. However, these
approaches require event publishers to manage their own integrity tracking,
to ensure that they do not inadvertently raise the integrity level of data from
an external source. DIFC restrictions provide much more robust, fine-grained
support for protecting both confidentiality and integrity.

OASIS policy checking can also prove a limited version of availability: it
can show that no access control restrictions will prevent the delivery of a
particular event to a subscriber. However, this depends on the underlying
availability of the event processing system and supporting infrastructure.

5.2 Event Security Reasoning with DIFC Labels

DIFC labels allow direct reasoning about confidentiality and integrity proper-
ties. The benefits of this include: (1) DIFC restrictions protect against many

Security Policy and Information Sharing 169

security vulnerabilities directly, (2) the correctness of policy enforcement can
be verified in terms of its transformation to DIFC tags, (3) fine-grained,
end-to-end confidentiality/integrity reasoning is supported, (4) multiple pol-
icy languages can translate to common enforcement tags, and (5) DIFC tag
analysis can facilitate reasoning about physical security.

The greatest advantage of translating policy into DIFC restrictions is that
the basic Information Flow Control restrictions are not violated. This system-
wide property subsumes many individual security checks, and its power
should not be understated. For example, this means that checking “No unau-
thorised users may access patient data” translates to checking what program
code can declassify tagged patient data in the event processing system, and
the safeguards on corresponding role assignment.

Relying on a common enforcement mechanism allows safe, consistent policy
enforcement. Correctness of the OASIS policy enforcement mechanism can
be assessed simply in terms of its transformation of policy rules to DIFC tags.
Provided this transformation is correct, DIFC restrictions will then enforce
the OASIS RBAC guarantees. Furthermore, policy-based reasoning will apply
to the resulting DIFC tags too.

End-to-end confidentiality and integrity are possible, because publishers
and subscribers can process event data within a DIFC-enforcing framework.
This makes many security checks on client code unnecessary, as this code
is protected by the DIFC framework. For example, a subscriber cannot for-
ward patient data to an unauthorised third party, because DIFC restric-
tions will automatically block access to that data. Event subscribers (and
untrusted code within the event broker system such as network status moni-
tors) are also prevented from accessing or retaining confidential data, even in
encrypted form; this provides essential protection against the long-term risk
of disclosure.

This end-to-end support is also potentially more fine-grained than the un-
derlying policy may suggest. If an event monitor were introduced, to count the
number of pathology reports by anatomical site (e.g. the number of pathol-
ogy reports with a SNOMED-CT code of “302512001 |Bladder|”), the moni-
tor could declassify the non-disclosive result immediately after checking the
“SNOMED-CT-codes” field. Then the only program code that would need
to be trusted would be the code reading that field. A more coarse-grained
policy-based analysis would instead suggest the entire monitoring codebase,
and all subsequent messages, as potential data leaks.

DIFC tags can also protect against cross-contamination of patient data: if a
recipient uses confidentiality privileges to merge two patients’ data, the result
will be contaminated with tags for both priv-clinical privileges, preventing
accidental release as a single patient’s data.

Multiple policy languages can be supported, provided that they can all
translate their requirements into DIFC tags. This may limit the potential
to perform security reasoning at the policy level – unless the DIFC tags of
one policy language can be translated back into another, or the tag overlap

170 B. Shand et al.

between the languages can be characterised. On the other hand, this does
support safe, consistent interaction between otherwise independent policy
languages.

Finally, location-based policies and reasoning are well supported by DIFC
tags – based on either network or physical location. For example, a confiden-
tiality tag can be used to keep all patient data within the health service’s
physically secure network. This can enhance the multi-domain security ar-
chitecture of Section 3, by supporting high-level specification of the interface
between domains and preventing unauthorised event bridges between them.
Similarly, physical security can be linked to the DIFC system, so that data
displayed or entered at a hospital terminal is automatically linked to a DIFC
confidentiality level, which is in turn bound to OASIS security policy rules.
This allows the security of the event system to extend beyond the event
interface.

For example, a doctor might be allowed to view clinical data only on a
trusted terminal, e.g. inside a hospital, by defining a secure-terminal role for
this (backed by environmental constraints). This results in DIFC confiden-
tiality labels as described above, and our earlier rule can be changed to:

treating-doctor(hospital-ID, doctor-ID, patient-ID),

secure-terminal ⊢ priv-clinical(patient-ID)

Event security reasoning scales well to large-scale distributed systems: our
domain model ensures that event types are managed in a structured, domain-
based way. Parametrised RBAC reduces the number of rules and the fre-
quency of rule change. This lets policy authors and users reason about event
security on the basis of relatively static, domain-local information. Where pol-
icy references roles from other domains, either external rules can be checked
directly, or partial conclusions can be drawn, with open-ended external role
dependencies. For example, in reasoning about the consultant referral rule,
the consultant-doctor role could be assumed to be assigned correctly by the ap-
propriate governing body (the General Medical Council in the UK), without
needing complete knowledge of the rules governing this assignment. High-level
interface policies can further simplify analysis, particularly in large organi-
sations such as a health service, by allowing reasoning about long-lasting
security guarantees, independently of more dynamic local rules.

Thus end-to-end DIFC security enhances the scope for reasoning about
event security, enabling policy-based reasoning to be extended to include
event publishers, subscribers, and the environmental context in which they
operate.

6 Conclusions

The ability to reason about event security depends on the underlying security
architecture. In this chapter we have outlined our approach, which integrates

Security Policy and Information Sharing 171

strong, policy-based security into event-based systems. OASIS Role-Based
Access Control allows simple administration and rich distributed security
policy, with parametrised roles and appointment certificates. OASIS secures
not only individual events, but also the event type system, supporting evolv-
ing rules and event structures for long-lived systems and data. We have shown
how to use this in developing multi-domain systems, allowing security policy
to reflect complex organisational structures and interconnections.

The security of event systems is enhanced by adopting fine-grained Dis-
tributed Information Flow Control restrictions on all event data. Extending
these restrictions to event publishers and subscribers allows robust end-to-
end security, which is essential for protecting long-term confidential data such
as healthcare records. By translating OASIS policy enforcement into DIFC
restrictions, we support both policy-based reasoning about event security,
and the extension of this reasoning framework beyond the event processing
middleware’s boundaries.

In this way, event security reasoning can play a significant part in system-
wide security audit and information governance, and can protect sensitive
data in large-scale distributed systems.

Acknowledgement. We thank Jem Rashbass and Jon Crowcroft for their comments

on this chapter. This work has been supported by grants from the UK Engineer-

ing and Physical Sciences Research Council (EPSRC) since 2000, including OASIS

(GR/M75686), Contract-driven Systems (GR/S94919), EDSAC21 (GR/T28164),

CareGrid (EP/C53719X) and, most recently, SmartFlow—Extendable Event-Based

Middleware (EP/F042469 & EP/F044216; http://www.smartflow.org/).

References

1. Vargas, L., Bacon, J., Moody, K.: Integrating Databases with Pub-
lish/Subscribe. In: Proceedings of the 4th International Workshop in Dis-
tributed Event-Based Systems (DEBS 2005), June 2005, pp. 392–397. IEEE
Press, Los Alamitos (2005)

2. Singh, J., Vargas, L., Bacon, J., Moody, K.: Policy-based information sharing in
publish/subscribe middleware. In: IEEE Workshop on Policies for Distributed
Systems and Networks (Policy 2008), IBM Palisades, New York, pp. 137–144.
IEEE Press, Los Alamitos (2008)

3. Singh, J., Vargas, L., Bacon, J.: A Model for Controlling Data Flow in Dis-
tributed Healthcare Environments. In: Pervasive Health 2008: Second Interna-
tional Conference on Pervasive Computing Technologies for Healthcare, Tam-
pere, Finland, January 2008, pp. 188–191. IEEE Press, Los Alamitos (2008)

4. Bacon, J., Moody, K., Yao, W.: Access control and trust in the use of widely
distributed services. In: Liu, H. (ed.) Middleware 2001. LNCS, vol. 2218, pp.
295–310. Springer, Heidelberg (2001)

5. Bacon, J., Eyers, D.M., Moody, K., Pesonen, L.I.W.: Securing pub-
lish/Subscribe for multi-domain systems. In: Alonso, G. (ed.) Middleware 2005.
LNCS, vol. 3790, pp. 1–20. Springer, Heidelberg (2005)

http://www.smartflow.org/

172 B. Shand et al.

6. Bacon, J., Eyers, D.M., Singh, J., Shand, B., Migliavacca, M., Pietzuch, P.: Se-
curity in multi-domain event-based systems. IT - Information Technology 51(5),
277–284 (2009), doi:10.1524/itit.2009.0552

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces
of publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

8. Pietzuch, P.R., Bacon, J.M.: Hermes: A distributed event-based middleware
architecture. In: 1st International Workshop on Distributed Event-Based Sys-
tems (DEBS 2002), Vienna, Austria. ICDCS, pp. 611–618. IEEE Press, Los
Alamitos (2002)

9. Pietzuch, P.R., Bacon, J.M.: Peer-to-peer overlay broker networks in an event-
based middleware. In: 2nd International Workshop on Distributed Event-Based
Systems (DEBS 2003). ICDCS, pp. 1–8. ACM SIGMOD, New York (2003)

10. Bacon, J., Eyers, D.M., Singh, J., Pietzuch, P.R.: Access control in pub-
lish/subscribe systems. In: Proceedings of the Second International Conference
on Distributed Event-Based systems (DEBS 2008), pp. 23–34. ACM, New York
(2008)

11. Sandhu, R., Coyne, E., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

12. Bacon, J., Moody, K., Yao, W.: A model of OASIS role-based access control and
its support for active security. ACM Transactions on Information and System
Security (TISSEC) 5(4), 492–540 (2002)

13. Pietzuch, P., Eyers, D., Kounev, S., Shand, B.: Towards a Common API for
Publish/Subscribe. In: Proceedings of the Inaugural Conference on Distributed
Event-Based Systems (DEBS 2007), pp. 152–157. ACM Press, New York (2007)
(short paper)

14. Pesonen, L.I.W., Bacon, J.: Secure Event Types in Content-Based, Multi-
domain Publish/Subscribe Systems. In: SEM 2005: Proceedings of the 5th
International Workshop on Software Engineering and Middleware, Lisbon, Por-
tugal, September 2005, pp. 98–105. ACM Press, New York (2005)

15. Pesonen, L.I., Eyers, D.M., Bacon, J.: Access control in decentralised pub-
lish/subscribe systems. Journal of Networks 2(2), 57–67 (2007)

16. Pesonen, L.I.W., Eyers, D.M., Bacon, J.: Encryption-Enforced Access Control
in Dynamic Multi-Domain Publish/Subscribe Networks. In: Proceedings of the
Inaugural Conference on Distributed Event-Based Systems (DEBS 2007), June
2007, pp. 104–115. ACM Press, New York (2007)

17. Dierks, T., Allen, C.: The TLS protocol version 1.0. IETF RFC 2246 (January
1999)

18. Bell, D.E., La Padula, L.J.: Secure computer systems: Mathematical founda-
tions and model. Technical Report M74-244. The MITRE Corp., Bedford, MA
(May 1973)

19. Myers, A., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology 9(4), 410–442
(2000)

20. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Mor-
ris, R.: Information flow control for standard OS abstractions. In: Proceedings
of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles
(SOSP 2007), pp. 321–334. ACM, New York (2007)

21. Miglivacca, M., Papagiannis, I., Eyers, D., Shand, B., Bacon, J., Pietzuch,
P.: High-performance event processing with information security. In: USENIX
Annual Technical Conference, Boston, MA, USA, pp. 1–15 (2010)

Generalization of Events and Rules to
Support Advanced Applications⋆

Raman Adaikkalavan and Sharma Chakravarthy

Abstract. Event-Condition-Action (ECA) rules monitor applications and
systems and react to changes. In this chapter, we discuss various exten-
sions to ECA rules to support advanced applications. We particularly use
the access control domain to drive the extensions needed for expressiveness,
specification, and execution of policies using the ECA paradigm. We discuss
alternative actions, generalized event specification and detection, and event
detection modes. We also discuss the extensions to the event detection graphs
to implement the proposed ECA rule extensions.

1 Introduction

Event-Condition-Action (ECA) [1–11] have been shown to support applica-
tions such as situation monitoring, workflow management, transaction pro-
cessing, change detection, pattern detection, and others in various application
domains. A ECA rule consists of three parts: event, conditions, and actions.
An event (simple or complex) is defined as an occurrence of interest. When
events are detected, associated rules are triggered and conditions are evalu-
ated. When conditions evaluate to True, (predefined) actions are performed.
There has been a lot of work in event specification and detection [1–11].

Raman Adaikkalavan
Computer Science & Informatics
Indiana University South Bend
e-mail: raman@cs.iusb.edu

Sharma Chakravarthy
Computer Science and Engineering
The University of Texas At Arlington
e-mail: sharma@cse.uta.edu

⋆ This work was supported, in part, by the NSF grant IIS 0534611. This work was
also supported, in part, by an IUSB Grant.

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 173–193.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

raman@cs.iusb.edu
sharma@cse.uta.edu

174 R. Adaikkalavan and S. Chakravarthy

Access control [12] models and mechanisms allow subjects to access only
authorized objects. There are multiple access control models – discretionary,
mandatory, and role-based. Discretionary allows subjects to own objects, and
grant permissions to other subjects to access those objects. It allows subjects
to access objects if the authorized rules are satisfied. Mandatory allows sub-
jects to access objects if the security axioms based on sensitivity level and
category are satisfied. Role-based assigns permissions to roles that can then
be given to more than one subject. A subject is then allowed to activate any
of the assigned roles. This allows for better management of permissions, be-
cause if a user changes job roles then it is easier to revoke roles from or grant
roles to a user, rather than an entire set of permissions for each user.

ECA rules were first developed for adding change detection and notifica-
tion in the context of databases. However, their role and relevance have been
recognized for a number of application areas that require monitoring of differ-
ent sorts. This also meant extensions to the functionality and semantics that
were needed for these new applications. In this chapter, we discuss various
extensions to ECA rules that make them usable to support new application
domains. We particularly use the access control domain to identify the ex-
tensions discussed in this chapter. We have extended the rules themselves,
the event operator semantics, and the event detection mechanisms.

Extensions to ECA rules with alternative actions are discussed in Section 2.
Generalization of event semantics with attribute based conditions is discussed
in Section 3. Potential as compared with actual events are discussed in Section
4. Event detection modes are discussed in Section 5. Extensions to the event
detection mechanism are discussed in Section 6. Distributed event processing
and complex event reasoning are discussed in Section 7. Finally, Section 8
presents our conclusions and future work.

2 Alternative Actions

An event, defined as an occurrence of interest, can be simple or complex.
Simple events occur at a point in time, and complex events occur over an
interval. Complex events combine one or more events (simple or complex)
using event operators [13]. Whenever an event is detected, rules associated
with that event are triggered. Conditions associated with those rules are
evaluated, and if satisfied, actions are performed. A simple form of ECA rule
specification is shown below:

RULE [Rname

Event Ename

Condition C1 . . . Ck

Action A1 . . . An]

• Rule Rname – Unique rule name.
• Event Ename – Event (simple or complex) associated with the rule. The

detection of this event triggers the rule.

Generalization of Events and Rules to Support Advanced Applications 175

• Condition C1 . . . Ck – The set of conditions to be evaluated once the rule
is triggered by event Ej .

• Action A1 . . . An – The set of actions to be triggered when conditions
evaluate to True.

A rule may have additional specifications such as coupling modes, contexts
or consumption modes, and so forth [6, 8, 13]. Rules associated with an event
are triggered only after that event is detected. Actions are performed when
conditions are evaluated to True. This in turn means, though the event has
happened, no actions are performed when the conditions evaluate to False.
These events are immediately dropped from the system. However, in several
applications and domains, this behavior is not sufficient to model the required
policies.

Let us consider an example from access control. “When anyone requests
to open a file between 9 am and 4 pm, allow”. Event Eopen and rule Ropen

defined below using the existing ECA rule specification, model this policy.

Event Eopen = FOpen(FileName);

RULE [Ropen

Event Eopen

Condition tocc >= 9am ∧ tocc =< 5pm

Action /* Allow Access */]

Event Eopen is defined on the function signature “FOpen(FileName)”. As-
sume that the function FOpen is invoked by the underlying system when
there is a file open request. Thus, when a user tries to open a file, this event
raised. The event parameters include explicit or function parameters (e.g.,
FileName) and implicit parameters (e.g., tocc (time of occurrence), user id
(login information)).

Rule Ropen is triggered when the function FOpen is invoked. Assume that
a user is trying to open a file at 5 pm. This raises the event and triggers
the rule. The condition evaluates to True and starts the action procedures.
Assume that the system receives a request at 6 pm. Since this does not satisfy
the condition, no actions are taken (i.e., user is not allowed to open the file).
After the associated rules are triggered, this event is dropped from the system.
On the other hand, this event is critical in access control as it can indicate
potential security violations.

We have extended the ECA rule specification with Alternative Actions
[14]. This extension allows users to specify the list of alternative actions that
need to be taken when the event is detected, but the conditions fail :

RULE [Rname

Event Ename

Condition C1 . . . Ck

Action A1 . . . An

Alt Action AA1 . . . AAn]

176 R. Adaikkalavan and S. Chakravarthy

• Alt Action AA1 . . . AAn – The set of actions to be triggered when con-
ditions evaluate to False.

Below, we rewrite the rule Ropen using the extendedECAA (Event-Condition-
Action-Alternative Action) rule specification. When this rule is used, the file
open request at 6 pm is logged and access is denied.

RULE [Ropen

Event Eopen

Condition tocc >= 9am ∧ tocc =< 5pm
Action /* Allow Access */
Alt Action /* Add to Log, Deny Access */]

This can be handled via a rule with complementing conditions and actions.
For example, create a rule with 4.59 pm to 8.59 am as the condition. Though
this approach seems trivial, it introduces lot of overhead and rule executing
complexity as both (i.e., all associated) rules have to be executed.

3 Event Generalization

In application domains such as access control, the loose coupling between the
event part and the condition-action-alternative action part is not sufficient to
capture and enforce the required policies. In this section, we will first discuss
interval-based semantics, and then the generalization of event specification
and detection using attribute-based constraints.

3.1 Interval-Based Semantics

Simple events happen at a point in time (e.g., 10:00 am). Complex events
happen over an interval (e.g., 10:00 am to 10:05 am).

A complex event is detected when all of its constituent events occur accord-
ing to the event operator semantics. The Sequence event operator composes
two events and is detected when the second event follows the first event. The
sequential occurrence is evaluated based on the time of occurrence. Consider
ESeq, a Sequence complex event, which composes two simple events E1 and
E2. It is defined as:

Event ESeq = E1 Sequence E2

The event ESeq is detected when event E1’s time of occurrence is less than
event E2’s. Assume that E1 captures opening of a building door, and E2

captures opening of an office door. Logically, E1 should happen before E2.

Assume the following event occurrences: Building door is opened at 10:00 am
and event E1 is detected at time point [10:00 am]. Office door is opened at
10:05 am and event E2 is detected at [10:05 am]. The event ESeq is detected
with event occurrences E1 [10:00 am] and E2 [10:05 am], since the latter follows
the former. It event occurs over the interval [10:00 am] and [10:05 am].

Generalization of Events and Rules to Support Advanced Applications 177

Though ES e q occurs over an interval, it is detected at [10:05 am] in Point-
based semantics [13]. This can lead to loss of events when complex events
compose other complex events, as discussed in [4]. In order to overcome the
problems discussed in [4], we extended the event detection to support interval-
based semantics [1, 15–17] for all the event operators in all event consumption
modes. For the above example, event ES e q is detected over an interval [10:00
am, 10:05 am] in interval-based semantics.

Below, we discuss the formalization of the Sequence event operator using
both Point- and Interval-based semantics.

(E1 Sequence E2)[t2] � ∃t1, t2(E1[t1] ∧ E2[t2] ∧ (t1 < t2));

(E1 Sequence E2)[t s , t e] � ∃t s , t e , t, t
′(E1[t s , t]∧ E2[t

′, t e]∧ (t s ≤ t < t′ ≤ t e));

In the above, events E1 and E2 can be simple or complex. The first definition
is using the Point-based semantics. Event E1 is detected at [t1] and E2 at
[t2], and the Sequence event is detected when (t1 < t2). The second definition
is using the Interval-based semantics. Event E1 is detected over an interval
[t s , t] and E2 is detected over [t′, t e]. The Sequence event is detected when
the end time of E1 is less than the start time of E2 (i.e., t s ≤ t < t′ ≤ t e).
For simple events, the start time and end time are same as they occur over
a point in time.

3.2 Generalization of Events

Interval- and point-based semantics have been useful, however, both of them
are based on temporal conditions and are insufficient [18].

Let us consider the same Sequence event ES e q defined in the previous
section. With information security, the users who are responsible for the
event occurrences of E1 and E2 are also critical to the event composition. If
user 1 opens the building door and user 2 opens the office door, both cannot
be composed together to form a Sequence event. With existing ECAA rules,
the condition whether events E1 and E2 are from the same user can only be
checked in the condition part (i.e., after the events are combined and detected,
and the rule is triggered). This will lead to incorrect event detection.

Assume the following event occurrences: E1 (user 1, 10:00 am), E2 (user 2,
10:05 am), and E2 (user 1, 10:10 am). With existing event operator semantics,
the Sequence event ES e q is detected with event occurrences E1 (user 1, 10:00
am) and E2 (user 2, 10:05 am), since the latter follows the former. This will
trigger the associated rules. But, when the condition part is evaluated, it will
return False as both the events are from different users. Thus, predefined
alternative actions are performed. On the other hand, based on the event
consumption modes [13], either or both the event occurrences E1 (user 1,
10:00 am) and E2 (user 2, 10:05 am) can be removed from the system, as they

178 R. Adaikkalavan and S. Chakravarthy

have taken part in a complex event detection. If both the events are removed,
when the next event occurrence E2 (user 1, 10:10 am) happens, there are no
other E1 event occurrences to match, and this E2 (user 1, 10:10 am) is also
dropped. The above composition of the events based on temporal semantics
leads to unintended event detection. Thus, the event operator semantics used
for event composition have to be extended to include conditions based on
event attributes in addition to the existing temporal conditions.

Masks proposed in ODE [19] allow simple events to be detected based
on attribute conditions. For instance, an event “buyStock(double price) &&
price > 500” is detected when the function “buyStock” is invoked and
price > 500. Masks (predicates) can only be based on the formal parameters
of the function or based on the state of the database object. Even though
some of the conditions can be specified by existing systems via masks, not all
possible conditions can be specified. Similar to simple event masks, composite
events can also be associated with masks in ODE. But, masks associated with
composite events can be evaluated only in terms of the current state of the
database and are very restricted as they are just constant integer expressions.

We have generalized the event operator semantics to include attribute con-
ditions [18], in addition to point-based and interval-based semantics. In event
processing, each event has a well-defined set of implicit and explicit attributes
or parameters. Implicit parameters contain system-defined and user-defined
parameters (e.g., event name, time of occurrence). Explicit parameters are
collected from the event itself (e.g., stock price, stock value). The new event
specification allows users to specify conditions on explicit and implicit param-
eters via two different expressions. These expressions are denoted as Eexpr

and Iexpr , where Eexpr allows the specification of conditions based on explicit
parameters and Iexpr allows the specification of condition on implicit param-
eters. Iexpr subsumes the existing point-based and interval-based semantics.
Generalization of simple event specification with parameter expressions is
shown below.

Event Ename = functionSignature∧ (Eexpr ∧ Iexpr);

Generalization of complex event specification, using the Sequence event
ESeq discussed at the start of the section, is shown below.

Event ESeq = (E1 Sequence E2) ∧ (E1.user = E2.us e r);

Assume the same event occurrences: E 1 (user 1, 10:00 am), E 2 (user 2, 10:05
am), and E 2 (user 1, 10:10 am). With the above generalization, the Sequence
event E Seq is not detected with event occurrences E 1 (user 1, 10:00 am)
and E 2 (user 2, 10:05 am), since the explicit expression that checks for the
associated users fails. When the next event occurrence E 2 (user 1, 10:10 am)
happens, it is combined with E 1 (user 1, 10:00 am) as the events satisfy both
the temporal and attribute-based conditions.

Generalization of Events and Rules to Support Advanced Applications 179

4 Potential vs. Actual Events

Events are detected when an occurrence of interest happens. This is useful
in domains where an occurrence of interest is the actual event rather than a
potential event. Let us consider two examples: Event A controls the opening
of an office door. Event B turns the lights ON when the door is actually
opened. A user is allowed to open a door only if that user has authorized
access. In other words, swiping of a card results in the detection of an event
that checks user authorization. Thus, swiping of the card detects event A, and
if the user has the permissions then the door is opened. On the other hand,
event B is triggered only if the door was opened. In the above example, the
opening of the door is the actual event that should trigger event B. Swiping
the card is the potential event that leads to the opening of the door, if the
user has required permissions.

Below, we discuss a sample policy that requires potential and actual events.
We show how it is modeled using the ECAA rules.

Policy 1: Between 00:00 hrs and 06:00 hrs, only those who have entered
through the building’s external door are allowed to enter an office room in
that building.

This policy can be made more complex by including situations wherein two
or more persons enter the building together without using their cards individ-
ually. Without the loss of generality, we just discuss the basic policy defined
above and assume that each person registers his/her entry individually.

Event EE x tR eq (external door request) is detected when there is a request
to open any external door between 00:00 hrs and 06:00 hrs. This triggers
rule RExtReq. The condition part authenticates the user, and the action part
allows the door to be opened. Access is denied, otherwise.

EExtReq = (doorOpen(bldgId, doorId, doorType, userId),

(((tocc > 00 : 00hrs) ∧ (tocc < 06 : 00hrs))

∧(doorType = “external”)));

RULE [RExtReq

Event EExtReq

Condition /* Authenticate User */
Action /* Open door */
Alt Action /* Deny Access */]

The external door open request is handled by event EExtReq but the ac-
tual opening of the door is handled in the action part. Thus, another event
EExtOpen is raised by rule RExtReq in the action part to indicate that the
door was opened. The parameters of the event EExtOpen are the same as
EExtReq. The modified rule is shown below.

180 R. Adaikkalavan and S. Chakravarthy

RULE [RExtReq

Event EExtReq

Condition / * Authenticate User */
Action /* Open door, Raise EExtOpen */
Alt Action /* Deny Access */]

When event EExtReq is detected, rule RExtReq is triggered. Conditions are
evaluated and the user is authenticated. If authenticated, the door is opened,
and an internal event EExtOpen is raised. This door opening event is not raised
directly and is raised only from the rule RExtReq. Similarly, event EOffReq

is raised when someone tries to open an office door.

EOffReq = (doorOpen(bldgId, doorId, doorType, userId),

(((tocc > 00 : 00hrs) ∧ (tocc < 06 : 00hrs))

∧(doorType = “office”)));

Similar to rule RExtReq another rule is created to allow someone to open an
office door. But the policy requirement will not be met (i.e., the user should
have opened the building door first). Thus, a complex event is required to
model this requirement (i.e., if EOffReq happens after EExtOpen, trigger the
rule to check for access). A generalized Sequence event EOffReq2 and rule
ROffReq2 are created as shown below to model the required policies. The
explicit expression tracks each user separately.

EOffReq2 =(EExtOpen Sequence EOffReq) ∧

((EExtOpen.userId = EOffReq .userId

∧ EExtOpen.bldgId = EOffReq .bldgId));

RULE [ROffReq2

Event EOffReq2

Condition /* Authenticate User */
Action /* Open door */
Alt Action /* Deny Access */]

5 Event Detection Modes

Complex events are triggered when all the required constituent events occur
according to the attribute-based semantics. For example, a Sequence event
is detected when the second event follows the first event. With existing se-
mantics, when the second event happens without the first event, it is just
dropped as the occurrence of interest is the sequential occurrence. Consider
the example where the building door has to be opened before the office door.
What happens when the office door is opened without opening the building
door? With existing systems the event that captures the opening of the office

Generalization of Events and Rules to Support Advanced Applications 181

door is dropped as the first event never occurred. In access control domain,
this can capture an attempt to break-in.

We have extended event processing with event detection modes [20]. Be-
low, we discuss the event detection modes using events and rules defined in
Section 4. Existing systems detect event EO ffReq2 and trigger rules when
event EExtOpen happens before EOffReq. Possible constituent event occur-
rences (cases) of the Sequence event EOffReq2 are as follows:

1. Both EExtOpen and EOffReq occur: the EExtOpen event is raised when
the external door is opened. When the same person requests for open-
ing an office door, event EOffReq is detected. Since this is the detector
event for the complex event EOffReq2, the complex event occurrence is
completed and the rule ROffReq2 is triggered. If the person has proper
authentication the office door is opened.

2. Only EExtOpen occurs: This event is raised when the external door is
opened. This event is the initiator and starts the complex event EOffReq2.
The detector event is raised only when the same person tries to open an
office door. In case the detector does not happen, a timeout event can be
triggered based on the organization’s policy.

3. Only EOffReq occurs: Event EOffReq is detected without EExtOpen i.e.,
complex event EOffReq2 had not been initiated. What will happen if the
detector event happens without any initiator? With existing systems, the
detector event is just ignored as it does not capture the occurrence of
interest. In access control applications, this should trigger a violation,
which is not possible with current systems.

Detector/terminator events play an important role in enforcing policies, but
are ignored when they occur without an initiator event. Other operators can-
not be used to model the above policy as it requires one event to follow the
other. Additional rules or complex conditions/actions will still not be able
to model the above discussed policy, as rules are triggered only when an
event happens. Since the event occurrences should follow a sequence, only a
sequence event can trigger rules. Thus, binary event operators such as Se-
quence need to be extended to handle the occurrence of detector/terminator
events without a prior occurrence of the corresponding initiator event.

Below, we discuss the issues with ternary event operators using the follow-
ing policy:

Policy 2: Alert security personnel when a shoplifting activity occurs in a
RFID-based retail store [21] i.e., items that were picked at a shelf and then
taken out of the shop without an entry in the point of sale system.

The above policy requires to alert on a non-occurrence event and can be
modeled with the NOT event operator as shown below. A NOT event is
detected, when a constituent event does not occur between the Sequence of
two other constituent events. In the example shown below, EChk is detected
when event EPOS does not occur between EPick and EGate.

182 R. Adaikkalavan and S. Chakravarthy

EC h k = (NOT (EPick, EPOS , EGate)∧

(EPick.itemId = EPOS .itemId = EGate.itemId);

We do not show all the constituent event definitions and rules. Event EPick

represents picking the item from the shelf. Event EPOS represents checking
out at the point of sale system. Event EGate represents item leaving the gate.
Iexpr allows event detection in either point-based or interval-based semantics.
Eexpr relates all event occurrences with the same item for controlling each
item simultaneously. EPick is the initiator, EGate is the detector, and middle
event EPOS is the non-occurrence event (i.e., the event that should not occur).
Possible constituent event occurrences (cases) of event EChk are discussed
below.

1. Both EPick and EGate occur: This detects the NOT event and an alert
regarding shop lifting can be sent via the actions part of a rule. Current
systems handle this correctly.

2. Only EPick occurs: An item was picked but nothing happened after that.
Current systems just wait for a detector to occur. One possible solution
would be to raise a timeout event (e.g., shop closing) and take further
actions (e.g., re-shelf the item).

3. Only EPOS occurs: Someone has checked out an item without picking it
from the shelf. This indicates that something is malfunctioning. Since this
event is just a constituent event it is ignored (i.e., deleted) in the current
event systems. But this cannot be ignored since a EGATE event might
occur in the future. One possible solution would be store this event, and
wait for the EGATE event or raise a timeout event (e.g., shop closing)
and take further actions.

4. Both EPick and EPOS occur: An item has been picked up and checked
out. Current systems just wait for the detector/terminator event EGate

to occur. One possible solution would be to raise a timeout event (e.g.,
shop closing) and take further actions (e.g., check gate sensors).

5. Both EPOS and EGate occur: An item was not picked out, but it was
checked out and taken to the gate. Current systems just ignore all these
occurrences. This cannot be the case as it might indicate that there is
some malfunctioning and it has to be reported.

6. Only EGate occurs: An item was not picked up or checked out, but has
reached the gate. Current systems ignore this detector/terminator event
and purge it from the system. This is an incorrect action as it might be
a shop lifting activity.

7. All of EPick, EPOS and EGate occur: All the occurrences are just ignored
as the event that should not occur has happened. This case indicates that
the items were checked out properly. This event occurrence can be used
to create a log for inventory maintenance.

Summary: The occurrence of an initiator event without other events starts a
complex event. The only solution to detect that complex event is to trigger a

Generalization of Events and Rules to Support Advanced Applications 183

timeout event. In the above example, it might just mean that the item has to
be searched and reshelved. When the initiator happens alone, or when initia-
tor and constituent events occur but not the detector/terminator event, then
raising a timeout event is the only solution. In the above example, it might
mean that a gate sensor is malfunctioning. When the detector/terminator
happens without the initiator and constituent events it is a problem that
needs immediate attention. In the above example, it may indicate a shop
lifting activity. Currently, events are simply dropped in all the cases except
the first case, which is insufficient. Modeling of the above discussed policy
using other existing event operators is not possible as the policy requires the
capturing of a non-occurrence event. On the other hand, additional rules or
complex conditions/actions cannot model the policy, as rules are triggered
and conditions are evaluated only after the non-occurrence event detection.
This requires extensions to ternary operators such as NOT with mechanisms
for handling the above discussed situations.

Simple events are detected whenever they occur in the system and these
extensions do not apply to them. Extensions to both binary and ternary event
operators are discussed below.

5.1 Binary Event Operator Semantics

With binary operators, two constituent events are involved and they act as
initiator and detector/terminator.

Complete Event: When the detector event occurs, operator semantics are ap-
plied and both Iexpr and Eexpr are checked. If any of the conditions fail then
that event is not raised and other constituent events are dropped. Whether
an event is complete is checked only when the detector is raised. Current
systems deal only with complete events. Thus, a complete complex event E
occurs when i) the initiator occurs, and ii) the detector occurs and completes
that event.

Partial Event: When the detector event occurs without the initiator, exist-
ing event detection semantics have to be modified to trigger ECAA rules.
Extending current event detection semantics to handle situations where the
detector has occurred without the required events to complete the detection
will allow the system to take additional actions. We term these events as par-
tial events and define them as: a partial complex event E occurs when i) event
E is not initiated, and ii) the detector occurs.

Policy 1 Modeling: The three cases that were analyzed in Section 4 under
Policy 1 can be handled using these extensions. Specifically, Case 1 is handled
by complete events and Case 3 is handled by partial events. Case 2 can be
handled by a timeout event which completes the event.

184 R. Adaikkalavan and S. Chakravarthy

5.2 Ternary Event Operator Semantics

Similar to binary operators, ternary events have an initiator and a detec-
tor/terminator. In addition there is another event that is just a constituent
event.

Complete Event: Binary complete event definition is further refined as: A
complete complex event E occurs when, i) initiator occurs, ii) all the required
constituent events occur, and iii) the detector occurs and completes that event.

Partial Event: Partial binary event definition is further refined as: A partial
complex event E occurs when i) event E is not initiated, ii) other constituent
events can occur, and iii) detector occurs.

Failed Event: In addition to the above events, we define failed events as shown
below. For example, this event is detected when the non-occurrence has failed
for a NOT operator. A failed complex event E occurs when i) the initiator
occurs, ii) other constituent events occur, and iii) the detector occurs and
completes the event, but the event fails because some constituent event that
should not have occurred has occurred.

Policy 2 Modeling: The seven cases that were analyzed in under Policy 2 can
be handled using the proposed extensions (whereas current systems handle
only Case 1). Specifically, Case 1 is handled by complete events, Cases 5 & 6
are handled by partial events, and Case 7 is handled by failed events. Cases
3 & 4 are handled by partial events using timeout events. Case 2 can be
handled by a timeout event which completes the event.

5.3 ECAA Rule Specification

As discussed previously events can be detected as complete, partial, or failed.
These three types are termed event detection modes . With the event exten-
sions proposed, ECAA rules can be triggered in all the three event detection
modes. Though the specification has not been changed, detection has to be
changed to trigger appropriate rules. Event detection using graphs is dis-
cussed in Section 6.

As explained in Section 2, ECAA rules consist of four major components.
ECAA rules are triggered when complete events are detected. With new event
detection modes, when should ECAA rules be triggered? Partial and failed
events should also trigger associated ECAA rules. In this section, we discuss
the extensions needed to support complete, partial, failed and other future
detection modes in a seamless way.

Event detection modes are handled by adding an optional DMode at-
tribute to the existing rule specification. Currently, the values of the DMode

attribute are: Complete, Partial, and Failed. If a value is not specified,

Generalization of Events and Rules to Support Advanced Applications 185

the rule will be triggered when a complete event is detected, by default.
Using the DMode attribute, different sets of condition-action-alternative ac-
tions are associated to the rules. This generalization allows the specification
of the proposed and future event modes and their associated condition-action-
alternative actions. The Rule R1 shown below will be triggered by the event
E1. The condition-action-alternative actions corresponding to the complete
and partial event are specified.

RULE [R1

Event E1

DMode:Complete {
Condition /* Conditions */
Action /* Actions */
Alt Action /* Alternative Actions */ }

DMode:Partial {
Condition /* Conditions */
Action /* Actions */
Alt Action /* Alternative Actions */ }

]

With complete, partial, and failed events and rules we can model and capture
policies that cannot be captured using existing systems. Below, we show the
extended rules corresponding to the policies discussed in Section 4.

Rules for Policy 1: Rule RExtReq need not be changed as it is associated
with a simple event. By default the event is triggered as a complete event.
Rule ROffReq2 that is associated with the Sequence complex event EOffReq2

has been modified using the generalized rule specification:

RULE [ROffReq2

Event EOffReq2

DMode:Complete {
Condition /* Authenticate User */
Action /* Open door */
Alt Action /* Deny Access */ }

DMode:Partial {
Condition /* True */
Action /* Notify Security */

]

In rule ROffReq2, DMode:Complete handles authentication when the ex-
ternal door is opened and the office door is opened after that. Specifically, it
handles Case 1 under Policy 1. DMode:Partial handles Case 3 (i.e., when
the office door is opened without the external door opening). When triggered
it notifies security personnel of a possible break-in.

186 R. Adaikkalavan and S. Chakravarthy

Rules for Policy 2: Below we create a rule and associate it with the NOT
complex event EChk. When events EPick and EGate occur (Case 1), it detects
the non-occurrence of the checkout (EPOS) event. This detects the NOT event
and triggers the DMode:Complete part of rule shown below:

RULE [RChk

Event EChk

DMode:Complete {
Condition /* True */
Action /* Notify Security */

DMode:Partial {
Condition /* True */
Action /* Notify Security */

DMode:Failed {
Condition /* True */
Action /* Update Log */

]

When the detector/terminator event occurs with other constituent events and
no initiator, a partial event is detected and the partial rule is triggered. In our
example when EGate occurs alone (Case 6), or when EPOS and EGate occur
(Case 5), it indicates some problem and should be notified. In either case the
security is notified via the DMode:Partial part of rule. In addition, Cases
3 & 4 are also handled using timeout events and the DMode:Partial part
of the rule.

When all the events EPick, EPOS and EGate occur (Case 7), the failed
event is detected. This is because event EChk is modeling the non-occurrence
of EPOS , but it has occurred. This triggers the DMode:Failed part of the
rule.

All other cases where there is no occurrence of a detector/terminator can
be handled using a timeout event.

6 Event Detection Graph Extensions

In the previous sections we have discussed event and rule specification, and
their extensions. Event detection graphs [1, 9, 13] are used to represent,
process and detect simple and complex events. In this section, we discuss
event detection graphs and their extensions to handle the ECA rule extensions
we have presented here.

Event detection graphs are acyclic graphs. Simple events are represented
using leaf nodes and complex events are represented using internal nodes. The
graph shown in Figure 1 represents a Sequence event ESeq that composes
two simple events E1 Sequence E2. Leaf nodes represent the simple events
E1 and E2. An internal node represents the Sequence complex event. An

Generalization of Events and Rules to Support Advanced Applications 187

Fig. 1 Event Detection Graph

event subscriber list maintains all the events that subscribe to that event.
For example, E1 is subscribed by ESeq, but ESeq is subscribed by no other
event. Rule subscriber list maintains all the rules that need to be triggered
when an event is detected. For example, there are two rules associated with
event E2. The functionSignatureHash is used by the system to link function
signatures and event nodes. When a function is invoked, appropriate event
nodes are notified using this hash table.

The event detection graph shown in Figure 1 is constructed as follows.
Simple events nodes are created first with appropriate rule subscribers and
empty event subscribers. Complex event nodes are created with empty event
subscriber lists and appropriate rule subscriber lists. Once created, child event
nodes are linked with a parent node via the event subscriber lists and the
parent node is linked with the child nodes. These links are necessary for
propagating event occurrences from child nodes to parent nodes, and for
propagating consumption mode [1, 9, 13] policies from parent nodes to child
nodes. For example, if there is a rule with recent mode1 in the parent node’s
rule subscriber list, this information must be propagated to the child nodes,
so that the child nodes can also detect events in recent mode.

Whenever a function is invoked, the function signature hash is used by the
Local Event Detector [23] system to propagate it to the appropriate event
node. In the event node, all the associated event and rule subscribers are

1In the recent mode, a new occurrence of an event replaces the old occurrence. It is
used by applications where events happen at a fast rate, and multiple occurrences
of an event only refine the previous occurrence. Other modes are continuous,
cumulative, chronicle, and recent-unique. For more details, please refer to [1, 9,
13, 22].

188 R. Adaikkalavan and S. Chakravarthy

notified. This action is repeated till the event reaches the root node. All the
rules that are in the rule subscriber list are executed by the rule processing
component. The internal nodes represent complex event operators, and com-
pose events using point- or interval-based semantics, and event consumption
modes. At any point in time the event detection graph has access to the
partial history of events.

6.1 Extended Event Detection Graph

An extended event detection graph is shown in Figure 2. This graph repre-
sents events EExtReq , EExtOpen, EOffReq , and EOffReq2 defined in Section
4, rule RExtReq defined in Section 4, and rule ROffReq2 defined in Sections
4 and 5. The sequence composite event EOffReq2 is represented using an
internal node. The simple events EExtReq and EOffReq are represented us-
ing leaf nodes. The structure of the event detection graph and the data flow
architecture have not been changed. However, event detection algorithms
have been modified to support the extensions. For example, current sequence
event detection algorithm detects only complete events, whereas the modified
algorithm detects events based on detection modes (e.g., complete and par-
tial) and triggers appropriate rules. Below, we discuss the extensions in detail.

Alternative Actions: In order to implement the alternative actions, we did
not modify the event detection graph. We have modified the rule process-
ing component. Thus, whenever the conditions evaluate to False alternative
actions are performed.

Attribute Conditions: In the existing event detection graphs, internal event
nodes represent event operators, and compose events using interval- or point-
based semantics. In order to support attribute conditions, we have extended
both leaf and internal event node processing algorithms. Once an event no-
tification arrives, the algorithm evaluates the specified implicit and explicit
parameter expressions. Only if all the conditions evaluate to True, are events
from event subscriber lists notified of this event’s occurrence and are associ-
ated rules from the rule subscriber list triggered.

Potential Vs. Actual Events: All the leaf event nodes are notified via func-
tionSignatureHash, and the internal nodes are notified using event subscriber
lists. When potential events (e.g., EExtReq) are used to raise actual events
(e.g., EExtOpen) from the action part of a rule they must be handled differ-
ently. In Figure 2, special event nodes represented with dashed circle can only
be notified from a rule. The actual opening of the door captured by simple
event EExtOpen is represented as a special internal node which can be notified
only from the rule RExtReq.

Generalization of Events and Rules to Support Advanced Applications 189

Fig. 2 Extended Event Detection Graph

Event Detection Modes: These are handled similarly to event consumption
modes. In the existing graph, event consumption modes are specified along
with the rule. Similarly, event detection modes are also specified as part
of the rule. During the construction of the graphs and subscriber lists, event
consumption modes bits are set. This allows the detection of events in various
consumption modes. Event detection modes are also handled the same way.

7 Distributed Event Processing and Reasoning

In this section we discuss distributed event processing and use of rules in
reasoning.

7.1 Distributed Event Processing

The need for processing event streams from devices and to compose, aggre-
gate, and compute results in (near) real-time is ever growing due to various
stream and people-centric sensing applications [24]. A number of applications
involving sensors and other data that needs to be accessed are distributed in
nature. Hence, there has been a lot of interest in distributed event processing
[25–31]. Distributed event specification, semantics, and implementation have

190 R. Adaikkalavan and S. Chakravarthy

also been addressed in [28, 29, 32, 33]. With distributed event processing,
the implementation of the local event detector has to be tailored to raise
and detect events taking into account the distributed aspects such as clock
synchronization, transport of events, and heterogeneity, to name a few. In
general, event composition and detection and ECAA rules can be executed at
the event producer, intermediate nodes, central server, or event consumers.
When the filtering of events is high, processing the events and associated
rules at the producer site or at intermediate nodes reduces communication
and processing cost. The extensions to event and rule specification and event
detection graphs discussed in this chapter are at the logical level and are
applicable to distributed environments. In other words, existing distributed
event processing approaches can be used without modifications, as the rep-
resentation of simple and complex events using leaf and internal nodes, and
the structure and data flow architecture of the event detection graph have
not been modified.

7.2 Reasoning

There have been much work [34–36] on understanding the behavior of rules
and their components and their effect on systems. A real-time inference al-
gorithm based on ECA rules was proposed as a reasoning mechanism for
real-time and active databases in [34]. A heuristic search approach was used,
which searches the rule graph under certain timing constraints to find the set
of actions corresponding to an event occurrence. On the other hand, a single
event can trigger multiple rules and the systems managed using ECA rules
do not provide any guarantee about the system behavior. In order to provide
guarantees about the system behavior, ECA rules have been extended in [35],
to contain action specifications in first-order predicate logic to reason about
the enforcement order of triggering multiple rules. The use of Concurrent
Transaction Logic as a underlying formalism for logic based event processing
was proposed in [36] for extending rule-based reasoning capabilities. When
organizations use the extended ECAA rules to enforce policies the order of
triggering of rules with respect to the detection and raising of actual events,
discussed in Section 4, needs to be carefully analyzed to avoid incorrect event
detections. For example, assume that EExtReq occurs and EOffReq happens
immediately after that. In order for EOffReq2 to be detected, the actual event
EExtOpen should be raised from the action part of the rule associated with
event EExtReq , before detecting event EOffReq . Similarly, the relationship
between event detection modes specified in the ECAA rules and events, and
between rules with different modes needs to be analyzed. Reasoning about the
consistency, completeness, and correctness is a general problem that needs
to be addressed as well. This is a critical factor in the adoption and use of
ECA rules in application domains such as access control where security and

Generalization of Events and Rules to Support Advanced Applications 191

privacy laws need to be adhered to and guarantees about the system behavior
need to be provided.

8 Conclusions

In this chapter, we discussed various extensions to the ECA rule paradigm
to support advanced applications. Alternative actions are important as they
allow the capture of security violations in access control. Generalization of
events and rules provides richer semantics and hence facilitates the modeling
of a wider range of applications. Event detection modes are needed to capture
complex policies or situations, such as security violations. Extension of rule
detection modes is needed to support extended specifications to ensure correct
enforcement of specified rules. We also discussed the extensions made to
event detection graphs to implement the above discussed extensions. Future
work includes studying the effect of these extensions on system behavior and
developing techniques for propagation of events to event subscribers based
on detection modes.

References

1. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-Based Event Specifi-
cation and Detection for Active Databases. Data and Knowledge Engineer-
ing 59(1), 139–165 (2006)

2. Carlson, J., Lisper, B.: An Interval-based Algebra for Restricted Event Detec-
tion. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791,
pp. 121–133. Springer, Heidelberg (2004)

3. Mellin, J., Adler, S.F.: A formalized schema for event composition. In: Pro-
ceedings International Conference on Real-Time Computing Systems and Ap-
plications, March 2002, pp. 201–210. IEEE Computer Society, Tokyo (2002)

4. Galton, A., Augusto, J.: Two Approaches to Event Definition. In: Hameurlain,
A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp.
547–556. Springer, Heidelberg (2002)

5. Zimmer, D.: On the semantics of complex events in active database manage-
ment systems. In: Proceedings International Conference on Data Engineering,
p. 392. IEEE Computer Society, Washington, DC, USA (1999)

6. Paton, N.W.: Active Rules in Database Systems. Springer, New York (1999)
7. Roncancio, C.: Toward Duration-Based, Constrained and Dynamic Event

Types. In: Andler, S.F., Hansson, J. (eds.) ARTDB 1997. LNCS, vol. 1553,
pp. 176–193. Springer, Heidelberg (1999)

8. Widom, J., Ceri, S.: Active Database Systems: Triggers and Rules. Morgan
Kaufmann Publishers, Inc., San Francisco (1996)

9. Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification Lan-
guage for Active Databases. Data and Knowledge Engineering 14(10), 1–26
(1994)

192 R. Adaikkalavan and S. Chakravarthy

10. Gatziu, S., Dittrich, K.R.: Events in an Object-Oriented Database System. In:
Proceedings International Workshop on Rules in Database Systems (September
1993)

11. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite Event Specification in
Active Databases: Model & Implementation. In: Proceedings International Con-
ference on Very Large Data Bases, pp. 327–338 (1992)

12. Bishop, M.: Computer Security: Art and Science. Addison-Wesley Professional,
Reading (2002)

13. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite Events
for Active Databases: Semantics, Contexts, and Detection. In: Proceedings, In-
ternational Conference on Very Large Data Bases, pp. 606–617. Morgan Kauf-
mann Publishers Inc., San Francisco (1994)

14. Adaikkalavan, R., Chakravarthy, S.: Active Authorization Rules for Enforcing
Role-Based Access Control and its Extensions. In: Proceedings IEEE Interna-
tional Conference on Data Engineering (International Workshop on Privacy
Data Management), Tokyo, Japan, p. 1197 (April 2005)

15. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-Based Event Specifica-
tion and Detection for Active Databases. In: Kalinichenko, L.A., Manthey, R.,
Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 190–204.
Springer, Heidelberg (2003)

16. Adaikkalavan, R., Chakravarthy, S.: Formalization and Detection of Events
Over a Sliding Window in Active Databases Using Interval-Based Semantics.
In: Proceedings, East-European Conference on Advances in Databases and In-
formation Systems, Budapest, Hungary, September 2004, pp. 241–256 (2004)

17. Adaikkalavan, R., Chakravarthy, S.: Formalization and Detection of Events
Using Interval-Based Semantics. In: Proceedings International Conference on
Management of Data, Goa, India, pp. 58–69 (January 2005)

18. Adaikkalavan, R., Chakravarthy, S.: Event Specification and Processing for Ad-
vanced Applications: Generalization and Formalization. In: Wagner, R., Revell,
N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 369–379. Springer, Hei-
delberg (2007)

19. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Event Specification in an Object-
Oriented Database. In: Proceedings International Conference on Management
of Data, San Diego, CA, pp. 81–90 (June 1992)

20. Adaikkalavan, R., Chakravarthy, S.: When to Trigger Active Rules? In: Pro-
ceedings International Conference on Management of Data, Mysore, India (De-
cember 2009)

21. Gyllstrom, D., Wu, E., Jin Chae, H., Diao, Y., Stahlberg, P., Anderson, G.:
SASE: Complex event processing over streams. In: Proceedings Conference on
Innovative Data Systems Research (2007)

22. Elkhalifa, L., Adaikkalavan, R., Chakravarthy, S.: InfoFilter: a system for ex-
pressive pattern specification and detection over text streams. In: Proceedings
Annual ACM SIG Symposium on Applied Computing, pp. 1084–1088 (2005)

23. Chakravarthy, S., Anwar, E., Maugis, L., Mishra, D.: Design of Sentinel: An
Object-Oriented DBMS with Event-Based Rules. Information and Software
Technology 36(9), 559–568 (1994)

24. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A., Lu,
H., Zheng, X., Musolesi, M., Fodor, K., Ahn, G.-S.: The rise of people-centric
sensing. IEEE Internet Computing 12, 12–21 (2008)

Generalization of Events and Rules to Support Advanced Applications 193

25. Schwiderski, S., Herbert, A., Moody, K.: Composite events for detecting be-
havior patterns in distributed environments. In: TAPOS Distributed Object
Management (1995)

26. Jaeger, U., Obermaier, J.K.: Parallel Event Detection in Active Database Sys-
tems: The Heart of the Matter. In: Proceedings International Workshop on
Active, Real-Time and Temporal Database Systems, pp. 159–175 (1997)

27. Luckham, D.C., Frasca, B.: Complex event processing in distributed systems.
Stanford University, Tech. Rep. CSL-TR-98-754 (1998)

28. Yang, S., Chakravarthy, S.: Formal semantics of composite events for dis-
tributed environments. In: Proceedings International Conference on Data En-
gineering, p. 400 (1999)

29. Chakravarthy, S., Liao, H.: Asynchronous Monitoring of Events for Distributed
Cooperative Environments. In: Proceedings International Symposium on Co-
operative Database Systems for Advanced Applications, Beijing, China, pp.
25–32 (April 2001)

30. Pietzuch, P.R., Shand, B., Bacon, J.: Composite event detection as a generic
middleware extension. IEEE Network 18(1), 44–55 (2004)

31. Akdere, M., Çetintemel, U., Tatbul, N.: Plan-based complex event detection
across distributed sources. Proceedings of the VLDB Endowment 1(1), 66–77
(2008)

32. Chakravarthy, S., Tufekci, S., Honnavalli, R.: Flexible manufacturing simula-
tion: Using an active dbms. In: Cooperative Knowledge Processing for Engi-
neering Design, Chapman and Hill, Boca Raton (1997)

33. Tanpisuth, W.: Design and Implementation of Event-based Subscrip-
tion/Notification Paradigm for Distributed Environments. Master’s thesis, The
University of Texas at Arlington (December 2001),
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Tan01MS.pdf

34. Qiao, Y., Li, X., Wang, H., Zhong, K.: Real-time reasoning based on event-
condition-action rules. In: Chung, S., Herrero, P. (eds.) OTM-WS 2008. LNCS,
vol. 5333, pp. 1–2. Springer, Heidelberg (2008)

35. Shankar, C., Campbell, R.: Ordering Management Actions in Pervasive Sys-
tems using Specification-enhanced Policies. In: Proceedings Fourth IEEE In-
ternational Conference on Pervasive Computing and Communications (March
2006)

36. Anicic, D., Stojanovic, N.: Expressive Logical Framework for Reasoning about
Complex Events and Situations. In: Proceedings Intelligent Event Processing -
AAAI Spring Symposium (2009)

http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Tan01MS.pdf

Pattern Detection in Extremely

Resource-Constrained Devices

Michael Zoumboulakis and George Roussos

Abstract. Pervasive computing anticipates a future with billions of data producing

devices of varying capabilities integrated into everyday objects or deployed in the

physical world. In event-based systems, such devices are required to make timely

autonomous decisions in response to occurrences, situations or states. Purely decen-

tralised pattern detection in systems that lack time synchronisation, reliable commu-

nication links and continuous power remains an active and open research area. We

review challenges and solutions for pattern detection in distributed networked sens-

ing systems without a reliable core infrastructure. Specifically, we discuss localised

pattern detection in resource-constrained devices that comprise Wireless Sensor and

Actuator Networks. We focus on online data mining, statistical and machine learn-

ing approaches that aim to augment decentralised pattern detection and illustrate

the properties of this new computing paradigm that requires stability and robustness

while accommodating severe resource limitations and frequent failures.

1 Introduction

The vast majority of research in middleware and distributed event-based systems

proposes techniques that are not directly applicable to the extremely resource-

constrained nodes of a Wireless Sensor Network (WSN). This is because they rely

heavily on core infrastructure services such as reliable communication links, time

synchronisation and a persistent event history. We target a class of pervasive com-

puting devices with constraints in terms of power, processing, memory, bandwidth

and reliability. These devices are usually found in embedded control systems, such

Michael Zoumboulakis

Birkbeck College, University of London, WC1N 3QS

e-mail: mz@dcs.bbk.ac.uk

George Roussos

Birkbeck College, University of London, WC1E 7HX

e-mail: gr@dcs.bbk.ac.uk

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 195–216.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

mz@dcs.bbk.ac.uk
gr@dcs.bbk.ac.uk

196 M. Zoumboulakis and G. Roussos

as Wireless Sensor Actuator Networks (WSAN) [22], with a requirement for timely

response to interesting or unusual occurrences in the collected data.

A solution to this problem is to task nodes in the network to push data to base

stations. The base stations are connected to powerful desktop-class machines that

can perform offline processing. This data harvesting method solves the problem of

event detection and pattern recognition but it incurs the significant overhead of ex-

pensive radio communication. Multihop links, non-uniform path costs and frequent

route failures (cf. [26] for a detailed treatment of these issues) make the global har-

vesting method impractical. Furthermore, communicating sensor observations using

wireless radio is orders of magnitude costlier than local computation [28].

A somewhat better approach involves tasking nodes in the WSAN to perform

source-side filtering discarding uninteresting information and only sending packets

when interesting observations are recorded. To improve confidence on the event oc-

currence a node can initiate radio communication to establish whether the event is

spatially correlated and consequently produce a notification message for the actua-

tor. The simplest type of filter is realised by thresholds that check whether the sensed

observations are above or below a value. Although the simplicity is appealing this

technique suffers from severe disadvantages. First, it is sensitive to outliers caused

by faulty observations due to inexpensive sensors. Second, it is not capable of han-

dling unknown thresholds such as a case where a user cannot provide a predicate

value that distinguishes normal observations from events. Third, it does not scale

well as the number of observations and thresholds increase. Last, it is not capable of

handling magnitude differences in readings — for instance, two nodes with different

temperature sensors will produce readings of different scale requiring two different

thresholds.

This chapter discusses methods for event detection in WSANs based on online

data mining. First, we depart from the traditional notion of the instantaneous event

that can be described by a single occurrence, whether this is a database transaction

or a single data point. We introduce the term pattern as a finite list of potentially

non-unique time-dependent objects. The term sequence as defined by [42] or time

series (cf. [14]) refer to the same structure, however the distinguishing factor is that

in our case the pattern represents an ordered list of data items that together reveal

interesting or unusual activity in the monitored process.

2 Objectives, Motivation and Contributions

Wireless Sensor Actuator Networks (WSANs) have some unique characteristics that

distinguish them from other computing devices: first, they are usually powered by

commodity batteries or by harvesting energy from the environment. [39], [25]. In

both cases, energy is not an abundant resource and its consumption needs to be

tightly controlled in a scheduled manner. Related to this restriction is the high energy

cost of radio communication which is said to amount to the equivalent of 1000 CPU

instructions for sending a bit over the radio [34]. Performing local computations

to determine whether a pattern is statistically important or interesting is therefore

Pattern Detection in Extremely Resource-Constrained Devices 197

desirable as long as the cost of computation is lower than the cost of transmitting

data over the radio. Second, sensor data tends to be noisy due to inexpensive hard-

ware and this brings to surface another requirement: any method for online pattern

detection should be tolerant to noise, outliers and missing values while maintaining

acceptable accuracy and precision. Third, WSANs tend to be designed for unat-

tended operation so pattern detection techniques should require little or no human

intervention.

In a nutshell, we are examining the problem of efficiently detecting patterns in

data that do not conform to a well-defined notion of normal behaviour. The terms

anomaly detection [7] and novelty detection [35] generally encapsulate the objective

although the latter extends detection to cover previously unobserved patterns in data.

We focus on online pattern detection which generally means that detection should

take place as close to real time as possible. Since there exist severe resource con-

straints in a WSAN, pattern detection should investigate segments of sensor data

instead of examining data on a global scale which is computationally prohibitive.

This is achieved by windowing: the application of a sliding window to the stream-

ing sensor data such that a typically smaller data segment is extracted.

The motivating factor for our work is that patterns are ubiquitous across a large

number of WSAN applications — a selection of which is reviewed in Section 3 —

yet there does not exist a standardised method for their detection. We accept that it

is hard to devise an approach that is generalisable across a number of applications

since the notion of what constitutes an interesting pattern is subjective and tends

to vary according to data characteristics. Despite that, we maintain that there is

a significant advantage to be gained by applying pattern detection techniques to

WSAN applications. Specifically, we consider methods that borrow concepts from

data mining, machine learning and statistics in order to efficiently detect interesting

patterns in sensed data. An efficient pattern detection application adds value to a

WSAN by contributing to prolonged lifetime of the wireless network and aiding

users in identifying which data is important.

Our contribution within the domain of WSAN pattern detection, is a computa-

tionally efficient family of methods for pattern detection. These methods cater for

pattern detection in both temporal and spatial data, and they require minimal con-

figuration effort. The focus of this chapter is pattern detection in WSANs from a

general perspective and in the next section we provide an extensive review of re-

lated work that tackles the problem in manners similar to our work. We defer the

review of our work [53], [54] to Section 4 where we provide a high-level description

of our algorithms. Finally, Section 5 gives our conclusions and identifies open areas

of investigation.

Pattern Detection. The term Pattern Detection encompasses Anomaly Detection,

the detection of patterns in data that do not conform to a well-defined notion

of normal behaviour, Novelty Detection, the detection of previously unforeseen

patterns and Motif Detection, the detection of patterns in data that recur more

often than expected.

198 M. Zoumboulakis and G. Roussos

3 Review of Work in Pattern Detection in WSAN Data

Before we proceed with the review of related work, some preliminary information

related to pattern detection is provided. WSAN data usually has a high degree of

spatio-temporal correlation: data from a single node is a linearly ordered sequence

where observations are temporally dependent and related in magnitude. Often pat-

terns on the temporal domain differ significantly to their neighbours and this alone

may be sufficient for declaring a pattern significantly interesting. On the spatial do-

main, patterns are usually collective: collections of spatially related observations

revealing interesting activity in the monitored phenomenon. Sometimes contextual

information plays an important role in the task of pattern detection. Consider the

example of remote vital signs monitoring of patients at their homes. A pulse oxime-

ter sensor may be used to monitor the heart rate and oxygen saturation level of the

patient. A sudden increase in heart rate accompanied by a drop in arterial oxygen

saturation may reveal an abnormal situation warrantying concern however if the pa-

tient is on an exercise bike or treadmill (context) the pattern may be discarded as

a false positive. Another example is data centre monitoring that typically involves

monitoring environmental conditions such as temperature and humidity. A sustained

increase in temperature that lasts for several minutes may indicate a faulty air con-

ditioning unit but if it occurs within a pre-determined maintenance window it may

be flagged as a false positive.

The output of pattern detection is usually a score or a label. The former can be

the output of a distance function such as the Euclidean or the Mahalanobis distance

that compares a test pattern to either a reference pattern known to be normal or a

user-supplied pattern. Although tasking the user to describe patterns of interest may

be desirable in some cases, it leaves the system vulnerable to situations where novel

patterns are not detected. Furthermore, it burdens users with description of interest-

ing patterns, a task commonly known in expert systems as the knowledge acquisi-

tion bottleneck [48]. Conversely, if there is confidence that all normal classes are

known a priori then emergent patterns can be checked against the normal classes.

In both cases, score or distance based detection involves thresholding to determine

whether patterns are normal or abnormal. A simplified scenario is to task nodes to

discard patterns with distance below a threshold compared to a collection of refer-

ence patterns. Assuming the comparison and distance calculation are cheaper than

radio communication, then such a technique promotes network longevity.

Labels may be used in a similar manner to determine whether a pattern is nor-

mal, interesting or novel. The number of classes employed is user and application

dependent. Clustering approaches may be used to cluster patterns with a degree of

membership to each class. Such methods are usually employed for outlier detection

[21], [4], [45], [52] a function that is conceptually different to pattern detection. We

stress that outlier detection is primarily concerned with detecting single observa-

tions that deviate from other observation [18] while pattern detection is concerned

with identifying interesting temporally contiguous collections of observations.

The solution space for pattern detection is large with techniques such as hypoth-

esis testing, hidden Markov Models, clustering, density estimation, probabilistic

Pattern Detection in Extremely Resource-Constrained Devices 199

matching, statistical testing, neural networks, Bayesian networks, rule-based sys-

tems, expert systems, Nearest Neighbour (NN) based techniques and string match-

ing. However, in the following section we focus on the subset of these techniques

with either proven or potential applications for WSANs. The works reviewed are

summarised in Table 1 and Section 4 offers a discussion of our work which is based

on string matching for the temporal domain and stochastic estimation for the spatial

domain.

3.1 Spacecraft and Telemetry Data

We start the discussion with systems aiming to detect interesting patterns in space-

craft observations. In [6] the authors describe how they mine scientific data on-board

a spacecraft in order to react to dynamic pattern of interest as well as to provide

data summaries and prioritisation. Three algorithms are presented that were used on

board the Mars Odyssey spacecraft. The first is designed to detect patterns in images

for the purpose of thermal anomaly discovery. A thermal anomaly is defined as a re-

gion where the surface temperature is significantly warmer or colder than expected,

given its location on the planet, the season, and local topography. The second algo-

rithm was developed to identify polar cap edges and illustrates the importance of

online pattern detection: transmitting image data is a costly process for a spacecraft,

so it is almost always desirable to prioritise by transmitting only the images that

reveal interesting activity, in this instance images containing polar cap edges. This

algorithm discovered the water ice annulus south of the north polar cap on Mars.

The third algorithm was developed to identify high opacity atmospheric events. The

opacity (or optical depth) is a measure of the amount of light removed by scatter-

ing or absorption as it passes through the atmosphere. The collection of algorithms

employ techniques ranging from trivial and dynamic thresholding to Support Vec-

tor Machines (SVMs) and reduced set SVMs. Overall the authors present a very

mature approach and they explicitly take into account the processing cost and mem-

ory requirements. The single criticism is that the three algorithms seem tailored to

the specific problems described — it would be interesting to extend the discussion

to potential changes needed to generalise the pattern detection performance of the

algorithms.

In [15] the authors describe a system based on Kernel Feature Space and di-

rectional distribution, which constructs a behaviour model from the past normal

telemetry data and monitors current system state by checking incoming data with the

model. This type of system is “knowledge-free” in that is not dependent on a priori

expert knowledge. Most modern spacecraft, satellites and orbital transfer vehicles

transmit telemetry data which is multi-dimensional time series. Usually telemetry

data is analysed by ground experts but this paper recognises a recent trend that seeks

to apply data mining and machine learning in order to perform online pattern detec-

tion. The suggested method works as follows: the multi-dimensional telemetry data

200 M. Zoumboulakis and G. Roussos

is divided into subsets using sliding windows. For each subset the method computes

the principal component vector and learns the directional distribution modelled as

the von Mises-Fisher (vMF) distribution around the optimal direction computed

from the principal component vector. Then it computes the occurrence probability

of the principal component vector in relation to the current telemetry data mapped

into the feature space. If this probability is below a threshold the data is flagged as

anomalous. This system is evaluated against simulator-obtained data for three dis-

tinct scenarios involving an orbital transfer vehicle designed to make a rendezvous

manoeuvre with the International Space Station. All three scenarios involve faults

in the thruster engine and one of the scenarios indicates a scenario where the fault

would be hard to determine even by a human expert, as the remaining spacecraft

thrusters compensate for the underperforming unit. Although the theory behind their

approach is sound it suffers from two disadvantages: first, the evaluation is some-

what limited as it only covers three scenarios with failures of the same component.

Second, the computation cost is not explicitly modelled: although the authors men-

tion the assumption of building the model offline using previously collected normal

telemetry data, they do not explicitly show the cost of the detection computation.

The approach described in [32] presents three unsupervised pattern detection al-

gorithms that have been evaluated offline using historical data from space shuttle

main engine — containing up to 90 sensors — for the objective of future inclu-

sion in the Ares I and Ares V launch systems. The usefulness of an online pattern

detection approach is highlighted by the fact that sometimes it takes up to 20 min-

utes until human experts see data from a spacecraft near Mars, time during which

catastrophic events could be prevented if automated pattern detection and actuation

was performed on-board. The first algorithm is called Orca and it is based on a

nearest-neighbour approach for anomaly detection. The second algorithm (Induc-

tive Monitoring System — IMS) is based on clustering and uses distance to flag a

data segment as interesting. The final algorithm uses one-class Support Vector Ma-

chines (SVMs): it first maps training data from the original data space into a much

higher-dimensional feature space and then finds a linear model in that feature space

that allows normal data to be on one side and to be separate from abnormal training

data. A limitation of this work is related to the performance of the algorithms which

varied across different data sets. As the authors identify, it would be useful if in

the future the outputs from the different algorithms were combined to give a more

coherent picture on the degree of novelty/anomaly of a pattern.

A somewhat similar system aimed at satellite reliability monitoring is described

in [12]. This application aims to automate satellite fault diagnosis, a process cur-

rently performed by human experts analysing telemetry data periodically transmit-

ted during a fly-by. The diagnosis of faults from, sometimes limited, sensor data is

performed by an expert system. The authors describe how the expert system was

built even with limited knowledge and its ability to perform inexact reasoning to ac-

commodate sparse sensors. The disadvantage of the system is inherited from expert

systems and it involves the effort necessary in describing all the fault states.

Pattern Detection in Extremely Resource-Constrained Devices 201

3.2 Environmental Pattern Detection

Moving on to ecological monitoring, the approach described in [2] presents a dis-

tributed algorithm for detecting statistical anomalies as well as estimating erroneous

or missing data. In short, the proposed method performs automatic inference and

prediction based on statistical distributions of differences in measurements between

a given node and its neighbours. It is assumed that the observed phenomena are

spatiotemporally coherent, so that the measurements at neighbouring nodes show

a degree of temporal and spatial correlations. The method works in the following

manner: at each timer tick a node calculates the differences between its own mea-

surements and those of its neighbours. It also computes the differences between

recent and older (local) measurements. By determining the distribution of the dif-

ferences it can then perform a p-test on each new set of measurements and determine

whether it is anomalous by comparing to a threshold. The drawback of this method

is that it involves considerable radio communication to spatially compare local with

remote readings.

In [37] the authors propose a pattern detection system based on elliptical anoma-

lies which are defined by the ellipsoid or hyperellipsoid caused by the region of dis-

tance around the mean (cf. [37] for a detailed definition) of two or more monitored

variables. They claim that their system is capable of detecting elliptical anomalies

in a distributed manner with exactly the same accuracy as that of a centralised solu-

tion. Elliptical anomalies are represented using a hyperellipsoidal model. Given the

set of column vectors representing sensor observations, the aim of the approach is to

partition the set into two subsets: one containing normal observations and one con-

taining anomalous observations. In simple terms, one way to find such a partition is

using (Mahalonobis) distance from the sample mean. Moreover, three categories of

elliptical anomalies are defined: first-order, second-order and higher-order elliptical

anomalies. The authors suggest that the algorithm for first and second order ellipti-

cal anomaly detection can be fully distributed in the network. One criticism of this

approach is that computational cost is not explicitly considered although the authors

seem to target relatively low-end nodes.

The approach presented in [43] attacks the abstract problem of pattern detection

using a density test for distributional changes. The main idea is that new, poten-

tially multidimensional, data can be tested against a baseline. For this given base-

line data set and a set of newly acquired observations, a statistical test is performed

that aims to determine if data points in the newly acquired set were sampled from

the same underlying distribution that produced the baseline set. The test statistic is

distribution-free and largely based on kernel density estimation and Gaussian ker-

nels. The baseline distribution is inferred using a combination of this kernel density

estimator with an Expectation Maximisation algorithm. The strength of the approach

is that it seems capable of detecting patterns occurring at multiple data dimensions

simultaneously. However it suffers from the disadvantage of high resource and com-

putational requirements making it potentially prohibitive for low-end sensor nodes.

An approach that takes a machine-learning viewpoint to the pattern detection

problem is described in [27]. More specifically, the authors describe an

202 M. Zoumboulakis and G. Roussos

Instance-Based Learning (IBL) model that aims to classify new sets of observa-

tions according to their relation to a previously acquired reference data. By storing

historical examples of normal observations, the normalcy of emerging observations

can be assessed. The authors recognise that such an approach inherently suffers

from the high cost overhead of storing multiple “normal” instances and addresses

the problem with a combination of instance selection and clustering algorithms that

reduce the dictionary size of normal data. The approach also includes a noise sup-

pression filter that removes noise while performing feature selection from the data.

The output of the algorithm is a binary decision determining the input as normal

or abnormal. Although the authors claim that this solution is highly generalisable

to multiple domains, it remains to be determined whether it is suitable for severely

resource-constrained environments where the storage size is extremely limited and

the cost associated with reading and writing to it is relatively high. Furthermore,

there are cases where the user requires more than binary classification and this ap-

proach does not cater for approximate detection.

The approach described in [1] presents a model-based predictive system that aims

to detect and predict patterns as river flood events in developing countries by deploy-

ing sensor networks around the basin area of rivers. The simplest model is based

on statistical methods such as linear regression using a portion of data known to

be normal. The project aims to cover vast geographical regions of approximately

10,000 km2 and predict a pattern of interest using a distributed model driven by the

collected data. The main drawback of this approach is that it assumes a tiered archi-

tecture where resource-constrained sensor nodes transmit summaries and statistics

of raw data to a set of computation nodes. The latter determine the correctness of

the data, feeds it to the model for prediction and may request additional data from

sensors to reduce uncertainty. A somewhat similar tiered system is PRESTO [10]

which employs ARIMA (Auto Regressive Integrated Moving Average) time series

forecasting models and performs anomaly detection by comparing predicted values

to sensor observations.

The work described in [51] introduces contour maps to display the distribution

of attribute values in the network and employs contour map matching to determine

whether a user-supplied pattern matches node-produced observations. The applica-

tion scenario is event detection in coal mines, monitoring for the occurrence of gas,

dust and water leakage as well as high/low oxygen density regions. A limitation of

this approach is that it assumes users capable of perfectly describing the pattern of

interest as distributions of an attribute over space and variations of this distribution

over time incurred by the event.

3.3 Spatial Structure Pattern Detection

A method aimed at pattern detection over trajectory data is described in [5] where

the authors propose a distance metric to determine similarity between trajectory

subsequences. Trajectory data is usually a sequence of longitude and latitude read-

ings obtained from Global Positioning System (GPS) readings. Detecting patterns in

Pattern Detection in Extremely Resource-Constrained Devices 203

trajectory data has attracted considerable interest recently due to its numerous appli-

cations ranging from remote monitoring of elderly patients to military detection of

enemy movements. The contribution of the method is an algorithm that builds local

clusters for trajectories in a streaming manner. In detail, it focuses on the problem

of determining if a given time window has fewer than k neighbours in its left and

right sliding windows, and if so it flags it as an interesting pattern. To improve on

efficiency, the authors introduce a data structure (Vantage-Point Tree) that facili-

tates piecewise rescheduling of cluster joins. Overall, this is a promising approach

and the experimental results show the efficiency of the method requiring less than

0.5 milliseconds of processing time for newly acquired observations. The disadvan-

tage of the approach is that it has only been evaluated with offline data lacking the

robustness gained by field experiments on real WSAN nodes.

The approach described in [41] focuses on detecting interesting patterns across

linear paths of data. A linear path refers to a path represented by a line with a single

dimensional spatial coordinate marking an observation point, such as mile markers

on motorways or locations along gas pipe lines. Potential applications of pattern

detection on this domain would be the discovery of unusual traffic patterns such

as accident hubs or proactive infrastructure monitoring on gas or water pipes, tun-

nels, bridges and so on. The proposed approach is called Scan Statistics for Linear

Intersecting Paths (SSLIP) and is in fact a family of algorithms that employ statis-

tical methods for online data mining. With respect to detection of interesting pat-

terns, the method relies on the calculation of an unusualness metric that indicates

the likelihood ratio or degree of unusualness of a given window of observations in

comparison with past data. The windows with highest likelihood ratios are flagged

as interesting or unusual. The weakness of this approach is that it is employing

heavyweight, in terms of processing, techniques such as Monte Carlo simulations

to determine the significance of patterns. Furthermore, the authors clearly state that

this method should be used in conjunction with domain experts for the identifica-

tion of interesting patterns — this restricts the autonomous detection that is highly

desired in WSANs and inevitably makes the process somewhat more interactive.

Another relatively interactive approach is described in [47] that introduces rare

category detection. The main contribution of the proposed method is the capabil-

ity of detecting both statistically significant and interesting patterns. The central

premise of category detection involves tasking a user to label patterns with pre-

determined categories. A pattern that doesn’t belong to any category is novel and is

classified to a new category. The presented algorithm aims to identify the rare cate-

gories in data using hierarchical mean shift, a variation of the mean shift algorithm

which is an iterative procedure that shifts each data point to the average of data

points in its neighbourhood [8]. The hierarchical variation involves the iterative ap-

plication of mean shift with increasing bandwidths, such that a hierarchy of clusters

at different scales can be created whilst annotating each cluster with an anomaly

score. The two main weaknesses of this approach is that it can be computationally

expensive and that it requires a small degree of human interaction. Although the

user need not provide information about the data such as the number of categories

204 M. Zoumboulakis and G. Roussos

or their prior probabilities, he or she is still required to classify a statistically signif-

icant pattern as interesting.

3.4 Data Centre Monitoring and Context-Aware Computing

Moving on to the emerging research area of data centre monitoring and design, the

research described in [36] proposes an online temporal data mining solution to opti-

mise the performance of data centre chillers. Sensor nodes deployed in data centres

produce time series data that describe environmental conditions that usually vary in

time according to the load of individual servers, storage and networking equipment.

This type of system exemplifies the automated control that is typical of a WSAN:

according to when/what interesting patterns are sensed a decision must be made

to turn on/off chillers, select a utilisation range and generally react to cooling de-

mands. The authors focus their efforts on motif mining, that is the identification of

frequently occurring temporal patterns. First, they obtain a symbolic representation

of the time series data using the Symbolic Aggregate Approximation (SAX) [30]

algorithm that is also employed by our own method (Section 4). A Run-Length En-

coding (RLE) of the symbol sequence is performed in order to note when transitions

from one symbol to another occur. Generally speaking, RLE is a technique that re-

duces the the size of a repeating string of characters by replacing one long string

of consecutive characters with a single data value and count [3]. Frequent episode

mining is conducted over the sequence of transitions to identify the underlying effi-

ciency profile of the data centre under different environmental circumstances. This

allows the formation of dynamic models of data centre chillers and formulation of

control strategies.

A somewhat similar approach [33] targets online novelty detection on temporal

sequences utilising Support Vector Regression (SVR) to model the time series data.

The authors introduce detection with a confidence score indicating the confidence

of the algorithm for the degree of novelty. There is particular consideration to the

event duration which is rarely known in advance and must be selected with some

care to avoid missing events or spurious matches. The significance of the training

window is also identified and its relationship to resource requirements is one the

weaknesses of the approach. Another weakness is the limited evaluation that does

not provide concrete evidence of the efficacy of SVR for novelty detection.

The approach of [17] largely targets context-aware computing and specifically

mining for anomalous structures in observations representing human interactions

with their environment. The authors propose the use of a Suffix Tree data structure to

encode the structural information of activities and their event statistics at different

temporal resolutions. The method aims to identify interesting patterns that either

consist of core structural differences to previously normal behaviour or differences

based on the frequency of occurrence of motifs. With regards to anomalous pattern

detection, the authors adopt the view that given a set of normal activity sequences

A, any subsequence of events is classified as normal as long as it occurred in A.

Naturally, this relies on training data used to construct the dictionary of legitimate

Pattern Detection in Extremely Resource-Constrained Devices 205

behaviour. Sequences are classed as anomalous using a match statistic computed

over the suffix tree. The strength of the approach is that suffix tree traversal can be

conducted in linear time, however dynamic suffix tree construction and update is

not always suitable to platforms with severe resource constraints that lack dynamic

memory allocation capabilities.

3.5 Network Monitoring and Intrusion Detection

Moving on to approaches that aim to ensure WSAN stability, the work described in

[11] introduces Artificial Immune Systems (AIS) for misbehaviour detection. AIS

are inspired from principles that the human immune system uses for the detection

of harmful agents such as viruses and infections. Since WSANs typically lack the

infrastructure readily available in wired networks, it is somewhat easier for attack-

ers to maliciously modify a WSAN either by dropping packets or compromising

the routing topology. In this context, an interesting pattern would be a sequence of

unusual actions for one or more nodes. The method aims to facilitate local learning

and detection on WSAN nodes using a gene-based approach. Each node maintains

a local set of detectors that is produced by negative selection from a larger set of

randomly generated detectors tested on a set of self strings. These detectors are then

used to test new strings that represent local network behaviour and detect non-self

strings. The approach has been evaluated using MAC protocol messages and has

shown encouraging results. Although such an approach is valuable for the detection

of local patterns that indicate misbehaviour over some layer of the OSI (Open Sys-

tems Interconnection) reference model stack, it is not clear how it can be generalised

to apply to sensor-acquired observations.

A somewhat related approach [31], targets intrusion detection in WSANs from

samples of routing traffic. First, feature selection of traffic and non-traffic related

data is performed in order to learn the distribution of values affecting routing condi-

tions and traffic flows. Second, anomaly detection is performed locally by taking a

window of data and examining it against previously collected normal data. This win-

dow contains samples that are mapped to points in a feature space and subsequently

analysed together with their surrounding region in the feature space. If a point lies

in a sparse region of space is classified as anomalous, using a fixed-width cluster-

ing algorithm. The method has the capability of detecting previously unseen (novel)

patterns while respecting resource constraints by performing detection locally but at

the same time shows a weakness in detecting slow attacks happening gradually over

a long time scale. Finally, evaluation is somewhat limited and performed exclusively

via simulations that do not comprehensively model a large number of attacks.

The approach described in [19], proposes a Principal Component Analysis (PCA)

method for detecting anomalies with complex thresholds in a distributed manner.

Nodes send their readings to a coordinator node that is responsible for firing a trigger

based on the aggregate behaviour of a subset of nodes. The individual nodes perform

filtering such that they send readings only when measurements deviate significantly

from the last transmitted data. With respect to detection, they propose two window

206 M. Zoumboulakis and G. Roussos

T
a
b

le
1

C
o
m

p
ar

is
o
n

o
f

p
at

te
rn

d
et

ec
ti

o
n

te
ch

n
iq

u
es

fo
r

se
n
so

r
d
at

a

A
p

p
ro

a
ch

B
a
si

s
A

p
p

li
ca

ti
o
n

S
tr

en
g
th

W
ea

k
n

es
s

[6
]

D
y
n
am

ic
T

h
re

sh
o
ld

in
g

an
d

S
V

M
s

S
p
ac

ec
ra

ft
im

ag
e

d
at

a
R

es
p
ec

ts
co

n
st

ra
in

ts
A

lg
o
ri

th
m

ta
il

o
r-

m
ad

e
to

p
ro

b
-

le
m

[1
5
]

K
er

n
el

fu
n
ct

io
n
s

S
p
ac

ec
ra

ft
te

le
m

et
ry

d
at

a
N

o
p
ri

o
r

k
n
ow

le
d
g
e

re
q
u
ir

ed
C

o
m

p
.c

o
st

s
n
o
t
ex

p
li

ci
tl

y
m

o
d
-

el
le

d

[3
2
]

N
N

/C
lu

st
er

in
g

/S
V

M
s

S
p
ac

ec
ra

ft
en

g
in

e
d
at

a
P

at
te

rn
m

in
in

g
in

d
at

a
fr

o
m

u
p

to
9
0

se
n
so

rs

P
er

fo
rm

an
ce

va
ri

es
ac

ro
ss

d
at

a

se
ts

[1
2
]

E
x
p
er

t
S

y
st

em
S

at
el

li
te

te
le

m
et

ry
d
at

a
In

ex
ac

t
re

as
o
n
in

g
K

n
ow

le
d
g
e

ac
q
u
is

it
io

n
b
o
tt

le
-

n
ec

k
co

m
m

o
n

in
E

x
p
er

t
S

y
s-

te
m

s

[3
7
]

E
ll

ip
ti

ca
l

A
n
o
m

al
ie

s
A

b
st

ra
ct

/E
nv

ir
o
n
m

en
ta

l
d
at

a
D

is
tr

ib
u
te

d
so

lu
ti

o
n

w
it

h
sa

m
e

ac
cu

ra
cy

as
ce

n
tr

al
is

ed

C
o
m

p
.

co
st

n
o
t

ex
p
li

ci
tl

y
m

o
d
-

el
le

d

[2
]

S
ta

ti
st

ic
al

p
-v

al
u
e

te
st

s
E

co
lo

g
ic

al
an

o
m

al
y

d
et

ec
ti

o
n

A
u
to

m
at

ic
In

fe
re

n
ce

&
P

re
d
ic

-

ti
o
n

R
ad

io
co

m
m

u
n
ic

at
io

n
co

st

[4
3
]

K
er

n
el

d
en

si
ty

es
ti

m
at

o
rs

A
b
st

ra
ct

/M
u
lt

id
im

en
si

o
n
al

d
at

a
D

et
ec

ts
p
at

te
rn

s
o
cc

u
rr

in
g

at

m
u
lt

ip
le

d
im

en
si

o
n
s

si
m

u
lt

an
e-

o
u
sl

y

H
ig

h
co

m
p
u
ta

ti
o
n
al

re
q
u
ir

e-

m
en

ts

[2
7
]

M
L

/I
n
st

an
ce

-b
as

ed
cl

as
si

fi
ca

ti
o
n

A
b
st

ra
ct

/T
em

p
o
ra

l
se

q
u
en

ce
s

N
o
is

e
su

p
p
re

ss
io

n
fi

lt
er

B
in

ar
y

cl
as

si
fi

ca
ti

o
n
/N

o
ap

-

p
ro

x
im

at
e

d
et

ec
ti

o
n

[5
]

N
N

/C
lu

st
er

in
g

T
ra

je
ct

o
ry

p
at

te
rn

d
et

ec
ti

o
n

E
ffi

ci
en

t
p
ro

ce
ss

in
g

ti
m

e
fo

r

cl
as

si
fy

in
g

n
ew

o
b
se

rv
at

io
n
s

N
o

ev
al

u
at

io
n

o
f

o
n
li

n
e

o
p
er

a-

ti
o
n

[4
1
]

S
ca

n
S

ta
ti

st
ic

s
fo

r
L

in
ea

r
In

te
rs

ec
ti

n
g

P
at

h
s

U
n
u
su

al
tr

af
fi

c
p
at

te
rn

d
is

co
v
-

er
y

U
n
u
su

al
n
es

s
m

et
ri

c
H

ig
h

co
m

p
u
ta

ti
o
n
al

re
q
u
ir

e-

m
en

ts

[4
7
]

H
ie

ra
rc

h
ic

al
M

ea
n

S
h
if

t
A

b
st

ra
ct

/R
ar

e
ca

te
g
o
ry

d
et

ec
-

ti
o
n

D
is

ti
n
g
u
is

h
es

st
at

is
ti

ca
ll

y
si

g
-

n
ifi

ca
n
t

an
d

in
te

re
st

in
g

p
at

te
rn

s

H
ig

h
co

m
p
u
ta

ti
o
n
al

re
q
u
ir

e-

m
en

ts

[3
6
]

S
y
m

b
o
li

c
co

nv
er

si
o
n
/R

u
n
-l

en
g
th

en
-

co
d
in

g

D
at

a
ce

n
tr

e
m

o
n
it

o
ri

n
g

D
y
n
am

ic
m

o
d
el

li
n
g

o
f

d
at

a

ce
n
tr

e
ch

il
le

rs

B
ia

s
to

w
ar

d
s

m
o
ti

fs
ra

th
er

th
an

n
o
v
el

ti
es

[3
3
]

S
u
p
p
o
rt

V
ec

to
r

R
eg

re
ss

io
n

A
b
st

ra
ct

/T
em

p
o
ra

l
se

q
u
en

ce
s

C
o
n
fi

d
en

ce
sc

o
re

H
ig

h
co

m
p
u
ta

ti
o
n
al

co
st

s
re

-

la
te

d
to

la
rg

e
tr

ai
n
in

g
w

in
d
ow

s

[1
7
]

S
u
b
se

q
u
en

ce
m

at
ch

in
g

u
si

n
g

S
u
ffi

x

T
re

es

C
o
n
te

x
t-

aw
ar

e
co

m
p
u
ti

n
g

L
in

ea
r

ti
m

e
m

at
ch

in
g

N
o
t

su
it

ab
le

fo
r

d
y
n
am

ic
tr

ee

u
p
d
at

es

[1
1
]

A
rt

ifi
ci

al
Im

m
u
n
e

S
y
st

em
s

M
is

b
eh

av
io

u
r

d
et

ec
ti

o
n

o
n

n
et

-

w
o
rk

d
at

a

E
ffi

ci
en

cy
o
f

lo
ca

l
d
et

ec
to

rs
N

o
t

g
en

er
al

is
ab

le
to

se
n
so

r-

ac
q
u
ir

ed
d
at

a

[3
1
]

F
ix

ed
-w

id
th

cl
u
st

er
in

g
N

et
w

o
rk

In
tr

u
si

o
n

D
et

ec
ti

o
n

D
et

ec
ts

p
re

v
io

u
sl

y
u
n
se

en
p
at

-

te
rn

s

M
is

se
s

sl
ow

-o
cc

u
rr

in
g

p
at

te
rn

s

[1
9
]

P
ri

n
ci

p
al

C
o
m

p
o
n
en

t
A

n
al

y
si

s
D

is
tr

ib
u
te

d
n
et

w
o
rk

p
at

te
rn

d
e-

te
ct

io
n

S
o
u
rc

e-
si

d
e

fi
lt

er
in

g
R

el
ie

s
o
n

co
o
rd

in
at

o
r

n
o
d
e

(S
P

O
F

)

[1
]

M
o
d
el

-b
as

ed
/S

ta
ti

st
ic

al
re

g
re

ss
io

n
R

iv
er

fl
o
o
d

p
at

te
rn

ev
en

ts
D

is
tr

ib
u
te

d
d
at

a-
d
ri

v
en

m
o
d
el

A
ss

u
m

es
p
re

se
n
ce

o
f

a

re
so

u
rc

e-
ri

ch
ti

er

[5
1
]

C
o
n
to

u
r-

m
ap

m
at

ch
in

g
C

o
al

-m
in

e
m

o
n
it

o
ri

n
g

S
Q

L
ex

te
n
si

o
n
s

al
lo

w
s

u
se

rs
to

sp
ec

if
y

ev
en

ts
as

p
at

te
rn

R
el

ie
s

o
n

p
ri

o
r-

d
is

tr
ib

u
ti

o
n

k
n
o
w

le
d
g
e

b
y

u
se

r

Pattern Detection in Extremely Resource-Constrained Devices 207

triggers that are persistent threshold violations over a fixed or varying window of

time series data. Although the approach is aimed at detecting unusual network traffic

patterns, it could apply to certain WSAN applications. The main criticism is that it

creates single points of failure by assigning the coordinator role to nodes.

4 Symbolic and Stochastic Pattern Detection

Having covered sufficient background and related work, we now focus on our ap-

proach to pattern detection for extremely resource-constrained devices. Before we

proceed with the details of our approach, we enumerate the requirements for a pat-

tern detection solution in resource-constrained Wireless Sensor Actuator Networks:

•It must be capable of detecting patterns both on the temporal and spatial domain,

since sensornets usually monitor phenomena on a spatio-temporal scale.

•It must be capable of detecting both previously unseen patterns and user-submitted

patterns with exact and approximate matching semantics.

•It must tolerate outliers, noise, missing values as well as scale differences in the

sensor-acquired data.

•It must explicitly take into account the resource-constraints of the execution en-

vironment. Specifically, the solution targets low-end nodes such as the TMote

Sky [40] and the battery-free Intel WISP [38].

•It must fit well with the existing communication paradigms without requiring any

modifications to lower layer protocols.

•It must scale as the number of user-submitted patterns increase as well as the

network size grows.

Over the following sections we provide an initial discussion of how the above re-

quirements are addressed. For experimental evidence and in-depth coverage the in-

terested reader is referred to our previous work [55], [53], [56], [54].

4.1 Temporal Pattern Detection Using a Symbolic Representation

First, we convert the pattern detection problem to a pattern matching problem. A

mature symbolic representation algorithm — SAX [30] — used for numerous data

mining tasks is employed to convert sequences of numeric sensor observations to

character strings. SAX is a linear time algorithm that first coverts a time series to

an intermediate representation using Piecewise Aggregate Approximation (PAA).

The resulting string is obtained by converting the PAA representation using a table

lookup. Due to space restrictions we will not discuss SAX here in further detail, but

we refer to interested reader to the published literature on SAX (cf. [30, 24, 23]. The

reasons we convert numeric data to symbols are threefold:

1. A symbolic representation opens up access to a wide variety of mature string

matching algorithms,

2. A symbolic representation achieves data reduction and thus requires less space

achieving radio communication and storage savings, and

208 M. Zoumboulakis and G. Roussos

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Time (1/100 sec)

S
e
n
s
o
r

R
e
s
p
o
n

s
e

 (
s
e

is
m

ic
)

Convert

User−submitted patterns

abbcfacccfdggggaa
abbbcddeffaceadghaaa
bbcccaaeefgiiiaabbba
aaaieffdhjjiabccadddd

Match

...abbbcddeffaceaadghaaa...

Fig. 1 Example of converting a time series segment to symbols and matching against a

database of user-submitted patterns. The user typically enters a pattern as a numeric sequence.

This sequence is converted to a string either by an application that acts as the interface be-

tween the WSAN and the user, or by the WSAN node itself.

3. A string distance function is defined that lower-bounds the Euclidean distance

allowing to perform matching entirely on the symbolic representation without

loss of information.

The symbolic conversion algorithm is capable of handling a degree of missing

values, noisy data and outliers in the numeric input data. However, no inference of

missing values is performed and a high number of missing values would inadver-

tently affect the matching performance of the algorithm. With regards to detection

we offer three methods:

1. Approximate or Exact Pattern Detection where the user knows in advance the

pattern of interest and wishes to be informed when the sensor-acquired data con-

verts to patterns that match the reference pattern either approximately or exactly

(example in Figure 1)

2. Non-parametric Pattern Detection, where the user need not supply any informa-

tion in advance but instead the algorithm trains on a window of normal sensor

data by constantly observing distances in temporally adjacent strings correspond-

ing to temporally neighbouring time series sequences

3. Probabilistic Pattern Detection where a Markov Model is built by monitoring

individual character transitions. Strings with improbable character transitions are

labelled as unusual.

Pattern Detection in Extremely Resource-Constrained Devices 209

Further to the above, we cater for Dynamic Sampling Frequency Management

(DSFM). Similar to Non-parametric Pattern Detection, this algorithm involves a a

training phase to learn the sensed process dynamics and use it to make autonomous

local decisions to dynamically increase or decrease the frequency in which the ob-

servations are acquired from the sensors. Dynamically adjusting the frequency en-

ables network nodes to conserve energy in periods of relative inactivity for times

when interesting patterns occur. We recognise that certain applications can have

specific sampling frequency requirements depending on the periodicity of the sig-

nal. Having these requirements specified as a sampling interval rather than an abso-

lute value, can help nodes select an appropriate frequency via the DSFM capability,

relaxing the pre-deployment need for complex signal processing.

The scalability requirement is met by introducing a Suffix Array structure for stor-

age and fast searching of user-submitted patterns. In terms of fitting with standard

methods, our approach uses a standard Publish/Subscribe interface that employs

state-of-the-art WSAN communication protocols without requiring any modifica-

tions or incurring any communication overhead. The computational efficiency of

the algorithm is achieved by aggressive optimisations (cf. [56] for a detailed dis-

cussion) using integer arithmetic and verified by measuring the execution time on

nodes from operational WSAN systems. The additional cost of converting numeric

sequences to strings is almost negligible: typically 11 milliseconds of CPU time are

required for the conversion of a numeric sequence for a window of 40 data points to

a string and this time includes a string distance comparison to a user-submitted pat-

tern. Naturally, larger windows are possible, for instance to capture long-duration

pattern events, and can be easily introduced either at pre-deployment or injected

dynamically at runtime.

In the case of user-submitted patterns, one point of interest is the relation be-

tween the length of the user pattern and the window size employed by the symbolic

conversion algorithm. In this context, the length of the user pattern relates to the

length of the resulting string, in other words the output of the symbolic conversion.

The user submits a pattern in a numeric form and this converts to a string either

by the WSAN node itself or by an application that acts as an interface between the

WSAN and the user. There exist two possibilities: in Approximate Pattern Detec-

tion the length of the user-submitted pattern must be equal to the length of the string

produced by a WSAN node. This is due to the string distance function employed for

comparison that only accepts strings of equal length. However this can be adapted

by using alternative distance functions that can accept strings of different length

— the Sequence Alignment algorithms (cf. [16]) are such examples of comparison

functions that accept strings of different length. The second option relates to Ex-

act Pattern Detection where the Suffix Array structure is employed. In this case the

window size is affected in the following manner: if a user submits a pattern smaller

than the resulting string produced by the WSAN node, matching is unaffected since

the Suffix Array stores all the suffixes of the user submitted pattern. Conversely, if

a user submits a pattern larger than the resulting string produced by the WSAN node,

210 M. Zoumboulakis and G. Roussos

exact matching is affected since strings of different length can never match exactly.

To resolve this, the WSAN node adjusts the window size such that the resulting

string length is equal to the largest user-submitted string.

Further to the performance evaluation on operational WSAN nodes, in order to

refine the granularity of measurements we have opted to simulate the operation of

a WSAN by replaying data sets collected in-situ and emulating the operations of

a node in software. This approach was used with three data sets representing dis-

tinct case studies: first, normalised seismometer and acoustic data from a volcano

monitoring application ([50]) was used to quantitatively evaluate the performance

against a large number of organic events of varying durations. Indicative results are

shown in Table 2 where the double compression refers to running two instances of

the symbolic conversion algorithm with different compression settings for accuracy.

In fact, the lightweight nature of the approach allows users to execute it simulta-

neously with different configuration values without penalising performance. This

is a significant benefit in cases where the pattern event duration or characteristics

are unknown. Second, a case study using environmental data from an indoor net-

work [20] was used to evaluate the performance against data imperfections such

as outliers and missing values. We found the accuracy of the algorithm unaffected

by imperfections and at the same time real and synthetic patterns were detected on

temperature, humidity and light data. Third, ECG and accelerometer data from the

UCR data mining archive [46] was used to evaluate the applicability of the algo-

rithm to potential pervasive healthcare and context-aware deployments. Again, we

found the algorithm responded well in detecting unseen patterns and pinpointing the

change from normal to anomalous. Due to space limitations we cannot discuss the

experimental result in great detail however we invite the interested reader to review

our results ([53]).

Finally, we have recently adapted the algorithm for the battery-free Intel WISP

platform that harvests electromagnetic energy from RFID readers. We have modified

the original WISP design by adding a supercapacitor to store harvested energy so

that a node can continue operating when it moves outside the range of an RFID

reader. We intend to use the pattern detection algorithm for the purpose of activity

recognition and more specifically teaching younger children about movements and

elementary mechanics (cf. [55] for more details). This verifies the versatility of the

pattern detection algorithms for different tasks and their suitability for the extremely

resource-constrained platforms.

Table 2 Summary of quantitative detection accuracy results with one and two compression

settings.

Compression Setting Detection Accuracy

Single compression (4 : 1) Detected: 733 out of 947 77.4%

Double compression (2 : 1 and 4 : 1) Detected: 878 out of 947 92.7%

Pattern Detection in Extremely Resource-Constrained Devices 211

4.2 Spatial Pattern Detection and Source Location Estimation

For the detection of patterns on the spatial domain, we focus on a specific class of

events namely dispersion of pollutants from a single static point source. We assume

a WSAN is deployed in the area of the dispersion plume where nodes individually

detect the presence of the pollutant in the atmosphere using the algorithm of the

previous section or some other method. Since this pattern has a strong spatial ele-

ment, local detection is not sufficient in itself. The aim is to initiate a “walk” of the

network such that a coarse estimate of the source’s location is iteratively computed.

The algorithm is similar to local gossip approaches (cf. [29] for the Trickle al-

gorithm, an example of a gossip protocol for WSANs) and works by instantiating

a Kalman filter that iteratively predicts the state of the dispersion process at neigh-

bouring nodes. At the beginning of the process, the originating node makes an es-

timate of the observations at its one-hop neighbours (line 2, Algorithm 1). Since

no other information is available this estimate is a linear transformation of the lo-

cal reading. The neighbour that minimises the error is selected as the next hop and

receives the necessary Kalman filter parameters and values to continue the process

(line 8, Algorithm 1). A geometric computation is employed to take into account

the neighbourhood consensus before making the routing decision in order to reduce

message cost at each hop (not shown in Algorithm 1 for simplicity). This works

in the following manner: after a small (i.e. ≤ 10) number of hops, a convex hull

is evaluated for the coordinates of the nodes that participate in the estimation. Pro-

vided that the estimation process begins at nearby locations, the convex hull can be

computed cheaply without a significant communication overhead. The mean direc-

tion of movement is given by calculating the centroid of the convex hull. At this

stage only a coarse quadrant direction is necessary: the Cartesian coordinates quad-

rant in which the majority of nodes participating in the estimation process believe

the source is located. This geometric computation adds robustness to the algorithm

such that erroneous local routing decisions can be overridden by the majority con-

sensus. Experimental evaluation has shown estimation accuracy of up to 97.33%,

where an estimate is considered accurate if it is within 6 meters from the actual

position of the source.

The iterative estimation process stops when the estimation error becomes unac-

ceptably high (lines 13-15, Algorithm 1) which indicates that either the node has

approached a region close to the source or that it has entered a region where ob-

servations differ greatly from the estimate of the process. The process halts and the

coordinates and intensity of the last node in the path become the final estimate.

This spatial detection not only detects the pattern but provides useful metadata

with respect to the pattern location and intensity. Such estimation tasks are com-

mon in applications such as [9] concerned with the Inverse problem: given some

sensor observations, the goal is to estimate the source location. We have evaluated

the spatial detection algorithm over grid and random distributions of different densi-

ties and we have found it outperforms a maximum selection algorithm (that selects

neighbours with the higher reading) while it is competitive with other heavy-weight

212 M. Zoumboulakis and G. Roussos

Algorithm 1. Spatial Pattern Detection (SED) Location Estimation Algorithm

1: variables Estimate Error Covariance P, Measurement Noise Variance R, Process Variance

Q, State Transition Matrix A, Measurement Matrix H, Initial Estimate x̂k
−, maxhopcount=1,

netpath[], counter c = 0;

2: Project state estimate x̂k
− ahead (cf. Equation 4.9 [49])

3: Project error covariance Pk
− ahead (cf. Equation 4.10 [49])

4: Task unvisited neighbours within maxhopcount to report measurement.

5: for (each of replies received) do

6: calculate innovations (zk
(i)
−Hx̂k

−)
7: end for

8: Select as next hop the node that minimises the innovation.

9: Compute the Kalman gain (cf. Equation 4.11 [49])

10: Correct (Update) estimate with measurement zk
(i) (cf. Equation 4.12 [49])

11: Correct (Update) the error covariance Pk (cf. Equation 4.13 [49])

12: Compute relative error.

13: if abs(relative error) >=multiple·(E[Rel Error]) then

14: exit

15: else

16: Add local address to netpath[c] and increment c.

17: Send algorithm parameters to selected node (line 8) and task it to start at Line 1.

18: end if

location estimation approaches. For further information and experimental results the

interested reader is referred to [54].

5 Conclusions

In this chapter we have outlined the need for efficient pattern detection in Wire-

less Sensor Actuator Networks (WSANs) that lack core infrastructure services such

as reliable communication and time synchronisation. The majority of middleware

approaches that attempt to deal with the pattern detection problem from a com-

posite event calculus perspective are not suitable for severely resource-constrained

execution environment. Instead, pattern detection techniques that adapt statistical,

machine-learning and data mining approaches are much more suitable.

We presented a large collection of pattern detection approaches from different

application domains that address the problem using a multitude of techniques. A

universal solution to the problem capable of detecting patterns in different types of

data is extremely difficult since application requirements vary. To partially address

this problem, we described in Section 4 a data-mining inspired technique that em-

ploys string matching and is capable of detecting patterns in sensor data of different

modalities across both temporal and spatial domains. This method requires little or

no configuration and therefore fits well the long-term vision that anticipates WSANs

comprised of millions of inexpensive nodes. Furthermore, it leverages the develop-

ment of existing state-of-the-art communication methods using standard interfaces

such as Publish/Subscribe for the notification of interesting patterns and without

requiring any modifications to lower layer protocols.

Pattern Detection in Extremely Resource-Constrained Devices 213

The discussion of Pattern Detection for WSANs leaves a few directions open

for further exploration. First, the impact of local coordination in relation to Non-

Parametric and Probabilistic Pattern Detection has to be investigated further. Local

coordination refers to geographical adjacent WSAN nodes exchanging information

that facilitates the training phase of the algorithms. Second, we aim to investigate

a direction based on real-time classification of WSAN data. There is preliminary

work in this area utilising string algorithms [44] and numerous applications exist

ranging from assisted diagnosis [13] to augmenting learning processes for children

[55]. The final research direction involves the investigation of mixed methods where

multiple detection algorithms run in parallel within a WSAN in order to improve de-

tection accuracy. Addressing the above directions through evaluation on operational

WSANs will extend the work on Pattern Detection and benefit users of reactive

applications across a number of application domains.

References

1. Basha, E.A., Ravela, S., Rus, D.: Model-based monitoring for early warning flood detec-

tion. In: SenSys 2008: Proceedings of the 6th ACM conference on Embedded network

sensor systems, pp. 295–308. ACM, New York (2008)

2. Bettencourt, L.M.A., Hagberg, A.A., Larkey, L.B.: Separating the wheat from the chaff:

practical anomaly detection schemes in ecological applications of distributed sensor net-

works. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS,

vol. 4549, pp. 223–239. Springer, Heidelberg (2007)

3. Bose, R.: Information theory, coding and cryptography. Tata McGraw-Hill, New York

(2002)

4. Branch, J., Szymanski, B., Giannella, C., Wolff, R., Kargupta, H.: In-network outlier

detection in wireless sensor networks. In: 26th IEEE International Conference on Dis-

tributed Computing Systems, ICDCS 2006, pp. 51–59 (2006)

5. Bu, Y., Chen, L., Fu, A.W.-C., Liu, D.: Efficient anomaly monitoring over moving object

trajectory streams. In: KDD 2009: Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 159–168 (2009)

6. Castano, R., Wagstaff, K.L., Chien, S., Stough, T.M., Tang, B.: On-board analysis of

uncalibrated data for a spacecraft at mars. In: KDD 2007: Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining, pp. 922–

930 (2007)

7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing

Surveys (2009)

8. Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Mach.

Intell. 17(8), 790–799 (1995)

9. Chin, J.-C., Yau, D.K.Y., Rao, N.S.V., Yang, Y., Ma, C.Y.T., Shankar, M.: Accurate local-

ization of low-level radioactive source under noise and measurement errors. In: SenSys

2008: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems,

pp. 183–196. ACM, New York (2008)

10. Desnoyers, P., Ganesan, D., Li, H., Li, M., Shenoy, P.: PRESTO: A predictive storage ar-

chitecture for sensor networks. In: Tenth Workshop on Hot Topics in Operating Systems,

HotOS X (2005)

214 M. Zoumboulakis and G. Roussos

11. Drozda, M., Schaust, S., Szczerbicka, H.: Is AIS based misbehavior detection suitable

for wireless sensor networks. In: Proc. IEEE Wireless Communications and Networking

Conference (WCNC), Citeseer (2007)

12. Durkin, J., Tallo, D., Petrik, E.J.: FIDEX: An expert system for satellite diagnostics. In:

In its Space Communications Technology Conference: Onboard Processing and Switch-

ing, pp. 143–152 (1991) (see N92-14202 05-32)

13. Dutta, R., Dutta, R.: Maximum Probability Rule based classification of MRSA infec-

tions in hospital environment: Using electronic nose. Sensors and Actuators B: Chemi-

cal 120(1), 156–165 (2006)

14. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-

series databases. SIGMOD Rec. 23(2), 419–429 (1994)

15. Fujimaki, R., Yairi, T., Machida, K.: An approach to spacecraft anomaly detection

problem using kernel feature space. In: KDD 2005: Proceedings of the eleventh ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 401–

410 (2005)

16. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press, Cambridge (1997)

17. Hamid, R., Maddi, S., Bobick, A., Essa, I.: Unsupervised analysis of activity sequences

using event-motifs. In: VSSN 2006: Proceedings of the 4th ACM International Workshop

on Video Surveillance and Sensor Networks, pp. 71–78 (2006)

18. Hawkins, D.M.: Identification of outliers. Monographs on applied probability and statis-

tics. Chapman and Hall, Boca Raton (1980)

19. Huang, L., Garofalakis, M., Hellerstein, J., Joseph, A., Taft, N.: Toward sophisticated de-

tection with distributed triggers. In: MineNet 2006: Proceedings of the 2006 SIGCOMM

workshop on Mining network data, pp. 311–316. ACM, New York (2006)

20. Intel. Lab Data, Berkeley (2004),

http://db.csail.mit.edu/labdata/labdata.html
21. Janakiram, D., Reddy, V.A., Kumar, A.: Outlier detection in wireless sensor networks

using bayesian belief networks. In: First International Conference on Communication

System Software and Middleware, Comsware 2006, pp. 1–6 (2006)

22. Karpiński, M., Cahill, V.: Stream-based macro-programming of wireless sensor, actuator

network applications with SOSNA. In: DMSN 2008: Proceedings of the 5th workshop

on Data management for sensor networks, pp. 49–55. ACM, New York (2008)

23. Keogh, E., Lin, J., Fu, A.: HOT SAX: Efficiently Finding the Most Unusual Time Series

Subsequence. In: IEEE International Conference on Data Mining, pp. 226–233 (2005)

24. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data mining. In:

KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pp. 206–215. ACM, New York (2004)

25. Kompis, C., Aliwell, S.: Energy Harvesting Technologies to Enable Wireless and Re-

mote Sensing — Sensors & Instrumentation KTN Action Group Report (June 2008),

http://server.quid5.net/ koumpis/pubs/pdf/
energyharvesting08.pdf

26. Krishnamachari, B.: Networking Wireless Sensors. Cambridge University Press, Cam-

bridge (2005)

27. Lane, T., Brodley, C.E.: Temporal sequence learning and data reduction for anomaly

detection. ACM Trans. Inf. Syst. Secur. 2(3), 295–331 (1999)

28. Levis, P., Culler, D.: Maté: A Tiny Virtual Machine for Sensor Networks. In: ASPLOS-X:

Proceedings of the 10th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, New York, NY, USA, pp. 85–95 (2002)

http://db.csail.mit.edu/labdata/labdata.html
http://server.quid5.net/~koumpis/pubs/pdf/energyharvesting08.pdf
http://server.quid5.net/~koumpis/pubs/pdf/energyharvesting08.pdf

Pattern Detection in Extremely Resource-Constrained Devices 215

29. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for code

propagation and maintenance in wireless sensor networks. In: NSDI 2004: Proceedings

of the 1st Conference on Symposium on Networked Systems Design and Implementa-

tion, vol. 2, USENIX Association, Berkeley (2004)
30. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with

implications for streaming algorithms. In: DMKD 2003: Proceedings of the 8th ACM

SIGMOD workshop on Research issues in data mining and knowledge discovery, pp.

2–11. ACM, New York (2003)

31. Loo, C.E., Ng, M.Y., Leckie, C., Palaniswami, M.: Intrusion detection for routing attacks

in sensor networks. International Journal of Distributed Sensor Networks 2(4), 313–332

(2006)

32. Oza, N., Schwabacher, M., Matthews, B.: Unsupervised Anomaly Detection for Liquid-

Fueled Rocket Propulsion Health Monitoring. Journal of Aerospace Computing, Infor-

mation, and Communication 6(7), 464–482 (2007)

33. Ma, J., Perkins, S.: Online novelty detection on temporal sequences. In: KDD 2003: Pro-

ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 613–618. ACM, New York (2003)

34. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional

query processor for sensor networks. In: SIGMOD 2003: Proceedings of the 2003 ACM

SIGMOD international conference on Management of data, pp. 491–502. ACM, New

York (2003)
35. Markou, M., Singh, S.: Novelty detection: a review–part 1: statistical approaches. Signal

Processing 83(12), 2481–2497 (2003)
36. Patnaik, D., Marwah, M., Sharma, R., Ramakrishnan, N.: Sustainable operation and man-

agement of data center chillers using temporal data mining. In: KDD 2009: Proceedings

of the 15th ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 1305–1314 (2009)
37. Rajasegarar, S., Bezdek, J.C., Leckie, C., Palaniswami, M.: Elliptical anomalies in wire-

less sensor networks. ACM Trans. Sen. Netw. 6(1), 1–28 (2009)
38. Intel Research. WISP: Wireless Identification and Sensing Platform (2008),

http://seattle.intel-research.net/wisp/
39. Roundy, S., Wright, P.-K., Rabaey, J.: Energy Scavenging for Wireless Sensor Networks:

with Special Focus on Vibrations, 1st edn. Springer, Heidelberg (2003)

40. MoteIV (later renamed to Sentilla). TMote Sky Datasheets and Downloads (2008),

http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf
41. Shi, L., Janeja, V.P.: Anomalous window discovery through scan statistics for linear in-

tersecting paths (SSLIP). In: KDD 2009: Proceedings of the 15th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pp. 767–776 (2009)

42. Sipser, M.: Introduction to the Theory of Computation. PWS Pub Co, Boston (1996)
43. Song, X., Wu, M., Jermaine, C., Ranka, S.: Statistical change detection for multi-

dimensional data. In: KDD 2007: Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 667–676. ACM, New York

(2007)

44. Stiefmeier, T., Roggen, D., Tröster, G.: Gestures are strings: efficient online gesture spot-

ting and classification using string matching. In: BodyNets 2007: Proceedings of the

ICST 2nd international conference on Body area networks, pp. 1–8 (2007)

45. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online

Outlier Detection in Sensor Data Using Non-Parametric Models. In: Dayal, U., Whang,

K.-Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y.-K.

(eds.) VLDB, pp. 187–198. ACM, New York (2006)

http://seattle.intel-research.net/wisp/
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

216 M. Zoumboulakis and G. Roussos

46. Riverside University of California. The UCR Time Series Data Mining Archive (2008),

http://www.cs.ucr.edu/˜eamonn/TSDMA
47. Vatturi, P., Wong, W.-K.: Category detection using hierarchical mean shift. In: KDD

2009: Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 847–856 (2009)

48. Wagner, W.P.: Issues in knowledge acquisition. In: SIGBDP 1990: Proceedings of the

1990 ACM SIGBDP conference on Trends and directions in expert systems, pp. 247–

261 (1990)

49. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical Report 95-041.

Chapel Hill, NC, USA (1995)

50. Werner-Allen, G., Dawson-Haggerty, S., Welsh, M.: Lance: optimizing high-resolution

signal collection in wireless sensor networks. In: SenSys 2008: Proceedings of the 6th

ACM conference on Embedded network sensor systems, New York, NY, USA, pp. 169–

182 (2008)

51. Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour map matching for event detection in sensor

networks. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pp. 145–156. ACM, New York (2006)

52. Zhang, J., Wang, H.: Detecting outlying subspaces for high-dimensional data: the new

task, algorithms, and performance. Knowledge and Information Systems 10(3), 333–355

(2006)

53. Zoumboulakis, M., Roussos, G.: Efficient pattern detection in extremely resource-

constrained devices. In: SECON 2009: Proceedings of the 6th Annual IEEE communica-

tions society conference on Sensor, Mesh and Ad Hoc Communications and Networks,

pp. 10–18 (2009)

54. Zoumboulakis, M., Roussos, G.: Estimation of Pollutant-Emitting Point-Sources Using

Resource-Constrained Sensor Networks. In: Trigoni, N., Markham, A., Nawaz, S. (eds.)

GSN 2009. LNCS, vol. 5659, pp. 21–30. Springer, Heidelberg (2009)

55. Zoumboulakis, M., Roussos, G.: In-network Pattern Detection on Intel WISPs (Demo

Abstract). In: Proceedings of Wireless Sensing Showcase (2009)

56. Zoumboulakis, M., Roussos, G.: Integer-Based Optimisations for Resource-Constrained

Sensor Platforms. In: Hailes, S., Sicari, S., Roussos, G. (eds.) S-CUBE 2009. LNICIST,

vol. 24, pp. 144–157. Springer, Heidelberg (2010)

http://www.cs.ucr.edu/~eamonn/TSDMA

Smart Patient Care

Diogo Guerra, Pedro Bizarro, and Dieter Gawlick

Abstract. The creation, management, and use of Electronic Medical Records (EMR)

is a central issue for the medical community and is a high priority for many gov-

ernments around the world. Collecting, storing, and managing EMR is expensive

and difficult due to a set of demanding requirements for quality attributes (relia-

bility, availability, security), multiple types of data (real-time data, historical data,

medical rules, medical vocabularies), and data operations (raising alarms, pattern

detection, or predictions). The traditional approach uses a combination of multiple

data management systems such as databases, rule engines, data mining engines,

event processing engines and more. Having multiple data management systems

leads to “islands of data”, missed correlations, and frequent false alarms. However,

recent advances in database technology have added functionality to database sys-

tems such as temporal support, continuous queries, notifications, rules managers,

event processing and data mining. This chapter describes a prototype, SICU, that

using those advanced functionalities, implements a complete, single-system EMR

engine to monitor patients in emergency care units. SICU was designed as a proof-

of-concept EMR system that manages real-time data (vitals and laboratory data),

historic data (past clinical information), medical knowledge (in the form of rules)

and issues appropriate alarms with the correct level of criticality and personalized

by doctor or patient. In addition, using data mining models built from real patient

profiles, SICU is able to predict if patients will have a cardiac arrest in the following

24 hours. The prototype has shown a way to significantly enhance evidence based

Diogo Guerra

FeedZai, Portugal

e-mail: diogo.guerra@feedzai.com

Pedro Bizarro

University of Coimbra, Portugal

e-mail: bizarro@dei.uc.pt

Dieter Gawlick

Oracle, California

e-mail: dieter.gawlick@oracle.com

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 217–237.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

diogo.guerra@feedzai.com
bizarro@dei.uc.pt
dieter.gawlick@oracle.com

218 D. Guerra, P. Bizarro, and Dieter Gawlick

medicine and is therefore of great interest to the medical community. The lessons

can be applied to other domains such as smart utility grids.

1 Introduction

Collecting, storing, and managing EMR is expensive and difficult because it needs

two types of data management requirements. First, as with other sensitive datasets,

managing EMR requires reliability–records can never be lost, availability–records

must be available at all times, and security–records can never be available to unau-

thorized people or systems. However, reliable, secure access to EMR records at all

times is not enough [7]. Indeed, a complete EMR system should have a second set

of requirements aimed to support doctors: active analysis of the many types of pa-

tient data, managing and checking medical rules, or predicting current and future

patterns. While the first set of requirements is usually supported by a commercial

database management system, up until now the second set of requirements was nor-

mally supported with the help of custom-code or additional data management sys-

tems such as rule engines, data mining engines, or event processing engines.

Besides being more expensive and harder to manage, having multiple data man-

agement systems frequently leads to the inability of finding correlations across

datasets which in turn leads to false alarms and false negatives. However, recent

advances in database research have added functionality to database systems such as

temporal support, continuous queries, notifications, rules managers, event process-

ing and data mining.

This chapter describes a prototype, SICU, that using multiple advanced function-

alities, implements a complete, single-system EMR engine to monitor patients in

emergency care units. Created by the University of Coimbra in cooperation with the

University of Utah Health Science Center (UUHSC) and Oracle Corporation, SICU

is a single integrated EMR prototype system built inside an Oracle database. SICU

was designed as a proof-of-concept EMR system that manages real-time data (vitals

and laboratory data), historic data (past clinical information), medical knowledge (in

the form of rules) and issues appropriate alarms with the correct level of criticality

and personalized by doctor or patient. Using data mining models built with 725 real

patient profiles collected over 4 years, SICU aims to predict if patients will have a

cardiac arrest in the following 24 hours

The prototype focuses on new ways to represent data (both patient data as well

as medical rules), extraction of evidence from available data (using rules, classifica-

tions, and models), and on allowing customized interpretations over the same data.

These characteristics of the prototype were implemented with an architecture based

on the Oracle Database and focused on four of its features:

• Total Recall (TR) – a recent feature of Oracle database, responsible for au-

tomatically managing the history of all data changes [16];

• Continuous Query Notification (CQN) – a feature responsible for detecting

and announcing changes in data [2];

Smart Patient Care 219

• Business Rules Manager (BRM) – a new complex event processing (CEP)

engine inside the database which is responsible for classification and per-

sonalization of alerts [1];

• Oracle Data Mining (ODM) – responsible for detecting complex patterns

and identifying new classes in the data. It has been a feature of the Oracle

Database for many releases [4].

Figure 1 shows the flow of data and the organization of the different modules in the

system.

Fig. 1 Architecture of the prototype

1.1 Contributions

The major contributions of SICU are:

• Automatic data history – Using Total Recall (Section 2.1.1), past clini-

cal data is automatically and transparently managed by the system and is

220 D. Guerra, P. Bizarro, and Dieter Gawlick

accessed using minimal SQL enhancements. Then, using Continuous Query

Notification (Section 2.1.2), the historic data is used to detect significant

changes (or lack thereof) between any two or more versions of a value.

• Canonical event type model – In spite of the multiple data types (e.g., heart

rate, blood pressure, temperature, urine information) and multiple rule types,

the implementation reduced all new data to a single type of event (a “new

reading”) and to a single type of rule greatly simplifying the architecture.

(See Section 4.1.)

• Representation of vocabularies and domain knowledge – Vocabularies rep-

resent the semantics of data specific to the domain. SICU stores the terms

and concepts of the domain knowledge using rules that conform to generally

accepted medical rules. (See Section 4.2.)

• Classification and Customization framework – Although there are general

rules that always apply, each doctor has her own interpretation of the im-

portance of events (e.g., is a heart rate of 100 beats per minute too much

for some patient?) and the frequency and urgency of warnings. SICU allows

the customization of thresholds, alarms, timeouts and the classification of

events into multiple classes according to their criticality such as guarded,

serious and critical. (See Section 4.3.)

• Rules Composability – The complex scenarios seen in real medical systems

are sometimes too complex to be defined using a single rule. As such, the

prototype builds upon a rule composability property that allows the defini-

tion of complex rules to represent events such as “possible cardiac arrest

situations”. (See Section 4.4.)

• Predictive Models and Data Mining Integration – Although there is plenty of

medical knowledge that can be captured using simple and composable rules,

there are situations where a predictive model is able to capture knowledge

that not even the specialists knew about. SICU uses a data mining model

that, using 725 real patient profiles collected over 4 years, is able to predict

with 67% accuracy if patients will have a cardiac arrest in the following 24

hours. (See Section 4.5.)

• Declarative Applications – This prototype illustrates a new style of rule

driven applications that provides timely access to critical information and

that can handle enormous complexity while remaining highly customizable

and extensible and while using a declarative approach. (Described better in

another publication [11].)

In addition to the above major contributions, the prototype has shown the impor-

tance of database technology to event processing. In fact, by taking advantage of the

declarative nature of database technology, and in spite of using so many new features

and being implemented by a four-site team (in Utah, California, Massachusetts, and

Portugal), the prototype was implemented in just 4 months. In the process, the im-

plementation of the prototype has also shed new light on techniques for evidence

discovery.

Smart Patient Care 221

1.2 Chapter Outline

Although we assume that readers are generally familiar with database technology,

Section 2 highlights important functional and operational characteristics of the Ora-

cle database. Then, and in more detail, Section 2 describes some of the more modern

features of databases that readers may not be familiar with. Additionally, section 2

describes and defines classification and customization.

Section 3 describes the overall architecture of the prototype. The approach of

this section tries to explain to the reader the architectural decisions made along with

the prototype development and how they were executed. The section will highlight

the way that the components described in Section 2 were linked and integrated in a

unified system.

Section 4 describes in detail the implementation, how data are captured with

Total Recall, how events are triggered with Continuous Query Notification, how

events are further processed by the Business Rules Manager, and how the Business

Rules Manager is also used to customize and compose rules. The last subject is

the integration of Oracle Data Mining, the creation of models as well as the on-line

scoring of incoming patient data to compute the probability that the patient will have

a cardiac arrest.

Section 5 describes alternative implementation approaches. Section 6 gives an

overview of the state of the prototype, Section 7 give our conclusions and highlights

future work.

2 The Technology

The prototype was built on top of the Oracle database and of the Glassfish [9] ap-

plication server. This section describes features from the Oracle database that are

important to the prototype and are not well known in the community.

2.1 Oracle Database

Databases are known for their operational characteristics, and high performance,

scalability, security, and availability, including disaster tolerance. Any of these char-

acteristics are required for the management of EMR (Electronic Medical Records).

In addition, databases have to support the appropriate data types and models for

each specific application. Oracle database initially supported only SQL 92 [12], a

simple relational model. This support has been dramatically extended. As of now,

the Oracle database supports SQL 99 [13], XML [14], and RDF [15]. Furthermore,

the database provides support for extensibility; e.g., users can add new data struc-

tures as well as operators to manage and access data represented by these data struc-

tures. Oracle has used this extendibility support to support text processing, video,

spatial, as well as other data types. In the medical environment the extensibility

can be used to manage and access domain specific data such as MRIs (magnetic

222 D. Guerra, P. Bizarro, and Dieter Gawlick

resonance imaging) or to extend the richness of existing data types to support clas-

sification and customization (which we discuss further in Section 4.3.)

Keeping up with the evolution on data types and models, the Oracle database

now also provides a full array of data management services. That is, the database

is not just able to manage and store transactional data, but can also support the

(online) maintenance of warehouses, automatically manage and provide access to

the history of records (with Total Recall-TR), support fast complex event processing

based on registered queries (with Continuous Query Notifications-CQN), support

storing, managing and evaluating business rules (with the Business Rules Manager-

BRM- module), support the development, testing and scoring of non-hypothesis

driven and/or predictive models (with Oracle Data Mining-ODM), and supports the

dissemination of information through queuing mechanisms.

The following section will introduce TR, CQN, BRM, and ODM briefly.

2.1.1 Total Recall

Total Recall [16] is a database feature to automatically manage the database history.

Whenever a record is changed or deleted the previously existing version will be

transparently stored into a history table. Automatic management of database history

represents significant savings in application development because programmers can

have the benefits of accessing any past versions without worrying with the details

on how to store, index, or access those versions.

Total Recall uses the application schema (vocabularies) and extends it with spe-

cial time fields. Thus, each record has a start time, the time of the creation of the

version, and an end time, the time a version has been replaced by a newer version

or the record has been deleted. The end time for currently valid records is infinite or

undefined.

Users can access previous records by using so called flashback queries, that is,

standard SQL queries extended by an optional AS OF timestamp clause (see Figure

2). The execution of any query decorated by AS OF will access the versions that

were valid at the specified timestamp. This allows reviewing the status of a patient

as of a specific time in the past. Other sophisticated expressions can evaluate the

changes in a field between two points in time. The default for AS OF is the current

time, e.g., programs that are unaware or do not use this feature will work as if Total

Recall does not exist.

The second language extension for Total Recall is a VERSIONS clause with two

time parameters representing a time interval. VERSIONS provides access to time

series. A version query asking for a specific record between t1 and t2 will return all

versions of this record that existed during this interval (see Figure 2).

Total Recall preserves the performance of the active data by separating the cur-

rently active versions from previous versions.

Efficient storage management is especially important for historic data. Total

Recall uses compression technologies to minimize storage consumption; e.g., it

will use compression algorithms that are optimized for read only. It also takes

Smart Patient Care 223

Fig. 2 Oracle Total Recall

advantages of the high compression rates that are common in columnar stores by

treating several versions of a field as a column.

2.1.2 CQN - Continuous Query Notification

Many applications have requirements for taking actions when something happens in

the database such as when a record is changed, deleted or added. Usually this type

of functionality can be achieved with the use of database triggers.

An alternative to triggers is Oracle CQN. Oracle CQN allows an application to

register queries with the database for either object change notification or query result

change notification. An object referenced by a registered query (e.g., a table) is a

registered object.

If a query is registered for object change notification (OCN), the database notifies

the application whenever a transaction potentially changes an object that the query

references and commits those changes, whether or not the query result changed. On

the other hand if a query is registered for query result change notification (QRCN),

the database notifies the application only for committed transactions that indeed

changed the result of the query.

CQN complements existing methods of event discovery in the database. Unlike

triggers that see dirty data (i.e., uncommitted data) and may have issues scaling

with the number of conditions, CQN sees only committed data and scales better.

Log mining is another standard event discovery technology: it is, however, typically

optimized for batch processing and the evaluation of single elements and is not

considered further here.

224 D. Guerra, P. Bizarro, and Dieter Gawlick

2.1.3 Rules Manager

The Oracle Business Rules Manager (BRM) provides a set of tools and techniques

to define, manage, and enforce business rules from core business components. The

Rules Manager enables better integration of business components such as CRM,

ERP, and Call Center and enables automated workflows [1].

BRM also introduces PL/SQL APIs to manage rules in an Oracle database. It

also defines an XML and SQL based expression algebra to support complex rule

applications. The business Rule Manager leverages the Expression data type and

the Expression Filter index [1] to store and evaluate the rule conditions efficiently.

BRM allows application developers to define groups of rules that are related;

e.g., all rules related to cardiac arrest. Policies can define which result will have

preference if there are conflicting results.

BRM also allows the integration of external data (events) with OCN events; e.g.,

look at room conditions in accessing a patient’s situation, assuming room conditions

are external data.

2.1.4 Oracle Data Mining

Oracle Data Mining (ODM) implements a variety of data mining algorithms in-

side the Oracle database. These implementations are integrated right into the Oracle

database kernel and operate natively on data stored in the relational database tables.

This integration eliminates the need for extraction or transfer of data between the

database and other standalone mining or analytic servers.

The relational database platform is leveraged to manage models and efficiently

execute SQL queries on large volumes of data. The system is organized around a few

generic operations providing a general unified interface for data mining functions.

These operations include functions to create, apply, test, and manipulate data mining

models. Models are created and stored as database objects, and their management

is done within the database - similar to tables, views, indexes and other database

objects.

In data mining, the process of using a model to classify, or “score”, existing data

is called “scoring”. Scoring is traditionally used to derive predictions or descriptions

of behavior that is yet to occur.

Traditional analytic workbenches use two engines: a relational database engine

and an analytic engine. In those setups, a model built in the analytic engine has to

be deployed in a mission-critical relational engine to score new data, or the data

must be moved from the relational engine into the analytical engine. ODM sim-

plifies model deployment by offering Oracle SQL functions to score data stored

right in the database. This way, the user/application developer can leverage the full

power of Oracle SQL (e.g., in terms of parallelizing and partitioning data access for

performance).

ODM offers a choice of well known machine learning approaches such as De-

cision Trees, Naive Bayes, Support vector machines, Generalized Linear Model

Smart Patient Care 225

(GLM) for predictive mining, and Association rules, K-means and Orthogonal Par-

titioning Clustering and Non-negative matrix factorization for descriptive mining.

Most Oracle Data Mining functions also allow text mining by accepting Text (un-

structured data) attributes as input.

2.1.5 Operational Characteristics

Databases are known for their rich support of operational characteristics. These

characteristics are available to applications without any additional development, and

indeed operational characteristics can significantly reduce the development effort,

such as using Total Recall to provide automatic and complete auditing and track-

ing. This section highlights some of the major operational characteristics that are

important to the prototype.

Performance. Databases can store tens of thousands of records per second. The

response times for storing and retrieving records and for evaluating a large number

of registered queries are well below human awareness.

Scalability. Databases can store very large amounts of data, handle large amount of

clients concurrently, and evaluate tens of thousands of registered queries. Compres-

sion and other technologies are used to minimize storage requirements.

Availability. Databases are known for not losing records. Recovery, restart, fault

tolerance for continuous availability, as well as disaster tolerance are all standard

features.

Security. Databases provide many security-related features, such as access control,

fine grain security - e.g., a doctor can only see patients that are assigned to him/her,

contextual security - e.g., a doctor can see only data when she is in the hospital.

Additionally, all data items as well as all journals can be encrypted in a way such

that not even IT personnel with unlimited access to the metadata will be able to

decode the encrypted data.

Auditing and tracking. Journals provide a full account of any activity in the

database; e.g., there is a full record of who did what at what time. Total Recall

and a feature called Audit Vault in conjunction with Total Recall provide online ac-

cess to any historic data as well as to the information of who did an action at what

time.

2.2 Other Technologies

During the design of the prototype, we learned that doctors wanted to be informed of

situations such as “patient has a critical temperature for more than three minutes”.

This type of semantic interpretation of observed data, i.e., “critical temperature”,

poses two challenges: classification and customization. Classification consists of

assigning a class (e.g., normal, guarded, serious, or critical) to a range of observed

226 D. Guerra, P. Bizarro, and Dieter Gawlick

values. Customization consists of having two or more health care professionals with

potentially different classes or potential different ranges of the same class. E.g.,

for one doctor, a temperature above 40 C may be considered “critical”, while for

another doctor temperatures up to 41 C should be only “serious”. The next two

subsections further clarify these two concepts and describe how the prototype in-

corporated them.

2.2.1 Classification

When people interpret data, they tend to associate individual values or intervals

to some classification. For example, doctors frequently use terms such as serious

and critical to identify values of concern or for communication between colleagues.

Decision tables can be used to define the mapping between values and classes for

a given set of attributes. In some cases, such as an EKG (electrocardiogram), there

are already classifications. In this case one can map the EKG specific classifications

to more generic classifications.

Using classifications simplifies and generalizes the formulation of queries and

rules. With classification one can ask for all patients with at least one critical value

or for the immediate notification when a patient has at least one critical value as

well as a periodic reminder. Note that using classification has the added benefit

of reducing the number of rules needed to monitor the systems. That is, a single

rule, e.g., “alert when a parameter is critical”, can be used to monitor hundreds of

different parameters.

Last but not least the model can be used to classify the urgency of the informa-

tion. If a rule is marked either as serious or as critical doctors will be alerted right

away. The difference between critical and serious will tell them how fast they have

to react. If a rule is marked guarded, doctors will not be immediately alerted at all,

however, an entry will be added to the patient records and they will see the infor-

mation when they are looking at these records the next time. Obviously, this will

reduce unnecessary interruption and most importantly, it reduces alert fatigue.

The prototype has shown that the use of classification fundamentally reduces

the complexity of the acquisition of data; classification is an important part of the

metadata. Storing these metadata with TR (Total Recall) provides a full history to

the classification; e.g., it becomes clear what the classification was at any point in

time. The prototype supports only a specific classification: normal, guarded, serious,

and critical. In general one would allow users to specify one or more classifications.

In some cases, classification was performed taking the specific situation of pa-

tients into account. For example, a heartbeat of 150 can be classified as normal or

guarded for a baby but as serious or critical for a 90+ year old patient.

Classification could be extended to time series. For example, classes could be

assigned to deteriorating (i.e., monotonically decreasing) attributes or classes could

be assigned depending on the speed of deterioration; e.g., a value is slowly/rapidly

deteriorating. These classification techniques were not used in the prototype.

Smart Patient Care 227

2.2.2 Customization

The use of classifications simplifies significantly the interpretation of data and the

specification of very generic queries and rules for ad-hoc information as well as for

event processing. However, not all institutions and doctors will classify the same

information in the same way. The solution to this problem is customization of the

classification.

The prototype provides generic classification; e.g., classification that applies if

there is no overriding customization. There are four levels of customization: generic,

protocol, doctor, doctor/patient

• Generic – a classification used for any patient, regardless of protocol or

doctor;

• Protocol – a classification that has been adjusted to the treatment plan that

is used for patients of a specific protocol;

• Doctor – a classification that reflects the preferences of a doctor indepen-

dent of the patient. It reflects the personal view of a doctor in respect to the

interpretation of patient data;

• Doctor/Patient – a classification that is tailored to the view of a specific

patient by a specific doctor.

In all cases the most restrictive classification will be used; e.g., doctor/patient over-

rides doctor customization, which overrides protocol customization which overrides

the generic customization.

Customized classification allows doctors to fine-tune systems to their needs and

their view of medicine. This is a very important step in increasing the acceptance of

any system as well as reducing alert fatigue.

A consequence of customization is that two doctors looking at the same data

may get different results. Obviously, they may get different alerts as well. One of

the major issues is the very easy and intuitive customization of values. The prototype

provides this by showing the current setting for the majority of vital signs in the form

Fig. 3 Sample interface for customization

228 D. Guerra, P. Bizarro, and Dieter Gawlick

of sliders and numerical values. Doctors can easily adjust the settings by moving the

sliders; the numerical values will be automatically adjusted (see left side of Figure

3). The prototype ensures that the new settings are consistent; e.g., that the values

for critical are higher/lower than the settings for serious. Once a doctor saves the

settings they will be used as the doctor/patient classification.

The prototype has a fixed customization hierachy (doctor/patient, doctor, proto-

col, generic). In a product one would allow users to define their own customization

structure.

3 Architecture

In this section the high level architecture of the SICU prototype will be explained,

including relevant characteristics of each module as well as some implementation

decisions. As mentioned, the architecture of the prototype is database centric. This

means that all the components of the system are running embedded in the database

engine. This also means that operational benefits such as transactionality, logging,

high availability, and high performance are implemented by the database engine and

the prototype inherits them with no extra code or effort. The architecture of SICU

relies only on modules of the Oracle Database. Without ignoring other important

modules, and as mentioned previously, there are four main technologies of the Or-

acle Database that were used in the core of the system: Total Recall, Continuous

Query Notification, Business Rules Manager and Oracle Data Mining.

One of the first concerns in this prototype was how to maintain a history of the

data without having extra logic in the application (i.e., without using support ta-

bles or filtering timestamps). This was a decision with a potential impact on overall

performance. Total Recall was chosen because it can maintain history transparently

and with very good performance. Enabling this option (See step 1 in Fig. 1) will

cause all operations (inserts, deletes or updates) to be recorded transparently with a

timestamp enabling change tracking in time.

In a classic database, if there is a need to store current and historical values of

a sensor the normal approach is to add application logic and write time-stamped

records. In this traditional approach, a sensor with 100 readings takes 100 records in

the table(s). However, using TR the reading will take just one record in the table and

the other 99 historical values will be transparently kept elsewhere. Those historical

versions can be accessed with the AS OF and VERSIONS BETWEEN clauses.

The second concern when designing the architecture was how to keep track of

changes in sensors and ensure that the data treated was consistent (i.e., the sen-

sor that measures the cardiac rhythm is different from the one that measures the

respiratory rate. However when the system needs to analyze new data, it should

see the status of all sensors at the same time). Continuous Query Notification (See

steps 2 and 3 in Fig. 1) was chosen to track data changes. This technology allows

the database engine to notify clients about new, changed or deleted data at commit

Smart Patient Care 229

time. Note that CQN has some similarities with triggers. However, while triggers

fire when SQL statements are executed, CQN only notifies once data is committed

and consistent.

For every new new reading, the incoming data needs to be processed, classified

and matched with some intelligence loaded into the system to produce valuable

information to the users. Rules Manager (See step 4 in Fig. 1) is a rules engine

running in the Oracle database and allows matching data against rules.

Because Rules Manager (RM) is running embedded in the database, it has ac-

cess to all the information stored in it. This allows RM to take decisions considering

both the new information as well as the history of that patient and/or of groups of pa-

tients that share physiological or clinical characteristics. Some of the rules designed

for the prototype notify Oracle Data Mining to re-score data and detect critical

situations.

When Rules Manager triggers Oracle Data Mining (See step 5 in Fig. 1), a query

gathers the information needed from the sensors specified by the rules and then

ODM scores the data for a probability of occurrence of a dangerous future event.

The algorithm also provides information for the users to understand how that prob-

ability was calculated and the weight of each parameter. At the end of scoring, the

result is sent back as a new event to RM (See step 6 in Fig. 1) where it will be

analyzed.

Finally, the information is delivered to the end user through a Java EE application

running on an Application Server. (See step 4 in Fig. 1.)

In short, sensors continuously send new readings to the database which are then

stored with the help of Total Recall. Continuous Query Notification is always mon-

itoring incoming data and notifies Rules Manager only of the changed values con-

sidered relevant. Rules Manager is where all the knowledge (represented as rules)

resides and with those rules the incoming data is correlated (with a context) and

classified, and alerts are sent to users. Some Rules Manager rules trigger the predic-

tive Data Mining models, which score incoming data and detect possible complex

scenarios such as cardiac arrests.

4 Implementation

The development phase of the prototype took about 4 months of a developer with

the support of an Oracle technical team. This section describes the implementation

details of the prototype.

4.1 Event Triggering

Rules Manager bases its processing on event objects, therefore it was decided for

more flexibility the system would use CQN to generate those events and send them

to be consumed by RM calling its add event function.

230 D. Guerra, P. Bizarro, and Dieter Gawlick

The sources of information are very heterogeneous (bed side monitors, imaging,

text-based doctors reports, lab results, etc) and the system can be monitoring either

numeric simple values or text based reports. This leads to a problem when defining

rules for extracting the desired information from the raw data because it would lead

to an explosion of event data types and rule data types. (In CQN rules have data

types, which must match the types of the events that may trigger the rule evaluation.)

To simplify the design of the system, all incoming pieces of data from sensors were

considered to be of the same datatype: a measurement (the value of the reading). All

rules where considered to be rules of type array of measurements.

The two main advantages of this decision are: i) all rules are defined based on

only one type, and ii) the events are smaller (if a row in the database is updated but

only a column is changed then only that value generates an event).

The Continuous Query Notification is the module responsible for comparing the

current and new values of the information received, generating the events and send-

ing them to RM at commit time. This processing is defined in a callback function

generated dynamically for each table that CQN is monitoring.

4.2 Rules Evaluation

Rules Manager is the main processing component of the prototype. This component

provides a flexible environment to evaluate rules with several options for deciding

the ordering of rule execution (when multiple rules can fire), event consumption

policies or duration of events.

Ordering of rule execution is determined as follows. When an event arrives, all

rules that can be triggered by the event are identified as candidate rules. Then, a

conflict resolution module is executed to determine which candidate rules should be

triggered and in which order they should fire. In the prototype, rules are grouped by

a priority group number and are also classified by criticality level. Starting with the

highest priority group with candidate rules, the most critical candidate rule is identi-

fied and fired. The process is then repeated for all other groups, ordered by priority,

where for each group, only the most critical candidate rule fires. The priority of rules

can be changed through a user interface.

Another configuration option implemented in the prototype was the concept of

duration of alerts: when an alert is issued it has a duration period and within that

period another instance of the same alert cannot be issued. This feature reduces alert

fatigue. To achieve this functionality each time a rule is candidate for triggering it is

also compared with the last time an instance of that rule/alert was triggered to see if

the duration was expired or not.

After the full evaluation and conflict resolution the events are kept in the pool

of events because they can be used by other rules in conjunction with other events.

For example, the event “Temperature is above 41C” should be not consumed by the

rule “Trigger serious alert if temperature is above 41C” because there might be an-

other rule, e.g., “Trigger critical alert if bpm is above 100 and temperature is above

Smart Patient Care 231

41C”, that might need the event. However, events could not be left unconsumed

in the system forever. Thus, a time-to-live or event duration was designed into the

system. The final event duration was decided by the medical personnel as 24 hours.

After these 24 hours in a intensive care unit, any values are considered obsolete and

should be considered part of the patient history. Although event duration was set to

24 hours, RM supports other ways to specify event duration such as by call, session

or transaction.

4.3 Rules Customization

Medical staff were particularly interested in a system with a high degree of cus-

tomization of rules. In fact, due to the lack of personalization, doctors cannot cus-

tomize the alerting modules of most other current EMR systems or can only make

simple, threshold type customizations. That lack of personalization in current EMR

systems in turn leads to a high number of false alerts. The customization desired

by doctors led to the implementation of the following options that determine when

rules fire or not:

• If the rule belongs to a group of already defined rules or if it is in a new

group;

• The priority inside the group;

• If that rule will apply to all patients, only for that patient, only for the patients

of the doctor that is defining the rule, or only for a specific patient under that

specific doctor supervision;

• The time to live of the alerts related with that rule;

• The description of the rule;

• The definition of the rule parameters to evaluate.

All of these options are defined as metadata in the rule definition table and used by

the RM evaluation process or in the conflict resolution logic to achieve the defined

functionality. With this level of customization the system can be fully personalized

by the medical staff and improve the patient care due to the optimization of doctors’

and nurses’ time.

4.4 Rules Composability

Rules Manager provides extensive support for the design of complex scenarios

based on simple rules and patterns. The rules are written in XML and allow relating

events and performing aggregations over windows and also specifying situations of

non-events.

However by composing rules it is possible to define more complex scenarios

than the ones the language allows in a simple rule. Below is a sample of a sce-

nario in medical technical language to identify possible cardiac arrest situations.

The complete rule takes more than a page to be described in technical English.

232 D. Guerra, P. Bizarro, and Dieter Gawlick

II MAP, SBP or DPB in serious/critical range for > 30min

II MAP, SBP or DBP change from serious to critical

III Asystole (AYST)

I Supraventricular tachycardia (SVT)

I Arterial Fibrillation (AFIB)

I Arterial Flutter (FLUT)

III Ventricular Fibrillation (VFIB)

III GCS < = 8

II Critical low or high temperature

I Trauma of Cardiothoracic patient

... ... (continues) ...

To represent the rule above, the prototype uses what we call complex rules. Complex

rules are rules composed of other rules. In the scenario above, the corresponding

complex rule can be implemented in RM with about 50 rules. The evaluation of

such complex rules happens in the following way. The roman numbers on the left

column above represent different rule categories with different weights. In the above

example, the complex alert should occur when one rule of category III or three rules

of category II or five rules of category I fire.

4.5 Data Mining Integration

Another feature of the system is the integration of data mining models that score

the status of the patients for the probability of risk situations such as Cardiac Arrest

Fig. 4 Prediction Explanation

Smart Patient Care 233

or Respiratory Failure. Since scoring the status of patients on every data change is

too expensive, the process is done in two steps. First, an inexpensive rule filters the

majority of non-relevant data changes. However, in some cases, the rule will trigger

the execution of the more expensive scoring using the data mining models.

Scoring returns the probability of those risk situations and returns also the factors

that contributed for that prediction. In Figure 4 is an example of a prediction of a

Cardiac Arrest with 96% probability. The physician can look at the chart and see

that the negative fractions (to the left) are values that are normal, or that do not

contribute to the condition of Cardiac Arrest and the positive ones are the ones that

contribute to the cardiac arrest.

5 Alternatives

The classical approach for applying event processing in an ICU (Intensive Care

Unit) is to focus on vitals; e.g., blood pressure, heart beat, EKG (electrocardiogram).

These vitals are shown on monitors in the patients’ room and supervised in a central

location. Simple limits are set for individual attributes and whenever there is an out

of range value an audio alarm – an alert – is triggered. However, frequently there

are too many false and simple alarms. This leads to alert fatigue and consequently

even true alerts are mostly ignored.

ICUs are a favorite use case of the Event Processing community [10]. The typi-

cal approach is to capture data from the monitors and import them as streams into a

CEP environment. The measurements are considered as being events. Rules and (in

advanced environments) models are used to evaluate or score the incoming data to

create (complex) events, which will be brought to the attention of the medical per-

sonal. In some cases, information will be additionally stored in a data base. Because

of its many flaws, we dismissed this approach for our prototype. Here are some of

those flaws:

• The medical personnel has to work with two inconsistent data models, one

using measurements as events, one using measurements as (historical) data.

• Alerts may be created before data have been committed; e.g., auditing and

tracking may not work in the presence of failures.

• Alerts are often only meaningful when new information is considered in the

context of other patient data - doing so would create significant performance

issues since it requires pull technology on the patient data which does not

work well with the push-based, stream oriented nature of most CEP tools.

• Predictive models which are limited to vitals have in most cases marginal

value; e.g., the predictive model for a 24 hour prediction of cardiac arrest

showed no correlation to vitals.

• There is no classification and customization in CEP tools; the fundamental

reason for alert fatigue has not been addressed.

234 D. Guerra, P. Bizarro, and Dieter Gawlick

• This approach has only very marginal value for the ICU environment while

the approach taken by our prototype can be applied to any patient care.

6 State of Work

The current implementation of the application is running only for demonstration

purposes, although there is an interface for the users to input and simulate data as it

would occur in a real scenario and then see how the system reacts.

The main features of the implemented application are: monitor the patient vitals,

labs and information; easily define custom ranges for alerts for any combination

of patient, patient-doctor, or doctor; query patient information history; reduce alert

fatigue and support predictions using data mining models.

Currently the prototype has about 200 simple rules and 190 classification rules

deployed. For the complex rules definition there are 160 additional deployed partial

rules to trigger possible Cardiopulmonary Arrest and Respiratory Failure situations.

All the rules were defined by doctors, therefore are triggering real danger situations

and not only test situations.

As for the data mining integration, the prototype used a model developed by Dr.

Pablo Tamayo from the Whitehead Institute/MIT Center for Genome Research, in

Cambridge, Massachusetts, EUA. This model was built with a Bayesian Network

using a training set of 725 patients treated at the Surgical Intensive Care Unit of the

University of Utah Health Sciences Center in the 2004-2008 period. The model was

then tested using a test set collected from 482 different patients. The results shown

to predict Cardiac Arrests within 24 hours with a certainty of 67%. This represent an

advance over the state-of-the-art as previsions prediction systems could only suggest

a cardiac arrest with a few hours in advance [20].

7 Conclusions and Future Work

This prototype illustrates a new style of applications that provides critical informa-

tion in time. These applications can handle enormous complexity, are highly cus-

tomizable and extensible, and are fast to implement. In the specific implemented

prototype the system first creates a knowledge base, based on vocabularies, rules

(registered queries), (predictive) models, classifications, customizations, and visu-

alization. Then, the system can improve the knowledge base by allowing users

to customize or fine-tune rules and thresholds. Next, data is stored in a temporal

database such that both current and past values are accessible and can be used in

rules. Finally, data changes are detected and rules fire and apply predictive models as

needed.

Rick Hayes-Roth coined the term VIRT (Valuable Information at the Right

Time) [19]. The term VIRT seems to express the reason for and the value of event

processing. The prototype shows a modern implementation of the VIRT principle.

Smart Patient Care 235

The development of the prototype took only four months of development that

focused on putting all the pieces together in one single system and delivering the

functionality to the end user. This short development period shows that there are

now sufficiently advanced custom-off-the-shelf components that can be put together

to build sophisticated VIRT applications.

Classification is a key issue of the developed solution. Due to the prominence of

classification, some more work on how to improve the ways to classify the infor-

mation and how to discover new patterns to make this classification should be done.

Doctors need to classify the information easily and above all the system should help

and guide them to correctly classify data.

The integration of data mining models with other data acquisition and data process-

ing systems is not trivial to achieve but has a great potential. This prototype showed

that that integration is possible and can produce potential life-saving warnings.

The medical part of the team that collaborated with us showed great interest in the

prototype volunteering with many extra work hours to provide feedback, improve

the prototype, and demonstrate the system. In fact, Dr. Edward Kimball, from the

University of Utah Health Science Center, was quoted saying “This [prototype] has

the potential to revolutionize medical IT and significantly improve clinical care of

a broad range of patients”. Still, the system’s success rests on the acceptance by the

medical community in general. This means that the system needs to be easy to use

and be a help to them and not something that is stopping their work. This said, the

user interface to define rules and customize all the system is a part of the system

that needs improvements to give this flexibility to the doctors.

One of the problems when dealing with history is the testing and load of previous

history. A solution was found to move forward in the development but the system

needs to have support for simulation (run in fast forward mode) and also to sup-

port load of historical data in bulk mode for loading previous data of patients when

deploying the system.

Acknowledgments

The authors would like to acknowledge the great contribution of Ute Gawlick MD/PhD at

the UUHSC (University of Utah Health Services Center). Ute made sure that the prototype

reflected the thinking in the medical community; Ute guided the team through many chal-

lenging discussions and was instrumental in developing the ideas related to classification and

customization, the visualizations, and the predictive models. We also like to thank Dr. Sean

Mulvihill, Dr. Edward Kimball, and Dr. Jeffrey Lin from the UUHC for insisting on solv-

ing difficult questions and for providing suggestions solving them. Finally the authors like

to thank members of the Oracle staff whos technical support was very crucial to the success

of this prototype: Venkatesh Radhakrishnan, Pablo Tamayo, Srinivas Vemuri, and Aravind

Yalamanch (Aravind is now working for amazon.com). Pablo developed the non hypothesis

driven model for cardiac arrest, and designed the online scoring model.

236 D. Guerra, P. Bizarro, and Dieter Gawlick

References

1. Oracle� Database Rules Manager and Expression Filter Developer’s Guide 11g Release

1 (11.1), http://download.oracle.com/docs/cd/
B28359 01/appdev.111/b31088/toc.htm (cited May 2009)

2. Oracle� Database PL SQL Packages and Types Reference 11g Release 1 (11.1),

http://download.oracle.com/docs/cd/B28359 01/appdev.111/
b28419/d cqnotif.htm (Cited May 2009)

3. Oracle� Database Advanced Application Developer’s Guide 11g Release 1 (11.1),

http://download.oracle.com/docs/cd/B28359 01/appdev.111/
b28424/adfns flashback.htm (Cited May 2009)

4. Oracle� Database PL/SQL Packages and Types Reference 11g Release 1 (11.1),

http://download.oracle.com/docs/cd/B28359 01/appdev.111/
b28419/d datmin.htm (Cited May 2009)

5. Bizarro, P., Gawlick, D., Paulus, T., Reed, H., Cooper., M.: Event Processing Use Cases

Tutorial. In: The Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA, (July 6-9, 2009)

6. Guerra, D., Gawlick, U., Bizarro, P.: An integrated data management approach to manage

health care data. In: The Proceedings of the Third ACM International Conference on

Distributed Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA (July 6-9,

2009)

7. DesRoches, C.M., et al.: Electronic Health Records in Ambulatory Care - A National

Survey of Physicians. The New England Journal of Medicine 359, 50–60,

http://content.nejm.org/cgi/content/full/NEJMsa0802005 (cited

July 2010)

8. Steinbrook, R.: Health Care and the American Recovery and Reinvestment Act. The

New England Journal of Medicine 360, 1057–1060,

http://content.nejm.org/cgi/content/full/NEJMp0900665 (cited

July 2010)

9. Glassfish Application Server, https://glassfish.dev.java.net/(cited June

2010)

10. Internet Evolution. Exploring IBM Research Labs (Part 1) - Health care analytics (Jan-

uary 23, 2010), http://www.internetevolution.com/
document.asp?doc id=187007&f src=ieupdate (cited June 2010)

11. Gawlick, D.: Healthcare beyond record keeping. In: 13th International Workshop on

High Performance Transaction Systems. HPTS 2009, Pacific Grove, CA, USA (Oc-

tober 25-28, 2009), http://www.hpts.ws/session11/gawlick.pdf (cited

July 2010)

12. Wikipedia: SQL-92, http://en.wikipedia.org/wiki/SQL92
(cited April 2010)

13. Wikipedia: SQL:1999, http://en.wikipedia.org/wiki/SQL:1999
(cited April 2010)

14. Wikipedia: XML, http://en.wikipedia.org/wiki/Xml (cited April 2010)

15. Wikipedia: Resource Description Framework,

http://en.wikipedia.org/wiki/Resource_Description_Framework
(cited April 2010)

16. Oracle Total Recall, http://www.oracle.com/us/products/database/
options/total-recall/index.htm (cited April 2010)

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b31088/toc.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b31088/toc.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_cqnotif.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_cqnotif.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28424/adfns_flashback.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28424/adfns_flashback.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_datmin.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_datmin.htm
http://content.nejm.org/cgi/content/full/NEJMsa0802005
http://content.nejm.org/cgi/content/full/NEJMp0900665
https://glassfish.dev.java.net/
http://www.internetevolution.com/document.asp?doc_id=187007\&f_src=ieupdate
http://www.internetevolution.com/document.asp?doc_id=187007\&f_src=ieupdate
http://www.hpts.ws/session11/gawlick.pdf
http://en.wikipedia.org/wiki/SQL92
http://en.wikipedia.org/wiki/SQL:1999
http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://www.oracle.com/us/products/database/options/total-recall/index.htm
http://www.oracle.com/us/products/database/options/total-recall/index.htm

Smart Patient Care 237

17. Hayes-Roth, F.: Valued-Information at the Right Time: Why less volume is more value

in hastily formed networks. NPS Cebrowski Institute (2006),

http://faculty.nps.edu/fahayesr/virt.html (cited April 2010)

18. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publishing Company (July

2010)

19. Wikipedia: Rick Hayes-Roth,

http://en.wikipedia.org/wiki/Rick_Hayes-Roth (cited April 2010)

20. Gawlick, U.: A Novel Approach to ICU Surveillance and Prediction of Disease. Presen-

tation given on June 19, 2009 at the University of Utah Health Sciences Center (2009)

http://faculty.nps.edu/fahayesr/virt.html
http://en.wikipedia.org/wiki/Rick_Hayes-Roth

The Principle of Immanence

in Event-Based Distributed Systems

Pascal Dugenie and Stefano A. Cerri

Abstract. This chapter focuses on the principle of immanence for autonomic event-

based distributed systems such as collaborative environments on the GRID. On the

one hand, GRID provides a sound infrastructure for coordinating distributed com-

puting resources and Virtual Organisations (VO). On the other hand, immanence is

a principle that emerges from the internal behaviour of complex systems such as

social organisations. Although several existing VO models specify how to manage

resources, security policies and communities of users, none of them has considered

mechanisms that reflect the internal activity to constantly improve the overall system

organisation. The AGORA model, proposed in 2004, has been integrated in an exper-

imental collaborative environment platform. After several years of experimentation

with communities of scientists from various domains, the AGORA architecture has

been enhanced with a novel design approach for VO management. The model is

a dynamic system in which the result of interactions are fed back into the system

structure. The basic idea is to specify a set of mechanisms to catalyse the collec-

tive intelligence of active communities in order to enable self-organisation of the

collaborative environments.

1 Introduction

1.1 The Principle of Immanence

Usually, immanence refers to philosophical and metaphysical theories, often related

to religious doctrines. The general idea behind the notion of immanence is that

the cause of the development of an object occurs inside this object. This approach

presents much interest in complex systems theory to explain how the flow of events

Pascal Dugenie ·Stefano A. Cerri

CNRS, Centre National de Recherche Scientifique

LIRMM, Laboratoire d’Informatique de Robotique et de Microelectronique de Montpellier

161 rue Ada, 34392 Montpellier Cedex 5 France

e-mail: {dugenie,cerri}@lirmm.fr

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 239–256.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{dugenie,cerri}@lirmm.fr

240 P. Dugenie and S.A. Cerri

inside a system and its activity may engender the emergence and an organisation

that is continuously in self-adapting. A living body is a typical example of such

an immanent system. The paradigm of complex system theory originally appeared

in the domain of biology [31] and has been adapted later in the domain of social

theory [23]. The term autopoiesis, coined in cognitive biology by Maturana and

Varela [24], was also used to express that a complex system maintains its distinctive

identity by constantly considering in its communication what is meaningful and

what is not.

According to the sociologist Niklas Luhmann, social systems are autopoietically

closed in the sense that they use and rely on resources from their environment. The

principle of immanence in a social organisation emerges from this process of selec-

tion of elements in the system filtered from an over-complex environment. Niklas
Luhmann considers mutual confidence between actors as the main factor to reduce

the complexity of the system [23]. In summary, this literature suggests the existence

of a strong interdependence between the organisation and the activity of a complex

system: the organisation of a social system is immanent to the activity within that

system. A circular causality1 exists between the organisation and the activity of a

system: the organisation enables the generation of activity, meanwhile the activity

constantly seeks to improve the organisation. The effect of immanence is the living

link between the organisation (i.e the static part) and the activity (i.e: the dynamic

part) of the system. In contrast, a system whose behaviour would be completely de-

termined from initial conditions with no feedback effect of its activity on its own

structure is not an immanent sytem and has no chance to be self-adaptive in case of

changes of conditions of its environment.

1.2 Immanence on the Web

Talking about immanence in the domain of informatics tended to appear quite utopic

only a few years ago. Since then, Pierre Levy has introduced the notion of imma-

nence by depicting the Web as a common infrastructure (i.e the material part) that

is immanent to a global collective intelligence (i.e the immaterial part) [22]. This

dichotomy has been exacerbated with the recent emergence of social networks in

the Web 2.0. This is one illustration of the many new forms of social interactions in

collaborative environments. A social network on the Web continuously behaves so

as to adapt its own structure throughout its internal activity. The structure is com-

posed of a complex network of communication channels while the activity consists

of the numerous interactions passing through these communication channels.

Nowadays, several factors encourage much interest for modelling collective be-

haviour: the rise of the holistic modelling approach inherited from research in

MAS2, or the maturity of distributed computing technologies, especially the GRID.

Agents may share their knowledge and expertise, while the GRID provides com-

puting resources and various modalities of communication. Immanence occurs as

1 A circular causality means that the effects cannot be separated from their causes.
2 MAS: Multi-Agent Systems.

The Principle of Immanence in Event-Based Distributed Systems 241

a side effect in most collaborative situations. In the case of a collaborative envi-

ronment operating in a GRID infrastructure, actors may act alternatively as system

designers as well as users. A computing element of GRID may exchange services

with the actors in the form of a given result to a given request. Similarly an actor

may provide a service in the form of an answer to a question based on a particular

competence. The GRID aims to organize all these kinds of heterogeneous services.

The GRID provides mechanisms for instantiating services within its infrastructure,

with a proactive behaviour. Thus the activity of the system, represented by the ag-

gregation of all interactions of the GRID services, generates a logical form of organ-

isation. One major distinction between the GRID over the Web is the possibility for

the GRID to deploy stateful resources necessary to operate autonomous services.

In this approach, interactions between services are contextualised within a generic

collaborative process composed of both humans and artificial processes. The notion

of agent is extended in the literature to cover both types of service producers (i.e

humans and artificial processes) [2, 17]. Agents interact within a collaborative envi-

ronment by providing or using services. One essential condition for a collaborative

environment to become immanent is that any agent of the system may always play

an active role in the elaboration of the organisation [8, 5, 6, 7]. For instance, both

system designers and expert-users may feed back their experience into the cycle of

development and validation of a complex application. They interact by providing

services to each other via a common collaboration kernel. They may develop their

point of view in the context of a collaboration process and their role may evolve

if necessary. Without a flexible self-adaptiveness, such a system would not operate

efficiently.

A collaborative environment on a WEB or a GRID infrastructure is a typical case

of event-based distributed systems composed of social links, where events are the

interactions between agents.

In order to interconnect concepts related to event-based distributed systems and

the behaviour of a collaborative environment, this chapter briefly reviews in Section

2 the state-of-the-art of virtual collaborative environments and the deployment as-

pects of collaborative services on the GRID. Through a description of the AGORA

model, the Section 3 then presents four interaction mechanisms which contribute to

specify the principle of immanence.

2 Background

The scope of this chapter is in the intersection between three distinct research do-

mains:

• the domain of CSCW3 that explores concepts related to VCE4,

• the domain of GRID that specifies a kind of SOA5 and management models for

VO (Virtual Organisations),

3 CSCW: Computer Suported Collaborative Work.
4 VCE: Virtual Collaborative Environment.
5 SOA: Service-Oriented Architecture.

242 P. Dugenie and S.A. Cerri

• the domain of MAS that analyses collective behaviour in distributed computing

systems.

2.1 Virtual Collaborative Environments on GRID

Virtual Collaborative Environments (VCE) have emerged along with event-based

distributed computing systems. A VCE aggregates resources, services and inter-

faces to provide a dedicated environment for collaboration. These interfaces may

support several modalities of communication such as audio-video, shared visuali-

sation, instant messagging, notification and shared file repositories. GRID is a per-

vasive technology allowing seamless access to distributed computing resources. A

VCE on the GRID is an ubiquitous system6 composed of stateless terminal elements

where all computing resources are delivered by the infrastructure [12, 29, 20]. GRID

has the capability to maintain the state of the communications independently from

the type or the location of the terminal elements.

Access Grid7 (AG) is the largest deployed GRID VCE solution world-wide. AG

operates on Globus [11], the most popular GRID middleware. The topology of the

AG infrastructure consists of two kinds of nodes: the venue clients and the venue

servers [25]. AG venue clients can meet in a venue server to set up a meeting. AG

uses the H.263 protocol [16] for audio and video encoding and a multicast method to

distribute the communication flow between sites. The display from multiple H.263

cameras in every site gives a strong feeling of presence from every other site. The

modular characteristic of AG allows the addition of new features such as applica-

tion sharing (shared desktop, presentation, etc.) and data sharing. AG focusses on

the principles of awareness and ubiquity. However, AG does not include a powerful

means for VO management. VO are managed in an ad hoc manner at the venue

server side. This requires much technical administrative work from computer ex-

perts in this domain.

2.2 VO Management Models

In its original definition, a VO is a community of users and a collection of virtual

resources that form a coherent entity with its own policies of management and se-

curity [15]. A rudimentary VO management system has been originally built into

Globus but has little potential for scalability. In order to resolve these limitations

several VO management models have been proposed within the GRID community.

CAS (Community Authorization Service) has been specifically designed to fa-

cilitate the management of large VOs [27]. The functionalities for VO membership

and rights management are centralised in a LDAP8 directory. Since the structure of

the VO is strongly hierarchichal, it is difficult to reorganise the initial tree once the

services are deployed.

6 an ubiquitous system enables the access to the VCE from anywhere at anytime.
7 Access Grid: www.accessgrid.org
8 Lightweight Directory Access Protocol.

The Principle of Immanence in Event-Based Distributed Systems 243

VOMS (VO Membership Service) is deployed in more recent GRID infrastruc-

tures such as EGEE [28]. It resolves some of the problems of CAS, such as mem-

bership management by providing a more flexible relational database instead of

a flat tree structure. For instance, a database has the possibility to specify com-

plex, evolving relations between concepts such as users, groups and rights. The user

management in a tree such as LDAP is not easily evolving because the concepts are

embedded into the structure of the tree. However, VOMS still presents some con-

ceptual limitations such as an inheritance link between a parent VO and its children.

The subdivision of VO into groups often creates confusion in the management of

rights and does not enable a complete independence between the groups and the

VO. For instance, the lifetime of a group is determined by the lifetime of the parent

VO.

2.3 GRID and MAS Convergence

The convergence of GRID and MAS research activities has been claimed in 2004

[13] as a major research objective that sustained in the early years 2000 [3, 4]. Both

domains share an approach based on SOA which enables to abstract the underlying

technology behind a common concept: the service. Since then, a sustained research

activity has attempted to formalise the mapping of GRID and MAS concepts [19,

18]. This work opens new perspectives to specify immanent systems.

As established in the OGSA (Open GRID Service Architecture) framework for

resource and security management, GRID is a kind of SOA [14]. MAS focusses

on complex organisation models far more advanced than the GRID ones. The well-

known MAS conceptual model Agent-Group-Role (AGR) emphasises the charac-

teristic of flexibility required for a self-organised organisation model [10]. Further

to the suggestion for convergence between GRID and MAS concepts their integra-

tion has required an extensive effort with AGIL (Agent-GRID Integration Language)

[19, 18] to formalise the organisation and the interactions of distributed resources

and agents and propose the service as a pivot concept. AGIL has been originally

proposed in 2006 as an ontology [9], then has been developed more recently as a

language. The abstraction of GRID and MAS concepts allows the development of

complex architectures. The AGORA model is an example of such architecture rep-

resented with AGIL concepts.

2.4 Discussion

Existing VCE solutions such as AG are usually studied in the CSCW research do-

main which focuses on the collaboration processes aspects. The aspect of VO man-

agement such as CAS or VOMS is studied within GRID research communities. In

order to efficiently identify the impact of the principle of immanence, many issues of

these two complementary aspects would be better understood if they were combined

rather than studied in separate domains.

244 P. Dugenie and S.A. Cerri

Moreover, a SOA is clearly a convenient approach for self-adaptive systems.

Models based on classical client-server architecture often present a lack of flexi-

bility resulting in restrictions in their evolution. Technological choices are adopted

more or less arbitrarily by the designer of the architecture to respond to an initial

need. However as soon as the need changes, the architecture must follow a different

pattern. For example, identity management is clearly difficult to specify at the be-

ginning of the life of a system. Many choices often result from technical limitations.

Some architectures adopt rights-centered management of groups where the mem-

bers of a given group benefit from a set of rights over a service (e.g a group that

would include all moderators of a service). Typically, this approach as used in AG

does not include a powerful means for VO management.

3 About AGORA

AGORA is a VCE architecture model which exhibits all together the principles of

immanence, ubiquity and awareness, in order to resolve the limitations described

in the previous section. The development began in 2004 in the context of the euro-

pean project ELeGI9. Initially, the challenge consisted of specifying a generic VCE

on GRID that enables various kinds of communities of scientists to freely collabo-

rate while minimizing the intervention of software specialists. Later the rationale of

this project focused on the question of self-organisation of the communities as this

aspect presented a growing interest in the domain of workflow management and

concurrent access to distributed resources.

Besides immanence, ubiquity and awareness are the two other key principles

identified that outlined the future AGORA platform. Ubiquity in computing science

means that the location of resources is independent of the conditions of temporal

and spatial use. In other words, ubiquity enables access to the VCE from anywhere

at anytime. This implies that the resource used by the VCE has to be provided exclu-

sively by the infrastructure and not from the terminal equipment side. The resource

includes capacities of memory, processing and transmission as well as access to a

large and heterogeneous instrumentation. Although this principle has been envis-

aged several years ago [32], the concrete deployment of operational solutions has

been feasible only recently by means of pervasive technologies such as GRID. The

principle of awareness indicates that members of a community seem to be more

present to each other. The usual way to enhance the presence on the Web is to

choose various modalities of communication with synchronous services.

The experimental VCE platform called AGORA UCS (Ubiquitous Collaborative

Space) is the unique solution that proposes a fully integrated range of asynchronous

and synchronous services. AGORA UCS includes a pool of resources accessible

asynchronously and a range of services to operate on these resources concurrently

and synchronously. Each member of a community may access to these resources via

a viewer desktop coupled with a shared service for audio visual communication with

9 ELeGI (European Learning Grid Infrastructure)[26, 30], European Framework Program

n6 on IST (Information Services and Technologies), 2004-2007.

The Principle of Immanence in Event-Based Distributed Systems 245

other members. AGORA UCS is also a proof-of-concept for an architecture based

on user-centric requirements that have been identified by specialists of cognitive

science[1].

Extensive experiments of the AGORA UCS prototype have been performed with

more than eighty users accross the world [5] and about twenty communities in vari-

ous scientific domains (organic chemistry, earth studies, optical physics, microelec-

tronics). For the last two years, experiments have been extended to social and human

sciences in order to improve the mechanisms underlying the immanence principle.

The AGORA architecture is composed of:

• a conceptual model including five concepts linked by four relations,

• a set of six persistent core services to manage the collaborative environment,

• four protocol mechanisms aiming for ensuring self-organisation of the

communities.

3.1 AGORA Conceptual Model

3.1.1 Overview

The AGORA conceptual model presented on Figure 1 consists of a set of five con-

cepts and four relations. This model includes a generator of events that are originated

by humans or artificial processes. The organisation of agents in groups specifies how

the flow of actions and the access to the resources are scheduled.

3.1.2 Definitions of AGORA Concepts

1.
✞

✝

☎

✆
Agent constitutes the active component of the system since every action per-

formed by an agent has an impact on the state of the system. In a collaborative

Fig. 1 The AGORA conceptual model

246 P. Dugenie and S.A. Cerri

context and from the system point of view, all these actions may be performed

artificially or by humans. For this reason, the meaning of agent in AGORA is

clearly different than user or member. The user is one of the two kinds of agents:

the human user and the artificial process. An agent holds its own identity out-

side the context of a community. An agent belonging to a community becomes

a member of that community. A member specifies the relation (the membership

relation) between an agent and a community.

2.
✞

✝

☎

✆
Group or

✞

✝

☎

✆
Community is a subset of agents. An agent may be a member of

several communities. Once it is member, agents may undertake an activity in the

context of the community.

3.
✞

✝

☎

✆
Organisation is a composition of one given group and one unique set of re-

sources. This concept is analogous to VO in GRID terminology (OGSA standard-

isation).

4.
✄

✂

�

✁Resource is a set of means to carry out tasks, having the capacity of memory,

processing, broadcasting, and access to a variety of instrumentation. This concept

has been formalised as a service container by the GRID (OGSA).

5.
✞

✝

☎

✆
Activity describes the flow of events and interactions within a community.

Activities are always carried out by agents in the context of a community. This

involves the notion of authorisations since any activity requires resource for com-

pleting a series of operations.

3.1.3 Definition of AGORA relations

1.
✞

✝

☎

✆
Agent -

✞

✝

☎

✆
Group -

✞

✝

☎

✆
Activity is a ternary relation that links an agent to a com-

munity and to a number of activities according to the context of that community.

2.
✞

✝

☎

✆
Activity -

✄

✂

�

✁Resource indicates that any activity is attached to some resource.

An activity always needs various kinds of resources like processing power, stor-

age facilities or access to peripherials (network or specific instruments).

3.
✞

✝

☎

✆
Group -

✞

✝

☎

✆
Organization indicates that a community is attached to a proper

organization. The bijective nature of this relation expresses the fact that an orga-

nization is unique for a given community.

4.
✄

✂

�

✁Resource -
✞

✝

☎

✆
Organization indicates that a set of resources is attached to a

unique organization. This relation is symetrically bijective: a resource constitutes

one of the two parts of an organization, the second one being the community.

Usually, existing VO management solutions specify two binary relations for organis-

ing agents into communities. A first binary relation corresponds to the agent mem-

bership in the community (e.g the agent A is a member of the community C). A

second binary relation corresponds to the level of authorisations (sometimes called

the role) of this agent (e.g A is moderator or A is user, etc.). However, in many sit-

uations it becomes complex to manage relations of pairs that mix three concepts, in

particular when agents play different roles in several communities. Also, a role does

not have a universal significance. A moderator may have a level of authorisation in

one community that is different than in another. The ternary relation proposed in the

The Principle of Immanence in Event-Based Distributed Systems 247

AGORA conceptual model allows these conceptual limitations to be overcome by

allocating unique identifiers to each set of triplets agent-activity-community. Also,

the concept of activity is more appropriate than role to express a series of actions

that requires a certain level of authorisation in a given community.

3.2 Persistent Core Services

AGORA includes six PCS (Persistent Core Services) instantiated in the service con-

tainer of every community. They are necessary for bootstaping and maintaining a

collaborative environment. Figure 2 is a representation of a service container based

on the AGIL formalism.

1.
✄

✂

�

✁A uthorisations: Members of a community may have a different level of per-

mission on services. This service is in charge of assigning rights to members

including the permissions over the PCS.

2.
✄

✂

�

✁M embers: A community is composed of members. This PCS manages the

description of members, adding or removing members of a community.

3.
✄

✂

�

✁C ommunity: A number of properties (identifier, description, etc.) are neces-

sary to describe a community at a metalevel. Also, the creation of a new commu-

nity must be done in the context of another community. This PCS is in charge of

two kinds of operations: intra community operations (modifying the properties

of the current community) and extra community operations (instantiating a new

community). There is a community instantiated at the initialisation of the system

and only dedicated to bootstrapping the first community.

4.
✄

✂

�

✁H istory: All data belonging to a community must be stored, maintained and

indexed. This PCS is in charge of keeping track of changes, logs of events and

also of recording collaboration sessions. This PCS also aggregates the events to

provide an evaluation of the frequency of access to the resources, that is used for

the mechanism of implication (see Section 3.3).

5.
✄

✂

�

✁E nvironment: A community may personalise its environment. This environ-

ment operates in a service container. This PCS is in charge of adding or removing

services (excluding the PCS).

6.
✄

✂

�

✁N otifications: Communication between members of a community and ser-

vices is performed via notifications. This service handles the flow of notifications

of every kind of communication and manages the states of the exchanged mes-

sages. These notifications are particularly useful for triggering events produced

during the different decision processes. For instance, all the interaction mecha-

nisms described in Section 3.3 require events triggered by community members

in response to an initial request.

3.3 Four Interaction Mechanisms

AGORA aims to establish and maintain a high level of confidence inside the commu-

nity by adopting protocols based on four basic interaction mechanisms called coop-

tation, implication, delegation and habilitation. The choice of these mechanisms

248 P. Dugenie and S.A. Cerri

Fig. 2 The six PCS

Fig. 3 AGORA’s top level VO management model

has been adopted further to extensive analyses of various case studies10. Thus, they

contribute all together to the principle of immanence by resolving most constrains

for self-organizing agents and resources within communities. On the left part of

Figure 3 the VO management system determines the overall system organisation.

On the middle part, mechanisms for VO members management and, on the right

10 The contributions to these cases studies by Erion Bregu, Houda Mourad, Amel Ghezzaz,

Lea Guizol and Ahmed Bendriouech, is greatly acknowledged.

The Principle of Immanence in Event-Based Distributed Systems 249

part, the resulting activity are directly dependent on the initial organisation. At this

stage, there is no possibility to re-introduce activities back into the system organi-

sation. The bottom part of the figure shows the mechanisms for enabling the imma-

nence principle. For example, an agent a which is not yet a member of a community

C may initially be coopted by an agent b (already a member of C). If a accepts the

invitation from b, b may decide to delegate a set of rights on services for a. Once

a becomes member of C, other members may decide to extend the habilitation of a
over more services.

3.3.1 Cooptation

The mechanism of cooptation consists of appointment of new members in a com-

munity by members who already belong to it. The choice of cooptation as a method

for members management (the
✄

✂

�

✁M service) is explainable through a well-known

example of a collaborative editing environment such as a wiki. Like in many kinds

of collabrative environments, there are usually two methods to introduce new mem-

bers into a wiki community. The first one is to allow freedom to anyone to become a

member and allocate default rights to them for editing pages of the community. The

second one is to declare a restricted number of moderators who have the capability

to validate the requests from external users to become members. Editing rights can

be further granted or refused by the moderators. However, none of these two meth-

ods is sufficiently flexible to allow a fair workflow process of contributions since

the choice of the moderators is established de facto and seldom revised. One of the

challenges for the
✄

✂

�

✁M service enabling self-organization of the community is to

easily add new members while keeping a suitable control of the intentions of the

newly added members.

As shown in Figure 4 if coupled with a rules-oriented process, the mechanism of

cooptation offers a flexible alternative to overcome the constrains of the two meth-

ods decribed above. When a community member suggests to invite a new member

to this community, the mechanism of cooptation may follow rules based on thresh-

olds for deciding if this suggestion is acceptable for the purpose of the commu-

nity. For example, one condition for validating the addition of a new member in a

Fig. 4 Flow of events in the mechanism of cooptation

250 P. Dugenie and S.A. Cerri

community could be that at least two members grant this request. Every procedure

and threshold are entirely specified by the community. Clearly, some parameters

might be quite different depending on whether the community is large or small and

also all this depends on the specificity of the community. In any case, no external

rule must be imposed by the system to the community. Once again, the principle of

immanence in AGORA lays on this fundamental assumption.

Since the rules and procedures are specified by the community, there is no single

language for specifying the syntax of these rules. Although a language may be rec-

ommended, it is most important to leave total freedom for the community to specify

the rule language. Once a community has adopted a rule language, there is only the

need for a translation service that converts humanly understandable rules into a set

of directives and parameters that can be interpreted by an artificial process.

3.3.2 Implication

The mechanism of implication provides an estimation of the participation of each

member in community activities. The implication aims to determine which mem-

bers are the most involved in a given context and which ones add most value to

the community activities. This evaluation must adopt a rating model that satifies the

community to keep a high level of motivation of its members by giving them encour-

agements and rewards from their participation. Also, measurement of this evaluation

is dynamic. It takes into account quantitative and qualitative aspects, objective and

subjective inputs, as well as their sustainibility in time.

Quantitative aspects can be determined by the attendance of members, the fre-

quency and the time spent accessing the resources, or the amount of contributions

to activities. These settings are easily calculable because they can be inferred from

the history data provided by the
✄

✂

�

✁H service. However, the most significant effect

of implication can be best obtained from a qualitative evaluation such as assessment

of the adequacy of contributions, relevance to the current activities and other sub-

jective parameters such as the reputation of members. This is obtained from other

members’ feedback.

For this reason, the mechanism of implication incorporates a rule-oriented pro-

cess that converts all inputs (qualitative and quantitative) into a global level of

Fig. 5 Flow of events in the mechanism of implication

The Principle of Immanence in Event-Based Distributed Systems 251

implication (see Figure 5). In the AGORA model, all rules and parameters of cal-

culation of this level of implication can be specified by the community.

3.3.3 Habilitation

The mechanism of habilitation manages the decisions to gradually allocate access

rights for community members to services and resources. The goal of habilitation

is to distribute rights efficiently within communities.

As shown in Figure 6, a decision combines various parameters including the

level of implication and the trust that the community has towards this member. The

mechanism of habilitation analyzes these parameters to allow members to access

services in order to maintain the security and development of the network.

Fig. 6 Flow of events in the mechanism of habilitation

3.3.4 Delegation

The mechanism of delegation consists of allowing one member (the delegator) to

transfer part of its rights to another member (the delegate). The major purpose of

delegation is continuity of the activities carried out by the community members

who cannot always be present to perform their tasks. Delegation may also become

useful to motivate members to gain some responsibilities for contributing to the

development of the community.

Since the delegate aquires the same responsibilities regarding these tasks, the

delegation mechanism must ensure that appropriate rules are specified to prevent

Fig. 7 Flow of events in the mechanism of delegation

252 P. Dugenie and S.A. Cerri

risks of failure (see Figure 7). All these rules are specified by the community. The

delegation is not permanent, a validity period is specified as well as a condition of

revocation at any time.

3.4 Experimentation on AGORA

Extensive series of experiments have been performed since 2005 on the AGORA

UCS platform, including about one hundred users and a dozen communities in var-

ious scientific domains (chemistry, microelectronics, physics, environment as well

as human science). Initially, these experiments focused on the usability issues for

any user who is not familiar with concepts of computing science. Access is made

possible via a simple stateless thin terminal such as a web browser. The state of the

VCE is maintained at the server side by means of a virtual desktop. An instance

of the virtual desktop is dedicated as many times as a user is member of a com-

munity. The users have realised the importance of ubiquity since they were able to

resume their session in the same state even after switching to another terminal. One

advantage of this approach is security since no private information or cookies are

stored on the client side. Another advantage of this approach is increase of perfor-

mance since there is no bottleneck at the client side. Every operation is performed

at the server side, therefore the computing resources can be more easily scaled. The

aspect of awareness using both asynchronous communication via shared editing or

synchronous communicatuion using instant messaging and videoconferencing, al-

lowed an immediate bootstrap of a new VO and the acceptance of the technology

was extremely high. This enhanced presence enabled a fast transfer of knowlege in

particular for mastering complex computational tools.

Fig. 8 Experimentation scenario EnCOrE

The Principle of Immanence in Event-Based Distributed Systems 253

For instance a scenario called EnCOrE11 (see Figure 8) has provided the most

relevant results [21]. AGORA UCS enabled the visual representation of chemistry

models at a distance. Most attention was put by the users on the semantics of their

domain rather than solving computing problems. Unskilled users were at ease in

their operations. The delegation of rights was important in the absence of some

members. The cooptation of new members was also necessary to build a trustful

community.

4 Conclusion

Through the description of the AGORA model, immanence in a event-based dis-

tributed system appears to be a sound principle to ensure efficient collaboration

processes. The main reason is that the flow of events coming from various nodes of

a distributed system does not follow a deterministic pattern but is always seeking

for self-adaptation until reaching a suitable level of global satisfaction. The prin-

ciple of immanence brings a strong framework for identifying risks of conceptual

limitations in designing event-based distributed systems.

The promise of the GRID infrastructure opens many significant perspectives and

gives more strength to the AGORA architecture. Yet, an architecture allowing seam-

less and secure access to distributed resources remains a real technological chal-

lenge since the behavior of a community cannot be forseen in advance. Flexibility

of the AGORA UCS is essential to enable a community to freely organise itself. Vari-

ous situations of collaboration started naturally by using asynchronous collaborative

services (common knowledge base, annotation service), then were reinforced with

other modalities of interaction by using a synchronous communication interface to

facilitate the transfer of knowledge. Discussions in real time, combined with visual

representations on a shared desktop, allowed the actors to increase the effectiveness

of the collaboration process.

So far, initial experiments have revealed that a user-centric approach is suitable

for self-organising communities. The experiments dedicated to validate the mecha-

nisms for immanence started more recently and do not yet cover all the scenarios we

are aiming towards. At the moment the objective is focusing on user self-ability to

feel at ease in using the environment provided by AGORA UCS and understand the

issues related to the self management of the community and the resources provided

by the infrastructure. Even at an early stage, this work has already contributed to

new ways to approach complex system design where the self-organisation criteria

are critical. In many situations, AGORA has achieved results beyond the current state

of the art. This progress encourages the belief in a new kind of collaborative system

where the organisation and the activity of communities are mutually related.

11 EnCOrE: Encyclopédie de Chimie Organique Electronique.

Demonstration available at http://agora.lirmm.fr

254 P. Dugenie and S.A. Cerri

References

1. Brueckner, S.A., Van Dyke Parunak, H.: Engineering self-organizing applications. In:

First IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Tu-

torial session, SASO 2007, Boston (2007)

2. Cerri, S.A.: Shifting the focus from control to communication: the STReams OBjects

Environments model of communicating agents. In: Padget, J. A. (ed.) Collaboration be-

tween Human and Artificial Societies 1997. LNCS, vol. 1624, pp. 74–101. Springer,

Heidelberg (1999)

3. Cerri., S.A.: Human and Artificial Agent’s Conversations on the Grid. In: 1st LEGE-WG

Workshop: Towards a European Learning Grid Infrastructure, Lausanne. Educational

Models for Grid Based Services (2002),

http://ewic.bcs.org/conferences/2002/1stlege/session3.htm
4. Cerri, S.A.: An integrated view of Grid services, Agents and Human Learning. In: To-

wards the Learning Grid: Advances in Human Learning Services, pp. 41–62. IOS Press,

Amsterdam (2005),

http://portal.acm.org/citation.cfm?id=1563266.1563273
5. Dugénie, P.: UCS, Ubiquitous Collaborative Spaces on an infrastructure of distributed

resources. PhD thesis. University of Montpellier (2007) (in French), to be downloaded

at http://www.lirmm.fr/˜dugenie/these
6. Dugénie, P.: Ubiquitous Collaborative Spaces: a step towards collective intelligence. In:

European Conference on Computing and Philosophy, ECAP 2008, Montpellier (June

2008)

7. Dugénie, P., Cerri, S.A., Lemoisson, P., Gouaich, A.: Agora UCS Ubiquitous Collabora-

tive Space. In: Woolf, B.P., Aı̈meur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS,

vol. 5091, pp. 696–698. Springer, Heidelberg (2008)

8. Dugénie, P., Lemoisson, P., Jonquet, C., Crubézy, M., Laureņco, C.: The Grid Shared

Desktop: a bootstrapping environment for collaboration. In: Advanced Technology for

Learning (ATL), Special issue on Collaborative Learning, vol. 3, pp. 241–249 (2006)

9. Duvert, F., Jonquet, C., Dugénie, P., Cerri, S.A.: Agent-Grid Integration Ontology. In:

Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp.

136–146. Springer, Heidelberg (2006)

10. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Organizational

View of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) AOSE 2003.

LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

11. Foster, I.: Globus Toolkit Version 4: Software for service-oriented systems. Journal of

Computer Science and Technology, 513–520 (2006)

12. Foster, I., Insley, J., Kesselman, C., von Laszewski, G., Thiebaux, M.: Distance visual-

ization: Data exploration on the grid. IEEE Computer Magazine 32(12), 36–43 (1999)

13. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: why Grid and agents need

each other. In: 3rd International Joint Conference on Autonomous Agents and Multiagent

Systems, AAMAS 2004 (2004)

14. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the Grid: an Open

Grid Services Architecture for distributed systems integration. In: Open Grid Service

Infrastructure WG, Global Grid Forum. The Globus Alliance (June 2002)

15. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: enabling scalable virtual

organizations. Supercomputer Applications 15(3), 200–222 (2001)

16. ITU-T. H.263, infrastructure of audiovisual services, video coding for low bit rate com-

munication. Technical report, International Telecommunication Union (2005)

http://ewic.bcs.org/conferences/2002/1stlege/session3.htm
http://portal.acm.org/citation.cfm?id=1563266.1563273
http://www.lirmm.fr/~dugenie/these

The Principle of Immanence in Event-Based Distributed Systems 255

17. Jonquet, C., Cerri, S.A.: The STROBE model: Dynamic Service Generation on the

GRID. Applied Artificial Intelligence Journal 19, 967–1013 (2005)

18. Jonquet, C., Dugénie, P., Cerri, S.A.: Agent-Grid Integration Language. International

Journal on Multi-Agent and Grid Systems 4(2), 167–211 (2008),

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00139691
19. Jonquet, C., Dugenie, P., Cerri, S.A.: Service-Based Integration of Grid and Multi-Agent

Systems Models. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z., Vo, Q.B.

(eds.) SOCASE 2008. LNCS, vol. 5006, pp. 56–68. Springer, Heidelberg (2008)

20. Gallop, J.R., Sagar, M., Walton, J.P.R.B., Wood, J.D., Brodlie, K.W., Duce, D.A.: Visual-

ization in grid computing environments. In: Turk, G., Rushmeier, H. J. (eds.) Proceedings

of IEEE Visualization, pp. 155–162 (2007), ISBN:0-7803-8788-0

21. Lemoisson, P., Cerri, S.A.: Interactive construction of encore (encyclopédie de chimie

organique electronique). Applied Artificial Intelligence Journal Special issue on Learn-

ing Grid Services 19, 933–966 (2005)

22. Lévy, P.: L’intelligence collective. Pour une anthropologie du cyberspace. La

Découverte, Paris (1994)

23. Luhmann, N.: Social systems. Writing science (1995)

24. Maturana, M.R., Varela., F.J.: Autopoiesis and Cognition. Reidel, Dordrecht (1984)

25. Olson, R.: Access grid hardware specification. Technical report, Argonne National Lab-

oratory (2001)

26. Cerri, S.A., Dimitrakos, T., Gaeta, M., Ritrovato, P., Allison, C., Salerno, S.: Towards

the learning grid: advances in human learning services. In: Kok, J.N., Liu, J., Lopez

de Mantaras, R., Mizoguchi, R., Musen, M., Zhong, N., Breuker, R.D.J., Guarino, N.

(eds.) Frontiers in Artificial Intelligence and Applications, vol. 127, p. X–240. IOS Press,

Amsterdam (2005)

27. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A Community Authoriza-

tion Service for group collaboration. In: 3rd International Workshop on Policies for Dis-

tributed Systems and Networks, POLICY 2002, Monterey, CA, USA, pp. 50–59. IEEE

Computer Society, Los Alamitos (2002)

28. Ciaschini, V., Frohner, A., Gianoli, A., Lorentey, K., Spataro, F., Alfieri, R., Cecchini,

R.: VOMS, an authorization system for virtual organizations. In: Fernández Rivera, F.,

Bubak, M., Gómez Tato, A., Doallo, R. (eds.) Grid Computing 2003. LNCS, vol. 2970,

pp. 33–40. Springer, Heidelberg (2004)

29. Shalf, J., Bethel, E.W.: The grid and future visualization system architectures. IEEE

Computer Graphics and Applications 23(2), 6–9 (2004)

30. Gouarderes, G., Cerri, S.A., Nkambou, R.: Learning grid services. Special issue: Applied

Artificial Intelligence Journal 19(9-10), 811–1073 (2005)

31. von Bertalanffy, L.: General system theory: foundations, development, applications.

Braziller, New York (1968)

32. Weiser, M., Brown, J.S.: Designing calm technology. PowerGrid Journal (July 1996)

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00139691

256 P. Dugenie and S.A. Cerri

Glossary of Terms and Acronyms

AG Access Grid

AGIL Agent-GRID Integration Language

AGR Agent-Group-Role

AGORA UCS AGORA Ubiquitous Collaborative Space is the name of the platform

developed for the purpose of experimenting the AGORA principles.

CAS Community Authorization Service

CSCW Computer Suported Collaborative Work

EGEE Enabling GRID for E-Science

ELeGI European Learning Grid Infrastructure

Globus GRID middleware

LDAP Lightweight Directory Access Protocol

MAS Multi-Agent Systems

PCS Persistent Core Services

SOA Service-Oriented Architecture

VO Virtual Organization

VCE Virtual Collaborative Environment

VOMS VO Membership Service

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 257–278.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Context-Based Event Processing Systems

Opher Etzion, Yonit Magid, Ella Rabinovich,

Inna Skarbovsky, and Nir Zolotorevsky
*

Abstract. The concept of context has recently emerged as one of the major ab-

stractions in event processing modeling with presence in event processing prod-

ucts. In this chapter we discuss the notion of context as a first class citizen within

event processing modeling, and discuss its implementation in event processing

products and models that arise from the current state-of-the practice

Keywords: Context, context-aware computing, context-driven architecture, tem-

poral processing, spatial processing, event processing modeling, event processing

products.

1 Introduction: Context in Event Processing Modeling

In real life, many activities are done within a context; we might behave differently

within different parts of the day, in different locations, in different states of the

weather, these are all types of context. Indeed, context [8] plays the same role in

event processing that it plays in real life; a particular event can be processed dif-

ferently depending on the context in which it occurs, and it may be ignored en-

tirely in some contexts. Contexts have been formalized in some works such as [4],

[5], and [11].

There are three main uses of context by event processing applications:

̇ An event stream is defined [3] as open-ended set of events. If you want to

perform an operation on the stream you cannot wait until all these events

have been received. Instead you have to divide the stream up into a se-

quence of context partitions, or windows, each of which contains a set of

consecutive events. You can then define the operation in terms of its effect

on the events in a window. The rule that determines which event instances

are admitted into which window is something we call a temporal context.

̇ A collection of events, arriving in one or multiple streams, may contain

events that are not particularly connected to one another, even though they

might occur close together in a temporal sense. They might, for example,

Opher Etzion · Yonit Magid · Ella Rabinovich · Inna Skarbovsky · Nir Zolotorevsky

IBM Haifa Research Lab, Haifa, Israel

e-mail: {opher,yonit,ellak,inna,nirz}@il.ibm.com

258 O. Etzion et al.

refer to occurrences in different locations, or to occurrences involving dif-

ferent entities in the real world. Suppose you were to do some processing of

an event stream, such as a simple aggregate agent that counts the number

of events. By default this would count all the events in the stream, but what

if you want to see separate totals for each location where the events oc-

curred? To do this you need to have a separate agent, or at least a separate

instance of the agent, processing the events for each location. Spatial con-

texts and Segmentation-oriented contexts let you assign related events to

separate context partitions. You can then have each partition processed by a

distinct instance of the event processing agent, so that events in one context

partition are processed in isolation from the events in other partitions.

̇ Context also allows event processing agents to be context sensitive, so that

an agent that is active in some contexts may be inactive in others. We refer

to this as state-oriented context.

In essence, in event processing modeling, an EPA (Event Processing Agent)

serves as the basic unit of event processing computation. An EPA may be of three

types: filter EPA, transform EPA, and pattern detect EPA (which is the most gen-

eral one). Context may apply to all of these types; Fig. 1 taken from [8] shows that

each EPA is associated with a context, the association is aimed to achieve one or

more of the context roles mentioned before.

Output

Not selected

Instance
selection

Context

expression

Pattern detect EPA

Relevance
filtering

Input terminal
filter expression

Relevant event types

Derivation
Derivation
expression

Matching
Pattern signature:
Pattern type
Pattern parameters

Relevant event types
Pattern policies

Pattern
matching set

Participant
events

Fig 1. The Event Processing Agent functionality model.

Context affiliation for EPA determines:

• Whether an input event is relevant at all for a specific EPA – this makes

the EPA context sensitive; depends on the context an EPA may or may

not be involved

Context-Based Event Processing Systems 259

• If the EPA has several instances, to which of these instances, an event is

relevant for – this serves as grouping of events together according to

shared context.

In order to understand the role, let's look at a simple example of segmentation ori-

ented context; events that relate to transactions may be partitioned by customer,

since we would like to process the events related to each customer separately.

Within event processing languages, contexts may be explicit, implicit, or par-

tially explicit. Explicit context means that context primitives are first class primi-

tives in the language. Some languages do not support any notion of context, and

some support partial notion of contexts. A survey of contexts in various languages

will be presented in Section 5, dealing with contexts in practice.

Fig. 2 taken from [8] shows the various context dimensions: temporal, spatial,

state oriented, and segmentation oriented that we describe in this section.

Temporal Spatial

State Oriented
Entity

Relevant states

Temporal ordering

Segmentation oriented
Attribute list

Partition identifier

Partition expression

Sliding event interval
Event list
Interval size

Event period

Temporal ordering

Sliding fixed Interval
Interval period

Interval duration
Interval size

Temporal ordering

Event interval
Initiator event list

Terminator event list
Expiration time offset

Expiration event count

Context Initiator policy

Temporal ordering

Fixed interval
Interval start

Interval end

Recurrence
Temporal ordering

Event distance location
Initiator event list
Minimum and maximum distance

Context initiator policy

Entity distance location
Location attribute
Entity attribute

Entity identifier

Partition identifier

Minimum and maximum distance

Fixed location
Spatial relation
Location attribute

Partition identifier

entity

Fig 2. Context dimensions.

The rest of this chapter is structured in the following way: Section 1.2 dis-

cusses temporal contexts, Section 1.3 discusses spatial contexts, Section 1.4 dis-

cusses segmentation oriented context, Section 1.5 discusses state oriented context,

Section 1.6 discusses context composition, Section 1.7 discusses the implementa-

tion of context in practice, and Section 1.8 concludes the chapter with discussion

on the state of the art, its limitations, and the potential future of contexts in event

processing.

260 O. Etzion et al.

2 Temporal Context

Temporal context is aimed to partition the temporal space into time intervals. It is

used for two purposes:

• Events grouping: the typical use of temporal contexts is to group events

to process them together based on the fact they have occurred during the

same interval.

• EPA applicability: Another use of temporal contexts is to indicate that a

certain event processing agent is applicable within certain intervals and is

not applicable in other intervals. The temporal interval convention is

having half-open interval [Ts, Te), such that Ts is the interval starting

point, included in the interval, and Te is the interval end-point, not in-

cluded in the interval.

An example of event grouping is: count all the bids within the auction period. In

this case the auction period stands for a temporal interval, and all the events of

type bid that occur within this interval are grouped together for calculating the ag-

gregation function (count).

An example of EPA applicability is: detect if all printers at the same floor are

off-line during working hours. In this case there is a pattern that is used to check

whether all printers in the same floor are off-line at the same time. However moni-

toring for this pattern is relevant only within working hours, since it is assumed

that after working hours there is no technician on-site.

One of the design decisions in associating events to temporal context is to deter-

mine whether a specific event falls within the interval. In some cases this is being

determined by the detection time, which is the timestamp created by the system

[9] when the event enters the system, or by occurrence time which is the time in

which the event source specifies as the time in which the event occurred in reality.

This decision is determined by using the temporal ordering parameter in the vari-

ous temporal context definitions

There are four types of temporal contexts: fixed interval, event interval, sliding

fixed interval and sliding event interval. We survey briefly each of these types.

2.1 Fixed Temporal Interval

A fixed temporal interval consists of one or more temporal intervals whose

boundaries are pre-defined timestamp constants. This can be a one time interval:

[July 12 2010 13:30, July 12 2010 17:00) which designates a specific session

within a specific conference; it also can be stated as [July 12 2010 10:30, + 3.5

hours), where Te is an offset relative to Ts. A fixed temporal interval can also be

recurrent, and in this case the frequency should be specified. Some example of

that is [7:00, 9:00) daily, or [Monday 13:30, 14:30) weekly which determines

event processing operations that are applicable periodically, for example: some

traffic monitoring is done during morning rush hour only, or that during a weekly

meeting some monitoring is disabled.

Context-Based Event Processing Systems 261

2.2 Event Interval

Event interval is a temporal interval that is being opened or closed when one or

more events occur; the meaning of "event occurs" is determined by the temporal

ordering parameter and can be interpreted either as the detection time or the occur-

rence time as explained earlier. The collection of events that open such an interval

are called initiator events, and the collection of events that close the temporal in-

terval is called terminator events. An interval may also expire after a certain time

offset is reached.
Some examples of event interval are:

• A temporal interval is initiated when a patient is admitted to a hospital,
and ends with the release of the same patient from the hospital. Note that
here the temporal context is combined with segmentation context, since
the temporal context refers to a single patient.

• A temporal interval that starts with a shipment of a package and ends with
the delivery of the same package; the temporal interval expires after 3
days, which is the delivery designated time, even if the package has not
been shipped, thus there are two ways in which this interval can terminate:
the desired way (delivery) and the time-out way (3 days have passed).

2.3 Sliding Fixed Interval

In a sliding fixed interval context, new windows are opened at regular intervals.
Unlike the non-sliding fixed interval context these windows are not tied to particu-
lar times, instead each window is opened at a specified time after its predecessor.
Each window has a fixed size, specified either as a time interval or a count of
event instances.

A sliding fixed interval is specified by the interval period which designates the
frequency in which new windows are opened, the interval duration, which speci-
fies how long this interval spans, and the interval size, which determines how
many events are included in a single window. The specification must include an
interval period parameter and either an interval duration or interval size (or both,
in which case it may end earlier than the duration if the event count is exceeded).
Sliding intervals may be overlapping or non-overlapping; they are overlapping if
and only if the interval period < interval duration.

Some examples are as follows:

• A temporal interval starts every hour, with the duration of one hour. In
this case we partition the time into time windows of one hour each.

• A temporal interval starts every day, and ends when 50 orders have been
placed in the system, or at the end of the day. In this case the interval
partitions the temporal space into time windows of one day; however, the
daily interval can terminate earlier if there are 50 orders.

• A temporal interval starts every 10 minutes, and lasts for an hour. In this

case, each event (starting from the second hour of operation) is associated

with 6 different windows that are active in parallel. This type of context

can be used for trend seeking windows in time series' events.

262 O. Etzion et al.

2.4 Sliding Event Interval

The sliding event interval context is similar to the sliding fixed interval context.
The difference is that the criterion for opening a new window is specified as a
count of events, rather than as a time period. A sliding event interval is specified
by list of events (possibly with a predicate for each event), interval size (in event
count), and event period. The event list designates event types whose instances
can start the temporal window; the interval size determines the event count that
closes the interval, while the event period (which defaults to the interval size) de-
termines the event count to open an additional window.

An example is the following:

• A sensor measures the temperature; an interval consists of five consecu-
tive measurements and starts with every single measurement. Each meas-
urement is associated with five different intervals.

3 Spatial Context

A spatial context groups event instances according to their geospatial characteris-
tics. This type of context assumes that an event has a spatial attribute designated
its location. Location can be represented in three ways [8]: point in space, line or
polyline, and area (polygon). As shown in Fig.3, there are three types of spatial
contexts: fixed location, entity distance location and event distance location.

Fig 3. Spatial contexts.

Fixed Location

Entity distance location

Event distance

location

Within the house

Within 2 KM from the

motel

Within 10 KM from

the accident

Context-Based Event Processing Systems 263

3.1 Fixed Location

A fixed location context has one or more context partitions, each of which are as-

sociated with the location of a reference entity, sometimes referred to as a

geofence. An event instance is classified into a context partition if its location's at-

tribute correlates with the spatial entity in some way. Like the event location, the

location of the reference entity can be of any of the three types: point, line, area,

thus there can be several relations between the event's location and the reference

location as shown in Fig.4.

The contained in relation is true if the entity location is completely enclosed

within the event location.

The contains relation is true if the event location is completely enclosed within

the entity location.

entity
ev en t

entity

event

Conta ins

overlaps

entity

event

enti ty
eve nt

e ntity

event

entity

event

enti ty
event

disjoin t

enti ty event entity ev en t enti ty ev ent enti ty

ev en t

enti ty

ev ent

equals

enti ty ,
event

e1ent ity, event
ent it y , ev ent

touches
entity event enti ty

event

entity ev en t enti ty ev ent

ent it y

ev en t

ent ity

ev ent

event

ent it y

even t

entity

Conta ined In

event

enti ty

event
e ntity

even t

enti ty

ev en t en t it y

Fig 4. Fixed location relations - taken from [8].

264 O. Etzion et al.

The overlaps relation is true if there is some overlap between the entity location

and event location, but neither of them is contained within the other.

The disjoint relation is true if there is no overlap between the entity location

and event location.

The equals relation is true if the entity location and event location are identical.

The touches relation is true if the event location borders the entity location. De-

pending on the implementation, some of these relations may have some tolerance,

e.g. two points can be considered equal if they are no more than some distance apart.

Not every combination of entity location type and event location type is valid,

as seen in Fig. 4, for example: a point cannot be contained in another point, an

area cannot be equal to a line, and a point cannot overlap an area.

Here are some examples:

• A car fleet management application follows cars that are driving on a cer-

tain highway. The car location, obtained by the GPS, is represented as a

point, the highway is represented by a polyline, and the relationship is

"contained in".

• A plague is detected within a geographical area that overlaps the borders

of a certain city, both the event's location and the entity location are ar-

eas, and the relationship is "overlaps."

3.2 Entity Distance Location

An entity distance location context gives rise to one or more context partitions,

based on the distance between the event’s location attribute and some other entity.

The word distance refers to the shortest distance between two spatial entities.

This entity may be either stationary or moving. If the entity is moving, the dis-

tance relates to the location of the entity at the time that the event occurred (its oc-

currence time). The entity may either be one that is specified by another attribute

of the event, or one that is specified in the context definition.

Some examples are as follows:

• The example shown in Fig.3, where the entity is a motel and the context

is used to track fire alarms within 2 km of the motel, in order to alert the

motel manager of possible danger. This context has a single partition, and

both the event location and the entity location are given as points.

• Vehicle breakdown events partitioned according to their distance from a

particular service center. They are grouped by distance as follows: less

than 10 km, between 10 km and 30 km, between 30 km and 60 km and

more than 60 km. In this case the service center is a fixed entity speci-

fied in the context definition, and the partition specifications are <10 km;

≥ 10 km and < 30 km; ≥ 30 km and < 60 km; ≥60 km.

• An alerting service at a big conference, which attendees can use to re-

ceive alerts when they are in the proximity of another person. Attendees

send periodic events giving their own location and these events include

the name of the person they are interested in meeting. This example

shows the use of an entity distance location context where the entity is

Context-Based Event Processing Systems 265

itself moving. The context specification has an entity attribute which tells

the context which attribute from the event gives the name of the person

being tracked and an explicit partition with a maximum distance of

100m. This means that the alert generation event processing agent is only

invoked if the two people are less that 100m apart.

3.3 Event Distance Location

This type of context specifies an event type and a matching expression predicate.

A new partition is created if an event occurrence is detected that matches this

predicate. Subsequent events are then included in the context partition if they oc-

curred within a specific distance of the initiating event. Distance is defined as in

the entity distance location context.

Some examples are as follows:

• Detecting the presence of an aircraft within a 10 km radius of a volcanic ash

• Detecting a case of scarlet fever within a distance of 100km from a previ-

ous outbreak of this disease (event type is disease report, predicate is dis-

ease=“scarlet fever”, maximum distance is 100 km).

4 Segmentation Oriented Context

A segmentation-oriented context is used to group event instances into context par-

titions based on the value of some attribute or collection of attributes in the in-

stances themselves. As a simple example consider an event processing agent that

takes a single stream of input events, in which each event contains a customer

identifier attribute. The value of this attribute can be used to group events so that

there’s a separate context partition for each customer. Each context partition only

contains events related to that customer, so that the behavior of each customer can

be tracked independently of the other customers.

In this kind of segmentation-oriented context, the context specifies just the at-

tribute (or attributes) to be used, and this implicitly defines a context partition for

every possible value of that attribute. Alternatively, a segmentation-oriented con-

text definition can list its context partitions explicitly. Each partition specification

includes one or more predicate expressions involving one or more of the event at-

tributes; an event is assigned to a context partition if one of its predicates evaluates

to true.

Partitions can be specified:

• By attribute value: e.g. there is a context partition for each customer, for

all events related to this customer

• By combination of attributes: e.g. all car accidents are grouped by car

type and driver license type.

• By explicit predicate: e.g. there is a context partition by an employee's

band. One partition for band < 5, one partition for band = 6 or 7, one par-

tition for band 8, one partition for band 9, and one partition for band > 9.

266 O. Etzion et al.

Customers

Hours
5:00 6:00 7:00 8:00 9:00 10:00

Each square in this illustration
designates a separate group in this
composite context

5 State-Oriented Context

State-oriented context differs from the other dimensions in that the context is de-

termined by the state of some entity that is external to the event processing sys-

tem. This is best illustrated with some examples:

̇ An airport security system could have a threat level status taking values

green, blue, yellow, orange, or red. Some events may need to be monitored

only when the threat level is orange or above, while other events may be

processed differently in different threat levels.

̇ Traffic in a certain highway has several status values: traffic flowing, traffic

slow, traffic stationary.

Each of these states issues a context partition.

6 Context Composition

Event processing applications often use combinations of two or more of the simple

context types that we have discussed so far. In particular a temporal context type

is frequently used in combination with a segmentation-oriented context, and we

show and example of this in Fig. 5.

Fig 5. Composite context.

Context-Based Event Processing Systems 267

Fig. 5 is showing composition of segmentation-oriented context and temporal
context. Each square is a separate context partition and designates the combination
of an hour-long interval and a specific customer.

Composition of context is typically an intersection between two context dimen-
sions, i.e. an event belongs to the composite context if it belongs to each of the mem-
ber contexts; other possible set operations for composition union and set difference.
In these cases typical uses are cases in which the member contexts are of the same
context dimension (example: union of temporal intervals, union of spatial fixed ar-
eas). It should be noted that the definition of composite context in any case may relate
both to member contexts of the same dimension or of different dimension.

These context dimensions generalize the functionality that exists within various
products and models of event processing. Next, we move on to context implemen-
tation in five event processing products that samples that implementation context
in various products.

7 Context Realization within Current Event Processing

Products

In the following sections we introduce context support within a sample of existing
event processing commercial platforms. We classify this context support accord-
ing to the four context dimensions defined in Section 4: temporal context, segmen-
tation context, spatial context and state-oriented context. The five languages we
survey are: StreamBase StreamSQL, Oracle EPL, Rulecore Reakt, Sybase's CCL
(formerly Aleri/Coral8) and IBM's Websphere Business Events.

7.1 Stream Base StreamSQL

StreamSQL [17] is a SQL based Event Processing Language (EPL) focusing on
event stream processing, extending the SQL semantics and adding stream-oriented
operators as well as windowing constructs for subdividing a potentially infinite
stream of data into analyzable segments.

The windowing constructs correspond to the temporal context dimension,
where the windows are defined based on time, or based on number of events, or
based on an attribute value within an event.

Additional constructs in StreamSQL, such as GroupBy and PartitionBy clauses
correspond to the segmentation context dimension.

The temporal context supported is the sliding fixed interval called in
StreamSQL sliding fixed window and sliding event interval called sliding event

window. Default evaluation policy for the operators is deferred upon reaching the
specified window size, however this can be changed in the operator specifications
to immediate or semi-immediate (performing the operation once every number of
units even if window size is not reached).

7.1.1 Sliding Fixed Window

A window construct of type "time" supports the notion of sliding fixed interval.

New windows are opened at regular intervals relative to each other, as specified in

268 O. Etzion et al.

the ADVANCE parameter; the windows remain open for a specified period of

time, as stated in the SIZE parameter. Additional parameters further influence the

behavior of the window construct, such as OFFSET which indicates a value by

which to offset the start of the window.

For example, Listing 1 creates sliding overlapping windows which are opened

every second and remain open for 10 seconds

Listing 1. StreamSQL sliding fixed window example.

7.1.2 Event Interval and Sliding Event Interval

A window construct of type "tuple" supports the notion of sliding event intervals,

where the window size is defined based on the event number, and the repeating in-

tervals are defined in terms of events as well.

Listing 2. StreamSQL sliding event window example.

The repetition is optional, a policy determines whether it is necessary to open new

windows on event arrival or not, therefore this supports the notion of event interval.

For example, Listing 2 defines a context where a new window is opened upon

arrival of a new tuple (event).

The windows are closed either after accumulating 5 events or when a timeout

of 20 seconds from window opening expires.

Options exist to use the temporal and segmentation context dimensions in con-

junction thus introducing a composite context consisting of multiple dimensions.

7.2 Oracle EPL

The Oracle CEP [27] offering is a Java-based solution targeting event stream proc-

essing applications. Oracle EPL supports both the segmentation and temporal con-

text dimensions [18]. The temporal context supports four types of sliding windows:

row-based, time-based, batched row and time-based, which correspond to sliding

event and sliding fixed interval in this dimension with different initiation policies.

The sliding row-based window supports retention of last N event entries. For

example, the clause shown in Listing 3 retains the last five events of the With-

drawal stream, when the oldest event is "pushed out" of the sliding window,

providing a form of sliding event interval.

CREATE WINDOW eventsInterval (
 SIZE 10 ADVANCE 1 {TUPLE} TIMEOUT 20);

CREATE WINDOW tenSecondsInterval(

SIZE 10 ADVANCE 1 {TIME});

Context-Based Event Processing Systems 269

Listing 3. Oracle EPL sliding raw-based window example.

Fig. 6 demonstrates the flow of events through the event stream and the content

of the window for this statement.

The time based sliding window is a moving window aggregating events for a

specified time, implementing the case of sliding fixed temporal interval. For ex-

ample, the clause shown in Listing 4 defines a window holding a view into an

event stream of all events received in the last 4 seconds.

Fig. 7 demonstrates the time-based window behavior over a period of time

An example of a batched time windows is shown in the clause presented in

Listing 5.

Fig 6. Oracle EPL sliding row-based window retaining 5 events.

Listing 4. Oracle EPL sliding time-based window example.

SELECT * FROM Withdrawal RETAIN 5

SELECT * FROM Withdrawal RETAIN 4 SECONDS

270 O. Etzion et al.

Fig 7. Oracle EPL Sliding time-based window.

Listing 5. Oracle EPL batched time window example.

The windows are non overlapping windows, and a new window is opened only

when its predecessor window is closed. Additionally Oracle EPL supports the

GROUP BY clause which enables further segmentation of the event stream. The

EPL language supports the composition of the temporal and segmentation context

dimensions together thus supporting the notion of composite context. An example

of the syntax supporting the composite context is shown in Listing 6.

Listing 6. Oracle EPL composite context example.

SELECT * FROM Withdrawal

RETAIN BATCH OF 4 SECONDS

INSERT INTO TicksPerSecond

SELECT feed, COUNT(*) AS cnt FROM

MarketDataEvent

RETAIN BATCH OF 1 SECOND

GROUP BY feed

Context-Based Event Processing Systems 271

The composite context that is shown in Listing 6 is composed of a temporal

context of a sliding window of 1 second, and a segmentation context by feed.

7.3 RuleCore Reakt

RuleCore [20] executes ECA rules defined using the Reakt language. The main

language element in Reakt is the rule. RuleCore uses a notion of "views" as execu-

tion context for the rule. Each rule instance maintains its own virtual view into the

incoming event stream. The view provides a window into the incoming event

stream providing context for rule evaluation. Reakt supports segmentation, tempo-

ral, spatial and state contexts.

The temporal context is implemented using the MaxAge view property which

defines the maximum age for each event in the view.

Example: Listing 7 shows a definition that limits every rule instance to view

only events from the past 10 minutes.

Listing 7. RuleCore Reakt fixed window example.

Segmentation context is implemented using the [?] match view property which

is very flexible and can select values from the event bodies using the full expres-

sive power of XPath. This allows for powerful semantic matching even of com-

plex event structures. An example is shown in Listing 8.

Listing 8. RuleCore Reakt match view.

Spatial context is implemented using the Type view property by defining a new

geographic zone entity type defined by its coordinates and Match view property.

An event is then associated with a specific entity which may have a set of proper-

ties such as position or a Zone. Spatial Evaluation is done by applying Match

property on specific Entity type with geographic location and to specific Zone that

specifies the reference geo area, all events of specific entity type and which match

Zone property will be classified to this specific context partition.

<MaxAge>00:10:00</MaxAge>

<Match>

 <Value>
<Event><base:XPath>EventDef[eventType="Warning]</bas

e:XPath></Even>

<Field><base:XPath xmlns:base="base">base:

ServerIP base:XPath></Field>

 </Value>

<Match>

272 O. Etzion et al.

Example: Listing 9 illustrates the association of specific events that are contained

in a location Zone. For this rule we define ZoneEntry view, which will contain

events from "vehicle" entity type (Match/vehicle) and only from specific zone lo-

cation (Match/Zone).

Listing 9. RuleCore Reakt - spatial context example.

State contexts are implemented in a similar way to the way in which spatial

contexts are implemented, using Type view property where each event entity has

specific properties. State evaluation is done by applying Match property on spe-

cific Entity type property, all events of specific entity type and which match spe-

cific property will be in the context.

Context-Based Event Processing Systems 273

The sliding event-based MaxCount view supports retention of last N event en-

tries, for example the statement guarantees that an event view never contains more

than 100 events.

Listing 10. RuleCore Reakt - sliding event interval example.

The Reakt language allows the composition of the temporal, segmentation, spa-

tial and state context dimensions together thus supporting the notion of composite

context.

7.4 Sybase Aleri -Coral8 and CCL

The Sybase Aleri CEP offering consists of Aleri Streaming Platform and Coral8

engine. Coral8's authoring language[22] [23] CCL (Continuous Computation Lan-

guage) is a SQL-based event processing language extending SQL in a different

way relative to the Streambase and Oracle examples presented previously. CCL

supports different combinations of window types: sliding and jumping windows,

either row-based (event-based) or time-based.

Examples include:

• Time intervals ("keep one hour's worth of data").

• Row counts ("keep the last 1000 rows").

• Value groups ("keep the last row for each stock symbol").

Relative to the context dimension classification defined in section 4, CCL supports
both the temporal and segmentation context dimensions. In the temporal dimen-
sion, the sliding fixed interval, sliding event interval and event interval are sup-
ported. The difference in CCL terminology between sliding and jumping windows
is the way they treat the interval periods and the window initiation policies.

Listing 11. Sybase CCL - Sliding fixed interval example.

Listing 11 illustrates a sliding fixed interval representing a 15 minute window
into the Trades event stream, and the aggregation is determining the highest trade
in the last 15 minutes. The interval period is once every minute, and the interval
duration is 15 minutes. The initiation policy is "refresh" – the previous window is
closed once the new one is created.

INSERT INTO MaxPrice

SELECT Trades.Symbol, MAX(Trades.Price)

FROM Trades KEEP 15 MINUTES

WHERE Trades.Symbol = 'IBM';

<MaxCount>100</MaxCount>

274 O. Etzion et al.

A similar example illustrating the sliding event interval is deducing the highest

price in the last 15 trades instead of last 15 minutes. This example is shown in

Listing 12.

Listing 12. Sybase CCL - Sliding event interval.

The window can be also defined implicitly in pattern matching queries, such as the

following sliding event interval definition, in Listing 13, describing a period

which starts with each event A arrival, and ends 10 seconds later; during this pe-

riod event A should occur, followed by event B, and event C should not occur be-

tween the time in which B occurs and the end of the temporal window.

Listing 13. Sybase CCL - pattern embedded context.

The GROUP BY clause supports the segmentation context implementation.

A combination of the temporal and segmentation context enables the expression of

composite contexts. In the example shown in Listing 14, the sliding fixed interval

window is further segmented according the stock's symbol. This query determines

the maximum price for each stock type in the last 15 minutes.

Listing 14. Sybase CCL - composite context example.

7.5 IBM Websphere Business Events

IBM WBE [21] is a business event processing system, focusing on the business

user and his needs. A segmentation context is easily expressed in WBE using the

"Related By" construct, shown in Fig. 8, which supports the segmentation group

of events based on event field value or a composition of field values [19].

INSERT INTO MaxPrice

SELECT Trades.Symbol, MAX(Trades.Price)

FROM Trades KEEP 15 MINUTES

GROUP BY Trades.Symbol;

INSERT INTO MaxPrice

SELECT Trades.Symbol, MAX(Trades.Price)

FROM Trades KEEP 15 ROWS

WHERE Trades.Symbol = 'IBM';

[10 SECONDS: A, B, !C]

Context-Based Event Processing Systems 275

Fig 8. WBE definition of segmentation context.

Fig. 8 shows an example in which the events are related to each other by the

same Registration, making it a segmentation context. The temporal context capa-

bility is supported using deferred evaluation mode (Fig. 9). Events can be evalu-

ated using time delays from the triggering event. These time delays can be for a

fixed amount of time or until a certain amount of time has elapsed after another

event has occurred, or until a specific date.

Fig 9. WBE definition of temporal context.

WBE also supports temporal event evaluation within context applying filtering

conditions to the rule. This is done using temporal functions such as: Follows

After, Follows before, and Follows Within. These functions determine if the

specified event in the associated scope will follow the event or action defined in

the filter after/before/within certain amount of time. Functions such as: Is Present

before, Is Present After, Is Present Within, determine if the event specified in

the associated scope has previously occurred in the same context af-

ter/before/within the date/time period defined in the filter. An example of the Fol-

lows By construct is shown in Fig. 10.

276 O. Etzion et al.

Fig 10. WBE Follows By construct.

To conclude, most CEP offerings today support one or another variation on

temporal and segmentation context dimensions. While in most cases state-oriented

context can be implemented in those solutions indirectly, using event data and fil-

tering on this data, out-of-the-box geospatial capabilities are lacking in most of the

mentioned products.

8 Conclusion

This chapter has discussed various aspects of contexts in event processing. We

have presented the general notion of context, a general view of context in event

processing, and a sample of implementations of this notion within various prod-

ucts. As can be seen, most of the current languages has many of the context func-

tions, but part of all these functions are not implemented as separate abstraction,

but as part of other abstractions (like queries); the benefit of using context as a dis-

tinct abstraction may provide separation of concerns, and higher flexibility, and is

consistent with current trends in software engineering; it has a trade-off of intro-

ducing a new kind of abstraction. We observe that context as an abstraction is also

emerging in various applications areas: wireless networks [1], location based ser-

vices [6], electronic tourist guidance [7], [15], Web 2.0 [16], Web presence [10],

Business process management and design [13], [14], healthcare monitoring [12],

telecommunication [25] and payment systems [26]. These works on context are

expected to merge with the work existing in event processing and; Furthermore,

We believe that the next generation of event processing as well as computing will

view context as a separate abstraction. The experience gained in applying context

in event processing in event processing will assist with the standardization of the

semantics of context for the various usages of context.

References

1. Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyber-

guide: A mobile context-aware tour guide. Wireless Networks: special issue on mobile

computing and networking: selected papers from MobiCom 3(5), 421–433 (1997)

Context-Based Event Processing Systems 277

2. Adi, A., Biger, A., Botzer, D., Etzion, O., Sommer, Z.: Context Awareness in Amit. In:

5th Annual International Workshop on Active Middleware Services (AMS 2003), pp.

160–167 (2003)

3. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J.,

Widom, J.: STREAM: The Stanford Stream Data Manager. In: SIGMOD Conference

2003, p. 666 (2003)

4. Buvac, S., Mason, I.A.: Propositional logic of context. In: Proc. of the 11th National

Conference on Artificial Intelligence (1993)

5. Buvac, S.: Quantificational Logic of Context. In: Proc. of the 13th National Confer-

ence on Artificial Intelligence (1996)

6. Broadbent, J., Marti, P.: Location-Aware Mobile Interactive Guides: Usability Issues.

In: Proc. Inter. Cultural Heritage Informatics Meeting, Paris, France (1997)

7. Heverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a Context-

Aware Electronic Tourist Guide: some issues and experiences. In: Proc. CHI, The

Hague, Netherlands (2000)

8. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications (2010)

9. Jensen, C.S., et al.: The Consensus Glossary of Temporal Database Concepts - Febru-

ary 1998 Version. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Databases

Research and Practice, pp. 367–405. Springer, Heidelberg (1998)

10. Kindberg, T., et al.: People, Places, Things: Web Presence for the Real World. In:

Proc. 3rd Annual Wireless and Mobile Computer Systems and Applications, Monterey,

CA (2000)

11. Luciano, S., Fausto, G.: ML Systems: A Proof Theory for Contexts. Journal of Logic,

Language and Information 11, 471–518 (2002)

12. Mohomed, I., Misra, A., Ebling, M., Jerome, W.: Context-aware and personalized

event filtering for low-overhead continuous remote health monitoring. In: International

Symposium on a World of Wireless, Mobile and Multimedia Networks (2008)

13. Rosemann, M., Recker, J., Flender, C., Ansell, P.: Context-Awareness in Business

Process Design. In: 17th Australasian Conference on Information Systems, Adelaide,

Australia (2006)

14. Rosemann, M., Recker, J., Flender, C.: Contextualization of Business Processes. Inter-

national Journal of Business Process Integration and Management 3, 47–60 (2008)

15. Woodruff, A., Aoki, P.M., Hurst, A., Szymanski, M.H.: Electronic Guidebooks and

Visitor Attention. In: Proc. 6th Int. Cultural Heritage Informatics Meeting, Milan, It-

aly, pp. 437–454 (2001)

16. Context in Web 2.0 realm, http://blog.roundarch.com/2010/03/25/

 in-the-realm-of-web-2-0-context-is-king-part-one/

17. StreamSQL-Streambase EP language, http://dev.streambase.com/

 developers/docs/sb37/streamsql/index.html

18. Oracle EPL-Oracle EP language, http://download.oracle.com/docs/

 cd/E13157_01/wlevs/docs30/epl_guide/overview.html

19. IBM Websphere Business Events Context configuration,

 http://publib.boulder.ibm.com/infocenter/wbevents/

 v7r0m0/index.jsp?topic=/com.ibm.wbe.install.doc/

 doc/configuringtheruntime.html

20. RuleCore CEP Server, http://rulecore.com/content/view/35/52/

21. IBM Websphere Business Events Overview, http://www01.ibm.com/

 software/integration/wbe/features/?S_CMP=wspace

278 O. Etzion et al.

22. Sybase-Aleri Continuous Computation Language (CCL),

 http://www.aleri.com/products/aleri-cep/coral8-engine/ccl

23. Sybase-Aleri CCL context definition, http://www.aleri.com/WebHelp/

 programming/programmers/c8pg_using_windows.html

24. Context Delivery Architecture by Gartner,

 http://www.gartner.com/DisplayDocument?id=535313

25. Context aware mobile communications system, http://www.geovector.com/

26. Context in mobile payment systems, http://www.nttdocomo.com/

27. Oracle CEP overview, http://www.oracle.com/technologies/

 soa/complex-event-processing.html

Event Processing over Uncertain Data

Avigdor Gal, Segev Wasserkrug, and Opher Etzion

Abstract. Events are the main input of event-based systems. Some events are gen-

erated externally and flow across distributed systems, while other events and their

content need to be inferred by the event-based system itself. Such inference has a

clear trade-off between inferring events with certainty, using full and complete in-

formation, and the need to provide a quick notification of newly revealed events.

Timely event inference is therefore hampered by the gap between the actual occur-

rences of events, to which the system must respond, and the ability of event-based

systems to accurately infer these events. This gap results in uncertainty and may

be attributed to unreliable data sources (e.g., an inaccurate sensor reading), unreli-

able networks (e.g., packet drop at routers), the use of fuzzy terminology in reports

(e.g., normal temperature) or the inability to determine with certainty whether a

phenomenon has occurred (e.g., declaring an epidemic). In this chapter we present

the state-of-the-art in event processing over uncertain data. We provide a classifica-

tion of uncertainty in event-based systems, define a model for event processing over

uncertain data, and propose algorithmic solutions for handling uncertainty. We also

define, for demonstration purposes, a simple pattern language that supports uncer-

tainty and detail open issues and challenges in this research area.

1 Introduction

This chapter covers a topic of increasing interest in the event processing research

and practice communities. Event processing typically refers to an approach to soft-

ware systems that is based on event delivery, and that includes specific logic to filter,

Avigdor Gal

Technion – Israel Institute of Technology, Faculty of Industrial Engineering & Management,

Technion City, 32000 Haifa, Israel

e-mail: avigal@ie.technion.ac.il

Segev Wasserkrug

IBM Haifa Research Lab, Haifa, Israel

e-mail: segevw@il.ibm.com

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 279–304.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

avigal@ie.technion.ac.il
segevw@il.ibm.com

280 A. Gal, S. Wasserkrug, and O. Etzion

transform, or detect patterns in events as they occur. A first generation of event pro-

cessing platforms is diversified into products with various approaches towards event

processing, including the stream oriented approach, such as: StreamSQL Event-

Flow (StreamBase),[30] CCL (Sybase),[31] Oracle CEP (Oracle),[24] and Stream

Processing Language (IBM) [29]; the rule oriented approach that is implemented in

products such as: AutoPilot M6 (Nastel),[4] Reakt (ruleCore),[28] TIBCO Busines-

sEvents (TIBCO),[33] and Websphere Business Events (IBM) [38]); the imperative

approach is implemented in products such as Apama (Progress Software) [3] and

Netcool Impact Policy Language (IBM) [23]; and, finally, the publish-subscribe

approach that is part of Rendezvous (TIBCO),[32] Websphere Message Queue

(IBM),[39] and RTI Data Distribution System (RTI).[27] As a common denomi-

nator, all of these approaches assume that all relevant events are consumed by the

event processing system, all events reported to the system have occurred, and pro-

cessing of event processing systems can be done in a deterministic fashion. These

assumptions hold in many of the applications first generation platforms support.

Moving to the second generation of event processing platforms, one of the re-

quired characteristics is the extension of the range of applications that employ event

processing platforms beyond the early adopters. Some of the target applications de-

viate from the basic assumptions underlying the first generation of event processing

platforms in both functional and non-functional aspects. In this chapter we focus

on a specific functional aspect, the ability to deal with inexact reasoning [11]. We

motivate this requirement with two examples.

Example 1. An increasing number of event processing systems are based on Twitter

feeds as raw events, by using either structured Twitter feeds, or using tags, e.g., a

bus notiyfing Twitter every time it arrives at a station;1 automated trading decision

applications, based on analysis of Tweets about traded companies,2 etc.. One cannot

assume that the collection of events sent to Twitter is complete. Furthermore, one

cannot assume it is accurate, as some tweets may be of rumor types, some may

contain inaccurate information, and some are even sent by malicious sources. Yet,

in the highly competitive world of trading, Twitter events are considered to be a

good source of information, given that the processing can take into account all these

possible inaccuracies.

Example 2. A service provider is interested in detecting the frustration of a val-

ued customer in order to mitigate the risk of the customer deserting. In some cases

there is an explicit event where a customer calls and loudly expresses dissatisfac-

tion, however in most cases this is inferred from detecting some patterns over the

event history. Assume that practice (or applying some machine learning techniques)

concluded that if a customer approaches the customer service center three times

within a single day about the same topic, this customer is frustrated. The fact that

the customer is frustrated is the business situation that the service provider wants

1 http://twitter.com/hursleyminibus
2 http://www.wallstreetandtech.com/data-management/

showArticle.jhtml?articleID=218101018

Uncertain Event Processing 281

to identify, while the pattern detected on the customer interaction event is only an

approximation of this situation.

In the absence of support for inexact reasoning, applications as those described

above may suffer, either directly or indirectly, from incorrect situation detection.

Using current technology, there are four different ways to support such situations of

uncertainty. First, situations of uncertainty can simply be ignored. Such a solution

may be cost-effective if situations of uncertainty are relatively infrequent, and the

damage of not handling them is not substantial. For example, in network manage-

ment systems problem indications such as device time-out may be lost, but such

events are not critical since they are issued on a recurring basis.

A second solution for handling uncertainty requires situations to be created only

when the event pattern is a necessary and sufficient condition to detect the situa-

tion in a deterministic way. This is the case in many current systems. According

to a third solution, the system is designed so that some detected situations require

reinforcement from multiple indications. For example, in a fraud detection system,

often a fraud suspicion requires reinforcement from multiple patterns, and possibly

within the context of a customer’s history. This is useful when false positives should

be minimized, and it comes at the cost of false negatives.

Finally, it is possible to notify the result of each situation detection to a human

observer that needs to decide whether an action should be taken. Again, this method

is aimed at minimizing false positives.

The applications motivating a second generation of event processing platforms

include applications in which false positives and false negatives may be relatively

frequent, and the damage inflicted by these cases may be substantial, sometimes

critical. For example, a stock value of a company may collapse if automated trading

decisions are based on false rumors. While the motivation exists, the handling of

inexactness in event processing in general is still a challenge in the current state-of-

the-art and in this chapter we explore quantitative methods to manage inexactness.

The rest of the chapter is structured in the following way: Section 2 provides

basic terminology to be used in this chapter; Section 3 provides a taxonomy of

uncertainty cases and the handling of uncertain events is discussed in Section 4;

Section 5 discusses the handling of uncertain situations and Section 6 describes an

algorithm for uncertain derivation of events; We conclude with research challenges

in Section 7.

2 Preliminaries

In this section we provide some basic concepts in event processing (Section 2.1)

and uncertainty handling (Section 2.2). Throughout this chapter we shall use the

following two examples for demonstration.

Example 3. A thermometer generates an event whenever the temperature rises above

37.5◦C. However, the thermometer is known to be accurate to within ±0.2◦C.

Therefore, when the temperature measured by the thermometer is 37.6◦C, there is

some uncertainty regarding whether the event has actually occurred.

282 A. Gal, S. Wasserkrug, and O. Etzion

Example 4. Consider an e-Trading Web site, where customers can buy and sell

stocks, check their portfolio and receive information regarding the current price of

any stock. We would like to identify a variety of events, including that of specula-

tive customers (illegal trading events) and customers becoming dissatisfied (CRM –

Customer Relationship Management – related events).

2.1 Event Processing

We base our description of basic concepts in event processing on the model proposed

by Etzion and Niblett [11].

An event is an occurrence within a particular system or domain; it is something

that has happened, or is contemplated as having happened in that domain. The word

event is also used to mean a programming entity that represents such an occurrence

in a computing system. We classify events as either raw or derived events. A raw

event is an event that is introduced into an event processing system by an external

event producer. A derived event is an event that is generated as a result of event

processing that takes place inside the event processing system. A derived event can

be generated either by event transformation or event pattern matching. An event

transformation transforms one or more event inputs into one or more event output

by translation, enrichment from external data source, aggregation, composition or

splitting. Example of event transformation is an aggregation that finds the average

of a temperature measurement over a one hour shifting window.

An event pattern is a template, specifying one or more combinations of events.

Given any collection of events one may be able to find one or more subsets of those

events that match a particular pattern. We say that such a subset satisfies the pattern.

An example of an event pattern is a sequence of events of type “buy stock” followed

by an event of type “sell stock.” The pattern matching process in this case creates

pairs of events of these two types that match this pattern, satisfying all matching con-

ditions (same stock, same customer, same day), defined to be the pattern matching

set. A pattern matching set can serve as a composite event, composed of all member

events in the event set, e.g., the two matched event {buy stock, sell stock}. Alterna-

tively, it can yield an event, created as some transformation of the matching set. For

example, the event can be a newly created event type, containing some information

from the payloads of both events, such as: 〈customerid, buyamount, sellamount〉.
A situation is an event occurrence that might require a reaction and is consumed

by an external event consumer. In current systems, a situation can either be a raw

event or a derived event, however, in some cases a derived event is merely an approxi-

mation of a situation. An example of a situation may be the detection of a speculative

customer, with the condition that a speculative customer is a customer that buys and

then sells the same stock on the same day, both transactions exceeding $1M.

The linkage between an event pattern and a situation might suffer from false

positive or false negative phenomena. False negative situation detection refers to

cases in which a situation occurred in reality, but the event representing this situation

was not emitted by an event processing system. In the example discussed above,

Uncertain Event Processing 283

the amount paid for a stock was recorded to be slightly less than $1M, and yet

the customer was indeed a speculative customer. In this case, the event processing

system did not detect it. False positive situation detection refers to cases in which

an event representing a situation was emitted by an event processing system, but

the situation did not occur in reality. In our example, the purchase was recorded

erroneously, and was later corrected, yet the event system declared the customer to

be speculative. Two of the main goals of an uncertainty handling mechanism for

events are a) making explicit, and b) quantifying, the knowledge gap between an

event pattern and the corresponding situation.

A variety of data can be associated with the occurrence of an event. Two examples

of such data are: The point in time at which an event occurred, and the new price of

a stock in an event describing a change in the price of a specific stock. Some data

are common to all events (e.g., their time of occurrence), while others are specific

only to some events (e.g., data describing stock prices are relevant only for stock-

related events). The data items associated with an event are termed attributes. In

what follows, e.attributeName denotes the value of a specific attribute of a specific

event e. For example, e1.occT refers to the occurrence time of event e1. In addition,

the type of event e is denoted by e ∈ type.

2.2 Uncertainty Management Mechanisms

There is a rich literature on mechanisms for uncertainty handling, including, among

others, Lower and Upper Probabilities, Dempster-Shafer Belief Functions, Possi-

bility Measures (see [17]), Fuzzy Sets and Fuzzy Logic [41]. We next present, in

more details, three common mechanisms that were applied in the context of event

processing, namely probability theory, fuzzy set theory, and possibility theory.

2.2.1 Probability Theory

The most well known and widely used framework for quantitative representation

and reasoning about uncertainty is probability theory. An intuitively appealing way

to define this probability space involves possible world semantics [13]. Using such

a definition, a probability space is a triple pred = (W,F,µ) such that:

•W is a set of possible worlds, with each possible world corresponding to a specific

set of event occurrence that is considered possible. A typical assumption is that

the real world is one of the possible worlds.

•F ⊆ 2|W | is a σ -algebra over W . σ -algebra, in general, and in particular F , is a

nonempty collection of sets of possible worlds that is closed under complemen-

tation and countable unions. These properties of σ -algebra enable the definition

of a probability space over F .

•µ : F → [0,1] is a probability measure over F .

We call the above representation of the probability space the possible world repre-

sentation. One problem with possible worlds semantics is performance. Performing

operations on possible worlds can lead to an exponential growth of alternatives. In

284 A. Gal, S. Wasserkrug, and O. Etzion

Section 5.1 we present an alternative representation to the possible worlds seman-

tics and in Section 6 we use this alternative representation to compute efficiently

probabilities of complex events.

The most common approach for quantifying probabilities are Bayesian (or be-

lief) networks [25]. However, Bayesian networks are only adequate for represent-

ing propositional probabilistic relationships between entities. In addition, standard

Bayesian networks cannot explicitly model temporal relationships. To overcome

these limitations, several extensions to Bayesian networks have been defined, in-

cluding Dynamic Belief Networks [19] , Time Nets [18], Modifiable Temporal Be-

lief Networks [8] and Temporal Nodes Bayesian Networks [14]. Although these

extensions are more expressive than classical Bayesian networks, they nonetheless

lack the expressive power of first-order logic. In addition, some of these extensions

allow more expressive power at the expense of efficient calculation.

Another formal approach to reasoning about probabilities involves probabilistic

logics (e.g., [5] and [16]). These enable assigning probabilities to statements in first-

order logic, as well as inferring new statements based on some axiomatic system.

However, they are less suitable as mechanisms for the calculation of probabilities in

a given probability space.

A third paradigm for dealing with uncertainty using probabilities is the KBMC

(Knowledge Based Model Construction) paradigm [7]. This approach combines

the representational strength of probabilistic logics with the computational advan-

tages of Bayesian networks. In this paradigm, separate models exist for probabilis-

tic knowledge specification and probabilistic inference. Probabilistic knowledge is

represented in some knowledge model (usually a specific probabilistic logic), and

whenever an inference is carried out, an inference model would be constructed based

on this knowledge.

2.2.2 Fuzzy Set Theory

The background on fuzzy set theory is based on [41, 12, 22]. A fuzzy set M on a

universe set U is a set that specifies for each element x ∈U a degree of membership

using a membership function

µM : U → [0,1]

For example, considering Example 3, the membership function that assigns a value

to the reading of a thermometer can be represented as a bell shape over the range

[37.3◦C,37.7◦C], with higher membership value in the center (37.5◦C), slowly de-

creasing to 0 on both sides. It is worth noting that, unlike probability theory, the area

under the curve does not necessarily sum to 1.

2.2.3 Possibility Theory

Possibility theory formalizes users’ subjective uncertainty of a given state of the

world [10]. Therefore, an event “customer x is frustrated” may be associated with

Uncertain Event Processing 285

a confidence measure πfrustrated (x). Both fuzzy set and possibility theories use a

numerical measure, yet they express different uncertainties. Fuzzy set theory is more

suitable to represent vague description of an object (e.g., value of a temperature

reading) and possibility measures define the subjective confidence of the state in the

world (e.g., the occurrence of an event).

In [22], two measures were defined to describe the matching of a subscription

to a publication and can be easily adopted to event processing under uncertainty.

The possibility measure (Π) expresses the plausability of an event occurrence. The

necessity measure (N) expresses the necessity of occurrence of an event e or, for-

mulated differently, the impossibility of the complement of e. If it is completely

possible to have occurred then possibility is Π (e) = 1. If it is impossible then the

possibility is Π (e) = 0. Intermediate numbers in [0,1] represent an intermediate

belief in event occurrence. A necessity measure is introduced to complement the

information available about the state described by the attribute. The relationship

between possibility and necessity satisfies:

N(e) = 1−Π (ē)

∀ e,Π (e) ≥ N(e)

where ē represents the complement of e. It is worth noting that if Π (e) is a proba-

bility distribution, then Π (e) = N(e).

2.2.4 Discussion

The literature carries heated debates about the role of fuzzy sets framework and

probabilistic methods. A probabilistic-based approach assumes that one has an in-

complete knowledge on the portion of the real world being modeled. However, this

knowledge can be encoded as probabilities about events. The fuzzy approach, on the

other hand, aims at modeling the intrinsic imprecision of features of the modeled re-

ality. Therefore, the amount of knowledge at the user’s disposal is of little concern.

In addition to philosophical reasoning, the debate also relates to pragmatics. Proba-

bilistic reasoning typically relies on event independence assumptions, making cor-

related events harder to assess. Results presented in [9] show a comparative study of

the capabilities of probability and fuzzy methods. This study shows that probabilis-

tic analysis is intrinsically more expressive than fuzzy sets. However, fuzzy methods

demonstrate higher computational efficiency.

3 Taxonomy of Event Uncertainty

This section provides a taxonomy of event uncertainty. Section 3.1 defines two di-

mensions to classify uncertainties as relating to events and Section 3.2 describes the

causes of event uncertainties for these dimensions.

286 A. Gal, S. Wasserkrug, and O. Etzion

3.1 Dimensions of Event Uncertainty

We classify the uncertainty according to two orthogonal dimensions: Element Un-

certainty and Origin Uncertainty. The first dimension, Element Uncertainty, refers

to the fact that event-related uncertainty may involve one of two elements:

Uncertainty regarding event occurrence: Such uncertainty is associated with the

fact that although the actual event occurrence is atomic, the system does not

know whether or not this event has in fact occurred. One example of such an

event is the thermometer reading event from Example 3. Another example is

money laundering, where at any point in time, money laundering may have been

carried out by some customer. However, a Complex Event Processing (CEP) sys-

tem can probably never be certain whether money laundering actually took place.

Uncertainty regarding event attributes: Even in cases in which the event is known

to have occurred, there may be uncertainty associated with its attributes. For

example, while it may be known that an event has occurred, its time of occurrence

may not be precisely known. As another example, an event may be associated

with a fuzzy domain, stating that a temperature is mild, in which case there is

uncertainty regarding the exact temperature.

The second dimension, Origin Uncertainty, pertains to the fact that in a CEP system,

there may be two types of events, raw events, signalled by event sources, and derived

events, which are inferred based on other events. In the following, events which

serve as the basis for the inference of other events will be termed evidence events, be

they raw or derived events. Therefore, there are two possible origins for uncertainty:

Uncertainty originating at the event source: For raw events, there may be uncer-

tainty associated either with the event occurrence itself, or the event’s attributes,

due to a feature of the event source. Example 3, in which uncertainty regarding an

event occurrence is caused by the limited measuring accuracy of a thermometer,

illustrates such a case.

Uncertainty resulting from event inference: Derived events are based on other

events and uncertainty can propagate to the derived events. This is demonstrated

by Example 2, in which uncertainty regarding measures of frustration of a cus-

tomer propagates to the uncertainty of a customer deserting event.

Two additional examples are given next. In Example 5, the uncertainty of an event

originates from the source, but is limited to its attributes, rather than to its occur-

rence. Example 6 shows uncertainty regarding an event’s attributes resulting from

event inference.

Example 5. Consider a case in which an event is generated whenever the tempera-

ture reading changes. Assume that the thermometer under discussion has the same

accuracy as the one defined in Example 3. Furthermore, assume that the new tem-

perature is an attribute of this event. In this case, there is no uncertainty regard-

ing the actual occurrence. There is only uncertainty regarding this new temperature

attribute.

Uncertain Event Processing 287

Table 1 Uncertainty classification

Origin: Event Source Origin: Event Inference

Uncertainty Unreliable Source

Regarding Imprecise Source Propagation of Uncertainty

Event Problematic Communication Medium Uncertain Rules

Occurrence Estimates

Unreliable Source

Uncertainty Imprecise Source Propagation of Uncertainty

Regarding Problematic Communication Medium

Event Estimates

Attributes Time Synchronization in Distributed Systems

Example 6. Consider a case in which an event e3 should be inferred whenever an

event e2 occurs after an event of type e1. Assume that the inferred event e3 has an

attribute a3
1 whose value is the sum of the value of the attribute a1

1 of event e1 and the

value of the attribute a2
1 of event e2. Now assume that both e1 and e2 are known to

have occurred with certainty, but there is uncertainty regarding the value of attribute

a1
1. In this case there is uncertainty only regarding the value of attribute a3

1, and this

uncertainty results from event inference.

The above examples demonstrate that the two dimensions are indeed orthogonal.

Therefore, uncertainty associated with events could be mapped into one of four

quadrants, as shown in Table 1. In addition, due to the orthogonality of these di-

mensions, we define four types of event uncertainty: Uncertainty regarding event

occurrence originating at an event source, uncertainty regarding event occur-

rence resulting from inference, uncertainty regarding event attributes originating

at an event source, and uncertainty regarding event attributes resulting from event

inference.

3.2 Causes of Event Uncertainty

This section describes, at a high level, the various causes of event uncertainty, ac-

cording to the dimensions defined in Section 3.1. Table 1 summarizes the causes of

uncertainty.

3.2.1 Causes of Uncertainty Originating at the Source

Uncertainty regarding event occurrence originating at an event source is caused by

one of the following:

An unreliable source: An event source may malfunction and indicate that an event

has occurred even if it has not. Similarly, the event source may fail to signal the

occurrence of an event which has, in fact, occurred.

288 A. Gal, S. Wasserkrug, and O. Etzion

An imprecise event source: An event source may operate correctly, but still fail to

signal the occurrence of events due to limited precision (or may signal events that

did not occur). This is illustrated by Example 3.

Problematic communication medium: Even if the event source has full precision,

and operates correctly 100% of the time, the communication medium between

the source and the active system may drop indications of an event’s occurrence,

or generate indications of events that did not occur.

Uncertainty due to estimates: In some cases, the event itself may be a result of a

statistical estimate. For example, it may be beneficial to generate an event when-

ever a network Denial of Service (DoS) event occurs, where the occurrence of

such a DoS event is generated based on some mathematical model. However, the

reasoner that deduce the event occurrence may produce a false positive type of

error and hence this event also has uncertainty associated with it.

Uncertainty regarding the attributes originating at the event source can also be

caused by any of the above reasons. An unreliable or imprecise source may be unre-

liable or imprecise regarding just the attribute values. Similarly, the communication

medium may garble just the values of attributes, rather than messing with event oc-

currence. Finally, estimates or fuzzy values may also result in uncertainty regarding

event attributes.

In distributed systems, there exists an additional cause for uncertainty regarding

the special attribute capturing the occurrence time of the event. This is due to the fact

that in distributed systems, the clocks of various nodes are usually only guaranteed

to be synchronized to within some interval of a global system clock [21]. Therefore,

there is uncertainty regarding the occurrence time of events as measured according

to this global system clock.

It is worth noting that in both of the above cases, uncertainty regarding a specific

event may be caused by a combination of factors. For example, it is possible that

both the event source itself and the communication medium simultaneously corrupt

information sent regarding the same event.

3.2.2 Causes of Inferred Uncertainty

Uncertainty regarding event occurrence resulting from inference has the following

two possible causes:

1. Propagation of Uncertainty: A derived event can be a result of a deterministic

pattern. However, when there is uncertainty regarding the events that are used for

the derivation, there is also uncertainty regarding the derived event.

2. Uncertain Patterns: The pattern itself may be defined in an uncertain manner,

whenever an event cannot be inferred with absolute certainty based on other

events. An example of this is money laundering, where events denoting sus-

picious transactions only serve to indicate the possible occurrence of a money

laundering event. Usually, a money laundering event cannot be inferred with cer-

tainty based on such suspicious transactions.

Uncertain Event Processing 289

Note that these two causes may be combined. That is, it may happen that not only is

the inference of an event based on an uncertain pattern, but also uncertainty exists

regarding the occurrence (or attribute values) of one of the events which serve as

evidence for this inference.

Regarding uncertainty of derived event attributes, the possible causes depend

on how these attributes are calculated from the attributes of the evidence events.

The most intuitive way to calculate such derived attributes is using deterministic

functions defined over the attributes of the evidence events. In such a case, the only

cause of uncertainty in the derived attributes is the propagation of uncertainty from

the attributes of the evidence events. This is because the uncertainty regarding the

event attributes is defined to be the uncertainty regarding the attribute values given

that the event occurred. Therefore, the pattern cannot induce uncertainty regarding

the attribute values of the derived events. However, if the inference system makes

it possible to define the attribute values of the derived events in a non-deterministic

(e.g., fuzzy) manner, uncertain patterns may also be a cause of derived attribute

uncertainty.

4 Handling Uncertainty at the Source

In this section we present two models for representing uncertainty at the source.

4.1 Probability Theory-Based Representation

The model presented next provides a probability theory-based representation for

event uncertainty, based on [35]. A similar model was presented later by Balazinska

et al. in [6] for RFID data. Arguing in favor of probability theory includes following

reasons:

•Probability theory has widespread acceptance.

•Probability theory is a well-understood and powerful tool.

•Many technical results that facilitate its use have been shown formally.

•Under certain assumptions, probability is the only “rational” way to represent

uncertainty (see [17]).

•There are well-known and accepted methodologies for carrying out inferences

based on probability theory, involving structures such as Bayesian networks.

•Probability theory can be used together with utility theory (see [26]) for auto-

matic decision making. Such automatic decision making would facilitate the im-

plementation of automatic actions by complex event processing systems.

To apply probability theory to the handling of event processing in the context of

uncertainty the notion of an event has to be extended, to allow the specification of

uncertainty associated with a specific event. Also, deriving events in the context of

uncertainty needs to be defined.

We represent the information a composite event system holds about each event

instance with a data structure we term Event Instance Data (EID). EID incorporates

290 A. Gal, S. Wasserkrug, and O. Etzion

all relevant data about an event, including its type, time of occurrence, etc. In event

composition systems with no uncertainty, each event can be represented by a single

tuple of values Val = 〈val1, . . . ,valn〉, one value for each attribute associated with the

event (see Section 2.1 for the introduction of event attributes). In our case, to capture

the uncertainty associated with an event instance, the EID of each event instance is

a Random Variable (RV). The possible values of EID are taken from the domain

V = {notOccurred}∪V ′, where V ′ is a set of tuples of the form 〈val1, . . . ,valn〉 .

The semantics of a value of E (encoded as an EID), representing the informa-

tion the system has about event e are as follows: The probability that the value of

E belongs to a subset S ⊆ V \ {notOccurred} is the probability that event e has oc-

curred, and that the value of its attributes is some tuple of the form 〈val1, . . . ,valn〉,
where {〈val1, . . . ,valn〉} ⊆ S. Similarly, the probability associated with the value

{notOccurred} is the probability that the event did not occur.

Example 7. Consider an event that quotes a price of $100 for a share of IBM stock

at time 10:45. Say that the system considers the following possible: The event

did not occur at all; the event occurred at time 10:34 and the price of the stock

was $105; and the event occurred at time 10:45 and the price was $100. In addi-

tion, say that the system considers the probabilities of these possibilities to be 0.3,

0.3 and 0.4, respectively. Then, the event can be represented by an RV E whose

possible values are {notOccurred},{10:34, IBM,105}, and {10:45, IBM,100}.

Also, Pr(E = {notOccurred}) and Pr{E = {10 : 34, IBM,105}} are both 0.3 and

Pr{E ∈ {{10 : 45, IBM,100},{10 : 34, IBM,105}}} = 0.7.

Example 8. In case of the thermometer related event appearing in Example 3, as-

sume the following: the conditional probability that the temperature is 37.3◦C, given

that the thermometer reads 37.5◦C, is 0.1, the probability that the temperature is

37.4◦C is 0.15, the probability that the temperature is 37.5◦C is 0.5, the probabil-

ity that the temperature is 37.6◦C is 0.15, and the probability that the temperature

is 37.7◦C is 0.1. The probability that the event did not occur is 0.3 and the prob-

ability that the event did occur is 0.7. Moreover, assume that whenever the event

does occur, the temperature is an attribute of this event. Assume that at time 5, the

thermometer registers a reading of 37.5◦C. This information would be represented

by an EID E with the following set of values: {notOccurred} - indicating that the

event did not occur, and 5 value sets of the form {5,37.X◦C} - indicating that the

event occurred at time 5 with temperature 37.X◦C, and X stands for 1,2,3,4 or 5.

Examples of probabilities defined over E are Pr(E = {notOccurred}) = 0.3 and

Pr(E = {5,37.5◦C}) = 0.5 ·0.7 = 0.35 (due to the removal of the conditioning).

The set of possible values of the EID RVs contains information regarding both the

occurrence of the event and its attributes. Therefore, this representation is sufficient

to represent the uncertainty regarding both occurrence and attributes.

An additional concept, relevant in the context of event composition systems, is

that of Event History (EH). An event history EH
t2
t1

is the set of all events (of interest

to the system), as well as their associated data, whose occurrence time falls between

t1 and t2. For example, consider the following events: an event e1, at time 10:30,

Uncertain Event Processing 291

quoting the value of an IBM share as $100; event e2, at time 10:45, quoting the value

of an IBM share as $105; event e3 at time 11:00, quoting the value of an IBM share

as $103. Using the notation described above, the events e1, e2, e3 can be described by

the tuples {10:30, IBM,100}, {10:45, IBM,105}, and {11:00, IBM,103}. Examples

of event histories defined on these events are the following: EH10:45
10:30 = {e1,e2},

EH11:00
10:45 = {e2,e3}, EH10:35

10:30 = {e1} and EH11:00
10:30 = {e1,e2,e3}. It is worth noting

that there does not exist an event history that consists of both e1 and e3, and that

does not include e2.

The actual event history is not necessarily equivalent to the information regarding

the event history possessed by the system. For example, a thermometer reading of

37.5◦C is not necessarily the “true” one, as illustrated in example 8. We will there-

fore make the distinction by denoting the event history possessed by the system by

system event history.

4.2 Fuzzy Set Theory-Based Representation

In [22], a model for representing basic fuzzy events, both in subscriptions and in

publications, is given. An event will be of the form “x is Ã” where x is an attribute

of an event and Ã is a fuzzy value, associated with a membership function. For

example, following Example 8, an event of the form “temperature of sensor s is

normal” can be defined with the following membership definition of the fuzzy term

normal:

µnormal (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if x < 37.3◦C
0.1 if x = 37.3◦C
0.15 if x = 37.4◦C
0.5 if x = 37.5◦C
0.15 if x = 37.6◦C
0.1 if x = 37.7◦C
0 if x > 37.7◦C

It is worth highlighting the differences between the two approaches presented in

this section. The example above provides an interpretation of a fuzzy term using

a distribution of values. In Example 8, we provided an interpretation of possible

values, given an exact reading. Given the different settings, there is a room for both

representations, and investigating the best method for combining them is a topic for

future research.

5 Handling Inference Uncertainty

Inference uncertainty is handled by extending the notion of an event pattern, used

in deterministic event processing systems, to represent the uncertainty associated

with event derivation. This is described in this section, based on [35]. Although the

description uses probability theory as a basis for the extension, this framework can

be adapted to the use of fuzzy set theory or possibility theory. In the next section

292 A. Gal, S. Wasserkrug, and O. Etzion

we discuss methods for precise and efficient probability computation, as well as

methods for evaluating complex fuzzy events.

In this chapter, we follow the KBMC approach, as introduced in Section 2.2:

Knowledge is represented as probabilistic patterns (see Section 5.1), while proba-

bility calculation is carried out by constructing a Bayesian network based inference

model (see Section 6).

Contemporary deterministic event processing systems use pattern matching for

situation detection. In such systems, a situation is said to have occurred if the stream

of incoming events match some pattern. At each point in time t, the existence of

relevant patterns can be checked in the event histories that are known at that time.

A pattern p is given in the form
〈

seln
p, predn

p,eventTypep,mappingExpressionsp , probp

〉

where:

seln
p is a deterministic predicate returning a subset of an event history of size less

than or equal to n (for some integer n). If the returned subset has strictly less then

n elements, no further evaluation of the pattern is carried out. A possible selection

expression is “the first two events of type stockQuote.” Therefore, for the event his-

tory e1,e2,e3, if only e1 is of type stockQuote the pattern is not triggered. However,

if both e1 and e3 are of type stockQuote, then the subset {e1,e3} is selected, and

evaluation of the pattern continues.

predn
p is a predicate of arity n over event instances (note that this is the same n

appearing in seln
p). This predicate is applied to the n event instances selected by seln

p.

An example of predn
p is “the events e1,e2,e3 have occurred in the order e1,e2,e3, all

three events are events regarding the same stock, and event e3 occurred no later than

5 minutes after event e1.”

eventTypep is the type of event inferred by this pattern. It can be, for example,

an event of type speculativeCustomer.

mappingExpressionsp is a set of functions, mapping the attribute values of the

events that triggered this pattern to the attribute values of the derived event.

probp ∈ [0,1] is the probability of inferring the derived event given that the pat-

tern has occurred. The exact semantics of this probability are defined in Section 5.1.

By definition, the predicates defined by seln
p and predn

p are deterministic, as

are the functions mappingExpressionsp. Therefore, the only uncertainty present in

the pattern is represented by the quantity probp. Indeed, many deterministic com-

posite event languages, e.g., the Situation Manager pattern Language [2] can be

viewed as defining a set of patterns P such that each pattern p ∈ P is of the form
〈

seln
p, predn

p,eventTypep,mappingExpressionsp

〉

.

We assume that an event type is either explicit or inferred by a single pattern. This

is done for simplicity. If there is more than one source of information for an event

type (e.g., two patterns), the probabilities supplied by the separate sources (patterns)

must be combined to create a well-defined probability space (see Section 5.1).

We conclude this section with the definition of a specific language, instantiating

each part of the rule, including the allowable syntax and semantics of sr, pr, etc. In

this language, we have the following:

• seln
p is of the form 〈selExpression1, . . . ,selExpressionn〉, where selExpressioni

is a selection expression of the form εi ∈ eventTypei, with eventType being a

Uncertain Event Processing 293

valid event type. Given an event history, selExpressioni will select a single event,

εi. The event εi selected by selExpressioni is the first event in the event history of

type eventTypei that was not selected by a selection expression selExpression j

such that j < i.

• predn
p is a conjunctive predicate defined over the events ε1, . . . ,εn selected by

seln
p, of the form ☞

m
i=1 predicatei. predicatei is either a temporal predicate, or an

equality relation between attributes. If predicatei is an equality predicate, it is

of the form εk.attributel = ε j.attributem for k = j. This specifies that the value

of attributel of event εk must be the same as attributem of event ε j. A temporal

predicate predicatei takes one of the following forms:

– a ≤ εk.occT ≤ b, where a and b are temporal constants denoting time points

in the range [0,∞]. This predicate specifies that the event has occurred within

the interval [a,b].
– ε j.occT < εk.occT for k = j. This predicate defines a partial order over subsets

of events.

– ε j.occT ≤ εk.occT ≤ ε j.occT + c for k = j, where c is a temporal constant

such that c > 0. This predicate specifies that an event has happened within a

specified interval relative to another event.

•Regarding mappingExpressionr the occurrence time of the derived event is al-

ways determined to be the point in time at which the inference was carried out.

As for other attributes, two types of functions are allowed. The first is a function,

mapping a specific attribute value of a specific event participating in patternr to

an attribute of the derived event. The second is the mapping of a constant value

to a derived attribute.

5.1 Event Inferencing Using Probability Theory

A valid probability space needs to be defined to quantify the probabilities associated

with each event derived using an uncertain pattern. Therefore, pattern reasoning fa-

cilities need to be able to compute at any point in time t the probability that an event

e, with specific data, occurred at some time t′≤ t. In addition, the only evidence that

can be taken into account is that which is known to the system at time t. Therefore, a

(possibly different) probability space is defined for each t. Extending our discussion

in Section 2.2.1, the probability space at time t is a triple predt = (Wt ,Ft ,µt) such

that:

• Wt is a set of possible worlds, with each possible world corresponding to a spe-

cific event history that is considered possible at time t. An assumption that holds

in all practical applications is that the number of events in each event history, as

well as the overall number of events, is finite. This is because an actual system

cannot consider an infinite number of events in a finite time period. Therefore,

each possible world corresponds to an event history that is finite in size. In addi-

tion, we assume that the real world is one of the possible worlds.

294 A. Gal, S. Wasserkrug, and O. Etzion

•Ft ⊆ 2|Wt | is a σ -algebra over Wt .

• µt : Ft → [0,1] is a probability measure over Ft .

A less intuitive, yet more computationally useful way to define the probability space

is as follows. Let E1,E2, . . . be the set of EIDs representing the information about

all events of interest. It is clear that each finite event history can be represented by

a finite number of values e1, . . . ,en, such that there exists a finite number of EIDs

E1, . . . ,En where ei is a possible value of Ei. Therefore, each possible world wt ∈Wt

can be represented by such a finite number of values. In addition, as the overall

number of events is finite, there is a finite number of events E1, . . . ,Em such that Ei

could have occurred in some wt ∈Wt . Finally, if |Wt | is finite, each Ei can only have

a finite number of associated values (one for each world in Wt) in which it appears.

Note that in such a case, each possible wt can be represented by a finite number

of values Val1, . . . ,Valm, where the value Val1, . . . ,Valn for some n ≤ m is a set of

values, each such set representing the values of one of the n events that occurred

in wt , and Valn+1, . . .Valm are all {notOccurred}. From this it follows that if the

probability space predt represents the knowledge of the composite event system at

time t, this knowledge can be represented by a set of m EIDs - E1, . . . ,Em.

Therefore, in the case where |Wt | is finite, it is possible to define the probability

space predt as (Ωt ,Ft ,µ ′
t) where:

• Ωt = {Val1, . . . ,Valm} such that the tuple Val1, . . . ,Valm is the set of values corre-

sponding to an event history, where this event history is a possible world wt ∈Wt

as described above. Obviously, |Ωt | is finite.

• Ft = 2|Ωt |

• µ ′
t ({Val1, . . . ,Valm}) = µt(wt) such that wt is the world represented by

{Val1, . . . ,Valm}

Fig. 1 Alternative probability space representation

Uncertain Event Processing 295

This representation is termed the EID representation.
Figure 1 provides an illustration of two equivalent representations of the proba-

bility space. A possible world is marked as ovals in Figure 1. The figure presents

two EIDs, one at the top and the other at the bottom. The participation of an event

with a concrete value is marked by an arrow from the specific value to the possible

worlds in which it participates. It is worth noting that the bottom event does not

participate in world W1, and therefore its value there is {notOccurred}.

As a concluding remark, note that each possible set of values of EIDs,

{Val1, . . . ,Valm} corresponds to some event history. Therefore, given an EID rep-

resentation of predt , where |Ωt | is finite, it is obviously possible to create the cor-

responding finite-size possible worlds representation by defining a possible world

wt ∈Wt for each distinct set of values {Val1, . . . ,Valm}.

We now define the semantics of patterns in the probability space discussed above.

Intuitively, in such a probability space the semantics of each pattern p are as follows:

Let EH
t2
t1

be an event history. If the pattern p is applied at some time t ≥ t2, and the

set of events selected by seln
p from EH

t2
t1

is of size n and is such that predn
p on this

event is true, then the event inferred by pattern p occurred with probability probp. In

addition, in such a case, the value of its corresponding attributes is the value defined

by mappingExpressionsp. Otherwise, the event cannot be inferred.

Formally, let seln
p(EH

t2
t1

) denote the set of events selected by seln
p from EH

t2
t1

,

and let predn
p(seln

p(EH
t2
t1

)) denote the value of the predicate predn
p on seln

p(EH
t2
t1

)

(recall that if |seln
p(EH

t2
t1

)| < n then the pattern is not applied). In addition, let

val1, . . . ,valn denote the value of the attributes of the inferred event ep as defined

by mappingExpressionsp. Then, if the specific event history is known, and denot-

ing by Ep the EID corresponding to ep, we have the following:

Pr(Ep = {occurred,val1, . . . ,valn}| EH
t2
t1

) = probp i f predn
p(SELn

p(EH
t2
t1

)) = true

(1)

Pr(Ep = {notOccurred}| EH
t2
t1

) = (1− probp) i f predn
p(SELn

p(EH
t2
t1

)) = true

(2)

Pr(Ep = {notOccurred}| EH
t2
t1

) = 1 i f predn
p(SELn

p(EH
t2
t1

)) = f alse

(3)

Recall from Section 5.1 that if |Wt | is finite, the probability space can be represented

by a finite set of random variables, each with a finite set of values. In addition, note

that the pattern semantics defined above specify that the probability of the derived

event does not depend on the entire event history, but rather on the events selected by

seln
p. Therefore, let us denote by E1, . . . ,Em the set of EIDs that describe knowledge

regarding the event history, and assume, without loss of generality that {E1, . . .El}
describe the subset of {E1, . . . ,Em} that are candidates for selection by seln

p (note

that l ≥ n, as seln
p must choose the first n events that have actually occurred).

An EID E is a candidate for selection if there is a possible event history in the

296 A. Gal, S. Wasserkrug, and O. Etzion

probability space predt such that there is a set of n events which will be chosen by

seln
p from this event history, and the event e corresponding to E is in this set. Then

for all sets of values {Val1, . . . ,Valm} such that Ei = Vali, we have that

Pr(Ep|E1, . . .El) = Pr(Ep|E1, . . . ,El,El+1, ...Em) (4)

i.e., Ep is conditionally independent of {El+1, . . . ,Em} given {E1, . . .El}. Now let

Val1, . . . ,Vall denote a specific set of values of E1, . . .El . Given such a set of specific

values, the subset {e′j1 , . . . ,e
′
jn
} selected by seln

p is well defined. Therefore, we have

from the above equations that:

Pr(Ep = {occurred,val1, . . . ,valn}|Val1, . . . ,Vall) = probp i f predn
p(e

′
j1
, . . . ,e′jn) = true

(5)

Pr(Ep = {notOccurred}|Val1 , . . . ,Vall) = (1− probp) i f predn
p(e

′
j1
, . . . ,e′jn) = true

(6)

Pr(Ep = {notOccurred}| e1, . . . ,el) = 1 i f predn
p(e

′
j1
, . . . ,e′jn) = f alse

(7)

Eqs. 5-7 state that the inferred event and its values are conditionally probabilisti-

cally independent of all events prior to the inference, given exact information re-

garding the events that are candidates for selection by the corresponding selection

expression.

As a concluding remark, we note that the mechanism of this section can also

be used to predict future events, i.e., at each point in time t, events occurring at any

point in time t ′ could be inferred, based on a set of probabilistic patterns described at

the beginning of the chapter. In order to enable such prediction, however, prediction

patterns should be defined that, at time t, given a set of events, infer events whose

occurrence time t ′ is such that t ′ > t.

5.2 Event Inferencing Using Fuzzy Set Theory

Recall that in Section 4.2, we have defined events of the form “x is Ã,” associated

with a membership function µA (x). Let R be a relation, describing how complex

events are evaluated. The membership function of a complex event s over a set of m

events (x1,x2, ...,xm) is defined as follows:

M (x1,x2, ...,xm) = R(µA1
(x1) ,µA2

(x2) , ...,µAm (xm))

R determines the method according to which membership values of different fuzzy

sets can be combined. For example, consider the event “temperature of sensor s is

normal” presented above, and assume another fuzzy event “day t is hot,” with the

following membership function:

Uncertain Event Processing 297

µhot (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if x < 20◦C

0.1 if 20◦C ≤ x < 25◦C

0.15 if 25◦C ≤ x < 30◦C

0.75 if 30◦C ≤ x

We can define a complex event “temperature of sensor s is normal and day t is hot”

with the membership function

M(x1,x2) = min(µnormal (x1) ,µhot (x2))

The min operator is the most well-known representative of a large family of oper-

ators called triangular norms (t-norms, for short), routinely deployed as interpreta-

tions of fuzzy conjunctions (see, for example, the monographs [20, 15]).

A triangular norm T : [0,1]× [0,1]→ [0,1] is a binary operator on the unit inter-

val satisfying the following axioms for all x,y,z ∈ [0,1]:

T (x,1) = x (boundary condition)

x ≤ y implies T (x,z) ≤ T (y,z) (monotonicity)

T (x,y) = T (y,x) (commutativity)

T (x,T (y,z)) = T (T (x,y),z) (associativity)

The following t-norm examples are typically used as interpretations of fuzzy con-

junctions:

T m(x,y) = min(x,y) (minimum t-norm)

T p(x,y) = x · y (product t-norm)

T l(x,y) = max(x + y−1,0) (Lukasiewicz t-norm)

All t-norms over the unit interval can be represented as a combination of the triplet

(T m,T p,Tl) (see [15] for a formal presentation of this statement). For example, the

Dubois-Prade family of t-norms T d p, also used often in fuzzy set theory and fuzzy

logic, is defined using T m, T p and T l as:

T d p(x,y) =

{

λ ·T p(x
λ , y

λ) (x,y) ∈ [0,λ]2

T m(x,y) otherwise

The average operator belongs to another large family of operators termed fuzzy

aggregate operators [20]. A fuzzy aggregate operator H : [0,1]n → [0,1] satisfy the

following axioms for every x1, . . . ,xn ∈ [0,1]:

H(x1,x1, . . . ,x1) = x1 (idempotency) (8)

for every y1,y2, . . . ,yn ∈ [0,1] such that xi ≤ yi,

H(x1,x2, . . . ,xn) ≤ H(y1,y2, . . . ,yn) (increasing monotonicity) (9)

H is a continuous function (10)

298 A. Gal, S. Wasserkrug, and O. Etzion

Let x̄ = (x1, . . . ,xn) be a vector such that for all 1 ≤ i ≤ n, xi ∈ [0,1] and let

ϖ̄ = (ϖ1, ...,ϖn) be a weight vector that sums to unity. Examples of fuzzy aggregate

operators include the average operator Ha(x̄) = 1
n ∑n

1 xi and the weighted average

operator Hwa(x̄, ϖ̄) = x̄ · ϖ̄ . Clearly, average is a special case of the weighted

average operator, where ϖ1 = · · · = ϖn = 1
n
. It is worth noting that T m (the min

t-norm) is also a fuzzy aggregate operator, due to its idempotency (its associative

property provides a way of defining it over any number of arguments). However,

T p and T l are not fuzzy aggregate operators.

T-norms and fuzzy aggregate operators are comparable, using the following in-

equality:

min(x1, . . . ,xn) ≤ H(x1, . . . ,xn)

for all x1, . . . ,xn ∈ [0,1] and function H satisfying axioms 8-10.

T m is the only idempotent t-norm. That is, T m(x,x) = x.3 This becomes handy

when comparing t-norms with fuzzy aggregate operators. It can be easily proven

(see [15]) that

T l(x,y) ≤ T p(x,y) ≤ T m(x,y) (11)

for all x,y ∈ [0,1].
Following this discussion, it becomes clear that the space of possible computation

methods for the similarity of complex events is large. Additional research is required

to identify the best fuzzy operator for a given complex event.

6 Algorithms for Uncertain Inferencing

This section is devoted to the efficient inferencing in a setting of uncertainty. We

provide an example of an algorithm for uncertain inferencing of events, following

[36]. In a nutshell, the proposed algorithm works as follows: Given a set of rules and

a set of EIDs at time t, a Bayesian network is automatically constructed, correctly

representing the probability space at t according to the semantics defined in Section

5.1. Probabilities of new events are then computed using standard Bayesian network

methods.

Two important properties that must be maintained in any algorithm for event

derivation (both in the deterministic and uncertain setting), are determinism and ter-

mination [40]. Determinism ensures that for the same set of explicit EIDs, the algo-

rithm outputs the same set of derived EIDs. Termination ensures that the derivation

algorithm terminates.

An algorithm for constructing a Bayesian network in this setting should take into

account two main features. First, the Bayesian network is dynamically updated as

information about events reaches the system. This is to ensure that the constructed

network reflects, at each time point t, the probability space at t. Second, throughout

the inference process additional information beyond the Bayesian network is stored.

This additional information is used both to allow an efficient dynamic update of the

network, and to make the inference process more efficient.

3 For a binary operator f , idempotency is defined to be f (x,x) = x (similar to [20], pp. 36).

Uncertain Event Processing 299

The set of patterns is assumed to have no cycles, and a priority is assigned to each

pattern so that determinism is guaranteed. By a cycle we mean a set of complex

events that are both determined and participate in the decision making of each other.

Priority determines a unique ordering of rule activation and can be set using rule

quasi-topological ordering [1].

Recall that by definition, the occurrence time of each derived event is the time

in which the pattern was applied. Therefore, the single possible occurrence time of

each EID defines a full order on the EIDs (this single point in time for EID E is

denoted by E.occT). In addition, according to Eq. 4, the uncertainty encoded with

each EID is independent of all preceding EIDs, given the EIDs that may be selected

by the selection expression. Therefore, a Bayesian network is constructed such that

the nodes of the network consist of the set of random variables in the system event

history, and an edge exists between EID E1 and EID E2 iff E1.occT ≤ E2.occT and

E2 is an EID corresponding to an event that may be inferred by pattern p, where the

event corresponding to E1 may be selected by seln
p. A network constructed by these

principles encodes the probabilistic independence required by Eq. 4 (see [25]). This

structure is now augmented with values based on Eq. 5-7. It is worth noting that this

construction of the Bayesian network guarantees the probabilistic independence of

EIDs. Any value dependency (e.g., similar readings of close-by sensors) needs to be

captured by pattern definition.

Based on the above principles, a Bayesian network is constructed and dynami-

cally updated as events enter the system. At each point in time, nodes and edges may

be added to the Bayesian network. The algorithm below describes this dynamic con-

struction. The information regarding the new event is represented by some EID E ,

the system event history is represented by EH, and the constructed Bayesian net-

work by BN. The algorithm follows:

1. EH ← EH ∪{E}
2. Add a node for E to BN.

3. For each such pattern p in a decreasing priority order:

a. Denote by seln
p(EH) the subset of EIDs in EH that may be selected by seln

p

(these are all EIDs whose type attribute is of one of the types specified by

seln
p).

b. If there is a subset of events in seln
p(EH) that may be selected by seln

p such

that predn
p is true, add a vertex for the derived event’s EID Ep. In addition, add

edges from all events in seln
p(EH) to the event Ep.

c. For Ep, fill in the quantities for the conditional probabilities according to Eq.

5-7.

4. Calculate the required occurrence probabilities in the probability space defined

by the constructed Bayesian network.

The algorithm describes at a high level the calculation of the required probabili-

ties, omitting the details of several steps. The omitted details include the mecha-

nism for selection of events as indicated by seln
p, the evaluation of the predicates

defined by predn
p, and the exact algorithm used to infer the required probabilities

300 A. Gal, S. Wasserkrug, and O. Etzion

from the Bayesian network. In all of these cases, standard algorithms from the do-

mains of deterministic event composition and Bayesian networks may be used and

extended. The specific algorithms used for these tasks will determine the complex-

ity of our algorithm. However, the dominant factor will be the calculation of the

required probabilities from the Bayesian network, which is known to be compu-

tationally expensive. Therefore, ways to speed up this step, including reduction in

network size and approximate computation, are topics that warrants future research

(see discussion in Section 7).

6.1 Inference Example

This section illustrates the above algorithm using a specific example. Assume that

in the system there exists a pattern p1 designed to recognize an illegal stock trading

operation, and which is defined as follows: seln
p1

is

〈ε1 ∈ stockSell,ε2 ∈ stockPurchase〉

predn
p1

is

(ε1.occT ≤ ε2.occT ≤ ε1.occT +5)∧ (ε1.stockTicker = ε2.stockTicker)∧ (ε1.customerID = ε2.customerID)

eventTypep1
is illegalStockTrading, and mappingExpressionp1

consists of two

functions: The first maps ε1.stockTicker to the stockTicker attribute of the inferred

event, and the second maps ε1.customerID to the customerID attribute of the in-

ferred event. Finally, probp is 0.7. The intuition underlying such a definition is that

the sale of a stock, followed closely by a purchase of the same stock, is an indication

of suspicious activity.

Consider now the following information about the possible occurrence of an

event e1 such that

e1 ∈ stockSell,e1.occT = 5,e1.stockTicker = “IBM”,e1.customerID = “C1”

In addition, the probability that this event occurred is 0.6. This information is rep-

resented in the system by an EID E1 with two possible states: {notOccurred} and

{occurred,stockSell,5, IBM,Customer1} (we will abbreviate the second state by

{occurred}. The constructed Bayesian network will consist of a single node E1

with Pr(E1 = {notOccurred}) = 0.4 and Pr(E1 = {occurred}) = 0.6.

Another information is also received regarding the possible occurrence of an ad-

ditional event

e2 ∈ stockSell,e2.occT = 9,e2.stockTicker = “IBM”,e2.customerID = “C1”

This is represented in the system by the EID E2 with two states as above, which is

added to the Bayesian network. At this stage, the Bayesian network consists of two

disconnected nodes, E1 and E2.

Uncertain Event Processing 301

Fig. 2 Inference Example, Part I

Fig. 3 Inference Example, Part II

Note that although two possible events have occurred, there is no possible world

in which two events are selected by seln
p1

, and, therefore, the pattern p1 is not recog-

nized. Now, assume that information regarding a third event e3 reaches the system,

such that

e3 ∈ stockPurchase,e3.occT = 5,e3.stockTicker = “IBM”,e3.customerID = “C1”

This is represented in the system by the EID E3. Now there is one possible world in

which there is a non-zero probability that Ep occurs - this is the world in which the

event history is e2,e3. Therefore, a node Ep is added to the network, and edges will

be added from E1, E2, E3 to Ep. This will result in the Bayesian network depicted

in Figure 2.

In addition, the event corresponding to the EID Ep occurs only if e1 did not occur,

and e2 and e3 both occurred. Therefore, according to Eq. 5-7,

Pr(Ep = {occurred}|E1 = {notOccurred},E2 = {occurred},E3 = {occurred}) = 0.7

302 A. Gal, S. Wasserkrug, and O. Etzion

and

Pr(Ep = {occurred}|E1,E2,E3) = 0

for all other value combinations of E1, E2 and E3.

Finally, if we define an additional pattern p′ which states that an event has a non-

zero occurrence probability whenever ep and an additional event of type e4 occurs,

and e4 is signaled, this will result in the network depicted in Figure 3.

7 Conclusions

In this chapter we have provided the basics of uncertain event processing. We have

provided a basic model of uncertain events, demonstrated the use of probability

theory, fuzzy set theory, and possibility theory in measuring uncertainty of events

and the inferencing of such uncertainty in complex events. A specific simple event

language is presented, highlighting the role of uncertainty management in event-

based systems.

The challenges, associated with the use of uncertainty in event processing, may

be classified into three categories, namely model, usability, and implementation is-

sues, as detailed next.

In the modeling area, we have shown that probability-based models are suitable

for some cases, but for other cases, there are more suitable models such as possibility

theory or fuzzy set theory. The challenge is to construct a flexible generalized model

that can match the appropriate model for a specific implementation.

In the usability area, a major difficulty is the practicality of obtaining the required

rules and probabilities. As in many cases, it may be difficult even for domain experts

to correctly specify the various cases as well as the probabilities associate with them.

Machine learning techniques may apply for automatic generation of rules and prob-

abilities, but the state-of-the-art in this area supports mining only simple patterns;

furthermore, in some cases, the history is not a good predictor of the future. Initial

work regarding automatic derivation of such rules appears in [34].

In the implementation area, event processing systems may be required to comply

with scalability and performance requirements. Therefore, there is a need to develop

algorithmic performance improvements to the current models such as Bayesian net-

works, which are known to be computationally intensive. See [37] for some initial

steps in this direction. Possible additional directions for future work include per-

formance improvements of existing derivation algorithms, either by general algo-

rithmic improvements, or by developing domain and application specific efficient

algorithms.

References

1. Adi, A.: A Language and an Execution Model for the Detection of Reactive Situations.

PhD thesis, Technion – Israel Institute of Technology (2003)

2. Adi, A., Etzion, O.: Amit - the situation manager. The International Journal on Very

Large Data Bases 13(2), 177–203 (2004)

Uncertain Event Processing 303

3. The Apama home page,

http://web.progress.com/en/apama/index.html
4. The AutoPilot home page,

http://www.nastel.com/autopilot-m693.80.html
5. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press,

Cambridge (1990)

6. Balazinska, M., Khoussainova, N., Suciu, D.: PEEX: Extracting probabilistic events

from rfid data. In: Proceedings of the IEEE CS International Conference on Data En-

gineering, Cancun, Mexico (2008)

7. Breese, J.S., Goldman, R.P., Wellman, M.P.: Introduction to the special section on

knowledge-based construction of probabilistic and decision models. IEEE Transactions

on Systems, Man and Cybernatics 24(11), 1577 (1994)

8. Constantin, A., Gregory, C.: A structurally and temporally extended bayesian belief net-

work model: Definitions, properties, and modelling techniques. In: Proceedings of the

12th Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996), pp. 28–

39. Morgan Kaufmann, San Francisco (1996)

9. Drakopoulos, J.: Probabilities, possibilities and fuzzy sets. International Journal of Fuzzy

Sets and Systems 75(1), 1–15 (1995)

10. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of

Uncertainty. Plenum Press, New York (1988)

11. Etzion, O., Niblett, P.: Event Processing in Action. Manning publications (2010)

12. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and

evaluating automatic semantic reconciliation. VLDB Journal 14(1), 50–67 (2005)

13. Green, T., Tannen, V.: Models for incomplete and probabilistic information. IEEE Data

Eng. Bull. 29(1), 17–24 (2006)

14. Gustavo, A.-F., Luis, S.: A temporal bayesian network for diagnosis and prediction. In:

Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence

(UAI 1999), pp. 13–20. Morgan Kaufmann, San Francisco (1999)

15. Hajek, P.: The Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht (1998)

16. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46(3),

311–350 (1990)

17. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)

18. Kanazawa, K.: A logic and time nets for probabilistic inference. In: AAAI, pp. 360–365

(1991)

19. Kjaerul, U.: A computational scheme for reasoning in dynamic probabilistic networks.

In: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, pp.

121–129 (1992)

20. Klir, G.J., Yuan, B. (eds.): Fuzzy Sets and Fuzzy Logic. Prentice-Hall, Englewood Cliffs

(1995)

21. Liebig, C., Cilia, M., Buchman, A.: Event composition in time-dependant distributed

systems. In: Proceedings of the Fourth IFCIS International Conference on Cooperative

Information Systems, pp. 70–78. IEEE Computer Society Press, Los Alamitos (1999)

22. Liu, H., Jacobsen, H.-A.: Modeling uncertainties in publish/subscribe systems. In: Pro-

ceedings of the IEEE CS International Conference on Data Engineering, pp. 510–522

(2004)

23. The Netcool impact policy language home page, http://www-01.ibm.com/
software/tivoli/products/netcool-impact/

24. The Oracle cep home page, http://www.oracle.com/technologies/soa/
complex-eventprocessing.html

http://web.progress.com/en/apama/index.html
http://www.nastel.com/autopilot-m693.80.html
http://www-01.ibm.com/software/tivoli/products/netcool-impact/
http://www-01.ibm.com/software/tivoli/products/netcool-impact/
http://www.oracle.com/technologies/soa/complex-eventprocessing.html
http://www.oracle.com/technologies/soa/complex-eventprocessing.html

304 A. Gal, S. Wasserkrug, and O. Etzion

25. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann, San Francisco (1988)

26. Raiffa, H.: Decision Analysis: Introductory Lectures on Choices under Uncertainty.

Addison-Wesley, Reading (1968)

27. The RTI data distribution service, http://www.rti.com/products/dds/
28. The RuleCore home page, http://www.rulecore.com/
29. Soulé, R., Hirzel, M., Grimm, R., Gedik, B., Andrade, H., Kumar, V., Wu, K.-L.: A

universal calculus for stream processing languages. In: Proceedings of the 19th European

Symposium on Programming, pp. 507–528 (2010)

30. The StreamBase home page, http://www.streambase.com/
31. The Sybase cep home page, http://www.sybase.com/products/

financialservicessolutions/sybasecep
32. The Tibco cep home page, http://www.tibco.com/products/soa/

messaging/rendezvous/default.jsp
33. The Tibco rendezvous home page, http://www.tibco.com/software/

complex-eventprocessing/businessevents/default.jsp
34. Turchin, Y., Wasserkrug, S., Gal, A.: Rule parameter tuning using the prediction-

correction paradigm. In: Proceedings of the third International Conference on Distributed

Event-Based Systems (DEBS 2009), Nashville, TN, USA (July 2009)

35. Wasserkrug, S., Gal, A., Etzion, O.: A model for reasoning with uncertain rules in event

composition systems. In: Proceedings of the 21st Conference in Uncertainty in Artificial

Intelligence (UAI 2005), Edinburgh, Scotland, pp. 599–608 (July 2005)

36. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Complex event processing over un-

certain data. In: Proceedings of the 2nd International Conference on Distributed Event-

Based Systems (DEBS 2008), Rome, Italy (2008)

37. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Efficient processing of uncertain events

in rule-based systems. IEEE Transactions on Knowledge and Data Engineering, TKDE

(2010) (accepted for publication)

38. The WebSphere business events home page,

http://www-01.ibm.com/software/integration/wbe/
39. The WebSphere MQ home page,

http://www-01.ibm.com/software/integration/wmq/
40. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules for Advanced

Database Processing. Morgan Kaufmann, San Francisco (1996)

41. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

http://www.rti.com/products/dds/
http://www.rulecore.com/
http://www.streambase.com/
http://www.sybase.com/products/financialservicessolutions/sybasecep
http://www.sybase.com/products/financialservicessolutions/sybasecep
http://www.tibco.com/products/soa/messaging/rendezvous/default.jsp
http://www.tibco.com/products/soa/messaging/rendezvous/default.jsp
http://www.tibco.com/software/complex-eventprocessing/businessevents/default.jsp
http://www.tibco.com/software/complex-eventprocessing/businessevents/default.jsp
http://www-01.ibm.com/software/integration/wbe/
http://www-01.ibm.com/software/integration/wmq/

Index

α Network 134
β Network 135

access control 174
ACL - Agent Communication Language

17
action 173, 175
Adapter Framework 127, 129
Agent architecture 11, 36, 37
aggregate 258

and pattern detect EPA 258
context 257
segmentation context 267
spatial contexts 262
state-oriented context 266
temporal context 267

alternative actions 176, 188
Anomaly Detection 197
application of a substitution 89
Asynchronous Communication 131
atomic event 100, 101
attribute-based semantics 180, 188
autonomic behavior 12

backward chaining 108
binary event goals 110
BPM - Business Process Management

22
Business Rules Engine 129, 131, 145
Business Rules Processing 130

CEDR - Complex Events Detection
and Response 19

Central Instance 128

CEP - Complex Event Processing 11,
16, 22, 28, 40

checking rules 107
chronological policy 114, 116
classifier 38
collaborative working 12, 27
complete event 183, 184
complex event 50, 100, 174, 176, 187
Complex Event Processing (CEP) 50
complex event query 50
Complex Event Relational Algebra

(CERA) 74
composition operators 51
concurrent event patterns 111
condition 173, 175
consumption policies 113
consumption policy 104
Context composition 267
context dimensions 259
context partition 257, 266
CORBA - Common Object Request

Broker Architecture 21
CSCW - Computer Supported

Cooperative Work 27
CWE - Collaborative Working

Environment 27

Data Centre Monitoring 204
Data Processing Framework 128, 129
Data Quality 136
Data Quality Algebra 138
Data Quality Management 138
Data Quality Window 138
data stream query languages 54

306 Index

DBMS - Data Base Management
Systems 16

derived event 100
Design-time 127
DHT - Distributed Hash Table 35
distributed event processing 189
Distributed Information Flow Control

163, 165
domains

federation 152, 161
Domain Specific Language 132, 135
Dynamic Sampling Frequency

Management (DSFM) 209

ECA - Event Condition Action 16,
19, 25, 26, 29, 39

ECAA Rules 175, 176, 184
ECA Rules 173, 174
ED - Event Dispatcher 33
ED-SOA - Event Driven Service

Oriented Architecture 11
EDA - Event Driven Architecture 22
EDBPM - Event-Driven Business

Process Management 22
entailment 90
entity distance location 265
Environmental Pattern Detection

201
EP - Event Processor 12, 13, 15, 36,

37
EPA (Event Processing Agent) 258
Equinox 128
ESB - Enterprise Service Bus 22, 23
ETALIS 102, 121
ETALIS Language for Events 99,

102–106, 116, 121, 122
Evaluation 133, 141
event 49, 99, 173, 174

attributes 154
broker 154, 155, 159
type 154, 158, 161, 168

event-driven architecture 23, 28, 37
event-driven backward chaining rules

107
event-driven distributed system 11,

17, 20, 21, 36, 39, 40
event attribute 49
event binarization 107
event channel 14, 15, 21, 37
event composition 14

event conjunction 110
event construction 80
event consumption modes 175, 177,

187, 189
event data 49
event detection graph 186
event detection modes 180, 184, 189
event detector 14, 18, 25, 26, 33, 37,

40
event disjunction 111
Event Distance Location 266
event enrichment 20
Event Filter 130
Event interval 261
event life cycle 41
event matching 76
event model 105
event occurrence time 49
event pattern 13, 16, 18, 19, 25, 37
event processing agent

instance of 258
Event processing applications 267
event processing engine 14–16, 31, 41
Event Query Language (EQL) 50
event reasoning 100, 190
event rule 102
Event Stream Processing 129, 130,

135, 144
event streams 13, 19, 25, 50, 105, 257
event subscriber 12
event subscriber list 187
event tree 16
event type 49
event workflows 18
Evolution Strategy 141
Example Applications 198

Context-Aware Computing 204
Data Centre Monitoring 204
Environmental 201
Intrusion Detection 205
Network Monitoring 205
Spacecraft and Telemetry 199
Spatial Structures 202
Vital Signs Monitoring 198

Explicit context 259

failed event 184
filter EPA 258
finite differencing 86

Index 307

FIPA - Foundation for Intelligent
Physical Agents 17, 39

fixed location context
definition 263
examples 265

fixed temporal interval 261
fixpoint interpretation 94
Footprint 128
forward chaining 108

geofence 263
geospatial characteristics 262
GINSENG 125
GMA - Grid Monitoring Architecture

31
goal inserting rules 107
GPS - Global Positioning System 15
Grid architecture 11, 29
grounding substitution 89

Hierarchical Mean Shift 203

immediate consequence operator 93
incremental evaluation 82
interpretation 90
interval-based semantics 176–178
iRODS - Integrated Rule-Oriented

Data System 29–31

JBoss Drools 130, 131
JMS - Java Message Service 23
JSON - JavaScript Object Notation

25

Kalman Filter 211
KB - Knowledge Base 28, 29, 36, 39,

41
Kernel Feature Space 199

Latency 137
Linear Road Benchmark 133
local event detector 187
Location Estimation 211
logic languages 62

Management Console 128
merging of time intervals 79
Middleware 126, 142
Middleware Architecture 126
minimal event model 105

model 91
Monte-Carlo-Search 141
multi-agent system 21, 36–40

neural network 38
NOT event operator 181
Novelty Detection 197

OASIS - Organization for the Advance-
ment of Structured Information
Standards 22

occurrence time 265
occurrence time of a tuple 83
OMG - Object Management Group

22
Online Data Mining 196
Optimization Framework 139
Oracle CEP 269
OSGi bundle 128
OSGi Service Platform 128
out-of-order event 101

P2P (Peer-to-Peer) 11, 20, 21, 32
partial event 183, 184
Pattern 196
Pattern Detection 197

Approximate 208
Evaluation 210
Exact 208
Labels 198
Non-Parametric 208
on Spatial Domain 211
on Temporal Domain 207
Platforms 210
Probabilistic 208
Scalability 209
Score 198
Symbolic 207

Performance 136
Performance Control 136
Performance Monitoring 128, 136
pervasive (computing system) 12, 41
PIPES 130
point-based semantics 177
primitive event 13, 16, 26
Principal Component Analysis 205
pro-active (agents) 12, 36–40
production rules 57
Public Key Infrastructure (PKI) 154
publish-subscribe 17, 20, 33

308 Index

Publish/Subscribe 127, 128, 130, 143
publish/subscribe 154, 155, 157, 158

Hermes 155

QoS - Quality of Service 24
Quality-driven Optimization 139
query plan with materialization points

84
Query Processing and Distribution

128

RB - Rule Base 18, 30, 36
recent policy 114, 115
relative timer events 77
Reliability 137
renaming 79
Rete Algorithm 131, 132
Rete Network 132, 135
ReteOO Algorithm 131
RFID - Radio Frequency Identification

13, 15
RIA - Rich Internet Applications 24,

25
Role-Based Access Control 155, 157,

165, 167
appointment certificates 157
OASIS 156, 165
parametrised 156, 157, 165

RuleCore 272
rule-based reasoning 190
rule subscriber list 187
Runtime 127
Runtime Nodes 128

segmentation-oriented context 258,
266

scheduling 12, 23, 29, 32
Sequence event operator 176, 177,

180
simple event 50, 174, 176, 187
simple event query 50
simulation 89
sliding event interval context

definition 262
sliding fixed interval 261
Sliding Window 197
SOA - Service Oriented Architecture

11, 20–25, 40
SOAP - Simple Object Access Protocol

24

Source-side Filtering 196
outliers 196
Thresholds 196
unknown thresholds 196

Spacecraft and Telemetry Data 199
spatial context 258
spatial relation

contains 263
disjoint 264
equals 264
overlaps 264
touches 264

state-oriented context 258
Stateful Event Processing 129
Stateless Event Processing 130
stratification of programs in an EQL

93
StreamSQL 268
substitution 89
substitution set 89
Support Vector Machines 199
Support Vector Regression 204
Sybase Aleri CEP 274

temporal anti-semi-join 78
Temporal context 257, 260
temporal join 78
temporal preservation 83
timed state machines 59
transform EPA 258

ubiquitous (system) 24–26
unrestricted policy 104, 114
UPnP - Universal Plug and Play 25
UUID 160

variable assignment 105
VO - virtual organization 12, 21,

27–29

Web-based (system) 12, 20, 21, 24
window 257
Wireless Sensor Actuator Networks

196
Wireless Sensor Network 125
Wireless Sensor Network — WSN

195
workflow 15, 18, 19, 28
Working Memory Element 132
WS - Web Services 23–25

Author Index

Adaikkalavan, Raman 173
Anicic, Darko 99

Bacon, Jean 151
Bizarro, Pedro 217
Brodt, Simon 47, 71
Bry, François 47, 71

Cerri, Stefano A. 239
Chakravarthy, Sharma 173
Costan, Alexandru 11
Cristea, Valentin 11

Dobre, Ciprian 11
Dugenie, Pascal 239

Eckert, Michael 47, 71
Etzion, Opher 257, 279
Eyers, David M. 151

Fodor, Paul 99

Gal, Avigdor 279
Gawlick, Dieter 217
Guerra, Diogo 217

Hackenbroich, Gregor 125
Hausmann, Steffen 47, 71
Helmer, Sven 1

Jerzak, Zbigniew 125

Klein, Anja 125

Magid, Yonit 257
Migliavacca, Matteo 151
Moody, Ken 151

Papagiannis, Ioannis 151
Pietzuch, Peter 151
Pop, Florin 11
Poppe, Olga 47, 71
Poulovassilis, Alex 1

Rabinovich, Ella 257
Roussos, George 195
Rudolph, Sebastian 99

Shand, Brian 151
Skarbovsky, Inna 257
Stojanovic, Nenad 99
Studer, Rudi 99
Stühmer, Roland 99

Wasserkrug, Segev 279

Xhafa, Fatos 1

Zolotorevsky, Nir 257
Zoumboulakis, Michael 195

	Introduction to Reasoning in Event-Based Distributed Systems
	Event-Based Distributed Systems
	Reasoning in Event-Based Distributed Systems
	Overview of the Book
	Concluding Remarks
	References

	Distributed Architectures for Event-Based Systems
	Introduction and Motivation
	Background
	Event-Driven Distributed System Architectures
	Complex Events Detection
	Classes of Event-Driven Distributed Architectures
	Event-Driven SOA
	Event-Driven Collaboration
	Event-Driven Grids
	P2P Systems
	Agent Systems

	Conclusions and Future Work
	References

	A CEP Babelfish: Languages for Complex Event Processing and Querying Surveyed
	Introduction
	Terminology
	Identification of Language Styles
	Composition Operators
	General Idea
	Sensor Network Use Case
	Summary

	Data Stream Query Languages
	General Idea
	Sensor Network Use Case
	Summary

	Production Rules
	General Idea
	Sensor Network Use Case
	Summary

	Timed State Machines
	General Idea
	Sensor Network Use Case
	Summary

	Logic Languages
	General Idea
	Sensor Network Use Case
	Summary

	Application Areas of the Language Styles
	Combination of Different Language Styles
	Conclusion
	References

	Two Semantics for CEP, no Double Talk: Complex Event Relational Algebra (CERA) and Its Application to XChangeEQ
	Introduction
	CEP Examples
	CERA: An Operational Semantics for Event Query Languages
	Purpose and Desiderata
	CERA: Complex Event Relational Algebra
	Translation into CERA
	Incremental Evaluation

	A Declarative Semantics for Event Query Languages
	Purpose, Necessity and Desiderata
	Model Theory and Fixpoint Theory

	Two Semantics, no Double Talk
	Conclusion and Outlook
	References

	ETALIS: Rule-Based Reasoning in Event Processing
	Introduction
	Problem Statement
	Syntax
	Declarative Semantics
	Operational Semantics
	Event Consumption Policies
	Consumption Policies Defined on Time Points
	Consumption Policies Defined on Time Intervals

	Implementation and Experimental Results
	Related Work
	Conclusions and Future Work
	References

	GINSENG Data Processing Framework
	Introduction and Motivation
	System Architecture
	Core Components
	Core Technology

	Data Processing Framework
	Business Rules Engine
	BRM and Publish/Subscribe
	BRE and ESP
	Domain Specific Languages for Rule Definitions

	Performance Control in Data Processing Framework
	Performance Monitoring Infrastructure
	Performance and Data Quality Algebra
	Performance Improvement

	Related Work
	Middleware Technology
	Publish/Subscribe Communication
	Event Stream Processing
	Business Rules Engines

	Summary
	References

	Security Policy and Information Sharing in Distributed Event-Based Systems
	Introduction
	Integrating Access Control into Event-Based Systems
	Event Type Specification and Ownership in a Single Domain
	Event Communication: Advertise, Publish and Subscribe
	Role-Based Access Control
	OASIS Role-Based Access Control
	Access Control Policy for Publish/Subscribe Clients

	Multi-domain Security Architecture
	Management of Event Names, Types and Policies
	Inter-domain Communication Control

	End-to-End Security with Information Flow Control
	Distributed Information Flow Control
	Event Security with DIFC
	Enforcing OASIS Security with DIFC

	Reasoning about Event Security
	Policy-Based Reasoning
	Event Security Reasoning with DIFC Labels

	Conclusions
	References

	Generalization of Events and Rules to Support Advanced Applications
	Introduction
	Alternative Actions
	Event Generalization
	Interval-Based Semantics
	Generalization of Events

	Potential vs. Actual Events
	Event Detection Modes
	Binary Event Operator Semantics
	Ternary Event Operator Semantics
	ECAA Rule Specification

	Event Detection Graph Extensions
	Extended Event Detection Graph

	Distributed Event Processing and Reasoning
	Distributed Event Processing
	Reasoning

	Conclusions
	References

	Pattern Detection in Extremely Resource-Constrained Devices
	Introduction
	Objectives, Motivation and Contributions
	Review of Work in Pattern Detection in WSAN Data
	Spacecraft and Telemetry Data
	Environmental Pattern Detection
	Spatial Structure Pattern Detection
	Data Centre Monitoring and Context-Aware Computing
	Network Monitoring and Intrusion Detection

	Symbolic and Stochastic Pattern Detection
	Temporal Pattern Detection Using a Symbolic Representation
	Spatial Pattern Detection and Source Location Estimation

	Conclusions
	References

	Smart Patient Care
	Introduction
	Contributions
	Chapter Outline

	The Technology
	Oracle Database
	Other Technologies

	Architecture
	Implementation
	Event Triggering
	Rules Evaluation
	Rules Customization
	Rules Composability
	Data Mining Integration

	Alternatives
	State of Work
	Conclusions and Future Work
	References

	The Principle of Immanence in Event-Based Distributed Systems
	Introduction
	The Principle of Immanence
	Immanence on the Web

	Background
	Virtual Collaborative Environments on Grid
	VO Management Models
	Grid and MAS Convergence
	Discussion

	About Agora
	Agora Conceptual Model
	Persistent Core Services
	Four Interaction Mechanisms
	Experimentation on Agora

	Conclusion
	References

	Context-Based Event Processing Systems
	Introduction: Context in Event Processing Modeling
	Temporal Context
	Fixed Temporal Interval
	Event Interval
	Sliding Fixed Interval
	Sliding Event Interval

	Spatial Context
	Fixed Location
	Entity Distance Location
	Event Distance Location

	Segmentation Oriented Context
	State-Oriented Context
	Context Composition
	Context Realization within Current Event Processing Products
	Stream Base StreamSQL
	Oracle EPL
	RuleCore Reakt
	Sybase Aleri -Coral8 and CCL
	IBM Websphere Business Events

	Conclusion
	References

	Event Processing over Uncertain Data
	Introduction
	Preliminaries
	Event Processing
	Uncertainty Management Mechanisms

	 Taxonomy of Event Uncertainty
	Dimensions of Event Uncertainty
	Causes of Event Uncertainty

	Handling Uncertainty at the Source
	Probability Theory-Based Representation
	Fuzzy Set Theory-Based Representation

	Handling Inference Uncertainty
	Event Inferencing Using Probability Theory
	Event Inferencing Using Fuzzy Set Theory

	Algorithms for Uncertain Inferencing
	Inference Example

	Conclusions
	References

	Cover
	Front Matter
	Introduction to Reasoning in Event-Based Distributed Systems
	Event-Based Distributed Systems
	Reasoning in Event-Based Distributed Systems
	Overview of the Book
	Concluding Remarks
	References

	Distributed Architectures for Event-Based Systems
	Introduction and Motivation
	Background
	Event-Driven Distributed System Architectures
	Complex Events Detection
	Classes of Event-Driven Distributed Architectures
	Event-Driven SOA
	Event-Driven Collaboration
	Event-Driven Grids
	P2P Systems
	Agent Systems

	Conclusions and Future Work
	References

	A CEP Babelfish: Languages for Complex Event Processing and Querying Surveyed
	Introduction
	Terminology
	Identification of Language Styles
	Composition Operators
	General Idea
	Sensor Network Use Case
	Summary

	Data Stream Query Languages
	General Idea
	Sensor Network Use Case
	Summary

	Production Rules
	Sensor Network Use Case
	General Idea

	Timed State Machines
	General Idea
	Summary
	Sensor Network Use Case
	Summary

	Logic Languages
	General Idea
	Sensor Network Use Case

	Application Areas of the Language Styles
	Summary

	Combination of Different Language Styles
	Conclusion
	References

	Two Semantics for CEP, no Double Talk: Complex Event Relational Algebra (CERA) and Its Application to XChangeEQ
	Introduction
	CEP Examples
	CERA: An Operational Semantics for Event Query Languages
	Purpose and Desiderata
	CERA: Complex Event Relational Algebra
	Translation into CERA
	Incremental Evaluation

	A Declarative Semantics for Event Query Languages
	Purpose, Necessity and Desiderata
	Model Theory and Fixpoint Theory

	Two Semantics, no Double Talk
	Conclusion and Outlook
	References

	ETALIS: Rule-Based Reasoning in Event Processing
	Introduction
	Problem Statement
	Syntax
	Declarative Semantics
	Operational Semantics
	Event Consumption Policies
	Consumption Policies Defined on Time Points
	Consumption Policies Defined on Time Intervals

	Implementation and Experimental Results
	Related Work
	Conclusions and Future Work
	References

	GINSENG Data Processing Framework
	Introduction and Motivation
	System Architecture
	Core Components
	Core Technology

	Data Processing Framework
	Business Rules Engine
	BRM and Publish/Subscribe
	BRE and ESP
	Domain Specific Languages for Rule Definitions

	Performance Control in Data Processing Framework
	Performance and Data Quality Algebra
	Performance Monitoring Infrastructure
	Performance Improvement

	Related Work
	Middleware Technology
	Publish/Subscribe Communication
	Event Stream Processing
	Business Rules Engines

	Summary
	References

	Security Policy and Information Sharing in Distributed Event-Based Systems
	Introduction
	Integrating Access Control into Event-Based Systems
	Event Communication: Advertise, Publish and Subscribe
	Event Type Specification and Ownership in a Single Domain
	Role-Based Access Control
	OASIS Role-Based Access Control
	Access Control Policy for Publish/Subscribe Clients

	Multi-domain Security Architecture
	Management of Event Names, Types and Policies
	Inter-domain Communication Control

	End-to-End Security with Information Flow Control
	Distributed Information Flow Control
	Event Security with DIFC
	Enforcing OASIS Security with DIFC

	Reasoning about Event Security
	Policy-Based Reasoning
	Event Security Reasoning with DIFC Labels

	Conclusions
	References

	Generalization of Events and Rules to Support Advanced Applications
	Introduction
	Alternative Actions
	Event Generalization
	Interval-Based Semantics
	Generalization of Events

	Potential vs. Actual Events
	Event Detection Modes
	Binary Event Operator Semantics
	Ternary Event Operator Semantics
	ECAA Rule Specification

	Event Detection Graph Extensions
	Extended Event Detection Graph

	Distributed Event Processing and Reasoning
	Distributed Event Processing
	Reasoning

	References
	Conclusions

	Pattern Detection in Extremely Resource-Constrained Devices
	Introduction
	Objectives, Motivation and Contributions
	Review of Work in Pattern Detection in WSAN Data
	Spacecraft and Telemetry Data
	Environmental Pattern Detection
	Spatial Structure Pattern Detection
	Data Centre Monitoring and Context-Aware Computing
	Network Monitoring and Intrusion Detection

	Symbolic and Stochastic Pattern Detection
	Temporal Pattern Detection Using a Symbolic Representation
	Spatial Pattern Detection and Source Location Estimation

	Conclusions
	References

	Smart Patient Care
	Introduction
	Contributions

	The Technology
	Oracle Database
	Chapter Outline
	Other Technologies

	Architecture
	Implementation
	Event Triggering
	Rules Evaluation
	Rules Customization
	Rules Composability
	Data Mining Integration

	Alternatives
	Conclusions and Future Work
	State of Work
	References

	The Principle of Immanence in Event-Based Distributed Systems
	Introduction
	The Principle of Immanence
	Immanence on the Web

	Background
	Virtual Collaborative Environments on Grid
	VO Management Models
	Grid and MAS Convergence
	Discussion

	About Agora
	Agora Conceptual Model
	Persistent Core Services
	Four Interaction Mechanisms
	Experimentation on Agora

	Conclusion
	References

	Context-Based Event Processing Systems
	Introduction: Context in Event Processing Modeling
	Temporal Context
	Fixed Temporal Interval
	Event Interval
	Sliding Fixed Interval

	Spatial Context
	Sliding Event Interval
	Fixed Location
	Entity Distance Location

	Segmentation Oriented Context
	Event Distance Location

	Context Composition
	State-Oriented Context
	Context Realization within Current Event Processing Products
	Stream Base StreamSQL
	Oracle EPL
	RuleCore Reakt
	Sybase Aleri -Coral8 and CCL
	IBM Websphere Business Events

	References
	Conclusion

	Event Processing over Uncertain Data
	Introduction
	Preliminaries
	Event Processing
	Uncertainty Management Mechanisms

	Taxonomy of Event Uncertainty
	Dimensions of Event Uncertainty
	Causes of Event Uncertainty

	Handling Uncertainty at the Source
	Probability Theory-Based Representation

	Handling Inference Uncertainty
	Fuzzy Set Theory-Based Representation
	Event Inferencing Using Probability Theory
	Event Inferencing Using Fuzzy Set Theory

	Algorithms for Uncertain Inferencing
	Inference Example

	References
	Conclusions

	Back Matter

