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Preface

Complex Automated Negotiations have been widely studied and are becom-
ing an important, emerging area in the field of Autonomous Agents and
Multi-Agent Systems. In general, automated negotiations can be complex,
since there are a lot of factors that characterize such negotiations. These fac-
tors include the number of issues, dependency between issues, representation
of utility, negotiation protocol, negotiation form (bilateral or multi-party),
time constraints, etc. Software agents can support automation or simulation
of such complex negotiations on the behalf of their owners, and can provide
them with adequate bargaining strategies. In many multi-issue bargaining set-
tings, negotiation becomes more than a zero-sum game, so bargaining agents
have an incentive to cooperate in order to achieve efficient win-win agree-
ments. Also, in a complex negotiation, there could be multiple issues that are
interdependent. Thus, agent’s utility will become more complex than simple
utility functions. Further, negotiation forms and protocols could be differ-
ent between bilateral situations and multi-party situations. To realize such a
complex automated negotiation, we have to incorporate advanced Artificial
Intelligence technologies includes search, CSP, graphical utility models, Bayes
nets, auctions, utility graphs, predicting and learning methods. Applications
could include e-commerce tools, decision-making support tools, negotiation
support tools, collaboration tools, etc.

These issues are explored by researchers from different communities in
Autonomous Agents and Multi-Agent systems. They are, for instance, being
studied in agent negotiation, multi-issue negotiations, auctions, mechanism
design, electronic commerce, voting, secure protocols, matchmaking & bro-
kering, argumentation, and co-operation mechanisms. This book is also edited
from some aspects of negotiation researches including theoretical mechanism
design of trading based on auctions, allocation mechanisms based on nego-
tiation among multiple agents, case-study and analysis of automated nego-
tiations, data engineering issues in negotiations, and so on. Each paper was
carefully reviewed by at least 2 experts in the field.
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Simulation of Sequential Auction Markets Using

Priced Options to Reduce Bidder Exposure

Lonneke Mous1, Valentin Robu2, and Han La Poutré3

1 CWI, Dutch National Center for Mathematics and Computer Science,

Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

Erasmus University Rotterdam, Econometrics Institute, P.O. Box 1738,

3000DR Rotterdam, NL
2 University of Southampton, School of Electronics and Computer Science, Southampton,

United Kingdom
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3 CWI, Dutch National Center for Mathematics and Computer Science,
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hlp@cwi.nl

Summary. This paper studies the benefits of using priced options for solving the

exposure problem that bidders with valuation synergies face in sequential auctions.

We consider a model in which complementary-valued items are auctioned sequen-

tially by different sellers, who have the choice of either selling their good directly or

through a priced option, after fixing its exercise price. We analyze this model from

a decision-theoretic perspective and we show, for a setting where the competition is

formed by local bidders, that using options can increase the expected profit for both

buyers and sellers.

We then perform a comprehensive experimental analysis of our mechanism for

different market settings, both with a single synergy bidder, as well as with multiple

synergy bidders are active simultaneously. By comparison to our previous work

[18, 17], this paper does not focus on analytical results and detailed proofs for the

theorems (which are comprehensively reported in Mous et. al. ’08 [18]), but it does

give more detailed experimental results than reported in previous wok.

1 Introduction

Electronic markets represent key coordination mechanisms in multi-agent systems.

They allow parties to efficiently allocate resources, tasks and capabilities in large

distributed systems, composed of self-interested agents. The rapid rise in online

electronic commerce [16, 14], decentralised logistics [31, 21], or even keyword

markets in online search [11, 24] have made the development of agent technolo-

gies capable of automating such processes increasingly important.

Two main directions of research have emerged in automating such complex agent

interactions. One direction of research focuses on designing agents that are able

to represent their owners in complex bargaining situations [7, 8, 9, 10], such as

negotiating complex contracts in cases where the bargaining agents have non-linear

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 1–25.
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2 L. Mous, V. Robu, and H. La Poutré

utility functions over the different issues to be agreed upon [6, 15, 25, 22, 23]. The

other main important direction is designing agents that are able to bid in a set of

combinatorial, concurrent or sequentially-occurring auctions.

As shown in [1, 3, 20] (among others), a crucial challenge in designing bidding

agents that are able to participate in a sequence of auctions is the exposure problem.

The exposure problem appears whenever a bidder with complementary valuations

(i.e. synergies) tries to acquire a bundle of goods sold through sequential auctions.

Informally, the problem occurs whenever an agent may buy a single good at a price

higher than what it is worth to her, in the hope of obtaining extra value through

synergy with another good, which is sold in a later auction. However, if she then

fails to buy this other good at a profitable price, she is exposed to the risk of a

potential loss. In the analysis presented in this paper, we call such a global bidder a

synergy bidder.

The exposure problem is well known in auction theory and multi-agent systems

research. The usual way to tackle this problem in the mechanism design literature is

to replace sequential allocation with a one-shot mechanism, such as a combinatorial

auction [27]. However, this approach has the disadvantage of typically requiring

a central point of authority, which handles all the bids and payments. Moreover,

many allocation problems occurring in practice are inherently decentralized and

sequential. Possible examples range from items sold on Ebay by different sellers,

loads appearing over time in distributed transportation logistics, dynamic resource

allocation in hospitals, etc.

Note that this is a very complex problem, and this paper provides a first decision-

theoretic analysis of how priced options can be used to address this problem.

However, we do stress options are not a “silver bullet” that completely removes

the exposure problem, rather, they are a mechanism that, under some assumptions,

removes part of the risk exposure and is preferable to both sides (buyers and sell-

ers), by comparison to a direct sale. In fact, auctions for direct sale of the good (as

will become apparent in Section 1.3) becomes, in our option model, a particular

sub-case.

1.1 Options: Basic Definition

An option can be seen as a contract between the buyer and the seller of a good,

subject to the following rules:

• The writer or seller of the option has the obligation to sell the good for the

exercise price, but not the right.

• The holder or buyer of the option has the right to buy the good for the exercise

price, but not the obligation.

Since the buyer gains the right to choose in the future whether or not she wants to

buy the good, an option comes with an option price, which she has to pay regardless

of whether she chooses to exercise the option or not.

Options can thus help a synergy bidder reduce the exposure problem she faces.

She still has to pay the option price, but if she fails to complete her desired bun-

dle, then she does not have to pay the exercise price as well and thus she limits her
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loss. So part of the uncertainty of not winning subsequent auctions is transferred

to the seller, who may now miss out on the exercise price if the buyer fails to ac-

quire the desired bundle. At the same time, the seller can also benefit indirectly,

from the additional participation in the market by additional synergy bidders, who

would have otherwise stayed out, because of the exposure to a potential loss.

1.2 Related Work

In existing multi-agent literature, to our knowledge, there has been only limited

work to study the use of options.

The first work to introduce an explicit option-based mechanism for sequential-

auction allocation of goods to the MAS community is Juda & Parkes [12, 13, 14].

They create a market design in which global bidders are awarded free (i.e. zero-

priced) options, in order to cover their exposure problem and, for this setting, they

propose truth-telling as a dominant strategy. In their case, the exposure problem is

entirely solved for the synergy bidders, because they do not even have a possible

loss consisting of the option price. However, this approach also introduces some

limitations. First, there may be cases when the market entry effects are not sufficient

to motivate the sellers of items to use options. Because the options are assumed to

be offered freely (zero-priced), there may be cases in which sellers do not have a

sufficient incentive to offer free options, because of the risk of remaining with their

items unsold. The sellers could, however, demand a premium (in the form of the

option price) to cover their risk. Thus, in such cases, only positively-priced options

can provide sufficient incentive for for both sides to use the mechanism. Also, the

mechanism described in [13, 14] assumes synergy bidders bid their entire valuation

(monetary utility) for their desired bundle on each good of that bundle. This design

works with a single synergy bidder - but might not work when several such buyers

are active in the market simultaneously.

Priced options have a long history of research in finance (see [5] for an overview).

However, the underlying assumption for all financial option pricing models is their

dependence on an underlying asset, which has a current, public value that moves

independently of the actions of individual agents (e.g. this motion is assumed to be

Brownian for Black-Scholes models). This type of assumption does not hold for the

online, sequential auctions setting we consider. In our case, each individual synergy

bidder has its own private value for the goods/bundles on offer, and bids accordingly.

Another relevant work that studies the use of options in online auctions is that of

Gopal et al [2]. Gopal et al. discuss the benefits of using options to increase the ex-

pected revenue of a seller of multiple copies of the same good. They do not consider

the use of options to solve the exposure problem of buyers with complementary val-

uations over a bundle of goods (i.e. the synergy bidders in our model). Furthermore,

in [2], it is the seller that fixes in advance both the option price and the exercise

price, which requires restrictive assumptions on the behaviour of the bidders.

Finally, there is a connection between options and leveled commitment mecha-

nisms [28, 29, 30]. In leveled commitment, typically both parties have the possi-

bility to decommit (i.e. unilaterally break a contract), against paying a pre-agreed
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decommitment penalty. This differs from option contracts, where the right to exer-

cise the option (i.e. the option price) is paid by one party in advance and is estab-

lished through an auction.

1.3 Outline and Contribution of Our Approach

The goal of this paper is to study the use of priced options to solve the exposure

problem and to identify the settings in which using priced options benefits both the

synergy bidder and the seller.

An option consists out of two prices, so an adjustment needs to be made to the

standard auction with bids of a single price. The essence of options, in our model, is

that buyers obtain the right to buy the good for a certain exercise price in the future.

The value of such an option may be different for different market participants at

different times. Throughout this study, in order to make the analysis tractable, we

have a fixed exercise price and a flexible option price. The seller determines the

exercise price of an option for the good she has for sale and then sells this option

through a first price auction. Buyers bid for the right to buy this option, i.e. they bid

on the option price.

Note that, in this model, direct auctioning of the items appears as a particular sub-

case of the proposed mechanism, assuming free disposal on the part of the buyers. If

the seller fixes the future exercise price for the option at zero, then a buyer basically

bids for the right to get the item for free. Since such an option is always exercised

(assuming free disposal), this is basically equivalent to auctioning the item itself.

Based on the above description, we provide both an analytical and an experimen-

tal investigation of the setting. Our analysis of the problem can be characterized as

decision-theoretic, meaning both buyer and seller reason with respect to expected

future price. In summary, our contribution to the literature can be characterized as

being twofold:

First, we consider a setting in which n complementary-valued goods (or options

for them) are auctioned sequentially, assuming there is only one synergy bidder or

global bidder (the rest of the competition is formed by local bidders desiring only

one good). For this setting, we show analytically (under some assumptions), that

using priced options can increase the expected profit for both the synergy bidder

and the seller, compared to the case when the goods are auctioned directly. Further-

more, we derive the equations that provide minimum and maximum bounds between

which the bids of the synergy bidder are expected to fall, in order for both sides to

have an incentive to use options.

In the second part of the paper, we consider market settings in which multiple

synergy bidders (i.e. global bidders) are active simultaneously, and study it through

experimental simulations. In such settings, we show that, while some synergy bid-

ders lose because of the extra competition, other synergy bidders may actually ben-

efit, because sellers are forced to fix exercise prices for options at levels which

encourages participation of all buyers.

The structure for the rest of this paper is as follows. Section 2 lays the foundation,

and derives the expected profits of synergy bidders and sellers for both the direct
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sale, respectively for a sale with options. Section 3 provides the outline behind the

analytical results and proofs, for a market of sequential auctions with one synergy

bidder. It is important to note that this paper does not provide the detailed proofs

(interested readers can find this in [18]), but we do provide enough ingredients, such

that the reader can understand the basic ideas behind our model and analysis. Then,

Sections 4 and 5 give the results from our experimental investigations for multiple

market settings, while Section 6 concludes with a discussion.

2 Expected Profit for a Sequence of n Auctions and One

Synergy Bidder

In this section, we provide the basis behind the analytical results of our work, by

deriving the expected profit functions for both the synergy bidder and the seller in

our model. Afterwards, in Section 3 we will give a sketch of the analytical proof

that options can be profitable for both the synergy bidder and the auctioneer in this

setting (this is only a sketch because, as explained in the introduction, this paper

does not emphasize the analytical part which is fully discussed in other work by

the same authors [18]). Important to note that, throughout this study, it is assumed

that both sellers and buyers are risk neutral and that they want to maximize their

expected utility or - in this case - their expected profit.

2.1 Profit with n Unique Goods without Options

This section describes the expected profit of the synergy bidder and the sellers as

a function of the synergy bidder’s bids for a market with n unique, complementary

goods, which are sold without options.

Let G be the set of n goods for sale in a temporal sequence of auctions and

vsyn(Gsub) be the valuation the synergy bidder has for Gsub � G. Then assume

that vsyn(G) > 0 and ∀Gsub � G, vsyn(Gsub) = 0. In other words, the synergy

bidder only desires a bundle of all the goods considered in the model.

The goods G1..Gn ∈ G are sold individually through sequential, first-price,

sealed-bid auctions. Here we choose the auctions to be first price, as they are more

tractable to study using game-theoretic analysis. Furthermore, in a sequential setting

with valuation complementarities of the agents, second-price auctions do not have

the nice dominant strategies properties, described by Vickrey. Furthermore, in many

settings where such a model could be used in practice, such as request-for-quotes

(RFQ) auctions in logistics or supply chains, first-price auctioning is often used.

The time these auctions take place in is t = 1 . . . n, such that at time t good

Gt ∈ G is auctioned. The above assumptions mean that if the synergy bidder has

failed to obtain Gt, then she cannot achieve a bundle, for which she has a positive

valuation. So if Gt+1 is auctioned with a positive reserve price, then obtaining Gt+1

will only cost the synergy bidder money. Therefore, if the synergy bidder fails to

obtain Gt, then it is rational for her to not place bids in subsequent auctions.

The bids of the synergy bidder are B = (b1, . . . , bn), where bt is the bid the syn-

ergy bidder will place for good Gt, conditional on having won the previous auctions.



6 L. Mous, V. Robu, and H. La Poutré

Because of the first-price auction format, bt is also the price the synergy bidder has

to pay if she has won the auction.

Throughout this analysis, we assume the competition the synergy bidder faces

for each good Gt (sold at time t) is formed by local bidders that only require the

good Gt. We further assume that these local bidders are myopic, i.e. the bids placed

by the synergy bidder have no effect on their bidding behaviour. Therefore, from

the perspective of the synergy bidder, the competition can be modeled as a distri-

bution over the expected closing prices at each time point t, more precisely as a

distribution over a value bmt, which is the maximal bid placed by the competition

not counting bt.

Denote by Ft(bt) the probability that the synergy bidder wins good Gt with bid

bt - where Ft(bt) depends on whether bt can outbid the maximal bid bmt placed

by the competition, excluding bt. For each good Gt, there exists a strictly positive

reserve price of bt,res, which is the seller’s own valuation for that good. Then bmt

is the highest bid of the local bidders (who only want Gt), if that bid is higher than

bt,res. Otherwise bmt equals bt,res. To deal with ties, we assume the synergy bidder

only wins Gt if bt > bmt and not if the bids are equal. Then Ft(bt) can be defined

as follows:

Ft(bt) = Prob(bt > bmt) (1)

The synergy bidder only has a strictly positive valuation for the bundle of goods G,

which includes all the goods Gt, sold at times t = 1..n.

E(πdir
syn) =

[

vsyn(G)

n
∏

i=1

Fi(bi)

]

+

[ n
∑

j=1

(−bj)

j
∏

k=1

Fk(bk)

]

(2)

The synergy bidder wants to maximize her expected profit. So her optimal bids

B∗ = (b∗1, . . . , b
∗
n) maximize equation 2:

B∗ = argmaxB∗ E(πdir
syn) (3)

Next the profit of the sellers are examined. It is assumed that all sellers have their

own valuation for the good that they sell and that they set their reserve price of bt,res

equal to this private valuation. So when the good is sold for bt, the seller of Gt has a

profit πdir
t of bt − bt,res. As previously shown, the synergy bidder only participates

when she has won the previous auctions; otherwise bmt is the maximal placed bid.

The expected profit of the seller of the good Gt sold at time t is:

E(πdir
t ) = (E(bmt) − bt,res)(1 −

t−1
∏

i=1

Fi(bi)) +
(

Ft(bt)(bt − bt,res)

+ (1 − Ft(bt))(E(bmt|bmt ≥ bt) − bt,res)
)

t−1
∏

i=1

Fi(bi) (4)

Intuitively explained, the equation defines the expected utility over 3 disjoint cases:

one in which the optimal bids bi of the synergy bidder were sufficient to win all
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auctions up to time t, in which case the expected profit of the seller is the highest

expected bid of the local bidders E(bmt), minus its own reservation value bt,res; the

second case in which the synergy bidder wins all previous auctions, including the

current one (i.e. the one at time t), in which case the expected profit is this bid minus

reservation bt − btres, and the third in which the synergy bidder won all previous

auctions but fails to win the current one, in which case still the highest bid by the

local bidders is taken.

2.2 Profit with n Unique Goods with Options

Section 2.1 derived the expected profit functions for the synergy bidder and the

sellers in a market without options. The next step is to do the same for a market with

options. This section has the same setting as the general model with n goods being

sold, only now an option on Gt is auctioned at time t. Therefore, all the sellers in

the market will sell options for their goods, instead of directly the goods themselves.

After the n auctions have taken place, the buyers need to determine whether or not

they will exercise their option. It is assumed that an option is only exercised if a

buyer has obtained her entire, desired bundle. The local bidders are only interested

in Gt, so they will always exercise an option on Gt should they have one. The

synergy bidder is only interested in a bundle of all goods, so she will only exercise

an option (and pay the corresponding exercise price) if she has options on all the

goods required.

The option exists out of a fixed exercise price Kt and the synergy bidder’s bids

on the option price are OP = (op1, . . . , opn). The maximal bid without the synergy

bidder was bmt, but now opmt is the maximal placed option price.

Since the competition only wants one good, they do not benefit from having an

option and they will always exercise any option they acquire. Therefore the com-

petition’s best policy is to keep bidding the same total price, which is the bid

without options minus the exercise price. Thus the distribution of the competi-

tion is only shifted horizontally to the left, by the reduction of the exercise price:

opmt = bmt − Kt. Thus, if the synergy bidder bids the same total price (option +

exercise), then she has the same probability of winning the auction in both models.

Let F o
t (opt) be the probability that opt wins the auction for the option on Gt. So if

opt + Kt = bt, then F o
t (opt) = F o

t (bt − Kt) = Ft(bt).
The synergy bidder’s expected profit with options then is:

E(πop
syn) =

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

] n
∏

i=1

F o
i (opi)

+

[ n
∑

j=1

(−opj)

j
∏

k=1

F o
k (opk)

]

(5)

So her optimal bids OP∗ = (op∗1, . . . , op
∗
n) maximize the profit equation 5:

OP∗ = argmaxOP∗ E(πop
syn)) (6)
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The main difference for the seller of Gt, is that if the synergy bidder wins, then she

only earns Kt − bt,res when the option is exercised. She then gains the exercise

price, but loses the value the good has to her, which is the reserve price. And the

probability of exercise is the probability that the synergy bidder wins all the other

auctions. Therefore, the total expected profit of the seller at time t is:

E(πop
t ) = (E(opmt) + Kt − bt,res)(1 −

t−1
∏

i=1

F o
i (opi))

+
(

F o
t (opt)(opt +

[

(Kt − bt,res)

n
∏

h=t+1

F o
h(oph)

]

)

+ (1 − F o
t (opt))(E(opmt|opmt ≥ opt) + Kt − bt,res)

)

t−1
∏

i=1

F o
i (opi) (7)

Briefly explained, this equation has the same 3-case structure as Eq. 4 above. In

two cases: when the synergy bidder loses an auction for one the earlier items in

the sequence (before the items sold at time t), or when she wins all the earlier auc-

tions, but not the auction at time t, the expected payoffs are equivalents to the direct

auctioning case, although this time expressed slightly differently, based on both the

exercise and option price. However in one case, when the synergy bidder acquires

all the previous items and the current one (middle line in Eq. 7), the payoff is com-

posed of two amounts. The option price opt will be gained for sure, in this case.

However, the difference between the exercise and reserve price Kt − bt,res (which

signifies the item actually changes hands) is acquired only if the synergy bidder also

wins all the subsequent auctions at times h = t + 1..n. This is an important differ-

ence, and it would seem from these equations that the seller has no interest to use

options, since in one important case, part of the amount she is about to receive de-

pends on the outcome of future auctions. The key, however, rests in the observation

that the synergy bidder should be willing to bid more in total (i.e. Kt + opt) than in

the direct auctioning case. This will be analyzed in the next Section.

3 When Options Can Benefit Both Synergy Bidder and Seller

Section 2 resulted in the a-priori, expected profit for the synergy bidder and the sell-

ers as a function of the synergy bidder’s bids for a market with and without options.

This section uses these functions to determine the difference in profit between the

two markets, which is πδt and πδsyn for the seller of good Gt and the synergy bidder

respectively, where:

πδt = πop
t − πdir

t ,

πδsyn = πop
syn − πdir

syn

So if πδt and πδsyn are positive, then both agents are better off with options.
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3.1 When Agents Are Better Off with Options

Let B∗ denote the synergy bidder’s optimal bidding policy in a market where goods

are sold directly (without options). We assume for the rest of Sect. 3 that for 1 ≤
t ≤ n, Ft(b

∗
t ) > 0 and Ft(b

∗
t ) < 1. So she may complete her bundle, but may

also end up paying for a worthless subset of goods. Thus she faces an exposure

problem. For the market with options, we define a benchmark strategy OP′ for the

synergy bidder, so that the two markets can easily be compared. The benchmark of

the synergy bidder’s bids with options OP′ = (op′1, . . . , op
′
n) is that for 1 ≤ t ≤ n:

op′t = b∗t − Kt

In other words, the benchmark strategy implies that the synergy bidder will bid the

same total amount for the good, as if she used her optimal bidding policy in a direct

sale market. Clearly this does not have to be her profit-maximizing bid in a market

where priced options are used. In fact, it is almost always the case that the synergy

bidder will bid a different value in a market in with priced options. This deviance

from the benchmark is denoted by λt:

Let λt denote the deviation in the bid of the synergy bidder on the item Gt sold

at time t, in a model with options, with respect to her profit-maximizing bid b∗t in a

model without options. So her bid on an option for Gt will be op′t + λt.

Fig. 1. A possible situation in which options are desirable.

These definitions enable us to rigorously define the bounds within which the use

of options (with a given exercise price) are desirable for both the synergy bidder

and the seller, for each good in the auction sequence (except the last one, for which

there is no uncertainty, so the use of options is indifferent). Fig. 1 gives the visual

description of a generic setting in which options are beneficial for both sides. It

shows the possible bids a synergy bidder can place for an option. First, valid bids

have to be bigger than the reserve price Res, for each good in the sequence. The

point op′ is where the synergy bidder keeps bidding the same total price as in a

market without options, as in the definition of op′ above. The deviations, in an option

model, from the benchmark bid op′ is measured by three levels, all denoted with λ:

λl is the minimal risk premium the seller requires to benefit from using options, λh

is the maximal extra amount the synergy bidder is willing to pay for an option and

op∗ = op′ + λ∗ is the synergy bidder’s profit-maximizing bid in an option market.

So, if it is rational for the synergy bidder to bid an additional quantity between λl

and λh (as shown in Fig. 1), then both she and the seller are better off with options.
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As mentioned in the abstract and introduction, we will not analytically derive the

equations that give these levels of λ-s above (interested readers can consult [18] for

more details). In this paper, we focus our attention on the different test we performed

for different sequential auction markets, with either a single or multiple synergy

bidders. For all case, we experimentally compare expected profits for markets with

direct sale vs. option markets.

4 Simulation of a Market with a Single Synergy Bidder

This section presents an experimental examination of a market with one synergy

bidder. It introduces the market entry effects in the synergy bidder’s behaviour, as

well as the threshold effects that may determine which exercise prices the seller

chooses for her options. This experimental analysis is performed here for a market

with one synergy bidder and several local bidders, while Sect. 5 considers a market

with multiple synergy bidders.

The experimental setting is as follows: we consider a simulation where two goods

A and B are auctioned nA and nB times respectively. The synergy bidder desires one

copy of both goods and has zero valuation for the individual goods. That is, each

synergy (or global) bidder requires exactly one bundle of {A, B}1 In the setting

considered in this Section, local bidders only want one good and participate in one

auction, thus their bids can be modeled as a distribution.

Furthermore, in order to simplify the simulation we assume there is a single seller

who auctions all the goods. This is actually equivalent to studying whether on aver-

age sellers have an incentive to use options. To explain, on any single sequence of

auctions taken in isolation, the sellers of different items may have highly diverging

incentives to use options, based on their position in the auction queue. However, in

a very large setting, where buyers enter the market randomly, it is difficult for any

individual seller to strategise about her particular place in the sequence (and, fur-

thermore, in most markets she may simply have no information to do this). Our goal

is to study under which conditions, on average, sellers benefit from using options

if there are synergy bidders in the market. Also, to somewhat reduce the number of

test parameters, we further assume that the exercise price is the same for all goods

of the same type. So the seller needs to determine which exercise price for A and

which for B maximize her expected profit.

Note that, typically a seller has a resale value of for the goods that remain unsold,

which is typically lower that the value at the start of the auction sequence. The

reason for this may be that there is some time discounting associated with waiting

for a sequence of auctions to resell her items, or even a listing cost, which is paid

per auction (such as in the Ebay case). In this paper, we do not explicitly simulate

resale, but we use a reservation value, which represents the expected resale value

the seller expects to get, if she is forced to resell her items.

1 An intuitive way to think about this setting is as a sequential sale of individual shoes of

exactly the same type, where A is the left shoe, and B is the right shoe, and each synergy

bidder requires exactly one pair.
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To summarize, simulations were run in Matlab and had the following parameters:

Name Explanation

n The number of auctions.

mean The mean of price distribution.

std The standard deviation of price distribution.

res Reserve prices.

vsyn Valuation synergy bidder for A and B combined.

k Number of simulations for each auction run

A basic simulation run is as follows. First, all possible auction sequences are

determined for the given number of auctions for A and B. The simulation is then

run for all these sequences, both for a direct sale setting and for a setting where the

items are sold through options with given exercise prices.

For each auction, in each simulation run, there is a set of local bidders, assumed

myopic. The bids of these local bidders are therefore, assumed to follow a normal

price distribution, with the parameters n, mean, std and res consisting out of two

values: one for good A and one for good B. For each simulation run, the synergy

bidders(s) are asked to determine their profit-maximizing bid for that setting, as de-

scribed in the next section. The optimization required for determining their optimal

bid is done using the Matlab function “fminsearch” from the Optimization Toolbox.

Since there may be considerable variance in the bids of the local bidders (which

are myopic) each possible auction sequence is run k times (typically, we had

k > 10000). The average profit of the seller and the synergy bidder which are

reported here, for both the case of with and without options, are averages over all

these k simulations and also over all possible auction orders of items A and B in the

sequence.

4.1 Deriving the Optimal Bid Strategy of the Synergy Bidder

This section describes how the synergy bidder determines her bids in the simulation.

In order to neutralize the effect that the exact order items are auctioned in plays

on the bidding strategy, we add the assumption that the synergy bidder knows the

number of remaining auctions, but not the order they will be held in. This remaining

number of auctions of each type is common knowledge (i.e. the synergy bidders can

always observe how many auctions of each type are left before they have to leave

the market, and so does the seller).

The model described here is for a situation without options. But in order to apply it

to a situation with options, one merely has to replace the variables: bt = opt−Kt and

vsyn(A, B) := vsyn(A, B) − KA − KB . As in the analytical section, we assume a

bidder only wants a complete bundle of {A, B}. Therefore, vsyn(A)=vsyn(B)=0.

Determining the synergy bidder’s profit-maximizing bid b∗t at state t basically

involves solving the Markov Decision Process (MDP), where we select the optimal

bid b∗t at time t, subject to the optimal bid b∗t+1 being selected for the future time

point t + 1 (which in this case, is an auction). We can, however, use the valuation
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function of the bidding agent to significantly reduce the state space of the MDP, as

shown below. However, first we introduce some notation.

Let b∗ be the immediate best response to the state, which depends on four

variables: zA, zB, X and It. The variables zA and zB are the number of remain-

ing auctions for A and B respectively (including the current auction), so zA ≤
nA, zB ≤ nB . The type of good, which is currently sold, is denoted by It. The set

of goods the synergy bidder owns (i.e. the endowment) is described by X , which

can either be ∅, {A} or {B}. If X is {A, B} then the synergy bidder is done. Let

Q(zA, zB, X, It, bt) be the expected profit of the synergy bidder when bidding bt.

Note that, in these definitions, b∗t+1 and Vt+1() denote the best available bid, respec-

tively best expected value for the next state (as computed by recursion), while It+1

is the type of the next item in the auction sequence. Therefore, using MDP notation,

the profit-maximizing bid b∗t is determined as follows:

b∗t = argmaxbt Q(zA, zB, X, It, bt) (8)

Where the expected profit is determined via:

Q(zA, zB, X, It = A, b∗t+1) = FA(bt)(−bt

+ Vt+1(zA − 1, zB, X ∪ A, b∗t+1))+

(1 − FA(bt))Vt+1(zA − 1, zB, X, b∗t+1)

(9)

Q(zA, zB, X, It = B, bt) = FB(bt)(−bt

+ Vt+1(zA, zB − 1, X ∪ B, b∗t+1))+ (10)

(1 − FB(bt))Vt+1(zA, zB − 1, X, b∗t+1)

Where V () is the value of a state, which simply means the maximum expected profit

of that state:

Vt(zA, zB, X, bt) = maxbt Q(zA, zB, X, It, bt) (11)

Looking at the formula for Q(), it basically says that for the probability of winning

the auction with her bid, the synergy bidder has to pay a price equal to her bid and

the good is included in the endowment X of the next state. If she does not win the

auction, then the value of the current state is equal to the value of the next state.

As we mentioned before, in computing its optimal bidding strategy used in the

experimental Section, we assume the synergy bidder does not know whether the next

auction will be for A or B, she only knows the total numbers of auctions for A and B

remaining. We acknowledge this is a departure from the formulas in the theoretical

analysis, where the exact order of the auctions was taken into account to compute

the bidding strategies. There are two reasons to use this assumption here. The first is

that it reduces considerable the state space that needs to be modeled when computed

the optimization. But the second is that we also find this choice more realistic if this

model is to be applied to real-life settings. For example, when bidding on a part-

truck order in a logistic scenario, it is more realistic to assume that a carrier can

approximate the number of future opportunities to buy a complementary load, but

not the exact auction order in which future loads will be offered for auction.
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If we assume the synergy bidder only knows the total numbers of auctions for

A and B remaining (and not their exact order), then her bidding strategy is based

on assuming each future auction has an equal probability to occur. Therefore, the

probability of an auction for A occurring next is simply the number of remaining

auctions A divided by the total number of remaining auctions. Thus, a weighted

average can be used to determine the value of the next auction, while not knowing

for which good it will be for.

Apart from this general framework, we can prune the state space with the cases

in which we know the synergy bidder’s bid is zero:

b∗t = argmaxbt Q(0, zB, X, B, bt) = 0, with A /∈ X (12)

b∗t = argmaxbt Q(zA, 0, X, A, bt) = 0, with B /∈ X (13)

bt∗ = argmaxbt Q(zA, zB, X, It ∈ X, bt) = 0 (14)

With the first two cases, the synergy bidder can no longer obtain her desired bundle,

because she does not own the complementary item and there is no chance left of

acquiring it. The last equation is for the case when the synergy bidder already has a

copy of the type of good (and, from her valuation function, she only wants exactly

one copy of A and B). The corresponding values of these states are:

V (0, zB, X, b∗t ) = 0, if A /∈ X(zA = 0, asIt+1 = B) (15)

V (zA, 0, X, b∗t ) = 0, if B /∈ X(zB = 0, asIt+1 = A) (16)

V (zA, zB, {A}, b∗t ) = V (0, zB, {A}, b∗t ) (17)

V (zA, zB, {B}, b∗t ) = V (zA, 0, {B}, b∗t ) (18)

The first two equations correspond to the case when the buyer can no longer get the

complementary-valued item, therefore the sequence of auctions of the same type has

no value to her. In both these cases b∗t = 0. The last two equations are important,

since they help the most to reduce the state space. Basically, as already mentioned,

we assume that a synergy bidder only wants exactly one bundle of {A, B}. If she

already owns a good of one of the two types, she will no longer be interested in

the remaining auctions for that type of good. Therefore, the valuation V () of these

states is equivalent to a state when no auctions are remaining for the type of good

she already owns (as she would not take part in those anyway). All these techniques

help reduce the recursive search.

To conclude, to determine the synergy bidder’s bids in any situation, the values

of b∗t and V () need to be calculated for the following states:

∀zB > 0 Q(0, zB, {A}, B, bt)

∀zA > 0 Q(zA, 0, {B}, A, bt)

∀zA > 0, zB > 0 Q(zA, zB, ∅, A, bt)

∀zA > 0, zB > 0 Q(zA, zB, ∅, B, bt)
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4.2 Experimental Results: Market Entry Effect for One Synergy Bidder

First, we study experimentally the incentives to use options for the sellers and buy-

ers, in the case there is just one synergy bidder present in the market. In order to

study different dimensions of such markets, we considered several combinations of

parameter settings.

The first setting has nA = 2 and nB = 2. As mentioned above, the local bidders

are considered myopic and only bid in one local auction. Therefore, their bids can

be modeled as a distribution ∼ N(10, 4) for both goods. The goods A and B are, in

this model, of equal rarity and attract an equal amount of independent competition

during bidding. This choice is not random, as having a certain degree of symmetry

in the experimental model allows us to reduce the number of parameter settings we

need to consider. More specifically, we assume the same exercise prices are set for

both goods of type A and B. This is a reasonable assumption, because A and B are

of symmetric value and because bidders do not know in advance the exact order

goods will be sold in.

Furthermore, for each good, the seller has a reservation value res = 8, which

gives its estimate resell value in the case the synergy bidder acquires an option for

the item, but fails to exercise it. Since, on average, myopic bidders bid have an

expected mean of 10 for an item, 20% is a reasonably safe estimate of a resell value.

The value of a bundle of {A,B} for the synergy bidder is an important choice,

especially in relation to the mean expectation μ of the bids placed by single-item

bidders. We considered two settings: v(A, B) = 24 (thus 20% more, on average,

than local competition) - with results shown in Fig. 2, and v(A, B) = 21 (which is

only 5% more on average than local competition) - with results shown in Fig. 3.

Looking at these two figures, some important effect can be observed. First, we

mention that the seller has an immediately higher expected profit with options com-

pared to direct sale. This is because an option is sometimes not exercised and then

the seller gets to keep the good (for which she has a positive valuation), while the

synergy bidder still pays the option price.

There are two main effects to be observed from Fig. 2 and 3:

• First, the synergy bidder in such a market always prefers higher exercise prices

(an effect clearly seen in both Figs. 2 and 3). This may be counter-intuitive

at first, but is a rational expectation. If the option for an item is sold with a

higher exercise price, then the synergy bidder can bid more aggressively on the

option price to get the item, since she is “covered” for the loss represented by

the exercise price. The myopic bidders extract no advantage from being offered

the good as an options vs. a direct sale, because, if they acquire the option, they

would always exercise it regardless. Therefore, they will simply lower their bid

for the option with the amount represented by the exercise price.

• Second, the expected profit of the seller seems to decrease between intervals if

she has to sell the option with a higher exercise price. The main reason for this is

that there is some chance that she or she would remain with her item unsold (be-

cause the option is not exercised), and thus only extract her reservation value for

that item. There is, however, an important difference between the cases shown
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Fig. 2. Percentage increase in profit for a model using options wrt. direct sale, for the case

there is one synergy bidder is present in the market. In the setting, there are two items of

type A sold and two items of type B. For all 4 items, the bids of the local bidders follow the

distribution N(10, 4), while the valuation of the synergy bidder is v(A, B) = 24 (thus 20%

more, on average, than the local bidders). What is varied on the horizontal axis is the exercise

price with which the items are sold (assuming they are set the same for all items, being of

equal rarity). Note that the figure is super-imposed: the left-hand side axis refers exclusively

to the seller, while the right-hand side axis refers exclusively to the synergy bidder. From this

picture, one can already see the important effect: synergy bidder prefers, on average, higher

exercise prices, while seller prefers lower ones.

in Fig. 2 and 3, which is the participation thresholds (that appear as “peaks” in

the picture), where the expected profit of the seller seems to “jump” at a new

level. These can be explained by the synergy bidder joining the market, as the

expected profit becomes non-negative. The threshold nature is determined by

the discrete nature of the auction sequence, as is explained below.

Such a participation threshold is illustrated in Fig. 3 is the increase in the seller’s

expected profit when the exercise price is set above a certain level (K ≥ 2.5, for

the settings in Fig. 3). Such thresholds can be explained as follows. If the synergy

bidder currently owns nothing, then she will only bid on a good if the number of

remaining auctions and their exercise prices give her a prior expectation of a positive

profit. Conversely, if the synergy bidder is not offered a sequence of option sales

from which she derives a positive expected profit, she has the incentive to leave

the market altogether. There are two main factors that increase a synergy bidder’s

expected profit in a sequence of auctions (sold as options):

• The number of remaining future auctions of the other good, necessary to com-

plete her bundle.
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Fig. 3. Percentage increase in profit for a model using options wrt. direct sale, for the case

there is one synergy bidder is present in the market. The settings are exactly the same as

those is in Fig. 2 above: 2 auctions for A and 2 for B, with local, myopic bidders following

N(10, 4). However, now the valuation of the synergy bidder is v(A, B) = 21 (thus only 5%

more, on average, than the local bidders). One can see, however, that there is an important

difference by comparison to Fig. 2: the threshold effect in the profit increase for the seller

when the exercise price K ≥ 2.5. Intuitively, the reason this effect occurs is the market-entry

effect on the part of the synergy bidder, who would otherwise stay out for this lower valuation

• The exercise price of the options (that only needs to be paid at the end). This

should be high enough to cover the risk, given her valuation for the bundle.

Note that in some market setting (such as the one in Fig. 2), no participation effects

(i.e. thresholds) occur, because the value the synergy bidder assigns to her desired

bundle is already high enough, so she would participate in the market anyway (i.e.

regardless of whether she gets offered options or not), and at any point in the se-

quence that there is still a chance of completing her bundle.

However, in the valuation settings in Fig. 3, the synergy bidder will only bid on

a good if there are two remaining auctions for the other good. So she places a bid

for A if the auctions are [A, B, B], but not if they are [A, B]. This is because with

a single auction for B, the risk of ending up with a only a worthless A is too great.

But in a market with exercise prices of at least 2.5, the risk is reduced and one

remaining auction is already enough for the synergy bidder to stay in the market.

So a higher exercise price enables the synergy bidder to stay the market, even if

she owns nothing and there are only a few auctions left, which increases the seller’s

expected profit. This increase in participation is beneficial to the seller, who thus has

an incentive to fix the exercise prices KA = KB = 2.5.
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4.3 Settings with Longer Sequences of Auctions and Effect of Auction Order

In the previous Section, we examined a sequence of auctions of a specific length of

nA = 1, nB = 2. We now look at whether we can observe similar effects in the

case when the number of opportunities to buy goods A and B increases. With the

exception of auction lengths, the parameters are kept the same as in the previous

case. First, we keep the relative rarity of both goods symmetrical, but increase the

number of auctions available for each to 4, i.e. nA = nB = 4. Results are shown in

Fig. 4.

Fig. 4. Percentage increase in profit for the case of one synergy bidder, for longer auction

sequences. The settings in terms of valuations are exactly the same as those is in Fig. 3 above:

the synergy bidder has a value v(A, B) = 21, while single-item bidders bid according to

N(10, 4). One change is that now there are 4 auctions available for each type, i.e. 4 auctions

for an item of type A and 4 for B. Notice that now there are multiple thresholds, since there

are multiple points when the market entry effect of the synergy bidders appears. However, on

average, the percentage increases in expected profits for the synergy bidders are lower, when

compared to the direct auctions case. The reason for this is that, with multiple future buying

opportunities, the exposure problems that synergy bidder faces decreases.

Basically, there are two main effects to observe here. First, the benefits to the

buyer of having options mechanism decreases (seen from comparing the percentage

increases shown in the right-hand vertical axis of Figs. 3 and 4). The reason for this

(as discussed in the earlier, risk-based bidding paper) is that, in sequential auctions,

the number of available future opportunities plays a big role in how big the expo-

sure problem the synergy bidder faces is. If there is less exposure, then the relative

benefits of using options becomes smaller (although it is still quite considerable).

The second effect to be observed from Fig. 4 is that there are more participation
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Fig. 5. Influence of the position in an auction queue of an item on the seller’s expected profit.

Settings are the same as in Fig. 2, but with one important difference: the rarity of the goods

is no longer symmetric. There is now only 1 auction for a good of type A, but 7 auctions for

a good of type B. What is varied along the horizontal axis is the position in the auction queue

of the sale of the rarer item (of type A). The graph shows the absolute difference in profit for

a seller of an item of type B and for the synergy bidder (i.e. the difference in profit between

an options and direct auctions model). Note that, if the rare item of type A is sold at the end

of the auction sequence, the benefit of selling item B through an option increases, because

the exposure risk of not acquiring item of type A increases.

thresholds (denoted by peaks), but they are smaller. The reason is that, for a longer

sequence of auctions, there are more possible sequences of remaining auction com-

binations. The synergy bidder will join in the bidding in some, but not in others,

leading to multiple participation thresholds.

The second problem we look in this subsection at is what happens if the relative

frequency of the two goods is more asymmetric. We keep the same total number

of auctions in the sequence (8), but the relative frequency is highly asymmetric:

nA = 1, nB = 7. In the previous graphs, results were averaged over all possible

auction orders - while here, by contrast, we look at auction orders one by one.

For this setting, there are exactly 8 possible auction orders, corresponding to the

point where the rarer good (type A) can be inserted in the auction queue. What is

varied on the horizontal axis is this position of the type A good. The reason why we

look at whether a seller of items of type B would use options is that the exposure

of the synergy bidder exists for the other good in the sequence. For the single item

of type A, the benefits of using options are limited, because the synergy bidder has

7 other auctions in which to acquire the second item anyway, hence she has much

less of an exposure problem. Results are plotted in Fig. 5.

Clearly, we can see an important effect of the position of the rarer good in the

auction queue, from the perspective of both parties. If the item of type A is sold at
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the very beginning of the auction sequence, then the synergy bidder has no exposure

problem left for the rest of the sequence, hence there is no incentive to use options,

for either party. However, it is at the very end of the auction sequence, the synergy

bidder will not know whether she would need the item acquired until all auctions

end. For this case, the benefits of using options are considerably greater.

5 Multiple Synergy Bidders

In this section, we consider market settings in which multiple synergy bidders are

active simultaneously. Much of the experimental set-up and parameter choices are

the same as described in the above sections, for the case of one for the single synergy

bidder. The only difference is that now multiple synergy bidders may enter and leave

the market at different times and they have different valuations for the combination

of A and B.

We have to emphasize that the results from this section are still rather preliminary

and are based on some restrictions on the reasoning capability of the synergy bid-

ders in the market. Specifically, as in the single-bidder case, we assume the synergy

bidders have some prior expectations about the closing prices in future auctions and

compute their optimal strategy wrt. this expectation. In these results, this expectation

is assumed the same for all synergy bidders, which is a reasonable choice in com-

paring their strategies. In a more realistic market, however, synergy bidders could be

expected to be able to learn and adjust their expectations based on past interactions,

as well as reason game-theoretically about the fact that another synergy bidder may

present in the market at the same time. At this point, these more sophisticated forms

of reasoning are left to future work.

As in the previous section all simulations of this section have reserve prices of

8 and local bidders following ∼ N(10, 2.5). The first two experiments also have

two synergy bidders syn1 and syn2 with valuations for both goods of 21.5 and 22.5

respectively. The order the synergy bidders enter the market (and the number of

auctions they can stay in) are given in Figs. 6 and 6, while results for all settings are

shown in Fig. 7, respectively 9. In the following, we will discuss these in separate

subsections.

5.1 Two Synergy Bidders Interacting Indirectly through the Exercise Price

Level

In the setting examined here, the two synergy bidders each have nA = 3 and nB =
3, without the other agent participating in these auctions. An example of such an

auction sequence is shown in Fig. 6.

This effect can be seen in Fig. 7, in which the seller maximizes her expected

profit at K = KA = KB = 2.4. In this case syn2 is better off, because without

the presence of syn1 she would be offered options with lower exercise prices. But

syn1 is worse off, because if she were alone in the market the seller would choose

K = 3.2, which gives her a higher expected profit. Yet, due to syn2, the seller sets
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Fig. 6. An auction sequence for the case shown in Fig 7.

Fig. 7. Percentage increase in profits for a market with with 2 synergy bidders. There are 3

auctions for A and 3 for B, and for each one the bids from the competition formed by local

bidders follows the distribution N(10, 2.5). The valuations of the two synergy bidders for a

bundle {A,B} are 21.1 for syn1, respectively 22.5 for syn2. The order the agents enter the

market is described by Fig. 6 below (so the two agents do not compete directly against each

other in this setting). Notice that, in this case, the average profit of syn2 does not decrease

with the entry of syn1 in the market.

K = 2.4. In this case, due to the seller’s choice of exercise prices, one synergy

bidder (syn1) gains, while syn2 loses.

5.2 Direct Synergy Bidder Competition in the Same Market

Next, we considered a setting in which synergy bidders compete directly for some of

the goods. The entry points for such a setting are shown in Fig. 8, while simulation

results are given in Fig. 9.

So, in this case, both synergy bidders lose from the presence of additional bid-

ders. While one synergy bidder (i.e. syn2) should benefit because she is offered

better (higher) exercise prices than if she were alone in the market, this effect can-

not immediately compensate the additional competition. Finally, we considered a

larger scale simulation scenario involving multiple synergy bidders, which enter the

market probabilistically at different time points.
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Fig. 8. An auction sequence for the case shown in Fig. 9.

Fig. 9. Percentage increase in profits for a market with with 2 synergy bidders. The setting

and valuations are the same as in Fig. 7 above. However, the order the agents enter the market

is now described by Fig. 8 below (so the two agents do compete directly for the same goods).

Notice that, in this case, the average profit of syn2 decreases due to the additional competition

from syn1.

5.3 Simulation of Markets with Probabilistic Entry of Synergy Bidders

The experimental setup used for this case is as follows. Each sequence of auctions

considered (forming one test case) has 10 items of each type (i.e. nA = 10 and

nB = 10). What differs from previous settings is the random entry of synergy

bidders. For each auction, there is a 25% chance that a synergy bidder will enter

the market. If she does, then her valuation is drawn from a uniform distribution

between 20 and 22 and she will stay in the market for exactly four auctions. To

simplify matters, the auction sequence is fixed at first selling A, then B, then A etc.

so that each synergy bidder will face exactly two auctions for an item of type A and

two for an item of type B. However, the general result of this section also holds for

a random auction sequence, since the basic effects remain the same.

As shown in Figure 10, the seller’s profit now only has one maximum at 5, be-

cause initially each increase in exercise prices causes, with some probability, a syn-

ergy bidder to participate more often. So each point is a threshold and the profit

graph smooths out over those many local maxima, corresponding to a steady in-

crease (on average) of the expected profit. This result shows why it can be ratio-

nal for the seller to have the same exercise prices for all goods of the same type
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Fig. 10. Percentage increase in seller’s profits in a larger experimental setting, with synergy

bidders randomly entering the market.

(e.g. the same KA). In a market with random entry of synergy bidders, the seller

does not know which buyers are participating in any particular auction. Her optimal

policy is to set her exercise prices which maximize her overall expected profit (here,

K = 5).

6 Discussion and Further Work

This paper examined, from a decision-theoretic perspective, the use of priced op-

tions as a solution to the exposure problem in sequential auctions. We consider a

model in which the seller is free to fix the exercise price for options on the goods

she has to offer, and then sell these options through a first price auction.

For this setting, we derived analytically, for a market with a single synergy bidder,

the expressions that provide the bounds on the option prices between which both

synergy bidders and sellers have an incentive to use an option contract over direct

auctions. Next, we performed an experimental analysis of several settings, where

either one or multiple synergy bidders are active simultaneously in the market. We

show that, if the exercise price is chosen correctly, selling items through priced

options rather than direct sale can increase the expected profits of both parties.

The overall conclusion of our study is that the proposed priced options mecha-

nism can considerably reduce the exposure problem that synergy bidders face when

taking part in sequential auctions. Furthermore, and most important, both parties in

the market have an incentive to prefer and use such a mechanism. We show that in

many realistic market scenarios, sellers can fix the exercise prices at a level that both

provides sufficient incentive for buyers to take part in the auctions, as well as cover

their risk of remaining with the items unsold.
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This work leaves several problems and aspects to be explored in further work.

One such problem is that the presence of a fixed exercise price set by the seller can

exclude some bidders from the market entirely (i.e. those bidders whose valuations

are under the level of the exercise price). If the exercise price is set by the seller

at a too high level, this may result in items remaining unsold, which would results

in both a lower market allocation efficiency, as well as a potential loss to seller

revenues. To deal with this problem, recent work by some of the authors of this

paper [26] proposes a novel mechanism where both the options and exercise price

are set dynamically by the market, based on the bids placed in each auction.

Another important, open issue left to further research is the use of more sophisti-

cated reasoning abilities on the part of participating synergy bidders and sellers. For

example, in a large market, synergy bidders could be expected to use learning strate-

gies to adapt to changing market conditions, as well as the presence of other synergy

bidders who want similar item combinations. However, the sellers of the items could

also use learning to choose better levels of the exercise prices K with which to sell

the options for their goods. Other possible issues open to future research include:

markets where bidders have asymmetric or imperfect information, more complex

preferences over bundles and different attitudes to risk of the involved parties. Also,

the applicability of distributed auctions and option techniques in modeling the allo-

cation of user clicks in social web applications (see [24, 4, 19] for some examples)

could be potentially investigated in further research.

To conclude, sequential auction bidding with complementary valuations is a

problem that appears in many real-life settings, although no dominant strategies

exist and bidders face a severe exposure problem. The main intuition of this work

is that a simple options mechanism, where sellers auction options for their goods

(with a pre-set exercise price), instead of the goods themselves can go a long way in

solving the exposure problem, and can be beneficial to both sides in such a market.
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Summary. Electronic Commerce has been a very significant commercial phe-

nomenon in recent years and autonomous agents have made the advantage of

e-marketplace to be more distinct. By comparison with traditional markets, the

e-marketplace can bring more benefits to its participators. However, when an e-

market environment becomes open and dynamic, existing agent negotiation models

may expose some limitations in such a complex situation. Static negotiation strate-

gies and encounter rules are difficulty to capture changes of market situations and

omit potential impacts on negotiators’ profits. For example, shoppers’ benefits may

be damaged when a market shifts away from the seller’s market to the buyer’s mar-

ket. In this paper, we propose a novel desire-based negotiation model to solve such

a challenge in open and dynamic e-marketplace through capturing changes of mar-

ket situation and potential impacts on agents’ reserved expectations. Experimental

results illustrate the benefits and efficiency of the proposed model in complex e-

market environments.

1 Introduction

Electronic Commerce (e-commerce) has been changing traditional methods of busi-

ness in recent years and has become a very important commercial phenomenon.

Nowadays, many businesses operate in e-marketplaces. By comparing with tradi-

tional markets, an e-market can effectively save participators’ resources. For exam-

ple, in e-marketplaces, merchants can save their budgets on business maintenance

by avoiding physical shops and shop assistants. Also, shoppers do not need to visit

shops in person which can save costs on traffic and time. Moreover, all participators

can collect information about their concerned items and communicate with potential

trading partners in a timely manner. Furthermore, autonomous agents have made the

advantage of e-marketplaces to be more distinct. By employing autonomous agents,

participators can even be free from information retrieval and bargaining, but they

just ‘tell’ agents their expectations. Then the agents will negotiate with potential

trading partners on behalf of their clients.

Negotiation among agents has been an important research area in agent and multi-

agent systems for many years. The literature indicates great achievements from re-

searchers. Faratin et al. [3] [17] presented several formal negotiation models among

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 27–47.
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autonomous agents and defined a number of strategies and tactics for different

negotiation purposes in service oriented applications. Lai et al. [10] [11] proposed

a non-biased mediator approach to help agents to achieve Pareto optimality and

to overcome the difficulty of decisions due to incomplete information and lack of

explicit utility functions. Fatima et al. [4] [5] [6] studied negotiation models in in-

complete information settings in different negotiation scenarios and illustrated equi-

librium solutions in different negotiation agendas and procedures. Besides these

works on static negotiation environments, some works on complex negotiation en-

vironments have also been developed. Fatima et al. [7] proposed negotiation strate-

gies to help agents to achieve approximately optimal outcomes in negotiations in

order to improve computational efficiency. Their approach can be employed in dy-

namic negotiation environments with acceptable loss of equilibrium. Mason et al.

[14] proposed price prediction strategies to help agents to estimate possible changes

of markets and consequences from these changes. The authors also demonstrated

that the proposed prediction strategies can help agents to improve their profits in

dynamic markets. Kurbel et al. [9] introduced a model with fuzzy constraints on an

e-job marketplace. They also proposed a negotiation protocol and negotiation strate-

gies to address the challenge of multi-lateral negotiation in complex e-marketplaces.

Furthermore, Li et al. [13] proposed confidence-based negotiation in complex agent

environments. According to agents’ confidence on negotiation partners, agents may

apply different strategies and/or procedures. Agents can also update their profiles

on partners in order to improve both processes and outcomes of their negotiations.

Although the above works have reached great achievements in solving some

problems in agent negotiation, some challenges are still exist in e-marketplace

negotiation. Most existing agent negotiation models requiring agents to prede-

fine reserved expectations on negotiation outcomes before negotiations start, and

agents’ actions in encounter during the negotiation will be decided mostly by the

reserved expectations. However, according to our studies on several models of e-

marketplaces [1] [15] and e-marketplaces in the real world, we notice that in open

and dynamic e-marketplaces, changes of a market situation may impact agents’ re-

served expectations on negotiation outcomes. In dynamic e-marketplaces, agents are

not necessary to fix their reserved expectations in all situations. When market situ-

ations change, agent should modify their reserved expectation dynamically, during

negotiation. We further noticed that if agents fix reserved expectations in dynamic

e-marketplace, their profits might be damaged. That is because: (1) agents may have

no clear idea about market situations, and the reserved expectation might be given

by agents blindly; and (2) evaluation results based on fixed reserved expectations

may not indicate items’ real value in different market situations. For example, if an

inexperienced house purchaser predefines his/her reserved offer without carefully

investigation of the real estate market, it may lead the purchaser to two possible dis-

advantageous outcomes. (1) The house purchaser may undervalue properties’ values

in the market and does not accept any price higher than the reserved offer, so the

potential purchaser may not find any satisfied property in the market and negotia-

tions between all property sellers might fail. And (2) the house purchaser may over-

value properties’ values in the market. Even though the purchaser can finally find a
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property in the market, his/her profit will be damaged as well. In order to solve such

an issue in dynamic e-marketplaces, we propose a desire-based negotiation model to

dynamically modify agents’ reserved expectations during the negotiation based on

changes of market situations and agents desires on accomplishment of a negotiation.

The rest of this paper is organized as follows. Section 2 proposes the desire-based

negotiation model, which includes an offer evaluation approach, a counter-offer gen-

eration approach and a negotiation protocol. Section 3 illustrates experimental re-

sults of the proposed model in different market situations. Section 4 compares the

proposed model with some related works, and Section 6 concludes the paper and

outlines future work.

2 Desire-Based Negotiation Model

In this section, we introduce a desire-based negotiation model in order to help agents

perform wise negotiations in complex e-marketplaces.

2.1 Principle

Through our studies, we notice that in the real world, although people can predefine

reserved expectations in advance, in most cases it is not necessary for them to insist

on their reserved expectations throughout the negotiation. For example, in a dynamic

market, a hesitant buyer may look forward to gain more benefit when he/she notices

that his/her initial expectation can be satisfied easily by most sellers. On the other

hand, a ‘rushing’ buyer may accept an offer even if the offer is worse than his/her

reserved expectation. However, most existing agent negotiation models do not take

these situations into account. The motivation of this research is to introduce a desire-

based negotiation model to help agents to make more wise actions in complex

e-marketplaces.

In the desire-based negotiation model, agents do not need to predefine their re-

served expectations, because the reserved expectations may be changed when the

market changes. However, agents need to provide a figure to indicate their eagerness

to reach the agreement in negotiations. And we make an assumption that agents’

motivations on completion of the negotiation will not be changed during the negoti-

ation. The reasons for such an assumption are based on two considerations. (1) The

trading process in e-marketplace usually can be completed in a short time, and par-

ticipators may not change their motivations and eagerness on completion of the trad-

ing in a short time. And (2) agents may modify their reserved expectations during

the negotiation when the market situation changes in order to maximise their prof-

its. If agents ensure that their profits will not be damaged when the market situation

changes, they will not change their minds on completion of the trading. Therefore,

by comparison with the reserved expectation, agent’s desire for trading is more suit-

able to indicate agent’s thought on the outcome of negotiations. In general, a rushing

agent may have a high desire to complete the negotiation and a hesitant agent may

have a low desire to complete the negotiation. During negotiation, agents may ad-

just reserved expectations based on their desires on completion of the negotiation
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when the market situation changes. Because agents may modify their reserved ex-

pectations in different market situations, agents may also adjust their standards to

evaluate items’ values and opponents’ offers. So a same offer may be evaluated by

agents differently in different market situations. For example, a buyer may accept a

higher price for a car in a sellers’ market, but the buyer will definitely reject the same

offer in a buyers’ market. That is because when the market situation changes, agents

may have totally different evaluation results on opponents’ offers. An advantageous

offer may become disadvantageous, and vice versa. Therefore, in our desire-based

negotiation model, agents will adjust their evaluations on offers and expectations on

outcomes when market situation changes, and keep the balance between the profit

of negotiation outcome and the completion of negotiation based on agents’ desire

for trading. Details of the desire-based negotiation model are introduced in the fol-

lowing subsections.

2.2 Offer Evaluation

In this subsection, we introduce an offer evaluation approach by considering both

e-market situations and agent situations. It is proposed that the consideration on the

situation of an e-market includes the number of consumers, the number of suppliers

and the agent’s role, while consideration on the situation of an agent includes the

agent’s subjective opinions on the e-marketplace and the negotiation.

2.2.1 Consideration of Market Situation

Before we introduce the offer evaluation approach, we will define some notations.

Let tuple < s, c, oini, d, τ, α, β, λ > be an indicator employed by agents during

negotiation, where s (s > 0) denotes the number of suppliers, c (c > 0) denotes the

number of consumers, oini denotes the agent’s initial offer, d (0 ≤ d ≤ 1) denotes

the agent’s desire for trading. When d = 0, it indicates that the agent is not intent in

completing the negotiation at all, and when d = 1, it indicates that the agent need

to reach a negotiation agreement extremely. τ is the negotiation deadline. α denotes

the agent’s role in the negotiation, where α = −1 for consumers and α = 1 for

suppliers. β denotes the agent’s attitude on markets’ changes and λ is the agent’s

bargaining strategy. Firstly, the relationship between supply and demand of an e-

market at a certain moment is represented as follows:

Φ(s, c, α) =
c − s

c + s
× α (1)

The value of Equation (1) is in the range of [−1, 1], which indicate situations of

the e-market environment for negotiators by considering negotiators’ role in the ne-

gotiation. If 0 < Φ ≤ 1, the e-market environment is in a beneficial state and the

agent has an advantage in such an environment. If −1 ≤ Φ < 0, the environment is

in an inferior state and the agent has a disadvantage in the environment. If Φ = 0,

the environment is in an equitable state and all agents play fairly in such an envi-

ronment. Objectively, the Equation (1) represents the relationship between supply
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and demand in the negotiation environment at a certain moment. However, even for

the same e-market situation, agents may also have their own considerations based

on individual judgements. Therefore, we generate a graph (see Figure 1) to indi-

cate the relationship between e-market environment and agents responses. In Figure

1, the x-axis represents situations of the e-market environment (Φ), and the y-axis

indicates negotiator responses. In general, when market situations shift away from

a equitable state to a beneficial or an inferior state, an agent’s responses will shift

away from calmness to vehemence. In detail, it can be seen that agents may have

three typical attitudes in response to changes of the market.

Fig. 1. Negotiators’ responses to markets’ situations

• Cautious (β > 1): when an environment’s state shifts away from equitable to

beneficial or inferior, negotiator’s responses are very calm when changes of the

environment are not significant. However, when changes in the environment are

evident, negotiator responses will become more vehement.

• Acuminous (1 > β > 0): when an environment’s status shifts away from equi-

table to beneficial or inferior, negotiators perform very sensitively even though

the change in the environment is not very obvious. However, when an environ-

ment’s status changes a lot, negotiators have to control their responses for some

objective reasons (e.g. negotiators cannot make further concession anymore).

• Normal (β = 1): when an environment’s state shifts away from equitable to

beneficial or inferior, negotiator’s responses are also shifted from calmness to

vehemence reposefully.
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Based on the above description, we generate the following mapping function from

markets states to agents responses:

Ψ(s, c, α, β) =

{

Φ(s, c, α)β , Φ(s, c, α) ≥ 0

−[−Φ(s, c, α)]β , Φ(s, c, α) < 0
(2)

where s, c and α are defined in Equation (1). The result of Ψ indicates an agent’s

individual judgement about the e-market’s situation. Different agents may have dif-

ferent judgements about the same e-market. When Ψ > 1, an agent estimates the

e-market in a beneficial state, when Ψ = 1, an agent estimates the e-market in an

equitable state, and when Ψ < 1, an agent estimates the e-market in an inferior state.

However, because Ψ only takes into account e-market situations, we also propose

the following function to consider agents’ individual situation in offers evaluation.

2.2.2 Consideration of Negotiators Situation

Let ol denote an offer from an opponent and oini denote negotiator’s initial offer,

then ol is evaluated by the negotiator as follows:

Λ(ol, oini, γ) = th

(

ol − oini

oini
× γ

)

+ 1 (3)

where γ = −1 for issues which an agent prefers a lower value and γ = 1 for issues

which an agent prefers a greater value, th(x) is defined as follow.

th(x) =
ex − e−x

ex + e−x
(4)

The result of Equation 3 (Λ ∈ (0, 2)) indicates how Negotiator P ’s initial offer is

satisfied by the offer ol. For example, if the negotiator plays as a consumer, when

ol = oini then Λ = 1. It means that the consumer’s expectation is satisfied. When

ol > oini then 0 ≤ Λ < 1, it indicates that the consumer’s expectation can only be

achieved at a certain level. And when ol < oini then 1 < Λ < 2, it implies that the

consumer can gain more profit than he/she expected.

2.2.3 Considerations of Both Markets and Negotiators Situation

Because Equation (3) only evaluates an offer based on the negotiators’ initial of-

fer but does not take the market situation into account, so evaluation results may

not accord with the market. Therefore, we define the offer evaluation function by

considering both market and negotiator situations as follows:

Θ(ol, s, c, oini, α, β, γ) =
Λ(ol, oini, γ)

Ψ(s, c, α, β) + 1
(5)

Where the result of Equation 5 (Θ ∈ (0, 1)) indicates the negotiator’s utility by

accepting the offer ol in a certain market. If it is an equitable market (Ψ = 0 and
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Θ = Λ), then the offer ol is evaluated unbiasedly. If it is in a beneficial market

(0 < Ψ < 1 and Θ < Λ), then the offer ol is undervalued. And if it is in an inferior

market (−1 < Ψ < 0 and Θ > Λ), then the offer ol is overvalued.

For example, if a potential car purchaser’s initial offer is $6000 and the seller’s

reserved price is $6500. Without consideration of the market situation, the buyer’s

evaluation result on the offer $6500 is Λ = 0.92. So the buyer is 92% satisfying with

the seller’s offer. However, when taking the market situation into account, results

might be different. If the market is a buyers’ market (i.e. 5 buyers and 10 sellers,

then Ψ = 1.4), the buyer’s satisfaction on the offer $6500 will decrease to 66% and

the buyer may reject the offer. That is because in the buyers’ market, a buyer has

opportunities to make greater profits. On the other hand, if the market is a sellers’

market (i.e. 10 buyers and 5 sellers, then Ψ = 0.72), the buyer’s satisfaction on

the offer $6500 will increase to 128%. It indicates that the buyer is very happy

on the offer $6500 in a disadvantageous market and may accept the offer. During

negotiation, desire-based agents will make decisions on their actions based on the

result of Equation (5) and agents’ desire for trading d (see Section 2.4 for details).

For editing reasons, we simplify the expression of Equation (5) to Θ(ol) in the

follows.

2.3 Counter-Offer Generation

In the last subsection, we introduce the approach to evaluate opponent’s offers by

consideration both the market and negotiator situations. In this subsection, we intro-

duce the counter-offer generation approach. The counter-offer generation approach

also takes both the market and negotiator situations into account. Before we intro-

duce this approach, we define some notations.

Let set Ot denote all offers that an agent received from its opponents in round

t, ob
t denote the ‘best’ offer in Ot (i.e. the offer brings the highest profit to the

agent), ow
t denote the ‘worst’ offer in Ot (i.e. the offer brings the lowest profit to

the agent), om
t denote the average of Ot (om

t = 1
N

∑N
i=1 oi

t and N is the size of set

Ot), ob
t′ denote the estimated best offer in the next round t′, cot denotes the agent’s

last counter-offer, and cot′ denote the agent’s counter-offer for the next round. Then

if an agent plays as a buyer, one possible situation of the counter-offer generation

procedure in round-t is illustrated in Figure 2.

In Figure 2, the x-axis stands for prices and the y-axis stands for the occurrence

density on each price. The solid curve indicates the distribution of set Ot in round-t,
which may differ from case to case, and the dotted line is the estimated distribution

of set O′

t
in the next round. We make the assumption that the shape of the distribu-

tion curve of set O′

t
is similar to Ot’s, but just the range is changed. Because the

agent plays as a buyer, so the market represented in Figure 2 is a beneficial market.

In a beneficial market, for buyers, O′

t
is estimated to be smaller than Ot on average.

The distance between the current counter-offer cot and the estimated ‘best’ offer

ob
t′ in the next round is the bargaining area. The new counter-offer cot′ is generated

within this area according to the agent’s negotiation strategy and remaining rounds

as follows.
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Fig. 2. Counter-offer generation

Firstly, we estimate the ‘best’ offer ob
t′ in the next round t′ by considering both

the distribution of Ot and the market situations as follows:

ob
t′ = ob

t + Ψ(s, c, α, β) ×
√

D(Ot) × γ (6)

D(Ot) =
N

∑

i=1

(ot,i − E(Ot))
2pi (7)

where D(Ot) indicates the variance of Ot, γ = −1 for issues which an agent

prefers a lower value and γ = 1 for issues which an agent prefers a greater value,

E(Ot) indicates the mathematical expectation of Ot, pi indicates the distribution of

ot,i and Ψ(s, c, α, β) indicates the agent’s response to the market situation. Usually,

when the distribution of Ot is a Gaussian distribution, then E(Ot) = om
t , pi = 1

N
and Equation 7 is specified as:

D(Ot) =

∑N
i=1(ot,i − om

t )2

N
(8)

Then the counter-offer cot′ for the following negotiation round is generated as

follows:

cot′ =

{

oini, when t = 0,

cot + (ob
t′ − cot) × ( t

τ )λ, when 0 < t ≤ τ.
(9)

where oini is the agent’s initial offer, cot is the agent’s last counter-offer, ob
t′ is the

estimated ‘best’ offer in the next round, and we simply adopt parameter λ in Faratin

et al.’s model [3] to represent the negotiator’s bargaining strategies.

In Figure 3, it can be seen that when the market becomes very beneficial to the

buyer agent, it is possible that ob
t′ < cot and cot′ < cot. So in the desire-based

negotiation model, we propose a decommitment mechanism which allows agents

to reject previous counter-offers if the counter-offer is not formally accepted by

any opponents. The reason that we propose such a mechanism is because in the
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Fig. 3. Counter-offer generation

desire-based negotiation model, both the offer evaluation approach and counter-

offer generation approach are impacted by market situations. So when the market

situation changes, agents may change their considerations on both offer evaluation

and counter-offer generation as well in order to gain more profits. For example,

buyers may generate disadvantageous counter-offers when the market is inferior.

However, when buyers notice that the market may become beneficial and if pre-

vious counter-offers are not accepted by any seller, buyers can reject the previous

disadvantageous counter-offers and re-generate advantageous counter-offers in or-

der to enlarge their profits. On the other hand, if sellers notice that the market may

become inferior for them in advance, they may accept buyers’ current offers in order

to avoid losses in the future.

Fig. 4. Counter-offer generation

Also, markets may become inferior for buyers. In Figure 4, it can be seen that

when a market is inferior for buyers, the estimated ‘best’ offer for the following
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round is worse than the ‘best’ offer in the round t, i.e. ob
t′ > ob

t . During negotiations,

if the new counter-offer in the round t′ can bring more profits to the agent than the

‘best’ offer in the current round t, i.e. Θ(cot′ ) > Θ(ob
t), the negotiator will keep

on bargaining with opponents and send out the new counter-offer cot′ . However, if

the new counter-offer is worse than the ‘best’ offer from opponents, i.e. Θ(cot′ ) <
Θ(ob

t), (see the case shown in Figure 4), the agent will not send the new counter-

offer cot′ , but make its final decision about the negotiation based on the comparison

between the ‘best’ offer (ob
t) from opponents and the agent’s desire for trading (d).

The detailed encounter rule of the desire-based negotiation model is introduced in

the following subsection.

2.4 Negotiation Protocol

Since both the offer generation approach and the counter-offer evaluation approach

have some differences from existing negotiation models [3] [8] [17], we propose a

negotiation protocol for our desire-based negotiation model based on Rubinstein’s

alternating offers protocol [3] as follows.

Step 1: The agent assigns negotiation parameters, i.e., initial offer (oini), desire for

trading (d), negotiation deadline (τ ), role in negotiation (α), attitude on mar-

kets changes (β) and bargaining strategy (λ). The number of consumers (c) and

suppliers (s) can be obtained from the environment directly. Also the agent ini-

tializes t to 0 and cot to oini.

Step 2: The agent broadcasts cot to all opponents and waits for responses.

Step 3: Once the agent gets responses, if any opponent accepts cot, the negotiation

is completed. Otherwise, if t > τ , the procedure goes to Step 4; and if t ≤ τ ,

the procedure goes to Step 5.

Step 4: Because the agent does not have time for further bargaining, it has to make a

final decision on the ‘best’ offer ob
t in the last round. If Θ(ob

t)
1 ≥ 1−d, the agent

will accept ob
t and the negotiation is completed. Otherwise, the negotiation fails.

Step 5: Because the agent still has time for further bargaining, so the agent will

generate a new counter-offer cot′ for the next round. If max(Θ(ob
t), Θ(cot′ ), 1−

d) = Θ(ob
t), the offer ob

t will be accepted by the agent and the negotiation is

completed. If max(Θ(ob
t), Θ(cot′ ), 1 − d) = 1 − d, the agent will leave off the

procedure and the negotiation fails. If max(Θ(ob
t ), Θ(cot′ ), 1 − d) = Θ(cot′ ),

the procedure goes to Step 6.

Step 6: The agent updates t to t′, cot to cot′ and parameters c, s according to the

current market situation, then the procedure goes back to Step 2.

Based on the above procedure, the negotiator’s action in round t is defined as

follows:

1 Simplification of Equation (5).
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Ω(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Quit, t ≥ τ ∧ Θ(ob
t ) < 1 − d or

t < τ ∧ max(Θ(ob
t ), Θ(cot′ ), 1 − d) = 1 − d,

Accept ob
t , t ≥ τ ∧ Θ(ob

t) ≥ 1 − d or

t < τ ∧ max(Θ(ob
t ), Θ(cot′ ), 1 − d) = Θ(ob

t),

Offer cot′ , t < τ ∧ max(Θ(ob
t ), Θ(cot′ ), 1 − d) = Θ(cot′ ).

(10)

3 Experiments

In this section, we illustrate our experimental results on the proposed desire-based

negotiation model and compare our model with the NDF model [3]. Subsection 3.1

introduces the experimental setup. Subsection 3.2 demonstrates the experimental

results. In Subsection 3.3, we analyze the experimental results and present further

discussion on the proposed model.

3.1 Experimental Setup

In order to mimic situations of an e-marketplace, we employed five agents (two

consumers and three suppliers). Both consumers want to purchase a monitor and all

suppliers have a monitor to sell in different prices. One consumer (Agent c2) and all

suppliers (Agents s1, s2 and s3) employ the NDF negotiation strategy. Their nego-

tiation parameters are listed in Table 1. In order to simplify the experiment, dead-

lines for all agents are set to the 10th round (τ = 10) and all bargaining strategies

are linear (λ = 1). The consumer (Agent c1) employs the proposed desire-based

negotiation model and its negotiation parameters are oini = $100, τ = 10 and

d = α = β = λ = 1. The reason of setting the parameter d to 1 is to ensure that

agents will not leave off the negotiation in midway, so we can inspect all counter-

offers generated by Agent c1. During the negotiation, all NDF agents employ the

NDF negotiation protocol and Agent c1 employs the proposed negotiation protocol.

All agents will keep their parameters in private and secure their counter-offers from

competitors. Experiments are performed separately according to markets situations,

i.e. a inferior market, an equitable market and a beneficial market (from consumers’

view).

Table 1. Agents use NDF strategy

Agent oini ores τ λ α

c2 $100 $200 10 1 −1

s1 $200 $100 10 1 1

s2 $300 $150 10 1 1

s3 $250 $150 10 1 1
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3.2 Experimental Results

In this subsection, we illustrate the experimental results on desire-based negotia-

tion in an inferior market, an equitable market and a beneficial market (from the

consumers’ view point), respectively.

3.2.1 Inferior Market

In the experiment, we mimic the inferior market by involving two consumers and

one supplier in the negotiation. In this scenario, consumers face competition. In

order to win the competition, each consumer has to defeat its competitors. Experi-

mental results between the two consumers (c1 and c2) and the one supplier (s1 or

s2 or s3) are illustrated in Figures 5 through 7, respectively. It can be seen that in

the inferior market, in order to defeat c2, c1’s offers have higher prices than c2’s

in all negotiation rounds. c1 finally won all negotiations with different sellers, i.e.

$158.25 with s1, $227.43 with s2, and $199.64 with s3. The explanation about

such results are (1) c1 noticed that the current market was inferior for itself and

gives more concessions to sellers in order to get the item, and (2) because c1’s de-

sire for trading was set to 1, it would accept any price finally in order to ensure the

item can be gained. Of course, if we decrease the value of c1’s desire for trading, c1
might leave off the negotiation when it notices that the market is too bad to reach any

agreement.

Fig. 5. Negotiations in a inferior market (c1, c2 vs. s1).
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Fig. 6. Negotiations in a inferior market (c1, c2 vs. s2).

Fig. 7. Negotiations in a inferior market (c1, c2 vs. s3).
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3.2.2 Equitable Market

We set both the number of consumer’s and supplier’s to two in order to mimic an

equitable market. The experimental result is displayed in Figure 8. In the equitable

market, c1 noticed that competitions are not so serious as in the inferior market, so

in order to enlarge its profit, it would not generate offers in a very high price as it did

in the inferior market, but just an offer slightly higher than c2’s price. It can be seen

that c1 made a deal with s1 firstly in $156.66, while c2 made a deal with s2 finally

in $180.0. Therefore, by comparison with c2, c1 gained more profit by adopting our

proposed negotiation model in an equitable market. Also, c1 decreased its cost by

comparison with its best agreement ($158.25) in the inferior market.

Fig. 8. Negotiations in a equitable market.

3.2.3 Beneficial Market

Experimental results in a beneficial market are displayed in Figures 9 through 13.

Firstly, we did not put any competition pressures on consumers, so each consumer

negotiated with two suppliers individually. It can be seen in Figure 9, when c1 nego-

tiated with two suppliers (s1 and s2), it made a deal with s1 in $140.45. Comparison

to that, c2 made a deal with s1 in $150 (see Figure 10). Obviously, c1 gained more

profit than c2 from the same negotiation. Furthermore, when s3 entered into the

negotiation, because the market became much advantageous for consumers, so c1
made a deal in a much lower price with s1 in $110 (see Figure 11). However, c2
could not enlarge its profits even though the market became better and still made a

deal with s1 in $150 (see Figure 12). During the negotiation with multiple suppli-

ers, it can be seen that c1 employed the decommitment mechanism we proposed in
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Fig. 9. Negotiations in a beneficial market (c1 vs. s1, s2).

Fig. 10. Negotiations in a beneficial market (c2 vs. s1, s2).

Subsection 2.3. c1 resigned counter-offers rejected by all suppliers in the previous

negotiation round, and re-generated counter-offers in a lower price when c1 notices

the market is in beneficial state. By performing such a behavior, c1 successfully

enlarge its profits in the beneficial market.



42 F. Ren and M. Zhang

Fig. 11. Negotiations in a beneficial market (c1 vs. s1, s2, s3).

Fig. 12. Negotiations in a beneficial market (c2 vs. s1, s2, s3).

In Figures 13, we illustrate another situation in the beneficial market. In this case,

c1 will face competition from another consumer c2. c1 firstly made a deal with s1
in $150.84, which was higher than the price ($110) in the beneficial market with-

out any competition (see Figure 11), but was lower than the price ($156.66) in the

equitable market (see Figure 8) and the best price ($158.25) in the inferior market

(see Figure 5). Therefore, it can be confirmed that c1 has the ability to adjust its
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Fig. 13. Negotiations in a beneficial market.

negotiation behavior to balance between profit and success during the negotiation

when markets situation change. Furthermore, by comparison with the cases dis-

played in Figure 9 and 11, it can be seen when c1 had the same increment on both

numbers of competitors and partners, c1 lost its profit. Therefore, we may infer that

competitions impact agents’ profits more than opportunities. However, we will not

expand such a discussion in this paper but leave it to future works.

3.3 Discussions

In the previous subsection, we illustrated experimental results in different market

situations. It can be seen when a market changes, a desire-based agent also changes

its behaviors during negotiations. Furthermore, even for the same market situation,

an agent’s decisions may also be different when they have different desires on trad-

ing. Therefore, both market situations and agent desires will impact negotiation re-

sults. In this subsection, we discuss how these two factors affect agent behaviors in

negotiations.

In Figure 14, we illustrate a model to demonstrate how market situations and

agent desires for trading impact agents behaviors in negotiations. The x-axis denotes

the markets situation (refer to Equation (1)), the y-axis denotes agents’ desire for

trading, and the z-axis denotes agents satisfactions on offers (refer to Equation (3)).

Then by setting both negotiation parameters β and λ to 1, a trading surface for the

desire-based negotiation model can be formulated as follows:

Γ (Φ, d) =

{

(1 + Φ) ∗ (1 − d), when − 1 ≤ Φ ≤ 0,

(Φ − 1) ∗ d + 1, when 0 < Φ ≤ 1.
(11)

where d ∈ [0, 1] and Φ ∈ [−1, 1].
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Fig. 14. Trading surface of negotiation models.

The trading surface defines a set of thresholds on agents profits. During the ne-

gotiation, agents will accept offers above or on the surface, but reject offers below

the surface. For the trading surface of desire-based negotiation, in an extreme case,

when Φ = −1 or d = 1 then the threshold is Γ (Φ, d) = 0, so the agent will accept

the ‘best’ offer from its opponents finally in order to make the deal. That is because

when Φ = −1, the market is extremely disadvantageous for the agent, so any offer

will be considered as a ‘good’ offer based on the market situation; and when d = 1,

the agent needs to complete the negotiation extremely, so the agent will accept the

‘best’ offer from its opponents finally. In another extreme case, when Φ = 1 or

d = 0 then the threshold is Γ (Φ, d) = 1, so the agent will reject any offer which

cannot satisfy itself by 100%. That is because when Φ = 1, the market is extremely

advantageous for the agent, so any offer below the agent’s initial offer will be con-

sidered as a ‘bad’ offer; and when d = 0, the agent’s motivation for completing the

negotiation is very low, so any offer lower than 100% satisfaction definitely can not

touch the agent. In a normal case, such as Φ = 0 and d = 0.5 (i.e. an equitable

market and the agent hesitates about trading), the agent will not accept any offer

which cannot meet its satisfaction on 50%.

Also, we display another trading surface for the NDF model. Comparison with

the desire-based model, the NDF model’s trading surface is just a plane surface.

That means the agent in the NDF model will fix its thresholds in all situations into

a constant, and does not consider changes of markets and agents desires for trading.

It can be seen in Figure 14 that an instance of the trading surface for the NDF model

(Λ = 50%) is partially below the trading surface of desire-based model and partially

above the desire-based model’s. For agents in the NDF model, they will accept all

offers on this surface. However, for agents in the desire-based model, situations are
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more complex. When Φ > 0 (beneficial market) and d < 0.5 (i.e. agents do not

really want to make a deal), agents in the desire-based model will not accept offers

which locate on the NDF model’s surface. On the other hand, when Φ ≤ 0 (inferior

or equitable market) and d > 0.5 (i.e. agents want to make a deal), the agent in

the desire-based model will accept offers which locate on the NDF model’s surface.

Therefore, we can conclude that in the desire-based negotiation model, agents do not

evaluate offers independently, but relatively by considering market situations and

agent desires for trading, and the desire-based negotiation model is more applicable

in complex e-marketplaces.

4 Related Works

Some related works also take into account agent negotiation in complex environ-

ments. This section discusses differences between these related works and our

model.

Sycara et.al. [12] proposed a model for bilateral negotiation by considering un-

certain and dynamic outside options. It is argued that outside options can impact

agent negotiation strategies. According to the complexity of outside options in ne-

gotiation, negotiations are further divided into three levels, which are single-thread

negotiation, synchronized multi-thread negotiation and dynamic multi-thread ne-

gotiation. Single-thread negotiation is only processed between two agents without

outside options. Synchronized multi-thread negotiation is based on the single-thread

negotiation model, and also considers concurrently existing outside options. Dy-

namic multi-thread negotiation is expanded from synchronized multi-thread negoti-

ation by considering uncertain outside options which may occur dynamically in the

future. Sycara’s model gives a very novel classification and description on general

negotiation. The desire-based negotiation model proposed in this paper focuses on

e-market places and its changes, and belongs to dynamic multi-thread negotiation.

Dasgupta and Hashimoto [2] proposed an approach to address the problem of

dynamic pricing in a competitive online economy where a product is differenti-

ated by buyers and sellers on multi-issue. Agents may have incomplete knowledge

of the negotiation parameters. A seller employs a collaborative filtering algorithm

to determine a temporary consumer’s purchase preferences and a dynamic pricing

algorithm to determine a competitive price for the product. Therefore, the price pre-

diction approach gives a solution about the bidding strategy in complex negotiation

environments. However, their approach only pays attention to sellers without the

consideration of the situation of buyers. Our desire-based negotiation model is suit-

able for adoption by both sellers and buyers.

Ren et.al. [16] proposed a market-driven model to help agents to make conces-

sions in negotiation. Four concession factors, namely trading opportunity, trading

competition, trading time and strategy and eagerness, are introduced to represent

both market and agent situations. Each concession factor impacts an agent’s conces-

sion from a certain consideration. All concession factors are updated by the agent

according to the market’s dynamic situation. But agents’ judgements on offers and
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expectations on negotiation outcomes are still fixed. In this paper, we model mar-

kets by considering both market situations and agent desires. During negotiations,

agents make concessions based on both objective and subjective considerations in

the negotiation.

By comparison with the above related works, the proposed desire-based negoti-

ation model has the following merits. It models negotiations in e-marketplaces by

considering (1) both objective situations of markets and subjective desires of agents,

(2) both concurrent and future possible situations of e-marketplaces, and (3) both

agents’ individual profit and trade-offs of whole e-market places.

5 Conclusion and Future Works

In this paper, we proposed a desire-based negotiation model to help agents to make

more wise decisions in e-marketplaces by considering both market situations and

agent desires for trading. In our model, the offer evaluation approach and counter-

offer generation approach take both objective and subjective considerations into ac-

count. Offers from opponents are evaluated relatively by considering markets sit-

uations and counter-offers are generated wisely by expecting possible changes of

the market in the future. Also, a negotiation protocol was proposed to define the

negotiation procedure in e-marketplaces. Based on experimental results, we further

put forward the concept of ‘trading surface’ and discovered that the trading surface

of the desire-based negotiation model is more applicable than the NDF model’s in

complex e-marketplaces. Future works of this research will focus on multi-issue

negotiations and analysis on competitions and opportunities in e-marketplaces.
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Summary. Negotiations are known to proceed differently across cultures. A real-

istic agent model of international negotiations has to take cultural differences into

account. This paper presents an agent-based model that tackles this challenge. The

context is a trade game where commodities with a hidden quality attribute are ex-

changed. The negotiation model uses the ABMP negotiation architecture. It applies

a utility function that includes market value, quality preference, and risk attitude.

The indices of the five dimensions of Hofstede’s model of national cultures are

used, in combination with agent’s group membership and societal status, to differ-

entiate negotiation behavior by adaptation of weight factors in the utility function

and ABMP parameters. The paper presents test runs with synthetic cultures and a

set of actual national cultures. The present version of the model helps to understand

behaviors in international trade networks. It proves that Hofstede’s dimensions can

be used to generate culturally differentiated agents.

1 Introduction

Bargaining practices differ across the world. Multinational companies sometimes

work with different price lists for different countries: in order to sell at the same

price, the selling company needs to adapt its offer to the varying bargaining prac-

tices. A single piece of advice about how to bargain, or a single model to describe

bargaining, are obviously not valid across the world unless culture is taken into

account.

’Culture’ is a notion with many meanings, some of which are contested in some

disciplines. However, the leading paradigm today is widely accepted and used in

both practice and academia. According to it, culture refers to the unwritten rules

of society. It is a phenomenon that is specific to a group, not to an individual. It

is transmitted in early youth through example and education. As a result its stable

across centuries in spite of huge changes in environment and technology. Cultural

differences show no signs of diminishing in the Information Age.

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 49–68.
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Within the literature various basic dimensions can be found according to which

societies differ from one another. Of these, the most widely used is Hofstede [1],

[2]. His work is accessible, sparse, and based on a very large, very well stratified

sample that continues to give it great explanatory value. No other model matches

society-level variables so well to date [3].

This paper describes an agent-based model for bargaining in the context of trade

and focuses on cultural adaptation of negotiation process parameters. The agents

follow common sense strategies such as maximizing utility, seeking good quality,

and minimizing risk, but they also have models of how to behave in an appropriate

manner. The latter models are based on Hofstede’s five dimensions of culture. A

cultured agent-based model of bargaining offers several promises. It can help un-

derstand the dynamics of international negotiations in trade. It could also serve as a

training tool for aspiring international traders.

The paper first briefly introduces Hofstede’s model of five dimensions of culture.

Next, the ABMP (Agent-Based Market Place, [4]) negotiation model that we adopt

is presented. We show how this model can be used in agent-based simulations. We

also discuss the limited subset of negotiation situations that are considered in this ar-

ticle. In the third section we link culture and negotiation by describing the influence

of each of Hofstede’s dimensions of culture on negotiators’ practices and prefer-

ences. This section sets the scene for the presentation of the rules for our cultured

agents in the fourth section. Section five shows example runs with the model on

imaginary cultures that have extreme values on one of the Hofstede dimensions and

average values on the other four. Section 6 presents results of test runs for a set of

actual countries. Finally we discuss the model and how to proceed, since this model

forms the basis of future research and tools.

2 Hofstede’s Five Dimensions of Culture

Human societies have found a different patterns of response to the problems of so-

cial life. In some, groups are permanent and close-knit while in others, group mem-

bership is volatile and voluntary. In some, leadership style is usually autocratic and

in others, participative. Research has shown and repeatedly confirmed that basic

tendencies to deal with a few central issues of social life are stable across the gener-

ations in societies [2]. They are, because they are instilled into a society’s members

from birth. As a baby and as a toddler, a child is primed as a social being. Once a

child sets foot into the wider society as a teenager, its basic cultural orientation is

firmly in place. This research stream has led to dimension models of culture. The

most widely used of these is the five-dimension model by Hofstede [1]. The five

dimensions are:

- Identity: individualism versus collectivism. Essentially this is the extent to which

members of a society feel responsible for themselves and close relatives, or for

the larger group they belong to, and feel the group to be responsible for them.

- Hierarchy: large power distance versus small power distance, or the extent to

which the less powerful members of a society expect and accept that power

and rights are distributed unequally.
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- Aggression and gender: masculinity versus femininity. This dimension is about

assertive dominance and emotional gender roles. A firm, competitive orienta-

tion, versus a consensus-seeking and care-taking orientation, for both women

and men.

- Otherness and truth: uncertainty avoidance versus uncertainty tolerance. In uncer-

tainty avoiding societies strict rules, rituals, and taboos govern life. Distinctions

should be sharp and the unknown is considered dangerous.

- Gratification of needs: sort-term versus long-term orientation. In some soci-

eties immediate gratification of needs and keeping up social appearance, well-

behaving and respect for tradition are seen as virtues. In long-term oriented

societies, reasoning is pragmatic and planning, foresight and perseverance are

valued.

Note that the five dimensions are not personality traits, but societal patterns. Also

note that the picture drawn is necessarily simplified. It presents the two caricatured

extremes of each dimension. In reality, almost all cultures have intermediate po-

sitions on almost all dimensions. Furthermore, the dimensions of culture can only

be isolated from one another in an artificial way. The five dimensions are no more

than abstractions that capture main behavioral trends. In reality, cultures have a rec-

ognizable feel to them, a Gestalt that can be described, albeit only roughly, by its

combination of dimension scores. Experienced negotiators know the range of be-

haviors that they can expect from negotiators from other parts of the world. They

also know how gender, age, status and personality can affect the negotiation style of

people from these parts of the world.

In [5], [6], [7], [8], [9], the influence of each of the dimensions on trade processes

was modeled separately; a slightly artificial, but also necessary intermediate step to

model agents differentiated along the Hofstede dimensions. This chapter describes a

reconciled models of all dimensions and presents test runs with synthetic and actual

national culture.

3 Negotiation Process Model

The present work focuses on a specific type of negotiations: bilateral bargaining

about business transactions. The work aims to develop models of actual human be-

havior. It does not aim to develop an optimal bargaining strategy that can outperform

human negotiators or other agents.

In bilateral negotiation, two parties aim at reaching a joint agreement. They do

so by exchanging various offers or bids using e.g. an alternating offers protocol [10]

called the ”negotiation dance” in [11]. Negotiation is a complex emotional decision-

making process aiming to reach an agreement to exchange goods or services [12].

The literature on automated negotiation contains a number of agent models for

negotiation. The focus of that literature is on reaching deals that are Pareto-efficient

(i.e., neither can improve without making the situation worse for the other). Further-

more, some aim at reaching fair outcomes, i.e., in which the deal is equally good for

both parties. For more information on strategies see, e.g., [4], [13], [14], [15].
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The context of the negotiation behavior modeled in this paper is formed by hu-

man gaming simulations. The gaming simulations are designed as tools in supply

chains and networks research [16]. The multi-agent model aims to simulate human

behavior in these games. Fig. 1 depicts the process model of an agent’s activities in

the game.

Fig. 1. Processes and internal information flows of trading agents

Participants can determine their trade goals, for instance to sell or to buy com-

modities of a particular quality level. They can select a trade partner according to

their preferences and experience, negotiate a transaction of a commodity with qual-

ity attributes and guarantees, and deliver truthfully or defect. The essence of the

game is information asymmetry: commodities have a quality attribute that is known

to the seller and invisible - but testable at some cost - for the buyer. The buyer can

either trust the seller’s quality statement or spend money on testing, or negotiate

some kind of guarantee or certification, which will result in a higher price.

The relevant attributes for comparing bids during the negotiation process are the

economic value of the transaction according to market prices, the valuation of par-

ticular quality attributes by the trader, and the risk of deceit introduced by the infor-

mation asymmetry.

The valuations of quality and risk have a rational component and a subjective

valuation that is influenced by a trader’s personal characteristics and culture. The

rational component of a quality attribute is the difference in market price that a

trader expects as a result of the quality difference. The rational component of the

risk is the product of the amount of the damage and the probability that the damage

occurs. The subjective valuation comes in addition to the rational value. For quality,

it is the trader’s quality preference, for instance because of the societal status that

results from trading high quality products. For risk, it is an agent’s risk aversion, a

cost in excess of damage × probability, that a trader is willing to make in order to

avoid risk.

In the models developed in this work, traders are assumed to compare business

proposals by applying a utility function as proposed by Tykhonov et al. [17]:

UB = wvVB + wqQB + wrRB. (1)
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UB stands for the utility that agent a expects from bid b made by partner agent p.

VB reflects a’s belief about the economic value of the transaction in the interval

[0, 1]. It is calculated as the profit expected from the transaction in case of coopera-

tion, minus the estimated risk of the trade partner to defect, computed as damage ×
probability.

QB reflects the subjective valuation of the quality attribute of the proposed trans-

action, in addition to the market value, in the interval [0, 1], e.g. a trader may prefer

trading biologically grown food, even if more profit can be made trading tradition-

ally grown.

RB reflects a’s valuation of the risk involved in the interval [0, 1], with 1 repre-

senting no risk. It is based on the product of three factors, all normalized values in

the interval [0, 1]. The first factor is a’s subjective estimate of the probability that

p’s will defect. The second factor is the opportunity to defect that the contract leaves

for p, e.g. a contract for organically grown food offers the opportunity to deliver the

cheaper traditionally grown, but a contract for traditionally grown food does not.

The third factor is the damage that a expects to suffer in case of defection by p, nor-

malized in the interval [0, 1] with 1 representing maximal damage. RB is computed

as the product of the three factors.

The factors wv, wq , and wr , with wv +wq +wr = 1, reflect the weight that agent

a attaches to the terms of the utility function when dealing with p. For a rational

agent, wq = wr = 0. The values of wq and wr reflect an agent’s quality preference

and risk aversion, and are to a great extent influenced by culture. Within a culturally

homogeneous society, not all agents have equal preferences, but significant differ-

ences between cultures exist in the average values of risk aversion and the appraisal

of status associated with high quality products.

Technical details of the utility function can be found in [18].

4 ABMP Negotiation Architecture

For the agents’ negotiation strategy we chose the Agent-Based Market Place

(ABMP) architecture of Jonker and Treur [4], because of its proven similarity to

human negotiations [19] in experiments with the SAMIN system of which the bid-

ding strategy is that of ABMP.

The ABMP strategy is developed on the following principles. To assess a bid of

the other party, it is important to have evaluation methods. Evaluation can be done at

two levels: the level of each of the specific attributes (attribute evaluation), and the

level of the bid as a whole (overall bid utility). Thus, some characteristics of ABMP

are:

- explicit reasoning about the negotiation strategy and co-ordination of the negotia-

tion process;

- evaluation of a bid takes into account both the attributes separately and the overall

utility of the bid;

- planning of a new bid takes into account both the overall utility level and the level

of attributes separately.
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In particular, in the model it is possible to work on two levels: the level of the

overall bid and the level of each of the attributes separately. The negotiation model

has been specified as a compositional structure within the component Co-operation

Management of the agent, see Figure 2.

Fig. 2. Multi-Attribute Negotiation Architecture

Globally speaking, the process runs as follows:

1. At the beginning of each negotiation round, evaluations of the attributes of

the previous bids are determined.

2. The evaluations are aggregated and the overall utilities are computed, both

for the own previous bid of the agent and the proposed bid, received from

the opponent in the previous negotiation round.

3. Decide whether to accept the opponent’s bid, quit the negotiation without

a deal, or make a counteroffer. For a counter offer the next step is, step 4.

4. The concession step to be made in the next bid is determined. For this, the

agent determines the overall target utility for the next bid to be proposed

to the opponent.

5. To obtain the next bid, given the target utility, first according to some dis-

tribution over attributes, target attribute evaluation values are determined

(chosen in such a manner that they aggregate exactly to the target utility).

6. Finally, for each of these target attribute evaluation values, an attribute

value is chosen that has an evaluation value as close as possible to the

target evaluation value for the attribute.
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An agent accepts another agent’s bid, unless:

- Repetition of steps takes place: steps without enough progress (depending on the

impatience factor (π) which specifies the acceptable number of steps in which

nothing changes)

- A utility gap (larger than some threshold ω) remains; i.e., a significant difference

between the utility of the own bid and that of the other agent’s bid.

- A configuration mismatch (larger than some threshold ν) remains between the

own bid and the other agent’s bid.

Here a configuration mismatch means that for at least one attribute, between the two

values (in the two bids) a significant difference exists. Depending on the outcome

of the analysis in step 2, component Negotiation Coordination decides on the next

action (step 3). If a user is involved, the agent involves the user in the decision

process. If the agent is solely responsible for the negotiation, it decides for itself on

one of the following actions:

- Start a next negotiation round

- Contact the user (to discuss whether the concession factor (γ) can be changed.

- Contact the user to discuss whether the configuration tolerance (τ ) can be changed.

- Communicate to the user that an agreement has been reached.

- Communicate to the user that the negotiation has failed (only when the user is

unwilling to change the characteristics).

One additional elementary aspect of the ABMP architecture is the determination of

a concession step (step 4). This step characterizes a concession-based strategy. The

decision for what concession to make is based in ABMP on the concept of the cur-

rent utility gap, i.e., the difference between the utility of the agent’s own bid, and

the utility of the last bid of the opponent. It is important to note that in this compu-

tation both utilities are based on the agent’s own utility function. Thus, where the

utility of the self (own) bid is the actual, true utility value, the utility of the oppo-

nent’s bid is typically only an approximation, since the opponent is typically not

willing to share his utility function. This illustrates a key aspect of negotiations with

incomplete preference information (i.e., where the utility function of the opponent

is unknown): the perceived remaining utility gap between the own and other’s offer

may be very from the perspectives of the two parties. A concession made by one

agent (in the way of decreasing his own utility function) may be perceived as no

concession at all (even a retraction) by the other party. Similarly, an agent can make

no concession (or a very small concession), but the opponent perceives this con-

cession as very considerable. It is precisely this type of concessions that one would

like to achieve in multi-attribute negotiations, since it means the new offer is closer

to the Pareto-efficient frontier. Such concessions can only be achieved by finding

suitable concession trade-offs between the issues.

In ABMP the concession step CS is determined by

CS = β(1 − μ/UBS)(UBO − UBS). (2)

In the above formula, UBS and UBO represent the utilities of self (i.e., the agent’s

own bid), respectively the utility of the other’s last bid. The factor UBO − UBS
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expresses the current utility gap. The letter μ stands for minimal utility, also known

as reservation value. The factor β stands for the negotiation speed. The minimal

utility is taken as μ = 1 − γ with γ the concession factor, expressing a measure

in how far concessions can be made. The factor (1 − μ/UBS) expresses that the

concession step will decrease to 0 if the UBS approximates the minimal utility μ.

This ensures UBS ≥ μ.

Note that in step 4, the user is asked whether he is willing to adjust his concession

factor. The rationale for this is that, in human negotiations, often the players do not

know their true or absolute cut off value (minimal utility), but start working from

a higher value. If it turns out that with that somewhat higher minimal value, they

cannot close the deal, humans tend to adjust this minimal value closer to their true

cut off value.

The rest of the ABMP architecture is not explained in this paper, as it is not

fundamental for understanding the current paper. For more details, the reader is

referred to [4] and [20].

5 Culture and Bargaining

[5], [6], [7], [8], and [9] model the influence of culture on trade processes for each

of the five dimensions separately. Characteristic effects of the dimensions on nego-

tiation behavior are cited below.

5.1 Individualism versus Collectivism

According to [5], to a collectivistic trader, negotiation has to be preceded by the for-

mation of a relationship. If that goes wrong there is no negotiation. During the nego-

tiation, collectivistic traders discriminate between in-group and out-group partners.

They try to maintain harmony as long as the opponent follows the in-group rules.

When doing business with individualist traders the collectivists may be shocked by

their opponent’s explicit communication. The style of the reaction may be furious,

or they might never explicitly say anything, but just avoid the other from now on.

In a collectivistic culture the responsibility for in-group welfare and the compliance

with in-group rules always play a prominent role. A collectivist will accept benefits

for his in-group rather than his personal advantage as a convincing argument.

Individualists have one thing in mind during negotiations: their personal interest.

So individualist traders are not very modest in their negotiations, nor will they give

in for the purpose of maintaining harmony. If they are not aware of the cultural dif-

ferences when trading with collectivists, they may be upset by the lack of explicit

communication, or they may upset their opponents by being too explicit, or by talk-

ing business before the relationship has been established and acknowledged. They

behave patiently as long as it serves their interest.

5.2 Power Distance

According to [6], traders from egalitarian cultures may have different ways to nego-

tiate, but they will always negotiate. Traders from large power distance cultures on
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the other hand are not used to negotiating seriously. The powerful dictate the con-

ditions. A trader from a culture with large power distance expects a lower ranked

business partner to accept his conditions rapidly. If the lower ranked partner has the

same cultural background, there is no problem and the rights of the higher ranked

will be recognized and respected: the lower ranked will be modest and give in easily.

However, a trader from an egalitarian culture may not give in to the pressure if his

status is lower, but will either react furiously (e.g., break off negotiations) or simply

ignore the pressure (make a counterproposal), in which case the opponent will be

furious (and e.g., break off negotiations).

5.3 Masculinity versus Femininity

[7] treat the dimension of masculinity versus femininity as a preference for per-

formance versus cooperation. A performance oriented trader (masculine culture) is

interested in fast trades, with as many high quality goods as possible in one trade.

This trader is rather impatient, and if bids are too far off from his profile, he will

walk away quickly. The performance oriented sticks to the contract of the deal, de-

ceive the trade partner to the limits of the contract without any compunction, and

expects the partner to do so too.

A cooperation oriented trader (feminine culture) is interested in the relationship

with the trade partner; building trust is important. The amount or quality of goods

is not of the most interest, because the relationship built during negotiation might

pay off in future negotiations. Given the interest in the relationship with the trade

partner, a first negotiation with a trade partner will take time that is willingly spent.

During such negotiations, the trader appreciates a negotiation process in which both

partners show a willingness to accommodate the other over time.

5.4 Uncertainty Avoidance

According to [8], the first bid of an uncertainty avoiding trader tends to be modest

in the sense that it is a price he thinks is right. Uncertainty avoiding traders have

an emotional style of negotiation, making sure that the opponents understand their

feelings. They will not adapt their behavior to their opponent’s. In the bargaining

that follows they will not easily give in nor will much time be spent. After a few un-

successful iterations, the uncertainty avoiding trader will break off the negotiation.

Uncertainty tolerant traders on the other hand have a relaxed style of negotiation.

They try to adapt their behavior to their counterparts, although they are not prepared

to come to an agreement at all cost. They do not show their emotions and may be

disconcerted if their opponents do. They are careful not to be more yielding than

their counterparts are.

5.5 Long Term versus Short Term Orientation

According to [9], long term oriented negotiators are pragmatic and take the bigger

picture. They tend to see one bargaining instance as a small step in a long process,
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and their decisions will be led by their estimation of the profitability or other success

chances of that longer process. Long-term oriented traders show patience. They do

not break off negotiations. They do not overcharge. A first proposal may be modest,

but they do not rapidly give in.

Short term oriented negotiators, on the other hand, think in terms of moral prin-

ciples and apply them to the situation that is before them here and now. They are

very reliable when it comes to following standards of appropriateness of behavior,

but this can make them disregard the ulterior consequences of their action.

6 Modeling Culture in ABMP

Based on narrative descriptions acquired through an expert systems knowledge elic-

itation approach, [5], [6], [7], [8], and [9] propose formal models for the influence of

the single dimensions on the ABMP parameters, and for the weights that subjective

terms for quality preference and risk aversion get in an agent’s utility evaluation.

With respect to the influence of culture, the relevant ABMP parameters are con-

cession factor, negotiation speed, utility gap size, and impatience factor. The con-

cession factor determines how far the agent is willing to go in making concessions.

Negotiation speed determines the extent of concessions to its own utility the agent

would typically make per negotiation round. The utility gap size expresses what is

acceptable to the agent when comparing its own bid with that of the opponent. If

the difference in utility falls within the utility gap size, the agent will accept the op-

ponent’s offer. The impatience factor determines when the agent becomes impatient

with the opponent. For example, for some agent it is OK if the other makes a con-

cession within 4 rounds, for another, the opponent should make concessions every

round.

[18] proposes a model that integrates the models of the single dimensions into

a five-dimensional model of cultural influence. The basis for the integration is the

table of cultural factors’ influences (Table 1).

The modeling approach is as follows. Behavior is influenced by the cultural di-

mensions. These are represented by indices usually called PDI, UAI, IND, MAS,

and LTO. We scale these indices to the interval [0, 1], 0 representing the lowest

observed valuein surveys of national cultures, 1 the highest observed value, and in-

dicate the scaled values by PDI∗, UAI∗, IND∗, MAS∗, and LTO∗, respectively.

So, IND∗ indicates the degree of individualism, 1− IND∗ indicates the degree of

collectivism.

In addition to the indices, in some cultures relational characteristics are relevant

to differentiate behavior. In cultures with high power distance, status of the agent

and its opponent is relevant. In collectivistic cultures, in-group members are treated

differently from out-group members. In uncertainty avoiding cultures, strangers are

mistrusted. In short-term oriented cultures, celebrities and well-respected members

of society are treated with special attention.

The combination of cultural indices and relational characteristics lead to the cul-

tural factors represented in Table 1. These factors are modeled to have a monotonous

effect, either increasing or decreasing, on the relevant ABMP parameters and weight
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Table 1. Influence of culture on the utility weight factors and ABMP parameters (+ increased

parameter value; - decreased; +! increased every negotiation round) [18]

factors. As no further evidence is available, a simple approach is taken and the ef-

fects are assumed to be linear: from some default value to a minimal value if the

resulting affect is negative; from the default value to a maximal value if the effect is

positive:

x = xT +
Δx + |Δx|

2
(xH − xT ) +

Δx − |Δx|
2

(xT − xL). (3)

In the above equation xT represent the default value of parameter x, xH the maximal

value, xL the minimal value, and Δx the effect of joint cultural factors on x.

The effects of the factors on a parameter are computed by subtracting the weak

disjunction of the decreasing effects from the weak disjunction of the positive fac-

tors. So, positive effects cannot reinforce each other, negative effects cannot rein-

force each other, but the strongest negative effect can compensate for the strongest

positive effect, vice versa. This can be illustrated by the effect of culture on the

impatience parameter:

Δι = max

{

UAI∗, MAS∗

}

− max

{

PDI∗(sp − sa)(1 − IND∗)(1 − gap)

(1 − MAS∗), LTO∗, (1 − LTO∗)sp

}

.

(4)

In this equation sa and sp represent the agent’s beliefs about own and partner’s

societal status, respectively, and gap represent a’s belief about group distance with

p. Effects on other parameters are computed similarly, using Table 1.
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7 Test Runs with Synthetic Cultures

Table 2 presents results of simulated negotiations, applying Jonker and Treur’s

ABMP architecture [4]. The negotiations are performed in the simulation environ-

ment for of commercial transactions, applied in [6], [7], [8], and [9]. The agents

are assigned roles of either suppliers or customers. Agents may select a partner in

the opposite role and negotiate about the sale of a commodity that has either high

or basic quality. However, quality is not visible without third-party testing, so the

buyer of a high quality product has to accept risk, i.e. trust the seller. In the current

simulation, agents are neutral with respect to trust, i.e. neither trust nor distrust their

trade partners. If they agree on high quality, they implicitly accept the risk of deceit.

The percentage of high quality transactions reflects the level of risk that the agents

are willing to take. It should be noted that the results are not tuned to realistic situa-

tions. The figures should not be taken as absolute values. They show tendencies that

emerge from the model.

The results in Table 2 show that in a hierarchical agent society, negotiations suc-

ceed more frequently if there is status difference: the higher ranking force the trans-

action and take risk (high rate of high quality transactions) or force the lower ranking

to do so. Egalitarian agents do not accept the risk of deceit.

In uncertainty avoiding agent societies, negotiations fail frequently if the part-

ner is different, i.e. partners do not have common group membership. Negotiations

are broken off after a few rounds, because the uncertainty avoiding agents have an

urge to proceed (”time is money”). They have a strong preference for high quality

commodities. They are willing to take a calculated risk to that end, but only with fa-

miliar partners. The uncertainty tolerant agents are more balanced in their judgment

of transaction value and risk.

Individualistic agents also do not accept proposals that have too little value or too

much risk. Collectivistic agents fail more frequently if they negotiate with out-group

partners. With in-group partners, they take their time to negotiate and accept the risk

of deceit.

Masculine agents are impatient, break-off frequently, and go for high quality.

Feminine agents try to finish the negotiations and take their time for it. Nevertheless,

they do not succeed more frequently, because the step size of their concessions is

too small.

Long term oriented agents show patience in their negotiations and frequently suc-

ceed, but they do not accept risk. Yet they accept high quality transactions, because

they take their time to negotiate a price that covers the risk. The sort term oriented

are less patient and break off more frequently, but this effect is reduced when they

trade with high status partners. They accept risk if they are trading high quality

products.

These results comply with the expected behavior of the agents and verify the im-

plementation. However, they do not validate that the implemented model generates

believable culturally differentiated agent behavior. For validation of the model, re-

sults of extensive simulations with realistic values of cultural parameters should be

compared with empirical results from literature. A host of literature on negotiation
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Table 2. Results of simulated negotiations for extreme settings of culture parameters, i.e.

the value for the particular dimension is set to either 0.1 or 0.9, the values for the other

dimensions are set to 0.5. Default values of parameters wq, wr , g, w, b, and i are set to 0.2,

0.1, 0.7, 0.2, 0.02, and 0.4, respectively; T: number of successful transactions; P: number

of failed negotiations; P: percentage of negotions failed; R: average duration in rounds; Q:

percentage of transactions with high quality

in particular countries is available, for instance Adair et al. [21] compare negotia-

tions in France, Russia, Japan, Hong Kong, Brazil, and the United States; Kumar

and Worm [22] compare negotiations in China and India.

Table 3. Example cultures used in simulations

The remaining part of this section presents an example of data generated by the

model. An agent society of 8 suppliers and 8 customers is given time to trade and

negotiate about approximately 100 transactions. All suppliers have equal cultural

settings and all customers have equal settings. If agents have equal cultural set-

tings, they are considered in-group. All agents have equal status. Table 3 displays

the cultural settings. Culture 1 is modeled after North-American cultures, culture 2

is inspired by China, culture 3 by East-European cultures and culture 4 has simi-

larity with India. Table 4 presents results of the simulations. The results in Table 4



62 G.J. Hofstede, C.M. Jonker, and T. Verwaart

Table 4. Example results of a simulation run with default parameter settings as in Table 2 and

cultures from Table 3

demonstrate that in the simulation model, the cultural dimension parameters have

their influence. They differentiate aggregate performance in mono-cultural settings

as well as in intercultural interactions. However, extensive validation is required on

the basis of culture and negotiation literature and experimental data. This paper does

not cover such validation. It is subject of the authors’ current research.

8 Test Runs with Actual National Cultures

Tests have been run with agents configured with actual national cultures. For this

purpose, a dataset of cultural dimensions of 62 countries was used (subset of a

dataset prepared for a new edition of [2], to appear in 2010). For these cultures,

the effect on ABMP parameters can be calculated, for sight validation of the param-

eter adaptations resulting from Table 1. The effects are presented in the Appendix

(Table 6).

For all test runs, the agents were configured homogeneously with the parameter

values presented in the Appendix (Table 7). All runs were replicated 10 times. The

average results are presented in Table 8 in the Appendix. It should be noted that these

results represent modeled behavior in a game, not in actual trade. The results show

the number of successful transactions, regardless the profitability of the transactions.

The results show that the model can generate differentiation of behavior in trade

for realistic cultural configurations. The effects on different observables, e.g. failure

rate and average negotiation duration, are different across cultures. However, more
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data are required for a thorough analysis, for instance varying the group distance

and status differences between agents.

9 Discussion and Conclusion

It is well-known that negotiation outcomes differ across the world and that people

from different countries differ with respect to the way they negotiate and the results

they obtain [23]. Kumar and Worm [22] relate differences in business negotiation

processes with differences in economic institutions. According to Hofstede [1], the

efficiency of different organizational structures and institutions depend on culture.

There is ubiquitous evidence that the result of decision making in business is influ-

enced by the cultural background of the decision makers. As a consequence, realistic

business simulation models of international supply chains and networks that take the

interaction between business partners into account, should incorporate culture.

Culturally differentiated behavior is not relevant in agent-to-agent negotiations,

or other situations where the main purpose of application of intelligent agents is to

outperform people by rational decision making, like advocated by Raiffa [11]. Cul-

turally differentiated negotiating agents are useful in a context where human factors

play a role. Social simulation is an example of such a context. [17] report a multi-

agent simulation that is intended for use in combination with a gaming simulation,

as a data gathering tool in supply chain research. Other application area’s may be

training and education, and decision support systems for human negotiations.

This paper contributes to the understanding of culture’s influence on decision

making in business by exploring the feasibility of Hofstede’s five-dimensional

model to simulate believable agents in business. The model has been tested on imag-

inary cultures that differ on only one of the dimensions.

Data sets have been generated on the basis of actual national cultures. These

data show relations between cultural configuration and the simulated frequency of

transactions, negotiation failure ratio, duration of negotiation, quality level of traded

commodities, and certification level. The results provide some face validity of the

simulations, but a deeper analysis on more data is required to reveal relations in the

results that can be validated.

Preliminary results of the simulation of more complex, reality-based cultures give

evidence that culture in agents can be simulated by applying Hofstede’s model, as

was originally suggested by de Rosis et al. [24]. However, extensive validations

remain for future research. A first source of validation data are the numerous papers

reporting differences in negotiations across cultures, e.g. [21]. Gaming simulations

like [17] could be used as a tool to collect data for more precise tuning of the model.
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Appendix

Table 5. Effects of culture on ABMP parameters based on Table 1 for a sample of 62 coun-

tries, computed for group distance 0.5, supplier status 0.3, and customer status 0.7
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Table 5. (continued)

Table 6. Default and maximal and minimal values used for cultural adaptations in Table 7

Table 7. Average results of 10 simulation runs with 8 supplier agents and 8 buyer agents,

with group distance 0.5, supplier status 0.3 and customer status 0.7; T: number of successful

transactions; P: number of failed negotiations; P: percentage of negotions failed; R: average

duration in rounds; Q: percentage of transactions with high quality; C: percentage of certified

transactions
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Table 7. (continued)



Supporting the Design of General Automated

Negotiators⋆

Raz Lin1, Sarit Kraus2, Dmytro Tykhonov3, Koen Hindriks3,

and Catholijn M. Jonker3

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel 52900

linraz@cs.biu.ac.il
2 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel 52900 and

Institute for Advanced Computer Studies, University of Maryland, College Park,

MD 20742 USA

sarit@cs.biu.ac.il
3 Man-Machine Interaction Group, Delft University of Technology,

Mekelweg 4, Delft, The Netherlands

{d.tykhonov,k.v.hindriks,C.M.Jonker}@tudelft.nl

Summary. The design of automated negotiators has been the focus of abundant

research in recent years. However, due to difficulties involved in creating gener-

alized agents that can negotiate in several domains and against human counter-

parts, many automated negotiators are domain specific and their behavior cannot

be generalized for other domains. Some of these difficulties arise from the differ-

ences inherent within the domains, the need to understand and learn negotiators’

diverse preferences concerning issues of the domain and the different strategies ne-

gotiators can undertake. In this paper we present a system that enables alleviation

of the difficulties in the design process of general automated negotiators termed

GENIUS, a General Environment for Negotiation with Intelligent multi-purpose

Usage Simulation. With the constant introduction of new domains, e-commerce and

other applications, which require automated negotiations, generic automated nego-

tiators encompass many benefits and advantages over agents that are designed for a

specific domain. Based on experiments conducted with automated agents designed

by human subjects using GENIUS we provide both quantitative and qualitative re-

sults to illustrate its efficacy. Our results show the advantages and underlying bene-

fits of using GENIUS for designing general automated negotiators.

1 Introduction

One cannot understate the importance of negotiation and the centrality it has taken in

our everyday lives, in general, and in specific situations in particular (e.g., hostage

crises [21]). The fact that negotiation covers many aspects of our lives has led to
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extensive research in the area of automated negotiators, that is, automated agents

capable of negotiating with other agents in a specific environment. However, when

reviewing many of the agents suggested in the literature (e.g., [3, 5, 19]), one can-

not ignore the fact that most of them lack two key fundamental features, which

are, to our belief, most important for the design of successful general automated

negotiators.

The first problem emerges from the inherent design of the automated negotia-

tor. While humans can negotiate in different settings and domains, when designing

an automated agent a decision should be made whether the agent should be a gen-

eral purpose negotiator, that is, able to successfully negotiate in many settings and

domain-independent (e.g., Lin et al. [24]), or suitable for only one specific domain

(e.g., Ficici and Pfeffer [6] for the Colored Trail domain, or Kraus and Lehmann

[20] for the Diplomacy game). There are obvious advantages for an agent’s speci-

ficity in a given domain. It allows the agent’s designer to construct better strategies

that could allow it to negotiate better, in comparison to a more general purpose ne-

gotiator. However, this is also one of the major weaknesses of these type of agents.

With the constant introduction of new domains, e-commerce and other applications,

which require negotiations, the generality of an automated negotiator becomes im-

portant, as automated agents tailored to specific domain are useless since they cannot

be used in the new domains and applications.

The second problem is that automated negotiators should work in open environ-

ments. Open environments lack a central mechanism for controlling the agents’ be-

havior, and they may encounter human decision-makers whose behavior is diverse,

cannot be captured by a monolithic model, make mistakes, is affected by cognitive,

social and cultural factors, etc. [1, 22]. Examples of such environments include on-

line markets, patient care-delivery systems, virtual reality and simulation systems

used for training (e.g., the Trading Agent Competition (TAC) [33]).

While the two aforementioned difficulties (and proposed solutions) should be

dealt with in more detail, in this paper we do not focus on the design of an efficient

automated negotiator; we do not even claim that we have the right “formula” to

do so. We do, however, present a tool that aims to help facilitate the design and

evaluation of automated negotiators’ strategies. The tool, GENIUS, is a General

Environment for Negotiation with Intelligent multi-purpose Usage Simulation. To

our knowledge, this is the first tool of its kind that both assists in the design of strate-

gies for automated negotiators and also supports the evaluation process of the agent.

Thus, we believe this tool is very useful for agent designers and can take a central

part in the process of designing automated agents. While designing agents can be

done in any agent oriented software engineering methodology, GENIUS wraps this

in an easy-to-use environment and allows the designers to focus on the develop-

ment of strategies for negotiation in an open environment with multi-attribute utility

functions.

GENIUS incorporates several mechanisms that aim to support the design of a

general automated negotiator. The first mechanism is an analytical toolbox, which

provides a variety of tools to analyze the performance of agents, the outcome of the

negotiation and its dynamics. The second mechanism is a repository of domains and
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utility functions. Lastly, it also comprises repositories of automated negotiators. A

comprehensive description of the tool is provided in Section 3.

In addition, GENIUS enables the evaluation of different strategies used by auto-

mated agents that were designed using the tool. This is an important contribution as

it allows researchers to empirically and objectively compare their agents with oth-

ers in different domains and settings. This is an important contribution with respect

to the validation of results reported by researchers with regard to their automated

negotiators.

In order to verify its efficacy, GENIUS was introduced to students, who were

required to design automated agents for different negotiation tasks. Their agents

were evaluated and both quantitative and qualitative results were gathered. A total

of 65 automated agents were designed by 65 students. We describe the experimental

methodology and results in Section 4. The results support our claim that GENIUS

helps and supports the design process of an automated negotiator, from the initial

design, through the evaluation of the agent, and re-design and improvements, based

on its performance.

We begin by reviewing related research with respect to the design of general

automated negotiators.

2 Related Work

Research on general agent negotiators has given rise to a broad variety of such

agents. The strategies of the agents usually vary from equilibrium strategies, op-

timal approaches and heuristics. Here we focus in particular on agents that are able

to conduct bilateral negotiations with incomplete information. Examples of such

general agent negotiators in the literature include, among others, Sycara et al. [31],

who introduce a generic agent called Bazaar, Faratin et al. [3], who propose an

agent that is able to make trade-offs in negotiations and motivated by maximizing

the joint utility of the outcome (that is, the agents are utility maximizers that seek

Pareto-optimal agreements), Karp et al. [15], who take a game-theoretic view and

propose a negotiation strategy based on game-trees, Jonker et al. [14], who propose

a negotiation model called ABMP, and Lin et al. [24], who propose an agent ne-

gotiator called QOAgent. All of these agents are proposed as agent negotiators that

perform well in different domains, i.e. are domain-independent; for an example of

an agent negotiator targeted at a particular negotiation domain, see Li et al. [23].

The motivation for introducing these agents, however, has varied and has related to

diverse topics , such as learning in negotiation, the use of various heuristics, or ne-

gotiating with humans. Typically, alternating offer protocols are used where agents

exchange offers in turn [30], sometimes with minor modifications as for example

Lin et al. [24] proposed. Lomuscio et al. [25] in their work, offer useful classifica-

tion of types of agent negotiators. Nonetheless, the important issue of the evaluation

of agents’ strategies and comparing between different strategies even in the same

environment has not been adequately addressed by these researchers.

As we argue that it is useful to have a generic environment for designing and

evaluating agent negotiators, we briefly review related work that is explicitly aimed
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at the evaluation of various agent negotiators. Most of the work reported herein

concerns the evaluation of various strategies for negotiation used by such agents.

Although some results were obtained by game-theoretic analysis (e.g. [18, 29]),

most results were obtained by means of simulation (e.g. [2, 5, 8]). Devaux et al. [2]

present work comparing agents negotiating in internet agent-based markets. In par-

ticular, they compare a strategy of their own agent with behavioral based strategies

taken from the literature [3]. The simulations are performed with an abstract domain

where agents need to negotiate the price of a product. Similarly, Henderson et al. [8]

present results of a comparison of various negotiation strategies’ performance in a

simulated car hire scenario. Finally, Matos et al. [27] conducted experiments to de-

termine the most successful strategies using an evolutionary approach in an abstract

domain called the service-oriented domain.

Even though several of the approaches mentioned use a rather abstract domain

with a range of parameters that may be varied, we argue that the focus on a single

domain in most simulations is restrictive. A similar argument to this end has been

put forward in [12]. The analysis of agent negotiators in multiple domains may sig-

nificantly improve the performance of such agents. To the best of our knowledge,

this is the first time that quantitative and qualitative evidence is presented to sub-

stantiate this claim.

Manisterski et al. [26] discuss how people who design agent negotiators change

their design over time. They study how students changed their design of a trading

agent that negotiates in an open environment. After initial design of their agents,

human designers obtained additional information about the performance of their

agents by receiving logs of negotiations between their agents and agents designed

by others. These logs provided the means to analyze the negotiation behavior, and

an opportunity to improve the performance of the agents. The GENIUS environment

discussed here provides a tool that supports such analysis, subsequent improvement

of the design, and structures the enhancement process.

With regard to systems that facilitate the actual design of agents or agent strate-

gies in negotiations, few systems are close to our line of suggested work. Most of

the systems that can be somewhat related to the main focus of our paper are ne-

gotiation support systems (e.g., the Interactive Computer-Assisted Negotiation Sup-

port system (ICANS) [32], the InterNeg Support Program for Intercultural REsearch

(INSPIRE)), however, they do not deal with the combination of both the evaluation

of strategies and the facilitation of automated negotiator’s design. INSPIRE [17]

is a Web-based negotiation support system, which primary goal is to facilitate ne-

gotiation research in an international environment. The system enables negotiation

between two humans and collects data about negotiations and has some basic func-

tionality for the analysis of the agreements, such as calculation of the utility of an

agreement and exchanged offers. However, it does not allow integration of an auto-

mated negotiating agent and thus does not include repositories of agents as we pro-

pose. Perhaps Neg-o-Net [7] is the most similar to GENIUS than all other support

systems. The Neg-o-Net model is a generic agent-based computational simulation

model for capturing multi-agency negotiations concerning resource and environmen-

tal management decisions. Neg-o-Net model includes both negotiation algorithm
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and agent models. Agent’s preferences are modeled using digraphs (scripts). Nodes

represent states of the agent that can be achieved by performing actions (arcs). Each

state is evaluated using utility functions. The user can modify agent’s script to model

his/her preferences w.r.t. states and actions. Yet, their system does not allow for the

incorporation of human negotiators, but only automated ones. Moreover, they do not

provide any evaluation mechanism of the strategies as GENIUS provides.

We continue with a detailed description of the GENIUS system, followed by the

experiments we conducted and the results.

3 The GENIUS System

GENIUS is a General Environment for Negotiation with Intelligent multi-purpose

Usage Simulation. The aim of the tool is to facilitate the design of negotiation strate-

gies. Using GENIUS programmers can focus mainly on the strategy design. This is

achieved by GENIUS by providing both a flexible and easy-to-use environment for

implementing agents and mechanisms that support the strategy design and analysis

of the agents.

GENIUS enables negotiation between automated agents, as well as humans. Hu-

man negotiators and automated ones can be joined in a single negotiation session.

Human negotiators interact with GENIUS via a graphical user interface (GUI). GUIs

included in GENIUS allow the human negotiator to exchange offers with his/her

counterpart, to keep track of them, and consult with his/her own preference profile

(that is, a utility score assigned to each issue of the negotiation) to evaluate the of-

fers. Figure 1 shows an example of a human negotiator GUI. For automated agents,

GENIUS provides skeleton classes to help designers implement their negotiating

agents. It provides functionality to access information about the negotiation domain

and the preference profile of the agent. An interaction component of GENIUS man-

ages the rules of encounter or protocol that regulates the agent’s interaction in the

negotiation. This allows the agent designer to focus on the design of the agent,

and eliminates the need to implement the communication protocol or the negotia-

tion protocol. Existing agents can be easily integrated in the GENIUS by means of

adapters1.

When designing an automated agent, the designer needs to take into account the

environment in which the agent will operate. Then, the agent can be best tailored to

the specific environment to achieve the most efficient outcomes. The environment

determines several parameters which dictate the number of negotiators taking part

in the negotiation, the time frame of the negotiation and the issues on which the

negotiation is being conducted. The number of parties participating in the negotia-

tion process can be two (bilateral negotiations) or more (multilateral negotiations).

For example, in a market there can be one seller but many buyers, all involved in

negotiating over a certain item. On the other hand, if the item is common, there may

also be many sellers taking part in the negotiation process.

1 Indeed as was shown in [10].
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Fig. 1. An example of the GUI interface of GENIUS for human negotiators during a specific

negotiation session.

The negotiation environment also consists of a set of objectives and issues to

be resolved. Various types of issues can be involved, including discrete enumer-

ated value sets, integer-value sets, and real-value sets. A negotiation consists of

multi-attribute issues if the parties have to negotiate an agreement which involves

several attributes for each issue. Negotiations that involves multi-attribute issues al-

low making complex decisions while taking into account multiple factors [16]. The

negotiation environment can consist of non-cooperative negotiators or cooperative

negotiators. Generally speaking, cooperative agents try to maximize their combined

joint utilities (e.g., see [34]) while non-cooperative agents try to maximize their own

utilities regardless of the other sides’ utilities.

Finally, the negotiation protocol defines the formal interaction between the ne-

gotiators: whether the negotiation is done only once (one-shot) or repeatedly, and

how the exchange of offers between the agents is conducted. A common exchange

of offers model is the alternating offers model [30]. In addition, the protocol states

whether agreements are enforceable or not, and whether the negotiation has a finite

or infinite horizon. The negotiation is said to have a finite horizon if the length of
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Fig. 2. An example of GENIUS’ main user interface, showing the results of a specific negoti-

ation session.

every possible history of the negotiation is finite. In this respect, time costs may also

be assigned and they may increase or decrease the utility of the negotiator.

Figure 3 depicts the different variations in the settings. GENIUS provide a testbed

which allows the designer to easily vary and change these negotiation parameters.

GENIUS provides a flexible simulation environment. A researcher can setup a

single negotiation session or a tournament via the GUI simulation (see Figure 2)

using the negotiation domains and preference profiles from a repository (top left

corner of the GUI simulation), and choose strategies for the negotiating parties (top

bottom corner of the GUI simulation). For this purpose, a graphical user interface

layer provides options to create a negotiation domain, defines agent preferences,

allows human user(s) to participate in a negotiation, and reviews performance and

benchmark results of agents that conducted a negotiation. This also includes defin-

ing different preferences for each role.

A negotiation domain is a specification of the objectives and issues to be resolved

by means of negotiation. Objectives allow to define a tree-like structure with either

other objectives again or issues as children. Various types of issues are allowed,

including discrete enumerated value sets, integer-valued sets, real-valued sets, as

well as a special type of issue called price issue. Additionally, a specification of a

negotiation domain may introduce constraints on acceptable outcomes.
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Fig. 3. Variations of the negotiation settings.

A preference profile specifies the preferences regarding possible outcomes of an

agent. This can be considered a function mapping outcomes of a negotiation domain

on the level of satisfaction of an agent associated with that outcome. The structure

of a preference profile for obvious reasons resembles that of a domain specification.

The tree-like structure enables specification of relative priorities of parts of the tree.

Seven negotiation domains are currently collected in the repository of GENIUS.

Each domain has at least two preference profiles required for bilateral negotiations.

The number of issues in the domains ranges from 3 to 10, where the largest negoti-

ation domain in the repository is the AMPO vs City taken from [28], and has over

7,000,000 possible agreements. Issues in the repository have different predictabil-

ities of the evaluation of alternatives. Issues are considered predictable when even

though the actual evaluation function for the issue is unknown, it is possible to guess

some of its global properties (for more details, see [12]). The repository of strategies

currently contains six automated negotiation strategies, such as the ABMP strategy

[13], the Zero-Intelligence strategy [9], the QO-strategy [24], the Bayesian strategy

[11] and others. The repositories of domains and of agents allow agent designers

test their agents on the different domains and against different kind of agents and

strategies.

GENIUS provides an analytical toolbox for evaluating negotiation strategies. The

toolbox calculates optimal solutions, such as the Pareto efficient frontier, Nash prod-

uct and Kalai-Smorodinsky [28]. These solutions are visually shown to the negotia-

tor or the designer of the automated agent, as depicted in the top right corner of

Figure 2. We can see all the possible agreements in the domain (all dotted areas)

where the highest and most right lines denote the Pareto efficient frontier. During

the negotiation each side can see the distance of its offers from this Pareto frontier

as well as the distance from previous offers (as shown by the two lines inside the

curve).
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Using the analytical toolbox one can analyze the dynamic properties of a negoti-

ation session, such as a classification of negotiation moves (a step-wise analysis of

moves) and the sensitivity to a counterpart’s preferences measure, as suggested by

Hindriks et al. [9]. For example, one can see whether his/her strategy is concession

oriented, i.e., steps are intended to be concessions, but in fact some of these steps

might be unfortunate, namely, although from the receiver’s perception the proposer

of the offer is conceding, the offer is actually worse than the previous offer. The

result of the analysis can help agent designers improve their agents.

Moreover, negotiating agents designed using heuristic approaches need extensive

evaluation, typically through simulations and empirical analysis, as it is usually hard

to predict precisely how the system and the constituent agents will behave in a wide

variety of circumstances. To do so, there is a genuine need for the development of a

best practice repository for negotiation techniques. That is, a coherent resource that

describes which negotiation techniques are best suited to a given type of problem

or domain. Repositories of agents and negotiation domains available in GENIUS

make it an attractive tool for test bedding negotiating agents. To steer the research

in the area of negotiating agents an Automated Negotiating Agents Competition is

organized using the GENIUS environment2.

4 Experiments

The experiments described below were conducted in order to test the efficacy of the

mechanisms incorporated into GENIUS. Prior to these experiments we verified that

GENIUS indeed facilitates the flexible creation of tournaments. As an example, in

[9] we evaluated several negotiation strategies in a tournament setup where every

negotiation strategy had to negotiate on several different negotiation domains with

various preference profiles and against a range of negotiation strategies used by dif-

ferent opponents. As a result, we found that negotiation strategies that are designated

as generic and are meant to perform well independent of the domain, nevertheless

may be inefficient in particular negotiation setups. For example, the Trade-Off strat-

egy, introduced in [3], shows excellent performance when confronted with itself but

its performance is not as good when negotiating against an agent that uses a subop-

timal strategy. Furthermore, evidently the characteristics of the negotiation domain

and preference profiles, such as the number of issues, the opposition of the prefer-

ences and their predictability [9, 12], play a significant role in the performance of

negotiation strategies. These results were obtained with the help of the analytical

toolbox in GENIUS using GENIUS’s repositories of domains, preference profiles,

and strategies.

In the experiments we present in this paper, human subjects were instructed to

design automated agents that will negotiate with other automated agents in a tour-

nament in an open environment. The experiments were conducted in several phases

in order to validate the results. These experiment results show that GENIUS indeed

supports the design of general automated negotiators. In the following subsections

2 For more details on ANAC competition see: http://mmi.tudelft.nl/negotiation/tournament
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we describe the negotiation domains, the experimental methodology and we review

the results. We begin by presenting the negotiation domains.

4.1 Experimental Domain

While the first experiment was only run on one domain, the second experiment was

run on three domains. In the first two domains we modeled three possible agent

types, and thus a set of six different utility functions was created for each domain.

In the third domain only one type was possible for the different roles. The different

types of agents describe the different approaches towards the negotiation process

and the other party. For example, the different approaches can describe the impor-

tance each agent associates with the effects of the agreement over time. One agent

might have a long term orientation regarding the final agreement. This type of agent

would favor agreements concerned more with future outcomes of the negotiations,

than those focusing only on solving the present problem. On the other hand, another

agent might have a short term orientation which focuses on solving only the burning

issues under negotiation without dealing with future aspects that might arise from

the negotiation or its solutions. Finally, there can also be agents with a compro-

mise orientation. These agents try to find the middle grounds between the possible

agreements.

Each negotiator was assigned a utility function at the beginning of the negotia-

tions but had incomplete information regarding the counterpart’s utility. That is, the

different possible types of the counterpart were public knowledge, but the exact type

of the counterpart was unknown.

We describe the three domains in the following subsections. The first two do-

mains are taken from [24], in which they were used for negotiations by human

negotiators as well as automated ones. The third domain is taken from the Dispute

Resolution Research Center at Kellogg School of Management.

4.1.1 The World Health Organization’s Framework Convention on Tobacco

Control Domain

In this scenario England and Zimbabwe negotiate in order to reach an agreement

evolving from the World Health Organization’s Framework Convention on Tobacco

Control, the world’s first public health treaty. The principal goal of the convention

is “to protect present and future generations from the devastating health, social,

environmental and economic consequences of tobacco consumption and exposure

to tobacco smoke.”

The leaders of both countries are about to meet at a long scheduled summit. They

must reach an agreement on 4 issues, each with several attributes:

1. The total amount to be deposited into the Global, Tobacco Fund to aid countries

seeking to rid themselves of economic dependence on tobacco production;

2. Impact on other aid programs;

3. Trade issues;
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4. Creation of a forum to explore comparable arrangements for other long-term

health issues.

Consequently, a total of 576 possible agreements exist in this domain. While for the

first two issues there are contradictory preferences for England and Zimbabwe, for

the last two issues there are options which might be jointly preferred by both sides.

4.1.2 The Job Candidate Domain

In this scenario, a negotiation takes place after a successful job interview between

an employer and a job candidate. In the negotiation both the employer and the job

candidate wish to formalize the hiring terms and conditions of the applicant. In

contrast to the England-Zimbabwe scenario, some issues must be agreed upon to

achieve even a partial agreement. Below are the issues under negotiation:

1. Salary;

2. Job description;

3. Social benefits;

4. Promotion possibilities;

5. Working hours.

In this scenario, a total of 1,296 possible agreements exist.

4.1.3 The Class Project Domain

In this scenario, Bob and Alice need to decide on a final project plan. In contrast to

the other two domains, in this domain the utility preferences of both sides are com-

pletely symmetric. For each issue, five possible values are negotiable. The issues

under negotiation are:

1. Project’s topic;

2. Project’s type;

3. Method of presentation;

4. Completion time;

5. Preparation time;

6. Meeting times.

This is also the largest scenario of all three, in terms of possible agreements. In

this scenario, a total of 15,625 possible agreements exist. Yet, unlike the previous

domains, only one type for each role was possible.

4.2 Experimental Methodology

We evaluated the process of the agents design by requiring computer science un-

dergraduate and graduate students to design automated agents. These agents were

matched twice in a tournament with all other agents. After each tournament, the

students were exposed to one of the mechanisms of GENIUS and were allowed to
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re-design their agent. Then, they were matched again in a tournament. In addition,

after the students submitted their new agents, they were required to fill in question-

naires and evaluate the design process of their agents.

We conducted two experiments. In the first, we evaluated the efficacy of the an-

alytical toolbox. The second experiment was designed to enable evaluation of the

efficacy of the repositories of domains and repositories of agents. We describe both

experiments in the following subsections.

4.2.1 Evaluation of the Analytical Toolbox

In the first experiment, 51 undergraduate students were required to design an auto-

mated negotiator using the GENIUS environment. The students were instructed to

design an automated negotiator which will be able to negotiate in several domains,

however, they were only given the Job Candidate domain described in Section 4.1.2

as an example. In addition, three automated negotiators were supplied with the tool3:

1. An agent that follows the Bayesian strategy [11];

2. Another automated agent that follows the Agent-Based Market Places (ABMP)

strategy, which is a concession-oriented negotiation strategy [13], though, the

strategy itself was not explained to the students;

3. A simple agent that sorts all possible offers according to their utility and sends

them one-by-one to the opponent starting with the highest utility.

In the first phase, the students were unaware of the analytical toolbox (which was

also removed from the environment and the code). After the students submitted

their agent, they were given an upgraded environment which included the analytical

toolbox. They were given an explanation about its features. Then they were allocated

several days in which they could use it to re-design their agent.

The students’ agents were evaluated three times. The first time included running

the first phase agents against all other agents. Thus, each agent was matched against

all 51 agents (including itself), each time under a different role. That is, each agent

participated in 102 negotiations, and a total of 5,202 simulations were executed.

The second time, each revised agent was matched against all 51 revised agents (in-

cluding itself). This allowed us to validate the efficacy of the analytical toolbox

by comparing the performance of each revised agent to its original performance.

The third time included running the revised agents against each other using a new

domain, the England-Zimbabwe domain, which they were unaware of during the

design process. This allowed us to evaluate whether the analytical toolbox by itself

is or is not suffice for designing generalized agents.

4.2.2 Evaluation of the Domain and Agent Repositories

In this experiment, like the previous experiment, 14 graduate students were required

to design an automated negotiator using the GENIUS environment. They were also

3 The agents were supplied with their code to also demonstrate to the students the use of

skeleton classes.



Supporting the Design of General Automated Negotiators 81

instructed that their task is to design an efficient negotiator that will be matched

with all other automated negotiators. Throughout the design process they were un-

aware of the analytical toolbox. In the first part of the exercise they were given the

Job Candidate domain as an example. After their submissions, they were given an

additional domain, the England-Zimbabwe domain described in Section 4.1.1. As

in the previous experiment, they were allocated several days in which they could

re-design their agents based on the new introduced domain. Furthermore, half of

the students were given logs of all their matches during the tournament. The logs

included detailed information of the negotiation process.

In this experiment the students’ agents were evaluated four times. The first time

included running the first phase agents against all other agents. Thus, each agent was

matched against all 14 agents (including itself). The agents were run twice. Once on

the domain that was known to them during the design of the original agents, i.e., the

Job Candidate domain, and once in the England-Zimbabwe domain which they were

unaware of at the time. The second time, each revised agent was matched against all

14 revised agents in the Job Candidate domain and in the England-Zimbabwe do-

main, respectively. This allowed us to validate the efficacy of both the introduction

of a new domain and the usage of logs of past negotiations by comparing the perfor-

mance of each revised agent to its original performance. Lastly, we ran the students’

agents against each other using a new domain, the Class Project domain, which the

designers were unaware of during the entire design process. Again, we ran both the

original agents and the revised agents. This allowed us to evaluate whether or not

the two given domains were suffice for designing efficient generalized agents.

4.3 Experimental Results

The main goal of the experiments was to verify that the mechanisms in GENIUS

assist in alleviating the difficulties in designing efficient general automated

negotiators.

As we mentioned earlier, we experimented in three distinct domains. The utility

values ranged from -575 to 895 for the England role and from -680 to 830 for the

Zimbabwe role; in the Job Candidate domain from 170 to 620 for the employer role

and from 60 to 635 for the job candidate role, and in the Class Project domain from

0 to 29,200 for both sides.

4.3.1 Experiments with the Analytical Toolbox

We evaluate the design of the agents using both quantitative results and qualitative

results. The quantitative results, presented in Table 1, comprise a comparison of

the agents’ performance in the different settings of the experiments, while the qual-

itative results are gathered from the questionnaires the subjects filled in after the

submission of the revised agents.

The average utility gained by all the revised agents was 525 when playing the

role of the employer and 505 when playing the role of the job candidate. These
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Table 1. Average utility values gained by the automated agents before and after being exposed

to the analytical toolbox.

averages are significantly higher (using t-test with p-value < 0.001) in both roles as

compared to the average utilities of the original agents (517 and 490, respectively).

In order to assess the ease of use of the GENIUS environment in creating gener-

alized agents, as well as how helpful the analytical toolbox was, the students were

asked to answer several questions on a questionnaire they were administered. 67%

of the students indicated that they re-designed their agent in the second part, after

being introduced to the analytical toolbox, and 79.6% used it to gain a better un-

derstanding of the negotiation and to redesign their agents. Moreover, in a scale of

1 (being the lowest) to 7 (being the highest), the students rated the helpfulness of

the tool in understanding the dynamics of the negotiation and the strategy of their

agent with an average of 4.06. The students indicated that the tool enabled them

to attain a clearer view of the negotiation dynamics by visualizing the spectrum of

offers and their utilities, and understand which offers to accept and which offers to

propose. Some students also commented that the tool helped them verify that their

implemented strategy was indeed as they had intended it to be. Figure 4 presents the

total rating the students gave for the helpfulness of the analytical toolbox.

Fig. 4. Rating of the helpfulness of the analytical toolbox.

It is interesting to note that most students indicated that they designed their agent

to play as if they were the negotiator (an average score of 4.54), yet they also
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indicated that the fact that they knew that their counterpart would be a computer

agent and not a human affected their strategy as they tried to take advantage of this

fact.

While this encouraged us as to the efficacy of the analytical toolbox as a support-

ing mechanism for designing automated negotiators, we still had to verify whether

it could also assist in the design of generalized automated negotiators. To test the

generality of the agents, we ran the revised agents in a new domain, the England-

Zimbabwe domain, of which the students were unaware. However, in this domain

only 32.3% of the negotiations were completed successfully, i.e., with a full agree-

ment, as compared to almost double the amount of negotiations that were completed

successfully on the known domain (64.4%). That is, while the analytical toolbox

was indeed helpful to the students and assisted them in the design of their agent,

it was not suffice in order to help them design an efficient general agent. Thus, we

continued to devise a second experiment with repositories of domains and agents.

The results of this experiment are described in the next subsection.

4.3.2 Experiments with Repositories of Domains and Agents

We continued to test other aspects of GENIUS to see whether they help in the de-

sign process of agents’ strategies. In this experiment, the domains also had a time

effect. That is, costs were assigned to each agent, such that during the negotiation

process, the agents might gain or lose utility over time. The results are summarized

in Tables 2 and 3. In the first part, the students were required to design a general

agent, however only one domain was given to them. The average utility scores of

their agents in the Job Candidate domain were 363 for the Employer role and 336.8

for the Job Candidate role. In order to evaluate the improvement of the agents due

to the logs of past negotiations in which they were matched with all other agents,

we continued to run the students’ revised agents in the same domain. The results of

the agents in this experiment were better, yet not statistically significant (an average

utility of 384.29 with a p-value < 0.07 and 365.78 with a p-value < 0.06 for the

Employer and the Job Candidate roles, respectively). In addition, significantly more

negotiations ended with a full agreement (77.3% in the first stage, as compared to

85% in the second stage, p-value < 0.05).

With respect to using the repositories of agents as a means of improving an

agent’s strategy, 80% of the students who received the logs of their agents’ past ne-

gotiations indicated that they indeed used it to improve their agents’ behavior. Some

noticed, thanks to the logs, that they had bugs in their strategy or that their agents’

behavior was too strict and less compromising, causing too many negotiations to

end with opting-out. Using this insight, they revised their agents’ behavior.

To evaluate the benefits of the repositories of domains on the performance of their

agent, we first matched the students’ original agents against each other in the new

England-Zimbabwe domain. Recall that the original agents were designed without

knowledge about the new domain. We then compared these results with the results

of the revised agents that had knowledge of the new domain. The average utility

scores of the original agents were 302.11 for the England role and -413.57 for the
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Table 2. Average utility values gained by the automated agents before and after being exposed

to logs of past negotiations.

Table 3. Average utility values gained by the automated agents before and after being exposed

to an additional domain.

Zimbabwe role. The results of the revised agents were significantly better in the

case of England (an average utility of 369.99 with a p-value < 0.03), while the

utility was better, though not statistically significant, for the role of Zimbabwe (-

377.37). However, with the revised agents significantly more negotiations ended

with a full agreement (39.2% in the first stage, as compared to 50.5% in the second

stage, p-value < 0.02).

To validate these results, the students’ agents were then run in the Class Project

domain, described in Section 4.1.3, of which they were unaware during their entire

design process. We first ran the original agents in that domain, and the average

utility scores of the agents were 11,357 for Bob’s role and 10,655 for the Alice’s

role. In addition, only 66.5% of the negotiations ended with a full agreement. We

then ran their revised agents against themselves. Consequently, significantly more

negotiations ended with a full agreement (76.8%, p-value < 0.02), resulting also

in higher average utility values of 13,348 for Bob and 12,113 for Alice. When the

agents played the role of Bob these results were also significant (p-value < 0.04).

We believe that if we had more students’ designed agents the average utility values

the agents achieved could have been significantly better in both roles, both in the

Class Project domain and in the England-Zimbabwe domain.

In this set of experiments we also gave the students questionnaires to help qual-

itatively assess the efficiency of the repositories of domains and agents. The stu-

dents had to rate several statements in a scale of 1 (being the lowest) to 7 (being

the highest). The students indicated that their agent was more generic after the sec-

ond domain was introduced. The average score for the agent’s generality in the first



Supporting the Design of General Automated Negotiators 85

stage was 5.38 compared to 6.08 for the revised version. Overall, the students rated

their agents’ generality as 6.0, and they asserted that their agents would succeed in

playing well in other domains as well, with an average rating of 5.38.

5 Conclusions

Availability of efficient general automated negotiators has two main advantages.

Firstly, it minimizes the effort required for adaptation of a general automated ne-

gotiator to a new domain. Furthermore, the general automated negotiator can be

used as a starting point to create a more efficient negotiator that takes into account

a domain specific knowledge, e.g., available a priori information about the most

likely preferences of the opponent. Secondly, a general automated negotiated agent

is not biased towards domain specific features that can have negative influence on

its negotiation efficiency.

This paper presents a simulation environment which supports the design of gen-

eral automated negotiators. Extensive simulations with more than 60 computer sci-

ence students were conducted to validate the efficacy of the simulation environment.

The results show that GENIUS indeed supports the design of general automated ne-

gotiators, and even enables the designers to improve their agents’ performance while

retaining their generality. This is an important feature, since most of the time general

automated negotiators are perceived to perform worse than agents designed specifi-

cally for a given domain.

We conducted experiments with automated agents in three distinct domains. The

largest domain comprised more than 15,000 possible agreements. While this proves

that the simulation environment supports repositories of domains, we did not evalu-

ate the agents on very large domains (e.g., more than 1,000,000 agreements). Many

of the automated agents the students designed took advantage of the small domains

and reviewed all possible agreements. This would be infeasible in larger domains

with a deadline for the negotiation or each turn in the negotiation.

Another issue for future research is the use of GENIUS for the design of auto-

mated negotiators that can successfully and efficiently negotiate with human nego-

tiators. As we mentioned, some of the students took advantage of the fact that they

were aware that their agents would be matched only with other automated agents.

It would be interesting to evaluate the performance of their agents against human

negotiators as well.

In future work, we plan to run complete tournaments between the agents in the

repository on all available negotiation domains. This would allow us to identify the

most efficient strategy currently available in the repository. In addition, we believe

that efficiency of a negotiation strategy can depend on the opponent’s strategy as

well as on the characteristics of the negotiation domain and preference profiles. The

analytical toolbox of GENIUS would allow us to identify such dependencies and

understand the reasoning behind them. Logs of negotiation sessions produced by

GENIUS can be used to discover patterns of negotiation behavior of the automated

negotiation strategies of human negotiators.
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We also plan to use GENIUS as a training environment to teach people negotia-

tion concepts, such as exploration of outcome spaces, analysis of opponent’s offers,

making of trade-offs between issues, using concession tactics, etc. Another research

direction includes the extension of GENIUS to allow for argumentation and expla-

nation, by allowing the agents to explain its actions to people.
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Summary. Multiple interdependent issues negotiations have been widely studied

since most real-world negotiation involves multiple interdependent issues. Our work

focuses on negotiation with multiple interdependent issues in which agent utility

functions are nonlinear. In the field of multiple issue negotiations, there are no es-

tablished common testbeds for evaluating protocols. In this paper, we propose a

common testbed creating tool based on XML that mainly covers the utility functions

based on cube-constraints and cone-constraints. First, we propose a testbed gener-

ating tool that inputs configuration data and outputs XML formatted files that rep-

resent agent utility spaces. The current tool can produce four types of utility spaces:

Random, A Single Hill, Two-Hills, and Several Hills. These types are observed in

real negotiation settings. Also we define the agent’s utility space information based

on XML tags. By defining the testbed data as XMLs, users can easily read the files

and change the data structure. Finally, we demonstrate experimental results when

the existing protocols employ our proposed testbed. Moreover, we introduce some

example search programs using our testbeds to evaluate their effectiveness.

1 Introduction

Multi-issue negotiation protocols represent an important field of study. While there

has been a lot of previous work in this area [2, 3], most of it deals exclusively

with simple negotiations involving independent multiple issues. Many real-world

negotiation, however, are complex ones involving interdependent multiple issues.

Thus, we focus on complex negotiation with interdependent multiple issues.

Most negotiation protocols are evaluated based on one’s own testbed. For

example, [6] and [7] are only evaluated on randomly generated utility spaces.

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 89–105.
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However, the effectiveness of the negotiation protocols is evaluated based on the

same testbed. Thus, in this paper we propose a tool that generates testbeds for eval-

uating multi-issue negotiation protocols by focusing on the utility function based

on cube-based constraints [10] and cone-constraints. Cone-constraints capture the

intuition that agent utilities for a contract usually decrease gradually (rather than

step-wise) by the distance from their ideal contract.

We propose a common testbed generating tool based on XML. The input is the

configuration files that define the number of issues, the number of agents, etc. The

testbed generating tool produces XML files that define the agent’s utility spaces in

XML format as output. This tool has four types of utility spaces: Random, A Single

Hill, Two-Hills, and Several Hills. These types of utility spaces are based on actual

negotiation settings.

In this paper, we define XML tags, which represent utility spaces, that consist

of cone-based and cube-based constraints. By utilizing an XML format, users can

easily understand, modify, and update the meaning of the data and exchange the data

among research communities. In addition, our XML format does not depend on a

certain environment. In this paper, we show cube-based and cone-based constraint

tags that define the building blocks of utility function spaces.

We also demonstrate some examples that use our testbed. First, we show a

JAVA program that searches for agreement contracts in agent utility spaces using

Simulated Annealing (SA). In this program, the XML structure is analyzed using

Document Object Model (DOM)[20], and then agreement points are searched for.

Second, we demonstrate experiments that utilize our testbeds for evaluating the

Distributed Mediator Protocol (DMP) and Hybrid Secure Protocol (HSP) proposed

in [6].

The remainder of the paper is organized as follows. First, we describe a model

of nonlinear multi-issue negotiation. Second, we propose a testbed generating tool

based on XML for multi interdependent issues. Third, we demonstrate examples

using our testbed. Finally, we describe related works and draw a conclusion

2 Nonlinear Utility Function

In the literature of multi-issue negotiations, we consider the situation where n agents

want to reach an agreement with a mediator who manages the negotiation from the

middle position. There are m issues, sj ∈ S, to be negotiated. The number of issues

represents the number of utility space dimensions. For example, if there are three

issues, the utility space has three dimensions. The issues are not ”distributed” over

agents, who are all negotiating a contract with N (e.g., 10) issues in it. All agents

are potentially interested in the values for all N issues. Issue sj has a value drawn

from the domain of integers [0, X ], i.e., sj ∈ [0, X ](1 ≤ j ≤ M ). A contract is

represented by a vector of issue values s = (s1, ..., sm). The objective function for

agreement search protocols can be described as follows:

argmax
s

∑

i∈N

ui(s).
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The proposed protocols in the literature try to find contracts that maximize social

welfare, i.e., the total utilities for all agents. Such contracts, by definition, will also

be Pareto-optimal.

In this paper, we deal with cube-constraints and cone-constraints as the utility

function. Every agent has its own, typically unique, set of constraints.

Fig. 1. Example of a cube-constraint

[Cube-constraints] An agent’s utility function is described in terms of con-

straints [10]. There are l constraints, ck ∈ C. Each constraint represents a region

with one or more dimensions and has an associated utility value. Constraint ck has

value wi(ck, s) if and only if it is satisfied by contract s(1 ≤ k ≤ l). We call this

type of constraint a ”cube-constraint.” Figure 1 shows an example of a binary con-

straint between Issues 1 and 2. This constraint, which has a value of 55, holds if the

value for Issue 1 is in the range [3, 7] and the value for Issue 2 is in the range [4, 6].
In recent works (e.g., [11]), several types of cube-constraints were proposed. We

also include a variety of cube-contraints in our testbed.

[Cone-constraints] An agent’s utility function can be described in terms of

cone-constraints. By formalizing risk attitude in terms of the cone-constraints,

utility function of agents capture the utility information in real world. Figure 2

shows an example of a binary cone-constraint between Issues 1 and 2. This cone-

constraint has a value of 20, which is maximum if the situation is scentral = [2, 2].
The impact region is w = [1, 2]. The expression for a segment of the base is

(x1 − 2)2 + (x2 − 2)2/4 = 11.

Suppose there are l cone-constraints, C = {ck| 1 ≤ k ≤ l}. Cone-constraint ck

has gradient function gk(scentral,w), which is defined by two values: central value

scentral, which is the highest utility in ck, and impact region w, which represents

the region where ck is affected. We assume not only circle-based but also ellipse-

based cones. Thus constraint ck has value ui(ck, s) if and only if it is satisfied by

1 The general expression is
m
∑

i=1

x
2
i /w

2
i = 1.
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Fig. 2. Example of cone-constraints

contract s. In this paper, impact region w is not a value but a vector. These formulas

can represent utility spaces if they are in a n-dimensional space.

In addition, cone-constraints can include the risk attitude for constraints by con-

figuring gradient function gk(scentral,w). If the agent usually has a risk neutral at-

titude for ck, gk is defined as (B) in Fig. 2 (e.g., proportion). However, the attitudes

(types) of agent can change from risk-seeking to risk-averse for making agreements.

For example, if agents have a risk-seeking attitude for constraint ck, gk is defined

as (A) in Fig. 2 (e.g., exponent). If an agent has a risk-averse attitude for ck, gk

is defined as (C) in Fig. 2. If agents have the most risk-averse attitude for ck, gk

stays constant. Therefore, ck is shaped like a column if the agents have the most

risk-averse attitude. In real world, there are at least two kinds of risk: 1) the risk of

getting a bad deal 2) the risk of failing to get a deal. In this paper, we assume “ 2)

risk of failing to get a deal”.

An agent’s utility for contract s is defined as ui(s) =
∑

ck∈C,s∈x(ck) wi(ck, s),

where x(ck) is a set of possible contracts (solutions) of ck. This expression pro-

duces a “bumpy” nonlinear utility space with high points where many constraints

are satisfied and lower regions where few or no constraints are satisfied.

Figure 3 shows an example of a nonlinear utility space with two issues. This

utility space is highly nonlinear with many hills and valleys. [10] proposed a util-

ity function based on “cube”-constraints. Compared with cube-constraints, highest

point in the utility space is narrower. Therefore, the protocols for making agreements

must search in highly nonlinear utility space. A simple simulated annealing method

to directly find optimal contracts is especially insufficient in a utility function based

on cone-constraints.

We assume, as is common in negotiation contexts, that agents do not share their

utility functions with each other to preserve a competitive edge. Generally, in fact,

agents do not completely know their desirable contracts in advance, because their
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Fig. 3. Example of utility space with cone constraints

own utility functions are simply too large. If we have 10 issues with 10 possible

values per issue, for example, this produces a space of 1010 (10 billion) possible

contracts, which is too many to evaluate exhaustively. Agents must thus operate in

a highly uncertain environment.

3 Common Testbed Based on XML for Negotiation Protocols

3.1 Testbed Generating Tool

We have been implementing a common testbed generating tool for multi-issue ne-

gotiation protocols based on XML. The input of a testbed generating tool is a

configuration file that includes the number of issues and the number of agents.

The output is an XML file that defines the agents’ utility spaces. The source code

for this tool is downloadable from: http://www-itolab.mta.nitech.ac.jp/

MultiIssueNegotiations.

Figure 4 shows the program flow of our testbed generating tool. First, the utility

space is defined based on the configuration file. Second, constraints are generated

based on the specified type of utility spaces. Finally, an XML file is outputted. The

details of the testbed generating tool are shown as follows:

(1) Defining utility space: The testbed generating tool defines the utility space in-

formation based on the configuration file. The configuration file includes the number

of issues, agents, and constraints as well as the value domain per issue. Constraints

are classified by the number of related constraints. For example, a unary constraint

is related to one issue, a binary constraint is related to two issues, etc. In the con-

figuration file, we write the number of constraints for each related constraint like

”unary constraints include 10, binary constraints include 5, etc.”

(2) Generating utility spaces: In the current implementation, the testbed gener-

ating tool generates utility spaces based on four different types of utility spaces:

http://www-itolab.mta.nitech.ac.jp/MultiIssueNegotiations
http://www-itolab.mta.nitech.ac.jp/MultiIssueNegotiations
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Fig. 4. Flow of testbed generating tool

Random, A Single Hill, Two Hills, and Several Hills. Statements about the details

of each type are shown as follows:

Random: In this type, constraints are generated randomly. Such generation is used

in the experiments in several works [10]. Figure 5 shows an example of utility

space plotted by all statements as agent constraints. This utility space plotted is

highly nonlinear, as Figure 5(A) shows.

A Single Hill: An example of this type is a collaborative negotiation among the

same type of agents. The utility space plotted by all agents has one higher point,

as Figure 5(B) shows. In such utility spaces, reaching an agreement is usually

easy.

Two Hills: An example of this type is a bilateral negotiation between two types of

agents. In particular, such negotiation between buyers and sellers is popular.

The utility space plotted by all agents has two higher points, as Figure 5(C)

shows. In such utility spaces, making agreements is hard because the agents are

likely in a hostile relation.

Several Hills: An example of this type is collaborative negotiation among more than

three other types of agents. Collaborative design for a car among designers, en-

gineers, and business managers is a concrete example. The utility space plotted

by all agents’ constraints has more than three higher points, as Figure 5(C)

shows. In such utility spaces, finding agreement points is hard because there are

too many hills. Thus search algorithms usually try to find the highest points.
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Fig. 5. Generation type

(3) Output XML file: The testbed generating tool outputs the XML file on the

testbed for negotiation. By outputting these files, users can easily understand the

information. Additionally, users can modify, change, and update the data, and XML

data are not dependent on a certain environment. Users like research communities

can also easily exchange data with each other. The details of the XML tags are

described in the next subsection.

3.2 XML Format for Testbeds

We propose the XML format for expressing the agent’s utility function. In XML, this

information is defined by tags. The specification of XML tags in cube-constraints

and cone-constraints is described as follows:

XML format for cube-constraints: Figure 6 shows an example of the XML format

for cube-constraints. Figure 7 shows a tree-structured chart for cube-constraints. The

tree-structured chart enables us to understand the parent-child relation between tags.

A detailed description of the tags is described as follows:
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<UtilitySpace>: <Utility Space> tag shows the specification information about

the entire utility space. This tag has the elements of <Dimension>,

<ValueNumber>, and <Agent>.

<Dimension>: This tag specifies the number of issues. In Figure 6, the number of

issues is four.

<Domain>: This tag specifies the value domain for each issue. In Figure 6, the

domain of all issues is [0,9].

<Agent>: This tag, which specifies the agents, has attributes of agent’s id and

name. In Figure 6, the agent’s id is 0 and its name is Alice. There could

Fig. 6. Example XML for cube-constraints
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Fig. 7. Tree-structured XML chart for cube-constraints

be multiple agent tags in <UtilitySpace> tag. This tag has the elements of

<ReservationValue> and many <Constraint> tags.

<ReservationValue>: This tag specifies the reservation utility value for determin-

ing whether to “agree” or “disagree” with the contract alternatives in a negotia-

tion. In Figure 6, the reservation value is 21.

<Constraint>: This tag, which defines the constraints, has the id of the con-

straint as an attribute. This tag has the elements of <Issue>, <Utility>, and

<Cardinality>. In Figure 6, the id of the constraints is 0.

<Minimum>: This tag defines the possible minimum values for each issue. In Fig-

ure 6, the possible minimum value of Issue 2 is 4. This means that the value for

the issue should have more than 4.

<Maximum>: This tag defines the possible maximum values for each issue. In

Figure 6, the possible maximum value of Issue 2 is 8. This means that the value

for the issue should have less than 8.

<Utility>: This tag defines the utility value in this constraint. The constraints have

this utility value if the value for each issue is in the range defined by <Issue>
tags. In Figure 6, constraint 0 has a value of 69, and it holds if the value for

Issue 1 is 0, the value for issue 2 is 8, the value for Issue 3 is in the range [4, 8],
and the value for Issue 4 is 4.

<Cardinality>: This tag shows the number of issues related to this constraint. In

Figure 6, the cardinality is one. This is because this constraint is related to

issue 2. In the other words, this constraint is constrained by a issues. In our

definition, the contract has a value if only the issues related to the constraints
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Fig. 8. Cone-constraints XML

satisfy the possible values. In other words, all values are permitted in other

issues not related to the constraint.

XML formats for cone-constraints: Figure 8 shows an example of an XML for

cone-constraints. Figure 9 shows a tree-structured chart for cone-constraints. The

XML tags in the <UtilitySpace> and <Agents> tags are almost the same as the

XML tags for cube-constraints. A detailed description of the tags in the cone-based

constraints is described as follows:

<MaxUtility>: This tag shows the central value, which is the highest utility in the

constraint. In Figure 8, the central value is 122, which is the maximum utility

in the constraint.

<RiskAttitude>: This tag shows a gradient function that represents the risk attitude

for making agreements. In our testbed generating tool, we defined a gradient

function for each number. For example, one is defined that a gradient function

constant is constant. In Figure 8, the risk attitude for making agreements is
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Fig. 9. Tree-structured chart for cone-constraints XML

one. Future work includes an extension that enables users to simply define the

gradient function.

<Width>: This tag shows the impact region, which represents the region affected

by the constraint. The impact region is defined in each <Issue> tag. In Figure

8, the impact region in Issue 4 is two.

<CenterPoint>: This tag shows the central point, where the utility is maximum. In

the <CenterPoint> tag, the central point is defined by <Issue> tags. In Figure

8, the central point is 0 in Issue 4 and all values are permitted in other issues

(Issues 0 - 3).

4 Examples with Testbed

4.1 Java Program Using the Testbed

In this subsection, we describe the Java program using the testbeds proposed in the

previous section. Our code was implemented in Java 2 (1.5). The program source

codes are downloadable from: http://www-itolab.mta.nitech.ac.jp/

MultiIssueNegotiations/.

Figure 10 shows the flow of the JAVA program using testbeds. This program

inputs XML files generated by the tool. The following are the details of this program

behavior:

Analyzing XML files: In this program, an XML file is analyzed by a Document Ob-

ject Model (DOM)[20], which is a platform and a language-independent stan-

dard object model for representing HTML or XML documents as well as an

http://www-itolab.mta.nitech.ac.jp/MultiIssueNegotiations/
http://www-itolab.mta.nitech.ac.jp/MultiIssueNegotiations/
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Fig. 10. Program flow using testbeds

Application Programming Interface (API) for querying, traversing, and manip-

ulating such documents. The information of the structure of the utility space

and the agent’s utility function are read from XML files.

Defining the utility function for each agent: The structure of the utility space and

the agent’s utility function are defined based on the XML analyzed in the pre-

vious step.

Searching agreements using SA: In this program, we provide a simple agreement

algorithm that gathers and aggregates all individual agent’s utility spaces into

one central place and then finds the most optimal contract using simulated an-

nealing (SA) [18]. In simulated annealing, the mediator moves randomly if the

temperature is high, but he/she moves to the highest neighbor if the tempera-

ture is low. A simulated-annealing method of making agreements was employed

in previous works [10] because this search method is superior to other search

methods, such as hill climbing search in multi interdependent issue negotiation.

In future work, we will generate this program using other programming languages

such as C++, Ruby, Python, and Perl so that this testbed can be used by many users.

4.2 Example of Experiments for Evaluating the Negotiation Protocols

We demonstrate some experimental results to show that our past proposed protocols

can utilize our testbed. In the experiments, we show the experimental results of the

Distributed Mediator Protocol (DMP) and the Hybrid Secure Protocol (HSP) [6]

with the testbed. The details of these protocols are described in [8][6].

In each experiment, we ran 100 negotiations between agents with Random, A

Single Hill, Two Hills, and Several Hills. The following are the parameters for our

experiments. The number of agents was six, and the number of mediators was four.
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We compared the following methods: “(A) DMP (SA)” is the Distributed Me-

diator Protocol and the search algorithm is simulated-annealing. “(B) DMP (HC)”

is the Distributed Mediator Protocol and the search algorithm is hill-climbing. “(C)

DMP (GA)” is the Distributed Mediator Protocol and the search algorithm is the

genetic algorithm. “(D) HSP (SA)” is the hybrid secure protocol, and the search al-

gorithm in the distributed mediator step is simulated annealing. “(E) HSP (HC)” is

the hybrid secure protocol, and the search algorithm in the distributed mediator step

is the hill-climbing algorithm.

These experiments show the optimality rate in five protocols. The optimality rate

is defined as (maximum utility value calculated by each method) / (DMP (SA)).

Since DMP (SA) usually finds a high optimal contract, we consider it the basis for

comparing other methods.

Utility function: All constraints are one-constraints. The domain for the issue val-

ues is [0, 9]. Constraints include 10 unary constraints, 5 binary constraints, and 5
trinary constraints, etc. (A unary constraint is related to one issue, a binary con-

straint is related to two issues, and so on). The value in the central point is 100 ×
(Number of issues). The maximum impact region for a constraint is 7.

The gradient function is defined as four types.

Type 0: u(s) = (Max V alue) ∗ log(e − (distance)/(width) ∗ (e − 1)).
Type 1: u(s) = (Max V alue) ∗ (1 − (distance)/(width)).
Type 2: u(s) = (1 − (Max V alue))(distance)/(width) + (Max Value)-1.

Type 3:u(s) = (Max V alue).
(u(s): utility value at s when sisinthecone − constraints, (distance): distance

between s and the central point, (width): impact region, (Max Value): value at the

central point).

We set the following parameters for the search methods: HC, SA, and GA.

Hill climbing (HC): The number of iterations is 20 + (Number of issues) × 5. The

final result is the maximum value achieved.

Simulated annealing (SA): The initial temperature is 50. For each iteration, the

temperature is decreased by 0.1. Thus, it decreased to 0 by 500 iterations. 20 +

(Number of issues) × 5 searches are conducted while the initial start point is being

changed.

Genetic algorithm (GA): The population size in one generation is 20 + (Number of

Issues) × 5. We employed a basic crossover method in which two parent individuals

are combined to produce two children (one-point crossover). The fitness function is

the sum of all agents’ (declared) utility. 500 iterations were conducted. Mutations

happened at very small probability. In a mutation, one of the issues in a contract

vector was randomly chosen and changed. In the GA-based method, we define an

individual as a contract vector.

Our code was implemented in Java 2 (1.5) and run on a core 2-duo processor

iMac with 1.0 GB memory on a Mac OS X 10.5 operating system.

Figures 11 ∼ 14 show the optimality rate in five methods. In all types of gen-

eration, “(C) DMP (GA)” is the highest of the five methods, not only RANDOM.
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Fig. 11. Optimality rate (RANDOM)

Fig. 12. Optimality rate (A Single Hill)

Therefore, “(C) DMP (GA)” has high quality to find the optimal contract. Mean-

while, “(B) DMP (HC)” decreases rapidly based on the number of issues in all

types of generation, because hill climbing reaches local optima by increasing the

search space. “(E) HSP (HC)” slightly outperforms “(A) DMP (SA)” in all types of

generation. Therefore, DMP (GA) and HSP (HC) are better for finding the optimal

agreement point in all types of generating, not only in RANDOM.

Comparing Figures 11 12, “(C) DMP (GA)” in Figure 12 has a higher value than

“(C) DMP (GA)” in 11. “(D) HSP (SA)” in Figure 12 also has a lower value than

“(D) HSP (SA)” in 11. Therefore, the difference of the optimality rates among the
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Fig. 13. Optimality rate (Two-Hills)

Fig. 14. Optimality rate (Several Hills)

methods in “A SIngle Hill” is larger than one in “RANDOM” because the value in

the local optima in “A Single Hill” is a lower value than one in random.

5 Related Works

As far as the authors know, this is the first attempt to create a testbed for multiple

interdependent issue negotiation protocols. The following is a literature review of

multi-issue negotiation problems. All of these protocols are evaluated on the original
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testbed. Our testbed might provide opportunities to compare these algorithms based

on the same criteria.

Most previous work on multi-issue negotiation ([2, 3, 4]) has only addressed

linear utilities. Some researchers have been focusing on more complex and nonlinear

utilities.

[15] explored a range of protocols based on mutation and selection on binary

contracts. This paper does not describe what kind of utility function is used, nor

does it present any experimental analyses, so it remains unclear whether this strategy

enables sufficient exploration of utility space. [1] presents an approach based on

constraint relaxation.

[12] presented a protocol that was applied with near-optimal results on medium-

sized bilateral negotiations with binary dependencies. The work presented here is

distinguished by demonstrating both scalability and high optimality values for mul-

tilateral negotiations and higher order dependencies.

[13] and [14] also presented a protocol for multi-issue problems for bilateral ne-

gotiations. [25] and [16] presented a multi-item and multi-issue negotiation protocol

for bilateral negotiations in electronic commerce situations.

[5] proposed bilateral multi-issue negotiations with time constraints, and [19]

proposed multi-issue negotiations that employ a third party to act as a mediator to

guide agents toward equitable solutions. This framework also employs an agenda

that serves as a schedule for the ordering of issue negotiations. Agendas are very in-

teresting because agents only need to focus on a few issues. [9] proposed a checking

procedure to mitigate this risk and showed that by tuning this procedure’s param-

eters, outcome deviation can be controlled. These studies reflect interesting view-

points, but they focused on just bilateral trading or negotiations.

6 Conclusion

In this paper, we proposed a testbed generating tool based on XML for multi-issue

negotiation. Our tool provides a common testbed to evaluate the effectiveness of

multi-issue negotiation protocols. Moreover, users can easily understand the mean-

ing of data because it is based on a simple XML format. In this testbed, four types

of utility spaces were provided that corresponded to real negotiation cases. Finally,

we demonstrated examples of experiments using our testbed in which we analyzed

the differences among types of utility spaces.
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Summary. Complex automated negotiations usually involve multiple, interdepen-

dent issues. These negotiation scenarios are specially challenging because the

agents’ utility functions are nonlinear, which makes traditional negotiation mech-

anisms not applicable. Even mechanisms designed and proven useful for nonlin-

ear utility spaces may fail if the utility space is highly nonlinear. For example,

although both contract sampling and constraint sampling have been successfully

used in auction based negotiations with constraint-based utility spaces, they tend to

fail in highly nonlinear utility scenarios. In this paper, we will show that the perfor-

mance of these approaches decrease drastically in these negotiation scenarios, and

propose a mechanism which balances utility and deal probability for the bidding

and deal identification processes. The experiments show that the proposed mecha-

nisms yield better results than the previous approaches in terms of optimality and

scalability.

1 Introduction

Integrative negotiation approaches intend to allow negotiating agents to search for

joint gains when pursuing an agreement [16]. In the last years, there has been

an increasing interest in complex negotiations scenarios where agents negotiate

about multiple, interdependent issues [13]. These scenarios are specially challeng-

ing, since issue interdependency yields nonlinear utility functions for the agents,

and thus the classic mechanisms for linear negotiation models are not applicable. A

more in-depth review on utility space complexity and related-research on automated

negotiations involving complex utility spaces is provided in Section 2.

In particular, this work focuses on multilateral mediated negotiation, where sev-

eral agents try to reach an agreement over a range of issues using a bidding based

negotiation protocol with the aid of a mediator. The utility spaces for the agents are

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 107–128.
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generated using weighted constraints, which results in nonlinear utility functions. In

[11], a bidding mechanism is proposed, which is based on taking random samples

of the contract space and applying simulated annealing to these samples to identify

high utility regions for each agent, sending these regions as bids to a mediator, and

then performing a search in the mediator to find overlaps between the bids of the

different agents. In a similar scenario [20], samples are taken from the constraints

space instead. Experiments show that these approaches achieve high effectiveness

(measured as high optimality rates and low failure rates for the negotiations) in the

evaluation scenario they describe (Section 3). However, as we will show empirically

in Section 6.2, these approaches perform worse as the circumstances of the scenario

turn harder (that is, when the utility functions are highly nonlinear, like B2B inter-

actions or distributed automated control systems). Under these circumstances, the

failure rate increases drastically, raising the need for an alternative approach.

Furthermore, as described in [11], the bidding-based negotiation protocol

presents some scalability concerns due to the extensive search for overlaps per-

formed in the mediator, which finally limits the maximum number of bids each

agent may send depending on the number of agents in the negotiation. In this paper,

we intend to address these problems in the following ways:

• We propose a mechanism to take into account both the utility of a bid for an

agent and its viability (a measure of the likelihood of the bid to yield a deal),

and integrate this mechanism in the contract sampling and constraint sampling

approaches (Section 4). We will show that this balance between bid utility and

deal probability yields a significant improvement in terms of optimality rate and

failure rate over the previous approaches in highly nonlinear scenarios.

• We propose a heuristic search mechanism for the mediator which lowers the

scalability problem while achieving acceptable optimality rates (Section 5).

A highly-nonlinear simulated scenario has been devised to validate our hypotheses

and evaluate the effects of our contributions. This scenario is described in Section

6, along with the discussion of the results obtained. Finally, our proposal is briefly

compared to the most closely-related works in the state-of-the-art (Section 7). The

last section summarizes our conclusions and sheds light on some future research.

2 Complex Utility Spaces

In the last years, there has been an increasing interest in complex negotiation sce-

narios, where agents negotiate about multiple, interdependent issues [13]. These

scenarios are specially challenging, since issue interdependency yields nonlinear

utility spaces, which make classic negotiation approaches not applicable [11]. In

this context, it is necessary to be able to measure the complexity of a given util-

ity space, in order to assess whether the studied scenario is beyond the capabili-

ties of traditional negotiation mechanisms. If this is the case, alternative negotiation

mechanisms, specifically designed for complex environments, will be needed. In

this section we first briefly discuss utility space complexity and present the most

widely used metrics for the assessment of the complexity of a solution space, and
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then we review the most relevant works so far on the field of automated negotiation

in complex utility spaces.

2.1 Utility Space Complexity

Characterization of the structural complexity of utility spaces in negotiation is an

analogous problem to function characterization for optimization. In this context, and

more specifically in the field of optimization using evolutionary algorithms, struc-

tural complexity analysis plays a crucial role, since algorithm search capabilities are

greatly impacted by some structural properties of the optimized function, which is

usually known as fitness landscape in evolutionary computation.

A fitness landscape L may be defined as a tuple [9]

L = 〈S, f, F, >F , φ〉 ,

where:

• S is the solution space (or genotype space, as it is called in evolutionary

computation).

• f : S → F is a fitness function, analogous to the utility functions which are

used in negotiation.

• F represents the range of values for the fitness functions. For the case of utility

functions, it is usual that F ⊂ R.

• >F represents a partial ordering in F , which allows to compare two solutions

v, w ∈ S given the values of f (v) and f (w). f (v) >F f (w) means that

solution v is preferred against w.

• φ is a neighborhood operator, defined as φ : S × S → [0, 1], such that given

v, w ∈ S, φ (u, v) represents the probability that the search function (usually, a

genetic algorithm) passes from point u to point w.

The φ function is directly related to the search mechanism used and its parame-

ters (e.g. simulated annealing temperature or mutation probability for genetic algo-

rithms), which implies an important consequence: the complexity of a utility space

may be different depending on the considered search algorithm and its parameters.

This operator also defines the concept of neighbor solutions in the space. Two so-

lutions v, w ∈ S will be neighbors if φ (u, v) is over a given threshold, and will be

denoted v ∈ N (w) or w ∈ N (n). In many fitness landscapes in the literature, φ is

a binary operator.

The structural properties of a fitness landscape which are interesting regard-

ing search complexity within the space are determined by the properties of the

local optima in the landscape. A solution s ∈ S is a local maximum if its fit-

ness value is greater or equal than the fitness values of all its neighbors, that is,

f (s) ≥ f (v) ∀v ∈ N (s). Local minima are defined in an analogous manner.

Modality is defined as the number of local optima in the space. Despite the

intuitive notion, modality is not directly related to complexity. An unimodal space

may be very complex for a genetic algorithm if its gradient structure is not adequate.

On the other hand, a maximally multimodal space, where half of the solutions are
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local optima but there is a clear, monotonic structure, is very simple for evolutive

search algorithms [10].

Ruggedness is often confused in the literature with modality. However, rugged-

ness in a highly modal landscape does not refer to the number of local optima, but

to the distribution of these optima throughout the landscape, that is, to the vari-

ety of forms like peaks, valleys and ridges. Depending on this distribution, land-

scape ruggedness may or may not imply high complexity. Generally, landscapes

with structured ruggedness distributions will be less complex than those presenting

noisy ruggedness.

For low number of local optima, we can have smooth or neutral utility landscapes

[27]. Landscape smoothness is defined taking into account the existence of attrac-

tion basins towards its local optima. An attraction basin towards a solution sn is

defined as the set of solutions

B (sn) = {s0 ∈ S |∃s1, . . . , sn ∈ S con si+1 ∈ N (si) y f (si+1) >F f (si)∀i} .

The size of the basin is given by the cardinality of the set B (sn). The larger the

attraction basins in a landscape, the smoother the landscape.

The opposite property to smoothness is neutrality, caused by the existence of

plateaus and ridges in the landscape. Two solutions s1 and s2 are neutral if f (s1) =
f (s2). A plateau is defined as the set of solutions

P (sn) = {s0 ∈ S |∃s1, . . . , sn ∈ S con si+1 ∈ N (si) y f (si+1) = f (si) ∀i} .

In the evolutionary computation literature we find also the concept of deceptive

landscapes. From an intuitive point of view, a landscape is deceptive if it tends to

lead the search algorithm to solutions other than the optimal [7]. The main problem

of this concept is that it depends strongly on the search algorithm used. For instance,

a highly modal utility space with a high number of local optima with lower utility

than the global optimum would be deceptive for a direct search algorithm (it tends

to get stuck in local optima), but not for simulated annealing or genetic algorithms.

This dependence on the search method makes deceptiveness not useful to compare

different approaches.

Once the properties which has an influence on the complexity of a fitness land-

scape or a solution space have been described, techniques which allow to measure

the complexity of a given space are needed. One of the approaches we can find in

the literature is to study the relationship between the value of the fitness function f
in a given point of the solution space and the distance to that point distance from the

global optimum. In most cases, a high correlation between the distance to a point

from the global optimum and the fitness value for this point (fitness distance corre-

lation, FDC) should make the search for optima easier, so this concept may be used

to predict the difficulty of the negotiation or optimization problem. Evaluation may

be performed quantitatively, by means of the classic expression for the correlation

coefficient for a set of samples

r =
CFD

σF σD
,



Constraint and Bid Quality Factor for Complex Automated Negotiations 111

where

CFD =
1

n

n
∑

i=1

(

f1 − f
) (

d1 − d
)

is the covariance of the values of the fitness function fi and the distances from the

global optimum di for the samples considered, and f , d, σF y σD are, respectively,

the means and standard deviations. However, quantitative evaluation often does not

reflect accurately landscape structure, specially for anisotropic solution spaces. In

these cases, a qualitative evaluation may be performed using scatter plots [26]. The

main problem with this metric is the need to know the global optimum of the fitness

function f . An alternative way to measure complexity is the local fitness-distance

correlation, where the correlation coefficient is computed using the distance to the

nearest local optima.

Another statistic which is widely used to assess the complexity of a fitness land-

scape or solution space is autocorrelation. Autocorrelation computes, for every

distance d, the correlation between a function and the same function displaced a

distance d. Computation is made performing a “random walk” throughout the land-

scape, using the φ neighborhood operator to determine movement between succes-

sive steps in the walk. This metric allows for a qualitative evaluation of the space

structure by means of a representation of the autocorrelation function of the ran-

dom walk. To make quantitative evaluations, correlation length is used. Correlation

distance is defined as the minimum distance ψ which makes correlation fall below

a given threshold (usually 0.5), which gives an idea of the distance we can move

throughout the solution space while keeping a certain correlation between samples

[18]. As it happened with fitness-distance correlation, correlation length depends on

a notion of distance with will generally vary with the search mechanism used, which

makes the metric less generic.

The problem with those metrics is that they do not assess adequately anisotropic

functions. In [9], an statistic characterization is proposed. It is also based on ran-

dom walks, but it adds an analysis of the series of samples defined by the walks,

which results in an stochastic model representing the correlation structure of the

space, instead of generating a single numeric value which summarizes the structure

of the whole space. However, it still depends on performing walks throughout the

space using the φ operator, and thus will not be applicable to compare approaches

which have different neighborhood operators. In addition, this characterization is

computationally harder to perform than the previous ones.

As we can see, there is not a clear, preferred method to assess the complexity

of a preference space. In each case, the characteristics of the specific scenario (i.e.

anisotropy, neighborhood operator, knowledge about global optima, computational

constraints...) must be levered in order to select the most suitable technique to char-

acterize the structural complexity of the utility spaces we are dealing with.

2.2 Related Research on Automated Negotiation in Complex Utility Spaces

In the context of a multi-attribute negotiation, complexity of a preference space may

depend at least on the number of issues, the level of interdependency between the
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preferences on the issues, the domain of the issues, the possibility of change over

time of the negotiation context, and the method used to describe preferences. In

general, a large number of issues with a high interdependency and a large domain

contribute to more complex preference spaces. If the negotiation context changes

over time, complexity also increases. The method to describe preferences also has

an influence in the complexity of the preference space. A constraint-based pref-

erence space for instance may present discontinuities which make gradient based

optimizers not applicable, while differentiable utility functions contribute to a faster

local optimization. In this section we review the most representative research on

multi-attribute negotiation for complex preference spaces.

Klein et al. [13] present, as far as we are aware, the first negotiation protocols

specific for complex preference spaces. They propose a simulated annealing-based

approach, a refined version based on a parity-maintaining annealing mediator, and

an unmediated version of the negotiation protocol. Of great interest in this work are

the positive results about the use of simulated annealing as a way to regulate agent

decision making, along with the use of agent expressiveness to allow the mediator

to improve its proposals. However, this expressiveness is somewhat limited, with

only four possible valuations which allow the mediator to decide which contract to

use as a parent for mutation, but not in which direction to mutate it. On the other

hand, the performed experiments only consider the bilateral negotiation scenario,

though agents claim that the multiparty generalization is simple. Finally, the fam-

ily of negotiation protocols they propose are specific for binary issues and binary

dependencies. Higher-order dependencies and continuous-valued issues, common

in many real-world contexts, are known to generate more challenging utility land-

scapes which are not considered in their work.

Luo et al. [17] propose a fuzzy contraint based framework for multi-attribute ne-

gotiations. In this framework a buyer agent defines a set of fuzzy constraints to de-

scribe its preferences. The proposals of the buyer agent are a set of hard constraints

which are extracted from the set of fuzzy constraints. The seller agent responds with

an offer or with a relaxation request. The buyer then decides whether to accept or

reject an offer, or to relax some constraints by priority from the lowest to highest.

In [15, 16] an improvement to Luo’s model is presented. They devise an expressive

negotiation protocol where proposals include a valuation of the different constraints,

and seller’s responses may contain explicit relaxation requests. It means that a seller

agent may suggest the specific relaxation of one or more constraints. The relaxation

suggested by a seller agent is based on utility and viability criteria, which improves

the negotiation process. Though these constraint-based works model discontinuous

preference spaces, the operators used to compute utility and the utility spaces de-

fined yield monotonic preference spaces, which are far from the complex preference

spaces covered in our work.

Another interesting approach to solve the computational cost and complexity of

negotiating interdependent issues is to simplify the negotiation space. Hindriks et al.

[8] propose a weighted approximation technique to simplify the utility space. They

show that for smooth utility functions the application of this technique results in

an outcome that closely matches the outcome based on the original interdependent
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utility structure. The method is evaluated for a number of randomly generated utility

spaces with interdependent issues. Experiments show that this approach can achieve

reasonably good outcomes for utility spaces with simple dependencies. However, an

approximation error that deviates negotiation outcomes from the optimal solutions

cannot be avoided, and this error may become larger when the approximated utility

functions become more complex. Authors acknowledge as a necessary future work

to study which kind of functions can be approximated accurately enough using this

mechanism. Another limitation of this approach is that it is necessary to estimate a

region of utility space where the actual outcome is expected to be (i.e. it is assumed

that the region is known a priori by the agents).

In [25] utility graphs are used to model issue interdependencies for binary-valued

issues. Utility graphs are inspired by graph theory and probabilistic influence net-

works to derive efficient heuristics for non-mediated bilateral negotiations about

multiple issues. The idea is to decompose highly non-linear utility functions in sub-

utilities of clusters of inter-related items. They show how utility graphs can be used

to model an opponent’s preferences. In this approach agents need prior informa-

tion about the maximal structure of the utility space to be explored. Authors argue

that this prior information could be obtained through a history of past negotiations

or the input of domain experts. However, our approach has the advantage that out-

comes can be reached without any prior information and that it is not restricted to

binary-valued issues.

There are several proposals which employ genetic algorithms to learn opponent’s

preferences according to the history of the counter-offers based upon stochastic ap-

proximation. In [3] a system based on genetic-algorithms for electronic business

is proposed. In this work the utility functions are restricted to take a product com-

bination form (i.e. utility of an outcome is the product of the utility values of the

different issues). The objective function used is based on the comparison of the

changes of consecutive offers. Small changes of an issue suggest that this issue is

more important. For each new population, the protocol enforces that the generated

candidates cannot be better than the previous offer. Unlike other negotiation models

based on genetic algorithms, this proposal adapts to the environment by dynami-

cally modifying its mutation rate. Lau et al. [14] have also reported a negotiation

mechanism for non-mediated automated negotiations based on genetic algorithms.

The fitness function relies on three aspects: an agent’s own preference, the distance

of a candidate offer to the previous opponent’s offer, and time pressure. In this work

agents’ preferences are quantified by a linear aggregation of the issue valuations.

However, non-monotonic and discontinuous preference spaces are not explored. In

[4] a genetic algorithm is proposed which is based on a joint elitism operation and

a joint fitness operation. In the joint elitism operation an agent stores the latest of-

fers received from the opponent. The joint fitness operation combines agent’s own

utility function and euclidean distance to the opponent’s offer. In this work two dif-

ferent negotiation scenarios are considered. In the first one utility is defined as the

weighted sum of the different issue values (i.e. issues are independent). The second

scenario defines a utility function where there is a master issue and a set of slave

issues. Utility is calculated as the weighted sum of the different issue values, but the
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weights of the slave and master issues change according to the value of the master

issue.

In [28] a mediated negotiation framework for multi-agent negotiation is pre-

sented. This framework involves a mediation step in which the individual preference

functions are aggregated to obtain a group preference function. The main interest is

focused on the implementation of the mediation rule where they allow a linguistic

description of the rule using fuzzy logic. A notable feature of their approach is the

inclusion of a mechanism rewarding the agents for being open to alternatives other

than simply their most preferred. The negotiation space and utility values are as-

sumed to be arbitrary (i.e. preferences can be non-monotonic). However, the set of

possible solutions is defined a priori and is fixed. Moreover, the preference function

needs to be provided to the mediation step in the negotiation process, and pareto-

optimality is not considered. Instead, the stopping rule is considered, which deter-

mines when the rounds of mediation stop.

Fatima et al. [6] analyze bilateral multi-issue negotiation involving nonlinear util-

ity functions. They consider the case where issues are divisible and there are time

constraints in the form of deadlines and discounts. They show that it is possible

to reach Pareto-optimal agreements by negotiating all the issues together, and that

finding an equilibrium is not computationally easy if the agents’ utility functions

are nonlinear. In order to overcome this complexity they investigate two solutions:

approximating nonlinear utilities with linear ones; and using a simultaneous proce-

dure where the issues are discussed in parallel but independently of each other. This

study shows that the equilibrium can be computed in polynomial time. An important

part of this work is the complexity analysis and estimated approximation error anal-

ysis performed over the proposed approximated equilibrium strategies. Heuristic

approaches have generally the drawback of the lack of a solid mathematical struc-

ture which guarantees their viability, which raises the need of an exhaustive experi-

mental evaluation. An adequate complexity analysis and establishing a bound over

the approximation error contribute to give heuristic approaches part of the technical

soundness they usually lack. Among the limitations of the proposal, we can point

out that this work is focused on symmetric agents where the preferences are dis-

tributed identically, and the utility functions are separable in nonlinear polynomials

of a single variable. This somewhat limits the complexity of the preference space.

In summary, in the existing research nearly all the models which assume issue

interdependency rely on monotonic utility spaces, binary valued issues, low-order

dependencies, or a fixed set of defined a priori solutions. Simplification of the nego-

tiation space has also been reported as a valid approach for simple utility functions,

but it cannot be used with higher-order issue dependencies, which generate highly

uncorrelated utility spaces. Therefore, new approaches are needed if automated ne-

gotiation is to be applied to non-mediated settings involving non-monotonic, highly

uncorrelated preference spaces.
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3 Contract and Constraint Sampling for Negotiation in

Complex Utility Spaces

3.1 Constraint-Based Nonlinear Utility Spaces

Nonlinear agent preferences can be described by using different categories of func-

tions, like K-additive utility functions [2], bidding languages [24], or weighted con-

straints [12]. In this work we focus on nonlinear utility spaces generated by means

of weighted constraints. In these cases, agents’ utility functions are described by

defining a set of constraints. Each constraint represents a region with one or more

dimensions, and has an associated utility value. The number of dimensions of the

space is given by the number of issues n under negotiation, and the number of di-

mensions of each constraint must be lesser or equal than n. The utility yielded by

a given potential solution (contract) in the utility space for an agent is the sum of

the utility values of all the constraints that are satisfied by that contract. Figure 1

shows an example for two issues and three constraints: a unary constraint C1 and

two binary constraint C2 and C3. The utility values associated to the constraints

are also shown in the figure. In this example, contract x would yield a utility value

for the agent u(x) = 15, since it satisfies both C1 and C2, while contract y would

yield a utility value u(y) = 5, because it only satisfies C1. It can also be noted

that unary constraint C1 can be seen as a binary constraint where the width of the

constraint for issue 2 is all the domain of the issue, so we can generalize and say

that all constraints have n dimensions.
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Fig. 1. Example of a utility space with two issues and three constraints.
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More formally, we can define the issues under negotiation as a finite set of vari-

ables x = {xi|i = 1, ..., n}, and a contract (or a possible solution to the negotiation

problem) as a vector s = {xs
i |i = 1, ..., n} defined by the issues’ values. Issues take

values from the domain of integers [0, X ].
Agent utility space is defined as a set of constraints C = {ck|k = 1, ..., l}. Each

constraint is given by a set of intervals which define the region where a contract

must be contained to satisfy the constraint. In this way a constraint c is defined

as c = {Ic
i |i = 1, ..., n}, where Ic

i = [xmin
i , xmax

i ] defines the minimum and

maximum values for each issue to satisfy the constraint. Constraints defined in this

way describe hyper-rectangular regions in the n-dimensional space. Each constraint

ck has an associated utility value u(ck).
A contract s satisfies a constraint c if and only if xs

i ∈ Ic
i ∀i. For notation simplic-

ity, we denote this as s ∈ x(ck), meaning that s is in the set of contracts that satisfy

ck. An agent’s utility for a contract s is defined as u(s) =
∑

ck∈C|s∈x(ck) u(ck), that

is, the sum of the utility values of all constraints satisfied by s. This kind of utility

functions produces nonlinear utility spaces, with high points where many constraints

are satisfied, and lower regions where few or no constraints are satisfied.

3.2 Contracts Sampling and Simulated Annealing in Bidding-Based

Nonlinear Negotiation

In our previous work [11], we presented a bidding-based protocol to deal with non-

linear utility spaces generated using weighted constraints. The protocol consists of

the following four steps:

1. Sampling: Each agent takes a fixed number of random samples from the contract

space, using a uniform distribution.

2. Adjusting: Each agent applies simulated annealing to each sample to try to find a

local optimum in its neighborhood. This results in a set of high-utility contracts.

3. Bidding: Each agent generates a bid for each high-utility, adjusted contract.

The bids are generated as the intersection of all constraints which are satisfied

by the contract. Bids defined in this way represent hyperrectangle regions in the

n-dimensional solution space. Each agent sends its bids to the mediator, along

with the utility associated to each bid.

4. Deal identification: The mediator employs breadth-first search with branch cut-

ting to find overlaps between the bids of the different agents. The regions of

the contract space corresponding to the intersections of at least one bid of each

agent are tagged as potential solutions. The final solution is the one that maxi-

mizes joint utility.

The protocol is evaluated in a nonlinear scenario for different number of agents and

issues, and it achieves good results in terms of optimality (measured as the ratio

between the solutions found using the protocol and the optimal solution computed

using complete information) and failure rate (measured as the ratio between unsuc-

cessful negotiations and total negotiations).
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3.3 Maximum Weight Independent Set and the Max-Product Algorithm

In [20], we proposed an alternative perspective for the bidding process, based on

looking at the constraint-based agent utility space as a weighted undirected graph.

Consider again the simple utility space example shown in Figure 1. Think about each

constraint as a node in the graph, with an associated weight which is the utility value

associated to the constraint. Now we will connect all nodes whose corresponding

constraints are incompatibles, that is, they have no intersection. The resulting graph

is shown in Figure 2.

To find the highest utility bid in such a graph can be seen as finding the set of

unconnected nodes which maximizes the sum of the nodes’ weights. Since only in-

compatible nodes are connected, the corresponding constraints will have non-null

intersection. In the example, this would be achieved by taking the set {C1, C2}.

The problem of finding a maximum weight set of unconnected nodes is a well-

known problem called maximum weight independent set (MWIS). Though MWIS

problems are NP-hard, in [1], a message passing algorithm is used to estimate

MWIS. The algorithm is a reformulation of the classical max-product algorithm

called “min-sum”, and works as follows. Initially, every nodes i send their weights

ωi to their neighbors N(i) as messages. At each iteration, each node i updates the

message to send to each neighbor j by subtracting from its weight ωi the sum of

the messages received from all other neighbors except j. If the result is negative,

a zero value is sent as message. Upon receiving the messages, a node is included

in the estimation of the MWIS if and only if its weight is greater than the sum of

al messages received from its neighbors. Message passing continues until MWIS
converges or the maximum number of iterations is exceeded. This is formally shown

in Algorithm 1.

.
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Since the algorithm is deterministic, only one bid can be generated for a given

set of constraints. To solve this, in [20], the algorithm is applied to a subset of

constraints C′ = {c′k|k = 1, ..., nc; nc < l; c′k ∈ C}. The constraints c′k are ran-

domly chosen from the constraint set C. In this way, a different constraint sub-

set C′ is passed to the algorithm at each run, which will result in different, non-

deterministic bids.

Fig. 2. Weighted undirected graph resulting from the utility space in Figure 1.

4 Bidding Mechanisms for Highly-Nonlinear Utility Spaces

The use of weighted constraints generates a “bumpy” utility space, with many peaks

and valleys. However, the degree of “bumpiness” is highly dependent on the way the

constraint set is generated, and specially on the average width of the constraints. In

[11], constraints are generated by choosing the width of each constraint in each is-

sue randomly within the [3,7] interval. Since the domain is chosen to be [0,9], this

generates rather “wide” constraints. Figure 3 shows an example of the resulting two-

dimensional utility space for 50 “wide” binary constraints. On the other hand, Fig-

ure 4 shows an utility space obtained using “narrow” constraints. Comparing both

figures we can see that, though both utility spaces are nonlinear, the space gener-

ated using narrow constraints is more complex, with narrower peaks and valleys. As

the number of issues under consideration increases, the differences between having

wide or narrow constraints become more relevant. Though the approaches proposed

in [11] and [20] work perfectly in scenarios like the example shown in Figure 3,

we will see that their performance (in terms of optimality and failure rate) decreases

drastically in highly nonlinear scenarios defined using narrow constraints, and there-

fore an alternative approach is needed to deal with these highly nonlinear utility

spaces.
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Fig. 3. Example of a nonlinear utility space generated by using “wide” constraints.
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Fig. 4. Example of a highly nonlinear utility space generated by using ”narrow” constraints.

4.1 Constraint/Bid Quality Factor

If we compare the utility spaces shown in Figures 3 and 4, we can see that the main

difference between them (apart from the absolute utility values, but they have no
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effect in optimality) is the width of the peaks. Highly-nonlinear scenarios will yield

narrower peaks. Since the mechanisms outlined above lead agents to choose those

peaks (or high-utility regions) as bids, the result is that narrower bids will be sent to

the mediator. The width of the bids (or more generally, the volume of the bids in the

n-dimensional space), will directly impact the probability that the bid overlaps a bid

of another agent, and thus the probability of the bid resulting in a deal. Intuitively, an

agent with no knowledge of the other agents’ preferences should try to adequately

balance the utility of their bids (to maximize its own profit) and the volume of those

bids (to maximize the probability of a successful negotiation). To formally represent

this, we define the quality factor of a constraint or a bid as Qc = uα
c · v1−α

c , where

uc and vc are, respectively, the utility and volume of the bid or constraint c, and

α ∈ [0, 1] is a parameter which models the risk attitude of the agent. A risk averse

agent (α < 0.5) will tend to qualify as better bids those that are wider, and thus

are more likely to result in a deal. A risk willing or selfish agent (α > 0.5) will, in

contrast, give more importance to bid utility.

Our hypothesis is that by taking into account this quality factor in the bidding

mechanisms, with adequate values for the parameter α, will result in a better balance

between utility and “width” in agent bids, and thus negotiations will yield higher

optimality rates and lower failure rates.

4.2 Using the Quality Factor within the Simulated Annealing Algorithm

To make the simulated annealing bidding approach to take advantage of the quality

factor Q is fairly straightforward. We just need to make the simulated annealing op-

timizer to search for contracts which maximize the quality factor Q instead of the

agent utility. Since the quality factor Q is a feature of a region, not a contract, the

adjusted contracts must be mapped to the high utility regions where they are con-

tained before they are accepted or rejected by the simulated annealing engine. This

can be easily done by checking all constraints in the agent preference model and

computing the intersection of the constraints which are satisfied by the candidate

contract. The volume of this intersection can then be used to compute the quality

factor Q of the region. The mechanism can be seen in Algorithm 2. The function

adjust annealing(x, Q(., α), nSA, TSA) uses simulated annealing to returns a re-

gion of optimal quality factor using as starting point a sampled contract x (1).

4.3 Q-Based Tournament Selection for the MWIS Approach

The quality factor Q cannot be directly introduced into the max-product or min-sum

algorithm, because the algorithm is based in a weighted graph where weights are

additive, and the quality factor is not additive (that is, the quality factor of the inter-

section of a set of constraints is not the sum of the quality factor of the constraints).

Thus, a different approach is needed to introduce this factor in the algorithm. The
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approach proposed in [21] can be seen in Algorithm 3. We propose to use a tour-

nament selection [22] based on the constraint quality factor Q when generating the

subset of constraints C′ to be passed to the max-product algorithm (1). This tourna-

ment selection works as follows. For each bid to generate, a number nt of candidate

constraint subsets are randomly generated. From these subsets, the one which max-

imizes the product of the quality factors Q of its constraints is chosen as the subset

C′ to be used for the max-product algorithm. In this way, since high-Q constraints

are more likely to be selected, we expect the average Q for the resulting bids to be

higher.

5 A Probabilistic Mechanism for Deal-Identification

Scalability was identified as one of the main drawbacks in our bidding based nego-

tiation protocol [11]. Once agents have placed their bids, the mediator performs an

exhaustive search for overlaps between the bids using a breadth-first algorithm with

branch cutting. In a worst case scenario, this means searching through a total of nna

b

bid combinations, where nb is the number of bids per agent, and na is the number

of negotiating agents. In the experiments, we limited the number of combinations to

6, 400, 000. This means that, for 4 negotiating agents, the maximum number of bids

per agent is na
√

6400000 = 50. This limit becomes harder as the number of agents

increases. For example, for 10 agents, the limit is 4 bids per agent, which drastically

reduces the probability of reaching a deal. This is specially true for highly-nonlinear

utility spaces, where the bids are narrower.

To address this scalability limitation, in [21] we proposed to perform a proba-

bilistic search in the mediator instead of an exhaustive search. This means that the

mediator will try a certain number nbc of randomly chosen bid combinations, where

nbc < nna

b . In this way, nbc acts as a performance parameter in the mediator, which

limits the computational cost of the deal identification phase. Of course, restricting

the search for solutions to a limited number of combinations may cause the mediator

to miss good deals. Taking this into account, the random selection of combinations

is biased to maximize the probability of finding a good deal. Again, the parameter

used to bias the random selection is Q, so that higher-Q bids have more probability

of being selected for bid combinations at the mediator.

The mechanism is formally shown in Algorithm 4. We can see that the number of

analyzed bid combinations is limited to nbc (1), and that the function combine bids
(B, U, Q) select the bid combinations to analyze (2). Limiting bid combinations at

the mediator allows us to remove the limit on the bids issued by the agents, which

increases the probability of finding potential deals. Finally, the algorithm selects

from all deals found the one which maximizes social welfare, computed using the

sw (s, U) function (3). In [21], social welfare is computed as the Nash product [23],

that is, the product of the utilities that a potential solution gives to every agent.
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6 Experimental Evaluation

The hypotheses of this work are that the proposed mechanisms provide an improve-

ment to the optimality of the negotiation process over the previous works described

in Section 3. To evaluate this, we have performed a set of experiments to compare

the results of the basic approaches with the results obtained introducing the quality

factor Q in the bidding and deal identification mechanisms.

6.1 Experimental Settings

Several experiments have been conducted to validate our hypotheses. In each ex-

periment, we ran 100 negotiations between agents with randomly generated utility

functions. Each negotiation was run for each of the different approaches analyzed.

For each set of utility functions we applied a nonlinear optimizer to the product of

all agents’ utility functions to find the optimal contract and its associated joint util-

ity value. This optimal contract was used to assess the optimality of the different

approaches.

We ran experiments with the following parameters:

• Number of agents na = {4,...,14}. Number of issues n = {4,...,20}. Domain for

issue values: integers within the interval [0, 9].
• l uniformly distributed random generated constraints per agent: 5 unary con-

straints, 5 binary contraints, 5 trinary constraints, etc.

• Utility for each m-ary constraint drawn from a uniform distribution in the do-

main [0, 100 × m].
• Different average widths for constraints, ranging from 2 to 7.
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• Settings for simulated annealing: initial tempreature T0 = 30. Number of itera-

tions: 30.

• Maximum number of bids generated per agent nb = 200 × n.

• Parameters for Q calculation: α = 0.5.

• Number of candidate sets in tournament selection nt = 10.

• Number of constraints in each candidate set for tournament selection nc =
min (20, l/2).

• Maximum number of bid combinations at the mediator: nbc = 6400000. For

the non-probabilistic, basic mediator, this is achieved by limiting the number of

bids sent to the mediator by each agent to na
√

6400000.

• Joint utility for a failed negotiation: 0.

Experiments were coded in MATLAB and run on a 2x3.2Ghz Qad-Core Intel Xeon

processor with 4Gb memory under Mac OS X 10.5.4.

6.2 Experimental Results

Figure 5 shows the results of 100 runs of the experiments for 6 agents and 6 issues.

The vertical axis represents the median optimality rates of the experiments, while

the horizontal axis represents the degree of non-linearity of the utility spaces of the

agents, measured using a ruggedness factor based on correlation distance [18]. Four

sets of values have been represented:

• basic contract sampling with simulated annealing, and basic constraint sampling

with MWIS, represented in dashed lines, with triangle and square vertices, re-

spectively (both lines coincide in the figure).
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Fig. 5. Optimality rate results for 6 agents and 6 issues with different constraint widths.
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• contract sampling using Q-based simulated annealing and Q-based mediation,

represented in a solid line, with triangle vertices,

• Q-based tournament selection for constraint sampling, MWIS, and Q-based me-

diation, represented in a solid line, with square vertices.

We can see that both basic contract sampling and basic constraint sampling yield

high optimality rates for medium ruggedness, but the median optimality rate de-

creases drastically (in fact, it drops to zero) as the ruggedness increases (that is, for

highly nonlinear utility spaces). The Q-based approaches yield slightly lower opti-

mality rates for wider constraints, which is reasonable, since the Q is used to make

a trade-off between utility and deal probability. However, as the agents’ preference

model turns highly nonlinear, introducing the quality factor Q in the bidding and

deal identification mechanisms significantly outperforms the previous approaches,

yielding acceptable optimality rates even with the narrowest constraint widths. From

these results we can conclude that the quality factor Q can be used to improve failure

rate in highly-nonlinear utility spaces, and both simulated annealing and tournament

constraint selection with MWIS are suitable ways to select which constraints to use

for bid generation.

Regarding scalability, Table 1 shows the optimality rates obtained for one of

the studied approaches (MWIS) for a fixed maximum constraint width (4) when

the number of agents and issues increases, comparing the results obtained using the

basic approach with those obtained introducing the quality factor. We can see that

introducing the quality factor Q in the mechanisms significantly improves scalabil-

ity with the number of agents and issues.

Finally, Table 2 shows the medians and their 95% confidence intervals for the

ratio between the bidding, deal identification and total times of our proposed ap-

proaches and their corresponding basic approaches. We can see that for both con-

tracts and constraints sampling the use of the quality factor Q introduces a slight

overhead over the bidding time, but this overhead is compensated by the significant

improvement in deal identification times due to the use of the probabilistic mediator.

Also, a comparison of the total negotiation time for both Q-based approaches has

been included in the table.

Table 1. Scalability with the number of agents and issues
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Table 2. Performance comparison

7 Discussion

In [11], the authors propose a single-shot, auction-based protocol which samples

the contracts space and uses simulated annealing to identify high utility regions

in the agent’s utility spaces to be sent as bids to a mediator. In [20], instead of

performing a direct sampling of the contract space, different techniques are used

over the constraint space to generate bids. We use these works as a starting point to

provide effective bidding and deal identification mechanisms for highly-nonlinear

utility spaces, where the “narrowness” of the agents’ high-utility regions makes the

failure rate of their approaches drastically higher. Our approach is based on using

a quality factor Q, which balances bid utility and bid volume to take into account

the likelihood of the bid resulting in a deal. This is a somewhat similar approach

to the notion of viability seen in [15] for fuzzy-constraint based negotiation or the

similarity criteria used in [5] for linear utility spaces.

Other technique for addressing non-linearity in negotiation is to approximate

the utility functions by means of linear regression techniques or average weighting

methods, as proposed in [8]. However, as authors acknowledge, these approaches

are not useful for non-smooth utility spaces.

Finally, there are other works which suggest the use of expressive negotiation

protocols in multi-agent negotiations. In [19], gradient information is used to bias

the search for solutions in linear unmediated negotiation, and [16] uses relax re-

quirements in bilateral buyer-seller negotiations.

8 Conclusions and Future Work

The performance of existing auction-based approaches for negotiation in nonlinear

scenarios dramatically decreases when confronted with highly nonlinear scenarios

where the negotiating agents’ high utility regions are very “narrow” and so it is

very unlikely that high utility bids overlap. This paper presents a mechanism to bal-

ance bid “width” and bid utility, and integrate this mechanism into two previous
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approaches. The experiments show that the proposed mechanisms significantly im-

prove the previous approaches in highly nonlinear utility spaces in terms of failure

rate and optimality. However, there is still plenty of research to be done in this area.

The impact of the parameter α in the optimality rate should be analyzed. In addi-

tion, we are interested on designing and evaluating different tournament selection

and probabilistic deal identification mechanisms, using different probability density

functions. Finally, we are working on iterative negotiation protocols, where agents

may change their attitudes or relax their bids as the protocol iterates.
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Summary. In the convoy formation problem, two embodied agents are negotiating

the synchronization of their movement for a portion of the path from their respec-

tive sources to destinations. We consider a setting where the negotiation happens in

physical time, thus the agents have the opportunity to perform actions while negoti-

ating. Thus, the agent’s behavior is controlled by the interacting pair of negotiation

and action strategies. After considering the challenges of acting while negotiating

for the general convoy formation problem, we focus on a specific case where con-

voys can traverse a rectangular obstacle which is unaccessible to individual agents.

We propose a general framework for building interacting negotiation and action

strategies based on the selfishness and the optimism parameters. We propose two

strategies with minimal opponent modeling, and a more complex strategy which

uses particle filters to create a time evolving opponent model. Through a series of

experiments we study the interaction between the negotiation and action strategies

and compare the performance of the proposed strategy pairs in incomplete informa-

tion scenarios.

1 Introduction

Let us start by defining the convoy formation problem for embodied agents. Two

agents A and B move from their source positions SA and SB to their destinations

DA and DB . We assume that the agents move along the paths given by the function

PA(t) → L, which we read by saying that agent A is at the location L at time t.
At the initial timepoint t0 we have PA(t0) = SA and we define the arrival time

of A as the smallest time tarr for which PA(tarr) = DA. For every path we define

the unit cost cP (t), and the cost of a time segment C(t1, t2) =
∫ t2

t1
cP (t)dt. Most

of the time, we are interested in the cost of the path CP (t0, tarr). In the simplest

case we are only interested in the time to reach the destination. This corresponds

to a unit cost cP (t) = 1, and the cost of the path CP (t0, tarr) = tarr − t0. Many

environmental factors can be modeled by the appropriate setting of the unit costs.

For instance, the unit cost might be dependent on the location cP (t) = f(PA(t))

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 129–146.
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or on the speed of the agent cP (t) = f(P ′
A(t)). Locations or speeds which are

unfeasible to the agent can be set to have an infinite unit cost.

Two agents form a convoy if they are following the same path PA+B(t) over the

period of time [tjoin, tsplit]. An agent is motivated to join a convoy because of the

convoy advantage: the unit cost for the convoy is smaller than for the individual

agent over the same path. One example is the case when convoys can traverse areas

which are not accessible to individual agents: ∃t ∈ [tjoin, tsplit] ∃l PA+B = l
with cP,A(t) = ∞ and cP,A+B(t) = c ∈ R. Naturally, convoy and non-convoy

segments of the path need to be contiguous in space: PA(tjoin) = PB(tjoin) =
PA+B(tjoin) = Ljoin and PA(tsplit) = PB(tsplit) = PA+B(tsplit) = Lsplit.

We call Ljoin and tjoin the join locations and time, and Lsplit and tsplit the split

locations and time, respectively.

We are considering self-interested agents which are searching for the path with

the smallest cost from source to destination. This path might or might not include

segments traversed as a convoy. In the following we assume that the agents are

using negotiation to agree on the segment traversed as a convoy. The negotiation

succeeds if an agreement is reached over a quadruplet (Ljoin, tjoin, Lsplit, tsplit).
Convoy negotiation is thus a multi-issue negotiation, with two temporal and two

spatial issues. It can be seen as a six-issue negotiation if we consider the spatial

location L = (x, y) as two issues.

In [6, 7] we have considered a simplified convoy formation problem called Chil-

dren in the Rectangular Forest (CRF), where the convoy advantage is represented by

the convoy’s ability to traverse a rectangular obstacle which is not accessible to the

individual agents. The CRF problem presents many challenges of the general prob-

lem such as the difficulty of establishing whether an offer is feasible to the opponent,

whether it represents a concession or not, and the difficulty of simultaneously ne-

gotiating temporal and spatial issues. At the same time, the CRF problem simplifies

away the path planning problem, as all the Pareto-optimal deals correspond to paths

formed of at most three linear segments.

The work described in this paper represents a step towards bringing convoy ne-

gotiation closer to a more realistic setting. Rather than assuming that the agents are

negotiating instantaneously, we assume that the negotiation process is happening in

physical time, during which the agents can take real world actions, such as moving

towards their destination, their expected meeting point or other locations. The im-

mediate consequence is that in addition to the negotiation strategy, the agents also

need to consider the action strategy. The relationship between the two is complex.

A good action strategy will consider the current status of negotiation; in its turn, the

actions taken by the agent will change the value of the exchanged offers.

The remainder of this paper is organized as follows. Section 2 discusses related

work. Section 3 introduces some general considerations about the acting while ne-

gotiating for the convoy formation problem. In Section 4 we define the acting while

negotiating (AWN) in the context of the CRF problem. Section 5 describes the

selfishness/optimism meta-strategy for the AWN problem and two implementations

with minimal opponent modeling. Section 6 describes a negotiation strategy which

uses a particle filter to trace the dynamically evolving opponent model. In Section 7
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we describe several experiments studying the interaction between the action and ne-

gotiation strategies, as well as comparing the different action and negotiation strat-

egy pairs. We conclude in Section 6.

2 Related Work

There is a wide literature on multi-issue negotiations under incomplete information.

Negotiating in the spatio-temporal domain, however, has received relatively little

attention. In the following, we briefly review some of the recent papers which over-

lap in some aspects with our work, and whose approach (even when applied in a

different domain), influenced our approach.

In the value oriented domain, the most frequently taken approach for modeling

the overlap between the negotiation time and physical time is the deadline model.

In these cases, agents do not need a separate action strategy, but they need to take

the time in consideration in their negotiation strategy.

Sandholm and Vulkan [9] analyze the problem of negotiating with internal dead-

lines where the deadlines are private information of the agents. The negotation prob-

lem is a “split a single pie”, zero-sum negotiation. They find that for rational agents,

the sequential equilibrium strategy requires the agents to make no concessions until

their deadline; then, the agent with the earliest deadline concedes the whole issue

under negotiation.

Fatima, Wooldridge and Jennings [2] study three different negotiation procedures

for multi-issue negotiation under deadlines. In the package deal procedure, all issues

are discussed together, in the simultaneous procedure, issues are discussed indepen-

dently but simultaneously, while in the sequential procedure, issues are discussed

one after another. The authors find that the package deal is the optimal procedure

for both agents.

Another aspect of the problem considered by us is the incomplete information

regarding the utility and feasibility of the offers to the opponent. Information in-

completeness can span a very wide range of aspects. In a simple value oriented

negotiation, one might not know the opponents utility function or strategy, but usu-

ally all offers are feasible, and very often, there is no uncertainty over whether an

offer is a concession or not. Information uncertainty is an additional problem when

the utility function is non-linear.

Golfarelli et al. [3, 4] consider robotic agents which are assigned tasks associated

with physical locations. The tasks carry precedence constraints (execute one specific

task earlier than the other) and object constraints (fetch the object in order to execute

the task). Agents can collaborate by swapping tasks through an announcement-bid-

award mechanism to reduce the execution cost of the tasks.

Saha and Sen [8] consider the problem of negotiating efficient outcomes in a

multi-issue negotiation where some of the parameters of the agent are not common

knowledge and distinguish between “distributive” and “integrative” scenarios.

Crawford and Veloso [1] consider the multi-agent scheduling problem, where the

agent can dynamically learn the opponents behavior and choose between a strategies
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proposed by a number of distinct “experts”. The performance is measured in terms

of total utility achieved over a series of trials.

Ito et al. [5] consider inter-dependent multi-issue negotiations which allow very

complex nonlinear utility functions. The proposed solution is a bidding based nego-

tiation protocol, in which each agent creates bids by sampling its own utility space.

The mediator is responsible to identify a final contract by finding all the combina-

tions of bids that are mutually consistent.

Tykhonov and Hindriks [10] use Bayesian learning to study the opponent’s pref-

erence for a specific issue. They form a series of discrete hypotheses about the type

of the opponent, with associated probabilities. These probabilities are updated based

on Bayes’ rule and the distance between the expected utility of the opponent’s bid

and the utility of actual bid.

3 General Considerations

3.1 Possible Action Strategies

The idea that a negotiation is a process which is happening in physical time is not

new, but in many applications it is considered under strong simplifying assumptions.

For instance, the split the pie game, used to model worth oriented negotiations, fre-

quently assumes that the pie shrinks a fixed fraction at every negotiation round.

Although this is a good model for motivating the agents to reach a deal as soon as

possible, it does not capture the ability of the agents to take actions, and the rela-

tionship between the elapsed time and the value of offers is unrealistically simple.

In the case of the convoy formation problem, allowing acting while negotiating

means that we consider every negotiation turn to take a time tr, during which the

agents can move on any feasible trajectory. For the remainder of this paper, we will

make the assumption that tr is a constant value. Agents participating in a negotiation

under these conditions need to have both a negotiation and an action strategy.

Let us now consider several extreme examples of action strategies. The simplest

action strategy would be for the agent to stand still during the negotiation. The

disadvantage of such approach is that the value of all possible deals will become

lower with the amount of time wasted during negotiating. For instance, an agent

which spends 100 seconds negotiating, finding out that no deal is possible, then

moving on the conflict deal trajectory, would arrive 100 seconds later than an agent

which did not even negotiate. This scenario is very similar to the “shrinking pie”

scenarios in worth-oriented negotiations, which also assume that the agents do not

act while negotiating.

The second strategy would be to continue on the originally established trajectory

of the conflict deal. This corresponds to a pessimistic agent, which up to the moment

when a deal is agreed upon will assume that no deal is possible. The advantage of

this choice is that the agent has a guarantee that it will not fare worse than the

conflict deal. Unfortunately, moving on the conflict deal trajectory will reduce the

value of every offer, and it can make some offers unfeasible in the sense that

the agent can not reach the proposed join location Ljoin in time tjoin.
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At the other extreme, the agent might act optimistically: it can move on the short-

est trajectory to the location of its own latest offer. Provided that the offer is ac-

cepted, this is the action which would provide the agent with the lowest possible

cost. On the other hand, it requires a risky commitment from the agent: if no deal

will be reached, or if the deal reached will be relatively far from the predicted one,

the cost to destination will be actually higher than if the agent has not participated

at all in the negotiation.

Between full optimism and pessimism, agents might choose a hedging strategy

which moves at an intermediate trajectory between the conflict deal and the agent’s

own offer.

3.2 Baseline and Pragmatic Rationality

Allowing agents to act while negotiating requires us to refine our definition of ra-

tionality of a deal. At the beginning of the negotiation, at time t0, the agent has a

conflict deal path with cost Cconflict. According to the baseline rationality definition,

any offer which has a higher cost than Cconflict is not rational and it will not be ac-

cepted by the agent. If the agent is taking risks by acting optimistically, at some point

in time tx it might find itself in the position that it has already incurred costs Cx, and

the best path from current location Lx to the destination will have a cost Cx
conflict. If

at this moment an offer with cost Coffer is received, it will be called pragmatically

rational if Coffer + Cx < Cx
conflict and baseline rational if Coffer + Cx < Cconflict. A

rational agent will need to act based on the pragmatic rationality, as the original con-

flict deal alternative is not available any more at this moment in time. Occasionally,

the agent might find it necessary to accept deals which are not baseline rational.

However, when we are measuring the overall performance of the negotiation

strategy / action strategy pairs, the term of comparison should be the original con-

flict deal. In order for a strategy pair to be acceptable, it needs to be baseline rational

at least in the statistical average.

4 Acting While Negotiating in the CRF Model

In the following we shall study the issue of acting while negotiating in the Chil-

dren in the Rectangular Forest (CRF) problem, an instance of the convoy formation

problem where the “convoy advantage” is the ability of the convoy to traverse a

rectangular region inaccessible to the individual agents. We assume the negotiation

protocol to be Simple Exchange of Binding Offers (no argumentation). We also as-

sume a zero-knowledge environment; the only source of information of the agents

is through the offers of the opponent. We will consider the cost of a path to be the

time to destination along that path.

When an agent receives an offer from its negotiation partner, it first checks it

for feasibility. An offer is not feasible if the agent can not reach the designated

locations on time, and we will consider these offers to have a cost of +∞. For an

offer O = (Ljoin, tjoin, Lsplit, tsplit) made at time tcrt, the agent A with speed of vA,
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source location at LA
src, current location at LA

crt and destination at LA
dest will calculate

the cost of the offer as:

CA(O) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+∞ if tcrt +
dist(LA

crt,Ljoin)
vA

> tjoin

+∞ if
dist(Ljoin,Lsplit)

vA
> tsplit − tjoin

tsplit +
dist(Lsplit,L

A
dest)

vA
otherwise

(1)

Similarly we define the cost of the conflict deal as the time spent in the negotiation

until the current moment tcrt, plus the time necessary to reach the destination from

the current location Lcrt by going around the forest. Note that the cost of both the

collaboration and the conflict deal depend on the state (the current time and location

of the agent). As we discussed in the general convoy formation case, the pragmatic

rationality of the offer is also state dependent. An offer might be pragmatically ra-

tional for an agent at a certain moment in the negotiation, even if its cost is higher

than the original conflict deal cost. The opposite case is also possible: an offer which

would have been favorable at the beginning of the negotiation might not be rational

for the agent in the current state (for instance, if the agent is already well on its way

towards the conflict deal).

At the other extreme from the conflict deal is the “ideal offer” with the cost

CA
best, which corresponds to the earliest time the agent can reach its destination,

assuming an opponent which is ideally collaborative and has ideal capabilities. For

a real opponent, this ideal offer might not be rational, or even feasible. We define

the utility of an offer by the fraction of how much it can save from the cost of the

conflict deal in comparison to the ideal offer.

UA(O) =
CA

conflict − CA(O)

CA
conflict − CA

best

(2)

With this definition, the utility of non-rational offers is negative and the utility of

non-feasible offers is minus infinity.

5 Strategies for the AWN Problem

5.1 The Selfishness-Optimism Meta-strategy

We have seen that an AWN agent requires a pair of interacting strategies for ne-

gotiating and acting. To capture the relationship between the two into an easy-to-

understand framework, we propose a technique which integrates the offer acceptance

decision and the action strategy into a single meta-strategy. This selfishness-optimism

meta-strategy does not define the offer formation mechanism; this needs to be pro-

vided separately, and is normally inherited from non-AWN strategies.

The selfishness λ is the lowest utility of the offer, as defined by Equation 2, which

the agent is ready to accept. A fully selfish agent (λ = 1) will only accept its ideal

offer, a fully benevolent agent (λ = 0) will accept any rational offer.
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The optimism γ governs the agent’s movement and represents the amount of

hedging between moving towards its own latest offer versus the conflict deal lo-

cation. A fully pessimistic agent (γ = 0) assumes that there will be no deal and

move on the conflict deal trajectory.

The reader might notice that this meta strategy can be immediately generalized

by making the λ and γ parameters variable over the course of the negotiation. An

agent, seeing that the opponent conceded too readily, might decide to drive a hard

bargain by increasing its selfishness. An agent might make its optimism dependent

on an external machine learning system which predicts the likelihood of a deal. A

particularly Machiavellian agent might even make offers only to confuse the oppo-

nent and move to a predicted deal location which is far from its current offer.

For the remainder of this paper, we will assume agents with the λ and γ pa-

rameters fixed and determined at the beginning of the negotiation. The algorithm

for selfishness-optimism meta-strategy is shown below, where B (t) is the belief at

time t, and NEXTOFFER(.) is the offer formation function to calculate the next

counter-offer.

5.2 Minimal Opponent Models

We assume a zero-knowledge environment: the only information the agents have

about each other is extracted from the offers. Under these conditions, one of the

main challenges of any convoy negotiation is offer formation. With four issues in

every offer, the negotiation space is very large. There is no natural ordering of the

offers, thus an agent can never be sure whether the offer it made is a concession to

the opponent or not, and whether it is feasible or rational for the opponent. Finally,

as the opponent is also acting while negotiating, the utility, rationality and feasibility

of the offers changes with the passing of time and the actions of the opponent. All

this makes it important for the agent to build a model of the opponent as part of its

negotiation strategy.
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In the following we consider some initial information which can be extracted

from the initial offers of the agents. An offer does not immediately identify the

agent’s source and destination, even if the agent offers its own ideal trajectory. The

factor which is relatively easy to identify is the speed capability of the agent. As

every offer is binding, the first offer made by an agent will identify a minimum

value on the agent’s speed capability based on the speed on the common trajectory

portion. Unless the agent is engaged in deceptive practices, this first offer will be

based on its maximum possible speed.

The agent making the second offer can find itself in one of two possible situ-

ations. It can find that the opponent’s speed is larger than its own. Then it needs

to structure its counter-offer based on its own, lower speed. On the other hand, if

it finds the opponent’s speed to be smaller than its own capability, it will make an

offer assuming the opponent’s speed for the common part of the trajectory, without

disclosing its own higher capabilities. Either way, by the end of the first offer ex-

change, the agents will know their maximum common speed, and will use this in

all subsequent offers. Thus, the remainder of the offers will always be feasible for

the common portion of the trajectory. It is, however, much harder to determine the

current location of the opponent agent.

5.3 Two Offer Formation Strategies

Let us now describe two offer formation strategies which use only minimal user

models.

Monotonic Concession in Space (MCS) calculates the next offer by conceding

in terms of the location fields, towards the opponent’s last offer. It is parameterized

by the conceding pace at each side of the forest (Cm, Cs). If the utility of the next

conceding offer is below the selfishness, or no concession is possible (e.g. the oppo-

nent’s last offer and the agent’s last offer are identical in location), the negotiation

stops with no agreement.

The MCS strategy resembles the monotonic concession strategy from single-

issue worth-oriented domains. There are, however, some important differences.

Conceding in the meeting and splitting location does not necessarily represent a

concession in terms of utility. As the MCS agent does not know the opponent’s

location, the offer might not be feasible in terms of the join time.

One of the main problems of the MCS strategy is that by uniformly conceding in

the two spatial components, it excludes a large parts of the negotiation space.

Uniform Concession (UC) strives to perform a better exploration of the offer

space, while trying to present the offers in an order which would try to achieve the

best deal which the opponent would still accept. UC first generates a pool of all

possible offers, described as combinations of meeting and splitting location with a

certain resolution, as well as possible time buffers for the meeting time. The splitting

time is calculated based on the maximum common speed. Only the offers which are

rational, feasible and have an utility higher than the selfishness λ are included in the

pool.
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UC defines a conceding rate α and a current utility range (with the span of α)

for each round. When calculating the next offer, the agent only searches the offers

in the current utility range for the one most similar to the opponent’s offer. The

utility range starts at 1 and decreases with α each round until the selfishness level

is reached (see Algorithm 2). Thus every offer made will be a concession of about

α, in terms of the offering agent’s utility. At every round, the UC selects from the

current utility range the offer which is the most similar to the opponent’s last offer.

The similarity between two offers is defined by the sum of squared difference of

each issue (see Equation 3). If the offer pool is empty, the negotiation is halted.

OA

t
= argmin

O

(||O− OB

t−1
||2) (3)

6 Opponent Modeling with Particle Filters

As the opponent is moving while negotiating, in our case, opponent modeling re-

quires not only learning the initial parameters, but also maintaining a dynamically

evolving model of the opponent, a problem of probabilistic reasoning over time.

In this section we describe the PF strategy which uses a Sampling-Importance-

Resampling (SIR) particle filter to update its beliefs about the opponent, then uses

a K-Means clustering technique to extract a likely hypothesis on which the offer

formation is based.

6.1 The Particle Model

The PF strategy represents its knowledge about the opponent as a cloud of weighted

particles. In the following we discuss (1) the particle representation, (2) the predic-

tion model, describing how the particles evolve in time and (3) the sensor model,

which describes how observations (which in our case are offers made by the oppo-

nent) affect the weight of the particle.
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The Particle Representation

A particle should contain all the information the learning agent needs to know about

the opponent. We represent the particle Xt at time t as a vector of its opponent’s

current state:

Xt = 〈Lsrc, Lcrt, Ldest, Sid〉
where Lsrc is the source location, Lcrt is the current location, Ldest is the destina-

tion, and Sid is an identifier of the strategy used by the opponent. The strategy is

chosen from a set of discrete strategies.

The Prediction Model

At every negotiation round, the particle Xt is updated from its previous state Xt−1

using the following equations:

Xt =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Lsrc(t) = Lsrc(t − 1) + ξsrc

Ldest(t) = Ldest(t − 1) + ξdest

Lcrt(t) = f(Sid, Lcrt(t − 1)) + ξcurrent

Sid(t) = Sid(t − 1)

where f(.) is a function to calculate the next location according to the opponent’s

action strategy Sid and its former location Lcrt(t − 1) and ξ is random noise gen-

erated from the two-dimensional normal distribution accounting for the uncertainty

of the estimation.

The Sensor Model

The particle weights are updated with every new observation. For each particle i,
the PF agent calculates the probability Pr(Ot|Xi

t
) that a hypothetical opponent

described by the particle would make the specified offer. To do this, we first calcu-

late the offer which would have been made by the agent described by the particle

Oexp(X
i
t) and then calculate the probability based on the difference of the real offer

from the expected offer:

Pr(Ot|Xi
t
) = Pr(Ot|Oexp(X

i
t))

= g4(yj , tj , ys, ts|yexp
j , texp

j , yexp
s , texp

s )

= g(yj|yexp
j )g(tj |texp

j )g(ys|yexp
s )g(ts|texp

s )

In the formula, (yj , tj , ys, ts) are the actual values in the opponent’s last offer

Ot. g4(.) is the four-dimensional Gaussian p.d.f which centers at expected offer

Oexp(X
i
t). The weight of each particle is updated accordingly:

wi(t) = Pr(Ot|Xi

t)wi(t − 1)

The particle weights are normalized after the update, and if the estimate of effective

number of particles

N̂eff =
1

∑P
i=1(wi)2

is less than the threshold Nthreshold, we resample using the stratified resampling

algorithm.
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6.2 Offer Formation

Algorithm 3 describes the calculation of the next offer by the PF agent. First, we

associate an offer to every particle. By making the assumption that the particle is

correct, we generate the offer the same way as if we would have a full-knowledge

negotiation: the offer will be feasible to both agents and have a utility larger than

their respective selfishness levels. If more than one such offer can be generated, we

choose the one which provides largest utility to the opponent.

If none of the particles has a feasible associated offer, the PF agent breaks the

negotiation. Otherwise the agent proceeds to choose an offer based on the offers

associated with the particles. Calculating the mean across all the particles is not

a good choice, as the particles might represent disjoint hypotheses. By taking the

average over the complete set of particles, the resulting estimate might fall in the

low probability zone between hypotheses.

Our approach is to perform K-Means clustering on all the particles which have

assigned offers. The distance metric used is the sum of squared difference between

the issues. The cluster with the highest sum of weights is selected for offer forma-

tion. The averaged offer of the selected cluster will become the next counter-offer

to the opponent.

7 Experimental Study

7.1 The Influence of the Selfishness and Optimism on the Agent Trajectories

To understand the impact of the selfishness and optimism settings on the behavior

of agents, we have run a series of experiments. We considered a scenario where a

mutually advantageous deal is possible. The size of the map is 600×400, with the
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(a) Fully optimistic (b) Fully pessimistic

(c) Very selfish (d) Very generous

Fig. 1. The influence of the selfishness and optimism to the course and the outcome of the

negotiation. The meta-strategy of agent B is fixed to λB = 0.6 and γB = 1. The values for

agent A are: (a) λA = 0.6, γA = 1, (b) λA = 0.6, γA = 0, (c) λ = 0.8, γ = 1 and (d)

λ = 0.2, γ = 1.

forest located at (200,25) with the size of 200 ×350. Agent A moves from (100,150)

to (500,150) with the speed of 1.0, agent B with the fixed values of λ = 0.6 and

γ = 1 moves from (100,250) to (500,250) with the speed of 1.0. Both agents use

the MCS strategy(Cm = 2, Cs = 2) to calculate the next offer. This is a “hard”

scenario, because the social deal is only marginally better than the conflict deal.

Figure 1 shows the path of the agents for four different settings of the selfishness

and optimism for agent A. As the MCS strategy does not depend on the current

location, the actual offers exchanged are identical. Interestingly, however, in cases

(a) and (d) the agents agreed to form a convoy, while for (b) and (c) they did not.

Figure 1-a shows agent A with λA = 0.6 and γA = 1, that is, of average selfishness

but fully optimistic. The agent moves towards its own offer at every step which

results in a curving trajectory as the offer evolves. As the agents are getting closer

and closer together, the utility of their respective offers keeps increasing, thus a deal

is eventually reached.
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In Figure 1-b agent A is fully pessimistic and of average selfishness (λA = 0.6,

γA = 0). Agent A moves in a straight line towards the conflict deal, making both its

own and the opponent’s offers less and less valuable, despite the concessions of the

opponent. Finally, the offer which the agent needs to make according to its strategy

becomes of lower utility than its selfishness, the negotiation is terminated, and the

opponents move on the conflict deal trajectory. Note that agent B actually ended up

on a trajectory which is worse than the original conflict deal.

Figure 1-c shows a run with A being fully optimistic but of high selfishness

(λA = 0.8, γA = 1). The trajectories are initially similar to case (a), however,

through a series of concessions, agent A will reach a point where its next offer will

have an utility smaller than its selfishness. At this point A breaks of the negotiation

and moves to the conflict deal. In this case both agents end up on trajectories which

are worse than the original conflict deal.

Finally, Figure 1-d shows a case when A is fully pessimistic but of low selfish-

ness (λA = 0.2, γA = 0). Despite the fact that it starts to move towards the direction

of the conflict deal, A and B successfully form a deal because A will accept a rela-

tively low utility rational offer. Thus A will reverse its course and move towards the

collaborative deal. Note that A had lost some utility by making the “detour” towards

the conflict deal.

7.2 The Influence of the Action Strategy on the Offer Pool

Let us consider a negotiation turn where agent A needs to make an offer. We call

the agent A’s offer pool, the set of offers which are rational and feasible for A. The

supervisor’s pool is the set of offers which are feasible and rational for both A and

B. Some strategies, such as UC generate the agent’s pool explicitly. The supervisor’s

pool can not be computed by the agents in partial knowledge negotiations.

In the acting while negotiating problem, both the agent pool and the supervisor’s

pool decreases at every negotiation round, as some offers become unfeasible, as a

result of the passage of time and the action strategy of the agent.

One way to characterize the agent and the supervisor pools is to consider the

histogram of the offers in function of their utility. Figure 2 plots the evolution of

these histograms over the negotiation scenario described in the previous section.

Series of gray lines show the agent’s offer pool, and black lines the supervisor’s

pool. Figure 2-a considers a fully pessimistic agent. As expected, the agent offer

pool shrinks at every iteration. Furthermore, the maximum utility of the agent’s offer

pool also becomes lower at every iteration, reflecting the fact that by moving on the

conflict deal trajectory, the agent is reducing its own choices. The supervisor’s pool

is shrinking on its own as well, and eventually becomes empty.

Figure 2-b considers a fully optimistic agent. We note that the offer pool is still

shrinking at every iteration, but the amount of decrease is smaller. Furthermore, the

maximum possible utility remains very close to 1.0 during the negotiation, because

the agent optimistically moves towards these high utility offers. We also notice that

the rate of shrinking of the supervisor’s pool is much slower than in the pessimistic
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(a) Fully pessimistic
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(b) Fully optimistic

Fig. 2. Evolution of the histograms of offer pool (gray lines) and the supervisor’s pool (black

lines) function of the utility. (a) γ = 0 (fully pessimistic) and (b) γ = 1 (fully optimistic).

For both cases, the λ = 0.6.

case. Most of the offers which were feasible at the beginning of the negotiation

remain feasible if the agent acts optimistically.
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7.3 Opponent Modeling in the PF Agent

We will illustrate the opponent modeling in the PF agent and the overall benefits of

the approach by tracing an example where the MCS agent ends in conflict, while a

PF agent with the same selfishness and optimism succeeds in negotiating a deal.

Let us consider the negotiation in Figure 1-c, where A is an MCS agent with

λ = 0.8 and γ = 1, which ends in conflict. We repeat the experiment, replacing the

MCS agent with a PF agent, with the same λ and γ values.

Figure 3 shows the evolution of the particle filter through the first six steps of

negotiation. In this figure, a particle is represented by two dots – one on the current

(a) step 0 (b) step 1

(c) step 2 (d) step 3

(e) step 4 (f) step 5

Fig. 3. Evolution of the opponent model in the PF agent. The black dots and the corresponding

dashed line is the cluster selected for offer formation. The gray dots are particles belonging

to the other clusters.
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location side and one on the destination side. The particles from the cluster chosen

for offer formation are shown in black, while the others in gray.

We note that the particles show a relatively large spread which changes from

step to step. This is a result of the way in which the offers are formed based on the

strongest cluster. If the opponent declines the offer, this represents a strong negative

feedback to the selected cluster. This leads to a large variation in the particle cloud,

further amplified by the resampling step. Nevertheless, the particle clouds track rel-

atively well the current location and destination of the opponent, which allows the

PF agent to choose better offers from the offer pool. In our case, at negotiation

round 10, the opponent accepts the PF agents offer, and they move together to their

meeting location. Thus, the PF agent, under the same selfishness and optimism pa-

rameters, and starting from zero knowledge, could “save” a deal, which was lost for

a MCS agent using the same parameters.

7.4 Statistical Performance Comparison

The quality of a specific action strategy / negotiation strategy pair can be measured

by the average utility of the deals it can reach over a set of randomly chosen repre-

sentative scenarios against specific opponents. The statistical averaging is necessary

because some strategies might be a better fit for certain scenarios: for instance, fully

pessimistic action strategies will yield the best performance in scenarios where no

deal is possible.

Figure 4 shows the performance of four strategies with various values for opti-

mism and selfishness. The top figure shows the relative utility obtained while the

bottom the number of cases where a deal was formed. For all experiments, the op-

ponent uses the MCS strategy with λ = 0.6 and γ = 1, The four strategies are MCS,

UC and PF to which we add MCSN, a variant of MCS where the action strategy is

to not move until a deal is agreed or the negotiation is broken. Thus, the MCSN

agent does not perform acting while negotiating, and the optimism parameter has

no impact in this case.

The first obvious conclusion is that the all the proposed acting while negotiating

strategies outperform the MCSN “don’t act” strategy. There is also a clear advantage

of UC and PF approaches compared to MCS in terms of average utility and number

of deals, for every combination of optimism and selfishness. There is a relatively

smaller difference between PF and UC. The PF strategy obtains a higher percent-

age of successful deals and it achieves a higher average utility for the majority of

optimism and selfishness values.

Different strategies obtain their maximum utilities at different selfishness and

optimism values. For MCS this value is at λ = 0.8 and γ = 0. For PF and UC it

is around λ = 0.6 and γ = 0.2. Note, however, that these values are dependent on

the opponent, and further studies with a range of opponents are necessary before

definitive conclusions can be drawn.
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Fig. 4. Relative performance of various strategies negotiating with (another MCS agent) over

100 scenarios. Top: average utility, bottom: number of successful deals

8 Conclusions

In this paper we introduced the acting while negotiating variant of the convoy for-

mation through negotiation problem. We have identified that the main challenge of

this problem is the interaction between the negotiation strategy and the action strat-

egy. We have introduced several negotiation and action strategy pairs both without

and with opponent modeling capabilities.
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Our future work involves both extending the proposed strategies to more general

settings, as well as in developing more complex action strategies, such as strategies

where the opponent model is used to adjust the optimism of the action strategy.

Acknowledgements. This work was partially funded by NSF Information and Intelligent

Systems division under award 0712869.
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Summary. This paper presents a multi-player multi-issue negotiation model to

solve a resource allocation problem. We design a multilateral negotiation protocol,

by which rational players bid sequentially in consecutive rounds till a deadline. Ev-

ery player’s bid is a proposal for resources allocated to himself. In this framework,

we perform a thorough theoretical analysis of negotiation with complete informa-

tion, which is also a preliminary for the more complex incomplete information case.

Here we extend known results on single issue bilateral negotiations to multiple play-

ers and multiple issues. We show that, under a complete information setting, we can

derive the negotiation strategies which form a subgame perfect equilibrium. We also

show that when a discount factor exists, an agreement will be reached immediately

at the end of the first negotiation round. The outcome is Pareto optimal, when every

player maximizes his utility by making trade-offs between issues and selects the

bid that is best for his opponents amongst multiple bids that would give the same

maximum utility to himself.

1 Introduction

With the rapid development of multi-agent systems, automated negotiation has been

widely used to solve coordination and cooperation problems in complex systems. In

this paper, we propose a solution when multiple players allocate multiple resources

amongst themselves through negotiation. In contrast to most previous work on two-

player multi-issue negotiation [6] or multi-player single-issue negotiation [2, 9, 16],

the negotiation model presented in this work is a multi-player multi-issue strategic

negotiation model. It is also different from the model of multiple bilateral negotia-

tion between more than two players [8]; it is a multilateral negotiation that always

involves all players in a single negotiation.

We design a negotiation protocol where each player bids a desired allocation

of resources only for himself. Compared to Rubinstein’s alternating-offer bargain-

ing [14], in which one player’s proposal includes the allocations for all players,

this model applies to many real negotiation scenarios and the equilibrium solution

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 147–159.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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applies to those scenarios directly. Fatima et al [6] study different approaches to

multi-issue negotiation and conclude that the package approach, i.e. when all issues

are bundled and negotiated concurrently, is the optimal way for multi-issue nego-

tiation. In our work, we extend this concurrent multi-issue negotiation model from

two players to multiple players, in a model where we let every bid made by a player

include the desired allocation of all resources.

The model presented in this paper tackles several problems introduced by multi-

player negotiation. First, we discuss the bidding order problem in the negotiation

between more than two players and provide a simple way to solve it. Second, we

describe the reasoning process behind the negotiation strategies for more than two

players, present the resulting strategies, and give mathematical proofs of their prop-

erties. Although we just analyze the negotiation with complete information in this

paper, the proposed model is a fundamental result of automated negotiation. This

paper thus is an important step towards the incomplete information case and pro-

vides a benchmark for multi-player multi-issue negotiation.

We briefly describe the negotiation model here and present the full details in the

next sections. We study solutions with n ≥ 2 players to allocate m ≥ 2 resources

amongst themselves through negotiation, which takes place round by round under

a time constraint, a negotiation deadline. All players have to reach an allocation

agreement, otherwise no resource will be allocated. Different from the two-player

negotiation where one player’s allocation determines his opponent’s allocation indi-

rectly, in the n-player negotiation, even if one player’s allocation is determined sep-

arately, the rest of the players still need to negotiate the allocations of the resources

left. Instead of letting one player propose the allocations for all players as done in

[2, 14], we let all players sequentially propose only the resources to be allocated

to himself, because this is all they are interested in. We set the negotiation under

a complete information environment, in which all information is common knowl-

edge, and derive equilibrium strategies of the players which form a subgame perfect

equilibrium (SPE) [15] from two-dimensional reasoning, which will be discussed

later. Given another time constraint, a discount factor that decreasing the utilities

of agreements during the negotiation, an agreement can be reached immediately at

the end of the first round. Further, the solution is Pareto optimal when each player

selects the bid that is best for his opponents amongst multiple bids that would give

the same maximum utility to himself.

The rest of the paper is organized as follows. Section 2 describes the negotiation

model including the problem model, the negotiation protocol and utility functions.

Section 3 proposes the equilibrium strategies formally and proves several proper-

ties of the outcome. A simple example of the equilibrium strategies is also given.

Section 4 gives a brief summary of related work. And finally, Section 5 presents the

conclusions and future work.

2 The Negotiation Model

Suppose a complex task requires a finite set of n ≥ 2 players to perform, given a

finite set of m ≥ 2 divisible resources. We assume every player has a monotonically
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increasing utility for the allocated resources. Every player’s allocation can only be

implemented if all players agree with it. To solve the problem of resource allocation,

we propose a solution where n players allocate m resources amongst themselves

through multilateral negotiation. For the sake of simplicity, we interpret an amount

xk as an allocation percentage of the kth resource where xk ∈ [0, 1] and 1 ≤ k ≤ m.

We denote the complete set of the total amounts of resources by a vector 1 in which

every element is 1. In the rest of this paper, we use the term issue to indicate the

amount of a resource negotiated by the players.

2.1 The Negotiation Protocol

In this section, we impose a negotiation protocol that describes how players can

act and interact during the negotiation. We let the negotiation take place round by

round r ∈ N, in which the players can take actions. There are two common time

constraints, a negotiation deadline γ ∈ N and a constant discount factor δ ∈ (0, 1).
If the players cannot reach an allocation agreement on all issues in any round r ≤
γ, the negotiation fails and all players get nothing. We let disagreement denote

this outcome, which is the worst outcome of this negotiation. Given an allocation

agreement at a subsequent moment, the utility that a player gets is decreased by the

discount δ.

We let n players take actions sequentially in consecutive rounds till the dead-

line γ. Different from Rubinstein’s alternating-offer bargaining [14], in each round

r ≤ γ, we let each player bid one desired combination of the m issues for himself

sequentially, given the bidding order of the current round r. In this work, the ne-

gotiation protocol requires the bidding orders of all rounds to be pre-specified and

fixed during the whole negotiation, but the way to generate the bidding orders can

be various. Because the order can be different in each round, we let a given player be

represented by a different bidder in each of the rounds. For instance, in the case of

three players 1, 2 and 3, the bidding orders can be 〈(1, 2, 3), (2, 3, 1), (3, 1, 2), . . .〉,
in which player 1 is represented by the first bidder, the third bidder and the second

bidder in rounds 1, 2 and 3 respectively. We let bidder i ∈ N represent the ith bidder

in a round where 1 ≤ i ≤ n and let N denote the set of bidders {1, . . . , n} of a

round.

When it is a bidder’s turn to bid in round r ≤ γ, given the bids of the previous

bidders in the current round, the bidder can either accept those bids and make his

own bid, or reject those bids, in which case the negotiation passes on to the next

round. At the beginning of every round r, the issues available for bidders to bid

are always the complete set of issues 1. The issues cannot be bidden separately.

The bidder either bids a combination of all m issues or rejects to bid for any issue.

Therefore, the set of all possible bids is B = [0, 1]m and bidder i’s bid is an m-

vector xi ∈ B. An element1 xi,k ∈ xi represents the kth issue of bid xi where

1 ≤ k ≤ m. We let reject denote the action of rejection. Therefore, the set of all

possible actions of every bidder is A = B ∪ {reject}. We let ai ∈ A denote bidder

1 In this paper, we also use ∈ to represent the relation that an element belongs to a vector.
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i’s action in a round and let a ∈ An denote an action profile chosen by n bidders in

the round. We define the constraint C of an agreement to be:

reject /∈ a and a = (x1, . . . , xn) subject to ∀k ∈ {1, . . . , m}
n

∑

i=1

xi,k ≤ 1

Given the definitions above, we propose the negotiation protocol.

• In each negotiation round r ≤ γ, from the first bidder to the last bidder, every

bidder i ∈ N takes an action ai ∈ A sequentially.

• In round r < γ, given all previous bids (x1, . . . , xi−1), bidder i can either accept

them and bid xi, or reject them. If bidder i bids xi, then it is bidder i + 1’s turn

to choose his action/response. If bidder i chooses to reject the previous bids,

the current round r ends and the negotiation passes on to round r + 1. Once

bidder n accepts all previous bids and bids xn and the action profile a satisfies

the constraint C, an agreement is reached and the negotiation stops successfully.

• If no agreement is reached in any round r ≤ γ, the negotiation stops unsuccess-

fully and the outcome is disagreement.

2.2 Utility Functions

As defined in the last section, the outcome of the negotiation is some agreement

or disagreement. Each player’s preferences over the outcomes is represented by a

utility function, which is common knowledge in this game. In the following, we

define all functions for a bidder. Recall however that the mapping of a player and

the bidder representing him in each negotiation round is specified by the bidding

orders.

Because of the discount factor δ, an agreement reached in different rounds in-

troduces different utilities to the players. Hence, the utility depends not only on

the action profile but on the round number as well. We define the utility function

ui : An ×N → R, where ui(a, r) represents the utility that bidder i ∈ N would get

in round r ∈ N, if the bidders all chose their actions as specified in a ∈ An. Note

that disagreement only happens at the end of the negotiation deadline γ, when the

action profile a does not satisfy the constraint C, and its utility is normalized to zero.

An agreement may be reached in any round r ≤ γ, when the action profile a sat-

isfies the constraint C. In this situation, the utility that bidder i would get through

action profile a only depends on his own bid xi ∈ a; we define a general valuation

function vi : B → R to express this value. In this work, we assume the valua-

tion function to be a monotonically increasing function of any element xi,k ∈ xi

(1 ≤ k ≤ m). Formally, the utility function is given by:

ui(a, r) =

{

0 if r = γ and not C
δr−1 · vi(xi) if r ≤ γ and C (1)

Note that the range of vi(xi) is R but not R+, which means the value of an allocation

for bidder i can be negative, so the utility of an action profile a for bidder i can be
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negative, if action profile a actually happens. However, because the rational bidders

prefer disagreement to any allocation with a negative utility, that action profile a

cannot really form an outcome of this game and disagreement is the worst outcome

of this game. This makes the model more expressive than the typical problem of a

cake partition. To reach an agreement, in which his opponents accept any allocation

with zero utility at the end of the game, the bidding player still has to leave a min-

imum amount of resources to them but not nothing. This point makes the problem

setting in this work relevant to more scenarios in the real world.

Before we derive the negotiation strategies, we make the following assumptions

about the players and negotiation.

• Unanimity: only a unanimous agreement can be accepted and then be

implemented.

• Rationality: every player will act in order to maximize his own utility.

• Patience: all players are patient enough to stay in the negotiation till the deadline

γ, if no agreement has been reached yet.

• Benevolence: when a player can choose between multiple outcomes which are

indifferent to him but not to his opponents, he will choose the one that is best

for his opponents as far as he knows.

In this work, we assume the negotiation takes place under a complete information

setting. The time constraints, the above assumptions and the preferences of players

are all common knowledge.

3 The Negotiation Strategies

In this section, we investigate the equilibrium strategies of the players of the ne-

gotiation and use the notion of subgame perfect equilibrium [15], which induces

a Nash equilibrium in every subgame (round), to examine the solution formed by

those equilibrium strategies.

3.1 Description of Strategies

We analyze the equilibrium strategies to specify the optimal action of every bidder

i ∈ N in any round r ≤ γ, when it is his turn to bid, given the previous bids

in round r. Bidder i’s optimal action is to maximize the utility that he would get

when the game ends. Bidder i’s equilibrium strategy is computed by considering all

possible actions in A to find the one that has the maximum utility. As specified by the

utility function (1), any bid’s utility for bidder i is determined not only by bidder i’s
valuation but also by whether his opponents accept it. Every bidder’s optimal action

is the one that maximizes his own utility with the consideration of his opponents’

responses. Therefore, all bidders’ optimal actions in a round are best responses to

each other; the action profile forms a Nash equilibrium [12]. When it is bidder i’s
turn to bid, we let hi = (x1, . . . , xi−1) denote the history of previous bids in the

current round and let H denote the set of all possible profiles of bids in the game.

We define the optimal action function si : H ×N → A, where si(hi, r) is bidder i’s
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optimal action in round r, given previous bids hi in round r. We let a∗
i denote the

optimal action of bidder i in the current round r.

We let −i denote the set of all bidders other then i in a round, so a combination

of their actions can be represented by a−i = ×j∈N−i aj . Given an action ai ∈ A,

bidder i reasons his opponents’ responses a−i first, and then calculates the utility of

the action profile a = (ai, a−i) for himself. The utility function (1) only gives the

utilities of an action profile a ∈ An for every player, when a forms either the out-

come of an agreement or disagreement in round γ. However, when action profile

a contains a reject in the current round r < γ and the negotiation passes on to the

next round r + 1, the utilities that the players would get are not specified. We think

the utility of an action profile a for bidder i ∈ N in round r ≤ γ to be equal to the

utility that the player represented by bidder i in round r would get in the next round

r + 1, if action profile a does not form an agreement in the current round r. We

define a function wi : A × H × N → R, where wi(ai, hi, r) represents the utility

that bidder i would get through action ai in round r, given the history hi.

When it is bidder i’s turn to bid in round r ≤ γ, bidder i needs to reason the

utility that he would get in round r + 1. The result will be compared to the utility of

any possible bid for him to determine his optimal action. To calculate the utility of

any bid xi ∈ B, bidder i needs to reason the best response of each of the remaining

bidders j > i in round r to his own bid xi. The best response is bidder j’s optimal

action derived from (i) the previous bids (x1, . . . , xi−1), (ii) bidder i’s possible bid

xi, and (iii) the reasoned optimal action of bidder j′ where i < j′ < j. The reasoning

also requires the information of the utilities that all players would get in the next

round r + 1. Eventually, bidder i in round r does two-dimensional reasoning from

the current round to the last round and from the first bidder to the last bidder in each

round, which is a recursive procedure with a base case that all players will get zero

utilities after round γ, if no agreement has been reached.

3.2 Formal Definition of Strategies

Given the description above, we formally define the optimal function and present

the negotiation strategies. We develop some notations first. As the presentation of

the strategies is concerned with the consecutive rounds, we let r and r + 1 denote

the current round and the next round respectively. We use a letter and the letter with

a tilde to denote a bidder of round r and a bidder of round r + 1 respectively, which

represent the same original player. For instance, bidders i and ı̃ denote the ith and

ı̃th bidders in rounds r and r +1 respectively; they have the same utility function as

they represent the same player.

Formally, given the history of previous bids hi = (x1, . . . , xi−1), the optimal

action function is defined by:

si(hi, r) ∈ argmax
ai∈A

wi(ai, hi, r)
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where

wi(ai, hi, r) =

⎧

⎨

⎩

0 if r > γ
ui(a, r) if r ≤ γ and C

wı̃(a
∗
ı̃ , hı̃, r + 1) otherwise

where

a = (hi, ai, a
∗
i+1, . . . , a

∗
n)

a∗
i+1 = si+1(hi+1, r), hi+1 = (hi, ai)

∀j ∈ {i + 2, . . . , n}
{

a∗
j = sj(hj , r), hj = (hj−1, a

∗
j−1)

}

∀j̃ ∈ N
{

a∗
j̃

= sj̃(hj̃ , r + 1), hj̃ = (hj̃−1, a
∗
j̃−1

)
}

. (2)

In any state of any round r, when it is bidder i’s turn to bid, he uses the above

optimal function to calculate the optimal bid/response, given the previous bids in

the current round r.

We let Sr
i denote the equilibrium strategy of a player when he is represented by

bidder i ∈ N in round r ≤ γ, let Sr denote the equilibrium strategies in round r
where Sr = (Sr

1 , . . . , Sr
n), and let S = (S1, . . . , Sγ) denote the strategy profile of

the players of this game.

Proposition 1. The equilibrium strategy of bidder i ∈ N in round r ≤ γ is Sr
i ,

which is given by Algorithm 1. The strategy profile S = (S1, . . . , Sγ) induces a

subgame perfect equilibrium of the game. If an agreement exists in this game, it will

be reached immediately at the end of round 1.

Algorithm 1. Sr
i (i ∈ N, r ≤ γ)

Input: previous actions hi = (x1, . . . , xi−1)
Output: optimal action a∗

i

a∗

i = si(hi, r)
if a∗

i = xi ∈ B then

bid xi

else

reject hi

end if

Proof. We argue that the strategy profile S forms a subgame perfect equilibrium, so

we need to show that S induces a Nash equilibrium in every subgame (round). We

are going to prove that the optimal action of any bidder i ∈ N in any round r ≤ γ
given by the equilibrium strategy Sr

i is the best response to the optimal actions

of his opponents −i given by the equilibrium strategies Sr
−i. We give a proof by

contradiction.

In any round r, when it is bidder i’s turn to bid, his optimal action is a∗
i =

Sr
i , given the previous bids induced by the equilibrium strategies. We let a∗

−i de-

note action profile induced by the equilibrium strategies Sr
−i, given a∗

i . Suppose
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any other strategy used by bidder i is to choose another action a′
i ∈ A where

ui((a
′
i, a

′
−i), r) > ui((a

∗
i , a

∗
−i), r), when all players other than i adhere to Sr

−i

which induces the action profile a′
−i, given a′

i.

When the profile of optimal actions a∗ = (a∗
i , a

∗
−i) can form an agreement in

round r, the utility ui(a
∗, r) has been maximized in Equation (2) while the utility

uj(a
∗, r) is no less than the utility that bidder j would get in round r + 1 where

j ∈ N . Because all utility functions are monotonically increasing, if the action

profile a′ = (a′
i, a

′
−i) is a profile of bids and increases the utility for bidder i, a′

either violates the constraint C or lets at least one of other bidders get a utility less

than the utility that he would get in round r + 1, if a′ is really implemented. Hence,

the action profile a′ cannot form an agreement in round r. The utility that bidder

i can get by taking action a′
i in round r equals to the utility that he would get in

round r + 1, which is no more than the utility ui(a
∗, r). There is a contradiction.

Because the utility function defined in this work is completely general, it is possible

that no agreement exists in the game. For any action profile, every player gets the

same utility, zero, so there is also a contradiction. Therefore, the optimal action a∗
i is

bidder i’s best action/response to his opponents’ actions induced by the equilibrium

strategies. The equilibrium strategies Sr induces a Nash equilibrium in round r and

the strategy profile S induces Nash equilibrium in every round r ≤ γ, which is a

subgame perfect equilibrium.

When the strategy profile S can form an agreement a in round r ≤ γ, then every

bidder i ∈ N gets a utility ui(a, r), which is no less than the utility that he would

get in the next round r + 1. The action profile a can also be an agreement in round

r+1. Because of the discount factor δ, at least one bidder i in round r has ui(a, r) >
uı̃(a, r + 1) and any other bidder j in round r has uj(a, r) ≥ uj̃(a, r + 1). Under

the assumption of benevolence, an agreement reached earlier is always preferred by

all players. Thus, an agreement will be reached immediately at the end of round 1
and the negotiation stops. ⊓⊔

In the optimal action function (2), it is possible that bidder i ∈ N has multiple bids

that have the same maximum utility, which are indifferent to bidder i but not to bid-

der j > i. There may be an opportunity to increase the outcome utility for bidder j
without decreasing the outcome utility for bidder i. Therefore, under the assumption

of benevolence, if bidder i has multiple bids that have the same maximum utility,

we let bidder i choose the one that is best for bidder i + 1. If bidder i still has more

than one bid that is best for bidder i + 1, we let bidder i choose the one that is best

for bidder i + 2, etc. This selection will last until bidder i has only one optimal bid

left or bidder n has already been considered by bidder i.

Proposition 2. The equilibrium outcome is a Pareto optimal under the assumption

of benevolence.

Proof. We argue that the equilibrium outcome is Pareto optimal, so we need to

prove that no other outcome can increase the outcome utility for any player without

decreasing the outcome utility for any other player, when every player chooses his

optimal action benevolently. We give proof by contradiction.
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When the equilibrium strategies S can reach an agreement a at the end of the

first round. Suppose bidder i ∈ N has another bid x′
i that the action profile a′ =

(x′
i, x′

−i) also forms an agreement in that round where ui(a
′, 1) > ui(a, 1) and

uj(a
′, 1) ≥ uj(a, 1) (j ∈ N − i). Because all utility functions are monotonically

increasing and ui(a, 1) has been maximized in Equation (2) when every player has

already benevolently selected his bid, the bid profile a′ either violates the constraint

C so that a′ is not an agreement or lets at least one bidder j get uj(a
′, 1) < uj(a, 1).

There is a contradiction. Therefore, the equilibrium outcome a is a Pareto optimal.

When no agreement can be reached by using the equilibrium strategies S, every

player gets zero utility. It is impossible to increase the utility of any player without

rejections from other players Therefore, the equilibrium outcome introduced by S
is a Pareto optimal solution of the game. ⊓⊔

Proposition 3. The negotiation mechanism is individually rational.

Proof. Because whether the outcome is an agreement or disagreement, every

player gets a utility no less than zero, which is also the utility for every player if he

does not participate the game, the negotiation mechanism is individually

rational. ⊓⊔

3.3 A Simple Example

In this section, we use a simple example to illustrate the negotiation model and

equilibrium strategies. Suppose three students need to share an office. They all prefer

to have the office only to themselves. They therefore decide to time-share the office,

but they agree to allow the others to leave their stuff (books, etc.) behind in the

cupboard. Each of the students would like to have the office as long as possible. Let

therefore the first issue be the part of the working day a student has on his own.

They also like to get as much space in the cupboard as possible. Let the second

issue thus be the part of the cupboard they are entitled to. The dean overheard them

discussing and said: “you should take turns in making proposals to each other, but if

you haven’t reached an agreement before noon, I’ll give the room to someone else.

Determine the order of the turns by drawing straws.”

Given the above case, we let three players, 1, 2 and 3, denote the students and

let the shares of time and cupboard be the first issue and the second issue re-

spectively. We let xi,k denote the ith player’s proposal for the kth issue and let

xi,k ∈ {0.1, . . . , 0.9} for simplicity reasons where i = 1, 2, 3 and k = 1, 2. We

assume that there are at most three negotiation rounds and the bidding orders are

〈(1, 2, 3), (2, 3, 1), (3, 1, 2), . . .〉. We define the following valuation functions for an

agreement a = (x1, x2, x3) for each of the players:

v1(x1) = 8 × x1,1 + 2 × x1,2 − 1.5

v2(x2) = 5 × x2,1 + 5 × x2,2 − 1.3

v3(x3) = 3 × x3,1 + 7 × x3,2 − 1.4
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These valuation functions are part of the utility function of each player i, as defined

in Equation (1). We set the discount factor to δ = 0.8. The optimal bid of every

player in every round according to the equilibrium strategy is given in Table 1 below.

This table shows that in each round, the three bids form an agreement, and that every

player’s utility is at least as high as his utility in the next round. Unless one or more

players submit bids other than their equilibrium strategies, the negotiation will stop

at the end of the first round.

As a final example, suppose that player 3 bids (0.8, 0.8) in the last round, de-

viating from its equilibrium strategy. In that case, either player 1 or player 2 will

not receive enough of the issues to obtain a positive utility. Therefore, no agreement

will be reached and every player will get zero utility.

Table 1. Example of 3-player 2-issue Negotiation

round 1 x1

i u1

i

i = 1 (0.2, 0.1) 0.3 > 0.24
i = 2 (0.7, 0.2) 3.2 > 2.16
i = 3 (0.1, 0.7) 3.8 > 3.6

round 2 x2

i u2

i

i = 2 (0.7, 0.1) 2.16 > 0.128
i = 3 (0.1, 0.8) 3.6 > 3.584
i = 1 (0.2, 0.1) 0.24 > 0.192

round γ x
γ
i u

γ
i

i = 3 (0.7, 0.7) 3.584 > 0
i = 1 (0.2, 0.1) 0.192 > 0
i = 2 (0.1, 0.2) 0.128 > 0

4 Related Work

In this section, we discuss some work related to multi-player and/or multi-issue

negotiation with complete information. The best known negotiation model is the

alternating-offer bargaining game [14]. Basically, in a two-player game, one player

proposes a partition of a single issue to the other player. The opponent can accept

the proposal, make a counter-proposal, or quit the negotiation. The negotiation con-

tinues until reaching an agreement or a finite deadline. Ståhl identifies the optimal

strategies for rational players with perfect information in such a game with a fi-

nite time horizon [17]. Rubinstein identifies a unique SPE, which is reached im-

mediately, in a perfect information setting with an infinite time horizon [14]. The

Ståhl-Rubinstein model [14], two-player single-issue bargaining, has been extended

into two directions, either the negotiation between more than two players or the

multi-issue negotiation. The model of n-player single-issue negotiation has been

investigated in [2, 9, 16]. One proposer is chosen by a pre-specified order in each
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stage of a multi-stage game; he proposes a partition of one issue for all players

and other players then respond sequentially. If players have time preferences with a

common constant discount factor, there is a unique allocation of a pie amongst three

players, which tends to an equal partition as players become more patient [9]. It is

possible to obtain an equilibrium similar to the unique SPE of the two-player game

by limiting the strategies available to players to history independent strategies [16].

Some other work addresses the multiple players game by modifying the structure of

the game. For instance, players are engaged in a series of bilateral negotiation [8]

and any player that reaches a satisfactory agreement may “exit” the game [4, 11].

Two-player multi-issue negotiation has been studied in two ways. Multiple issues

are negotiated one by one, so the role of a negotiation agenda has been studied by

various work [1, 3, 5, 7, 10]. Alternatively, multiple issues can be treated as one

package. A comparison between the package approach and the sequential approach

is made in [6] and the former shows a better outcome as it introduces the opportunity

of trade-offs.

The model built in this work includes both many players and many issues. We let

each player bid only for himself sequentially; every bid is searched in an inherently

infinite set of bids. The game is multilateral and all issues are negotiated as one

package. Both a common deadline and a common constant discount factor are set;

players are not permitted to exit. A model of many player and multidimensional is-

sue spaces has been studied in [13]. In that work, according to a pre-specified vector

of “access probabilities”, one proposer is selected in each negotiation round. The

solution is a limit of equilibrium outcomes, as the number of negotiation rounds

increases without bound. Their model let n players form multiple admissible coali-

tions. If an admissible coalition has the proposer and his proposal is accepted by all

members in that coalition, the proposal will be imposed to all n players. The model

is more practical, especially in political field. Compared to it, our model is more

general and can be directly used on n equal players.

5 Conclusions and Future Work

In this paper, we have proposed a general multi-player multi-issue multilateral nego-

tiation protocol. Given two time constraints, the deadline and the discount factor, we

proposed equilibrium strategies under a complete information setting. Given these

strategies, an agreement can be reached immediately at the end of the first round, if

it exists, and the solution is a subgame perfect equilibrium. By making trade-offs be-

tween issues, every player’s utility in the equilibrium outcome is maximized and the

solution is Pareto optimal. To our knowledge, this is one of the first papers to study,

from a game theoretic perspective, the case of multi-issue negotiation with multiple

players. This case introduces a new level of complexity to deriving subgame perfect

equilibrium strategies, in comparison to bilateral bargaining. The result of this work

can be widely and directly used to solve allocation problems of resources, tasks, etc.

With the technique developed in this paper, we are currently developing a solution

for the incomplete information cases, in which the optimal actions of players are
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concerned with their beliefs about types of each other. This is a complex problem as

those beliefs will change due to ongoing new bidding information.

Besides the incomplete information case, there are several other interesting direc-

tions for extending this work. It will be interesting to study a model where different

players have different deadlines and discount factors also. If the bidding order of

each round cannot be determined before the negotiation, the equilibrium strategies

will be quite different. Finally, we can try relaxing the constraint of monotonicity

and study the model with more general utility functions.
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Summary. Automated negotiation has become increasingly important and perva-

sive since the advent of e-Business. It frees people from tedious interactions,

improves the efficiency of e-business and ensures the accuracy of complex ser-

vice composition. However, there are limitations of the existing negotiation mod-

els. Firstly, the majority of existing negotiation models are ”price” bargain type of

negotiation. It does not consider the reasons lead to the bargain position. Secondly,

a few interest based negotiation models proposed in recent years are able to con-

sider the underlying reasons of the counter party’s position, therefore, have more

chance to reach an agreement. However, they focus on individual’s alternative solu-

tion seeking. None of these models promote the most productive human negotiation

approach, especially in the global economic context, to constructively cooperate and

seek for possible win-win situations. In an e-business environment, it would be more

powerful if new services could be built on multiple parties’ existing services to form

a cooperative solution. This paper proposes a negotiation model to enable negoti-

ation parties to exchange preferences and knowledge, develop optimal cooperative

solutions for mutual benefits. It is a cooperative-competitive win-win strategy.

1 Introduction

E-business provides businesses with efficiency, cost saving and productivity. In the

e-business environment, service consumers interact with service providers to receive

services. However, in some cases, the service requested by the consumer can not be

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 161–178.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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fulfilled by the producer. The consumers and the producers need to negotiate their

service requirements and offers. In addition, each parties wish to reach their best

interests. Therefore, negotiation widely exists and it is a key activity in e-business.

Negotiation automation is to let software components to negotiate automatically

on behalf of human being. Because of the large number of potential parties and

various types of negotiation issues, automated negotiation becomes essential in the

world of e-business. Meanwhile, automated negotiation has become an increasingly

popular research topic.

Recently, agent technologies have been applied to automated negotiation. Nego-

tiation automation can significantly reduce negotiation time (making large volumes

of transactions possible in small amounts of time) and can also remove some of the

reticence of humans to engage in negotiation (e.g., because of embarrassment or

personality) [1], hence the formalization of negotiation has received a great deal of

attention from the agent Community [2].

Traditionally, people use negotiation as a means of compromise in order to reach

mutual agreement. In general, negotiation is defined as an interactive process which

aims to achieve an agreement for business parties. Self interested agents work for

their own goals and are competitive among each other by nature. In an e-business

environment, it is also desirable for negotiation agents to have an incentive to coop-

erative in order to achieve efficient mutually beneficial win-win solutions. That is to

say, cooperation is regarded as having the same level of importance as competition.

Hence the new term coopetition is created to describe the cooperation-competition

characteristics of business activities.

Most of the existing negotiation automations are ”price” bargaining type of nego-

tiation that focus on fixed bargaining positions, or simple interest based negotiation

that focuses on seeking alternative solutions for individual agents to avoid conflicts.

They are not focused on finding mutual gain solutions which will give negotiation

parties an opportunity to plan on the whole (even if self interested) and make full

use of all parties capabilities and maximize the overall benefit.

This paper proposes a knowledge based model for negotiation automation, and it

tries to find optimal mutually beneficial solutions for the negotiation parties using

shared knowledge of all parties. The rest of the paper is organized as follows: Sec-

tion 2 introduces the negotiation strategies and related works. Section 3 introduces

our cooperative-competitive negotiation model and section 4 proposes the compu-

tational model for negotiation agents. Section 5 provides the algorithms to automate

the key negotiation processes, and Section 6 illustrates the method with a case study.

Section 7 concludes the paper.

2 Negotiation Strategies and Related Works

Negotiation strategies: The traditional negotiation focuses on bargaining positions,

such as price, delivery time and quantity etc. It is termed Position Based Negotia-

tion (PBN). In a PBN, the involved parties are firmly committed to their bargaining

positions. A position tells others what a negotiation party wants, and reflects his/her

point of view on a certain issue. It does not tell others about the complex decision
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making process that lead to the position; nor does it provide others the opportunity

to take his/her interests into account. In position based negotiation, the involved

parties argue only their positions. Their underlying interests may never be explicitly

mentioned. If no agreement on the positions can be reached, the negotiation fails.

An example for setting up an educational game environment is illustrated below

and no agreement was made in this case

A : Could you help me develop an educational game for Primary One math class?

B : Sorry, we don’t have software development services.

A : That is OK. Bye.

Interest Based Negotiation (IBN) [3] focuses on satisfying the underlying reasons

rather than to meet the stated demands. Interests of a negotiation party tell others

why he/she wants something. They reflect his/her underlying concern, needs or de-

sire behind an issue. In interest based negotiation, the interests of participants are

identified and explored, which helps them to understand the others’ perspectives

instead of simply reacting to the positions. By discussing the reasons behind the

positions and thinking of alternatives, mutually acceptable agreement is more likely

to be reached.

In the above scenario, the goal of A is to set up an educational game environment,

so B proposes an alternative solution: buy the game system instead of developing

the game system. There will be an agreement if it is acceptable to A, see example

below.

A : Could you help me develop an educational game for Primary One math class?

B : Sorry, we don’t have software development services.

A : I want to set up an educational game environment.

B : Do you want Math Discovery Educational Game System which is an integration

of hardware, communication software and Math Discovery game software? We

have it in stock.

A : That is perfect.

Related work in agent community: Intelligent agent, as a new type of autonomous

components for constructing open, complex and dynamic systems, is one of the most

suitable software entities to carry out negotiation automation. Agent community

also takes negotiation as a core part of agent interactions. Jennings et al. [2] defined

negotiation as the process by which a group of agents try to come to a mutually

acceptable agreement on some matter.

The research of negotiation automation in software agent community can be cat-

egorized into three main approaches [2]: game theoretic approach [4], heuristic ap-

proach [5] and argumentation-based approach [6][7]. The game theoretic approach

applies game theory techniques to find dominant strategies for each participant.

The heuristic-based approach applies heuristic decision making during the course

of the negotiation. Negotiators are not allowed to exchange additional information

other than the proposal in both approaches. They are mainly used for position based

negotiations.
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The Argumentation-Based approach allows agents to exchange additional infor-

mation. It enables agents to gain a wider understanding of their counterparts, thereby

make it easier to resolve certain conflicts especially for conflicts due to incomplete

knowledge. Argumentation based negotiation is a broad term, it refers to all the ne-

gotiations that exchange additional meta-level information (arguments) during the

negotiation process [2]. This approach provides support for interest based nego-

tiation strategy, as negotiators can exchange their pursuing interest/goals through

argumentation.

There are some recent studies using argumentation based agent approach to re-

alize interest based negotiation strategy. To list a few, Rahwan et al [8] proposed a

framework for intelligent agents to conduct interest based negotiation. They studied

the relationships between agent’s goals and the types of arguments that may influ-

ence other agents’ decisions, as well as defined a set of locutions that can be used

in the negotiation procedure. Pasquier [9] gave a fully computational specification

of negotiation agents using the 3APL agent language, where the agents are able to

propose alternative plan(s) for the underlying goals. Tao et al designed a computa-

tional model and algorithms to fully automate the key components of interest based

negotiation [10]. Based on suitable knowledge models, automated interest based ne-

gotiation is also applied in educational contexts for curriculum negotiation [11][12].

Pasquier et al [13] conducted empirical study on interest based bargaining and re-

framing agents, where the agents can exchange information about their underlying

interests and alternatives to achieve the interests. The simulation demonstrated the

advantages of interest based negotiation.

3 Cooperative-Competitive Negotiation Model

Cooperative-competitive Negotiation (coopetitive negotiation) is a new model of

negotiation we propose in this paper that the negotiation parties can cooperatively

use their knowledge to jointly create a solution acceptable to both parties. They can

share information to have a more globalized view, they can exchange goals to pursue

mutual benefits and share capabilities to develop cooperative solutions. Meanwhile,

self interested agents work on their own benefits. They are competitive among each

other. This model enables negotiators to find optimal solutions among competitive

options. Hence, this is a new model of negotiation and it advanced interest based

negotiation by introducing the cooperative-competitive characteristics. For the same

educational game set up scenario, better solutions could be developed if it is based

on multiple parties’ knowledge and capabilities. As illustrated in the following ex-

ample, a solution could be using the existing hardware and buying software from B

with a total cost $5000, or a more cost effective solution to buy software from C and

B respectively with a total cost $4500.

A : Could you help me develop an educational game for Primary One math class?

B : Sorry, we don’t have software development services.

A : I want to set up an educational game environment.
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B : Do you want Math Discovery Educational Game System for $8000 which is

an integration of hardware, communication software and Math Discovery game

software? We have it in stock.

A : I already have our hardware system.

B : You can use your hardware system and buy communication software ($2000)

and Math Discovery game software ($3000) from here.

A : Ok, the total cost is $5000 and that is good.

Or another party involve in the negotiation:

A : I already have our hardware system.

B : You can use your hardware system and buy communication software ($2000)

and Math Discovery game software ($3000) from here.

C : I sell communication software for $1500. You can use your hardware, buy

communication software from me, and buy Math Discovery game software from

B.

A : Ok, the total cost is $4500 and that is excellent.

This example demonstrated that a good negotiation strategy should exhibit the fol-

lowing capabilities:

- Finding alternative solutions when no agreement on stated positions.

- Exchanging information to form a globalized view.

- Choosing the optimal among competitive solutions.

- Seeking cooperative solutions that aggregate individual’s capabilities.

- Pursuing mutual benefits which form the foundation of long term cooperation.

Unlike the existing interest based negotiation models, the proposed model not only

uses the argumentation based approach to exchange goals or preferences, provides

alternative solutions to avoid conflicts but also introduces cooperative and competi-

tive characteristics.

More specifically, our model distinguishes itself from the existing interest based

negotiation in the following aspects. Firstly, most of the existing interest based ne-

gotiation models focus on individual alternative solution seeking so as to avoid con-

flicts. Our model focuses on multiple party joint solution construction to resolve

the conflicts. It is a cooperative solution. Secondly, the methods in existing inter-

est based negotiations are to find a solution without conflict. Our model is able to

find the optimal solution during the process of searching for nonconflicting solu-

tions. It is a competitive solution. Thirdly, some existing methods have restrictions

that higher level goals (from the same agent or different agents) cannot share sub

goals or resources, so as to remove the potential conflict. They are more suitable

to model agents that work separately and in separate domains. Our model allows

agents to share sub-goals and resources, and enables agents (even if self interested)

to build solutions that satisfy the combined goals from multiple parties. Overall, our

model advances the existing interest based negotiation methods by introducing the

cooperative competitive characteristics.
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4 Cooperative-Competitive Negotiation Agent

4.1 Overview

Agents are autonomous entities that make decision independently and work towards

their goals. Complex goals can be considered as a composition of sub goals. Sub

goals may be further decomposed to next level sub goals. The goals and the sub

goals form a hierarchical structure. The goals and their relationships are the knowl-

edge of agents to interact with the environment and evolve. The knowledge is main-

tained in the knowledge base of agent.

The Coopetitive Negotiation Agent proposed in this paper is a generic model

representing the core parts of cooperative-competitive negotiation. The main com-

ponents are a knowledge base and a negotiation engine.

The knowledge base stores the knowledge about goals. The negotiation engine

manages the negotiation process and generates negotiation solutions automatically.

It has the following main functionalities:

- Generate a Proposal: In the context of e-Business context, for service provider, a

proposal is an offer to consumers for certain services. For service consumer, a

proposal is a request for certain services.

- Accept/Reject a Proposal: Whether to accept or to reject a proposal depends

on many factors, including whether a consumer needs the offer, whether the

provider is able to offer the service and whether the price, time, quality or other

criteria are satisfied.

- Exchange Information: An agent normally has incomplete knowledge. So the de-

cision is made based on limited local information. If agents exchange infor-

mation during the negotiation, it is possible to find more options for solving a

problem. Hence there are more chances to achieve an agreement.

- Develop a Mutual Beneficial Solution: Agents have the ability to make use of

information shared from other agents, find a solution to meet goals of all agents.

- Alter Negotiation Positions: If no agreed deal is reached, an agent may consider

changing to other sub goal(s) while still supporting the same super goal.

4.2 Knowledge Model for Cooperative-Competitive Negotiation Agent

In e-business environment, a negotiation agent should have knowledge about its

goals and how complex goals can be composed from elementary goals where the

elementary goals can be achieved by primary services. The knowledge base of a ne-

gotiation agent is a collection of goals and relationships among goals. It is defined

as a 3-tuple KB = <G, R, C>, where

G = {gi = 1, 2, · · ·n.}
R = {ri : gi0 → gi1, gi2, · · · gik|gi0, gi1, · · · gik ∈ G, i = 1, 2, · · ·m}
C = {c(g)|g ∈ G}
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G is a goal set, R is a relationship set where each relationship ri describes how

a super goal is decomposed to sub goals. gi0 is termed as the head of a relationship,

gi1, gi2, · · · gik are termed as the tail of a relationship.

C is a criteria set which will be discussed later. c(g) is the criteria values relevant

to g, such as price, delivery time, quality of service, payment methods and etc.

According to the super-sub goal relationship, goals of an agent form a goal hier-

archy, which is a network and it is not necessary a tree.

• Atom Goal

A goal g is called an atom goal if there is no decomposition relationship such that

it has g as the head and other goals as the tail. Atom goals are goals that can not be

decomposed to other sub goals. They are corresponding to the primary services in

an agent’s belief.

An atom goal of one agent maybe a composite goal of another agent, because

agents have different belief about the basic services they can operate. For example,

for a real estate agent, obtaining a house is an atom goal. However it is a composite

goal for a builder agent which may contains a sub goal of buying a block of land

and a sub goal of building a house.

• Decomposition

Following some relationship in R, a goal g can be decomposed into sub goals (not

necessarily atom goals). The set of the sub goals are called a decomposition of g. A

goal may have different decompositions.

A goal is achievable if it can be decomposed to a set of atom goals, and the

services corresponding to the atom goals are all available.

For example, in a holiday booking scenario,

G = {g1 =”have holiday booking”,

g2 =”have transport booking”,

g3 =”have accommodation booking”,

g4 =”obtain air ticket from X Airline”,

g5 =”obtain booking of A Hotel”,

g6 =”obtain train ticket from Y railway services” }
R = {r1 : g1 → g2, g3, r2 : g2 → g4, r3 : g3 → g5, r4 : g2 → g6}

Here, {g2, g3}, {g4, g3}, {g4, g5} and {g6, g5} are all decompositions of g1. Goal g1

can be achieved by {g4, g5} or {g6, g5} , i.e. for a holiday booking, one solution is

to take flight of airline X and live in Hotel A. Another solution is to go by train from

Y Railway services and live in Hotel A.

• Criteria of Goals

There are some criteria to describe a goal (service), such as price, delivery time,

quality of service, payment methods and etc. We define the criteria of a goal g as a

vector (v1, v2, · · · , vn) from a domain vector (D1, D2, · · · , Dn).
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c(g) = (v1, v2, · · · , vn) ∈ (D1, D2, · · · , Dn), Di is the domain of vi.

For example, if a goal g is ”Buying a Lenovo Notebook model S10”. c(g)=($900,

2, {cash, credit card}) from domain (R+, I+, {cash, credit card, bank transfer}).

This may mean, the price is $900 from a positive real number domain, the delivery

time is two days from a positive integer domain, and the payment method is either

by cash or by credit card from a set domain contains all possible payment methods.

For a certain service, the values in the criteria allow negotiators to make compar-

ison between competitive solutions and to request an optimal one. Suppose agents

are able to compare the preference among multi-criteria[14]. For example a simple

way could be by using weight to combine all dimensions in the criteria to a single

value then compare this single value.

In the rest of this paper, we consider criteria as a single value and suppose the

smaller value is the better without loss of generality. For composite goals, they have

different decompositions each having different criteria values. c(g) is the smallest

among them or a lower bound of them. The estimated criteria of composite goals

can be used as a heuristic in search algorithms. Choosing a small estimated value

can make sure the goal has more opportunity to be considered. For atom goals, if

it corresponds to an available service, c(g) is the actual service criteria value. If

it is corresponding to an unavailable service according to the agent’s knowledge,

c(g) = +∞.

• AND/OR Graph Representation of Knowledge Base

For easy presentation of our algorithms, we also define the graph representation

of a knowledge base. An AND/OR Graph[15] is a hyper graph. Instead of arcs

connecting pairs of nodes in the graph, there are hyper arcs connecting a parent

node with a set of successor nodes. These hyper arcs are called connectors. Suppose

KB=<GKB, R, C> and its AND/OR Graph representation is Q = (GQ, E, C),
where

GQ = GKB , i.e. nodes in Q are the goals in KB,

E = {(gi0, {gi1, gi2, · · · gik})|gi0 → gi1, gi2, · · · gik ∈ R}, i.e. connectors in Q
are decomposition rules in KB.

Leaf nodes in Q are atom goals in KB.

• Solution Graph and Partial Solution Graph

In an AND/OR graph Q, a node g can be expanded to its successors by following

exactly one connector. Each successor node can be expanded further in the same way

and a graph rooted on g will be generated. The graph is called a Partial Solution

Graph of g. If all the leaves of the partial solution graph are the leaves of Q, the

partial solution graph is a solution graph. Partial solution graph and solution graph

are graph representations of goal decompositions.

In the above holiday booking example, the AND/OR Graph representation of the

knowledge base is shown in Figure 1(a). Two possible solution graphs are shown in

Figure 1(b) and two partial solution graphs are shown in Figure 1(c).
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Fig. 1. Graph representation of the holiday booking KB. (a) Graph representation of the

knowledge base (b) Possible solution graphs (c) Partial solution graphs

Suppose the knowledge base of an agent is maintained periodically so that it has

no loop decomposition and the decompositions are all minimal. The requirement

of non loop decomposition means a goal’s decomposition can not include the goal

itself. Formally, there is no decomposition Z of a goal g such that g ∈ Z . Minimal

decomposition means there is no decompositions Z1 and Z2 of a goal g such that

Z1 ⊂ Z2. i.e. the rules will not produce unnecessary sub goals. For example, if

{g1, g2} and {g1, g2, g3} are two of the decompositions of a goal, then it does not

meet the minimal decomposition requirement because g3 is unnecessary.

Knowledge Base Revision [16] can provide the system with learning capabilities

by adding in new knowledge and removing/revising existing knowledge during the

negotiation process. The details of knowledge base revision will be omitted here.

5 Negotiation Automation

• Goal Decomposition Algorithm

Firstly, we will provide a method to decompose a goal, named g, to atom goals

(which correspond to primary services) using a heuristic search strategy.
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Suppose we have a knowledge base KB which contains relationships about goal

decompositions. For an atom goal, if it corresponds to an available service, c(g) is

the actual service criteria value. If it is not available, c(g) = +∞. Suppose the agent

is able to perform multiple criteria preference analysis [14] and find the solution

with the optimal criteria. For simplicity, we consider the smaller criteria solution as

the better one.

Algorithm Decompose listed below will decompose g to atom goals based on

Nilsson’s AO* algorithm [15]. During the process of creating a search graph and

marking a partial solution graph, the algorithm is gradually approaching to the op-

timal solution by using the criteria of each goal as heuristics. The algorithm starts

from g, selects and marks the connector with the smallest criteria as the temporary

best solution for g. Then continues to decompose the sub-goals of g. Whenever new

information that makes changes to the criteria of a goal is encountered, the algorithm

will propagate the newly discovered information up the goal hierarchy, re-calculate

the criteria and make a new selection among connectors.

Algorithm. Decompose (g)

1. Create a search graph Q, Q = {g}
If g is an atom goal, label g as Solved. cost (g) = c (g)

2. Until g is labeled Solved , or cost (g) = +∞ do

a. // Select node to expand Compute a partial solution graph H in Q by tracing

down marked connectors in Q from g (marks will be discussed later in this

algorithm)

Select any non terminal leaf node n of H

b. // Expand node n by generating its successors

• If n → n1, n2 · · ·nk ∈ R, Add all sub goals of n to Q
• For successors nj not occurring in Q, cost(nj)= c(nj)

• If nj is leaf, label Solved.

c. // Propagate the newly discovered information up the graph

S = {n} // S is a set of nodes that have been labeled

// solved or whose cost have been changed

Until S is empty do

• Remove a node m ( m has no descendants in S) from S
• //Computer the cost of each m’s decomposition

// cost (m) is the minimum cost among all connectors For each connec-

tor m → mi1, mi2, · · · , mik

Costi(m) = cost(mi1) + cost(mi2) + · · · + cost(mik)
Cost(m) = mini(costi(m))

Mark the best path out of m by marking the connector with minimum

cost

• If all nodes connected to m through this new marked connector has

been labeled solved, label m solved

If m solved or cost of m just changed, add all of the ancestors of m to S
3. If g is labeled Solved, return True, else return False

End of Decompose.
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• Proposal Generation

An agent selects its high level goal, named g based on certain reasoning mechanism.

If algorithm Decompose (g) returns True, the partial solution graph H is the current

pursuing solution graph for goal g. Based on H, if a goal can not be realized by

the agent itself, it will be proposed to other agents. A proposal could be an offer

proposal from the provider agent to advise its services, or a request proposal from

the consumer agent to ask for services.

Hence a proposal is a goal g ∈ H. It can be an atom goal for a single service, or

a composite goal for a complex service.

• Cooperative-Competitive Solution Construction

When an agent receives a proposal g, it will evaluate it and then decide whether

to accept or deny it. If no agreement can be reached, the participating agents may

consider exchanging negotiation related information, including information from

KB and pursuing goals.

Upon receiving new knowledge from other agent(s), the agent will carry out a

temporary knowledge base revision by adding the new knowledge to its existing

knowledge base. Whether to incorporate the new knowledge permanently in the

knowledge base will be decided by the agent through other mechanism. The tempo-

rary knowledge base revision can be implemented by algorithm KBRevision listed

below.

Suppose the knowledge base of the agent is KB=<G, R, C>, and the agent will

revise the KB to incorporate new knowledge noted as KB’=< G’,R’,C’>.

Algorithm. KBRevision( )

For each new goal in G’, add into G

For each new relationship in R’, add into R if it doesn’t cause loop decomposition

For each new criteria cnew(n)
If there is no criteria of n exists in KB, add cnew(n) into C

If there is criteria cold(n) exists and cold(n) �= cnew(n),

a. c(n) = min(cold(n), cnew(n)), which makes sure the low criteria so-

lution has the opportunity to be selected

b. propagate the new criteria to upper lever goals (details will be omitted

here as it is similar as what have been done in algorithm Decompose,

step 2.c.)

c. If n is an atom in KB’

Add n → n’ in KB, c(n’)=cnew(n)
If n is an atom in KB
Add n → n” in KB, c(n”)=cold(n)

End of KBRevision.

Based on the newly build temporary knowledge base,

If Decompose (g) =True

Partial solution graph H is the solution to g
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This solution is a cooperative solution because it is constructed on both parties’

available options. It is also a competitive solution because it selected the best cost

solution.

• Mutual Beneficial Solution Construction

If party A has goals g1
A, g2

A, · · · gs
A and party B has goals g1

B, g2
B, · · · gt

B , they want

to seek opportunity to achieve their mutual goals. We can add decomposition knowl-

edge gMutual → g1
A, g2

A, · · · gs
A, g1

B, g2
B, · · · gt

B , into the knowledge base. If Decom-

pose (gMutual) is True, the partial solution graph H is the solution to gMutual.

• Negotiation Position Alternation

If there is no solution for the current proposal g, the participating agents may also

consider other alternative goals that support the same super goal as that g does. This

can be achieved by

f = father of g in the current pursuing solution graph G

make f the new proposal

By doing so, the agent changes the negotiation position from g to f , and work on

other possibilities to achieve f .

• Correctness and Advantages of the Method

If no solution for g, i.e. all decompositions of g contain unavailable services, ac-

cording to the algorithm cost(g) will reach +∞ , so the algorithm returns false.

If there is a solution from g to a set of atom goals, and if for all goal decomposi-

tion relationship n → n1, n2 · · ·nk, c(n) ≤ c(n1)+c(n2) · · ·+c(nk), the algorithm

will terminate and return True. By tracing the marks, graph H is the optimal solu-

tion. cost(g) is the cost of the solution.

Hence, with the restriction that for all composite goal g, the estimated criteria

c(g) is always smaller than the sum of its sub goals, i.e. the estimated criteria is

always smaller than the real criteria, the algorithm can find the optimal solution.

By limiting the estimated criteria of a goal g to be not bigger than the actual

criteria, the actual low criteria solution of g will have the opportunity to be explored.

However, if the estimated criteria are much lower than the actual criteria, this will

direct the algorithm to spend time to explore this seemingly optimal but actually not

optimal branch. Hence a good estimation will reduce the unnecessary search and

find the optimal solution.

The proposed method is flexible in handling negotiation conflicts and has the

following advantages:

- Find alternative solutions or alter pursuing goals when there is no agreement on

initial negotiation positions.

- Find cooperative solutions based on the knowledge of multiple parties.

- Find optimal solutions among competitive options.

- Find mutual beneficial solutions by using a joint goal.
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6 Case Study

6.1 The Conference Management Problem

AB University (ABU) wants to organize a conference. Some conference matters

planned include arranging meeting rooms, printing meeting materials and organiz-

ing a museum visit activity. ABU hopes to reduce the cost so it is going to use its

own meeting room (cost $0), print meeting materials by itself (cost $3000) and ask a

third party to arrange the museum visit (with estimated cost $5000). So the planned

budget is $8000.

XY Event Management Company (XYE) can provide conference management

services for others include rent rooms, print meeting materials and organize a city

tour. It also organizes celebration activities such as birthday parties, weddings.

The negotiation starts when AB University requests museum visit event manage-

ment from XY Event Management.

Position Based Negotiation: In position based negotiation, the negotiation will stop

when XYE replies that it doesn’t provide museum visit event management.

Interest Based Negotiation: Considering interest based negotiation, ABU and XYE

may further discuss why museum visit is needed. After knowing museum visit is

part of the entertainment activity of a conference, XYE is likely to suggest replac-

ing the museum visit by a city tour and propose to provide the whole conference

management service to ABU, with total cost $10000. The cost includes room rental

$3000 from CD Hotel, $4000 for meeting material printing and $3000 for the city

tour. If ABU accepts the proposal, the negotiation may stop here.

6.2 Cooperative-Competitive Negotiation

In real world, ABU and XYE may further seek cooperation to optimize the solution.

For example, with city tour to be arranged by XYE, and conference to be hosted

in ABU’s conference rooms instead of spending the cost to rent rooms from CD

Hotel. Now let’s use our proposed Cooperative-Competitive model to illustrate the

automated negotiation processes.

Suppose the agent A1 of ABU negotiates with the agent A2 of XYE for relevant

services. For simplicity of presentation, we define some symbols to represent the

goals. Suppose

g1 : Organize conference

g2 : Self-organize the conference

g3 : Arrange meeting room

g4 : Print meeting materials

g5 : Arrange museum visit

g6 : Rent room from CD Hotel

g7 : Use AB University meeting room

g8 : Operate business
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g9 : Out source conference management (ABU) / Provide conference manage-

ment for others (XYE)

g10 : Manage celebration activity

g11 : Arrange city tour

g12 : Rent meeting room from EF Centre

Suppose the knowledge base of A1 is KB1 and the knowledge base of A2 is

KB2. For simplicity, we put the (estimated) prices with the goals together.

KB1 = (G1, R1, C1) where

G1 = {g1($8000), g2($8000), g3($0), g4($3000), g5($5000), g6($3000), g7($0)}
R1 = {g1 → g2; g2 → g3, g4, g5; g3 → g6; g3 → g7; }

KB2 = (G2, R2, C2) where

G2={g1($9000), g3($3000), g4($4000), g6($3000), g8($9000), g9($10000),

g10($8000), g11($3000), g12($4000) }
R2 = {g1 → g9; g8 → g9; g8 → g10; g9 → g3, g4, g11; g3 → g6; g3 → g12; }

The current goal of A1 is to ”organize conference”. After calling Decompose

(g1), the solution graph is listed in Figure 2 (the price is listed beside each goal

node). A1 proposes to use its meeting room with no cost (g7), print meeting materi-

als by itself (g4) and request others to arrange the museum visit (g5). The total cost

is about $8000.

Fig. 2. Solution Graph of g1 in A1

There is no service relevant to ”arrange museum visit (g5)”, A2 rejected the pro-

posal. No agreement on the initial proposal, A1 will consider altering the initial

negotiation position. A1 will share its goal ”self organize conference (g2)”. A2 still

has no relevant services. A1 will continue to share its higher level goal ”organize

conference (g1)”.
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With the knowledge that A1 is aiming to organize the conference, A2 knows

that ”organize conference” can be done by not only ”self organize the conference”

(g1 → g2) but also ”out source conference management” (g1 → g9). A2 is able

to ”provide conference management for others” (g9), so it provides an alternative

solution to A1 that A2 will help A1 to organize the conference and replace the

”arrange museum visit (g5)” with ”arrange city tour (g11)”. The solution graph (by

tracing down the marks from g1) is listed in Figure 3. The total cost is $10000.

Because the algorithm only expands the relevant nodes, goals such as g8 and g10 are

not considered here.

With the relevant knowledge shared by A2, A1 could revise its knowledge

base to incorporate the new knowledge KB’=<G’, R’, C’> contained in A2’s

proposal, where G’={g1, g9, g3, g4, g11}, R’={g1 → g9; g9 → g3, g4,

g11;}, C’={c(g4)=$4000, c(g11)=$3000, c(g9)=$10000}. After using algorithm

Fig. 3. Solution Graph of g1 proposed by A2

Fig. 4. The temporary knowledge base of A1
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Fig. 5. Solution Graph of g1 based on shared knowledge

Fig. 6. Three Parties Cooperative Solution Graph of g1

KBRevision to incorporate the new information, the temporary knowledge base of

A1 is as shown in Figure 4.

From the temporary knowledge base, A1 could use Decompose (g1) to build a

solution graph as shown in Figure 5. The total cost is $6000.

If there is a Tourism Company (TC), whose agent A3 shares knowledge about

its service ”arrange city tour (g11)” with the cost of $2000, a more cost effective

solution could be built as shown in Figure 6. The total cost is $5000. The final

solution constructed is a cooperative solution from three parties and with the best

cost among the competitive options.

As it shows, most of the current interest based negotiations focus on individual al-

ternative solution seeking, whereas our model is able to build alternative multiparty

joint solutions and choose the most effective one.
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7 Conclusions and Future Works

This paper proposed a new computational model for negotiation automation:

coopera-tive-competitive negotiation. Cooperative-competitive negotiation allows

involved parties to dig into the higher level goals behind their positions and use

mutual knowledge to construct new solutions, so the solutions are planned based

on knowledge and preference from all parties and they are cooperated mutually

beneficial decisions. The cooperative-competitive negotiation is more powerful and

constructive than position based negotiation or simple alternative solution seeking

kinds of interest based negotiation.

In our subsequent research, we will focus on the design of knowledge models

(such as using Fuzzy Cognitive Map [17], Dynamic Cognitive Networks [18]) that

better represent human negotiation processes.
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Summary. The Shapley value and Banzhaf index are two well known indices for

measuring the power a player has in a voting game. However, the problem of com-

puting these indices is computationally hard. To overcome this problem, we analyze

approximation methods for computing these indices. Although these methods have

polynomial time complexity, finding an approximate Shapley value using them is

easier than finding an approximate Banzhaf index. We also find the absolute error

for the methods and show that this error for the Shapley value is lower than that for

the Banzhaf index.

1 Introduction

Coalition formation is a key form of interaction in multi-agent systems. It is the pro-

cess of joining together two or more agents so as to achieve goals that individuals on

their own cannot, or to achieve them more efficiently [10]. Often, in such situations,

there is more than one possible coalition, and the agents/ players must decide how to

form a coalition and how to split the gains of cooperation between the members of a

coalition. In this context, cooperative game theory offers a number of solution con-

cepts such as core, kernel, and stable solution [10]. A number of multiagent systems

researchers have used and extended these solutions to facilitate automated coalition

formation [16, 17, 14, 13]. A key problem, in the context of multi-agent systems, is

to study the computational aspects of the solutions that game theory provides. For

example, [4] shows that the problem of finding the core is NP-complete. Another

problem with these solutions is that, often there is more than one possible solution.

In order to overcome the problem of multiple solutions, Shapley proposed a so-

lution called the Shapley value [15]. The Shapley value not only provides a unique

solution to coalitional games but also provides a measure of how much influence

or power a player has in determining the outcome of a game. The higher a player’s

T. Ito et al. (Eds.): Innovations in Agent-Based Complex Automated Negotiations, SCI 319, pp. 179–193.
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Shapley value, the more control he has in determining the outcome of a game. Thus

the Shapley value can be viewed as an index for measuring the power of players in

a game. Like Shapley value, the Banzhaf index [2] is another way of measuring a

player’s power. However, a key drawback of both these power indices is that com-

puting them for voting games1 is, in general, #P-complete [5, 12]. In other words,

it is practically infeasible to try to compute the exact Shapley value or Banzhaf in-

dex. Hence, in order to overcome this computational complexity we present a new

randomized method for finding an approximation for these indices.

The time complexity of the proposed approximation methods is polynomial in the

number of players. Now, the quality of an approximation is evaluated in terms of its

error of approximation. To this end, we find the absolute error for the proposed

methods and show that this error for the Shapley value is lower than that for the

Banzhaf index.

Although some approximation methods for the Shapley value have been pro-

posed in the past, to our knowledge, there has been no study of their performance

in terms of the approximation errors (see Section 5 for details). This paper not

only provides new approximation methods, but also analyzes them in terms of their

errors.

The rest of the paper is organised as follows. Section 2 provides the background

to voting games and power indices. In Section 3 we present our approximation meth-

ods. In Section 4 we analyze their absolute error. Section 5 discusses related litera-

ture. Section 6 concludes.

2 Background

A coalitional game 〈N, v〉, consists of:

1. a finite set, N = {1, 2, . . . , n} of players, and

2. a function, v, that associates with every non-empty subset S of N (i.e., a coali-

tion) a real number v(S) the worth of S that corresponds to it.

For each coalition S, v(S) is the total payoff that is available for division among the

members of S.

2.1 Weighted Voting Game

A weighted voting game G = 〈N, v〉 is a game such that [10]:

v(S) =

{

1 if w(S) ≥ q
0 otherwise

for some q ∈ R+ and wi ∈ R+, where:

w(S) =
∑

i∈S

wi

1 Voting games are an important mechanism for agents to reach consensus.
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for any coalition S. Thus wi is the number of votes that player i has and q is the

number of votes needed to win the game (i.e., the quota). This game is denoted as

〈q; w1, . . . , wn〉.

2.2 Weighted k-Majority Game

For the set of n players, a weighted k-majority game (v1∧ . . .∧vk) is a game where

vt = [qt; wt
1, . . . , w

t
n], 1 ≤ t ≤ k are weighted voting games and

(v1 ∧ . . . ∧ vk)(S) =

{

1 if wt(S) ≥ qt for 1 ≤ t ≤ k
0 otherwise

where wt(S) =
∑

i∈S wt
i .

2.3 Power Indices

A power index for a voting game is a way of measuring a player’s voting power.

A player’s power is his ability to turn a losing coalition into a winning one. The

Shapley value and Banzhaf index are examples of power indices. The Banzhaf index,

in turn, has two versions: the absolute Banzhaf index and the normalised Banzhaf

index. For a voting game G = 〈N, v〉, these indices are defined as follows [15, 2].

The marginal contribution of player i to coalition S with i /∈ S is a function Δiv
that is defined as follows:

Δiv(S) = v(S ∪ {i})− v(S) (1)

This means a player’s marginal contribution to a coalition S is the increase in the

value of S as a result of i joining it. A player that makes a higher marginal contribu-

tion, on average, has a higher Shapley value. Specifically, a player’s Shapley value

is defined in terms of its marginal contribution as follows [15]:

Definition 1. The Shapley value (ϕi) of the game 〈N, v〉 for player i is the average

of its marginal contribution to all possible coalitions:

φi =
∑

S⊂N

|S|!(n − |S| − 1)!

n!
× Δiv(S) (2)

Note that for a voting game (〈q; w1, . . . , wn〉), a player’s marginal contribution is

either zero or one. This is because the value of any coalition is either zero or one. A

coalition with value zero is called a “losing coalition” and with value one a “winning

coalition”. If a player’s entry to a coalition changes it from losing to winning, then

the player’s marginal contribution for that coalition is one; otherwise it is zero. A

coalition S is said to be a swing for player i if S is losing but S ∪ {i} is winning.

For player i ∈ N , let ηi denote the number of swings, i.e.,:

ηi =
∑

Ti

1 (3)

where Ti is a losing coalition but Ti ∪ {i} is winning. The two versions of Banzhaf

index are defined by expressing ηi over different denominators.
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Definition 2. For player i, the absolute Banzhaf index (βi) is defined as [2]:

βi = ηi/2n−1 (4)

Definition 3. For player i, the normalized Banzhaf index (λi) is defined as [2]:

λi = ηi/Σn
i=1ηi (5)

Note that the normalized Banzhaf index sums to unity over the players:
∑

λi = 1.

The problem of computing the Shapley value or the Banzhaf index for voting

games is #P-complete [5, 12]. In order to overcome this problem, we present new

approximation methods to find these indices.

3 Approximate Power Indices

The methods we propose are an extension of the one presented in [7]. In more detail,

[7] is an approximation for the Shapley value for weighted voting games. Here we

extend this to find approximates for the Shapley value and the Banzhaf index for

both wieghted voting games and k-majority games. Section 3.1 deals with methods

for weighted voting games and Section 3.2 with those for k-majority games.

3.1 Weighted Voting Game

The intuition behind the method proposed in [7] is as follows. As per Definition 1, in

order to find a player’s Shapley value, we first need to find his marginal contribution

to all possible coalitions. For n players, there are 2n−1 possible coalitions. Finding a

player’s marginal contribution to each of these 2n−1 possible coalitions is computa-

tionally infeasible. So instead of finding the marginal contribution to each possible

coalition, this method finds a player’s expected marginal contribution to random

coalitions of size X where 1 ≤ X ≤ n. This is done by using the approximation

rule R1 which is defined as follows.

Let the players’ weights in N be defined by any probability distribution function.

Irrespective of the actual form of this function, let μ be the mean weight for the set

of players and ν be the variance in the players’ weights. From this set (N ) if we

randomly draw a sample, then the approximate sum of the players’ weights in the

sample is given by the following rule [8]:

R1: If w1, w2, . . . , wX is a random sample of size X drawn from any distribution with

mean µ and variance ν, then the sample sum has an approximate Normal distribution,

N , with mean Xµ and variance ν
X

(the larger the n the better the approximation2).

We know, from Definition 1, that the Shapley value for a player is the expectation

(E) of its marginal contribution to a coalition that is chosen randomly. The above

rule is used to determine the Shapley value as follows.

2 Also, for large X, any measurement done on a sample drawn with replacement is the same

as that for a sample drawn without replacement [8].
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Fig. 1. A normal distribution for the sum of players’ weights in a coalition of size X.

For player i with weight wi, let ϕ̄i denote the approximate Shapley value. Also,

let X denote the size of a random sample drawn from N . The marginal contribution

of player i to this random sample is one if the total weight of the X players in the

sample is greater than or equal to a = q − wi but less than b = q − ǫ (where ǫ is an

inifinitesimally small quantity). Otherwise, its marginal contribution is zero. Thus,

the expected (approximate) marginal contribution of player i (denoted EΔX
i ) to the

sample coalition is the area under the curve defined by N (Xμ, ν
X ) in the interval

[a, b]. This area is shown as the region B in Figure 1 (the dotted line in the figure is

Xμ). Hence i’s approximate marginal contribution to X is:

EΔX
i =

1
√

(2πν/X)

∫ b

a

e−X
(x−Xµ)2

2ν dx. (6)

And, as per Definition 1, i’s approximate Shapley value (denoted ϕ̄i) is the average

of his expected marginal contribution to all possible coalitions:

ϕ̄i =
1

n

n
∑

X=1

EΔX
i (7)

The time complexity of this method is O(n) [7].

We now extend this method to find the Banzhaf index. For a game of n players,

let T denote the number of possible coalitions of X players, i.e., T = C(n, X)
is the number of combinations of X items drawn from a set of n items. Given

this, player i’s total approximate marginal contribution to all coalitions of size X
is C(n, X) × EΔX

i where EΔX
i is as computed in Equation 6. In other words, i’s

approximate number of swings for coalitions of size X is:

η̄X
i = C(n, X) × EΔX

i (8)

Hence, i’s approximate number of swings to coalitions of all possible sizes (1 ≤
X ≤ n) is:

η̄i =

n
∑

X=1

η̄X
i (9)
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As per Equation 4, i’s approximate absolute Banzhaf index (β̄i) is:

β̄i = η̄i/2n−1 (10)

And as per Equation 5, i’s approximate normalised Banzhaf index (λ̄i) is:

λ̄i = η̄i/δ (11)

where δ =
∑n

i=1 η̄i.

The above steps are described in Algorithm 1. In more detail, Step 1 does the

initialization. In Step 2, we vary X between 1 and n and repeatedly do the following.

Step 3 is another initialization. In Step 4, we repeatedly do the followig. We find

player i’s approximate marginal contribution to the random coalition of size X . In

Step 7, we use Equation 6 to find the approximate number of player i’s swings for

coalitions of size X . In Step 8, we do the same for coalitions of all possible sizes.

In Step 10, we find the approximate sum of the swings for all the n players. Finally,

in Step 13 (14), we find i’s approximate absolute (normalized) Banzhaf index.

Theorem 1. The time to compute β̄i is O(n2), and that for λ̄i is O(n3).
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Proof. Since the time to compute X ! is O(X) and the time to compute EΔX
i (as

per Equation 6) is O(1), the time to compute η̄X
i is O(n) (see Equation 8). From

Equation 9 we get the time to compute η̄i as O(n2), and from Equation 10 we get

the time to compute β̄i as O(n2). Note that EΔX
i depends on the weight of player i,

so it is different for different players. However, C(n, X) and X ! are the same for all

the players. Thus, we need to find C(n, X) and X ! just once and reuse these values

to compute the Banzhaf index for all the players. So once we find β̄i for a player i,
the time to find η̄X

j for j �= i is O(1). So the time to find η̄j is O(n). Given this, the

time to find β̄j for all players such that i �= j is O(n2). It follows that δ =
∑

η̄i can

be found in time O(n3) and so can λ̄i.

3.2 k-Majority Voting Game

We now extend the method described in [7] to k-majority games. The intuition be-

hind the proposed method is as follows. As described in Section 2.2, a k-majority

game is defined in terms of k weighted voting games vj (1 ≤ j ≤ k). Given this def-

inition, we first find a player’s approximate marginal contribution to vj (1 ≤ j ≤ k)

using the method in [7]. Then on the basis of these k marginal contributions, we find

an approximate marginal contribution for a k-majority game as follows.

For a random coalition SX of size X , the approximate marginal contribution of

player i to the game v1 ∧ . . . ∧ vk is 1 if the following conditions hold:

1. there is at least one game vj (1 ≤ j ≤ k) for which i is the swing player, and

2. for each game vj , the value of SX ∪ {i} is 1.

We first introduce some notation to formalise the above conditions and then find an

approximate Shapley value. Let SX be a random sample (of size X) drawn from

N . For game vt and player i, let PLt
i(SX) (where SX ⊂ N − {i}) denote the

probability that the coalition SX is losing but SX ∪ {i} is winning (i.e., for game

vt, the probability that the expected marginal contribution of i to SX is 1). Also, for

game vt, let PW t(SX) denote the probability that the coalition SX is winning (i.e.,

the probability that marginal contribution of i to SX is 0). Finally, for game vt, let

μt denote the mean weight of the players, νt the variance in their weights, and qt

the quota. Then, for a k-majority game, i’s expected marginal contribution to SX is:

kEΔX
i =

k
∑

j=1

( j
∏

f=1

PLf
i (SX) ×

k
∏

g=j+1

PW g(SX)

)

(12)

where PLt
i(SX) is the area under the normal distribution N(μt, νt) between the

limits qt − wt
i and qt − ǫ:

PLt
i(SX) =

1
√

(2πνt/X)

∫ qt−ǫ

qt−wt
i

e−X (x−Xµt)2

2νt dx (13)

and PW t(SX) is the area under the normal distribution N(μt, νt) between the lim-

its qt and ∞:
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PW t(SX) =
1

√

(2πνt/X)

(
∫ qt−ww

i −1

0

e−X (x−Xµt)2

2νt dx +

∫ ∞

qt

e−X (x−Xµt)2

2νt dx

)

(14)

Given PLt
i(SX) and PW t(SX), the approximate Shapley value (as per Defini-

tion 1) for player i for a k-majority game is:

ϕ̄k
i =

1

n

n
∑

X=1

kEΔX
i (15)

The above steps are described in Algorithm 2. We now present the time complexity

of this method.

Theorem 2. The time complexity of Algorithm 2 is O(k2n).

Proof. The time to execute the for loop in Step 4 of Algorithm 2 is O(k2). Since

this for loop is within the for loop of Step 2 (which is executed n times), the time

complexity of Algorithm 2 is O(k2n).

We now extend the method described in Algorithm 1 (for Banzhaf index) to k-

majority games. For player i’, let kη̄X
i denote the approximate number of swings

for coalitions of size X . Then from Equation 8, we have the following:

kη̄X
i = C(n, X) × kEΔX

i (16)

where kEΔX
i is as computed in Equation 12. Substituting Equation 12 in Equa-

tion 16 we get kη̄X
i . For player i, let kη̄i be the approximate number of swings

for coalitions of all possible sizes. Also, for player i, let β̄k
i and λ̄k

i denote the ap-

proximate absolute and normalised Banzhaf indices respectively. Then, player i’s
approximate number of swings over coalitions of all possible sizes is:

kη̄i =

n
∑

X=1

kη̄X
i (17)

As per Equation 4, i’s approximate absolute Banzhaf index (β̄k
i ) is:

β̄k
i = kη̄i/2n−1 (18)

And as per Equation 5, i’s approximate normalised Banzhaf index (λ̄k
i ) is:

λ̄k
i = kη̄i/δk (19)

where δk =
∑n

i=1 kη̄i.

The above steps are detailed in Algorithm 3.



An Approximation Method for Power Indices for Voting Games 187

Theorem 3. The time to compute β̄k
i is O(k2n2) and that for λ̄k

i is O(n3k2).

Proof. As per Equation 12, the time to find kEΔX
i is O(k2). Also, as per Equa-

tion 16, the time to find kη̄X
i is O(nk2). From Equation 17, we get the time to find

kη̄i as O(n2k2). From Equation 18, we know that the time find β̄k
i the same as the

time to find kη̄i. Given this, the time to compute δk is n times the time to compute

kη̄i. Hence, from Equation 19, we get the time to compute λ̄k
i as O(n3k2).

Now, the quality of an approximation method is evaluated on the basis of its running

time and also its approximation error. To this end, the following section conducts

error analysis for the proposed methods.
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4 Error Analysis

We first formalize the idea of error and then derive the formula for measuring the

error in the approximate power indices of Section 3. The concept of error relates to

a measurement made of a quantity which has an exact value [18, 3]. Obviously, it

cannot be determined exactly how far off a measurement is from the exact value;

if this could be done, it would be possible to just give the more accurate, corrected

value. Thus, error has to do with uncertainty in measurements that nothing can be

done about. However, although it is not possible to do anything about such an error,

it can be characterized in terms of two essential components [18, 3]:
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1. a numerical value giving the best “estimate” possible of the quantity measured,

and

2. the degree of uncertainty associated with this estimated value.

For example, if the estimate of a quantity is x and the uncertainty is e(x) the quantity

would lie in x ± e(x). For sampling based methods, uncertainty is characterized in

terms of standard error [18] which is analogous to the algorithmic term absolute

error. This error is equal to the absolute difference between the approximate and its

exact counterpart [1]. We first find this error for our approximate Shapley value and

then compare it with the error for our approximate Banzhaf index.

4.1 Absolute Error

Standard error, which we use to measure the absolute error, is defined as follows

[18, 3]:

Definition 4. Standard error is defined as the standard deviation for a set of mea-

surements divided by the square root of the number of measurements.

Given this definition, for a weighted voting game, let e(σX) be the absolute error in

the approximate sum of weights for a random coalition of size X where:

e(σX) =
√

(ν/X)/
√

(X)

=
√

(ν)/X. (20)

Then let e(EΔX
i ) denote the error in the approximate marginal contribution for

player i (given in Equation 6). This error is obtained by propagating the error in

Equation 20 to the error in a player’s expected marginal contribution given in Equa-

tion 6. In Equation 6, a and b are the lower and upper limits for the sum of the

players’ weights for a coalition of size X . Since the error in this sum is e(σX), the

actual values of a and b lie in the intervals a ± e(σX) and b ± e(σX) respectively.

Hence, the error in Equation 6 is either the probability that the sum lies between the

limits a−e(σX) and a (i.e., the area under the curve defined by N (Xμ, ν
X ) between

a − e(σX) and a, which is the shaded region A in Figure 1) or the probability that

the sum of weights lies between the limits b and b + e(σX) (i.e., the area under the

curve defined by N (Xμ, ν
X ) between b and b + e(σX), which is the shaded region

C in Figure 1). More specifically, the error is at most the maximum of these two

probabilities:

e(EΔX
i ) =

1
√

(2πν/X)
× MAX

(
∫ a

a−e(σX )

e−X
(x−Xµ)2

2ν dx,

∫ b+e(σX )

b

e−X (x−Xµ)2

2ν dx

)

(21)

On the basis of the above error, we find the error in the Shapley value by using

the following standard error propagation rules. Let x and y be two random vari-

ables with errors e(x) and e(y) respectively. Then, from [18] we have the following

propagation rules:
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R1 The error in the random variable z = x + y is:

e(z) = e(x) + e(y)

R2 If z = kx where the constant k has no error, then the error in z is:

e(z) = |k|e(x)

R3 The error in the random variable z = x × y is:

e(z) = e(x) + e(y)

4.2 Absolute Error for Weighted Voting Games

Using the above rules, the error in the Shapley value (given in Equation 7) is ob-

tained by propagating the error in Equation 21 to all coalitions between the sizes

X = 1 and X = n. This error (denoted e(ϕ̄i)) is:

e(ϕ̄i) =
1

n

n
∑

X=1

e(EΔX
i ) (22)

Note that we are finding the absolute error for the Shapley value. Here, it is inter-

esting to note that a related concept for characterising the quality of approximation

is performance ratio. Roughly speaking, this is the ratio of an approximate solution

and its exact counterpart [1]. The problem of approximating the Shapley value such

that the approximation ratio is bounded by a constant is intractable unless P=NP [6].

In future, it would be interesting to obtain a similar result for the absolute error as

well.

We now turn to the error in the approximate Banzhaf index. Using the error prop-

agation rules (R1, R2, and R3), we get the error in the η̄X
i (see Equation 8) as:

e(η̄X
i ) = e(EΔX

i ) × C(n, X). (23)

Given Equation 23, the error in η̄i (see Equation 9) is:

e(η̄i) =

n
∑

X=1

e(η̄X
i ) (24)

From Equations 24 and 10, we get the error in β̄i as:

e(β̄i) = e(η̄i)/2n−1 (25)

And, as per Equaton 11, the error in λ̄i is:

e(λ̄i) = e(η̄i) +

n
∑

i=1

e(η̄i) (26)

The above equations lead to the following observation for our methods:

Observation. For a given weighted voting game, we have the following relation-

ship: the approximation error in a player’s normalized Banzhaf index is higher
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than the error in its absolute Banzhaf index and the error in its Shapley value
(

e(λ̄i) > e(ϕ̄i) and e(λ̄i) > e(β̄i)
)

.

4.3 Error for k-Majority Games

On the basis of the results of Section 4.2, we now analyze the error for k-majority

games. Before doing so, we introduce some notation. Let e(σX
t ) be the error in the

approximate sum of weights of SX for game t. Let e(PLt
i(SX)) and e(PW t(SX))

denote the errors in PLt
i(SX) and PW t(SX) respectively. These two errors are

obtained in the same way as we obtained e(EΔX
i ) in Equation 21. Hence we have:

e(PLt
i(SX)) =

1
√

(2πνt/X)
× MAX

(
∫ qt−ǫ+e(σX

t )

qt−ǫ

e−X (x−Xµt)2

2νt dx,

∫ qt−wt
i

qt−wt
i−e(σX

t )

e−X (x−Xµt)2

2νt dx

)

(27)

and

e(PW t(SX)) =
1

√

(2πνt/X)
×

(
∫ qt−wt

i−1−e(σX
t )

qt−wt−1

e−X (x−Xµt)2

2νt dx +

∫ qt

qt−e(σX
t )

e−X (x−Xµt)2

2νt dx

)

. (28)

For k-majority games, let e(kEΔX
i ) denote the error in i’s marginal contribution to

a random coalition of size X , and let e(ϕ̄k
i ) denote the error in i’s Shapley value.

From rule R3, we get:

e(kEΔX
i ) =

k
∑

j=1

( j
∑

f=1

e(PLf
i (SX)) +

k
∑

g=j+1

e(PW g(SX))

)

(29)

So the error in i’s Shapley value is:

e(ϕ̄k
i ) =

1

n

n
∑

X=1

e(kEΔX
i ) (30)

We now analyze the error in Banzhaf index. Combining Equation 29 with Equa-

tion 16, we get the error in kη̄X
i as:

e(kη̄X
i ) = e(kEΔX

i ) × C(n, X) (31)

The error in kη̄i (see Equation 17) is:

e(kη̄i) =

n
∑

X=1

e(kη̄X
i ) (32)
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The error in β̄k
i (see Equation 18) is:

e(β̄k
i ) = e(kη̄i)/2n−1 (33)

The error in λ̄k
i (see Equation 19) is:

e(λ̄k
i ) = e(kη̄i) +

n
∑

i=1

e(kη̄i). (34)

From the above equations, we make the following observation regarding our

methods.

Observation. For a given k-majority game, we have the following relationship: the

approximation error in a player’s normalized Banzhaf index is higher than the error

in its absolute Banzhaf index and the error in its Shapley value
(

e(λ̄k
i ) > e(ϕ̄k

i ) and

e(λ̄k
i ) > e(β̄k

i )
)

.

5 Related Work

A number of approximation methods have been proposed for finding an approximate

Shapley value. These include [9, 11, 19]. The method proposed in [9] is based on

computing an approximate Shapley value by making measurements on random sam-

ples of coalitions. However the method does not specify how the samples need to be

drawn. It is important to know how to draw samples because this is a key factor that

determines the quality of approximation. In contrast, our method is based on the ap-

proximation rule defined in Section 3.1 and does not require making measurements

on random samples. The method proposed in [11] uses a different randomization

method from ours but like our method, it too does not require drawing random sam-

ples. Finally, [19] presented a randomization method for an approximate Shapley

value in the context of task oriented domains. Also, like our method, [11, 19] have

linear time complexity. Hence, in future, we need to compare the approximation

error for these two methods with that for ours.

6 Conclusions and Future Work

The Shapley value and Banzhaf index are two well known indices for measuring a

the power a player has in a voting game. However, the problem of computing these

indices is computationally hard. To overcome this problem, we presented new ap-

proximation methods for computing these indices. Although the proposed methods

have polynomial time complexity, finding an approximate Shapley value using them

is easier than finding an approximate Banzhaf index. We also found the absolute er-

ror for our methods and showed that this error for the Shapley value is lower than

that for the Banzhaf index. In future, we need to find the bounds on these errors.
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