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Foreword

The main purpose of this text is to provide an up-to-date foundation for applying

discrete event simulation and agent-based modeling. It is perhaps true that no other

book covers as many topics of interest for providing real-world decision-support

including:

1. Open source simulation programming including Visual Basic (VB) and Net-

Logo which provide inexpensive options for businesses,

2. Agent-based modeling,

3. Variance-reduction techniques such as Latin-Hypercube sampling,

4. Process improvement opportunity identification using the theory of con-

straints, lean production, and other contemporary methods,

5. Output analysis including selection and ranking and design of experiments,

6. Black box simulation and multi-fidelity optimization,

7. Quasi-Monte Carlo,

8. Subjectivity including the nature of probabilities and empirical distributions,

9. Input analysis including samples sizes and distributions fitting, and

10. Introduction to well-known software packages (ARENA and SIMIO).

As a result, this book is arguably more up-to-date than alternative texts for both

research and practice. Also included are 100+ solved examples or problems.

This material has received good ratings when used in my introductory course in

Integrated Systems Engineering at The Ohio State University. That course was

(effectively) a single semester long and excluded the advanced content in Chaps. 8,

9, and 12 (variation reduction, VB, and agent-based modeling). It is believed that

those chapters make the book relevant to both introductory undergraduate and

graduate classes. While students at Ohio State have taken introductory probability

theory prior to taking simulation, the intent is that prerequisites are not needed.
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Chapter 1

Introduction

Discrete event simulation and agent-based modeling are the subjects of this book.

These types of simulation are merely two of many with others including systems

dynamics, finite element analysis (FEM), and physical, human simulation.

This latter type can involve running actual people through a scenario or game. Yet,

discrete event simulation and agent-based modeling can offer natural approaches

to help people think introspectively about their systems and realize efficiency

gains. An animated version of the system being modeled is often a major outcome

of the modeling activity. These animations can provide the best available way to

engage untrained people in the application of all types of operations research and

systems improvement activities.

This book begins with and focuses on the theory of discrete event simulation

because it is the foundation for agent-based modeling also. It describes software in

the last four chapters. Using standard software such as ARENA, AutoMod,

NetLogo, ExpertFit, GPSS/H, ModSim, SIMIO, or WITNESS, it is possible to

focus on software-specific details and forget the importance of theory. For a

systematic review of related simulation software see Swain (2007). Yet, theory

helps us understand how much data we need to feed into the software to obtain

reliable results and how much and what type of results we need from the software

to make defensible decisions. Without theory, the user risks being incompetent and

generating untrustworthy, misleading results.

Also, as we will describe, real world problems can easily result in simulations

that are too slow to provide all the insights that we need. For some of these

situations, variance-reduction techniques and queuing theory are indispensible.

For example, if we are trying to recommend numbers of machines needed for

hundreds of voting locations, simulation of all of these subsystems and related

optimization can be difficult or impossible. Queuing theory can provide trans-

parent and defensible allocations with easy spreadsheet implementations.

Because discrete event simulation naturally estimates variation in its predictions,

these methods are generally regarded as the starting point for modeling systems
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involving high levels of uncertainty that cannot be ignored or ‘‘averaged over’’ in

the results. We will have more to say about when finesse is possible and simulation

is not technically needed. For example, there is generally uncertainty associated

with systems of interest. Yet, linear programming that ignores these uncertainties

can still be useful. Yet, even in many cases when randomness can be finessed, it can

still be useful to build and display simulation models. The acts of making the model

and inspecting the results have many intangible benefits. For example, the related

activities can force teams to collect, analyze, and agree about data that are critical to

the success of their organizations.

1.1 Domains and Uses

Paying customers for discrete event simulation and agent-based modeling are

generally in several specific ‘‘application domains’’ or industrial sectors. A listing

of these sectors together with typical questions includes:

• Manufacturing (How many machines and workers will we need?),

• Healthcare administration (How many machines and nurses will we need?),

• Call center support services (How many phone lines will we need?),

• Military applications (How many tanks will we need? How might incentives

undermine an insurgency?), and

• Logistics (How many port access points will we need?).

Also, discrete event simulation and agent-based modeling have many uses.

Examples are listed in Table 1.1 from capacity planning to test plan design.

The application of discrete event simulation to gaming and war gaming blurs

the line between computer and human simulations because event simulations

Table 1.1 Possible applications of simulation and hypothetical questions to be addressed

Simulation
applications

Example questions

Capacity planning How many machines will be needed to meet a new order? How many
airplanes will be needed to achieve strategic objectives?

Purchasing decision-
making

How many regular and super-machines should we purchase? And how
much raw material of different types will be consumed?

Project cost
justification

In a six sigma project, if we reduce the defect rate to 2% will the
reductions in inventory and rework cause the project to save money?

Strategic planning What are the long term implications of a decision to use only air power in
an attack plan?

Technology planning If a machine has its processing or service time reduced by 20%, would the
technology be worth the cost?

Training and gaming How can I train my staff inexpensively? (There is really no clear line
between discrete event simulations and gaming models for training)

Test plan design What should the test specifications be to meet the performance
requirements?

2 1 Introduction



support war gaming and training. It has been reported that many areas of the US

government have active discrete event simulation models and related activities. By

one count, the US military has more than five major simulation models at each of

the engagement, mission, and campaign levels.

The examples in the body of this book focus on voting systems. However, the

problems at the end of each chapter and examples accompanying standard

simulation software are designed to help students build the bridge from class

concepts to their own future employment needs.

1.2 Questions about Voting Systems

Probably the main focus of discrete event simulation relates to predicting the

properties of future queues or waiting lines. How long will they be if we use five

machines? What if we use six machines? It is difficult to think of a higher stakes

waiting line system than election systems. For example, in Allen and Bernshteyn

(2006), we estimated that approximately 20,000 or more would-be voters did not

vote because they were deterred by waiting lines in the Columbus, Ohio area

alone. Worse perhaps was the fact that these voters were predominantly African

Americans so that the election line systems were guilty of discrimination.

Fortunately, by the 2008 election, we were able to help county officials put in

place a transparent, simulation-theory-motivated voting machine allocation that

resulted in minimal lines and no alleged discrimination (to our knowledge).

Related voting-systems questions constitute the set of motivating examples

used throughout this book. It is hoped that, by using the same ‘‘newsworthy’’

example throughout, the reader will better understand how the concepts tie

together. These questions are:

Question 1: How much time should one expect to spend (other than waiting) in

voting?

Question 2: How long should voters expect to wait in total, roughly?

Question 3: What data inputs are needed to help officials?

Question 4: Which is better: full-faced machines or page-through machines?

Question 5: How many machines are required at each of 532 locations?

Each question corresponds to one of the chapters of this book. Specifically, the

first question is a case in which simulation is not technically needed. Chapter 2

answers it highlighting the relationship between simulations and estimating

expected values. Chapter 3 focuses on the requirements of an appropriate real-

world data. Chapter 4 addresses the key application of discrete event simulation to

forecasting expected waiting times and the issues associated with obtaining

trustworthy, repeatable estimates. The answers relate to satisfying the conditions

of the central limit theorem.

Next, Chapter 5 focuses on what we need from studying simulation model

outputs to prove that one system option, within the range of validity of the

1.1 Domains and Uses 3

http://dx.doi.org/10.1007/978-0-85729-139-4_2
http://dx.doi.org/10.1007/978-0-85729-139-4_3
http://dx.doi.org/10.1007/978-0-85729-139-4_4
http://dx.doi.org/10.1007/978-0-85729-139-4_5


simulation, is better than other system options. The focus here is on the problem of

making multiple comparisons simultaneously, accounting for errors. Chapter 6

describes the queuing theory needed for answering some types of questions for

which simulation is too cumbersome alone. For example, the fifth question involves

decision-making at 532 locations.

Chapter 7 describes a real election systems simulation project and its possible

relationship with class projects and exercises. It also briefly describes two

management dogmas that may be helpful for generating alternative system designs

to evaluate using simulation. These are the theory of constraints and lean

production based on the Toyota Production System. Chapter 8, results are

presented related to speeding up discrete event simulations, e.g., using so-called

quasi-Monte Carlo and variance-reduction techniques including alternatives to

ordinary pseudo random numbers.

The final three chapters describe software implementations of simulation.

Chapter 9 focuses on custom code written using VB and requiring no licensing

fees. Chapter 10 and Chapter 11 provide and introduction to a commercial package

called ARENA. In Chap. 12, agent-based simulation and its history, the NetLogo

programming language, and the relationship between alternative types of simula-

tion and societal needs are described together with future directions.

1.3 Simulation Phases

Each organization tends to have its own nomenclature and way to conceptualize

the phases of simulation. Here, the focus is on the terminology used by arguably

the world’s leading conference on discrete event simulation, i.e., the Winter

Simulation Conference (WSC, www.wintersim.org). Therefore, we divide the

endeavor of simulation modeling into five phases:

Phase 1: Define (who will do what? how roughly? and by when?),

Phase 2: Input analysis (collecting data and fitting the distributions needed as

modeling inputs),

Phase 3: Simulation or calculation (creating and validating prediction models),

Phase 4: Output analysis (using validated models to compare alternatives and

validate further),

Phase 5: Decision support (making charts, tables, and reports to help foster

desirable choices).

Clearly, the process is often iterative with validation and output analysis

requests coming back from management during Phase 5. Unlike the phases in a six

sigma project, there is generally little discouragement for revisiting past phases

other than the annoyance associated with communicating changing objectives

inside a simulation team. Also, respected organizations such as Honda of America

routinely perform a sixth phase in which they inspect completed projects to verify

the extent to which historical predictions proved accurate.
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Next, we focus on Phase 1 pointing out a few nontrivial aspects that have

proved helpful to consider in past projects.

1.4 Phase 1: Define the System and Team Charter

In this phase, we determine what elements are within the scope of the simulation

activity and out-of-scope. A flow chart or ‘‘workflow’’ is frequently used to show

the sequence of operations. Workflows are often developed using software such as

Microsoft� Visio�, Microsoft PowerPoint�, and/or using conventions systems

such as those dictated by the international standards organization. In addition to

the flow chart, typically a team charter is developed dictating who is responsible

for the data collection of various types, model building, and report writing

associated with the project. Such a charter is a contract between the team and

management and can protect the team to some extent from ‘‘scope creep’’ in which

the team is constantly tasked with more and more work.

As an example, consider the election systems problem of predicting the time

that voters will need to register and vote in the next election. While this task might

sound specific, it needs to be made clearer to become ‘‘actionable’’ by the team

and for detailed data collection to begin. Project budgets are generally small and

there is only so much that one can expect when planning to spend $10,000 or even

$50,000. Hypothetically, imagine that we are offered a budget of only $10,000.

Then, we might document that our goal is to predict the average (or, equivalently

the mean) voting time of the voters in Columbus precinct 1A in the 2010

gubernatorial election. A related workflow is shown in Fig. 1.1.

In general, the define phase offers a chance for the technical team to interact

with management such that resources for data collection can be budgeted taking

into account both costs and timing. The team negotiates system outputs or

‘‘responses’’ (also called ‘‘measurable’’) and (potentially) targets for these outputs.

As a ball park estimate, consider that recruiting 60 representative voters from a

county, bringing them in, and running a mock election on real direct recording

equipment (DRE) voting machines requires approximately $12,000 in direct cost

and an additional $8,000 in coordination, delivery, and supervision costs.

This $20,000 does not include the cost for having analysts develop simulation

Fig. 1.1 A workflow for a hypothetical election systems simulation project
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models, paying simulation software license fees (e.g., ball-parked in at $50,000 per

year for a full license of a powerful professional package), and having analysts

develop final reports and present them.

In our real project with Franklin County, Ohio, the scope and budget were

enlarged to include predictions at all locations and also responsibility for gener-

ating recommended numbers of machines at all locations. Also, we wrote our own

simulation code using Visual Studio� and C++ to keep costs to a minimum and for

computational speed, but our animation capabilities were also limited.

Table 1.2 shows the workflow for a miniature election systems project. As noted

previously, the real project had a scope that included the entire county and

additional responsibilities. Also, it is generally inadvisable to include sample sizes

in planning below 20 data points. We discuss this ‘‘magic’’ number in Chap. 3.

1.5 Problems

1. What is input analysis?

2. What is (according to the chapter) the world’s leading conference related to

discrete event simulation?

3. What is output analysis?

4. What is a project charter?

5. A hospital is wondering about staffing for its third floor medical surgical unit

floor which deals with medical problems suffered by former emergency

department and post surgical patients. The trend is for the unit to treat 20%

more patients of type 1 than in the previous year. Also, patients of type 2 arrive

currently at the same rate as patients of type 2. The key inputs are the number of

nurses (4 is current) and the hourly scheduling (2 work first shift, 2 s shift

currently). Fifty percent of patients are discharged from med/surg. to home and

the others are transferred to other areas of the hospital. Use this information to

develop a work-flow (flow chart) and to clarify the goals and scope for a

possible simulation project.

6. A call center has three main types of calls and 110 operators. Currently only

20% of the operators can handle the third type of call. They are considering

Table 1.2 A hypothetical charter for an election systems simulation project

Project Predicting registration and voting times in a typical 2010 county precinct

Team members John Doe, Li Wang, and Mary Smith

Timing Final report planned for 6 weeks from project kick-off

Direct costs $5,000 to recruit and time nine representative subjects

Responsibilities John has the lead on reporting and Li has lead on the mock election

Primary
objective

Predict the expected or mean voting time (the key response) of a randomly
selected voter from the precinct

Clarifying how this response varies as a function of the number of direct
recording equipment (DRE) machines (the key factor) is of primary interest
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hiring additional skilled operators as well as training additional operators to be

able to handle type three calls. Also, 2% of callers hang up while they are on

hold and operating expenses exceed $10,000,000 per year. What are the factors

and responses of potential interest for a simulation study?

7. You are given a $10,000 budget to gather information to try to make a certain

cafe more profitable (one with long waiting lines). List two key responses and

three possible controllable input variables (things you might change). Also,

define the scope of your project in terms of which variables that you would time

with a stop watch.

8. Write a charter for a hypothetical class project. Make sure to include objectives

expressed in terms of at least two factors and two responses.

9. A manager of a successful call center service for banks is expanding operations

and is trying to determine how many high-skilled and low-skilled associates to

hire. Also, the center might switch to using more sophisticated call routing

software at a license cost of $90 K per year. Highly skilled associates can

handle all types of phone call questions while less-skilled associates can handle

only about half of the types of calls. The center currently employs 75 associates

with 38 being highly skilled. Its expansion comes in response to a new system

at the banks that use their service, which is expected to increase the volume of

mostly easy-to-handle calls by 30%. Assume workers cost $90,000 per year

with benefits and management load. Explain in convincing detail how hiring

you to build simulation models as a consultant would be profitable for the call

center. If it is helpful, value your own time at $100 per hour.
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Chapter 2

Probability Theory and Monte Carlo

In this chapter, the relationship between discrete event simulation and probability

theory in general is described. Aside from creating insight-building animations, we

will argue that discrete event simulation models are essentially calculators for

estimating the ‘‘expected value’’ or ‘‘mean’’ of distributions. Therefore, reminding

ourselves about the definition of the expected value is critical for comprehending

simulation theory and the types of errors that arise in the practice of simulation.

This chapter focuses on the problem of predicting the registration and voting

times in a future election. This problem is simple enough that it can be solved

exactly without simulation. Therefore, it can be used to teach simulation for a case

in which the true answer is known. Simulation estimates expected values with an

error. Therefore, the example permits evaluation of the errors from simulation.

Further, the scope in the example here is the same as that from the previous

chapter summarized by Fig. 1.1 and Table 1.2. By generating predictions for the

expected times in three ways, the reader will also gain an appreciation for the

‘‘leap of faith’’ (LOF) and the associated concerns that are almost inevitably

encountered in attempting to predict future events as well as the specific times at

which the necessity for such leaps are typically encountered during the analysis

process.

2.1 Random Variables and Expected Values

This section provides a review of elementary probability theory. (If the reader can

confidently define expected values for continuous and discrete random variables,

please skip to Sect. 2.2.)

We define a ‘‘random variable’’ (X) as a number whose value is not known at

time of planning by the planner. While the value is unknown, generally the planner

is comfortable with assuming a distribution function to summarize his or her
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beliefs about the random variable. If the random variable is discrete, i.e., it can

assume only a countable number of values, then the distribution function is called

a probability mass function, Pr{X = xi} for i = 1,…,n. For example, X might

represent the number of fingers (not including my thumb) that I am holding up

behind my back. John Doe, a student, might have beliefs corresponding to:

Pr X ¼ 0f g ¼ 0:1;

Pr X ¼ 1f g ¼ 0:2;

Pr X ¼ 2f g ¼ 0:3;

Pr X ¼ 3f g ¼ 0:3; and

Pr X ¼ 4f g ¼ 0:1:

ð2:1Þ

It is perhaps true that no one can tell John Doe that he is wrong in his current

beliefs, although things that John might learn later might change his beliefs and his

distribution. The above distribution has no name other than ‘‘discrete distribution’’

in that it is not Poisson or binomial (two famous discrete distributions).

It is particular to John and his current state of beliefs. Yet, if John Doe declares the

first 4 probabilities and then declares a value for P{X = 4} other than 0.1, we

might reasonably say that John Doe is incompetent in his ability to apply

probability theory.

Next, for discrete random variables, the universally acknowledged definition for

the mean or expected value is given by:

mean � E X½ � �
X

i¼1;...;n

xi Pr X ¼ xif g: ð2:2Þ

For example, if we apply the distribution in Eq. 2.1 above, then the expected

value is:

E X½ � ¼ 0ð Þ 0:1ð Þ þ 1ð Þ 0:2ð Þ þ 2ð Þ 0:3ð Þ þ 3ð Þ 0:3ð Þ þ 4ð Þ 0:1ð Þ ¼ 2:1 fingers:

ð2:3Þ

Philosophically, the expected value is just as subjective as the distribution. It is

not wrong to calculate an expected value and then to changes one’s mind about his

or her distribution. Yet, if one has a change of mind about the distribution in (2.1)

logically (2.3) must be changed accordingly.

Similarly, if a random variable is continuous, it can (hypothetically) take on any

value on at least some section of the real line. Continuous random variables are

characterized by density functions also called ‘‘distribution functions’’ and written

as f(x). Distribution functions assign values proportional to the subjective

likelihood of a random variable, X, achieving a value in the neighborhood of the

value x. Just as appropriate or proper discrete density functions must have their

probabilities sum to 1.0, appropriate continuous function distribution functions

must have their values from -? to ? integrate to 1.0.

As an example, consider that John Doe may state that his beliefs about the

temperature in his home are characterized by the distribution function in Fig. 2.1.
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This distribution function does not resemble any frequently encountered, i.e.,

‘‘famous’’ probability distribution and it is particular to John Doe at the time when

he makes his declaration. It reflects his concern that the heater might break down,

i.e., he believes that there is at least some chance of subzero temperatures.

The definition for the expected value of a random variable X given a continuous

probability density function, f(x), is defined as:

E X½ � ¼

Z

1

�1

xf ðxÞdx ð2:4Þ

A custom distribution as in Fig. 2.1 provides special challenges for estimating the

expected value. This follows because there are only a finite number of cases for

which we have the anti-derivatives to directly calculate the value in Eq. 2.4. There is

no well-known anti-derivative for the function in Fig. 2.1. Custom distributions are

important in discrete event simulation because generally the random variable whose

expected value one is estimating does not resemble any frequently encountered

continuous distribution. It might be thewaiting time of a voter which is influenced by

many factors such as machine breakdowns and the arrival rates of other voters.

A visual scan might yield an expected value of approximately 15�C, which

appears to lie roughly at the center of mass of the distribution. In practice, we often

attempt to find the closest ‘‘famous’’ distribution that roughly fits our beliefs.

Using these famous distributions, we gain access to pre-established formulas

relating the parameters that describe our assumed distributions to the mean and

other properties of these distributions.

In this book, we focus on four well-studied or ‘‘famous’’ continuous distribu-

tions. These are the:

• Uniform (equally likely to be anywhere between a and b) written U[a,b],

• Triangular (must be greater than a, is most likely to be m, and must be less

than b) written TRIA(a,m,b),

• Exponential (could be anywhere in the ball-park of 1/k) written EXPO(1/k), and

• Normal (somewhere within 3r of the assumed mean l) written N[l,r].
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Fig. 2.1 John Doe’s
density function describing
his beliefs on room
temperature
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Note that much of the statistical literature writes the normal distribution as

N[l,r2], where r2 is the distribution variance. We choose to follow the excel

‘‘=NORMDIST()’’ conventions using the standard deviation instead of the mean.

Also, the exponential is typically written in terms of its parameter k and the

reciprocal, 1/k, is the exponential mean or expected value.

We will have much more to say about each of these distribution functions. We

will also describe so-called ‘‘empirical distribution’’ functions mainly for cases in

which one has a large amount of data. In these cases, it might be assumed that the

future data will be like the past data and not be limited by the shape of any famous

distribution function. Obviously, predictions about important future events involve

some degree of uncertainty. The distortion of approximating our true beliefs by

one of the famous functions generally decreases the trust in our prediction process.

2.2 Confidence Intervals

Next, we review the standard approach to derive the confidence interval for the

mean of a random variable based on data. Because these details are unusually

important in the context of this book, even a reader with a good knowledge of

elementary statistics, may want to read this section carefully.

In our notation, the data is written X1, X2, …, Xn where n is the number of data

points. This approach creates an interval having a reasonably high and regulated

probability of containing the true mean under specific assumptions given by the

parameter a (‘‘alpha’’). The ability to create appropriate confidence intervals is

considered essential to much of the simulation theory described in this book.

2.2.1 Confidence Interval Construction Method

Step 1. Calculate the sample mean (Xbar) using:

Xbar ¼ 1=nð Þ
X

i¼1;...;n

Xi ð2:5Þ

Step 2. Calculate the sample standard deviation (s) using:

s ¼
X

i¼1;...;n

Xi � Xbarð Þ2
" #

= n� 1ð Þ

( )1=2

: ð2:6Þ

where {}� means take the square root of the quantity inside {}.

Step 3. Calculate the half width of the confidence interval using:

Half width ¼ ta=2;n�1s= n1=2
� �

ð2:7Þ
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and declare that the interval equals Xbar ± half width where typically

a = 0.05 and the value of ta/2,n-1 is found by consulting Table 2.1. In

applying the formula in (2.7), with an overall value of a = 0.05 and

n data, we would look for the values with 0.025 and df = n - 1.

Step 4. (Optional). Check that that it is reasonable to assume that the individual

data derive independent, identically distributed (IID) from a (single)

normal distribution. If not, then do not trust the interval. Batching

described in Chap. 4 might provide a useful way to derive trustworthy

intervals for some cases.

Note that the symbol ‘‘df’’ stands for degrees of freedom, which has a geometric

interpretation in the context of various statistical methods such as analysis of

variance. It is merely an index to help us pick the right value from the table here.

Also, Step 4 is often not included in descriptions of confidence intervals but we

will argue that this test is practically important in the context of output analysis in

Chap. 5. Also, the details of the IID normally distributed conditions will be dis-

cussed at length in Chap. 4. In addition, Step 4 provides some motivation for the

distribution fitting based methods described later in this section. This pertains to

the voting systems example considered next.

Returning to our election systems example, imagine that the input analysis

phase has progressed yielding the data in Table 2.2. These would hypothetically

come from n = 9 registered voters from time trials with a stop watch in a mock

election. Such a mock election would use ballots similar in length to what is our

best projection for ballots in the 2010 gubernatorial election.

In Chap. 1, an example provided the team charter associated with this pre-

diction problem (Table 1.2). In the context of this project, we are now in a position

to complete phases 2, 3, and 4 simultaneously. We can derive a defensible pre-

diction for the expected or mean sum of registration and voting times. With such a

prediction, we can skip forward to Phase 5 (Decision Support).

If we use X1 = 7.4,…, X9 = 5.4 and apply the confidence interval construction

method, we will have our prediction. This is based on the assumption that the

Table 2.1 Critical values of
the t distribution (ta,df)

df a

0.01 0.025 0.05 0.1

1 31.82 12.71 6.31 3.08

2 6.96 4.30 2.92 1.89

3 4.54 3.18 2.35 1.64

4 3.75 2.78 2.13 1.53

5 3.36 2.57 2.02 1.48

6 3.14 2.45 1.94 1.44

7 3 2.36 1.89 1.41

8 2.9 2.31 1.86 1.4

9 2.82 2.26 1.83 1.38

10 2.76 2.23 1.81 1.37

20 2.53 2.09 1.72 1.33
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future election will be similar to our mock election. Also, being good analysts, we

will have error bars on our estimate. We will derive these from the confidence

interval construction method applying the derived half widths.

Step 1. We calculate the sample mean (Xbar) using:

Xbar ¼ 1=nð Þ
X

i¼1;...;n

Xi ¼ 1=9ð Þ 7:4þ 6:6þ � � � þ 5:4½ �

¼ 8:68min:

ð2:8Þ

Step 2. We calculate the sample standard deviation (s) using:

s ¼
X

i¼1;...;n

Xi � Xbarð Þ2
" #

= n� 1ð Þ

( )1=2

¼ 7:4� 8:68ð Þ2þ � � � þ 5:4� 8:68ð Þ2=8
n o1=2

¼ 3:58 min:

ð2:9Þ

Step 3. We calculate the half width of the confidence interval using:

Half width ¼ ta=2;n�1s= n1=2
� �

¼ 2:31ð Þ 3:58ð Þ= 91=2
� �

¼ 2:75min:
ð2:10Þ

The interval is 8.68 ± 2.75 min or (5.92 min to 11.43 min).

Step 4. Figure 2.2 shows a histogram of the nine summed times. More precise

methods to evaluate distributions quantitatively is described in Chap. 3.

Such distribution testing is generally only trustworthy with 20 or more data

points. Yet, here we merely say that the normal distribution is probably not

a great fit. The observation of a second hump suggests that the true

distribution might not be governed by a single bell shape. Strictly speaking,

we know that the famous normal distribution is rarely (if ever) a perfect fit

for a real process. However, in this case the fit is ‘‘extra’’ unreasonable.

Next, we describe two methods for generating predictions that do not depend on

the assumption that the individual data are approximately normally distributed. Yet,

Table 2.2 Registration and
direct recording equipment
(DRE) times in election
systems example

Person Registration
time(min)

Voting using DRE
machine time (min)

Total (min)

Fred 0.2 7.2 7.4

Aysha 2.1 4.5 6.6

Juan 0.4 8.1 8.5

Mary 0.8 9.2 10

Henry 1.1 4.2 5.3

Larry 0.3 12.3 12.6

Bill 0.8 15.1 15.9

Jane 0.2 6.2 6.4

Catalina 0.6 4.8 5.4
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both of the methods that follow are associated with other strong assumptions that

might give us concern. Despite the problem with normality, generating a confidence

interval as shown in the above example is likely a defensible way to answer the

problem stated. This explains why we say that simulation is probably not needed.

2.3 Expected Value Formula and Leaps of Faith

The method described in this section involves fitting famous distributions to the

registration and voting times. The expected values are then calculated using the

formulas associated with the famous distribution. Pencil and paper mathematics

then permits the derivation of the forecast for the future expected registration time

plus voting time.

The details of distribution fitting methods are the focus of Chap. 3. Here, let us

assume that some software magically works through our data sets and fits trian-

gular distributions to registration and voting times separately. Figure 2.3 shows the

output from one such magical software package the Rockwell� Input Analyzer�

which comes as a standalone in the same folder as the ARENA software. To

develop this output using the Input Analyzer� one:

1. Opens the software and a new project using the File menu,

2. Puts the data in *.txt files perhaps using the NotePad built into Microsoft�

operating systems, e.g., 0.2, 2.1,…,0.6 with each number in its own row and no

commas or other separators,

3. Goes to File ? Data File ? Use Existing…, changes the ‘‘Files of type:’’

option to *.txt and selects the data file generated in the previous step, and

4. Selects ‘‘Triangular’’ from the ‘‘Fit’’ menu.

Ignoring the precise details temporarily, we now have a fit distribution. In our

predictions of the future, let us entertain the assumption that registration times (in

minutes) will come from a TRIA(0, 0.229, 2.29) distribution. Under this

assumption, all times will be greater than 0 min (which makes sense), will have

the most likely value of 0.229 min (we could live with that), and will be less than

2.29 min (an assumption that is somewhat limiting but may be acceptable).
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Fig. 2.2 Histogram for the
registration plus voting time
data showing two peaks
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At this point let us take our leap of faith. From now on, we will play down the

details of our nine real data points and simply assume TRIA(0, 0.229, 2.29)

describes our beliefs. A similar process leads us to TRIA(4.0, 5.2, 16.0) min

assumptions about future voting times, i.e., times voters need to use the direct

recording equipment (DRE) machines once they are given access to their

machines.

Having made our leap of faith, we are done with input analysis. We are ready

for the calculation phase (Phase 3). In this phase, we are ready to gain one of the

Fig. 2.3 Output from applying the Input Analyzer to the registration set
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benefits of applying the famous triangular distribution. This benefit is that for

parameters a, m, and b, the general formula for the mean of a triangularly

distributed random variable is given by:

E X½ � ¼ aþ mþ bð Þ=3 ð2:11Þ

We can also access the following general rule applicable to all pairs of random

variables X1 and X2:

E X1 þ X2½ � ¼ E X1½ � þ E X2½ � ð2:12Þ

This rule is general because it follows directly from the definitions of expected

values in Eqs. 2.2 and 2.4.

In our example, we have X1 is TRIA(0.0, 0.229, 2.29) and X2 is TRIA(4, 5.2,

16). Again, when we made these assumptions, we can say that we made our ‘‘leap

of faith’’ and ‘‘entered simulation land’’ where our input analysis data are irrele-

vant. Plugging the numbers into Eqs. 2.11 and 2.12, we see that our assumptions

implied a predicted expected sum of registration and voting times is:

E X1 þ X2½ � ¼ 0:0þ 0:229þ 2:29ð Þ=3þ 4:0þ 5:2þ 16:0ð Þ=3

¼ 9:239666667� 0:000000min
ð2:13Þ

Clearly, Eq. 2.13 is misleading. We know results are not infinitely trustworthy.

However, we are in ‘‘assumption land’’ and our choice to entertain X1 is TRIA(0.0,

0.229, 2.29) min and X2 is TRIA(4.0, 5.2, 16) min has effectively caused these

uncertainties to be ignored or irrelevant.

At least, our answer is not dependent on the data coming approximately from a

single normal distribution. Also, next we will show how simulation in the same

example adds a new type of ‘‘Monte Carlo simulation error’’ that makes the

calculation in (2.13) look good in comparison. Generally, when one can apply

calculus or probability theory to directly calculate an expected value, one should

do it. Discrete event simulation merely estimates expected values with an error.

2.4 Discrete Event Simulation

This section introduces two key technologies. These are: (1) linear congruential

generators (LCGs) and (2) inverse cumulative distribution functions. Together,

these form the nontrivial components of by-hand discrete event simulations and

permit simulation using spread sheets.

In the context of our election systems example, the application of these

technologies turns out to derive a less desirable prediction for the expected times

than those developed previously. However, the discrete event simulation methods

introduced here have advantages in more complicated situations for which the

previous methods (simple confidence intervals based on data and using calculus to

derive expected values) are not applicable. So, for convenience, we introduction
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simulation technology in the context of an example for which we know the answer

can be derived more accurately from probability theory or calculus.

A linear congruential generator (LCG) is a reasonably simple way to generate

numbers that are ‘‘pseudo random’’ and associated with a uniform a = 0 and

b = 1, i.e., U[0,1] distribution. We say that numbers are ‘‘pseudo random’’

because:

• They are not random in that we have a way to predict them accurately at time of

planning and

• They closely resemble truly random numbers from the distribution in question.

There are pseudo random numbers of various levels of quality. Simulation

trainers know that pseudo random numbers from LCGs are generally low in

quality. This is because statistical tests can fairly easy show that they do not

closely resemble actual U[0,1] random numbers. Yet, we use LCGs for instruction

purposes because they illustrate the key concepts associated with pseudo random

numbers.

The following method defines linear congruential generators (LCGs) in terms of

three parameters: a*, c*, and m*. It is just a coincidence that we typically use a, c,

and m when working with triangularly distributed numbers. This explains why we

use the symbol ‘‘*’’ to clarify the difference.

2.4.1 Linear Congruential Generators

Step 1. Start with a seed, e.g., Z0 = 19, and i = 0.

Step 2. i ? i ? 1;

Zi ¼ modulo a�ð Þ Zi�1ð Þ þ c�;m�½ �;

Ui ¼ Zi= m�ð Þ; and
ð2:14Þ

where modulo is the standard function giving the remainder of

[(a*)(Zi–1) ? c* when divided by m*.

Step 3. Got enough? Yes, stop. No, go to Step 2.

In our example, we use a* = 22, c* = 4, and m* = 63. Yet, the above method

defines an LCG for many combinations satisfying a*, c*, and m*[ 3. The quality

of the random numbers depends greatly on the specific choice with generally larger

numbers spawning increasingly uniform seeming sequences of pseudo random Ui.

The seed can also be important.

For example, Table 2.3 shows a sequence of 10 pseudo random uniformly

distributed random numbers from an LCG. For completeness sake, the standard

definition of a uniformly distributed random number from a = 0 and b = 1, i.e.,

U[0,1], is given by f(x) = 1.0 for 0.0 B x B 1.0 and f(x) = 0 otherwise. Given

this definition, does it seem reasonable to say that the numbers Ui for i = 1,…,10

in Table 2.3 resemble random numbers from a U[0,1] distribution?
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The answer depends on how accurate we are trying to be. Yes, they seem to

superficially resemble uniformly distributed random numbers. However, contin-

uing the sequence we observe cycling every 63 numbers. Consider that, in typical

real problems, one uses 1 billion or more pseudo random U[0,1] numbers.

Therefore, our LCG is not up to the task. We observe one type of departure from

uniformity (cycling) after only 63 numbers. This occurs long before we get to the

billion numbers that we need.

Industrial strength pseudo random U[0,1] number generators like ‘‘=RAND()’’

function in excel are far more complicated than LCGs. Yet, like LCGs they

generate pseudo random numbers. Also, they have seeds, e.g., 19 in Table 2.3.

For the same seed, their sequence or ‘‘stream’’ is the same. The ‘‘=RAND()’’

function does not permit us to access the seed and it changes every time an Excel

sheet field changes. However, if the ‘‘AnalysisToolPak’’ is added into excel,

one can access the ‘‘Tools’’ ? ‘‘Random Number Generator’’ feature. In more

recent versions of excel, these options are available under Data ? Data

Analysis ? Random Number Generation. Using whichever is appropriate to your

version, one can generate streams of high quality pseudo random numbers of

several types with adjustable seeds.

2.4.2 Inverse Cumulative Distribution Functions

Once we have pseudo random U[0,1] random numbers, it is generally of interest to

convert them to pseudo random numbers of distributions of greater interest to us.

For example, we might want pseudo random TRIA(0.0, 0.229, 2.29) numbers to

generate plausible registration times for our simulated election. There are

generally many approaches for converting a stream of pseudo random U[0,1] into

numbers of the type that we desire. However, if we merely want a sequence of

uncorrelated random numbers from a distribution of interest, a common

and efficient approach is based on so-called inverse cumulative distribution

functions, F-1(x).

Table 2.3 10 pseudo random
U[0,1] numbers from a linear
congruency generator

i Zi Ui

0 19 –

1 44 0.698413

2 27 0.428571

3 31 0.492063

4 56 0.888889

5 39 0.619048

6 43 0.682540

7 5 0.079365

8 51 0.809524

9 55 0.873016

10 17 0.269841
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Consider that the inverse cumulative distribution function for triangularly

distributed random numbers is:

F�1 uja;m; bð Þ ¼ aþ u m� að Þ b� að Þ½ �1=2 for u� m� að Þ= b� að Þ

or b� 1� uð Þ b� mð Þ b� að Þ½ �1=2 otherwise
ð2:15Þ

where []� means take the square root of the quantity in the brackets. Neglect

temporarily how one derives this function. The key fact is that, once we have

F-1(x), we simply plug in our pseudo random U[0,1] number as u and we derive a

pseudo random number according to the distribution of interest.

For example, if we plug in u = 0.698413 and a = 0.0, m = 0.229, and

b = 2.29 (in min), then Eq. 2.15 gives F-1
= 1.07 min. It can be checked that

u B (m - a)/(b - a) so that we apply b - [(1 - u)(b - m)(b - a)]� in this

example. This is our first pseudo random number according to the TRIA(0.0,

0.229, 2.29) distribution. It is not entirely trustworthy because it derives from an

LCG, but it might seem plausible as a hypothetical registration time.

To better understand how inverse cumulative distribution functions work,

consider the uniform distribution function, f(x), its cumulative F(x), and its

cumulative inverse distribution function, F-1(x):

f xð Þ ¼ 1:0 for a� x� b or 0:0 otherwise; ð2:16Þ

F xð Þ ¼

Z

1

�1

f ðzÞdz ¼ 0:0 for x� a; ð2:17Þ

x� að Þ= b� að Þ for a� x� b; and

1:0 for x	 b; and

F�1 uð Þ ¼ aþ b� að Þ uð Þ:

ð2:18Þ

First, note that the inverse cumulative distribution function F-1(u) in Eq. 2.18

intuitively serves our purpose. If we plug in a number between 0.0 and 1.0, u, the

result obtained lies between a and b. If u is closer to 0.0, then the result will be

closer to a. If it is closer to 1.0, then the result will be closer to b. That is

reasonable and desirable.

Also, consider how one can derive Eq. 2.18 from Eq. 2.17. Substitute

u = F(x) and solve for x. The result should give the right hand side in Eq. 2.18 for

the relevant cases in which u is between 0.0 and 1.0. Finally, consider the plot of

the cumulative distribution function, F(x), as shown in Fig. 2.4. The starting

numbers are equally likely to be between 0.0 and 1.0. Figure 2.4 shows a hypo-

thetical value of 0.3000. Reading over and reading down gives a pseudo random

number 0.3 fraction of the way from a to b.

The relationship between the inverse cumulative and generating pseudo random

numbers is perhaps made clearer if we consider the custom distribution that John

Doe hypothesizes or believes about the room temperature. Figure 2.5 shows how
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the slope of the cumulative is proportional to distribution function. John expects

that the temperature will most likely be around 20�C but has a not insubstantial

chance of being around -2�C. If one starts with a uniform pseudo random u on the

vertical axis, one can see that it is almost certain that the result of reading over and

down will either be around either -2� or 20�. Other values have very little chance

(or ‘‘cross-section’’) to occur.

Other approaches for generating pseudo random numbers from specific

distributions include the ‘‘acceptance-rejection method’’ which is useful even

when F-1 is not available. In this method, variables are generated from one

distribution, g(x) from which it is easy to sample. Then, the numbers are condi-

tionally eliminated based on a condition. Often, this condition relates to the ratio of

probability density functions f(x)/g(x).

2.4.3 Discrete Event Simulation

Now, we can generate pseudo random U[0,1] numbers using an LCG. We can also

convert these numbers to pseudo random numbers from other distributions for

which we have inverse cumulative distribution functions, F-1(u). We are ready to

put the results together and generate discrete event simulations. Therefore, we will

0.0

1.0

ba

u

x

F(x)

Fig. 2.4 Plugging in pseudo
random (PR) U[0,1] u’s
generates PR U[a, b] x’s

0.0

1.0

-10 0 10 20 30

F(x)

Temperature x (in degrees Celsius)

Fig. 2.5 Cumulative
distribution function for
custom temperature
distribution

2.4 Discrete Event Simulation 21



simulate all of the random numbers needed to complete one full event or replicate

(sometimes call ‘‘replication’’) of interest.

The outputs from our simulations will be, in general, pseudo random numbers

according to custom distributions whose mean values we are trying to estimate.

We call these ‘‘discrete event’’ simulations because the quantities being simulated

generally relate to occurrences happening at specific, identifiable times, i.e.,

events.

For example, consider a simulation of voters registering and voting. The scope

of this simulation was defined previously in the define phase (Phase 1) to include

only these two activities. In this fairly trivial scope, events associated with other

voters and their interactions are irrelevant. A full replicate corresponds to the

experience of a single simulated voter. The response of interest is the time elapsed

between the event when a voter starts registration and the event when that voter

completes voting using the voting machine. Here, one is trying to predict or

estimate the expected value or mean of this elapsed time.

Table 2.4 shows five replications of discrete event simulation for the voter

registration and voting prediction project. On the left-hand-side is the stream of

pseudo random numbers from the LCG. Next, each number is transformed to a

pseudo random time using the appropriate cumulative inverse distribution

function, F-1(x). For this purpose Eq. 2.15 is applied. If the time is a registration

time, then a = 0.0, m = 0.229, and c = 2.29 is used. If the time needed is a voting

time, then a = 4, m = 5.2, and c = 16 is used. The resulting pseudo random

number is not from any famous distribution. It is from the sum of two triangular

distributions. This sum distribution has no special name.

Yet, it can be shown that the resulting stream of numbers, 8.491, …, 7.788 are

pseudo random independent identically distributed (IID) with an unknown true

mean value equal to 9.239666667. This is the same number we derived previously

using the exact formulas for the expected value. Since they are IID (more about

this is discussed in Chap. 4) and from a distribution that is somewhat like a normal

distribution, it is reasonable and appropriate to apply the confidence interval

Table 2.4 Discrete event
simulation of 5 simulated
voters registering and voting

I Zi Ui Simulated
voter or
replicate

Registration Voting Simulated
time

0 19 – – – –

1 44 0.698413 1 1.097 – –

2 27 0.428571 1 – 7.394 8.491

3 31 0.492063 2 0.742 – –

4 56 0.888889 2 12.205 12.947

5 39 0.619048 3 0.949 –

6 43 0.682540 3 9.586 10.535

7 5 0.079365 4 0.204 –

8 51 0.809524 4 11.032 11.236

9 55 0.873016 5 1.516 – –

10 17 0.269841 5 – 6.272 7.788
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construction method from Sect. 2.2 to generate a range describing the mean.

Remember, we are pretending that we do not know the mean equals

9.239666667 min and merely estimating it using our simulation results.

Discrete event simulation is one type of a more general form of statistical

simulation called ‘‘Monte Carlo’’ simulation. The exact relationship is not

important here. The name ‘‘Monte Carlo’’ derives from the city located near the

south of France where gambling has historically occurred. Statistical simulation

theory was often motivated by applications relating to gambling including

gambling in Monte Carlo.

Our general formula for Monte Carlo estimates for expected values is:

Monte Carlo estimated expected value � Xbar � the sample average ð2:19Þ

with Monte Carlo errors estimated using the half width from our confidence

interval. In our example, the sample average equal Xbar equals 10.2 min with

sample standard deviation (s) equal to 2.1 min. The half width is 1.9 min from

Eq. 2.7. Therefore, the Monte Carlo simulation estimate can be quoted as

10.2 min ± 1.9 min.

Note that the error for Monte Carlo estimates in Eq. 2.19 declines according to

the number of simulation replicates, n, that we choose to do. The exact propor-

tionality is given by our confidence interval half width Eq. 2.7 as 1/n� or the

reciprocal of the square root. This means that the simulation error is directly

attributable to our failure to simulate additional replicates. If we run more repli-

cates, we reduce the error. Yet, in some cases of interest, replication times can

consume more than 1 h. In those instances, we will generally need to live with

large half widths. This is not true, however, for our spread sheet simulations such

as the one in Table 2.4. In this case, it takes virtually no time to copy formulas

down and perform 10,000 replicates. Yet, in this case, we are limited by the poor

quality of our LCG.

2.5 Monte Carlo Errors

The difference between our Monte Carlo estimate, Xbar, and the true mean, which

we might denote E[X], is an error. We define the Monte Carlo error as simply:

Monte Carlo error � E X½ � � Xbar: ð2:20Þ

From our discussion of confidence intervals, we know that we can drive this

error to near zero by performing sufficient replicates. Consider that, in general,

simulation is performed using pre-made software with easily adjustable num-

bers of replicates. Therefore, the only excuse for not driving the Monte Carlo

errors to near zero is a function of the time each replicate requires from the

computer processors and the patience of the human analysts who are awaiting

the results.
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The Monte Carlo error is in addition to any error we might imagine stemming

from an imperfect input analysis phase. In our example, we know we only had nine

data points. As a result, our results cannot be particularly trustworthy. Our leap of

faith is making us concerned and the Monte Carlo error only adds to that concern.

In conclusion, the particular simulation example described here happens to

permit us to directly estimate the Monte Carlo error. The true mean under our

assumptions, E[X], we know from direct calculation is 9.239666667 min. The

Monte Carlo estimate is Xbar = 10.2 min. Therefore, the Monte Carlo error from

Eq. 2.20 equals-1.0 min. Generally, we will not know our Monte Carlo errors and

need to estimate or bound them using half widths from our confidence intervals.

2.6 Monte Carlo Simulation Example

2.6.1 Problem

Consider a pseudo random number X that is assumed to be TRIA(1, 5, 12). Also,

consider another random variable, Y, that is either X or 4, whichever is greater. We

can write: Y = Maximum(X,4). Use Monte Carlo simulation to estimate E[Y2].

Perform sufficient numbers of replicates until the half width of your Monte Carlo

estimate is less than or equal to 11.

2.6.2 Solution

The overall strategy is to generate pseudo random numbers Y2 and to use the

sample mean to estimate the true mean, i.e., apply Eq. 2.19. Since we are not

explicitly asked to apply an LCG, we will not use them. Instead, we will apply the

higher quality pseudo random numbers from Excel-based on Tools ? Random

Number Generation ? Uniform random numbers or, in some more recent ver-

sions, Data ? Data Analysis ? Random Number Generation ? Uniform. We

set the seed equal to 1. We use the formulas shown in Fig. 2.6.

The spreadsheet shows how the process starts with pseudo random numbers in

cells A5 and below. Then, the inverse cumulative is used to generate triangularly

distributed pseudo random numbers, Y values, and Y2 values successively. The

distribution of Y2 has no famous name but we can estimate its mean using the

sample average. After 10 replicates, the Monte Carlo estimate is 44.4 but the half

width is 16.97, which is too large. Therefore, we apply 20 replicates. This yields a

Monte Carlo estimate for the mean equal to 36.7 and a half width of 10.7. This is

good enough for our purposes. Note that the ‘‘=TINV’’ function has been applied.

This function requires that we multiply our alpha values by 2.0 to obtain the

standard critical values that we need.
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2.7 Voting Systems Example Summary

Collecting results from various methods, we first forecast the expected voting time

to be 8.7 ± 3.6 min. This estimate involves a minimal leap of faith because we

simply applied a confidence interval from the original input analysis data. Yes, the

original data were not normally distributed to a good approximation (two humps).

Still, the interval does reflect with some appropriateness the limitations of our nine

subject data set. As a result, it is probably the best answer to the original fore-

casting question described here.

Our next interval derived from fitting distributions to the data. Then, standard

formulas from probability theory were applied to estimate a mean of

9.239666667 ± 0.000000. We know that the precision in this estimate is mis-

leading. The ±0.000000 does not reflect the leap of faith that we made after

concluding our input analysis when we picked the two TRIA distributions.

Fig. 2.6 Microsoft� excel used to estimate the mean of a random variable
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Then, we put blinders on and took our assumed distributions seriously. Yet, at least

the 9.2239666667 min estimate is associated with zero Monte Carlo estimation

error.

The last estimate, from discrete event simulation was 10.2 ± 1.9 min. We

know that this estimate is the worst. The predicted mean has a nonzero Monte

Carlo error and the uncertainty (±1.9 min) is actually an under estimate. This is

because the ±1.9 min estimate error bound is simply Monte Carlo or ‘‘replication

error’’ and ignores the additional errors associated with our input analysis.

In our real simulation project for the county, we focused on quantities such as

the expected waiting times of the worst precincts. Such quantities cannot easily be

estimated in any other way besides Monte Carlo discrete event simulation or other

numerical techniques. Therefore, we did make a leap of faith and ignored the

errors related to our input analysis. Also, we could not calculate our true Monte

Carlo errors since exact formulas for the mean were not available.

We simply estimated bounds on our errors using confidence interval half widths

(based on Eq. 2.7). We tried to keep the errors to a reasonable level by applying 20

or more full replications. Usually, in research we use 10,000 replicates to get three

decimal points of accuracy. But in the real election systems case, simulations were

far too slow to permit that. Fortunately, the Monte Carlo errors were small enough

for providing helpful decision support. In Chap. 4, we focus on other simulations

of expected waiting times for additional cases in which Monte Carlo or discrete

simulations are needed.

2.8 Problems

1. What is a random variable?

2. What is an expected value of a random variable?

3. What is a linear congruential generator (LCG)?

4. Why do we generally avoid using LCGs in addressing real world problems?

5. What is the ‘‘sample standard deviation’’?

6. What is a ‘‘half width’’?

7. What are Monte Carlo errors?

8. Consider the following data: 2.5, 9.2, 10.2, 9.8, 9.2, 10.3, 10.2, 2.8, and 10.1.

Develop a 95% confidence interval for the mean assuming that the data are

approximately normally distributed.

9. Consider the measured registration times 1.0, 2.4, 2.0, 3.5, and 1.4. Develop a

95% confidence interval for the mean using the given t-table.

10. Comment on how reasonable it is to assume that the data in problem 8 derive

from a single, normal distribution.

11. Consider the measured voting times 5.0, 7.0, 9.0, 5.4, 3.0, and 4.4 with sample

mean 5.6 and sample standard deviation 2.1. Develop a 95% confidence

interval for the mean using the given t-table.
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12. Considered the outputs from different replicates of a simulation given by 22.1,

18.3, 25.7, and 22.8 (waiting times in minutes). Give the Monte Carlo estimate

for the mean waiting time and its half width.

13. Assume X is distributed according to f(x), and 10.1, 19.4, and 23.0 are pseudo-

random numbers from f(x). Also, assume l ¼
R1
�1 xf ðxÞ ¼ 19:0: Estimate as

accurately as possible E[X ? 3X] and Var[X]. Estimate the errors of your

estimates.

14. Assume X is distributed TRIA(4, 9, 10). Estimate E[X2] using Monte Carlo

simulation.

15. Assume X is distributed according to f(x), and 9.1, 20.3, 19.4, and 23.0 are

pseudo-random numbers f(x). Also, assume
R1
�1 xf ðxÞ ¼ 22:0: Estimate as

accurately as possible E[2X] and E[X2]. Estimate the errors of your estimates.

16. Assume that X is U[10,25], what is E[X]? Estimate the answer using proba-

bility theory and also Monte Carlo simulation.

17. Assume X is triangularly distributed with parameters a = 2 h, b = 10 h, and

m = 3 h. What does this assumption imply about E[X]? Also, describe this

assumption in one or two sentences using everyday language.

18. Assume that X is U[10,25], what is E[X2]? Estimate the answer using Monte

Carlo simulation. Make sure your half width is less than 1.0.

19. Assume X is triangularly distributed with parameters a = 2 h, b = 10 h, and

m = 3 h. Generate three pseudo random triangularly distributed random

variables using the inverse cumulative and the uniform pseudorandom num-

bers 0.8, 0.3, and 0.5.
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Chapter 3

Input Analysis

This chapter describes methods for gathering and analyzing real world data to

support discrete event simulation modeling. In this phase, the distribution

approximations for each process including arrivals are estimated using a combi-

nation of field observations (e.g., based on stopwatch timings) and assumption-

making. In many cases, the time and cost of input analysis will actually exceed

expenses from all other phases. It may also be necessary to put instrumentation

into place to provide the accurate time measures, greatly delaying the entire

project.

Section 3.1 describes simple strategies to help ensure that a sufficient amount

of data is collected. Next, Sect. 3.2 describes approaches based on relative

frequency histograms and the sum of squares error (SSE). These procedures, like

the Rockwell� Input Analyzer, develop recommended choices for distributions but

with some arbitrariness. Section 3.3 describes the rigorous Kolmogorov–Smirnov

(KS) hypothesis testing method for ruling out distributions. The KS method avoids

arbitrariness by using so-called empirical cumulative distribution functions which

are also defined. Section 3.4 contains a numerical example that reviews related

methods and concepts.

3.1 Guidelines for Gathering Data

In general, input analysis comes after the project is defined and the charter is made.

Yet, planning for the data collection in the input analysis phase is sometimes done

in the define phase, e.g., as part of the charter. This might occur because the

expenses for data collection and the related timing might constitute a major part of

the project cost. A natural starting point in planning these costs and the input

analysis phase is a flowchart showing the subsystem of interest. This could be

based on imagination or on thorough observation of the system being studied or a

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,
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combination of both. Evaluation of the costs of collecting data for every process in

the flowchart could, hypothetically, cause the team to limit (or expand) the project

scope and goals.

The number 20 is a reasonable minimum number of measurements that can

allow distribution fitting and defendable model development. We would generally

want to measure at least 20 service times and, in some cases, 20 interarrival times

for every bank of servers in our model. For example, if we were modeling a

supermarket checkout, we might assume that the interarrival times are exponen-

tially distributed and only measure 20 service times on a single of three checkout

aisles. We might assume that the other two aisles have the same service distribution.

As justification, consider that the number 20 is the standard number for initial

evaluation in so-called indifference zone (IZ) procedures which seek to aid in

ranking system alternatives in Chap. 5. Also, in standard statistics process control

(SPC) for monitoring generic processes, 25 subgroups are the world standard

number for initial system characterization (Allen 2010). Frequently, some of these

subgroups are removed from consideration and estimation is based on approxi-

mately 20 subgroups.

Timing interarrivals can be important if we are not content in assuming a

constant exponential distribution. For example, in our voting project we might

time n equals 100 interarrivals so that we can check the shape of the distribution

including whether the arrival rate differed over the day predictably.

Another consideration is the possibility of rare events with potentially critical

impacts on the responses of interest. Assume our initial estimate is that the rare

event might characterize p0 fraction of the entities under consideration. For

example, from historical experience we guess that approximately p0 = 0.01

fraction of voters have severe handicaps that affect their voting times. From

studying the negative binomial observation, we can estimate the number of

entities, n, we need to sample to observe r rare events (assuming independent

trials). The standard formula for expected number of trials or sample size is:

E n½ � ¼ rð Þ 1� p0ð Þ= p0ð Þ: ð3:1Þ

Ideally one would budget for sufficient trials such that r = 20 rare events can be

observed. Yet, this might often be prohibitively expensive in both time and money.

With r = 5, the discrete count of rare events might be roughly approximated by a

normal distribution permitting the development of standard confidence intervals on

the actual value of p0 to be derived from the data. In low consequence situations,

e.g., student projects, planning for r = 1 entities to be timed might be reasonable.

As an example, consider the problem of timing voters with the plan to include

r = 20 handicapped persons. Then, we would need to time (20)(1 - 0.01)/

0.01 = 1,980 voters to observe an expected 20 handicapped ones. This is

approximately the number of voters we did time in our real project for Franklin

County. Fortunately, these service times were recorded and documented in

previous elections. The officials took the time to retrieve these earlier data, remove

any voter identification, and send them to us in a spreadsheet.
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A reasonable alternative approach would have used access to mock systems

for experimentation. In such a scenario we would directly identify 20 entities or

individuals associated with the rare event. Then, we could directly time only

these 20 on our mock equipment. This would have lower fidelity than observing

the actual system but it could save the cost of timing more than a thousand

voters by hand. We might also have been able to identify the fraction, p0,

accurately from historical data, e.g., the number of logged requests by voters for

special assistance.

Figure 3.1 shows a hypothetical sampling plan to support an election systems

simulation project. The plan to collect 100 interarrival times reflects our subjective

concern about applying a Poisson process, i.e., a single fixed exponential distri-

bution. In manufacturing or with scheduled arrivals, Poisson processes are seldom

relevant. For example, parts tend to arrive at machines at approximately fixed

intervals and a normal distribution with a standard deviation much smaller than the

mean might make sense. In other cases arrivals are uncoordinated; however, it is

probably not as important to check that the interarrival times are approximately

exponentially distributed. Uncoordinated arrivals are generally well approximated

by exponential distributions.

It can be important, however, to identify whether arrivals come in groups or

batches (‘‘batch arrivals’’). Also, it can be important to check whether the average

interarrival time is changing over time in a predictable way, i.e., the gaps are

‘‘nonhomogeneous’’ or uneven. For example, there might be more customers

arriving in predictable lunch ‘‘rush-time’’ than in other periods. Chapter 4 and

Sect. 10.4 discuss modeling with these complications.

The plan to collect only 20 registration times reflects our confidence that the

registration process is generally stable and not a critical ‘‘bottleneck’’ that deter-

mines system performance. The plan to collect 1,980 voting times reflects our

desire to observe 20 handicapped voters and our confidence that these times can be

derived from existing instrumentation with reasonable cost. Note that, in a real

election systems context, the registration process might also be affected by other

important rare events, e.g., individuals with limited documentation.

Consider also that the sampling plan might change depending on the allowed

time for the project. For example, a project designed to reduce the loss of

customers during rush periods might limit data collection to the length of the rush

period. For example, lines might form only between 11 am and 1 pm. A different

project designed to cut staffing costs during non-rush periods might require more

sampling because of the greater length of the non-rush periods.

Fig. 3.1 Sampling plan for a single precinct simulation project
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3.2 Relative Frequency Histograms and SSE

Once the data have been collected, a natural first step is to create histograms.

Histograms provide bar chart visualizations of the shapes of the distributions.

Also, least squares estimation described in this section based on histograms is

often the primary method for estimating distribution parameters. The derived SSE

from these fits is often used to motivate the choice of one distribution over another

for a given process.

3.2.1 Relative Frequency Histograms

The following method creates histograms with equal length ‘‘bins’’ or intervals.

The histograms summarize visually the dataset, X1, X2, …, Xn.

Step 1. Calculate the number of ‘‘k’’ equal length ‘‘bins’’ or intervals. If the

number of data points is n, we might use Sturges’ rule to estimate the

number of bins:

k ¼ roundup log2 nð Þ þ 1½ � ð3:2Þ

where ‘‘roundup’’ simply means round the fraction up to the nearest

integer and log2() refers to the logarithm function to the base 2.0. Results

from Eq. 3.2 are shown in Table 3.1.

Step 2. Calculate the endpoints of the bins, q(i), using:

q ið Þ¼minimum X1;X2; . . .;Xnð Þþ ið Þ½maximum X1;X2; . . .;Xnð Þ

�minimum X1;X2; . . .;Xnð Þ�= kð Þ
ð3:3Þ

for i = 0,…,k. In some cases, it is reasonable to adjust the q(i) manually to

hit round numbers to make the plot look easier to interpret. This arbi-

trariness in the bin rules can affect model fits and comparisons, however.

Step 3. Count or tally the number of observations or frequency in each bin,

C(i) for i = 1,2,…,k and the relative frequencies, rf(i), using:

rf ið Þ ¼ C ið Þ= nð Þ for i ¼ 1; 2; . . .; k: ð3:4Þ

Table 3.1 Number of bins as
recommended by Sturges’
rule for histograms

n # bins = roundup[1.442 ln(n) ? 1]

10 5

20 6

50 7

100 8

200 9

1,000 11

10,000 15
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For points on the bin boundaries (if any), count them in the higher bin. Count

the lowest point and highest points in the first and last bins respectively.

Step 4. Bar chart the relative frequencies versus the bin definitions. Here, we use

the q(i - 1) - q(i) notation to describe bin i for i = 1,…,k.

As an example, consider the hypothetical n = 9 voting times: 7.2, 4.5, 8.1, 9.2,

4.2, 12.3, 15.1, 6.2, and 4.8. Therefore, X1 = 7.2, X2 = 4.5,… Sturges’ rule from

Table 3.1 gives k = 5 bins. Then, the bin endpoints are q(0) = 4.2, q(1) = 6.4,

q(2) = 8.6, q(3) = 10.7, q(4) = 12.9, and q(5) = 15.1. The relative frequencies

are then: rf(1) = 0.4, rf(2) = 0.2, rf(3) = 0.1, rf(4) = 0.1, and rf(5) = 0.1. The

resulting bar chart is shown in Fig. 3.2.

Note that the above approach is subtly different from the method in Microsoft�

Excel. The Excel histogram method under Data Analysis ? Histogram uses fewer

bins for small data sets. Also, if custom bin widths are applied, the counts are

based on values below or equal to the lower bin bounds. Excel also labels the bins

using the lower bounds which might seem misleading.

Note also the grey boxes in Table 3.1. Every relative frequency histogram can

be used to generate an associated continuous distribution. All values within each

bin are assigned a value equal to the relative frequency multiplied by a scale factor

given by:

Scale ¼
#bins

Maximum X1; . . .;Xnð Þ�Minimum X1; . . .;Xnð Þ½ �
ð3:5Þ

so that the scale factor makes the area under the associated continuous distribution

equal to 1.0, i.e., the distribution f(x) = (Scale) 9 [rf(i)] for x in bin i is ‘‘proper.’’

3.2.2 Sum of Squares Error

After the relative frequency histogram has been constructed, the distributions are

fitted using the least squares error. In some implementations, these fits are

constrained so that the fitted distributions have pleasing properties. In this section,

methods are described to fit distributions to relative frequency histograms that

minimize the SEE.

0

0.5

4.2-6.4 6.4-8.6 8.6-10.7 10.7-12.9 12.9-15.1

Fig. 3.2 Relative frequency
histogram for election
systems example and
associated continuous
distribution where the vertical
axis can be interpreted as the
relative frequency and
probability
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To estimate the best fit model, we first define the midpoints, m(i), of the

histogram bins using:

mi ¼ q i� 1ð Þ þ q ið Þ½ �= 2ð Þ for i ¼ 1; . . .; k ð3:6Þ

where q(i) is the ith bin limit. Also, we include additional cells below the lowest

cell and above the largest cell with frequencies equal to 0.0.

Consider a generic distribution function, f(x,b) with a vector of parameters b

that we are trying to estimate. For example, triangular distributions have three

parameters not including the area b = (a, m, b)0. All parameters are estimated by

solving a sum of squared error estimation problem:

best ¼ argmin SSE ¼
X

i¼1;...;k

Scaleð Þrf ið Þ � f mi; bestð Þ½ �2
( )

: ð3:7Þ

where argmin{} refers to the argument that minimizes the SSE. In words, the

parameter values we estimate are the ones that make the fit distribution function

pass through the histogram points. Often, it is reasonable to apply constraints in the

optimization in Eq. 3.7.

For an example, we return to the election systems data set and histogram in

Fig. 3.2. Also, we will fit the triangular distribution function, f(x,a,m,b), given by:

f x; a;m; bð Þ ¼ 2= b� að Þ½ � x� að Þ= m� að Þ½ � for a� x�m;

¼ 2= b� að Þ½ � b� xð Þ= b� mð Þ½ � for m� x� b;

¼ 0:0 for other x:

ð3:8Þ

Figure 3.3 shows the Excel calculations to formulate and solve Eq. 3.8. In this

example, we applied the Excel solver repeatedly with different starting points to

minimize the SSE in cell L13 by changing the parameter estimates in cells H4:K4.

The solution derived was a = any number above 3.1 and below 5.3, m = 5.3, and

c = 15.26.

Fig. 3.3 Fitting the triangular distribution to the election example data
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This solution is not entirely satisfactory since we have data outside the derived

range, i.e., below 5.29 and above 15.26. This likely explains why the Rockwell�

Input Analyzer constrains a to equal an integer a round number below the lowest

data point. Similarly b is apparently constrained to a round number above the

highest data point. Then, solving m only, one derives approximately m = 5.3.

The SSE for this solution is 0.005 (which is inexplicably different than the number

from the Input Analyzer).

Note also that some distributions of interest might be characterized by

important correlations between random variables. For these cases methods based

on histograms only are generally insufficient by themselves. Histograms would

only provide information about the marginal distributions of each random variable,

i.e., the distribution of that random variable with others ‘‘averaged’’ out.

Procedures designed to fit the joint distributions of correlated random variables

are often based on summary statistics. Active research on such cases can be found

on the Winter Simulation Conference (WSC) website (http://www.wintersim.org)

under the areas of input analysis, finance, and risk analysis. With these recent

methods, it is becoming possible to fit and generate many correlated sets of

random variables simultaneously from the same stream of pseudo random U[0,1]

numbers.

3.3 The Kolmogorov–Smirnov Test

Using histograms and the sum of squared error (SSE) criterion invariably involves

some subjectivity. Arbitrariness enters with respect to the location of the bin

endpoints. Also, arbitrary constraints can be added to the fitting optimization in

Eq. 3.7 to make the result more subjectively pleasing. Next, we describe a

hypothesis testing procedure which can rule out distributions with little or no

subjectivity. This procedure is based on the empirical cumulative distribution

function associated with a data set and the Kolmogorov–Smirnov statistic and

hypothesis test.

The rigor of the KS method is perhaps misleading. This follows because, in

general, no well-known or ‘‘famous’’ distribution is a perfect fit for any process of

interest.With sufficient data, we could theoretically rule out all of the distribution that

we might fit, e.g., the triangular, the uniform, the normal, and others. Related con-

siderations motivate the application of empirical distributions described in Sect. 3.4.

3.3.1 Constructing Cumulative Empirical Distributions

The KS method is based on the so-called cumulative empirical distribution

function, Fn(x). For a data set, X1, X2, …, Xn, the empirical cumulative distribution

function is:
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Fn xð Þ ¼ the number of samples� xð Þ=n: ð3:9Þ

Therefore, like other cumulative distribution functions it starts at 0.0 and

advances to 1.0. At each data point, the function steps upward.

To create a plot of the empirical cumulative distribution function, apply the

following steps:

Step 1. Sort the data from smallest to largest: {X1,…,Xn} ? {S1,…,Sn}.

Step 2. Repeat each sorted data point: {S1, S1,…,Sn,Sn}.

Step 3. Create sequence: {0.0, Fn(S1), Fn(S1), Fn(S2),…, Fn(Sn-1),Fn(Sn)}.

Step 4. Scatter-line plot the sequence from Step 2 versus Step 3.

For example, consider again the n = 9 data points: 7.2, 4.5, 8.1, 9.2, 4.2, 12.3,

15.1, 6.2, and 4.8. Then, we have S1 = 4.2,…, Sn = 15.1. Also, the two sequences

are {4.2, 4.2,…, 15.1, 15.1} and {0.0, 0.111, 0.111, 0.222,…, 1.0}. Then, the

empirical cumulative distribution function is shown in Fig. 3.4. The empirical

distribution function, F9(x), is the step function in the figure. The smooth function

is the cumulative distribution function for the fitted distribution, F(x,best).

3.3.2 The Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov (KS) test is based on the test statistic Dn given by:

Dn ¼ Maximum Fn xð Þ � F x; bestð Þf g ð3:10Þ

where the maximization is taken over the values x that the random variable might

assume. For example, with the n = 9 data points: 7.2, 4.5, 8.1, 9.2, 4.2, 12.3, 15.1,

6.2, and 4.8 and the fitted distribution a = 4.0, m = 5.2, and b = 16.0, the KS

statistic is D9 = 0.289. This maximum value occurs at x = 4.8.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 4.0 8.0 12.0 16.0

Fig. 3.4 The cumulative empirical distribution function for the election data
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For completeness, the general formula for the cumulative triangular distribution

function, F(x), is:

F x; a;m; bð Þ ¼ x� að Þ2
h i

= b� að Þ m� að Þ½ � for a� x�m

¼ 1� b� xð Þ2
h i

= b� að Þ b� xð Þ½ � for m� x� b:
ð3:11Þ

This is the cumulative (the smooth curve) plotted in Fig. 3.4 together with the

cumulative empirical distribution function, F9(x).

Does D9 = 0.289 indicate a significantly poor fit? In KS hypothesis testing,

the test statistic is compared with a critical value. If the statistic is larger than the

critical value, then we reject the hypothesis that the data came from the fitted

distribution. The event that Dn[ critical KS is equivalent to the event that the

p value is\0.05. In our example, standard software can tell us that the p value is

0.15. Therefore, we fail to find significance. Essentially, we do not have sufficient

data to rule out the fit distribution which is triangular, i.e., the data might

conceivably have been generated from the triangular distribution with parameters

a = 4.0, m = 5.2, and c = 16.0.

Deriving the critical values and the p values is a laborious process accom-

plished commonly by software. Yet, in principle the method for their derivation is

clear. One can simulate 10,000 sets of n data from the fit distribution using its

inverse cumulative. In every case we can derive a simulated value for Dn. We can

take the 500th largest value as our 95% critical value. If the actual KS is larger

than this value it likely did not occur by chance. In that case, the distribution is a

significantly poor fit.

3.4 Empirical Distributions

It is perhaps true that, with sufficient data, any distribution can be ruled out using

KS hypothesis testing. Generally, as the amount of data goes to infinity even slight

departures from fit distributions are detectable. In cases in which all the famous

distributions have been ruled out, it is entirely natural to simply sample from the

data instead of simulating using fitted distributions. Sampling from the data with

replacement is equivalent to applying a fit distribution which is the cumulative

empirical distribution in Eq. 3.9.

As an example consider the relative frequency histogram from 719 actual

voting times from the 2006 gubernatorial election in Franklin, Ohio in Fig. 3.5.

These times were read from a single machine and do not reflect the time needed for

the poll worker to prepare the machine and prepare the voter. Even with 719 data

points, the KS test can rule out the triangular (p value\0.005), the normal (p value

\0.005), and all other distributions in the Rockwell� Input Analyzer�. This

motivated the choice to apply empirical distribution in our election simulations for

the voting or service times.
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Because these times represent one of the initial experiences of the community

with handicapped compliant machines, they were a ‘‘wake-up’’ call for election

officials. The new machines had roughly double the service times of previous

machines. Therefore, it was perhaps true that nearly double the number of

machines would be needed for the 2008 presidential election as compared with the

2004 presidential election. Fortunately, early voting and paper ballots on Election

Day headed off what simulation predicted would have been extremely long

election lines.

Even in cases with limited data, empirical distributions have appeal and appear

to be in common usage. Yet, in these cases it may be desirable to insert hypo-

thetical or ‘‘made-up’’ data in with the real data. Such an approach is in keeping

with the subjective view of probability theory described in Chap. 2. Some common

sense considerations relating to made-up data include:

• Using made-up data should be accompanied with a full disclosure and clarifi-

cation of what is real and what is assumed,

• Scaling of the data may be needed to adjust to new cases, e.g., additional work

planned in the service operations,

• Sensitivity analyses should be included in related projects to evaluate the extent

to which the final conclusions of the simulation study depend on data made-up

during the input analysis stage, and

• Proportionality should be considered such that real data can be duplicated to

permit the made-up data to occur in the data set with the appropriate frequen-

cies. Since we will be sampling with replacement, it is important that each point

has at least roughly the appropriate probability of being selected.
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Fig. 3.5 Relative frequency histogram of actual DRE utilization times from 2006
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Despite the challenges of disclosure and sensitivity analysis, inserting

hypothetical data and building empirical distributions can, in some cases, be part

of a conservative analysis. For example, it has been reported that several opera-

tions researchers mitigated portfolio losses in the recent downturn using empirical

distributions with made-up data corresponding to problems not encountered in

previous years.

In our election systems projects, we use empirical distributions with data scaled

to address the variable ballot lengths in different locations. The data we have is for

specific ballot lengths from the 2006 gubernatorial election for 6 and 8 issues.

When planning for the 2008 presidential election, we knew that the ballots would

be as much as 2.1 times longer. As a result, we scaled our data linearly for each

different location to model voting service times. Since all fitted distributions were

ruled out, this seemed to us to be the most defensible approach given our budget

limitations. Our mock election results and, later, observations of the actual voting

times validated this approach.

3.5 Summary Example

In this section, an example is given that illustrates the cycle of data collection,

distribution fitting and analysis, and use of the fitted distributions for simulation.

In the example, we assume that 0.82, 0.14, 0.56, 0.31, and 0.90 are pseudo random

U[0,1] numbers. Also, we assume the following hypothetical times (in minutes)

from observing bus arrivals starting at 10 am on 11 different days: 0.5, 0.2, 1.1,

0.8, 0.9, 1.4, 1.9, 0.8, 2.0, 0.0, and 0.8. Questions to be answered include:

1. Is this sample size advisable and what are the related issues?

2. What is the continuous distribution associated with a relative frequency

histogram?

3. Give a best fit distribution based on the SSE.

4. How could the distribution that was fitted be ruled out hypothetically using a

KS test?

5. Generate some simulated times using the best fit distribution.

Answers follow. (1) Generally, having fewer than 20 samples is not desirable

since we have limited ability to estimate the sample variance. Also, we cannot

eliminate distributions using KS testing. Certainly, we have too few samples if

accounting for any type of rare event is needed for predicting system performance

accurately.

(2) Creating a relative frequency histogram and the associated continuous

distribution aids in distribution fitting. Figure 3.6 shows the associated continuous

distribution. (3) Next, we determine the best-fit uniform distribution that mini-

mizes the SSE in Eq. 3.7. The choice of the distribution is somewhat arbitrary but

the shape of the uniform distribution seems reasonable. The continuous distribu-

tion associated with the relative frequency histogram is shown in Fig. 3.6. The best
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fit parameters are (apparently) a = 0.0 and b = 2.0 and the sum of squared errors

is 1.1. The parameters were obtained by manually trying many combinations of

fitted a and b values and checked using the Excel solver.

(4) The empirical cumulative distribution is shown in Fig. 3.7 (the step

function). The smooth line shows the cumulative distribution, F(x), for the best

fitted uniform distribution. The biggest difference is approximately 0.19 (vertical

absolute value) which occurs at 0.9 min. In formal KS-testing, this value is

compared with a 95th percentile value derived from simulating KS statistics using

the assumed distribution. With only 11 values, it is unlikely that the test statistic

will be beyond the critical value regardless of which distribution is selected.

(5) Using Eq. 2.18 we have F-1(u) = 2u. Plugging in pseudorandom numbers,

we generate the five simulated times: 1.6, 0.28, 1.1, 0.6, and 1.8 min. These

simulated numbers can be used with an event controller to estimate the expected

waiting times or other emergent system properties.

3.6 Problems

1. What is an empirical cumulative distribution function?

2. What is a relative frequency histogram?

3. Why is picking a distribution based on the SSE and relative frequency

histograms somewhat arbitrary?
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Fig. 3.6 The continuous
distribution associated with
the relative frequency
histogram and the best fit
uniform distribution
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40 3 Input Analysis

http://dx.doi.org/10.1007/978-0-85729-139-4_2#Equ18


4. Why is testing based on the KS statistic a rigorous and repeatable process, i.e.,

what (if any) arbitrariness exists in the process of calculating KS statistics?

5. Use the following to construct a relative frequency histogram based on the

20 data points and estimate by eye the sample mean and standard

deviation.

6. In the preceding problem, how many bins would Sturges’ rule recommend?

7. Use your eye to best fit a distribution to the histogram in problem 5. Estimate

its SSE based on your relative frequency histogram.

8. Consider the following data: 2, 11, 9, 9, 12, 15, 12, 3, 10, and 9. Construct a

relative frequency histogram, fit a distribution, and estimate the SSE using a

spreadsheet and showing all work.

9. In the following relative frequency histogram, what is the height of the

missing bar? Also, what role do relative frequency histograms play in our

distribution selection?

10. In the preceding problem, estimate the SSE for a best fit normal distribution.

11. What is the following plot and what could its role be in input analysis?
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12. Estimate the KS statistic in the preceding problem. Do you guess that the KS

test would reject (p value\0.05) in that problem? Explain briefly.

13. Consider the data which represent hypothetical voting times in minutes: 5, 10,

5, 22, 6, 12, 14, 8, 7, and 4. Construct a relative frequency histogram of this

data.

14. Consider the data which represent hypothetical voting times in minutes: 4, 22,

5, 5, 9, 12, 14, 8, 7, and 4. Construct a relative frequency histogram of this

data.

15. List one distribution that might be ruled out using KS testing for the dataset in

problem 13.

16. Determine D10 for the data in problem 13 and a reasonably appropriate

triangular distribution function.
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Chapter 4

Simulating Waiting Times

This chapter describes the standard process for performing discrete event

simulations to estimate expected waiting times. In doing so, it describes

event-based ‘‘controllers’’ that generate chronologies differentiating discrete event

simulation from other types of statistical simulations.

Generic waiting systems have arrival processes, service processes, and

departure processes as indicated in Fig. 4.1. In general, the queues or waiting lines

form in front of the service processes. Simply applying the terminology of arrival

and service processes can sometimes help stakeholders think more constructively

about systems improvement. For example, in election systems we have observed

that suspicion of intentional prejudicial action tends to be reduced once the more

‘‘scientific’’ or ‘‘clinical’’ framing of the problem in Fig. 4.1 is introduced.

The chapter begins in Sect. 4.1 by describing probably the most common arrival

process, which is characterized by exponentially distributed ‘‘interarrival’’ times.

Interarrival times, as the name implies, are the times between arrivals. Exponential

interarrivals relate to the exponential distribution described in Chap. 2. Exponential

interarrivals are associated with so much variation that they are generally irrelevant

to many manufacturing or service operations. Manufacturing processes are

generally more tightly controlled and less variable. Yet, exponential interarrivals

are common enough that they have been dubbed with a well-known name as

‘‘Poisson’’ arrivals. This name derives from the fact that, with exponential

interarrivals, the number that accumulates in any given time period is a Poisson

random variable. Poisson arrivals are generally relevant when the entities arriving

are uncoordinated such as customers entering a store individually.

In Sect. 4.2, we describe the general operation of an event-driven simulation

controller. Such a controller is the key element of virtually any discrete event

simulation software. The controller effectively observes all of the possible events

that could happen, picks the closest in time, and moves the clock forward.

The resulting series of event times is ‘‘aggregated’’ to estimate the means of

interest.

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,
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Next, in Sect. 4.3, by inspection of the central limit theorem (CLT) and the

conditions that underlie confidence intervals, we show that multiple replicates of

the entire time period are generally helpful for defensible estimation. Further,

motivated by the CLT, we describe in Sect. 4.4 the process of batching replicates in

groups whose sample average might reasonably be expected to be approximately

normally distributed. Such a process constitutes probably the leading way to pro-

duce defensible Monte Carlo estimates of expected values and their half widths.

4.1 Exponential Interarrivals or Poisson Processes

The exponential distribution function, f(x), cumulative distribution function, F(x),

and cumulative inverse distribution function, F-1(u) are given by:

f ðxÞ ¼ ðkÞ½expð�kxÞ�; ð4:1Þ

FðxÞ ¼ 1� expð�kxÞ; and ð4:2Þ

F�1ðuÞ ¼ � lnð1� uÞ=ðkÞ ¼ �ðmeanÞ½lnð1� uÞ� ð4:3Þ

where ‘‘exp()’’ means take 2.7182818 to the power of the number in the paren-

theses and ‘‘ln()’’ is the natural logarithm, i.e., the logarithm with base ‘‘e’’ equal

to 2.7182818. Therefore, to generate pseudorandom exponentially distributed

random numbers with mean equal to the reciprocal of k, we plug pseudorandom

U[0, 1] numbers into Eq. 4.3. For the ‘‘two parameter exponential’’ distribution,

simply replace x with x - T in Eqs. 4.1 and 4.2 and add T in (4.3).

For example, consider a Poisson process characterized by an assumed mean

interarrival time of 5 min. Therefore, k = 0.2 arrivals per min. Also, if we have a

pseudorandom U[0, 1] number or ‘‘deviate’’ given by u = 0.5636 then we have a

pseudorandom number (PRN) from the exponential distribution given by:

F�1ð0:5636Þ ¼ �ð5:0minÞ½lnð1� 0:5636Þ� ¼ 4:1min: ð4:4Þ

The exponential distribution has some strange properties which can make us

concerned when we use it to describe our beliefs. For example, it is ‘‘memoryless’’

which relates to the process of waiting for arrivals. If one has already waited

Z minutes for an exponential interarrival characterized by k, the expected wait is

still (1/k). In plain English, the memoryless property means that the distribution

gives us no credit for the time we already waited. For example, if k = 0.2 arrivals

per min and one has already waited for 5.0 min, amazingly the expected waiting

time is still 5.0 min.

Fig. 4.1 Generic waiting system showing arrivals, waiting in queue, service, and departure
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The memoryless property of the exponential makes it an unreasonable choice

for most arrivals on a schedule or arrival processes that have many kinds of

constraints. For example, if a certain number of people need to arrive in a certain

short time period, the exponential distribution might not be an appropriate choice

for interarrival times. Still, the life expectancy of many electronic components and

certain subatomic particles follow the memoryless exponential distribution very

closely. Also, partly because of its simplicity, Poisson arrivals are probably the

world’s most common arrival process for modeling uncoordinated arrivals over

short periods.

Over longer periods, it is often reasonable to assume that the parameter k

governing exponential interarrivals changes over time. For example, for the first

hour of the day we might have k = 0.2 per h after which the frequency of arrivals

might pick up. Then, we could have k = 0.3 per h for the second hour. The phrase

‘‘nonhomogeneous Poisson process’’ refers to the assumptions that, at any given

time, interarrivals are exponentially distributed according to one parameter value,

yet, over time that parameter changes. Nonhomogeneous Poisson processes are

one example of ‘‘nonstationary’’ arrival processes which change over time.

Nonhomogeneous Poisson processes are probably the most common assumption

about arrivals in discrete event simulation models despite their highly variable

nature. Additional details about nonhomogeneous Poisson processes are described

in Chap. 10 related to the ‘‘thinning’’ method.

4.2 Discrete Event Simulation Controllers

In Chap. 2, we showed how it is possible to apply simulation to derive an estimate

of an expected value or mean. The example that we focused on was simple in the

following sense. The experiences of the simulated individuals were unrelated, i.e.,

if one took a long time to vote using the direct recording equipment (DRE)

machine, this had no effect on other individuals. In this section, however, we focus

on simulating waiting times. Waiting times necessarily relate to interactions

between individuals. Specifically, one individual is using the resource for which

one or more other individuals are waiting or queuing. As noted previously, this

‘‘event-chronology-based’’ interaction between entities is what differentiates

discrete event simulation from other forms of Monte Carlo.

Discrete event simulation systems are driven by events in a chronology or time

listing of events and the byproducts from that chronology. Other alternatives have

advantages compared with event based simulation including the so-called ‘‘three

phase’’ method (Pidd 2004). Here, we focus on discrete event simulation because it

is probably the simplest and clearly the most widely applied in practice.

Code for discrete event simulation invariably includes an event controller.

The controller is a computer agent with two main tasks. First, it identifies the list of

events that could possibly happen next, if any. If there are no possible events, e.g.,

because the replication is over, the controller stops. Second, after a list of possible
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events is compiled, the controller advances the internal clock to the time of the first

event on the list of possible events. Then, iteration continues as indicated in

Fig. 4.2. The aggregation of numbers refers to the building averages and other

statistics such confidence intervals. These numbers are derived from the

chronology or list of events and times generated by the controller and stored.

Here, we focus on numbers which are average waiting times, yet simulations can

also generate statistics with scope ranging from profits to machine down times to

the number killed in warfare. Having generated and (potentially) stored a complete

account of simulated events, the simulation can support estimation of a wide

variety of expected values.

As an example, consider the simplification of the voting systems in Fig. 4.3.

The work flow in the figure is a simplification because it does not include

automobile parking issues, the precinct having more than a single machine, and the

details of the departure processes. Also, in our analysis we assume for simplicity

that the voting day is only 20 min long, i.e., only arrivals in the first 20 min are

allowed entry. In real voting systems, the minimum number of machines is

generally greater than or equal to three at each polling location to allow for

machine breakdowns and other contingencies. Voting is generally permitted in the

United States for 13 h or more and, increasingly in many jurisdictions; it is

permitted for many days prior to ‘‘Election Day’’ at certain publicized locations.

Figure 4.4 shows the event controller applied to the simplified election system

example (Fig. 4.3). The U[0, 1] PRN stream is shown on the left-hand side of

Fig. 4.4. This stream derives from the Data Analysis ? Random Number

Generation component of Microsoft� Excel (in the Analysis ToolPak). As noted

previously, linear congruential generators (LCGs) are generally usable only for

Fig. 4.2 A generic controller for a single replicate of discrete event simulation model

Fig. 4.3 Simplified voting system with waiting lines
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instruction purposes, i.e., to help students comprehend the concept of random

seeds and random number streams.

In this system, the only candidate initial event is the arrival of the first voter,

i.e., ‘‘person 1’’ (P1). Clearly, neither the arrival of person 2 (P2) nor the con-

clusion of the first voter’s registration can precede this. Therefore, the clock moves

forward to 0.01 min when the P1 arrives. Next, the arrival of P2 and the end of the

first voter’s registration are candidate events. Based on numbers derived from the

inverse cumulative distribution functions (F-1), P1’s finishing registration is the

next event and the clock advances to 0.01 ? 0.34 = 0.35 min. Note that the P2

arrival is 0.01 ? 4.15 = 4.15 min because of the rounding in excel of instead of

4.16.

By random draw, P1 takes a long time while occupying the single DRE voting

machine, i.e., 11.02 min. During that time P2 completes registration and person 3

arrives and finishes registration. When P1 finishes voting and departs, both P2 and

P3 are waiting. After P2 has begun voting, person 4 arrives and registers. The

arrival of person 5 would come after the 20 min hypothetical Election Day is over.

Therefore, person 5 is turned away and does not influence the statistics. Next, the

remaining people finish up voting and depart.

After the controller has generated the chronology, extracting statistics and

aggregating them is possible. Often, a single number is drawn to effectively

summarize the experience in the replicate. This summary or ‘‘aggregate’’ statistic

often is associated with evaluating the system quality. For example, relating to the

chronology in Fig. 4.4, Table 4.1 includes the event statistics and the aggregate

statistic, which is the average waiting time. The single number that summarizes

quality from this replicate is the average waiting time of 8.53 min.

Fig. 4.4 A single replication showing the controller operation in the election systems example

Table 4.1 Aggregate/
summary statistics from the
first replicate of the voting
systems simulation

Voter Registration queue
time (min)

Vote queue
time (min)

Sum

Person 1 (P1) 0.00 0.00 0.00

Person 1 (P2) 0.00 6.49 6.49

Person 1 (P3) 0.00 13.49 13.49

Person 1 (P4) 0.00 14.12 14.12

Average (min) 8.52
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It is tempting to use the sequence, 0.00, 6.49, 13.49, and 14.12 min to create a

confidence interval for the mean or expected value of the waiting time. However,

by studying closely the definitions of statistical independence, identically

distributed, and normally distributed in the next section, we will see that this is not

wise. The resulting interval would have a much\95% chance of containing the

true mean.

4.3 IID Normally Distributed

Next, we review the definitions of statistical independence, identically distributed,

and normally distributed. These definitions and their implications motivate the

procedure in the next section which involves multiple replicates and a technique

known as ‘‘batching for normality’’. Using these techniques, the resulting

confidence intervals for the means or expected values of interest will be fully

defensible. The chance that 95% confidence intervals actually contain the mean

will be actually 95% to a good approximation.

Technically, two random variables, X1 and X2, are independent if and only if

(iff) their joint distribution, f(x1, x2) factorizes. If f(x1) and f(x2) are the marginal

distributions, we have independence iff:

f ðx1; x0Þ ¼ f ðx1Þf ðx2Þ: ð4:5Þ

In words, independence means that if you tell me the actual value of X1, my

beliefs about X2 are unchanged. This typically occurs if there is no causal link

between the systems that generate X1 and X2. Note that one way to demonstrate

that two random variables cannot reasonably assumed be independent is to observe

a significant sample correlation in their historical data streams, i.e., when one

value was higher (lower) than usual for X1, the corresponding X2 was typically

higher (lower) than usual.

More importantly, the following is a fact stated without proof: if we repeat

simulations using independently distributed random number inputs, the derived

aggregate outputs will also be independent. The intuitive explanation for this fact

is that there is no reason to believe that, if the first replicate output is low, then the

second replicate output will be low or high. Further, consider the simulation

method based on applying an industrial quality PRN U[0, 1] stream pictured in

Fig. 4.5. The construction method and the abovementioned fact together explain

why we are generally comfortable assuming that simulation outputs constructed

this way, X1, X2, X3,… are independently distributed. In our examples, this will

mean that the average waiting times from different replicates are reasonably

assumed to be independently distributed.

Technically, two random variables, X1 and X2, are identically distributed if and

only if they have the same marginal distribution function, f(x). Therefore, if f1(x1)

is the assumed marginal for X1, and f2(x2) is the assumed marginal for X2, then the

marginal distributions satisfy:
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f1ðxÞ ¼ f2ðxÞ ¼ f ðxÞ: ð4:6Þ

In words, X1 and X2 are identically distributed random variables if they ‘‘come

from’’ the same distribution. This brings us to the next fact again related to

Fig. 4.5. If we replace the PRNs with true random numbers, then X1, X2, X3,… will

be identically distributed random numbers. If we use PRNs, then it is generally

reasonable to treat the outputs as if they were identically distributed random

numbers. Intuitively, this follows because the controller applied the same rules to

generate the event chronology with only the input PRNs changing.

A random variable, X, is normally distributed if and only if its distribution

function has the following form:

f ðxÞ ¼ ½ð6:283185307Þðr2Þ��1=2
exp½ðx� lÞ=ð2r2Þ� ð4:7Þ

where l and r are assumed parameters with r[ 0. One pleasing property of the

normal distribution is that its mean and standard deviation directly correspond to

its adjustable parameters, l and r, respectively. This property is pleasing because

it implies that we do not need to apply calculus or simulation to estimate the mean

from the distribution function. In Chap. 3, we describe how data can be compe-

tently used to identify distribution functions that are reasonable choices. Also,

hypothesis testing to rule out distributions is described.

In the context of our election systems example, it is obvious that the waiting

time numbers are not even approximately independent nor identically distributed

(IID). Table 4.2 describes reasons related to each issue.

Technically, one violation of either independence, identically distributed, or

normally distributed could be sufficient to render the standard confidence

intervals unlikely to reliably contain the true means. For the numbers generated

within a single replication, we generally have violations of all three assumptions.

Fortunately, in the next section we describe a way to derive pseudorandom

outputs from simulations that can defensibly be assumed to be IID normally

distributed.

Fig. 4.5 How controllers
create approximately
independent outputs
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4.4 Batching Complete Replicates for Normality

In this section, we review the CLT. Then, we describe a ‘‘batching for normality’’

procedure that generates perhaps the most defensible outputs from discrete event

simulations possible. By applying high-quality PRNs from the U[0, 1] distribution,

independent replication, and batching for normality, the generated outputs are

independent identically distributed (IID) and normally distributed to a good

approximation for virtually any type of discrete event simulation.

4.4.1 The Central Limit Theorem

Assume that X1, X2,…,Xn are independent, identically distributed (IID) according

to any distribution with any mean, l, and finite standard deviation, r0, then the

CLT give us:

Limitfn ! 1g Xbar;n � X1 þ X2 þ � � � þ Xnð Þ=n�N½l; r0=sqrtðnÞ� ð4:8Þ

where ‘‘N[]’’ implies normally distributed as defined by Eq. 4.8. In words, the CLT

says that the sample average, Xbar,n, of n IID outputs from simulation replicates is

approximately normally distributed for a sufficient number of replicates (n large

enough). In Chap. 3, we describe technology for evaluating whether n is large

enough in any specific case. Yet, the key fact is that there is almost always a large

enough n such that normally distributed output averages are possible.

The central limit theory essentially explains how and why discrete event sim-

ulation works. Through the simulation controller and aggregation we derive IID

X1, X2,…,Xn. With a large enough number of replicates, n, our Monte Carlo

estimate for the mean, Xbar,n converges to the true mean or expected value that we

are trying to estimate. Further, the errors become approximately normally dis-

tributed with standard deviations declining proportional to r0/sqrt(n) as

n increases. Because Xbar,n converges to the true mean, we say that Monte Carlo

gives ‘‘unbiased’’ estimates. This contrasts with certain alternative procedures

which give biased estimates as described in Chap. 8. Deriving a slightly wrong

number quickly and reproducibly can be of interest in certain situations.

Table 4.2 Why variables within a single replicate are not approximately IID normally
distributed

Property Reason why not

Independent If one simulated person waits a long time that will likely cause the
next simulated person to wait a long time

Identically distributed The first simulated person never waits, i.e., has zero mean waiting
time. Others have nonzero mean waiting times

Normally distributed Waiting times cannot be less than zero. The normal distribution has
technically zero weight on any point. Yet, we believe that there is
a nonzero chance for a waiting time equal to 0.00 min
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As an example, consider the probability mass function indicated in Fig. 4.6.

Obviously, this distribution is not the normal distribution. It is not even the dis-

tribution of a continuous random variable. The distribution is for discrete random

variables, X1, X2,…,Xn. Yet, clearly these variables have finite standard deviation,

r0. Using the definition of the mean or expected value, l, in Eq. 2.2, the mean is

13.2. Also, using the definition that the standard deviation equals the square root of

E[(X - l)2], we have r0 equal to 6.57.

Next, consider the distribution of the sample averages, Xbar,n, of batches of X1,

X2,…, Xn generated from the distribution in Fig. 4.6. As a practical matter, we can

generate these using the ‘‘Data Analysis’’ ? ‘‘Random Number Generation’’

facility in Microsoft� Excel and selecting ‘‘Discrete’’ among the types of distri-

butions. Doing this, we can use ‘‘Number of Variables’’ equal to 10 and ‘‘Number

of Random Numbers’’ equal to 1,000. This will generate 1,000 rows by 10 col-

umns of PRNs. Averaging the first n = 5 or n = 10 in each row gives sample

averages, Xbar,n. From the CLT, we suspect that the averages based on n = 10

numbers will appear normally distributed to a better approximation. The histo-

grams overlaid in Fig. 4.7 shows that the sample averages are becoming more

normally distributed, i.e., more bell shaped as n increases.

4.4.2 Batching for Normality

The CLT motivates a strategy for developing the approximately normally dis-

tributed PRNs needed for proper confidence intervals. We reviewed the procedure

for creating defensible intervals in Sect. 2.2. By batching outputs from indepen-

dent replicates, the batch averages become approximately normally distributed.

The approximation improves as the sample size, n, increases.

Figure 4.8 shows an example of batching for normality with a batch size equal

to n = 3. The implication from studying the figure is that the outputs derive from a

0.0
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Fig. 4.6 An example
discrete probability density
function
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standard event controller and aggregation process. Whether n needs to be

increased can be tested using methods in Chap. 3, however, the central limit theory

indicates that the larger the n, the more likely normality will be achieved.

Note that the Monte Carlo estimate for the mean is unaffected by batching.

It is still the average of the batch averages. This is the same as the average of all
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Fig. 4.7 Histograms of sample averages with n = 5 and n = 10 in each batch

Fig. 4.8 Illustration of
batching for normality
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the replication outputs. What is affected is the quality of the estimated standard

deviation used in constructing a confidence interval for the mean. By batching, the

averages are more normally distributed and the half width is more likely to be a

reliable estimate of uncertainty.

4.5 Other Arrival Processes

In this chapter, the Poisson arrival process has been introduced and defined in

terms of exponentially distributed interarrival times. Poisson processes are gen-

erally considered relevant for modeling uncoordinated arrivals such as patrons

arriving at restaurants or voters arriving to polling locations on Election Day. Still,

many manufacturers use so-called ‘‘pull systems’’ in which units are made only

when they are ordered. Pull systems are one component of the Toyota production

systems or lean production. It can be reasonable to model pull systems using

Poisson processes because the orders do arrive in an uncoordinated fashion, e.g., at

the request of the dealerships.

At the same time, scheduled arrivals and scheduled builds might be a safer

choice in general. It is not uncommon to use Visual Basic or other programming

languages to enter data about arrivals into models developed using standard

software such as ARENA, AutoMod, ExpertFit, GPSS/H, ModSim, or WITNESS.

For a systematic review of related simulation software (see Swain 2007). In this

way, the arrival process for the projected future can be modeled directly using

historical data.

The term ‘‘push system’’ refers to operations which make units following long

term forecasts for demand. Such systems might be expected to leave machines idle

more rarely, i.e., ‘‘starve’’ their servers. In these systems, units are produced to

keep machines utilized and in the belief that what is made will be purchased. Push

systems can be modeled using a high rate Poisson order arrival process. However,

such an approach can make it difficult to limit the number of PRNs used in each

replicate. Conserving PRNs helps speed up simulations and facilitates comparisons

of alternatives because alternatives can essentially be evaluated more easily using

the same set of random numbers and situations. We will have more to say about

speeding up simulations in Chap. 8.

4.6 Model Verification and Validation

It is standard to define ‘‘verification’’ as checking that the simulation model does as

intended, i.e., there are no ‘‘bugs’’ or simple mistakes in its complications or

procedures (Sargent 2005). Validation relates to the ability of a verified model to

reproduce the outputs of the system being modeled accurately. Validation there-

fore relates to the appropriateness of the model entity flows, interactions, and
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distributional assumptions. Validating models is generally more complicated but

both verification and validation are important.

Both verification and validation can be conducted simultaneously using the

following activities as described by Sargent (2005) and Czeck et al. (2007):

• Design of experiments output analysis (Chap. 5) this involves structured

experimentation to determine how input changes affect average outputs.

Inspecting the plausibility of the dependencies often permits the identification of

either bugs or unrealistic assumptions.

• Removing randomness and running test cases often, all random variables are set

to constants at mean values can facilitate evaluation of a model’s logic. In some

cases, there is an attempt to line up the simulated entity positions with real-

world locations at multiple times using photographs or other data sources.

• Scatter plotting or quantitative output validation outputs from simulation rep-

licates or averages can be graphed against real-world data from the associated

systems. The extent to which predicted and actual data line up (have high

sample correlation) provides one of the strongest types of confirmation possible.

Also, the maximum percentage deviations can evaluate the accuracy.

• Turing tests subject matter experts (SMEs) are shown both simulated and

real-world data. If the SMEs identify the simulated data, reasons are solicited.

The derived information is then used to improve the simulation. Once the

simulated data cannot be distinguished from the real by the SMEs the model is

considered validated. Since the test involves fooling people about the realism of

computer models, it is reminiscent of the so-called ‘‘Turing’’ tests in which

computers attempt to convince humans that the computers are human.

• Animated walkthroughs with team members trust in models is generally critical

for acceptance of the derived recommendations. Animation permits the stake-

holders to evaluate the model and go through step-by-step replicates visually to

ensure some level of realism.

Many organizations that use simulation regularly establish standards relating to

their validation. For example, a dentist’s officemight feel that reducingwaiting times

is critical for its success. They might seek the most objective and thorough possible

validation. As a result, they might focus on scatter plot or quantitative validation to

study the ‘‘base case’’ simulation model. The simulated waiting time average and

maximum before being taken to an examination room for prophylaxis were 2.6 and

8.0 min, respectively, for the first hygienist, and 2.7 and 7.1 min for the second

hygienist. At the same time, the observedwaiting time average andmaximum for the

dentist’s consultation after prophylaxis were 2.8 and 7.3 min based on 20 mea-

surements. The base case model matched all six of these observations to within 10%.

As a second example, a manufacturing company may be studying fairly simple

material handling systems with easy access to the real-world positions of entities.

As a result, the manufacturer might generally require removing randomness and

running test cases based on time photographs of parts and try to exactly replicate

part positions. This verification and validation might become part of all model

developments.
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4.7 Summary Example

In this chapter, we considered the process of creating and analyzing an event

chronology based on a PRN stream. While the event chronology generates several

simulated times, problems are associated with these simulated times. Most

importantly, the numbers within any given chronology are not reasonably assumed

to be independent and identically distributed (IID). As a result, using these

numbers alone to construct confidence intervals for the expected properties gen-

erally results in intervals that likely do not include the true mean.

As an example, consider the simulation and event controller in Fig. 4.9 based

on simulated voting for a hypothetical 20-min long Election Day, i.e., arrivals

after 20 min are turned away. The simulation starts with pseudorandom IID

uniform a = 0 and b = 1 numbers (Set A). Next, the set of immediately fol-

lowing possible events are enumerated and each of the original uniform PRNs is

transformed into a PRN from the appropriate distribution. These numbers are

then used to generate the times of the next events (Set B) and newly possible

events are enumerated. A program that automatically assembles the chronology

of events in this way is called an event controller. From the chronology it is

possible to calculate how long each simulated entity waits. These numbers are

collected in the column on the right-hand side of Fig. 4.9 (Set C). The sample

average of these waiting times (Set D) is an estimate of the expected waiting

time.

The example in Fig. 4.9 leads to many questions which are addressed in the

chapter:

1. Which sets of numbers are reasonably assumed to be IID?

2. Which sets of numbers are approximately normally distributed?

3. Why are Set C numbers not independent and not identically distributed?

4. Suppose that we have average waiting times from six replicates (times in

minutes), 8.5, 22.1, 7.1, 3.7, 8.2, and 9.2. How can we make a defensible

confidence interval from these numbers?

Fig. 4.9 An example illustrating a discrete event simulation and sets of random variables
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Answers follow. (1) While we do not have the details about how the

pseudorandom uniform numbers in Set A were generated, it is probably rea-

sonable to assume that the Set A numbers are IID. The Set A numbers show no

obvious pattern and it is easy to generate pseudorandom uniform IID [0, 1]

numbers. However, the other sets do not contain numbers that can be reason-

ably assumed to be approximately IID. The process of constructing the chro-

nology leaves it clear that the absolute times of events (Set B) and the waiting

times (Set C) are influenced by the same simulated activities. They have,

therefore, built-in causal links or dependence. Clearly, with a single number

only in Set D it makes no sense to consider independence or identically dis-

tributed assumptions.

(2) Without additional information (more replicated chronologies or simula-

tions) we have no reason to expect that any of the simulated quantities are

approximately normally distributed. For example, we know that the Set A numbers

are approximately uniformly distributed. (3) As mentioned previously, the times in

Set C are influenced by the same causes and so have built-in dependence. For

example, P1 takes a longer than average time to vote creating a delay for the voters

that follow. Since all the voters that follow are influenced by this event, their

waiting times likely correlate.

(4) Defensible confidence intervals are based on approximately IID normally

distributed estimates. With only six replicates we probably do not have sufficient

data for a reliable normality testing, e.g., using the KS test from Chap. 3. As a result,

it is advisable to create batches. For example, we could construct three batch

averages: (0.5)(8.5 ? 22.1) = 15.3, (0.5)(7.1 ? 3.7) = 5.4, (0.5)(8.2 ? 9.2) =

8.7 (times in minutes). These three averages result in the 95% interval: (-2.72,

22.32) minutes. Clearly, the negative time in the interval is itself an indication that

the number of replicates is not sufficiently large such that a defensible confidence

interval on the mean or expected waiting time can be constructed. We generally

base simulation estimates on 20 or more batch averages.

4.8 Problems

1. What does IID stand for?

2. What is a Poisson process?

3. What is the CLT?

4. What is nonstationary process?

5. Assume that X is exponential with mean value 10 years. Why might this

distribution be a good fit for the life of electronic components? Explain.

6. Provide an example of a service process that is exponentially distributed to a

good approximation.

7. Assuming that X is exponential with k = 0.2 per min and 0.3, 0.6, 0.1, and 0.8

are pseudorandom U[0, 1], use these numbers and Monte Carlo to estimate the

mean of X. Compare your estimate with the true mean.
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8. Assuming that X is exponential with k = 1.5 per min and 0.8, 0.2, 0.3, and 0.7

are pseudorandom U[0, 1], use these numbers and Monte Carlo to estimate the

mean of X. Compare your estimate with the true mean.

9. A simulation replicate generates a series of waiting times given by 0.0, 0.0,

5.3, 10.2, 12.2, 9.0, 8.3, 5.2, 3.2, 0.5, and 0.0 (input). What are the issues

associated with using the: (1) sample mean and (2) sample standard deviation

of these numbers to estimate the expected waiting time?

10. Consider the following LCG:

Zi ¼ aZi�1 þ cð Þ mod m; Ui ¼ Zi=m

with a = 25, m = 1024 and c = 7 and Z0 = the number corresponding to the

first letter of your first name in the alphabet (e.g., Cary Grant would have

Z0 = 3). Also, consider the simple system:

where ‘‘Last 4 digits’’ are the last four digits of your SSN number.

(a) Use the above numbers and Excel to simulate two replicates of a 30 min

election day (polls close 30 min after opening and no new voters can enter

thereafter). Make sure your answer includes figures giving screen shots of

your Excel sheets with a body of text, captions, and references to your

figures in the text.

(b) Give a confidence interval for the average total waiting time in queue.

(c) Suppose we are considering using the average of the first three simulated

voters in place of the averages used in part b. Does the central limit theory

guarantee that our sample mean is an unbiased estimate of the true

expected total wait for voters (in queue)? Why or why not?

11. What is the relationship between the batch size and the normal distribution

and why?

12. Use a professional software package to simulate the voting system in question

10 but this time with a 13 h election day. Run 200 replicates and put the

resulting 200 total waiting times into an Excel spreadsheet.

(a) Perform input type analysis on these 200 numbers. Which distribution

from the Input Analyzer minimizes the sum of squares error based on the

‘‘Fit All’’ algorithm?

(b) Batch or group the 200 waiting times into 20 groups of 10 and generate

the sample averages. Perform input type analysis on these 20 averages (of

average total waiting times). What distribution minimizes the sum of

squares error based on the ‘‘Fit All’’ algorithm?

4.8 Problems 57



(c) Create a confidence interval based on the 20 averages from part b.

(d) Comment on the defensibility of the interval in part c.

13. Assume the following data are batch means each representing n = 2 repli-

cations. Are the results ready to present the decision-maker with a confidence

interval? Recommendations?

14. Consider a Poisson process with k = 0.5 per min and exponential service

times with mean 2.0 min. Assume that the system is open for arrivals only

during a 20-min window. Use a spreadsheet and manual controller to simulate

two replicates. Start with a high quality PRN stream of U[0, 1] deviates.

15. Compare push and pull systems from a finished goods and throughput point-

of-view, i.e., number of units produced in a given time period. Assume that

both have the same service distributions.

16. Identify a hypothetical real-world simulation application. Assess each of the

listed verification and validation techniques listed in the chapter with respect

to their subjectively assessed cost and value in relation to your case.
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Chapter 5

Output Analysis

After input analysis, model building, and model validation, decision support is not

immediately available. The simulation team simply has a model to predict outputs

or responses for given combinations of input or factor settings. Showing related

animations and the results from a single system is rarely sufficient. While the

process of building the model itself likely lead to insights and valuable data, using

creativity to generate alternative systems to be evaluated is almost always critical

to the success of the project. By single ‘‘system’’ we mean one combination of

numbers of machines, staffers, staff schedules, and other factor levels which could,

e.g., represent the current operating conditions.

The inspiration for selecting alternative systems for evaluation can come from

the Theory of Constraints and lean production which are described in Chap. 7.

The following is a list of example types of system alternatives that were identified

and evaluated using simulation leading to positive outcomes:

• In a manufacturing project, simulation identified that one cell was both the

bottleneck (slowest process that determined the system capacity) and that it was

periodically starved. This was achieved by studying alternative systems having

higher service rates for different machine cells. Design of experiments (DOE)

methods described in this chapter helped demonstrate that only one cells

reduced service rate strongly affected overall throughput and constrained the

overall system. This insight led to the inspiration of combining another cell with

this cell. Using the added resources, the simulation showed, the bottleneck could

be sped up for all operations and would almost never be starved.

• In a health carehospital project, alternative ways to schedule nurses and patients

led to alternative systems. The simulations of these alternatives showed that

some choices, such as decreasing the buffer times between patients and further

staggering of the arrival of nurses, would likely lead to patients achieving times

closer to their target times and an ability of the unit to handle larger volumes

without adding nurses.

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,
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• In an election project, simulation predicted that, because of the slower service

times of Help America Vote Act compliant machines, additional machines or

lower turnout on Election Day was needed or long lines would result in 2008.

This warning helped county officials to dramatically increase absentee voting

through advertising spending and newspaper articles, avoiding the long lines

predicted by the simulation. Also, the simulation showed that allocating

additional machines to locations with longer ballots would greatly reduce the

inequality in the waiting times across the county. The improved ‘‘utilization-

based’’ formula was implemented and increased equity. This case study is

described in detail in Chap. 7.

• The US military used simulation to determine the number of troops, airplanes,

and ships needed to thoroughly ‘‘overmatch’’ Panamanian president Manuel

Noriega in his extradition. By trying various combinations, military offers could

see the minimum number of resources needed to quickly pacify their opponent.

Thus, bloodshed was minimized and objectives were achieved.

In at statistical and technical sense, output analysis involves using the validated

simulation model to prepare information to support decision-making. It involves

testing alternative ways to operate systems and ensuring that the comparison

conclusions are statistically defensible. Often, alternatives derive from manage-

ment dogmas such as lean engineering or theory of constraints as described in

Chap. 7. In some cases, large numbers of alternate approaches are generated and

analyzed using formal optimization as described in this chapter.

In general, teams that are charged to consider larger numbers of factor

combinations or ‘‘alternative systems’’ have a higher chance of discovering valu-

able information. In operations research terminology, this follows because their

search space is less constrained and therefore more likely to contain a desirable

solution. Yet, searching widely using discrete event simulation involves addressing

at least two major challenges:

1. Simulation models estimate response values with Monte Carlo or replication

errors as noted in Chap. 4. In other words, the codes are ‘‘noisy’’ system

evaluators as compared with ‘‘deterministic’’ evaluation in standard linear and

nonlinear optimization problems. This noise means that simulators need to guard

against one system having a ‘‘lucky’’ set of replicates causing the discounting or

discarding of superior solutions, i.e., system alternatives having truly higher

mean performance.

2. Discrete event simulation codes can be ‘‘slow’’ even with modern computer

power. For example, one replicate of the monthly plant operations could require

30 min at a major automotive manufacturer. Therefore, a reasonable approach

applying 20 replicates would require 10 h or more for evaluating a single

combination of factor settings. Compare that with 0.0001 s required by many

linear programs for evaluation of the objective function.

This chapter describes several approaches to develop reliable decision support

information addressing the noisy and slow challenges associated with discrete
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event simulation codes. In Sect. 5.1, ‘‘multiple comparison techniques’’ are

presented which permit users to evaluate a moderate number of systems

simultaneously, limiting the chance that a ‘‘lucky’’ system will distort quality

judgments. Section 5.2 describes two types of selection and ranking methods

designed to efficiently limit the confusion from the noisy simulations.

Section 5.3 describes approaches for effectively comparing tens or hundreds of

systems with a small number of replications. These comparisons are based on

so-called ‘‘DOE’’ ‘‘metamodeling’’ approaches, where the constructed metamodels

are relatively inaccurate but computationally efficient surrogates or ‘‘stand-ins’’ for

the discrete event simulation code. Plotting and optimizing the meta-models often

provides the information that supports the final design decisions.

Section 5.4 reviews simulation optimization techniques from the recent

research literature. These methods are designed to automatically search through

huge numbers of alternative, systems while applying desirable numbers of

replicates in each evaluation. Each optimization technique is associated with

advantages for certain types of problems and addresses the challenges of noisy and

slow function evaluations differently. Included with the review is a description of

the proposed ‘‘population indifference zone’’ (PIZ) search method. Approaches

like PIZ divide the huge search space into relatively small sets of solutions that

efficient methods from sequential analysis can address.

In Sect. 5.5, the chapter closes with a brief description of the challenges of

‘‘steady state’’ simulations designed to model systems over the long run.

In such systems, each replicate generally requires significant CPU time. Many

methods have been developed to extract multiple outputs from these long

replicates.

5.1 Multiple Comparisons Techniques

In Chap. 2, the approach for constructing confidence intervals including ‘‘half

widths’’ was described. In Chap. 4, the batching for normality procedure was

presented largely to satisfy the conditions needed for obtaining accurate

confidence intervals. Applying both procedures together results in our ability to

accurately predict the probability that the true mean or expected value is within

one half width of our Monte Carlo estimate or simulated average. Next we need

statistical results pertinent to simultaneous conclusions about two or more

systems.

5.1.1 The Bonferroni Inequality and Simultaneous Intervals

Let us digress briefly for a review of probability theory. Consider two events A and

B and their intersection A \ B. By intersection we mean the event in which both
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A and B occur simultaneously. We also consider the complement events Ac and Bc.

For example, Ac is the event that A does not happen. A general result is:

Pr A \ Bð Þ ¼ 1� Pr Acð Þ � Pr Bcð Þ þ Pr Ac \ Bcð Þ: ð5:1Þ

The proof for (5.1) is given by the Venn diagram in Fig. 5.1. Areas in Venn

diagrams correspond to probabilities. The probability associated with the entire

area is 1.0. Each box corresponds to a term in Eq. 5.1. Also, the final term

corresponds to a correction for the double counting of the intersection of the

complement events that would otherwise occur. From Eq. 5.1 the Bonferroni

inequality follows immediately as:

Pr A \ Bð Þ� 1� Pr Acð Þ � Pr Bcð Þ ð5:2Þ

since Pr(Ac \ Bc) is either 0.0 or a positive number. The key benefit of the

Bonferroni inequality in Eq. 5.2 is that it holds regardless of whether the events

A and B are independent or other assumptions about these events.

Next, let A be the event that the true mean or expected value for system 1 is in

its 100(1 - a1)th percentile confidence interval derived by simulation. Similarly,

let B be the event that the true mean or expected value for system 2 is in its

100(1 - a2)th its confidence interval. The probability that both means are in their

confidence intervals is therefore bounded by the Bonferroni inequality.

Specifically, the probability that both means are in their confidence intervals is

bounded by:

Pr both means are simultaneously in their intervalsð Þ� 1� a1 � a2: ð5:3Þ

To gain additional intuition about this, it might be helpful to inspect Fig. 5.2.

An intuitive way to think about this relates to the worst way in which events could

conspire against our complete success. We would like to have both means inside

their intervals. Any other possibility is negative for us. The worst possibility

occurs if one is never outside its interval while the other is. In general, having both

outside their intervals might seem pretty unlikely. If we ignore its possibility, then

the inequality in Eq. 5.3 changes to equality.

Fig. 5.1 Proof of the
relationship of probabilities
and the Bonferroni inequality
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Next, let us generalize to q systems. Let li refer to the true mean for the ith

system and Ii refer to the (100)(1 - ai)th percentile interval for that system.

The Bonferroni inequality gives us:

Pr l1 � I1ð Þ \ l2 � I2ð Þ \ . . . \ lq � Iq
� �� �

� 1�
X

i¼1;...;q

ai: ð5:4Þ

Therefore, simultaneous confidence intervals can be derived if we set all

individual a values equal to:

ai ¼ að Þ= qð Þ for i ¼ 1; . . .; q: ð5:5Þ

For example, assume q = 10 system alternatives being compared and it is

desired to have a probability greater than 95% that all are in their interval.

Therefore, a = 0.05. If we use ai = (0.05)/(10) = 0.005 for each interval, Eq. 5.5

guarantees that the simultaneous probability of 95% is achieved. Note that the

Bonferroni formula is often very conservative. Alternative simultaneous intervals

procedures include those derived from Scheffe’s methods and Tukey’s methods.

5.1.2 Which Election System Reduces Voter Waits?

As an example of simultaneous intervals, consider the hypothetical election system

shown in Fig. 5.3. The example is hypothetical since the author has not as yet been

asked to evaluate election machine purchasing decisions. Therefore, the time

distributions are hypothetical but potentially suggestive of actual decisions faced

by election officials. The scope of the project focuses on a typical large precinct

simulated for a 13-h election day. The alternatives represent different types of

machines having different cost-versus-service rate trade-offs. The intent is that all

options would cost the same.

For example, system 1 might represent somewhat inexpensive machines with a

personal computer type small screen. The second system (system 2) might

Fig. 5.2 Depiction of the
events and their probabilities
relating to two systems
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represent the application of relatively costly ‘‘full-face’’ machines that permit the

voter to see all that is being voted on at a single time. The third hypothetical

system (system 3) also would correspond to personal computer type direct

recording equipment (DRE) machines.

For simplicity, the following limitations were imposed in the discrete event

simulation models used to evaluate the three simulations in this example:

• Time limits were applied crudely in that arrivals were assumed to begin just as

the polls opened at 6:30 am and at the 7:30 pm closing time all voting termi-

nated. In real systems, voters usually line up before the opening and everyone in

the system at closing time is permitted to vote.

• Arrivals were assumed to be homogeneous. In a real problem, a non-homoge-

neous arrival process would be applied likely based on an empirical distribution

to address rush periods.

• Only nine replicates were generated so that all numbers fit neatly in small tables.

In an actual analysis, at least 20 replicates would be applied initially.

The outputs from the three simulation models are shown in Table 5.1. The table

shows the average waiting times of voters summing times in registration and

before voting using DRE machines. The results for the nine replicates are batched

so that the resulting quantities are relatively normally distributed. Then, the half

widths and simultaneous Bonferroni half widths are calculated. The calculations

use the standard formula in Eq. 2.7 using a = 0.05 and a = 0.017 in the formulas,

respectively.

The individual and simultaneous confidence intervals are shown in Fig. 5.4.

From the individual confidence intervals system 2 offers significantly

better performance than either system 1 or system 3, which cannot be distin-

guished. Yet, with the more appropriate simultaneous intervals, the only

significant difference observed is that system 2 offers significantly reduced

average waiting times compared with system 3. Other differences are not

significant. In a real case, we might perform 100 replicates of each system and

20 batch averages. Likely then we could rank the three systems fully with

statistical backing.

Fig. 5.3 Work flows of three hypothetical systems to be compared using simulation
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5.1.3 Sample Size Estimates

The sample size needed depends on our objectives. In the preceding example,

three batches of size three constituted an acceptable sample size if our only

objective was to determine whether system 2 or system 3 was better using

simultaneous intervals. Yet, sample size formulas are often expressed in terms of a

target or desired half width, h0. Related formulas generally depend on the

estimated standard deviations, s, derived from n0 initial samples or evaluation
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Fig. 5.4 a Individual and
b simultaneous intervals for
election example

Table 5.1 Average waiting time outputs (minutes) describing the hypothetical election systems

Replicate or batch System 1 System 2 System 3

Rep. #1, batch #1 39.7 3.1 46.1

Rep. #2, batch #1 36.6 3.0 33.3

Rep. #3, batch #1 50.9 4.4 44.2

Rep. #4, batch #2 67.0 2.6 49.8

Rep. #5, batch #2 52.0 4.2 37.1

Rep. #6, batch #2 46.4 5.2 69.8

Rep. #7, batch #3 37.4 4.9 61.9

Rep. #8, batch #3 35.7 2.3 50.9

Rep. #9, batch #3 19.3 6.0 47.6

Batch of size three average #1 42.4 3.5 41.2

Batch of size three average #2 55.1 4.0 52.3

Batch of size three average #3 30.8 4.4 53.5

Monte Carlo estimate (Xbar) 42.8 4.0 49.0

Batch standard deviation 12.2 0.4 6.8

Half width (95%) 30.2 1.0 16.8

Simultaneous half width (95%) 53.8 1.9 29.9
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evaluations. The number of samples could represent either the number of

replicates or the number of batches depending upon which the standard deviation,

s, is based. Solving Eq. 2.7 for n gives us:

n ¼ roundup ta=2;n�1

� �2
sð Þ2

.

h0ð Þ2
h i

: ð5:6Þ

Consider that both sides of Eq. 5.2 depend on n. Therefore, it must be solved

numerically. This can be achieved by putting the right-hand-side in a cell in Excel

and having the formula depend on the left-hand-side. By iteration, it is possible to

find a value that makes both cells equal and therefore satisfies the equality.

For example, assume that we are attempting to find the number of batch

averages needed, n, to achieve a half width of h0 = 10.0 and our sample standard

deviation of batch averages is 12.2. By iteration, we derive a recommended sample

size of n = 8 batch averages. Assume that n0 = 3 were already complete.

Then, we would need only n - n0 = 5 additional batch averages to expect to reach

our desired half width. Figure 5.5 shows the spreadsheet used for this calculation.

5.2 Statistical Selection and Ranking Methods (Optional)

Statistical selection and ranking methods involve the selection of a subset of

systems being compared with desirable properties. Related methods are generally

based on the assumption that samples from each system are normally distributed to

a good approximation. Therefore, in the context of simulation it is generally

desirable to derive samples that are batch averages from a batching for normality

procedure as described in Sect. 3.4. Deriving desirable subsets using simulation is

the subject of entire textbooks (e.g., Bechhofer et al. 1995).

5.2.1 Subset Selection and Indifference Zone Procedures

In general, selection and ranking procedures divide into two types: ‘‘subset

selection’’ (SS) and ‘‘indifference zone’’ (IZ) methods. Subset selection procedures

derive sets of solutions (subsets) of random size but offer the possibility of

stronger quality guarantees. Indifference zone procedures derive subsets of preset

Fig. 5.5 Example
spreadsheet for sample size
calculation via iteration
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sizes but offer relative weak guarantees. Guarantees are generally expressed in

terms of a user declared indifference parameter, d. The user must be willing to lose

the best solutions (with the highest or lowest mean) as long as a solution with

mean within d of the best mean is retained.

For example, imagine that there are 100 alternatives and the first system

(unknown to us) has the lowest mean or expected value equal to 0.0. Assume we

are minimizing. The next best system (unknown to us) has a mean equal to 2.0.

All other solutions have mean 10.0. We declare that we are indifferent to not

finding the best solution as long as we retain at least one solution with mean within

d = 3.0 of the best. Therefore, as long as the selection and ranking procedure

terminates with a subset containing either system 1 or system 2 or both, we would

be satisfied with the subset quality.

Selection and ranking procedures guarantee the attainment of subsets with

satisfactory quality with probabilities greater than P*. The user can set P* similar

to setting a values in hypothesis testing. Such guarantees depend on the

assumption of normally distributed samples or observations. In general,

the smaller the d we insist on, the higher the number of samples needed to achieve

small subsets. Subset procedures can be applied with arbitrary sample sizes and

d = 0, while guaranteeing subset quality. However, the final subset might be the

original set of alternatives, i.e., no alternatives are eliminated.

Here, two methods are selected somewhat arbitrarily for presentation. Both

apparently offer competitive properties even considering the wealth of methods

developed subsequently. The first is a subset selection method from Goldsman

et al. (1999). It is similar to the classical methods from S.S. Gupta and others.

The second method is the ‘‘indifference zone’’ (IZ) restricted subset selection

method from Sullivan and Wilson (1989). This second procedure is relatively

complicated but it offers a rigorous guarantee and permits the selection of a subset.

5.2.2 Subset Selection

The following method achieves a subset having a probability great than P* of

containing a solutions with mean or expected value within d of the optimal or best

system solution. The indifference parameter, d, can be set equal to zero if desired,

but generally fewer systems will be eliminated. Let k denote the number of

alternative systems being compared. Assume we are trying to find a subset

containing a system with mean within d of the smallest, i.e., we are minimizing.

Step 1. Evaluate all systems using n0 samples, which are generally batch sample

average values. Denote the resulting values Xi,j, with i = 1, …, k referring

to the system and j = 1, …, n0 referring to the sample.

Step 2. Calculate the sample means or Monte Carlo estimates, Xbar,i, for each

system i = 1, …, k. Denote the index for the system with the best mean

as ‘‘b’’.
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Step 3. Next, we examine the differences between the samples from each system

paired with the samples from system b. Computer the standard deviations

of the differences using:

S2i;j ¼
X

j¼1;...;n0

Xi;j � Xb;j � Xbar;i � Xbar;b

� �� �2

( ),

n0 � 1ð Þ ð5:7Þ

and

Wi;b ¼ tm;n0�1

� �

Si;b
� �

.

n0ð Þ1=2
h i

ð5:8Þ

with

m ¼ 1� P�ð Þ½1=ðk� 1Þ� ð5:9Þ

and where ‘‘t’’ is a critical value for the t-distribution described in Chap. 2

and Table 2.1.

Step 4. Form the subset by including only the systems with means satisfying:

Xbar;i � Xbar;b

� �

�maximum Wi;b � d; 0:0
� �

ð5:10Þ

where the ‘‘maximum’’ implies taking the larger value which could be 0.0.

Note that the above method with d = 0 is essentially creating single sample

differences of each subsystem and the apparently best system. The approach

essentially creates these difference and t-tests whether the differences are statis-

tically significant.

As an example, consider the k = 3 system problem in Table 5.1 and the

assumption P* = 0.95. This value 0.95 corresponds to a value a = 0.05. System 2

has the smallest batch mean so b = 2. From Eq. 5.7, we derive S1,2
2

= 152.7 and

S3,2
2

= 40.7. These are simply the sample variances of the differences between the

three batch means of systems 1 and 3 and the batch means of system 2. Applying

Eq. 5.9, we derive m = 0.025 from Eq. 5.9.

Applying Eq. 5.8, we derive W1,2 = 30.5 and W3,2 = 15.7. The mean differ-

ences (Xbar,1 - Xbar,2) = 38.8 and (Xbar,3 - Xbar,1) = 48.3 and both are larger than

the respective numbers on the right-hand-side of Eq. 5.10, even with d = 0.0.

Therefore, the final subset contains only system 2; others are eliminated. Also, the

above method is more powerful than simultaneous intervals. The given initial set

of options is {system 1, system 2, system 3}, the resulting subset is {system 2}. It

is the best system with probability greater than 95%.

5.2.3 An Indifference Zone Method

This method is from Sullivan and Wilson (1989). Its objective is to start with a set

of k alternative systems and terminate with a subset of m, where the method user
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picks m. The user picks m together with the indifference parameter d and the lower

bound on the quality probability P*. For example, one might start with k = 100

systems and plan to end with ten systems with one having a mean within d = 3.0

of the true best mean from the original 100 with probability P* = 0.95. The

procedure is based on pre-tabulated Rinott’s constants, denoted here

Rinottk,m,n0,P*. Rinott (1978) was probably the first to tabulate these constants.

Step 1. (First stage) Evaluate all systems with n0 samples. These are generally

batch means with typical initial values equal to n0 = 10 or n0 = 20.

Fewer samples are generally needed if the batches are large. Calculate the

sample means, Xbar,i, and sample standard deviations, Si, for all system

responses.

Step 2. Calculate the number of follow-up samples for each system using:

ni ¼ maximum n0 þ 1; roundup Rinott2k;m;n0;P�

� 	

S2i
� �

.

d2
� �

h in o

: ð5:11Þ

Step 3. (Second stage) Perform the additional ni runs and then calculate the means

of these second stage runs, Xbar,i
(2) . Denote the index for the system with the

best mean as ‘‘b’’.

Step 4. Using the first stage standard deviations, Si, calculate:

Wi ¼
n

ni
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
ni

n
1�

ni � nð Þd2

h2S2i

� �

s

2

4

3

5 for i ¼ 1; . . .; k; ð5:12Þ

where h is the appropriate Rinott’s constant (see below) and keep

m subsystems with among these with the smallest WiXbar,i ? (1 - Wi)

Xbar,i
(2) values.

The above procedure is essentially the same as the Koenig and Law (1985)

procedure. Table 5.2 shows Rinott’s constants for three scenarios. The first two are

based on relatively small initial sample sizes, n0 = 10. The third is based on a

relatively large initial sample size, n0 = 50. Often in the literature the intent is for

Table 5.2 Rinott’s constants
for: (a) 3 ? 1, (b) n0 = 10,
100 ? 10, and (c) n0 = 10,
100 ? 10

(a) (b) (c)

k 3 k 100 K 100

m 1 m 10 M 10

n0 10 n0 10 n0 50

P* H P* h P* H

0.95 3.1 0.95 3.3 0.95 3.1

0.96 3.2 0.96 3.5 0.96 3.2

0.97 3.5 0.97 3.7 0.97 3.3

0.98 3.8 0.98 3.9 0.98 3.5

0.99 4.1 0.99 4.3 0.99 3.8

0.995 4.9 0.995 4.9 0.995 4.1

0.9995 5.6 0.9995 5.5 0.9995 5.0
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indifference zone methods to provide a single solution, i.e., a subset with m = 1.

These methods might be applied after a subset selection method has narrowed the

field by eliminating low quality options. Table 5.2 shows constants relevant to

starting with three alternative systems and sampling to pick a single solution,

hopefully with its mean within d of the true best mean.

The values in Table 5.2 were derived by simulation of the indifference zone

procedure in the least favorable configuration using 5,000 replicates. The least

favorable configuration has one mean d higher than all others which have equal

means. A binary search determined the Rinott’s value that yielded the desired

probability, P*.

5.3 Design of Experiments and Main Effects Plots (Optional)

Discrete event simulation models can be treated like any other experimental

system. All of the methods from the study of experimental design or ‘‘DOE’’ can

be used to help decision-makers understand how changing factors affects average

or expected response values. These methods are described in such textbooks as

Montgomery (2008) and Allen (2010). DOE methods create approximate stand-ins

or surrogate ‘‘meta-models’’ for the relatively complicated and slow simulation

models.

As an example of a widely used DOE method, consider the application of the 8

run fractional factorial experimental design in Table 5.3. The array is orthogonal in

part because the columns correspond to orthogonal vectors, i.e., multiply two col-

umns and sum and the result is zero. For example, multiplying columns A and B we

derived (-1)(-1) ? (-1)(-1) ? (-1)(1) ? ��� ? (1)(1) = 0. This array is also

called the L8 orthogonal array by G. Taguchi and it has many desirable properties.

To apply the array in Table 5.3, we identify seven or fewer factors whose

effects we would like to study. Table 5.4a shows the factors and levels for a purely

hypothetical study of an election system. In the hypothetical study, the analyst has

only six factors of current interest. Table 5.4a shows the array in engineering units.

The -1s in the array in Table 5.3 have been replaced by the low level of the

corresponding factor. The +1s have been replaced by the high level. Each row or

‘‘run’’ therefore corresponds to an alternative system.

Table 5.3 An 8 run regular
fractional factorial array also
called the L8 orthogonal
array

A B C D E F G

-1 -1 -1 -1 -1 -1 -1

-1 -1 -1 1 1 1 1

-1 1 1 -1 -1 1 1

-1 1 1 1 1 -1 -1

1 -1 1 -1 1 -1 1

1 -1 1 1 -1 1 -1

1 1 -1 -1 1 1 -1

1 1 -1 1 -1 -1 1
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For example, the first system has two registered workers, 15 voting machines,

the service times are TRIA(4,5.2,16), there is a single queue before registration,

and the arrival rate in the precinct is assumed to be 2.0 voters per minute. Usually,

one randomly reorders the runs before performing the experiments but this is

typically not needed in discrete event simulation studies. In a real example, eight

simulation models would be created and run. The response is typically the average

of 20 or more replicates but large numbers of replicates are generally not needed

because there is a pooling effect. Hypothetical responses for the batch averages are

shown on the right-hand-side of Table 5.4b.

Once the responses have been collected, there are many options for analysis

including hypothesis testing. Here, we focus only on one widely used type of

plotting called ‘‘main effects plotting’’. Figure 5.6 shows the main effects plot for

the data. Each point represents the average of four responses with the relevant

Table 5.4 (a) The factors and levels and (b) the scaled experimental design in engineering units

(a)

Factor Low High

A. #Reg. workers 2 3

B. #Voting machines 15 17

C. Parm. b voting dist. 16 18

D. Parm. m voting dist. 5.2 7.2

E. #Registration queues 1 2

F. Arrival rate (#/minute) 2 2.3

(b)

System A B C D E F G Avg. Wait

1 2 15 16 5.2 1 2 NA 8.3

2 2 15 16 7.2 2 2.3 NA 10.4

3 2 17 18 5.2 1 2.3 NA 36.9

4 2 17 18 7.2 2 2 NA 28.4

5 3 15 18 5.2 2 2 NA 17.2

6 3 15 18 7.2 1 2.3 NA 18

7 3 17 16 5.2 2 2.3 NA 20.7

8 3 17 16 7.2 1 2 NA 22.6
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Fig. 5.6 Main effects plot
for hypothetical election
systems example
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factor either at the low or high level. For example, the first point in the plot is the

(8.3 ? 10.4 ? 36.9 ? 28.4)/4. Main effects plots are reasonably easy to create

using standard spreadsheet software. Figure 5.6 was created using the Microsoft�

Excel ‘‘Line’’ chart feature from the ‘‘Insert’’ menu. The term ‘‘effect’’ here refers

to the average of responses at the high side minus the average at the low side for

each factor.

In general, almost every factor has an effect over some range. The plot tells us

which factors have major effects over the range studied. In this hypothetical case,

the response is the average waiting time. If the data were real, we could see that

the average waiting time is highly sensitive to changes in the numbers of machines

and the parameter b from the triangular distribution. Other factors have relatively

small (if any) effect over the levels studied. This information could aid officials so

that they focus on the most appropriate issues. In this case, they would focus on

additional machines and driving down the voting times, e.g., through voter

preparation.

Main effects plots provide a visual indication about the effects of factors on

system responses. Such information can help because factors can represent deci-

sion variables or, alternatively, assumption parameters. Yet, main effects plots do

not, by themselves, constitute statistical proof and do not even visually account for

multiplicity issues. Probably the most common approach for hypothesis testing is

to use a normal probability plot of the estimated effects. Estimate effects are the

differences between the averages at the high side minus the averages at the low

side for each factor. For example, in Fig. 5.6 the largest effect is factor B which is

+13.7.

The idea behind normal probability plotting is simple. If the data is all noise

with no pattern, then all factors would have no effect. Also, then the effect esti-

mates will be approximately normally distributed as can be predicted using the

central limit theorem in Chap. 2. IID normally distributed random numbers line up

on normal probability plots. Therefore, significant effects will be large in mag-

nitude and not on the line established by the effects associated with inert factors.

Figure 5.7 shows the normal probability plot for the data in Table 5.4b. The

effects from factor B (#Voting machines) and factor C (Parameter b voting dis-

tribution) are not only apparently large in the main effects plot. Also, these effects

are proven significant by the normal probability plot of effects. Admittedly, the

line in the plot is drawn with some subjectivity.

Standard software such as Minitab and JMP generate normal probability plots

of estimated effects automatically. Figure 5.7 shows the steps in excel for

generating the (i - 0.5)/(number of effects) column, the sorted effects, and the

U
-1 column. Here, U-1 is the cumulative inverse (F-1) for the normal distri-

bution. This approach can be applied for experiments design using the standard

n = 8 run, n = 16 run, and n = 32 run regular fractional factorials. Also, the

standard method uses the estimated effects for all (n - 1) columns even if fewer

than (n - 1) factors are used. The reason is that using as many numbers as

possible that are likely normally distributed helps to establish the line more

accurately.
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5.4 Black Box Simulation Optimization Methods (Optional)

The literature on simulation optimization is substantial and growing. See Fu et al.

(2005) for a recent literature review. Here, we divide methods by two issues. First,

some methods are specific for certain types of simulation and others are ‘‘black

box’’ or generic. Generally, specific methods that exploit the problem structure

identify desirable system design alternatives in far less computation time. Yet,

black box methods are applicable to virtually all types of problems and require

limited expertise for their application. Second, some methods use constant sample

size and others use variable sample sizes.

One way to characterize the types of simulation optimization methods is shown

in Fig. 5.8. Simulation optimization is of increasing importance in part because,

with modern computers, more accurate and influential simulation models are being

built and used than ever before. Some of these models are part of automatic control

systems such that they generate predictions leading, through optimization to

immediate actions. The intent in drawing Fig. 5.8 is to clarify the author’s sub-

jective view about the history, the current state of practice, and research trends in

the field of simulation optimization.

It is perhaps surprising that commercial software vendors have been slow to

use variable sample size methods. A well-known commercial product called

Fig. 5.7 Normal probability plot of estimated effects
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‘‘OptQuest’’ uses them in a limited way. Solutions are evaluated with sample sizes

sufficient to show that they are comparable or worse than d way from the current

best solution in expected value of response. Yet, how sample sizes are varied for

comparisons with other design alternatives is a little unclear. In the research

literature, however, the benefits of using small numbers of samples to eliminate

poor solutions have been clear for many years. It is likely true that some users of

commercial software are waiting many times longer than needed and still derive

lower quality solutions than what could be obtained using state-of-the-art

techniques.

In addition, a promising set of black box techniques attempts to address the

inherent limitations of all types of simulation. By considering the possibility of

developing models with varying degrees of detail, these ‘‘multi-fidelity’’ optimi-

zation techniques simultaneously work toward desirable real world factor settings

while mapping out the systematic errors of the various simulation codes from which

they draw evaluations. Huang et al. (2006) contains a promising multi-fidelity

methods that blurs the line between DOE and simulation optimization methods.

5.4.1 Variable Sample Size Methods

In this section, a simple black box, variable sample size method is described. This

method, by itself, is likely not competitive with commercial or research methods.

Yet, it illustrates the combination of a population based optimization search with

statistical selection and ranking methods. Combining these methods is one of the

important, on-going threads in the research literature. The promise of these

methods is that, by dividing the large optimization problem into smaller problems,

efficient variable sample size methods from selection and ranking can guarantee

that desirable solutions are not lost. These methods are promising also because

they do not ask simulation to compare too many similar solutions which are

difficult to tell apart with noisy and slow evaluations.

Fig. 5.8 Concept map to
characterize the types of
simulation optimization
methods
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5.4.2 Population Indifference Zone Search Method

Step 1. (Initialization) Create 100 system alternatives by sampling uniformly

from the decision space. For example, system 1 in Table 5.4 might be one

of the random selections.

Step 2. (Subset selection) Perform subset selection with P* = 0.99 based on

n0 = 10 batch means as described in Sect. 5.2.2.

Step 3. If the number of solutions in the subset is less than or equal to 10, go to

Step 5.

Step 4. (Indifference zone selection) For the not-eliminated solutions from Step

2, perform indifference zone selection with the first stage given by the

n0 = 10 batch means from Step 3. Use m = 10, P* = 0.99, and d = 1.0

where 1.0 represents a reasonably small number in the problem specific

units. Note that applying the Rinott’s constants for the k = 100 case

(Table 5.2) will be conservative since the number of solutions being

compared is generally fewer than 100.

Step 5. (Termination) Are any of our solutions good enough? If yes, stop

otherwise continue.

Step 6. (Form the next population) Copy the ten highest ranked solutions into the

next population. If the subset selection eliminated 90 or more solutions,

these have the highest sample means. Otherwise, they are the subset from

the indifference zone procedure. Fill the remaining 90 solutions with

uniform random selections from the decision-space.

The population indifference zone (PIZ) search method has the pleasing

properties:

1. (Black box) PIZ is reasonably simple and applicable to all simulation optimi-

zation problems with the only requirement being that one can sample uniformly

from the search space,

2. (Efficient) since poor quality solutions are generally eliminated from consid-

eration in Step 2, they are not permitted to use excessive amounts of CPU run

time, and

3. (Bounded) the chance that PIZ finds a good solution and loses it is bounded.

After ten populations, the procedure should keep a solution within 10.0 units of

the best it has searched with a probability greater than 1 - [(10)(0.01 ? 0.01)]

equals 80%. This result derives directly from successive applications of the

Bonferroni inequality in Eq. 5.1.

In addition, perhaps the most pleasing property of PIZ is that it can form a

springboard for more efficient search methods. For example, some or all of the 90

solutions in each population can be generated using a method other than uniform

random selection. Heuristic approaches such as genetic algorithm (GA) mating,

scatter search, and taboo search can be used to populate the new generation. Also,

in some cases, few (if any) solutions will be eliminated by the subset selection.
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Then, additional phases of subset selection can be added with escalating numbers

of evaluations to enhance efficiency.

Yet, many black box methods are not suitable for problems involving numbers

of factors greater than 100. For such case, e.g., pilot scheduling or rostering, it can

be critical to exploit the problem structure. Otherwise, computers could run for

days and generate no acceptable solution. For example, linear constraints associ-

ated with network flows can permit the operations researcher to address a problem

effectively with many fewer decision variables. As an example of recent simu-

lation optimization exploiting problem structure and using variable numbers of

samples see Zhao and Sen (2006).

5.5 Output Analysis and Steady State Simulation

This chapter has described simultaneous intervals, selection and ranking, experi-

mental design, and simulation optimization. Each of these relates to the manipu-

lation of simulations and outputs to generate information to support solid judgments

by decision-makers. Yet, the focus here has been on batch means derived by rep-

lications of finite duration simulations. Another important set of topics relates to

modeling systems in steady state, i.e., systems with no finite duration.

In steady state simulations, practitioners often perform a single extremely long

replication. Because of the high computational time needed for this long repli-

cation, it is generally desirable to extract more than a single number. Yet, as

described in Chap. 4, it is difficult to generate independent, identically distributed

random numbers from a single simulation run. Therefore, reliable inferences based

on the central limit theorem and confidence intervals are difficult to obtain. A

recent review of related literature is given by Alexopoulos (2006). In this litera-

ture, approaches have been invented to achieve approximate independence of the

multiple outputs from the same replication.

In the next chapter, we focus on paper and pencil alternatives to discrete event

simulation associated with queuing theory. In these cases, steady state modeling is

paradoxically relatively easy compared with modeling finite horizon time periods.

5.6 Problems

1. What makes simulation optimization more challenging than ordinary

‘‘deterministic’’ optimization such as standard linear and nonlinear

programming?

2. Will subset selection procedures ever establish significant differences that

simultaneous confidence intervals fail to establish? Explain briefly.

3. With multiple systems being considered, are simultaneous intervals wider or

narrower than individual confidence intervals? Explain briefly.

76 5 Output Analysis

http://dx.doi.org/10.1007/978-0-85729-139-4_4


4. There are alternative methods for establishing simultaneous confidence

intervals other than those based on the Bonferroni inequality. Name at least

one way in which each of these alternatives might be more desirable for at

least one situation.

5. Assume that there are three alternative systems of interest to decision-makers.

The simulation batch averages and batch standard deviations based on 10 batch

means for each system are l1 = 10, s1 = 2.6, l2 = 25.3, s2 = 4.1, l3 = 12.2,

and s3 = 3.6. Present the results using appropriately constructed intervals.

6. Assume that there are four alternative systems of interest to decision-makers.

The simulation batch averages and batch standard deviations based on 5 batch

means for each system are l1 = 20, s1 = 5.6, l2 = 25.3, s2 = 4.1, l3 = 12.2,

s3 = 3.6, l3 = 20.2, and s3 = 5.6. Present the results using appropriately

constructed intervals.

7. Suppose you are comparing ten systems. What is the setting for each confi-

dence interval a such that the chance that all means are in their intervals is

greater than 95%? If you apply an inequality other than the Bonferroni

inequality in your answer, please clarify.

8. Suppose you are comparing five systems. What is the setting for each confi-

dence interval a such that the chance that all means are in their intervals is

greater than 95%? If you apply an inequality other than the Bonferroni

inequality in your answer, please clarify.

9. What is an indifference parameter, d?

10. In this problem, we would like to find the system with the lowest average

waiting time and do not want to eliminate from considerations solutions which

might be the best (d = 0.0). Assume that there are four systems of interest and

batch averages are as follows. All responses are in minutes. For system 1, the

averages are 22, 34, 15, 7, and 23. For system 2, the averages are 51, 25, 43,

45, and 43. For system 3, the averages are 45, 30, 35, 38, and 40. And for

system 4, the batch averages are 43, 52, 55, 29, and 54. Which systems (if any)

can be eliminated with probability of retaining the best higher than 95%?

11. Why cannot we use d = 0.0 in the indifference zone procedure?

12. Assume that responses for three systems are generated as follows and we are

trying to find a single system with true mean within d = 5.0 units of the best

system with probability greater than P* = 0.95. For system 1, the batch

means are normally distributed with mean 30 and standard deviation 10. For

systems 2 and 3, the batch means are normally distributed with mean 40 and

standard deviation 20. Apply the indifference zone procedure using n0 = 10.

13. The PIZ method is supposed to use variable sample sizes. Where do the

variable sample sizes enter into the method?

14. Perform at least three iterations of the PIZ method to attempt to solve the ‘‘a4’’

problem given by:

Minimize:
P

i=1,…,20 (i)(xi
4) ? e with e * N[0.0, 5.0]{by changing x1,…, x20}

Subject to: -1.28 B xi B 1.28 for i = 1,…, 20. What makes this a simulation

optimization problem?

15. What aspect of output analysis does Alexopoulos (2006) focus on?
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Chapter 6

Theory of Queues

Queuing theory can be viewed as a by-hand alternative to discrete event simulation.

Yet, for many reasons discrete event simulations are often developed simulta-

neously with queuing models for the same or related systems. Queuing theory

models offer:

1. Validation for the results from complicated simulations to verify that they are in

the right ball-park,

2. Efficiency for deriving the numbers of machines when simulations are too slow

(e.g., if we have a need to develop recommendations at 800+ voting locations

inexpensively), and

3. Insight into how decisions affect outputs that complicated simulation models

cannot provide.

Queuing theory models provide these benefits with at least two types of asso-

ciated costs. First, users need to make a limiting set of assumptions about arrivals

and service distributions. These assumptions might not apply to any reasonable

approximation in some cases of interest. Making them could lead to inadvisable

recommendations. Second, queuing theory models are associated with complexity

and abstract concepts. These take time to understand and to apply confidently.

This chapter is intended to review only the most widely used queuing theoretic

formulas and concepts. Wolff (1989) is a textbook containing many other useful

queuing formulas. Research related to queuing theory continues with topics

ranging from exploiting queuing structure in optimization methods to developing

efficient approximations for a wider variety of assumptions.

Before diving into the structure of queuing systems in steady state, this chapter

begins with two of the most practical applications of queuing theory. In Sect. 6.1,

the implications of queuing theory for the case in which all servers are 100%

utilized are reviewed. Section 6.2 presents a reasonably simple formula to estimate

the number of machines needed based on the work of Kolesar and Green (1998).

These results are based on the limiting assumption of Poisson processes for

arrivals and exponentially distributed service times. Then, Sect. 6.3 covers the

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,

DOI: 10.1007/978-0-85729-139-4_6, � Springer-Verlag London Limited 2011
79



fundamental theory of so-called ‘‘Markovian’’ queues in which only the present

system state is relevant to predict future performance. Section 6.4 includes a

recounting of ‘‘Little’s Law’’ which relates to flow conservation. This permits the

derivation of average waiting times for so-called ‘‘M/M/c’’ queuing systems.

6.1 Steady State Utilization

Steady state queuing theory focuses on system properties in the long run. Over the

long run, gradual accumulations are a concern because there is the potential for

massive or even infinite buildups. In a well-known saying, the economist John M.

Keynes (1923) observed that the, ‘‘…long run is a misleading guide to current

affairs. In the long run we are all dead.’’ His purpose was to diminish the

importance of long run or steady state results in decision-making. Yet, the steady

state approximation can sometimes give relevant insights. For example, a long run

voting period might exceed 10,000 h in length, which could relate to an extended

early voting period. Predicting performance in time periods this long or longer can

be of interest to many types of organizations.

Consider the following example which might be regarded as ‘‘middle’’ run, i.e.,

not a 13-h Election Day (short run or finite horizon) but not necessarily the long

run either. Assume a long 1,000 h election period with 10,000 voters arriving

randomly throughout the period. Further, assume the average voting time is

10.2 min. How many voting machines would we need?

It is tempting to calculate the total amount of time on machines needed and

purchase only enough machines to match that time. This leads to:

#machines

¼ 10; 000 votersð Þ 10:2min=voterð Þ½ �= 100 hð Þ 60min=hð Þ½ �

¼ 17:0 machines

ð6:1Þ

Simulation based on exponential interarrival times and exponential service

times in this case predicts 36.0 ± 14.3 min average waits with an average of

60.0 ± 23.0 voters in line. These Monte Carlo predictions for the means or

expected values derive from 20 replicates (with no batching). Studying the

individual replications finds a pattern of concern. In every almost every case, the

queue length towards the end of the period is long and growing. If the already long

100 h period were extended to handle proportionally more voters, average waiting

times would likely continue to grow.

Let k (‘‘lambda’’) denote the long run average arrival rate of entities to our

system in units of entities per minute. Let l (‘‘mu’’) denote the long run average

service rate of each server or machine also in units of entities per minute. Therefore,

intuitively the long run average interarrival and service times must be 1/(k) and

1/(l), respectively. Let c denote the number of machines in the system. In terms of

these quantities, we can define the long run average utilization, q (‘‘rho’’) as:
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q ¼ ðkÞ=½ðlÞ cð Þ� ð6:2Þ

In our above example, one has k = (10,000)/[(100)(60)] = 1.667 voters per

minute and l = 1/(10.2) = 0.098 voters per minute. Therefore, with c = 17

machines q = 1.00 or 100% utilization.

The steady state theory developed in this chapter predicts that, over an infinite

period, the relevant systems with 100% utilization develop infinitely long lines

on average. Theory in Wolff (1989) extends this result to virtually any system

with random interarrival times and/or service times. Apparently, the slight

bunching of arrival and/or collections of slow servicing time causes lines to form

and to grow to infinite size. In practice, it is not clear how long one needs to

wait to experience long run performance. For example, even with a 100 h

Election Day and q = 1.00, the average waits are an estimated 36.0 ± 14.3 min,

not infinity minutes.

6.2 Number of Machines Formula

In this section, an approximate formula for the number of machines needed is

presented developed by Kolesar and Green (1998). This formula was developed to

achieve the desirable property that, in steady state, only 100p percent of entities

have any wait at all. The fraction, p, is an adjustable parameter of the method.

The formula is based on the assumption exponentially distributed interarrival times

(Poisson arrivals) and c servers each requiring exponentially distributed service

times.

The number of machines, c, needed is:

c ¼ roundupfðkÞ=ðlÞ þ z1�p½ðkÞ=ðlÞ�
1=2 þ 1=2g ð6:3Þ

where k is the arrival rate, l is the service rate of individual machines, and z is the

critical value for the standard normal distribution. In terms of the inverse cumu-

lative for the standard normal, F-1(), we have z1-p = F-1(1 - p). Tabulated

values for z1-p are shown in Table 6.1a. For example, with p = 0.3, z1-p = 0.52.

In the example in Sect. 6.1, we have (k)/(l) = 17.0. With p = 0.3, we have

c = 20 machines recommended. In the long run, approximately 30% of the voters

would experience a nonzero wait. Others would have no wait. Other tabulated

values from the formula in Eq. 6.3 are shown in Table 6.1b.

The assumptions of Poisson arrivals and exponential interarrival are always

approximate when applying to real situations. Equation 6.3 is an approximation

of a more accurate equation based on results provided later in this chapter.

The region of validity of the approximation in Eq. 6.3 is roughly p B 0.3. Yet, it

is perhaps true that Eq. 6.3 leads to overly conservative allocations. Election

officials and others might not be concerned about the long run and simply use 17

machines. Yet, in the elections example there is another consideration.

The officials are simultaneously running hundreds of precincts and need to
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guarantee equal access to equipment for all. Therefore, conservatism is probably

appropriate.

6.3 Steady State Theory (Optional)

In this section, formulas that describe one specific type of waiting systems are

presented. The systems here are ‘‘Markovian’’ (M), named after the Russian

mathematician Andrey Markov who pioneered much related research. Specifically,

the Markovian systems described here are characterized by exponentially dis-

tributed interarrival times (Poisson arrivals) and exponentially distributed service

times. The notation ‘‘M/M/c’’ summarizes these assumptions with the first

M referring to Poisson arrivals. The second M refers to exponential service times.

The ‘‘c’’ refers to the number of machines in parallel.

The defining attribute of Markovian systems is the ‘‘Markovian property’’

which means that the future behavior is fully predictable knowing only the present

system state. It is perhaps true that all physical systems are Markovian with a

sufficiently detailed description of the present state. However, because of the

memoryless property of the exponential distribution described in Sect. 6.3, M/M/

c queues are Markovian even with only a single state variable. That variable is the

number of entities in the system either waiting or being served. Because of the

memoryless property, the distribution of the time to the next arrival or service does

not depend on any information about the system.

In steady state, the ‘‘flow’’ of entities into any state equals the flow out of that

state. Otherwise, there would be build-up that would grow to infinite size over time.

The term ‘‘flow’’ refers to the transition rate of entities in one state moving to the

Table 6.1 (a) Standard
normal critical values and (b)
outputs of Eq. 6.3 with
p = 0.2

P z1-p

(a)

0.3 0.52

0.2 0.84

0.1 1.28

0.05 1.64

k/l c

(b)

1 3

2 4

4 7

8 12

16 21

32 39

64 73

128 141

256 274
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next state multiplied by pn, the long run probability that entities will be in the state

(n) being departed. Figure 6.1 shows the transition rates into and out of the states:

number in system = 0, number in system = 1,… For example, in the state (1),

there is one entity in the system. Arrivals are happening at a rate k, which could

drive the system to state (2). Also, service is happening at a rate l, which could

drive the system to state (0). The key point is that the flow rate downward continues

to increase as more and more machines are in use until all machines are utilized.

The description here owes to Adan and Resing (2002). The situation in Fig. 6.1

leads to the flow balancing equations:

kpn�1 ¼ min n; cð Þlpn for n ¼ 1; 2; . . . ð6:4Þ

Rearranging and iterating results in:

pn ¼ ðf½ cð ÞðqÞ�ng= n!ð ÞÞ p0ð Þ for n ¼ 0; . . .; c ð6:5Þ

where q = (k)/[(l)(c)] is the utilization and

pcþn ¼ ðqnÞ pcð Þ ¼ ðqnÞðf½ cð ÞðqÞ�ng= c!ð ÞÞ p0ð Þ for n ¼ 0; 1; 2; . . . ð6:6Þ

Since all probabilities must sum to 1.0, we can calculate the probability that the

long run system will be in the (0) state as:

p0 ¼
X

n¼0;...;c�1

f½ðcÞðqÞ�ng=ðn!Þ

" #

þ ðf½ðcÞðqÞ�ng=ðc!ÞÞ½1=ð1� qÞ�

( )�1

ð6:7Þ

The probability from Sect. 6.2 that a job must wait, p, can now be derived

exactly as:

p ¼ pc þ pcþ1 þ pcþ2 þ � � � ð6:8Þ

¼ ðf½ðcÞðqÞ�ng=ðc!ÞÞfð1� qÞ
X

n¼0;...;c�1

f½ðcÞðqÞ�ng=ðn!Þ

" #

þ ðf½ðcÞðqÞ�ng=ðc!ÞÞg�1

ð6:9Þ

Equation 6.9 can be solved for c to derive the exact formula for which the Kolesar

and Green (1998) equation in (6.2) is a simple, easier-to-apply approximation.

As an example, assume k = 0.5 entities per minute and l = 0.1 entities per

minute. With c = 5 machines, the long run probability of waiting is p = 1.0 from

Fig. 6.1 Steady state flows into and out of each state in M/M/c queuing systems
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Eq. 6.9. With c = 6, the probability of waiting is 0.83333. This is the steady state

probability that a randomly selected arrival will wait.

6.4 Little’s Law and Expected Waiting Times

Little’s law concerns the steady state or long term average number of entities in the

system, E[number] : L, and the long term average time these entities stay in the

system, E[‘‘sojourn’’ time] : W. It also involves the arrival rate, k. This law

governs all steady state queuing systems including systems with Poisson arrivals

and exponential servers. The law follows directly from the assumption that the

system can reach steady state, i.e., no build-ups occur because of overwhelming

demands. Little’s law is:

E number½ � ¼ ðkÞE ‘‘sojourn’’ time½ � ! L ¼ kW : ð6:10Þ

An extension of the law concerns the average waiting times, Wq, and the

average number in queue, Lq:

Lq ¼ kWq: ð6:11Þ

For M/M/c queuing systems, we calculate the expected number in line, Lq, using:

E number waiting½ � � Lq ¼
X

n¼1;...;1

nð Þ pcþnð Þ ð6:12Þ

¼ ½ pð ÞðqÞ�=ð1� qÞ ð6:13Þ

where p is given by Eq. 6.9. From Little’s law and Eq. 6.11, we have:

E ‘‘sojourn’’ time½ � � Wq ¼ Lqð Þ=ðkÞ ð6:14Þ

where Lq comes from Eq. 6.13.

Revisiting the same example from Sect. 6.3, assume k = 0.5 entities per minute

and l = 0.1 entities per minute. With c = 5 machines, the long run probability of

expected number in queue (Lq) and the average number waiting (Wq) are undefined

or ? from Eqs. 6.13 and 6.14, respectively. With c = 6, the expected number in

queue is Lq = 2.93 entities. The expected waiting time is Wq
= 5.9 min. The long

run probability of a randomly selected entity waiting is p = 0.83333.

6.5 Summary Example

Here we consider a constantly busy fast food restaurant. The restaurant experi-

ences rush periods but they occur at unpredictable times. Nothing particularly

constrains arrivals because there is a large population of potential customers near

84 6 Theory of Queues



the restaurant. These are the conditions that make the assumptions of steady state

and Poisson arrivals reasonable. Even if the restaurant were only open for short

periods each day, the steady state assumption might lead to interesting predictions.

Assume that customers arrive at the restaurant with exponential interarrivals

with mean time of 20 s (k = 3/min). The service time is highly random with mean

time of 1 min (l = 1/min). Assume that the customer monopolizes the cashier for

the whole time while the order is being processed.

The restaurant currently has c = 4 cashiers. What is their utilization rate and

what does this utilization imply about the system? The utilization is given by q = 3/

[(1)(4)] = 0.75. This rate indicates that cashiers are idle for a significant portion of

their time on the job. However, this utilization might be considered reasonably high

for a system characterized by so much variation. Lines likely become long and the

system is not very resilient should one of the cashiers go on break or be absent.

Next, we estimate the number of cashiers needed so that the chance customers

will need to wait is less than 20% (z0.80 = 0.84). How many cashiers are needed

and what assumptions need to be made for your estimate? Using the Kolesar and

Green approximate formula in Eq. 6.3 based on the assumptions of exponential

interarrivals and exponential service times and machines in parallel, we have the

following formula:

#cashiers ¼ roundup 3=1þ 8:4 sqrt 3=1ð Þ½ � þ 0:5f g ¼ 5: ð6:15Þ

Using (6.7) to solve for n would yield the same number. However, using the

approximate formula gives us a little more intuition, i.e., we see the need for the

bare minimum plus a buffer to address the variation in arrivals and service

processes.

Alternatively, we could simulate with different numbers of machines and pick

the system with the most desirable properties. Yet, simulation might be more time

consuming, require expensive software, and not provide as much intuition. Since

the steady state and Markovian (or exponential interarrivals and service distribu-

tional) assumptions are reasonable, we do not need simulation.

6.6 Problems

1. Assume that we have a detailed call center discrete event simulation model that

predicts the number of expert operators needed to handle a hypothetical new

type of rush period. Why might we also develop queuing models for the same

purpose?

2. Assume that there are two M/M/c processes in series, what are the state vari-

ables? Is the system still Markovian?

3. Assume that we have an M/M/c system, we select p = 0.2 fraction of entities to

wait, k = 0.8 entities per minute, and l = 0.1 entities per minute. Use the

Kolesar and Green approximate formula to estimate the number of machines

needed.
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4. Assume that we have an M/M/c system, we select p = 0.2 fraction of entities to

wait, k = 1.6 entities per minute, and l = 0.1 entities per minute. Use the

Kolesar and Green approximate formula to estimate the number of machines

needed.

5. Assume that we have an M/M/c system, k = 0.7 entities per minute, and

l = 0.1 entities per minute and we use eight machines. What is the exact

probability that an arbitrary entity will wait? Also, what is the expected waiting

time?

6. Assume that we have an M/M/c system, k = 0.5 entities per minute, and

l = 0.1 entities per minute and we use six machines. What is the exact

probability that an arbitrary entity will wait? Also, what is the expected waiting

time?

7. Assume that we have an M/M/c system, k = 0.8 entities per minute, and

l = 0.1 entities per minute and we use nine machines. What is the exact

probability that an arbitrary entity will wait? Also, what is the expected waiting

time?
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Chapter 7

Decision Support and Voting Systems

Case Study

This chapter describes practical information relevant to simulation projects.

In general, the inspiration for system changes can come from many sources

including from competitors. Also, the creativity involved with identifying

alternative systems is generally critical to project success. Simulation is usually

only useful for evaluating hypothetical changes. Without inspired alternatives, the

value is limited. Dogmas like theory of constraints (Sect. 7.1) and lean production

(Sect. 7.2) can provide the needed inspiration.

Also, it is generally important to consider:

1. The financial cost of waiting time which might relate to a multiplier times the

value of the work in process or the direct cost of employing people who are

waiting. Such multipliers can range from 0.02 that accounts only for the

opportunity cost of investing in inventory to 2.0 which might account for

loss-of-good will and lost future sales. Different organizations have different

conventions for how to evaluate inventory and/or waiting costs. The implied

cost of waiting can often be inferred by observing historical choices to purchase

resources. For example, consider that university administrators would not

have purchased 40 computers for a computer laboratory costing $100,000

including software and support costs if they placed zero value on student

waiting times.

2. The possibility of making policy changes and not merely considering invest-

ments in additional resources. For example, putting up a sign to prepare voters

showing the ballots that they will be voting on could greatly reduce the average

voting (service) times. Such a subtle change would require minimal capital

investment but could be effectively equivalent to having many additional

machines. With signs, fewer voters are reading the entire ballots while

monopolizing the existing machines. Consider also that one resource might be

dedicated for entities having short processing times like a computer dedicated

for printing only. These seemingly subtle policy changes can give rise to

alternative systems that can be compared using simulation.

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,

DOI: 10.1007/978-0-85729-139-4_7, � Springer-Verlag London Limited 2011
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Section 7.3 describes an actual discrete event simulation project performed on

behalf of the Franklin County, Ohio Board of Elections. In Sect. 7.4, there is a

supermarket case study more similar to what a student could be expected to

produce in a semester long course. Exercises possibly relevant to university

instruction are described in Sects. 7.5 and 7.6.

7.1 Theory of Constraints

The theory of constraints is a management dogma proposed by E. M. Goldratt and

described in his book ‘‘The Goal’’ and subsequent books (3rd edition in Goldratt

2004). The central idea is simple. In many or all complicated systems there is exactly

one bottleneck. This is a subsystem with the following property: If its capacity is

increased, the overall capacity increases. All other subsystems are not bottlenecks.

Increasing their capacity has little or no effect on overall system performance.

The implications for the theory of constraints for simulation projects are also

clear. After a validated model has been built, the alternatives that are relevant for

study relate to different ways to alleviate the flow clogging the bottleneck or to

increase its capacity to handle the flow. For example, in an election system it might

be tempting to focus on adding additional poll workers to support registration.

However, if the bottleneck were the direct recording equipment (DRE) voting

machine, the theory of constraints says that additional poll worker recruitment

would be almost surely a waste of money (unless they could help speed up DRE

service).

Focus on alternatives related to adding capacity to the DRE system is recom-

mended. For example, one might simulate locations with added DRE machines or

improved voter preparation through signage or hand outs. Such preparation can

drive down the service times and therefore alleviate the bottlenecks. Actions that

affect the bottleneck subsystem are the only ones that can increase throughput and

thus key outcomes such as voter experience or, in business situations, revenues and

profits. Simulation can also be used to investigate how many resources can safely

be extracted from non-bottlenecks and used to alleviate bottlenecks.

7.2 Lean Production

Toyota has been among the most admired companies in the world for at least

30 years despite recent quality problems with their electronic control systems.

This has occurred in part because of the many innovate aspects of the Toyota

production system including those documented in Ohno and Bodek (1988) and

more recently in Liker (2005). The TPS has inspired management movements

including re-engineering and lean engineering. There are many aspects of the TPS.

Here, we focus on five that have inspired our simulation investigations.
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1. Eliminating batch operations: batch operations form natural bottlenecks and

force producers to make quantities of similar parts regardless of what is

demanded. The TPS dogma is to work toward a batch size of a single unit.

For example, if you are making four sandwiches, a non-lean or ‘‘mass’’

producer might put eight pieces of bread in an oven, then spread peanut butter

on four, then spread jelly on four, and assemble. Then, the batch size would

either be four or eight. The TPS way would be to make one sandwich, then the

second, the third, and the fourth. One benefit is that individual items are

produced in short cycle times, i.e., they do not need to wait to be completed

because their parts wait for batch processing. Therefore, customers receive their

products with minimal lead times.

2. Shortening set-up times and ‘‘mixing’’ production: moving to a batch size of a

single unit might seem unwise if it were not accompanied by a concerted effort

to reduce the setup times of machines. For example, one advantage of spreading

all the peanut butter at one time would be that the knife can be cleaned before

being used on jelly. Yet, the TPS or lean producer would simply work to make

cleaning extremely efficient. Then the cost of switching back and forth would

be minimal. Also, the lean producer would purchase special ovens that permit

one-piece-flows. Taking these actions, the lean producer would be able to

switch effortlessly from producing peanut butter and jelly sandwiches to

producing tuna fish sandwiches and ‘‘mix’’ the production. Faster set-ups and

mixed production also result in generally shorter lead times.

3. Implementing a ‘‘pull’’ system: in the TPS, items are custom made precisely

to match orders. Therefore, items are ‘‘pulled’’ into the system to meet

demands and not pushed into the world to meet forecast demands or to fill out

batches for batch operations. With one-piece-flows and mixed production, the

item being ordered is made and delivered quickly, i.e., with greatly reduced

lead time.

4. ‘‘Leveling’’ demand: the randomness of demand can hurt performance of any

production system. For example, if all voters arrive at the beginning of Election

Day, then waiting lines will be much longer than they need to be. Organizations

can, however, take action to try to even or ‘‘level’’ out their demand over time.

For example, election officials can inform the public about the relatively small

number of voters arrive at the polls in the early afternoon. Also, hospitals can

work to try to schedule patients more evenly over the morning to avoid early

rushes and their negative effects on waiting times and patient outcomes.

5. Using ‘‘kanban cards’’: mixing production and eliminating batch operations

will, by themselves, tend to reduce the amount of work in process (WIP)

inventory. Yet, the TPS system uses a ‘‘kanban card’’ system to directly limit

the amount of inventory. Each item in the inventory buffer is assigned a card.

When a subsystem runs out of kanban cards, the upstream system must stop its

production. The effects can ripple upstream until the entire upstream system is

shut down. This is obviously inefficient in the short term. However, part of the

lean dogma is that shutting down the line will cause resources to be focused on

complete and permanent problem resolution.
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The basic vision of the TPS is to deliver exactly what the customer orders

quickly and with zero waste of any kind. Mass producers typically make items in

large batches to reduce the cost of setting up machines for different types of parts.

This choice causes many types of problems beyond the inventory carrying costs

associated with storing batches. Some of these costs are difficult to simulate

including the quality losses because when problems are discovered they can affect

all the parts in large batches.

The TPS dogma can inspire many alternative systems to study with simulation.

In general, discrete event simulation can help ‘‘mass producers’’ answer questions

about how their operations would be different if they adopted the TPS. Specifically,

if they purchased equipment to facilitate smaller batches, what would be the

effects on WIP and lead times? How much shorter would set up times need to be for

mixed production to have a negligible effect on throughput? In relation to election

systems examples, officials could use simulation to tradeoff machine purchasing

costs with costs associated with leveling demand, e.g., through direct mail.

7.3 Sample Project: Lessons from the 2008 Election in Ohio

This section documents a sample project from project definition through decision

support. The project was performed in preparation for two Ohio election summits

sponsored by then Secretary of State Jennifer Brunner. It is the latest in a series of

projects. No support was provided by the state for this project. The purpose was to

use simulation to shed light on the 2008 November election with the aim of

helping officials in other states as well as Ohio understand what works in designing

efficient voting systems and also helping those who would like to cut costs make

sure they do not cut vital programs in the process.

7.3.1 Project Definition: Learning What Works

The 2008 presidential election was historic in its election of Barack Obama.

The first theory inspired allocation application approach was in 2006, also in

Franklin County, Ohio. Another, albeit far more minor, historical event was the

application of what is apparently the second voting machine allocation inspired by

simulation and queuing theory. We call this approach ‘‘utilization-based’’ allo-

cation, which required only simple spread-sheet-based formulas. It therefore

offered reproducibility and transparency. Instead of allocating machines based

solely on the number of voters expected, the allocation was based on the expected

amount of time voters at that location would need to utilize the machines. Utili-

zation is proportional to (the number of registered) 9 (the average time required to

vote at the specific location). This formula is simpler than the Kolesar and Green

(1998) formula from Chap. 6 and appeared to foster competitive waiting line

performance in our simulations prior to the actual election.
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The utilization-based approach was applied in Franklin County and minimal

waiting times generally resulted. The main purpose of this report is to clarify the

positive effect of the utilization-based allocation and of other factors in recent

election. The factors being studied include: the directives from the legislature and

Secretary of State Brunner’s office for early voting and voting using paper ballots

on Election Day. Also, additional factors include the benefit of statistical simulation

for forecasting waiting lines prior to elections and the utilization-based allocation.

The motivation for this clarification relates to problems being experienced

elsewhere across the county. The Associated Press documented many long lines in

several parts of the country and one article claimed that waiting lines were the

most important election systems problem. The CNN hotline cited ‘‘poll access’’ as

only the third most important issue, which could be attributable to the less

common but more troubling phenomenon of being excluded from voting because

of registration issues or worrying that, because of machine failures, votes would

not be counted. Our purpose here is to argue that, by applying utilization-based

allocation and simulation, voting systems in these other parts of the country can be

improved with minimal cost to taxpayers.

The charter for the project is shown in Table 7.1. The charter clarifies that the

project focuses only on Franklin County, Ohio, which contains the city of

Columbus and includes 532 polling places with Election Day turnout of approx-

imately a half a million voters.

In Franklin County, the majority of the voting is done using direct recording

equipment (DRE) machines. By law, these machines create a paper reel that is

technically the official ballot. The county is particularly interesting, perhaps, in

that almost all of the major methods for voting were available to residents. These

including voting by mail in the form of no-fault absentee voting, early voting in

person, Election Day voting with DREs, or, by voter choice, paper ballots scanned

by optical scanner. Here we focus only on waits for those using DREs and not

including any effects from waiting at registration. Therefore, actual waits would

Table 7.1 Charter for project to derive the lessons from the 2008 election in Ohio project

Project Lessons from the 2008 Election in Franklin County, Ohio

Team members Theodore Allen and Mike Bernshteyn

Timing The 3 weeks following the election

Direct costs $0 (we volunteered our time to do this analysis)

Special
responsibilities

Mike made the software available and Theodore ran the simulations and
documented the results

Scope The 532 voting locations in Franklin County, Ohio where direct recording
equipment (DRE) machines are the primary method of voting. The
allocations in each scenario were given based on historical facts

Primary objective To clarify the effects on the expected latest poll closing time (the key
response) of using HAVA compliant machines (factor A), using more
machines (factor B), allowing early voting combined with a simulation-
based warning (factor C), allowing same-day voting using paper ballots
(factor D), and using the utilization-based machine allocation method
(factor E)
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likely be longer than the models predict. The effects of absentee voting and other

options were simply to reduce the pool of voters for DREs.

This exotic situation was costly and a potentially important issue for the future

is cost savings with minimal losses in terms of waiting and security. By studying

the election after it occurred, we have extremely high quality data sources

including timing data from our previous project. In the previous project, we per-

formed a mock election and timed representative voters on actual machines using

ballots of different lengths (Allen and Bernshteyn 2008).

7.3.2 Input Analysis and HAVA Compliance

This section, derived from our report in Allen and Bernshteyn (2008), describes

the data collection or input analysis with regard to the DRE service times.

The Help America Vote Act (HAVA) had many effects on US election systems.

One of the least noticed effects was the dramatic increase in the time it takes for

voters to cast their ballots using DRE. Partly because of the mandated warning

related to under-votes and because of the implicit encouragement for non-full

faced equipment, voting times in Franklin County increased dramatically as shown

in the figure below. Non-full faced machines are generally like PCs which

handicapped people can reach easily but which require the user to page through

multiple screens to cast a ballot.

The figure shows the distribution of the times voters need to cast ballots once

they are permitted to monopolize the voting machines. The first curve refers to

non-HAVA compliant, full-faced machines (from 2004) and subsequent curves

refer to the compliant ES&S DREs used in 2006 and subsequent elections.

The average times roughly doubled and some voters needed more than 20 min in

the recent elections (Fig. 7.1).

The result is that: (1) after 2004 substantially more time was needed to cast your

ballot once you reached the DRE and (2) the variation from location to location

also increased. Addressing both challenges without unnecessary expenses requires

an attention to the fundamentals of waiting systems. This follows because

elementary queuing theory teaches us that slowing the service times of a machine

(by making using it take longer to cast ballots) has a similar effect to increasing the

arrival rate of machine users (e.g., an increase in the number of registered voters).

Officials in many parts of the country noticed this effect but did not know precisely

how to predict its consequences.

7.3.3 Simulation and Non-Interacting Systems

Figure 7.2 illustrates the 532 polling locations. Each voter is assigned to a precinct

in a location which is a type of ‘‘vote center’’ in election systems terminology.
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The assignment is made in part because different precincts generally vote on

different issues and races. Because of technology improvements, voters within

their location can vote on any machine, i.e., machines are not dedicated to

precincts. Different locations do not interact because their voters and resources are

not shared. There are effectively 532 non-interacting systems.

Each system has a different arrival process because the number of registered

voters is different (and the demographics are different). Each system has a

different service process because the length and nature of the ballots are different.

In 2008, all locations voted on 24 races. However, some locations voted on 19

ballot initiatives (estimated mean service time equal to 12.5 min) while others

voted on 8 ballot initiatives (estimated service time equal to 6.5 min).

Fig. 7.2 An indication of the
532 non-interacting polling
locations
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The key element in voting systems simulation is to recognize that the overall

system performance is evaluated based on the expected waiting lines at the worst

performing precinct. Therefore, each simulation replicate or run must include a

day of voting at all 532 locations and aggregation based on the worst performing

location. Simulating 0.5 million voters takes time and the large number of loca-

tions means that standard software might likely be too slow and unwieldy. As a

result, my business partner, Mike Bernshteyn, of Sagata Ltd. developed C++ code

to perform the needed simulation. Following Allen and Bernshteyn (2008), we

used an empirical distribution for the non-homogenous arrival process and a

Poisson breakdown process for the machines.

7.3.4 Output Analysis: Studying Alternative Scenarios

In our report to Franklin County, we applied simulation to predict that long lines

could be expected if early voting did not greatly exceed the previous levels.

In both the 2006 gubernatorial and the 2008 primary elections, approximately 24%

of all ballots cast were via early or non-election day voting. Because of the longer

ballots and HAVA compliance, we applied straightforward simulation and

predicted lines comparable to 2004.

At the time of our report, Franklin County was already in the process of

initiating a substantial advertising campaign encouraging people to vote early.

This campaign was likely strengthened (to at least some extent) by our findings

which were publicized widely including on the Columbus Dispatch front page.

Whatever the cause, the result was that in November 2008, approximately 44% of

the ballots were cast not on Election Day in Franklin County.

Our simulations here are generally based on voters arriving randomly over the

day and machines also breaking down at random intervals. Further, we consider an

overall turnout and 4 scenarios two being higher and two lower than the overall

turnout fraction. Here, we focus on post election simulation with known turnout at

each location. For simplicity, we use truncated normal voting times and Poisson

arrivals spread uniformly over the 13 h Election Day. In Allen and Bernshteyn

(2008), we had used empirical distributions (see Chap. 3) of voting time and turnout

percentage distributions causing generally minimal differences in predictions.

The table below describes seven scenarios relating to the historical changes in

the Franklin County election systems. Scenario 1 begins with what, hypothetically,

could have happened had the 2,870 full-faced machines from 2004 simply been

used in 2008 with its more variable ballot lengths. Subsequent scenarios describe

the changes to HAVA complaint machines, the increase in the number of machines,

the switch to early voting, and the advent of Election Day in-person voting using

paper ballots. Scenario 6 describes the system used in the actual November election.

Scenario 7 refers to a different hypothetical scenario in which only Election Day

DRE voting was permitted and utilization-based allocation was applied (Table 7.2).
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The simulation results based on 10 replications show the minor negative effect

on the poll closing times of the 2008 ballot lengths which, by themselves, would

likely have made 2008 slightly worse than 2004. Next, shown is the effect of the

HAVA compliant machines, which greatly worsen the waiting line situation. This

very large, undesirable effect is countered by the next effect in scenario 3 of early

voting for which the secretary of state and the legislature deserve much credit.

As noted previously, we also claim some credit for helping to increase the early

voter percentage from 24 to 44%. This change caused by far the largest and most

desirable effect on the expected poll closing time and the expected waiting times in

general.

Next, we considered the effect on Election Day voting of using paper ballots.

We assumed that these voters simply waited through the line and went off to a

different area than that used by DRE voters. Therefore, the effect from the waiting

line point of view was as if the voters did not exist or a two line system was

applied. Next, our simulations indicated that a statistically significant improvement

is associated with utilization-based allocation. This improvement could only have

been relatively small because the lines were already expected to be short as a result

of the other improvements. The last scenario shows the relatively substantial effect

of utilization-based allocation if early voting and Election Day paper voting had

not been permitted. All results are shown in Fig. 7.3.

7.3.5 Decision Support

The results in Fig. 7.3 show that Ohio ‘‘dodged a bullet’’ because of the decisive

actions of the legislature and Secretary of State Brunner. The HAVA compliant

machines require such greater service times that simply doubling the number of

them would likely not have been sufficient. The added machines alone would have

resulted in expected actual poll closing times 15 h after the doors officially closed

at 7:30 pm. Ohio would have been again the subject of national ridicule. Also,

thousands of citizens would probably have been deterred from voting. Without

utilization-based allocation, these deterred voters would likely have been

concentrated in the downtown area of Columbus where the ballots were longest

(slowest service times). The county would then be open to equal-access-based law

Table 7.2 Description of scenarios simulated in voting systems project

Change Scenario

1 2 3 4 5 6 7

New HAVA compliant machines No Yes Yes Yes Yes Yes Yes

Larger number of machines No No Yes Yes Yes Yes Yes

Early voting and simulation warning No No No Yes Yes Yes No

Election day in person on paper ballot voting No No No No Yes Yes No

Utilization-based DRE allocation No No No No No Yes Yes
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suits because the allocation would effectively discriminate against voters who have

longer ballots among whom many are African Americans.

Fortunately, we did have decisive leadership. The early voting process

removed 211,000 voters from the pool on Election Day. We like to feel that

publicity given to our simulation analysis contributed to this success by helping

to encourage many voters to use no fault absentee voting. This illustrates the

potential power of simulation to anticipate and avoid problems before they

happen.

Because of the more powerful actions by the secretary of state and the legis-

lature, the effects of our utilization-based allocation were limited. However, other

counties and states may not budget all the expenses needed for early voting in two

forms (by mail and in person) as well as Election Day voting in two forms (DRE

and paper). Also, future elections might see even higher levels of voter turnout. In

these other cases, sensible allocations must account for both the arrival processes

(numbers of registered voters) and the service processes (the potentially variable

ballot lengths). Variable ballot lengths and service times are not an issue in many

locations around the country. However, in the locations where they are an issue

such as Ohio and California, it is obvious to any student of simulation and/or

queuing theory that they should be accounted for.

To generate sensible allocation formulas, what is needed is the number of

registered voters, a list of issues at each location, and estimates of the average

shortest and longest average voting times. Then, using Excel, one can quickly find

the target utilization q0 that either meets performance goals which can relate to the

available budget for machines (i.e., the goal is to hit the target available) or waiting

time performance goals.

Our conclusion is that simulation should generally be applied to predict

possible catastrophes and to help ensure that sufficient resources are in place to
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avoid them. Applying simulation software such as that available from Sagata

Ltd. should

ð7:1Þ

then be used to confirm that the waiting line performance is acceptable. For each

county, the process takes only a few hours once the timing data for the shortest and

longest ballot styles are available.

Also, for voting machine allocation in counties with variable ballot lengths,

some equation that includes the effects of both the turnout and the ballot lengths

should be applied. Indeed, it would probably be desirable for federal law to make a

theory inspired formula explicit as part of the existing guarantee of equal access to

voting. Equation 7.1 is one candidate for such a formula as is the Kolesar and

Green (1998) formula in (6.2).

7.4 Case Study of Supermarket Checkout Fast Lane

In this section, a project more similar to the scope of a student project is described.

It is designed to provide an example answer to question 8 of Sect. 7.6. The model

has limitations that are also discussed, but it is argued that the recommendations

are likely reasonable within the confines of the defined scope.

Abstract: The application of discrete event simulation to support decisions about

designating one cashier for customers with X or fewer items is investigated.

Responses considered include average line length (Y1) and expected store revenues

(Y2) under specific assumptions about losses as they vary with line length. The

scope of the project and recommendations relates only to a rush period from 1 pm

to 3 pm weekdays when all cashier aisles are routinely in use. The recommen-

dation that X = 5 items for that period is described.

7.4.1 Problem Definition

An Ohio supermarket caters to gourmet customers such that they expect high

service levels even during their rush period. This makes self-service options like

the ones explored using simulation by Opara-Nadi (2005) irrelevant.
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During all periods the store uses a cascading policy in which workers from other

areas of the store are pulled into become cashiers quickly when lines reach certain

levels. The use of simulation to inform decisions about such triggering policies in

the context of retail checkout lanes is the subject of Williams et al. (2002).

The focus in this project is on a rush period after lunch in which the maximum

number of aisles open is assumed to be three, an assumption based on informal

observations of aisle service times during the 1–3 pm time period. During these

time periods it is assumed that additional cashiers are not available. The key input

factor or decision variable ‘‘X’’ explored is the maximum number of items allowed

in a fast lane aisle. If that value is X = ?, the there is effectively no dedicated fast

lane aisle. The scope is described in Table 7.3.

The responses considered are the average waiting time (Y1) and average

revenue lost (Y2). We assume that customers are lost if they observe all lines

having six or more other customers. This is a gourmet food store and customers

value their time highly. We have observed actual sales losses in cases in which all

lines were too long. Further, we use a linear regression model to relate cashier

service time to revenue as described in the input analysis.

It is currently not estimated (unknown) how much revenue is being lost because

of excessively long times. However, one project goal is to estimate the current loss

rate and to minimize the expected average loss per 2 h period (Y2).

7.4.2 Input Analysis

The waiting line system involves three aisles each with its own queue. The system

involves arrivals who appear in roughly equal numbers at aisles 1 and 3 and then

select their queue by observing the queue lengths. The arrivals are clearly unco-

ordinated. Often more than one person arrives at the same time but they typically

share the purchased goods. From the modeling point-of-view, they are equivalent

to individual arrivals and not batch arrivals.

We asked the managers for the historic average number of customers arriving

during the 1–3 pm time period. Their estimate was 180 purchases leading to an

estimated arrival rate of 0.4 arrivals per minute and exponentially distributed

interarrival times. They told us that this estimate was a bit on the high side but of

interest. We timed 20 service times by cashiers as well as the purchase revenues.

The results are shown in Table 7.3 together with events that we noted.

Next, to model the service time distribution, a relative frequency histogram was

constructed as described in Sect. 3.2. The results are shown in Table 7.4. The

associated continuous distribution and the best fit two-parameter exponential

distribution is shown in Fig. 7.4. Using the excel solver, the best fit two parameter

exponential distribution is computed to be 0.21 ? EXPO(0.388) in minutes and

using the ARENA notation from Chaps. 10 and 11.

Next, we developed a simple model to estimate the revenues associated with

each purchase. The scatter plot and linear regression model indicated in Fig. 7.5
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Table 7.4 Information for service time distribution histogram and fit

i q(i) Midpoint Count Bin (Scale)
rf(i)

f(x) e(x)

0 9.40 23.72 10 9.4–38.0 0.0175 0.0187 -0.0012

1 38.03 52.35 7 38.0–66.7 0.0122 0.0091 0.0031

2 66.67 80.98 2 66.7–95.3 0.0035 0.0045 -0.0010

3 95.30 109.62 0 95.3–123.9 0.0000 0.0022 -0.0022

4 123.93 138.25 0 123.9–152.6 0.0000 0.0011 -0.0011

5 152.57 152.57 1 152.6–181.2 0.0017 0.0007 0.0010

SSE 0.000019

Table 7.3 Charter for the gourmet supermarket fast lane study project

Project Tuning the parameters of a supermarket fast lane

Team members Theodore Allen and Andrew Allen

Timing One day of data collection and modeling. One and one half days of
analysis and documentation

Direct costs $0 (we volunteered our time to do this analysis)

Special
responsibilities

Andrew Allen ran the stopwatch. Theodore Allen was responsible
for simulation modeling, analysis, and documentation

Scope This project relates only to the gourmet food store with three aisles
in operation in the weekday 1–3 pm periods

Primary objective To clarify the policy for the fast lane aisle (X items or fewer) that
is likely to foster desirable average waiting times and expected
revenues under realistic long-term assumptions

Shopper Time (s) Purchase ($) Notes

1 19.78 1.75

2 46.89 43.27

3 27.50 17.88

4 30.42 14.16

5 12.52 11.51

6 18.21 11.40

7 45.46 20.47 Customer is withdrawing cash

8 61.21 33.48

9 9.40 7.19

10 25.92 15.23

11 18.64 7.20

12 69.00 53.32

13 46.76 17.00 Cash and call for new aisle opening

14 22.00 3.00

15 52.00 47.19

16 181.20 95.25 Customer is withdrawing cash

17 63.53 60.85

18 39.40 5.30

19 70.80 30.59

20 12.50 5.10
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suggest that purchased revenues ($) can be predicted from service times, x (in

minutes) using 0.5719x ? 0.1105. In our experience, we have observed customers

giving up and leaving the store without purchasing items (reneging) whenever the

shortest line is six or more customers. Therefore, to estimate the expected losses,

we use the regression equation to predict the revenues that customers would have

brought had they not left because of their simulated service time.

7.4.3 Simulation

The simulation model was built using ARENA software described in Chaps. 11

and 12. Figure 7.6 shows the ARENA model used starting with the ‘‘Create’’

entity block and stopping with the two ‘‘Dispose’’ blocks. We generated the ser-

vice time first and used the ‘‘Assign’’ block to attach it to the entities as a variable.

We did this because the financial revenue and line selection depends on the service

times. The revenue is calculated using 0.5719x ? 0.1105 and a second ‘‘Assign’’

block, where x is the service time. Next, we checked that at least a single line had

five customers or fewer. Otherwise, it was assumed that the customer walked away

and their business lost.

Fig. 7.4 The scaled relative
frequency histogram and the
two parameter exponential fit

Fig. 7.5 Regression fit
showing the relationship
between service time and
revenue
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We made the further assumption that customers with smaller numbers of items

(short service times) approach the cashiers on one side and shift over to the middle

aisle if the line is shorter. Customers with large numbers of items (longer service

times) approached the cashiers from the other side. This seemed reasonable

because one side of the store has sandwiches and meal items and the other side has

bulk items relevant to home sales.

The routing is based on the conditions of the queues. Specifically, the initial

‘‘Define’’ block is based on the following two way condition:

MNðNQ X Items or Less:Queueð Þ;NQ Check Out 1:Queueð Þ;

NQ Check Out 2:Queueð ÞÞ � CutOffLine
ð7:2Þ

The second sets of ‘‘Define’’ blocks is also route-based:

NQ X Items or Less:Queueð Þ�NQ Check Out 2:Queueð Þ ð7:3Þ

The loss accounting is based on record blocks that sum the losses or revenues of

all entities reaching the entity.

Verification and validation was accomplished by having someone familiar with

store operation walkthrough the simulations using the built-in ARENA animation

feature. During these iterations, the lines were observed to be longer than usual but

reasonable. As a result, the assumption of an average 180 customers per 2-h period

is considered to be on the high side. The patterns of the lines and the high variation

in the line length for the fast lane were considered realistic.

7.4.4 Modeling Using Alternative Software: SIMIO

This section is not part of the case study and merely shows how alternative

software might offer additional benefits. In Chap. 10, it is argued that ARENA is

used in university instruction mainly because of the short learning curve. However,

it is probably true that most businesses use alternative software packages having

Shoppers Arrive

Decide Not Eligible?
T ru e

Fa l s e

Check Out 2

X Items or Less

Dispose

Assign Time Assign Money

T ru e

F a l s e

Decide Give Up?

Sum Revenues

Sum Losses Dispose Loss

Check Out 1

Eligible Decide Line
T ru e

F a l s e

Decide Line
T ru e

F a l s e

Record Revenue

Record Loss

0      

0      

     0

     0

     0

0      

0      

     0

0      

     0

0      

     0

0      

     0

Fig. 7.6 ARENA simulation model used for the analysis
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superior animation or visualization capabilities. For example, ARENA is a mainly

two-dimensional (2D) software with limited post-processed three dimensional

(3D) viewing capabilities. Software packages such as AutoMod, GPSS/H,

ModSim, and WITNESS have powerful 3D or virtual reality viewing.

One promising software package called SIMIO provides equivalent ease of

learning along with enhanced visualization capabilities. SIMIO was created by

much of the same team of engineers that produced ARENA. A trial copy of SIMIO

is easy to download at http://www.simio.com and the complete software package

is available at no charge for academic institutions.

Since SIMIO is built around the concept of Intelligent Objects, the modeling

approach is more intuitive. It is based on drag-and-drop placement of objects,

rather than drag-and-drop logical modules. Each of these objects represents a

physical component in the real system. For example, to represent the same system

described in Sect. 7.4.3, we would start by placing three Servers from the library

on the left—each representing one of the checkout counters. Then we would place

a ‘‘Source’’ and a ‘‘Sink’’ representing entry and departure locations and connect

them with paths.

We change the properties of each object to represent intended behavior.

For example, we set the ‘‘Source1’’ object properties to the expected arrival rates

(exponential with a mean of 0.4 people per minute) and assign characteristics such

as Service Time to the incoming shopper. As the entity leaves Source1, we would

also select the server by specifying a selection goal and condition to select the least

busy server appropriate to the customer purchase. This would result in the model

shown in Fig. 7.7.

The difficulty of generating 3D models as well as the difficulty of drawing or

obtaining appropriate 3D symbols have long been significant barriers to creating

good animations. The model in Fig. 7.7 is shown in a top-down view with all

default names and animation. It is shown in development and animation as a 3D

model. In using the SIMIO program, simply pressing the ‘‘2’’ and ‘‘3’’ keys toggles

the animation in real time between 2D and 3D.

We can replace the default symbols by using symbols from the included symbol

library. For example, if we animate the checkout clerks, we simply select one of

the many 3D people included in the library. We do the same to animate a variety of

customers. Given pre-specified symbols (like a vendor-supplied symbol of the

checkout counter), we could import them. We have yet another option to

‘‘download’’ symbols from Google 3D warehouse. This warehouse contains

hundreds of thousands of 3D objects and SIMIO is the first discrete event simu-

lation software that provides a direct link to the objects there. Searching

‘‘checkout’’ results in over 60 symbol options. Choosing among these options in

addition to a few other quick enhancements results in the 3D animation shown in

Fig. 7.8.

The animation in Fig. 7.8 is clearly more visually impressive and easier to

understand than an animation like that shown in Fig. 7.6. Chapter 11 describes

possible enhancements to ARENA animation but these are 2D. Real-time, inter-

active 3D visualization clearly provides a discernable advantage in verification and
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validation. Perhaps most importantly it engages stakeholders emotionally, building

trust and potentially aiding in the acceptance of the conclusions.

We run the model interactively using the ‘‘Run’’ menu both to see the 2D and

3D animation and to obtain preliminary results. But for experimentation, we run

using the ‘‘Experiments’’ window. This allows us to set up and run multiple

scenarios with multiple replications somewhat similar to the Rockwell Process

Analyzer (Sect. 10.3). But SIMIO’s experiments will also take advantage of

all available processors to run multiple replications and scenarios concurrently

(e.g. a quad processor will run four scenarios in about the same time as one). And

the experiments can be linked to externally written add-ons to provide extended

experimentation. One example of such an add-on is OptQuest, which provides

sophisticated goal seeking algorithms to help in finding the best solution.

The output of the experimentation is expressed in multiple fashions.

The experiment window itself displays values of key performance indicators (KPIs,

or as SIMIO calls them Responses). These responses can also be displayed in Charts

that provide extended box-and-whisker plots featuring MORE plot technology in

Nelson (2008) to help accurately compare scenarios and identify the best.

While the experiment generates standard reports, many people prefer SIMIO’s

Pivot Tables. The full results are displayed in an interactive pivot table (Fig. 7.9),

Fig. 7.7 SIMIO default simulation model of the checkout operation
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much like that of Excel. This output format is well suited to simulation analysis as

it allows us to sort, filter, and categorize data thus making it easier to ‘‘data mine’’

the full value of the information buried therein.

7.4.5 Output Analysis

After verifying and validating the ARENA model in Fig. 7.4, 20 replicates were

run for each of three levels of the factor of interest. The factor was the maximum

service time that is allowed to be processed on the ‘‘X items or fewer’’ cashier

aisle. We considered three levels of this factor: 0.25 min (15 s), 0.5 min (30 s),

and 1.0 min (60 s). These times are assumed to correspond to the number X equal

Fig. 7.8 SIMIO 3D animation of checkout operation
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to 3, 6, and 12 items respectively. The simulation results based on 120 min of

simulated time for the 20 replicates are shown in Fig. 7.5.

To achieve defendable confidence intervals, the twenty replicates were grouped

into five batches of size four values. The simultaneous intervals are shown in

Table 7.5 and Fig. 7.10. The results show that the sample size is sufficient to make

a defensible recommendation.

7.4.6 Decision Support

The simultaneous intervals in Fig. 7.10 provide sufficient evidence for a

recommendation. Under the modeling assumptions described in the input

analysis section, the shortest service time cutoff (0.25 min) offers significantly

reduced average waiting times compared with the middle setting cutoff (0.5 min)

Fig. 7.9 Sample of SIMIO pivot table output
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and is likely shorter than the long cutoff setting (1.0 min). At the same time, the

revenue loss is expected to be significantly less using the short cutoff (0.25 min)

compared with the long cutoff (1.0 min). Other differences were not statistically

significant.

Because of the benefits for expected waiting and lost revenue, we suggest that

using the shortest cutoff is most desirable. We have argued that this corresponds to

X = 3 items or fewer. Therefore, we recommend having a fast lane aisle during

the 1–3 pm time periods and adjusting the maximum allowable number of items

down from 10–3. It might also be advisable to put the proviso ‘‘no checks’’ on the

sign since there is a suggestion that paying by check greatly increases the service

times.

Limitations of the model include the problem that customers with long service

times may be abandoning their items based on conditions in the fast lane, which

Table 7.5 Results for three alternative systems that differ by cutoff time in minutes

Replication 0.25 0.5 1

Loss Revenue Wait Loss Revenue Wait Loss Revenue Wait

1 0 3,998 3 70 4,013 3 15 3,401 9

2 0 3,945 4 182 4,011 4 59 3,602 11

3 0 4,251 8 338 4,090 4 229 3,499 12

4 0 3,781 2 99 3,815 3 0 3,173 11

5 0 3,690 5 362 3,728 4 0 3,312 16

6 0 4,351 8 724 4,149 5 120 3,540 15

7 0 4,026 8 473 3,788 5 286 3,629 10

8 0 4,025 5 282 4,110 4 337 3,714 10

9 113 4,048 7 526 3,889 4 152 3,384 13

10 0 3,356 3 122 3,251 3 115 2,711 6

11 0 3,574 4 329 3,617 4 67 3,091 13

12 0 3,657 9 479 3,673 4 28 3,254 12

13 0 3,988 3 216 3,873 4 132 3,518 14

14 0 3,536 4 277 3,447 3 64 3,133 11

15 0 3,632 4 232 3,601 4 280 3,181 6

16 0 4,376 11 688 4,274 5 97 3,821 15

17 0 3,614 8 608 3,473 4 166 3,370 9

18 300 4,481 11 925 4,354 5 151 3,768 15

19 0 3,429 1 0 3,355 2 71 3,156 8

20 0 3,379 2 106 3,288 2 0 3,089 5

Batch 1 0.0 3,993.8 4.3 172.1 3,982.4 3.6 75.8 3,418.8 10.9

Batch 2 0.0 4,022.9 6.5 460.2 3,943.9 4.4 185.9 3,548.6 12.7

Batch 3 28.3 3,659.0 5.8 364.0 3,607.4 4.0 90.4 3,110.1 10.8

Batch 4 0.0 3,883.0 5.6 353.2 3,799.0 4.1 143.3 3,413.3 11.2

Batch 5 75.0 3,725.6 5.6 409.7 3,617.6 3.6 97.1 3,345.4 9.3

SD 32.8 160.8 0.8 109.0 175.9 0.3 45.4 161.5 1.2

Lower limit -50.4 3,508.1 3.9 115.3 3,408.3 3.2 20.1 3,017.0 8.4

Est. Exp. Val. 20.7 3,856.8 5.6 351.8 3,790.1 4.0 118.5 3,367.2 11.0

Higher limit 91.7 4,205.6 7.3 588.4 4,171.8 4.7 216.9 3,717.5 13.6
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they would not be allowed to enter. Also, more data would be needed to evaluate

the impacts of allowing payment by check or whether eliminating checking

options would be annoying to customers and might therefore be unadvisable.

Finally, studying the model during more realistic arrival conditions could be

worthwhile. The assumption of an average 0.4 arrivals per minute resulted in lines

that were longer than average observed during the verification and validation stage

(but not unrealistic). Yet, it seems likely that the recommendations would also

offer benefits under various arrival assumptions.

7.5 Project Planning Exercise

As described in Chap. 1, a critical step in each project is developing the

charter. After describing each of the other steps in a simulation project, the

reader may see more clearly the relationship between initial choices and later

actions. For example, leaving specific subsystems out of the scope can mean

that data on these subsystems is not needed in input analysis. Also, the decision

to include an additional factor made in project planning can imply a need to

build and evaluate several alternative systems in output analysis. This section

describes an exercise that explores these possible inter-relationships. It also

emphasizes the need for imagination in project planning and successful project

execution.
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Fig. 7.10 Simultaneous intervals for a expected loss; b average waiting times
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Step 1. Pick one of the following systems to study:

i. A book store

ii. A dept. of motor vehicles drivers’ license centers

iii. A local Dominos delivery operator

iv. A local McDonald’s

v. A local Starbucks

vi. An emergency room

vii. A local coffee shop you know

viii. A restaurant

ix. A university food service location

x. A student health services clinic

xi. A student services in Lincoln tower

xii. A university operator

Step 2. Develop a team charter for a project which should focus on one specific

subsystem and time period. Your charter should include factors whose

settings might be changed and responses of potential interest. Use your

responses to express the goal of your hypothetical project.

Step 3. Create a work flow or flow chart of your system based on your imagina-

tion. You will not have time or access to observe the real system. If you

feel that there is a truly important aspect of uncertainty, create two ormore

work flows of the same system.

Step 4. Identify any rare events that might have a truly important impact on your

system responses. Estimate the chance that these events will happen for

any given entity in your system. For example, assume there is roughly a

p0 = 0.01 probability that an arbitrarily selected voter would be

handicapped.

Step 5. For every process in your flowchart(s) and the arrival process, describe

how much data you would collect and during which time period. Make

sure to match your data collection strategy with the goals in your charter

and the possibility of rare events.

Step 6. (Optional) Guess which distribution might be a logical choice for

interarrivals and for each service distribution.

Step 7. Document your findings in a 1 page handwritten summary.

7.6 Problems

1. Describe the possible application of the Theory of Constraints to a simulation

project involving a popular coffee house. In your answer, clarify the role of

the theory in the project.

2. Describe the possible application of the Theory of Constraints to a simulation

project involving a call center. In your answer, clarify the role of the theory in

the project.
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3. Describe the lean production way of making five toasted peanut butter and

jelly sandwiches on a family picnic.

4. Describe the lean production way of grading exams. Make reference to the

current way which involves grading each question 1, then each question 2,

then each question 3, and so on.

5. List some possible ways election officials can level demand in election

systems.

6. List some possible ways that universities can level demand for teaching

services.

7. How can simulation help in making decisions about kanban cards?

8. (Class project)

Team: You can perform this project individually or with up to 3 people.

However, if you include more team members, more is expected in terms of

data collection and the relevance of results to real business decision-making.

Report: Your report must have a 200 or fewer word executive summary or

abstract and sections with titles similar or identical to:

• Problem definition,

• Input analysis,

• Simulation,

• Output analysis, and

• Decision support.

Tables and figures: These must be included in the key data, findings, and

the modeling assumptions with captions and references to each figure in the

text.

References: Relevant references should be included and mentioned in the text.

For example, if you are pursuing a model of a hospital room, you might write

about how your model is different from the one in Medina et al. (2008) with the

following reference included at the end of your report:

Medina R, Vazquez A, Juarez HA, Gonzalez RA (2008) Mexican Public

Hospitals: a model for improving emergency room waiting times. In: Mason

S, Hill R, Mönch L, Rose O (eds) Proceedings of the 2008 winter simulation

conference

Requirements: The developed decision-support must have hypothetical

relevance to some imagined decision-maker. The more people are on the

team, the more relevance is needed. The data collected in the input analysis

must be 100% real with a brief description of the details of the data collection

including the equipment used. Any model should have at least three of the

following five characteristics:

(a) Real world data used for fitting all distributions,

(b) Two or more alternative scenarios studied with simultaneous intervals,

and
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(c) At least one alternative scenario of plausible interest.

Additional points may be earned for using:

(a) Resource sets, i.e., individuals who can provide types of service,

(b) Station/routes, i.e., the inclusion of issues relating to material

handling,

(c) Schedules (capacity, arrival, or both),

(d) The winter simulation conference author kit formatting, and

(e) Any other advanced modeling techniques.

Grading: 40% report quality (10% proper figure uses, 10% proper referencing,

10% writing style, 10% abstract or executive summary), 20% input analysis

(10% data quality and 10% input analysis), 20% simulation/modeling quality,

20% decision support quality (10% output analysis and 10% correctness of

conclusions).
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Chapter 8

Variance Reduction Techniques

and Quasi-Monte Carlo

Computer speeds continue to increase. At the same time, the complexity and

realism of simulations also continues to increase. For example, 20 replicates of the

voting systems simulation in Chap. 7 involve approximately 10 million simulated

voters. Currently, a standard PC requires several minutes to yield the expected

worst precinct closing time estimate. In 5 years, the identical simulation might

require less than a single minute. Yet, we might choose to include in the simulation

details about registration process and voter demographics so that the resulting time

might require more than 10 min again.

Also, the voting simulation is small-scale compared with agent-based brigade-

level war game simulation or discrete event simulations of large emergency

rooms. Waiting for computers and Monte Carlo to estimate the expected waiting

times or other outputs may require days or even months. Often, decision-makers

are not prepared to wait longer than a few hours or overnight. Part of the

challenge is the need for iteration of assumption parameters, i.e. the analysts

discover the run results must be rerun because of mistakes in the input param-

eters. Probably the most common approach to reduce computing times is to

simplify models by adding assumptions, e.g. registration has no effect on waiting

times. These added assumptions can cause inaccuracies and losses of confidence

in the results.

In this chapter, techniques designed to achieve greater computational efficiency

than Monte Carlo simulation are described. Ideally, these methods can yield the

desired estimates with improved accuracy and reduced computing time. This can

permit greater detail in the simulations and/or permit the speeds necessary for

real-time decision-making.

As noted in Chap. 2, the central focus of discrete event simulation theory is the

evaluation of expected values. Also, expected values are integrals and a main

method to estimate the values of integrals in Monte Carlo simulation. Chapter 3

described how Monte Carlo is accomplished in discrete event simulation using

simulation controllers. This chapter focuses on alternatives to Monte Carlo

estimation offering (potentially) reduced computing time to achieve estimates of

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,
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expected values with improved accuracy. Virtually all of the methods described

here are so-called ‘‘variance-reduction techniques’’ and are documented in

Wikipedia or in the archives of the Winter Simulation Conference.

It should be noted, however, that Monte Carlo is still a viable method. Yes,

other approaches can achieve more accurate expected value estimates in reduced

computing time. Yet, Monte Carlo and the batching for normality procedure

described in Chap. 4, combined with the intervals in Chap. 5 provide a high level

of defensibility. Also, Monte Carlo estimation is relatively simple. Simplicity

implies fewer opportunities for systematic errors and greater transparency, i.e.

users understand with improved intuition what the simulation is doing.

In Sect. 8.2, an overview of variance-reduction techniques (VRT) is presented

together with quasi-Monte Carlo methods. Also, the method of common random

numbers (CRN) for system comparison is presented. Section 8.3 describes

methods based on inserting alternative sequences in place of pseudorandom

U[0,1] numbers in discrete event simulation. These methods include Latin

hypercubes, descriptive sampling, and quasi-Monte Carlo. In Sect. 8.4, a brief

description of importance sampling is provided. Section 8.5 briefly describes

techniques designed to derive more than a single number from a simulation run

or replicate.

8.1 Variance-Reduction Techniques and Common

Random Numbers

The phrase ‘‘variance-reduction techniques’’ (VRTs) refers to a collection of

techniques intended to permit more accurate estimates than the Monte Carlo

estimates described in Chap. 2. Some of these methods such as descriptive

sampling derive ‘‘biased’’ estimates. This means that, if given infinite numbers of

replicates, the resulting estimates would fail to converge to the true integral values.

This is not true for Monte Carlo because of the central limit theorem. Yet, we

might apply descriptive sampling instead of Monte Carlo because, for a small

number of available replicates, the bias is small compared with the remaining

so-called ‘‘variance’’ error (total error = bias ? variance). Descriptive sampling

would generally be expected to yield a more accurate estimate.

The list of variance-reduction techniques is long. These techniques include:

• Common random numbers (CRNs). CRNs use streams of pseudorandom

numbers as in ordinary Monte Carlo. They focus on the comparison of alter-

native systems as in the output analyses in Chap. 5. By using the same random

streams to evaluate alternative systems, they reduce the variance in the esti-

mated performance differences.

• Latin hypercube (LHC) sampling. LHC sampling is a special case of orthogonal

array LHC sampling (Tang 1993). These techniques offer no bias in estimation

and proven improvements in the accuracy of the derived estimates.
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• Descriptive sampling (DS). DS methods generate biased estimates. Yet, in

numerical examples they appear to dominate LHC accuracy. Also, their appli-

cation is slightly easier.

• Importance sampling. Importance sampling is critical for the study of high

consequence but rare events. By artificially increasing their frequency and then

weighting outputs, these methods can result in unbiased and reduced variance

estimates of average system performance.

• Stratified sampling. For cases in which sub-populations or strata differ greatly, it

can be of interest to sample each sub-population (stratum) independently. For

example, in selecting voters for our mock election, we selected exactly 6 first

time voters and 14 experienced voters to mirror the overall statistics of our

population. Within each group we picked randomly.

Quasi-Monte Carlo is generally not considered a variance-reduction technique.

Yet, these techniques described in Sect. 8.2 function in a manner similar to

pseudorandom numbers in ordinary Monte Carlo. Also, they are naturally

comparable to Latin hypercube sampling and descriptive sampling. Perhaps the

main reason why they are excluded from the set of VRTs relates to their origin in

the number theory branch of mathematics. Other techniques were developed by

researchers in operations research, statistics, or combinatorics.

In the remainder of this chapter, all of the abovementioned variance-reduction

techniques are described together with quasi-Monte Carlo with one exception.

The exception is stratified sampling. We did apply stratified sampling in our

election project, but not as a variance-reduction technique to speed-up our simu-

lations. We used it for human subject selection in input analysis. This is probably

typical of many discrete event simulation investigations.

8.1.1 Common Random Numbers

As noted previously, common random numbers (CRN) relate to comparing

alternative systems and not to deriving more accurate estimates of individual

systems. CRNs are important because they have no side-effects (like estimation

bias) except for the minor difficulty of starting each system with the same seed.

They are the subject of constant and continuing interest including extensions such

as in Ehrlichman and Henderson (2008). Miller and Bauer (1997) showed how

they can be built into subset selection and indifference zone techniques like those

described in Chap. 5.

To illustrate common random numbers, we return to the registration and voting

time simulation from Chap. 2. In this problem, simulation is unneeded because it is

reasonably easy to directly apply calculus to estimate the expected summed time.

Imagine that we are comparing an alternative direct recording equipment (DRE)

machine that is associated with less variable voting times because of a wider

display. We are interested in whether switching to these machines will reduce the
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key response which is the expected sum of registration and voting times. The two

alternative systems are:

System #1 (S1): Using the current equipment, we have TRIA(0, 0.229, 2.29)

minute registration times and TRIA(4.0, 5.2, 16.0) minute

voting times

System #2 (S2): Using the new DRE machines, we have TRIA(0, 0.229, 2.29)

minute registration times and TRIA(5, 6, 10) minute voting

times

From calculus, we know that the expected time for system #1 is (0.0 ? 0.229 ?

2.29)/3 ? (4.0 ? 5.2 ? 16.0) = 9.23 min. This follows from the formula for the

expected value of triangularly distributed random variables as described in Chap. 2

in Eq. 2.11. Similarly, for system #2 we have (0.0 ? 0.229 ? 2.29)/3 ? (5.0 ?

6.0 ? 10.0) = 7.84 min. Therefore, we know that system #2 is an improvement

relating to the chosen mean response. However, suppose that we needed to derive

this using simulation alone. Table 8.1 shows the simulation of system #2 (S1) using

the same stream as that applied in Table 2.4 to simulate system #1.

The theory behind common random numbers is simple. Suppose that we

intended to simulate the differences between the systems rather than the individual

system values. Then, the differences in Table 8.1 would have similar properties to

the individual system values, i.e. it is defensible to treat them as approximately

independent, identically distributed (IID) random variables. Creating confidence

intervals on the differences and checking that this interval does not include zero is

equivalent to paired t testing. For example, the 95% confidence interval on the

differences in Table 8.1 is 1.93 ± 1.39 min. This proves defensibly that the new

system (S2) offers improved performance. This assumes that the differences are

approximately normally distributed. Fortunately, if there is a concern about

normality, the differences can be batched as for individual replicate values and

described in Chap. 4.

Table 8.1 System #2 (S2) comparison with S1 using common random numbers (CRNs)

I Zi Ui Replicate Registration S2
Voting

S2
Time

S1
Time

Difference

0 19 – – – – – – –

1 44 0.698413 1 1.097 – – – –

2 27 0.428571 1 – 6.619 7.716 8.491 0.775

3 31 0.492063 2 0.742 – – – –

4 56 0.888889 2 – 8.509 9.251 12.947 3.696

5 39 0.619048 3 0.949 – – – –

6 43 0.682540 3 – 7.480 8.429 10.535 2.105

7 5 0.079365 4 0.204 – – – –

8 51 0.809524 4 – 8.048 8.252 11.236 2.983

9 55 0.873016 5 1.516 – – – –

10 17 0.269841 5 – 6.179 7.694 7.788 0.094
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8.2 ‘‘Better’’ than Pseudorandom

Many variance-reduction techniques (VRTs) are based on substituting alternative

sequences in place of the pseudorandom U[0,1] numbers in Monte Carlo. There-

fore, the process of transforming to specific distributions, applying simulation

controllers, and aggregation described in Chap. 4 are retained. For example, in

Table 8.1 we would simply replace the column labeled ‘‘Ui’’ with something other

than pseudorandom numbers. Techniques of this type include quasi-Monte Carlo,

Latin hypercube sampling, and descriptive sampling.

Therefore, all of these methods retain the basic Monte Carlo estimation

structure and estimates derive from:

Estimated expected value � Xbar � 1=nð Þ
X

i¼1;...;n

Xi ð8:1Þ

where the X1,…,Xn derive from processes that resemble Monte Carlo discrete

event simulation.

8.2.1 Latin Hypercube Sampling

McKay et al. (1979) invented Latin hypercube (LHC) sampling to facilitate

efficient integral estimation. Interestingly, in their subsequent work they focused

on applications to computationally expensive computer simulation that did not

involve random variables. Yet, their methods and extensions in Tang (1993),

Lemieux and L’Ecuyer (2000), and others offer perhaps the most defensible

alternatives to Monte Carlo simulation. If simulation runs are extremely compu-

tationally expensive, it is the opinion of the author that orthogonal array Latin

hypercubes offer significant advantages for discrete event simulation.

Here, we describe only the basic method for LHC sampling. This is a special

case of the more powerful but also more complicated methods in Tang (1993),

which are based on so-called orthogonal arrays of strength two and higher. LHC

sampling itself requires a sequence of pseudorandom numbers. Here, we apply the

same sequence of numbers from the linear congruential generator from Chap. 2. In

real applications, higher quality pseudorandom numbers would be applied.

Assume that we know in advance that we will be performing n replicates or

simulation runs. For example, in the election systems example in Table 8.1, we

might plan in advance on n = 5 simulations. In this example, performing

n = 10,000 simulations is trivial in Microsoft� Excel. However, we will pretend

that five runs is a significant computational challenge.

Step 1. For each of them random variables in each simulation, create a permutation

of the numbers 1, 2,…, n in a way such that all permutations are equally

likely. Without loss of generality, we can use the sequence 1, 2,…,nwith no

re-ordering for the first variable. The first two columns of Table 8.2 show

example permutations (Pi,1 and Pi,2) for the m = 2 variables (registration
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time and voting time). In practice, generating permutations itself uses

pseudorandom numbers. We can generate the numbers 1, 2,…,n in one

column and pseudorandom U[0,1] numbers in the next column. Sorting the

first column by the second generates a random permutation

Step 2. Generate additional pseudorandom numbers (PRNs) for each run and

variable, U1,…,Um9n. Examples are shown in the third and forth column

of Table 8.2, which are the linear congruential generator deviates used in

previous examples

Step 3. Generate the Latin hypercube (LHC) deviates using:

LHC Ui;j ¼ Pi;j � 1 þ U½jþðmÞði�� 1Þ�

� �

=ðnÞ for j ¼ 1; . . .;m and

i ¼ 1; . . .; n:
ð8:2Þ

For example, the fifth and six columns of Table 8.2 contain LHC deviates. These

are to be used like pseudorandom numbers in Monte Carlo. In the example, we

apply the inverse cumulative triangular distributions to transform them to generate

simulated registration and voting times. The sample average of the resulting sums is

9.56 min, which is closer to the true value of 9.23 min compared with the Monte

Carlo estimate of 10.2 min. Equation 5.2 predicts that 382 Monte Carlo runs would

likely be needed to achieve a half width equal to this error, i.e. h0 = 0.34. This

shows the power of Latin hypercube sampling, which generally improves as more

dimensions are involved and higher strength orthogonal arrays are used.

However, the half width from the LHC replicates is 3.0 min, which does not

accurately reflect the true errors. This is also expected because it is not reasonable

to assume that the sums 9.8, 7.5,…,9.5 are IID random numbers. They follow a

rigid structure. More generally, LHC is statistically expected to yield more

accurate estimates with the same number of total replicates. Yet, error estimation

remains a challenge. Also, two pseudorandom numbers are consumed to generate a

single LHC Ui deviate.

8.2.2 Descriptive Sampling

Saliby (1997) proposed a simplification of LHC sampling called descriptive

sampling. It is based on a simplification of the LHC generation process involving

only two steps.

Table 8.2 Simulation for estimating the S1 expected registration plus waiting time using a LHC

Perm. #1
(Pi,1)

Perm. #2
(Pi,2)

PRN
Ui

PRN Ui

(cont.)
LHC Ui,1

var. 1
LHC Ui,2

var. 2
Reg.
time

Voting
time

Sum
(Min.)

1 4 0.698 0.429 0.140 0.686 0.275 9.618 9.893

2 2 0.492 0.889 0.298 0.378 0.470 7.020 7.490

3 1 0.619 0.683 0.524 0.137 0.791 5.421 6.212

4 5 0.079 0.810 0.616 0.962 0.944 13.778 14.722

5 3 0.873 0.270 0.975 0.454 1.944 7.588 9.532
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Step 1. For each of the m random variables, create a permutation of the numbers 1,

2, …, n in a way such that all permutations are equally likely. (This is the

same as for LHC sampling.)

Step 2. Generate the Latin hypercube (LHC) deviates using:

LHCUi;j ¼ ðPi;j � 1þ 0:5Þ=ðnÞ for j ¼ 1; . . .;m and i ¼ 1; . . .; n: ð8:3Þ

Table 8.3 shows the process of descriptive sampling for the expected regis-

tration-plus-voting-time estimation problem based on system #1. Averaging the

simulated sums gives 9.19 min which is relatively close to the true mean of

9.22 min. Yet, again the estimated half width is 2.7, which is misleading. The true

error is much smaller.

According to the sample size estimate in Eq. 5.2, Monte Carlo would require

n = 27,364 to achieve an answer within h0 = 0.04 of the true value. This assumes

that we would want to set the half-width equal to the true error and we could

somehow know the true error, i.e. h0 = 0.04. The difference between n = 5 runs

and n = 27,364 runs could be important for computationally intensive simula-

tions. This shows the power of descriptive sampling.

8.2.3 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo is relevant for at least two reasons. First, unlike LHC and DS

sampling, quasi-Monte Carlo does not require the declaration of the number of

replicates before simulation begins. As in Monte Carlo, the simulation can be

terminated with little (if any) biasing in estimates whenever the decision-maker

needs an estimate. Second, as with orthogonal array Latin hypercubes in Tang

(1993) rigorous bounds are available relating to the expected accuracy advantages

of the methods compared with Monte Carlo based on pseudorandom numbers.

These results are described in, e.g. Caflisch (1998).

Here, we consider only a single type of quasi-Monte Carlo samples called

‘‘Halton’’ samples. These are based on a simple principle. After the first few

points, the remaining points fill in the gaps, i.e. they are chosen to be as far apart

from the other points as possible. Generally, the points 0.0 and 1.0 are assumed to

be included in the existing points.

Table 8.3 Simulation for the S1 expected registration plus waiting time using DS numbers

Perm. #1
(Pi,1)

Perm. #2
(Pi,2)

DS Ui,1 var.
1

DS Ui,2 var.
2

Registration
time

Voting
time

Sum
(min.)

1 4 0.1000 0.7000 0.229 9.765 9.994

2 2 0.3000 0.3000 0.472 6.475 6.948

3 1 0.5000 0.1000 0.754 5.200 5.954

4 5 0.7000 0.9000 1.100 12.400 13.500

5 3 0.9000 0.5000 1.603 7.950 9.553
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Table 8.4a shows the so-called ‘‘base 2’’ sequence which puts the first point in

the middle of the 0–1 range at 0.50. Next, it moves to 0.25 and 0.5 which are

clearly both as far away from 0.0, 0.5, and 1.0 as possible. The sequence pro-

gresses until the pattern appears superficially like U[0,1] random numbers in its

pattern but with less clustering. Therefore, our simulation starts with the 16th

number in the sequence. For the second dimension, we simply change the initial

number to be 0.33333 instead of 0.50. Next, we continue by again filling the gaps.

Note that this approach might be considered greedy or myopic in the following

sense. For any fixed number of samples, the Hamilton samples are not maximum-

minimum distance or space-filling designs.

The simulation in Table 8.4b is again based on plugging the seemingly U[0,1]

random numbers into the inverse cumulative triangular distributions. The quasi-

Monte Carlo estimate is 9.41 min for the expected sum of the registration and

voting times. Again, we know the true value is 9.23 min and the value represents

an improvement in accuracy compared with our Monte Carlo simulation. The

sample size formula in Eq. 5.2 suggests that n = 1,355 Monte Carlo samples

would be needed to achieve this accuracy.

Table 8.4 (a) Base 2 and
base 3 sequences, (b)
simulation for the voting
system using quasi-Monte
Carlo

n Base 2 Base 3

(a)

1 0.5 0.3333

2 0.25 0.6667

3 0.75 0.1111

4 0.125 0.4444

5 0.625 0.7778

6 0.375 0.2222

7 0.875 0.5556

8 0.0625 0.8889

9 0.5625 0.037

10 0.3125 0.3704

11 0.8125 0.7037

12 0.1875 0.1481

13 0.6875 0.4815

14 0.4375 0.8148

15 0.9375 0.2593

N Dim. 1 Dim. 2 Registration Voting Simulated
time

(b)

16 0.0313 0.5926 0.128 8.734 8.862

17 0.5313 0.9259 0.803 12.902 13.704

18 0.2813 0.0741 0.448 5.033 5.481

19 0.7813 0.4074 1.274 7.236 8.51

20 0.1563 0.7407 0.294 10.203 10.498

Average 9.411

Std. Dev. 3.007
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This assumes that we would want to set the half width equal to the true error

and we could somehow know the true error, i.e. h0 = 0.18. Comparing this with

n = 5 samples shows the power of quasi-Monte Carlo. The half width is 2.7 min,

which is again misleadingly high. The true error is much smaller.

8.2.4 Comparison of Alternative Techniques

Next, we summarize and compare the results from the voting systems numerical

example. The qualitative aspects of the comparison here are factual. Yet, the

quantitative comparison is based only on a single numerical example. These

results are intended only to build rough intuition into the power of the alternative

simulation methods. Results might vary greatly for different examples. Table 8.5

summarizes the results from the applications of the alternative methods to the

same problem. In that example, the Monte Carlo (MC) was 10.20 min and the true

value was 9.23 min.

This MC estimate was ‘‘lucky’’ in the sense that the sample size formula in Eq.

5.2 suggests that n = 50 samples would be needed to achieve a half width equal to

0.97. The other sample sizes are the number of MC samples (based on ordinary

pseudorandom numbers) to achieve half widths equal to the actual errors. The

results suggest that variance-reduction techniques such as descriptive sampling

(DS) can achieve greater accuracy than ordinary Monte Carlo using hundreds of

times fewer samples.

The ratios are simply the expected number of MC samples needed to make the

half width equal to the error divided by five. This follows because the variance-

reduction techniques achieved their accuracies with five samples. Also, as the

number of dimensions and samples increases from two and five, certain methods,

including orthogonal array Latin hypercube methods from Tang (1993), are

expected to potentially improve in relative efficiencies.

To gain insight into the functioning of the various methods it can be helpful to

inspect the geometry of the derived samples. Figure 8.1 shows the samples of

numbers from the alternative methods in the (0.1)2 square. These are the values

that are then transformed into registration and voting times using the inverse

cumulative triangular distributions. With only five pseudorandom numbers we see

that the results fail to spread evenly over the square.

Table 8.5 Summary of absolute errors for voting systems case study and relative efficiencies

Method Absolute
error

Expected MC sample
size (n for h0 = Error)

Ratio

Monte Carlo (MC) 0.97 50 10.0

Latin hypercube (LHC)
sampling

0.34 382 76.4

DS 0.04 27,364 5,472.8

QMC 0.18 1355 271.0
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For example, there are no MC samples in the lower left quadrant. In compar-

ison, the Latin hypercube (LHC) samples, descriptive sampling (DS) samples, and

the quasi-Monte Carlo (QMC) samples are relatively spread out. By spreading out

the samples, we are attempting to ensure that the wide variety of possible

occurrences is experienced in our limited sample.

Table 8.6 summarizes the qualitative aspects of the alternative methods.

‘‘Variable n’’ refers to the possibility of terminating the method to apply an

arbitrary sample size and derive defensible results. Monte Carlo simulation

generates estimates with easily characterized properties for any number of

samples. By contrast, if one were to stop simulation after performing half of the

samples from an LHC array, a high degree of bias in the resulting estimates is

almost guaranteed.

The ‘‘unbiased’’ column refers to the properties of estimates as the samples

sizes approach infinity. Certain methods such as ordinary Monte Carlo are asso-

ciated with zero bias errors. For example, with samples sizes in excess of

10,000,000, Monte Carlo would derive an estimate equal to 9.23 min in our voting

systems example with probability near 100%. This is not true for descriptive

sampling and certain types of quasi-Monte Carlo sampling.

0.0

0.5

1.0

0.0 0.5 1.0

D
im

e
n

s
io

n
 #

2

Dimension #1

MC

LHC

DS

QMC

Fig. 8.1 Scatter plot of five
samples from the alternative
methods

Table 8.6 Qualitative properties of the alternative methods to MC estimation

Technique Variable n Unbiased Error estimation

Monte Carlo (MC, pseudorandom numbers) Yes Yes Easy

Common Random Numbers (CRNs) Yes Yes Easy

Latin Hypercube (LHC) No Yes Difficult

Descriptive Sampling (DS) No No Difficult

Quasi-Monte Carlo (QMC) Yes Some cases Difficult
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The error estimation column refers to the ease of estimating the errors of the

derived estimates. Under the assumption of approximately normally distributed

simulated values, half widths based on Monte Carlo samples accurately charac-

terize the errors of the estimates. If non-normality is detected, then batching can be

applied for defensibility. Yet, standard confidence intervals approaches are not

even approximately relevant for characterizing outputs of LHC, DS, or QMC

simulations. The outputs are not identically distributed nor independently dis-

tributed to any good approximation. Therefore, while the accuracy of the derived

estimates is likely to be improved, estimating the accuracy is difficult. The author

believes that research into error estimation for variance-reduction techniques is an

important subject which has received relatively little attention.

Note that the properties of common random number (CRN) methods are all

desirable. The main downside is the potentially minor complication of using the

same streams for all alternative systems being compared. Also, for complicated

simulations uses large and potentially variable numbers of pseudorandom num-

bers, the benefits of common random numbers (CRNs) might be minimal.

8.3 Importance Sampling and Rare Events

Some systems are influenced greatly by rare events such as major machine

breakdowns. If these rare events have high consequences for the systems of

interest, then it is likely necessary to apply a technique called ‘‘importance sam-

pling’’ to estimate the expected system response values. Importance sampling uses

a custom selected distribution that generally makes the rare event more likely and

then converts back to the distribution of interest. Here, we only comment on

importance sampling and refer the reader to more focused textbooks on the topic,

e.g. Srinivasan (2002).

In election systems, vote centers or locations are generally required to have at

least three machines. As a result, the breakdown of a single machine is usually not

associated with extreme consequences for the overall system properties. Also, if

one includes paper replacement, machine breakdowns in the context of direct

recording equipment (DRE) are not particularly rare. In our simulations, we typ-

ically assume that breakdowns arrive according to a Poisson process with mean

interarrival times of 10 h.

8.4 Getting More Out of a Stream than the Batch Average

Deriving more than a single number from a stream of random numbers is generally

considered critical for modeling the steady-state or long run properties of com-

plicated systems. Often, in these systems there is an initial transient period for

which results are not representative of the long run. The initial period is called the
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‘‘warm up’’ and results from the warm up are discarded. For example, the system

might start with zero parts in inventory even though the manufacturing plant never

has zero work in process inventory. Therefore, the discrete event simulation would

like to pay the computational expense of deriving realistic starting systems as

small a number of times as possible.

In Chap. 4, the operation of discrete event simulation controllers is described.

These controllers generate a series of event times and waiting times. The derived

waiting times or other quantities in the series are generally neither independent

nor identically distributed to any good approximation. Figure 8.2 shows the

outputs from a discrete event simulation controller in a hypothetical example.

These could be waiting times in minutes. Notice the initial warm up period in

which the output quantity is near zero and then stabilizes. Consider also the fact

that each output is relatively close to the preceding and following output.

This phenomenon is referred to as ‘‘autocorrelation’’ and it makes the assump-

tion of independently distributed random variables far less plausible. The sample

correlation between successive points in this series is 0.89 indicating strong

autocorrelation.

However, consider the outputs from every 10th simulation. Ignoring the initial

output from the warm up period, the remaining values seem approximately inde-

pendent, identically distributed. The sample correlation between each 10th obser-

vation and the following observation is only 0.21. This indicates small but

potentially negligible autocorrelation. This situation suggests the following general

framework which is implemented in many professional software packages:

Step 1. Discard simulation outputs from the warm up period (until the outputs

approximately stabilize).

Step 2. Store every qth observation where q is chosen to be the smallest number

such that the sample correlation between the qth observations is less than a

cutoff value, e.g. 0.25.

Step 3. Analyze the stored observations in a manner similar to ordinary replicates.
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Fig. 8.2 Hypothetical
autocorrelated simulation
outputs
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The stored outputs have sometimes been called ‘‘semi-replicates’’ and the

sample correlation can be estimated using the ‘‘=CORREL()’’ function in

Microsoft� Excel.

As a toy illustration, consider the results from the controller example in Chap. 4

shown in Table 8.7. The example is a toy because only 4 simulation outputs are

available. As a result, there is no opportunity to evaluate whether the warm up

period is over. Also, there is no chance to assess the extent of autocorrelation. The

example is included simply to tie the framework to a case in which the relevant

controller operation is described in detail.

For a more realistic example, we return to the data used to generate Figure 8.2.

Table 8.8 shows only the first 30 outputs. Next, it shows the q = 5 and q = 10

sequences. Also, it shows the lags of these sequences. Lagging means simply

copying over the sequence shifting subsequent values so that they appear next to

preceding values. This permits the estimation of the autocorrelation using the

sample correlation. The sample correlations of the three sequences are 0.887,

0.394, and 0.210 for the skip 0, 5, and 10 lag series, respectively. This shows that

the assumption that semi-replicates are IID becomes more reasonable as

q increases.

8.5 Problems

1. Discuss the importance of improving the computational efficiency of discrete

event simulation techniques as advances in computers continue.

2. Is quasi-Monte Carlo a type of variance-reduction technique? Explain briefly.

3. Discuss the extent to which simulation based on Monte Carlo estimation and

pseudorandom numbers is currently obsolete.

4. Are common random numbers less valuable for simulations using variable

numbers of pseudorandom numbers than for more simple simulations?

Explain briefly.

5. All variance reduction techniques generate alternatives to pseudorandom

U[0,1] numbers? Explain briefly.

6. Perform Latin hypercube sampling to estimate the expected sum of registra-

tion and voting types for system 2 as described in Sect. 8.1.1.

Table 8.7 Toy example illustrating an application of the framework for generating semi-
replicates

Voter Reg. queue
time (min)

Vote queue
time (min)

Sum Action Reason

Person 1 (P1) 0.00 0.00 0.00 Discard Warm up

Person 1 (P2) 0.00 6.49 6.49 Store Done warm up

Person 1 (P3) 0.00 13.49 13.49 Discard Skipping

Person 1 (P4) 0.00 14.12 14.12 Store Next semi-replicate

Average 10.3
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7. Perform descriptive sampling to estimate the expected sum of registration and

voting types for system 2 as described in Sect. 8.1.1.

8. Perform quasi-Monte Carlo sampling to estimate the expected sum of regis-

tration and voting types for system 2 as described in Sect. 8.1.1.

9. Does the sample correlation tend to decrease as q increases, where q is the

number of skipped observations from an autocorrelated series? Explain

briefly.

10. Consider the sequence y(i ? 1) = (0.9)y(i) ? e, where e is normally distributed

with mean zero and standard deviation 1.0. Estimate the smallest number of

skipped observations such that the lagged sample correlation is less than 0.25.

Table 8.8 30 simulation outputs from hypothetical autocorrelated example

# Simulation
outputs

Skip 5 Skip 10 Skip 0 lag Skip 5 lag Skip 10 lag

1 0.6998 0.6998 0.6998 1.2821 10.0630 8.1476

2 1.2821 3.2700

3 3.2700 5.8924

4 5.8924 7.9123

5 7.9123 10.0630

6 10.0630 10.0630 7.8668 8.1476

7 7.8668 8.0593

8 8.0593 9.5424

9 9.5424 8.5472

10 8.5472 8.1476

11 8.1476 8.1476 8.1476 6.8276 4.3926 7.1900

12 6.8276 5.6152

13 5.6152 5.5145

14 5.5145 5.6381

15 5.6381 4.3926

16 4.3926 4.3926 4.9461 7.1900

17 4.9461 5.5529

18 5.5529 6.5771

19 6.5771 6.8962

20 6.8962 7.1900

21 7.1900 7.1900 7.1900 7.3817 8.8983 13.5480

22 7.3817 9.2480

23 9.2480 9.3131

24 9.3131 9.2644

25 9.2644 8.8983

26 8.8983 8.8983 11.0908 13.5480

27 11.0908 11.7383

28 11.7383 13.7663

29 13.7663 12.3582

30 12.3582 13.5480

31 13.5480 13.5480 13.5480 11.2260 12.8061 9.9685
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Chapter 9

Simulation Software and Visual Basic

The purpose of this chapter is to help the reader learn fundamental skills to program

in Visual Basic (VB). Also, the relatively advanced VB code needed to run a

discrete event simulation controller is also covered. The transition to the more

advanced coding is admittedly abrupt but the code described is self-sufficient and

has been used for real scientific computing applications relating to election systems.

There are many programming languages that can be used for discrete event

simulation. These include the ‘‘high-level languages’’ associated with commercial

software, so-called because they permit the user to rapidly develop code by

leveraging built-in templates for queues, processes, and entities. For example,

SIMAN is the high-level language associated with the software package ARENA

described in Chap. 10

Low-level languages are generic (useful for any type of computing) and

include: BASIC, C# (C sharp), C++, Fortran, JAVA, and Visual Basic. Each of

these requires the reader to develop event controllers and other constructs, perhaps

building on code and architectures in the literature (e.g., see Mesquita and

Hernandex 2006, through http://msdn.microsoft.com/ or through one of many

excellent message boards accessible by searching the internet for specific VB

expressions). These low-level languages offer at least two kinds of benefits:

1. Low licensing costs: low-level coding requires little (or no) expense in software

licenses. Industrial software licenses for professional simulation software can

range from $10,000 to 50,000 per user each year. At the same time, the Visual

Basic (VB) language described in this chapter can be used either with an

existing license for Microsoft Excel (no additional cost) or for free using the

current Microsoft Express Edition Visual Basic compiler. This was the primary

reason that my colleagues and I chose to use C++ to write the simulation

software used in our voting systems studies described in Chap. 7.

2. Close-coupling: when custom-building an application, the opportunity arises to

leverage pre-existing optimization or other capabilities such as the API built

into many commercial software packages. Exploiting APIs can mean that
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programs can interact efficiently with the software already in common use in

the relevant organization. In general, by building simulation into an excel

spreadsheet, the user can exploit the functionalities built into Excel and most

easily interface with available data which are often already in Excel spread-

sheets. Furthermore, Excel has built-in capabilities for random number gener-

ation and specific distributions that reduces development times. The ability to

link with existing data and our own simulation–optimization techniques from

Chap. 5 motivates our use of Visual Basic code in our on-going hospital

modeling studies.

This chapter describes simulation using Visual Basic that focuses on Microsoft

Excel-based interfaces. Yet, virtually all of the methods described can run in any

Visual Basic environment. Technically, Visual Basic uses an ‘‘integrated

development environment’’ (IDE) from Microsoft for its component object model

(COM) programming model. COM is an umbrella term referring to many

technologies for ‘‘inter-process’’ communication, i.e., a program calling upon

another program such as Excel. Visual basic was derived from BASIC and allows

comparatively rapid application development of graphical user interface (GUI).

In the subjective experience of the author, code development using Visual Basic is

generally comparatively pleasant compared with C++ or Fortran, although each

language has advantages.

9.1 Getting Started

To open the type of Visual Basic (VB) integrated development environment (IDE)

considered here, one must access Microsoft Excel. Here, we focus on Excel 2007

but virtually all methods run on version 2003 or later. (In fact, the author generally

uses Excel 2003 and VB6 since some client organizations have chosen not to

upgrade.) Of course, excel is opened either by a desktop short cut or going to Start[

All Programs[Microsoft Office[Microsoft Office Excel 2007. Once Excel is

opened go to the ‘‘Office’’ button (upper left corner of the screen) and select ‘‘Excel

Options’’ in the bottom right hand side of the drop down office button menu.

For the 2003 version, Tools[Macro leads to the VB editor and other relevant

options. For the 2007 Excel version look within the options ‘‘Popular’’ area be sure

that the ‘‘Show Developer tab in the Ribbon’’ check box is checked, then click

‘‘Ok’’ to exit the Excel options. Inside the developer ribbon in Excel click the

Visual Basic button on the far left-hand side (Note: make sure macro security is

enabled). The Visual Basic window will open and look like Fig. 9.1.

Within the upper white space on the left-hand-side below the ‘‘Projects––

VBAProject’’ heading, right-click and go to Insert[Module. This will turn the

major grey area into a white type-able area permitting the writing of VB code.

Note that, when saving the document, save it as a ‘‘Macro-Enabled’’ Excel

worksheet.
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9.1.1 Making a Simple Program

This section describes a simple program that reads in a number from your Excel

sheet, multiplies it, and outputs the result back to Excel. Reading in cells to Visual

Basic from Excel is simple and illustrates the close-coupling benefit of VB. A code

that purely reads in a cell is written as in Code 9.1. Note that line breaks are

generated by the ‘‘Enter key’’ and not separators like ‘‘;’’ as in C# or C++. This

makes VB more like Fortran. However, there is no necessary space for statements

to begin, i.e., they can be staggered visually. Also, capitalization is up to the

developer but it is important, e.g., IRead is a different variable than iRead.

Code 9.1 Reading into VB

In Code 9.1, ‘‘Sub’’ declares the name, arguments, and code that form the

body of a Sub procedure. Once the ‘‘Sub’’ is declared by hitting ‘‘Enter’’ VB

Fig. 9.1 Visual Basic Window
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automatically writes ‘‘End Sub’’. All of the associated code will be written between

the ‘‘Sub’’ and ‘‘End Sub’’. ‘‘Dim’’ refers to the ‘‘dimension’’ or type of the declared

variables for internal storage space allocation. Available types appear in a

pull-down menu and include:

• Integer—stores whole numbers and negative numbers,

• Long—like integer but with storage space for larger (32 bit) integers,

• Float—stores continuous numbers,

• Double—like float but with storage space for larger (62 bit) numbers, and

• String—stores up to 126 characters from a character set (e.g., ASCII).

• Public—modifier so the variable can be used by all subroutines and functions.

• Private—modifier so the variable has restricted availability.

Generally, the memory requirements for Long and Double data types are not

overly burdensome so they are preferred. Also, if variables are undeclared or declared

as ‘‘Variant,’’ relatively large spaces are needed. For clarity and quality assurance,

often ‘‘Option Explicit’’ is used to force the declaration of all variables in the program.

The ‘‘iRead’’ is the name of the variable set by the user, and the Integer means it

was set to an Integer number. At the time of definition, its default value is set to zero.

iRead, our integer variable, is then set to equal the value in cell A1 in the ‘‘Sheet 1’’

worksheet by the code Sheet1.Cell(1,1). Notice that in the code the column number

is not longer done by alphabet but numerically, e.g., that A = 1, B = 2, C = 3.

Next, one can perform a task with the integer value ‘‘iRead’’ that was input. For

example, we can multiply the value in cell A1 by 8 then output the result in cell

B1. Code 9.1 shows the associated code.

The resulting code can be run by clicking ‘‘Macro’’ under the developer tab in

the ribbon. Next, one can select the reading_cell() macro. Also, in the Visual Basic

editor, one can simply select ‘‘Run’’ under the ‘‘Run’’ menu, push F5, click the

play button (), and/or using the debug menu options such as Ctrl-F8. Selecting run

to cursor (Ctrl-F8) permits running the program up to the cursor. Dwelling the

mouse over the elements of the code then shows their current values.

TIP: It is generally desirable to use long, descriptive variable names. This

makes reading the code easier for others and facilitates search and replace. Also,

integers and longs start in many conventions with the letter i.

9.1.2 Other Ways to Interact with Excel

Visual basic code generated through the Excel IDE, although it is associated with

your Excel sheet and stored with it, does not interact with Excel unless there is an

explicit reason. Explicit ways to interact with Excel sheets extend beyond

accessing specific cells. They include:

• Setting a short-cut key,

• Recording a macro, and

• Inserting a command button into the sheet.
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Specifically, to create a button in your Excel sheet, one can select (on the

developer ribbon) Insert[Button. Once the size of the button is created a window

will pop up for you to select a macro, which contains VB code. The code will run the

macro that was selected every time the button is clicked. For example, a button placed

in an Excel sheet might be linked to run the ‘‘multiply_cell’’ subroutine in Code 9.2.

Code 9.2 Reading in A1 and printing

Sub multiply_cell() 

Dim iRead As Integer 

iRead = Sheet1.Cells(1, 1) 

Sheet1.Cells(1, 2) = iRead * 8 

End Sub 

Recording macros (which can be a way to implement short-cut keys) offers

advantages. For example, it can be a quick way to generate the VB code for oper-

ations that the developer already knows well in Excel. As an example, consider how

the ‘‘multiply-cell’’ code can effectively be generated by recording a macro.

To record the relevant macro, under the developer ribbon in Excel click ‘‘record

macro’’. Next, assign a name such as ‘‘record_test’’ (or any name). Then select cell

B2 in Excel and type in =A2*8. Back in the developer ribbon, select the ‘‘stop

recording’’ macro.

Note that accessing VB as described will create a module containing the code.

That code has a specific location (B1) reference since it was generated when

recording the macro. The next command focuses on the active cell and multiplies

whatever is in the cell to the immediate left (cell A1 in this case) by 8. The code

for this macro as written is show in Code 9.3. Note that single ‘‘‘’’quotes transform

whatever follows in the line into a comment rather than a command.

Code 9.3 Recorded macro code

 

 

 

 

 

 

Sub Record_test() 

' Record_test Macro 

    Range("B1").Select 

    ActiveCell.FormulaR1C1 = "=RC[-1]*8" 

End Sub 

9.2 Loops: For and Do–While

It is perhaps true that computers derive the majority of their power from automatic

looping, i.e., repetitive tasks. Here, we consider similar types of loops: ‘‘for’’ and

‘‘do–while’’ loops. These are the building blocks for the discrete event simulation
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code that follows. For loops are generally preferred in cases in which there is a

pre-known fixed number of operations; do–while loops which can more easily

terminate, are more useful when an operation is to be ended as soon as a condition

is satisfied. The code used for illustration here is shown in Code 9.4.

Code 9.4 For loop example

Sub Main() 

Dim iIndex As Integer, jIndex As Integer 

jIndex = 0 

For iIndex = 0 To 2 

   jIndex = jIndex + iIndex 

Next iIndex 

End Sub 

The Code 9.4 is looping ‘‘iIndex’’ from 0 to 2. Anything inside of the ‘‘For’’ and

‘‘Next’’ commands will be performed during each loop. The loop begins with

jIndex equal to six and ends when it equals three. A more complicated example of

a while loop is shown in Code 9.5.

The code in 9.5 first defined ‘‘iIndex’’ and ‘‘jIndex’’ as integers. It then set the

integers to initial values. The while loop then starts and will loop while ‘‘jIndex’’ is

less than 4. Each loop the code will subtract one from ‘‘jIndex’’ and add one to

‘‘iIndex’’. When the code is finished it will print ‘‘jIndex’’ in cell A1. Like the

‘‘for’’ loop, the while loop will repeat each task in order during each loop between

‘‘While…’’ and ‘‘End While’’. This executes until the test is false.

Code 9.5 While loop example

Sub Main() 

Dim iIndex as Integer, jIndex As Integer 

iIndex = 0 

jIndex = 6 

While jIndex > 4 

jIndex -= 1 

iIndex += 1 

End While 

sheet1.cells(1,1) = jIndex 

End Sub 

Other variants of looping are shown in Code 9.6 and Code 9.10. Code 9.6 is a

general code for the user to fill in the blanks, as it is much like the other loop examples.
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Code 9.6 Do loop example

 
Do { While | Until } condition 

    [ statements ] 

    [ Exit Do ] 

    [ statements ] 

Loop 

 

A ‘‘while–wend’’ is another loop type. An example of this type, in which the

loop will repeat 100 times, is shown in Code 9.7.

Code 9.7 While–wend example

Dim number As Integer 

number = 1 

While number <=100 

number = number + 1 

Wend 

9.3 Conditional Statements: If–Then–Else and Case

Conditional statements are also core to programming. Here, we consider

‘‘If–Then–Else’’ and ‘‘Case’’ statements. The Code 9.8 illustrates both types of

statements. The ‘‘If–Then–Else’’ routes code based on an expression, which is

Boolean. If the expression is true, then the first statement is executed, otherwise

the else statements (if any) are executed. The ‘‘Select Case Variable’’ construction

is similar but its execution depends on the value of the variable.

9.4 Subroutines and Functions

Subroutines and functions are similar constructs that help by organizing the code

into specific capabilities. The central difference between subroutines or ‘‘subs’’

and functions is that functions permit information to be passed using the ‘‘return

value’’ or function name. Programmers are generally careful about restricting

access to variables to avoid mistakes arising from the interaction of functions. As a

result, using functions and avoiding public variables (which are not clearly iden-

tified with specific functions) is generally preferred.

The code below illustrates two ways of multiplying numbers using subroutines

and functions. First, it illustrates how one subroutine can ‘‘call’’ another,

9.2 Loops: For and Do–While 131



interacting through ‘‘public’’ variables. Second, it shows the use of a function and

the function return value. Functions can also interact through public variables.

Code 9.8 If–Then and Case Example

 

 

 

 

 

 

 

 

Sub conditionTest() 

Dim iIndex As Long 

iIndex = 1 

If (iIndex = 1) Then 

Sheet1.Cells(1, 1) = "iIndex=1" 

Else 

Sheet1.Cells(1, 1) = “iIndex=NOT1” 

End If 

Select Case iIndex 

    Case 0 

    Sheet1.Cells(1, 2) = "iIndex=0" 

    Case 1 

    Sheet1.Cells(1, 2) = "iIndex=1" 

End Select 

End Sub 

Code 9.9 Illustration of subroutine and function calls

Public multiplied As Double 

Sub main() 

multiplied = 2 

Call multiplyByTwo 

Sheet1.Cells(1, 1) = multiplied 

Sheet1.Cells(2, 1) = multiplyByThree(multiplied) 

End Sub 

Sub multiplyByTwo() 

multiplied = multiplied * 2 

End Sub 

Function multiplyByThree(number As Double)

multiplyByThree = number * 3

End Function 

9.5 Visual Basic and Simulation

This section describes code for a discrete event simulation controller. The code can

be used to simulate any interarrival distribution, e.g., exponential, lognormal, or

other. Also, any service distribution can be used. Further, the code applies to cases
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with a single queue and an arbitrary number (c) of identical machines or servers.

In the queuing terminology of Chap. 6, the code simulates G/G/c systems where

‘‘G’’ stands for general arrivals, general service, and with c machines.

The code is unavoidably complicated. It includes subroutines for manipulating

the public variables and functions for changing specific variables. The overall

layout is sketched in Fig. 9.2. The simplest components are the initializations and

the random numbers functions. Next, the event calls the arrival and department

functions and checks for termination conditions. The sections that follow describe

each of the sections of the code in detail. All of the code can be pasted into a single

module or separate modules.

9.5.1 Pseudorandom Numbers and Initialization

Visual basic contains the built-in random number generator Rnd or Rnd(). With

no argument, Rnd returns the next pseudorandom number in the sequence.

The quality of the random numbers is not exceedingly high. Pseudorandom numbers

from Numerical Recipes, e.g., are clearly of higher quality (Press et al. 2007). As

evidence, consider that the numbers derived from Rnd have sometimes crashed our

log and other functions by delivering a number so close to zero that the log returned

and undefined value. As a result, we developed the following function to generate

exponentially distributed pseudorandom numbers. The program checks that the

derived Rnd is not equal to zero before taking the logarithm.

Similarly, we developed the following code to generate pseudorandom

lognormal deviates. Note the reference to ‘‘Application.WorksheetFunction.

LogInv’’ which is based on the built-in Microsoft program library.

By typing ‘‘Application.WorksheetFunction.’’ a list appears of available functions.

We have experienced occasional issues with not being able to run code using these

functions. Yet, saving and restarting the program has generally fixed related problems.

The following code generates approximate nonhomogeneous arrivals. These

numbers are approximate because, as noted in unpublished communications by

David Kelton, the expected arrival rate is not exactly the target k(t). Kelton has

proposed a so-called ‘‘thinning’’ method based on hypoexponential random

Fig. 9.2 Overview of the
discrete event simulation
code
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variables (sums of exponentials) with arrival rates that are provably consistent with

nonhomogeneous Poisson processes. This more exact generation method is

commented in the code.

The code example focuses on assumptions appropriate for some formulations of

Election Day simulations. The specific approach hard-codes a doubling of the

arrival rate in specific rush periods. Note that the rush periods are assumed to be

early in the morning and after work.

Completing the preparation for writing the core program requires initialization.

The declaration ‘‘Option Explicit’’ forces the declaration of all variables in the file.

The declaration of public variables is important because they are involved in

arrivals, departures, and checks for the completion of the simulated period. Almost

all of these public variables relate to quantities being tracked related to the

evaluation metrics such as the waiting time and the number in queue.

Code 9.10 This generates exponential pseudorandom numbers in a robust way

 

 

 

 

 

 

 

 

Function ExpoVariate(Rate As Double) 

'The challenge is to avoid any possible crash if Rnd gives 0.000. 

    Dim UniVariate As Double 

     UniVariate = 0 

   Do While UniVariate = 0 

        UniVariate = Rnd 

    Loop 

      ExpoVariate = -Log(UniVariate) / Rate 

End Function 

 

Code 9.11 Robust lognormal random number generator

 

 

 

'The following generates lognormal pseudorandom numbers. 

Function geneLN(lNMu As Double, lNSigma As Double) 

'The challenge is to avoid any crash if Rnd gives 0.000. 

    Dim UniVariate As Double, N As Double 

       UniVariate = 0 

        Do While UniVariate = 0 

        UniVariate = Rnd 

    Loop 

N=Application.WorksheetFunction.LogInv(UniVariate,lNMu,lNSigma)  

geneLN=N 

End Function 
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Code 9.12 Generates exponential interarrivals for nonhomogeneous Poisson

processes

 

 

 

Function NonStationaryExpo(Rate As Double) 

'Assume two peaks, i.e., 6:30 - 8:30, and 17:30 - 19:30. 

'The arrival rates in those peaks are twice  

'of those in other periods, i.e., 8:30-17:30 

Dim MaxRate As Double 

MaxRate = 26 / 17 * Rate  

'Rate here is the arrival rates in the stationary case 

    If clocktime <= 120 Or clocktime > 660 Then 

        NonStationaryExpo = ExpoVariate(MaxRate) 

    End If 

        If clocktime > 120 And clocktime <= 660 Then 

NonStationaryExpo = ExpoVariate(MaxRate/2) 

             End If 

'The following algorithm uses the “thinning” method 

'    If clocktime <= 120 Or clocktime > 660 Then 

'        NonStationaryExpo = ExpoVariate(MaxRate) 

'    End If 

'    If clocktime > 120 And clocktime <= 660 Then 

'        Do 

' NonStationaryExpo = NonStationaryExpo + ExpoVariate(MaxRate) 

'        Loop While Rnd > 1 / 2 

'         End If 

End Function 

Also, ‘‘Option Base 1’’ initializes arrays with the value 1. Further, the ‘‘Infin-

ity’’ variable will store a large value used in specific initializations. The parameters

‘‘lambda’’ and ‘‘mu’’ are also used throughout. Note also the extensive com-

menting to help others use the code without detailed explanations.

9.5.2 The Event Controller

This section describes the functions associated with the event controller. As noted

in Chap. 4, the heart of the event controller lies in enumerating the possible next

occurrences. Then, it identifies the time of the next occurrence and moves the

clock forward. For the single queue simulation considered here, there are only

three possibilities for the next event:

1. An arrival,

2. A departure (from any server), and

3. Termination of the program.

The first function determines the next event. It searches the next arrival, the jobs

being performed (if any), and checks for termination. Note the initialization using
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the infinite global variable to facilitate the selection of the shortest time derived

from the ‘‘for’’ loop. Because the number of servers is generally small, it is

appropriate to use an Integer for the index in the loop.

Code 9.13 Initial declarations for a discrete event-simulation controller

 

Option Explicit 

Option Base 1 

Public NextArrival As Double 

Public NextDeparture() As Double

Public NumInSystem As Integer 

Public NumInQueue As Integer 

Public ServerBusy() As Boolean 

Public lambda As Double, mu As Double 

Public Server As Integer 

Public Infinite As Double, StartToWait As Double 

Public cumWaitTime As Double 

Public Numserver As Integer, closetime As Double 

Public clocktime As Double 

Public MaximumVoter As Integer 

Public Queue_ArrivingTime() As Double 

Public CurrentVoterWaitTime As Double 

Public CurrentMaxWaitTime As Double 

Public cumCurrVoterWaitTime As Double 

Public testcounter As Integer 

Code 9.14 This function finds the time of the next event

 

 

 

Function findclocktime() As Double 

Dim MinDeparture As Double 

Dim i As Integer 

MinDeparture = Infinite 

    For i = 1 To Numserver 

        If MinDeparture > NextDeparture(i) Then 

            MinDeparture = NextDeparture(i) 

            Server = i 

        End If 

    Next i 

    If NextArrival > MinDeparture Then 

        findclocktime = MinDeparture 

    Else 

        findclocktime = NextArrival 

    End If 

End Function 
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The main body of the event controller function is long and unavoidably

complicated. As a result, it is divided into three parts in this text. In general,

subroutines (‘‘subs’’) and functions can be deployed among different modules with

no effect. This permits the organization of large codes. The three portions of the

event controller function described here are different parts of the same function

and thus must be in the same module.

The controller code begins with more initializations. The variables that track

time, waits and line lengths are set to zero. The code is designed to be flexible such

that tracking can be begin with zero-length queues or after the queues have been

allowed to build. Waiting would help for modeling steady state periods as

described in Chap. 5. A ‘‘burn-in’’ period is often used in these cases to address the

initial conditions bias. In the context of election systems simulation, starting the

clock at the opening of the polls might make sense since the election officials

might not be held accountable for lines formed while the polls were closed.

The next section focuses on the initialization of counters for cases in which

variables were set externally such that a line has already formed because of

initializations. First, if there is a line the next departure time is calculated. All

servers are initialized as busy. Alternatively, if the number in the system is less

than the number of servers, the next departure issue is unknowable so it is set to a

large number (Infinite).

In the last section of the event controller, initialization is complete. The ‘‘Do

While’’ essentially controls the simulation. The next event determines the event

type. The event type and the case statement kick off the execution of the event

type. After executing the arrival or departure event using the functions described in

the next section, records are updated. These permit estimation of the average

waiting time of all voters being served.

The record keeping also permits computation of the average long-term waiting

time. The program refers to this long-term average as the ‘‘Max waiting time’’ and

changing the commenting allows this quantity to be calculated instead of the

average waiting time for all voters.

9.5.3 Arrival and Departure Events

The subroutines that describe arrival and departure are next described. First, when

an arrival occurs, the waiting time counter must be initialized. If waiting were

needed, then the queue length would also need to be lengthened. Alternatively, if

there is no line, then the first available machine needs to be loaded with the job (or

voter). If loaded, we can immediately calculate the departure time of the loaded

job. The global storage variables are adjusted.
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Code 9.15 The start of the event controller code

 

 
Function AverageWaitTime(servicerate As Double, NumEarlyVoter As 

Integer, TotalVoters As Integer) 

Dim i As Integer, j As Integer, Rep As Integer 

Dim EventType As Integer, variance As Double 

Dim stdev As Double 

Dim TotalServed As Integer, WaitTime() As Double  

Dim TotalWaitTime As Double 

Dim Voter As Integer, cumqueue As Integer 

Dim averagequeue As Double 

Dim TotalMaxWaitTime As Double, MaxWaitTime() As Double 

Infinite = 60 * 60 

Rep = 100 

ReDim WaitTime(Rep)  

'The average wait time of one replication 

ReDim MaxWaitTime(Rep)  

MaximumVoter = TotalVoters 

    For j = 1 To Rep 

        closetime = 13 * 60 

        clocktime = 0 

        mu = servicerate 

        NextArrival = NonStationaryExpo(lambda) 'ExpoVariate(lambda) 

        NumInSystem = NumEarlyVoter 

        Voter = NumEarlyVoter 

        cumWaitTime = 0 

        StartToWait = 0 

        TotalServed = 0             

        ReDim NextDeparture(Numserver) 

        ReDim ServerBusy(Numserver) 

'Depends on whether the queue begins with empty or not. 

        If NumInSystem = 0 Then 

            For i = 1 To Numserver 

                NextDeparture(i) = Infinite 

            Next i 

            NumInQueue = 0 

        End If 
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Code 9.16 The middle of the event controller code

 

 

 

If NumInSystem >= Numserver Then 

   For i = 1 To Numserver 

NextDeparture(i) = clocktime + (1 + mu) * geneLN(1.7042, 0.4406) 

'ExpoVariate(mu) 

        ServerBusy(i) = True 

   Next i 

        NumInQueue = NumInSystem - Numserver 

   End If 

   If NumInSystem < Numserver Then 

   For i = 1 To NumInSystem 

NextDeparture(i) = clocktime + (1 + mu) * geneLN(1.7042, 0.4406)  

'ExpoVariate(mu) 

   ServerBusy(i) = True 

   Next i 

   For i = NumInSystem + 1 To Numserver 

       NextDeparture(i) = Infinite 

Next i 

       NumInQueue = 0 

       End If 

If NumInQueue > 0 Then 

       ReDim Queue_ArrivingTime(NumInQueue) 

    Else 

       ReDim Queue_ArrivingTime(1) 

    End If 

       clocktime = findclocktime 

Second, the arrival event subroutine is described. If there is no queue, the

departure has limited implications. The server is not used and the time of next job

completion is unknown. Alternatively, if there is a queue the departure means

there will be an immediate replacement on the machine. This requires updating the

waiting times and the times of the next departures. The stack of processing jobs

needs to be shifted to account for the removal of the completed job.
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Code 9.17 The end of the event controller code

 

 

 

Do While clocktime < closetime Or NumInSystem > 0  'And Voter <= TotalVoters 

            If clocktime = Infinite Then 

                Exit Do 

            End If   

            If clocktime = NextArrival Then 

                EventType = 1 

            Else 

                EventType = 2 

            End If 

            Select Case EventType 

                Case 1 

                    Voter = Voter + 1 

                    'Call arrival 

                    'If clocktime < closetime Then Voter = Voter + 1 

                    If Voter <= MaximumVoter Then 

                        Call Arrival(Voter) 

                        'Debug.Print Voter 

                    End If 

                    'Range("D2").Cells(Voter).Value = cumWaitTime 

                Case 2 

                    Call Departure(Server) 

                    TotalServed = TotalServed + 1               

            End Select 

        If TotalServed > 0 Then 

    'WaitTime(j) = cumWaitTime / clocktime 'This is averge number in queue 

                WaitTime(j) = cumWaitTime / TotalServed 

            End If 

            clocktime = findclocktime 

        Loop 

        TotalWaitTime = TotalWaitTime + WaitTime(j) 

        MaxWaitTime(j) = CurrentMaxWaitTime 

        'the sum of Max wait time 

        TotalMaxWaitTime = TotalMaxWaitTime + MaxWaitTime(j) 

        CurrentMaxWaitTime = 0 

    Next j 

    'Expected wait time 

       AverageWaitTime = TotalWaitTime / Rep 

        'Calculate standard deviation 

    'For j = 1 To Rep 

        'variance of the expected wait time 

        'variance = variance + (WaitTime(j) - AverageWaitTime) ^ 2 

        'variance of the max wait time 

        'variance = variance + (MaxWaitTime(j) - AverageWaitTime) ^ 2 

        'Range("a2").Cells(j).Value = WaitTime(j) 

    'Next j 

    'stdev = (variance / (Rep - 1)) ^ 0.5 

    'Debug.Print AverageWaitTime; 'stdev; stdev / AverageWaitTime 

End Function 
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Code 9.18 This executes an arrival event

 

 

 

Sub Arrival(ArrivedVoters As Integer) 

Dim ToDoServer As Integer, i As Integer 

Dim DepartureIncre As Double 

Dim ArrivalIncre As Double 

    'clocktime = NextArrival 

      NumInSystem = NumInSystem + 1   

    If NumInSystem > Numserver Then 

        'compute cumulative wait times 

cumWaitTime = cumWaitTime + (clocktime-StartToWait)*NumInQueue 

        NumInQueue = NumInQueue + 1 

        StartToWait = clocktime 

        'record current voters in queue with their arrivingtime 

        ReDim Preserve Queue_ArrivingTime(NumInQueue) 

        Queue_ArrivingTime(NumInQueue) = clocktime 

    Else 

        'to find an idle server 

        For i = 1 To Numserver 

            If ServerBusy(i) = False Then 

                ToDoServer = i 

                Exit For 

            End If 

        Next i   

        ServerBusy(ToDoServer) = True 

NextDepature(ToDoServer)=clocktime+(1+mu)*geneLN(1.7042,0.4406) 

'ExpoVariate(mu) 

    End If 

    If ArrivedVoters >= MaximumVoter Then 

        NextArrival = Infinite 

        Exit Sub 

    Else 

        NextArrival = clocktime + NonStationaryExpo(lambda) 

    End If 

     

    If NextArrival > closetime Then 

        NextArrival = Infinite 

        Exit Sub 

    End If 

End Sub 
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Code 9.19 This executes a departure event

 

 
Sub Departure(Server As Integer) 

Dim DepartureIncre As Double 

Dim k As Integer 

    'testcounter = testcounter + 1 

    NumInSystem = NumInSystem - 1 

    If NumInQueue = 0 Then 

        ServerBusy(Server) = False 

        NextDeparture(Server) = Infinite 

    Else 

        'This computes cumulative wait time. 

cumWaitTime = cumWaitTime + (clocktime - StartToWait) * NumInQueue 

        ServerBusy(Server) = True 

        NumInQueue = NumInQueue - 1 

        StartToWait = clocktime 

        'This computes the specific voter's waiting time. 

        CurrentVoterWaitTime = clocktime - Queue_ArrivingTime(1) 

cumCurrVoterWaitTime = cumCurrVoterWaitTime + CurrentVoterWaitTime 

        'This helps identify the maximum waiting time so far. 

        If CurrentMaxWaitTime < CurrentVoterWaitTime Then 

            CurrentMaxWaitTime = CurrentVoterWaitTime 

        End If 

        If NumInQueue > 0 Then 

            For k = 1 To NumInQueue 

                Queue_ArrivingTime(k) = Queue_ArrivingTime(k + 1) 

            Next k 

            ReDim Preserve Queue_ArrivingTime(NumInQueue) 

        End If 

NextDeparture(Server) = clocktime+(1 + mu)*geneLN(1.7042, 0.4406)

End If 

End Sub 

 

9.5.4 Calling the Average Waiting Time Function

Finally, there is a simple subroutine that calls the function described in previous

sections. The default parameters are selected in the code below to represent a 13-h

election day. Also, the arrival rate and the number of machines is intended to

describe a medium-sized voting precinct in terms of the expected number of

entities (registered voters) arriving. In the example, the number of voters arriving

is assumed to be 433 over 13 h. The service rate is 0.384 entities (voters) per

minute. The function then writes the average waiting time to the first cell in Sheet1

in the Excel workbook.
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Code 9.20 Example code for calling the discrete event controller

 

 

 

'For the use of debugging 

Sub testWaitTime() 

    Dim mu As Double 

    lambda = 443 / 13 / 60 

    mu = 0.384 

    Numserver = 8 

 

    Call AverageWaitTime(mu, 36, 443) 

    Sheet1.Cells(1,1) = AverageWaitTime  

 

End Sub 

9.6 Problems

1. List three advantages of using low-level languages and custom simulation

software instead of commercial software.

2. List one advantage of VB compared with an alternative language.

3. Is it possible to us VB code independent of Microsoft Excel using a Microsoft

controller and paying little or no licensing fee? Explain briefly.

4. What dimension types are the most economical choices possible for the

following numbers: 0.2123456233, 0.231, 32, fun, 3212343234.

5. What dimension types are the most economical choices possible for the

following numbers: 0.2123, 0.231, 321232112, {fun, time}, 33234.

6. Record a macro that multiplies a number by 27.

7. Record a macro that divides a number by 27.

8. Write code that sums 1 ? 2 ? 3 ? 4 +���+ 100.

9. Write code that sums 1 ? � ? 1/3 ? � +���+ 1/100.

10. Write code to calculate 1 ? 22 ? 33 +���(the largest number in the series

\1000).

11. Write code to calculate 1 ? 22 ? 33 +���(the largest number in the series

\1000).

12. Write VB code to create a ‘‘smiley face’’ made out of yellow Excel cells.

13. Write VB code to color five cells yellow in Excel.

14. Write VB code to create the sequence ln(i) for i = 1,…,10 or ‘‘i = 5’’ for

i = 5.

15. Write VB code to create the sequence exp(i) for i = 1,…,10 or ‘‘i = 5’’ for

i = 5.

16. Repeat question 14 using a While–Wend loop.

17. Repeat question 15 using a While–Wend loop.
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18. Assume that X is exponentially distributed with mean 10. Use VB code to

estimate E[X2].

19. Assume that X is exponentially distributed with mean 20. Use VB code to

estimate E[X2].

20. Assume that X is lognormal with parameters 2 and 3. Use VB code to estimate

E[X2].

21. Assume that X is lognormal with parameters 2 and 3. Use VB code to estimate

E[X2].

Assume that customers arrive over a 30 min period according to a Poisson

process with mean interarrival time of 2 min. Also, assume that service is

lognormal with parameters 1 and 1.5. Use VB code to estimate the average waiting

time.
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Chapter 10

Introduction to ARENA Software

This chapter introduces a software package used widely for instruction and

real-world decision-support often referred to as ARENA software. ARENA is

effectively a suite of software which includes the ARENA simulator, the Input

Analyzer (for input analysis), and the Process Analyzer (PAN) (for output analysis).

All of these are produced by Rockwell International which is also a major manu-

facturer. This situation permits the ARENA team to constantly apply their software

to real-world problems. ARENA software and the related suite do not have the full

range of graphics and visualization capabilities of software such as AutoMod,

MODSIM, PROMODEL, SIMIO, and many others. Also, the Input Analyzer and

the PAN lack statistical analysis features in more powerful software such as SAS.

Yet, ARENA is comparatively easy-to-learn, of moderate cost (around $20K per a

professional license), and can be successfully used for even large projects.

The purpose of this chapter is to help the reader create and run a simple ARENA

model. Also, the chapter orients the reader to the other software in the ARENA

suite. Section 10.1 describes in detail how to model the election system example

from Chap. 4 using ARENA. Section 10.2 applies the Input Analyzer to a related

data set and Sect. 10.3 explores the application of the PAN. For those professionals

who prefer accessing their models through a programming environment, ARENA

also provides a programmatic interface through a language called SIMAN that we

will describe only briefly in Sect. 10.4. Section 10.6 concludes with an example that

summarizes the key methods and concepts from the chapter.

This chapter covers only the three most basic ARENA ‘‘modules’’ or ‘‘blocks’’

shown in Table 10.1—Create, Process, and Dispose. Together, these can create the

entities governed by a random number stream and the event controller. The

Process module can be thought of as a bank of machines with a queue. When an

entity arrives and a resource is available, the entity seizes the resource, delays the

resource from receiving other entities in queue (if any), and then (after service

completes) releases the resource. Chapter 11 describes more advanced modules for

scheduling, material handling visualization, and general animation.

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,
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10.1 Getting Started: Voting Example

The voting system has been described in this book in Chaps. 1, 3 and 8. The

relevant workflow is detailed in Fig. 3.3, which already is effectively an ARENA-

type model layout. We are going to create this model using the above-mentioned

blocks. Starting with a Windows� computer that has ARENA installed on it,

double-click the ARENA icon on the desktop to start the program. Alternatively,

use the start menu to go to Programs[Rockwell Software[Arena (with the

appropriate version number) and click on the ARENA icon. A result similar to

Fig. 10.1 will appear.

Next, study the areas of the page you have opened. Versions differ somewhat.

Generally, the words ‘‘Basic Process’’ will be displayed on the left side of the

screen below which will appear the Project Bar. Inside the project bar are the

blocks known as modules. Below these modules is a Reports bar. This facilitates

the viewing of reports derived from a previously run simulation. Below the

reports bar is the navigation bar which can be used to navigate around your

model window (see description below). If you wish to go back to the basic

process bar you click on it. To the right of the Project Bar the model window is

displayed in which the simulations are created. The model window dominates

visually.

To create the voting system model, drag and drop a Create module from the

basic processes to the model window. Double click the ‘‘Create 1’’ module now

sitting in the model window, an image similar to Fig. 10.2 should appear.

Based on the data in Fig. 3.3, we need to change the value and units entries in

this box to reflect an average interarrival time of 0.2 min. The resulting user form

should look like Fig. 10.3.

After making these changes, click OK. Next drag and drop a Process module to

the model window. Note that the queuing will be preformed along the path

ARENA created between the Create and Process modules. Double click your

Table 10.1 ARENA modules used in this chapter

This module is intended as the forming point for entities in a simulation model. Entities
are created in one of two ways: (1) a schedule (2) based on a time or expression
between arrivals

This module is the main processing method in the simulation. Options for seizing and
releasing resource constraints are available. Normally, an entity seizes, delays, and then
later releases the process or machine. The process time is allocated to the entity and
may be considered to be value added, nonvalue added, transfer, wait or other for lean
production related accounting

This module is intended as the ending point for entities in a simulation model. Entity
statistics may be recorded before the entity is disposed
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Process module to enter information into the associated user form. The result

should look like Fig. 10.4.

Change this box as follows. Note that when you change the action from

‘‘Delay’’ to ‘‘Seize Delay Release’’ you need to click ‘‘Add’’ next to the

‘‘Resources:’’ box. The default setting that appears is acceptable in this case,

therefore click ok. Almost always, we select ‘‘Seize Delay Release’’ and to add a

resource. Without making both of these choices, the model would not run

(no resource) and if it did, that resource would never be released resulting in a

generally accumulating queue (Fig. 10.5).

Click ‘‘OK’’ to exit the Process module. Next, we will create another Process

module, repeating the steps just carried out for the arrival and registration

modules. Here, ‘‘creating’’ implies dragging and dropping a module from the

Fig. 10.2 Create 1 module
open

Fig. 10.1 ARENA blank document
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project bar into the model window. This was done earlier, we created the create

(arrival) and process (registration) modules. Select the new module and change the

user form it so it looks like Fig. 10.6. Again, ‘‘Seize Delay Release’’ is used and a

resource is created by adding it.

Following the completion of the Voting Machine process create a ‘‘Dispose’’

module and leave the default settings. Your model should look similar to

Fig. 10.7.

If your figure has connections going to the wrong locations, or is out of order,

you can simply click the connections and press delete on your keyboard. Then,

pressing the button you can create new paths by clicking on the end of

the module where one would wish to start followed by clicking on the end of

the module where one would like to finish. Lastly in the model creation go to

Fig. 10.3 Create module
updated

Fig. 10.4 Process module
opened
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Fig. 10.5 Process module
updated

Fig. 10.6 Process module 2
updated

Voter Arrives Registration Machine Dispose 1

0
0 0

0

Fig. 10.7 ARENA voting system layout
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File[ Save As and save ARENA file (note files save using the .doe extension).

To run the model one must adjust the run settings. Generally, this requires

selecting Run[ Setup. A window similar to Fig. 10.8 appears.

The window in Fig. 10.7 allows the selection of the number of replications

for the simulation including the time length of the simulation, etc. In the voting

systems simulation, one would want to specify the run time as the number of

hours the voting booths are open, say 1 h for a trial run (or 13 h plus overtime

in realistic cases). Once the running parameters have been set in the run

setup window, press the button on the main ARENA window to run the

simulation.

We have set up the simulation to run where the capacity for resource 1

(registrar) and resource 2 (voting machines) are 5 and 35, respectively. The

simulation is set up to run 25 replications and our voting day is set at just 1 h so

that results come nearly instantly. Once the program is run, results like those in

Fig. 10.9 will appear on your screen after the viewing reports prompt is answered

with a yes response.

As shown in Fig. 10.9 the average number of voters who voted in the 1-h voting

window for the current configuration over the 25 replications is 215. Under the

‘‘Preview’’ tab of the reports window, the entities, queues and resource figure data

are displayed. Assuming a reasonable number of replications (such as 25) is used,

the program outputs will include estimated means and confidence interval half

Fig. 10.8 Run setup window
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widths as described in Chap. 2. For example, Fig. 10.10 shows the times for the

entities in the following areas: value added (VA) time, nonvalue added (NVA)

time, waiting time, transfer time, other time, and total time though out the system.

Fig. 10.9 Voting problem initial report screen

Fig. 10.10 Report output showing the entity times
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Additional results of interest are displayed in the comparison bar graph inside

the resource section of the report. This chart shows the utilization (see Chap. 6) of

each resource compared visually. An example is shown in Fig. 10.11.

Consider how the output analysis data might be applied. From Fig. 10.11, one

can conclude that the registrars are likely not the bottleneck (resource 1) while the

machines (resource 2) are. This finding suggests opportunities for system redesigns

as described in Chap. 7.

Having described the basics for creating a working ARENA model, we briefly

review the underlying logic. We used a ‘‘Create’’ that we called ‘‘Voters Arrive’’

to generate simulated entities, which in this case were voters. For this, we used

EXPO(0.2) pseudorandom interarrival times. Once the entity was created, ARENA

sent it to the Process module. Process modules have a queue in front of them,

which is used by ARENA as needed. Within the process one chooses a seize delay

release using the resource 1 we created.

The ‘‘seize’’ reserves the resource for the loaded entity. The delay takes the

entity and delays it based on the input, which was a TRIA(0, 0.229, 2.29) in

minutes. During this time the resource was utilized. In the example, this resource

was chosen to be used only once. If one wished instead to have, e.g., four regis-

tration representatives then the value of ‘‘Resource 1 Capacity’’ would be set at

four. In common applications, we would not add four resources but instead apply a

single resource with ‘‘Quantity’’ or ‘‘Capacity’’ equal to four.

In a more complex problem, it is generally advantageous to name the resource,

e.g., the registration representative, for accounting and debugging. For example,

there might be ‘‘Decide’’ module (see ARENA help and Chap. 11) that could route

parts to different resources depending on a condition being met.

The ‘‘release’’ frees the resource and the entity to go to the next process,

where again it can queue if necessary. The next process represented the voting

machines. This module represents the person actually voting. Again a seize delay

release is used, this time we input a TRIA(4, 5.2, 16) distribution in minutes.

And the resource 2 represents a single voting machine that was inputted. Finally,

the last module is a dispose which removes said entity from the simulation

system.

Fig. 10.11 Report output showing estimated resource utilization with half width
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10.2 ARENA Input Analyzer

ARENA also has available in its tool box an Input Analyzer as described in

Sect. 2.3. This program takes as input the data typically collected in a text file.

It then generates the best fit curve and expression to enter into the associated

Create, Process, or other ARENA block. For example, in the voting problem in

Sect. 10.2, two triangular distributions, and a single exponential distribution were

derived from fitting data.

To open the Input Analyzer, go to Start[Programs[Rockwell Software[

ARENA[ Input Analyzer. Once the program is opened go to File[New or click

the button. The data must be in .txt format with space, tab, or line delimiting.

(Typically the needed inputs have been prepared by copying and pasting data from

a word processing or spreadsheet program directly into a notepad .txt file.)

To open and analyze the data, go to File[Data File[Use Existing… select

the file type as .txt then locate and double click your saved .txt file with the data.

Opening a .txt with the following set of data (90, 95, 90, 90, 98, 92, 93, 94, 91, 88,

89, 91, 92, 87, 90) and selecting Fit[Fit All should yield a result similar or

identical to Fig. 10.12 (depending on versions).

The Input Analyzer fits all of the following distribution types: beta, empirical,

erlang, exponential, gamma, Johnson, lognorm, normal, poisson, triangular,

uniform, weibull. Fits are based on a relative frequency histogram and the sum of

squared error criterion as described in Chap. 3. Within the Fit tab you can choose

any one of these options or the fit all and let the analyzer choose for you.

Generally, the simplest model with a competitive sum of squares error is preferred.

Fig. 10.12 The output from Input Analyzer showing the plotting estimates
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As an example output, consider the distribution summary, data summary, and

histogram summary shown in Fig. 10.12.

10.3 ARENA Process Analyzer

The PAN helps users in evaluating alternatives to their ARENA base model, e.g.,

output analysis of how would results change if more voting machine resources

were added? The PAN takes as input ARENA files created by the execution of

different model scenarios. Its outputs display results so as to facilitate statistical

comparison of the models and aid in decision-making.

The ARENA help menu defines the following key terms as follows:

Controls inputs that are considered to affect the operation of the model in a manner

that can be monitored/viewed in the output of the model.

Responses outputs that represent measures of how the model performed during the

run.

Scenario a collection of controls and responses as applied to a given simulation

model.

Therefore, controls are generally either resource capacities or variables (not yet

described here). The voting problem used resource 1 as registrars and resource 2 as

voting machines; in the example given, each parameter was set to one. To start the

PAN, go to the start menu then Programs[Rockwell Software[ARENA[

Process Analyzer.

The PAN works with .p files. To create a .p file you must run your ARENA

model and select the check model option in the run menu, ARENA will create a .p

file in the same location as the ARENA model. To start the PAN, go to File[New

or click the button. A white space will appear where it says ‘‘double-click here

to add new scenario.’’ Double click in the space and change the names as desired.

Next, browse for the .p file you wish to use and click OK. Then, right click on

the newly created scenario and select Insert Control to set up a control for this

scenario. Change the control settings as desired. Repeat the steps including double-

clicking to add new scenarios and step through, changing the control settings for

each additional desired scenario.

To re-run the different scenarios that were set up previously go to Run[Go…

and verify that the scenarios lists are the scenarios you wish to run. If so, click OK;

if not, click Cancel and Edit or [should this be ‘‘to’’ instead of ‘‘or’’?] add the

desired scenarios. The results will be displayed in the gridded area. If desired, the

results can be sorted or charts can be created using the PAN chart menu. Note that

if the program uses one replication, the result is shown for that one replication; if

there are multiple replications then the average is shown.

Finally, note that some versions of the PAN do not generate simultaneous

intervals as described in Chap. 5. This can be overcome by adjusting individual

intervals so that their associated alpha levels are sufficiently small to satisfy the

Bonferroni or other rigorous inequality as described in Chap. 5.
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10.4 Processes, Resources, Queues, and Termination

In most cases there is more than one way to perform tasks in ARENA. For

example, one can use the project bar to create modules in the model as described

previously which involved dragging and dropping. Once created the user double

clicks the module to make changes.

Another method for revision requires clicking on the Process icon in the Project

Bar to display a list of all the process modules as shown in the circled area of

Fig. 10.13. Each column in this area is an option that would be found inside the

module user form. Viewing the table and making changes there is often more

convenient when one has a large simulation model and many changes are needed.

Similarly if you wish to change entity, queuing, resource, variable or schedule

settings, one would select the appropriate box in the project bar and change the

settings in the bottom area circled in Fig. 10.10. For example, to change the

queuing style select the queuing box as shown in Fig. 10.14 for the voting example.

One aspect of queuing that can be changed is the type. Types include: first-in-

first-out (FIFO), last-in-last-out (LILO), lowest attribute value, or highest attribute

value. These choices determine which entities are allowed to leave the queue first,

if and when a resource becomes available.

Additionally, if you wish to change the ARENA animated figure for each entity

you can select the entity box in the project bar. In the column ‘‘Entity Picture’’ you

can use the drop down menu to select the desired picture. Additional details about

animation options are described in Chap. 11.

Finally, when running a simulation there are at least two ways to end the

simulation. As previously mentioned one can specify a length in time.

Fig. 10.13 The ARENA environment showing the bottom bar
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Alternatively, one can set a specific condition, e.g., if a specific queue length goes

to zero. Terminating conditions can be entered using the Run[ Setup user form.

Experimenting with ARENA is a good way to learn it. Small models rarely

crash the program. As previously mentioned there are usually numerous ways to

perform functions. Remember that the ARENA built-in help menu offers a valu-

able resource.

10.5 Nonhomogeneous and Batch Arrivals

It is common that arrivals are more likely during certain periods than others, i.e.,

arrivals are ‘‘nonhomogeneous’’ as described in Sect. 4.1. Also, it is somewhat

common that when entities arrive, they appear in groups or ‘‘batch’’ arrivals. For

example, arrivals at a restaurant are more likely during lunch time than during the

morning. Some of the customers will arrive together with friends.

In ARENA, nonhomogeneous and/or batch arrivals can be accomplished

through the selection of options in the ‘‘Create’’ block. The process begins with

setting up a schedule with the average number of entities arriving in each period.

Schedules can be entered under the ‘‘Basic Processes’’ window. Additional details

about schedules are described in Sect. 11.3. Next, in the ‘‘Expression’’ field in the

‘‘Create’’ dialog, we select ‘‘NSEXPO’’ and reference the created schedule. The

selection is shown in Fig. 10.15.

In addition, the ‘‘Create’’ block permits the number of entities per arrival to be a

random variable. These batch arrival options are reasonably accomplished using

the (discrete) Poisson distribution. This can be entered using the ‘‘POIS(mean)’’

construction, where mean is the average group size. An example is also shown in

Fig. 10.15.

10.6 Summary Example

This example involves the Input Analyzer and the three elementary blocks in

ARENA: Create, Process, and Dispose. It also involves a conditional ‘‘Decide’’

block described in more detail in the next chapter.

Fig. 10.14 Dialog box permitting the entry of queue parameters
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Assume that parts arrive at a single machine system according to an exponential

interarrival distribution with mean 20 min; the first part arrives at time 0. Upon

arrival, the parts are processed at a machine. The parts are inspected and about

24% are sent back to the same machine to be reprocessed (same processing time).

Also, assume that 20 processing times are collected and an exponential distribution

is fitted in the Input Analyzer and the p value is 0.03. Most processing times are

around 16 min and all are between 11 and 18 min. Questions include:

1. What service time distribution is a reasonable and defendable choice?

2. What is the average number of parts in the machine queue?

3. What is the average cycle time (time from a part’s entry into the system until its

exit after however many passes through the machine system are required)?

4. What are some possible benefits from having the model?

Answers follow. (1) The exponential distribution is not defensible because the

KS-test ruled it out (see Chap. 3). The p value is\0.05 so that the lack-of-fit is

significant. Without more information, the assumption TRIA(11, 16, 18) minutes

seems appropriate.

(2–3) The model in Fig. 10.16 describes the problem. We run the simulation for

20,000 min to observe the average number of parts in the machine queue and the

average part cycle time. From the Category Overview Report for the Queue, we

see that the average queue time is 8.5 min and the average system time is 195.6

with negligible half widths.

(4) Possible benefits from having this model include the ability to explore what

would happen to the cycle time if the first-time quality percentage (24%) were

improved. This could be used to cost justify system improvement efforts. Also, the

Fig. 10.15 Create block showing nonhomogeneous and batch arrivals
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benefits from standardizing and/or reducing processing times could be explored.

Often, cycle times relate to the lead times sales operations can quote to customers.

Reducing cycle times and, therefore, lead times could increase sales. The model

could inform inter-departmental meetings with sales and manufacturing engineers

trying to decide whether new equipment or training resources are cost justified

(Fig. 10.16).

10.7 Problems

1. What module in Arena is used to create a set of resources?

2. What module in Arena is used to destroy entities and record statistics?

3. What does LIFO stand for?

4. What does the Input Analyzer do?

5. What does FIFO stand for?

6. List a standard key performance indicator outputted by ARENA.

7. My wife cuts me off in my exercise after 1 h and I need to spend at least

35 min on the cardio machine. It usually takes about 10 min for things other

than cardio but it could take much longer. Develop an ARENA expression that

would be a reasonable representation of how long my exercise would take.

8. A coffee shop is trying to understand what would happen if they introduced a

third cashier during the lunch rush period. Arrivals are six per minute, service

times are approximately exponential with mean 55 s, and the shop loses $1 per

minute per customer in lost future sales from long waiting times. Develop an

ARENA model to represent this system.

9. Consider the hypothetical measured times 4, 6, 2, 1, 4, 8, 4, 3, 2, 1, 6, 2, 1, 3,

and 4. Make a relative frequency histogram, best fit a distribution, and esti-

mate the SSE.

10. Consider the hypothetical measured times 14, 16, 2, 11, 14, 8, 14, 3, 12, 11, 6,

12, 11, 13, and 14. Make a relative frequency histogram, best fit a distribution,

and estimate the SSE.

Arrive Parts Process Parts

True

False

Pass?

Depart System

0

0

0

0

0

Fig. 10.16 ARENA model for the summary example
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11. Precisely and completely describe the procedure used in the ‘‘Fit All’’ option

from the Input Analyzer.

12. Precisely and completely as reasonably possible describe the sum of squared

error calculation procedure in ARENA.

13. If the Input Analyzer outputted, ‘‘Corresponding p � 0.001,’’ what would

that mean about the fitted distribution?

14. If the Input Analyzer outputted, ‘‘Corresponding p = 0.15,’’ what would that

mean about the fitted distribution?

15. Your store typically has 200 people coming during each 8-h day. The cash

registers typically require 4 min per order. How many machines would you

recommend and why?

16. Your store typically has 300 people coming during each 13-h day. The cash

registers typically require 4 min per order. How many machines would you

recommend and why?

17. (Advanced, use a decision module explained in Chap. 11) Develop an

ARENA model of an election location in which some voters wait in line, go

through registration, and then use booths and optical scanners. At the same

time, most voters use ordinary DRE voting machines. Show the module layout

needed.

18. (Advanced, use a decision module explained in Chap. 11) Develop an

ARENA model of a manufacturing process with a machine, inspection, and

optimal rework. Show the module layout needed.

19. Explain two ways of terminating a simulation.

20. Describe the way to send products with different processing times through a

manufacturing process.

21. (Challenging) Suppose you would like to model the end of the day as follows.

Arrivals after 6 pm are turned away. However, entities in the system at that

time are processed to completion. Describe in reasonable detail your approach

for terminating the simulated day.

22. (Challenging) Suppose would like to simulate the total amount of money

made by a small shop with customers leaving the line if they wait more than

5 min and cashiers costing $25K per year. Describe in reasonable detail your

approach for terminating such a system.

23. Suppose arrivals are ‘‘very random’’ in the rush period from 12 to 1 pm with

typically 200 people on average coming in that period but with wide variation.

Also, assume that there are two cash registers each processing about 1 person

per minute with standard deviation about 30 s. If not asking for signatures

could shave off 10 s from the average, would it likely affect the customer

experience? You do not need to run an ARENA model. Give a flowchart and

processing times consistent with the problem statement, i.e., clarify your

distributional assumptions for each entity (process, block, etc.) in your chart.

24. Suppose arrivals are ‘‘very random’’ in the rush period from 3 to 5 pm with

typically 300 people coming in that period plus or minus. Also, assume that

there are three cash registers each processing about 2 people per minute with

standard deviation about 30 s. If not asking for signatures could shave off 20 s
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from the average, would it likely affect the customer experience? You do not

need to run an ARENA model. Give a flowchart and processing times con-

sistent with the problem statement, i.e., clarify your distributional assumptions

for each entity (process, block, etc.) in your chart.
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Chapter 11

Advanced Modeling with ARENA

Chapter 10 covered the basics of simulation modeling with ARENA. This chapter

explores more advanced ARENA processes including those involved with rela-

tively impressive animation and scheduling. An understanding of the material in

Chap. 10 is required.

Table 11.1 summarizes the modules used in this chapter, with a brief

definition for reference. Some or all of these modules are likely to be needed for

industrial projects, which generally require record keeping for specific types of

entities using Assign modules. Also, the path that entities typically take through

a system depends on conditions such as the type of entity and ‘‘Decide’’

modules. ‘‘Record’’ modules are needed to keep records of specific values, while

the ‘‘Station’’ and ‘‘Route’’ modules are critical for setting up animations that

look realistic, i.e., do not appear like a flow chart with the modules or blocks

shown.

In particular, the ‘‘Decide’’ module provides perhaps the most critically

important way to build structure into simulations. Decide can route entities based

on a probabilistic condition such as whether or not parts conform to specifications.

More commonly, perhaps, it can route based on system conditions. For example,

an entity might enter the shorter queue or be assigned to the more productive

process. In the latter case, we might designate Process1 and Process2 as the two

servers. Then, the entity routing condition in the Decide block could be based on

the expression: Process 1.NumberOut\= Process 2.NumberOut. If the condition is

true, the entity departs the decide block through the upper exit point, otherwise, the

lower point.

In Sect. 11.1 the use of Stations is described. Section 11.2 deals with related

animations. In Sect. 11.3, scheduling is described. Section 11.4 illustrates the

application of all blocks in a manufacturing example. In Sect. 11.5 three additional

examples are selected to reinforce the methods learned.
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11.1 Stations

ARENA has advanced modules listed in the project bar under basic processes. To

access those tools, right click inside the project bar and go to Template Panel[

Attach…. This will open a new window where the user will have the option to

select among many other process bars. To use stations, open the Advanced-

Transfers.tpo. Once open, an Advanced Transfers tab should appear inside the

project bar. The advanced transfer modules give the option to use conveyers along

with other transportation techniques.

This book focuses on using stations and routes and the example is illustrated in

Sect. 11.4. These transportation processes are created in the same fashion as the

basic modules were in Chap. 10. Once a station is created, one can change the

names and settings using either method explained in Chap. 10 for changing the

names and settings of basic processes.

Note that when using a station for transport, one should create a station module

followed by a route module (paired together). This is useful for animation pur-

poses as explained in Sect. 11.2. The route module simply tells the entity which

station to proceed to. Routes that send the entity to the named station are not

connected; rather the entity travels unseen along an invisible path to the station.

The benefit is that the paths can then be animated as described in Sect. 11.2.

The basic process for a station route transfer for a given model is as follows: the

entity created then travels through the module. It passes through a station to a

route. The route module effectively determines which station to go to next.

The transfer continues through stations and route modules. Contained inside the

route is the travel time specified by the creator.

Table 11.1 ARENA module descriptions

This module is used for assigning new values to variables, entity attributes, entity types,
entity pictures, or other system variables. Multiple assignments can be made with a
single Assign module.

This module allows for decision-making processes in the system. It includes options to
make decisions based on one or more probabilities (e.g., 75% true; 25% false).
Conditions can be based on attribute values, variable values, the entity type, or an
expression.

This module is used to collect statistics in the simulation model. Various types of
observational statistics are available, including time between exits through the module,
entity statistics (time, costing, etc.). Tally and Counter sets can also be specified.

The Route module transfers an entity to a specified station. A delay time to transfer to
the next station may be defined.

The Station module defines a station (or a set of stations) corresponding to a physical or
logical location where processing occurs. If the Station module defines a station set, it is
effectively defining multiple processing locations.
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11.2 Animation

A low-quality animation is built into ARENA basic modules as described in

Chap. 10. Its quality is low in the sense that entities travel visually on top of what

is essentially a flowchart or workflow diagram. As a result, when the modules in

the model window are shown with the moving entities, the impression is not

realistic. At the same time, using Station and Route modules, the entities are not

shown unless other actions are taken. This section describes the way Stations and

Routes permit relatively high quality animation.

Note that ARENA is fully Microsoft� compatible, i.e., a frequent first step in

preparing high quality animation is pasting a picture or layout as a backdrop into

the model window. For example, Fig. 11.1 shows an ARENA animation overlaid

on the floor plan of a clinical research center. The plan was scanned as a .jpeg

image and pasted into the model area above the model blocks. As another

example, say that one wished to show the path of baseball bats in a bat-making

factory. To do that, one could create an image of a bat, paste it into the bat factory

layout and then show the path of the bat as it would be using a floor plan image of

the factory.

After pasting in the image, e.g., the floor plan or bat, right-click on the shortcut

bar, checking that the animate and animate transfer options are selected. If they

were not checked before and now are checked, they will appear on the shortcut

Fig. 11.1 ARENA animation overlaid on the floor plan of a clinical research center
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bars. Next, select one of these four buttons. The ‘‘R’’ sets a charac-

teristic of a route path object. The ‘‘S’’ specifies a characteristic of a segment of the

route. The ‘‘D’’ determines the distance of the route. The ‘‘N’’ specifies a char-

acteristic of a network node or link.

Let us choose, for example, to select the ‘‘R’’ button. A dialog box will appear

to set the path by which to travel from station to station. Select OK in the box once

the settings have been changed as desired. Then, click where one wishes the path

to start. Each additional click creates a kink in the line for turning. Once the

desired end of the path is reached, double-click. The path is now set. When you run

the ARENA simulation you will see the objects moving along the paths.

This method has been used to create the nodes and paths for the clinical research

center simulation shown in Fig. 11.1.

Consider also going to Edit[ Entity Pictures to create or edit the animated

pictures so as, for example to make the entities a resemble nurses or patients in the

simulation. Another way to do this is to select ENTITY under Basic Processes.

Then, change the Initial Picture to the desired picture. If changes later in the model

are desired, this can be accomplished using ASSIGN blocks. In the ASSIGN

dialog, select ‘‘Add Assignments…’’ and Type ‘‘Entity Picture’’ and then pick the

new picture of the entity.

11.3 Scheduling

Scheduling can be a key factor in modeling production systems. For example,

consider that employees may have lunch and regular breaks throughout the day.

Also, a factory may only be open 8 h a day. An important way to implement

scheduling in ARENA centers on resources and their availability. In our voting

example in Chap. 10, we had two resources, the registrar and the voting machines.

They were both of type ‘‘fixed’’ in their capacity meaning that throughout the

simulation the number of each resource remained constant.

To modify this constraint so as to create a schedule of resource availability,

highlight the schedule block inside the project bar. Double-clicking inside the

schedule area permits schedule customization. One can then type in and change the

name of the schedule along with all its settings in the columned drop down menus.

The final column contains a button that is pushed to show the graph of the current

schedule. Note that scheduling depends on the particular resource unit’s time

setting. For example, if the resource were a particular person, one might vary the

chart from 1, meaning the person is working, to 0 meaning the person is off. Also,

the resource could be a bank of workers and/or machines. For example, a company

might have 5 machines running 24 h a day. However, it might use only 3 machines

during the third shift. In this situation, the setting would be specified as 5 on the

chart for 16 h and 3 for the remaining 8 h.

Once the schedule is created, select the resource block in the project bar. In the

column type, use the drop down menu to select the ‘‘based on’’ option.
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The scheduling column should appear (depending on the version of ARENA).

Generally, one can then select the previously created schedule. Note that sched-

uling of the arrival of entities can also be done in a similar fashion.

When viewing the list of resources in the bottom area, notice that, once

scheduling is selected, a scheduling rule column will appear. This column offers

three options. Selecting ‘‘Wait’’ means that if a break is about to be taken,

resources continue working until they finish processing their current entity before

taking a break. ‘‘Ignore’’ means that when resources finish up with an entity, their

remaining break is shortened by the time elapsed in completing that entity.

The third option is ‘‘preempt’’ which means that when the time for a scheduled

break comes, resources take their break immediately and the entity must wait until

after the break to be finished.

As an example of scheduling consider the problem of modeling the beginning

of the day as follows. Arrivals before 6:30 am begin queuing (say they begin

arriving at 6:00 am) and then service begins at 6:30 am. How can this process be

modeled? Under the Run menu in Setup you can start the day at 6:00 am. Then,

you can simply schedule the resources for your project to have zero capacity until

6:30 am.

Finally, note that the ‘‘Read’’ module can permit the drawing into the models of

the times of scheduled arrivals. Scheduled arrivals are perhaps more likely than

Poisson arrival process in manufacturing and other sectors.

11.4 Manufacturing Example: Decide, Assign, and Stations

The example in this section illustrates all of the advanced blocks considered in this

chapter. A coin-making company employs a multi-step process. The coins are of

two types depending on their metallic composition. First, one of the two types of

metal arrives at the factory. Workers then cut and stamp the coin from the

delivered metal. Next, the coin travels to a plating building on the companies’

campus where it is coated with a protective metal. The plating process has a

processing time according to a triangular distribution of TRIA(1, 3, 6) in min.

Once plated, the coin goes to a third facility where it is inspected. If the unit passes

inspection it is then shipped; if it fails inspection it is scrapped. Each inspection

requires 5 min. The inspector works an 8-h day with a 1-h break.

The problem is to create an arena model that uses stations and animation.

Assign modules are first used to set the two different coin types. The service time

for the first type is assumed to be 3; the other’s service time is set at 9 (in min).

A Decide module is then used to determine whether the coin passes inspection.

Assume that the coin has an 80 percent chance of passing.

The next task is to create a facility layout and animate the coins’ paths with a

relatively high degree of realism.

As a first step, on can generate two Create modules and then connect them to

two Assign modules. One of the Assign modules’ user forms should have its
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service time attribute set as 3 as shown in Fig. 11.2. The second assign module

will have its service time assignment set to 9, instead of 3. This will permit

different processing times to be simulated.

Next, we create a cutting process module. Instead of using a delay time like a

pseudorandom triangular or uniform (UNIF) number, we use an expression

designating the service time inside the expression area. As a result of our assign

module, our process time for cutting will change based on which item is being cut.

Note, we had assigned a service time of 3 to one coin type and with a service time

of 9 to the other. Following the process module, we create a station and a routing

module.

The plating area begins with a station that receives the coins from the cutting

area. Next, a plating process is created using the TRIA(1, 3, 6) distribution.

Following cutting the Route module sends the coin to the inspection area station.

Next, we create a decide module based on Fig. 11.3.

Note that the ‘‘Type’’ area of the decide module can be set to: two-way by

chance or two-way by condition. Alternatively, the user can choose N-way

by chance or N-way by condition with N specifying the desired number of exit

Fig. 11.2 Dialog box for the
assign module

Fig. 11.3 Dialog box for the
Decide module
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points. N-way by chance must, of course, have probabilities summing to 100

percent. Two dispose modules are then created, one for shipping and one for scrap.

The schedule for the inspector is then implemented. The inspector schedule inputs

should look similar to those in Fig. 11.4.

The entire ARENA simulation layout should then resemble the diagram shown

in Fig. 11.5.

Use the animation path-creating features from Sect. 11.2 to create the paths.

The result should resemble that shown in Fig. 11.6. When the completed model is

run, the results should display a relatively realistic impression of parts moving

through the coin facility. Note that the queues can be moved from the blocks in

Fig. 11.5 and dragged into the animation part of the model window. It might also

be desirable to paste in a facility layout created, for example, by using Microsoft

PowerPoint or a drawing package.

Fig. 11.4 Inspectors
schedule
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Fig. 11.5 ARENA Model for the coin manufacturing example
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11.5 Additional Examples: Health Care and Manufacturing

In this section, two additional examples are included that illustrate the application

of the ‘‘Decide’’ and ‘‘Assign’’ blocks, which might be considered the most

important blocks introduced in this chapter. The results here are based on twenty

replications. The extensions to provide half widths based on forty or more

replicates are given in the problems at the end of the chapter.

11.5.1 Single Machine System

Parts arrive at a single machine system according to an exponential interarrival

distribution with mean 20 min; the first part arrives at time 0. Upon arrival, the parts

are processed at a machine. The processing-time distribution is TRIA(11, 16, 18)

min. The parts are inspected and about 24% are sent back to the same machine to be

reprocessed (same processing time). Run the simulation for 20,000 min to observe

the average number of parts in the machine queue and the average part cycle time

(time from a part’s entry to the system to its exit after, however, many passes

through the machine system are required).

In generating the ARENA model, we start with a ‘‘Create’’ module with

EXPO(20) interarrivals. Next, we include a ‘‘Process Module’’ with a single

resource and using ‘‘Seize-Delay-Release’’ as usual. The ‘‘Decide’’ module is

two-way by chance. The False state is then routed back to the process module.

Otherwise the routing is to the ‘‘Dispose’’ module. The architecture is given in

Fig. 11.7. The module names are changed to improve readability.

We simulate 20 replications and the estimated expected total system time

equals 195.6 min. Also, the estimated expected number in queue equals 8.5 items.

Normally, we quote ‘‘±’’ half widths but we leave these to problems at the end of

the chapter. A model like this could be useful for clarifying, e.g., how improve-

ments in first-time quality (i.e., the factor representing the percentage of parts

passing inspection each time) could lead to inventory reductions (i.e., a response

which is the expected number in queue).

Fig. 11.6 Animations in
ARENA showing the nodes
and arcs
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11.5.2 Acute-Care Facility

An acute-care facility treats non-emergency patients (cuts, colds, etc.). Patients

arrive according to an exponential interarrival-time distribution with a mean of 11

(all times are in min). Upon arrival they check in at a registration desk staffed by a

single nurse. Registration times follow a triangular distribution with parameters 6,

10, and 19. After completing registration, they wait for an available examination

room, there are three identical such rooms. Data show that 55% of the patients

have service times that follow a triangular distribution with parameters 14, 22 and

39. The rest of the patients (45%) have a triangular service time distribution with

parameters 24, 36 and 59. Upon completion, patients are sent home. The facility is

open 16 h each day.

In generating the ARENA model, we start with a ‘‘Create’’ module using

EXPO(11) interarrival times. For complicated models, we usually want to be able to

control our measured variables so we start with an ‘‘Assign’’ module to initialize

our arrival time. This sets up tracking with a ‘‘Record’’ block at the end. Next, we

have the check-in process module. This is followed by a ‘‘Decide’’ module which

makes the assignment probabilistically. The ‘‘Assign’’ modules that follow specify

the specific service distributions for each type. Then, we terminate with a ‘‘Process’’

module and ‘‘Record’’ and ‘‘Dispose’’ module sequence. The architecture is in

Fig. 11.8.

As usual, we base our estimated expected values on 20 replications (or more

with each replication representing a single simulated day). The resulting estimated

average total patient time in system is 106.4 min. Normally, we would quote ‘‘±’’

half widths on our estimates, but we leave that for the problems at the end of the

chapter.

Consider that the model in Fig. 11.8 might be used to explore the effects of

factors such as the number of examination rooms and the number of open hours

for the clinic on responses including the average total patient time in the

system.

Arrive Parts Process Parts

True

False

Pass?

Depart System

0

0

0

0

0

Fig. 11.7 ARENA model of a single server system
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11.6 Problems

1. List a module in ARENA useful for keeping track of custom statistics.

2. List a module in ARENA useful for realistic animation of movements of

entities.

3. What does UNIF stand for?

4. What does WEIB stand for?

5. What are three types of scheduled failure rules?

6. What are three types of scheduled resource available rules?

7. Explain the IGNORE schedule rule using a graph.

8. Explain the WAIT schedule rule using a graph.

9. Explain the PREEMPT schedule rule using a graph.

10. Which schedule rule would describe workers who immediately leave their

processing at their break time?

11. (Challenging) What expression can be used in a ‘‘Decide’’ module to check

which of two stations has a shorter queue, to determine which to enter (if it’s a

tie, they enter station 1)?

12. (Challenging) What expression can be used in a ‘‘Decide’’ module to check

whether someone had waited in line more than 60 min?

13. What is the attribute name used in ARENA to denote the current simulation

time?

14. Give an ARENA expression for the difference in daily opening times.

15. Consider an ARENA model built that has three different entity types being

created and going through processes before being served. How could you use

modules to determine: (a) number people of each type moving through the

system? And (b) the average cycle time across entity types? (c) Consider an

ARENA model of a production system with arrivals coming with inter-arrival

times of EXPO(5) min. With probabilities 60, 30, 10% the entities are part type

A, part type B, and part type C. Without using any ‘‘Decide’’ modules, how

could you assign entity and part type-specific processing times? You do not

have to give all of the specifics, but you should clearly outline your reasoning.

Patient Arrives
Time

Assign Arrival Check In

True

False

Patient Type?
Type 1

Assign Patient

Type 2

Assign Patient

Treat Patient

Time

Record System Go Home

0

0

0

0
0

0

Fig. 11.8 ARENA model of an acute-care facility
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16. Consider a pair of faculty generating grant proposals that take 10 days of

work on average but whose completion times are highly variable. Half the

proposals require both faculty members and the other half require only one

of them. Assume that faculty cannot work on more than two proposals at a

time and wait doing other activities if necessary. Use simulation to esti-

mate how many proposals the faculty pair can expect to generate in a

year.

17. A factory is considering investing in a higher quality robotic device to make

its product and comparing that possibility with simply purchasing a second

device and running two parallel lines. Currently, 25% of its robot’s produce

typically needs reworking. Right now, the factory needs to ship only 325 units

per 12-h shift but demand is pushing that to 425. The managers want you to

help them understand their quality-versus-productivity tradeoff.

a. Suppose that you time 12 inter-arrivals of parts at the robot. The results are:

90, 95, 90, 90, 98, 92, 93, 94, 91, 88, 89, 91, 92, 87, and 90. Also, suppose

that rework is ‘‘very random’’ typically requiring 10 min ‘‘plus or minus

10 min’’ after which the item is re-run through the robot. Also, suppose that

the factory managers tell you to assume that the robot operations take a

time that is TRIA(80, 85, 90) in seconds based on a past study. Perform

input analysis to estimate what you need for simulation and show your

results in a flow chart.

b. Perform simulation with a sufficient number of replications to estimate the

number of expected units shipped. Provide an estimate for the half width.

Also, display the expected numbers shipped for at least 3 values of the

fraction of units needing rework.

c. Provide decision-support for the company declaring conclusions and

characterizing your own uncertainties appropriately.

18. A factory is considering investing in a higher quality robotic device to make

its product and comparing that possibility with simply purchasing a second

device and running two parallel lines. Currently, 20% of the products coming

out of its robot typically need rework. Right now, they need to ship only 320

units per 12 h shift but demand is pushing that to 425. They want you to help

them understand their quality versus productivity tradeoff.

a. Suppose that you time 12 inter-arrivals of parts at the robot. The results are:

80, 85, 90, 90, 98, 92, 93, 94, 91, 88, 89, 91, 92, 87, and 90. Also, suppose

that rework is ‘‘very random’’ typically requiring 10 min ‘‘plus or minus

10 min’’ and then the item is re-run through the robot. Also, suppose that

they tell you to assume that the robot operations take a time that is

TRIA(80, 85, 90) in seconds based on a past study. Perform input analysis

to estimate what you need for simulation and show your results in a flow

chart.

b. Perform simulation with a sufficient number of replications to estimate the

number of expected units shipped. Provide an estimate for the half width.
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Also, display the expected numbers shipped for at least 3 values of the

fraction of units needing rework.

c. Provide decision-support for the company declaring conclusions and

characterizing your own uncertainties appropriately.

19. What combination of modules (possibly including create, process, assign, …)

would permit modeling the random time it takes for customers to walk

through a complicated service system, from the entrance to the exit?

20. What combination of modules would permit modeling of the number of

entities of two types currently in a complicated system?

21. Consider an ARENA model of a production system with arrivals coming with

inter-arrival times of TRIA(1, 1.5, 2) min. With probabilities 60%, 30%, 10%

the entities are part type A, part type B, and part type C. Assume the pro-

cessing times are EXPO(2), EXPO(2), and EXPO(0.5), respectively and there

are two machines with FIFO queuing. Assume a 95%-confidence interval for

the average waiting time for all parts over a 10-h day.

22. Consider an ARENA model of a production system with arrivals coming with

inter-arrival times of TRIA(1, 1.7, 2) min. With probabilities 65%, 25%, 10%

the entities are part type A, part type B, and part type C. Assume the pro-

cessing times are EXPO(2), EXPO(2.5), and EXPO(0.5), respectively and

there are two machines with FIFO queuing. Give a 95% confidence interval

for the average waiting time for all parts over a 10-h day.

23. A consultant has recommended that the office from the previous problem not

differentiate between customers at the first stage and use a single line with

three clerks who can process any customer type. Develop a model of this

system, run it for 5,000 min, and compare the results with those from the first

system.

24. Develop a simulation model of a doctor’s office and estimate the average

waiting time.

25. An office that dispenses automotive license plates has divided its customers

into categories to level the office workload. Customers arrive and enter one of

three lines based on their residence location. Model this arrival activity as

three independent arrival streams using an exponential interarrival distribution

with mean 10 min for each stream, and an arrival at time 0 for each stream.

Each customer type is assigned a single, separate clerk to process the appli-

cation forms and accept payment, with a separate queue for each. The service

time is UNIF(8, 10) min for all customer types. After completion of this step,

all customers are sent to a single, second clerk who checks the forms and

issues the plates (this clerk serves all three customer types, who merge into a

single first-come, first-served queue for this clerk). The service time for this

activity is UNIF(2.66, 3.33) min for all customer types. Develop a model of

this system and run it for 5,000 min. Provide a confidence interval for the

average and maximum time in system for all customer types combined.

26. An office that dispenses automotive license plates has divided its customers

into categories to level the office workload. Customers arrive and enter one of
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three lines based on their residence location. Model this arrival activity as

three independent arrival streams using an exponential interarrival distribution

with mean 13 min for each stream, and an arrival at time 0 for each stream.

Each customer type is assigned a single, separate clerk to process the appli-

cation forms and accept payment, with a separate queue for each. The service

time is UNIF(8, 11) min for all customer types. After completion of this step,

all customers are sent to a single, second clerk who checks the forms and

issues the plates (this clerk serves all three customer types, who merge into a

single first-come, first-served queue for this clerk). The service time for this

activity is UNIF(2.00, 3.33) min for all customer types. Develop a model of

this system and run it for 5,000 min. Provide a confidence interval for the

average and maximum time in system for all customer types combined.

27. Customers arrive at an order counter with exponential interarrivals with a mean

of 10 min; the first customer arrives at time 0. A single clerk accepts and checks

their orders and processes payments, taking UNIF(8, 10) min. Upon completion

of this activity, orders are randomly assigned to one of two available stock

persons (each stock person has a 50% chance of getting any individual

assignment) who retrieve the orders for the customers, taking UNIF(16, 20)

min. These stock persons only retrieve orders for customers who have been

assigned specifically to them. Upon receiving their orders, the customers depart

the system. Develop a model of this system and run the simulation for

5,000 min, observing the average and maximum customer time in system.

28. Develop a reasonable model of an automotive manufacturing system and

generate a confidence interval for the average number of items shipped even

accounting for nonconformities and rework.

29. The following two questions relate to a paper processing center.

a. Stacks of paper arrive at a trimming process with interarrival times of

EXPO(10); all times are in minutes. There are two trimmers, a primary and

a secondary. All arrivals are sent to the primary trimmer. If the queue in

front of the primary trimmer is shorter than five, the stack of paper enters

that queue to wait to be trimmed by the primary trimmer, an operation of

duration TRIA(9, 12, 15). If there are already five stacks in the primary

queue, the stack is balked to the secondary trimmer (which has an infinite

queue capacity) for trimming, of duration TRIA(17, 19, 21). After the

primary trimmer has trimmed 25 stacks, it must be shut down for cleaning,

which lasts EXPO(30). During this time, the stacks in the queue for the

primary trimmer wait for it to become available. Animate and run your

simulation for 5,000 min. Collect statistics, by trimmer, for resource uti-

lization, number in queue, and time in queue.

b. Describe a response and two factors that might be studied using the above

simulation.

30. Provide a half width for the average total patient time in system (sojourn time)

in the acute care facility in Sect. 11.5. Base your answer on at least 40 or more

replicates.
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31. Describe at least one way to use ARENA to model a ‘‘kanban’’ system in

which previous stations are shutdown when the number waiting at a down-

stream station gets too high. Use an example if it helps you explain the key

elements of your approach.

32. Provide half widths for both the average total time in system and the average

number of parts in inventory for the single machine system example in

Sect. 11.5. Base your answer on 40 or more replicates.
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Chapter 12

Agents and New Directions

In this chapter, computer simulation approaches in addition to discrete event

simulation are described. The focus is primarily on agent-based modeling which is

defined as the activity of simulating system-wide properties as they derive from the

actions and interactions of autonomous entities. This contrasts with system

dynamics and other differential equation-based modeling including finite element

methods (FEM). In FEMs, e.g., there are relatively few entities and the interplay of

physical or cognitive forces dominates.

The degree of autonomy of agents in the models varies greatly. The entities in

discrete event simulation generally have low levels of autonomy in that they rarely

change state or learn based on model conditions and follow tightly controlled

paths. Therefore, discrete event simulation can be viewed as a type of low

autonomy agent-based modeling. The ‘‘agent-based’’ modifier applies if the enti-

ties commonly change behaviors conditionally (i.e., learn or are influenced) and/or

entities move in directions other than along highly restricted paths.

Note that Monte Carlo simulation (Chap. 2) and its alternatives (Chap. 8) are a

major part of virtually all types of simulation involving uncertainty including

agent-based modeling and stochastic FEM. This makes the basic statistics in

Chap. 2, the input analysis in Chap. 3, and the output analysis from Chap. 6

relevant to many types of simulation including agent-based modeling.

The concept of ‘‘emergence’’ is relevant to all the types of computer simulation

considered in this chapter. Emergence is the manner of interaction of large

numbers of entities and the patterns that arise from these interactions. The asso-

ciated multiplicity makes the systems complicated enough that simple physics

equations cannot accurately predict the ‘‘emergent’’ system properties, are also

known as system responses. Discrete event simulation is also primarily concerned

with emergent properties.

In practice, discrete event simulation is distinguished by the functioning of the

discrete event simulation controller described in Chap. 4 and presented in code in

Chap. 11. Another distinguishing feature is the common focus in discrete event

simulations on expected waiting times. Still, other responses, including expected

T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling,
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system profits and throughput, are commonly modeled with discrete event simu-

lation. Variable definitions in ARENA, e.g., permit the modeling of many types of

system responses.

Consider the following varied list of emergent properties:

• expected waiting times, downtimes, or throughputs,

• expected number wounded in evacuations or military engagements,

• population size in biological cases, and

• pull-apart force for a snap fit.

Simulation method types differ largely because of the varied emphasis on

uncertainty, the attributes of individual entities, and the centrality of physics.

The next section describes six types of simulation including discrete event and

agent-based modeling. In Sect. 12.2, the history of agent-based modeling

including the relationship with discrete event simulation is described. Section 12.3

describes how influential agent-based modeling software (NetLogo) can produce

information about expected waiting times comparable to discrete event simulation

code. The return to the voting systems example permits exploration of the

similarity and differences between agent-based modeling and discrete event

simulation. Section 12.4 discusses new directions for simulation research and

practice. Finally noted is the potential contribution of discrete event simulation and

agent-based modeling to addressing each of the grand engineering challenges for

the twenty-first century described by the National Academy of Engineering.

12.1 Agent-based and Other Types of Simulation

Table 12.1 describes six types of computer simulation related to emergent system

response prediction as a tool for system improvement. The list is varied but all

methods listed are potentially relevant for informing related decision problems

Table 12.1 Selected types of simulation and how they operate

Simulation
type

Engine Relevance and data sources

Agent-based Agent rule iteration and
Monte Carlo

Particularly relevant for studying incentives and
restrictions and based on low-level data

Discrete event
simulation

Event controller and Monte
Carlo

Particularly relevant for studying production
systems and based on low-level data

Forecasting Empirical modeling
including least squares

Particularly useful for predicting new emergent
properties based on high-level data

Markov chain
models

Linear algebra Relatively simple and transparent and based on
expert opinion and/or high-level data

Systems
dynamics
models

Differential equation
numerical solvers

Particularly relevant for studying the impacts of
decisions based on expert opinion

Physics-based Finite element methods
(FEM) numerical solvers

Particularly relevant for designing engineered
products and based on low-level data
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with predictions of future system responses. Also, all methods listed are potentially

helpful in combination in solving system design problems.

A distinction is made with respect to the type of data source that supports the

model development. Here, the term ‘‘high-level’’ data is applied to numbers

describing emergent properties such as total sales or average waiting times. The

reason to define high-level data is the potential for the emergent system response

numbers to derive from real physical system, expert opinions, or simulations.

‘‘Low-level’’ data are numbers, such as service times, that relate to specific

subsystems. Chapter 3 describes the systematic collection of low-level data to

support discrete event simulation. Low-level data are often critical for the accuracy

of high-level predictions. In particular, physical simulations of rigid bodies often

have emergent properties that critically depend on every single boundary condition

or low-level data point. At the same time, the Theory of Constraints (Chap. 7)

implies that many low-level data have no effect on emergent properties since they

are part of non-bottleneck subsystems.

Agent-based modeling involves the development of rules for individuals or

entities and for the environment or background. The simulation proceeds as

individuals execute their actions as allowed by the environment. Iterating through

a fixed number of agents might actually make it easier to apply variance reduction

techniques (Chap. 8) than to the simulation regulated by a discrete event simu-

lation controller. In discrete event simulation controller operation, the number of

random variables used per replication can vary greatly. This can occur, e.g.,

because individuals can have identities with specific rules tailored to them such as

occurs when ARENA assign module makes conditional assignments (Chap. 11).

Agent-based modeling also incorporates uncertainty through a stream of pseudo-

random numbers as described in Chap. 2. Thus, the difference between agent-

based modeling and discrete event simulation is largely in emphasis and, to a

lesser extent, in structure. For example, if only a few agents can act at a given

time, then the discrete event controller is simply more computationally efficient

than iterating through all possibly relevant agents since the event controller goes

immediately to the next entity that can act.

Yet, the focus on the individuals and possible learning behaviors make agent-

based modeling worthy of consideration. Packages like NetLogo offer relatively

less costly ways to model individual-driven systems than discrete event simulation

packages like ARENA. ARENA focuses on systems dominated by well-under-

stood, routine phenomena such as material handling in high volume manufactur-

ing. Individualizing entities is difficult because of the many assignments that need

to be made and the individuals mainly interact through processes or other blocks.

NetLogo focuses on the individual and the associated tactics and constraints

related to interactions with other individuals.

Forecasting techniques are widely used to predict the demand for products and

for budgeting resources. Forecasting might not be considered a computer simula-

tion method, but it does involve using computers to predict future events and to

evaluate hypothetical alternative actions. Forecasting is probably the most widely-

used approach among the six. Yet, it is limited by the availability of high-level data.
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By contrast, both discrete event simulation and agent-based modeling provide

information for cases in which relevant high-level data are scarce but low-level

data can be measured or assumed. For example, a manufacturer considering adding

a new type of assembly conveyor may have no data about the production capacity

taking into account downtime and the detailed production rules of the relevant

facility. Also, counties determining the needed number of voting machines may

have little or no data about historical average waiting times or other data that could

guide estimates of expected waiting times for ballots in future elections at specific

locations.

Markov chain models also might not be considered simulation. These are

methods based on an assumed set of system states and assumed transition prob-

abilities between states. Here, these methods are designated a form of simulation

because they can permit computers to generate an animated set of system trajec-

tories through time.

Markov chain methods are often based on assumptions about transition prob-

abilities and a truncated or simplified list of available system states. Yet, the entire

system can be completely described in a concise way, which is often not true for

the alternative approaches. This permits the checking of results by others and

facilitates consensus building about alternatives.

The final two methods, systems dynamics models and physics-based models,

are based on numerical solutions to differential equations. Systems dynamics

models are often generated through humanistic processes of eliciting hypothetical

forces on the relevant system including feedback and control.

Physics-based models derive from low-level stress-strain and boundary con-

dition data and assumptions about relatively simple physical systems. For exam-

ple, Fig. 12.1 shows a finite element method (FEM) physics-based simulation of a

plastic snap fit being stressed to breaking. An application of design of experiments

(DOE, Chap. 5) using FEM simulations of snap tabs generated a highly accurate

metamodel to predict pull-apart force. This model informed decision-making and

led to dramatically improved snap tabs for an automotive manufacturer (Allen

2010).

Consider the relevance of combinations of the six methods. Such combinations

already occur in computer games and animated movies. For example, a popular

Fig. 12.1 Snap tab finite
element simulation (FEM) to
help inform engineering
design
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movie can be viewed as a single replicate of a discrete event simulation with specific

interactions between entities governed by physical interactions such as violence or

limits being placed on movement, e.g., punches and door closings respectively.

Also, the concepts of model complexity and validation are similar in important

ways for all the six types of simulation considered here. Table 12.2 summarizes

the spectrum of possible models relevant to simulation projects. Models of any

type can be relatively simple and closely validated or complicated and subjective.

As described in Chap. 2, there is an inevitable ‘‘leap of faith’’ in any attempt to

predict the future and extrapolate from historical data. Yet, accuracy in certain

predictions is far more likely than in others.

Further, the types of validation attempted can also vary from detailed confir-

mation using high-level real-world data to the derivation of ‘‘stories’’ from

studying simulations. These stories can be studied and critiqued by subject matter

experts (SMEs). Are the stories believable or ‘‘face valid,’’ or do they have

important missing elements that can motivate changes to the underlying simulation

models? Relative to the level of complexity and validation is the level of confi-

dence decision-makers can and should have in the model predictions.

At one end of the confidence spectrum, the author is familiar with instances in

which discrete event simulations with a high degree of validation together with

associated recommendations were used by managers to overhaul major production

facility protocols and related purchasing plans. At the other end of the spectrum

are thought-provoking simulations based on system dynamics of the possible

response of state economies to new regulations. The latter type of simulation might

not be trusted to predict accurately the budget for the next year but could lead to

surprising insights about the possible side effects of policy decisions.

12.2 The History of Agent-based Simulation

Discrete event simulations usually involve generic entities following rules dictated

by system agents or processes such as servers which change their status and cause

the entities to wait. That is, the entities themselves neither make decisions nor

adapt to changing circumstances. This situation is relevant for many problems in

routine systems, but sometimes we would like to represent entities that learn and

make choices.

Table 12.2 The spectrum of complexity and validation

Simple and validated Complicated and hypothetical

Examples Manufacturing discrete event
simulations and FEM simulations
of snap tabs

Disaster evaluation agent simulations and
system dynamics models of large
economies

Validation Quantitative with manageable
extrapolation

Qualitative, face validity of derived stories
from subject matter experts

Roles Prescriptive Descriptive, thought provoking

12.1 Agent-based and Other Types of Simulation 179

http://dx.doi.org/10.1007/978-0-85729-139-4_2
http://dx.doi.org/10.1007/978-0-85729-139-4_2


For these applications, many analysts turn to agent-based simulation, a rel-

atively new approach made possible by recent advances in computer software.

In agent-based models, the agents have decision-making rules along with

learning rules or adaptive processes. The focus is on the individuals and pair-

wise interactions between them. Discrete event simulation packages like

ARENA permit the exploration of what is essentially agent-based modeling

through the assignment of attributes to entities and rules for specific interactions.

At the same time, agent-based simulation packages like NetLogo permit the

relatively time-efficient exploration of the implications of individual incentives

and conflicts.

Agent-based modeling has roots that some researchers have traced back as far

as the 1940s, but serious computerized agent-based modeling began with the Santa

Fe Institute’s introduction of the SWARM language in the mid-1990s. It expanded

somewhat with RePast, in the late 1990s, and became much more widespread with

the introduction of NetLogo in the early 2000s.

NetLogo offers open-source (free) software hosted by Northwestern University.

The software is described more fully in the next section. Readers can use the

tutorials to develop entry-level modeling skills in Net Logo in a few days.

MASON, an even more recent development from George Mason University,

provides more tools for specifying geography, is also easy to learn, and has

become fairly popular. In mid-2009, Argonne National Laboratory, which

developed and supports RePast, released ReLogo, a new interface to import

NetLogo models into Repast, to enable modelers to access RePast’s larger fea-

ture set without completely recoding, and to support comparative modeling

exercises.

Samuelson (2000) offers a more thorough overview of the early history of

agent-based modeling, especially as applied to studying how organizations work,

and Samuelson (2005) and Samuelson and Macal (2006) trace more recent

developments. Bonabeau (2002) discusses the potential of agent-based modeling

as of the time that its modeling software became widely available.

Three ideas central to agent-based models are:

1. Emergence (often simple models of interactions creating often surprising

results),

2. Social agents as objects, and

3. Complexity (often agents model the same subjects as physical models).

That is, the entities in the system are not merely passive objects, but active

learning agents that interact with each other. System-level behaviors not obvious

to the designer of the simulation emerge from the repeated simulations. The

interactions and resulting system phenomena are too complicated to be predicted

by straightforward a priori analyses.

Agent-based models, therefore, are particularly useful for assessing when

equilibriums are likely to cease to exist, what transient behavior can then be

expected, what trigger events are likely to promote stability or instability, and how

robust the system is likely to be.
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Prominent examples of applications range as far as the spread of epidemics, the

threat of biowarfare, the growth and decline of ancient civilizations, social net-

works, word-of-mouth effects in marketing, supply chain management, large-scale

evacuations, and organizational decision-making. Agent-based modeling offers

interesting opportunities but also poses challenges. The complexity of the inter-

actions can make both debugging and validation challenging.

12.3 NetLogo

NetLogo is an agent-based model programming environment built on the pro-

gramming language JAVA and authored by Uri Wilensky. The environment can be

downloaded free of charge at http://www.ccl.northwestern.edu/netlogo/. NetLogo

is still relatively undeveloped compared with programs such as ARENA, Auto-

Mod, or other commercial discrete event simulation software. For example, the

NetLogo Model Library and on-line community offerings provide relatively few

examples of problems for which an analyst could receive compensation. The freely

available examples almost exclusively concern relatively simple, imaginative

explorations such as the population of sheep and wolves.

Yet, a few NetLogo models have reportedly been developed on a proprietary

basis to model the behavior of crows in evacuations and for a select number of

other applications. Commercial discrete event simulation software packages, by

comparison, have commercially available modules for thousands of specific ver-

sions of material handling equipment and easily permit three dimensional, virtual

reality viewing.

The three tutorials available through the Northwestern website provide a

helpful way to get started with NetLogo programming. Here, we consider code for

a model of a voting machine system. The purposes are to comment on the elements

of NetLogo code and to compare the capabilities with those of ARENA and other

discrete event simulation software.

Figure 12.2 shows a NetLogo file written by the author to simulate election

systems. The figure shows the three tabs: Interface, Information, and Procedures.

One of the positive elements of NetLogo is the rapid development of interfaces

through the interface tab which can be run almost immediately after being created

through drag and drop operations. The Information tab stores the author’s com-

ments about the code that the author writes. The Procedures tab is where code is

written that is linked to the objects in the interface tab.

Before proceeding to the details of coding, consider that the outputs in the

interface provide an approximate estimate of the average or expected number of

voters waiting at any given time (around 4) and the expected waiting time (around

2 min). The visual information from the Interface tab generally constitutes the

primary quantitative output of simulation. This provides an indication that Net-

Logo agent-based modeling is on the relatively qualitative end of the spectrum of

computer simulation models described in Sect. 12.2.
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Code 12.1 shows the initialization of the NetLogo (.nlogo) program under the

Procedures tab in our voting example. It includes the declarations of ‘‘global’’

variables which are equivalent to Public variables in Visual Basic (see Chap. 9),

i.e., global variables have values that are accessible to all functions or parts of

the code. Text after the ‘‘;’’ is included merely to help clarify the code but not

executed. The setup procedure is executed by clicking the setup button in the

Interface tab. Functions begin with the word ‘‘to’’ and terminate with the word

‘‘end.’’

Fig. 12.2 NetLogo simulation of a voting system
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Code 12.1 Initialization functions in the Procedures tab for the voting systems

NetLogo example

globals 

[ num-waiting 

  accel 

  decel 

  speed-min 

  speed-limit ] 

 

to setup 

  clear-all 

;; Set variable values 

    set num-waiting 0 

    set accel 0.099 

    set decel 0.099 

    set speed-min 0 

    set speed-limit 1 

;; Initialize the people   

    create-turtles 10 

    ask turtles [ set heading 90 

    set speed  Arrival-Rate ] 

    ask turtles [ setxy random-xcor 0 ] 

    set-default-shape turtles "person" 

;; Prepare the background 

    ask patches [ set pcolor white  

    if ( pycor < 2 ) and ( pycor > -2 ) [ set pcolor yellow ] 

if (pycor < 5) and (pycor > -5) and (pxcor < 5) and (pxcor > -5)  

    [ set pcolor yellow ] 

if (pycor < 2) and (pycor > -1) and (pxcor < 1) and (pxcor > -1)  

    [ set pcolor grey ] ] 

end 

The setup begins with resetting variable values (clear-all) and then defining a

few variable values. ‘‘Turtles’’ are the NetLogo designation of agents or individ-

uals. ‘‘Ask turtles’’ calls all agent entities and executes a list of changes to them. In

this case, the turtles are voters who are initialized on the visual grid on the x-axis at

the zero point but distributed in uniformly pseudo-randomly selected positions

(random-xcor). The number of turtles is declared (arbitrarily) to be ten.

Next, the default entity is declared to be a person that affects the appearance,

and the orientation is 90� (horizontal). Then, the focus switches to the ‘‘patches’’ or

background. ‘‘Asking patches’’ means iterating assignments among background

elements. There is an implied looping over all the pixels in the visual grid. In other

words, there is iteration over the grid coordinates setting colors and assigning

properties. In this example, the only property assigned is the color.
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The Code 12.2 continues the code from the Procedures tab. All the code is

stored in one file but divided here to fit on book pages. The ‘‘turtles-own’’ des-

ignation permits variables to be defined and associated with all specific agents or

turtles.

The ‘‘go’’ button on the Interfaces tab (Fig. 12.2) executes the simulation. This

is typically done with the ‘‘forever’’ option so that the simulation continues until

manually turned off. The go procedure in Code 12.2 starts the voters moving to the

voting machine in the middle. The slow-down-person and speed-up-person pro-

grams are run to keep the voters from running into each other. The voters or agents

leave the right side of the screen and (supposedly new) agents (or turtles or voters)

enter the left side. The voting machine stops the agent and causes the line to form.

The wait-time variable stores the waiting times.

The plot on the Interface tab links to the plotting function. The plotting function

simply tabulates and displays average number of voters waiting and average

waiting times. Since there is no replication, the time series display provides a

visual approximation to the expected values. Visually waiting for the system to

reset, as described in Sect. 8.4 permits some degree of protection from

autocorrelation.

The example provides an indication of the value and limitations of agent-based

modeling using NetLogo. Advantages of NetLogo compared with ARENA include

that NetLogo:

• Is free,

• Has a more easily customized interface (buttons, plots, visualization),

• Permits relatively colorful, intuitive visualization compared with ARENA

(which is also two-dimensional in nature), and

• Generates relatively realistic interaction among entities or agents.

With regard to interaction, it is easy in NetLogo to model reactive behavior

such as speeding up voting service times if the entity waits in line (preparing for

voting) or sees long lines (urgency). At the same time, confidence interval half

widths (Chaps. 2, 4, and 10) are not easily generated as in ARENA. Perhaps more

importantly, the low-level data used to create the model is more difficult to

measure. It relates to acceleration time and movement speeds rather than easily

measured arrival rates and service times.

Overall, agent-based simulation permits efficient exploration of individual

interactions, incentives, and constraints that is difficult using discrete event sim-

ulation. Also, the relatively imprecise nature of NetLogo outputs might be more

appropriate for situations in which input data is incomplete. The precision of

discrete event simulations can often be misleading considering the level of

assumption-making that is often needed to complete the models.
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Code 12.2 The go and related functions

turtles-own 

[ speed     ;; the speed of the voter 

  wait-time ;; the amount of time since the last time it moved 

] 

 

to go 

;; if there -is a person right ahead of you, match its speed then slow down 

  set num-waiting 0 

  ask turtles [   set heading  90 

    ifelse any? turtles-at 1 0 

      [ set speed ([speed] of one-of turtles-at 1 0) 

        slow-down-person ] 

      ;; otherwise, hurry up 

      [ speed-up-person ] 

;;; don't slow down below speed minimum or speed up beyond speed limit 

    if speed < speed-min  [ set speed speed-min ] 

    if speed > speed-limit   [ set speed speed-limit ] 

    fd speed 

    if pcolor = grey 

    [ set speed 0 ]    

  ifelse speed = 0 

  [ set num-waiting num-waiting + 1 

    set wait-time wait-time + 1]   

    [ set wait-time 0 ] ] 

   ;; ask turtles  [set label wait-time] 

  tick 

  do-plotting 

end 

 

Code 12.3 The plotting function

       

 

to do-plotting 

  set-current-plot "Queue" 

  set-current-plot-pen "Number Waiting"

  plot mean [num-waiting] of turtles

  set-current-plot-pen "Average Waiting Time"

  plot mean [wait-time] of turtles

end 
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12.4 New Directions

The futures of both discrete event simulation and agent-based modeling are bright.

At least four factors will contribute to making them used more widely:

1. Continuing pressures for organizational efficiency,

2. Improved access to low-level data through new sensors and databases,

3. Enhanced visualization capabilities as simulations become more realistic, and

4. Increasing computational efficiencies from faster computers and new simula-

tion-related research similar to methods in Chap. 4 and Chap. 8.

The above trends should increase the usage of methods in areas in which

simulation is already being applied. To understand the priorities of simulation-

related meetings like the Winter Simulation Conference, stimulating new uses for

simulation must also be considered. Such new uses include additional focus on

application areas where usage is not yet routine:

• Health care,

• National security,

• Logistics, transportation, and distribution.

There are also new types of technological challenges in addition to application-

related challenges. These include combining discrete event simulation with

automatic control as described in Kelton et al. (2009). Such combinations promise

to influence such diverse areas as robotics and military planning.

Enhanced visualizations will almost surely involve the technological challenge

of coupling with physics-based simulations. ARENA is probably on the low end of

the spectrum of currently available software with respect to visualization capa-

bilities. The AutoMod model, e.g., in Fig. 12.3, can be shaded and toured easily in

what is essentially a limited virtual reality type of interaction. Yet, in the future

such tours will almost surely involve interactions with the environment more like a

‘‘holodeck’’ (imaginary entertainment) in ‘‘Star Trek’’ or a tour in ‘‘Avatar’’ with

details that enhance believability. Such interactions are important not merely for

entertainment but also because they permit opportunities for validation practice,

training, and intuition-building.

Additional ways to interact with models besides virtual tours will also likely

grow in importance. Such interactions may occur through:

• Gaming and spreadsheet interfaces,

• Multi-fidelity modeling, and

• Directed modeling with high and low-level data.

Agent-based modeling in NetLogo, for example, already includes in the

Model Library several examples that offer gaming, including Tetris and more

business-relevant exercises. The overall orientation of NetLogo supports gaming.

It is relatively easy to develop plausible-seeming models and to interact with

them. There is less emphasis on statistical analysis and documentation.
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This contrasts greatly with older environments that seem relatively serious and

uninspiring.

Figures 12.3 and 12.4 show the interface that a major manufacturer currently

uses to deploy simulation models. By embedding model executables in Excel,

inputs can be changed and models run using only an executable software license.

Also, inputs go directly to the spreadsheet where they are integrated into business

decision-making and reporting. The software in the interface is available from the

author (with fee) and permits the application of methods in Chap. 4 (fractional

factorials and simulation optimization) based on ‘‘shell’’ or Windows system calls

to program executables using Visual Basic. In this way, users of software with

limited output analysis capabilities built-in (e.g., AutoMod) can benefit from

up-to-date, computationally-efficient output analysis.

Multiple models of various levels of accuracy or ‘‘fidelity’’ can conceivably be

available for the same modeling problem. This situation commonly occurs in finite

element method (FEM) physics simulations. High-level or real world response

data from the field would generally constitute the highest-level fidelity in these

contexts. Data sources, including simulation models, might have different asso-

ciated costs. Our own research in multi-fidelity optimization is among the first

relevant to discrete event simulation (papers first-authored by Huang and Schenk).

Figure 12.5 depicts the outputs from systems of various levels of fidelity and

metamodels (Chap. 5) associated with them. The metamodels, which can be

regression polynomial or splines such as so-called ‘‘Kriging’’ models, can integrate

all inputs and essentially create the most accurate simulation predictions for the

highest fidelity system responses. Such methods are still being developed and have

only begun to be applied to discrete event simulation systems.

Fig. 12.3 An AutoMod executable embedded in an excel file
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Further enhancements to human-computer interaction with simulation models

are also likely to be critical for enhancing the usability of the methods. Currently,

the choices that modelers have relate to low-level data collection. If high-level or

real world response data become available, an ad hoc adjustment procedure can

generally be used to improve the model. This process can become more explicit

and open. The initial simulation model can then be made more flexible as well as

including a more realistic picture of uncertainties. Then, as information becomes

available including through developer or subject matter expert (SME) judgments,

the information can be integrated at a high-level. We refer to this research program

as ‘‘directed modeling’’ because the human modeler has opportunities to direct

development in new ways efficiently.

As a final note, consider the list of ‘‘grand challenges’’ for the twenty-first

century developed by the United States National Academy of Engineering. Their

list is:

Fig. 12.4 Illustration of the excel interface for an AutoMod simulation executable

Fig. 12.5 Depiction of data
of various levels of fidelity
and associated metamodels
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• make solar energy economical

• provide energy from fusion

• develop carbon sequestration methods

• manage the nitrogen cycle

• provide access to clean water

• restore and improve urban infrastructure

• advance health informatics

• engineer better medicines

• reverse-engineer the brain

• personal decision support engines

• prevent nuclear terror

• secure cyberspace

• enhance virtual reality

• advance personalized learning

• engineer the tools of scientific discovery.

It is heartening to consider that discrete event simulation and agent-based

modeling can possibly contribute to the accomplishment of every single objective

listed. For example, consider that even reverse engineering the brain can involve

virtual reality discrete event simulation visualizations in studying how the brain

remembers details. Modeling the interactions of agents can inform evolutionary

psychology discoveries related to the adaptations of certain brain functions and

related behaviors.

Insights from relevant simulations can enable developments while restraining

costs and helping engineers, scientists, and business leaders to anticipate and

mitigate related side-effects. The methods described in this book and elsewhere

can assist in addressing humanity’s greatest challenges. Indeed, simulation may

well be needed for transparent and fair resource allocation of all types.

12.5 Problems

1. What is an emergent property?

2. What emergent properties are associated with crowds of people?

3. What is ‘‘high-level’’ data and how does it relate to simulation predictions?

4. Which type of simulation is most relevant to predicting the average waiting

time of customers in a department store?

5. Which type of simulation is most relevant to predicting the maximum carrying

capacity of an elevator?

6. Which type of simulation or modeling is most relevant in industry for

predicting the future demand for existing products?

7. Which type of simulation permits concise description and is based on matrix

operations or linear algebra?

8. According to the text, what is the relationship of discrete event simulation and

agent-based modeling?
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9. Describe one method from the chapter relevant for validating simulation

models based on a relatively high degree of uncertainty and intended primarily

to be thought-provoking only and not prescriptive.

10. Describe a simulation model you might generate and discuss the possibilities

for validation. Where does your model fit on the spectrum from simple and

validated to complicated and hypothetical?

11. What is NetLogo and who developed it?

12. List two reported professional applications of agent-based modeling.

13. What does the ‘‘Settings…’’ dialog in NetLogo relate to primarily?

14. Experiment with the Schelling housing segregation model in the NetLogo

tutorials. How does varying the percentage of people different from me that

I’m willing to live with change the resulting housing patterns? Are you sur-

prised by what you see? Can you explain it?

15. Write NetLogo code to change the agents to appear like cars.

16. Experiment with the predator-prey model in the NetLogo tutorials. What ideas

can you try here that would be much more difficult to implement in standard

discrete-event simulation? How would you modify the model to include the

possibility that some prey can communicate danger to each other over a short

distance? Over a much longer distance?

17. Write NetLogo code to change the background to red.

18. Consider the end-of-day problem, #11, from Chap. 10. Suppose you want to

assume that some people who arrive late know the manager well enough to

coax the manager to let them in just after the posted closing time, but only if

others who do not know the manager are not present to see this happen. That

is, the manager will admit people he or she knows for up to 10 min after the

closing time, but only if no one other than the manager knows they are

present. How would you model this using agent-based modeling? How would

you attempt it using standard discrete-event simulation?

19. What is multi-fidelity modeling?

20. Develop a NetLogo game that is a variant of an existing game. What possible

insights can be gained from the resulting application (if any)?

21. Which of the challenges listed in the chapter might best be addressed by

discrete event simulation in your opinion?
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Chapter 13

Answers to Odd Problems

13.1 Solutions: Chapter 1

1. Input analysis is the process of model formulation, collecting data, and fitting

distributions which results in sufficient information to construct a credible

simulation model.

3. Output analysis is the use of acceptable simulation or calculated models to

generate statistically sound decision support, e.g., using simultaneous intervals

or t-testing of outputs.

5. The goal is to develop accurate decision-support information predicting how

staffing decisions (factors include the number of staff or each type) would

likely affect the expected waiting times of patients (key response) in the med/

surg. unit as patient demand continues to increase. The ‘‘in scope’’ area is

indicated by the oval in the flowchart below, showing the focus on med/surg.

Many details about upstream and downstream units will be simplified or

ignored (Fig. 13.1).

7. Responses of interest include monthly expected profits and expected waiting

times. Controllable input variables include:

– Scheduled starting time PM staff (level 1 = 11 am, level 2 = 12:30 pm)

– Cappuccinos (level 1 = included on the menu, level 2 = not included)

– Hot sandwich option (level 1 = keep them as an option, level 2 = drop them

as an option).

One might time the interarrivals for only the rush hours (11:45–1:30 pm) and

divide food into three types: hot food, other food, and drinks and record the

service times for at least 20 of each type.

9. Assume that it takes about 60 h to gather data, make a reasonably complicated

simulation model, and validate it (including iteration). This costs about $6,000

which is about as small as any professional consulting project should be to

permit sustainability. (Each project typically takes significant time to recruit the
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business and set the terms.) It is hard for call centers generally to model the

increases or avoided losses in business for their customers because of their

contribution. Did customer X sign in because they heard of the great customer

service? Yet, we all know intuitively that service is important for bank

competitiveness. Therefore, we will focus only on potential savings relating to

reduced staff expenses. Likely, the call center will be conservative about new

hires and hire only as they feel overloaded (an iterative strategy). Yet, if they do

purchase new software, they may need to make decisions quickly which could

involve delaying or speeding up hiring processes. If through simulation, one of

these processes could be trimmed by only 2 months, the simulation project

would pay for itself with interest $90,000/6 = $15,000.

13.2 Solutions: Chapter 2

1. A number whose value is not known at time of planning by the planner.

3. An LCG is a recursive method to create low quality pseudorandom numbers

using two sequences with one being Zi = mod(aZi-1 ? c, base = m).

5. The sample standard deviation is a summary statistic designed to charac-

terize the spread or dispersion of the generating distribution given by

sqrt[
P

i=1,…,n(Xi - l)/(n - 1)].

7. Monte Carlo errors are the differences between the sample averages used to

estimate the mean and the true value of the mean. Generally, one does not

know the true value so one cannot know the Monte Carlo error exactly.

9. (1 ? 2.4 ? 2.0 ? 3.5 ? 1.4)/5 = 2.06, sqrt{[(1 - 2.06)2 ? (2.4 - 2.06)2 ?

(2.0 - 2.06)2 ? (3.5 - 2.06)2 ? (1.4 - 2.06)2]/4} = 0.96, and (0.96)

(t0.025,4 = 2.78)/sqrt(5) = 1.2 ? [0.86, 2.26].

11. 5.6 ± ta/2,n-1s/n
-�

= (3.4 to 7.8).

13. E[X ? 3X] = 4E[X] = 4(19) = 76 which has 0.00000 error. Var[X] =

E[(X - l)2]. The three simulated (X - l)2 values are: (10.1 - 19)2 = 79.21,

(19.4- 19)2 = 0.16, and (23- 19)2 = 16. Therefore, theMonte Carlo estimate

for Var[X] = [(10.1 - 19)2 ? (19.4 - 19)2 ? (23 - 19)2]/3 = 31.79. The

sample standard deviation is 41.8, t0.025,2 = 4.3 so the half width is

±(41.8)(4.3)/sqrt(3) = ±104.

15. E[2X] = 2[X] = 2(22.0) = 44.0 with 0.0 error (from the definition of

expected values). Using Monte Carlo simulation or the central limit

theorem we have: E[X2] = (9.12 ? 20.32 ? 19.42 ? 23.02)/4 = (82.8 ?

Fig. 13.1 A workflow
showing the scope of a
hypothetical project
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412.1 ? 376.4 ? 529.0)/4 = 350.1 with SD = 189.7. Using a 95%

confidence interval, (assuming normality) gives an estimate of

350.1 ± 301.9.

17. E[X] = (a ? b ? m)/3 = 5.0 and, in English, the assumption means that the

time is unknown at the current time but it must be[2 h and\10 h with the

most likely value equal to 5 h.

F�1 y=a;m; b; nð Þ ¼
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y m� að Þ b� að Þ;
p

for 0� y� m�a
b�a

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� yð Þ b� mð Þ b� að Þ;
p

for m�a
b�a

� 1

(

19. Plugging in 0.8, 0.3, and 0.5 for y above gives 6.65, 3.7, and 4.7, repectively.

13.3 Solutions: Chapter 3

1. It is a function that ranges from 0 to 1, increasing at each point in a data set,

X1,…,Xn. It is given by Fn(x) =
P

i=1,…,nCount(Xi B x)/n.

3. There is arbitrariness in determining the number and width of bins in a relative

frequency histogram. This affects the sum of squared error (SSE) calculations.

Also, in general to achieve subjective believability it is often desirable to

insert ad hoc constraints into the SSE optimization or curve fitting process.

5. This was already almost a relative frequency histogram. The only difference

was changing the axis (720). By eye, the sample mean is around 20 and the

sample standard deviation is around 5. More precisely (not needed)

mean &

P

i=1,…5Xirf(i) = 19.4. Sample std. deviation & sqrt[
P

i=1,…5 (Xi -

19.4)rf(i)] = 5.4 (Fig. 13.2).

7. Triangular with a = 8, m = 17.5, and b = 35 seems reasonable. The esti-

mated SSE is (0.06)2 ? (0.03)2 ? (-0.15)2 ? (-0.15)2 ? (0.09)2 = 0.06.

9. The missing bar should have zero height so that all bars sum to 1.0. Relative

frequency histograms are typically used (e.g., in the Input Analyzer) to esti-

mate the sum of squares error in fitting given distributions and for comparing

distributions.

Fig. 13.2 Relative frequency
histogram
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11. The plot shows the cumulative distribution function for the exponential

distribution and the empirical cumulative distribution for ten data points.

The largest difference between the two is the KS distance used to provide

evidence, in some cases, that certain distributions are not a good fit for a given

dataset.

13. A relative frequency histogram of the data is below (Fig. 13.3).

15. The exponential would not fit because its density is concentrated near zero.

13.4 Solutions: Chapter 4

1. Independent identically distributed.

3. If X1,…,Xn are IID, then the sample mean becomes approximately normally dis-

tributed with mean given by the expected value and error dev. shrinking as n-�.

5. The exponential distribution is ‘‘very random’’ or it has a high coefficient of

variation. This means that the expiration of electrical components is very

unpredictable. A technical term that is often used to describe the exponential

is ‘‘memoryless’’ because the instantaneous chance of expiration does not

depend on how old the item is.

7. The inverse cumulative distribution for the exponential isF-1(u) = -ln(1- u)/

(k). Plugging in the pseudorandom numbers gives pseudorandom exponential

numbers 1.78, 4.58, 0.53, and 8.05 respectively. The sample average is 3.73

which is our Monte Carlo estimate for the mean. The true mean for the expo-

nential is k-1 or 5.0. This means that the Monte Carlo error is 1.27.

9. (1) The values are not IID since they are correlated and thus not independent.

Therefore, there is no reason to suspect that the sample averages would be

characterized by a normal distribution. Thus, in output analysis, we cannot

draw conclusions based on normality.

(2) Again, there is no reason to suspect that the individual values are normally

distributed since they do not represent batch averages of IID random

variables. Therefore, the sample standard deviation of these non-normally

distributed numbers would likely not accurately characterize the standard

deviation of the waiting time distribution. Confidence intervals using

standard formulas might give misleading results.
11. As the batch size goes to infinity, the sample averages become normally

distributed. This assumes that the values in each batch are IID. (IID values can

Fig. 13.3 Relative frequency
histogram
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be achieved by having the replicates be entire simulations of the system in

question.)

13. The relative frequency histogram indicates that the batch size is insufficient

such that normality has not been achieved. Additional replications and a larger

batch size are needed for normally distributed batch averages to be achieved.

Then, the sample standard deviations of the means will foster an accurate

confidence interval.

15. Generally, the push system would yield a higher throughput because machines

would never be starved. However, since the units proposed might not be

demanded, the finished goods inventory would likely also be higher for the push

system. This analysis is simplified because the inventory in push systems can

have many harmful effects. Also, after some time period the push system would

not be permitted to continue generating units not being demanded by customers.

13.5 Solutions: Chapter 5

1. Evaluations are noisy so we might find a good solution and lose it. Also, the

optimization method not only needs to select which system alternatives to

evaluate, but also how many samples for each valuation.

3. Simultaneous intervals are always wider than individual intervals. This fol-

lows because we might apply them to make many judgments of significance

and we desire to limit our chance of being incorrect in any of these many

possible declarations, i.e., they are conservative.

5. a = a0/3 = 0.01667 from the Bonferroni bound. Keeping 1- a intervals, then

the overall probability of not making a Type I error is[1- a0 � t1-0.01667/2,9 =

2.93. Therefore half widths are ±2.4, ±3.8, and ±3.3 (Fig. 13.4).

7. aindividual = 0.05/10 = 0.005 would guarantee at least a 0.05 probability that

all ten system means will be in their corresponding simultaneous confidence

intervals.

Fig. 13.4 Simultaneous
intervals for the performance
of three systems
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9. An indifference parameter (d) is a mean or expected value difference that we

are comfortable in losing. In other words, if we terminate and do not have the

best solution, we are satisfied as long as we have a solution with true mean

within this number of the actual best.

11. If we set d = 0.0, the second stage sample sizes would be infinite. Then, the

method would be unusable.

13. The variable sample sizes enter in Step 4 of the second stage of the indif-

ference zone selection method. Systems with high variances are generally

allocated the most samples. Hopefully, the worst systems have already been

eliminated through the subset selection in Step 2.

15. Alexopoulos (2006) focuses on reviewing methods for extracting output from

steady state simulations.

13.6 Solutions: Chapter 6

1. With a complicated model and predictions for situations not covered in his-

torical data, it is particularly important to derive independent confirmation that

simulation models are reasonably accurate and trustworthy, i.e., to perform

model validation. Queuing theory provides ball park estimates that simulation

outputs can be compared with.

3. 12.

5. p = 0.875 and Wq
= 38.1 min.

7. p = 0.889 and Wq
= 39.2 min.

13.7 Solutions: Chapter 7

1. The store manager might be considering purchasing a new oven. He or she might

direct the simulation team to study system design alternatives relating to possible

oven purchases. Yet, theory of constraints might suggest that alleviating the cash

register bottleneck is far more critical. This could occur because the lines at the

register are very long while those waiting for food after paying it at the register

are minimal. The theory of constraints would then suggest using the simulation to

study system design alternatives related to cash register factors are most relevant.

Such factors could include increasing the number of cash registers, making sure

that register operators do not perform additional operations such as getting

drinks, and/or shaving service times by not requiring credit card signatures.

3. The lean producer would toast two pieces of bread, put on peanut butter, put on

jelly, and assemble the first sandwich. The, he or she would do the same to the

second, third, fourth, and fifth delivering each to the family member as soon as

possible after the sandwich was made.

5. They can extend the election period beyond Election Day. Also, they can

offload ballot initiatives that might be voted on in November onto other more
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minor elections during the rest of the year. In the 2008 November election,

some locations in Ohio voted on 24 races and 19 ballot initiatives. This meant

that some voters required more than 20 min to vote even after reaching the

direct recording equipment (DRE). (Of course, many other states and countries

have much shorter ballots requiring voting times less than thirty-seconds.) It is

likely true that some of the Ohio races and initiatives could have been voted on

during relatively minor elections to level demand.

7. The decision about how many kanban cards are needed might be supported by

simulation. Simulation can help managers determine possible tradeoffs between

down-time and work in process inventory (WIP) costs or expected lead times.

13.8 Solutions: Chapter 8

1. Simulation is artistic in the sense that the level of detail and realism is largely

subjective. As computational power increases so does the temptation to make the

simulation increasingly realistic. Also, as simulations become more realistic,

decision-makers will generally place more trust in their results. As a result, the

need for speeding up simulations is roughly constant or possibly increasing.

3. Each variance-reduction technique is complicated, has a potential issue related

to bias in results, a need to anticipate the sample size, or other issue. As a result,

simple Monte Carlo based on pseudorandom numbers continues to be viable

and dominate the commercial marketplace. With additional results, it is pos-

sible that types of variance-reduction techniques or quasi-Monte Carlo will

begin to dominate the practice world.

5. No, some types of variance-reduction techniques change the structure of the

estimation problem. Instead of simply substituting alternatives for pseudoran-

dom U[0,1] numbers and using the inverse cumulative and controller, they can

change the entire approach. For example, importance sampling requires iden-

tifying somewhat arbitrarily an alternative distribution with certain properties

and basing much of the mechanics on this selected distribution.

7. The estimate is 7.8 min based on Table 13.1.

9. Intuitively, the local situation created in time by specific short or long waits has

a decreasing effect as time increases. Effectively, ‘‘time heals all wounds’’ and

Table 13.1 Results for calculating average time estimate

Perm. #1
(Pi,1)

Perm. #2
(Pi,2)

DS Ui,1

var. 1
DS Ui,2

var. 2
Registration
time

Voting
time

Sum
(min)

1 4 0.1000 0.7000 0.229 7.551 7.780

2 2 0.3000 0.3000 0.472 6.258 6.731

3 1 0.5000 0.1000 0.754 5.707 6.461

4 5 0.7000 0.9000 1.100 8.586 9.686

5 3 0.9000 0.5000 1.603 6.838 8.441
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offers a reset. As the interval between successive samples increases, each

observation becomes increasingly like a sample from a random walk and the

IID assumption becomes increasingly reasonable.

13.9 Solutions: Chapter 9

1. Three advantages are: (1) there is little or no licensing fee, (2) there is an

opportunity to close-couple results with other software being used for

accounting and/or optimization, and (3) the resulting code might be more

computationally efficient than corresponding commercial codes which are

often built with an emphasis on visualization over scientific programming

runtime economy.

3. Yes, depending on the operating system and current availability, Microsoft�

offers ‘‘Express Edition’’ compilers downloadable in some or all cases with no

charge.

5. Flat, Float, Long, String[2], Integer.

7. The following was derived by placing first a number in cell B1. Next, after

recording the macro the code was viewed using the Visual Basic Editor.

Code 13.1 Illustration of a simple subroutine

Sub Macro1() 

    ActiveCell.FormulaR1C1 = "=R[-1]C/27" 

    Range("B3").Select 

End Sub 

9. The value 5.18737751763962 was derived using the following code which

includes an automatic conversion to double.

Code 13.2 Illustration of a simple subroutine for summation calculation

Sub Macro1() 

Dim sum As Double, iIndex As Long 

sum = 0 

For iIndex = 1 To 100 

sum = sum + 1 / iIndex 

Next iIndex 

Sheet1.Cells(1, 1) = sum 

End Sub 
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11. The value 288 was derived using the following code.

Code 13.3 Illustration of a While-Wend construction for summation calculation

Sub Macro1() 

Dim sum As Long, iIndex As Long 

sum = 0 

iIndex = 1 

While iIndex ^ iIndex < 1000 

sum = sum + iIndex ^ iIndex 

iIndex = iIndex + 1 

Wend 

Sheet1.Cells(1, 1) = sum 

End Sub 

13. The following code selects a range of five cells and colors them yellow.

Code 13.4 Illustration excel cell coloration

Range(Cells(1, 1), Cells(1, 5)).Select 

    With Selection.Interior 

        .ColorIndex = 6 

        .Pattern = xlSolid 

    End With 

15. The following code gives: 2.718281828, 7.389056099, 20.08553692,

54.59815003, i = 5, 403.4287935, 1096.633158, 2980.957987, 8103.083928,

22026.46579.

Code 13.5 Illustration of an If–Then construction

Sub Macro1() 

Dim iIndex As Long 

For iIndex = 1 To 10 

If (iIndex = 5) Then 

Sheet1.Cells(iIndex, 1) = "i=5" 

Else 

Sheet1.Cells(iIndex, 1) = Exp(iIndex) 

End If 

Next iIndex 

End Sub 
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17. The following code gives the same sequence as the solution to problem 15.

Code 13.6 Illustration of an If–Then-else construction

Sub Macro1() 

Dim iIndex As Long 

iIndex = 1 

While iIndex <= 10 

If (iIndex = 5) Then 

Sheet1.Cells(iIndex, 1) = "i=5" 

Else 

Sheet1.Cells(iIndex, 1) = Exp(iIndex) 

End If 

iIndex = iIndex + 1 

Wend 

End Sub 

19. The number 7.80 derives from the following code.

Code 13.7 Illustration of a for loop random variable-based simulation

Sub Macro1() 

Dim iIndex As Long, sum As Double, nSimulations As Long 

nSimulations = 10000 

sum = 0 

For iIndex = 1 To nSimulations 

sum = sum + (-2 * Log(1 - Rnd())) ^ 2 

Next iIndex 

Sheet1.Cells(1, 1) = sum / nSimulations 

End Sub 

21. The number 508.4 derives from the following code.

Code 13.8 Illustration of a call to an application work sheet function

Sub Macro1() 

Dim iIndex As Long, sum As Double, nSimulations As Long 

nSimulations = 10000 

sum = 0 

For iIndex = 1 To nSimulations 

sum = sum + Application.WorksheetFunction.LogInv(Rnd(), 2, 3) 

Next iIndex 

Sheet1.Cells(1, 1) = sum / nSimulations 

End Sub 
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13.10 Solutions: Chapter 10

1. Set from the Basic Process Panel, type: resource.

3. Last In First Out.

5. First In First Out.

7. Cardio ? Other things\ 1 h.

9. If one chose to use the ARENA input analysis with fit all function the results

are as follows (Fig. 13.5).

11. The procedure creates a relative frequency histogram of the data using an

undisclosed routine to select the number of bins. Then, all distributions are

fitted and a distribution is selected that minimizes the sum of squared estimate

errors, i.e., the differences between the bin fractions and the distribution

predictions for the bin means for the best fit distribution of each type.

13. It means that the KS test has proven, with alpha\0.001 that the data did not

derive from the fitted distribution function. Likely, the fitted distribution

should not be used and an alternative distribution should be found. Factors:

Number of primary and secondary trimmers and/or the engineers might be

investigating way to reduce service times. Then, factors might be the top end

service times for the primary and secondary trimmers. Response: This could

be the cycle time, the cost of the WIP, profits etc.

15. This can be answered using various methods, including creating a simple

ARENA model and viewing the output. Or one could use simple logic. For

instance, 200 people arriving every 8 h is equivalent to one person arriving

every 2.4 min. Knowing that it takes 4 min to check a person out, we then

know we need 2 machines because we cannot have half or part of a machine.

As a result we have 4.8 min per check out which is more time than the needed

4 min (Fig. 13.6).

19. (1) By specifying the replication length

(2) By specifying a condition

Fig. 13.5 Input analyzer relative frequency histogram and distribution fit
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21. In your Max Arrivals: box of the create module put a variable. Then, use a

logical create, assign, and dispose sequence to change the variable to 0 at the

appropriate time. This cuts off arrivals. Then, in the Run ? Setup ? Rep-

lication Parameters panel terminate by expression with the expression being

TNOW C 600 && TotalWIP == 0, where TotalWIP records your work in

process and 600 refers to the length of the day from start until the time when

new calls are not accepted.

23. Fig. 13.7.

13.11 Solutions: Chapter 11

1. The ‘‘Record’’ module.

3. The uniform probability density function or distribution.

5. Ignore, Wait, and Preempt and also Time, Count, and pre-defined state both

are acceptable.

7. As shown below, the IGNORE function immediately decreases the resource of

an entity no matter whether the resource is currently being used or not. (This

has been used repeatedly in most of the problems in the class. The same rule is

used for resource failures also.) (Fig. 13.8)

9. The item being processed is not completed and, at the end of the break, its

processing continues (Fig. 13.9).

11. NQ(Station1.Queue) B NQ(Station2.Queue).

13. TNOW.

15. Answers follow:

Voter Arrives Voter Registers
True

False

DRE or Booth? Vote with DRE

Vote with Booth

Location
Leave Voting

0
0

0

0
0

0

0

Fig. 13.6 An ARENA model for an election system

EXPO(0.3) MX(NORM(1,0.5),0) or MX(NORM(0.83,0.5),0)

Arrivals Cash Registers Exit

0

0

0

Resource  capacity 

Fig. 13.7 An ARENA formulation for a simple cash register system
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a. For the number people of each type through system—you could assign

entity type either in the create module or using an assign module after the

create module. Then you could create a set of entity types and put a record

module before the dispose node, recording a type count and checking

record into set. Alternatively, you could not create a set and before the

dispose node, use a three-way conditional decide node to split the types out

and then have three record modules each recording a count and named

according to their part type (Fig. 13.10).

b. For the average cycle time across entity types, you could use an assign

right after the create nodes to assign TNOW as the arrival time. Then, right

before the dispose node, you could have a record module with type Time

Interval and choose your arrival time attribute as the value.

c. There could be a single EXPO(5) create node. Next, there could be a single

Assign module, which assigns part index using a discrete probability dis-

tribution like (0.6, 1, 0.9, 2, 1.0, 3) to assign part indexes. In the entity

module, you could define your three entity types as type A, type B, and

Fig. 13.8 Illustration of the
IGNORE rule

Fig. 13.9 Illustration of the
PREEMPT rule

TRIA(86.5, 90, 98.5)

Robot 
TRIA(80,85,90)

Decide Rework 
EXPO(600)

Shipped

Fig. 13.10 Workflow for a
robotic cell
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type C in that order. You could also define processing time as an expression

with 3 rows. Each row would be the processing time for part A, B, C,

respectively. The assign module will then assign the entity type and pro-

cessing time by using part index in the entity type and processing time

arrays.

17. The following models relate to investigating the productivity tradeoff.

a. The inter-arrival times seem to be bounded with a highest number near the

low end. This seems consistent with a triangular distribution. Using the

Input Analyzer results in TRIA(86.5, 90, 98.5) which has competitive SSE

with alternative distributions and is not ruled out by the KS test.

b. With 20 replications, there appears to be no issue with correlation or

insufficiency. This is possible with fewer but as 20 replications takes only a

few seconds to run, it is likely sufficient.

c. It seems likely that a robot having a rework rate below 15% might be as

valuable as having a second rework line in the sense that meeting the

production quota (over 50% of the time) would be possible. Yet, there are a

number of issues that might be investigated further. The details of the

rework process are critical in this capacity related decision-making.

10 ± 10 min is probably not enough information to make an important

decision. Also, it might be worthwhile to investigate what fraction of the

days the desired shipping targets can be achieved. Two independent sys-

tems are more reliable generally, even while they have much higher

operating cost than a single system.

19. Having an Entrance Station, Route block, and a Service Station with the Route

associated with a randomly distributed service time meets the specifications of

the problem. Alternatively, we can use a process and delay module

combination.

21. The ARENA model at right constitutes one representation consistent with the

problem description (Fig. 13.11).

The half width given by ARENA corresponds to a 95% confidence interval.

With 20 replications the confidence interval for the expected waiting time is

0.3336 ± 0.07 min.

23. The following ARENA model results in average waiting time estimates

(Fig. 13.12).

25. An ARENA model for the license plate dispensing system is shown

(Fig. 13.13).

% rework Expected number of units shipped

25 379.5 ± 6 (half width)

15 431.1 ± 4 (half width)

5 469.4 ± 0.8 (half width)
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Create Decide

60
30

Else

Part A

Part B

Part C

Process

Dispose

0     

0

0     

Fig. 13.11 Configuration of ARENA model including Decide and Define blocks

Arrival Line 1
Create Customser

Arrival Line 2
Create Customser

Application
Process

Arrival Line 3
Create Customser

Issue Plates Exit System
Start

Assign System

System
Record Time in

0     

0     

     0

0      

     0
0

Fig. 13.12 ARENA models and outputs for application processing problem

Arrival Line 1
Create Customser Process Line 1

Arrival Line 2
Create Customser

Process Line 2

Arrival Line 3
Create Customser

Process Line 3

Issue Plates Exit System

Time 1
Assign Arrival

Time 2
Assign Arrival

Time 3
Assign Arrival

System
Record Time in

0     

0     

0     

     0

     0

0

     0

0 

Fig. 13.13 Configuration of ARENA model concerning license plate processing
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27. The following shows an ARENA model of order retrieval (Fig. 13.14).

29. The key is to use a count-based failure to shut down the trimmer (Fig. 13.15).

31. There are many ways to model kanban using ARENA. Some are based on

modeling kanbans as entities and others are based on modeling kanbans as a

resource. Below shows the key steps in modeling kanbans as resources using

the advanced process seize and release blocks (Fig. 13.16).

In general, separating seize and release operations and using a ‘‘Decide’’ by

condition approach can provide approaches with reasonable computational

efficiency. More approaches are described in Treadwell and Herrman (2005).

Customer Arrivals
Payments

and Process
Check Orders True

False

Random Allocation Retrieve Orders 1

Retrieve Orders 2

System
Customers Leave

0      
     0

0     

     0
     0

0

0  

Fig. 13.14 Configuration of ARENA model concerning order retrievel

Paper
Create Stacks of

Trimmer to use
Decide Which

True

False
System

Papers Exit

Trimmer
Primary

Assign to

Trimmer
Secondary
Assign to

process
Trimmer
Primary

process
Trimmer

Secondary

0      

0      

     0
0      

     0

0

Average Time in Queue              42.2294                  24.3177

Average Number in Queue           3.2366                    0.5294

Resource Utilization                    91.51 %                 40.29 %

                                              Primary Trimmer     Secondary Trimmer

                                     RESULTS (from one replication)

Fig. 13.15 Configuration of ARENA model concerning paper trimming

Seize Process Release Kanban Process Release Process

0

Fig. 13.16 Blocks in ARENA using the advanced Seize and Release modules
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13.12 Solutions: Chapter 12

1. A high-level system output derived from the interaction of multiple entities.

3. High-level data are numbers describing emergent properties and that derive

from simulation predictions, measured system responses, or other predictions.

5. Physics-based.

7. Markov chain models.

9. Developing a story from a single simulation run and receiving feedback from

a subject matter expert (SME) about its realism provides some level of

validation.

11. NetLogo is a development environment for agent-based modeling developed

by Uri Wilenski of Northwestern University.

13. The ‘‘Settings…’’ dialog is primarily concerned with the ‘‘World’’ or the set of

patches to be viewed.

15. set-default-shape turtles ‘‘car’’.

17. ask patches [set color red].

19. Multi-fidelity model is the development of metamodels in a way that inte-

grates responses from more than a single simulation or system representation.

21. Engineering the tools of scientific discovery could involve simulation because

the developer can more immediately perceive development costs and access

issues.
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