

Multiprocessor Systems on Chip

Torsten Kempf • Gerd Ascheid • Rainer Leupers

Multiprocessor Systems
on Chip

Design Space Exploration

ABC

ISBN 978-1-4419-8152-3 e-ISBN 978-1-4419-8153-0
DOI 10.1007/978-1-4419-8153-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011921340

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Torsten Kempf
RWTH Aachen University
Institute for Integrated Signal Processing

Systems (ISS)
Sommerfeldstr. 24
52074 Aachen
Germany
torsten.kempf@iss.rwth-aachen.de

Gerd Ascheid
RWTH Aachen University
Institute for Integrated Signal Processing

Systems (ISS)
Walter-Schottky-Haus
Room 24 A 207
Sommerfeldstr. 24
52074 Aachen
Germany
ascheid@iss.rwth-aachen.de

Rainer Leupers
RWTH Aachen University
Software for Systems on Silicon
Templergraben 55
52056 Aachen
Germany
leupers@iss.rwth-aachen.de

kempf@iss.rwth-aachen.de
gerd.ascheid@iss.rwth-aachen.de
leupers@iss.rwth-aachen.de

Dedicated to Meike and Flora,

to my brother Tibor and

to my parents Brigitte and Wolfgang.

Preface

This book highlights the research conducted in the area of Multi-Processor System-

on-Chip design for more than five years. The work documented within was carried

out during my time at the Institute of Integrated Signal Processing Systems (ISS) at

the RWTH Aachen University.

More than putting forth a brilliant idea, the conducted work reflects a careful evo-

lution of design methodologies and associated tooling. The original motivation dates

back to the GRACE++ methodology. This early attempt of system level modeling

with SystemC targeted the efficient and convenient exploration of complex archi-

tectures, with particular focus on communication architectures. The tight links to

industry partners and the ongoing development turned this technology into a com-

mercialized tool called Architects View Framework.

At the time I joined the ISS as a researcher, plenty of experience had been gained

in modeling System-on-Chip platforms. By the investigation of several industrial

platforms, we soon discovered that the detailed modeling of processing elements

limited the capabilities of design space exploration. Accordingly, we extended the

methodology to a more abstract modeling of processing elements and, furthermore,

broadened it to capture the challenges of temporal and spatial task mapping. With

the help of many partners from different research cooperations, we have evolved

the methodology and were lucky to be able to validate our approach with relevant

design problems. Finally, this innovative technology was brought to the market and

became commercially available in 2009.

All the design issues to be found in the development of MPSoC platforms cannot

be mastered by a single person. Therefore, I am grateful for the strong support of

researchers with whom I had the pleasure to work.

First of all, I would like to thank my supervisor and Prof. Gerd Ascheid who

is the co-author of this book. Apart from his valuable feedback and deep interest

in my work, I enjoyed the creative working atmosphere of independent research

while being guided by inspiring discussions. In the same way, I would like to thank

my co-examiner and co-author Prof. Rainer Leupers for his support and valuable

feedback.

As mentioned before, my work is based on the Architects View Framework de-

veloped by Tim Kogel. Not only for supervising my master’s thesis, but also for the

joined research projects, I would like to convey my gratitude to Tim.

vii

viii Preface

In addition, I would like to thank my former colleague and office-mate Andreas

Wieferink who recruited me to the ISS when I was an undergraduate student. He

was always helpful in solving critical debugging issues.

I am grateful to all my colleagues at ISS, who supported me in my research work.

Among them I would like give my special thanks to Filippo Borlenghi, Jeronimo

Castrillon, Anupam Chattopadhyay, Meik Dörpinghaus, Felix Engel, Lei Gao, Niels

Hadaschik, Manuel Hohenauer, David Kammler, Kingshuk Karuri, Stefan Kraemer,

Hanno Scharwächter, Stefan Schürmans, Martin Senst, Martin Witte and Diandian

Zhang.

When performing research in the area of EDA tools, I personally consider tight

interaction with semiconductor and EDA companies as essential to address the key

design issues. Luckily, at ISS I had the unique opportunity to meet many helpful pro-

fessionals over the years, which gave constant guidance and valuable feedback. My

special thanks are due to Xavier Buisson, Andreas Hoffmann, Karl Van Rompaey,

Bart Vanthournout from CoWare/Synopsys, and to all the professionals we met dur-

ing the roadshow of the Virtual Processing Unit (VPU).

Converting my ideas into usable tools would have not been possible without the

help of my postgraduate students. I would like to thank all of them for their efforts

and hard work. Among them, I would like to give special thanks to Jens Reinecke

and Stefan Wallentowitz. Furthermore, I would like to thank Filippo Borlenghi,

Jeronimo Castrillon, and James Wood for reviewing this book.

I would like to thank my parents for all the constant love and support. I also thank

my brother for his support and advice. My very special thanks go to Meike and my

daughter Flora for their support, love, and patience.

July 2010 Torsten Kempf

Contents

1 Introduction . 1

1.1 Organization of the Book .. 4

2 Systems for Wireless Communication. 7

2.1 Applications for Mobile Devices. 8

2.1.1 Wireless Communication Domain . 8

2.1.2 Multimedia Applications . 9

2.1.3 General Purpose and Other Applications . 11

2.1.4 Application Impact on Design Methodology 12

2.2 Hardware Platforms and Components . 13

2.2.1 Processing Elements . 16

2.2.2 Communication Architectures and Memory Subsystems 19

2.2.3 Hardware Architecture Impact on Design Methodology.. 20

2.3 Summary . 21

3 Principles of Design Space Exploration . 23

3.1 Evaluation of a Single Design Point . 24

3.1.1 Simulation-Based Approaches . 26

3.1.2 Analytical Approaches.. 38

3.1.3 Joint Analytical and Simulation-Based Approaches 40

3.1.4 Summary of Approaches . 40

3.2 Exploring the Design Space . 42

3.2.1 Summary of Exploration Approaches.. 45

3.3 Requirements for Early Design Space Exploration . 45

4 Related Work . 49

4.1 Simulation-Based Approaches . 49

4.2 Analytical Approaches . 51

4.3 Joint Analytical and Simulation-Based Approaches 53

4.4 Summary . 53

ix

x Contents

5 Methodology . 55

5.1 Iterative Design Process . 55

5.2 Analytical Implementation Model . 58

5.3 Abstract Simulation Implementation Model. 61

5.4 ISS-Based Implementation Model . 64

6 Analytical Implementation Model . 67

6.1 Design Space Exploration as a Mathematical Problem 67

6.1.1 Problem Statement and Elementary Definitions 69

6.1.2 Input Analysis and Evaluation Constraints . 70

6.2 Analysis Algorithm . 80

6.2.1 Analysis Graph Calculation . 81

6.2.2 Analysis Precalculation .. 83

6.2.3 Critical Path Evaluation . 86

6.3 Simulation Link and Back Annotation.. 86

7 Abstract Simulation Implementation Model . 89

7.1 Overview and Key Components . 89

7.2 Virtual Processing Unit Concept . 90

7.3 Annotation Principle of Execution Characteristics . 93

7.3.1 Statistical Annotation Model . 96

7.3.2 Source-Level Annotation Model . 97

7.3.3 Implementation-Based Annotation Model . 99

7.4 Software Layers of the VPU .103

7.4.1 Hardware Abstraction Layer .103

7.4.2 Device Drivers .105

7.4.3 Operating System Layer .107

7.4.4 Middleware Layer. .113

7.5 Application Layer .115

7.5.1 Textual Design Entry .115

7.5.2 Graphical Design Entry .. .119

7.6 Refinement to Instruction Set Simulation .122

7.6.1 Hardware Simulation Model Refinement .123

7.6.2 Software Refinement. .123

7.6.3 Automatic Refinement Flow for the Graphical

Design Entry .126

7.7 Summary of the Abstract Simulation Model .129

8 Case Study .131

8.1 Task Level Annotation .. .131

8.1.1 Task Level Analysis Scenario .132

8.1.2 Task Level Analysis Results .134

8.2 System Level Case Study. .138

8.2.1 Wireless Communication Standards .138

8.2.2 Overview of Processing Element. .141

Contents xi

8.2.3 Exploration .. .142

8.3 Summary of the Case Study .151

9 Summary and Outlook .153

A Advanced Features of the Analysis Framework .157

A.1 Analysis Graph Simplification .157

A.1.1 Task Merging .. .157

A.1.2 Shortcut Elimination .. .157

A.1.3 Iterative Application .158

A.2 Scheduling Scenarios .158

A.2.1 Scheduling Definition Within the Analysis Framework160

A.3 Dependency Delays .160

A.4 Practical Calculation and Stochastic Independence161

B Advanced VPU Features .163

B.1 Advanced Device Drivers .163

C Task Modeling and Virtual Processing Unit .165

C.1 Overview .165

C.2 Task Graph Assembly and Analysis .167

C.3 VPU IP Component and Platform Modeling .169

C.4 Task Graph Mapping .170

References .173

Index .187

List of Figures

Fig. 1.1 Wireless communication subscriptions (Source: Informa

Telecoms & Media [1]). (a) Global Subscription Growth

and Netadds. (b) Regional Subscription Growth . 2

Fig. 1.2 Early design space exploration methodology . 3

Fig. 2.1 Wireless communication networks . 8

Fig. 2.2 Wireless communication task graph example: WLAN

802.11a receiver [17, 18] . 10

Fig. 2.3 Multimedia example H.264 task graph [23] . 11

Fig. 2.4 IP block structure of the TI OMAP44x platform [38] 15

Fig. 2.5 Memory architectures of common processor cores [24] 20

Fig. 3.1 Design space: software, hardware architecture, and task mapping 24

Fig. 3.2 S-Curves: abstraction levels of hardware design [75]. 25

Fig. 3.3 Design entries: hardware architectures and applications 26

Fig. 3.4 Dimensions of the TLM-2 standard (based

on [39, 100, 149]) . 33

Fig. 3.5 Use cases, modeling styles and mechanisms [153] . 34

Fig. 3.6 Example for Pareto optimization: solutions for

a minimal area-timing-product. (a) Linear scale.

(b) Double-logarithmic scale. 43

Fig. 5.1 Iterative design process with analysis/simulation-based evaluation.. . 57

Fig. 5.2 Exemplary analysis components. (a) Task graph and

critical paths. (b) Hardware architecture. (c) Temporal

& spatial task mapping. (d) Task characteristic examples

X(Task,PE) . 59

Fig. 5.3 Exemplary analysis results for latency constraints.

(a) Likely feasible. (b) Uncertainty dominated.

(c) Expected value dominated. (d) Unlikely feasible 60

Fig. 5.4 Principle and usecase of the Virtual Processing Unit

(VPU). (a) VPU Performance Model. (b) System-level

design including VPUs . 61

xiii

xiv List of Figures

Fig. 5.5 Supported annotation models of the VPU . 63

Fig. 5.6 Graphical design entry . 64

Fig. 5.7 (a) VPU to ISS refinement: hardware part. (b) VPU to

ISS refinement: software part . 65

Fig. 6.1 Problem statement of design space exploration .. 68

Fig. 6.2 Multiobjective optimization problem: decision

and objective space . 69

Fig. 6.3 Examples of valid and invalid application task graphs

(TG). (a) Illegal task graph. (b) Inconsistent data rates.

(c) Valid task graph .. 72

Fig. 6.4 From single to multiapplication scenario. (a) Two

applications and task graphs. (b) Joint representation of

two applications . 73

Fig. 6.5 Transformation of the general application task graph

to a acyclic directed DFG. (a) Initial task graph (TG).

(b) Respective Feedback Data Flow Graph (FDFG).

(c) Respective Data Flow Graph (DFG) . 73

Fig. 6.6 Examples of valid and invalid spatial mappings.

(a) Invalid Spatial Mapping. (b) Valid Spatial Mapping.. 76

Fig. 6.7 Different types of stochastic parameter description

illustrated by their probability density functions.

(a) Perfect Knowledge. (b) Simulation Results.

(c) Stochastic Description .. 78

Fig. 6.8 Example: application and hardware architecture.

(a) Initial task graph (TG). (b) HW architecture . 83

Fig. 6.9 Evaluation of the analysis graph. (a) The joint DFG

and CFG. (b) Adding read and write communication

vertices and edge reduction. (c) Insert communication

into schedules. (d) Edge reduction.. 83

Fig. 6.10 Example: analysis graph with exemplary critical paths

and dependency delays. (a) Critical paths in an analysis

graph. (b) Inserted dependency delays . 84

Fig. 6.11 Mathematical to ISS refinement of the implementation model. 87

Fig. 7.1 Challenges for software and hardware modeling.

(a) Processor core with single-threaded application.

(b) Processor core with multi-threaded application.

(c) Programmable hardware accelerator. (d) Hardware accelerator . . . 91

Fig. 7.2 VPU hardware simulation model and software layers 92

Fig. 7.3 Techniques of functional implementation and execution

characteristic annotation.. 94

Fig. 7.4 Annotation of the execution characteristic: statistical model 97

Fig. 7.5 Task execution work flow . 99

List of Figures xv

Fig. 7.6 Annotation of the execution characteristic: trace-based

annotation. (a) Trace-based annotation for processor

core. (b) Trace-base annotation for subsystem .102

Fig. 7.7 Comparison between hardware abstraction layer

for ISS- and VPU-based simulation. (a) Hardware

Abstraction Layer for ARM926E-JS. (b) Hardware

Abstraction Layer on VPU .104

Fig. 7.8 Hardware device and device driver [273, p. 285] with

pure slave behavior .106

Fig. 7.9 Advanced task state control in the generic operating system110

Fig. 7.10 Semaphore ISS vs. VPU software code comparison112

Fig. 7.11 Example of a middleware on top of the VPU .114

Fig. 7.12 Comparison of modeling of software and hardware on

ISS and VPU. (a) Modeling and usage of software on

an ISS. (b) Modeling and usage of software on a VPU.117

Fig. 7.13 Exemplary task model illustrated as tCEFSM .118

Fig. 7.14 Principle of the graphical design entry .119

Fig. 7.15 Looped tCEFSM. .120

Fig. 7.16 Refinement example – from VPU to ISS .124

Fig. 7.17 Operating system specific refinement example .126

Fig. 7.18 Platform refinement engine (PRE) .127

Fig. 8.1 Evaluation principle of annotation techniques

(ARM926EJ-S example) .134

Fig. 8.2 Estimation error of execution core cycles .136

Fig. 8.3 Estimation error and accuracy of program memory accesses136

Fig. 8.4 Estimation error and accuracy of data memory accesses137

Fig. 8.5 The MIL-STD-188-110B algorithm .139

Fig. 8.6 Representative communication algorithm .. .140

Fig. 8.7 Scenario at the initial design entry .143

Fig. 8.8 The explored design options of the hardware

architecture during the case study .144

Fig. 8.9 Results for the initial setup [valid range – gray] (step 1).

(a) RCA sample processing time. (b) MIL correlation

mode sample processing time. (c) MIL normal mode

sample processing time .144

Fig. 8.10 Lowered RCA sample processing time by re-scheduling

[valid range – gray] (step 2) .145

Fig. 8.11 Implementation knowledge after refinement to TI C55x

DSP (step 3). .145

Fig. 8.12 Results for the architecture refinement: C55x DSP [valid

range – gray] (step 3). (a) RCA sample processing time.

(b) RCA latency (not critical). (c) RCA feedback delay..146

xvi List of Figures

Fig. 8.13 Results for the architecture refinement: TI C55x DSP

to C64x DSP [valid range – gray] (step 4). (a) RCA

sample processing time. (b) RCA latency (not critical).

(c) RCA feedback delay .. .146

Fig. 8.14 RCA results for interleaved schedule and increased

clock frequency [valid range – gray] (step 5). (a) Sample

processing time. (b) Agg. sample processing time. .147

Fig. 8.15 Simulation results for the aggregated RCA sample

processing time [valid range – gray] (step 6). (a) Sample

processing time. (b) Agg. sample processing time. .148

Fig. 8.16 Results for system including VCP connected to a bus

architecture [valid range – gray] (step 7). (a) RCA

sample processing time per sample. (b) RCA aggregated

sample processing time. (c) MIL sample processing time149

Fig. 8.17 Results for the tightly coupled VCP [valid range –

gray] (step 8.1). (a) RCA sample processing time per

sample. (b) RCA aggregated sample processing time.

(c) MIL sample processing time .150

Fig. 8.18 Results for the bus connected VCP with unoptimized

scheduling [valid range – gray] (step 8.2). (a) RCA

sample processing time per sample. (b) RCA aggregated

sample processing time. (c) MIL sample processing time150

Fig. A.1 Exemplified analysis graph simplifications. (a) Original

Analysis Graph as constructed from DFG and CFG.

(b) Merging of nodes reduces the number of vertices.

(c) Removal of redundant edges. (d) Further merging of

nodes reduces the number of vertices. .158

Fig. A.2 Exemplary schedules. The upper chart pictures SC(PEA)
and the lower one SC(PEB). (a) Initial schedule based

on the topological task sequence of the initial task

graph. (b) Schedule modification based on task T5

instances. (c) Task scheduling with interleaved iterations159

Fig. A.3 Stochastic analysis vs. Monte-Carlo

results (N = 100,000). (a) Stochastic Analysis:

RCA sample processing time per sample. (b) Stochastic

Analysis: RCA aggregated sample processing time.

(c) Monte-Carlo: RCA sample processing time per

sample. (d) Monte-Carlo: RCA aggregated sample

processing time .162

Fig. B.1 Example of interrupt-driven memory mapped I/O device

driver on VPU .163

Fig. B.2 Example of DMA based I/O device driver .164

List of Figures xvii

Fig. C.1 Overview of the design flow (based on [307]) .166

Fig. C.2 Exemplary task graph in synopsys PCT .167

Fig. C.3 Stand-alone execution of task graph with the task

manager (based on [307]) .168

Fig. C.4 Task execution trace .168

Fig. C.5 VPU IP component and task graph mapping (based on [307])169

Fig. C.6 Hardware platform.. .170

Fig. C.7 Mapped task graph (channel estimation subsystem)171

List of Tables

Table 2.1 Computational and communication requirements

of multimedia applications [21] . 10

Table 7.1 Protocols of the VPU’s hardware abstraction layer105

Table 7.2 Basic functions of the generic operating system to

support task management .. .110

Table 7.3 Specific OS API refinement of important OS functions111

Table 7.4 Replacement or implementation of explicit memory

access functions .. .125

Table 7.5 Specific OS API refinement of important OS functions125

Table 8.1 Considered task level analysis scenario implementation options133

Table 8.2 Compatibility matrix for annotation techniques

of the execution characteristic .138

xix

Chapter 1

Introduction

Over the past 20 years, advances in digital wireless communication technologies

have modified everyone’s day-to-day life. Predominantly utilized by business cus-

tomers, the switch from analog to digital wireless communication networks has

made them affordable and widely accepted within the consumer market. This trend

is clearly reflected by the increase in the number of global cellular subscriptions

over the last decade. Figure 1.1 illustrates the impressive growth from ∼200 million

to over 3,000 million subscriptions listed between the years 1997 and 2008 [1].

Parallel to the achievements in wireless communication, user devices have

evolved at an incredible pace over the last years. The technology advances in

the semiconductor industry have led to supercomputers in the form factor of a

mobile terminal. Accordingly, latest-generation smartphones are no longer limited

solely to pure voice communication, but support a wide range of applications from

the domains of multimedia, entertainment, and infotainment. In turn, these applica-

tions have had a particularly strong impact on connectivity requirements, resulting

in the need for the latest smartphones to support multiple wireless communication

standards.

These requirements have created one of the most challenging assignments in en-

gineering today. Looking purely at the necessary computational performance shows

an approximate demand of 10–80 GOPS peak performance [2] for the execution

of today’s communication standards. In addition, upcoming standards will further

increase the demands, e.g., the upcoming Long Term Evolution (LTE) standard ex-

tension. The demand to support the mobility of battery powered devices, makes

high energy efficiency one of the key elements for business success within the an-

ticipated market. This demand together with the requirements of low cost, short

time-to-market, and the extremely short lifecycles put particular pressure on system

architects when designing such terminals.

Today we are witnessing a complete change in the design philosophy of wireless

communication devices. In the past, the main answer to the increasing require-

ments came from the semiconductor technology scaling the manufacturing process,

leading to higher performance and energy efficiency gains. These gains were pre-

dicted by Moore’s Law [3] and Dennard’s Scaling Rules [4]. Unfortunately, having

reached process manufacturing sizes below 65 nm, further downscaling is becoming

more and more challenging, and pessimistic voices predict the end of Moore’s Law.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 1, c© Springer Science+Business Media, LLC 2011

1

2 1 Introduction

a b

Fig. 1.1 Wireless communication subscriptions (Source: Informa Telecoms & Media [1]).

(a) Global Subscription Growth and Netadds. (b) Regional Subscription Growth

Whether true or not, a more severe design issue has arisen, commonly referred to as

the crisis of complexity [5]. It is the limitation to fully exploit the advantages pro-

vided by process technology due to the lack of efficient design methodologies and

tools.

More than ever before, system architects are being required to apply new and

innovative designs to increase computational performance and to keep pace with

consumer expectations. In a nutshell, the strong computational requirements are

forcing system architects to incorporate parallel processing as it offers the capability

of sharing the computation among the different resources. Besides this, the con-

tradictory requirements of performance, energy efficiency, and flexibility can only

be resolved by programmable processor cores. Starting from the well-known con-

cepts of general purpose computing (GPPs) and digital signal processing (DSPs), the

urgent demand for high energy efficiency has led to extensive research on processor

cores. One result of this research are application-specific instruction-set processors

(ASIPs), which are optimized for a specific application. Furthermore, reconfigurable

ASIPs (rASIPs), including postfabrication reconfigurability, have been envisioned

and first prototypes are available.

With processor cores being the heart of every wireless communication platform,

heterogeneous Multi-Processor Systems-on-Chip (MPSoC) are widely considered

to be the optimal choice for implementation. Experiments have shown that, when

designed carefully, MPSoCs have the potential to achieve the best trade-off among

computational performance, energy efficiency, and flexibility. Unfortunately, system

architects are experiencing new and still unsolved challenges during design of such

systems. These challenges cover engineering issues ranging from macro- to micro-

scopic aspects in hardware and software development. In addition, earlier design

strategies focussing on single components need to be reconsidered, because nowa-

days only a joint analysis enables statements about the platform capabilities. These

issues and challenges have created the research field of ESL design.

Evolving from the fundamental ideas of HW/SW codesign and later system

level design, ESL design covers a large set of methodologies and tools surrounding

MPSoC design in general. The centerpiece of nearly all ESL design techniques is

1 Introduction 3

a virtual platform that serves as an executable specification to evaluate particular

design objectives. Virtual platform techniques have achieved a major break-through

in the fields of software development and debugging, as well as platform analysis,

optimization, and verification. These virtual platforms replace costly hardware pro-

totypes and have the potential to significantly simplify and speed-up the design

process. However, virtual platforms operating on instruction-set level can hardly be

used directly at the start of the design cycle, when typically neither the hardware ar-

chitecture nor the compiler tool chain and/or the software implementation are fixed.

Therefore, innovative design methodologies to carry out early design space explo-

ration are essential, as last minute design changes tend to be extremely costly and

induce high risks of wasting development effort. Accordingly, these methodologies

have to support system architects in identifying the optimal or suboptimal design

options right from the outset. Moreover, for wide acceptance and practical use, a

clear link to existing technologies is mandatory.

To address the design issues of future multi- and many-processor core architec-

tures, with particular attention to platforms in the domain of wireless communi-

cation, this book outlines a unique early design space exploration framework. Its

major contribution is a joint environment that covers several abstraction layers for

the purpose of the exploration and evaluation of heterogeneous MPSoC platforms.

The framework introduces the following main concepts and techniques and its over-

all structure is comprehensively described in Fig. 1.2.

Fig. 1.2 Early design space exploration methodology

4 1 Introduction

• An analytical implementation model is built on the fundamentals of statistical

processes and graph theory. This model targets early design stages, when the

hardware architecture is undefined or only a few components are available. The

key idea is to formally describe the anticipated hardware platform, the applica-

tion specification and the temporal and spatial task mapping at a high abstraction

level. Based on this solid foundation, a mathematical analysis allows the compu-

tation of the performance characteristics and helps to identify whether the system

complies with the necessary constraints and also to highlight potential design

difficulties.

• The second major implementation model is based on an abstract simulation

model. The key principle is an annotation of the execution characteristics sup-

porting the evaluation of arbitrary aspects without a detailed and time-consuming

implementation. This paradigm has culminated in the Virtual Processing Unit

(VPU) and several extensions for practical use and the investigation of common

hardware features.

• Acceptance and usability not only require sophisticated implementation models

but also an effective design process with the possibility of a smooth transition

between the abstraction layers. In strict adherence to this paradigm, the pro-

posed framework provides techniques to (semi-)automatically close the design

gaps between the abstraction levels.

1.1 Organization of the Book

Various research activities dedicated to the field of multi- and many-core architec-

tures have generated a considerable number of methodologies and techniques. For

this reason, this book gives a rather detailed introduction into the overall ESL do-

main. Chapter 2 discusses the general application and architectural trends and also

their implications on the design methodology. This includes applications from the

domains of wireless communication, multimedia, and other general purpose ones.

From the architectural perspective, utilized IP components are separately introduced

based on their type, such as processing elements, communication architectures, and

memories.

After this fundamental introduction, Chap. 3 identifies and highlights the foun-

dation of any design space exploration. Central aspects that are discussed are the

evaluation of a single design point and the strategy to navigate the design space.

The chapter concludes with the identification of the requirements for an efficient

design process and framework.

As the proposed framework is definitely not a single entity within the complex

research space, Chap. 4 depicts the related work which can be found in academia

and industry. The chapter is divided into two aspects, namely Electronic System

Level (ESL) design and early design space exploration, covering both analytical

and simulation-based approaches.

1.1 Organization of the Book 5

The subsequent chapters introduce the proposed methodology and framework

for early design space exploration. Chapter 5 highlights the overall principle and

structure of the methodology which follows the paradigm of abstraction. The ana-

lytical implementation model is situated at the highest abstraction level, whereas the

abstract simulation model bridges the design discontinuity to the well-known ESL

design at the level of instruction set simulation. As a consequence, a continuous

design process from a high- to low-level of abstraction is inherently ensured.

Chapter 6 discusses the analytical implementation model. Within the discussion,

the problem of design space exploration and analysis is defined as a mathematical

problem. Finally, the chapter concludes with the link to the abstract simulation-

based environment.

The abstract simulation model is discussed from a practical point of view in

Chap. 7, which highlights its practical usage and introduces the underlying concept,

as well as the provided features. Subsequently, the refinement from the abstract to

the instruction set simulation model is presented.

In Chap. 8 the usefulness and accuracy of the proposed framework and underly-

ing concept are proved by a case study from the domain of wireless communication.

This case study covers two main aspects. The first part captures the accuracy that

can be achieved for various design decisions and the different modeling techniques,

whereas the second part highlights the practical use based on a complex, yet typical

design process.

Finally, the book concludes with a summary and an outlook on further research

in the field of design space exploration.

Chapter 2

Systems for Wireless Communication

The advent of second generation (2G), digital mobile communication networks for

the mass markets had a significant impact on the use of mobile communication

in the 1990s. Previously, the usage of mobile communication had been limited to

business customers because of the high costs, whereas second (2G) and following

(3G, LTE) wireless communication generations have been affordable for the masses.

With the change of customers, the usage of mobile communication has broadened

from pure mobile voice communication to infotainment and entertainment. This re-

quires mobile handsets to support, in addition to the key components of voice and

data communication, applications, like multimedia ones. The different structure and

demands of these applications require different kinds of wireless communication

protocols and standards which, in turn, has led to the incorporation of a hardware

subsystem for each standard. This solution promises short-term success, however in

the long term this principle is not expected to scale with a large number of supported

communication standards. Finally, this has led to the vision of a Software Defined

Radio (SDR) [6] which implements these standards in software to allow an easy

upgrade and extension of the set of supported standards. It is commonly agreed that

heterogeneous Multiprocessor System-on-Chip (MPSoCs) [7] are the best choice

for the underlying platform to cope with the challenging demands of computational

performance, energy efficiency, and flexibility, especially for wireless communica-

tion devices like SDRs.

This chapter first examines the applications executed on cellphones and smart-

phones separately for the three domains of wireless communication, multimedia,

and general purpose. Based on them, the impact and constraints for the design

methodology for wireless communication platforms are derived. The second part

of the chapter discusses the underlying hardware platforms and components. Addi-

tionally, the specific influence of the platform and components on the design process

is highlighted.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 2, c© Springer Science+Business Media, LLC 2011

7

8 2 Systems for Wireless Communication

2.1 Applications for Mobile Devices

Applications for mobile devices differ significantly in their characteristics according

to their domain. Therefore, they are discussed separately. Applications for wireless

communications, with particular focus on physical-layer processing, are treated in

greatest detail as the case study discussed in Chap. 8 addresses this domain.

2.1.1 Wireless Communication Domain

Within this area, targeted applications comprise all kinds of standards and proto-

cols for voice and data communication. To achieve highest interoperability these

are typically standardized by organizations like ITU [8], ETSI [9], and IEEE [10].

In addition, the application structure is defined according to the International Stan-

dard Organization Open Systems Interconnection Basic Reference Model (ISO/OSI

Reference Model) [11] to simplify the design of wireless communication standards.

However, modern standard implementations are not too strict about dividing the dif-

ferent layers, so that applied cross-layer optimizations soften the borders between

adjacent layers.

A large variety of wireless communication standards have emerged, each ad-

dressing a particular range of user-level applications. The traditional classification

of standards differentiates among Wireless Personal Area Networks, Wireless Local

Area Networks (WLAN), Wireless Metropolitan Area Networks (WMAN), and

Wireless Wide Area Networks. Figure 2.1 illustrates these four classes including ex-

amples and use-cases. Additionally, localization services like the Global Positioning

System (GPS) are considered as a part of wireless communication systems.

The multimedia and wireless communication domains are converging initiated

by technology advances, e.g., high performance mobile processor cores, as well

as high-resolution displays and touchscreens for mobile devices. The result of

this convergence is a class of smartphones that combine the functionalities of

Fig. 2.1 Wireless communication networks

2.1 Applications for Mobile Devices 9

mobile phones and personal computers (PC) into a single mobile device. These

devices support a wide range of different applications, each having individual con-

nectivity demands. This requires the support of different wireless communication

standards, e.g., Bluetooth [12] for wireless headsets, WLAN [13] for internet ac-

cess, and 2G and 3G network connection for voice and data communication. Past

and present designs cope with this challenge by incorporating one subsystem for

each supported standard. For example, Apple’s 3G iPhone [14] includes five sub-

systems for GSM/GPRS/EDGE (2G), WCDMA/HSDPA (3G), GPS, WLAN, and

Bluetooth [15]. The addition of further subsystems to support additional wireless

communication standards is not expected to scale in future. To cope with this issue,

industry and research have opted for SDR [6], where different wireless commu-

nication standards are implemented in software allowing the reuse of hardware

components. A case study [16] carried out by Infineon expects an SDR to out-

perform the traditional solution in terms of area and costs at five implemented

standards. However, implementing even a single wireless communication standard

is already a complex task, therefore the design of a complete SDR becomes quite

challenging.

The development of wireless communication standards is dominated by the

physical-layer processing, i.e., the lowest layer in the ISO/OSI reference model.

This layer has a high computational demand (10–80 GOPS) and (mostly) hard real-

time constraints have to be fulfilled. From the application perspective, the most

severe constraints are latency and throughput. Failing to comply with these con-

straints will most likely lead to business failure.

The key elements of physical-layer processing are digital signal processing

algorithms. These algorithms are typically characterized by a computationally in-

tensive data-plane processing at high data rates predominantly controlled through

parametrization. These data flow dominated applications are rather well structured

in terms of task graphs or block processing, allowing the utilization of static sched-

ulers and making task-level parallelism rather clear. The known task structure and

data communication between different tasks can be easily captured in task graphs,

e.g., Kahn Process Networks (KPN) [19] or Synchronous Data Flow (SDF) [20] task

graphs. For specific task graphs, especially for the latter mentioned SDFs, a static

schedule can be derived prior to run-time. Thus, deterministic behavior is ensured

and no dynamic overhead occurs. Figure 2.2 exemplifies a task graph structure of a

WLAN 802.11a receiver [17] implementation.

2.1.2 Multimedia Applications

The domain of multimedia covers a wide range of applications like audio, image,

and video processing along with 2D and 3D graphic applications. Similar to the

wireless communication domain, many standards coexist in the field, each having a

particular optimization criterion like data compression or high quality.

10 2 Systems for Wireless Communication

Fig. 2.2 Wireless communication task graph example: WLAN 802.11a receiver [17, 18]

Table 2.1 Computational and communication requirements of multimedia applications [21]

Typical configuration On-chip communication requirements
Computational

requirements in

operations per

second (GOPS)Resolution

Frequency

(Hz)

Pixels per second

(Mpxl/s)

Bytes per second

(MBps)

720 × 480 60 20.7 82.8 31.1

1,280 × 768 60 59.0 236.0 123.9

1,920 × 1,080 30 62.2 248.8 186.6

1,920 × 1,080 60 124.4 497.6 373.2

1,920 × 1,200 60 138.2 552.8 414.7

Multimedia applications are characterized by a high computational demand

along with high communication requirements between processor and memory. The

key application in this domain is video processing with requirements including

stringent real-time constraints as exemplified in Table 2.1. This especially applies

to high-quality video applications, which include high throughput demands with

challenging latency requirements.

These challenging demands of the latest multimedia standards along with the

need for energy efficiency, in particular for battery-powered mobile devices, has led

to highly specialized hardware accelerators and graphic-processing units [22]. These

hardware components are optimized for performing typical 2D and 3D graphic

processing operations, e.g., texture mapping and rendering especially vertex, ge-

ometry, and pixel shader calculations. The key characteristic of these algorithms is

the massive parallelism of vector and matrix operations. Similar to ASIPs, these

hardware architectures are especially tailored for the needs of multimedia applica-

tions. The design principle is to restrict flexibility to a minimum to achieve highest

2.1 Applications for Mobile Devices 11

Fig. 2.3 Multimedia example H.264 task graph [23]

performance and energy efficiency. Despite the immense performance provided by

such architectures, software development for them is extremely challenging. In ad-

dition, identifying the inherent parallelism within a particular algorithm is key and

is mostly carried out by application experts and manual interaction.

Multimedia standards are mostly defined as task graphs (Fig. 2.3) like applica-

tions from the domain of wireless communication. The included control flow, e.g.,

the control overhead in H.264 decoding, leads to severe challenges in memory opti-

mizations and data communication. Therefore, implementations commonly require

special treatments to optimize the data communication.

2.1.3 General Purpose and Other Applications

Various kinds of applications are categorized under the term of general-purpose

applications. Typical examples are text processing and web-browsing applications.

Traditionally developed for personal computers (PCs), these are becoming in-

creasingly popular even on mobile devices like smartphones. These applications

are software-centric and make heavy use of operating systems (OSs), middleware

layers, and other forms of hardware abstraction layers (HAL) such as hardware

dependent software (HdS). Contrary to performance-critical parts, like physical-

layer processing in the domain of wireless communication, they have a less domi-

nant data plane processing and their computational complexity is rather low. On the

other hand, control plane processing is much more severe because applications have

to react on nondeterministic user interactions.

12 2 Systems for Wireless Communication

This leads to a complex control flow execution, which requires techniques

for efficient execution, such as efficient implementations of jump and branch

instructions as well as function and procedure handling. To accelerate them, well-

known personal computer techniques, such as like branch prediction and superscalar

architectures [24], are being increasingly adopted. This architecture trend is con-

stantly narrowing the gap between general purpose processors within the embedded

system and the personal computer market. Naturally, this opens new market oppor-

tunities for IP vendors from the embedded domain like ARM, MIPS, and Tensilica

while moving into the direction of GPC. However, companies originating from the

domain of personal computing, e.g., Intel, AMD, and VIA, have announced or are

already are moving toward embedded systems [25].

In contrast to the previously discussed application domains, several description

and development techniques for general purpose applications exist. However, the

most common method is the classical textual design based on a high-level program-

ming language based on C/C++ or Java. Other approaches like component-based

software design [26] or the unified modeling language (UML) [27] provide graphi-

cal design entries for improved implementation efficiency.

2.1.4 Application Impact on Design Methodology

The rapidly increasing performance demands and limited available energy of battery

powered devices, gives rise to an increasing energy-performance gap. Addition-

ally, the need to jointly support various applications and their requirements is

having a significant impact on the design methodology. General purpose appli-

cations demand flexible architectures to support a wide range of applications.

Characterized by a dominant control path, software development relies on high-

level programming languages along with operating systems (OSs), middlewares,

and libraries. In contrast, applications from the domain of wireless communication

and multimedia are implemented by highly specialized architectures and low-level

software development. Applications of these domains are characterized by high

computational demands in the data plane processing with relatively low control

overhead.

In general, these various application requirements have significant impact on the

design methodology of the two major components software and hardware. From

the hardware perspective, the complexity and computational demand of modern

communication standards requires rapidly increasing performance while preserving

energy efficiency for future wireless communication devices. As the current technol-

ogy scaling cannot cope with these requirements by itself, new approaches have to

be considered [5]. An obvious solution is to apply parallelism, in terms of processing

the application on multiple processing elements in parallel. In addition, the contra-

dictory requirements of high computational power and energy efficiency require

highly specialized hardware architectures. This has led to the common agreement

that heterogeneous MPSoC platforms are the best candidate for such devices [28].

2.2 Hardware Platforms and Components 13

Unfortunately, the selection of heterogeneous MPSoC platforms has a significant

impact and induces design challenges like:

• Partitioning of tasks to optimally exploit the inherent parallelism within a given

application.

• This partitioning is tightly linked to the selection of the type and number of

hardware components, which is a key question for assembling the hardware

architecture.

• Performance evaluation can no longer be performed on the basis of a single

isolated component. Instead, the interacting behavior of all system components

requires a system-wide performance evaluation.

• New programming techniques and models need to be considered since, due to

the heterogeneous nature of the platform a simple adaptation of known multipro-

cessor programming is not feasible.

In addition, the first and most important design objective is to achieve the perfor-

mance requirements, mostly given in regard to latency and throughput constraints.

These requirements, particularly when implementing the physical layer of a wireless

communication standard, are characterized by stringent (hard) real-time constraints

that have to be fulfilled. Otherwise, devices will most likely fail standard com-

pliance tests, leading to business failure. Hence, the design methodology must

incorporate techniques to efficiently evaluate whether the application-induced con-

straints are met or not. As late design changes tend to be more costly than early

ones, such techniques should be applied as early as possible in the design process.

After discussing the application needs and their coarse-grained impact on the

design methodology, the discussion now turns to detailed design aspects and the cor-

responding influence of each possible hardware component. Along with this, the

impact on the design methodology is highlighted.

2.2 Hardware Platforms and Components

New design methodologies offering increased productivity in terms of design effi-

ciency are indispensable for the development of future heterogeneous MPSoCs. For

the comparison of different MPSoC platforms the following fundamental objectives

and metrics can be defined.

Performance. Probably the most important design objective, the performance, is

typically measured in terms of latency and throughput. Especially, meeting the per-

formance constraints induced by applications is highly challenging but necessary

for a successfully operating device.

Energy and Power Efficiency. Energy efficiency is one of the most severe design

issues and platform differentiators. Especially, for mobile and battery powered

devices energy efficiency is essential. Unfortunately, over the last years battery ca-

pacity has not been able to cope with the increasing performance demands, leading

14 2 Systems for Wireless Communication

to a growing performance-energy gap. This requires architectural innovations to

increase the energy efficiency needed at present and definitely in the future. The

metric Millions of Instructions Per Second (MIPS) per Watt typically defines energy

efficiency [29]. Although this rather crude definition gives designers a first rough

idea, it is unsuitable, as it is the required energy per task which matters. In the do-

main of wireless communication this metric can be expanded to the required energy

per decoded bit or, within the domain of multimedia, to energy per pixel. The power

efficiency classifies the power dissipation on the chip which influences the package

and the layout of the final chip.

Cost. In general the total costs consist of the design costs and the initial manufactur-

ing costs [30]. Whereas the design costs include the development of both software

and hardware, the initial manufacturing costs comprise the mask and wafer costs as

well as the initial packaging and testing. The dominating design costs are related to

software and hardware development. These are reported for current design technolo-

gies (90 nm) to be in the region of 10–100 million USD with an expected increase

of 50–100% per shrink in the process generation. Whereas in the past hardware-

development costs claimed the major portion, the increasing use of programmable

components has led to rapidly increasing software costs [30]. Latest market studies

of MPSoC design report them to be at the same level. In addition, chip mask pro-

duction has become increasingly expensive and is typically in the range of multiple

million USD for each mask iteration.

Flexibility. In contrast to the previously discussed objectives and metrics, flexibility

cannot be simply given as a single value. Flexibility defines the capability to execute

a specific functionality on a particular processing element. This metric is of vital

importance especially when designing SDRs [6]. Additionally, flexibility has the

advantages of enabling short time-to-market and extending the lifetime by applying

software updates and bugfixes. It is closely related to portability, which defines the

ease of porting a certain functionality from one platform to another. Portability can

be defined as the inverse of the porting effort [31] which, in turn, directly relates to

flexibility.

These objectives help to guide system architects in their design decisions to find

the optimal design. However, the complexity and short time-to-market along with

the discussed requirements put a particular pressure on the development of such

MPSoC platforms. Therefore, new design methodologies have to be considered to

minimize the required development effort and costs. Here two fundamental design

concepts, namely component-based design (CbD) [32] and platform-based design

(PbD) [33], have been envisioned and found major acceptance.

MPSoC design: Evolution rather than Revolution. According to the component-

based approach, the complete platform is assembled from in-house or external IP

components, e.g., processor cores, communication architectures, memories, and

many other IP components. The key to the efficient use of this design principle

is a unified interface definition to connect arbitrary IP components. These inter-

faces are mostly bus or Network-on-Chip (NoC) centric, like the interfaces of the

2.2 Hardware Platforms and Components 15

Fig. 2.4 IP block structure of the TI OMAP44x platform [38]

AMBA bus [34] or the IBM CoreConnect [35]. These have been standardized or

evolved to a de facto standard by wide utilization. Based on this design methodology

a large variety of companies have established a successful IP business, among them

processor IP vendors like ARM, MIPS, and Tensilica as well as communication

architecture IP providers like Arteris [36] as well as above-mentioned IP vendors

like ARM and IBM. An example IP-component structure for TI’s OMAP [37] plat-

form is sketched in Fig. 2.4.

This CbD inherently ensures the high reuse of components over different

platforms as they are separated by well-defined interfaces. Because of growing

complexity, the average number of IP components an MPSoC platform consists of

has increased from 25 in 2006 to 28 in 2007 and 33 in 2008 [39]. Further predictions

expect an increase over the next years, already reaching 72 IP components in an

average platform design by the year 2012.

With the aid of such IP components, PbD has proved to be highly suitable to

quickly obtain modified platforms from a base one. The major element is the re-

striction of the design space by reducing flexibility, which simplifies and shortens

the development cycle significantly. This design methodology has been successfully

applied to especially address a specific market segment, e.g., the areas of wireless

communication and multimedia. Prominent examples are TI’s OMAP platforms for

wireless communication devices and Philips Nexperia [40] platforms for multime-

dia applications.

The development of each platform is based on a construction kit. For each market

segment a particular set of IP components is selected and connected. For example,

the OMAP331 targeting the low-cost segment consists of an ARM926EJ-S pro-

cessor core with a few surrounding peripheral devices. The high-cost segment is

addressed by TI’s OMAP3430 [37] platform that includes a more powerful ARM

16 2 Systems for Wireless Communication

Cortex-A8 processor, an IVA 2+ graphics accelerator, a POWERVR SGX graphics

core [41], a dedicated image signal processor (ISP), and various other peripheral

devices.

Apart from the business success of such platforms, this design methodology

bears some hidden traps and risks [42, cf. 7.2]. The key risk is that system archi-

tects enter the design cycle biased and do not question design decisions related to

the preexisting software or hardware IPs. In the end this can lead to false design

decisions that decrease performance or increase energy consumption. In contrast,

starting designs from scratch without reusing pieces of existing platforms is also no

option when considering the tight time-to-market constraints. Therefore, a suitable

design methodology requires a mixture of both extremes and demands strong design

discipline. Hence, Bailey et al. [42] propose that all design options should be con-

sidered when developing a modified platform virtually starting with a blank sheet

of paper, but characteristics, prior experiences and reuse of existing IP components

can be incorporated to enhance the design process and the final platform.

As a large variety of different components exists, the rest of this section dis-

cusses each particular group of components separately and highlights the impact on

the design methodology. However, it should be noted that the most essential issue

in MPSoC design is the interwoven behavior of all the components and not that of a

single isolated component. For example, a high performance processor core cannot

fully exploit its capabilities if either the communication architecture or the memory

subsystem is too slow to deliver the necessary data to be processed. Such issues can-

not be evaluated in an isolated fashion because they only occur when investigating

the system-wide performance.

2.2.1 Processing Elements

The class of processing elements ranges from highly flexible general purpose pro-

cessors (GPPs) to dedicated hardwired accelerators, optimized for a particular

function. Lately, the demand for postfabrication flexibility has led system architects

to increasingly use flexible and programmable components like general purpose

processors, digital signal processors (DSPs), and application-specific instruction-set

processors. Consequently, the amount and the importance of software are steadily

increasing. Already today software has become one of the most critical pieces in

system design [43], consuming a significant amount of the overall budget. With

the increasing introduction of heterogeneous MPSoCs, various software design

methodologies need to be considered jointly ranging from high-to low-level soft-

ware constructs.

The class of the processing elements can roughly be classified into the following

groups.

• General Purpose Processor (GPP)

• Digital Signal Processor (DSP)

• Application Specific Instruction Set Processor (ASIP)

2.2 Hardware Platforms and Components 17

• Reconfigurable Application Specific Instruction Set Processor (rASIP)

• Field Programmable Gate Array (FPGA)

• Application Specific Integrated Circuit (ASIC)

General Purpose Processors offer high flexibility and are hence utilized for arbi-

trary applications like control and user-level applications. Commonly, application

development is conveniently carried out in high-level programming languages,

e.g., C/C++ and Java. Often an operating system (OS) is supported and software

development is abstracted by HAL or other middlewares from low-level hardware

features. This shields software design from the underlying hardware by means of

abstraction, permitting to concentrate on the pure application development.

Digital Signal Processors are especially tailored for the common characteristics

and operations of digital signal processing algorithms. These processors exhibit spe-

cial instructions to efficiently perform operations common to these algorithms, e.g.,

multiply accumulate, add-compare-select, and Galois field instructions [44]. The

latest DSP architectures provide increased parallelism by means of Very Long In-

struction Words [45], Single-Instruction Multiple-Data [46], and superscalar [47]

hardware features. Because of the high-performance and low energy-consumption

demands in the domain of wireless communication, fixed-point DSPs are still the

first choice even after the introduction of floating-point DSPs [44].

Application Specific Instruction Set Processors are specially developed for a speci-

fic application. In general, the design of an ASIP follows the guideline of minimiz-

ing flexibility to maximize energy efficiency, area efficiency, and/or performance.

Today, the class of ASIPs covers a wide range of different approaches and architec-

tures. Tensilica’s approach [48] enters the design process with the Xtensa processor

core as a base architecture and allows further customization of this template with

respect to the addressed application. Other approaches support ASIP development

based on an Architecture Description Language (ADL), e.g., LISA 2.0 [49] or

Expression [50]. These ADL-based approaches do not restrict designers in their

decisions to support full architectural design space exploration. Contrary to GPPs,

application-specific features cannot be easily addressed by compilers. Therefore,

ASIPs typically require low-level software development to exploit the specific fea-

tures. However, there are promising approaches to generate the software tool-chain

including compiler, assembler, and linker for the ASIP [51, 52] with reasonable

performance.

Reconfigurable Application Specific Instruction Set Processors extend the concept

of ASIPs further by combining the base processor with a reconfigurable fabric

based on FPGAs [53]. This combination of a fixed and a reconfigurable hardware

architecture promises high performance with increased flexibility to adapt the de-

signed processor to different applications. Compared with the previously discussed

ASIPs, the reconfigurable part adds postfabrication flexibility. Already a few archi-

tectures [54] and design methodologies [55, 56] exist, highlighting the potential of

such architectures. However, this research field is relatively new and is expected

18 2 Systems for Wireless Communication

to have high potential in the future. Besides the earlier-mentioned issues for ASIPs,

additional hardware description language (HDL) programming needs to be included

to program the embedded FPGA.

Field Programmable Gate Arrays are reconfigurable processing elements. Based

on the capability to reconfigure the functionality after manufacturing, these compo-

nents provide a particular postfabrication flexibility. The utilization of such devices

has a strong impact on the design process, because FPGA devices are traditionally

programmed in hardware description languages, e.g., VHDL [57] and Verilog [58].

Therefore, adding an FPGA to a platform changes the design process to a mixed

software and hardware development. However, its flexibility compared to ASICs is

achieved at the expense of decreased performance and increased energy consump-

tion, but offers the possibility of reprogramming and bugfixing in the field.

Application Specific Integrated Circuits are specially tailored for a given algorithm

or application. With the functionality fixed, only minor configuration can be applied

after fabrication. Mostly this configuration is limited to the setting of algorithmic

parameters, e.g., the filter coefficients of an FIR filter. In contrast to the restricted

flexibility, energy efficiency and performance are relatively high. This leads to an in-

tegration of such processing elements in the performance-critical parts of a design.

The traditional design focuses on known hardware design methodologies like Reg-

ister Transfer Level (RTL), modeling with logic synthesis on standard-cell libraries,

or full-custom design on transistor level.

Summarizing the common use of these processing elements, wireless com-

munication and multimedia algorithms, as proved in the past, can be efficiently

implemented on specialized hardware. Dedicated hardwired accelerators (ASICs)

are especially tailored for a particular algorithm, whereas DSPs are optimized to

the common characteristics of such algorithms, e.g., multiplications, multiply ac-

cumulate, and add-compare-select. Application Specific Instruction Set Processors

(ASIPs), like those proposed by Wehn et al. [59] or SODA [2], are specialized

processor cores which have been specially developed for a particular algorithm or

multiple ones. The key principle of ASIPs is to minimize the provided flexibility

to increase performance and to minimize overheads in terms of area, power and

energy consumption. To incorporate such specialized architectures, software devel-

opment cannot follow the general-purpose approach, as current high-level language

compilers can hardly exploit such features optimally due to their highly irregular

structure [31,60]. However, research focuses on this issue and promising approaches

exist in literature [51, 61–64].

In contrast to specialized processing elements, general purpose applications re-

quire a higher degree of flexibility. Hence, GPPs are typically utilized for their

execution and the latest techniques and architectures from the personal-computer

domain are increasingly being applied to mobile devices. For example, ARM Inc.

has just recently announced the ARM Cortex-A8 processor core as their first super-

scalar processor core. Additionally, multicore processors like the ARM Cortex-A9

can already incorporate up to four cores within a single entity.

2.2 Hardware Platforms and Components 19

So far only processing elements have been considered. However, with the

increasing parallelism in future platforms, data exchange between the process-

ing elements is becoming another key issue. In general, to transfer data from one

element to another, a communication architecture and storage elements are neces-

sary. Recently with the increasing number of interacting components, the principle

of bus-based communication architectures has gradually tended to become the

bottleneck of the complete system. Therefore, the latest research in this domain

has proposed more complex communication networks subsumed under the term

Network-on-Chip (NoC) [65].

2.2.2 Communication Architectures and Memory Subsystems

Despite the vast research and many publications within this domain, a precise

definition of NoCs is typically not given [66]. The OCP-IP consortium defines the

term NoC in a rather generic fashion as a communication network that is used on

chip [67]. This generic definition allows further differentiation of NoC architectures

under the key aspects of:

• Switching policy: circuit-switching and packet-switching.

• Topology: point-to-point, bus, hierarchical bus, crossbar, 2D-mesh, 2D-torus,

3D-torus, customized for the addressed application, etc.

• Routing: deterministic fixed routing and dynamic adaptive routing.

• Quality-of-Service: best effort and guaranteed throughput.

• Testing and fault-tolerance.

When dealing with embedded systems, research about NoCs has to adhere to the

special demands of this domain in terms of cost, power and energy efficiency [68].

Similar to the application specific processing elements like DSPs, ASIPs, and

rASIPs, customized application-specific NoCs achieve superior performance in

terms of latency, throughput, area, power and energy efficiency by restricting the

flexibility [67]. However, the highly irregular topologies of these communication ar-

chitectures increase the effort required for wiring and layout. As this book focuses

on early design space exploration of heterogeneous MPSoC platforms, interested

readers are here referred to [69] for a detailed discussion of available Network-on-

Chip architectures and design methodologies.

The general design approach of CbD, treats a memory subsystem as a single

hardware IP component due to the highly regular structure that is attached to a par-

ticular communication architecture and used to exchange data. The memory portion

in modern MPSoC platforms is tremendous and considered to be in the range of

∼60% of the complete area [70]. Therefore, area and energy consumption can be

significantly reduced by designing efficient memory architectures. A classical hier-

archical memory system as illustrated in Fig. 2.5 attaches the processor core directly

to a fast scratchpad memory or cache which is further connected to a larger memory

and finally over I/O devices to external memories like hard disks and flashcards.

20 2 Systems for Wireless Communication

Fig. 2.5 Memory architectures of common processor cores [24]

With respect to early design space exploration, the impact of the memory sub-

system has to be evaluated in terms of size and performance. Whereas, the memory

size has a significant impact on the required chip area, the performance character-

istic depends on the communication between processor and memory. This includes

the underlying communication architecture and has to consider the occurring mem-

ory access patterns. Therefore, design methodologies have to support designers in

performance evaluation of the memory subsystem together with the communication

architecture. Key objectives are to minimize the required memory size to reduce

area and energy consumption, as well as to increase performance characteristics in

terms of latency and throughput.

2.2.3 Hardware Architecture Impact on Design Methodology

The chosen hardware architecture heavily affects whether the application perfor-

mance constraints are met or not (Sect. 2.1) and how the platform behaves with

respect to the formulated objectives (Sect. 2.2). An accurate evaluation of the per-

formance and the objectives can only be done when based on the complete platform

and not on the investigation of a single component. However, selecting each pro-

cessing element can have significant impact on the design methodology.

Looking at the programmable part of the architecture, GPPs execute general pur-

pose based applications that are typically developed in a high-level programming

language including the use of operating systems, middlewares, and hardware ab-

straction levels. Conversely, performance critical applications execute on more

application-specific architectures like DSPs, ASIPs, or even weakly programmable

devices [71]. In general, such specialized architectures require hand-optimized low-

level software implementations. Unfortunately, this influences the design methodol-

ogy, so that time and cost intensive software development [72] is certainly required

to achieve the necessary performance. Therefore, prior to the implementation step,

2.3 Summary 21

system architects must evaluate that the implementation of software and hardware

satisfies the addressed performance requirements. Otherwise late design changes,

e.g., exchanging the type of a processor core, will result in high time and cost invest-

ment as optimizations need to be applied twice [73]. This demands a sophisticated

evaluation methodology for the early investigation of different design decisions

leading finally to the implementation of both software and hardware. Hence, a joint

hardware/software codesign including different software development techniques is

indispensable.

In addition to the use of software-centric processing elements, performance-

critical parts might require less flexible processing elements due to high computa-

tional requirements and/or low flexibility demand. In such cases components like

ASICs, FPGAs, but also rASIPs should be considered. These processing elements

extend the software-centric design flow to also incorporate traditional hardware-

design methodologies. This joint consideration of software and hardware makes a

mixed hardware/software codesign essential and tends to be complex.

Besides the impact of the processing elements, the impact of the communi-

cation architecture must not be neglected. In the high-performance computing

domain more general and regular NoCs are selected, whereas in the area of em-

bedded systems customized NoCs dominate the market. These NoCs are optimized

for the particular needs of one or multiple applications and restrict the flexibil-

ity by limiting the number of physical links, which in turn restricts the mapping

space of the application. Therefore, the development of these application-specific

communication architectures requires a deep knowledge of all the other hard-

ware components and the addressed applications. This leads to the necessity for

a joint design method, including the investigation of arbitrary communication

architectures.

In summary, the challenging performance requirements and objective constraints

force system architects to utilize heterogeneous MPSoC platforms, which, in turn,

significantly affects the software design methodology for such platforms.

2.3 Summary

So far this chapter has highlighted the impact of applications, hardware and software

decisions on the design methodology. Driven by the complexity and requirements of

future applications system architects are increasingly using heterogeneous MPSoC

platforms. These platforms are commonly assembled from different IP components

that can be roughly grouped into the classes of processing elements, communica-

tion architectures, and memories. Based on the selected processing element used to

execute a particular functionality, hardware/software codesign becomes necessary.

This becomes a key challenge, especially when utilizing application-specific and op-

timized processing elements. In addition, different software-development schemes

have to be used jointly to optimally exploit the features of the underlying hardware.

22 2 Systems for Wireless Communication

The range of applied software development has to consider all possibilities, starting

from low-level Assembly implementation up to high-level programming languages

and the use of operating systems, middlewares, and other HAL.

The various challenges in designing such MPSoC platforms demand a structured

design methodology. The next chapter discusses the principles of what is tradition-

ally considered design space exploration.

Chapter 3

Principles of Design Space Exploration

The major objective for system architects is to identify an optimal design point

with respect to the main objectives of performance, flexibility, energy and power

efficiency, and costs. This identification requires a structured design methodology

defining the fundamentals of design space exploration.

• Evaluation of a single design point is mandatory to determine its quality with

respect to the objectives.

• Exploration defines the search within the huge design space to find the optimal or

near optimal implementation. As the design space is spanned by all the software

and hardware design options, it prohibits a complete search. As a consequence,

this demands a knowledge-guided search of the design space.

In general, exploration defines a multiobjective optimization problem [74]. The

given constraints restrict the design space to feasible implementation options,

whereas each possible design represents a System-on-Chip (SoC) solution. The key

components of the decision vector are the software space, including algorithmic

decisions and task-level partitioning aspects, the hardware architecture and the

temporal and spatial task mapping, depicted qualitatively in Fig. 3.1. The complex-

ity and size of the design space along with the time for evaluating a single design

point, prevents an exhaustive search to find the optimal solution. Consequently,

only part of the complete design space can be elaborated, which naturally results in

suboptimal solutions.

However, the number of investigated design points closely relates to the time

required for the individual evaluation process. This process consists of two major

parts, given by the time spent in developing and describing the intended design

point, as well as the time for finally evaluating the anticipated design. The first

defines the modeling efficiency, whereas the latter depends upon the analysis and/or

simulation time for the pure design evaluation.

These two issues, along with the rapidly increasing design complexity, have

driven extensive research in the past, today, and most likely in the future. Therefore,

this chapter provides detailed background information on the general principles and

requirements for successful design space exploration. Together with the previously

discussed challenges of MPSoC platforms, these form the foundation of the pro-

posed design space exploration.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 3, c© Springer Science+Business Media, LLC 2011

23

24 3 Principles of Design Space Exploration

Fig. 3.1 Design space: software, hardware architecture, and task mapping

3.1 Evaluation of a Single Design Point

The evaluation of a single design point has always been a key element for design

space exploration. The evaluation typically measures objectives like area, energy,

and timing during exploration. Apparently, evaluating such properties at the level of

a single IP component, e.g., a low-pass filter or an FFT component, is rather simple

compared to the measurement of a complete MPSoC. To cope with the increasing

complexity, the abstraction level of the design methodology has been constantly

raised from full-custom design to transistor level and RTL. The basic principle of

all approaches is the method of clustering and abstracting [42, p. 206]. ESL de-

sign is still in ongoing development (Fig. 3.2) and its final shape is yet unknown.

Reference [42] probably gives the most comprehensive snapshot of the status of ESL

design methodology in 2006. It describes ESL design as a patchwork of different

methodologies and frameworks, all aiming at particular pieces of the design issues.

In general, based on the classification of Bailey et al. [42], the ESL design flow

defines eight key aspects: specification and modeling, prepartitioning analysis, parti-

tioning, postpartitioning analysis and debugging, postpartitioning verification, hard-

ware implementation, software implementation, and implementation verification.

The work described in this book cannot be simply reduced to only one of

these aspects. Rather than that, it spans different aspects such as partitioning,

postpartitioning analysis, and debugging, together with software and hardware

implementation. The complete set of aspects defines a structured top-down design

3.1 Evaluation of a Single Design Point 25

Fig. 3.2 S-Curves: abstraction levels of hardware design [75]

approach. Such approaches typically cover not only one level of abstraction but

also many levels. However, for efficient and widely accepted design methods, an

ordered refinement from high to low abstraction level is essential. Besides these

top-down approaches, others focus on the principle of bottom-up, Y-chart [76], or

PbD [33]. In theory these design methodologies are completely separate from each

other, however in practice a mixture is used to opt for an optimal design and to keep

design efficiency and IP component reuse high.

Gries defines design space exploration as a design funnel [77] of six abstraction

levels. At early stages, high levels of abstraction allow for a fast exploration method

to inspect a large region of the complete design space. Following the top-down

principle, accuracy is increased step-by-step. This refinement goes hand in hand

with increasing design effort, implementation, and evaluation time. The two highest

abstraction levels, i.e., the system-level analytical model and abstract performance

simulation, build the centerpiece of the proposed design methodology within this

book. Additionally, the refinement to instruction-accurate and cycle-accurate simu-

lation is the key for a smooth transition to the final implementation and is covered

as well. Further refinement can rely on existing technologies. Therefore, the level

of cycle-accurate instruction set simulation builds the bottom-line of the proposed

approach.

The classic separation of evaluation methods leads to the two main concepts

of analytical and simulation-based evaluation. For practical purposes a mixture of

both is used for the evaluation of a single design point. Apart from these different

approaches, the design entry typically differs significantly from one design to an-

other. On the side of hardware architectures, the design entry can be the complete

reuse of an existing platform, minor or major revisions of an existing one, or even

a blank sheet (Fig. 3.3). Additionally, the design entry from the application point

of view is characterized by various levels of knowledge. Figure 3.3 classifies the

design entries with respect to the applications into three coarse-grained experience

levels given by algorithmic and implementation knowledge, as well as the final

implementation. In general, the design entries determine which approach, whether

analytical or simulation-based, should be selected to achieve optimal exploration

results. Commonly used simulation techniques are discussed later.

26 3 Principles of Design Space Exploration

Fig. 3.3 Design entries: hardware architectures and applications

3.1.1 Simulation-Based Approaches

The IEEE defines a simulation model as:

(1) A model that behaves or operates like a given system when provided a set of controlled

inputs. (2) The process of developing or using a model as in (1) [78].

As this model and the measured execution characteristic heavily depend on the

input (also called simulation stimulus [31]), their selection requires careful inspec-

tion to trigger the intended use-case. Apart from this issue, simulation models are

well suited to identifying characteristics of a system in the presence of dynamic and

hardly predictable effects, which impede or even prevent finding a simplified ana-

lytical model. Additionally, system architects can determine realistic performance

parameters for average and worst-case scenarios if the right stimuli are selected.

The rapidly increasing complexity has been answered by constantly increasing

the abstraction level and still maintaining and utilizing the lower abstraction levels.

Figure 3.2 has highlighted the overall abstraction levels. Whereas in the 1990s

hardware development mostly focused on RTL design, the level of abstraction has

nowadays been raised to ESL design. In contrast to other abstraction levels, ESL

design has not reached a final stage and its current status is much more a patch-

work of methodologies than a single structured methodology [42]. Similar to the

use of different abstraction levels like transistor, gate, or register-transfer level, the

current ESL design includes different levels of abstractions. Unfortunately, there

is no perfect abstraction level or simulation model for a complete system design.

As expressed in the earlier-mentioned definition of simulation, each particular

3.1 Evaluation of a Single Design Point 27

abstraction level serves a different purpose. For example, instruction-set simulation

on a cycle-accurate level is mostly used for verification, whereas instruction-

accurate simulations are mostly utilized for fast software development where only

performance trends have to be measured.

Because of the different abstraction levels and utilized methodologies in system-

level design, the design flow is a successive refinement of the simulation model from

a high to low level of abstraction until the final implementation is defined.

According to [79] the design task can be separated into four orthogonal main as-

pects: computation, data, time, and communication. Software and hardware effects

can be separately investigated for each main aspect. The computation characterizes

the system’s behavior. At the highest level it is defined by relations and constraints,

whereas at the bottom level it finally resolves into transistors for hardware and into

instructions for software. The time aspect deals with all timing issues from rough

requirements down to the physical time. The data attribute varies from symbols

that can hold arbitrarily complex data containers, such as data packets, to fine-

grained continuous values that quantify physical units. Finally, the communication

aspect considers the high-level structure and the interface constraints, while at the

low-level layout issues are of interest.

Based on the objective of the simulation model, an arbitrary combination of

different abstraction levels is typically used to focus on a particular issue of the

design. Therefore, the refinement of one aspect is supported independently of the

others. This leaves the overall platform at a given level of abstraction and refines a

particular component toward the final implementation. Based on the different objec-

tives of system models, a wide variety of models of computations (MoC) have been

developed.

Model of Computation

Jantsch [79] defines a MoC as:

A model is a simplification of another entity, which can be a physical thing or another

model. The model contains exactly those characteristics and properties of the modeled en-

tity that are relevant for a given task.

In general, modeling a system separates it into a set of components which interact

with each other and the environment [80]. In addition to that, the MoC defines the

component interaction and their underlying behavior.

When modeling heterogeneous MPSoCs a single model cannot support all kinds

of issues, e.g., modeling the performance, functionality, and verification. A wide

range of different MoCs can be found in literature, each addressing a specific design

issue to keep the complexity for that particular model reasonable.

The Tagged Signal Model [81] provides a methodology to formally specify and

compare timed and untimed models of computation. This modeling principle builds

upon processes, signals, and tags to reflect the basic MoCs such as KPN [19],

discrete-event systems [82], and reactive process networks [83]. Jantsch [79] further

28 3 Principles of Design Space Exploration

separates the synchronous models of computation from the timed ones as these

operate on slots or cycle basis. In the following, a brief overview of these models of

computation is given.

Untimed MoCs

The key identifier of untimed MoCs is the complete absence of timing informa-

tion. Only causality is ensured by ordering the occurring events. Classic untimed

MoCs have originated from dataflow process networks [19,84] addressing the anal-

ysis of signal-processing algorithms. Further development of process networks has

led to SDF graphs [20]. Thanks to their special properties, SDF graphs have been

extensively utilized to solve important problems like computing a static schedule

for single- [85] and multiprocessor systems [86] as well as finding optimal buffer

sizes. Among them, further data-centric untimed MoCs are Boolean Data Flow

graphs [87] and Process Coordination Calculus (PCC) [88].

Apart from these MoCs, others are more control oriented. Prominent examples

that can be covered by the Tagged Signal Modeling are the ones based on the

rendezvous of sequential processes such as Calculus for Communicating Systems

(CCS) [89] and Communicating Sequential Processes (CSP) [90], which is the ba-

sis of the protocol specification language Specification and Description language

(SDL) [91].

Synchronous MoCs

These can be separated into two major MoCs, the perfectly synchronous one and the

clocked synchronous one [79]. The key principle of both is to divide the time into

slots or cycles and everything within one slot or cycle takes place at the same time.

Time progresses by ordered slots or cycles. In addition, perfect synchrony assumes

that neither the communication nor the computation takes time, while in a clocked

synchronous MoC computation is assumed to require a single cycle. Besides this

partitioning, a further classification can again be performed on the basis of the data

flow and control flow. Examples for data flow dominated ones are Signal [92] and

Lustre [93], while prominent control-dominated approaches are Esterel [94] and

Argos [95]. Since the foundation of all synchronous MoCs is well defined, formal

verification methods have been successfully applied to them. This has led to the

use of such approaches in the domain of control critical systems such as airplane

controls.

Timed MoCs

In contrast to synchronous MoCs that restrict the time resolution to a single time

slot, timed MoCs are much more general and allow event generation at any time

3.1 Evaluation of a Single Design Point 29

and in arbitrary number. Additionally, each event is connected to a particular delay

period, which keeps the notion of time. Timed MoCs are quite popular in the domain

of hardware simulation. Classic simulators operate on the principle of ∆-cycles like

VHDL [96] and SystemC [97].

Following one particular or combining multiple MoCs, many design environ-

ments emerged in the past. These have been consistently subsumed under the term

HW/SW codesign and form the body of traditional design space exploration.

HW/SW Codesign and Traditional Design Space Exploration

The transition from board-level design to systems-on-chip has opened up com-

pletely new opportunities, but also challenges due to the joint utilization of software

and hardware. More than a decade of HW/SW-codesign research activities have

given birth to various design methodologies and tools. In this section only a brief

overview is given, whereas in-depth discussions can be found in [98, 99].

In general, early approaches can be divided into four major directions: HW/SW

cosimulation, system synthesis, communication analysis and synthesis, and interface

synthesis [100].

To enable the joint development and debugging of both, software and hard-

ware, research targeted HW/SW cosimulation frameworks. The general approach

was to provide a simulation model for performance analysis and functional verifica-

tion [101], that was available prior to the hardware prototype.

Among the first available frameworks, the Ptolemy [102] cosimulation frame-

work combined execution capabilities for the most common MoCs. These include

the MoCs of discrete-event, dynamic data-flow, and synchronous data-flow. During

simulation, the Ptolemy framework coordinates them and provides efficient mecha-

nisms for the interaction of the various domains.

Based on the Ptolemy simulator, the framework called POLIS [103] provided

a unified methodology for jointly modeling hardware and software. The key idea

was to model the system by codesign finite state machines allowing annotation of

timing characteristics. As the modeling of state machines can be performed either

in hardware or software languages, the concept was generic.

Taking the ideas of Ptolemy and POLIS, Cadence released the tool Virtual Com-

ponent Codesign (VCC) [104] at the beginning of 2000. Despite wide interest in

research and academia the tool was withdrawn in 2002 [42, p. 45f.]. During the

same time period Synopsys released a similar modeling environment called CoCen-

tric System Studio that is still active today and is one of the leading ESL design

tools [105].

The initial concepts for the combined simulation of hardware description lan-

guages and instruction set simulators, like the still actively supported Mentor Seam-

less [106], rapidly found interest in industry. Since the combined execution limited

the simulation speed of such approaches, the GRACE++ methodology [107, 108],

among others, targeted abstraction levels higher than RTL to achieve increased sim-

ulation speed. Yet, modeling was still cycle and pin accurate.

30 3 Principles of Design Space Exploration

In contrast to HW/SW cosimulation, methodologies based on synthesis

approaches aimed at an automatic generation of the system starting from a formal

description. Full system synthesis was the most ambitious goal targeted by some ap-

proaches. The most notable ones are Vulcan [109], COSYMA [110], LYCOS [111],

and Cosmos [112]. None of them has found a large community and relevance with

respect to the intended goal. However, the semiautomatic approaches of communi-

cation and interface synthesis emerged from these fundamental techniques.

With the rising number of applied IP components within a single MPSoC design,

the basic objective of communication synthesis is to generate the communication

architecture and infrastructure automatically for a given application. Early attempts

used static analysis and synthesis techniques [111–113] leading either to too opti-

mistic results or allowing only investigation of worst-case scenarios. More advanced

approaches like the one proposed by Lahiri et al. [114] combine simulation and anal-

ysis results to increase the modeling accuracy.

Most of the approaches are limited to simple communication architectures like

point-to-point or bus-based communication. Addressing more complex architec-

tures like Networks-on-Chips requires manual interaction. Nevertheless, these tech-

niques support and improve the design process like the NetChip [115] project based

on the underlying X-Pipes [116] and SUNMAP [117] technologies.

The forth and final major direction of HW/SW codesign is the interface synthesis.

The general concept only aims at supporting designers in their decisions and not to

make any automatic synthesis of parts or the complete system. Hence, it relieves de-

signers from repeating tasks, finally reducing the design effort and occurring errors.

The most notable example of interface synthesis was initially developed at IMEC

and found its way into CoWare’s products [118].

The basic concepts and ideas of later System Level Design have been envisioned

on the foundation of HW/SW codesign techniques. While in early HW/SW codesign

phases vast effort was put into finding the model of computation, in system-level

design focus has shifted to generic modeling concepts and languages. Early attempts

culminated in the ESL design environments introduced in the following.

Based on the approach of POLIS, the design space exploration framework called

Metropolis [119] was developed. Metropolis removed the modeling demand of

codesign finite state machines which has been considered to be the major obsta-

cle for utilizing the POLIS framework in practice. The replacement for these state

machines was the Metropolis Meta Model [120] which was still rather formal,

achieving the key benefits, but keeping the modeling less strict.

The system-level performance analysis and design space exploration (SPADE)

[121] project also has its roots in early HW/SW codesign. SPADE was among the

first frameworks that followed the y-chart principle and applied various abstraction

levels [122]. The fundamental technique was based on KPN [19] for which the pro-

gramming interface YAPI [123] was envisioned.

The successor of SPADE called ARTEMIS [124] extended the framework into

two separate directions. The first, covered by the Sesame project [125], improved

the simulation accuracy by including fine-grained architecture models [126].

3.1 Evaluation of a Single Design Point 31

In addition, automatic design space exploration techniques were incorporated [127].

Following an alternative approach, the Archer project [128] replaced application

modeling based on KPNs by symbolic programs closely related to control data

flow graphs. Recently, the activities within Sesame have been incorporated into the

Daedalus project [129] trying to bridge the gap from system-level design based on

the Sesame methodology to final RTL implementation.

Another approach based on KPNs is the Philips’ Eclipse [130] platform and

framework. Limited to computationally demanding multimedia processing, the

anticipated applications are efficiently composed out of KPNs. An optimized

application-to-architecture mapping extensively uses specialized communication

architectures, e.g., hardware FIFOs, to implement the occurring FIFOs within

the KPN.

The Modeling Environment for Software and Hardware (MESH) [131] project

raises the abstraction level from cycle-accurate modeling. It provides different

techniques to capture hardware effects, like complex processing elements and

communication architectures [132], by considering schedulers and scheduling oper-

ations as the central element [133].

The ARTS [134] simulation framework proposes a representation to jointly

evaluate the complete design space spread by application, architecture with the

dominant components of processing elements and communication architectures.

Further extensions and conceptional proofs discussed the underlying architectural

models [135, 136] and software impact [137].

Another approach has been initially developed for ST Microelectronics

StepNP [138] platform. The framework represents a development environment

including the design aspects of architecture, application, and tools. Targeting ar-

chitectural design, a construction library contains the most dominant parts for

assembling complete platforms. For the software domain, the approach includes

the Click [139] framework which allows simple and efficient software development

according to a component-based approach [26]. Furthermore, the NP-Click pro-

gramming model has been developed based on Click for the specific requirements

of network processors [140].

The ROSES [141] framework addresses IP CbD [32] of hardware platforms. The

major benefit is the reduced design effort and the quick design composition and

investigation. Further proposed extensions include mechanisms to automatically

generate interfaces for software and hardware.

At the beginning of HW/SW codesign and system-level design frameworks, re-

search focused on the underlying MoC and a formal description. As no final MoC

has been found serving all kinds of different aspects, the only well accepted MoC

for hardware simulation is the discrete-event model utilized in VHDL, Verilog, and

SystemC simulators. Although VHDL and Verilog are mostly used for RTL design

and below, SystemC has recently gained wide acceptance in the area of system-level

design. Other ESL languages like SpecC [142] seem to be disappearing at this point

in time.

32 3 Principles of Design Space Exploration

ESL Design Languages

The results of early HW/SW codesign and the identified need for a suitable

modeling language, attracted research groups worldwide. The first goal of all the

proposed languages was to replace VHDL and Verilog as the dominant hardware

description languages, adding the capabilities of system-level modeling. However,

until today none of the approaches has achieved this ambitious goal and SystemC,

as the dominant language, has abandoned this first objective.

The Open SystemC Initiative (OSCI) [143] has been founded and started creat-

ing the SystemC language in 1999, at the same time the SpecC Technology Open

Consortium (STOC) [144] developed the SpecC language. Originally designed at

U.C. Irvine, the SpecC language proposed constructs like abstraction, orthogonal-

ization of concerns, clear defined interfacing, and increased design reuse. There are

several reasons why SpecC has completely lost ground with respect to SystemC.

One reason is that SystemC is built as a C++ library, which inherently supports

all the well-known software constructs like Object-Oriented Programming and has

a large developer community. Another reason was the absence of all big com-

mercial EDA vendors in the SpecC consortium, whereas OSCI included the big

players [42].

Unlike the top-down approaches of SystemC and SpecC, the proposed model-

ing language of SystemVerilog [145] followed a bottom-up strategy. Taking the

hardware description language Verilog [58] as entry point, the language has been

extended by concepts from OpenVera [146] and Superlog [146]. Despite some con-

troversial opinions about what became the true system-level language, in 2004 it

was agreed that both are complementary. After that, SystemC became the domi-

nating system-level language, while SystemVerilog jointly comprised a hardware

description and verification language. A more detailed discussion referred to as the

system-level language war can be found in [42, p. 54f].

SystemC is built upon C++ as a class library that enables hardware modeling

by introducing concurrency and time. The underlying generic model of computa-

tion is based on the interface method call (IMC) principle [147] that is reflected

by the discrete-event simulation kernel of SystemC. In addition, the principle of

IMC supports the separation of communication and computation in terms of an or-

thogonalization of concerns [148]. For a detailed discussion of these fundamental

properties of the SystemC language the reader is referred to the book System Design

with SystemC by Grötker et al. [97].

Today SystemC has gone through several revisions and the basic SystemC ker-

nel has advanced to version 2.2. Apart from the pure kernel, additional libraries and

methodologies have been provided by different OSCI working groups. The most

prominent enhancements are the Transaction Level Modeling (TLM) Library in re-

lease 2.0 and the SystemC Verification Library (SCV). Based on the solid foundation

of the TLM library, efficient modeling and development of complex systems are

possible. Hence, the subsequent section briefly discusses the benefits of TLM.

3.1 Evaluation of a Single Design Point 33

Transaction Level Modeling

The fine-grained pin and cycle-accurate modeling at RTL was incorporated in early

system-level approaches. Soon it became one of the major drawbacks for efficient

design and exploration of systems. Besides the low simulation speeds, the effort

in coupling components was considerable and prohibited easy and fast exploration

of various design decisions. To overcome these issues TLM was envisioned on the

principle of IMCs [147].

The introduction of the TLM 1.0 standard had a significant impact on the com-

munity at that time. It supported a structured methodology for different use cases of

system modeling (untimed, approximately, and cycle-accurate timed) and already

contained several primitives for sending and receiving data (Fig. 3.4). However,

these data tokens were kept generic and were not defined by the TLM standard.

This resulted in a wide variety of interface implementations. Early attempts like

VSIA [150] to unify them failed. Therefore, the defined interfaces were and still

Fig. 3.4 Dimensions of the TLM-2 standard (based on [39, 100, 149])

34 3 Principles of Design Space Exploration

are dominated by the underlying communication architecture interfaces, e.g., the

AMBA buses including AHB, APB, and AXI [34] as well as IBM’s PLB and

OPB [35].

In addition, the nonprofit Open Core Protocol International Partnership

(OCP-IP) [66] was founded in 2002 to define a standardized communication inter-

face with the envisioned goal of getting compliant IP components. According to the

TLM standard, the OCP-IP consortium defined three transaction levels (TL) above

RTL [151]. Although TL-1 (transfer layer) of the OCP-IP standard defines a cycle-

and word-accurate representation, TL-2 (transaction layer) abstracts the complete

transaction to, e.g., a single abstract blocking function call, and finally TL-3 (mes-

sage layer) aims at generic architecture exploration where timing can be annotated

at data-packet level. A detailed discussion of all layers can be found in [152].

With APIs being proprietary in the past, the recently introduced TLM 2.0

(TLM-2) standard [153] addresses this issue, among other technology improve-

ments. The key objective is to increase the interoperability between the different

available tools and models.

Figure 3.4 depicts the dimensions of the TLM 2.0 standard. The lower part of the

figure reflects the trade-off between accuracy and simulation speed. The working

group has defined four major use cases: software application development, software-

performance analysis, architecture analysis, and performance validation. Each use

case operates in a particular area as qualitatively depicted in the figure. The upper

part highlights the defined levels of computation and communication accuracy. The

combination defines the overall accuracy measure (lower part of Fig. 3.4).

Instead of defining a fixed modeling set for each and every use case, the standard

provides the possibility to arbitrarily select different modeling styles and mech-

anisms (lower part of Fig. 3.5) for an intended use case (upper part of Fig. 3.5).

A detailed discussion is found within the TLM-2 standard [153].

Fig. 3.5 Use cases, modeling styles and mechanisms [153]

3.1 Evaluation of a Single Design Point 35

Unfortunately, no unique simulation model exists that serves every purpose.

Instead, as mentioned before a set of major use cases has been defined, that cover

the most critical design issues. The important use cases and their potential [42,

page 42f.] can be summarized as follows:

• Software development and debugging. Development and debugging of software

can easily start in advance before the hardware prototype is available, which

shortens the design cycle significantly. In addition, deterministic simulation be-

havior allows the reproduction of the encountered software errors and simplifies

debugging, due to the complete visibility of internal states and thanks to the full

simulation control. Especially, the latter is typically not available in hardware

prototypes [154].

• Software performance analysis. Contrary to RTL-based simulation models, vir-

tual platforms allow the investigation of various complex software and hardware

scenarios, like booting an operating system at acceptable speed. The key enabler

is the high simulation speed, which is typically three orders of magnitude faster

than RTL-based simulation [39].

• Architecture analysis and optimizations. Avoiding long and cost-intensive hard-

ware prototyping, virtual platforms allow efficient hardware architecture opti-

mizations by replacing most of the hardware prototyping activities. This reduces

design costs and speeds up the design process significantly. The architectural

objectives range from coarse-grained system-level aspects to the fine-grained se-

lection of custom instructions for a single processor core.

• Performance validation. Validation of the system performance requires cycle-

accurate virtual platforms. Because of detailed modeling, such validation must

accept reduced simulation speed. Moreover, the ability to incorporate RTL

cosimulation allows developing efficient testbeds for functional verification,

avoiding error prone reimplementation.

The TLM-2 standard serves as a background technology for the efficient de-

sign of simulation models, shielding developers from low-level hardware interface

modeling. The major advantage is the smooth integration of simulation models of

various IP components.

Based on the solid foundation of SystemC and TLM, a new class of simulation

models called virtual platforms has emerged. These are an exact image of the in-

tended hardware platform within a simulation environment. Accepted as a major

technology breakthrough, the following discussion highlights these together with

the available design environments.

Virtual Platforms and Design Environments

Virtual Platforms (VP), formerly called virtual system prototypes (VSP) [155],

define behavioral models of a particular platform at various abstraction levels.

Typically, they are utilized as an executable specification. The value can be enor-

mous when applied carefully. The most considerable capabilities are:

36 3 Principles of Design Space Exploration

• Software development and debugging prior to the hardware prototype are

possible. Nonintrusive software debugging is even further enhanced by bet-

ter state visibility, reproducible scenarios, and full simulation control.

• Analysis, optimization, and verification of a complete platform including hard-

ware and software.

• Easy exploration of design alternatives, which avoid cost-intensive hardware

re-designs.

Summarizing the key advantages, the overall design time is reduced significantly

and the technology provides high potential to design more cost-, performance-, and

energy-efficient hardware platforms.

In addition, modern platform-design philosophies, like CbD [32] and PbD [33],

have a strong influence on the paradigms of virtual platforms and the underlying

TLM.

• Following CbD, a platform consists of various IP components connected to

each other. These components communicate over well-defined interfaces (also

referred to as ports) and the interior of any component is a black box for the

others.

• PbD assumes one of such composed platforms as a base architecture. This base

architecture serves as a foundation for the development of various market- and

application-specific architectures. In general, this requires incorporating addi-

tional IP components to address specific needs.

These two design principles inherently ensure structured platforms given by

the assembly of IP components. Accordingly, the paradigm of TLM follows this

philosophy. The clear separation of components (SystemC models) represents the

structure of IP components within the ESL domain based on the paradigm of or-

thogonalization of concerns [156] and the TLM-2 standard [153].

The efficient modeling of the individual IP components is highly important.

SystemC and the TLM-2 standard provide the basic set of modeling primitives and

techniques to model any IP component. However, the OSCI standard itself defines

only the modeling method and provides rather simple examples to demonstrate the

envisioned capabilities. Nowadays, large component libraries [157,158] exist, which

are compatible with the TLM-2 standard. In addition, various SystemC modeling tu-

torials and guidelines are available [97, 159].

SystemC provides efficient techniques for modeling communication architec-

tures, peripherals, memories, and hardware accelerators. However, modeling the

most important IP-component type, i.e., processor cores, has always been the most

complex assignment which requires special treatment. Processor cores are always

defined by hardware and software together, whereas fixed hardware components ex-

ecute the different functionalities in a deterministic order. Accordingly, modeling

and simulating processor cores have always been a focal point and many simulation

techniques emerged in the past. The common principle is based on instruction set

simulation [160], but the underlying techniques differ significantly and show many

facets and variations.

3.1 Evaluation of a Single Design Point 37

Instruction Set Simulators

Various techniques have been proposed to support efficient and fast modeling and

simulation. Wieferink et al. [161] give a thorough discussion on the various model-

ing schemes and propose a successive refinement flow. Within the main contribution,

instruction set simulators are classified into different classes located above tradi-

tional RTL modeling. Separated into the two main classes of instruction-accurate

and cycle-accurate simulation models, further subclasses have been defined by

the utilization of interfaces like bus cycle-accurate or more abstract functional

interfaces.

Another classification, in [162], separates instruction set simulators according to

their underlying simulation techniques, including interpretive simulation as well as

statically and dynamically compiled approaches. One of the key challenges was and

still is to achieve high simulation speeds. Hence, after basic interpretive simulation

techniques, statically compiled approaches appeared next. The general technique is

to translate the binary executable of the simulated processor core into the binary

format of the host processor [163, 164].

Statically compiled simulations can achieve superior performance due to joint

compilation of software and hardware, but there are also certain drawbacks. A main

limitation is that self-referential or self-modifying software code cannot be han-

dled and each software modification requires time intensive re-compilation of the

simulator and most likely the complete platform model. To overcome these issues,

dynamic compilation techniques nowadays dominate the field of instruction set

simulators. They are able to directly simulate modified software without any time

intensive re-compilation steps while achieving reasonable simulation speeds. To

speed-up dynamically compiled simulation, several techniques, like Just-In-Time

cached compilation [165–168] or Just-In-Time binary translation [169], have been

incorporated. Related approaches can be found in the domain of software instru-

mentation techniques [170], in particular in dynamic binary instrumentation (DBI)

frameworks.

Based on the principle of orthogonalization of concerns, each component treats

every other component as a black box and data exchange only occurs at the well-

defined interfaces and ports. Hence, every instruction set simulator can simply be en-

capsulated within a SystemC component. By assembling all platform components,

a simulation model is obtained commonly referred to as Virtual Platform (VP).

Virtual Platforms

Several vendors approach the upcoming market segment with a large variety of en-

vironments and tools. In addition, a few open-source solutions are available. After

the introduction of commercial tools, the open-source approaches are highlighted.

Platform Architect [171] of CoWare is one of the most well known design envi-

ronments for SystemC development and simulation. In contrast to a single design

tool, Platform Architect defines a complete tool suite addressing the requirements

38 3 Principles of Design Space Exploration

of the multiple design challenges. The SCIDE tool, based on the Eclipse IDE [172],

allows for SystemC debugging, while the Platform Creator Tool (PCT) [173] pro-

vides a graphical design entry for efficient platform design. Platform Architect

comes with a rich set of libraries containing the most common IP components, e.g.,

ARM processor cores [174] and AMBA buses [34]. The Architects View Frame-

work (AVF) library [100] enables efficient exploration of complex communication

architectures. The underlying technique of the AVF is based on the Virtual Archi-

tecture Mapping (VAM) [175].

Another well-known design environment is Synopsys Innovator (formerly Vir-

tio) [176]. In the past it was based on a proprietary design technology based on

C/C++, but nowadays it is fully compliant with the SystemC standard. Similar to

CoWare design tools, it provides an environment for efficient development, sim-

ulation, and analysis of virtual platforms. In addition to the Innovator product,

Synopsys offers the DesignWare IP component library [157] and System Studio

[105] as a graphical design tool for platform design.

Carbon Design Systems has recently acquired the virtual platform development

suite SoC Designer [177] from ARM. In contrast to CoWare Platform Architect,

SoC Designer focuses on cycle accurate virtual platforms. This smoothly links to

other Carbon technologies, e.g., Model Studio, that allow automatic extraction of

SystemC models from low RTL code.

Besides these, other commercial tools exist, like Simics from Virtutech [178],

Vast CoMET [179], and Triton Tuner [180].

Recently, Imperas Inc. has donated its environment as Open Virtual Platform

(OVP) [181] to the open-source community. Additionally, a GreenSocs [182] project

called VPP targets another open-source approach.

Formed by ST Microelectronic, the On-Chip Communication Network (OCCN)

[183] project aims to develop an open-source interface based on the SystemC

kernel, targeting complex communication architectures [184]. The main contribu-

tion is a layered protocol stack including a well-defined methodology for protocol

refinement.

Apart from the simulation-based approaches, analytical ones target the explo-

ration and evaluation in a much more formal way.

3.1.2 Analytical Approaches

Analytical approaches are applicable directly at the start of the design. Therefore,

they are well suited to speeding up the exploration and to identifying corner cases

for later system simulation. The general assumption for most of the formal methods

is that nondeterministic and dynamic behavior is prohibited. In addition, these meth-

ods typically address worst-case execution time (WCET) evaluation, especially at

early design stages.

3.1 Evaluation of a Single Design Point 39

These analytical approaches operate on a coarse-grained evaluation based on:

• The hardware architecture.

• The application partitioning.

• The application-to-architecture mapping.

The problem of mapping an application onto a multiprocessor platform is a well-

known issue in computer science. Depending on the point of view, this problem

can be found in literature as scheduling, resource allocation, or task mapping. In

general, it is known to be part of the class of NP-hard problems [185] as well as

its simplified subproblems [186]. The common classification separates the overall

problem into two categories, static and dynamic.

Both techniques define the order of task execution on a shared resource and have

been extensively studied in the past. When utilizing a static schedule, the task ex-

ecution order is fixed and computed before run-time, whereas a dynamic scheduler

determines the order at run-time. Hence, the scheduling overhead is typically larger

in the presence of a dynamic scheduler, but a priori knowledge of the execution be-

havior is required to compute an efficient static schedule. Reference [187] discusses

the known scheduling algorithms separately for the classes of graph theory, math-

ematical programming, queuing theory, and finally solution space enumeration and

search.

Originating from queuing theory of computer networks [188] and linear-system

theory [189], the technique of Network Calculus [190] has been adopted for the

purpose of performance evaluation of embedded systems. The main idea proposed

by Thiele et al. [191] abstracts the application to arrival curves, whereas the plat-

form resources are captured by service curves. When computing the characteristic

of the application mapped onto the given platform, both curves are joined and the

results illustrate the resource utilization and the execution performance. The prin-

ciple of network calculus has been successfully applied to the design of network

processors [192–194] and more general embedded systems [195].

Following a similar approach, Richter et al. operate on workload models [196]

to allow the symbolic calculation of execution characteristics. Furthermore, this

approach has led to the SymTA/S approach [197] that has been integrated into a

commercial product from Symtavision. For a detailed discussion of this and the

network calculus approach [198–200] should be consulted.

Apart from the rather roughly computed bounds, the development of analytical

models with a certain degree of precision can be extremely difficult and can take

significant development effort [201]. In addition, these models do not allow any

functional development and typically do not provide a design flow leading to the

final implementation.

Other approaches [202] analyze a system based on conditional process

graphs [203, 204]. Here, the application is described by a set of tasks mapped

to a specific architecture allowing the computation of the performance characteris-

tic. The goal of this work is to analyze and optimize the scheduling effects within

heterogeneous systems including application and hardware-architecture effects.

40 3 Principles of Design Space Exploration

Models based on SDF graphs [20] have been applied to single- and multipro-

cessors scenarios [86]. Both use cases have been studied extensively in research

and have shown promising results in the evaluation of a single design point, e.g.,

in [205].

3.1.3 Joint Analytical and Simulation-Based Approaches

Combining both previously discussed techniques has mostly been used to inspect

memory and cache behavior in the past. In particular, trace-based performance

analysis has been extensively utilized to save simulation time by doing costly per-

formance evaluation, e.g., of caches, once and then reusing the obtained traces in

future. Generating and storing the trace allows inspection of various memory and

cache architectures without any further trace generation. Memory exploration based

on traces has been demonstrated by several case studies for memories [206–208]

and cache performance [209].

Lahiri et al. [210] have extended the scope of trace-driven analysis to the de-

sign space exploration of communication architectures. Here, traces are measured

once and taken for the computation of performance and resource utilization. Case

studies and other approaches [211] have demonstrated the modeling accuracy even

for complex buses and Network-on-Chips (NoCs) [212]. Further research has even

broadened the investigated communication impact to evaluate the cost of control

operations [213]. Another approach by Bobrek et al. [214] investigates resource

contentions.

Apart from trace-driven approaches, other techniques require an initial calibra-

tion [215]. First, the measurement of a large set of benchmarks is performed to try

to exhaustively cover the design space. In a second step, the retrieved information is

taken to analytically evaluate performance and even power figures [216].

Another approach couples the network calculus and its event streams [199] with

a SystemC simulation environment [217] by providing converters. The key ele-

ment is the converter that outputs SystemC events from an input given as an arrival

curve. For the sake of completeness, an inverse converter exists that generates arrival

curves from SystemC events.

Summarizing the sketched approaches, most of them operate in two phases. In

the first design phase, the execution characteristic of one or multiple benchmarks is

measured. In a second step, the obtained information is used to analytically evaluate

the optimized system-level design.

3.1.4 Summary of Approaches

Each of the three introduced methods to evaluate a single design point has its own

advantages and disadvantages. Analytical approaches can speed-up the exploration

3.1 Evaluation of a Single Design Point 41

of different design points and can help to find corner cases. However, they have the

following common drawbacks.

• The limitation to worst-case or deterministic behavior might not always be suf-

ficient for a precise investigation of complex systems. In addition, analytical

models can hardly keep track of interactive and dynamic user behavior, which

requires simulation-based approaches.

• Analytical models commonly lack real implementation, therefore, in addition

to the time-consuming process of analytical modeling, the final software and

hardware have to be developed separately in a different environment.

• The development of analytical models with a sufficient degree of precision can

be extremely difficult and can take significant development effort [201].

• Due to the high abstraction level, a certain degree of inaccuracy and error must

be accepted when compared against the real hardware implementation. Typically,

this is not acceptable for final verification, demanding virtual platforms and even

lower-level simulation models.

To overcome these limitations and issues, other approaches follow a prag-

matic path by using simulation techniques. These simulation-based approaches

support mixed abstraction levels and utilize different types of architecture and ap-

plication modeling. Today most prominent ESL design frameworks are based on

SystemC [143]. Such frameworks typically operate on cycle- and/or instruction-

accurate level by the technique of instruction set simulation. Recently, virtual

platforms have originated from such frameworks, focusing on simulation speed-up

to allow software development and analysis before the final hardware is available.

Virtual platforms have made a significant impact on the interoperability of design

environments and modeling styles. They are now widely accepted as the current

standard technology for software development and analysis of embedded systems.

Prominent environments are CoWare Platform Architect [171], Synopsys System

Studio [105], Vast [179], and Virtutech [178] among others. Unfortunately, for de-

sign space exploration at a particularly early design stage these frameworks suffer

by nature from the following issues.

• Hardware and Compiler. To utilize the technique of instruction set simulation, a

fixed processor core or at least a preliminary instruction set architecture has to be

defined. Otherwise the development of an instruction set simulator or compiler

tool-chain, including an assembler, cannot be performed at all. When addressing

early design stages, typically none of them is present, which prevents perfor-

mance evaluation until the processor core as well as the software tool chain is

ready, which is far too late in the design process.

• Software. Optimized software development can only start jointly or after the

hardware and compiler are fixed. Apart from this, the results obtained by in-

struction set simulation only measure the current design stage of software and

hardware. Accordingly, these can only illustrate a current snapshot of the de-

sign. When entering a design process typically neither the software nor the

hardware is mature and, if it exists, it can only be considered a basic reference

42 3 Principles of Design Space Exploration

implementation. Measuring such intermediate stages does not reflect the final im-

plementation, and design decisions based on such ad hoc measurements induce

high risks of taking false decisions. Because the selection of a processor core

at early design stages might imply a specific software development technique,

a wrong decision can result in significant increased design effort. For example,

it can induce the necessity of software rewriting or applying hardware-specific

software optimizations twice. With short time-to-market, such redesigns typi-

cally have disastrous effects on the final product and its business success.

In the past combining both analytical and simulation-based approaches has

mostly been performed to inspect memory and cache behavior as well as com-

munication aspects. Other approaches utilize an analytical approach with an initial

calibration based on simulation results or try to trigger simulation events from an

analytical model. However, these approaches are separated from the design flow and

cannot be integrated into a smooth design flow with successive refinement to the fi-

nal implementation. In addition, these design environments are mostly completely

decoupled from common simulation-based approaches like virtual platforms.

After the introduction of the evaluation techniques for a single design point, the

discussion now turns to the different exploration techniques to navigate through the

large and complex design space.

3.2 Exploring the Design Space

Design space exploration in the domain of logic synthesis originally refers to explor-

ing different design options with respect to given constraints. This design problem

can be comprehensively described as a multiobjective optimization problem [74],

also known as Pareto optimization problem [218]. Sufficiently precise description

of a classical integrated-circuit (IC) design defines such a problem. In general, area,

timing, and energy are the main targeted system properties, however costs in terms

of development effort can also be taken into account. Searching for an optimal solu-

tion does not lead to a single design point, rather the problem defines a set of optimal

points in the design space also called Pareto-optimal or Pareto-efficient solutions.

To highlight this optimization problem, a small example from the domain of

logic synthesis is consulted. Given the two system properties area and timing, the

AT-product serves as optimization function (f = A×T). In contrast to a single so-

lution, an optimal AT-product defines a set of solutions as depicted in Fig. 3.6. The

hyperbola fopt = A×T or the line in double logarithmic scale (Fig. 3.6) defines a set

of Pareto-optimal solutions, e.g., the illustrated designs 1–5.

Besides this simplified AT-product, the area–timing–energy (ATE) product is of-

ten considered in ASIC designs. The measurement of one or all the properties is

mostly carried out by utilizing well established Register-Transfer-Level synthesis

design flows like those of Synopsys [219], Cadence [220], or Magma [221].

For complete MPSoC platforms, even if the overall properties are still defined in

the same way, measuring them gets far more complex than for a single hardwired

3.2 Exploring the Design Space 43

Fig. 3.6 Example for Pareto optimization: solutions for a minimal area-timing-product. (a) Linear

scale. (b) Double-logarithmic scale

component. For example, the clock period and the execution time define the tim-

ing constraint for a single IP-component. When considering a complete MPSoC,

the timing constraint reflects the execution of various interacting applications under

arbitrary conditions. This makes it hard to determine the characteristic of even a

single design point. In addition, system architects cannot directly manipulate these

properties as they result from design decisions taken during the implementation of

the application, which includes software and hardware.

The complexity of measuring a single design point (Sect. 3.1) and the sheer

size of the design space prohibits an exhaustive search. To demonstrate this, a simple

example is sketched. Assume an application consists of T tasks which can execute

on nPE processing elements. There are (nPE) T possible design points. As typically

the partitioning of the application and the selection of the hardware components are

key points of the design space exploration, neither the number of tasks T nor the

number of processing elements nPE is fixed. This implies even more possible design

candidates which cannot be evaluated exhaustively.

From theory, a large variety of different exploration strategies is known, e.g.,

random sampling and path-oriented search among many other techniques. A thor-

ough introduction of these techniques can be found in [30, p. 148f]. However, as

previously mentioned, the complexity of evaluating each design point along with

the large number of possible design decisions makes it difficult to use such formal

strategies.

This has led system architects to adopt more pragmatic design techniques like

PbD [33] and IP component-based design (CbD) [32], which were introduced in

Sect. 2.2. These paradigms guarantee high reuse and quick assembly of new plat-

forms. Consequently, the design of new MPSoC platforms usually starts from a

44 3 Principles of Design Space Exploration

previous design that is extended and assembled out of existing IP components rather

than designing the platform from scratch. This process reflects more a constant evo-

lution rather than a complete re-design (Sect. 2.2).

As a consequence, the overall exploration can be separated into two linked parts.

First, the fine-grained exploration of the individual components. Second, the coarse-

grained exploration on the system-level where arbitrary components are combined

to execute the anticipated applications jointly. Although in theory these two steps

are independent, only the interwoven behavior can give evidence whether the overall

system is working properly or not. Therefore, a joint exploration is mandatory.

As decisions on both levels have a significant impact on the overall system per-

formance, thorough investigations are mandatory to prevent false decisions.

• Considering the application aspect, the key element is to partition the application

into multiple tasks and to select the algorithms within them. The software imple-

mentation of a selected algorithm often depends on the anticipated processing

element executing this task. For example, a Fast Fourier Transformation (FFT)

can be implemented as radix-2, radix-4, or differently. While system architects

partition the application and select the underlying algorithms on the system-level,

the underlying implementation is chosen at the component-level.

• With respect to the hardware, the exploration selects the necessary components

in terms of processing elements, communication architectures, and memories. On

the system-level coarse-grained decisions are taken whether to incorporate one

or the other processing element. Instead, on the component-level, fine-grained

issues are determined. For example, when adding an ASIP the instruction set

needs to be defined within this level.

• The application-to-architecture mapping has significant impact on the overall

performance. In general, it temporally and spatially maps application tasks onto

the underlying processing elements. Temporal mapping defines the execution

order over time, whereas spatial mapping implies the distribution of tasks to pro-

cessing elements.

These three aspects build the centerpiece during design space exploration for

complex heterogeneous MPSoC platforms and apply to all abstraction levels.

With focus on the ESL design, in particular on virtual platforms including in-

struction set simulation, design space exploration is commonly carried out based on

the expert knowledge of system architects and tools envisioned on the workbench

paradigm. In this context, a workbench defines a tool supporting developers in tak-

ing decisions instead of trying to identify the best solution automatically.

This results in a design space exploration technique following the basic philos-

ophy of implementing, measuring, analyzing, and modifying a possible platform

candidate. Hence, at first system architects assemble the envisioned MPSoC hard-

ware platform and software, thus creating a complete simulation model. This model

is executed under different stimuli [31] and the performance is measured. The mea-

surement results are then analyzed to check whether the constraints have been met

or not. Depending on the result, either other design options are explored or the re-

finement toward the final implementation is targeted.

3.3 Requirements for Early Design Space Exploration 45

In general, all the earlier proposed ESL design techniques operate according to

the workbench principle because of the immense complexity of heterogeneous MP-

SoC platforms. A commonality among them is the use of instruction set simulation

to mimic the behavior of processor cores.

Besides these workbench approaches, automatic-exploration tools have not yet

found practical relevance and are only consulted in specific parts of the design, e.g.,

within the memory subsystem [30].

3.2.1 Summary of Exploration Approaches

The principle of design space exploration for MPSoC platforms considers the three

main aspects of application, hardware architecture, and application-to-architecture

mapping. Following the paradigms of component- and PbD, exploration is per-

formed on two linked, but separate levels. On the system-level coarse-grained

decisions about the overall structure of the platform are taken, whereas fine-grained

design options are selected on the component-level.

In ESL design, the exploration follows a simulation-based approach with a work-

bench character. Here, system architects are supported by the methodology and tools

to select the right design decisions. However, these design decisions need to be taken

by system architects based on their expert knowledge because currently no overall

automatic exploration technique exists.

3.3 Requirements for Early Design Space Exploration

So far the fundamental problem of heterogeneous MPSoC design and the related

well-established methodologies have been introduced. The basic design problem is

to determine a suitable application partitioning, a hardware architecture, and finally

the application-to-architecture mapping. In general this comprises two main stages,

i.e., the step of evaluating a single design point and the exploration step to find

the best implementation candidate. In the context of evaluation, classical design

methodologies utilize simulation-based approaches that are centric to instruction

set simulation techniques. Additionally, analytical as well as joint analytical and

simulation-based approaches can be utilized to measure the performance character-

istics of a particular design point.

Evaluation techniques are essential to efficiently explore the design space and to

finally identify a suitable software and hardware implementation. As the size of the

design space prohibits an exhaustive search, system architects have so far solved

this issue in a rather pragmatic fashion by using an evolutionary design approach.

Here, a base platform is enhanced and tailored for a particular application and mar-

ket segment. Together with the extensive use of IP components with standardized

interface, high reuse, and design efficiency along with short time-to-market can be

achieved.

46 3 Principles of Design Space Exploration

Because of the upcoming software challenges for MPSoC platforms, research

and industry have developed so-called virtual platforms that contain all essential

building blocks of embedded systems including processor cores and peripheral

devices. The main target of virtual platforms is to support software development

and platform analysis. Although recent research has increased the simulation speed

and the modeling efficiency, the fundamental technique is still based on the princi-

ple of instruction set simulation. This inherently shows the same problems for early

design stages as previously discussed in Sect. 3.1.4. Among them is the need for a

fixed instruction set architecture along with a compiler and software. As neither one

is typically fixed at particular early design stages and software development effort

can be significant, a high risk exists that wrong design decisions only become visible

after the implementation is finished and the effort is spent. To avoid such false de-

cisions a clear and sophisticated methodology is needed that addresses early design

phases. In the context of this chapter the following methodical aspects have been

identified that should be covered by an early design space exploration methodology.

• Aspects for efficient design space exploration

– Guide system architects in their design decisions. The size of the design space

prohibits an exhaustive search and the simple application of theoretical explo-

ration strategies. Therefore, practical relevant approaches address this issue

according to the workbench idea, assisting system architects in their design

decisions.

– Unbiased selection of design options. Today’s dominant design principles

of platform- and component-based design [32, 33] induce the problem that

designers tend to inspect design decisions with a certain bias [42]. For ex-

ample, assuming a particular IP component exists, system architects tend to

incorporate it into the system design without further questioning other im-

plementations that eventually lead to an improved design. Therefore, a future

design approach should virtually start with a blank sheet of paper and only

consider these IP components as one option among others.

• Aspects for efficient evaluation of a single design point

– Support of arbitrary design entries. A wide variety of entry points into the de-

sign space exploration have to be covered. For example, starting from scratch

all design options, whether software or hardware, can be considered. In con-

trast, the reuse of a complete hardware platform restricts the possible design

options to the software ones.

– Evaluation on multiple abstraction levels. Induced by the different design en-

try points and stages, multiple abstraction levels need to coexist. At the start of

the development typically only a rough idea of application, architecture, and

mapping exists. Therefore, system architects utilize more abstract techniques

based on estimates at such level, while in final design steps measurements

based on fine-grained simulation techniques like instruction set simulation are

adopted.

3.3 Requirements for Early Design Space Exploration 47

– Smooth transition and back annotation. An efficient design flow can only be

guaranteed when a smooth transition from a high to a low abstraction level

and backward is incorporated. In addition, different abstraction levels should

be investigated jointly to achieve the best results. This demands incorporating

investigations on low-level detail into the high-level models to capture these

effects in the more abstract level.

– Simple and fast modeling of a design point. The commonly agreed orthogonal-

ization of concerns [148] and the separation of interfaces and behavior [222]

is key to efficiently evaluate particular design points.

– Incorporation of all common software and hardware concepts. The usage of

multiple processor cores in today’s and future platforms introduces software

and hardware concepts that have to be considered for the precise character-

ization of a specific design point. This incorporates process concurrency on

single and/or multiple processor cores including operating systems (OSs).

Interprocess communication (IPC) might affect the performance heavily and

hence has to be considered for evaluation as well.

– Validation and verification. Ensuring that all the characteristics are met in

terms of performance and costs requires a detailed validation process. More-

over, this plays an important role in the final steps of the design verification

to guarantee that the implementation operates according to its specifications.

This has to be applied between different abstraction levels where one result

serves as the reference for the following abstraction level.

These challenges have been addressed in various methodologies and tools tar-

geting MPSoC design space exploration at particularly early design stages. The

following chapter discusses these environments and methodologies.

Chapter 4

Related Work

This chapter reviews research activities relevant to the emerging challenges for

design space exploration, in particular at early design stages. In the previous chapter

the underlying techniques and ESL design have already been discussed. Hence, this

chapter focuses on recent approaches operating on a higher abstraction level to over-

come the limitations of virtual platforms and instruction set simulation.

During the earlier discussion three major aspects to be covered by design space

exploration have been identified. These are given by the evaluation of a single

design point, the search strategy among the many design options, and the path from

specification to the final implementation.

In practice, several realizations of design space exploration frameworks exist,

each having its own advantages and disadvantages. A rough classification separates

the three main techniques of simulation-based, analytical, as well as joint analytical

and simulation-based approaches. However, prior experiences from the domain of

early HW/SW codesign helped to formalize the fundamental paradigms of orthog-

onalization of concerns [156] and the general Y-chart [103, 223] to be the principle

for the most common frameworks.

Based on the prior classification, this chapter highlights the frameworks relevant

for early design steps.

4.1 Simulation-Based Approaches

Simulation techniques commonly evaluate a single design point by tracing the

execution characteristic during simulation runs. A brief introduction of various ap-

proaches is given next, while a detailed discussion can be found in [42, 77, 224].

The three main aspects of design space exploration are hardware architecture,

application, and application-to-architecture mapping, commonly referred to as tem-

poral and spatial task mapping. Early design space exploration frameworks must

use higher abstraction levels as the issues discussed in Chap. 3 prohibit the use of

instruction set simulation.

Typically, approaches provide an abstracted simulation model for the antici-

pated processing element within the final hardware architecture. Besides the pure

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 4, c© Springer Science+Business Media, LLC 2011

49

50 4 Related Work

hardware aspect, software developers are supported by efficient programming

models to simplify the development process and the inevitable complex application-

to-architecture mapping. In general, such programming models have their genesis

in the computer science domain based on process networks [225], in particular

KPNs [19] and later component-based software engineering (CBSE) [26].

Apart from these fundamental characteristics, each approach targeting the com-

plex field of design space exploration on the system-level and at particular early

design stages, has its own underlying concepts and mechanisms. Hence, the follow-

ing brief introduction tries to cover the most relevant simulation-based techniques.

CASSE is the acronym for CAmellia System-on-chip Simulation Environ-

ment [226], developed by Philips, NXP and the University of Las Palmas. The

intended design process starts with an application model based on a KPN descrip-

tion. A simple and fast mechanism is provided to assemble the hardware architecture

based on the main components given by processing, communication, and storage

elements. Thanks to the Y-chart paradigm, the mapping step is reduced to a task to

processing element assignment, whereas communication is strictly handled by the

task transaction level (TTL) interface [227]. The technology has been successfully

applied to multimedia applications [228]. In addition, a path to the final hardware

implementation has been envisioned [229].

The DAEDALUS [129] project and design space exploration framework unifies

the independent design methodologies of Sesame [125], ESPAM [230], and KPN-

gen [225]. The resulting environment allows system-level exploration based on the

high-level Sesame tool. Here applications are described as KPNs similar to CASSE.

The KPNgen tool based on the technique of Compaan [231] offers support in the

identification and separation of processes, finally leading to a KPN based applica-

tion description. Both tools, Sesame and ESPAM, operate on IP components and

their assembly for platform design. While the Sesame tool targets the domain of

ESL design, ESPAM assembles components at the RTL level to bridge the gap to

FPGA based prototyping.

The goal of the ROSES [141] framework and its extensions [232] is to increase

IP component reuse and enhance software and hardware design. Following the

paradigm of component-based platform design, it provides tools and mechanisms

to easily assemble simulation models at high abstraction level, but also on RTL.

Thanks to the technique of interface generation, the assembly task is significantly

shortened. Besides the hardware modeling, a component-based software design can

generate configuration properties of operating systems [233] and hardware depen-

dent software (HdS) [141].

Performance modeling as proposed by Aldis is based on lessons learned from

TI’s OMAP-2 platform. It serves as an environment for a performance model-

ing, which helps to identify arbitrary execution characteristics. By exploiting the

obtained results the final System-on-Chip design process is reduced to a straightfor-

ward integration. The model is composed of IP components that provide different

accuracy levels, ranging from fully cycle-accurate models to generic traffic gener-

ators. Typically, peripherals, memories, and communication architectures are mod-

eled fully cycle-accurate, whereas the framework provides three modeling styles for

processor cores based on stochastic, trace-driven, and instruction set simulation.

4.2 Analytical Approaches 51

Investigating result oriented modeling, Schirner et al. [234] propose a simulation

model operating on timing annotations. It includes features to consider the influence

of real-time operating systems and other low-level hardware effects, like interrupts.

In addition, the software design can make use of a process network-based approach,

which allows hardware dependent software (HdS) generation [235].

SystemCoDesigner [236], developed by Haubelt et al., focuses on the domain

of DSP and offers the possibility to reuse multiple models of computation, e.g.,

synchronous dataflow (SDF) [20] graphs or KPN. For abstract system simulation,

Virtual Processing Components (VPC) are assembled and allow a simulation-based

system analysis. Finally, the framework provides an automatic FPGA back-end for

fast prototyping based on the Embedded Development Kit (EDK) of Xilinx [237].

In CoFluent Studio [238] the development is performed on an abstract SystemC

level, based on a message-passing principle. Here, early performance considera-

tions are focused and can be efficiently analyzed. The tool suite includes a graphical

design-entry tool and simulation framework.

Intentionally developed for the Eclipse [172] platform, Philips Research envi-

sioned a framework that supports efficient design space exploration using KPNs.

Addressing the specific domain of computationally intensive multimedia applica-

tions, the application-to-architecture mapping is supported by the explicit use of

highly efficient communication architectures.

The design environment proposed by Herrera et al. [239] allows modeling

applications based on process networks like SDF graphs and KPNs. Based on an

abstract simulation model, design decisions can be analyzed including effects of

real-time operating systems [240].

On the foundation of ARTS [134], the UPPAAL [241] framework has been de-

signed. The solid mathematical definition of timed automata for task modeling

allows efficient design space exploration with particular focus on scheduling is-

sues within multi- and many-core platforms. To speed-up the design process only

performance modeling is supported, while the functionality is generally neglected.

Apart from the various framework manifestations and techniques, two commonly

utilized properties can be identified when comparing the different approaches. First,

significant effort has been spent in the definition and development of efficient pro-

gramming models. The approaches taken are based on process networks besides

traditional C/C++ and Assembly based software development. The second key as-

pect is the development of an abstract simulation model enabling simulation on a

higher abstraction level than instruction set simulation. Several techniques are based

on annotation of the execution characteristic.

4.2 Analytical Approaches

As introduced within Sect. 3.1.2, formal and analytical approaches commonly oper-

ate on rather coarse-grained estimates of the underlying platform and implemen-

tation. This makes them applicable right from the start of the design cycle, but

52 4 Related Work

restricts evaluation mostly to WCET behavior and determinism must be assumed.

Despite these restrictions, analytical approaches can help to significantly speed-up

the exploration process, hence the most relevant techniques shall be sketched in the

following.

From queuing theory of computer networks [188] and linear system theory [189]

the technique of Network Calculus [190] has emerged operating on event streams.

The Real-Time Calculus [191] developed at ETH Zürich represents the appli-

cation as arrival curves and the platform resources are captured as service curves.

Based on a given application-to-architecture mapping, both are combined allow-

ing the evaluation of the performance characteristic and resource utilization. This

performance analysis has been successfully applied to the domain of network pro-

cessors [192–194] and more general embedded systems [195].

The SymTA/S approach [197] operates on workload models [196] to allow the

symbolic calculation of the execution characteristic. This approach is similar to the

above-introduced real-time calculus. Hence, both have already been successfully

combined under the SymTA/S framework [242]. Furthermore, this approach has

been commercialized by a start-up called Symtavision. For a detailed discussion of

this and the network calculus approach [198–200] should be consulted.

Despite the promising results of these approaches several pitfalls and accuracy

issues have appeared with the currently available tools discussed in [243]. The in-

troduced results show that these analysis methods encounter inaccuracies especially

in the presence of control and data dependencies in the application task execution.

Apart from the class of frameworks operating on arrival curves or deriva-

tives, other formal analysis frameworks [202] make use of conditional process

graphs [203, 204]. Within these frameworks, the application tasks are mapped onto

a specific hardware architecture thus allowing computation of the performance

characteristic. The major goal of this work is to analyze and optimize scheduling ef-

fects within heterogeneous systems including application and hardware-architecture

effects.

Another graph-based approach follows the principle of SDF graphs [20]. This

solid mathematical foundation has been utilized for scheduling analysis with respect

to single- and multiprocessors scenarios [86]. Both use cases have been extensively

studied and have shown promising results in the evaluation of a single design point,

e.g., in [205].

Timed automata [244] have been extensively studied and applied to analyze

the scheduling of event-driven systems. Based on the formal definition of UP-

PAAL [241] the analysis has been applied successfully to in-car radio navigation

system [245].

In general, it is observed that analytical approaches commonly operate sep-

arate from ESL design methodologies utilized today. Naturally, this leads to a

significantly increased design effort as the analytical models and later the real im-

plementation must be developed. In addition, a smooth migration from analytical-

to simulation-based approaches is typically not available.

4.4 Summary 53

4.3 Joint Analytical and Simulation-Based Approaches

To strengthen either analytical or simulation-based approaches, a few approaches

have been developed combining both technologies. However, use cases are mostly

limited to special design issues, like the inspection of memory and cache behavior.

Trace-based performance analysis has been used extensively to reduce the nec-

essary simulation time by doing costly performance measurements, e.g., of caches,

once and then reusing the traces in the future. This allows inspection of vari-

ous memory and cache architectures by utilizing these traces instead of doing

time-intensive simulations repeatedly. The capabilities of this technique have been

demonstrated by several case studies [207, 208].

Addressing communication architectures, Lahiri et al. [210] have extended the

technique to trace-driven analysis. Similar to the evaluation of memories and caches

based on once measured traces, the concept includes investigations of commu-

nication architectures. This allows the computation of performance analysis and

resource utilization of architectures ranging from simple to complex Networks-on-

Chips (NoCs). Further enhancements allow investigation of the impact of control

operations [213] and resource contentions [214].

Another concept is based on the principle of initial calibration [215]. In a first

step a large set of different benchmarks is measured which tries to cover the com-

plete design space. In the following step, the attained results are used to estimate

performance and power figures [216].

The earlier-mentioned approaches follow the paradigm to first measure the trace

of a particular execution characteristic, which is then utilized to optimize the tar-

geted design objective. Contrary to these, the approach proposed by Künzli et al.

couples the real-time calculus with a SystemC simulation environment [217]. The

major contribution is a converter outputting SystemC events from a given input de-

scribed as an arrival curve and vice versa. These converters allow interfacing of

formally described system parts with ones developed in SystemC.

In general, joint analytical and simulation-based approaches operate in two steps.

In the first design phase the execution characteristic of one or a large set of bench-

marks reflecting the common application characteristics is measured. In a second

step the obtained information, commonly based on traces, is incorporated to evalu-

ate the optimized system-level design analytically.

4.4 Summary

Throughout this chapter a large variety of techniques and methodologies for early

design space exploration has been introduced. Because of the encountered limi-

tations of virtual platforms and instruction set simulation, envisioned frameworks

aim at higher abstraction levels to achieve higher modeling efficiency and to be

applicable right from the start of the design process.

54 4 Related Work

To address these challenges recent research activities have given birth to several

approaches. However, analytical, simulation-based, or joint approaches are not able

to cover all the specific demands. The main proposition of simulation-based ap-

proaches has been the development of simulation models on higher abstraction

levels than instruction set simulation. Additionally, challenges in software devel-

opment, in particular multiprocessor issues, have been targeted by programming

models typically based on process networks. Pure analytical design space explo-

ration methodologies operate on fairly abstract techniques leaving a huge gap

between the proposed and the existing ESL design techniques. Joint approaches

typically target only small parts of the overall design.

The lack of convenient modeling frameworks combining the set of different

approaches in a unified environment hinders the practical use of the proposed

methodologies. Accordingly, these environments commonly allow the inspection

of one or the other objective, but are separated from the other existing exploration

techniques. Hence, the design effort has to be invested twice, which most often re-

sults in abandoning the proposed approach.

In this book, a design space exploration framework is proposed that smoothly

integrates on top of well-known ESL design techniques. The major contribution is

two abstraction layers above instruction set simulation. The first introduced level

is based on an abstract simulation. On top of this, a formal-analysis layer has been

added with the purpose of quickly identifying corner cases and implementation can-

didates. In addition to these abstraction levels, the framework provides a unique

mechanism to smoothly migrate from one level of abstraction to another, includ-

ing virtual platforms. This opens the door to the final implementation by reusing

common low level design techniques. The next chapter gives a brief introduction,

followed by a detailed discussion in the rest of the book.

Chapter 5

Methodology

After the introduction of design space exploration and the discussion of related

work, this chapter focuses on the methodology of the proposed design space explo-

ration framework. As the design of software and hardware, along with the inherent

question of temporal and spatial task mapping, is unfortunately not a simple query

that can be answered with a simple yes or no answer, an iterative methodology

is mandatory. Necessarily, system architects require a versatile framework which

allows for simple and quick evaluation of arbitrary design decisions.

First, this chapter introduces the overall design process including an itera-

tive refinement and evaluation flow. Within this chapter the different design steps

will be briefly highlighted. In Chap. 6 a detailed discussion of the analytical im-

plementation model is presented, whereas an in-depth discussion of the abstract

simulation-based model is given in Chap. 7.

5.1 Iterative Design Process

Finding an optimal MPSoC solution for a particular application is virtually im-

possible because of the large design space defined by the many design options.

Additionally, these various designs cannot all be evaluated. Therefore, design space

exploration has to focus on the evaluation of only promising design points defined

by the application, architecture, and application-to-architecture mapping. Besides

this pure evaluation aspect, the framework needs to efficiently guide system ar-

chitects through the immense design space to identify the best possible solution.

Fundamental aspects during this exploration step are the following ones.

• Application aspect. Commonly given as a written specification document or de-

fined by mathematical equations, the application needs to be partitioned into

tasks. This partition step includes identification and extraction of parallelism

within the application. Definitely, the selection of tasks has to obey the under-

lying hardware characteristics. Therefore, a tight relationship exists between the

application and hardware aspect discussed later.

• Hardware aspect. Selection of suitable hardware components is key since

high performance demands have to be kept under tight energy constraints

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 5, c© Springer Science+Business Media, LLC 2011

55

56 5 Methodology

especially for battery powered devices. Hence, selecting suitable components

requires a sophisticated identification process considering coarse- and fine-

grained hardware details. Coarse-grained considerations define the selection

of either programmable processing elements like GPPs, DSPs, and ASIPs, or

nonprogrammable components such as specially tailored ASICs to perform a

dedicated task. More fine-grained selections operate on much lower hardware

details such as the definition of instructions to speed-up execution of a specific

task. Such considerations are typically referred to as Instruction Set Extension

(ISE) like the ones in [48, 56, 246, 247]. Other frameworks allow modifying

and defining the complete instruction set architecture of processor cores, e.g.,

[49, 248].

• Application-to-architecture mapping. Temporal and spatial mapping of a given

application to a particular architecture creates serious challenges. In this context

temporal mapping defines the execution of tasks mapped onto a single processing

element and the spatial mapping denotes the distribution of tasks over the differ-

ent platform components. The selection of a mapping strongly influences the

other two issues of design space exploration, namely the identification of hard-

ware processing elements and the selection of suitable software implementation

characteristics.

• Selection of software implementation characteristic. Choosing the right soft-

ware implementation in terms of development effort and costs vs. the achievable

performance requires deep investigations. In general, the impact on the system

performance is significant and performance gains can mostly be traded against

energy efficiency by, for example, scaling the clock frequency. From the perspec-

tive of development effort, high-level programming languages are preferable.

Such high-level languages provide inherent constructs that allow for a fast and

structured software implementation. However, usage of these languages typically

results in overhead within the compiled executable. Especially, this applies to

highly irregular hardware structures, e.g., ASIPs and to some extent to DSPs.

Therefore, such architectures are typically programmed with low-level software

based on Assembly programming or the use of inline Assembly and compiler-

known functions [249]. These different implementation options make trade-off

decisions necessary and developers have to decide whether to invest significant

effort in low-level programming or to accept the induced overhead by high-level

languages. To take an optimal or at least near-optimal design decision a thorough

exploration phase is required.

Besides the large variety of possible options for MPSoC development, the design

entry can differ significantly as already shown in Fig. 3.3.

• The design cycle might start from a blank sheet of paper

• A major redesign of an existing platform

• An enhancement of an existing platform or

• A complete reuse of an existing platform

Certainly, the entry point into the design process has a major impact on the

available implementation options and the design approach. For example, starting

from scratch, the system architect can apply any kind of coarse- and fine-grained

5.1 Iterative Design Process 57

system optimizations to achieve the overall requirements. Contrary to this, reuse

of an existing platform restricts the design space to software modifications, which

clearly limits the applicable optimizations during the design of a system.

All methods used for design space exploration, whether analytical- or simulation-

based, rely on the characterization of the hardware and software. To obtain reliable

analysis results a sufficiently precise input characterization of both is needed. This

inherently demands that during design time, characterizations are constantly up-

dated and improved in their precision till the final implementation is available.

As previously discussed, such characterization depends deeply on several param-

eters like the implementation characteristic in terms of the coding style of software,

the modeling style of the hardware platform including processing elements, and the

communication and memory architecture. To cover all these issues a design process

is proposed based on an iterative refinement loop as highlighted in Fig. 5.1.

The performance parameters serve as an optimization criterion for the later de-

sign process. In the area of wireless communication these parameters usually relate

Fig. 5.1 Iterative design process with analysis/simulation-based evaluation

58 5 Methodology

to latency and throughput requirements. Other typical constraints relate to memory

size and buffering requirements. The design loop is entered with an initial guess at a

suitable hardware platform and a temporal and spatial task mapping. In a first design

iteration, an implementation model based on estimated parameters is composed.

Based on this model, system architects can iterate over different design decisions

and evaluate their characteristics by the proposed mathematical analysis discussed

in Chap. 6. Having identified one or multiple implementation candidates, the im-

plementation model can be refined to the next abstraction level. Moving from the

formal analysis to an abstract simulation, the framework enables evaluating the im-

plementation candidates in a more fine-grained manner. The underlying abstract

simulation-based technique is discussed in-depth in Chap. 7. The key component

for abstract simulation-based design space exploration is the generic Virtual Pro-

cessing Unit (VPU) [250]. At early design stages it allows reuse of the analytical

models. Later, model refinement is carried out till an implementation model based

on instruction set simulation is available. This can serve as basis for lower level

implementations like Register-Transfer-Level (RTL) and later. Unfortunately, the

design process is mostly not that straightforward, thus at each stage the methodol-

ogy offers a back annotation of the necessary information. This enables an iterative

design process which interweaves analytical-based design space exploration with

simulation-based techniques. In addition, the complete framework allows for a con-

tinuous refinement and exploration flow from pure mathematical analysis to the

final implementation. Before discussing the analytical- and simulation-based design

space exploration in detail, this chapter highlights the principle of both.

5.2 Analytical Implementation Model

Applications in the domain of SDRs, wireless communication and also multimedia

applications possess tight constraints for critical paths (CPs) and feedback loops.

The proposed analysis aims to determine the three main issues [251] at an earliest

possible design stage.

1. Identification of a suitable hardware architecture including processing elements,

communication architecture, and memories.

2. Partitioning of the application into tasks.

3. Finding a suitable temporal and spatial task mapping.

The proposed mathematical analysis is based on the concept of a workbench,

thus no automatic mapping and hardware architecture exploration is carried out.

In contrast, the workbench allows easy evaluation of a specified design point. This

helps to analyze whether a given constraint has been accomplished or not. In case

of failure, the analysis guides designers to where modifications should be applied,

whether to the hardware platform, the application, or the mapping. Additionally,

the workbench supports designers in the implementation order of tasks such that

performance-critical parts of the design are addressed first.

5.2 Analytical Implementation Model 59

1 2 4 5

3 6

a

c d

b

Fig. 5.2 Exemplary analysis components. (a) Task graph and critical paths. (b) Hardware archi-

tecture. (c) Temporal & spatial task mapping. (d) Task characteristic examples X(Task,PE)

Applications within the design space of wireless communications can be

adequately described as one or multiple SDF [20] task graphs. For example, each

mode of a standard can be consistently described as one task graph, while the

combination of multiple disconnected graphs describe the complete standard.

Before going into a detailed discussion of the analytical implementation model,

an overview will be given in the following part of this section. Figure 5.2 shows a

simplified example to highlight the analysis. The general application decomposed

into multiple tasks (Fig. 5.2a) is mapped temporally and spatially (Fig. 5.2c) on the

depicted HW architecture (Fig. 5.2b). For this particular case the workbench allows

evaluation of the latency and throughput of the critical paths (CPs) (Fig. 5.2a). This

evaluation needs sufficiently precise characterization of the processing and com-

munication behavior of each task on its mapped processing element (Fig. 5.2d).

Unfortunately, these are not known, or bound with a particular uncertainty at the

addressed early design stage. Thus, an iterative design loop is mandatory to validate

the system at each design step with the best available knowledge.

The task’s execution and communication characteristic is conceived in a random

variable. The uncertainty of these characteristics is tightly coupled to the designer’s

knowledge of the task, ranging from complete knowledge of the execution, e.g.,

when a reference implementation is available, to a merely algorithmic level where

only rough estimates of the required operations exist. These characteristics can be

described as a probability density function (pdf) given, e.g., in the first case by a dirac

delta function (Fig. 5.2d.I), whereas it might be given in a second case as a Gaussian-

like distribution with a high variance (Fig. 5.2d.II). Please note that the proposed

analysis operates on these estimates, so that better ones obtain results which bet-

ter match the real final implementation. This implies a degree of uncertainty at the

60 5 Methodology

texectexectexectexec tmaxtmaxtmaxtmax

p
d
f

p
d
f

p
d
f

p
d
f

a b c d

Fig. 5.3 Exemplary analysis results for latency constraints. (a) Likely feasible. (b) Uncertainty

dominated. (c) Expected value dominated. (d) Unlikely feasible

beginning of the design phase. During the design process, measurements, for in-

stance gained by simulation, can provide more specific implementation knowledge

which can help to reduce the uncertainty.

As the analysis is based on estimates, the result cannot just be given by a boolean

decision, rather it is based on a likelihood whether the analyzed system is feasible

or not. Therefore, the result for each critical path is a random variable determined

by its probability density function (pdf). Figure 5.3 depicts possible results.

• Feasible (Fig. 5.3a): The highlighted random variable is most likely to keep the

threshold. Depending on the margin, developers might consider modifications of

the hardware and/or task mapping because such systems tend to be overdesigned.

• Uncertainty dominated (Fig. 5.3b): The high margin between threshold and ex-

pected value makes it likely that in spite of the failure probability, which might be

caused by imprecise estimates, the system should work. In such cases developers

should focus on the implementation of tasks with a high uncertainty, respectively

tasks with imprecise knowledge, first. After implementation more precise val-

ues can be determined and analysis should be re-run to verify that the addressed

implementation still meets the constraints.

• Expected value dominated (Fig. 5.3c): Here the probability density function

shows only a minor variance, but only a small margin between the expected

value and the threshold exists. Such systems tend to fail because of unexpected

behavior. Therefore, system architects should inspect carefully if the envisioned

implementation has to be improved or if the system really has to work at its limits

to achieve this requirement.

• Unlikely feasible (Fig. 5.3d): A high probability exists that the given constraint

cannot be satisfied, therefore system architects have to re-consider either the ad-

dressed hardware or task mapping.

As the analysis results rely on the given input parameters, the overall uncertainty

of the analysis results is dominated by the uncertainty of these parameters. At early

design stage these input parameters are typically estimates based on expert knowl-

edge. Therefore, these estimates contain a certain degree of imprecision, which is

reduced during the design process by replacing the estimates with fine-grained im-

plementation knowledge, e.g., obtained by simulation traces. Inherently, this leads

5.3 Abstract Simulation Implementation Model 61

a

b

Fig. 5.4 Principle and usecase of the Virtual Processing Unit (VPU). (a) VPU Performance Model.

(b) System-level design including VPUs

to the refinement flow sketched in the overview (Fig. 5.1). Apart from this, the back

annotation keeps higher abstraction levels consistent, supporting arbitrary switch-

ing from high- to low-level of abstraction and vice versa. After the identification of

suitable implementation candidates, the analytical implementation model is refined

to an abstract simulation model and finally to an instruction set simulator based im-

plementation model. In the following section the principle of the abstract simulation

model is outlined, whereas a detailed discussion follows in Chap. 7 (Fig. 5.4).

5.3 Abstract Simulation Implementation Model

The implementation model for abstract simulation utilizes the technique of tim-

ing annotation similar to the ones described in [252–254]. In the following, the

technique of timing annotation for design space exploration is discussed based on

the framework introduced in [250]. Central component of this framework is the

so-called VPU, which can be configured to imitate the behavior of arbitrary pro-

cessor cores within a system-level simulation. The simulation technique is based

on the principle of annotation, which allows the modeling of software execution

exclusively on the basis of execution characteristic annotations with no functional-

ity. In a later refinement stage the functionality is iteratively included till the final

implementation is available. The annotation concept and principle will be sketched

exemplarily on the basis of the VPU later.

The example depicted in Fig. 5.3 illustrates the annotation and VPU mapping

mechanism. The upper part of the figure illustrates two tasks with their individual

execution characterstics which are mapped to a single VPU instance. The lower

part of Fig. 5.3 shows the resulting behavior of the VPU according to an assumed

scenario, which will be discussed in the following:

62 5 Methodology

First task 1 is activated by the external init T1 event and executes the first portion

of the task. The simulated execution time directly corresponds to the annotated

time ∆t1,d0. Before entering state B task 1 initiates an external data transfer request.

Although T1 waits for the response to this request, task 2 can execute. First a task

swap, e.g., initiated by an Operating System (OS), is performed which requires 5

time units for the given example so that task 2 can start execution after 15 time

units. The VPU takes care that this swapping time is taken into account and shields

the tasks from external events. In the given scenario execution of task 2 requires

more time than the response of the data transfer of task 1. Assuming task 1 has

higher priority than task 2, a task preemption occurs and task 2 cannot be resumed

before the second portion of task 1 has completed its functionality. The request gen-

erated by task 2 is delayed by the VPU till the correct point in time is due. Thus,

from the perspective of external system components, the external events are visible

at the corresponding time of concurrent task execution.

The VPU concept allows modeling of processor cores supporting concurrent task

execution by, e.g., operating systems or hardware multithreading. For system-level

simulation, multiple VPUs where each mimics a different processor core, can be

assembled like shown in Fig. 5.3. This supports the evaluation of different design

decisions in a quick and simple manner. Typical goals of system evaluations are:

• Identification of the number and type of processor cores.

• Identification of the connecting communication architecture and necessary

storage elements.

• Identification of the application to architecture mapping.

One key issue while utilizing annotation-based simulation is how to obtain these

execution characteristics. Especially at early design stages, no software implementa-

tion or merely nonoptimized functional implementation of the intended application

exist. Because of this lack, identification of the execution characteristics for a par-

ticular application can be rather complex. Thus, efficient design space exploration

requires an iterative design process, starting at high abstraction level with only rough

estimates. Such estimates can be reused from the previously described analytical

implementation model by utilizing the Time Retrieval Engine as later discussed in

Sect. 7.6. In the subsequent refinement loop the estimates are continuously improved

till the complete implementation is finally available. To allow such an iterative de-

sign process the VPU supports different levels of software modeling and annotation.

The supported ones are illustrated in Fig. 5.5.

At the highest abstraction level, the execution characteristic is modeled based

on statistical functions operating on random variables. The common application

and architecture description of the framework efficiently guarantees the exchange

of the characterizations between the analytical and abstract simulation-based im-

plementation model. In the later stages where at least a rough understanding of

the algorithm exists, developers can easily modify the annotations. First this can

be based on complete tasks, whereas in later stages these annotation statements

can be added within the software implementation. Please note that these abstrac-

tion levels, in addition to the VPU, support simulation without having any software

5.3 Abstract Simulation Implementation Model 63

Fig. 5.5 Supported annotation models of the VPU

implementation at hand. More fine-grained annotations based on the µProfiler [255]

or trace-based instrumentation, naturally require a software implementation. In case

more detailed information about a task and its execution characteristic exists, higher

abstraction levels can be skipped and the refinement loop can be entered according

to the available knowledge.

Addressing applications from the domain of mobile terminals, a common de-

scription is conceived. Besides a traditional textual design entry (Sect. 7.5.1), the

proposed framework includes a graphical design entry for an efficient and quick

development process (Sect. 7.5.2). Especially, this design entry is well suited for ap-

plications from the domain of wireless communications and allows an application

modeling based on task graphs. In addition, the temporal and spatial task mapping

is simplified in the graphical environment to a drag and drop fashion (Fig. 5.6).

Based on the discussed principle of the abstract simulation model, system ar-

chitects can evaluate arbitrary aspects of design decisions in a simulation-based

environment. Results or encountered inaccuracies within the analytical implementa-

tion model can be improved by back annotating characteristics evaluated within the

simulation environment. For example, contentions on the interconnect architectures

can be one source for the need of such back annotations.

When designers are satisfied with their achieved results and would like to proceed

further to the final implementation, they can utilize the framework’s implementa-

tion link and refinement flow. This flow enables a continuous path from abstract

simulation-based environment to fine-grained instruction set simulation (ISS).

ISS-based simulation models are well-known and often used for software

development as well as for hardware platform design and performance evalua-

tion. Therefore, this technique is briefly introduced in the next section.

64 5 Methodology

...

...

...

Fig. 5.6 Graphical design entry

5.4 ISS-Based Implementation Model

Following the refinement process of hardware and software including the annotation

models, developers finally reach the highest achievable detail of the abstract simula-

tion model. This level is characterized by a functionally correct software execution

along with a detailed annotation of the execution characteristic. However, the un-

derlying simulation model relies on the VPU technology mimicking the behavior

of the real hardware. Quite naturally the next step moving toward the real hardware

platform is to lower the abstraction by replacing the abstract simulation vehicle by

an ISS. Additionally, software has to be cross-compiled for the targeted instruction

set architecture, which inherently demands a cross-compiler.

Figure 5.7 highlights the basic refinement steps from the abstract simulation

model based on the VPU technology to an ISS centric model. Since both technolo-

gies are based on the SystemC language, refinement of the hardware simulation

model merely requires the replacement of the VPU with the underlying processor

core, i.e., its instruction set simulator.1 The key enabler for such replacement is the

use of well-defined Transaction Level Modeling (TLM) 2.0 interfaces [153], with

which the VPU is compliant.

Along with the modification of the hardware simulation model, major modifica-

tions apply also to the software part. The VPU technology executes the functionality

1 ISSs do not necessarily have to be developed in SystemC language. However, most of the

today prominent IP vendors of processor cores support integration of their proprietary ISSs into a

SystemC environment by encapsulating it into a TLM-2 compatible simulation model.

5.4 ISS-Based Implementation Model 65

a

b

Fig. 5.7 (a) VPU to ISS refinement: hardware part. (b) VPU to ISS refinement: software part

of the software directly on the host processor. Execution characteristics are exclu-

sively taken from the annotation statements to reflect the execution behavior of a

particular processor core different from the host one. With the exchange of VPUs

by ISSs, which imitate the exact behavior of a specific processor core, the software

development has to necessarily follow the development flow of the targeted proces-

sor core. This inherently needs a cross-compilation of the developed software for the

particular processor core. Certainly this requires the availability of several software

tools and libraries such as a cross-compiler, an assembler and run-time libraries.

Instead of using the abstract annotations, the ISS executes each instruction of the

target executable step-by-step.

Lower level simulations like RTL and below are mandatory for later implemen-

tation of the hardware. However, for the proposed framework and design process,

the well-known technique of instruction set simulation is taken as the lowest level

of abstraction. Already past research has demonstrated paths to the final silicon im-

plementation [129] or FPGA prototyping [256].

After the comprehensive introduction of the overall methodology, a more detailed

discussion of the different parts of the framework follows in the next chapters.

Chapter 6

Analytical Implementation Model

After a brief recapitulation of the motivation and the fundamental problem, the

discussion turns to the analytical implementation model.

6.1 Design Space Exploration as a Mathematical Problem

Design of embedded systems, especially wireless communication devices, has to

deal with many highly complex issues (see Chap. 2). To design a cost- and energy-

efficient system that meets the stringent constraints, early design space exploration

is a must. The major objective of design space exploration is to support and guide

system architects to take the right design decisions. Among others, the three key

objectives are:

1. Partitioning of the application into a set of tasks.

2. Identification of a suitable hardware platform architecture.

3. Mapping the application, i.e., the partitioned tasks, onto the hardware

architecture.

Figure 6.1 illustrates the evaluation problem of design space exploration and the

proposed analysis. The well-known Y-chart principle [223] forms the foundation of

the proposed analysis workbench. The main objectives that are subject to evaluation

with respect to the given constraints determine the design parameters. Classification

of these parameters separates the application, hardware architecture, and temporal

and spatial task mapping. The analysis is structured as a workbench that allows

evaluation and analysis of any given input. The obtained results support system

architects to take the right design decisions.

Unfortunately, at early design stages mostly imprecise implementation knowl-

edge and no final implementation exist. Therefore, the analysis needs to operate on

imprecise input characteristics leading to uncertainties within the results. This pre-

vents giving results in terms of boolean decisions, which decide whether a system

works properly or not. In contrast, the retrieved results can only judge how likely

the system might operate within a particular performance range at such early design

stages.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 6, c© Springer Science+Business Media, LLC 2011

67

68 6 Analytical Implementation Model

Fig. 6.1 Problem statement of design space exploration

The proposed workbench approach, as well as the uncertainty in the obtained

results, makes an iterative design approach necessary. A typical design process starts

with a fixed set of applications to be implemented on a device so that the require-

ments and constraints are met. Development of the hardware platform from scratch

is only performed in rare cases, while the typical design starts with an initial guess at

the platform or extends an existing base architecture to support the new applications.

At early design phases it is essential to determine the possible implementation can-

didates which will fulfill the requirements. A well-structured identification prevents

or at least minimizes the probability of time- and cost-intensive major re-designs in

the subsequent implementation process. As multiple abstraction layers are manda-

tory, the analysis needs to be combined with later simulation-based approaches that

are used to inspect the platform implementation in detail. Additionally, system ar-

chitects must be able to directly start evaluation and exploration prior to cost- and

time-intensive implementations. This definitely implies that the analysis operates on

estimates because mostly no final implementation exists. The gained experiences

and analysis results prevent system architects from taking false design decisions,

hence saving cost and development time.

In the following, the proposed mathematical-based analysis that targets espe-

cially very early design phases is introduced.

6.1 Design Space Exploration as a Mathematical Problem 69

6.1.1 Problem Statement and Elementary Definitions

The problem of design space exploration represents a multiobjective optimiza-

tion problem. First reported by Vilfried Pareto, it is also referred to as Pareto-

optimization [218].

Definition 6.1 (Multiobjective Optimization). Given a possible design repre-

sented as a decision vector x = (x1, ...,xk)
T in the decision space X ⊆ Rk,k > 1, the

function f (x) : X → Y assigns each decision vector xi of the decision space X a

corresponding objective vector y = (y1, ...,yl)
T in the objective space Y ⊆ Rl, l ≥ 1

(Fig. 6.2). To identify the optimal decision vector xopt in the decision space X it is

assumed without loss of generality that all objectives y1, ...,yl are to be minimized

min{y j} ∀ j ∈ {1, ..., l}.

It would be desirable to minimize all objectives at the same time, but due to

contradicting objectives this is not possible in general. One example is the AT- or

ATE-product in integrated circuit design as discussed in Sect. 3.2.

To perform well-balanced trade-off decisions Pareto-dominance guides design-

ers to determine decision vectors best for at least one objective xdom ∈ X .

Definition 6.2 (Pareto-dominance, Set, and Front). An objective vector y
1

dominates (“is preferred to”) another objective vector y
2

(y
1
≻ y

2
) if each com-

ponent/objective of y
1

is less or equal than the corresponding component/objective

of y
2

and at least one component/objective is strictly less. Therefore, a decision

vector x1 is defined as Pareto-optimal or -dominant, if there is no decision vector

x2 ∈ X such that

y
1
,y

2
∈ Y,

y
1
= f (x1) = (y1,1,y1,2, ...,y1,l),

Fig. 6.2 Multiobjective optimization problem: decision and objective space

70 6 Analytical Implementation Model

y
2
= f (x1) = (y2,1,y2,2, ...,y2,l),

∀i ∈ {1, ..., l} , y1,i ≤ y2,i, and

∃i0 ∈ {1, ...,k} | y1,i0 < y2,i0 .

The set of decision vectors that fulfill this condition are generally denoted as

Pareto-set X∗ ⊆ X and the image of the set within the objective space is denoted as

the Pareto-front Y ∗ = f (X∗) ⊆ Y .

To map the general multiobjective optimization problem to design space ex-

ploration, especially targeting early design phases, the required components of the

decision and objective vector need to be specified. CbD [32] and the Y-chart prin-

ciple [223] let the decision vector be abstracted into three dimensions defining the

application, the hardware architecture and the temporal and spatial task mapping.

x = (xAppl,xArch,xMap)
T

Directly from the start of the design cycle, each component of the decision vector

can be consistently addressed with such representation. In contrast, manipulating the

objective vector consisting of latency, throughput, algorithmic performance, energy

and area consumption requires typically intensive experiments.

y = (ylatency,ythroughput,yalgo.perf.,yenergy,yarea, ...)
T

Latency and throughput objectives mostly decide whether the system is opera-

tional at all. These are referred as hard objectives. Other objectives such as energy

consumption influence, the stand-by-time, and run-time of a device. This can clearly

decide about the potential business success, but does not necessarily result in a

complete system failure. Therefore, such objectives are further classified as weak

objectives.

Especially at early design stages, objectives like energy and area consumption,

can hardly be addressed. This sets the focus on the hard objectives like latency

and throughput to guarantee a properly working system. Therefore, design space

exploration defines the search for a Pareto-optimal solution xDSE ∈ X so that the

objective vector y
DSE

= f (xDSE) ∈ Y fulfills the given objective constraints c in

every single objective.

y
DSE

≤ c

In the following, these three components along with the constraints are derived

in detail.

6.1.2 Input Analysis and Evaluation Constraints

Based on the principle of the Y-chart, the mathematical design space exploration de-

fines the application, the hardware architecture, along with the temporal and spatial

6.1 Design Space Exploration as a Mathematical Problem 71

task mapping as the fundamental inputs of the evaluation. In a following evaluation

step, these are investigated subject to given requirements. After defining the input

parameters, this section concludes with the evaluated constraints.

Application (xAppl)

As the analysis aims at evaluation of a complete device such as an SDR, the general

assumption is that multiple applications are executed simultaneously on a single

platform. From application perspective these communication standards are com-

pletely separate at least for the physical layer. However, the combined execution on

a shared processing resource introduces dependencies between them. The follow-

ing discussion separates the single application description from the joint description

of multiple applications that is introduced later on. As assumed by most graph op-

erations, the application task graph is transformed into a directed acyclic data flow

graph [257] while preserving all contained information. This transformation follows

the basic application description.

Definition 6.3 (Single Application Scenario). A single application such as phys-

ical layer processing can be consistently and efficiently managed as an SDF [20]

task graph T G. Therefore, the initial task graph description of such application is

defined as a directed graph:

T G = (T,D,r,δ):

T is the set of tasks {t1, ...,tn},

D is a set of ordered pairs {(ti, t j) : ti,t j ∈ T},

r : D → N×N are the communication rates

δ : D → N are the delay annotations

In addition, the graph is consistent meaning a valid schedule exists. Several methods

and analysis techniques for identifying consistency can be found in [20].

The task graph is composed of tasks1 T forming the nodes and edges D repre-

senting the data flow. The edges, respectively the data flow (ti,t j), have a static rate

annotation r, that is a (x,y) ratio. Here x defines the number of tokens produced by

task ti and y is the number of tokens consumed by task t j in each iteration. This

demands that the iteration number of ti and t j must preserve consistency so that the

task activations is given by:

N(ti)

N(t j)
=

y

x
, ∀dk = (ti,t j) ∈ D, r(dk) = (x,y).

1 For simplification, tasks consume all incoming data at the same time. Same applies for producing

data on the outgoing edges. Therefore, modeling of data input and output at different times requires

task splitting.

72 6 Analytical Implementation Model

When the condition holds for every task within the graph and all tasks execute

N(ti) times, all virtual buffers on every edge will have been filled and emptied

completely. Otherwise buffer overflows are certain. This task graph description in-

herently captures all possible data flow information.

For further clarification Fig. 6.3 depicts three exemplary task graphs. According

to the task graph definition, the example in Fig. 6.3c is a valid task graph while

the two others represent illegal task graphs. The task graph in Fig. 6.3a violates the

definition twice. First, an illegal loop exists among the tasks 3, 4 and 5. Second, there

is a rate mismatch between the two paths from task 1 to 4. While the path2 (1,2,3,4)
defines the rate as 2×N(1) = N(4) the direct path (1,4) induces N(1) = N(4). This

rate mismatch would finally lead to a buffer overflow in the edge (1,4).
Adding the delay annotation (+1) to the loop, the second example (Fig. 6.3b)

remains invalid as the rate mismatch still occurs. In the final example (Fig. 6.3c) the

rate modification of the edge (2,3) preserves consistency to the given task graph

definition.

Definition 6.4 (Multiapplication Scenario). The previous definition of the single

application scenario as a task graph does not exclude a multiapplication scenario.

In other words j-applications each defined by a task graph TGi, i = 1, ..., j can be

summarized as a single application with the joint task graph TGjoint given by

TGjoint = TG1 ∪ ...∪TG j.

Figure 6.4 highlights such joint representation where two task graphs TG0 and

TG1 are combined in a joint task graph TGjoint. However, this combined graph

consists of two disconnected3 graphs. Please note that control signals from upper

protocol layers may connect both task graphs, which have to be modeled as well.

In the following, the generation of the directed acyclic Data Flow Graph (DFG)

is discussed. Although all information remains preserved, a directed acyclic DAG

structure is beneficial for later analysis and increases the freedom while mapping the

application down to the hardware. The generation consists of two steps as illustrated

within Fig. 6.5, namely

a b c

Fig. 6.3 Examples of valid and invalid application task graphs (TG). (a) Illegal task graph.

(b) Inconsistent data rates. (c) Valid task graph

2 Reference [257] defines: A path is a simple graph whose vertices can be ordered so that two

vertices are adjacent if and only if they are consecutive in the list.
3 Reference [257] defines: A graph G is connected if it has a u,v-path whenever vertices u,v∈V (G)
(otherwise, G is disconnected).

6.1 Design Space Exploration as a Mathematical Problem 73

2:1

2:2

1:2
1:1

1:1 1:1

1:11:1

1:1

1:1(+1) 6 7

8

9

a

2:1

2:2

1:2
1:1

1:1

1:1(+1) 6 7

8

9

1:1

1:1 1:1

1:1

b

Fig. 6.4 From single to multiapplication scenario. (a) Two applications and task graphs. (b) Joint

representation of two applications

a b

c

Fig. 6.5 Transformation of the general application task graph to a acyclic directed DFG. (a) Initial

task graph (TG). (b) Respective Feedback Data Flow Graph (FDFG). (c) Respective Data Flow

Graph (DFG)

1. Feedback Data Flow Graph (FDFG) generation. The FDFG is obtained by

unrolling the task graph according to the data flow rates so that each data flow is

activated once per iteration of the task graph. This condition is true if the rates

fulfill r(dk) = (1,1),∀dk ∈ D. Similar graphs are referred to in [20] as homoge-

neous SDFs. Each original task graph can be transferred to such FDFG by explicit

creation of N(ti) instances of each task. This step leads to an FDFG described as:

FDFG = (TFDFG,DFDFG,δFDFG),

2. Directed acyclic Data Flow Graph (DFG) generation. The FDFG still holds the

feedback delay annotations which are essential for later critical path and feed-

back loop analysis. These must be preserved and transferred to the final graph

description. The general definition of the DFG can be given as:

DFG = (TDFG,DDFG)

with TDFG the tasks and DDFG the data flow. The DFG is constructed by unrolling

the FDFG several times in parallel

DFG = {FDFG0, ...,FDFGn | FDFGi = (TFDFG,DFDFG \ { di : δ (di) > 0})},

74 6 Analytical Implementation Model

so that dk = (ti,t j) ∈ DFDFG,m = δ (dk) > 0 connect the corresponding instances

of ti in FDFGl with t j in FDFGl+m for l = {0, ...,n−m}.

So far tasks within the graph can be connected with each other, but no in- and

output connection is feasible. As applications, like physical layer processing, receive

input data, e.g., received data samples from the A/D-converter, and output data to

the higher level processing, these in- and output characteristics can be added and are

further illustrated with ingoing and outgoing arrows. For practical reasons they are

modeled as source and sink tasks so that no loose ends occur within the task graph

and no explicit definition of in- and output characteristics is required.

HW Architecture (xArch)

Current development of complex MPSoC hardware architectures follows the

fundamental principle of IP component and platform-based design as already high-

lighted in Sect. 2.2. Naturally, this design approach produces hardware platforms

in the form of block diagrams [258]. In such a block diagram, each vertex/node

represents one IP component while directed edges illustrate possible connections

between the various components. According to Sect. 2.2 these components can be

roughly grouped into the three classes of processing elements (PE), communication

architectures (CA), and memories (Mem). A formal specification of such MPSoC

hardware architectures can be given as follows.

Definition 6.5 (Hardware Architecture). The MPSoC hardware architecture is

defined as a joint system of processing elements, communication architectures, and

memories defined similar to [251, 258]:

HW = (PE,CA,Mem):

PE is a set of processing elements {pe0, ..., pep},

CA is a set of communication architectures {ca0, ...,cac},

Mem is a set of memories {mem0, ...,memM}.

The interconnection of the hardware platform is defined by the following sets.

• Each processing element is attached to a set of communication architectures 4

CA(pep) = {cai, ...,ca j},

or reversible PE(cac) defines the connected processing elements onto a

communication architecture cac

PE(cac) = {pei, ..., pe j}.

4 Complex NoCs can be either captured as a single communication architecture or can be split into

their underlying structure based on network interfaces, communication links, and bridges.

6.1 Design Space Exploration as a Mathematical Problem 75

• To conclude the description of the hardware architecture, each memory element

is connected to a communication architecture

Mem(cac) : CA → Mem.

For later performance evaluation, in addition to the components and their in-

terconnection, other performance characteristics and properties are required. As

especially at early design stages only a limited knowledge of the underlying hard-

ware platform may exist, these properties are kept simple during the definition for

the mathematical analysis. Detailed aspects and properties can be incorporated or

inspected in later simulation when suitable implementation candidates have been

identified by the analysis. For a first and crude definition the following basic prop-

erties have been identified.

• Processing Element Properties. To scale the processing cycles to the time basis,

the clock period is required.

• Communication Architecture Properties. Similar to the processing element, the

clock period scales each clock cycle to the time base. In addition, the data-width

defines the number of data elements that can be transferred in a single transaction.

Furthermore, the write and read cycles are the number of clock cycles required

to write and read a data element.

• Memory Element Properties. For practical reasons the latency due to memory ac-

cesses is captured within the properties of the communication architecture rather

than within the memory element.

With both application and hardware description at hand, the temporal and spatial

task mapping is defined.

Temporal and Spatial Task Mapping (xMap)

The proposed approach follows the Y-chart principle [223] and the paradigm of

orthogonalization of concerns [156]. In this context spatial mapping denotes the

distribution of tasks to the different processing elements. Temporal mapping defines

the execution with respect to time on a single processing element.

The spatial mapping is restricted by the existence of an interconnect structure

between two processing elements formulated as follows.

Definition 6.6 (Restriction of the Spatial Task Mapping5). A spatial mapping

of a task tx to a processing element pei is given by PE(tx) = pei. Therefore, the

following condition must be valid for a feasible spatial mapping.

∃cec ∈CA ∀(ti,t j) ∈ DDFG : pei = PE(ti), pe j = PE(t j), pei, pe j ∈ PE(cec)

5 Please note that whenever a processing element is used as a bridge between two communication

architectures, it is necessary to insert a bridging task.

76 6 Analytical Implementation Model

Based on this restriction, a valid spatial task mapping is defined as follows.

Definition 6.7 (Spatial Task Mapping).

STM = (TDFG,PE(HW)):

DFG is the data flow graph of the application DFG = (TDFG,DDFG)

TDFG are the tasks of the DFG

HW is the hardware HW = (PE,CA,Mem)

PE(HW) are the processing elements of the hardware

∃PE(ti) = pex, ∀ti ∈ TDFG with pex ∈ PE(HW)

∀(ti,t j) ∈ DDFG definition 6.6 holds.

Figure 6.6 depicts two examples to illustrate valid and invalid spatial task map-

pings. While the first example violates the last condition with the mapping of task 2

and 3, the second example defines a valid mapping.

The illustrated examples contain structures where multiple tasks are mapped to a

single processing element. In such cases temporal resource allocation, also known

as scheduling [259], is indispensable to define the execution order of tasks on a

shared resource. The following discussion will adhere to the term of scheduling to

describe the temporal task mapping.

Traditional classification separates dynamic and static scheduling. Static schedul-

ing defines an exact order of task execution that is determined prior to run-time.

Mostly, static schedulers operate on a fixed sequence of tasks, that is repeated

continuously until the execution of the application ends. A special case of static

scheduling is Time Division Multiple Access (TDMA) [260], that has fixed time

slices for task execution. When the corresponding time slice finishes, the task is pre-

empted and the next task in sequence continues execution. TDMA-based schedulers

find huge importance when latency and throughput constraints need to be guaran-

teed [261].

In general to compute the optimal or a suboptimal static schedule, the task ex-

ecution times need to be known and unforeseen dynamic effects should not occur.

Besides these issues, computation of a static schedule is typically an NP-complete

problem and therefore heuristics are utilized to solve the problem [259].

a b

Fig. 6.6 Examples of valid and invalid spatial mappings. (a) Invalid Spatial Mapping. (b) Valid

Spatial Mapping

6.1 Design Space Exploration as a Mathematical Problem 77

Because of the restrictions of static scheduling, the technique of dynamic

scheduling is beneficial to handle dynamic and unforeseen effects, e.g., to start

and stop applications at run-time. It allows run-time optimization of task execu-

tion based on a given objective, e.g., priority or load balancing. Unfortunately,

the overhead is significant and due to the dynamic task execution, the resulting

execution characteristic is commonly nondeterministic. Especially, this makes it

difficult or even impossible to use dynamic scheduling in the domain of physical

layer processing. In addition, a common characteristic of physical layer applications

is the well-ordered structure, in terms of task graphs, that makes static schedules an

excellent choice.

The determinism of static scheduling makes analysis in a well-defined mathemat-

ical manner possible. In contrast, most approaches based on a mathematical analysis

lack support for dynamic scheduling, as nondeterminism and dynamic effects can

barely be captured in such approaches. Therefore, investigation of dynamic effects

mostly relies on worst-case analysis or simulation-based approaches, like the one

later discussed in Chap. 7.

Considering static scheduling, the temporal resource allocation, i.e., an ordered

list of task executions on a processing element, is defined as follows.

Definition 6.8 (Static Scheduling). A static schedule defines the order of task

execution on a processing element SC(pe) = (t0, ...,tn). A condensed representation

of a static schedule can be formalized as a Control Flow Graph (CFG).

CFG = (TCFG,CCFG):

TCFG is the set of tasks {t1, ...,tn},

CCFG is a set of control dependency edges {(ti,t j) : ti,t j ∈ TCFG},

∀(ti,t j) ∈CCFG : there is no path (t j, ...,ti),

∀ti ∈ TCFG : |{(ti,t j) ∈CCFG}| ≤ 1, |{(t j,ti) ∈CCFG}| ≤ 1

The list order implies task dependencies of ti ∈ TCFG on the finish of the proceeding

task executions t0, ...,ti−1 ∈ TCFG.

To support investigations of different schedulers, the proposed analysis frame-

work includes a condensed language to specify arbitrary static schedules. This

grammar is briefly highlighted in Appendix A.2.

To join the application’s DFG (Definition 6.4) and the CFG of the scheduling

(Definition 6.8) with respect to the hardware architecture (Definition 6.5), the set

of tasks {TCFG(pe)∀pe ∈ PE(HW)} and {TDFG} must be equivalent. Hence, if the

DFG is constructed by unrolling the original task graph, the CFG must be equally

converted by task duplication and unrolling.

Additionally, the spatial mapping denotes the processing element that executes

the task. This inherently defines the task execution and communication charac-

teristic, which can be captured at early design stages within a random variable

Xi = X(ti,pe j) allowing further analysis. The stochastic task execution character-

istic is discussed in depth later.

78 6 Analytical Implementation Model

Stochastic Description (Xi ∼(ti,pej))

The spatial task mapping (STM) determines the underlying processing element

pe j = PE(ti) that is utilized to execute a given task ti. Together the task implemen-

tation, e.g., the software code, and the underlying processing element pe j determine

the execution characteristic Xi = X(ti, pe j) of the implemented task.

When considering the final implementation, this task execution characteristic Xi

might be given as a single value that equals the execution time. Since the proposed

analysis targets early design phases, usually the final implementation is not available

and therefore cannot be determined that precisely. Instead, system architects need to

perform the analysis based on characteristics that tend to incorporate uncertainties.

These uncertainties are generally due to unknown implementation knowledge or

imprecise knowledge of the system behavior (Fig. 6.7).

Implementation Knowledge. While particular implementations are already present,

others are only known from an algorithmic perspective with a rough idea of the

later implementation. In the first case a precise execution characteristic can be

computed or measured, while in the second case only estimates can be applied.

System Behavior. With imprecise knowledge of the system environment, perfor-

mance characteristics of a task cannot be given without an uncertainty. For

example, capturing a cache behavior or bus contention precisely is highly com-

plex, while these can be captured stochastically with sufficient precision.

To deal with the occurrence of such uncertainties and imprecise implementation

knowledge at early design phases, the task execution characteristic is stochastically

defined as a random variable.

Definition 6.9 (Stochastic Task Execution Characteristic). The task execution

characteristic Xi(ti,pe j) is determined by a random variable that follows a proba-

bility density function (pdf) fXi
(t), a cumulative distribution function (cdf) FXi

(t) or

other statistical function descriptions. As the pdf and cdf are the most common de-

scriptions, only these will be used in the following. Based on the description of the

task execution characteristic with the pdf, the random variable Xi(ti,pe j) is given by

f : R → R>0, x
→ fXi
(t).

1.0

0.5

0.0

a

0.02

0.01

0.00

b

0.02

0.01

0.00

c

Fig. 6.7 Different types of stochastic parameter description illustrated by their probability density

functions. (a) Perfect Knowledge. (b) Simulation Results. (c) Stochastic Description

6.1 Design Space Exploration as a Mathematical Problem 79

To minimize the error with respect to the final implementation, the random vari-

able should at best match the exact execution characteristic. However, with limited

knowledge and no final implementation at hand, system architects have to estimate

the task execution. Other methods to evaluate these characteristics can be based on

profiling or measurement results. Figure 6.7 exemplifies these different possible sce-

narios. The first case illustrates perfect knowledge of the implementation that relates

to a fixed and given implementation. Interpolation of simulation results can lead to

another pdf as depicted in the second example, while the third one completely relies

on expert knowledge. Designers should compensate their unreliable knowledge by

choosing more wide spread distributions, whereas with detailed knowledge more

narrow distributions may be selected. However, this should be treated with the high-

est degree of caution, since wrong estimates might lead to false design decisions.

The ultimate goal is to identify the exact execution characteristics that reflect the

final implementation, which - in turn - means the implementation of the complete

system. To achieve this an iterative refinement process is defined as sketched in the

overview (Fig. 5.1).

Within the early exploration, the mathematical analysis is performed subject to

the given constraints.

Constraints (c)

To evaluate whether a system operates properly or not, the hard constraints of la-

tency and throughput must be preserved for applications, especially for physical

layer ones. These constraints mostly occur in so-called critical paths and feedback

loops. In the following discussion only critical paths are going to be referred to, as

the feedback loops define special cases of critical paths.

Definition 6.10 (Critical Path). A critical path (CP) is a sequence of tasks within

the task graph TG = (TTG,DTG), the FDFG, or the DFG of the application. The

definition based on the original task graph is as follows

CP = (ts,,tw, ...,te) : ts,,tw, ...,te ∈ TTG

Furthermore, the condition must hold that for a given critical path each task on the

way within the sequence from the start point ts to the end point te must be connected.

Please note when considering the FDFG and DFG not all tasks in the ts,te-path must

be part of the critical path itself.

Failure to meet the given constraints most likely leads to nonoperational devices

that fail compliance tests. Hence, evaluation of these constraints is a key proposition

of the analysis. The subsequent section will introduce the analysis algorithm that

forms the centerpiece of the mathematical implementation model to analyze whether

the constraints are met or not.

80 6 Analytical Implementation Model

6.2 Analysis Algorithm

The heart of the proposed analysis is an algorithm that operates on graphs. It is based

on general graph theory and utilizes the stochastic task description to evaluate the

performance characteristics of critical paths subject to evaluation. A vehicle utilized

for analysis is the so-called Analysis Graph (AG). This analysis graph preserves

the dependency structure of the application and temporal and spatial task mapping,

which inherently contains the underlying hardware architecture.

The analysis can be structured into four sequential steps also depicted in

Algorithm 1.

1. Analysis Graph Calculation. Both data- and control-flow form the foundation of

the analysis graph. While the DFG of the applications (Definition 6.4) holds

the data-flow, the control-flow is preserved in the schedules of the processing

elements (Definition 6.8). Subsequently, merging both graphs generates the

analysis graph.

2. Analysis Graph Simplification. To keep complexity reasonable, the analysis

graph is simplified by means of pure standard graph reduction as found in [257].

All necessary information is preserved to later compute the critical path perfor-

mance. This comprises data- and control- dependencies.

3. Analysis Precalculation. Prior to the final evaluation of the critical paths, precal-

culations need to be performed.

4. Critical Path Evaluation. Finally, the critical paths are evaluated based on the

stochastic task execution characteristics which depends on the individual task

and its spatial mapping.

By merging the control- and data-flow graphs, the analysis graph holds all

dependencies. The characteristic of a critical path is computed by simply adding

Algorithm 1 Functional Overview of the algorithm

Input: Application Task Graph TG, Hardware HW, Schedules SC, Critical Paths CP

Output: Critical Path Characteristics {XCPi
}

// Analysis Graph Calculation (Sect. 6.2.1)

N = DetermineActivation(TG);1

(FDFG, SC) = DuplicateTasks(TG, SC);2

(DFG, CFG) = UnrollIterations(FDFG, SC);3

AG = ConstructAnalysisGraph(CFG, DFG);4

// Analysis Graph Simplification (see Appendix A.1)

AG = MergeVertices(AG);5

AG = EliminateShortcuts(AG);6

AG = MergeVertices(AG);7

// Analysis Precalculation (Sect. 6.2.2)

AG = CalculateDependencyDelays(AG);8

// Critical Path Evaluation (Sect. 6.2.3)

{XCPi
} = EvaluateCriticalPaths(AG, CP);9

6.2 Analysis Algorithm 81

the random variables of all nodes within the path. Unfortunately, dependencies due

to control- and data-flow must be considered, since they typically prohibit such sim-

ple calculation. These exist due to the nature of parallel processing on multiple

resources and will later be discussed in-depth.

So far the overall steps of the analysis algorithm that are subsequently discussed

have been sketched.

6.2.1 Analysis Graph Calculation

A joint and comprehensive representation of control- and data-flow dependencies

in form of an analysis graph (AG) allows efficient computation of the critical path

characteristics. The analysis graph is constructed so that it comprises all relevant

information as well as the data- and control-flow dependencies. As discussed earlier

in this chapter, the task graph (DFG) holds the data-flow characteristics, while the

temporal and spatial task mapping comprises the control-flow information stored

comprehensively in a control flow graph (CFG).6 Since these graphs are either

derived from the initial application task graph (TG) (Definition 6.4) or the static

schedules (SC(pea)) (Definition 6.8) these first need to be constructed. Joining

both, DFG and CFG, into the unique analysis graph serves as the basis for the

critical path evaluation. Please note that developers usually start with the initial

task graph. However, more fine-grained inspection of scheduling techniques might

require direct modifications of the CFG to achieve superior performance by optimiz-

ing the schedule. In general the computation of the AG consists of the subsequent

steps.

1. Reduce data-flow rates to a 1-to-1 relation by duplicating tasks and edges

(TG → FDFG,SC → SC).
2. Remove data-flow delay annotations by instantiating multiple iterations

(FDFG → DFG,SC → CFG).
3. Construct AG by merging data- and control-flow graphs

(DFG & CFG → AG).

In Sect. 6.1.2 the transformation of the initial application task graph (TG) to the

directed acyclic data-flow graph (DFG) has already been introduced. Figure 6.5

exemplifies this for the given task graph TG0.

As a first step in this generation, the task activation rate N(ti) of each task is

computed with respect to the in- and output data rates. The utilized algorithm for

computing these activation rates is based on the solver algorithm introduced in [87].

With the obtained activation rates, the tasks and edges are duplicated to construct

the FDFG. When duplicating the tasks N(ti)-times, the edge that connects two tasks

ti and t j with the rate (ri,r j), the edge needs to be instantiated R · lcm(ri,r j), R ∈ N
+

times, with lcm being the least common multiple.

6 Control flow, e.g., the control flow from the MAC to PHY layer, can be captured either in the

DFG as data-flow representation or in the CFG as a schedule.

82 6 Analytical Implementation Model

The final step in retrieving the DFG is to unroll the FDFG to eliminate existing

delay dependencies, which typically occur in feedback loops, i.e., due to the delay

length of a propagated data element. The number of times the FDFG needs to be

unrolled is one plus the maximum delay dependency within the FDFG and the initial

TG, that is

Niter = 1 + max({δFDFG(ti) : ∀ti ∈ TFDFG})

To form the analysis graph (AG), the retrieved DFG needs to be joined with the

CFG that can be computed based on the set of schedules of each processing element

SC(pea) within the hardware architecture (HW).

The initial schedules SC(pea) for each processing element need to be trans-

formed to reflect the multiple task instances and iterations. Hence, on the basis

of the determined activation rates, the multiple instances of the task need to be

added to the scheduling. For example, a schedule (T3,T4,T6,T8) can be transferred

to (T3,0,T4,0,T4,1,T6,0,T61
,T8,0), (T3,0,T4,0,T6,0,T4,1,T60

,T8,0), or any other sched-

ule that respects the data-flow dependencies. Within the proposed framework, the

default scheduling policy is based on self-time schedule policy [262]. Since the se-

lected scheduling can have a significant impact on the overall system performance,

more fine-grained inspection is supported by the analysis workbench as further dis-

cussed in Appendix A.2.

Iterations due to delay dependencies request repetition of the schedules so that

the schedules execute Niter-times. Finally, all schedules are combined in a CFG

that contains M disconnected subgraphs with M equal to the number of processing

elements being part of the hardware architecture.

Finally, the AG can be computed based on the DFG and CFG. Given the CFG,

the data-flow edges of the DFG are added. Connecting two disconnected graphs of

the CFG by a data-flow edge defines a data transfer from one processing element to

another one. Hence, the analysis needs to identify directly if a communication archi-

tecture that can handle the transfer exists. If no suitable communication architecture

is available, the spatial mapping is invalid as it violates the mapping restriction

given by Definition 6.6. In case a communication architecture exists, vertices need

to be added that reflect the data write and read transaction. The corresponding data-

transfer time depends on the size of the data and the underlying communication

architecture.

To exemplify the Analysis Graph generation, the scenario depicted in Fig. 6.8 is

investigated. The initial task graph can be transformed to a DFG as previously shown

in Fig. 6.5. The temporal and spatial task mapping is defined by the two schedules

of the processing elements pea and peb.

SC(pea) = (T1,T2,T5,T7)

SC(peb) = (T3,T4,T6,T8)

Figure 6.9 highlights the analysis graph generation as discussed in-depth. First,

the CFG and DFG are joined (Fig. 6.9a) and second, the vertices are added where

communication external to the current processing element occurs (Fig. 6.9b). As the

6.2 Analysis Algorithm 83

a

b

Fig. 6.8 Example: application and hardware architecture. (a) Initial task graph (TG). (b) HW

architecture

processing elements perform the data transfer and meanwhile they are blocked, the

communication vertices need to be included into the processing element schedules,

respectively, the CFG part (Fig. 6.9c). To simplify later analysis, graph reduction,

especially edge reduction, is necessary to keep the computational complexity low

(Fig. 6.9d).

So far an analysis graph has been constructed on which the analysis, in particular

the evaluation of the critical paths, is performed. Before introducing the final critical

path evaluation, a precalculation to simplify the evaluation is introduced.

6.2.2 Analysis Precalculation

The evaluation of the critical paths (CP) is based on the analysis graph (AG) and

the stochastic description of each task. A more generalized definition of the critical

paths than the one in Definition 6.10 is a path from the starting vertex to an end

a

b

c

d

Fig. 6.9 Evaluation of the analysis graph. (a) The joint DFG and CFG. (b) Adding read and write

communication vertices and edge reduction. (c) Insert communication into schedules. (d) Edge

reduction

84 6 Analytical Implementation Model

1
4

3

2

a

b

Fig. 6.10 Example: analysis graph with exemplary critical paths and dependency delays.

(a) Critical paths in an analysis graph. (b) Inserted dependency delays

vertex with arbitrary vertices on the way. Hence, the critical path consists of ver-

tices each describing a task which, in turn, is characterized by a random variable

Xi(ti,pe j). According to Definition 6.9 the random variable depends on the task and

the processing element which executes the task according to the spatial task map-

ping (Definition 6.7). The main objective is to calculate the execution characteristic

of the critical path XCPi
.

The simplest possible critical path is one that consists of one task CPi = (Ti).
The execution characteristic equals the task characteristic, i.e., XCPi

= XTi
. In gen-

eral, evaluation is not that simple and requires much more effort as discussed in the

following. Figure 6.10 visualizes the main issues and differences that occur while

computing the critical path characteristics.

Figure 6.10a depicts four exemplary critical paths. While the CP1 and CP2

are rather simple to evaluate, CP3 and CP4 require much more effort, induced

by control- and data-flow dependencies. The sequential execution of task t1 and

t2 defines the critical path CP1. Apparently the random variable XCP1
is the ad-

dition of the random variables X1 and X2. With the random variables X1 and X2

statistically independent, the probability density function of XCP1
is the convolu-

tion of the probability density functions of the random variables X1 and X2 (c.f.

[263, page 193f.]).

In contrast to the simple addition for CP1 the critical path CP2 = (T3,T4,T8) is

influenced by the parallel path (T3,T5,T7,T8) since the dependency edge (T7,T8)
prevents execution prior to the finish of the parallel path execution. Hence, the ran-

dom variable of the critical path CP2 computes to XCP2
= max(XCP′

2
,XCP′′

2
). The

probability density function of the CPs random variable computes to

fXCP2
(t) = fX

CP′
2

(t)FX
CP′′

2

(t)+ FX
CP′

2

(t) fX
CP′′

2

(t)

when statistical independence of XCP′
2

and XCP′′
2

is given. With respect to the given

example, this only holds if the start task (T3) and the end task (T8) are not consid-

6.2 Analysis Algorithm 85

ered in the maximum operation. Since these tasks are common for both paths, the

random variables can simply be added to the result of the maximum operation so

that independence for the maximum operation is given.

So far the introduced techniques to compute the critical path characteristics are

not sufficient to analyze the critical paths CP3 and CP4. Following the general ap-

proach of computing the random variable XCP3
by adding the random variables

along the path, would lead to XCP3
= X7 + X8 + X9. In fact this result is wrong as a

delay occurs between execution of T7 and T8 when the sum of execution times of X5

and X7 is larger than the one of X4. Stochastically this delay is determined by:

Xsub = X4 − (X5 + X7)

Xd4 = max(0,Xsub)

In contrast, execution of T8 might be delayed when the realization of T5 and T7

is larger than the one of T4. Hence, the delay between the nodes of X4 and X8 is

captured by Xd3 as:

Xsub = (X5 + X7)−X4

Xd3 = max(0,Xsub)

A negative delay of the random variable Xsub defines that the other path is delayed

and no delay at the investigated path occurs. Hence, the delay is zero in such cases.

This is reflected by a probability density function that has a dirac delta function at

zero with the weight of
∫ 0
− inf pXsub

(t)dt and the positive part of the distribution of the

random variable retrieved by substraction. The retrieved random variable of this cal-

culation is a so-called dependency delay. Dependency delays need to be considered

and applied whenever a stall may appear, which in general occurs at vertices that are

joins. A join is a vertex that has multiple incoming edges and the set of joins VJ is

VJ = {v ∈V (AG) : |{e = (vt ,vh) ∈ E(AG) : vt ,vh ∈V (AG),vh = v}| > 1}

Since dependency delays might occur in all incoming edges of the vertices vx ∈
VJ , for each join vx ∈VJ with incoming edges e0, ...,eN a dependency delay Xdi needs

to be computed for each edge ei, i = 0, ...,N. To compute them, all random variables

Xp0
, ...,Xpn that describe the path to the incoming edge ei need to be considered.

Then the dependency delay Xdi can be determined by

Xmax = max(Xp0
, ...,Xp(i−1)

,Xp(i+1)
, ...,Xpn)

Xsub = Xmax −Xpi

Xdi = max(0,Xsub)

For this operation all paths p0, ..., pn must have the same starting vertex. Such

starting point must be a vertex with multiple outgoing edges, that is a so-called

split. Similar to the set of joins VJ the set of splits VS is defined as

VS = {v ∈V (AG) : |{e = (vt ,vh) ∈ E(AG) : vt ,vh ∈V (AG),vt = v}| > 1}

86 6 Analytical Implementation Model

To compute the execution characteristics of the paths p0, ..., pn, the common split

vertex vs ∈VS needs to be identified by a backward search starting at the join vertex

v j ∈VJ . Exactly this algorithm was applied in the previous example of Xd3
.

For the example in Fig. 6.10a, the additional data-dependency delays Xd1
,Xd2

,
and Xd4

need to be calculated. Their detailed computation and the algorithm used

are discussed in detail within Appendix A.3. Finally, with the dependency delays

included into to the analysis graph (AG), all critical paths can be evaluated as dis-

cussed in the following.

6.2.3 Critical Path Evaluation

In general, each critical path can now be simply determined by adding the random

variables along the path. For example, the random variable of critical path CP2 de-

picted in Fig. 6.10a computes to XCP2
= X7 + Xd4 + X8 + X9. As previously stated,

the addition of random variables means a convolution of their probability density

functions when statistical independence is ensured. For the given scenario, the ran-

dom variable Xd4 = max(0,X4 − (X5 + X7)) is no longer independent due to the

random variable X7. This violates the assumption of independence between Xd4 and

XCP2
since they are dependent. However, the induced error is minor compared to the

uncertainties due to imprecise implementation knowledge at early design stages.

A brief evaluation of the encountered error is given in Appendix A.4. Due to the

occurring errors in such cases, critical paths are computed without the use of depen-

dency delays whenever feasible, like for the exemplary critical paths CP1 and CP2.

It should be noted that the current implementation of the analysis cannot han-

dle critical path calculations per bit when bit reordering appears, e.g., interleaver

and deinterleaver operations. Instead analysis of critical paths can be performed

blockwise.

In the overview (Chap. 5), the result interpretation of critical paths has already

been discussed. Furthermore, during the case study, detailed analysis results will be

given and discussed in depth.

6.3 Simulation Link and Back Annotation

Both analytical and simulation models have their own advantages and disadvantages.

Typically these approaches are completely separated, which requires twice the de-

velopment effort in two different environments. To bridge this gap in MPSoC

design flows, the proposed analytical analysis is integrated into a simulation-based

framework. Figure 6.11 depicts the refinement flow from the mathematical imple-

mentation model down to the abstract simulation model.

Accordingly, at the start of the design process an analytical implementation

model is developed based on the previously discussed analytical workbench.

6.3 Simulation Link and Back Annotation 87

Fig. 6.11 Mathematical to ISS refinement of the implementation model

This computes the characteristic XCPi for each critical path, based on the individual

task characteristics X(task,PE). If a suitable candidate has been identified, devel-

opers can refine the analytical model to a SystemC simulation model based on the

framework discussed in [250]. The central element in this framework is an abstract

processor simulator called VPU operating on the annotation of execution charac-

teristics paradigm to reflect the task behavior. This smooth transition is enabled by

the Time Retrieval Engine which samples from the pdf X(task,PE) a timing an-

notation ∆t at run-time (∆t ∼ X(task,PE)). This retrieved value is then propagated

to the VPU which annotates this. Thus, without any modification, the analytical

implementation model can be evaluated in a simulation-based framework. Encoun-

tered effects within the simulation can be iteratively back annotated to the analytical

implementation model.

The demand for such back annotation has its origin in two main sources of inac-

curacies. On the one hand, dynamic effects that are caused by conflicting memory

accesses make it hard to predict the exact timing behavior of communication re-

quests. On the other hand, inaccuracies will be caused by false estimates of the

execution times due to limited implementation knowledge in early design steps.

The principle of back annotation is rather simple and allows for a quick update

of the analytical model. Whenever a mismatch between the analytical and a lower

level implementation model is recognized, the more precise execution characteris-

tic is measured at a lower abstraction level. This can either be a task execution or

a data transfer on a shared communication architecture. The measured execution

characteristic is summarized as a random variable with a particular pdf X(task,PE)
or X(data,CA). Finally, the earlier utilized random variable is updated, hence,

the inaccuracy is removed and system architects can resume the top-down design

approach.

88 6 Analytical Implementation Model

Since the final implementation is naturally the goal of such a design process,

developers can refine the abstract simulation model further to an implementation

model based on an Instruction Set Simulator (ISS). This step comprises implemen-

tation of the software, mostly in C programming language and replacement of the

abstract processor simulator by an ISS. Such simulation models allow measurement

of the actual performance in terms of instruction- or cycle-accurate behavior. Again

the obtained results can be back annotated to the abstract simulation and mathemati-

cal implementation model. Here, as previously discussed, the uncertainty due to the

unknown is reduced by utilizing the actual measured performance. This enhances

the estimates and provides results, which are closer to the real implementation in

later design iterations.

Chapter 7

Abstract Simulation Implementation Model

Leaving the domain of analytical-based design space exploration, the discussion

now turns to the utilized abstract simulation. First an overview of the underlying

technique along with its main components is given. The key element, the Virtual

Processing Unit (VPU) technology, is presented in-depth. Finally, this chapter con-

cludes with the introduction of the refinement flow from abstract simulation down

to an implementation model based on Instruction Set Simulators (ISSs).

7.1 Overview and Key Components

The previous analysis of applications has highlighted the diverse structures and de-

mands of applications for wireless communication devices. Within this discussion,

two main application classes have been identified. The first class covers the domain

of physical layer processing and multimedia applications. Thanks to their regular

structure these can be partitioned into task graphs and can be efficiently modeled as

process networks, e.g., Kahn Process Networks (KPN) and Synchronous Data Flows

(SDFs). This eases the use of programming models which can provide graphical

design entries for software visualization (Chap. 6). Examples of such represen-

tations are SDF graphs, UML 2.0 activity diagrams, component-based software

design, and other programming models based on graph structures to be discussed

later in Sect. 7.5.2. In addition, computation of static schedules at compile time en-

sures a deterministic behavior and minimizes the occurring overhead as no dynamic

scheduling is encountered, e.g., based on an operating system.

In contrast, the second class of applications makes heavy use of dynamic schedul-

ing techniques since these need to respond to nondeterministic user interactions.

Especially, in this domain operating systems or real-time operating systems are

frequently utilized besides other software abstraction levels such as middlewares

for abstract data communication like MCAPI [264]. User interactions and effects

of dynamic scheduling prohibit a simple software visualization. One approach to

consistently describe such applications in a graphical fashion are the interaction

overview diagrams of UML 2.0 [27]. However, the occurring overhead in terms of

performance loss can be significant when using these modeling approaches.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 7, c© Springer Science+Business Media, LLC 2011

89

90 7 Abstract Simulation Implementation Model

For development of a complete MPSoC platform, these various applications need

to be jointly implemented on a single device. This results in the need for a combined

design methodology to satisfy all requirements. As a consequence these different

requirements imply many challenges for the abstract simulation model.

Such a simulation model needs to support static scheduling and arbitrary dy-

namic scheduling techniques. Especially in the presence of dynamic scheduling,

simulation-based approaches are superior to analytical models, which are either

not applicable or have severe issues in modeling these scenarios. One of such

simulation-based approaches is the framework built upon the previously sketched

VPU concept. The following discussion of the abstract simulation model focuses

more on the system-level aspect and the practical use, while a detailed operational

semantic can be found in [100, 250].

7.2 Virtual Processing Unit Concept

Intention of the Virtual Processing Unit (VPU) is to mimic the behavior of any

kind of processing element from general purpose processor core to highly special-

ized hardware accelerators. This creates serious challenges for the underlying VPU

simulation model as it has to cope with a wide range of software and hardware

issues.

Figure 7.1 illustrates the four main scenarios induced by the software and

hardware. Necessarily, they have been considered during specification and im-

plementation of the VPU. According to their individual characteristic these are

classified as follows.

• Processor core with single-threaded application. This scenario defines what

refers to the traditional processor core use-case. Here a single application exclu-

sively executes on the underlying processor core. Since C programming language

dominates software development for embedded devices, it denotes the execution

of a simple C main function. Typically, applications make use of libraries and

device drivers, e.g., to access peripheral devices like a display controller.

• Processor core with multithreaded application. Apart from the simple single-

threaded use-case, the multithreaded execution of applications obligates the use

of an operating system or a small scheduling kernel that allows switching be-

tween applications. In addition to the use of operating systems, such scenarios

often utilize middlewares and multiprocessor communication layers like the

Multicore Association Communication API (MCAPI) [264] and Polycore’s Poly-

Messenger [265].

• Programmable hardware accelerator. Hardware accelerators are used to speed-

up the execution of one particular function or a set of functions in general.

Usually their behavior is reactive, like a coprocessor. Programmable ones execute

rather small and dedicated programs also called firmwares. This programmability

enables minor software updates in the field.

7.2 Virtual Processing Unit Concept 91

a

b

c

d

Fig. 7.1 Challenges for software and hardware modeling. (a) Processor core with single-threaded

application. (b) Processor core with multi-threaded application. (c) Programmable hardware

accelerator. (d) Hardware accelerator

• Hardwired accelerator. In contrast to programmable hardware accelerators,

hardwired ones can only be configured. Therefore, these provide less postfabri-

cation flexibility as only configuration parameters can be set and updates cannot

be applied.

Separation between these different classes is not necessarily too strict. For ex-

ample, in TI OMAP platforms typically the digital signal processor (DSP) behaves

similarly to a coprocessor, by executing a function when requested. However, a

DSP bios allows support for multithreaded execution of applications on the DSP if

required [266].

Besides these software related issues, a huge number of hardware features ex-

ists to improve the performance of a single processor core. The basic classification

of computer architecture by Flynn in 1966 [46] only considered four different

classes, namely Single Instruction Single Data (SISD), Single Instruction Multiple

Data (SIMD), Multiple Instruction Single Data (MISD), and Multiple Instruction

Multiple Data (MIMD). Enabled by latest silicon and architecture advantages, the

advent of new techniques such as Very Long Instruction Words (VLIW), Super-

Pipelining, Superscalar, Hyper-threading, etc. has constantly increased performance

at the cost of increasing architecture complexity. To define a general and abstract

processor simulation model, the VPU model has been envisioned on the principle of

execution characteristic annotation. This method allows capturing the behavior of

92 7 Abstract Simulation Implementation Model

Fig. 7.2 VPU hardware

simulation model

and software layers

arbitrary hardware effects along with concurrent execution of multiple applications.

Recent and past research has shown that accurate modeling is possible. However,

modeling of the behavior is quite sensitive to the underlying hardware architecture

and its provided features. For example, the later case study discusses this issue for

the class of general purpose and digital signal processing processor cores in detail

(Sect. 8.1). To support these divers hardware features, different key concepts for vari-

ous annotation techniques have been introduced to cover all coarse- and fine-grained

aspects. The next section discusses the fundamentals of the task-based annotation

layer.

Apart from the execution characterization, the VPU supports the discussed

software features with a layered simulation model as depicted in Fig. 7.2. The un-

derlying hardware is captured by the VPU, which inherently includes aspects like

automatic memory address resolution. Inspired by traditional software development,

a hardware abstraction layer, device drivers, an operating system, a middleware, and

an application layer have been defined (Fig. 7.2). All of these layers operate on top

of the VPU simulation model that inherently includes the concept of characterizing

the execution behavior especially with respect to the timing.

At the lowest level of detail, the hardware abstraction layer (HAL) of the

VPU provides functionality to address external memories and peripherals as later

highlighted in Sect. 7.4.1. For example, bus or Network-on-Chip (NoC) centric

communication primitives operate on the memory mapped I/O principle [24] that

enables simple software development of device drivers and other external VPU

communication.

Equal to device drivers of typical processor cores, the device drivers of the VPU

can access arbitrary components like peripherals connected to bus or Network-on-

Chip (NoC) architectures over external communication ports. Implementation of

such device drivers can differ significantly. Accordingly, these include the anno-

tations of execution characteristics to capture the behavior of the driver execution

itself. To expose the concept of such drivers Sect. 7.4.2 discusses the fundamental

principle, and sketches existing examples such as memory mapped, interrupt-driven,

and DMA-driven I/O devices.

7.3 Annotation Principle of Execution Characteristics 93

The operating system layer is placed above the elementary device drivers.

Besides the modeling of different hardware architectures, the generic VPU model

has to consider a wide range of operating systems and real-time operating systems.

For this reason the operating system is kept highly generic and aims at the common

characteristics of all available ones; that is the process management and interprocess

communication and synchronization. This includes dynamic task creation and ter-

mination along with other operations such as the starting and stopping of tasks. The

principle and supported features of the generic OS are documented in Sect. 7.4.3.

Above the operating system layer middlewares are deployed which typically in-

clude services like efficient processor-to-processor data communication. The current

implementation executing on the VPU provides only the Task Dispatcher middle-

ware (Sect. 7.4.4). However, the clear structure and interface definition allows quick

implementation of additional layers.

Placed at the top, the application layer supports the execution of one or multiple

applications. Using a static scheduling can neglect the middleware and operating

system layers, whereas using the operating system enables dynamic-scheduling

techniques. In such cases developers can select either to use the graphical design

entry of the task-based programming model if applicable or can implement the

application in textual mode. Whether choosing one or the other, the task-level an-

notation remains equal and developers can utilize one of the available techniques

discussed next.

7.3 Annotation Principle of Execution Characteristics

At early design stages the knowledge of the algorithms to be implemented and of

the underlying hardware differs significantly. For example, algorithms like FIR fil-

ters are well known and execution characteristics of an existing implementation can

directly be given. In contrast, other algorithms might be completely new and un-

known from the implementation level at the start of the design cycle. Accordingly,

the underlying architecture is yet unknown and development is still ongoing. There-

fore, only coarse-grained estimates of the corresponding execution characteristic are

available. Naturally for all exploration techniques, precision of the results relies on

the input parameters. Clearly this demands incorporating the most precise available

characteristics of both application and architecture at each design stage. To keep

track of the large range of implementation knowledge, the abstract VPU simulation

model facilitates various annotation techniques. These range from fine- to coarse-

grained annotations of the execution behavior.

Figure 7.3 depicts the covered annotation techniques and implementations

relating to the implementation knowledge. While the x-axis captures the ap-

plicable annotation methods, the y-axis of the chart illustrates the available

functional implementation options. Starting with pure traffic generators containing

no functional implementation, the range is determined in multiple steps till the final

94 7 Abstract Simulation Implementation Model

Fig. 7.3 Techniques of functional implementation and execution characteristic annotation

implementation is reached. Except when using traffic generators, the incorporated

functional implementation supports verification whether the application executes

correctly or not.

For efficient modeling, the execution characteristics (x-axis) and functional

implementation (y-axis) have been kept orthogonal. When addressing functional

verification, the VPU allows executing implementations that can run on the host

processor core, commonly a x86 processor architecture. Typically, this requires a

reference or final implementation in C/C+ + , whereas Assembly code for the tar-

geted embedded processor cannot be executed. However, functional verification in

the presence of a low level Assembly implementation can be done by using instruc-

tion set simulators. Undoubtedly, the use of traffic generators prohibits functional

verification because no functionality is contained at all.

The key method for annotating a particular task’s timing behavior is rather

simple. At specific parts of the given task’s source code, the execution character-

istic of the code segment is passed to the VPU by a consume(· · ·) statement. The

function argument can be of arbitrary value ranging from a simple constant value

to a complex C+ + class which dynamically computes the annotation. Please note

that the given basic annotation is in clock cycles allowing the VPU to easily reflect

effects such as clock frequency modifications.

7.3 Annotation Principle of Execution Characteristics 95

Definitely the quality of results, in terms of precise execution behavior, heavily

depends on each component and its estimated execution characteristics. This de-

mands different techniques for estimating/computing these annotations. Four of

such techniques will be discussed in the following that serve as a foundation to cover

a wide range of techniques, from early coarse-grained estimates down to trace-based

annotations obtained by instruction set simulation measurements.

• Statistical Annotation Model. At the highest abstraction level and with only lim-

ited implementation knowledge developers can quickly apply statistical models.

These models are typically based on rather coarse-grained estimates of the re-

quired operations and the underlying hardware architecture features. The Time

Retrieval Engine (TRE) [267] can be utilized to ensure a smooth transition from

the analytical implementation model to the abstract simulation model.

• Source-Level Annotation Model. This level of abstraction is characterized by a

more fine-grained implementation knowledge. It provides a mechanism to an-

notate the execution characteristics within the individual tasks at arbitrary levels

of detail. Hence, this abstraction level can be further subclassified based on the

underlying implementation of functionality and timing annotations.

– Nonfunctional and Coarse-grained Annotations. At early design stages the

general question occurs how to implement a particular application given only

as a pure mathematical algorithm. The lack of any functionally correct im-

plementation at such design stages prohibits instruction set simulation. In

contrast, this high abstraction level allows utilization of coarse-grained tim-

ing annotation on, e.g., basis of functions, neglecting the functionally correct

implementation at first. However, such models can mimic the execution based

on fine-grained estimates along with the communication demands based on

communication requests in the style of traffic generators [268]. The natural

refinement and implementation of the functionality lead to the next abstrac-

tion level.

– Functional and Fine-grained Annotations. During implementation, constant

update and refinement increases the precision of the individual task execution

and, inherently, the precision of the obtained system-level results. This step-

by-step development finally leads to a functionally correct implementation

with a fine-grained annotation of the execution characteristic. As the VPU

currently supposes implementation of the functionality in C and C++ this

reference implementation can directly serve as foundation for the following

refinement steps.

Implementation-based Annotation Model. Having pieces or the complete func-

tionally correct implementation for one processing element available, system

architects are encouraged to utilize the implementation-based annotation model.

When no processor core has yet been selected the annotation can be based on the

µProfiler [255], whereas trace-based annotations are not applicable. With a par-

ticular processor core selected, trace-based annotations typically achieve better

results and, hence, should be preferred.

96 7 Abstract Simulation Implementation Model

– µProfiler-based Annotations. The µProfiler computes the timing annotations

based on source-level performance estimation. This technique requires pure C

source-code, while the instruction set architecture of the underlying processor

core can still be in development stage. A fine-grained source-code instru-

mentation [170] builds the centerpiece of this technique to collect runtime

statistics. This allows dynamically capturing the actual behavior during ex-

ecution of the application. High precision in the accuracy has been reported

for RISC-like architectures [269]. The precision is less accurate for irregular

architectures, such as DSPs and ASIPs. Mostly, these architectures require the

usage of low-level software constructs to exploit the full capacity of the under-

lying processor core [60] that cannot be captured by annotations based on the

C programming language. This mismatch in terms of software programming

can easily lead to predicted annotations diverging from the final implemen-

tation, even when the C-based approach operates well. In such cases system

architects should consider selection of source-level or trace-based annotation

methods.

– Trace-based Annotations. This last abstraction level before applying instruc-

tion set simulation, should be only considered as an intermediate step; hence,

it should only be applied in special cases. Among them is the multithreaded

software execution where some tasks/applications are fully implemented

while others are lacking the implementation. Even missing a single task

implementation prohibits the system-wide evaluation with an instruction

set simulator. In contrast, the VPU model supports the mixing of different

timing annotation principles to evaluate the system-wide performance prior

to having the final software and hardware implementation. In addition, this

annotation principle can be applied to increase simulation speed. However,

latest instruction-accurate instruction set simulators, utilizing binary-to-binary

translation, achieve extremely high simulation speeds. Therefore, system ar-

chitects have to consider this on an individual basis.

These four major annotation techniques will now be discussed in detail starting

from the highest abstraction level down to the lowest one.

7.3.1 Statistical Annotation Model

At the highest abstraction level the tasks are modeled as traffic generators that pro-

duce and consume data. Additionally, the task execution characteristic is reflected

by a random variable because the implementation is not yet known and only rough

performance estimates exist. Section 6.3 has already sketched the basic principle

of refinement of the analytical implementation model to the simulation-based tech-

nique. For each task in the analytical model, a representative is constructed in the

simulation-based environment. Such a task, apart from sources and sinks, is re-

flected by a simple traffic generator that consumes data, annotates the task execution

characteristic, and generates data that is passed to the next task. The analytical model

7.3 Annotation Principle of Execution Characteristics 97

Fig. 7.4 Annotation of the execution characteristic: statistical model

considers each task execution behavior as a random variable X(task,PE) with a

probability density function (pdf). At simulation time a single value ∆t(task,PE)
equal to the number of consumed cycles is generated by the use of the Time-

Retrieval-Engine [267] (Fig. 7.4). This engine generates the numbers of cycles at

random from the given pdf X(task,PE) according to the inversion method, also

known as the inverse transform sampling method (cf. [270, p. 27f.]).

Apart from these rather simple tasks, more complex ones can be constructed

by utilizing typical control-level constructs of the C programming language, e.g.,

loops and if-then-else statements, as later shown within the source-level annotations.

However, the underlying annotation technique remains equal. Based on a random

variable for a specific code segment, the Time-Retrieval-Engine samples a single

value, which – in turn – is utilized to annotate the behavior dynamically at run-time.

This can be utilized to reflect fine- and coarse-grained task execution behaviors.

With ongoing development and definition of the architecture, the execution char-

acteristics can be described in a more fine-grained manner, which allows lowering

the abstraction level to source-level annotations.

7.3.2 Source-Level Annotation Model

This level covers a broad range of options, ranging from nonfunctional work-

load models with coarse-grained annotations to functionally correct tasks with

fine-grained annotations (Fig. 7.3). When using coarse-grained annotations, instru-

mentation of tasks is typically performed per function or even per task, whereas

fine-grained annotations are applied, e.g., per source-code line.

In order to demonstrate both techniques, Listings 7.1 and 7.2 highlight examples

of their usage. The first case illustrates the annotation on the basis of instrumenta-

tion at the granularity of functions (Listing 7.1). The second example (Listing 7.2)

highlights a more fine-grained instrumentation of the source code to keep track of

the execution behavior. For RISC-like architectures typically distributed with com-

pilers, such fine-grained C source-code instrumentation can capture the execution

behavior well [250]. Source-level instrumentation is not necessarily imprecise when

using an application specific processor core, like a DSP or an ASIP. However, these

98 7 Abstract Simulation Implementation Model

1 MyTask : : t a s k ()

2 {
3 . . .

4 wh i l e (1) {
5 i n t v a l u e s =1 0 ;

6 i n t r e s u l t ;

7 / / p er f u n c t i o n 1 c a l l

8 consume (v a l u e s ∗ EXEC VALUE) ;

9 r e s u l t = f u n c t i o n 1 (v a l u e s) ;

10

11 / / p er f u n c t i o n 2 c a l l

12 consume (EXEC PER CALL) ;

13 r e s u l t = f u n c t i o n 2 (r e s u l t) ;

14 }
15 };

16

17 i n t MyTask : : f u n c t i o n 1 (i n t v a l u e s)

18 {
19 i n t r e s u l t = 0 ;

20 i n t d a t a ;

21 f o r (i = 0 ; i < v a l u e s ; i ++) {
22

23

24

25 r e a d (VALUES + i∗s i z e o f (i n t) ,

26 d at a , s i z e o f (i n t)) ;

27

28

29 r e s u l t += d a t a ;

30 }
31

32

33 r e t u r n r e s u l t ;

34 };

35

36

37 v o i d MyTask : : f u n c t i o n 2 (i n t d a t a)

38 {
39

40

41 d a t a = d a t a ∗ d a t a ;

42 w r i t e (RESULT , d a t a , s i z e o f (i n t)) ;

43 };

Listing 7.1 Coarse-Grained Annotations

1 MyTask : : t a s k ()

2 {
3 . . .

4 wh i l e (1) {
5 i n t v a l u e s =1 0 ;

6 i n t r e s u l t ;

7

8

9 r e s u l t = f u n c t i o n 1 (v a l u e s) ;

10

11

12

13 r e s u l t = f u n c t i o n 2 (r e s u l t) ;

14 }
15 };

16

17 i n t MyTask : : f u n c t i o n 1 (i n t v a l u e s)

18 {
19 i n t r e s u l t = 0 ;

20 i n t d a t a ;

21 f o r (i = 0 ; i < v a l u e s ; i ++) {
22 / / p er l o o p i t e r a t i o n

23 consume (EXEC LOOP VALUE) ;

24

25 r e a d (VALUES + i∗ s i z e o f (i n t) ,

26 d at a , s i z e o f (i n t)) ;

27

28 consume (EXEC ADD VALUE) ;

29 r e s u l t += d a t a ;

30 }
31

32 consume (EXEC RETURN VALUE) ;

33 r e t u r n r e s u l t ;

34 };

35

36

37 v o i d MyTask : : f u n c t i o n 2 (i n t d a t a)

38 {
39 / / p er f u n c t i o n 2 c a l l

40 consume (EXEC PER MUL) ;

41 d a t a = d a t a ∗ d a t a ;

42 w r i t e (RESULT , d a t a , s i z e o f (i n t)) ;

43 };

Listing 7.2 Fine-Grained Annotations

architectures require a different software development than a standard RISC pro-

cessor core. One reason is that standard C programming is mostly not suited as

compilers cannot efficiently determine special instructions and cannot fully exploit

the provided hardware features. Therefore, common software development for such

cores relies on a mixture of high- and low-level software implementation to effi-

ciently utilize the hardware architecture. Recent case studies have illustrated the

performance gain between general purpose C and Assembly programming language

to be easily in the range of one order of magnitude for a DSP-like architecture [60].

Hence, when targeting such architectures, fine-grained C-level instrumentation does

not precisely model the low-level programming language. In turn this can be mod-

eled fairly precisely at coarse-grained function level because developers typically

know the exact execution characteristic of the software programmed in Assem-

bly. These different methods for architecture and software modeling strengthens

the need for different annotation techniques, which will be later illustrated within

the case study (Chap. 8).

Following the design and refinement flow, the final output of the source-level

annotation phase is a C-language-based reference implementation including anno-

tation of the execution characteristic. Before entering the ISS-based ESL develop-

ment, two intermediate abstraction levels can be applied to address special design

issues. These implementation-based annotation levels and their methodology will

be highlighted in the following.

7.3 Annotation Principle of Execution Characteristics 99

7.3.3 Implementation-Based Annotation Model

Based on a reference or final software implementation, this approach automatically

applies fine-grained execution characteristics. In the following, the two available

techniques are introduced, which differ depending on whether the underlying pro-

cessor architecture has already been selected or not. The first discussed approach

operates on top of the µProfile [255] technology, which allows C-code profiling

without the underlying hardware architecture being known or available at the cur-

rent design stage. The later highlighted trace-based technology makes use of the

targeted processor architecture and compiler in order to extract the software ex-

ecution characteristic. This implies that an instruction set simulator and software

toolchain are at hand.

�Profiler-Based Annotation Model

The key contribution of the µProfiler-based annotation [269] is to apply fine-

grained, automatic source-code instrumentation techniques to implicitly model the

execution characteristic as intratask memory accesses and estimating cycle counts.

Figure 7.5 illustrates the general concept. The instrumenter (based on the µProfiler

tool) inserts additional instrumentation code into the task source-code. Such an

instrumentation code dynamically increments cycle counters and redirects the in-

tratask memory accesses to the communication architecture when the corresponding

task is executed on a VPU within a system level simulation.

Fig. 7.5 Task execution work flow

100 7 Abstract Simulation Implementation Model

The applied fine-grained software instrumentation is done on a Three Address

Code Intermediate Representation (3-AC IR) level where all C operators and the

majority of memory accesses are visible. Additionally, high-level standard IR op-

timizations, such as constant propagation, constant folding, and loop invariant

code motion, can be performed on this IR. Such optimizations reduce chances of

false prediction (such as counting operations that will be eventually eliminated by

compiler optimizations) in estimating cycle counts and memory accesses. The ac-

curacy of the software simulation is comparable to that of instruction set simulation

for RISC-based architectures [250]. Later approaches have further extended such

frameworks with features such as backends by utilizing LLVM [271, 272] and have

proved the vitality of such approaches in the domain of RISC processors.

In order to give a brief introduction, the overall principle will be discussed in

the following. As all operators and a majority of the memory accesses are explicitly

visible in 3-AC IR, the instrumenter, as shown in Fig. 7.5, only needs to add an

extra C line after each IR operation to increase the cycle counter by the operator

cost (obtained through GetOpCost). The system architect can assign each operator

an appropriate cost that can be configured keeping the intended target processor in

mind. For example, if the user intends to run a task on a processor which has a

latency of three for multiplication and of one for addition then he can assign costs

one and three to the addition and multiplication operators, respectively. The total

estimated execution time of the task is given by the following formula:

Cycles = Σ
n
i=1E(Oi)×C(Oi),

where E(Oi) and C(Oi) are the execution count and cost for an operator Oi,

respectively.

The instrumenter also inserts function calls to intercept and report all accesses to

different source level data elements, such as arrays, structures, and global variables,

found in any application. Usually memory accesses, for an application written in a

high-level language like C, originate from four sources:

1. Accesses to global scalar and composite variables (i.e., structures) and arrays.

2. Accesses to a function’s local composite variables.

3. Accesses to dynamically allocated memory on the heap.

4. Accesses during building-up and cleaning-up of a function’s stack frame.

The local scalar variables are usually allocated in registers, and the number of

memory accesses caused by them is often negligible. The 3-AC IR makes the first

three kinds of memory accesses explicit by converting all global accesses and local

composite accesses to pointer dereference operations.

The simulation of intratask memory accesses (as done by the LOAD function

in Fig. 7.5) is invoked with a memory address, and is expected to return the value

contained in this memory address. At the same time, it is expected to simulate this

memory access over the communication network and increment the cycle counter at

the end of this simulation.

7.3 Annotation Principle of Execution Characteristics 101

The technique of code instrumentation-based timing estimation and annotation

has proved to work fairly well for RISC-like architectures. For more specific pro-

cessor architectures like DSPs and ASIPs, this instrumentation technique typically

lacks precision as it is based on the C programming language. In general this is-

sue prohibits developers from exploiting the full performance capabilities of highly

specialized architectures. Therefore, other techniques such as source-level anno-

tations on the basis of functions can achieve more precise values and might be

preferable.

When having a software implementation at hand and a processor architecture in

mind, developers can apply the trace-based annotation technique. With respect to the

targeted processor core this technique has the ability to achieve superior accuracy

and will be introduced next.

Trace-Based Annotation Model

During ongoing development, parts of the complete system might be finalized with

respect to the implementation of software and hardware. For example, a particular

processor core has been selected and some tasks have already been implemented

in software. Under the assumption of having a compiler and instruction set simula-

tor available, system architects can easily simulate and measure the performance of

these tasks. However, traditional performance evaluation of the complete system at

the level of instruction set simulation would necessarily have to wait until the com-

plete software and hardware have been implemented for the targeted architecture. To

overcome this issue and to incorporate the most precise implementation knowledge

at early design stages, trace-based annotation is the optimal vehicle to overcome

such late performance investigations. The fundamental idea is to later incorporate

the measured performance characteristics into a VPU-based simulation. Moreover,

in contrast to the approach discussed earlier, this method can be applied when using

high- or low-level programming languages.

Overall, the annotation of the execution characteristic is separated into two

phases (Fig. 7.6). In the first phase the already available software is executed on

the instruction set simulator or within a given subsystem. During this execution,

events are recorded that occur at the borders of the investigated core/subsystem.

Typically, these are caused by memory accesses and interrupts. It should be noted

that instructions set simulators do not normally provide such tracing facilities, hence

developers have to insert them manually.

In the second phase, the corresponding task running on the VPU reads the traced

events and replays them to mimic the exact behavior of the measured software part

in a later system simulation. The mixing of arbitrary annotation principles is the in-

tended use case to allow performance investigations before the final implementation

is ready. This allows characterization of each task with the most precise implemen-

tation knowledge available.

102 7 Abstract Simulation Implementation Model

a

b

Fig. 7.6 Annotation of the execution characteristic: trace-based annotation. (a) Trace-based

annotation for processor core. (b) Trace-base annotation for subsystem

A fundamental part of all annotation methods is the accuracy that is achieved

at each level. Hence, this work dedicates one single section (Sect. 8.1) discussing

the achievable accuracy. When lowering the abstraction level toward the final im-

plementation, the next level is naturally instruction set simulation. For acceptance

and practical use, a continuous refinement methodology from high abstraction level

to ISS-based level is mandatory. The VPU technology naturally supports such a

smooth transition as is highlighted in Sect. 7.6.

Today’s software development typically makes use of software layers and li-

braries, such as device drivers, middlewares, and Operating Systems (OSs). Inspired

by the traditional ISO/OSI-model [11] and OS layers [273], the VPU model sim-

ilarly incorporates the most common layers. In addition, simple enhancement and

extension of such layers can be applied because of the modular structure of the VPU

model. Since software layers heavily impact the overall execution, these can be an-

notated to capture the execution behavior. In the subsequent sections the software

layers integrated on top of the VPU are highlighted.

7.4 Software Layers of the VPU 103

7.4 Software Layers of the VPU

The subsequent discussion of the VPU’s software layers introduces them in a

bottom-up fashion starting with the lowest layer which is the hardware abstraction

layer. Later, the layers of the device drivers, the operating system, and the middle-

ware are highlighted.

7.4.1 Hardware Abstraction Layer

The large variety of different hardware platforms in the domain of wireless

communication makes portable software mandatory to reduce development costs for

next-generation devices. Portability demands an abstraction that separates software

development from the hardware-specific and dedicated features of each particular

platform. Similar issues in the domain of general-purpose computing resulted in

the application of a thin software layer called hardware abstraction layer (HAL),

e.g., within the Windows NT and later operating systems. This abstraction layer

completely separates high-level software, such as the operating system and device

drivers, from the underlying hardware platform by means of representing abstracted

devices to the rest of the software. Typically, software can access such devices via

routines in order to simplify software development on top. This enables an easy

porting of the software from one platform to another, as merely the implementation

of the HAL needs to be modified. All other software should be portable by utilizing

a different compiler toolchain.

In general, the HAL supports services like platform-independent device access-

ing, interrupt handling, DMA transfer management, and low-level operating system

kernel operations such as context switching and synchronization services. While the

HAL provides the fundamental services, that are platform specific, device drivers

like display controllers and keyboard devices are not included and their develop-

ment is on top of the HAL in order to conserve portability.

Similar to common hardware abstraction layers, the HAL execution needs to

reflect the arbitrary hardware features of various processor cores. As data transfer

has long been a key challenge in processor core design, the range of available com-

munication features of modern processor cores is vast. Starting from a simple single

shared-bus port, modern processor cores nowadays incorporate ports for dedicated

point-to-point communication, multiple ports connected to different shared buses

and/or even complex Networks-on-Chips. For example, Tensilica’s configurable

Xtensa LX2 [48] processor core can be equipped with additional general-purpose

I/O (GPIO) and FIFO interfaces, in addition to the standard bus interfaces. To

reflect such arbitrary interfaces, the VPU is kept generic so that it can be equipped

with an arbitrary number and type of communication ports to mimic the various

processor cores.

With respect to the final hardware architecture, or a virtual platform operating

on instruction set simulation, the HAL needs to be implemented in Assembly

104 7 Abstract Simulation Implementation Model

a b

Fig. 7.7 Comparison between hardware abstraction layer for ISS- and VPU-based simulation.

(a) Hardware Abstraction Layer for ARM926E-JS. (b) Hardware Abstraction Layer on VPU

programming language or low-level software that holds hardware specific

information. Typically load/store operations are handled based on the principle of

memory-mapped I/O. Based on the address, the memory management unit (MMU)

determines which communication port of the underlying processor core deals with

the communication request. Other more specific communication architectures can

be addressed by special instructions such as ARM’s coprocessor interface [174] or

the Fast Simplex Links (FSL) of Xilinx’ Microblaze processor [274]. Figure 7.7a

illustrates the execution of a HAL on an ARM926E-JS [174] processor core. While

standard load (LDR) and store (STR) register operations use the memory address,

the special instructions load (LDC) and store (STC) coprocessor register are directly

passed to the coprocessor interface.

Instead of using hardware-specific software code as input, the VPU’s HAL

provides a highly generic communication interface to emulate all kinds of commu-

nication accesses. It is based on the common principle of data communication, i.e.,

the sending and receiving of data. Therefore, the HAL provides the two routines put

and get to enable efficient communication accesses. During simulation these com-

munication requests are either directly passed to the communication handler of the

VPU or trigger a protocol execution. Figure 7.7b highlights the basic principle of

the VPU while it mimics an ARM926E-JS processor core. Direct communication

accesses (read and write) execute similarly to the behavior of the real hardware.

Depending on the memory address, the access is routed to the right communica-

tion port. As these direct communication accesses are platform specific, developers

should utilize communication protocols that are built on top of the direct commu-

nication interface. These protocols can vary from a simple access of a dedicated

memory address, e.g., reading the current clock value, to larger protocol implemen-

tations that utilize DMA controllers to copy a complete block of data. In order to

access external processor ports these implementations utilize the direct communi-

cation interface.

7.4 Software Layers of the VPU 105

Table 7.1 Protocols of the VPU’s hardware abstraction layer

Data structure Communication port access Special features

Variable structure Internal register Blocking/Nonblocking

(C-based) External memory mapped No/Flag-based synchronization

Specialized communication port

DMA transfer (memory mapped)

Implementations of such protocols are not limited by any restriction in general.

Nevertheless, being located within the hardware abstraction layer, these protocols

should focus on rather low-level memory accesses rather than complex device

drivers. Protocol implementations differ in the transferred data structure, the ac-

cessed communication port, and other features such as flag-based synchronization

or blocking and nonblocking calls. Table 7.1 gives an overview of exemplary pro-

tocols whereas the pseudo-code snippet in Listing 7.3 shows a nonblocking and

nonsynchronized DMA protocol implementation.

With the hardware abstraction layer deployed on top of the VPU simulation

model, arbitrary software can be implemented without the need to incorporate hard-

ware specific knowledge of memory addresses and other features. After introducing

the low-level hardware abstraction layer, the discussion now turns to more software-

centric layers like the device drivers and the operating system layer of the VPU.

DMA Protocol () {
i f (w r i t e) {

/ / t r i g g e r DMA w r i t e

/ / C l e a r p en d i n g IRQs

w r i t e (DMA rese t ad d r ess , 0 , s i z e o f (i n t)) ;

/ / Se t DMA t r a n s f e r s i z e

w r i t e (D M A s e t s i z e a d d r e s s , s i z e o f (d a t a) , s i z e o f (i n t)) ;

/ / SRC & DST Ad d r ess

w r i t e (DMA set s r c ad d r ess , s r c a d d r e s s , s i z e o f (i n t)) ;

w r i t e (DMA set d s t ad d r ess , d s t a d d r e s s , s i z e o f (i n t)) ;

. . .

/ / En ab l e DMA t r a n s f e r

w r i t e (DMA enable address , 1 , s i z e o f (i n t)) ;

w a i t f o r i r q () ;

}
e l s e {

/ / t r i g g e r DMA r e a d

. . .

w a i t f o r i r q () ;

}
}

Listing 7.3 Exemplary DMA Protocol based on CoWare’s generic DMA controller [158]

7.4.2 Device Drivers

Implementation of wireless communication devices follows the principle of

component-based design, like the TI OMAP platform visualized in Fig. 2.4. The

fundamental idea of such design is to assemble IP components of different type

and arbitrary number. Advantage is the fast and simple platform development, but

well-defined component interfaces are a must. The centerpiece of each platform

106 7 Abstract Simulation Implementation Model

Fig. 7.8 Hardware device and device driver [273, p. 285] with pure slave behavior

are the processor cores that execute the user applications and perform platform

management. Nevertheless, other processing elements are mandatory to achieve

the application-given requirements. These hardware components range from simple

I/O controllers, like a keyboard controller, to highly complex programmable 2D/3D

graphic hardware accelerators [41].

From the software perspective, these hardware components are commonly named

devices. As component-based design mandates well-defined interfaces in hardware,

they are naturally reflected by device drivers in the software domain. These drivers

ease software development as they abstract low-level from high-level software de-

velopment and hide all hardware-specific device information. In general, device

drivers provide various access routines to software developers, which range from

simple memory-mapped I/O components to complex access patterns based on DMA

data communication. In addition, interrupt handling is of huge importance to prevent

active waiting times due to polling operations.

Tanenbaum [273, p. 284ff.] distinguishes three basic types of devices, namely

programmed I/O, interrupt-driven I/O, and I/O using DMA. The simplest form, i.e.,

the programmed I/O device, is exemplified in Fig. 7.8. Here the hardware device

exposes an interface consisting of two registers to the rest of the system. While

the first register denotes the current status of the device and the second enables

acceptance of arbitrary data. For classical slave devices, the arrival of new data

triggers execution of the functionality, e.g., displaying of the received data on an

LCD display.

The illustrated software routine of the programmed I/O device driver (Fig. 7.8)

polls until the status flag signals a nonbusy device before passing new data to it.

This mechanism is called polling and has the disadvantage that the processor core

is always active when waiting for the device to be accessible. Hence, more ele-

gant device drivers make use of advanced features such as interrupt-driven I/O, or

completely outsource the data transfer to a direct memory access (DMA) controller.

Such implementations enable the processor core to execute other tasks or to enter

sleep mode until the device is available. Appendix B.1 highlights examples of two

more advanced device drivers and their VPU implementations.

With respect to this example, the depicted pseudo-code implementation high-

lights the access to the underlying device by calling HAL routines (Listing 7.4).

Similar to these routines, the HAL (Listing 7.5) allows efficient implementation of

7.4 Software Layers of the VPU 107

i o r o u t i n e () {
c o p y f r o m u s e r (b u f f e r , p , co u n t)

f o r (i =0 ; i < co u n t ; i ++) {
b o o l s t a t u s = BUSY;

wh i l e (s t a t u s != READY) {

/ / HAL r o u t i n e f o l l o w s

g e t s t a t u s r e g (& s t a t u s) ;

}

/ / HAL r o u t i n e f o l l o w s

s e t d a t a r e g (p [i]) ;

}
r e t u r n t o u s e r () ;

}

Listing 7.4 Example of polling memory ma-

pped I/O device driver [273]

i o r o u t i n e () {
c o p y f r o m u s e r (b u f f e r , p , co u n t)

f o r (i =0 ; i < co u n t ; i ++) {
b o o l s t a t u s = BUSY;

consume (. . .) ;

wh i l e (s t a t u s != READY) {
b y t e s = s i z e o f (b o o l) ;

/ / HAL r o u t i n e f o l l o w s

r e a d (STATUS ADDR, &s t a t u s , b y t e s) ;

consume (. . .) ;

}
consume (. . .) ;

b y t e s = s i z e o f (p [i]) ;

/ / HAL r o u t i n e f o l l o w s

w r i t e (DATA ADDR, p [i] , b y t e s) ;

}
r e t u r n ;

}

Listing 7.5 Example of polling memory ma-

pped I/O device driver on VPU

device drivers on top of the direct-interface API (write- and read) and other protocol

implementations. This enables the implementation of device drivers that are equal

to the final implementation for a particular hardware.

In order to support early design space exploration the VPU technology operates

on top of host-based simulation with an annotation principle of the execution char-

acteristic. When using instruction set simulation or the real hardware, developers

can measure the execution characteristic of the cross-compiled software. Unfortu-

nately, neither the instruction set simulator nor the hardware is available in early

design phases; also the compiler tool-chain is not in its final stage. Hence, as previ-

ously highlighted (Sect. 7.3), the VPU provides a unique methodology to annotate

execution characteristics on different abstraction levels to mimic the behavior of

the real hardware. Selection of the utilized abstraction layer in order to best cap-

ture the behavior, depends on the expert knowledge of the designer. Therefore, no

restrictions occur for instrumentation of device drivers so as to annotate their execu-

tion characteristics. Listing 7.5 exemplifies a source-level-based annotation scheme

(Sect. 7.3.2).

With the already introduced software layers, processor cores like ones with

a single-threaded application (Fig. 7.2) or programmable hardware accelerators

(Fig. 7.2) can be captured by the VPU. With operating systems entering embedded

systems, in particular for wireless communication devices (already 80% of devel-

oped embedded systems use an operating system in 2005 [275]), the next logical

extension of the VPU enables support for operating systems and other middlewares.

First, the foundation of operating system modeling, and later of middleware model-

ing is introduced.

7.4.3 Operating System Layer

Finding a unique and precise definition of an operating system is rather difficult, as

the functionality and purpose of the operating system heavily depend on the point of

view. For example, in a top-down software-centric view, the operating system is an

108 7 Abstract Simulation Implementation Model

extended machine that shields software developers from low-level hardware issues.

Taking a bottom-up hardware-centric point of view, the operating system exhibits a

central resource manager of the available hardware resources.

Instead of selecting one exclusive definition, today’s common agreement is to

subsume both definitions into a single one that defines the basic features of an oper-

ating system as a:

1. Management and coordination of resources and activities (applications).

2. Acting as an extended/virtual machine to relieve application software develop-

ers from hardware details by inserting an abstraction layer above the hardware

(Fig. 7.2).

Research in operating systems has quite some history that can only be sketched

here. More in-depth discussions can be found in [273]. Basic research started in the

1960s with the introduction of batch systems. While in following years technology

advances increased the computational performance of computers, I/O-access capa-

bilities were lagging behind. This resulted in long stall times of the computational

resources due to the waiting for data. As a solution, the paradigm of multitasking

was invented and applied to overcome this issue. Later this evolved to one of the

absolutely fundamental principles of modern operating systems for resource man-

agement. With the introduction of very large scale integrated (VLSI) circuits, the

capabilities of computational resources exploded (see Moore’s Law [3]), which – in

turn – boosted software development and, in particular, the use of operating systems.

The various different objectives and business fields resulted in a vast number and

type of operating systems. The general-purpose domain as we see it today is dom-

inated by Windows and Unix (including derivatives such as Linux [276]) operating

systems. Nevertheless, for each particular domain a specialized and dedicated op-

erating system exists. Separation is commonly done on the basis of the addressed

platform [273, p. 19f] which are mainframe, server, personal computer, embedded

system, and smart card operating systems.

For the addressed application domain, focus is placed on operating systems for

embedded systems. In contrast to operating systems from the personal computer

domain, these are specially tailored for devices with limited resources such as re-

stricted computational performance of the underlying hardware platform, memory

size, as well as tight energy and power restrictions. In addition, embedded systems

often require real-time capabilities leading to real-time operating systems (RTOS).

The market of operating systems for embedded devices is widely distributed

among various commercial vendors, such as Windows CE, VxWorks, QNX, RTX,

C/OS, and Mentor Graphics’ Nucleus RTOS, as well as open-source solutions built

upon Unix derivatives like Linux [275]. The common features such as process man-

agement and control, as well as interprocess communication and synchronization,

are implemented in every operating system. Other more dedicated features and their

implementation depend on the utilized operating system.

Despite the aforementioned commonalities, operating systems vary in features,

implementations, and API usage so that software portability is limited and mostly

requires manual modification of the software. In order to make software portable, an

7.4 Software Layers of the VPU 109

interface standardization called Portable Operating System Interface (POSIX) [277]

was defined. POSIX became the IEEE Standard 1003.1-1988 that defines a fixed

API on top of UNIX. It can also be utilized in any other operating system. Funda-

mental features supported by the standard are process control and creation, as well

as the handling of I/O and other data communication. Later additions to the original

standard include real-time support along with advanced scheduling and synchro-

nization principles.

Returning to the discussion of the VPU technology and the operating-system

layer, early design space exploration aims at the identification of necessary features

and evaluating which operating system serves best for the addressed application and

platform. In addition, all effects of the operating system, such as context switches,

can have significant impact on the overall system performance. Therefore, this must

be taken into account right from the start of the design cycle. The modeled and

available operating-system layer supports the fundamental concepts of:

• Process control and management.

• I/O and interprocess communication.

To capture the effects of resource management during early design space explo-

ration, a generic operating system (generic OS) has been developed on top of the

VPU. This generic OS does not reflect a single, unique operating system. Instead,

it incorporates the identified common features. This allows software developers

to evaluate the necessary functions to achieve a successful design. The abstract

simulation-based investigation allows the evaluation of arbitrary design decisions

and replaces an ad hoc selection of an operating system as commonly done to-

day [275].

The features included in the generic OS have been identified during a detailed

inspection of two candidates, namely the IEEE POSIX standard and the Real-Time

Operating System for Multiprocessor Systems (RTEMS). These features are:

• Process management:

– Multitasking including, e.g., dynamic task creation, starting and stopping of

tasks.

– Preemptive and nonpreemptive scheduling with various scheduling algo-

rithms, e.g., round-robin, priority based, or time slicing [261].

– Advanced process state control (on basis of a standard control as in [273,

p.78f]).

• Interprocess communication and synchronization:

– Synchronization primitives like mutexes and semaphores [273, p. 110ff].

– Device drivers and I/O interfacing

Resource management, including process management, is the centerpiece of each

operating system. Therefore, the generic OS is formed around the common princi-

ple of multitasking. An advanced task-state control was selected to capture arbitrary

configurations as highlighted in Fig. 7.9. In total, the proposed framework addresses

110 7 Abstract Simulation Implementation Model

Fig. 7.9 Advanced task state control in the generic operating system

the objective of design space exploration. Hence, in contrast to emulation of one

unique operating system, the generic OS provides a set of fundamental functions

in order to support exploration of required features. Table 7.2 depicts the common

features that have been identified and incorporated for task management. For com-

parison, Table 7.3 illustrates the correspondence between the generic OS and the

reference implementations of the RTEMS and the POSIX API.

A typical design flow starts with the use of these generic functions. During later

design stages, additional required features that need to be incorporated might be

identified. Therefore, the generic OS is structured as a software layer above the

VPU simulation model, which allows easy addition of arbitrary extensions. With the

ongoing development process, the level of abstract simulation is left and the level

of instruction set simulation is entered according to the envisioned design process.

Naturally, at this level the software developed for the generic OS needs to be ported

to the specific OS in a (semi-)automatically or manual process. These refinement

steps are discussed in depth later within Sect. 7.6.

Table 7.2 Basic functions of the generic operating system to support task management

OS Task Create Creates a task including allocation of memory.

OS Task Destroy Destroys a task and releases its data.

OS Task Start Starts a task and enables the scheduler to trigger the task

execution.

OS Task Stop Stops a task and removes it from scheduling.

OS Task Suspend Suspends a task and removes it from scheduling.

OS Task Resumes Resumes an earlier suspended a task.

OS Task Wait Yields the task till the next time the scheduler initiates task

execution.

OS Task Wait event Yields the task till the event is activated.

OS Task Wait for time Yields the task and allows scheduling only after the given time.

OS RoundRobin Scheduler Instantiates a round-robin scheduling method.

OS Priority Scheduler Instantiates a priority based scheduling method.

OS TDMA Scheduler Instantiates a time slicing scheduling method.

7.4 Software Layers of the VPU 111

Table 7.3 Specific OS API refinement of important OS functions

Generic OS API RTEMS API POSIX API

OsTaskId rtems task ident getpid

OsTaskSuspend rtems task suspend pthread kill(..., SIGSTOP)

OsTaskResume rtems task resume pthread kill(..., SIGCONT)

OsTaskYield rtems task suspend sched yield

OsTaskYieldTo rtems task resume pthread kill(..., SIGCONT)

rtems task suspend pthread kill(..., SIGSTOP)

OsTaskCreate rtems task create pthread create

OsTaskDelete rtems task delete pthread exit

OsTaskStart rtems task start –

OsWakeAfter rtems task wake after sleep

OsShutdown rtems shutdown executive exit

...

Interprocess communication and synchronization forms the second basic feature

of the generic OS. From the perspective of software development, interprocess com-

munication operates on software constructs that ensure software communication

and synchronization. Example constructs are semaphores, mutexes, pipes, message

queues [273], and other more advanced ones like CORBA [278] or the message

passing interface (MPI) [279]. This software-centric view is dominated by the pro-

vided mechanism and functionality.

Inspecting interprocess communication from the hardware perspective, each

communication and synchronization represents a particular functionality in software

that finally maps to a specific data structure stored within the memory of the hard-

ware platform. Hence, all functions finally map to memory-mapped I/O and/or to the

hardware abstraction layer interface. The fundamental goal of the VPU technology

is to support early design space exploration. Consequently, the more fine-grained

hardware perspective is chosen as it incorporates the complete software and hard-

ware issues, while the software view abstracts the hardware to simplify software

development.

The interprocess communication and synchronization is captured similarly to

device drivers. Each primitive maps to a data structure and a set of functions to

interface this data. Listing 7.6 in Fig. 7.10 illustrates a semaphore that is defined

as data structure given by a counter variable and queue. The semaphore implemen-

tation comes with an initialize, a P- (prolaag-) and V- (verhoog-) operation [273,

p. 110ff] and the data structure is stored as bits and bytes in any kind of memory.

The difference between a cross-compiled software executing on an instruction

set simulator, and a VPU-based implementation of a semaphore is exemplified in

Listing 7.6 and 7.7 in Fig. 7.10. Generating the software binary from a standard

C-code implementation, the linker allocates a particular memory segment for the

given semaphore data structure. This segment is mapped to an arbitrary memory

address that allows physical access in order to support the required communica-

tion or synchronization. In contrast to instruction set simulation that executes the

binary executable step by step, the VPU technology simulates the software on the

112 7 Abstract Simulation Implementation Model

s t r u c t Semaphore {
i n t co u n t ;

Queue queue ;

};

/ / L i n k e r d e c i d e s memory a d d r e s s

s t r u c t Semaphore s ;

OS ev en t e ;

v o i d i n i t i a l i z e (s t r u c t Semaphore s , i n t number) {

s . co u n t = number ;

s . queue . empty () ;

}

v o i d a c q u i r e (s t r u c t Semaphore s) { / / P−o p e r a t i o n

i f (s . co u n t <= 0) {
O S t a s k w a i t e v e n t (e) ;

}

s . co u n t−−;

}

v o i d r e l e a s e (s t r u c t Semaphore s) { / / V−o p e r a t i o n

s . co u n t ++;

i f (s . co u n t > 0) {
e . n o t i f y () ;

}
}

Listing 7.6 ISS

Semaphore s {
i n t co u n t ;

Queue queue ;

};

/ / S e t s e x p l i c i t l y t h e memory a d d r e s s

Semaphore ∗s = SEMAPHORE MEM ADDR ; OS ev en t e ;

v o i d i n i t i a l i z e (s t r u c t Semaphore ∗s , i n t number) {
/ / w r i t e i n i t i a l co u n t v a l u e

w r i t e (s +0 , number , s i z e o f (i n t)) ;

/ / c l e a r queue

w r i t e (s+ s i z e o f (i n t) , 0 , s i z e o f (queue)) ;

}

v o i d a c q u i r e (s t r u c t Semaphore ∗s) { / / P−o p e r a t i o n

i n t tmp =0 ;

r e a d (s +0 , tmp , s i z e o f (i n t)) ;

i f (tmp <= 0) {
O S t a s k w a i t e v e n t (e) ;

}
tmp−−;

w r i t e (s +0 , tmp , s i z e o f (i n t)) ;

}

v o i d r e l e a s e (s t r u c t Semaphore ∗s) { / / V−o p e r a t i o n

i n t tmp ;

w r i t e (s +0 , tmp , s i z e o f (i n t)) ;

tmp ++;

r e a d (s +0 , tmp , s i z e o f (i n t)) ;

i f (tmp > 0) {
e . n o t i f y () ;

}
}

Listing 7.7 VPU (no annotation statements)

Fig. 7.10 Semaphore ISS vs. VPU software code comparison

host machine. This makes cross-compilation not required and allows system wide

performance evaluation before the final hardware, compiler, and/or software im-

plementation is available. However, this requires making memory accesses explicit

within the software implementation of such communication and synchronization

primitives. Otherwise, during simulation, the variable is treated as internal and no

external memory accesses will be generated by the VPU. This does not necessarily

lead to erroneous implementations, but might result in too optimistic performance

results, as cost intensive memory accesses might be missed.

Listing 7.7 in Fig. 7.10 illustrates an implementation with explicit memory ac-

cess based on the semaphore example. Here all accesses to the data structure are

made explicit by utilizing the memory access routines of the hardware abstraction

level (Sect. 7.4.1). For task management, the above introduced operating-system

resource-management facilities are utilized and, for simplification reasons, annota-

tions are neglected.

The implementation of communication and synchronization services closely

relates to the earlier discussed protocol implementations of the communication

primitives (put and get) within the hardware abstraction layer. In principle, one

implementation method can replace the other, as both can utilize the functions

provided by the operating system. Nevertheless, for the sake of a clear software-

layer structure, this should be and is prevented for the VPU technology. Hence,

low-level routines are kept in the hardware abstraction layer, minimizing the used

operating-system features. Functions that extensively require the operating system

for implementation, like semaphores, are kept within the generic OS layer to prevent

7.4 Software Layers of the VPU 113

the mixing of different software abstraction layers. Later this clear separation

significantly simplifies the porting of the software application from the generic to a

specific operating system.

With the synchronization and communication routines available, the generic OS

support already provides a solid foundation for the inspection of operating-system

features at early design stage. This includes capturing arbitrary performance effects

and the impact of the operating system on the overall performance. Before introduc-

ing the implementation of tasks from the user perspective, the final layer subsuming

other middlewares should be briefly sketched.

7.4.4 Middleware Layer

The name middleware originates from the domain of distributed systems. It defines

a software that allows other software components and/or applications to connect,

in the sense of data exchange, when running on different systems attached to an

arbitrary interconnect network. Placed between the application software and the

underlying operating system layer, it is called middleware. Whether a function be-

longs to the operating system or to the middleware layer is to some extend arbitrary.

However, the general rule is that kernel functions belong to the operating system

while the middleware incorporates extensions mostly targeting efficient interpro-

cess communication. This rough and floating separation has the potential that over

time original middleware features migrate into the operating system, as for example

of the TCP/IP stack.

Because of the increasing usage of heterogeneous MPSoC platforms, middleware

is becoming rapidly more important in the domain of embedded systems. Originally

intended for distributed systems, middlewares have a rather large memory footprint

and require high computational performance. Therefore, recent research has focused

on middlewares for resource-limited embedded systems. Examples are specially tai-

lored middlewares like the CORBA ORB express [280].

As a consequence, the VPU technology also has to provide suitable middlewares.

Additionally, it must allow easy extension and development of middlewares to sup-

port evaluation of the corresponding performance impact at early design stage. The

general layer concept allows for a simple development of middlewares on top of the

generic OS layer and the VPU. In the following this will be sketched on the basis of

the example depicted in Fig. 7.11.

The example shows two tasks, a source and sink task, executed in sequence.

The source task (task #1) generates data tokens which are passed to the sink task

(task #2). The sink task consumes all data. In addition, each execution of the sink

task is independent of the other executions of that task, hence parallelism can simply

be added by multiple instantiation. For the given example, the source task (task #1)

generates the data tokens every 1000tu which is shorter than the sink task (task #2)

requires for execution (1000..2000tu). Therefore, multiple instances of the sink task

are necessary in order to capture each generated data token.

114 7 Abstract Simulation Implementation Model

Fig. 7.11 Example of a middleware on top of the VPU

When instantiating multiple instances of the sink task, the source task has to

decide whether to send the data token to the first or the second instance. One option

is to utilize a static scheduling, e.g., a round-robin scheduling which decides where

to send the data token. As long as the sink task runs on the processing element

exclusively, this typically works well. However, the more likely case, especially

when using processor cores, is that the resource is shared among multiple tasks so

that the source task can never be sure whether the sink task has finished its prior

execution.

In order to select the available task instance, the task dispatcher module and its

middleware provides an efficient mechanism to overcome this issue (Fig. 7.11). At

instantiation time, each task with multiple instances registers at the task dispatcher

module. During execution, whenever the source task wants to send its data, it first

requests and allocates an instance of the sink task by accessing the task dispatcher

module. When getting a successful lock on a task instance, the data is sent to the

corresponding task. Otherwise the source task must wait until a task instance is

available. Data reception triggers execution of the corresponding sink task, which at

the end signals the task dispatcher module the deallocation before entering the wait

state. This releases the lock of the task instance and a following allocation request

of the source task can be answered with this task instance.

Obviously, the middleware development does not affect any of the underlying

software layers of the VPU so that the development can be performed independently.

Having completed the discussion of all available and extensible software layers as

well as the VPU simulation model, the subsequent section inspects the application

development.

7.5 Application Layer 115

7.5 Application Layer

The proposed framework offers two design entries for modeling user applications.

Besides a traditional textual design entry for software development, an efficient

graphical design entry is provided. The graphical entry addresses, in particular,

applications which can be consistently described in process networks, like syn-

chronous dataflow graphs (SDFs) and Kahn process networks (KPNs). This is

particularly well-suited for applications from the wireless communication domain.

After highlighting the fundamental textual task modeling, the graphical design entry

will be described.

7.5.1 Textual Design Entry

Traditional software development for an embedded system focuses on task-level

modeling in a high-level programming language, typically C/C++. In addition,

software developers make extensive use of libraries to increase reuse and fasten

the development process. Examples of such libraries are operating systems, but also

other device drivers and middleware libraries.

To support such development, the VPU technology incorporates the commonly

used libraries and features as sketched earlier. Accordingly, software develop-

ment at this abstraction level equals traditional development and enables a smooth

(semi-)automatic refinement in order to achieve the final implementation.

To put the task-level modeling onto a solid mathematical foundation, an opera-

tional semantic based on the tagged signal modeling (TSM) [81] has been derived

for both the task modeling and the underlying VPU simulation model [250]. This

formal description defines a task execution as a timed communication extended finite

state machine (tCEFSM) to capture arbitrary software execution on a processor core.

After introducing the operational semantic, practical considerations of the textual

design entry follow. Here, the actual task-level development in C/C++ program-

ming language will be introduced and the correspondence between the practical and

formal description is highlighted.

Operational Semantic

The theory of the tagged signal modeling (TSM) and timed communication ex-

tended finite state machines (tCEFSM) serves as foundation for the operational

semantic of the VPU technology, including the task modeling in general [250]. After

some basic definitions the task modeling itself is derived.

Elementary Definitions

According to tagged signal modeling [81] an event e consists of a time tag t ∈T and

a value v∈ V . With respect to general programming concepts, the value v represents

116 7 Abstract Simulation Implementation Model

an arbitrary abstract data type (ADT). Overall, such abstract data type can consist

of various data fields including, e.g., address and data value of a memory request.

The point operator serves to access a particular member of the data structure, i.e.,

ei.value.address denotes the address field of the event ei. Based on the fundamental

definition of a single event, a signal s defines a set of events, which can be viewed

as a subset of T ×V .

Timed Communication Extended Finite State Machine

A software task executed on a particular processor core can be considered as a timed

Communication Extended Finite State Machine (tCEFSM), which can be formally

described. A tCEFSM originally derives from a finite state machine (FSM) [281].

To be more generic it is extended with internal variables (extended FSM) and output

communication (communication extended FSM).

Definition 7.1 (Timed Communication Extended Finite State Machine

(tCEFSM)). A tCEFSM defines an 8-tuple (I ,O,Z ,z0, f ,U ,Dbusy,Ddelay) with:

• A set of input events I ⊆ T ×V , and output events O ⊆ T ×V ,

• A finite, nonempty set of explicit states Z ,

• An initial state z0,

• A set of variables U = (u1, . . .), which represent the implicit state,

• A state transition function f : Z ∗×I �→Z ∗×O , where Z ∗ denotes the set of

all implicit and explicit states,

• A set of busy periods Dbusy = {∆tbusy,i}, and

• A set of processing delays Ddelay = {∆ti,d}.

The tCEFSM formally specifies the task modeling and allows defining the VPU

model formally as done in [250] and [100] in respect to the architect’s view

framework (AVF) [282]. For practical considerations, software developers rely on

programming languages like C/C++ [283, 284] rather than sticking to such formal

finite state machines. Hence, in the following, the practical considerations highlight

task modeling from programming perspective and link the utilized constructs to the

formal definition.

Practical Considerations for Task Modeling

The formalized operational semantic defines a solid mathematical foundation of task

modeling. However, software development in general follows a more practical and

pragmatic design process rather than a strict formal approach.

Software development for embedded systems is typically carried out in a high-

level programming language, such as C/C++. Therefore, it is of vital importance

to efficiently support these programming languages in the abstract implementation

model. However, there are inevitable minor differences between standard soft-

ware development based on cross-compilation and the use of Virtual Platforms

(VPs) [285] on the one side, and VPU-based simulation on the other.

7.5 Application Layer 117

a

b

Fig. 7.12 Comparison of modeling of software and hardware on ISS and VPU. (a) Modeling and

usage of software on an ISS. (b) Modeling and usage of software on a VPU

Figure 7.12 compares traditional instruction set simulation against the VPU

technology. In addition, the corresponding software development flow is high-

lighted. Instruction set simulation mimics a processor core by reading the target

executable instruction by instruction. During execution these instructions are de-

coded and the simulator emulates the intended operation of the addressed instruction

set architecture. This definitely requires a software cross-compilation for the tar-

geted architecture because the simulator operates on the target executable. This

executable in binary format is obtained by linking the necessary libraries to the

object files.

In contrast, the VPU technology operates on a host-based simulation incor-

porating the annotation of execution characteristics to reflect the behavior of the

underlying hardware architecture (Sect. 7.3). This eliminates the need for cross-

compilation, which is highly beneficial at early design stages where typically neither

the compiler nor the final instruction set architecture is ready. Hence, the VPU di-

rectly enables the use of simulation techniques for early performance measurements,

while simulation on the level of the instruction set needs to be delayed until the final

architecture and the software tool chain is available. Additionally, the measurements

performed by instruction set simulation are snapshots of the current development

stage and might not reflect the final optimized software code. Thanks to the VPU,

system architects can simply evaluate different design options by modifying the

execution characteristic in minutes, while development and measurement of the

software on the instruction set level might require anything from days to months.

To inspect the task modeling differences, a small example depicted in Listing 7.8

and 7.9 shall be consulted. The software code utilized for instruction set simulation

is standard C-code. As the cross-compiler for the targeted architecture generates the

binary, the driver implementations in line 10 and 16 of Listing 7.8 refer to load, and

store operations to the corresponding memory addresses. These memory accesses

are implicitly contained in the C source-code and generated by the compiler.

118 7 Abstract Simulation Implementation Model

1

2

3

4 # d e f i n e KEYBOARD ADDR 0xE000 ;

5 # d e f i n e DISPLAY ADDR 0 xF000 ;

6

7 v o i d k e y b o a r d d r i v e r (c h a r ∗v) {
8

9

10 ∗v = ∗((c h a r ∗) (KEYBOARD ADDR)) ;

11 }
12

13 v o i d d i s p l a y d r i v e r (c h a r v) {
14

15

16 ∗((c h a r ∗) (DISPLAY ADDR)) = v ;

17 }
18

19

20 v o i d main () {
21 wh i l e (1) {
22 c h a r v a l u e ;

23 k e y b o a r d d r i v e r (& v a l u e) ;

24 . . .

25 / / i mp l emen t f u n c t i o n a l i t y

26 . . .

27

28

29

30 d i s p l a y d r i v e r (v a l u e) ;

31

32

33 }
34 }

Listing 7.8 Software intended for instru-

ction set simulation

1 / / i n c l u d e s s t a n d a r d t a s k h e a d e r

2 # i n c l u d e ”MyTask . h ”

3

4 # d e f i n e KEYBOARD ADDR 0xE000 ; # d e f i n e DISPLAY ADDR

0 xF000 ;

5

6 v o i d MyTask : : k e y b o a r d d r i v e r (c h a r ∗v) {
7 / / r e f l e c t e x e c u t i o n c h a r a c t e r i s t i c

8 consume (. .) ;

9 r e a d (KEYBOARD ADDR, v , s i z e o f (c h a r)) ;

10 }
11

12 v o i d MyTask : : d i s p l a y d r i v e r (c h a r v) {
13 / / r e f l e c t e x e c u t i o n c h a r a c t e r i s t i c

14 consume (. .) ;

15 w r i t e (DISPLAY ADDR , v , s i z e o f (c h a r)) ;

16 }
17

18

19 v o i d MyTask : : t a s k () {
20 wh i l e (1) {
21 c h a r v a l u e ;

22 k e y b o a r d d r i v e r(& v a l u e) ;

23 . . .

24 / / i mp l emen t f u n c t i o n a l i t y

25 . . .

26 / / r e f l e c t e x e c u t i o n c h a r a c t e r i s t i c

27 consume (. .) ;

28 . . .

29 d i s p l a y d r i v e r (v a l u e) ;

30 / / r e f l e c t e x e c u t i o n c h a r a c t e r i s t i c

31 consume (. .) ;

32 }
33 }

Listing 7.9 Software intended for VPU-

based simulation (C++/SystemC based)

When using the abstract simulation technology based on the VPU, these memory

accesses need to be made explicit, since no cross-compilation step is performed.

Within the illustrated example, the memory accesses are triggered by calling the ex-

plicit read and write memory access function of the VPU’s HAL (line 10 and 16 in

Listing 7.9). In order to be accurate, the VPU needs to be informed about the execu-

tion characteristic of each particular software piece. Therefore, developers annotate

a particular characteristic with the consume function. This annotation follows one

of the earlier introduced approaches of statistical, source-level, or implementation-

based annotation (Sect. 7.3). For this small example, the corresponding tCEFSM of

the given task can be captured consistently as illustrated in Fig. 7.13. Please note

Fig. 7.13 Exemplary task

model illustrated as tCEFSM

7.5 Application Layer 119

that, in general, it is possible to reflect each task by such tCEFSM. However, in real

applications, the state number easily explodes and prohibits a simple visualization.

Apart from the annotation and the explicit memory accesses, the VPU simulation

technology demands C/C++ or SystemC compliance. Hence, each individual task

reflects a class that defines the actual procedure in the task function (line 20 in

Listing 7.9).

The textual design entry basically does not restrict the software modeling any fur-

ther and developers can easily program complex applications by making extensive

use of functions from the operating system, including dynamic task management,

middlewares, device drivers, and the hardware abstraction layer.

With respect to traditional software development, the textual design of an appli-

cation introduces no restrictions. However, when applicable, modern design entries

provide graphical visualization in order to simplify and speed-up the design process.

These graphical design entries are especially well suited for applications based on

process network and task graphs as discussed next.

7.5.2 Graphical Design Entry

The earlier discussion of applications pointed out that computational demanding

wireless communication standards and multimedia applications can be consistently

described as task graphs (Sect. 2.1). Hence, a graphical design entry similar to

software component-based design [286–288] has been envisioned. Figure 7.14

illustrates the overall principle that will be discussed in the following. First the

operational semantic is highlighted, followed by a discussion on the practical use.

...

...

...

Fig. 7.14 Principle of the graphical design entry

120 7 Abstract Simulation Implementation Model

The analytical implementation model defines a task graph as a 4-tuple

TG = (T,D,r,δ) (see Definition 6.3). For a mathematical system evaluation,

the previously introduced restrictions are highly beneficial to reduce analysis

complexity. However, this is not required for simulation as dynamic effects can

be handled naturally. Hence, an acyclic task graph and fixed data rates are no longer

required; static scheduling techniques may be, but need not be, applied. This leads

to a more generalized definition of the application similar to KPNs.

The generalized task graph definition removes some restrictions from the SDF

task graph (Definition 6.3) which supports efficient mathematical processing.

Definition 7.2 (Application as Generalized Task Graph).

T Ggeneralized = (T,D) :

T is the set of tasks {t1, ..,tn},

D is a set of ordered pairs {(ti,t j) : ti, t j ∈ T}.

The previous analytical implementation model defines a task only on the basis

of its execution characteristic. Accordingly, the edges define data communication

necessary to process the task and to emit data to another task. In simulation, this

task description can and should be inspected on a more fine-grained level to achieve

more accurate results and to allow investigation of detailed design issues. Therefore,

a looped tCEFSM (Definition 7.1) defines a task within the graphical design entry.

Loop behavior refers to tasks that execute over various states, but return to an explicit

state zi as depicted in Fig. 7.15. The implicit state kept inside the variables U can

be of arbitrary value.

Each data edge di ∈D defines a data transfer between two tasks and is considered

as a channel between two adjacent and connected tasks ti and t j (Fig. 7.14). With

respect to a hardware abstraction layer (HAL) as introduced in Sect. 7.4.1 a task

sends and receives data by utilizing the put and get functions. As illustrated, each put

and get directly relates to a channel that corresponds to an edge for data exchange.

Fig. 7.15 Looped tCEFSM

7.5 Application Layer 121

This application description allows efficient software development in a graphical

design manner based on the principle of task graphs. Assembling task graphs

can be efficiently performed in graphical design tools, e.g., Platform Creator Tool

(PCT) [173]. Besides the graphical representation by tasks and edges, the individ-

ual software development of each task is done on the basis of a textual design,

e.g., the earlier discussed C/C++ based approach (Sect. 7.5.1). The clear interface

separation (put and get) allows developers to focus on the behavior, while data com-

munication is handled by the channel and its respective protocol implementation.

Up to this point, only the application part has been considered for the graphi-

cal design entry. However, for performance evaluation of the complete system, the

hardware platform as well as the temporal and spatial task mapping must be incor-

porated. From an abstract point of view, each hardware platform, in particular any

MPSoC platform, consists of processing elements, communication architectures,

and memories. Accordingly, a 3-tupel HW = (PE,CA,Mem) (see Definition 6.5)

defines any hardware architecture [251]. The class of processing elements contains

all kinds of components such as GPPs, DSPs, ASIPs, but also hardwired accelera-

tors. The VPU simulation model is able to emulate all of these processing elements,

as demonstrated previously (Fig. 7.2). The combined usage of various SystemC

components, including VPUs, allows for a complete system simulation.

Having specified a hardware platform candidate and having assembled a simula-

tion model, the temporal and spatial task mapping can be performed. The graphical

representation of the temporal and spatial task mapping denotes (1) the task-to-

processor assignment (spatial mapping) and (2) the execution order of tasks on one

processing element (temporal mapping). The spatial task mapping (STM) as given

in Definition 6.7 represents a simple drag and drop method of tasks to hardware

components within a graphical environment (Fig. 7.14). With respect to temporal

mapping, the static schedules (Definition 6.8) can be easily visualized, which is

not feasible for dynamic schedules defined by an underlying algorithm, e.g., round-

robin or priority based.

With the mapping of a task graph onto a particular hardware platform, the chan-

nels utilized for data exchange need to be instrumented by protocols. This protocol

instantiation requires an existing physical link between the corresponding process-

ing elements.

Definition 7.3 (Application-to-Architecture Mapping in a Graphical Environ-

ment). The application-to-architecture mapping consists of the following steps.

1. Task Development Phase. Each task is developed based on the textual design

entry (Definition 7.5.1) with the optional use of software features, e.g., the oper-

ating system. Data exchange is restricted to the use of dedicated channels. Hence,

task modeling is kept independent from the mapping and from the protocol for

data exchange by the use of clearly specified interfaces (put and get).

2. Spatial Task Mapping Phase. As specified by Definition 6.7 the applica-

tion tasks are mapped onto the processing elements of the hardware platform

(Fig. 7.14), while obeying the restrictions given in Definition 6.6.

122 7 Abstract Simulation Implementation Model

3. Temporal Task Mapping Phase. For each processing element a scheduling

(temporal mapping) needs to be defined that follows either a static (Definition

6.8) or dynamic scheduling scheme.

4. Protocols Implementation Phase. The tasks exchange data by the use of ex-

plicit interfaces (put and get) and dedicated channels, represented as edges within

the task graph (Fig. 7.14). However, these channels need to be instrumented by

protocols, e.g., those specified in the hardware abstraction layer (Sect. 7.4.1).

∃ protocol ∀ dk ∈ D = {(ti, t j) : ti, t j ∈ T (DFG)} :

with protocol = (data, location, f eatures),

with data, e.g., variable, fifo,

with location, e.g., shared memory, hardware fifo,

with f eatures, e.g., blocking, nonblocking.

Following these phases, system architects obtain a complete VPU-based simula-

tion model which serves for evaluation of decisions at early design stages. The VPU

technology and the graphical design entry have been successfully transferred into a

commercially available tool [171].

Acceptance and usability are mandatory for design space exploration tools.

Hence, the level of abstract simulation connects smoothly to the lower instruction

set simulation-based model and is sketched in the following section.

7.6 Refinement to Instruction Set Simulation

The overall design methodology proposes a continuous flow from the analytical

model to the final implementation. Within the refinement flow, the abstract simu-

lation model is located between the analytical and the ISS-based implementation

model. As introduced earlier, the Time Retrieval Engine closes the gap from the ab-

stract simulation model to the above located analytical model. Apart from coupling

these two abstraction layers, the discussion now turns to the link to lower abstraction

levels like instruction set simulation.

The results of the abstract simulation-based design space exploration are iden-

tified implementation candidates which meet the necessary application constraints.

However, the ultimate goal of any design process is the final implementation, con-

sisting of software and hardware. As the abstract simulation model operates on the

principle of abstracting the underlying hardware, system architects have to lower

the abstraction level for more fine-grained system evaluations. Naturally, this path

leads to the final implementation. Refinement in itself impacts the two major com-

ponents given by software and hardware. The subsequent discussion starts with

the refinement of the hardware simulation model. Later, it introduces the port-

ing of the software from the abstract VPU simulation model to the instruction set

simulator.

7.6 Refinement to Instruction Set Simulation 123

7.6.1 Hardware Simulation Model Refinement

In general the hardware architecture of any MPSoC follows the design principle of

component-based design. When using this design method, system architects assem-

ble various IP components to form the complete hardware architecture. A rough

classification separates these components into processing elements, communication

architectures, and memories [251,288]. Development of simulation models at Elec-

tronic System Level (ESL) also follows this principle. Here, the simulation model

of the complete platform is assembled by putting the simulation model of all com-

ponents together. The resulting system simulation model is usually referred to as

virtual platform.

As discussed earlier, development of the component models typically uses the

SystemC programming language. The use of the Transaction Level Modeling stan-

dard 2.0 [153] separates the component model from the external system by defining

a clear interface structure. This separation allows independent development of a

simulation model for each component. Because of their reactive (slave) behavior,

development of memory simulation models is done as for standard SystemC compo-

nents with a particular delay period. Therefore, in recent years research has focused

on the communication architectures and the processing elements.

Besides specific communication architecture models, e.g., AMBA AHB or

AXI [34], generic models such as the ones contained in the Architects View

Framework (AVF) [282] allow quick evaluation and exploration of different design

options. As the VPU is based on SystemC and is compliant to the TLM 2.0 stan-

dard, the same design options exist for virtual platforms. Hence, this only leaves the

processing elements emulated by VPUs subject to refinement.

The VPU emulates the behavior of an underlying processing element within the

system simulation. This includes effects of software execution and the emulation

of arbitrary communication including the interfaces and hardware ports. With each

component being capsuled by the communication interfaces, it is a black box for the

other components and data exchange only occurs at these interfaces. Hence, refine-

ment of the VPU to an instruction set simulator is reduced to a simple replacement

of the configured VPU with the dedicated instruction set simulator as depicted in

Fig. 7.16. Of course, this assumes the existence of the simulator and its compliance

to the TLM-2 standard.

The replacement of the VPU has a stronger impact on the software develop-

ment and implementation than on the hardware simulation model. This impact is

discussed next.

7.6.2 Software Refinement

Basis of today’s software development is the use of abstraction layers. Reasons for

using them are manifold. On the one hand the abstraction layers shield software

developers from lower level details by hiding fine-grained implementation details.

124 7 Abstract Simulation Implementation Model

Fig. 7.16 Refinement example – from VPU to ISS

Further, porting applications from one platform to another one is simplified as only

hardware specific software layers require modification. To enable the same software

development for the VPU as for the real hardware, the VPU model comes with the

discussed set of software layers that are:

• Middleware libraries

• An operating system

• Several device drivers

• A hardware abstraction layer

When modeling a particular application composed of different tasks, the only

difference to C/C++ programming is the requirement for annotating the execution

characteristic. Additionally, explicit memory accesses have to be used because no

cross-compilation and no instruction set simulation is performed. Therefore, soft-

ware refinement is equivalent to porting an application from one platform to another

with reduced effort, as only the following steps need to be applied.

1. Replacement or platform-specific implementation of all explicit memory ac-

cess calls.

2. Replacement of the generic OS by a specific one.

3. Removal of all annotations of the execution characteristic since instruction set

simulation executes the executable instruction-by-instruction.

The last step characterizes the removal of all consume calls as well as software

that relates to the computation of these annotations and can be automated. The other

refinement steps cause more development effort. When modeling software on top of

the VPU, memory accesses have been made explicit by calling the read and write

functions of the hardware abstraction layer (Sect. 7.4.1). With the replacement of

the VPU by an instruction set simulator, this has to be reversed as the compiler

inherently emits load and store instructions. Hence, two options exist in replacing

7.6 Refinement to Instruction Set Simulation 125

Table 7.4 Replacement or implementation of explicit memory access functions

Explicit memory access Corresponding C implementation

in abstract simulation model for Instruction set simulation

write(unsigned int address, int data, int size) unsigned int *address=...;

for (int i = 0; i<size; i++) {

*(address+i) = data[i];

}

read(unsigned int address, int &data, int size) unsigned int *address=...;

for (int i = 0; i<size; i++) {

data[i] = *(address+i);

}

the explicit memory accesses. First, the read and write functions are ported to the

specific hardware platform. Since this approach causes overhead, the better option

is to replace the function calls by the corresponding software code directly within

the source code. Table 7.4 illustrates an exemplary replacement of a read and write

function with integer data and address types.

The earlier steps are sufficient for the low-level software given by the hardware

abstraction layer and the device drivers. However, the operating system layer re-

quires additional effort during refinement.

Within the discussion of application and hardware platforms, the fragmented

domain of available operating systems has been sketched. As a consequence the

applied generic OS running on the VPU has been defined on the basis of process

management as well as interprocess communication and synchronization, rather

than replicating a single operating system. Hence, the software code must be ported

to the specific OS that later executes on the targeted platform. To simplify this port-

ing, correspondence tables determine the refinement path between the generic OS

and a specific one.

Table 7.5 reflects the mapping of some important operating system function calls,

which exemplifies the mapping principle. It should be noted that, the functionality

Table 7.5 Specific OS API refinement of important OS functions

Generic OS API RTEMS API POSIX API

OsTaskId rtems task ident getpid

OsTaskSuspend rtems task suspend pthread kill(..., SIGSTOP)

OsTaskResume rtems task resume pthread kill(..., SIGCONT)

OsTaskYield rtems task suspend sched yield

OsTaskYieldTo
rtems task resume pthread kill(..., SIGCONT)

rtems task suspend pthread kill(..., SIGSTOP)

OsTaskCreate rtems task create pthread create

OsTaskDelete rtems task delete pthread exit

OsTaskStart rtems task start –

OsWakeAfter rtems task wake after sleep

OsShutdown rtems shutdown executive exit

...

126 7 Abstract Simulation Implementation Model

1 v o i d t a s k () {
2 u n s i g n ed i n t i d =0 , p =0 , o l d p =0 ;

3 u n s i g n ed i n t s i z e =4 , comm id =1 ;

4

5 OsTaskId (& i d) ;

6

7

8 O s T a s k G e t P r i o r i t y (id , &p) ;

9 p ++;

10 O s T a s k S e t P r i o r i t y (id , p , &o l d p) ;

11

12

13 wh i l e (d a t a < 5 0) {
14 p u t (comm id , &d at a , s i z e) ;

15 OsWakeAfter (1 5 0) ;

16 d a t a +;

17 }
18 OsTask Des t ro y (i d) ;

19 }

Listing 7.10 Generic OS API

1 v o i d t a s k () {
2 u n s i g n ed i n t i d =0 , p =0 , o l d p =0 ;

3 u n s i g n ed i n t s i z e =4 , comm id =1 ;

4

5 r t e m s t a s k i d e n t (RTEMS SELF ,

6 RTEMS SEARCH ALL NODES , &i d) ;

7

8 r t e m s s e t p r i o r i t y (id , p , &o l d p) ;

9 p ++;

10 r t e m s s e t p r i o r i t y (id , RTEMS CURRENT PRIORITY,

11 &p r i o) ;

12

13 wh i l e (d a t a < 5 0) {
14 p u t (comm id , &d at a , s i z e) ;

15 r t e m s t a s k w a k e a f t e r (1 5 0) ;

16 d a t a ++;

17 }
18 r t e m s t a s k d e l e t e (i d) ;

19 }

Listing 7.11 RTEMS API

Fig. 7.17 Operating system specific refinement example

of the generic OS API call has to be reflected by the functionality of the specific

API. Thus, generic API calls might be replaced with no, one, or several specific

operating system API calls. An example where the API call is simply removed, is

the generic OsTaskStart function when translated to the POSIX standard. Here, the

tasks are inherently set to running state, hence starting the task is not necessary. On

the other hand, the OsTaskYieldTo function is mapped to two underlying specific

functions that together implement the same functionality.

This replacement of the generic OS calls is illustrated by an example in Fig. 7.17.

First the task identifies its current priority (line 1-6) and increments the priority by

one (line 8 + 9). Then the task sends 50 times a data sample (put in line 10) to the

next task. After each sent the task sleeps for 150 time-units. Finally, it destroys itself

(line 13).

On the basis of the presented technique, all generic OS API calls are translated to

their specific representatives allowing software developers to model their complete

application in a quick and simple manner. Additionally, portability and reuse of the

developed application are ensured by the generic OS API.

Finally, the middleware that operates on top of all other software layers should

not be affected or, at most, minor modifications due to explicit memory accesses

may be required as previously discussed. The same applies to the application task

developed on top of all abstraction layers.

Summarizing, the introduced software refinement from an abstract model to an

instruction set simulation model is rather straightforward and requires only minor

changes. Therefore, it was possible to develop an automatic refinement flow for

implementation candidates that follow the graphical design entry (Sect. 7.5.2).

7.6.3 Automatic Refinement Flow for the Graphical Design Entry

The information contained in the graphical design entry allows for an automatic

refinement flow. Figure 7.18 illustrates this flow centered around the Platform

7.6 Refinement to Instruction Set Simulation 127

Fig. 7.18 Platform refinement engine (PRE)

Refinement Engine (PRE) that is described later. The complete refinement can be

divided into four different phases:

1. Generic to specific operating system refinement.

In case a specific operating system is chosen, the PRE iterates over all tasks and

replaces the generic OS API calls by the specific ones. The replacement rules for

a specific OS are stored in a library, named the Software Support Package (SSP).

Currently only a small set of libraries exist, e.g., one for the RTEMS OS, but the

modular structure allows easy integration of new libraries in the future.

Besides the use of dynamic scheduling based on an operating system, a static

scheduler can be selected. However, for an automatic computation of the sched-

ule, a restriction is imposed that applications need to be modeled as SDF graphs.

In this event, the generic OS API calls are removed as the tasks will be called by

the scheduler in sequential order.

2. Communication Protocol Replacement.

Based on the defined communication protocols, the generic put and get inter-

face calls are replaced. Again the replacement rules are kept within the SSP’s

communication protocol library.

3. Generation of the configuration and initialization.

In the third phase, the PRE generates the configuration and the initialization task.

These initialization tasks are either the scheduler task or the operating systems

initialization task which comprises, e.g., the maximum number of tasks, message

queues, etc. Most of these parameters can be extracted from the two previous

128 7 Abstract Simulation Implementation Model

phases. Nevertheless, developers can tune the configuration to ensure optimal

performance, e.g., the computed scheduling might be hand-tuned if necessary.

4. Target-specific cross-compilation.

Finally, the generated source code is cross-compiled. The resulting software ex-

ecutable can then be used for system simulation and/or later on the real MPSoC

hardware.

The following section highlights the operating system specific refinement.

OS Specific Refinement

Today a wide variety of different OSs and RTOSs are available [275]. Therefore,

software developers have to identify the most suitable operating system which may

be a general-purpose or a more specific Real-Time Operating System (RTOS).

In the presented approach, the key idea is to raise software development to a

higher abstraction level. Software development is based on a generic OS API. Later,

this generic OS API will be replaced according to the specific targeted OS running

on the processor core. Currently, refinement to the RTEMS and POSIX API is sup-

ported. Extending the design flow to other OSs is straightforward. For each OS a

specific rule base in XML [289] format only has to be developed once.

As highlighted earlier, the function replacement follows a predefined correspon-

dence table. Therefore, the automatic refinement replaces all function calls of the

generic OS API by the corresponding specific ones. This allows easy and quick port-

ing of any VPU and generic OS software to a specific operating system. However,

it should be noted that special features of the targeted operating systems might not

be optimally exploited. Therefore, the proposed flow enables developers to hand-

optimize the generated code later on.

Communication Protocols

The communication channels between tasks are instrumented by communication

protocols being part of the hardware abstraction layer. During software refinement,

all utilized software layers, including the hardware abstraction layer, are ported to

the targeted hardware platform. These implementations are stored in the software

support package and are ready for use. The selection of the communication protocol

defines which protocol of the HAL is instantiated later on. In order to minimize the

implementation overhead, the PRE inlines these protocols into the source code.

Configuration and Initialization

The last two phases of the PRE are the generation of the configuration and initial-

ization, followed by the final cross-compilation.

7.7 Summary of the Abstract Simulation Model 129

When using a static scheduler, the configuration step consists of computing the

static schedule. In case of an operating system is being incorporated, the configura-

tion step comprises the setting of parameters, e.g., the maximum number of tasks or

message queues. In principle this is rather operating system specific and typically

requires fine tuning by the software developer. Nevertheless, the PRE generates a

template for the software developer on the basis of the input of the first two phases,

i.e., the number of tasks can be computed by the mapped tasks and their defined

instances.

Typically, initialization of an operating system is performed during bootup by

calling an initialization task. For the supported operating-system APIs, this task is

automatically generated and has the following structure. First, the operating system

itself is configured according to the configuration parameters, e.g., the scheduler

policy such as round-robin scheduling. Second, all mapped tasks are created and

started within the operating system. Afterward all communication protocol specific

parts are created, e.g., the message queues.

Finally, all refined tasks and the initialization task are cross-compiled and linked

together with the specific operating system libraries to obtain the software exe-

cutable for the underlying processor cores.

The software executable can then be used for simulation in the refined hardware

simulation model. This directly allows evaluation and exploration at the level of

instruction set simulation.

7.7 Summary of the Abstract Simulation Model

Throughout this chapter the abstract simulation model including the Virtual

Processing Unit has been presented. A brief summary is given later.

• The Virtual Processing Unit with the annotation principle of execution charac-

teristics forms the centerpiece of the proposed simulation technique. The generic

nature of the VPU allows emulating all types of processing elements, from pure

hardware centric accelerators, via specialized processor cores to general purpose

cores. As the precision of the annotation technique heavily depends on the sys-

tem architect’s knowledge of the application and hardware architecture, different

annotation techniques are supported.

– Statistically based timing annotation.

– Source-level-based timing annotation.

– Implementation-based timing annotation.

These timing annotation techniques ensure that system architects can always

incorporate the best knowledge available to achieve the most reliable results

at particularly early design stages. Additionally, the path from coarse- to fine-

grained timing annotation is given to guide system architects in their design

process.

130 7 Abstract Simulation Implementation Model

• Software development generally follows a pragmatic design approach, making

extensive use of software libraries and abstractions. Hence, the framework pro-

vides a set of different software layers in addition to the pure abstract VPU

simulation model. These subsume the most common ones like hardware abstrac-

tion layers, arbitrary device drivers, the operating system, and other middleware

libraries.

• Together the VPU and the different software layers provide an efficient envi-

ronment to model complex applications and hardware platforms for simulation.

As software development is becoming a central component in today’s and future

MPSoC designs, two different design entries are supported. The textual design

entry is closely related to traditional software development, while a graphical

design entry allows efficient software development and modeling by task graphs

and process networks.

• The abstract simulation model integrates smoothly into commercially available

tool flows by a well-defined link to lower levels of abstractions. In addition, a

(semi-)automatic refinement flow has been introduced to efficiently bridge the

gap between abstract and instruction set based simulation.

Chapter 8

Case Study

A case study proving feasibility is always key when proposing new design tools and

methodologies. It can also clarify the advantages but also limitations of the proposed

design methodology.

The chapter is organized in two parts. The first part presents a case study at

the level of individual tasks in order to identify the modeling accuracy of the pro-

posed annotation methods. The discussion includes various hardware architecture

considerations to encompass a complete design picture. From the application point

of view, the focus is on typical mathematical algorithms rather than on a single

specific application.

After discussion of the achievable accuracy of the annotation methods, the

second part of the chapter highlights the practical use of the complete framework.

To illustrate the work flow, the case study targets the domain of wireless communi-

cation, especially SDRs. The major contribution is the investigation of a complete

design process starting at a high abstraction level and continuing along the proposed

design method toward a final implementation.

8.1 Task Level Annotation

Section 7.3 has introduced the various annotation techniques in order to characterize

a VPU according to any given architectural processing element.

• Statistical annotation.

• Source-level annotation subdivided into:

– Coarse-grained (e.g., on basis of functions).

– Fine-grained (e.g., on basis of basic-blocks or source code lines).

• Implementation-level annotation subdivided into:

– Profiling-based (e.g., µProfiler).

– Trace-based.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 8, c© Springer Science+Business Media, LLC 2011

131

132 8 Case Study

An optimal annotation model exists for each architectural processing element,

ranging from general purpose processors to hardwired accelerators. Specific hard-

wired components, such as ones from Synopsys DesignWare [157] or other IP

vendors, typically have a fixed and precisely characterized behavior based on a reac-

tive execution scheme. Past research has demonstrated that such components can be

efficiently modeled based on the principle of VAM [282]. Similarly, a single VPU

can easily capture such scenarios by executing one application task with a particular

execution characteristic.

In general, the VPU targets more complex use cases where multiple applications

are executed on a shared processing resource, e.g., multiple applications running

under the control of an operating system. These require much more advanced an-

notation techniques to emulate the execution behavior correctly. Due to the variety

of possible design options, the proposed framework provides different annotation

methods so that the best technique can be selected for each addressed use case.

Of course, this introduces the challenge to select the right method for the targeted

hardware architecture and software implementation. To identify the best-suited one

for each use case, a thorough analysis presents common scenarios and inspects the

precision of the annotated VPU simulation model in comparison with cycle accurate

models.

8.1.1 Task Level Analysis Scenario

Focussing jointly on complex scenarios combining software and hardware issues,

the following case study investigates the key issues:

1. Hardware architectures, in this case only programmable processor cores.

2. Algorithmic implementations.

3. Implementation options, whereby only software implementations (C/ C++ or

Assembler) are considered.

Though addressing complex scenarios, only programmable architectures are con-

sidered. In order to capture these, several General Purpose Processors (GPPs) and

Digital Signal Processors (DSPs) have been selected to identify suitable annotation

techniques. From the domain of GPPs, the ARM720T and ARM926EJ-S [174],

have been selected and from the DSP domain, TI’s C55x [290] and C64x [291].

The chosen applications cover a large variety of fundamental mathematical algo-

rithms which have been extracted from TI’s DSP libraries [292].

• Vector operations, e.g., vector addition and product.

• Matrix operations, e.g., transposition and multiplication.

• Filter operations, e.g., FIR and adaptive LMS filtering.

• Correlation operations, e.g., autocorrelation.

• FFT operations, e.g., FFT and IFFT.

When considering MPSoC platforms in the domain of wireless communications,

the implemented applications impose tight constraints on high performance and

8.1 Task Level Annotation 133

energy efficiency, especially for mobile and battery powered devices. Accordingly,

this demands fully exploiting the available hardware features. As a consequence

developers must optimize given applications for the underlying hardware architec-

ture to minimize the induced overhead. This results in a diverse environment for

software development. Targeting general purpose processors, high-level program-

ming languages like C are preferred; whereas DSPs require more hardware centric

software design. There are many reasons for this, mostly relating to compiler is-

sues [293, 294]. The case study within [60] identifies the resulting performance gap

between hand-optimized Assembly and general purpose C-code for the C64x DSP

to be larger than one order of magnitude. For the smaller C55x DSP, this differ-

ence is determined to be a factor of approximately eight. However, the difference

depends on the application, the coding style and must therefore be considered on an

individual basis. In addition, the development effort spent on Assembly program-

ming should not be forgotten and hence always defines a trade-off decision between

performance and costs.

The ultimate goal of any design-space exploration technique is to identify the

performance of the final implementation in order to give design hints at the current

development stage. Accordingly, the annotation techniques must mimic the execu-

tion characteristic of the final implementation rather than an intermediate snapshot,

resulting for example from the execution of a reference implementation on a DSP

with far worse performance than the finally optimized software. Therefore, the

discussed task-level analysis aims at realistic final implementation candidates to

demonstrate the capabilities of the proposed annotation techniques. The investigated

implementation options are illustrated in Table 8.1.

Figure 8.1 depicts the fundamental principle to evaluate the accuracy and pre-

cision of any annotation technique. The reference is an implementation of each

application, optimized for the utilized hardware architecture and executed on a cy-

cle accurate instruction set simulator. During execution each memory access and the

execution time in cycles are measured.

Each reference implementation is compared to the trace collected with the VPU

simulation model including the annotation technique subject to evaluation. This

comparison is done with respect to memory accesses and required clock cycles. The

obtained results reflect the accuracy and errors of the annotation technique for the

particular implementation scenario.

As discussed earlier various annotation techniques exist, of which two operate on

the implementation level. The trace-based annotation technique replays the traced

Table 8.1 Considered task level analysis scenario implementation options

Processor type Processor core High-level software Low-level software

GPP ARM720T X –

ARM926EJ-S X –

DSP TI C55x – X

TI C64x – X

134 8 Case Study

Fig. 8.1 Evaluation principle of annotation techniques (ARM926EJ-S example)

instruction set simulation using the VPU technology. This definitely replicates the

execution characteristic in terms of execution delay and memory accesses exactly.

Therefore, no error exists as the same trace is taken as reference.

The other implementation-based technique is profiling based. The particular im-

plementation discussed in Sect. 7.3.3 utilizes the µProfiler [255] that operates on the

LANCE compiler tool chain [295]. Other techniques such as TotalProf [296] and

other annotation techniques [297] utilize compilers like LLVM [271]. The promis-

ing results at least for C-based software and RISC-based architectures have attracted

quite a lot of research activities in this area. These techniques require – similar to in-

struction set simulation – a software implementation that can be measured, but may

not be available during early design space exploration. Profiling-based techniques

should only be considered when the underlying processor core is not known, the

instruction set simulator, or the compiler tool chain is not yet finished. Otherwise,

trace-based annotations should be preferred because they achieve higher accuracy.

Because of these issues, the subsequent investigation focuses on the statistical

and source-level annotation models and their evaluation.

8.1.2 Task Level Analysis Results

So far the discussion has highlighted the principle for the evaluation of annotation

techniques in general. To identify the achievable accuracy and the incurred error of

annotation methods, the introduced case study inspects the modeling accuracy of

annotation models for the example implementations introduced in Table 8.1.

Annotation Results

Following the proposed design process, system architects need to start the final

implementation at a particular point in time. Typically, this starts with a pure al-

gorithmic implementation in C programming language or MATLAB [298]. This

reference implementation can be utilized to verify functional correctness with the

8.1 Task Level Annotation 135

VPU simulation model together with a realistic evaluation of the performance

characteristics. At later design stages, the increased implementation knowledge en-

ables system architects to incorporate more precise characterizations.

To demonstrate this process, the case study investigates coarse- and fine-grained

annotation techniques in the following. Targeting general purpose processor cores

that are programmed in a high-level programming language, the provided reference

implementation can help to identify common software constructs, e.g., loops and if-

else cases. The functionally correct execution ensures that only the right annotations

are added at run-time. This makes fine-grained source-level annotation methods the

optimal choice for such implementations (Sect. 7.3.2). These annotations can be

applied at the granularity of functions, basic blocks, or even source code lines to

keep track of the execution behavior.

In contrast to this, processor cores with hardware centric software implemen-

tations tend to require different techniques. This does not necessarily mean that

fine-grained source-level annotations are false. However, these annotations operate

on a reference software implementation developed in a high-level language which

most likely does not reflect the behavior of the targeted final implementation. Es-

pecially, when targeting highly specialized architectures, the final implementation

might achieve much higher performance than the implementation based on the ref-

erence [60]. Therefore, coarse-grained statistical and source-level annotations are

preferable for such architectures. In addition, at the time of instrumentation, sys-

tem architects should recollect the fundamental mathematical operations within the

application and underlying algorithm. For example, when targeting a vector dot

product on TI’s C64x DSP, the mathematical operation defines a multiplication per

vector elements. On the assumption of 16-bit per vector element, the processor core

is able to load four elements of each vector at a time (2x LDDW instruction) and

four output vector elements can be computed per cycle (2x DOT2P instructions). By

applying a software optimization, pipeline stalls can be prevented and the resulting

execution cycles compute to NX/4+overhead with NX the number of input vector

elements. Such considerations can exactly replicate the final implementation and

hand-optimized Assembly code, also done in TI’s DSP library [292].

Based on these investigations, the two design options have been emulated differ-

ently; on the one hand the GPP architectures are targeted with a VPU simulation

model and fine-grained annotations, and on the other hand a coarse-grained an-

notation has been selected for the DSPs.1 Figures 8.2–8.4 illustrate the results of

the measurements. As visible, the occurring error varies slightly for the different

algorithms.

In a simplified investigation, the overall execution characteristic is determined

by two major aspects. First and most important, the execution cycles spent in the

computation of the processor core are determined by the core cycles. Highlighted

1 Please note that for the coarse-grained annotations, the objective is the hand-optimized assembly

code that has been determined to execute more than one order of magnitude faster than the general

purpose C code [60]. Clearly this demands the optimized software as a reference implementation,

otherwise the estimations would be far off reality (∼8–10 times).

136 8 Case Study

Fig. 8.2 Estimation error of execution core cycles

in Fig. 8.2, the deviation for the fine-grained instrumentation of the GPP execution

characteristic has been measured as a maximum error of 14.3% and as an aver-

age error of 5.6%. For the DSP architectures, a maximum error of 19.7% and an

average one of 7.7% has been measured when using the suggested coarse-grained

instrumentation technique.

The second aspect, the communication aspect, is investigated separately for the

program and data memory accesses. The error is measured as the difference between

traced memory accesses when using the instruction set simulator and the VPU-based

simulation. The results for the investigated algorithms are illustrated in Figs. 8.3

and 8.4. While the first Fig. 8.3 demonstrates the deviation for program memory

Fig. 8.3 Estimation error and accuracy of program memory accesses

8.1 Task Level Annotation 137

Fig. 8.4 Estimation error and accuracy of data memory accesses

accesses, the second Fig. 8.4 highlights the incurred error for data memory accesses.

The encountered maximum error is less than 22% which is sufficient for early design

phases.

Summarizing the results of the inspected annotation results, the determined er-

rors are totally acceptable for early design space exploration where the number, type,

and interconnection of processing elements is the subject of evaluation. However,

system architects need to carefully select the right method when addressing a par-

ticular implementation. For example, when addressing DSPs and low-level software

implementations, coarse-grained instrumentation techniques are beneficial, while

fine-grained annotations might show misleading results.

Summary of Task Level Analysis

The presented analysis has shown that carefully applied annotation techniques can

emulate the execution characteristic of arbitrary tasks precisely enough for early

design stages. In addition, the exemplary analysis highlighted how increasing im-

plementation knowledge can enhance modeling of the execution behavior in terms

of precision.

However, the demand for multiple annotation techniques has been demonstrated

in order to reflect the final implementation behavior and not a preliminary result.

The discussed techniques show precise modeling for the purpose of early design

space exploration when selected for the right final implementation. This makes se-

lection of the correct annotation principle for the targeted implementation critical,

as already shown and answered earlier. For clarification Table 8.2 illustrates a com-

patibility matrix from the gathered experiences that helps system architects to select

the optimal annotation model for the intended implementation.

138 8 Case Study

Table 8.2 Compatibility matrix for annotation techniques of the execution characteristic

Targeted final Source-level models Implementation models

implementation Statistical model Coarse-grained Fine-grained µprofiler Trace-based

GPP and C-code + + ++ + ++

DSP and C-code + ++ + ◦ ++

DSP and Assembly + + ++ ◦ ++

ASIP and assembly + ++ + ◦ ++

HW accelerator + ++ + − ++

++ = recommended, + = applicable, ◦ = applicable, but not recommended, − = not applicable

8.2 System Level Case Study

So far, accuracy and achievable precision of arbitrary task level annotations has

been discussed. In the following of this section the capabilities and the workflow of

the design space exploration framework are exemplified with a case study from the

domain of wireless communication. The case study derives from a realistic project

goal of an SDR development.

The main objective defines the design of a receiver hardware platform optimized for two

wireless communication standards. The platform shall be assembled mainly out of standard

IP components to minimize development effort and costs. Besides the tight hard real-time

constraints of the communication standards that must be kept at run-time, energy efficiency

should be maximized.

To display a realistic scenario, the two inspected wireless communication stan-

dards represent a low and high data rate standard. The first communication standard

is derived from the physical layer of the MIL-STD-188-110B standard that imple-

ments a robust low data rate standard [299]. The second standard to be implemented

is composed of standard signal processing blocks and will be denoted as a Repre-

sentative Communication Algorithm in the following.

After the introduction of the fundamental algorithms and wireless communica-

tion standards, the hardware IP components available for the development of the

platform are introduced. Finally, the envisioned design flow based on the explo-

ration framework is exemplified. At the start of the design, the analytical model

is utilized to identify potential candidates and the abstract simulation technique is

jointly utilized to validate the obtained results.

8.2.1 Wireless Communication Standards

MIL-STD-188-110B

Initially developed for military applications, the MIL-STD-188-110B defines a low

data rate, but a highly robust communication standard. It provides a set of different

data rates ranging from 75 to 9,600 bit per second. Accordingly, the standard defines

8.2 System Level Case Study 139

MIL RF

Frontend

Fig. 8.5 The MIL-STD-188-110B algorithm

multiple modes, each mode given by a set of parameters, e.g., the data rate, code rate,

and interleaver length. For simplification during this case study, focus is set on only

one mode of the standard. The inspected mode is a slightly modified transmission

scheme that operates on 4,800 symbols per second instead of the 2,400 symbols per

second defined by the original standard. Transmission utilizes an 8-symbol phase-

shift keying in the original and the modified implementation.

Data transmission is performed on the basis of frames, which are assembled in

four stages. Each frame starts with a preamble for synchronization, followed by user

data, a training sequence, and ends with a sequence indicating the end of message.

Focussing on the receiver part, the task graph for the implementation is highlighted

in Fig. 8.5. The task processing chain has been separated into two phases, namely

the correlation and decoding. The initial state is defined by the correlation in which

the receiver algorithm processes the received data to detect the start of a transmis-

sion. After the preamble sequence has been detected, the algorithm switches from

correlation to decoding stage, finally emitting the received data.

Both phases and the involved tasks operate separately from each other, which

allows both illustrated critical paths within the task graph to be evaluated individ-

ually. The highlighted critical paths under evaluation are sensitive to throughput

constraints, while latency constraints are rather uncritical. The throughput constraint

is typically given as samples per second. However, to minimize computing effort,

the case study operates on the inverse, the sample processing time. For the evaluated

mode this sample processing time computes to

t

sample
<

1s

4,800
= 208.3µs.

This sample processing time defines the fundamental scheduling period in which the

same task instance needs to be executed twice. Otherwise, resulting buffer overflows

will inevitably discard received data.

Within the following case study the tasks are shortened as Correlation (Corr),

Equalizer (EQ), SymbEx (SE), GrayEncoder (GE), Deinterleaver (MDI), and

FECDecoder (FEC).

Representative Communication Algorithm

The Representative Communication Algorithm (RCA) is not standardized, but re-

flects the common features of communication standards utilized today. Figure 8.6

highlights the defined receiver of the physical layer processing. It defines a high

140 8 Case Study

CPPHY< CPPHY,krit

CPAGC< 3.2µ s CPSYNC< 25.6µ s

Fig. 8.6 Representative communication algorithm

data rate communication with feedback loops and typical tasks for signal process-

ing. In contrast to the previously discussed MIL-STD-188-110B standard, the RCA

includes the two phases together and executes on each received sample.

The RCA checks each received sample for the beginning of a data frame. When-

ever a frame has been detected, the data is processed by the following algorithmic

tasks. After correction of the timing and phase offset, symbol demapping and de-

coding of the convolutional code are applied. The resulting soft information allows

improvement of the estimation of the phase offset to finally reduce the bit error rate

of received samples. For a detailed discussion of such communication algorithms

please refer to [300]. Finally, the decoded bits are de-interleaved and the Reed–

Solomon decoder is used to reduce burst errors.

Within the RCA several critical paths exist that are subject to evaluation and are

essential for a successful operation of the complete system. The critical path CPPHY

defines a task chain which starts at the RF frontend and lasts till the received data

bits are extracted from the Reed–Solomon decoder. To prevent buffer overflows, the

throughput has to match the data rate. Depending on the application, e.g., voice or

data communication, the latency of the complete processing needs to be constrained.

As the determined latency is in the range of a few microseconds it is far below

critical values and, therefore, determined but not considered critical

The other depicted critical paths define feedback loops within the algorithm. The

critical path CPAGC is characterized by tight timing constraints because it is located

at the RF frontend. The second depicted feedback loop determines the phase esti-

mation loop CPSYNC, which constantly needs to update the phase correction task.

Within the following case study, the tasks are shortened as Phase Correction

(PC), Soft Demapper (SD), Soft Mapper (SM), Phase Estimation (PE), Soft

Viterbi (SV), Deinterleaver (DI), and Reed–Solomon (RS).

Combination of Algorithms

The underlying hardware platform needs to be shared to execute both physical layer

algorithms jointly. As both applications target different data rates, a combined ex-

ecution requires more in depth analysis to find a suitable schedule. While the MIL

standard processes 4,800 samples per second, the RCA runs at a higher data rate

of 5,000,000 samples per second. Accordingly, the MIL standard processes one

8.2 System Level Case Study 141

iteration while the RCA iterates 1041.7 times, which equals approximately eight

frames. Therefore, the schedule combines the RCA on a frame basis and the MIL

on a sample basis.

8.2.2 Overview of Processing Element

Short time-to-market and the particular pressure on low development and manufac-

turing costs are two of the dominating factors in today’s hardware platform designs.

Driven by these demands, the principle of platform- and CbD has been invented

to simplify platform development. Following this paradigm a set of carefully se-

lected IP components has been chosen for this case study. These components cover

the most prominent classes of components found in today’s heterogeneous MP-

SoCs, among them RISC and DSP based processor cores, hardware accelerators and

various communication architectures. The following listing highlights these compo-

nents.

• Generic Processor Element. This processing element supports simplified eval-

uation of one or the other execution behavior by mapping arbitrary execution

characteristic estimates to the element.

• Tensilica Diamond cores. The Diamond cores are a set of configurable processor

cores that allow customization to arbitrary applications [301]. As determining

an optimal processor core is not within the scope of this case study, a standard

mid-range configuration has been selected throughout the complete case study.

The configuration extends the base processor with floating point and DSP units.

The maximum clock frequency of the inspected configuration is considered to be

500 MHz.

• Texas Instrument C55x DSP. The power efficient fixed point C55x DSP [290] is

designed for mobile embedded devices and is considered to achieve a maximum

clock frequency of 300 MHz for the purpose of this case study.

• Texas Instrument C64x DSP. This high performance fixed point DSP of TI [291]

is designed for the needs of modern multimedia and wireless communication ap-

plications. The specification gives a maximum clock frequency of up to 1.2 GHz,

but for battery powered devices a reduced a frequency is highly beneficial. Hence,

within the case study the selected core is limited to a maximum clock frequency

of 400 MHz.

• Radio Frequency Hardware Accelerators. The specially tailored RF specific

hardware accelerators have been manually developed and have been character-

ized by fixed and deterministic latency and throughput behavior.

• Frame and Time Synchronization Hardware Accelerators. The accelerators have

been developed for the purpose of frame and time synchronization. Again these

are fully characterized by a fixed and deterministic behavior that can be extracted

from the specification document.

• Texas Instrument Viterbi Coprocessor. Due to the extensive use of Viterbi [302]

and Turbo [303] decoding, specialized coprocessors are increasingly applied for

142 8 Case Study

these tasks. One prominent example is TI’s Viterbi Coprocessor (VCP) Version

2 [304] that supports various modes and code rates. In addition it can operate on

hard and soft decisions, making it a suitable choice for future SDRs.

• Point-to-Point Based Communication Architectures. Well known for long time,

point-to-point communication architectures were replaced by more advanced bus

or crossbar architectures. However, especially when demand for high data rates

exists and the applications are well known, these architectures are utilized.

• Bus-based Communication Architectures. Standard bus-based communication

architectures, e.g., AMBA AHB [34] or IBM CoreConnect [35] bus, can be found

in nearly all MPSoC platforms. However, modern system architectures include

more advanced multilayer buses, crossbar architectures, and/or even Networks-

on-Chips. Since the investigated applications of the case study do not need to

incorporate such complex architectures, only standard bus-based communication

architectures are included within the case study.

• Memory Architectures. In general, memory architectures summarize different

implementation options, like caches, tightly coupled memories, and shared ex-

ternal memories. Hence, memories are not restricted in type and size.

Please note that the case study focuses on the DSP part. Therefore, the inves-

tigated applications start after the analog–digital converter and do not include any

analog components.

8.2.3 Exploration

After the introduction of the case study’s key objective and starting point, the pro-

posed exploration workflow is exemplified next. The case study follows the design

process depicted in Fig. 5.1. It starts from the analytical implementation model

and aims at utilizing the proposed iterative workflow for the identification and

implementation of a suitable hardware design and the application-to-architecture

mapping. Inherently, the temporal and spatial task mapping and the identification of

task-level parallelism shall be done during the design process.

Entering this design process from the perspective of SDRs would lead to a

complete software implementation of the applications, either on a DSP or general

purpose processor. Since the data rates within the RCA close to the radio frontend

are very high, an initial calculation is performed to evaluate the design options for

this part of the application.

• Symbols having an I- and Q-value with 16 bit each (= 32 bit) arrive at a data

rate of R = 40 Msamples/s at the RF frontend. Accordingly, the sample time is

∆tsample = 25 ns/sample.

• Unfortunately, this time is mostly too short for a general software implementation

(5 cycles at 200 MHz clock frequency). Hence, these tasks are directly mapped

onto hardwired accelerators. They have a fixed latency and throughput, thus the

critical path CPAGC has been verified once and does not need further analysis in

the following.

8.2 System Level Case Study 143

In the subsequent case study these hardware accelerators are further referred to as

accelerators for RF as well as frame and time synchronization. These accelerators

only affect the latency calculation of the receiving critical path CPPHY within the

RCA by a fixed offset. In addition, the design process is entered with the following

assumption of initial knowledge and software implementations available.

• A floating point reference implementation exists for the low data rate MIL-STD-

188-110B communication standard. As its complexity is manageable, and the

porting effort to a fixed point implementation is considered to be high [44], this

reference implementation is retained.

• No reference implementation of the RCA communication standard preexists and

implementation knowledge differs significantly for the application tasks.

– The hardwired IP components for frame and time synchronization are avail-

able and an exact characterization can be given by a fixed and deterministic

behavior.

– Operation-based estimates exist for phase correction and estimation, soft

de-mapper and mapper, and de-interleaver. These estimates derive from the

necessary algorithmic operations.

– The fundamental algorithms of soft Viterbi and Reed–Solomon decoder are

known, but only from the algorithmic point of view.

These prerequisites define a scenario as illustrated in Fig. 8.7 with diverse im-

plementation knowledge at the start of the design cycle. The preexisting implemen-

tation knowledge is further enhanced and refined within the case study to reveal

suitable implementation candidates. Inherently, the envisioned design process and

methodology are demonstrated.

The valid range, where the investigated system meets the latency and through-

put requirements, is marked with a gray background for enhanced visualization

throughout the different steps of the case study.

Step 1 (Analytical Model): Initial Setup

Entering the design process, the initial MPSoC platform is based on an educated

guess and prior experiences with other wireless communication devices like TI’s

OMAP platform. Accordingly, the platform is assembled with two processing el-

ements, one Tensilica Diamond processor core and another generic processing

RF Corr

RF EQ SE GE FECDI

RF FS TS PC SD SV DI RS

SMPE

Rough Designer Estimate

Precise Implementation

Operation Based Estimate

Fig. 8.7 Scenario at the initial design entry

144 8 Case Study

Fig. 8.8 The explored design options of the hardware architecture during the case study

element (Fig. 8.8). As a floating point software implementation of the MIL stan-

dard is available, it should be reused due to the high porting effort from floating to

fixed point. As the Tensilica core is equipped with a floating point support, the MIL

standard is efficiently mapped to it. The representative communication algorithm is

mapped to the generic processing element to distribute the workload. Both cores are

assumed to execute at a clock frequency of 300 MHz and scheduling is fixed for the

specific mode and processor core to

Tensilica (MIL correlation): Corr

Tensilica (MIL standard): EQ, SE, GE, MDI, FEC

Generic Processor Element: PC, SD, SV, SM, PE, DI, RS

Based on educated guesses, the critical paths as computed by the analytical

method (Chap. 6) are depicted in Fig. 8.9. With its low complexity demands the

MIL standard obviously achieves the necessary requirements successfully. In con-

trast, the RCA misses the constraints by far, as the computed sample processing

time and feedback are significantly higher than the 25.6µs threshold. Because of

the single-core schedules, the latency shows the same characteristic as the sample

processing time, hence, it is not depicted here.

a b c

Fig. 8.9 Results for the initial setup [valid range – gray] (step 1). (a) RCA sample processing

time. (b) MIL correlation mode sample processing time. (c) MIL normal mode sample processing

time

8.2 System Level Case Study 145

Fig. 8.10 Lowered RCA

sample processing time

by re-scheduling [valid

range – gray] (step 2)

Step 2 (Analytical Model): Single Processor Core Schedule Effects

The static scheduling applied to the generic processor element needs to iterate com-

pletely to emit data from the Reed–Solomon decoder at the output. To reduce the

latency and sample processing time, a slightly modified schedule enhances the pro-

cessing as the Reed–Solomon Decoder finishes earlier. Nevertheless, the results

(Fig. 8.10) illustrate that there is still a large performance gap for a successful im-

plementation.

Generic Processor Element: PC, SD, SV, DI, RS, SM, PE

Step 3 (Analytical Model): Replacement of Generic PE by TI C55x DSP

Based on the first two analytical exploration steps, the RCA has been identified to

be unsuitable for the targeted system implementation. Additionally, the major un-

certainties are collocated within the soft Viterbi and Reed–Solomon decoder of the

addressed implementation. Apparently, modifications of the implementation should

provide more precise estimates for these two relevant tasks. These two tasks are

well-known in the domain of DSP and can be efficiently implemented on available

DSP architectures. Since energy efficiency is a dominant issue in designing wire-

less communication devices, first the impact of the TI C55x DSP is evaluated. The

implementation of both tasks is precisely defined by a vendor-provided software

IP library [305] (Fig. 8.11). Annotating their precise characteristics and updating

the annotation characteristics of the other tasks (Fig. 8.11) computes the analysis

results illustrated in Fig. 8.12.

These results demonstrate that the previous coarse-grained estimates have been

too optimistic, as visible in the increasing average RCA sample processing time. Un-

fortunately, this is common or at least often occurs in early design stages. This issue

is one of the main reasons for the usage of the analytical implementation model,

because evaluation of a single design point requires only minutes.

Fig. 8.11 Implementation knowledge after refinement to TI C55x DSP (step 3)

146 8 Case Study

a b c

Fig. 8.12 Results for the architecture refinement: C55x DSP [valid range – gray] (step 3). (a) RCA

sample processing time. (b) RCA latency (not critical). (c) RCA feedback delay

Thanks to the gained implementation knowledge, more precise input characteri-

zation can be given. Naturally, this significantly reduces uncertainties in the results,

but the application requirements are still not met. In a deeper investigation, the

Reed–Solomon decoder has been identified to be the bottleneck as execution takes

far too long. Hence, the next design step optimizes this task to speed-up the overall

execution.

Step 4 (Analytical Model): Replacement of TI C55x with C64x DSP

With the given design restrictions and a rather pragmatic design approach, the TI

C55x DSP is replaced by the much more advanced and powerful TI C64x DSP.

Especially, the Galois field instructions [306] of the TI C64x DSP accelerates the

execution of the Reed–Solomon decoder [305] by approximately one order of mag-

nitude. In addition, the typical clock frequency is higher than the 300 MHz and is

assumed to be 400 MHz for the given scenario.

Illustrated in Fig. 8.13, the analysis results demonstrate that the RCA constraints

are still not met, although a huge performance gain is achieved. However, the perfor-

mance is close to the constraint threshold and the requirements might be kept with

only minor system modifications. Since the processor cores execute at 300 MHz

(Tensilica core) and 400 MHz (TI C64x DSP), a simple solution would increase

the frequency to accelerate the overall execution. This increase would definitely

a b c

Fig. 8.13 Results for the architecture refinement: TI C55x DSP to C64x DSP [valid range –

gray] (step 4). (a) RCA sample processing time. (b) RCA latency (not critical). (c) RCA feedback

delay

8.2 System Level Case Study 147

result in an increase in the power and, hence, energy consumption. Apparently,

more innovative solutions should be added to minimize the necessary clock fre-

quency increment. For example, one part is the rescheduling of the task execution

discussed next.

Step 5 (Analytical Model): Task Rescheduling

To accelerate the execution of both communication standards a joint schedule is en-

visioned, which interleaves the MIL and RCA execution. Since the FEC decoder of

the MIL standard can be efficiently implemented on the DSP, a modified mapping

sorts the FEC decoder to the DSP while the annotated performance is profiled by

instruction set simulation. Conversely, the Tensilica processor core can relieve the

DSP from performing the PC, SD, SM, and PE tasks. These tasks are not too com-

putationally intensive and the assumption is made that they execute similarly on the

Tensilica processor core.

The schedules are separated into two parts as eight iterations of the RCA are

executed within the time of one MIL standard iteration. Hence, the schedules are as

follows.

Tensilica(0): EQ, SE, GE, MDI

C64x(0): PC0, SD0, SV0, SM0, PE0, DI0, RS0, FEC0

Tensilica(1-7): PCi, SDi, SMi, PEi

C64x(1-7): SVi, DIi, RSi, FECi

Furthermore, the clock frequency of the Tensilica processor is moderately in-

creased to 500 MHz to speed up the execution.

The computed results are depicted in Fig. 8.14. Due to the interleaved schedul-

ing, the execution characteristic differs over the iterations of the high data rate RCA.

Since eight RCA iterations compute within the iteration time of the MIL standard,

the second and the last RCA iterations differ from the other iterations. Under the

assumption of sufficient buffer capacities available, the aggregated maximum sam-

ple processing time of eight iterations, given by the real-time constraints, equals

8×25.6µs = 204.8µs.

a b

Fig. 8.14 RCA results for interleaved schedule and increased clock frequency [valid range –

gray] (step 5). (a) Sample processing time. (b) Agg. sample processing time

148 8 Case Study

While the constraint is not met when investigating every single iteration, the

aggregated sample processing time looks promising to keep the aggregated con-

straint. Accordingly, a first implementation candidate has been identified in the

analytical implementation model within merely five iteration steps, with each step

requiring only minutes for computation of the analysis results.

Step 6 (Abstract Simulation Model): Validation of the Implementation

Candidate

One central element of the proposed workbench and methodology is the smooth

transition from one abstraction level, either analytical or simulation-based, to the

other. To demonstrate this and to prove the capabilities of the approach, the found

implementation candidate is evaluated within the abstract simulation implementa-

tion model. The advantage of the simulation environment is that dynamic effects

like bus contentions are explicitly modeled and are incorporated within the obtained

simulation results.

The abstract simulation model is composed by utilizing the VPU and Time

Retrieval Engine (Chap. 7), and simulation results are determined as illustrated in

Fig. 8.15. These results show only minor deviation from the previous analysis re-

sults. Based on this investigation, an increasing confidence for the feasibility of the

implementation candidate is obtained, as only limited bus contentions appear and

other dynamic effects do not significantly impact the targeted implementation.

Since there is no information that requires back-annotation, other implementa-

tion candidates can be evaluated before moving toward the final implementation or,

instruction set simulation can be targeted directly. For the exemplary case study, the

first option to identify more feasible implementations is chosen.

8

a b

Fig. 8.15 Simulation results for the aggregated RCA sample processing time [valid range –

gray] (step 6). (a) Sample processing time. (b) Agg. sample processing time

Step 7 (Analytical Model): Adding a Viterbi CoProcessor

As commonly applied in today’s wireless communication devices, a Viterbi CoPro-

cessor (VCP) is included to speed-up the execution of this specific task. For the

8.2 System Level Case Study 149

a b c

Fig. 8.16 Results for system including VCP connected to a bus architecture [valid range –

gray] (step 7). (a) RCA sample processing time per sample. (b) RCA aggregated sample processing

time. (c) MIL sample processing time

inspected scenario, the VCP runs at the third clock frequency of the DSP. In the

following, two design options are investigated. While step 7 inspects the VCP con-

nected to the bus-based communication architecture (Fig. 8.8), step 8 investigates

the VCP tightly coupled to the DSP by a FIFO communication channel.

Connecting the VCP to the bus communication architecture, additional delay

is incurred because of the communication overhead. However, the analysis results

(Fig. 8.16) show a speed-up by parallelism that compensates the communication

overhead. Hence an overall reduced sample processing time is measured and the

configuration found is a feasible implementation candidate.

Step 8 (Analytical Model): Tightly Coupled Viterbi CoProcessor

For lowering the encountered communication overhead, the VCP is directly coupled

with the DSP. Unfortunately, this impacts the scheduling so that the proceeding and

following tasks of the Viterbi task need to be executed on the DSP. Otherwise the

DSP has to forward the data or the spatial task mapping is invalid. For the given

example this requires re-scheduling, breaking the optimized scheduling for the given

application.

Tensilica(0): EQ, SE, GE, MDI

C64x(0): PC0, SD0, SV0, SM0, PE0, DI0, RS0, FEC0

Tensilica(1-7): PCi, PEi

C64x(1-7): FECi, SDi, SMi, DIi, RSi,

VCP(0-7): SVi

The obtained results are illustrated in Fig. 8.17 depicting another possible imple-

mentation candidate. It has to be noted that this system shows worse results than

the previous one, but the Tensilica processor core is less utilized. This might result

in a trade-off decision in case another application needs to be supported later on.

Therefore, it is hard to judge whether one or the other implementation is better.

To demonstrate the interwoven complexity, the same schedule has been addi-

tionally implemented for the bus-based communication VCP of step 7 (Fig. 8.18).

150 8 Case Study

a b c

Fig. 8.17 Results for the tightly coupled VCP [valid range – gray] (step 8.1). (a) RCA sample pro-

cessing time per sample. (b) RCA aggregated sample processing time. (c) MIL sample processing

time

a b c

Fig. 8.18 Results for the bus connected VCP with unoptimized scheduling [valid range –

gray] (step 8.2). (a) RCA sample processing time per sample. (b) RCA aggregated sample pro-

cessing time. (c) MIL sample processing time

The obtained analysis results illustrate the trade-off decision between the optimized

schedule and selection of the communication architecture. As visible, the impact

of the schedule is larger than moving parts of the data communication to a dedi-

cated point-to-point communication architecture for the inspected scenario.2 Please

note that there might be other schedules which would better suit the tightly coupled

VCP and finally exploit the optimized communication architecture efficiently in a

system-wide context.

The earlier encountered issue nicely demonstrates the need for a system-wide

investigation as the individual design decisions, schedule, and point-to-point com-

munication architecture, conflict with each other and an optimal trade-off decision

must be taken.

Further Exploration Steps and Process

Three possible implementation candidates have been identified. In addition, the in-

vestigation of the analytical model and the abstract simulation model has briefly

2 Please note that this result is only valid for the given scenario. In general, the point-to-point

communication architecture should be able to achieve superior performance.

8.3 Summary of the Case Study 151

outlined the capabilities of the proposed methodology by simply going up and down

the abstraction levels. The next step is to replace the VPU model for at least one of

the evaluated candidates by instruction set simulators.

It might be noted that during this refinement results obtained earlier might be-

come invalid because of the encountered dynamic effects. These need and can be

integrated by back annotation, which allows comparing implementation options at

higher abstraction layers, thus speeding up the exploration and evaluation process.

8.3 Summary of the Case Study

The case study and results have demonstrated the flexibility and usefulness of the

proposed design framework and methodology. First, the accuracy of the annota-

tion techniques has been inspected. In comparison to cycle accurate instruction set

simulation, the measured annotation errors show only minor deviation, which is

adequate for early design space exploration. In addition, investigations of differ-

ent hardware and software options have emphasized the requirements for multiple

annotation techniques based on various fundamental concepts and methodologies.

Derived from this and prior experiences, a recommendation table (Table 8.2) has

been extracted that helps system architects to select the best possible annotation

with respect to the targeted scenario.

The second part of the case study has highlighted the envisioned design pro-

cess based on a practical SDR design. This case study has studied the interwoven

design decisions on the system level. The analytical implementation model served

as a key methodology for identification of feasible design candidates. Addition-

ally, the abstract simulation model based on the VPU has identified and validated

dynamic effects within anticipated implementation candidates. The case study fin-

ished with three identified implementation candidates for future implementation and

refinement to instruction set simulation. Typical trade-off decisions – such as task

re-scheduling and selection of processing elements as well as communication archi-

tectures – have been encountered and evaluated.

Chapter 9

Summary and Outlook

The demand of end consumers on product and technology advances puts high

pressure on the design of next generation mobile wireless communication devices.

Especially, the crisis of complexity [5] and the pessimistic voices predicting the end

of Moore’s Law and Dennard’s Scaling rule prohibit simply relying on technology

shrinks. System architects are more than ever being expected to provide innovative

designs to achieve the given requirements in order to cope with the expectations of

end users.

Multi- and upcoming many-core architectures are currently considered to be

the optimal choice to increase the performance of such platforms. However, these

impose other design challenges, mainly due to the parallel processing. From a the-

oretical point of view, doubling the number of processor cores should in general

double the performance. Unfortunately, in a practical scenario this typically does

not apply by far. Issues of nonoptimal application partitioning, as well as communi-

cation and synchronization are responsible for this expected and actual performance

mismatch.

Supplementary to this issue, battery capacities have not been significantly in-

creased in the past, in contrast to the complexity of applications and hardware

platforms. This has led to an increasing performance-energy gap which demands

hardware platforms to boost performance and energy efficiency. As a consequence

system architects are applying increasingly heterogeneous Multi-Processor System-

on-Chip solutions to meet the stringent performance and energy demands.

Besides these pure computational centric considerations, communication archi-

tectures and memories play an extremely important role in today’s designs. For

example, the memory subsystem commonly occupies a large portion of the chip

area and communication architectures are responsible for a significant amount of

the energy consumption. Therefore, the design process has to consider the complete

hardware architecture and not just single components.

In addition, the mapping of applications to the various processing elements

of a heterogeneous MPSoC platform defines a fundamental design decision for a

successful system implementation. Especially in the domain of wireless communi-

cation, the tight real-time performance constraints makes the mapping step highly

challenging, but has significant impact on the system’s performance. This mapping

comprises both temporal and spatial task mapping. Here, temporal mapping defines

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0 9, c© Springer Science+Business Media, LLC 2011

153

154 9 Summary and Outlook

the execution order of tasks onto a single processing element, while the spatial

mapping denotes the task execution on a particular processing element. Inherently,

the mapping restricts, or at least influences the software development process, as the

software development technique varies depending on the underlying architecture.

Altogether system architects are facing many design decisions and options. These

need to be selected optimally, since the rapidly moving markets in the domain of

wireless communication do not forgive wrong design decisions. Today these deci-

sions are more likely taken on an ad-hoc basis and based on previous designs rather

than being based on a sophisticated analysis. The increasing complexity of plat-

forms and the resulting high risks of false or suboptimal decisions, demand new and

enhanced design methods to guide designers right from the start of the design cycle

to the final implementation.

Such design methodology has been demonstrated within this book. In contrast to

the commonly used approaches based on outdated Excel sheets and/or Gantt charts,

the proposed methodology defines a structured design process starting at a high ab-

straction level leading toward the final implementation. Besides the concept itself,

the design methodology has been demonstrated by a tool environment covering the

envisioned design process. Already today parts of the environment have been in-

cluded into commercialized tools and have successfully found adoption in industrial

projects [171] (Appendix C).

The key contribution of this book is the early design space exploration frame-

work as a whole. The natural entry point for the design process is a coarse-grained

description and characterization of both application and architecture. The key idea

of the proposed design process is that exploration and evaluation of a target sys-

tem can be performed on a set of different abstraction levels. Starting at the highest

abstraction level, evaluation of the complete system takes only seconds. In addi-

tion, the framework inherently supports a smooth transition from high to low level

of abstraction. Once a suitable implementation candidate has been identified, this

candidate can be quickly investigated at the lower abstraction level. Possible iden-

tified issues and mismatches can be easily backpropagated to the higher levels and

exploration of various design decisions can be performed efficiently at the higher

abstraction layer.

In addition to the introduced design space exploration framework, other main

contributions are the abstraction layers above instruction set simulation that can be

separated into the following.

• At the highest abstraction level the analytical implementation model computes

the system performance based on the individual execution characteristic of the

application tasks that are mapped onto a given implementation candidate. Pre-

requisites for this calculation are the descriptions of the individual task execution

characteristics by means of random variables that define the execution behavior.

The absence of any implementation centric model, e.g., software implementation

or detailed hardware model, allows applying this exploration technique prior to

the implementation process within the conceptional phase.

• Still on the conceptional level, the abstract simulation implementation model

enables investigation of more detailed hardware and software effects. In addition,

9 Summary and Outlook 155

the mixing of detailed implementation models with abstracted representations is

possible and a clear link to the final implementation exists. Main enabler is the

VPU with various modeling and annotation techniques to capture the multiple

hardware and software implementations.

Based on the smooth transition between the abstraction levels and the simple

definition of different scenarios, a large number of configurations can be explored

especially when utilizing the analytical model. For acceptance and practical use

within designs, the framework has been integrated directly from the start into com-

mercially available tools following a library concept. For the statistical analysis the

favorite tool is MATLAB, while for system simulation SystemC as language and

CoWare Platform Architect as tool have been selected. In spite of the current im-

plementation, the framework is not limited to these tools. The clear benefit of this

integration is the capabilities to analyze the evaluated system in visualized formats

provided by these environments. The graphical capabilities of MATLAB allows ef-

ficient evaluation of the analytical model, while the simulation-based environment

inherently supports arbitrary tracing facilities like message sequence charts or spe-

cific latency and throughput measurements based on CoWare’s Analysis technology.

The proposed framework has been validated by a case study consisting of two

major parts. The first part of the case study discusses the accuracy of the proposed

annotation techniques. The annotations of different implementation options – like

general purpose processors with software developed in generic high-level languages

and DSPs with low-level software implementations – have quantified the incurred

modeling errors. Comparisons to cycle accurate simulation models have illustrated

the precise modeling capabilities for the purpose of early design space exploration.

The second part of the discussed case study proves the usability and exploration

capabilities of the introduced framework. The inspected scenario defines a general

design problem from the domain of wireless communication and SDRs. The design

focuses on the development of a receiver platform for two given standards, a high

and low data rate one. Both of these standards need to execute in parallel on a shared

hardware platform. Additionally, the limiting constraints of development effort and

costs restrict the design to mainly standard IP components together with application

specific IP components. This design exemplifies the use of the proposed framework

and highlights its capabilities.

Entering the design process with an initial guess, hardware and software devel-

opment of this complex scenario starts at the analytical implementation model. The

fast exploration capabilities at this level allow excluding nonsuitable design options

and efficiently identifying promising ones. In an iterative design loop, the candi-

dates are further evaluated and different implementations are explored till a final

implementation candidate is identified.

Outlook

The increasing complexity issues of upcoming multi- and many-core architectures

are manifold and definitely not all to be solved by the design space exploration

156 9 Summary and Outlook

framework. The proposed methodology can only serve as an entry point which

allows efficient exploration of various design decisions. The following highlights

ideas and other prospects for future research.

• Further case studies and more complex scenarios including latest processor cores

such as the ARM Cortex-A8 as well as commercially available standards would

guarantee reliability and confidence in the proposed methodology. Possible appli-

cations can not only be based on existing standards such as WLAN or WIMAX

but also on still developing ones like LTE.

• Separation of the annotation characteristics into a software and hardware char-

acterization would lead to increasing efficiency for the modeling and evaluation

of different use cases. This large scale research project should aim at the iden-

tification of common hardware features and a condensed representation of these

for a particular processor core. Finally, this might end in a library in which each

particular processor core is stored in terms of a suitable characterization. At run-

time, both application and architecture are considered and at run-time, computed

characteristics reflect the final implementation.

• A suitable extension of the VPU should target upcoming Multi-Processor (MP)

cores like the ARM Cortex-A9. As the current realization is limited to single

core modeling, such multicore scenarios must be modeled with each included

core as a VPU. This makes the modeling of task migration challenging. For this

purpose the VPU simulation model needs to incorporate capabilities to mimic

the behavior of the multiple cores within.

• Another major challenge for future multi- and, especially, many-core platforms

will be the resource management. This will become, at least from our perspec-

tive, one of the major issues in future designs. Due to the significant performance

impact, this issue needs an efficient methodology to determine optimal manage-

ment strategies at the very beginning of the design cycle. In close cooperation

with the VPU as a vehicle for early design space exploration, a unique and fun-

damental combined exploration technique should be envisioned.

Appendix A

Advanced Features of the Analysis Framework

A.1 Analysis Graph Simplification

The complexity of the intended applications and application task graphs can be

assumed to be within the range of hundreds to thousands of tasks. With respect

to this, graph size simplifications and complexity reduction is mandatory for the

analysis algorithm. Addressing this issue, the analysis algorithm implementation

incorporates two key techniques. In addition, a looped application should be con-

sidered so that further simplification is achieved by reapplying the other technique.

A.1.1 Task Merging

Adjacent graph vertices (tasks) are merged if and only if the following condi-

tions hold.

• The first vertex in a sequence is a join or has a predecessor being a start, end, or

way-point of a critical path, but is no split vertex.

• The last vertex in a sequence is a split or has a the successor being a start, end,

or way-point of a critical path, but is no join vertex.

• Other vertices in the sequence must not be a join, split, or way-point of a criti-

cal path.

For the example depicted in Fig. A.1a the number of nodes can be reduced by

vertex merge operation from |V | = 71, |E| = 93 to |V | = 41, |E| = 63.

A.1.2 Shortcut Elimination

Redundant edges are typically avoided in the original task graph. However, after

simplifications, these edges occur as illustrated in Fig. A.1b for example. A redun-

dant edge is given by an edge (vt ,vh) so that there is another path from vt to vh within

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration, 157

DOI 10.1007/978-1-4419-8153-0 10, c© Springer Science+Business Media, LLC 2011

158 A Advanced Features of the Analysis Framework

a

b

c

d

Fig. A.1 Exemplified analysis graph simplifications. (a) Original Analysis Graph as constructed

from DFG and CFG. (b) Merging of nodes reduces the number of vertices. (c) Removal of

redundant edges. (d) Further merging of nodes reduces the number of vertices

the Analysis Graph (AG). As the longer path limits the overall execution, the edge

is inherently captured within the other path and hence is redundant as an alternative

path exists. Figure A.1c illustrates the impact on the AG by the removal of these

shortcuts. For the given example, the number of edges is reduced from |E| = 63 to

|E| = 53 (Fig. A.1b).

A.1.3 Iterative Application

An alternating application of both simplification techniques leads to optimal results

in terms of complexity reduction. After shortcut elimination, the task merging can

further reduce the AG complexity from |V | = 41, |E| = 53 to |V | = 29, |E| = 41 for

the given example highlighted in Fig. A.1d.

A.2 Scheduling Scenarios

Selecting one or the other scheduling can have tremendous impact on the overall

system performance. Accordingly this topic has attracted many researchers. The

framework operates on the foundation of a workbench, leaving the identification of

the optimal schedule to the designer or other tools. However, the analysis allows for

evaluation of the performance impact of selected schedules and provides an efficient

technique for the specification of such.

A.2 Scheduling Scenarios 159

The following discussion demonstrates the possible performance impact and the

provided evaluation and specification technique of the framework based on an ex-

emplary scenario.

With the system scenario specified in Fig. 6.8, the temporal and spatial task map-

ping is defined as the two schedules of the processing elements pea and peb.

SC(pea) = (T1,T2,T5,T7)

SC(peb) = (T3,T4,T6,T8)

Starting with the initial temporal and spatial task mapping, the question arises

how to replace the task execution T5 with the required two instances T5,0 and T5,1.

Obviously, different solutions exist which will impact the overall performance.

Following a pragmatic solution, the required two task instances replace the task

T5 within the schedule of pea, so that the resulting schedule is given by the schedule

depicted in Fig. A.2 which equals

SC(pea) = (T1,T2,T5,0,T5,1,T7).

Based on the given task’s timing assumptions, significant stall periods are en-

countered leading to processing elements with large intervals of idle time and a

long overall execution time. Simply rearranging the schedule and moving the exe-

cution of task T2 within the two iterations of the task T5,0 and T5,1 achieves superior

performance and shortens the overall execution time (Fig. A.2).

SC(pea) = (T1,T5,0,T2,T5,1,T7)

SC(peb) = (T3,T4,0,T4,1,T6,0,T6,1,T8).

Furthermore, different iterations of the complete schedule can interleave so that

tasks of different iterations execute simultaneously. For the given example this is

a

b

c

Fig. A.2 Exemplary schedules. The upper chart pictures SC(PEA) and the lower one SC(PEB).
(a) Initial schedule based on the topological task sequence of the initial task graph. (b) Schedule

modification based on task T5 instances. (c) Task scheduling with interleaved iterations

160 A Advanced Features of the Analysis Framework

depicted in Fig. A.2. Here task T8 operates on the date of the previous iterations

of task T6,0, T6,1, and T8. Interleaving the schedule introduces a typical trade-off

decision between latency and throughput, formulated as follows.

• An increased throughput (equals a decreased scheduling time ∆ t) is achieved due

to a shorter length of the schedule per iteration. For the given example schedule

length decreases from ∆ t to ∆ t ′ .

∆ t = ∆ t(T2)+ ∆ t(T5)+ ∆ t(T6)+ ∆ t(T6)+ ∆ t(T8)

∆ t ′ = ∆ t(T3)+ ∆ t(T4)+ ∆ t(T4)+ ∆ t(T8)+ ∆ t(T5)+ ∆ t(T6)+ ∆ t(T6).

• In contrast to the throughput, there is an increase in the latency, defined as the

delay between a sample that enters the algorithm and the information that leaves

the algorithm. For the given example the latency rises from L to L′ .

L = ∆ t + ∆ t(T1)

L′ = ∆ t ′ + ∆ t(T1)+ ∆ t(T3)+ ∆ t(T4)+ ∆ t(T4)+ ∆ t(T8).

A.2.1 Scheduling Definition Within the Analysis Framework

In order to support the investigation of different temporal and spatial task mapping

decisions, the framework introduces a condensed language to specify the envi-

sioned scheduling with mixed task types. The grammar of this language is defined

as follows.

schedule → task | task , schedule

task → taskname itmod blkmod

taskname → identifier | identifier instance

blkmod → ! | ε

itmod → + iterations | ε

The schedules SC(pea) = (T1,T2,T5,T7) and SC(peb) = (T3,T4,T6,T8) define the

first example (Fig. A.2). The second example requires only minor modification of

the schedule SC(pea) = (T1,T5,0,T2,T5,1,T7) and the final step interleaving the dif-

ferent schedule iterations is written as SC(peb) = (T3,T4,T8 + 1,T6).

A.3 Dependency Delays

The mathematical equation given in Sect. 6.2.2 formulates the calculation rule for a

single dependency delay node. During the analysis of the complete system, several

dependency delays commonly need to be calculated and an algorithm is required

A.4 Practical Calculation and Stochastic Independence 161

Algorithm 2 Calculation of the dependency delays

Input: Analysis Graph AG

Output: Modified Analysis Graph AG

VS = {v ∈V (AG) : |{(v,vi) ∈ E(AG),vi ∈V (AG)}| > 1};1

VJ = {v ∈V (AG) : |{(vi,v) ∈ E(AG),vi ∈V (AG)}| > 1};2

ṼJ = filter joins in critical paths(ṼJ);3

ṼJ = sort(ṼJ);4

foreach v j ∈ ṼJ do5

Vpredec = {v ∈V : ∃(v,v j) ∈ E } ;6

VD = /0;7

foreach vp ∈ Vpredec do8

Add vertex vd in AG;9

E(AG) = (E(AG) \ (vp ,v j)) ∪ { (vp,vd), (vd ,v j)} ;10

VD = VD ∪ { vd } ;11

end12

vs = First common split on reverse paths;13

foreach vd ∈ VD do14

X(vs ,...,vd) = calculate performance characteristic(vs,vd);15

end16

foreach vd ∈ VD do17

Xm = max({ X(vs ,...,vi) : ∀vi ∈ Vd \ { vd } });18

Xd = max(0,Xm − XP(s,i));19

end20

end21

to identify the necessary insertion points. Algorithm 2 creates dependency delays

when necessary and calculates the corresponding execution characteristic in terms

of a random variable.

A.4 Practical Calculation and Stochastic Independence

A Monte-Carlo methodology is introduced to evaluate the effect of neglecting the

occurring stochastic dependence during calculation of critical path characteristics

in the presence of data dependency delays. Additionally, the Monte-Carlo technique

can be utilized when computational complexity gets too large for stochastic analysis

and detailed simulation might be not available or executes significantly more slowly.

In general the Monte-Carlo technique generates N realizations of all random vari-

ables ∆ t ∼ X(task,PE) within a given scenario. In a second step these realizations

are utilized to compute the characteristics of each critical path for the sampled val-

ues. Finally, the aggregation of all N realizations retrieves the stochastic distribution

of each specified critical path. For practical considerations the number of investi-

gated realizations N must be large.

162 A Advanced Features of the Analysis Framework

a

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

x 10
−4

ns

p
d

f

b

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1
x 10

−3

ns

p
d

f

c

0 0.5 1 1.5 2

x 10
5

0

1

2

3

4
x 10

−4

ns

p
d
f

d

Fig. A.3 Stochastic analysis vs. Monte-Carlo results (N = 100,000). (a) Stochastic Analysis:

RCA sample processing time per sample. (b) Stochastic Analysis: RCA aggregated sample pro-

cessing time. (c) Monte-Carlo: RCA sample processing time per sample. (d) Monte-Carlo: RCA

aggregated sample processing time

The Monte-Carlo technique has been utilized for the example of step 7 of the

case study discussed in Sect. 8.2.3 (Fig. A.3).

Apparently in this practical scenario the inaccuracy due to the assumption of

stochastic independence is negligible. However, future work should investigate this

issue further.

Appendix B

Advanced VPU Features

B.1 Advanced Device Drivers

1 i o r o u t i n e () {
2 c o p y f r o m u s e r (b u f f e r , p , co u n t) ;

3 e n a b l e i n t e r r u p t s () ;

4

5

6

7

8 wh i l e (∗ s t a t u s r e g != READY) ;

9

10

11

12

13

14

15 ∗d a t a r e g = p [0] ;

16

17

18

19 r e t u r n ; / / a l l o w OS s c h e d u l i n g ;

20 }
21

22 i s r r o u t i n e () {
23 i f (co u n t == 0) {
24

25 u n b l o c k u s e r () ;

26 }
27 e l s e {
28

29

30 ∗d a t a r e g = p [i] ;

31 c o u n t e r = co u n t − 1 ;

32 i ++;

33

34 }
35 a c k n o w l e d g e i n t e r r u p t () ;

36

37 r e t u r n ; / / f rom i n t e r r u p t

38 }

Listing B.1 C-based implementation [273]

1 i o r o u t i n e () {
2 c o p y f r o m u s e r (b u f f e r , p , co u n t) ;

3 e n a b l e i n t e r r u p t s () ;

4

5 b o o l s t a t u s = BUSY;

6 consume (. . .) ;

7

8 wh i l e (s t a t u s != READY) {
9 consume (. . .) ;

10 b y t e s = s i z e o f (b o o l) ;

11 g e t (∗ s t a t u s r e g , &s t a t u s , b y t es , DIRECT) ;

12 }
13

14 b y t e s = s i z e o f (p [0]) ;

15 p u t (∗ d a t a r e g , p [0] , b y t es , DIRECT) ;

16 consume (. . .) ;

17 s c h e d u l e r () ; / / OsSuspend (. . .)

18 consume (. . .) ;

19 r e t u r n ;

20 }
21

22 i s r r o u t i n e () {
23 i f (co u n t == 0) {
24 consume (. . .) ;

25 u n b l o c k u s e r () ; / / OsResume (. . .)

26 }
27 e l s e {
28 consume (. . .) ;

29 b y t e s = s i z e o f (p [i]) ;

30 p u t (∗ d a t a r e g , p [i] , b y t es , DIRECT) ;

31 c o u n t e r = co u n t − 1 ;

32 i ++;

33 consume (. . .) ;

34 }
35 a c k n o w l e d g e i n t e r r u p t () ;

36 consume (. . .) ;

37 r e t u r n ; / / f rom i n t e r r u p t

38 }

Listing B.2 VPU implementation

Fig. B.1 Example of interrupt-driven memory mapped I/O device driver on VPU

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration, 163

DOI 10.1007/978-1-4419-8153-0 11, c© Springer Science+Business Media, LLC 2011

164 B Advanced VPU Features

1 i o r o u t i n e () {
2 c o p y f r o m u s e r (b u f f e r , p , co u n t) ;

3 s e t u p d m a c o n t r o l l e r () ;

4 s c h e d u l e r () ;

5 }
6

7 i s r r o u t i n e () {
8 a c k n o w l e d g e i n t e r r u p t () ;

9 u n b l o c k u s e r () ;

10 r e t u r n ; / / f rom i n t e r r u p t

11 }

Listing B.3 C-based Implementation [273]

1 i o r o u t i n e () {
2 c o p y f r o m u s e r (b u f f e r , p , co u n t) ;

3 DMA Protocol () ;

4 s c h e d u l e r () ; / / OsSuspend (. . .)

5 }
6

7 i s r r o u t i n e () {
8 a c k n o w l e d g e i n t e r r u p t () ;

9 u n b l o c k u s e r () ; / / OsResume (. . .)

10 r e t u r n ; / / f rom i n t e r r u p t

11 }

Listing B.4 VPU implementation

Fig. B.2 Example of DMA based I/O device driver

Appendix C

Task Modeling and Virtual Processing Unit

In 2007, the VPU and Task Modeling framework have been transferred to CoWare

Inc. (recently acquired by Synopsys Inc. in 2010). After thorough evaluation of

the first prototype by early access customers, the technology has been extended

and integrated into Synopsys’ Platform Architect tool. In the following, this Task

Modeling framework and the VPU are presented briefly.

C.1 Overview

At the time of writing of this book, the commercially available framework inherits

most of the concepts and technologies of the abstract simulation model described

throughout Chap. 7. In the first place the technology addresses system architects.

The major use-case is to evaluate whether an application can be executed on a given

hardware architecture within the given performance requirements or not. These in-

vestigations need to be carried out prior to the actual development phase, because

they can introduce significant design changes.

Before giving a detailed description of the commercially available framework,

the requirements and goals of the approach shall be recaptured. The major focus

is to identify a suitable task partitioning, mapping, scheduling, and synchroniza-

tion along with an efficient task switching policy. Additionally, the dimensioning

of the communication architecture and the memory subsystem are important steps

within the MPSoC design addressed by the technology. For efficient design space

exploration, a quick and simple mechanism for creating, simulating and analyz-

ing different scenarios is required and the modeling accuracy must be close to the

final implementation. Finally, a stepwise refinement flow from simple models to

detailed ones is necessary to close the gap to existing and widely accepted evalua-

tion techniques. These requirements have led to the current Task Modeling and VPU

methodology described next.

The general design flow is illustrated in Fig. C.1. The underlying concept of tasks

is essential. A task is considered as an independently running part of an application

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration, 165

DOI 10.1007/978-1-4419-8153-0 12, c© Springer Science+Business Media, LLC 2011

166 C Task Modeling and Virtual Processing Unit

Fig. C.1 Overview of the design flow (based on [307])

that has input and output ports. Tasks can only exchange data over these inputs and

outputs, which in turn are connected to communication channels. Together the tasks

and channels represent the application.

The level of detail for modeling an individual task is given by the functionality

and the annotation of the execution characteristic (see Fig. 7.3). Typically, at first

a nonfunctional model is developed, that is based on traffic generators with statis-

tical or coarse-grained source-level annotations of the execution characteristic (see

Sect. 7.3). These annotations can be captured for example by the number of cycles

required for task execution on an anticipated processing element. These numbers

can either be estimates based on expert knowledge or gained by measurements. This

way performance data of the complete system can be captured quickly, which pro-

vides helpful guidance during system development. Over time, the nonfunctional

tasks are replaced with functionally correct tasks, enabling detailed performance

analysis as required in later design stages.

In the first phase of the design flow, a task graph is constructed for each applica-

tion, which can be extracted from a sequential reference code, e.g., an application

given as C-program, or from a data-flow model. Nowadays, similar data-flow model-

ing can be found in SW development tools in the domain of DSP and microcontroller

programming, TI C6Flo [308] is an example of such flow.

Having created this initial task graph, the system architect can quickly profile,

restructure, and refine the tasks. This includes splitting and merging of tasks, select-

ing different communication channels, evaluating different processing elements by

modifying the annotations of the tasks and so on.

At every point in time the task graph, whether nonfunctional or fully functional,

can be mapped and profiled on a hardware platform model based on the VPU.

The mapping is performed in a convenient graphical user interface by a simple drag

C.2 Task Graph Assembly and Analysis 167

and drop mechanism. In this phase, the load of the processing elements caused by

the execution of the application is investigated. Furthermore, the effect of the com-

munication architecture and memory subsystem can be analyzed under the given

workload.

Targeting the final product, the implementation step requires the replacement of

the VPU by a detailed simulation model of the processing element. This includes

the cross-compilation of application tasks mapped onto the processor cores.

The following sections examine the different design phases and emphasize the

inherited concepts described earlier in this book.

C.2 Task Graph Assembly and Analysis

Once all application tasks have been modeled, the complete application can be

assembled and analyzed. The Task Modeling and VPU IP component are fully in-

tegrated into the Synopsys products. Therefore, developers can make use of the

PCT [173] for enhanced visualization and easy creation of task graphs. Figure C.2

illustrates the task graph of a MIMO OFDM transceiver. Modeling a task graph

follows the same principle as of modeling a regular SystemC hardware platform.

In addition, the SystemC model creation has been enhanced by a declarative com-

position of task graphs. This minimizes the need for time consuming recompilation

and significantly reduces the time for exploring different task graph structures. For

example, the task graph can be rearranged or multiple tasks of the same type can be

instantiated without recompilation.

Fig. C.2 Exemplary task graph in synopsys PCT

168 C Task Modeling and Virtual Processing Unit

Fig. C.3 Stand-alone

execution of task graph

with the task manager

(based on [307])

Instead of executing the task graph directly on the native SystemC scheduler, a

global task manager is instantiated that serves as an intermediate scheduling layer.

This manager mimics the execution of the task graph as if executed on a single,

shared processing resource (Fig. C.3).

The integrated analysis framework features dynamic enabling and disabling of

extensive tracing facilities to measure and analyze the system performance. One

example is tracing the task execution over time. The obtained result plots visualize

the execution order of tasks and gives valuable inside to the parallelism contained

within the application executed. Figure C.4 illustrates such a trace.

Fig. C.4 Task execution trace

C.3 VPU IP Component and Platform Modeling 169

C.3 VPU IP Component and Platform Modeling

At all times the modeled task graph can be mapped onto a hardware platform

based on the VPU. The VPU is integrated into Platform Architect as a regular IP

component. Apart from the component itself, the VPU library comprises a set of

communication drivers, task schedulers, and different processing models for ex-

tended annotation techniques.

The VPU component is similar to a hierarchical SystemC model and its overall

structure is illustrated in Fig. C.5. First of all, the VPU represents a shared process-

ing resource, that is capable of executing a set of tasks concurrently. The execution

order of tasks is controlled by the task manager and the scheduler component. The

most important scheduling algorithms, like round-robin and priority scheduling,

are supported. However, developers can easily overload and hence customize the

scheduling algorithm. In addition, the VPU can be equipped with an arbitrary

number of external communication ports compliant to the TLM standard 2.0 (TLM-

2.0) [153]. These ports enable the modeling of external communication accesses

that are caused by intertask communication and the task execution itself. The task

execution and the implicitly occurring communication accesses during execution

are captured by the processing model. Whenever an annotation is passed to the pro-

cessing model, it adds a delay for the execution time and generates communication

accesses to the external environment. For example, when emulating a processor

core instruction fetches are generated over the instruction port. For tasks running

on different processor cores that communicate with each other, the external com-

munication accesses are modeled by drivers that explicitly read and write data from

external memories and devices. Last but not least, the VPU model supports interrupt

handling and possesses an external clock port for converting the annotations from

discrete cycles to the time domain.

Fig. C.5 VPU IP component and task graph mapping (based on [307])

170 C Task Modeling and Virtual Processing Unit

Fig. C.6 Hardware platform

In contrast to the time intensive modeling on a fine-grained level of abstraction,

the VPU enables an abstract modeling that offers increased productivity by a sim-

ple and quick evaluation of various hardware options. The platform is composed

out of different processing elements, the communication architecture, and the mem-

ory subsystem. While the latter two are typically modeled in detail, the processing

elements executing the application are captured by VPUs. The modeling of the

platform based on VPUs does not differ from regular platform development in Syn-

opsys’ PCT and the VPU IP component can be used arbitrarily along with other

IP components. Figure C.6 illustrates an example platform incorporating multiple

instances of the VPU component.

For investigation of the execution characteristic of an application running on the

platform, the next step is to map the task graph onto the platform model that is

discussed in the following section.

C.4 Task Graph Mapping

In a classical design environment with simulation techniques operating on

instruction set simulation or even lower abstraction levels, the modeling of the

hardware platform and the porting of the application is a time- and cost-intensive

task. When using the VPU technology this step is significantly shortened, so that

system architects can directly start performance investigations when the task graph

and the platform model based on VPUs is available.

C.4 Task Graph Mapping 171

Fig. C.7 Mapped task graph (channel estimation subsystem)

Mapping the application, respectively the task graph, onto the hardware platform

follows the basic principle as discussed in Sect. 7.5.2. Each task can be mapped to a

processing element modeled as VPU by a simple drag and drop mechanism. When

two tasks, which communicate over a common communication channel, are mapped

to the same processing element (VPU) the communication can be handled internally

within the component. Given the assumption that the underlying processing element

is a processor core including a local memory, both tasks could for example share a

common variable or FIFO implemented in software.

The more complicated case occurs when two tasks connected to one commu-

nication channel are distributed among different processing elements (VPUs) and

data exchange must be accomplished over the external interfaces. Therefore, such

connections have to be resolved by inserting drivers for sending and receiving data.

These drivers can range from simple drivers accessing a shared memory to complex

DMA-based driver implementations. Figure C.7 highlights a small subsystem con-

taining one task with four inputs and one output. At the inputs, drivers for reading

from hardware FIFOs are attached. Similarly, at the task output a driver is connected

to write data to a hardware FIFO.

Containing both, the application and the hardware platform, the complete system

is analyzed and the system architect can verify whether the performance require-

ments are kept.

References

1. Informa Telecoms & Media. http://www.informatm.com/.

2. M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, R. Bruce, D. Kershaw, A. Reid,

M. Wilder, and K. Flautner. From SODA to Scotch: The evolution of a wireless baseband

processor. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM International Symposium

on Microarchitecture, pages 152–163, Washington, DC, USA, 2008. IEEE Computer Society.

3. G.E. Moore. Progress in digital electronics. Technical Digest of the International Electron

Devices Meeting, IEEE Press, New York, 1975.

4. R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-

implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State

Circuits, 9(5):256–268, Oct. 1974.

5. G. Smith. Crisis of complexity. In Gartner Dataquest briefing, 40th Design Automation Con-

ference (DAC), June 2003.

6. J. Mitola, III. Cognitive radio for flexible mobile multimedia communications. Mobile Net-

works and Applications, 6(5):435–441, 2001.

7. A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips (The Morgan Kaufmann Series in

Systems on Silicon). Morgan Kaufmann, Los Altos, CA, Sept. 2004.

8. International Telecommunication Union (ITU). http://www.itu.int/ , Jan. 2011.

9. European Telecommunications Standards Institute (ETSI). http://www.etsi.org/ , Jan. 2011.

10. IEEE. http://www.etsi.org/ , Jan. 2011.

11. H. Zimmermann. OSI reference model – the ISO model of architecture for open systems

interconnection. COM, 28(4), April 1980.

12. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wire-

less Personal Area Networks (WPANs). IEEE Std. 802.15.1-2002, 2002.

13. IEEE Standard for Information technology-Telecommunications and information exchange

between systems-Local and metropolitan area networks-Specific requirements – Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pages C1–C1184, Dec. 2007.

14. Apple Inc. http://www.apple.com/ , Dec. 2007.

15. P. Mannion. Under the Hood: Inside the Apple iPhone. EE Times, http://www.eetimes.com/

news/ latest/ showArticle.jhtml?articleID=200001811, Jan. 2007.

16. U. Ramacher. Software-defined radio prospects for multistandard mobile phones. Computer,

40(10):62–69, 2007.

17. LAN MAN Standards Commitee of the IEEE Computer Society. IEEE Std 802.11a-1999, Part

11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:

High Speed Physical Layer in the 5 GHz Band. 1999.

18. CoWare. SPD WLAN Library Reference (SPD2006.1), Feb. 2007.

19. G. Kahn. The semantics of a simple language for parallel programming. In J.L. Rosenfeld,

editor, Information Processing ’74: Proceedings of the IFIP Congress, pages 471–475. North-

Holland, New York, NY, 1974.

T. Kempf et al., Multiprocessor Systems on Chip: Design Space Exploration,

DOI 10.1007/978-1-4419-8153-0, c© Springer Science+Business Media, LLC 2011

173

http://www.informatm.com/.
http://www.itu.int/
http://www.etsi.org/
http://www.etsi.org/
http://www.apple.com/
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=200001811
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=200001811

174 References

20. E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, 1987.

21. Z. Chamski. Parallelism and physical time constraints in multimedia applications, or another

view on iterators (and arrays). In Synchron’03, Luminy, Dec. 2003.

22. J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krueger, A.E. Lefohn, and T.J. Purcell.

A survey of general-purpose computation on graphics hardware. Computer Graphics Forum,

26(1):80–113, 2007.

23. T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC

video coding standard. IEEE Transactions on Circuits and Systems for Video Technology,

13(7):560–576, July 2003.

24. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann Publishers, Los Altos, CA, 4th ed. 2007.

25. C. Hammerschmidt. Intel starts foray into SoC market. Technical report, July 2008.

26. R. Weinreich and J. Sametinger. Component-Based Software Engineering: Putting the Pieces

Together. Addison-Wesley Longman Publishing Co., Inc., Reading, MA, 2001.

27. Unified Modeling Language (UML). http://www.uml.org, Jan. 2011.

28. T. Kogel and H. Meyr. Heterogeneous MP-SoC – The solution to energy-efficient signal pro-

cessing. In Design Automation Conference (DAC), San Diego, USA, June 2004.

29. J.M. Rabaey. Wireless beyond the third generation-facing the energy challenge. In Interna-

tional Symposium on Low Power Electronics and Design, pages 1–3, 2001.

30. M. Gries and K. Keutzer. Building ASIPs: The Mescal Methodology. Springer, Berlin,

Heidelberg, 2005.

31. E.M. Witte, T. Kempf, V. Ramakrishnan, and G. Ascheid, RWTH Aachen University,

Germany; M. Adrat and M. Antweiler, Department of FKIE/KOM, Wachtberg, Germany.

SDR Baseband Processing Portability: A Case Study. In 5th Karlsruhe Workshop on Soft-

ware Radios (WSR’08), Karlsruhe, Germany, March 2008.

32. W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya, L. Gauthier, and

M. Diaz-Nava. Multiprocessor SoC platforms: A component-based design approach. IEEE

Design and Test of Computers, 19(6):52–63, Nov./Dec. 2002.

33. A. Sangiovanni-Vincentelli. Defining platform-based design. EEDesign of EETimes, Feb.

2002.

34. ARM. AMBA System Architecture. http://www.arm.com/ , Jan. 2011.

35. IBM CoreConnect bus cores. http://www.ibm.com/ , Jan. 2011.

36. Arteris Unveils Strategy, Technology for enabling Network on Chip (NoC) Design. Press

Release, March 2003.

37. Texas Instruments. TI OMAP. http:// focus.ti.com/docs/prod/ folders/print/omap3530.html,

Jan. 2011.

38. Texas Instruments Inc. OMAP 4430 Platform.

http:// focus.ti.com/en/graphics/wtbu/OMAP4430-tn.gif , Jan. 2011.

39. J. Kunkel. MPSoC IP integration and interoperability challenges. In 8th International Forum

on Application-Specific Multi-Processor SoC, June 2008.

40. J.A. de Oliveira and H. van Antwerpen. The Philips Nexperia digital video platform. In

G. Martin and H. Chang, editors, Winning the SoC Revolution: Experiences in Real Design,

Kluwer Academic Publishers, Boston, 2003.

41. Imagination Technologies Ltd. POWERVR Graphics IP, http://www.imgtec.com/ , Jan. 2011.

42. B. Bailey, G. Martin, and A. Piziali. ESL Design and Verification. Morgan Kaufmann, Los

Altos, CA, 1st ed., 2007.

43. J. Tourley. Survey says: software tools more important than chips, April 2005.

44. S.W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. California

Technical Publishing, San Diego, CA, USA, 1997.

45. J.A. Fisher. Very long instruction word architectures and the ELI-512. In ISCA ’83: Proceed-

ings of the 10th Annual International Symposium on Computer Architecture, pages 140–150,

Los Alamitos, CA, USA, 1983. IEEE Computer Society Press.

46. M. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54:1901–1909, Dec.

1966.

http://www.uml.org
http://www.arm.com/
http://www.ibm.com/
http://focus.ti.com/docs/prod/folders/print/omap3530.html
http://focus.ti.com/en/graphics/wtbu/OMAP4430-tn.gif
http://www.imgtec.com/

References 175

47. W.M. Johnson. Superscalar Microprocessors Design. Prentice Hall PTR, Englewood, Cliffs,

NJ, 1990.

48. Tensilica. http://www.tensilica.com/ , 2002.

49. A. Hofmann, H. Meyr, and R. Leupers. Architecture Exploration for Embedded Processors

with LISA. PhD thesis, RWTH Aachen, 2002. ISBN 1-4020-7338-0.

50. A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRESSION: A

language for architecture exploration through compiler/simulator retargetability. In Proceed-

ings of the Design Automation and Test in Europe Conference and Exhibition 1999, pages

485–490, 1999.

51. M. Hohenauer, H. Scharwaechter, K. Karuri, O. Wahlen, T. Kogel, R. Leupers, G. Ascheid,

H. Meyr, G. Braun, and H. van Someren. A methodology and tool suite for C compiler gener-

ation from ADL processor models. In Proceedings of the Conference on Design, Automation

and Test in Europe (DATE), Paris, France, Feb. 2004.

52. A. Wang, E. Killian, D. Maydan, and C. Rowen. Hardware/software instruction set config-

urability for system-on-chip processors. In DAC ’01: Proceedings of the 38th conference on

Design automation, pages 184–188, New York, NY, USA, 2001. ACM.

53. S. Hauck and A. Dehon, editors. Reconfigurable computing: The theory and practice of

FPGA-based computation. Systems on Silicon. Morgan Kaufmann, Los Altos, CA, Nov. 2007.

54. Stretch Inc. http://www.stretchinc.com/ , Jan. 2011.

55. A. Chattopadhyay, R. Leupers, H. Meyr, and G. Ascheid. Language-driven Exploration and

Implementation of Partially Re-configurable ASIPs. Springer Publishing Company, Incorpo-

rated, Berlin (Heidelberg/New York), 2008.

56. R. Leupers, K. Karuri, S. Kraemer, and M. Pandey. A design flow for configurable embedded

processors based on optimized instruction set extension synthesis. In Proceedings of the Inter-

national Conference on Design, Automation and Test in Europe (DATE), Munich, Germany,

March 2006.

57. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076, March 1987.

58. IEEE standard Verilog hardware description language. IEEE Std. 1364-2001, 2001.

59. T. Vogt and N. Wehn. A reconfigurable ASIP for convolutional and turbo decoding in

an SDR environment. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

16(10):1309–1320, Oct. 2008.

60. T. Kempf, E.M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat, and M. Antweiler. A practical

view of SDR baseband processing portability. In Software Defined Radio Technical Confer-

ence (SDR’08), Washington, USA, Oct. 2008.

61. DSP-C Website. http://www.dsp-c.org/ , Jan. 2011.

62. DSP-C Specification. http://www.open-std.org/JTC1/SC22/WG14/www/docs/n854.pdf ,

Oct. 1998.

63. ISO/IEC Working Group JTC1/SC22/WG14. Programming languages – C-Extensions to sup-

port embedded processors. Sep. 2007.

64. R. Leupers. C compiler retargeting. In Ienne, P. and Leupers, R. editors, Customizable Em-

bedded Processors: Design Technologies and Applications. Morgan Kaufmann, Los Altos,

CA, July 2006. Series in Systems on Silicon, ISBN 0-1236-9526-0.

65. A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, D. Lindqvist. Network

on a chip: An architecture for billion transistor era. In Norchip Conference, pages 166–173,

November 2000.

66. OCP IP. http://www.ocpip.org/ , Jan. 2011.

67. E. Salminen, A. Kulmala, and T.D. Hamalainen. Survey of Network-on-chip Proposals. White

paper, OCP-IP, April 2008. Available online (13 pages).

68. J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L.-S. Peh. Research chal-

lenges for on-chip interconnection networks. IEEE Micro, pages 96–108, Sep.–Oct. 2007.

69. A. Jantsch and H. Tenhunen, editors. Networks on chip. Kluwer Academic Publishers,

Hingham, MA, USA, 2003.

70. P. Grun, A. Nicolau, and N. Dutt. Memory Architecture Exploration for Programmable Em-

bedded Systems. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

http://www.tensilica.com/
http://www.stretchinc.com/
http://www.dsp-c.org/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n854.pdf
http://www.ocpip.org/

176 References

71. T. Vogt and N. Wehn. A reconfigurable application specific instruction set processor for

convolutional and turbo decoding in a SDR environment. In Proceedings of the International

Conference on Design, Automation and Test in Europe (DATE), pages 38–43, New York, NY,

USA, 2008. ACM.

72. BDTI Inc. Evaluating the DSP Capabilities of the Cortex-R4. Inside DSP, 2007.

73. M. Speth, H. Dawid, and F. Gersemsky. Design and verification challenges for 3G/3.5G/4G

wireless baseband MPSoCs. In MPSoC’08, June 2008.

74. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience

Series in Systems and Optimization. Wiley, Chichester, 2001.

75. C.M. Christensen. The innovator’s dilemma: When new technologies cause great firms to fail.

Harvard Business School Press, Boston, MA, USA, 1997.

76. B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for quantitative

analysis of application-specific dataflow architectures. In Proceedings of the IEEE Conference

on Application Specific Architectures and Processors, 1997.

77. M. Gries. Methods for Evaluating and Covering the Design Space during Early Design De-

velopment. Technical Report UCB/ERL M03/32, Electronics Research Lab, University of

California at Berkeley, Aug. 2003.

78. IEEE standard computer dictionary. A compilation of IEEE standard computer glossaries.

IEEE Std 610, pages –, Jan. 1991.

79. A. Jantsch. Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of

Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

80. S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-vincentelli. Design of embedded sys-

tems: Formal models, validation, and synthesis. In Proceedings of the IEEE, pages 366–390,

1997.

81. E.A. Lee and A. Sangiovanni-Vincentelli. Comparing models of computation. In ICCAD ’96:

Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design,

Washington, DC, USA, 1996. IEEE Computer Society.

82. G.S. Fishman. Principles of Discrete Event Simulation. Wiley, New York, NY, USA, 1978.

83. E.A. Lee and T.M. Parks. Dataflow Process Networks. pages 59–85, 2002.

84. A.L. Davis and R.M. Keller. Data flow program graphs. Computer, 15(2):26–41, Feb. 1982.

85. E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data flow programs for

digital signal processing. IEEE Transactions on Computers, 36(1):24–35, 1987.

86. S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchroniza-

tion. Marcel Dekker, Inc., New York, NY, USA, 2000.

87. J.T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory using the Token

Flow Model. PhD thesis, EECS UC Berkeley, 1993.

88. T. Grötker, R. Schoenen, and H. Meyr. PCC: A Modeling Technique for Mixed Control/Data

Flow Systems. pages 482–486, Mar. 1997.

89. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 1982.

90. C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666–677, 1978.

91. Specification and Description Language, 1987. ITU-T Recommendation Z. 100.

92. P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal – A data flow-oriented lan-

guage for signal processing. IEEE Transactions on Acoustics, Speech and Signal Processing,

34(2):362–374, April 1986.

93. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming

language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, Sept. 1991.

94. G. Berry. The Foundations of Esterel. pages 425–454, MIT Press, Cambridge, MA, 2000.

95. F. Maraninchi. The Argos language: graphical representation of automata and description of

reactive systems. In IEEE Workshop on Visual Languages, Kobe, Japan, Oct. 1991.

96. R. Lipsett, C.A. Ussery, and C.F. Schaefer. VHDL, Hardware Description and Design. Kluwer

Academic Publishers, Norwell, MA, USA, 1993.

97. T. Grötker, S. Liao, G. Martin, S. Swan. System Design with SystemC. Kluwer Academic

Publishers, Dordrecht (Hingham, MA), 2002.

References 177

98. W. Wolf. A decade of hardware/software codesign. IEEE Computer, 36(4):38–43, April 2003.

99. S.A. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded

systems: Formal models, validation, and synthesis. Proceedings of the IEEE, 85(3):366–390,

March 1997.

100. T. Kogel, R. Leupers, and H. Meyr. Integrated System-Level Modeling of Network-on-Chip

enabled Multi-Processor Platforms. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

101. J.A. Rowson. Hardware/Software Co-Simulation. In Proceedings of the Design Automation

Conference (DAC), 1994.

102. J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A Framework for Simulating

and Prototyping Heterogeneous Systems. Kluwer Academic Publishers, Norwell, MA, USA,

2002.

103. F. Balarin, P.D. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara, M. Chiodo,

H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, and K. Suzuki. Hardware-Software

Co-Design of Embedded Systems: The POLIS Approach. Springer-Verlag Gmbh, Berlin

Heidelberg, 1997.

104. G. Martin and J.-Y. Brunel. Platform-based co-design and co-development: Experience

methodology and trends. In Electronic Design Process Workshop, Monterey, CA, USA, 2002.

105. Synopsys System Studio. http://www.synopsys.com/ , Jan. 2011.

106. Mentor Graphics Seamless. http://www.mentor.com/ , Jan. 2011.

107. W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosenstiehl. The simulation

semantics of SystemC. In Proceedings of the International Conference on Design, Automation

and Test in Europe (DATE), 2001.

108. A. Müller, T. Kogel, and G. Post. Methodology for ATM-Cell processing system design. In

12th Annual 1999 IEEE International ASIC/SOC Conference, Washington, DC, Sept. 1999.

109. R.K. Gupta, C.N. Coelho, Jr., and G. De Micheli. Synthesis and simulation of digital systems

containing interacting hardware and software components. In DAC ’92: Proceedings of the

29th ACM/IEEE conference on Design automation, pages 225–230, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

110. R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for microcontrollers. IEEE

Design and Test of Computers, 10(4):64–75, Dec. 1993.

111. J. Madsen, J. Grode, P.V. Knudsen, M.E. Petersen, and A. Haxthausen. LYCOS: The Lyngby

co-synthesis system. Design Automation of Embedded Systems, 2(2):195–236, 1997.

112. T.B. Ismail, M. Abid, and A. Jerraya. COSMOS: A codesign approach for communicating

systems. In Third International Workshop on Hardware/Software Codesign, pages 17–24,

Silver Spring, MD, Sept. 1994. IEEE Computer Society Press.

113. T.-Y. Yen and W. Wolf. Communication synthesis for distributed embedded systems. In IC-

CAD ’95: Proceedings of the 1995 IEEE/ACM International Conference on Computer-aided

Design, pages 288–294, Washington, DC, USA, 1995. IEEE Computer Society.

114. K. Lahiri, A. Raghunathan, and S. Dey. Fast performance analysis of bus-based system-on-

chip communication architectures. In Proceedings of the IEEE International Conference on

Computer Aided Design, 1999.

115. D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De Micheli.

Noc synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE

Transactions on Parallel and Distributed Systems, 16(2):113–129, Feb. 2005.

116. D. Bertozzi and L. Benini. Xpipes: A network-on-chip architecture for gigascale systems-on-

chip. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004.

117. S. Murali and G. De Micheli. SUNMAP: A tool for automatic topology selection and

generation for NoCs. In DAC ’04: Proceedings of the 41st Annual Conference on Design

Automation, pages 914–919, New York, NY, USA, 2004. ACM.

118. K. Van Rompaey, D. Verkest, I. Bolsens, and H. De Man. CoWare – A design environment for

heterogeneous hardware/software systems. In Proceedings of the European Design Automa-

tion Conference (EuroDAC), 1996.

http://www.synopsys.com/
http://www.mentor.com/

178 References

119. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli.

Metropolis: An integrated electronic system design environment. IEEE Computer, 36(4):

45–52, April 2003.

120. F. Balarin, L. Lavagno, C. Passerone, and Y. Watanabe. Processes, interfaces and platforms.

Embedded software modeling in Metropolis. In Proceedings of EMSOFT’02, October 2002.

121. P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. A methodology for architecture

exploration of heterogeneous signal processing systems. In Proceedings of IEEE Workshop

on Signal Processing Systems SiPS 99, pages 181–190, 1999.

122. E. Deprettere P. Lieverse, P. van der Wolf, and K. Vissers. A methodology for architecture

exploration of heterogeneous signal processing systems. Journal of VLSI Signal Processing

for Signal, Image and Video Technology, 29(3):197–207, Nov. 2001.

123. E.A. de Kock, W.J.M. Smits, P. van der Wolf, J.-Y. Brunel, W.M. Kruijtzer, P. Lieverse, K.A.

Vissers, and G. Essink. YAPI: Application modeling for signal processing systems. In Pro-

ceedings of the Design Automation Conference (DAC), pages 402–405. ACM Press, New

York, 2000.

124. A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der Wolf, and E.F. Deprettere. Exploring

embedded-systems architectures with artemis. IEEE Computer, 34(11):57–63, Nov. 2001.

125. S. Polstra. A systematic approach to exploring embedded system architectures at multiple

abstraction levels. IEEE Transactions on Computers, 55(2):99–112, 2006. Andy D. Member-

Pimentel and Cagkan Erbas.

126. A.D. Pimentel and C. Erbas. An IDF based trace transformation method for communication

refinement. In Proceedings of the Design Automation Conference (DAC), June 2003.

127. C. Erbas, S.C. Erbas, and A.D. Pimentel. A multiobjective optimization model for exploring

multiprocessor mappings of process networks. In Proceedings of the IEEE/ACM/IFIP Inter-

national Conference on Hardware/Software Codesign and System Synthesis, Oct. 2003.

128. V.D. Zivkovic, E. Deprettere, P. van der Wolf, and E. de Kock. Design space exploration

of streaming multiprocessor architectures. In Proceedings of the IEEE Workshop on Signal

Processing Systems (SIPS ’02), pages 228–234, Oct. 2002.

129. H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu, and

E. Deprettere. Daedalus: Toward composable multimedia mp-soc design. In DAC ’08: Pro-

ceedings of the 45th Annual Conference on Design Automation, pages 574–579, New York,

NY, USA, 2008. ACM.

130. M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der Wolf, O.P. Gangwal, A. Timmer,

and E.-J.D. Pol. A heterogeneous multiprocessor architecture for flexible media processing.

IEEE Design and Test of Computers, 19(4):39–50, July/Aug. 2002.

131. J.M. Paul and D.E. Thomas. A layered, codesign virtual machine approach to modeling com-

puter systems. In Proceedings of the International Conference on Design, Automation and

Test in Europe (DATE), 2002.

132. A.S. Cassidy, J.M. Paul, and D.E. Thomas. Layered, multi-threaded, high-level performance

design. In Proceedings of the International Conference on Design, Automation and Test in

Europe (DATE), 2003.

133. J.M. Paul, A. Bobrek, J.E. Nelson, J.J. Pieper, and D.E. Thomas. Schedulers as model-based

design elements in programmable heterogeneous multiprocessors. In Proceedings of the De-

sign Automation Conference (DAC), 2003.

134. S. Mahadevan, M. Storgaard, J. Madsen, and K. Virk. ARTS: A system-level framework

for modeling MPSoC components and analysis of their causality. In Proceedings of MAS-

COTS’05, pages 480–483, Sept. 2005.

135. J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez. Network-on-chip modeling for system-

level multiprocessor simulation. In RTSS ’03: Proceedings of the 24th IEEE International

Real-Time Systems Symposium, page 265, Washington, DC, USA, 2003. IEEE Computer

Society.

136. J. Madsen, K. Virk, and S. Mahadevan. Abstract system-on-chip modelling in systemc. In

European SystemC Users Group Meeting (DATE 2004), April 2004.

References 179

137. K. Virk, J. Madsen, and M.J. Gonzalez. Abstract RTOS modelling for multiprocessor system-

on-chip. In International Symposium on System-on-Chip, pages 147–150, New York. IEEE,

Nov. 2003.

138. E. Bensoudane, P.G. Paulin, and C. Pilkington. StepNP: A system-level exploration platform

for network processors. IEEE Design and Test of Computers, 19(6):17–26, Nov.–Dec. 2002.

139. R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek. The Click modular router. SIGOPS

Operating Systems Review, 33(5):217–231, 1999.

140. K. Keutzer N. Shah, and W. Plishker. NP-Click: A programming model for the Intel IXP1200.

In 2nd Workshop on Network Processors (NP-2) at the 9th International Symposium on High

Performance Computer Architecture (HPCA-9), Anaheim, CA, Feb. 2003.

141. F.R. Wagner, W. Cesário, and A.A. Jerraya. Hardware/software IP integration using the

ROSES design environment. Transaction on Embedded Computing System, 6(3):17, 2007.

142. R. Dömer. System-level Modeling and Design with the SpecC Language. PhD thesis, Univer-

sity Dortmund, 2000.

143. Open SystemC Initiative (OSCI), http://www.systemc.org, Jan. 2011.

144. SpecC Technology Consortium. http://www.specc.org, 2002.

145. Standard for SystemVerilog - Unified Hardware Design, Specification, and Verification Lan-

guage. IEC 62530:2007 (E), pages 1–668, 2007.

146. P.L. Flake and S.J. Davidmann. Superlog, a unified design language for system-on-chip. In

Proceedings of the Asia South Pacific Design Automation Conference (ASPDAC), pages 583–

586, New York, NY, USA, 2000. ACM.

147. W. Müller, W. Rosenstiel, and J. Ruf, editors, SystemC – Methodologies and Applications,

Kluwer Academic Publishers, Dordrecht, June 2003.

148. K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-

level design: Orthogonalization of concerns and platform-based design. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 19(12):1523–1543, Dec. 2000.

149. D.C. Black and J. Donovan. SystemC from the Ground up. Kluwer Academic Publishers,

Dordrecht, 2004.

150. M. Birnbaum and H. Sachs. How VSIA answers the SOC dilemma. IEEE Computer,

32(6):42–50, Jun 1999.

151. T. Kogel, A. Haverinen, and J. Aldis. OCP TLM for Architectural Modeling, OCP-IP, http://

www.ocpip.org/. Technical report, 2005.

152. Open Core Protocol International Partnership (OCP-IP). OCP datasheet, http://www.ocpip.

org, Jan. 2011.

153. Open SystemC Initiative (OSCI). Transaction Level Modeling (TLM) Library, Release 2.0,

2008.

154. E.M. Witte, T. Kempf, V. Ramakrishnan, and G. Ascheid, RWTH Aachen University,

Germany; M. Adrat and M. Antweiler, Department of FKIE/KOM, Wachtberg, Germany.

A seamless software defined radio development flow for waveform and prototype debug-

ging. In 02/2008 Journal of Telecommunications and Information Technology (JTIT), Warsaw,

Poland, 2008.

155. G.R. Hellestrand. The revolution in systems engineering. IEEE Spectrum , 36(9):43–51, Sept.

1999.

156. K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-level design:

Orthogonalization of concerns and platform-based design. IEEE Journal of Computer Aided

Design, 19(12):1523–1543, 2000.

157. Synopsys DesignWare IP. http://www.synopsys.com, Jan. 2011.

158. CoWare Model Library. http://www.coware.com/ , Jan. 2011.

159. Doulos. http://www.doulos.com/ , Jan. 2011.

160. G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr. A universal

technique for fast and flexible instruction-set architecture simulation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 23(12):1625–1639, Dec. 2004.

161. A. Wieferink, H. Meyr, and R. Leupers. Retargetable Processor System Integration into Multi-

Processor System-on-Chip Platforms. Springer Publishing Company, Inc., Berlin, Heidelberg,

2008.

http://www.systemc.org
http://www.specc.org
http://www.ocpip.org/
http://www.ocpip.org/
http://www.ocpip.org
http://www.ocpip.org
http://www.synopsys.com
http://www.coware.com/
http://www.doulos.com/

180 References

162. L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr. A fast and generic hybrid sim-

ulation approach using C virtual machine. In Proceedings of the Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES ’07), Salzburg, Austria, Oct. 2007.

163. M. Burtscher and I. Ganusov. Automatic synthesis of high-speed processor simulators. In

37th International Symposium on Microarchitecture, 2004. MICRO-37 2004., pages 55–66,

Dec. 2004.

164. J. Zhu and D.D. Gajski. A retargetable, ultra-fast instruction set simulator. In Proceedings of

the International Conference on Design, Automation and Test in Europe (DATE), page 62,

New York, NY, USA, 1999. ACM.

165. A. Nohl, G. Braun, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr. A universal

technique for fast and flexible instruction-set architecture simulation. In Proceedings of the

Design Automation Conference (DAC), 2002.

166. B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution profiling. In

SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pages 128–137, New York, NY, USA, 1994. ACM.

167. W. Qin, J. D’Errico, and X. Zhu. A multiprocessing approach to accelerate retargetable and

portable dynamic-compiled instruction-set simulation. In Proceedings of the IEEE/ACM/I-

FIP International Conference on Hardware/Software Codesign and System Synthesis, pages

193–198, New York, NY, USA, 2006. ACM.

168. M. Reshadi, P. Mishra, and N. Dutt. Instruction set compiled simulation: A technique for fast

and flexible instruction set simulation. In DAC ’03: Proceedings of the 40th Conference on

Design Automation, pages 758–763, New York, NY, USA, 2003. ACM.

169. N.P. Topham and D. Jones. High speed CPU simulation using JIT binary translation. In 3rd

Annual Workshop on Modeling, Benchmarking and Simulation, held in Conjunction with

ISCA-34, San Diego CA, USA, June 2007.

170. K. Torsten, K. Kingshuk, and G. Lei. Software instrumentation. In B. Wah, editor, Wiley

Encyclopedia of Computer Science and Engineering , Wiley, Hoboken, Dec. 2008.

171. CoWare Platform Architect. http://www.coware.com/ , Jan. 2011.

172. The Eclipse Foundation. Eclipse IDE. http://www.eclipse.org/ , Jan. 2011.

173. CoWare Platform Creator. http://www.coware.com/ , Jan. 2011.

174. ARM Ltd. ARM Embedded Processors. http://www.arm.com/ , Jan. 2011.

175. T. Kogel, M. Doerper, T. Kempf, A. Wieferink, R. Leupers, G. Ascheid, and H. Meyr. Virtual

architecture mapping: A systemc based methodology for architectural exploration of system-

on-chip designs. In SAMOS, pages 138–148, 2004.

176. Synopsys. Synopsys Innovator. http://www.synopsys.com/ , Jan. 2011.

177. Carbon Design Systems Inc. http:// carbondesignsystems.com/ , Jan. 2011.

178. Virtutech Simics. http://www.virtutech.com/ , Jan. 2011.

179. VaSt Systems. http://www.vastsystems.com/ , Jan. 2011.

180. Triton Tuner. Poseidon, http://www.poseidon-systems.com/ , Jan. 2011.

181. Open Virtual Platforms (OVP). http://www.ovpworld.org/ , Jan. 2011.

182. GreenSocs. http://www.greensocs.com/ , Jan. 2011.

183. M. Coppola, S. Curaba, M.D. Grammatikakis, G. Maruccia, and F. Papariello. The OCCN

user manual. Technical report, Dec. 2003.

184. M. Coppola, S. Curaba, M.D. Grammatikakis, G. Maruccia, and F. Papariello. Occn: A

network-on-chip modeling and simulation framework. In Proceedings of Design, Automation

and Test in Europe Conference and Exhibition, volume 3, pages 174–179 Vol.3, 2004.

185. J.D. Ullman. NP-Complete Scheduling Problems. Journal of Computer and System Sciences,

10(3):384–393, 1975.

186. H. Kasahara and S. Narita. Practical Multiprocessor Scheduling Algorithms for Efficient Par-

allel Processing. IEEE Trans. Comput., 33(11):1023–1029, 1984.

187. V. Chaudhary and J.K. Aggarwal. A generalized scheme for mapping parallel algorithms.

IEEE Transactions on Parallel and Distributed Systems, 4(3):328–346, March 1993.

188. E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative System Perfor-

mance, Computer System Analysis Using Queuing Network Models: Computer Analysis

Using Queuing Network Models. Prentice Hall, Englewood, Cliffs, NJ, Feb. 1984.

http://www.coware.com/
http://www.eclipse.org/
http://www.coware.com/
http://www.arm.com/
http://www.synopsys.com/
http://carbondesignsystems.com/
http://www.virtutech.com/
http://www.vastsystems.com/
http://www.poseidon-systems.com/
http://www.ovpworld.org/
http://www.greensocs.com/

References 181

189. F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat. Synchronization and Linearity: An Al-

gebra for Discrete Event Systems. Wiley, London, 2nd ed., Oct. 2001.

190. P. Thiran, J.-Y. Le Boudec. Network Calculus – A Theory of Deterministic Queuing Systems

for the Internet. Springer-Verlag GmbH, Berlin, Heidelberg, Feb. 2007.

191. L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time

systems. In Proceedings of the International Symposium on ISCAS 2000 Geneva, The 2000

IEEE Circuits and Systems , volume 4, pages 101–104, 2000.

192. L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert. Embedded software

in network processors – models and algorithms. In Proceedings of the First Workshop on

Embedded Software (EMSOFT), pages 416–434, Lake Tahoe, California, USA, Oct. 2001.

Springer-Verlag.

193. L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for evaluating design trade-

offs in packet processing architectures. In 39th Design Automation Conference (DAC 2002),

pages 880–885, New Orleans LA, USA, June 2002. ACM.

194. L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space exploration of network

processor architectures. In Network Processor Design: Issues and Practices, Volume 1, pages

55–89. 2002.

195. S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing system prop-

erties in platform-based embedded system designs. In Proceedings of the International

Conference on Design, Automation and Test in Europe (DATE), pages 190–195, Munich,

Germany, March 2003. IEEE.

196. K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Bottom-up performance analysis of

HW/SW platforms. In Proceedings of the IFIP 17th World Computer Congress – TC10 Stream

on Distributed and Parallel Embedded Systems DIPES ’02, Deventer, The Netherlands, 2002.

197. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level perfor-

mance analysis – the symTA/s approach. IEE Proceedings Computers and Digital Techniques,

152(2):148–166, 2005.

198. K. Richter. Compositional Scheduling Analysis Using Standard Event Models. PhD thesis,

Technical University of Braunschweig, 2004.

199. S. Künzli. Efficient Design Space Exploration for Embedded Systems. PhD thesis, ETH

Zurich, April 2006.

200. S. Chakraborty. System-Level Timing Analysis and Scheduling for Embedded Packet Proces-

sors. PhD thesis, ETH Zurich, April 2003.

201. P. Ienne. Analytical models of communication for MPSoCs. In MPSoC’08, June 2008.

202. P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization of distributed real-time em-

bedded systems. ACM Transactions on Design Automation of Electronic Systems, July 2006.

203. P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of conditional process

graphs for the synthesis of embedded systems. In Proceedings of Design, Automation and

Test in Europe, pages 132–138, 1998.

204. P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access optimization for dis-

tributed embedded systems. IEEE Transactions on VLSI Systems, 8(5):472–491, 2000.

205. M. Bekooij, S. Parmar, and J. van Meerbergen. Performance guarantees by simulation of

process. In SCOPES ’05: Proceedings of the 2005 workshop on Software and compilers for

embedded systems, pages 10–19, New York, NY, USA, 2005. ACM.

206. R.A. Uhlig and T.N. Mudge. Trace-driven memory simulation. ACM Computing Surveys,

29(2):128–170, June 1997.

207. W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria. A design framework to efficiently

explore energy-delay tradeoffs. In Proceedings of the International Symposium on Hard-

ware/Software Codesign (CODES), 2001.

208. T.D. Givargis, J. Henkel, and F. Vahid. Interface and cache power exploration for core-based

embedded system design. In IEEE/ACM International Conference on Proceedings of the Di-

gest of Technical Papers Computer-Aided Design 1999, pages 270–273, 1999.

182 References

209. M.A. Franklin and T. Wolf. A network processor performance and design model with bench-

mark parameterization. In Proceedings of Network Processor Workshop in Conjunction with

Eighth International Symposium on High Performance Computer Architecture (HPCA-8),

pages 63–74, Cambridge, MA, Feb. 2002.

210. K. Lahiri, K. Lahiri, A. Raghunathan, and S. Dey. Performance analysis of systems with

multi-channel communication architectures. In Proceedings of the Thirteenth International

Conference on VLSI Design, 2000.

211. M. Ariyamparambath, D. Bussagila, B. Reinkemeier, T. Kogel, and T. Kempf. A highly ef-

ficient modeling style for heterogeneous bus architectures. In International Symposium on

System-on-Chip, Tampere (Finland), Nov. 2003.

212. T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, and S. Goossens.

A modular simulation framework for architectural exploration of on-chip interconnection

networks. In The First IEEE/ACM/IFIP International Conference on HW/SW Codesign and

System Synthesis, Newport Beach (California USA), Oct. 2003.

213. V.D. Zivkovic, P. van der Wolf, E.F. Deprettere, and E.A. de Kock. Design space exploration

of streaming multiprocessor architectures. In Proceedings of IEEE International Workshop

on Signal Processing Systems (SIPS), Oct. 2002.

214. A. Bobrek, J.J. Pieper, J.E. Nelson, J.M. Paul, and D.E. Thomas. Modeling shared resource

contention using a hybrid simulation/analytical approach. In Proceedings of the International

Conference on Design, Automation and Test in Europe (DATE), page 21144, Washington, DC,

USA, 2004. IEEE Computer Society.

215. T. Wolf and M.A. Franklin. Performance models for network processor design. IEEE Trans-

actions on Parallel and Distributed Systems, 17(6):548–561, 2006.

216. M.A. Franklin and T. Wolf. Power considerations in network processor design. In Proceedings

of Network Processor Workshop in Conjunction with Ninth International Symposium on High

Performance Computer Architecture (HPCA-9), pages 10–22, Anaheim, CA, Feb. 2003.

217. S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation and formal methods

for system-level performance analysis. In Proceedings of the International Conference on

Design, Automation and Test in Europe (DATE), pages 236–241, 3001 Leuven, Belgium,

Belgium, 2006. European Design and Automation Association.

218. V. Pareto. Manuel déconomie politique. Bullitan of American Mathematical Society, 18:

462–474, 1912.

219. Synopsys Inc. http://www.synopsys.com, Jan. 2011.

220. Cadence Design Systems Inc. http://www.cadence.com/ , Jan. 2011.

221. Magma Design Automation Inc. http://www.magma-da.com/ , Jan. 2011.

222. J.A. Rowson and A. Sangiovanni-Vincentelli. Interface-Based Design. In Proceedings of the

Design Automation Conference (DAC), 1997.

223. B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for quantitative anal-

ysis of application-specific dataflow architectures. In Proceedings of the IEEE International

Conference on Application-Specific Systems, Architectures and Processors, pages 338–349,

1997.

224. W. Wolf. A decade of hardware/software codesign. Computer, 36(4):38–43, 2003.

225. S. Verdoolaege, H. Nikolov, and T. Stefanov. Pn: A tool for improved derivation of process

networks. EURASIP Journal of Embedded Systems, 2007(1):19–19, 2007.

226. V. Reyes, T. Bautista, G. Marrero, P.P. Carballo, and W. Kruijtzer. CASSE: A system-level

modeling and design-space exploration tool for multiprocessor systems-on-chip. In Proceed-

ings of DSD, pages 476–483, Aug. 2004.

227. P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink. Design and pro-

gramming of embedded multiprocessors: An interface-centric approach. In Procedings of the

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Syn-

thesis, pages 206–217, New York, NY, USA, 2004. ACM.

228. V. Reyes, W. Kruijtzer, T. Bautista, G. Alkadi, and A. Nú nez. A unified system-level

modeling and simulation environment for mpsoc design: Mpeg-4 decoder case study.

http://www.synopsys.com
http://www.cadence.com/
http://www.magma-da.com/

References 183

In Proceedings of the International Conference on Design, Automation and Test in Europe

(DATE), pages 474–479, 3001 Leuven, Belgium, Belgium, 2006. European Design and

Automation Association.

229. W. Tibboel, V. Reyes, M. Klompstra, and D. Alders. System-level design flow based on a

functional reference for hw and sw. In Proceedings of the Design Automation Conference

(DAC), pages 23–28, New York, NY, USA, 2007. ACM.

230. H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system design with espam. In

Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis, pages 211–216, New York, NY, USA, 2006. ACM.

231. T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System design using

kahn process networks: The compaan/laura approach. In Proceedings of the International

Conference on Design, Automation and Test in Europe (DATE), page 10340, Washington,

DC, USA, 2004. IEEE Computer Society.

232. K. Popovici, X. Guerin, F. Rousseau, P.S. Paolucci, and A.A. Jerraya. Platform-based soft-

ware design flow for heterogeneous mpsoc. Transactions on Embedded Computing Systems,

7(4):1–23, 2008.

233. L. Gauthier, S. Yoo, and A.A. Jerraya. Automatic generation and targeting of application-

specific operating systems and embedded systems software. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 20(11):1293–1301, Nov. 2001.

234. G. Schirner and R. Dömer. Result-oriented modeling – a novel technique for fast and accurate

tlm. IEEE Transactions on CAD of Integrated Circuits and Systems, 26(9):1688–1699, 2007.

235. G. Schirner, A. Gerstlauer, and R. Dömer. Automatic generation of hardware dependent soft-

ware for mpsocs from abstract system specifications. In Proceedings of the Asia South Pacific

Design Automation Conference (ASPDAC), pages 271–276, Los Alamitos, CA, USA, 2008.

IEEE Computer Society Press.

236. C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubühr, A. Deyhle, A. Hadert, and

J. Teich. A systemc-based design methodology for digital signal processing systems.

EURASIP Journal Embedded Systems, 2007(1):15–15, 2007.

237. Xilinx. Platform studio and the edk. http://www.xilinx.com/ , Jan. 2011.

238. CoFluent. http://www.cofluent.com, Jan. 2011.

239. F. Herrera and E. Villar. A framework for heterogeneous specification and design of electronic

embedded systems in SystemC. ACM Transactions on Design Automation of Electronic Sys-

tems, 12(3):1–31, 2007.

240. F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systemic embedded software generation

from systems. In Proceedings of the International Conference on Design, Automation and

Test in Europe (DATE), page 10142, Washington, DC, USA, 2003. IEEE Computer Society.

241. G. Behrmann, A. David, and K.G. Larsen. A tutorial on uppaal. In M. Bernardo and

F. Corradini, editors, 4th International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, number 3185 in LNCS, pages 200–236. Springer-

Verlag, Berlin, Heidelberg, Sept. 2004.

242. S. Künzli, A. Hamann, R. Ernst, and L. Thiele. Combined approach to system level perfor-

mance analysis of embedded systems. In International Conference on Hardware Software

Codesign CODES/ISSS, pages 63–68, Salzburg, Austria, 2007.

243. S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. Henia, R. Racu, R. Ernst,

and M.G. Harbour. Influence of different abstractions on the performance analysis of dis-

tributed hard real-time systems. Design Automation for Embedded Systems, 13(1):27–49, June

2009.

244. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:

183–235, 1994.

245. M. Hendriks and M. Verhoef. Timed automata based analysis of embedded system architec-

tures. In Proceedings of WPDRTS, pages 8 pp.–, April 2006.

246. ARC International. http://www.arc.com/ , Jan. 2011.

247. MIPS Technologies Inc., Pro Series Family. http://www.mips.com/ , Jan. 2011.

248. Target Compiler Technologies. http://www.retarget.com/ , Jan. 2011.

http://www.xilinx.com/
http://www.cofluent.com
http://www.arc.com/
http://www.mips.com/
http://www.retarget.com/

184 References

249. R. Leupers. Code Optimization Techniques for Embedded Processors – Methods, Algorithms,

and Tools. Kluwer Academic Publishers, Dordrecht, Nov. 2000. ISBN 0-7923-7989-6.

250. T. Kempf, M. Dörper, R. Leupers, G. Ascheid, and H. Meyr (ISS Aachen, DE); T. Kogel and

B. Vanthournout (CoWare Inc., BE). A modular simulation framework for spatial and tem-

poral task mapping onto multi-processor soc platforms. In Proceedings of the International

Conference on Design, Automation and Test in Europe (DATE), Munich, Germany, March

2005.

251. T. Kempf, E.M. Witte, O. Schliebusch, G. Ascheid, M. Adrat, and M. Antweiler. A concept

for waveform description based SDR implementation. In 4th Karlsruhe Workshop on Software

Radios (WSR’06), Karlsruhe, Germany, March 2006.

252. G. Schirner, A. Gerstlauer, and R. Domer. Abstract, multifaceted modeling of embedded pro-

cessors for system level design. In Proceedings of the Asia South Pacific Design Automation

Conference (ASPDAC), pages 384–389, 2007.

253. A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, and A.A. Jerraya. Using abstract CPU

subsystem simulation model for high level HW/SW architecture exploration. In Proceedings

of the Asia South Pacific Design Automation Conference (ASPDAC), pages 969–972, 2005.

254. A. Gerstlauer, H. Yu, and D.D. Gajski. RTOS modeling for system level design. In Proceed-

ings of Design, Automation and Test in Europe Conference and Exhibition, pages 130–135,

2003.

255. K. Karuri, M.A. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr. Fine-grained

application source code profiling for ASIP design. In 42nd Design Automation Conference,

Anaheim, California, USA, June 2005.

256. T. Kempf, E.M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat, and M. Antweiler. SDR

baseband processing portability: A case study. In SDR’08, Washington, D.C., USA, Oct. 2008.

257. D.B. West. Introduction to Graph Theory. Prentice Hall, Englewood, Cliffs, NJ, 2nd ed., Aug.

2000.

258. T. Kempf, E.M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat, and M. Antweiler. An

SDR implementation concept based on waveform description. FREQUENZ: Journal of RF-

Engineering and Telecommunications, Berlin, (9-10), 2006.

259. Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Computer Survey, 31(4):406–471, 1999.

260. C.D. Locke, E.D. Jensen, and H. Toduda. A time-driven scheduling model for real-time oper-

ating systems. In IEEE Real-Time Systems Symposium, pages 112–122, 1985.

261. O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-real-time jobs

on a heterogeneous multiprocessor. In EMSOFT ’07: Proceedings of the 7th ACM and IEEE

International Conference on Embedded Software, pages 57–66, New York, NY, USA, 2007.

ACM.

262. J. Leung, L. Kelly, and J.H. Anderson. Handbook of Scheduling: Algorithms, Models, and

Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004.

263. A. Papoulis and S.U. Pillai. Probability, Random Variables and Stochastic Processes.

McGraw-Hill, NY, USA, 4 ed., 2002.

264. The Multicore Association. Multicore Communications API Specification V1.063 (MCAPI),

http://www.multicore-association.org/ , March 2008.

265. Poly Core Software. Poly-Messenger. www.polycoresoftware.com/, Dec. 2010.

266. Texas Instruments Inc. Dsp bios kernel. http:// focus.ti.com/ , Jan. 2011.

267. T. Kempf, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr. RWTH Aachen University.

A workbench for analytical and simulation based design space exploration of software defined

radios. In VLSI Design Conference 2009, New Delhi, India, Jan. 2009.

268. D. Piergentili and D. Coupe. Esl methods for optimizing a multi-media phone chip. EDA

Design Line, http://www.edadesignline.com/ , May 2008.

269. T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr. A SW

performance estimation framework for early System-Level-Design using fine-grained instru-

mentation. In Proceedings of the International Conference on Design, Automation and Test

in Europe (DATE), Munich, Germany, March 2006.

http://www.multicore-association.org/
http://focus.ti.com/
http://www.edadesignline.com/

References 185

270. L. Devroye. Non-Uniform Random Variate Generation. Springer Verlag, New York, 1986.

271. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis and

transformation. In Proceedings of the 2004 International Symposium on Code Generation

and Optimization (CGO’04), Palo Alto, California, March 2004.

272. A. Bouchhima, P. Gerin, and F. Pétrot. Automatic instrumentation of embedded software for

high level hardware/software co-simulation. In Proceedings of the Asia South Pacific Design

Automation Conference (ASPDAC), pages 546–551, Piscataway, NJ, USA, 2009. IEEE.

273. A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, Upper Saddle River, NJ, 2nd ed.

2001.

274. Xilinx. Microblaze processor reference guide. http://www.xilinx.com/ , Jan. 2011.

275. J. Tourley. Survey says: Operating systems up for grabs. Technical report, Embedded Systems

Design, Embedded.com, May 2005.

276. Linux Kernel. http://www.kernel.org/ , Jan. 2011.

277. Portable Operating System Interface for uniX (POSIX). IEEE Standard 1003, http://

standards.ieee.org/ , Jan. 2011.

278. Common Object Request Broker Architecture (CORBA), http://www.corba.org/, Jan. 2011.

279. E. Lusk, W. Gropp, and A. Skjellum. Using mpi-portable parallel programming with the

message-passing interface. Science Programme, 5(3):275–276, 1996.

280. Objective Interface Systems (OIS), Inc., ORBexpress Common Object Request Broker

Architecture (CORBA), http://www.ois.com/, Jan. 2011.

281. A. Gill. Introduction to the Theory of Finite-State Machines. McGraw-Hill, New York, 1962.

282. T. Kogel, M. Doerper, T. Kempf, A. Wieferink, R. Leupers, and H. Meyr. Virtual architecture

mapping: A systemc based methodology for architectural exploration of system-on-chips. In

IJES, Vol. 3, Nr. 3, pages 150–159, 2008.

283. H. Schildt, American national standards institute, international organization for standardiza-

tion, international electrotechnical commission, and ISO/IEC JTC 1. The Annotated ANSI

C Standard: American National Standard for Programming Languages C: ANSI/ISO 9899-

1990. 1990.

284. ISO/IEC 14882:2003: Programming languages: C++. 2003.

285. Virtual Platform CoWare. http://www.coware.com/ , Jan. 2011.

286. Zeligsoft. http://www.zeligsoft.com/ , Jan. 2011.

287. Communications Research Centre Canada (CRC). Scari Software Suite, http://www.crc.

gc.ca/ , Jan. 2011.

288. T. Kempf, E.M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat, and M. Antweiler. A Work-

bench for Waveform Description based SDR Implementation. In 2007 Software Defined

Radio Technical Conference (SDR’07), Denver, USA, Nov. 2007.

289. Extensible Markup Language (XML). http://www.w3.org/ , Jan. 2011.

290. Texas Instruments Inc. TMS320C55x DSP CPU Reference Guide (Rev. F). User Guide, Feb.

2004.

291. Texas Instruments Inc. TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide

(Rev. H). User Guide, Oct. 2008.

292. Texas Instrument. DSP Libraries for TMS320C64x and TMS320C55x. http://www.ti.com/ ,

Jan. 2011.

293. K. Kennedy and J.R. Allen. Optimizing Compilers for Modern Architectures: A Dependence-

based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

294. S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 1997.

295. M. Hohenauer, R. Leupers, O. Wahlen, et al. An executable intermediate representation for

retargetable compilation and high-level code optimization. In International Workshop on Sys-

tems, Architectures, Modeling, and Simulation (SAMOS), 2003.

296. L. Gao, J. Huang, J. Ceng, R. Leupers, G. Ascheid, and H. Meyr. TotalProf: A fast and ac-

curate retargetable source code profiler. In International Conference on Hardware/Software

Codesign and System Synthesis (CODES-ISSS 2009), Grenoble, France, 2009.

297. F. Petrot. Automatic timing annotation of native software for mpsoc simulation. In MP-

SoC’08, June 2008.

http://www.xilinx.com/
http://www.kernel.org/
http://standards.ieee.org/
http://standards.ieee.org/
http://www.corba.org/
http://www.ois.com/
http://www.coware.com/
http://www.zeligsoft.com/
http://www.crc.gc.ca/
http://www.crc.gc.ca/
http://www.w3.org/
http://www.ti.com/

186 References

298. The MathWorks Inc. MATLAB. http://www.mathworks.com/ , Jan. 2011.

299. MIL-STD-188-110B Departement of Defense Interface Standard. April 2000.

300. H. Meyr, M. Moeneclaey, and S.A. Fechtel. Digital Communication Receivers: Synchroniza-

tion, Channel Estimation and Signal Processing. Wiley, New York, Feb. 1997.

301. Tensilica Inc. Diamond Standard Processor Core Family Architecture. White Paper, July

2007.

302. A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

303. C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding: Turbo-

codes. IEEE Transactions on Communications, 44(10):1261–1271, Oct. 1996.

304. Texas Instruments. TMS320C645x DSP Viterbi-Decoder Coprocessor 2 Reference Guide.

http://www.ti.com/ litv/pdf/ spru972, April 2006.

305. Texas Instruments. DSP Libraries for TMS320C64x and TMS320C55x. http://www.ti.com/ ,

Jan. 2011.

306. Texas Instruments. Reed Solomon Decoder: TMS320C64x Implementation, December 2000.

307. CoWare Task Modeling and Virtual Processing Unit User’s Guide. http://www.coware.com,

Jan. 2011.

308. Texas Instrument. C6flo graphical software development tool. http://www.ti.com/ , Jan. 2011.

http://www.mathworks.com/
http://www.ti.com/litv/pdf/spru972
http://www.ti.com/
http://www.coware.com
http://www.ti.com/

Index

A

Abstract Simulation Model, 88–130

Advanced Task Modeling, 119–122

Analysis Algorithm, 79–86

analysis graph, 82

analysis graph calculation, 81

analysis graph simplification, 157

analysis pre-calculation, 83

critical path analysis, 86

dependency delays, 85, 160

scheduling scenarios, 158

shortcut elimination, 157

stochastic independence, 161

Analytical Implementation Model, 66–88

critical path analysis, 60

hardware architecture, 74

multiapplication scenario, 72

scheduling, 77

simulation link, 86

single application scenario, 71

stochastic description, 78

temporal and spatial task mapping, 75

Annotation Models of the VPU, 95–102

implementation-based annotation model,

99

profiling-based annotation model, 99

recommended annotation techniques, 137

source-level annotation model, 97

statistical annotation model, 96

trace-based annotation model, 101

Applications, 8

general purpose, 11

multimedia, 9

wireless communication, 8

Area–Timing–Energy (ATE) product, 42

C

Communication Architectures, 19

Component based Design, 36, 43

Component-based Software Engineering

(CBSE), 50

Control Flow Graph (CFG), 77

Costs, see Metrics

Crisis of complexity, 2

Critical path, 58, 79

D

Dennard’s Scaling Rules, 1

Design Methodology

application impact, 12

hardware architecture impact, 20

Design Space Exploration, 23

Design Space Exploration Framework

abstract simulation model, 61

analytical model, 58, 67

instruction set simulation-based model, 64

iterative design process, 55

key objectives, 55, 67

Directed Acyclic Data Flow Graph (DFG), 73

E

Energy and Power Efficiency, see Metrics

ESL design, 26

ESL Design Environments, 35

Evaluation, 23, 24, 46, 53

analytical, 38–40, 51

joint approaches, 53

simulation-based, 26–38, 49

Exploration, 23, 42–46, 55

requirements, 45

F

Feedback Data Flow Graph (FDFG), 73

Feedback loop, see Critical path

Flexibility, see Metrics

Flynn taxonomy, 91

187

188 Index

H

Hardware Platforms and Components, 13

HW/SW Co-Design, 29

I

Instruction Set Simulation, 37

K

Kahn Process Networks (KPN), 50

L

Languages

ESL design languages, 32

SpecC, 32

SystemC, 32

SystemVerilog, 32

Verilog, 32

Linear System Theory, 52

Looped tCEFSM, 120

M

Memory Subsystems, 19

Methodology for Early Design Space

Exploration, 55

Metrics, 13–14

Costs, 14

Energy and Power Efficiency, 13

Flexibility, 14

Performance, 13

Model of Computation, 27

synchronous, 28

timed, 28

untimed, 28

Moore’s Law, 1

MPSoC design entries, 56

MPSoC evolution, 14

Multiobjective optimization, see Pareto

Optimization

O

Open Core Protocol International Partnership,

34

Orthogonalization of Concerns, 36, 75

P

Pareto Optimization, 42, 69

Performance, see Metrics

Platform Architect, 37

Platform based Design, 36, 43

Platform Refinement Engine (PRE), 64, 127

communication refinement, 128

configuration & initialization, 128

operating system refinement, 128

refinement steps, 127–128

POSIX, 109

Processing Elements, 16

Application Specific Integrated Circuits, 18

Field Programmable Gate Arrays, 18

Processors

ASIP, 17

DSP, 17

rASIP, 17

RISC, 17

Q

Queuing theory, 52

R

Real-time calculus, 52

Refinement of the VPU, 122–130

hardware simulation model, 123

memory access, 125

operating system, 125

semi-automatic design flow, see PRE

software, 123

S

Simulation model, 26

Software Defined Radio, 7, 138

Software Layers of the VPU, 102–122

application layer, 115

device drivers, 105

graphical design entry, 119

hardware abstraction layer, 103

middleware layer, 113

operating system, 107

textual design entry, 115

Synchronous Data Flow (SDF), 52, 73

System Level Design, 30

Systems for Wireless Communication, 7

T

Tagged signal modeling, 115

Time Retrieval Engine, 87, 97

Timed Automata, 52

Timed Communication Extended State

Machine, 115, 116

Transaction Level Modeling, 33

TLM-1, 33

TLM-2, 34

use cases, 35

Index 189

V

Virtual Platforms, 35, 37

Virtual Processing Unit (VPU), 61, 90

advanced features, 163

annotation models, 95–102

annotation principle, 61, 93

graphical design entry, 63

operational semantic of tasks, 115

refinement, 122–130

software layers, 102–122

task modeling, 116

use cases, 90

Y

Y-chart principle, 75

	Multiprocessor Systems on Chip
	Preface
	Contents
	List of Figures
	List of Tables

	Chapter 1 Introduction
	1.1 Organization of the Book

	Chapter 2 Systems for Wireless Communication
	2.1 Applications for Mobile Devices
	2.1.1 Wireless Communication Domain
	2.1.2 Multimedia Applications
	2.1.3 General Purpose and Other Applications
	2.1.4 Application Impact on Design Methodology

	2.2 Hardware Platforms and Components
	2.2.1 Processing Elements
	2.2.2 Communication Architectures and Memory Subsystems
	2.2.3 Hardware Architecture Impact on Design Methodology

	2.3 Summary

	Chapter 3 Principles of Design Space Exploration

	3.1 Evaluation of a Single Design Point
	3.1.1 Simulation-Based Approaches
	3.1.2 Analytical Approaches
	3.1.3 Joint Analytical and Simulation-Based Approaches
	3.1.4 Summary of Approaches

	3.2 Exploring the Design Space
	3.2.1 Summary of Exploration Approaches

	3.3 Requirements for Early Design Space Exploration

	Chapter 4 Related Work

	4.1 Simulation-Based Approaches
	4.2 Analytical Approaches
	4.3 Joint Analytical and Simulation-Based Approaches
	4.4 Summary

	Chapter 5 Methodology
	5.1 Iterative Design Process
	5.2 Analytical Implementation Model
	5.3 Abstract Simulation Implementation Model
	5.4 ISS-Based Implementation Model

	Chapter 6 Analytical Implementation Model
	6.1 Design Space Exploration as a Mathematical Problem
	6.1.1 Problem Statement and Elementary Definitions
	6.1.2 Input Analysis and Evaluation Constraints
	Application (xAppl)
	HW Architecture (xArch)
	Temporal and Spatial Task Mapping (xMap)
	Stochastic Description (Xi (ti, pej))
	Constraints (c)

	6.2 Analysis Algorithm
	6.2.1 Analysis Graph Calculation
	6.2.2 Analysis Precalculation
	6.2.3 Critical Path Evaluation

	6.3 Simulation Link and Back Annotation

	Chapter 7 Abstract Simulation Implementation Model
	7.1 Overview and Key Components
	7.2 Virtual Processing Unit Concept
	7.3 Annotation Principle of Execution Characteristics
	7.3.1 Statistical Annotation Model
	7.3.2 Source-Level Annotation Model
	7.3.3 Implementation-Based Annotation Model
	Profiler-Based Annotation Model
	Trace-Based Annotation Model

	7.4 Software Layers of the VPU
	7.4.1 Hardware Abstraction Layer
	7.4.2 Device Drivers
	7.4.3 Operating System Layer
	7.4.4 Middleware Layer

	7.5 Application Layer
	7.5.1 Textual Design Entry
	Operational Semantic
	Practical Considerations for Task Modeling

	7.5.2 Graphical Design Entry

	7.6 Refinement to Instruction Set Simulation
	7.6.1 Hardware Simulation Model Refinement
	7.6.2 Software Refinement
	7.6.3 Automatic Refinement Flow for the Graphical Design Entry
	OS Specific Refinement
	Communication Protocols
	Configuration and Initialization

	7.7 Summary of the Abstract Simulation Model

	Chapter 8 Case Study
	8.1 Task Level Annotation
	8.1.1 Task Level Analysis Scenario
	8.1.2 Task Level Analysis Results
	Annotation Results
	Summary of Task Level Analysis

	8.2 System Level Case Study
	8.2.1 Wireless Communication Standards
	MIL-STD-188-110B
	Representative Communication Algorithm
	Combination of Algorithms

	8.2.2 Overview of Processing Element
	8.2.3 Exploration
	Step 1 (Analytical Model): Initial Setup
	Step 2 (Analytical Model): Single Processor Core Schedule Effects
	Step 3 (Analytical Model): Replacement of Generic PE by TI C55x DSP
	Step 4 (Analytical Model): Replacement of TI C55x with C64x DSP
	Step 5 (Analytical Model): Task Rescheduling
	Step 6 (Abstract Simulation Model): Validation of the Implementation Candidate
	Step 7 (Analytical Model): Adding a Viterbi CoProcessor
	Step 8 (Analytical Model): Tightly Coupled Viterbi CoProcessor
	Further Exploration Steps and Process

	8.3 Summary of the Case Study

	Chapter 9 Summary and Outlook

	Appendix A Advanced Features of the Analysis Framework

	A.1 Analysis Graph Simplification
	A.1.1 Task Merging
	A.1.2 Shortcut Elimination
	A.1.3 Iterative Application

	A.2 Scheduling Scenarios
	A.2.1 Scheduling Definition Within the Analysis Framework

	A.3 Dependency Delays
	A.4 Practical Calculation and Stochastic Independence

	Appendix B Advanced VPU Features

	B.1 Advanced Device Drivers

	Appendix C Task Modeling and Virtual Processing Unit

	C.1 Overview
	C.2 Task Graph Assembly and Analysis
	C.3 VPU IP Component and Platform Modeling
	C.4 Task Graph Mapping

	References
	Index
	Cover
	Multiprocessor Systems on Chip
	Preface
	Contents
	List of Figures
	List of Tables

	Chapter 1 Introduction
	1.1 Organization of the Book

	Chapter 2 Systems for Wireless Communication
	2.1 Applications for Mobile Devices
	2.1.1 Wireless Communication Domain
	2.1.2 Multimedia Applications
	2.1.3 General Purpose and Other Applications
	2.1.4 Application Impact on Design Methodology

	2.2 Hardware Platforms and Components
	2.2.1 Processing Elements
	2.2.2 Communication Architectures and Memory Subsystems
	2.2.3 Hardware Architecture Impact on Design Methodology

	2.3 Summary

	Chapter 3 Principles of Design Space Exploration
	3.1 Evaluation of a Single Design Point
	3.1.1 Simulation-Based Approaches
	3.1.2 Analytical Approaches
	3.1.3 Joint Analytical and Simulation-Based Approaches
	3.1.4 Summary of Approaches

	3.2 Exploring the Design Space
	3.3 Requirements for Early Design Space Exploration
	3.2.1 Summary of Exploration Approaches

	Chapter 4 Related Work
	4.1 Simulation-Based Approaches
	4.2 Analytical Approaches
	4.4 Summary
	4.3 Joint Analytical and Simulation-Based Approaches

	Chapter 5 Methodology
	5.1 Iterative Design Process
	5.2 Analytical Implementation Model
	5.3 Abstract Simulation Implementation Model
	5.4 ISS-Based Implementation Model

	Chapter 6 Analytical Implementation Model
	6.1 Design Space Exploration as a Mathematical Problem
	6.1.1 Problem Statement and Elementary Definitions
	6.1.2 Input Analysis and Evaluation Constraints
	Application (xAppl)
	HW Architecture (xArch)
	Temporal and Spatial Task Mapping (xMap)
	Stochastic Description (Xi (ti, pej))
	Constraints (c)

	6.2 Analysis Algorithm
	6.2.1 Analysis Graph Calculation
	6.2.2 Analysis Precalculation

	6.3 Simulation Link and Back Annotation
	6.2.3 Critical Path Evaluation

	Chapter 7 Abstract Simulation Implementation Model
	7.1 Overview and Key Components
	7.2 Virtual Processing Unit Concept
	7.3 Annotation Principle of Execution Characteristics
	7.3.1 Statistical Annotation Model
	7.3.2 Source-Level Annotation Model
	7.3.3 Implementation-Based Annotation Model
	Profiler-Based Annotation Model
	Trace-Based Annotation Model

	7.4 Software Layers of the VPU
	7.4.1 Hardware Abstraction Layer
	7.4.2 Device Drivers
	7.4.3 Operating System Layer
	7.4.4 Middleware Layer

	7.5 Application Layer
	7.5.1 Textual Design Entry
	Operational Semantic
	Practical Considerations for Task Modeling

	7.5.2 Graphical Design Entry

	7.6 Refinement to Instruction Set Simulation
	7.6.2 Software Refinement
	7.6.1 Hardware Simulation Model Refinement
	7.6.3 Automatic Refinement Flow for the Graphical Design Entry
	Communication Protocols
	OS Specific Refinement
	Configuration and Initialization

	7.7 Summary of the Abstract Simulation Model

	Chapter 8 Case Study
	8.1 Task Level Annotation
	8.1.1 Task Level Analysis Scenario
	8.1.2 Task Level Analysis Results
	Annotation Results
	Summary of Task Level Analysis

	8.2 System Level Case Study
	8.2.1 Wireless Communication Standards
	MIL-STD-188-110B
	Representative Communication Algorithm
	Combination of Algorithms

	8.2.2 Overview of Processing Element
	8.2.3 Exploration
	Step 1 (Analytical Model): Initial Setup
	Step 3 (Analytical Model): Replacement of Generic PE by TI C55x DSP
	Step 2 (Analytical Model): Single Processor Core Schedule Effects
	Step 4 (Analytical Model): Replacement of TI C55x with C64x DSP
	Step 5 (Analytical Model): Task Rescheduling
	Step 7 (Analytical Model): Adding a Viterbi CoProcessor
	Step 6 (Abstract Simulation Model): Validation of the Implementation Candidate
	Step 8 (Analytical Model): Tightly Coupled Viterbi CoProcessor
	Further Exploration Steps and Process

	8.3 Summary of the Case Study

	Chapter 9 Summary and Outlook
	Appendix A Advanced Features of the Analysis Framework
	A.1 Analysis Graph Simplification
	A.1.1 Task Merging
	A.1.2 Shortcut Elimination

	A.2 Scheduling Scenarios
	A.1.3 Iterative Application

	A.3 Dependency Delays
	A.2.1 Scheduling Definition Within the Analysis Framework

	A.4 Practical Calculation and Stochastic Independence

	Appendix B Advanced VPU Features
	B.1 Advanced Device Drivers

	Appendix C Task Modeling and Virtual Processing Unit
	C.1 Overview
	C.2 Task Graph Assembly and Analysis
	C.3 VPU IP Component and Platform Modeling
	C.4 Task Graph Mapping

	References
	Index

