

Memory-Based Logic Synthesis

Tsutomu Sasao

Memory-Based Logic
Synthesis

ABC

Tsutomu Sasao
Kyushu Institute of Technology
Department of Computer Science and Electronic
Iizuka, Japan
sasao@cse.kyutech.ac.jp

ISBN 978-1-4419-8103-5 e-ISBN 978-1-4419-8104-2
DOI 10.1007/978-1-4419-8104-2
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011922264

c Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

sasao@cse.kyutech.ac.jp
www.springer.com

Preface

This book describes the realization of logic functions using memories. The proposed

methods can be used to impalement designs in field programmable gate arrays (FP-

GAs) that contain both small-scale memories, called look-up tables (LUTs), and

medium-scale memories, called embedded memories.

The basis for memory-based design is functional decomposition, which replaces

a large memory with smaller ones. An LUT cascade is introduced as a new archi-

tecture for logic synthesis. This book introduces the C-measure, which specifies the

complexity of Boolean functions. Functions with a suitably small C-measure can be

efficiently realized by LUT cascades.

This book also shows logic design methods for index generation functions. An

index generation function is a mathematical model for an address table which can

be used to store internet addresses. Such a table must be updated frequently, and the

operation must be performed as fast as possible. In addition, this book introduces

hash-based design methods, which efficiently realize index generation functions

by pairs of smaller memories. Main applications include: IP address table lookup,

packet filtering, terminal access controllers, memory patch circuits, virus scan cir-

cuits, fault map of memory, and pattern matching.

This book is suitable for both FPGA system designers and CAD tool developers.

To read the book, a basic knowledge of logic design and discrete mathematics is

required. Each chapter contains examples and exercises. Solutions for the exercises

are also provided.

Tsutomu Sasao

v

Acknowledgements

This research is supported in part by the Grants in Aid for Scientific Research

of JSPS, the grants of MEXT knowledge Cluster Project, and Regional Innova-

tion Cluster Program. Many people were involved in this project: Jon T. Butler,

Masayuki Chiba, Bogdan Falkowski, Yukihiro Iguchi, Kazunari Inoue, Atsumu

Iseno, Yoshifumi Kawamura, Hisashi Kajihara, Munehiro Matsuura, Alan

Mishchenko, Hiroki Nakahara, Kazuyuki Nakamura, Shinobu Nagayama, Marek

Perkowski, Hui Qin, Marc Riedel, Takahiro Suzuki, Akira Usui, and Yuji Yano.

Most materials in this book have been presented at various conferences: IWLS,

DSD, ISMVL, ICCAD, ICCD, DAC, ASPDAC, FPL, ARC, and SASIMI, as well

as journals: IEEETCAD, IEICE and IJE. In many cases, reviewers comments con-

siderably improved the quality of the materials.

Preliminary versions of this book were used as a textbook for seminars in our

group. Numerous improvements were proposed by the students of Kyushu Insti-

tute of Technology: Taisuke Fukuyama, Takuya Nakashima, Takamichi Torikura,

Satoshi Yamaguchi, Takuya Eguchi, Yoji Tanaka, Yosuke Higuchi, Takahiro

Yoshida, and Meiji University: Atsushi Ishida, Kensuke Kitami, Koki Shirakawa,

Kengo Chihara, Shotaro Hara, Akira Yoda.

Prof. Jon T. Butler read through the entire manuscript repeatedly and made

important corrections and improvements.

Dr. Alan Mishchenko’s comments on the final manuscript were also appreciated.

vii

Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Organization of the Book . 1

2 Basic Elements . 3

2.1 Memory .. 3

2.2 Programmable Logic Array . 4

2.3 Content Addressable Memory . 4

2.4 Field Programmable Gate Array.. 6

2.5 Remarks. 8

Problems . 8

3 Definitions and Basic Properties . 11

3.1 Functions . 11

3.2 Logical Expression .. 11

3.3 Functional Decomposition .. 12

3.4 Binary Decision Diagram .. 14

3.5 Symmetric Functions. 18

3.6 Technology Mapping .. 21

3.7 The Mathematical Constant e and Its Property . 23

3.8 Remarks. 23

Problems . 24

4 MUX-Based Synthesis . 25

4.1 Fundamentals of MUX.. 25

4.2 MUX-Based Realization . 27

4.3 Remarks. 31

Problems . 32

ix

x Contents

5 Cascade-Based Synthesis . 33

5.1 Functional Decomposition and LUT Cascade . 33

5.2 Number of LUTs to Realize General Functions . 35

5.3 Number of LUTs to Realize Symmetric Functions 38

5.4 Remarks. 40

Problems . 40

6 Encoding Method . 41

6.1 Decomposition and Equivalence Class . 41

6.2 Disjoint Encoding . 42

6.3 Nondisjoint Encoding .. 43

6.4 Remarks. 53

Problems . 53

7 Functions with Small C-Measures . 55

7.1 C-Measure and BDDs . 55

7.2 Symmetric Functions. 56

7.3 Sparse Functions . 57

7.4 LPM Functions . 57

7.5 Segment Index Encoder Function . 60

7.6 WS Functions.. 62

7.7 Modulo Function . 65

7.8 Remarks. 67

Problems . 67

8 C-Measure of Sparse Functions . 71

8.1 Logic Functions with Specified Weights . 71

8.2 Uniformly Distributed Functions . 76

8.3 Experimental Results. 77

8.3.1 Benchmark Functions . 77

8.3.2 Randomly Generated Functions . 78

8.4 Remarks. 79

Problems . 80

9 Index Generation Functions . 81

9.1 Index Generation Functions and Their Realizations 81

9.2 Address Table . 81

9.3 Terminal Access Controller . 82

9.4 Memory Patch Circuit . 83

9.5 Periodic Table of the Chemical Elements . 84

9.6 English–Japanese Dictionary . 85

9.7 Properties of Index Generation Functions. 86

9.8 Realization Using .p; q/-Elements . 88

9.9 Realization of Logic Functions with Weight k . 91

9.10 Remarks. 93

Problems . 93

Contents xi

10 Hash-Based Synthesis . 95

10.1 Hash Function . 95

10.2 Index Generation Unit . 96

10.3 Reduction by a Linear Transformation .. .100

10.4 Hybrid Method .103

10.5 Registered Vectors Realized by Main Memory .. .106

10.6 Super Hybrid Method .108

10.7 Parallel Sieve Method .. .111

10.8 Experimental Results. .114

10.8.1 List of English Words .114

10.8.2 Randomly Generated Functions .115

10.8.3 IP Address Table .115

10.9 Remarks. .116

Problems .116

11 Reduction of the Number of Variables .119

11.1 Optimization for Incompletely Specified Functions119

11.2 Definitions and Basic Properties. .120

11.3 Algorithm to Minimize the Number of Variables .122

11.4 Analysis for Single-Output Logic Functions. .125

11.5 Extension to Multiple-Output Functions .. .126

11.5.1 Number of Variables to Represent Index

Generation Functions .127

11.5.2 Number of Variables to Represent General

Multiple-Output Functions .129

11.6 Experimental Results. .130

11.6.1 Random Single-Output Functions .130

11.6.2 Random Index Generation Functions .131

11.6.3 IP Address Table .131

11.6.4 Benchmark Multiple-Output Functions .132

11.7 Remarks. .133

Problems .133

12 Various Realizations .137

12.1 Realization Using Registers, Gates, and An Encoder137

12.2 LUT Cascade Emulator .137

12.3 Realization Using Cascade and AUX Memory .139

12.4 Comparison of Various Methods .143

12.5 Code Converter .. .147

12.6 Remarks. .149

Problems .150

13 Conclusions .151

xii Contents

Solutions .153

Bibliography .179

Index .187

Chapter 1

Introduction

1.1 Motivation

Two of the most crucial problems in VLSI design are their high design cost and long

design time. A solution to these problems is to use programmable architectures.

Programmable LSIs reduce the hardware development cost and time drastically,

since one LSI can be used for various applications. This book considers realizations

of logic functions by programmable architectures. Various methods exist to real-

ize multiple-output logic functions by programmable architectures. Among them,

memories and programmable logic arrays (PLAs) directly realize logic functions.

However, when the number of input variables nis large, the necessary hardware

becomes too large. Thus, field programmable gate arrays (FPGAs) are widely used.

Unfortunately, FPGAs require layout and routing in addition to logic design. Thus,

quick reconfiguration is not so easy.

A look-up table (LUT) cascade is a series connection of memories. It efficiently

realizes various classes of logic functions. Since the architecture is simple, LUT

cascades are suitable for the applications where frequent update is necessary. This

book explores the design and application of LUT cascades. In addition, it shows

memory-based methods to realize index generation functions, which are useful for

pattern matching and communication circuits.

1.2 Organization of the Book

This book consists of 13 chapters. Figure 1.1 shows the relation between the chap-

ters, where the arrows show the order to read the chapters. For example, Chaps. 6

and 7 can be read after reading Chap. 5. Chapter 2 reviews the basic elements used

in this book: memory, PLA, content addressable memory (CAM), and FPGA.

Chapter 3 reviews the definitions and basic properties of logic functions. Func-

tional decomposition is the most important theory covered.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 1,

c Springer Science+Business Media, LLC 2011

1

2 1 Introduction

5 117

8

9 101

2

3

4

6

12 13

Fig. 1.1 Relation among chapters

Chapter 4 shows multiplexer-based synthesis of logic functions. This method

is universal, i.e., it can realize any logic function. However, the number of LUTs

required to realize the function tends to increase exponentially with n, the number

of input variables.

Chapter 5 shows a method to realize logic functions using LUT cascades. This

method is not universal, i.e., it can be applied to only a limited class of logic

functions. However, the number of LUTs to realize the function tends to increase

linearly with n, the number of input variables. The C-measure is used to estimate

the circuit size.

Chapter 6 shows a method to reduce the number of LUTs by considering the

encoding of the functional decomposition.

Chapter 7 shows a class of functions whose C-measures are small. Such functions

are efficiently realized by LUT cascades.

Chapter 8 considers the C-measure of the functions whose number of minterms

is limited. It shows that when the number of minterms is small, the C-measure is

also small.

Chapter 9 introduces index generation functions, which are useful to design IP

address tables, terminal access controllers for local area network, etc.

Chapter 10 introduces a hash-based synthesis of index generation functions. The

method is similar to a hash table for software. Similar to the case of software real-

ization, collisions of data may occur. However, in hardware, we can avoid collisions

by using various circuits that work concurrently.

Chapter 11 shows a reduction method for the number of variables for the hash

circuit. It introduces incompletely specified functions and shows an algorithm to

reduce the number of variables.

Chapter 12 shows various methods to realize index generation functions.

Chapter 13 summarizes the book.

Chapter 2

Basic Elements

This chapter reviews memory, programmable logic array (PLA), content addressable

memory (CAM), and field programmable gate array (FPGA).

2.1 Memory

Semiconductor memories have a long history of research, and various types of

memories have been developed.

A dynamic random access memory (DRAM) uses only a single transistor to store

one bit. However, the peripheral circuit is rather complex, and periodical refreshing

is necessary. Thus, DRAM is suitable for large-scale memory, but not for a small-

scale memory.

A static random access memory (SRAM) uses six transistors to store one bit. The

peripheral circuit is not so complex as in DRAM, and refreshing is unnecessary.

Thus, SRAM is suitable for small-scale memory, but not for large-scale memory.

Both DRAM and SRAM are volatile, i.e., if the power supply is tuned off, the data

are lost.

Read only memories (ROMs), however are nonvolatile and are used for storing

fixed data. For rewritable ROMs, fabrication often requires a dedicated process and

such ROMs are expensive.

To reduce the amount of hardware, memories are often implemented as a two-

dimensional structure that is shown in Fig. 2.1. The row address decoder selects

one row. And the sense amplifiers read the data for the selected row. Finally, the

column address decoder selects one bit from the word. In many cases, the memory

has a clock. Such a memory is synchronous. Many FPGAs contain memories, and

many of them are synchronous. However, asynchronous memories (i.e., memories

operating without clock pulses) are also available.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 2,

c Springer Science+Business Media, LLC 2011

3

4 2 Basic Elements

r
o

w
 a

d
d

r
 d

e
c
o

d
e
r

column addr decoder

data

column addr

row addr

Sense Amp

Bit-line
RAM Cell

Word-line

Fig. 2.1 Memory architecture

2.2 Programmable Logic Array

PLAs were often used for implementing controllers of microprocessors [94]. A PLA

consists of the AND array and the OR array as shown in Fig. 2.2. For example, a

3-input 2-output function can be implemented as shown in Fig. 2.3. In the AND

array, a cross-point denotes the AND connection, while in the OR array, a cross-

point denotes the OR connection. Both static and dynamic PLAs exist. In the

dynamic PLA, a clock pulse is used to read out the data. For large-scale PLAs,

dynamic realizations are often used, since static CMOS realization is too large and

the NMOS realization dissipates much static power. In a rewritable PLA, each

cross-point consists of a switch and a memory element [3]. Let n be the number of

inputs, W be the number of columns, and m be the number of outputs. Then, the

size of a PLA is approximated by W.2n C m/. The number of columns W can be

reduced by minimizing sum-of-products (SOPs) expressions. Thus, the logic design

is relatively easy.

2.3 Content Addressable Memory

An ordinary memory such as that introduced in Sect. 2.1 uses a memory address to

access data and return the contents of the memory. On the contrary, a CAM searches

using the contents of the memory, and returns the address where the supplied data

were found.

2.3 Content Addressable Memory 5

f m-1

f 0
f 1

W

2nAND

OR

xn

x1

x2

Fig. 2.2 Programmable logic array (PLA)

Fig. 2.3 An example of PLA

x1

x2

x3

f 0
f 1

OR array

AND array

CAMs are often used in pattern matching [5]. Two types of CAMs exist: a binary

CAM (BCAM) and a ternary CAM (TCAM). In a BCAM, each cell can take one

of two states: 0 and 1. BCAMs are used for exact match. In a TCAM, each cell can

take one of three states: 0, 1, and X (don’t care that matches both 0 and 1). A TCAM

can be used for implementing the longest prefix match to be explained in Chap. 7,

and range match. To store one bit of information, an SRAM requires 6 transistors,

while a TCAM requires 16 transistors [90]. Thus, a TCAM is more expensive than

SRAM. Figure 2.4 shows an example of a CAM. In the CAM, for the input (i.e.,

search data) 01101, the second and the third rows match. However, the priority

encoder selects the lowest address, i.e., 01. Thus, the output of the CAM is 01, the

address of the second line. When the input is 11111, the CAM shows that there is

no match.

6 2 Basic Elements

Match

Address

Search Line Drivers

1 0

11

1

1

1 1

1

0 0

0

0 X

X

X

1

0

X

X

Priority Encoder

00

01

10

11

Match Line

Sense Amps

Match

01

Search Data=01101

Search Lines Match Lines

Match

Fig. 2.4 CAM architecture

Fig. 2.5 Comparison of

SRAM and CAM
SRAM CAM

Memory

Array

Sense Amp

R
o
w

 D
ec

o
d
er Search Request

E
n
co

d
er

CAM

array

Figure 2.5 compares an SRAM with a CAM. Note that in an SRAM, only one

row is activated at a time, while in a CAM, all the rows are activated at the same

time. In a CAM, all the rows are charged and discharged in every search operation.

Thus, a CAM dissipates more power than an SRAM with the same number of bits.

2.4 Field Programmable Gate Array

Most FPGAs have an island-style architecture as shown in Fig. 2.6. In this

architecture, logic elements are surrounded by interconnection elements such as

switch blocks, connection blocks, and wiring. Logic elements are, in most cases,

look-up tables (LUTs). A K-LUT is a module that realizes an arbitrary K-variable

function. Thus, logically it is a K-input memory. However, unlike an ordinary

2.4 Field Programmable Gate Array 7

Fig. 2.6 Island-style FPGA

Switch

Block

Connection Block

IOB

Logic

Block

Fig. 2.7 LUT for FPGA

Look Up

Table

Address

ABC

000

001

010

011

100

101

110

111

f

0

0

0

1

0

1

1

1

f

0

0

0

1

0

1

1

1

f

0

0

0

1

0

1

1

1

f

0

0

0

1

0

1

1

1

C B

A

A

C

B f

f

(large-scale) memory presented before, it is often implemented by a register and

selector as shown Fig. 2.7. No clock pulse is necessary to read out the data; there-

fore, it is asynchronous. In modern FPGAs, more than 90% of the chip area is for

interconnections. Thus, layout design is as important as logic design. Also, layout

design often requires more CPU time than logic design.

Most FPGAs use SRAMs to store configuration data. At power-up, FPGAs

are blank, and an external nonvolatile memory (EEPROM, flash RAM, MRAM,

or FeRAM) is used to restore the configuration data into SRAM. FPGAs need

to be configured from the external nonvolatile memory at every system power-

up time. The configuration time is tens to hundreds of milliseconds. Also, the

8 2 Basic Elements

SRAM for configuration must be kept on even when the system is not used.

As programmable circuits become larger, the numbers of LUTs and embedded

memories increase, and the power dissipation of SRAMs due to leakage current

becomes more serious. In the past, FPGAs with 4 or 5 input LUTs were believed to

be the most efficient [99, 100]; however, in the current technology, FPGAs with 6

inputs are the standard [4, 7, 158]. Thus, we have the following:

Problem: Given an n-variable (multiple-output) function f , find the minimum

number of 6-LUTs needed to realize f , where n � 20.

Unfortunately, this is a very hard problem. So, we try to obtain an upper bound

by using properties or measures of the function. A property of the function should

be easy to detect, such as symmetry, and measures should be efficient to calculate.

Such measures include:

� The number of variables (i.e., the support size)

� The weight of the function [133]

� The C-measure of a function [133]

� The number of products in the SOP [78]

� The number of literals in the factored expression [78]

� The number of nodes in the decision diagram [107]

Chapters 4 and 5 consider the number of K-LUTs to realize a given function.

2.5 Remarks

This chapter briefly introduced memory, CAM, and FPGA. As for FPGAs, various

architectures are shown in Refs. [15, 100]. As for logic synthesis of FPGAs, see

Refs. [20, 78]. In recent FPGAs, the architecture is quite complicated, and a single

FPGA can implement a multiprocessor system.

Many commercial FPGAs contain memories in addition to LUTs. They are called

embedded memories [4] or embedded block RAMs [156].

Problems

2.1. Design the CAM function shown in Fig. 2.4 by using a PLA.

2.2. Explain why asynchronous memories are used for LUTs in FPGAs instead of

synchronous ones.

2.3. In the past, 4-LUTs or 5-LUTs were mainly used in FPGAs. However, nowa-

days, 6-LUTs are popular in FPGAs. Discuss the reason why 6-LUTs are preferred.

2.4. Explain why dynamic CMOS is used instead of static CMOS in PLAs.

2.5 Remarks 9

2.5. Suppose that a TCAM with n inputs and W words is given. Show a method to

implement the same function as the TCAM by using a PLA.

2.6. Suppose that a PLA with n inputs, m outputs, and W products is given. Show

a method to implement the same function as the PLA by using a TCAM and a

memory.

Chapter 3

Definitions and Basic Properties

This chapter first introduces logical expressions and functional decomposition.

Then, it introduces some properties of symmetric functions.

3.1 Functions

Definition 3.1.1. A mapping F W B n ! f 0; 1; :::;k � 1 g, where B D f 0 ; 1 g is a

binary-input integer valued function. A mapping F W B n ! B , where B D f 0 ; 1 g
is a logic function. If F . Ea i / ¤ 0 . i D 1 ; 2 ;:::;k / for k different input vectors, and

F D 0 for other . 2 n � k / input vectors, then the weight of the function is k .

3.2 Logical Expression

Definition 3.2.1. Binary variables are represented by x i .i D 1 ; 2 ; : : : ; n/. A literal

of a variable x i is either x i , Nx i , or the constant 1. An AND of literals is a product,

and an OR of products is a sum-of-products (SOP) expression.

Definition 3.2.2. Let B D f0; 1g, X D .x1; x2; : : : ; xt /, and xi can take a value

in B . Then, we can consider that X takes its value from P D f0; 1; : : : ; 2t � 1g. Let

S be a subset .S � P / of P . Then, XS is a literal of X . When X 2 S , XS D 1, and

when X … S , XS D 0. Let Si � Pi .i D 1; 2; : : : ; n/, then X1
S1X2

S2 � � � Xn
Sn is

a logical product.
W

.S1;S2;:::;Sn/ X1
S1 X2

S2 � � � Xn
Sn is a SOP expression. If Si D

Pi , then Xi
Si D 1 and the logical product is independent of Xi . In this case, the

literal Xi
Pi is redundant and can be omitted. A logical product is also called a term

or a product term.

Example 3.2.1. When t D 2, we have P D f0; 1; 2; 3g, and X D .x1; x2/ takes

four values. In this case, X f1g, X f1;2g, and X f0;1;2;3g are literals. Suppose that P1 D
P2 D P3 D f0; 1; 2; 3g. Then,

F D X1
f0;1;2;3gX2

f0gX3
f0g _ X1

f0;1gX2
f0;1;2;3gX3

f1;3g

_X1
f0;1gX2

f2gX3
f0;1;2;3g

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 3,

c Springer Science+Business Media, LLC 2011

11

12 3 Definitions and Basic Properties

is a SOP. Note that X f0;1;2;3g D 1. In this case, X f0;1;2;3g is redundant and can be

omitted. By removing redundant literals, this expression can be simplified to

F D X2
f0gX3

f0g _ X1
f0;1gX3

f1;3g _ X1
f0;1gX2

f2g:

3.3 Functional Decomposition

Definition 3.3.1. [8] Let f .X/ be a logic function, and .X1; X2/ be a partition

of the input variables, where X1 D .x1; x2; : : : ; xk/ and X2 D .xkC1; xkC2;

: : : ; xn/. The decomposition chart for f is a two-dimensional matrix with 2k

columns and 2n� k rows, where each column and row is labeled by a unique binary

code, and each element corresponds to the truth value of f . The function repre-

sented by a column is a column function and is dependent on X2. Variables in X1

are bound variables, while variables in X2 are free variables. In the decomposition

chart, the column multiplicity denoted by �k is the number of different column

patterns.

Example 3.3.1. Figure 3.1 shows a decomposition chart of a 4-variable function.

fx1; x2g are the bound variables, and fx3; x4g are the free variables. Since all the

column patterns are different and there are four of them, the column multiplicity is

�2 D 4.

Theorem 3.3.1. [25] For a given function f , let X1 be the bound variables, let X2

be the free variables, and let �k be the column multiplicity of the decomposition

chart. Then, the function f can be realized with the network shown in Fig. 3.2. In

this case, the number of signal lines connecting blocks H and G is dlog2 �ke.

When the number of signal lines connecting two blocks is smaller than the number

of input variables in X1, we can often reduce the total amount of memory by the

realization in Fig. 3.2 [51]. When �k D 2, it is an Ashenhurst decomposition [8] or

Fig. 3.1 Decomposition

chart of a logic function

0 0 1 1 x1

0 1 0 1 x2

0 0 0 0 0 1
0 1 1 1 0 0
1 0 0 1 0 0
1 1 0 0 0 0

x3 x4

Fig. 3.2 Realization of a

logic function by

decomposition

X1

X2
 f

H

G

3.3 Functional Decomposition 13

a simple disjoint decomposition. When � k > 2, it is a Curtis decomposition [25],

also called Roth–Karp decomposition [101] or a generalized decomposition. The

number of functions with Curtis decompositions is much larger than those with

Ashenhurst decompositions.

A function with an Ashenhurst decomposition can be written as

f .X1; X2/ D g.h1.X1/; X2/:

A function with a Curtis decomposition can be written as

f .X1; X2/ D g.h1.X1/; h2.X1/; : : : ; hm.X1/; X2/;

where m D dlog2 �e.

Lemma 3.3.1. Consider a decomposition chart for f .X1; X2/, where X1 D .x1;

x2; : : : ; xk/ and X2 D .xkC1; xkC2; : : : ; xn/: Then, the column multiplicity does

not change under the permutation of variables within X1 and X2. Thus,

�.f .X1; X2// D �.f . QX1; QX2//;

where QX1 D .x�.1/; x�.2/; : : : ; x�.k//, QX2 D .x�.kC1/; x�.kC2/; : : : ; x�.n//; and, �

and � denote the permutation on f1; 2; : : : ; kg and fkC1; kC2; : : : ; ng, respectively.

Lemma 3.3.2. An arbitrary function of n variables can be decomposed as

1. f .X1; X2/ D g.h1.X1/; h2.X1/; X2/, where X1 D .x1; x2; : : : ; xn�1/ and

X2 D .xn/.

2. f .X1; X2/ D g.h1.X1/; h2.X1/; h3.X1/; h4.X1/; X2//, whereX1D .x1; x2; : : : ;

xn�2/ and X2 D .xn�1; xn/.

Figures 3.3 and 3.4 show the circuits for the above decompositions.

A functional decomposition can be of two types: A disjoint decomposition, where

the bound set and the free set are disjoint, as shown in Fig. 3.5. A nondisjoint de-

composition, where the bound set and free set have at least one common element.

Figure 3.6 shows the case where one variable is shared by the bound set and the

free set.

Fig. 3.3 Decomposition of

an arbitrary function,

where X2 D .xn/

x1

x2

xn-1

xn

h1

h2

g

14 3 Definitions and Basic Properties

Fig. 3.4 Decomposition of

an arbitrary function,

where X2 D .xn�1; xn/

x1

x2

xn-2

xn

xn-1

h1

h4

g
h3

h2

Fig. 3.5 Disjoint

decomposition
φ=∩ 21 XX

X1

X2

Fig. 3.6 Nondisjoint

decomposition
φ≠∩ 21 XX

X1

X2

3.4 Binary Decision Diagram

A binary decision diagram (BDD) [12] is a graphical representation of a logic

function. It often has a more compact representation than other methods. Thus,

BDDs are widely used in the computer-aided design of logic networks [65].

Definition 3.4.1. A BDD is a directed acyclic graph (DAG) with two terminal

nodes: the 0-terminal node and the 1-terminal node. Each nonterminal node is la-

beled by an index of an input variable of the Boolean function, and has two outgoing

edges: the 0-edge and the 1-edge. An ordered BDD (OBDD) is a BDD such that

the input variables appear in a fixed order in all the paths of the graph, and each

variable appears at most once in a path.

3.4 Binary Decision Diagram 15

Fig. 3.7 Node elimination

x x

Fig. 3.8 Node sharing

f0 f1 f1f0

0

0

0

1

1
1

x x x

Definition 3.4.2. A reduced ordered BDD (ROBDD) is obtained from an OBDD

by applying the following two reduction rules:

1. Eliminate all the redundant nodes whose two edges point to the same node

(Fig. 3.7).

2. Share all the equivalent nodes (Fig. 3.8).

A quasi-reduced ordered BDD (QROBDD) is obtained from an OBDD by apply-

ing the second reduction rule only.

Example 3.4.1. Figure 3.9 is a ROBDD for

f .x1; x2; x3/ D . Nx1 Nx2 _ x1x2/x3:

On the other hand, Fig. 3.10 is a QROBDD for the same function. In Fig. 3.10,

the left node for x3 is redundant, and eliminated in the ROBDD. Note that in an

QROBDD, all the paths from the root node to a terminal node encounter all the

variables.

Theorem 3.4.1. Let X D .X1; X2/ be a partition of X . Suppose that the QROBDD

for f .X/ is partitioned into two blocks as shown in Fig. 3.11. Let k be the number of

16 3 Definitions and Basic Properties

Fig. 3.9 Reduced ordered

BDD

2 2

0

1

1

0

0

1

1

0

3
0

1

1

Fig. 3.10 Quasi-reduced

OBDD

2 2

0

1

1

0

0

1

1

0

1
0

3

0
1

1

3

Fig. 3.11 Computation of

column multiplicity for

functional decomposition

f .X1; X2/ D g.h.X1/; X2/ X1

X2

0

q1 q2 qk

1

3.4 Binary Decision Diagram 17

the nodes in the lower block that is adjacent to the upper block, and � be the column

multiplicity of the decomposition chart for f D g.h.X1/; X2/. Then, k D �.

Example 3.4.2. Consider the function represented by the BDD in Figs. 3.9 and 3.10.

Let X1 D .x1; x2/ and X2 D .x3/. Then, the number of the nodes in the lower block

that are adjacent to the upper block is two. The function can be decomposed as

f .X1; X2/ D g.h.X1/; X2/, where h.X1/ D Nx1 Nx2 _ x1x2, and g.h; X2/ D hx3.

Figure 3.12 shows the decomposition chart. Note that the column multiplicity is

two. In Fig. 3.10, the left node for x3 represents the constant 0 function, while the

right node for x3 represents the x3 function. It is clear that the number of different

column patterns in the decomposition chart is equal to the number of nodes for x3

in the QROBDD [106].

Definition 3.4.3. A multiterminal BDD (MTBDD) is an extension of a BDD with

multiple terminal nodes, each of which has an integer value.

An MTBDD can be used to represent a multiple-output function.

Example 3.4.3. Figure 3.13 is an MTBDD for 3-valued output function. Note that

it is a reduced ordered MTBDD (ROMTBDD), but is not a quasi-reduced ordered

MTBDD (QROMTBDD).

Fig. 3.12 Decomposition

table of a logic function

0 0 1 1 x1

0 1 0 1 x2

0 0 0 0 0
1 1 0 0 1

x3

Fig. 3.13 Multiterminal

BDD

2 2

0

1

0

0

1

1

0

1

3

10

1

2

18 3 Definitions and Basic Properties

3.5 Symmetric Functions

Functions that appear in arithmetic circuits, such as adders, often have symmetries.

When logic functions have certain symmetries, they are often realized using fewer

elements.

Definition 3.5.1. A function f is totally symmetric if any permutation of the vari-

ables in f does not change the function. A totally symmetric function is also called

a symmetric function.

Definition 3.5.2. In a function f .x1; : : : ; xi ; : : : ; xj ; : : : ; xn/, if the function

f .x1; : : : ; xj ; : : : ; xi ; : : : ; xn/ that is obtained by interchanging variables xi with

xj is equal to the original function, then f is symmetric with respect to xi and

xj . If any permutation of subset S of the variables does not change the function f ,

then f is partially symmetric.

Definition 3.5.3. The elementary symmetric functions of n variables are

Sn
0 D Nx1 Nx2 � � � Nxn;

Sn
1 D x1 Nx2 Nx3 � � � Nxn�1 Nxn _ Nx1x2 Nx3 � � � Nxn�1 Nxn _ � � � _ Nx1 Nx2 Nx3 � � � Nxn�1xn;

� � � � � � � � � � � � � � � � � �

Sn
n D x1x2 � � � xn:

Sn
i D 1 iff exactly i out of n inputs are equal to 1. Let A � f0; 1; : : : ; ng. A sym-

metric function Sn
A is defined as follows:

Sn
A D

_

i2A

Sn
i :

Example 3.5.1. f .x1; x2; x3/ D x1x2x3 _ x1 Nx2 Nx3 _ Nx1x2 Nx3 _ Nx1 Nx2x3 is a totally

symmetric function. f D 1 when all the variables are 1, or when only one variable

is 1. Thus, f can be written as S3
1 _ S3

3 D S3
f1;3g

.

Theorem 3.5.1. An arbitrary n-variable symmetric function f is uniquely repre-

sented by elementary symmetric functions Sn
0 ; Sn

1 ; : : : ; Sn
n as follows:

f D
_

i2A

Sn
i D Sn

A; where A � f0; 1; : : : ; ng:

Lemma 3.5.1. There are 2nC1 symmetric functions of n variables.

Definition 3.5.4. Let SB.n; k/ be the n-variable symmetric function represented by

the EXOR sum of all the products consisting of k positive literals:

3.5 Symmetric Functions 19

SB.n; 0/ D 1;

SB.n; 1/ D
X

˚ xi ;

SB.n; 2/ D
X

˚

.i<j /

xi xj ;

SB.n; 3/ D
X

˚

.i<j <k/

xi xj xk ;

� � � � � � � � �

SB.n; n/ D x1x2 � � � xn:

Example 3.5.2.

SB.4; 1/ D x1 ˚ x2 ˚ x3 ˚ x4:

SB.4; 2/ D x1x2 ˚ x1x3 ˚ x1x4 ˚ x2x3 ˚ x2x4 ˚ x3x4:

SB.n; k/ has been used as a benchmark function for an AND-EXOR logic

minimizer [104]. The following two lemmas were derived by Komamiya [50]

and reformulated by the author [110].

Lemma 3.5.2. Let x1, x2,: : :, xn be binary variables and r be an integer defined by

r D x1 C x2 C � � � C xn, where C is an ordinary integer addition. Let the binary

representation of r be

.yk; yk�1; : : : ; y1; y0/2; yj 2 f0; 1g .j D 0; 1; : : : ; k/:

In other words,

x1 C x2 C � � � C xn D 2kyk C 2k�1yk�1 C � � � C 2y1 C y0:

Then,

yi D SB.n; 2i /:

Lemma 3.5.3. Let 0 � k1 < k2 < � � � < ks , and 2k1 C 2k2 C � � � C 2ks � n. Then,

ŝ

iD1

SB.n; 2ki / D SB

n;

s
X

iD1

2ki

!

:

Example 3.5.3.

SB.7; 1/SB.7; 2/SB.7; 4/ D SB.7; 7/;

SB.4; 1/SB.4; 2/ D SB.4; 3/;

SB.6; 2/SB.6; 4/ D SB.6; 6/:

Definition 3.5.5. W GT n is an n-input dlog2.n C 1/e-output function. It counts the

number of 1’s in the inputs and represents it as a binary number.

20 3 Definitions and Basic Properties

Fig. 3.14 WGT7 x1
x2

x7

WGT7

SB(7,4)

SB(7,2)

SB(7,1)

y2
y1
y0

=

=

=

By Lemma 3.5.2, WGTn produces SB.n; 2i /, .i D 0; 1; 2; : : : ; dlog2.n C 1/e � 1/,

where dae denotes the smallest integer greater than or equal to a.

Example 3.5.4. WGT7 has x1; x2; : : : ; x7 as inputs and y2; y1; y0 as outputs

(Fig. 3.14). By Lemma 3.5.2, we have

y2 D SB.7; 4/ D
X

˚

i<j <k<l

xi xj xkxl

y1 D SB.7; 2/ D
X

˚
i<j

xi xj

y0 D SB.7; 1/ D

7
X

˚
iD1

xi

WGT 7 is also called as rd73.

The following is an expansion method for symmetric functions using SB.n; k/

functions:

Theorem 3.5.2. An arbitrary n-variable symmetric function f is represented by

yi D SB.n; 2i /; .i D 0; 1; 2; ::; t/ as follows:

f D
X

˚
.a0;a1;:::;at /

g.a0; a1; :::; at /y
a0

0 y
a1

1 :::y
at
t ;

where g.a0; a1; :::; at / is 0 or 1, and t D dlog2.n C 1/e � 1 .

Proof. A symmetric function f depends only on the number of 1’s in the inputs.

Since WGTn counts the number of 1’s in the input, we can represent f as a function

of y0; y1; :::; yt . �

Example 3.5.5. A 7-variable symmetric function S7
0 can be represented as

S7
0 D Ny2 Ny1 Ny0

D SB.7; 4/ � SB.7; 2/ � SB.7; 1/:

Note that the binary representation of 0 is .0; 0; 0/. Similarly, S7
3 is represented as

S7
3 D Ny2y1y0

D SB.7; 4/ � SB.7; 2/ � SB.7; 1/:

3.6 Technology Mapping 21

Thus, S 7
f0;3g

is represented as

S 7
f0;3g D S 7

0 ˚ S 7
3 D Ny 2 Ny 1 Ny 0 ˚ Ny 2y 1y 0

D Ny 2. Ny 1 Ny 0 ˚ y 1y 0/ D Ny 2.y 1 ˚ Ny 0/

D SB.7; 4/ � .SB.7; 2/ ˚ SB.7; 1//:

3.6 Technology Mapping

Logic synthesis using embedded memories can be considered as a special case of

FPGA design, where the number of LUT inputs is large. Most existing methods use

LUT-based technology mapping [33]. That is, given a combinational logic circuit,

they partition it into sub-circuits depending on at most K variables [22,53,153]. This

method was originally used for the LUT-based FPGA synthesis. Here, we introduce

the basic idea.

Definition 3.6.1. [23, 57, 71] A combinational network can be converted into a

DAG, where each node represents a logic gate (LUT), a primary input (PI), or

a primary output (PO). When the output of the gate i is an input of gate j , a di-

rected edge .i; j / exists. input.v/ denotes the set of nodes which are fanins of gate v.

output.v/ denotes the set of nodes which are fanouts of gate v. A cone at v, denoted

as Cv, is a subgraph consisting of v and its non-PI predecessors such that any path

connecting a node in Cv and v lies entirely in Cv. Node v is the root of the cone.

The fanin size of a cone is the number of input edges. A cone with K input edge is

K-feasible and can be implemented with a K-LUT.

Example 3.6.1. In Fig. 3.15, a; b; c; d; e are PIs, and f denotes the PO. The cone of

v consists of internal nodes v; t; u; s; p; q, and r . The fanin size of Cv is four. Thus,

Cv is 4-feasible and can be implemented by a 4-LUT.

Fig. 3.15 Example of

directed acyclic graph a b c d

f

e

p q r

s

t u

v

22 3 Definitions and Basic Properties

Fig. 3.16 Example of

4-feasible cut-set

a b c d

f

e

p q r

s

t u

v

Definition 3.6.2. Given a network N with a source s and a sink t , a cut .N 1;N2/

is a partition of the nodes in the network such that s 2 N1, t 2 N2 and no nodes

in N2 provide input to any node in N1. A cut-set of a cut is the set of all nodes v

such that v 2 N1, and v drives a node in N2. If the size of a cut-set is no more than

K , then the cut is K-feasible. A fanout-free cone (FFC) at v, denoted FF Cv, is a

cone of v, with output edge only originating from the root of the cone. A maximum

fanout free cone (MFFC) is an FFC that maximizes the number of nodes contained

in the FFC.

Example 3.6.2. In Fig. 3.16, let a be a source, and f be a sink. The set of

nodes is partitioned into N1 D fa; b; c; d; e; p; q; r; s; tg and N2 D fu; v; f g. The

cut-set of the cut .N1;N2/ is ft; p; d; eg. It is 4-feasible. The MFFC of f is

fp; q; r; s; t; u; v; f g. This is because a cone includes only non-PI nodes, by

Definition 3.6.2. If the output of t is connected to an other output, then MMFC

of f would be fu; v; f g.

In a technology mapping algorithm, usually, a given circuit is converted into an

equivalent two-input network. If the DAG is represented as a set of trees, then the

area minimization problem can be solved optimally using dynamic programming

[47]. Unfortunately, most circuits have non-tree structure: There exist many fanouts

and reconvergence. If the circuit is decomposed into a set of MFFCs, then it can also

be solved optimally. In the approach of [22], the circuit is first mapped into LUTs

using the best available algorithm. Then, it extracts large single-output and multiple-

output fanout-free logic blocks and covers them entirely or partially by embedded

memories. Since these design methods start from existing circuits, the quality of the

solutions are not so good [57]. Improvements for technology mapping are shown in

[71]. Especially, an efficient method to enumerate all the cuts up to K D 6 [71] and

a method to compute useful cuts for any number of inputs [72]. In this book, the

major tool for the memory-based design is a functional decomposition, so we will

not go into the detail of the method.

3.8 Remarks 23

Table 3.1 Approximation

error for 1 � x
x 1 � x e�x Error.x/

0.001 0.999 0.99900050 0.00000050

0.010 0.990 0.99004983 0.00005034

0.100 0.900 0.90483742 0.00537491

0.200 0.800 0.81873075 0.02341344

3.7 The Mathematical Constant e and Its Property

Definition 3.7.1. The mathematical constant e is defined as

e D lim
n!1

�

1 C
1

n

�n

:

Lemma 3.7.1. When 0 < x << 1, 1 � x can be approximated by e�x .

Proof. The Taylor expansion of a function f .x/ is

f .x/ D f .0/ C
x

1Š
f .1/.0/ C

x2

2Š
f .2/.0/ C

x3

3Š
f .3/.0/ C � � � C

xk

kŠ
f .k/.0/ C � � � :

Thus, ex can be expanded as

ex D 1 C x C
x2

2Š
C

x3

3Š
C

x4

4Š
C � � � :

When x is small, we need only to consider up to the second term, and we have

e�x ' 1 � x: �

Consider the approximation error of Lemma 3.7.1:

Error.x/ D
e�x � .1 � x/

1 � x
:

Table 3.1 shows that when 0 < x < 0:1, the approximation error is quite small.

Lemma 3.7.1 will be extensively used for the calculation of approximate probability

in Chaps. 9, 10, and 11.

3.8 Remarks

Functional decomposition is the key technique in the memory-based logic synthesis.

It efficiently represents a given Boolean function with reduced total amount

of memory. Most Boolean functions do not have any functional decomposition

[109]. However, practical functions often have functional decompositions. Thus, an

24 3 Definitions and Basic Properties

attempt to find functional decompositions is, in many cases, rewarding. Ashenhurst

decompositions can be efficiently found by BDDs [10, 60]. However, as for Curtis

decomposition, no efficient methods are known. Some heuristic methods are known

[59, 147]. Excellent surveys on FPGA logic synthesis include [20, 78, 103].

Problems

3.1. Using the definition of SB.n; k/, verify the following equation:

SB.4; 1/ � SB.4; 2/ D SB.4; 3/:

3.2. Show that most 22kC2n�kC1
functions have Ashenhurst decompositions of the

form

f .X1; X2/ D g.h.X1/; X2/;

where X1 D .x1; x2; : : : ; xk/ and X2 D .xkC1; xkC2; : : : ; xn/.

3.3. Show that most 2m2kC2n�kCm
functions have Curtis decompositions of the

form

f .X1; X2/ D g.h1.X1/; h2.X1/; : : : ; hm.X1/; X2/;

where X1 D .x1; x2; : : : ; xk/ and X2 D .xkC1; xkC2; : : : ; xn/.

3.4. Let f .X/ be the function that counts the number of 1’s in the inputs.

f0; 1g5 ! f0; 1; 2; 3; 4; 5g:

That is, f .Ea/ denotes the number of 1’s in Ea. Write the decomposition chart

and obtain the column multiplicity of the decomposition .X1; X2/, where X1 D
.x1; x2; x3/ and X2 D .x4; x5/.

3.5. How many functions of n variables with weight k exist?

3.6. Represent the symmetric function of 9 variables: S9
f3;4;5;6g

by

y3 D SB.9; 8/;

y2 D SB.9; 4/;

y1 D SB.9; 2/; and

y0 D SB.9; 1/:

3.7. SYM12 is a symmetric function of 12 variables that is 1 iff the number of

1’s in the inputs is between 4 and 8. Consider the decomposition of the function

SYM12 D f .X1; X2/, where X1 D .x1; x2; : : : ; x9/ and X2 D .x10; x11; x12/.

Show that the column multiplicity of the function with respect to .X1; X2/ is

�9 D 8.

Chapter 4

MUX-Based Synthesis

This chapter shows a universal method to realize an n-variable function using mul-

tiplexers (MUXs) and look up tables (LUTs). It also derives upper bounds on the

number of LUTs to realize an n-variable function. Such bounds are useful to esti-

mate the number of LUTs needed to realize a given function when we only know

the number of the input variables n.

4.1 Fundamentals of MUX

Definition 4.1.1. A multiplexer with a single control input (1-MUX) is the selec-

tion circuit shown in Fig. 4.1. It performs the logical operation

g.x; y0; y1/ D Nxy0 _ xy1:

A t-MUX is shown in Fig. 4.2. It is a multiplexer with t control inputs .x1; : : : ; xt /

and 2t data inputs .y0; y 1; : : : ; y2t✂1/. Let g.x1; : : : ; xt ; y0; y1; : : : ; y2t✂1/ be the

output function. Then, g D ya when the decimal representation of the control in-

put .x1; : : : ; xt / is a. That is, when the control input is .0; 0; : : : ; 0/, the top data

input y0 drives the output. When the control input is .0; 0; : : : ; 1/, the second data

input y1 drives the output. Also, when the control input is .1; 1; : : : ; 1/, the last

data input y2t✂1 drives the output.

An t-MUX can be realized using 1-MUXs.

Example 4.1.1. A 3-MUX is realized with 23 � 1 D 7 modules of 1-MUXs, as

shown in Fig. 4.3.

Lemma 4.1.1. A t-MUX is realized by using 2t � 1 modules of 1-MUXs.

Proof. This can easily be done by mathematical induction. �

When K � 4, a 2-MUX can be realized with one or two K-LUTs.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 4,

c Springer Science+Business Media, LLC 2011

25

26 4 MUX-Based Synthesis

Fig. 4.1 1-MUX

0y

1y
10 xyyxg ∨=

Fig. 4.2 t -MUX

0
y

1
y

12 −
ty

Fig. 4.3 3-MUX realized by

1-MUXs
y0
y1

y2
y3

y4
y5

y6
y7

Lemma 4.1.2. [57, 73] A 2-MUX can be realized by two 4-LUTs as shown in

Fig. 4.4, where

g D .y0 Nx2 _ y1x2/ Nx1 _ x1x2

and

h D g Nx1 _ .y2 Ng _ y3g/x1:

Proof. When x1 D 0, we have g D y0 Nx2_y1x2 and h D g. Thus, h D y0 Nx2_y1x2.

When x1 D 1, we have g D x2 and h D y2 Ng _ y3g. Thus, h D y2 Nx2 _ y3x2.

Therefore, the circuit realizes the 2-MUX function. �

Figure 4.4 shows a nondisjoint decomposition. A method to derive this decom-

position is considered in Chap. 6.

When K D 5, a 2-MUX can be realized by two 5-LUTs as shown in Fig. 4.5.

When K D 6, a 2-MUX can be realized by a single 6-LUT instead of using three

1-MUXs as shown in Fig. 4.6.

4.2 MUX-Based Realization 27

Fig. 4.4 2-MUX realized

by 4-LUTs

y0

y1

 y
2

 y
3

g

h

Fig. 4.5 2-MUX realized

by 5-LUTs

y0

y1

y2

y3

Fig. 4.6 2-MUX realized

by a 6-LUT

y0

y1

y2

y3

4.2 MUX-Based Realization

Theorem 4.2.1. An arbitrary n-variable function can be represented as follows:

f .X1; X 2/ D
_

i2 P

gi .X1/X i
2;

where X 1 D .x1; x 2; : : : ; xk/ and X2 D .xkC1; x kC2; : : : ; xn/, P D f0; 1; : : : ;

2n�k � 1g, and the OR is performed with respect to 2n�k elements.

28 4 MUX-Based Synthesis

Fig. 4.7 Realization of an

arbitrary 7-variable function

using 5-LUTs X1

X1

X1

X1

5

5

5

5

g0

g1

g2

g3

Example 4.2.1. Consider the realization of a 7-variable function f .X1; X 2/, where

X1 D .x1; x 2; : : : ; x5/, and X2 D .x6; x 7/. f is expanded into a sum of four

products:

f .X1; X 2/ D

3
_

iD0

gi .X1/X i
2

D g0.X1/X0
2 _ g1.X1/X1

2 _ g2.X1/X2
2 _ g3.X1/X3

2 :

As shown in Fig. 4.7, a 2-MUX can be realized by using three 1-MUXs. The top

LUT in the left most column realizes g0, which is selected when .x6; x 7/ D .0; 0/.

The second LUT in the leftmost column realizes g1, which is selected when

.x6; x 7/ D .0; 1/. Other LUTs are derived similarly.

Theorem 4.2.2. When 3 ☎ K ☎ n, an arbitrary n-variable function is realized by

using at most 2n✁K � 1 modules of 1-MUXs and 2n✁K modules of K-LUTs.

Proof. Consider the expansion of Theorem 4.2.1. First, realize an (n� K)-MUX by

using 1-MUXs. By Lemma 4.1.1, we need 2n✁K � 1 modules of 1-MUXs. Next,

by connecting gi .X1/ to the data inputs of the (n � K)-MUX, realize an arbitrary

n-variable function. To realize gi .X1/ .i D 0; 1; : : : ; 2n✁K � 1/, we use 2n✁k mod-

ules of K-LUTs. �

Next, consider several special cases.

Lemma 4.2.1. An arbitrary function of n D K C 1 variables can be realized with

at most three K-LUTs, where K � 3.

Proof. Let X1 D .x1; x 2; : : : ; xK/ and X2 D .xKC1/. Then, the function can be

represented as

f .X1; X 2/ D NxKC1f .X1; 0/ _ xKC1f .X1; 1/:

4.2 MUX-Based Realization 29

Fig. 4.8 Realization of a k+1

variable function

2 1

2

K

Fig. 4.9 Realization of a k+2

variable function

4 1

4

K 2

Thus, f can be realized by three K-LUTs as shown in Fig. 4.8. Note that the left cell

realizes f .X1; 0/ and f .X1; 1/, while the right cell works as a selector (1-MUX) to

realize f . The integer in a cell denotes the number of LUTs to realize the cell. This

is an LUT cascade, which will be explained in the next chapter. �

Lemma 4.2.2. An arbitrary function of n D K C 2 variables can be realized with

at most five K-LUTs, where K � 6.

Proof. Let X1 D .x1; x 2; : : : ; xK/ and X2 D .xKC1; x KC2/. Then, the function

can be represented as

f .X1; X 2/ D NxkC1 NxKC2f .X1; 0; 0/ _ NxKC1xKC2f .X1; 0; 1/ _

xKC1 NxKC2f .X1; 1; 0/ _ xKC1xKC2f .X1; 1; 1/:

Thus, f can be realized by five K-LUTs, as shown in Fig. 4.9. Note that the left

cell generates f .X1; 0; 0/; f .X1; 0; 1/; f .X1; 1; 0/; and f .X1; 1; 1/, while the right

cell serves as a selector (2-MUX) to realize f . Figure 4.9 can be considered as a

simplified representation of Fig. 4.7. �

Theorem 4.2.3. [110] The number of 6-LUTs to realize an arbitrary n-variable

function .n � 6/ f is:

� .2n✄4 � 1/=3 or less, when n is even.

� .2n✄4 C 1/=3 or less, when n is odd.

Proof. Case 1: n is even (n D 2r):

We realize the function f in the form of Theorem 4.2.1, where K D 6. First, realize

a .n � 6/-MUX by using 2-MUXs. This requires

1 C 4 C � � � C 4
n�6

2 ✄1 D 1 C 4 C � � � C 4r✄4 D
4r✄3 � 1

4 � 1

30 4 MUX-Based Synthesis

6-LUTs. Next, realize gi .X1/ .i D 0; 1; : : : ; 2n✆k � 1/. This requires 4r✆3 modules

of 6-LUTs. So, the total number of 6-LUTs is

4r✆3 � 1

3
C 4r✆3 D

4r✆2 � 1

3
D

2n✆4 � 1

3
:

Case 2: n is odd (n D 2r C 1):

The function f can be expanded into the form

f .X1; xn/ D Nxng0.X1/ _ xng1.X1/; (4.1)

where X1 D .x1; x 2; : : : ; xn✆1/. Since gi .X1/ (i D 0; 1) are functions with 2r

variables, they can be realized by .4r✆2 � 1/=3 modules of 6-LUTs. To realize the

expansion (4.1), we use a 1-MUX. Thus, the total number of 6-LUTs to realize f is

2 �
4r✆2 � 1

3
C 1 D

2 � 4r✆2 C 1

3
D

2n✆4 C 1

3
:

�

Example 4.2.2. The number of 6-LUTs to realize an n-variable function is:

� 5 or less, when n D 8. In this case, gi .X1/ .i D 0; 1; 2; 3/ are realized by four

modules of 6-LUTs, while the 2-MUX is realized by a single 6-LUT, as shown

in Fig. 4.10. In the figure, the numbers in the squares denote the numbers of

necessary LUTs.

� 11 or less, when n D 9. In this case, gi .X1/ .i D 0; 1; 2; : : : ; 7/ are realized by

8 modules of 6-LUTs, while the 3-MUX is realized by three 6-LUTs as shown

in Fig. 4.11.

� 21 or less, when n D 10. In this case, gi .X1/ .i D 0; 1; 2; : : : ; 15/ are realized

by 16 modules of 6-LUTs, while the 4-MUX is realized by using five 6-LUTs as

shown in Fig. 4.12.

Theorem 4.2.4. Consider the function f .X1; X 2/, where X1 D .x1; x 2; x 3; x 4/

and X2 D .x5; x 6; : : : ; xKC3; xKC4/. Let � be the column multiplicity of the de-

composition f .X1; X 2/, where X1 denotes the bound variables. Then, f can be

realized with at most � C 5 modules of K-LUTs, where K � 6.

Proof. The function f .X1; X 2/ can be expanded as

f .X1; X 2/ D g0.Ea0; X2/ _ g1.Ea1; X2/ _ g2.Ea2; X2/ _ � � � _ g15.Ea15; X2/;

Fig. 4.10 Realization of an

arbitrary 8-variable function

using 6-LUTs

2

6

4

4

1

4.3 Remarks 31

Fig. 4.11 Realization of an

arbitrary 9-variable function

using 6-LUTs
2

6

4

4

1

2

6

4

4

2-MUX

1

x9

1-MUX

1

Fig. 4.12 Realization of an

arbitrary 10-variable function

using 6-LUTs

22

22

4-MUX

1

1

1

1

1

6

6

6

6 g1

g2

g3

1

1

1

1

X2

X2

X2

X2

g
µ

where Ea0 D .0; 0; 0; 0/, Ea1 D .0; 0; 0; 1/, Ea2 D .0; 0; 1; 0/,. . . , and Ea15 D .1; 1; 1; 1/.

Thus, f .X1; X2/ can be realized as the circuit shown in Fig. 4.12. Since the column

multiplicity is �, the number of different column functions gi .Eai ; X2/ is �. So, in

Fig. 4.12, the LUTs producing the same functions can be shared, and only � LUTs

are sufficient to produce gi .Eai ; X2/. �

4.3 Remarks

This chapter derived the number of 6-LUTs to realize an n-variable logic function.

The number of required LUTs increases exponentially with n. So, the MUX-based

design is only practical for the functions with a small number of inputs. How-

ever, the MUX-based method sometimes produces circuits with fewer LUTs [134]

than existing methods [73, 76], in particular, for random logic functions. In this

chapter, we represented the function by Shannon expansion. However, if we use

32 4 MUX-Based Synthesis

pseudo-Kronecker expansion [110], we can reduce the number of LUTs by 23%

[107]. In the pseudo-Kronecker expansion, we can select one from 840 possible

expansions to reduce the number of LUTs.

Problems

4.1. Consider a 10-variable function f .X/. Let .X1; X2/ be a partition of the vari-

ables X , where X1 D .x1; x2; x3; x4; x5; x6/ and X2 D .x7; x8; x9; x10/. Assume

that �6 D 16. That is, the column multiplicity of the decomposition chart is 16.

Show that f can be realized with at most nine 6-LUTs.

4.2. Let .X1; X2/ be the partition of the variables X , where X1 D .x1; x2; x3; x4/

and X2 D .x5; x6; x7; x8; x9; x10/. Suppose that the column multiplicity is 10, i.e.,

�4 D 10. Then, show that f can be realized with at most 15 copies of 6-LUTs.

4.3. Show that an arbitrary logic function can be represented as

f .x1; x2; Y / D g0.Y / ˚ x1g1.Y / ˚ x2g2.Y / ˚ x1x2g3.Y /: (4.2)

This is the Reed–Muller expansion. Consider the Shannon expansion:

f .x1; x2; Y / D Nx1 Nx2f0.Y / ˚ Nx1x2f1.Y / ˚ x1 Nx2f2.Y / ˚ x1x2g3.Y /: (4.3)

Represent g0.Y /, g1.Y /, g2.Y /, and g3.Y / by f0.Y /, f1.Y /, f2.Y /, and f3.Y /.

4.4. Consider the function f .X1; X2/, where X1 D .x1; x2; : : : ; x2k/ and X2 D
.x2kC1; x2kC2; : : : ; x2kC6/. Let � be the column multiplicity of the decomposition

f .X1; X2/, where X1 denotes the bound variables. Then, show that f can be real-

ized with at most

� C
4k � 1

3

6-LUTs.

Chapter 5

Cascade-Based Synthesis

The previous chapter presented a multiplexer (MUX)-based realization. Although

such a method is applicable to any n-variable function f , the number of LUTs

necessary to realize f increases as O.2n/. This chapter considers a cascade-based

logic synthesis. A cascade-based realization is applicable to only a limited class of

functions. However, functions with a small C-measure can be realized by cascade-

based realizations with O.n/ LUTs.

5.1 Functional Decomposition and LUT Cascade

Before considering the general case, we review special cases.

Lemma 5.1.1. An arbitrary function of n D K C 1 variables can be realized with

at most three K-LUTs, where K � 3.

Proof. This is the same as Lemma 4.2.1. �

Lemma 5.1.2. An arbitrary function of n D K C 2 variables can be realized with

at most five K-LUTs, where K � 6.

Proof. This is the same as Lemma 4.2.2. �

From the definition of a decomposition chart, we have the following:

Theorem 5.1.1. [8] Let �k.n/ be the column multiplicity of a decomposition chart

of an n-variable logic function with k bound variables. Then,

�k.n/ � min
n

2k; 22n�k
o

:

When circuits are designed by LUTs, functions with smaller column multiplici-

ties tend to have smaller realizations.

Definition 5.1.1. Let f .x1; x2; : : : ; xn/ be a logic function. The profile of the

function f is the vector .�1; �2; : : : ; �n/, where �k denotes the column mul-

tiplicity of the decomposition chart for f .X1; X2/, X1 D .x1; x2; : : : ; xk/ and

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 5,

cSpringer Science+Business Media, LLC 2011

33

34 5 Cascade-Based Synthesis

X2 D .xkC1; : : : ; xn/, assuming that the order of variables .x1; x2; : : : ; xn/ is fixed.

The C-measure of the function f is max.�1; �2; : : : ; �n/ and is denoted by �.f /.

Note that the order of the variables will affect the C-measure, but we choose the

natural order .x1; x2; : : : ; xn/ of the input variables.

Lemma 5.1.3. Let f be an arbitrary n-variable function. Then,

�.f / �
n

max
kD1

min
n

2k; 22n�k
o

:

For any partition .X1; X2/ of X , we have the decomposition shown in Fig. 5.1.

By repeatedly applying functional decompositions to a given function f .X/ D
f .X1; X2; : : : ; Xs/, we have an LUT cascade [113] shown in Fig. 5.2. An LUT

cascade consists of cells. The signal lines connecting adjacent cell are rails. A logic

function with a small C-measure can be realized by a compact LUT cascade.

Lemma 5.1.4. [113] An arbitrary logic function f can be realized by an LUT cas-

cade, whose cells have at most dlog2 �.f /e C 1 inputs, and at most dlog2 �.f /e
outputs, where �.f / is the C-measure of f .

Lemma 5.1.5. [127] In an LUT cascade that realizes an n-variable function f , let

s be the number of cells; w D dlog2 �.f /e be the maximum number of rails; K be

the number of inputs to a cell; n � K C 1; and K � dlog2 �.f /e C 1. Then, an

LUT cascade satisfying the following condition exists:

s D
l n � w

K � w

m

: (5.1)

Proof. From the design method of the LUT cascade, we have

K C .K � w/.s � 1/ � n:

Here, K on the left-hand side of the equality denotes the number of inputs of the

leftmost LUT, and .K �w/.s�1/ denotes the sum of inputs for the remaining .s�1/

Fig. 5.1 Realization

of a logic function

by decomposition

X1

X2
 f

H

G

Fig. 5.2 LUT cascade

fLUT LUT LUT LUT

5.2 Number of LUTs to Realize General Functions 35

Fig. 5.3 Realization

of a 9-variable function

with C-measure

not exceeding 8

3 1

X1

3

6 3

X2

LUTs. When the actual number of rails is smaller than w, we append dummy rails

to make the number of rails w. From this, we have

s � 1 �
n � K

K � w
; and s �

n � w

K � w
:

Since s is an integer, we have (5.1). When this is the case, we can realize an LUT

cascade for f having s cells with at most K inputs. �

Example 5.1.1. Let f .X1; X2/ be a 9-variable function, where X1 D .x1; x2;

: : : ; x6/ and X2 D .x7; x8; x9/. Let �6 be the column multiplicity of the decompo-

sition of f with respect to .X1; X2/. If �6 � 8, then f .X1; X2/ can be realized

with four 6-LUTs, as shown in Fig. 5.3. Note that the number of rails between

two cells is dlog2 8e D 3, by Theorem 3.3.1. In many cases, the natural ordering

of the input variables does not yield the smallest circuit. To check if �6 � 8 for

all arrangements of variables, we need to compute the column multiplicities for
�

9
6

�

D 84 combinations of variables.

Lemma 5.1.6. Consider a cascade consisting of K-LUTs.

1. When the number of the external input variables to the output LUT is one, the

number of the rail inputs to the LUT is at most two.

2. When the number of the external input variables to the output LUT is two, the

number of the rail inputs to the LUT is at most four.

Proof. We prove the second case only. The proof for the first case is similar. Let

xn�1 and xn be external input variables for the output LUT. Consider the decompo-

sition chart, where the rail inputs X1 D .x1; x2; : : : ; xn�2/ denotes the set of bound

variables and the external input X2 D .xn�1; xn/ denotes the set of free variables.

In this case, the column multiplicity is at most 16, since there exist at most 222

D 16

different column functions by Theorem 5.1.1. Also by Theorem 3.3.1, the number

of the rail inputs to the output LUT is at most four. �

5.2 Number of LUTs to Realize General Functions

As for realizations by 6-LUTs, we have the following:

Theorem 5.2.1. The number of 6-LUTs needed to realize an arbitrary n-variable

function with �.f / � 32 is 5n � 35 or less, where n � 8.

36 5 Cascade-Based Synthesis

Fig. 5.4 Realization with

6-LUTs

x1

x2

x5

x3

x4

x6 xn-3 xn-2 xn-1 xn

f

Proof. From Lemma 5.1.4, an arbitrary function with �.f / � 32 can be realized

by an LUT cascade, whose cells have at most dlog2 �e C 1 D log2.32/ C 1 D 6

inputs, and w D log2.32/ D 5 outputs. Let K D 6. Then, from Lemma 5.1.5, the

number of cells is at most d n�w
K�w

e D n�5
6�5

D n � 5. Note that each cell except for

the rightmost cell has at most 5 outputs. From Lemma 5.1.6, the second cell from

the right has at most four outputs as shown in Fig. 5.4. So, the total number of cells

is at most n � 6. Note that the second cell from the right has 4 outputs, while the

rightmost cell has just one output. Therefore, the total number of LUTs is at most

5.n � 8/ C 4 C 1 D 5n � 35. �

Theorem 5.2.2. The number of 6-LUTs needed to realize an arbitrary n-variable

function with �.f / � 16 is 2n � 11 or less, where n � 8.

Proof. Let w D log2.16/ D 4 and K D 6. From Lemma 5.1.5, we have s �
˙

n�w
K�w

�

D n�4
6�4

D
˙

n�4
2

�

.

When n D 2r , each cell except for the rightmost cell has at most 4 outputs. So,

the total number of LUTs is at most 4�
�˙

n�4
2

�

� 1
�

C1 D 2.n�4/�4C1 D 2n�11:

When n D 2r C1, by Lemma 5.1.6, the rightmost cell has one external input and

at most two rail inputs, and the second cell from the right has at most two outputs.

So, the total number of LUTs is at most 4 �
�˙

n�5
2

�

� 1
�

C 2 C 1 D 2n � 11: �

Theorem 5.2.3. The number of 6-LUTs needed to realize an arbitrary n-variable

function with �.f / � 8 is n � 5 or less when n D 3r , and n � 4 or less when

n ¤ 3r , where n � 8.

Proof. Let w D log2 8 D 3 and K D 6. From Lemma 5.1.5, we have s �
˙

n�w
K�w

�

D
˙

n�3
3

�

.

When n D 3r , each cell except for the rightmost cell has at most 3 outputs. So,

the total number of LUTs is at most 3�
�˙

n�3
3

�

� 1
�

C1 D .n�3/�3C1 D n�5:

When n D 3r C 1, the rightmost cell has one external input and at most two

rail inputs, and the second cell from the rightmost one has at most 2 outputs. So, the

total number of LUTs is at most 3�
�˙

n�4
3

�

� 1
�

C2C1 D .n�4/�3C3 D n�4:

When n D 3r C2, the rightmost cell has two external inputs. So, the total number

of LUTs is at most 3 �
�˙

n�5
3

�

� 1
�

C 3 C 1 D .n � 5/ � 3 C 4 D n � 4: �

Lemma 5.2.1. The number of K-LUTs needed to realize a .K C 1/-variable k-

output function F with �.F / � 2K�1 C 2K�3 is 3K or less.

5.2 Number of LUTs to Realize General Functions 37

Proof. Consider the circuit shown in Fig. 5.5. Since the column multiplicity is at

most 2K�1 C 2K�3, each pattern can be uniquely represented by a K-bit code. By

using the leftmost cell D, generate K-bit codes that correspond to the column pat-

terns. For the first 2K�1 patterns, assign K-bit codes with the form .0; �; �; : : : ; �/,

where * denotes either 0 or 1. For the remaining 2K�3 patterns, assign K-bit

codes with the form .1; 0; 0; �; �; : : : ; �/. Cell A in Fig. 5.5 implements the function

for the codes .0; �; �; : : : ; �/, while cell B implements the function for the codes

.1; 0; 0; �; : : : ; �/. Cell C is used for a selector, which is controlled by the most sig-

nificant bit of the outputs of cell D. In this way, an arbitrary K output function can

be realized by the circuit shown in Fig. 5.5. Note that cell B has K � 2 inputs, and

cell C has three inputs. Cells B and C can be merged and realized by a K-input

LUT. Thus, the total number of LUTs to implement this circuit is at most 3K . �

Theorem 5.2.4. Let K � 6 and n � K C 3. The number of K-LUTs to realize an

n-variable function f with �.f / � 2K�1 C 2K�3 is 2K.n � K/ � 5K C 9 or less.

Proof. Consider the cascade shown in Fig. 5.6. Since dlog2 �e � K , the function

can be realized by a cascade with at most K-rails. Also, by Lemma 5.2.1, each of

the intermediate cells can be realized with at most 2K LUTs. By Lemma 5.1.6, the

rightmost cell has at most four rail inputs and two external inputs. Also, note that

the second cell from the right can be implemented with at most 8 LUTs. Note that

Fig. 5.5 Realization of

.K C 1/-variable K-output

function

X1
2

K

xk+1

K-3
f1

f2

fK

A

B

C

C

C

A

B

B

A

D

K 2K

X1

K
K

8 1

4

2

2K

KK K

Fig. 5.6 Cascade realization in the proof

38 5 Cascade-Based Synthesis

the number of outputs is at most four, and the number of inputs is K C 1. We can

prove that 8 LUTs is sufficient in a similar way to the proof of Lemma 5.2.1. The

leftmost cell can be implemented with K LUTs. Thus, the total number of LUTs is

K C 2K.n � K � 3/ C 9 D 2K.n � K/ � 5K C 9: �

Theorem 5.2.5.

� The number of 6-LUTs needed to realize an arbitrary n-variable function with

�.f / � 40 is 12n � 93 or less, where n � 9.

� The number of 7-LUTs needed to realize an arbitrary n-variable function with

�.f / � 80 is 14n � 124 or less, where n � 10.

� The number of 8-LUTs needed to realize an arbitrary n-variable function with

�.f / � 160 is 16n � 159 or less, where n � 11.

5.3 Number of LUTs to Realize Symmetric Functions

When the given function is symmetric, it can be realized more efficiently than a

general function [106,112]. Efficient algorithms to detect symmetric functions exist,

e.g., [70, 91].

Lemma 5.3.1. Let f be a symmetric function of n-variables. Then, �.f / � n C 1.

Proof. Consider the partition of variables .X1; X2/, where X1 D .x1; x2; : : : ; xk/

and X2 D .xkC1; xkC2; : : : ; xn/. Let �k be the column multiplicity of the decom-

position. Since f is symmetric, the column labels with the same weights have the

same column patterns in the decomposition chart. Thus, the column multiplicity is

at most k C 1. From this, we have the lemma. �

Example 5.3.1. Consider a symmetric function f .X1; X2/, where X1 D .x1; x2; x3/

and X2 D .x4; x5; x6/. This is an example for k D 3. In this case, the number of

columns is 23 D 8. The column label with weight 0 is .0; 0; 0/. The column labels

with weight 1 are .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/. They have the same column func-

tions. The column labels with weight 2 are .1; 1; 0/, .1; 0; 1/, and .0; 1; 1/. They

have the same column functions. And the column label with weight 3 is .1; 1; 1/.

Thus, the number of different column patterns is at most four.

In Chap. 7, tighter bounds are derived.

Theorem 5.3.1. The number of K-LUTs needed to realize an n-variable symmetric

function is:

� 4 or less, when n D 9 and K D 6. Figure 5.3 shows the realization.

� 7 or less, when n D 12 and K D 6. Figure 5.7 shows the realization.

� 13 or less, when n D 15 and K D 6. Figure 5.8 shows the realization.

Example 5.3.2. Consider SYM12 [110], a symmetric function of 12 variables.

SYM12 is 1 iff the number of 1’s in the inputs is between 4 and 8.

5.3 Number of LUTs to Realize Symmetric Functions 39

Fig. 5.7 Realization of a

symmetric function of 12

variables by 6-LUTs

6
3

6 3

3

3

1

Fig. 5.8 Realization

of a symmetric function of 15

variables by 6-LUTs

6
3

6 3

3

3

4

1

4

2

3
2

Fig. 5.9 SYM12 realized

by 6-LUTs

3

x1x2...x6

3

3

1

6

x7 x8 x9

3

x10 x11 x12

3

S Y M 1 2

3

1. The column multiplicity of the function with respect to the bound set composed

of K D 6 variables is �6 D 7. Thus, the number of rails between two blocks is

dlog2 7e D 3.

2. We decompose the function with respect to the bound set: x1; x2; : : : ; x6. Realize

the first cell using 6-LUTs, which corresponds to the leftmost cell in Fig. 5.9.

3. The remaining function has 12 � 6 C 3 D 9 variables. The bound variables for

the second decomposition are three outputs of the leftmost cell, and x7; x8; x9.

In this case, the column multiplicity is �9 D 8 (Problem 3.8). Thus, the number

of rails between two blocks is dlog28e D 3.

4. We decompose the remaining function with the bound set: three outputs of the

leftmost cell, and x7; x8; x9. Realize the second cell using 6-LUTs, which corre-

sponds to the middle cell in Fig. 5.9.

5. The remaining function has 9 � 6 C 3 D 6 variables. Since the number of re-

maining variables is equal to K D 6, realize the function by a 6-LUT, which

corresponds to the rightmost cell in Fig. 5.9.

6. In this way, SYM12 is realized by 3 C 3 C 1 D 7 LUTs of 6-inputs. Note that this

realization is different from that shown in Fig. 5.7.

40 5 Cascade-Based Synthesis

5.4 Remarks

In this chapter, we showed a method to realize a given function by using a cascade

of LUTs. This method is only applicable to the functions whose C-measures are

small.

The C-measure of a logic function f is related to the size of its BDD. Sizes of

BDDs for various classes of functions are considered in [154]. Classes of functions

having small C-measures are considered in Chap. 7.

LSIs for LUT cascades have been fabricated [86–88]. This chapter is based on

[134].

Problems

5.1. Compare the tree-type realization in Fig. 5.7 with the cascade realization in

Fig. 5.9. Discuss their advantages and disadvantages.

5.2. Consider the 4-bit adder, where x3; x2; x1; x0 and y3; y2; y1; y0 denote the

inputs, and z4; z3; z2; z1; z0 denote the outputs. Design the adder using an LUT cas-

cade. Use 6-LUTs. Show the expression of the output function for each LUT.

5.3. Design a 12-input 4-output circuit that counts the number of 1’s in the inputs

and represents this by a binary number (i.e., WGT12) by 6-LUTs.

5.4. Consider a set of three functions fi with 7 variables. Assume that �.fi / � 40

for i D 1; 2; 3. Realize these functions by 6-LUTs, using the design method shown

in the proof of Lemma 5.2.1.

5.5. Let �k.n/ be the column multiplicity of a decomposition chart of an n-variable

function with k bound variables. Show the following relations:

�kC1.n/ � 2�k.n/

�k�1.n/ � �2
k.n/

5.6. Enumerate the 8-variable functions whose C-measures are 32.

Chapter 6

Encoding Method

This chapter shows a method to reduce the number of LUTs needed to realize logic

functions with nonstandard encodings. In these encodings, intermediate variables in

functional decomposition are represented with fewer variables. This method offers

a way to find a nondisjoint decomposition.

6.1 Decomposition and Equivalence Class

Definition 6.1.1. Let f .X1; X2/ be a logic function and .X1; X2/ be a partition

of X . jX1jdenotes the number of variables in X1. Let B D f0; 1g. When n1 D jX1j

and n2 D jX2j, an equivalence relation � on Bn1 is defined as follows: Ea � Eb ”

f .Ea; X2/ D f .Eb; X2/, where Ea; Eb 2 Bn1 . Let the equivalence classes of Bn1 be

‰0, ‰1; : : : ; ‰��1. In this case, � is equal to the column multiplicity in the de-

composition chart of f with the partition .X1; X2/. ‰i is also used to represent the

corresponding logic function.

Example 6.1.1. Consider the function

f .X1; X2/ D y0 Nx1 Nx2 _ y1 Nx1x2 _ y2x1 Nx2 _ y3x1x2;

where X1 D .x1; x2; y0; y1/ and X2 D .y2; y3/. The decomposition chart is shown

in Fig. 6.1. The logic functions for the various equivalence classes are

‰0 D Nx1 Nx2 Ny0 _ Nx1x2 Ny1 D Nx1. Nx2 Ny0 _ x2 Ny1/;

‰1 D x1x2;

‰2 D x1 Nx2; and

‰3 D Nx1 Nx2y0 _ Nx1x2y1 D Nx1. Nx2y0 _ x2y1/:

Note that ‰0 denotes the logic function for the equivalence class of the column

vector .0; 0; 0; 0/t , where the symbol t denotes the transpose of the vector. Similarly,

‰1 corresponds to .0; 1; 0; 1/t , ‰2 corresponds to .0; 0; 1; 1/t , and ‰3 corresponds

to .1; 1; 1; 1/t .

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 6,

c Springer Science+Business Media, LLC 2011

41

42 6 Encoding Method

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x2

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 y0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 y1

0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1

y2 y3

Fig. 6.1 Example of a decomposition chart

6.2 Disjoint Encoding

Definition 6.2.1. In a functional decomposition, the minimum length encoding

uses dlog2 �e bits to encode equivalence classes: ‰0; ‰1; : : : ; ‰��1, where dae de-

notes the minimum integer greater than a.

Since ‰i .i D 0; 1; : : : ; � � 1/ represents equivalence classes, ‰i has the following

properties: ‰i � ‰j D 0 .i ¤ j / and _��1
iD0 ‰i D 1.

Let the intermediate variables be h1; h2; : : : ; hu, where u D dlog2 �e. Suppose

that .hu; hu�1; : : : ; h2; h1/ denotes the index showing the equivalence class. In this

encoding, all the vectors in an equivalence class are assigned the same codes. Such

an encoding is a disjoint encoding.1

Example 6.2.1. Consider the function in Example 6.1.1. Note that � D 4. When we

use disjoint encoding:

‰0 is coded by 00,

‰1 is coded by 01,

‰2 is coded by 10, and

‰3 is coded by 11.

In this case, we have

h1 D ‰1 _ ‰3 D x1x2 _ Nx1. Nx2y0 _ x2y1/; and

h2 D ‰2 _ ‰3 D x1x2 _ Nx1. Nx2y0 _ x2y1/:

Note that

Nh2
Nh1 D ‰0;

Nh2h1 D ‰1;

h2
Nh1 D ‰2; and

h2h1 D ‰3:

1 In the previous publications, disjoint encoding was called strict encoding [44, 112].

6.3 Nondisjoint Encoding 43

However, even if x1 is realized instead of the function h2 D ‰2 _‰3, we can still

represent the equivalence class as follows:

Nx1
Nh1 D Nx1. Nx2 Ny0 _x2 Ny1/ D ‰0;

Nx1h1 D Nx1. Nx2y0 _x2y1/ D ‰3;

x1
Nh1 D x1 Nx2 D ‰2; and

x1h1 D x1x2 D ‰1:

The above example shows that an appropriate encoding can simplify intermediate

variables. The next section shows a systematic method to simplify intermediate vari-

ables. Here, we assume that a function is simpler if it can be represented with fewer

variables.

6.3 Nondisjoint Encoding

In a disjoint encoding, all the vectors in an equivalence class are assigned to the

same code. However, in general, we can use the code where the vectors in the same

equivalence class may be assigned to different codes, as long as the vectors in the

different classes are assigned to different codes. Such an encoding is a nondisjoint

encoding. This often simplifies intermediate variables.

Various methods exist to encode equivalence classes: ‰0; ‰1; : : : ; and ‰��1. In

this chapter, we use the encoding that simplifies the intermediate variable hu. If we

can design an encoding such that hu.X1/ D xi , then the LUT for hu is not needed,

since xi is available as an input variable.

Example 6.3.1. Consider a 7-variable function f .X1; X2/, where X1 D .x1;

x2; x3; x4/ and X2 D .x5; x6; x7/. Assume that f is partially symmetric with

respect to X1. In this case, the column multiplicity � of the decomposition chart

for f .X1; X2/ is at most 5, since it is sufficient to identify if 0, 1, 2, 3, and 4 of

x1; x2; x3; and x4 are 1. Since � � 5 and dlog2 �e � 3, f can be realized as shown

in Fig. 6.2.

Assume � D 5. In this case, the circuit requires three intermediate variables: h1,

h2, and h3.

Fig. 6.2 Realization using

disjoint encoding

GA

X2

x1
h2

h3

h1

x2
x3
x4

X1

44 6 Encoding Method

Table 6.1 Disjoint encoding h 3 h 2 h 1 Number of 1’s in X1

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

Disjoint Encoding:

Table 6.1 shows the encoding for h1, h2, and h3. Note that .h3; h2; h1/ shows the

number of 1’s in the inputs. In this case, we have

h3 D SB.4; 4/ D x1x2x3x4;

h2 D SB.4; 2/ D x1x2 ˚ x1x3 ˚ x1x4 ˚ x2x3 ˚ x2x4 ˚ x3x4; and

h1 D SB.4; 1/ D x1 ˚ x2 ˚ x3 ˚ x4:

Note that Table 6.1 represents WGT4, which is realized by the block A in Fig. 6.2.

Since Table 6.1 uses five code words in disjoint encoding, the network for A requires

three 4-LUTs.

The Encoding that Simplifies an Intermediate Variable:

For h3, we realize x1 instead of SB.4; 4/:

h3 D x1;

h2 D SB.4; 2/; and

h1 D SB.4; 1/:

In this case, .h3; h2; h1/ shows the number of 1’s in X1, where

.h3; h2; h1/ D .0; 0; 0/ X1 has no 1,

.h3; h2; h1/ D .�; 0; 1/ X1 has one 1,

.h3; h2; h1/ D .�; 1; 0/ X1 has two 1’s,

.h3; h2; h1/ D .�; 1; 1/ X1 has three 1’s, and

.h3; h2; h1/ D .1; 0; 0/ X1 has four 1’s.

Since the function h3 D x1 is available as an input variable, no LUT is necessary

for h3, as shown in Fig. 6.3. The network for A0 realizes a 4-input 2-output function

and can be implemented by only two 4-LUTs. This encoding uses eight different

code words.

6.3 Nondisjoint Encoding 45

Fig. 6.3 Realization using

encoding that simplifies h

G’A’

X2

x1
h2
h1

x2
x3
x4

X1

Note that the nondisjoint encoding shown in the above example converted a

disjoint decomposition (Fig. 6.2) into a nondisjoint decomposition (Fig. 6.3). Thus,

a disjoint encoding corresponds to a disjoint decomposition, while a nondisjoint en-

coding corresponds to a nondisjoint decomposition. However, not every nondisjoint

encoding leads to a nondisjoint decomposition.

Theorem 6.3.1. [58] Consider the decomposition

f .X1; X2/ D g.h1.X1/; h2.X1/; : : : ; hu.X1/; X2/:

Let ‰i .X1/,.i D 0; 1; : : : ; � � 1/ be the equivalence classes of the decompo-

sition. Let xj 2 X1. If the number of different nonzero functions Nxj ‰i , .i D
0; 1; 2; : : : ; � � 1/ is equal to or less than 2u�1, and the number of different nonzero

functions xj ‰i , .i D 0; 1; 2; : : : ; � � 1/ is equal to or less than 2u�1, then hu.X1/

can be represented as hu.X1/ D xj .

Proof. Algorithm 6.3.1 shows the method to simplify intermediate variables. �

Algorithm 6.3.1. (Simplification of an Intermediate Variable)

1. Let ‰i .i D 0; 1; : : : ; ��1/ and xj 2 X1 satisfy the condition of Theorem 6.3.1.

To Nxj ‰i ¤ 0, assign code v from 0 to 2u�1 � 1.

2. To xj ‰i ¤ 0, if the function Nxj ‰i is already assigned a code v in the previous

step, assign a code v C 2u�1:

3. If there exists a function xj ‰i which has not been assigned a code yet, assign an

unused code t , where 2u�1 � t < 2u.

We use examples to show the algorithm.

Example 6.3.2. Consider the decomposition f .X1; X2/, where X1 D .x1; x2; x3/.

Let the equivalence classes for the decomposition be

‰0 D Nx1 Nx2 Nx3;

‰1 D Nx1x2 _ Nx2x3 _ Nx3x1; and

‰2 D x1x2x3:

46 6 Encoding Method

Disjoint Encoding:

Since � D 3, a disjoint encoding requires u D dlog2 3e D 2 intermediate variables:

h1 D ‰1 D Nx1x2 _ Nx2x3 _ Nx3x1; and

h2 D ‰2 D x1x2x3:

Encoding that Simplifies an Intermediate Variable:

Next, let us use Algorithm 6.3.1 to simplify an intermediate variable. First, confirm

that ‰i , .i D 0; 1; 2/ satisfies the conditions of Theorem 6.3.1:

Nx1‰0 D Nx1 Nx2 Nx3;

Nx1‰1 D Nx1.x2 _ Nx2x3/;

Nx1‰2 D 0;

and

x1‰0 D 0;

x1‰1 D x1. Nx2x3 _ Nx3/; and

x1‰2 D x1x2x3:

Since the number of nonzero functions is 2 � 2u�1, where u D dlog2 3e D 2, the

conditions are satisfied. Next, assign codes to the columns:

To Nx1‰0 assign 00,

to Nx1‰1 assign 01,

to x1‰1 assign 11, and

to x1‰2 assign 10.

Thus, we have the following intermediate variables:

h1 D Nx1‰1 _ x1‰1 D Nx1.x2 _ Nx2x3/ _ x1. Nx2x3 _ Nx3/ D ‰1

h2 D x1‰1 _ x1‰2 D x1

Note that

Nh2
Nh1 D Nx1 Nx2 Nx3 D ‰0

h2
Nh1 D x1x2x3 D ‰2:

Therefore, ‰i .i D 0; 1; 2/ can be represented by .h2; h1/. In this encoding, only

the LUTs for h1 are needed. No LUT is necessary to implement h2 D x1, since x1

is available as an input.

6.3 Nondisjoint Encoding 47

Example 6.3.3. Consider a function f .X1; X2/, where f is partially symmetric

with respect to X1 D .x1; x2; x3; x4/. Also, assume that the column multiplicity

for the decomposition f .X1; X2/ is five. In this case, the equivalence classes for the

decomposition for f with the partition .X1; X2/ are

‰0 D S4
0 .x1; x2; x3; x4/ D Nx1 Nx2 Nx3 Nx3;

‰1 D S4
1 .x1; x2; x3; x4/;

‰2 D S4
2 .x1; x2; x3; x4/;

‰3 D S4
3 .x1; x2; x3; x4/;

‰4 D S4
4 .x1; x2; x3; x4/ D x1x2x3x4:

Since � D 5, e variables. Note that

Nx1‰4 D 0; and

x1‰0 D 0:

In this case ‰i ; .i D 0; 1; : : : ; 4/ satisfies the conditions of Theorem 6.3.1. Thus, an

intermediate variable h3 can be simplified to x1. Next, assign codes to columns as

follows:

To Nx1‰0 assign 000,

to Nx1‰1 assign 001,

to Nx1‰2 assign 010,

to Nx1‰3 assign 011,

to x1‰1 assign 101,

to x1‰2 assign 110.

to x1‰3 assign 111, and

to x1‰4 assign 100.

Using these codes, we derive the following expressions for the intermediate

variables:

h1 D Nx1‰1 _ Nx1‰3 _ x1‰1 _ x1‰3 D ‰1 _ ‰3

h2 D Nx1‰2 _ Nx1‰3 _ x1‰2 _ x1‰3 D ‰2 _ ‰3

h3 D x1‰1 _ x1‰2 _ x1‰3 _ x1‰4 D x1

Note that in this case,

Nh3
Nh2

Nh1 D ‰0;

Nh2h1 D ‰1;

h2
Nh1 D ‰2;

h2h1 D ‰3; and

h3
Nh2

Nh1 D ‰4:

48 6 Encoding Method

Fig. 6.4 WGT7 x1
x2

x7

WGT7

SB(7,4)

SB(7,2)

SB(7,1)

y2
y1
y0

=

=

=

 x1
x2

x4

WGT4

SB(4,4)

SB(4,2)

SB(4,1)
x3

h3=

h2=

h1=

x5
x6 WGT3

SB(3,2)

SB(3,1)x7

h5=

h4=
h2
h1
h5
h4

SB(7,1)

SB(7,2)

y
0
=

y
1
=

h2
h1
h5
h4

SB(7,4)y
2
=

h3

G2

G1

Fig. 6.5 Realization of WGT7 with 8 LUTs

In this encoding, only the LUTs for h1 and h2 are needed. No LUT is necessary to

implement h3 D x1, since x1 is available as an input.

Example 6.3.4. Realize WGT7 using LUTs with up to 5 inputs.

(Solution) WGT7 has seven inputs and three outputs as shown in Fig. 6.4. It counts

the number 1 of 1’s in the input, and represents it by a binary number .y2; y1; y0/,

where y2 D SB.7; 4/, y1 D SB.7; 2/, and y0 D SB.7; 1/. Let X be partitioned

as .X1; X2/, where X1 D .x1; x2; x3; x4/ and X2 D .x5; x6; x7/. Note that the

functions are symmetric with respect to X1 and X2. The column multiplicity of the

decomposition chart .X1; X2/ is five. So, the straightforward realization produces

the network shown in Fig. 6.5, where WGT4 is a 4-input bit-counting circuit and

produces three functions:

h3 D SB.4; 4/ D x1x2x3x4;

h2 D SB.4; 2/ D x1.x2 ˚ x3 ˚ x4/ ˚ x2.x3 ˚ x4/ ˚ x3x4; and

h1 D SB.4; 1/ D x1 ˚ x2 ˚ x3 ˚ x4:

Also, WGT3 is a 3-input bit-counting circuit (i.e., a full adder) and produces two

functions:

h5 D SB.3; 2/ D x5x6 ˚ x6x7 ˚ x7x5; and

h4 D SB.3; 1/ D x5 ˚ x6 ˚ x7:

G1 adds two 2-bit numbers .h2; h1/ and .h5; h4/, producing the two least signif-

icant bits of the sum. And G2 adds a 2-bit number .h5; h4/ and a 3-bit number

.h3; h2; h1/, producing the most significant bit of the sum. In Fig. 6.5, WGT4 has

three outputs and requires three LUTs. Note that

6.3 Nondisjoint Encoding 49

 x1
x2

x4

WGT4’

SB(4,2)

SB(4,1)
x3

h2=

h1=

x5
x6 WGT3

SB(3,2)

SB(3,1)x7

h5=

h4=
h 2
h 1
h 5
h 4

SB(7,1)

SB(7,2)

y
0
=

y
1
=

h 1
h 5
h 4

SB(7,4)y
2
=

h 2

x1

G1

G2’

Fig. 6.6 Realization of WGT7 with 7 LUTs

y2 D h3 ˚ h4h5 ˚ h1h4.h2 ˚ h5/;

y1 D h2 ˚ h5 ˚ h1h4; and

y0 D h1 ˚ h4:

Since each output of G1 and G2 in Fig. 6.5 requires one LUT, we need 8 LUTs in

total. However, if h3 D SB.4; 4/ is replaced by x1 as shown in Fig. 6.6, we need

only 7 LUTs. In this case, we use the relation h3 D x1
Nh1

Nh2, and

y2 D x1
Nh1

Nh2 ˚ h2h5 ˚ h1h4.h2 ˚ h5/:

Example 6.3.5. Realize WGT8 by LUTs with up to 5 inputs.

(Solution) WGT8 realizes the four functions SB(8,8), SB(8,4), SB(8,2), and

SB(8,1). Let X be partitioned as X D .X1; X2; X3/, where X1 D .x1; x2; x3; x4/,

X2 D .x5; x6/, and X3 D .x7; x8/.

First, realize

SB.4; 4/ D x1x2x3x4;

SB.4; 2/ D x1.x2 ˚ x3 ˚ x4/ ˚ x2.x3 ˚ x4/ ˚ x3x4; and

SB.4; 1/ D x1 ˚ x2 ˚ x3 ˚ x4:

Then, realize

SB.6; 4/ D SB.4; 4/ ˚ SB.4; 3/.x5 ˚ x6/ ˚ SB.4; 2/x5x6;

SB.6; 2/ D SB.4; 2/ ˚ SB.4; 1/.x5 ˚ x6/ ˚ x5x6; and

SB.6; 1/ D SB.4; 1/ ˚ x5 ˚ x6:

Note that we use the relation in Lemma 3.5.3:

SB.4; 3/ D SB.4; 2/SB.4; 1/:

50 6 Encoding Method

Fig. 6.7 Realization of

WGT8

x1
x2

SB(4,4)

x1
x2

SB(4,2)

x1
x2

SB(4,1)

SB(6,4)

SB(6,2)

SB(6,1)

SB(8,4)

SB(8,2)

SB(8,1)

SB(8,8)
x3 x4 x5 x6

x7 x8

=SB(8,4)

=SB(8,2)

=SB(8,1)

=SB(8,8)y3

y2

y1

y0

Finally, realize

SB.8; 8/ D SB.6; 6/x7x8;

SB.8; 4/ D SB.6; 4/ ˚ SB.6; 3/.x7 ˚ x8/ ˚ SB.6; 2/x7x8;

SB.8; 2/ D SB.6; 2/ ˚ SB.6; 1/.x7 ˚ x8/ ˚ x7x8; and

SB.8; 1/ D SB.6; 1/ ˚ x7 ˚ x8:

In this case, we use the relation in Lemma 3.5.3:

SB.6; 6/ D SB.6; 4/SB.6; 2/; and

SB.6; 3/ D SB.6; 2/SB.6; 1/:

Thus, WGT8 is realized as Fig. 6.7. However, if we use the relation

SB.4; 4/ D x1x2x3x4 D x1SB.4; 2/ SB.4; 1/;

the LUT for SB.4; 4/ can be replaced by a variable x1. Thus, WGT8 requires only

9 LUTs.

Example 6.3.6. Realize the 9-input symmetric function SYM9 using LUTs with up

to 5 inputs.

(Solution) SYM9 is represented as

f D S9
f3;4;5;6g.x1; x2; : : : ; x9/:

f D 1 if and only if the number of 1’s in the input is 3, 4, 5, or 6. Suppose that

the function is decomposed as f .X1; X2; X3/, where X1 D .x1; x2; x3; x4; x5/,

X2 D .x6; x7/, and X3 D .x8; x9/. When X1 is the set of bound variables, the

equivalence classes are

6.3 Nondisjoint Encoding 51

‰ 0 D S5
0 .x1; x2; x3; x4; x5/ D Nx1 Nx2 Nx3 Nx4 Nx5;

‰1 D S5
1 .x1; x2; x3; x4; x5/;

‰2 D S5
2 .x1; x2; x3; x4; x5/;

‰3 D S5
3 .x1; x2; x3; x4; x5/;

‰4 D S5
4 .x1; x2; x3; x4; x5/; and

‰5 D S5
5 .x1; x2; x3; x4; x5/ D x1x2x3x4x5:

Suppose that the first cell realizes WGT5. Next, consider the decomposition where

X1 and X2 are bound variables. Suppose that the second cell realizes WGT7 as

shown in Fig. 6.8, where

y2 D SB.7; 4/;

y1 D SB.7; 2/; and

y0 D SB.7; 1/:

From the definition of SYM9, we have Table 6.2 showing the function of the right-

most cell. As shown in Fig. 6.8, the network for Table 6.2 requires only one LUT.

Thus, SYM9 is realized by seven 5-LUTs.

Fig. 6.8 Realization for

SYM9

x1

x2

x3

x4

WGT5

x6 x7

x5

x8 x9

y2

y1

y0

WGT7

Table 6.2 Truth table for the

rightmost cell
y2 y1 y0 x8 x9 f

0 0 0 – – 0

0 0 1 1 1 1

0 1 0 1 – 1

0 1 0 – 1 1

0 1 1 – – 1

1 0 0 – – 1

1 0 1 0 – 1

1 0 1 – 0 1

1 1 0 0 0 1

1 1 1 – – 0

52 6 Encoding Method

Next, consider whether any output function of WGT7 can be simplified. Table 6.2

shows that when WGT7 produces (0,1,1) and (1,0,0), the value of the function is 1,

independent of the values of x8 and x9. Thus, the equivalence classes are

‰0 D S7
0 .x1; x2; : : : ; x7/ D Nx1 Nx2 : : : Nx6 Nx7;

‰1 D S7
1 .x1; x2; : : : ; x7/;

‰2 D S7
2 .x1; x2; : : : ; x7/;

‰3 D S7
f3;4g.x1; x2; : : : ; x7/;

‰4 D S7
5 .x1; x2; : : : ; x7/;

‰5 D S7
6 .x1; x2; : : : ; x7/; and

‰6 D S7
7 .x1; x2; : : : ; x7/ D x1x2 : : : x6x7:

In this case, we cannot simplify any output of WGT7 by using Theorem 6.3.1,

since the number of nonzero functions in x1‰i and Nx1‰i , where .i D 0; 1; 2;

3; 4; 5; 6/, is both six.

Example 6.3.7. Design a 2-MUX using 4-LUTs, where a 2-MUX realizes the

function

f .y0; y1; y2; y3; x1; x2/ D y0 Nx1 Nx2 _ y1 Nx1x2 _ y2x1 Nx2 _ y3x1x2:

(Solution) Let .X1; X2/ be a partition of the input variables, where X1 D
.y0; y1; x1; x2/ and X2 D .y2; y3/. The equivalence classes for the decomposi-

tion are

‰0 D Nx1. Nx2 Ny0 _ x2 Ny1/;

‰1 D Nx1. Nx2y0 _ x2y1/;

‰2 D x1 Nx2; and

‰3 D x1x2:

Since � D 4, disjoint encoding requires two intermediate variables h1 and h2. Note

that

x1‰0 D 0

x1‰1 D 0

and

Nx1‰2 D 0

Nx1‰3 D 0:

6.4 Remarks 53

Thus, ‰i .i D 0; 1; 2; 3/ satisfies the conditions of Theorem 6.3.1. Next, assign

codes .h2; h1/ to columns as follows:

To Nx1‰0 D ‰0 assign a code 00,

to Nx1‰1 D ‰1 assign a code 01,

to x1‰2 D ‰2 assign a code 10, and

to x1‰3 D ‰3 assign a code 11.

In this case, we have the following intermediate variables:

h2 D x1‰2 _ x1‰3 D x1;

h1 D Nx1‰1 _ x1‰3 D Nx1. Nx2y0 _ x2y1/ _ x1x2 D g:

Note that f can be represented as

f .y0; y1; y2; y3; x1; y2/ D ‰1 _ ‰2y2 _ ‰3y3;

D Nh2h1 _ h2
Nh1y2 _ h2h1y3;

D Nx1g _ x1. Ngy2 _ gy3/:

In this way, a 2-MUX can be realized by two 4-LUTs as shown in Fig. 4.4. This is a

method to find a nondisjoint decomposition of Lemma 4.1.2.

6.4 Remarks

In this chapter, nondisjoint encoding was introduced. It reduces the number of LUTs

in a cascade realization by deriving a nondisjoint decomposition. Nondisjoint en-

coding for symmetric functions was considered in [112]. Experimental results show

that with nondisjoint encodings, the number of LUTs can be reduced by 10–30%

[35, 68, 69], when multiple-output functions were implemented as encoded char-

acteristic function for nonzero outputs (ECFNs). This chapter is based on [112].

Encoding method in the decomposition that minimized the support is considered in

[21, 58, 155]

Problems

6.1. Consider the decomposition f .X1; X2/, where X1 D .x1; x2; x3; x4/ and

X2 D .x5; x6; x7; x8/. Let the equivalence classes of the decomposition be

‰0 D Nx1 Nx2 Nx3;

‰1 D Nx1x2 Nx3;

54 6 Encoding Method

f

1x

2x

3x

4x

5x
6x

7x

1X

8x

f

1h

2h

2X

1x

2x

3x

4x

5x 6x
7x

1X

8x

1h

2X

3h

Fig. 6.9 Simplification of intermediate variables

‰2 D x1 Nx3x4;

‰3 D x1 Nx3 Nx4;

‰4 D x3:

Simplify an intermediate variable if possible.

6.2. Realize the 8-variable symmetric function f D S8
f0;8g

using 5-LUTs. Note that

f D 1 iff
P8

iD1 xi D 0 or 8.

6.3. By extending Theorem 6.3.1, obtain the condition that the intermediate

variables hu can be represented by xj , and hu�1 can be represented by xk , where

j ¤ k. For example, in Fig. 6.9, two intermediate variables h3 and h2 are replaced

by input variables x1 and x3, respectively.

Chapter 7

Functions with Small C-Measures

Recall that the C-measure of a function is the maximum column multiplicity among

a set of functional decompositions f .X1; X2/, where X1 D .x1; x2; : : : ; xk / and

X2 D .xk C 1; xk C 2; : : : ; xn /: The C-measure tends to increase exponentially with

the number of input variables, n. However, many practical functions have small

C-measures. This chapter considers classes of functions whose C-measures are

small. Such functions can be efficiently realized by LUT cascades.

7.1 C-Measure and BDDs

The column multiplicity of a decomposition chart is equal to the width of the

quasi-reduced multi-terminal binary decision diagram (QRMTBDD). So, the

C-measure of a logic function is equal to the maximum width of the MTBDD

for the given ordering of the input variables.

Example 7.1.1. Consider two functions:

f1.x1; x2; x3; x4; x5; x6/ D x1x2 _ x3x4 _ x5x6

and

f2.x1; x2; x3; x4; x5; x6/ D x1x4 _ x2x5 _ x3x6:

Figure 7.1 shows the BDDs for f1 and f2. In this case, the C-measures of f1 and

f2 are 3 and 8, respectively. Note that f2 can be obtained from f1 by permuting the

input variables. We consider these functions to be different.

Lemma 7.1.1. Consider a pair of 2n variable functions:

f1.x1; x2; : : : ; x2n �1; x2n / D x1x2 _ x3x4 _ � � � _ x2n �1x2n

and

f2.x1; x2; : : : x2n �1; x2n / D x1xn C 1 _ x2xn C 2 _ � � � _ xn x2n :

Then, �.f1/ D 3 and �.f2/ D 2n .

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 7,

c Springer Science+Business Media, LLC 2011

55

56 7 Functions with Small C-Measures

Fig. 7.1 BDD for equivalent functions

For certain function, the C-measure is large, but when variables are permuted, the

C-measure becomes smaller. For the other function, the C-measure is large for any

permutation of the input variables. For a given logic function and variable ordering,

the C-measure is easy to obtain and is uniquely defined.

7.2 Symmetric Functions

Functions that appear in arithmetic circuits often have symmetries. When logic func-

tions have some symmetries, they are often realized using fewer elements.

Definition 7.2.1. A function f is a totally symmetric function if any permutation

of the variables in f does not change the function. A totally symmetric function is

also called a symmetric function.

Lemma 7.2.1. Let f be a symmetric function of n variables. Then,

�.f / �
n

max
kD1

minfk C 1; 2n�kC1g:

Proof. Consider the decomposition chart of f , where X1 D .x1; x2; : : : ; xk/ de-

notes the bound variables and X2 D .xkC1; xkC2; : : : ; xn/ denotes the free variables.

The number of different column functions is at most k C1, since the column pattern

depends only on the number of 1’s in the bound variables. Also, by Lemma 3.5.1,

the number of column functions is at most 2n�kC1, since the column functions are

symmetric functions of n � k variables. �

7.4 LPM Functions 57

Theorem 7.2.1. Let f be a symmetric function f of n variables. Then,

�.f / � n; .n � 4/:

�.f / � n � 1; .n � 9/:

�.f / � n � 2; .n � 18/:

�.f / � n � 3; .n � 35/:

Proof. From Lemma 7.2.1, �k D maxn
kD1

minfk C1; 2n�kC1g. Consider the cases,

where k D n; n � 1; n � 2, n � 3 and n � 4. In these cases, we have

�n D minfn C 1; 21g D 2; .n � 1/;

�n�1 D minfn C 0; 22g D 4; .n � 4/;

�n�2 D minfn � 1; 23g D 8; .n � 9/;

�n�3 D minfn � 2; 24g D 16; .n � 18/; and

�n�4 D minfn � 3; 25g D 32; .n � 35/:

From the above, we have the theorem. �

7.3 Sparse Functions

An integer function whose number of nonzero output values is much smaller than

the total number of input combinations is called sparse. Sparse functions can be

efficiently realized by an LUT cascade.

Theorem 7.3.1. Let f be an integer valued function or a logic function with

weight k. Then, �.f / � k C 1.

Proof. Consider a decomposition chart with the maximum column multiplicity. In

this case, each nonzero element corresponds to a unique column pattern. Also, there

can be a column with all zero elements. Thus, there is no decomposition chart with

greater column multiplicity. Hence, we have the theorem. �

Sparse functions are considered in Chap. 8.

7.4 LPM Functions

The longest prefix match (LPM) problem is to determine the output port address

from a list of prefix vectors stored in memory based on the longest match. It is

solved by the internet routers to forward packets of data.

Definition 7.4.1. [125] The LPM table stores distinct ternary vectors of the form

VEC1 � VEC2, where VEC1 is a string of 0’s and 1’s, and VEC2 is a string of *’s.

58 7 Functions with Small C-Measures

To assure that the longest prefix address is produced, LPM entries are stored in

descending prefix length. The first match determines the LPM tables output. The

corresponding LPM function is a logic function Ef WBn !Bm, where Ef .Ex/ is the

smallest index of an entry that is identical to Ex except possibly for don’t care values.

If no such entry exists, Ef .Ex/ D 0m. A circuit that realizes the LPM function is an

LPM index generator.

Example 7.4.1. Consider the LPM table shown in Table 7.1. In the third row

VEC1 D 01 and VEC2 D��, while in the last row VEC1 D 0 and VEC2 D���.

Table 7.2 shows the corresponding LPM function. The output is the index corre-

sponding to the index of the longest prefix that matches the input.

Example 7.4.2. In Internet Protocol version 4 (IPv4), an IP address is represented

by 32 bits or 4 bytes. An IP address is often represented by four decimal num-

bers, each representing a byte. For example, 66.249.122.7 corresponds to the 32-bit

binary number

01000010:11111001:01111010:00000111:

Table 7.1 LPM table Vector

x1 x2 x3 x4 Index

1 0 0 0 1

0 1 0 * 2

0 1 * * 3

1 * * * 4

0 * * * 5

Table 7.2 LPM function

truth table
x1 x2 x3 x4 f2 f1 f0

0 0 0 0 1 0 1

0 0 0 1 1 0 1

0 0 1 0 1 0 1

0 0 1 1 1 0 1

0 1 0 0 0 1 0

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 0 1 1

1 0 0 0 0 0 1

1 0 0 1 1 0 0

1 0 1 0 1 0 0

1 0 1 1 1 0 0

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 1 0 0

7.4 LPM Functions 59

That is, 66 in the decimal number represents the binary number 01000010; 249 in

the decimal number represents the binary number 11111001; 122 in the decimal

number represents the binary number 01111010; and 7 in the decimal number rep-

resents the binary number 00000111.

Consider the IP forwarding table shown in Fig. 7.2. It finds the longest prefix that

matches the incoming destination address, and produces the corresponding next hop

address. For example, when the input address is 66.249.122.7, the LPM is the first

entry. Note that in this case, both the first and the second entries match. The first

entry matches three bytes (66,249, and 122), while the second entry matches only

two bytes (66 and 249). Thus, we select the first element, and its specified next hop

address 161.4.2.22.

Ternary content addressable memory, (TCAM) explained in Chap. 2, directly real-

izes an LPM function.

Example 7.4.3. Figure 7.2 is an example of a forwarding table, and Fig. 7.3 shows

the TCAM for the table. In the TCAM, the entries are sorted in the order of decreas-

ing prefix length. When the incoming address is 66:249:122:7, both the first and the

second prefixes match. The priority encoder selects the least index.

66.249.122 161.4.2.22

66.249

58

65.52

161.4.2.4

120.3.3.1

125.33.32.98

Prefix Next-hop

22.2.4.1617.221.942.66

202 10.0.0.111

Fig. 7.2 Example of IP look-up

Location

66.249.122.7 Priority

Encoder

0

1

2

3

4

5

6

P1

P1 66.249.122 161.4.2.22

P2

P3

P4

P5

66.249

65.52

58

202

161.4.2.4

125.33.32.98

120.3.3.1

10.0.0.111

Prefix Next-hop
1

1

0

0

0

0

0

Fig. 7.3 Longest prefix matching by TCAM

60 7 Functions with Small C-Measures

Theorem 7.4.1. [125] Let f be an LPM function with k vectors. Then, �.f / �
k C 1.

Proof. Consider a decomposition chart where X1 D .x1; x2; : : : ; xt / denotes the

bound variables and X2 D .xtC1; xtC2; : : : ; xn/ denotes the free variables. We

prove the theorem for the case where all k entries in the LPM table map to dis-

tinct output values. This is the worst case, since forcing certain entries to have the

same output value can only reduce the column multiplicity.

We prove the theorem by counting the number of distinct columns in the decom-

position chart as LPM vectors are added to the LPM table. Reorder the LPM vectors

so that those vectors with the most * entries are first and those with the fewest are

last. An empty decomposition chart has a unique column pattern (all 0’s). Let the

first vector be Ę D .a1; a2; :::; am; �; �; :::; �/, where aj 2 B D f0; 1g. If m > t ,

then the first vector changes only a proper subset of elements in one column. If

m D t (m < t), then the new vector changes all elements in one (or more) complete

column(s) to the vector’s output value in the LPM table. In either case, at most one

distinct column pattern is added to the decomposition chart.

Because the second vector has no more * entries than the first vector, adding it

will change columns only among a subset of the two distinct columns so far in the

decomposition chart. Let the new vector be Ě D .b1; b2; :::; bm0 ; �; �; :::; �/, where

bj 2 B . If bi D ai , for all 1 � i � m0, then a subset of the columns created

by adding N̨ to the empty decomposition chart are changed. Otherwise, a subset of

the columns containing all 0’s are changed. In either case, at most one additional

column pattern is added. This process continues until all vectors are exhausted. In

all, at most k C 1 column patterns are created. The theorem follows. �

7.5 Segment Index Encoder Function

Definition 7.5.1. [116] A Segment Index Encoder (SIE) function g.X/ is a

mapping: g W I ! I , where I is a set of non-negative integers, and a � b

implies g.a/ � g.b/. Segment index logic function f is the SIE function rep-

resented by binary variables. We assume that the integer represented by X D
.xn�1; xn�2; : : : ; x1; x0/ is

P n�1
iD0 2ixi .

Example 7.5.1. Table 7.3 shows an example of a SIE function. Note that it is a

monotone-increasing function with respect to X D
P 3

iD0 2ixi .

Theorem 7.5.1. [116] Let k be the number of segments in an segment index

function g. Let f be the corresponding segment index logic function. Then,

�.f / � k. We assume that the integer represented by X D .xn�1; xn�2; : : : ;

x1; x0/ is
P n�1

iD0 2ixi .

Proof. Consider the decomposition chart of a segment index logic function

f .X1; X2/. Let X1 D .xn�p�1; xn�p�2; : : : ; x0/ and X2 D .xn�1; xn�2; : : : ; xn�p/.

7.5 Segment Index Encoder Function 61

Table 7.3 Example

of segment index encoder

function

x3 x2 x1 x0 f

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 2

0 1 0 1 2

0 1 1 0 2

0 1 1 1 2

1 0 0 0 2

1 0 0 1 3

1 0 1 0 3

1 0 1 1 3

1 1 0 0 4

1 1 0 1 4

1 1 1 0 4

1 1 1 1 5

Fig. 7.4 Partition of the

domain

x

y

Assume, without loss of generality, that both the columns and rows are labeled in

ascending order of the values of X1 and X2, respectively. Because g.X/ is a

monotone-increasing function, in scanning left-to-right and then top-to-bottom, the

values of g.X/ will never decrease. An increase causes two columns to be distinct.

Conversely, if no increase occurs anywhere across two adjacent columns, they are

identical. In a monotone-increasing k-valued output function, there are k � 1 divid-

ing lines among 2n output values. Dividing lines among values divide columns in

the decomposition chart. Thus, there can be at most k distinct columns. �

The SIE functions are used in numerical function generators (NFGs).

We developed an architecture and a synthesis method for programmable NFGs

for elementary functions such as trigonometric, logarithmic, square root, and recip-

rocal functions [116,122,130]. As shown in Fig. 7.4, a given domain of the function

is partitioned into nonuniform segments. For each segment, the function is approx-

imated by a linear function using the architecture shown in Fig. 7.5. By Theorem

7.5.1, when the number of segments is small, the SIE has a small C-measure, and

can be efficiently realized by an LUT cascade. In this way, we can implement fast

and compact NFGs for a wide range of functions.

62 7 Functions with Small C-Measures

Fig. 7.5 Numerical function

generator using first-order

approximation

Segment Index Encoder

(LUT Cascade)

Coefficients Table

(ROM)

Multiplier

Adder

x

y

i

c1i f(s)+vi

Adder

-s i

i

7.6 WS Functions

A weighted-sum function (WS function) [120, 127] is a mathematical model

of bit-counting circuits [110], radix converters [43, 119], and distributed arith-

metic [121].

Definition 7.6.1. An n-input WS function F.X/ computes

W S.X/ D
n
X

iD1

wi � xi ;

where X D .x1; x2; : : : ; xn/ is the input vector, W D .w1; w2; : : : ; wn/ is the

weight vector, and wi .i D 1; 2; : : : ; n/ is a positive or negative integer. Let

F D .fq�1; fq�2; : : : ; f0/ be the binary representation of the WS function. Then,

we have

W S.X/ D

q�1
X

iD0

fi .X/ � 2i :

WS functions are used in radix converters and digital filters.

Theorem 7.6.1. Let F.X/ be a WS function with the weight vector W D .w1;

w2; : : : ; wn/. Let .X1; X2/ be a partition of X D .x1; x2; : : : ; xn/, where X1 D .x1;

x2; : : : ; xk/ and X2 D .xkC1; xkC2; : : : ; xn/. Consider the decomposition chart of

F , where X1 denotes the bound variables and X2 denotes the free variables.

Then, the column multiplicity of the decomposition chart is at most UB1 D 1 C
P k

j D1 jwj j.

7.6 WS Functions 63

Table 7.4 Decomposition chart for a WS function

Table 7.5 A decomposition

chart of a WS function

(integer representation)

Proof. Consider the decomposition chart for W S.X1; X2/. In the first row, X2 D
.0; 0; : : : ; 0/. Note that the column multiplicity is equal to the number of different

values in the first row. For example, Table 7.4 shows the case of n D 5 and k D 3.

Consider the case where all the weights are positive. In this case, the number of

different values is at most UB1, since W S takes values from 0 to
Pk

j D1 wj .

Consider the case where some of the weights are negative. Assume that

w1; w2; : : : ; wt are negative, and wtC1; wtC2; : : : ; wk are positive. Then, the W S

takes values from
Pt

j D1 wj to
Pk

j DtC1 wj . In this case, the number of different

values is at most 1 C
Pt

j D1 jwj j C
Pk

j DtC1 wj D 1 C
Pk

j D1 jwj j. From these,

we can conclude that the column multiplicity of the decomposition chart is at

most UB1. �

Example 7.6.1. Consider the WS function with n D 5 and W D .w1; w2; w3;

w4; w5/ D .1; 2; 3; 4; 5/. Let X1 D .x1; x2; x3/ and X2 D .x4; x5/. In this case,

UB1 D 1Cw1 Cw2 Cw3 D 1C1C2C3 D 7. Table 7.5 shows the decomposition

chart of the function. Note that the column multiplicity of the decomposition chart

is 7. So, the bound UB1 is tight.

Definition 7.6.2. A threshold function f .x0; x1; : : : ; xn�1/ satisfies the relation:

f D 1 if

n
X

iD1

wi xi � T , and f D 0 otherwise, where .w0; w1; : : : ; wn�1/ is the

weight vector and T is the threshold.

64 7 Functions with Small C-Measures

Although, a threshold function is not a WS function, we can estimate the column

multiplicity of a threshold function from the theory of WS functions.

Theorem 7.6.2. The column multiplicity of a decomposition chart of the threshold

function with the weight vector .w0; w1; : : : ; wn�1/ is at most

UB D 1 C

n�1
X

iD0

jwi j:

Proof. The column multiplicity of a decomposition chart for f is no greater than

that of the WS function having the same weight vector. By Theorem 7.6.1, the col-

umn multiplicity of the WS function is at most UB . Hence, we have the theorem.

�

When the sum of the weights is large, a monolithic cascade realization of a WS

function can be large. In this case, we can partition the outputs into groups, and

realize each group separately.

Theorem 7.6.3. [120, 127] Let FLSB.X/ be the logic function that represents the

least significant q bits of a WS function. Then, FLSB.X/ can be realized by an LUT

cascade consisting of cells with q C 1 inputs and q outputs.

A 2q-output WS function can be decomposed into a pair of WS functions as

follows: Let, wi be a weight of a 2q-output WS function. Then, wi can be written as

wi D 2qwAi C wBi ;

where wAi denotes most significant q bits, and wBi denotes least significant q bits.

In this case, we can realize the 2q-output WS function using a pair of WS functions

and an adder, as shown in Fig. 7.6.

This is an arithmetic decomposition of a WS function. With this method, we

can efficiently realize a WS function with cascades and adders [120, 127].

q

q

++

x

+

N

q log2 N −

log2 N

q

0

A

B

Fig. 7.6 Arithmetic decomposition of 2q-output WS function

7.7 Modulo Function 65

7.7 Modulo Function

Definition 7.7.1. Let X D .xn�1; xn�2 : : : ; x1; x0/ be the input variables. A

modulo m function is a mapping Bn ! M , where M D f0; 1; : : : ; m � 1g. It

computes

f .X/ D

n�1
X

iD0

2ixi

!

(mod m):

Theorem 7.7.1. The C-measure of the modulo m function is m.

The modulo m function can be realized by an LUT cascade with dlog2 me rails. The

depth of the circuit is O .n/.

Next, consider the decomposition of the modulo m function:

f .X1; X2/ D g.h1.X1/; h2.X2//;

where X1 D .xn�1; xn�2 : : : ; xn�k/, and X2 D .xn�k�1; xn�k�2 : : : ; x0/. In this

case, h1.X1/ computes

h1.xn�1; xn�2 : : : ; xn�k/ D

n�1
X

iDn�k

2ixi

!

(mod m);

while h2.X2/ computes

h2.xn�k�1; xn�k�2 : : : ; x0/ D

n�k�1
X

iD0

2ixi

!

(mod m):

Also,

g.h1; h2/ D h1 C h2(mod m):

Note that the C-measures of h1.X1/ and h2.X2/ are also m. By decomposing recur-

sively, we have a tree-type modulo circuit with depth O . log2 n/.

Lemma 7.7.1. Let a; b; c, and d be integers satisfying the relation a D bc C d ,

then

a (mod m) D Œb (mod m)� � Œ c (mod m)� C Œ d (mod m)� :

Example 7.7.1. Let m D 19.

1001 D 20 � 50 C 1

20 (mod 19) D 1

50 (mod 19) D 20 � 2 C 10 (mod 19)

D 2 C 10 D 12

66 7 Functions with Small C-Measures

Fig. 7.7 Mod 3 circuit with

LUTs
4

A1

4

A2

4

A3

4

A4

A5

X1

X2

X3

X4

A6

A7

1001 (mod 19) D 1 � 12 C 1 D 13

Example 7.7.2. Realize the modulo function by k-LUTs, where m D 3, n D 16,

and k D 4.

(Solution): The input variables are partitioned into

X1 D .x15; x14; x13; x12/, X2 D .x11; x10; x9; x8/, X3 D .x7; x6; x5; x4/, and

X4 D .x3; x2; x1; x0/.

Figure 7.7 shows the circuit to compute the modulo m. The circuit A1 computes:

h1.x15; x14; x13; x12/ D

15
X

iD12

2i xi

!

(mod 3)

D

212

3
X

iD0

2ixiC12

!

(mod 3)

D

3
X

iD0

2ixiC12

!

(mod 3):

The circuit A2 computes:

h2.x11; x10; x9; x8/ D

11
X

iD8

2ixi

!

(mod 3)

D

28

3
X

iD0

2ixiC8

!

(mod 3)

D

3
X

iD0

2ixiC8

!

(mod 3):

7.8 Remarks 67

The circuit A3 computes:

h3.x7; x6; x5; x4/ D

7
X

iD4

2ixi

!

(mod 3)

D

24

3
X

iD0

2ixiC4

!

(mod 3)

D

3
X

iD0

2ixiC4

!

(mod 3):

The circuit A4 computes:

h4.x3; x2; x1; x0/ D

3
X

iD0

2ixi

!

(mod 3):

The circuits A5 and A6 compute:

h5 D .h1 C h2/ (mod 3)

h6 D .h3 C h4/ (mod 3):

And, finally, A7 computes:

.h5 C h6/ (mod 3):

Note that in the above equations, we used the relations:

212 � 28 � 24 � 1 .mod 3/:

7.8 Remarks

Functions with small C-measures have efficient LUT cascade realizations. Practical

functions often have small C-measures, although the fractions of functions with

small C-measures approaches zero as the number of variables increases. An efficient

method to obtain the C-measure of a logic function is to construct the BDD of the

function. Functions that have small BDD representations are considered in [154].

Problems

7.1. Show the profile of a 9-variable symmetric function.

7.2. Let f .X/ be

f D

&

P4
iD0 2i xi

3

'

;

68 7 Functions with Small C-Measures

and let .X1; X2/ be a partition of X D .x4; x3; x2; x1; x0/. Write the decomposition

chart when X1 D .x2; x1; x0/ and X2 D .x4; x3/, and obtain the column multiplicity.

Also, do the same thing for X1 D .x3; x2; x1; x0/ and X2 D .x4/.

7.3. Let X D .xn�1; xn�2 : : : ; x1; x0/ be the input variables. An interval function

IN.X W A; B/ is defined as

IN.X W A; B/ D

�

1 (If A � X � B)

0 (Otherwise):

Here, X is considered as an integer:

X D

n�1
X

iD0

2ixi :

Show that the C-measure of the function is at most three.

7.4. Suppose that the given function f is represented as a sum of k products having

two literals. Obtain an upper bound on �.f /.

7.5. Consider the function f .X1; X2; X3; X4/, where X1 D .x1; x2; x3/, X2 D
.x4; x5/, X3 D .x6/, and X4 D .x7; x8/. Let f be partially symmetric with respect

to Xi , where i D 1; 2; 3; 4.

1. Let .X1; X2/ be the bound variables and .X3; X4/ be the free variables. Then,

obtain an upper bound on the column multiplicity of the decomposition.

2. Let .X1; X2; X3/ be the bound variables and .X4/ be the free variables. Then,

obtain an upper bound on the column multiplicity of the decomposition.

7.6. Let .X1; X2; X3/ be a partition of the input variables X . Let �i be the column

multiplicity of the decomposition of the function f .X/, where Xi is the set of bound

variables .i D 1; 2/. Then, show that the column multiplicity of the decomposition

of f , where .X1; X2/ is the set of bound variables, is at most �1�2.

7.7. A priority encoder function has n inputs .x1; x2; : : : ; xn/ and dlog2.n C 1/e
outputs. If x1 D 1, then the output is 1. Otherwise, if xi D 1 and xj D 0 for all j

such that .1 � j < i/, then the output is i . If all the inputs are 0, then the output is 0.

Show that the C-measure of the priority encoder function is n C 1.

7.8. Let X D .x0; x1; x2; x3; x4/ and W D .1; 2; 3; 4; 5/. Consider the threshold

function f .X/, where W is the weight vector and T D 6 is the threshold.

1. Write the decomposition chart, where X1 D .x2; x1; x0/ denotes the bound vari-

ables and X2 D .x4; x3/ denotes the free variables.

2. Obtain the column multiplicity.

7.9. Realize the n-input modulo m function with k-LUT, where n D 32, m D 17,

and k D 10.

7.8 Remarks 69

7.10. Show that

2nk � .�1/n (mod 2k C 1)

2nk � 1 (mod 2k � 1):

7.11. Let f .X/ be a threshold function with the weight vector .w1; w2; : : : ; wn/,

where wi > 0. Let .X1; X2/ be a partition of X , where X1 D .x1; x2; : : : ; xk/ and

X2 D .xkC1; xkC2; : : : ; xn/. Then, show that the column multiplicity of f with

respect to the decomposition .X1; X2/ is at most 1 C
Pk

iD1 wi .

Chapter 8

C-Measure of Sparse Functions

Let f be a function of n variables. Then, the C-measure of f tends to increase

exponentially with n. However, for the functions with a fixed weight u, .u �
2n�1/, C-measure increase as O .n/. Thus, functions with small weights have small

C-measures. This chapter considers the C-measure of functions with small weights.

8.1 Logic Functions with Specified Weights

In this section, we derive upper bounds on C-measures for functions with small

weights. Then, we derive the number of LUTs to realize functions with small

weights.

Definition 8.1.1. The weight of a logic function f , denoted by u, is the number of

the binary vectors Ea such that f .Ea/ D 1.

Let u be the weight of an n-variable function. If u is much smaller than 2n, then

f is a sparse function.

Theorem 8.1.1. [8] Let �k.f / be the column multiplicity of a decomposition chart

of an n-variable logic function f with k bound variables. Then,

�k.f / � minf2k; 22n�k

g:

Example 8.1.1. Table 8.1 shows the profiles

.�1; �2; �3; �4; �5; �6; �7; �8; �9; �10/

of 10 randomly generated functions with n D 10 and u D 512. Since one-half of the

truth table entries are 1, such functions are not considered to be sparse. The last row

(AVG) denotes the average of the column multiplicities. The upper bound profile

obtained by Theorem 8.1.1 is

.2; 4; 8; 16; 32; 64; 128; 16; 4; 2/:

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 8,

c Springer Science+Business Media, LLC 2011

71

72 8 C-Measure of Sparse Functions

Table 8.1 Profiles of 10-variable random functions with weight 512

NF �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

f0 2 4 8 16 32 64 98 16 4 2
f1 2 4 8 16 32 64 106 16 4 2
f2 2 4 8 16 32 64 99 16 4 2
f3 2 4 8 16 32 64 100 16 4 2
f4 2 4 8 16 32 64 97 16 4 2
f5 2 4 8 16 32 64 102 16 4 2
f6 2 4 8 16 32 64 97 16 4 2
f7 2 4 8 16 32 64 95 16 4 2
f8 2 4 8 16 32 64 98 16 4 2
f9 2 4 8 16 32 64 104 16 4 2

AVG 2.0 4.0 8.0 16.0 32.0 64.0 99:6 16.0 4.0 2.0

Table 8.2 Profiles of 10-variable random functions with weight 64

NF �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

f0 2 4 8 16 26 31 21 12 4 2
f1 2 4 8 16 28 27 22 10 4 2
f2 2 4 8 16 26 30 20 10 4 2
f3 2 4 8 16 27 30 19 11 4 2
f4 2 4 8 16 27 28 21 9 4 2
f5 2 4 8 16 27 30 19 8 4 2
f6 2 4 8 16 29 30 19 8 3 2
f7 2 4 8 16 29 28 19 10 4 2
f8 2 4 8 16 28 29 20 9 4 2
f9 2 4 8 16 28 31 18 9 4 2

AVG 2.0 4.0 8.0 16.0 27.5 29.4 19.8 9:6 3.9 2.0

Except for �7, the values of profiles in Table 8.1 are equal to the upper bounds given

by Theorem 8.1.1. Note that

�.f1/ D
10

max
kD1

f�k.f1/g D 106;

while

�.f7/ D
10

max
kD1

f�k.f7/g D 95:

Example 8.1.2. Table 8.2 shows the profiles of 10 randomly generated functions

with n D 10 and u D 64. Since the fraction of 1’s in the truth table is 6.25%,

such functions are considered to be sparse. In this case, the bound given by

Theorems 8.1.1 is not tight for �5; �6; �7, and �8.

In general, when the weight u of a function is much smaller than 2n, the bounds on

the column multiplicity given by Theorem 8.1.1 are not tight and are not so useful.

However, if the weight u of the function is given, then we can derive tighter bounds.

From here, we derive a tighter bound using a combinatorial argument.

Lemma 8.1.1. Consider boxes arranged as a rectangle with t rows and many

columns. Assume that we distribute u nondistinct balls to these boxes so that each

8.1 Logic Functions with Specified Weights 73

box has at most one ball. Let �.t; u/ be the maximum number of distinct column

patterns. Then,

�.t; u/ D

�
X

iD0

t

i

!

C r;

where � is the integer satisfying the relation:

�
X

iD1

i

t

i

!

� u <

�C1
X

iD1

i

t

i

!

;

and

r D

$

u �
P�

iD1 i
�

t
i

�

� C 1

%

:

Note that �.t; u/ is monotone increasing for 0 � u � t � 2t�1 and takes the constant

value 2t when u � t � 2t�1.

Example 8.1.3. Consider boxes arranged as a rectangle with t D 4 rows and many

columns. Assume that we distribute u D 10 nondistinct balls so that each box has

at most one ball. When the balls are distributed as shown in Fig. 8.1, the maximum

number of patterns occur. In this case, the first column has no ball; in the second

to fifth columns, each column has just one ball; and in the last three columns, each

column has two balls. The number of different column patterns can be enumerated

as follows. Since,

1
X

iD1

i

4

i

!

D 4 � 10 <

2
X

iD1

i

4

i

!

D 16;

we have � D 1, which shows that all the column patterns with weight 0 and weight

1 occur. Also,

r D

$

10 �
P1

iD1 i
�

4
i

�

2

%

D 3;

implies that there are three patterns with weight � C 1 D 2. Thus, we have

�.4; 10/ D

1
X

iD0

4

i

!

C r D 1 C 4 C 3 D 8;

which shows the number of different column patterns.

Fig. 8.1 Maximum number

of column patterns for the

function with weight u D 10

1 2 3 4 5 6 7 8

0 1 0 0 0 1 0 0

0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1

74 8 C-Measure of Sparse Functions

Table 8.3 Values for �.t; u/

u

t 23 47 55 95 111 147 191 223 239 375

�n�2 4 13 16 16 16 16 16 16 16 16 16
�n�3 8 16 28 32 47 52 64 79 90 94 128
�n�4 16 20 32 36 56 64 82 104 120 128 176
�n�5 32 24 40 44 64 72 90 112 128 136 204
�n�6 64 24 48 56 80 88 106 128 144 152 220

Example 8.1.4. Table 8.3 shows the values of �.t; u/ for t D 4; 8; 16; 32, and vari-

ous values of u.

Theorem 8.1.2. Let �k.n; u/ be the column multiplicity of a decomposition chart

for an n-variable function with weight u and k bound variables. Then,

�k.n; u/ � �.2n�k; u/:

Note that when u � 2n�k , �.t; u/ D u C 1, while when u > 2n�k , �.2n�k; u/ <

u C 1. Thus, we have the following:

Corollary 8.1.1. For any logic function f with weight u, �.f / � u C 1.

For �k.n; u/, Theorem 8.1.2 gives better bounds than 22n�k
and Corollary 8.1.1

when

2n�k < u < 22n�kC.n�k/�1:

From Theorem 8.1.2, we have the following:

Theorem 8.1.3. The number of 6-LUTs needed to realize an n-variable function

with weight u is:

� 10 or less, when n D 9 and u � 55

� 15 or less, when n D 10 and u � 47

Proof. The profile of a 9-variable function given by Theorem 8.1.1 is

.�1; �2; �3; �4; �5; �6; �7; �8; �9/

D .2; 4; 8; 16; 32; 64; 16; 4; 2/:

Let n D 9 and u D 55. By Theorem 8.1.2, we have �n�3 D �6 � �.2n�6; 55/ D
32. Thus, �.f / � 32, and by Theorem 5.2.1, f can be realized with at most

10 LUTs.

The profile of a 10-variable function given by Theorem 8.1.1 is

.�1; �2; �3; �4; �5; �6; �7; �8; �9; �10/

D .2; 4; 8; 16; 32; 64; 128; 16; 4; 2/:

8.1 Logic Functions with Specified Weights 75

Let n D 10 and u D 47. By Theorem 8.1.2, we have �n�3 D �7 � �.2n�7; 47/ D
28, and �n�4 D �6 � �.2n�6; 47/ D 32. Thus, �.f / � 32, and by Theorem 5.2.1,

f can be realized with at most 15 LUTs. �

Theorem 8.1.4. The number of 7-LUTs needed to realize an n-variable function

with weight u is:

� 23 or less, when n D 12 and u � 95

� 17 or less, when n D 11 and u � 111

� 11 or less, when n D 10 and u � 147

Proof. From Theorems 8.1.1 and 8.1.2, and Table 8.3, we have the following pro-

files for 7-LUTs:

When u � 95, .2; 4; 8; 16; 32; 64; 64; 56; 47; 16; 4; 2/.

When u � 111, .2; 4; 8; 16; 32; 64; 64; 52; 16; 4; 2/.

When u � 147, .2; 4; 8; 16; 32; 64; 64; 16; 4; 2/.

In a similar way to the proof of Theorem 8.1.3, we have the numbers of LUTs. �

Theorem 8.1.5. The number of 8-LUTs needed to realize an n-variable function

with weight u is:

� 33 or less, when n D 14 and u � 191

� 26 or less, when n D 13 and u � 223

� 19 or less, when n D 12 and u � 239

� 12 or less, when n D 11 and u � 375

Proof. For 8-LUTs, we have the following profiles:

When u � 119, .2; 4; 8; 16; 32; 64; 128; 128; 112; 104; 79; 16; 4; 2/.

When u � 223, .2; 4; 8; 16; 32; 64; 128; 128; 120; 90; 16; 4; 2/.

When u � 239, .2; 4; 8; 16; 32; 64; 128; 128; 94; 16; 4; 2/.

When u � 375, .2; 4; 8; 16; 32; 64; 128; 128; 16; 4; 2/.

In a similar way to the proof of Theorem 8.1.3, we have the numbers of LUTs. �

Here, we compare the quality of bounds derived in this section with previous

ones.

Theorem 8.1.6. [78,110] The number of K-LUTs to realize an arbitrary n-variable

function is at most

2n�KC1 � 1:

When n is even, and K D 6, we have a better bound as follows:

Theorem 8.1.7. [110] Let n be even. The number of 6-LUTs to realize an arbitrary

n-variable function is at most

2n�4 � 1

3
:

Proof. This is the same as Theorem 4.2.3. �

76 8 C-Measure of Sparse Functions

Theorem 8.1.8. [78] Let f be represented by a sum-of-products expression with m

literals and p products. The number of K-LUTs to realize f is at most

�

m C p.K � 3/

K � 1

�

C

�

p � 1

K � 1

�

:

Example 8.1.5. Consider the case of K D 6, n D 10, and u D 47. The upper bound

given by Theorem 8.1.7 is

2n�4 � 1

3
D

63

3
D 21:

On the other hand, the bound given by Theorem 8.1.3 is 15.

When the function is random, we can assume that p D u D 47. Because the func-

tion is sparse and random, the minterms tend to occur as isolated minterms. Thus,

p tends to be the same as u D 47 [105]. Thus, we have m D pn D 47 � 10. In this

case, the upper bound given by Theorem 8.1.8 is

�

m C p.K � 3/

K � 1

�

C

�

p � 1

K � 1

�

D 122 C 10 D 132:

This example shows that the upper bound given by Theorem 8.1.8 is useless for

random functions.

8.2 Uniformly Distributed Functions

In the previous section, we considered upper bounds on column multiplicities. In

this section, however, we consider upper bounds on the average column multiplic-

ities. These bounds are only valid when n and u are sufficiently large. It is assumed

that 1’s in the truth table occur randomly.

Definition 8.2.1. A set of functions is uniformly distributed, if the probability of

occurrence of any function is the same as any other function.

For example, there are
�

16
4

�

D 1820 different 4-variable functions with 4 true

minterms. If the functions are uniformly distributed, the probability of the occur-

rence of any one of them is 1
1820

.

Theorem 8.2.1. Consider a decomposition chart with k bound variables that re-

alizes a set of uniformly distributed functions of n-variables with weight u. The

average number of different column functions with weight i in the decomposition

chart is at most

minf1; N ˛ i ˇ M�i g �

M

i

!

;

where N D 2k; M D 2n�k; ˛ D u=2n, and ˇ D 1 � ˛.

8.3 Experimental Results 77

Proof. Consider a column of the decomposition chart. Suppose that the upper i

elements take value 1, while the lower M � i elements take value 0. The probability

of such a column is given by

˛i ˇM�i :

Since there exist
�

M
i

�

different ways to choose the rows with 1, the probability that

a column function with weight i occurs is

M

i

!

˛i ˇM�i :

Also, the number of different column functions with weight i is at most
�

M
i

�

. Thus,

we have the theorem. �

Note that Theorem 8.2.1 gives upper bounds on the average column multiplicity

�k . Thus, there may exist functions whose column multiplicities are greater than the

bounds given by Theorem 8.2.1. However, the fraction of such functions approaches

to zero as n increases.

8.3 Experimental Results

We developed a program to derive the bounds on the column multiplicities given by

Theorems 8.1.1 and 8.2.1. Also, we have obtained statistical data for functions with

n D 10 and n D 16.

8.3.1 Benchmark Functions

An interesting problem is whether the bounds obtained in Sect. 8.1 are applicable to

benchmark functions. The answer is yes when the weights of benchmark functions

are in a range. The fraction of such functions is not so large, but we did find some.

For selected benchmark functions, we counted the number of variables n, and the

number of true minterms u. For multiple output functions, each output is examined

separately. fi denotes the i -th output, where the index starts from 0. The results are

as follows:

Theorem 8.1.3 is applicable to the following benchmark functions: apex4, f1

(n D 9; u D 55); pdc, f23 (n D 9; u D 43); spla, f43 (n D 10; u D 28); spla, f44

(n D 10; u D 44); amd, f14 (n D 10; u D 44).

Theorem 8.1.4 is applicable to the following benchmark functions: pdc, f9 (n D
10; u D 95); signet, f3 (n D 10; u D 95); pdf, f31, (n D 10; u D 120).

Theorem 8.1.5 is applicable to the following benchmark functions: pdc, f8 (n D
11; u D 333); pdc, f33 (n D 11; u D 340); signet, f4 (n D 11; u D 132); in2, f3

(n D 12; u D 236); ti, f5 (n D 13; u D 160).

78 8 C-Measure of Sparse Functions

8.3.2 Randomly Generated Functions

8.3.2.1 10-Variable Random Functions

First, we randomly generated 100 functions with u D 512 and n D 10. Table 8.4

shows the average column multiplicities (AVG), the maximum column multiplicities

(MAX), the upper bound derived by Theorem 8.2.1, and the upper bound derived

by Theorem 8.1.1 for each �k . In this case, except for �6 and �7, Theorem 8.1.1

gives tight bounds. Also, Theorems 8.1.1 and 8.2.1 give identical bounds.

Second, we randomly generated 10,000 functions with u D 64 and n D 10.

Table 8.5 shows the average column multiplicities (AVG), the maximum column

multiplicities (MAX), the upper bounds derived by Theorem 8.2.1, and the upper

bounds derived by Theorem 8.1.1 for each �k . In this case, for �k , where k D
5; 6; 7; 8, Theorem 8.2.1 gives better bounds than Theorem 8.1.1.

Table 8.5 also shows that the average C-measure of 10-variable functions with

weight 64, is less than 30. The maximum column multiplicity occurs when k D 6

and �6 D 37. In these experimental results, the order of the input variables is fixed.

If we optimize the order of the variables, then we can reduce the column multiplicity.

We also optimized the order of the variables and confirmed that, in all 10,000 cases,

the column multiplicities are at most 32. Thus, we have the following:

Conjecture 8.3.1. For most 10-variable functions with weight u � 64, the

C-measure is 32 or less, if we optimize the ordering of the input variables.

From Theorem 5.2.1, we have

Conjecture 8.3.2. The number of 6-LUTs needed to realize most of 10-variable

functions with weight u � 64 is 15 or less.

As shown in Theorem 8.1.3, the number of 6-LUTs needed to realize an arbitrary

10-variable function f with weight u � 47 is 15 or less. Thus, Conjecture 8.3.2 is

true for u � 47.

Table 8.4 Average and maximum profiles of 10-variable functions with weight 512

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

AVG 2 4 8 16.00 32.00 63.96 100.86 16 4 2
MAX 2 4 8 16 32 64 111 16 4 2
Theorem 8.2.1 2 4 8 16 32 64 128 16 4 2
Theorem 8.1.1 2 4 8 16 32 64 128 16 4 2

Table 8.5 Average and maximum profiles of 10-variable functions with weight 64

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

AVG 2 4 8 15.97 27.97 29.89 18:36 8:76 3.88 2
MAX 2 4 8 16 32 37 25 13 4 2
Theorem 8.2.1 2 4 8 16 27.44 33.75 19:88 10:51 4 2
Theorem 8.1.1 2 4 8 16 32 64 128 16 4 2

8.4 Remarks 79

Table 8.6 Profiles for 16-variable functions

u �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15

A16 7.73 11.30 13.73 15.24 15:95 16:20 16:05 15:42 13:90 11:23 8:11 4:97 3
C16 7.50 11.06 13.56 15.16 16:04 16:51 16:75 16:88 16:94 16:97 9:01 5:01 3
A32 8 14.79 21.52 26.37 28:94 29:64 28:83 26:28 21:46 15:06 8:93 5:02 3.00
C32 8 13.99 21.11 26.18 29:32 31:09 32:03 32:51 32:76 17:12 9:05 5:02 3.01
A64 8 15.97 28.69 41.48 50:10 53:10 50:52 42:05 29:29 17:19 9:23 5:07 3.00
C64 8 16 26.99 41.23 51:36 57:65 61:19 63:07 33:95 17:48 9:22 5:09 3.03
A128 8 16 31.84 56.42 80:18 91:11 83:70 60:99 35:79 18:69 9:57 5:23 3.05
C128 8 16 32 53.00 81:49 101:76 114:35 72:27 36:73 18:84 9:87 5:37 3.13
A256 8 16 32 65.53 110:64 147:29 136:88 88:38 46:95 23:92 12:27 6:32 3.44
C256 8 16 32 63.84 105:05 162:09 174:95 91:84 47:34 24:23 12:45 6:49 3.50
A512 8 16 32 64 126:57 214:49 235:14 155:10 83:05 41:66 19:59 8:69 3.85
C512 8 16 32 64 126:69 209:33 262:51 156:60 86:08 44:89 22:57 10:94 4
A1K 8 16 32 64 128 251:86 391:99 327:91 192:81 89:33 33:93 11:07 4
C1K 8 16 32 64 128 252:46 407:99 332:19 214:99 120:75 38:65 11:25 4
A2K 8 16 32 64 128 256 499:80 658:92 455:91 176:87 48:40 12:72 4
C2K 8 16 32 64 128 256 504:20 626:67 568:03 188:19 49:43 12:95 4
A4K 8 16 32 64 128 256 512 975:44 1019:90 393:73 86:27 15:10 4
C4K 8 16 32 64 128 256 512 1008:54 1095:05 431:43 99:76 15:25 4
A8K 8 16 32 64 128 256 512 1023:92 1834:20 1055:60 150:52 15:98 4
C8K 8 16 32 64 128 256 512 1024 2020:45 1063:58 163:00 16 4
A16K 8 16 32 64 128 256 512 1024 2047:48 2738:27 238:61 16 4
C16K 8 16 32 64 128 256 512 1024 2048 4055:95 256 16 4
A32K 8 16 32 64 128 256 512 1024 2048 3971:75 256 16 4
C32K 8 16 32 64 128 256 512 1024 2048 4096 256 16 4

8.3.2.2 16-Variable Random Functions

In the case of n D 16, for each weight u D 2i , where i D 4–15, we generated 100

functions and obtained the average of profiles.

Table 8.6 compares the profiles of random functions and the average profiles

derived by Theorem 8.2.1. For example, the row for A16 denotes the average profile

of randomly generated functions with weight 16, while the row for C16 denotes

the calculated profile using Theorem 8.2.1. To save space, some fractional numbers

are denoted by integers: 2.00 is denoted by 2. Also, the values for �1; �2 and �16

are omitted from the table, since �1 D 2, �2 D 4, and �16 D 2, for all cases.

Table 8.6, shows that when u is small (say u D 16), Theorem 8.2.1 gives better

bounds than Theorem 8.1.1, while when u is large (say u D 32; 768), Theorem

8.1.1 gives better bounds. In Table 8.6, calculated bounds denoted by integers were

obtained by Theorem 8.1.1, while calculated bounds denoted by fractional numbers

were obtained by Theorem 8.2.1.

8.4 Remarks

In this chapter, we considered sparse functions, where u, the weight of the function,

is much smaller than 2n�1. However, when 0 and 1 are interchanged, the theory also

holds. Thus, these bounds are also useful for the functions where the fraction of

0’s in the truth table is much smaller than the fraction of 1’s. This chapter is based

on [133].

80 8 C-Measure of Sparse Functions

Problems

8.1. Obtain the value of �.8; 20/.

8.2. Suppose that a function is given as a sum-of-products expression. Show an

efficient method to calculate the weigh for f .

8.3. Show a .2n C n/-variable function whose C-measure is 22n
.

8.4. How many 6-input LUTs are necessary to realize

1. An arbitrary 8-variable function?

2. An arbitrary 9-variable symmetric function?

3. An arbitrary 10-variable function?

4. An arbitrary 10-variable function with weight 47?

Chapter 9

Index Generation Functions

This chapter introduces index generation functions with various applications. Then,

it shows a method to realize index generation functions by LUTs.

9.1 Index Generation Functions and Their Realizations

Definition 9.1.1. Consider a set of k different binary vectors of n bits. These

vectors are registered vectors. For each registered vector, assign a unique inte-

ger from 1 to k. A registered vector table shows, for each registered vector, its

index. An index generation function produces the corresponding index if the

input matches a registered vector, and produces 0 otherwise. k is the weight of

the index generation function. An index generation function represents a mapping:

Bn ! f0; 1; 2; : : : ; kg. An index generator is a circuit that realizes an index gen-

eration function.

Example 9.1.1. Table 9.1 shows a registered vector table with k D 4 vectors. The

corresponding index generation function is shown in Table 9.2.

Here, we assume that k is much smaller than 2n, the total number of input com-

binations, i.e., the index generation function is sparse.

Index generators are used in address tables for the internet routers, terminal ac-

cess controller (TAC) for local area networks, databases, memory patch circuits,

electronic dictionaries, password lists, etc.

9.2 Address Table

IP addresses used in the internet are often represented with 32-bit numbers. An

address table for a router stores IP addresses and corresponding indices. We assume

that the number of addresses in the table is at most 40; 000. Thus, the number of

inputs is 32 and the number of outputs is 16, which can handle 65,536 addresses.

Note that the address table must be updated frequently.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 9,

c Springer Science+Business Media, LLC 2011

81

82 9 Index Generation Functions

Table 9.1 Registered vector

table
Vector

x1 x2 x3 x4 Index

1 0 0 1 1

1 1 1 1 2

0 1 0 1 3

1 1 0 0 4

Table 9.2 Index generation

function
Input Output

x1 x2 x3 x4 y1 y2 y3

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 0 1 0 1 1

0 1 0 1 0 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 1 0 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 1 0

9.3 Terminal Access Controller

A TAC for a local area network checks whether the requested terminal has permis-

sion to access Web addresses outsize the local area network, e-mail, FTP, Telnet, etc.

In Fig. 9.1, eight terminals are connected to the TAC. Some can access all the

resources. Others can access only limited resources because of security issue. The

TAC checks whether the requested computer has permission to access the Web,

e-mail, FTP, Telnet, or not. Each terminal has its unique MAC address represented

by 48 bits. We assume that the number of terminals in the table is at most 255.

To implement the TAC, we use an index generator and a memory. The memory

stores the details of the terminals. The number of inputs for the index generator is

48 and the number of outputs is 8. Note that the table for the TAC must be updated

frequently.

Example 9.3.1. Figure 9.2 shows an example of the TAC. The first terminal has

the MAC address 53:03:74:59:03:02. It is allowed to access everything, including

the Web outside the local area network, e-mail, FTP, and Telnet. The second one is

allowed to access both the Web and e-mail. The third one is allowed to access only

the Web. And, the last one is allowed to access only e-mail. The index generated

9.4 Memory Patch Circuit 83

Fig. 9.1 Terminal access controller (TAC)

Index Generator Memory
Address DATA

MAC Address Index Web E-mail FTP Telnet

53:03:74:59:03:32 1 1 1 1 1 1

92:6D:56:26:1E:63 2 2 1 1 0 0

0B:97:26:34:08:76 3 3 1 0 0 0

73:6E:58:56:73:52 4 4 0 1 0 0

Fig. 9.2 Index generator for TAC

by the index generator is used as an address to read the memory which stores the

permissions. If we implement the TAC by a single memory, we need 256 Tera words,

since the number of inputs is 48. To reduce the size of the memory, we use an index

generator to produce the index, and an additional memory to store the permission

data for each internal address.

9.4 Memory Patch Circuit

The firmware of an embedded system is usually implemented by Read-Only Memo-

ries (ROMs). After shipping the product, it is often necessary to modify a part of the

ROM, for example to upgrade to a later version. To convert the address of the ROM

84 9 Index Generation Functions

Patch Memory

INDEX Generator

ROM

CE CE

Input Bus

Output Bus

Fig. 9.3 Memory patch circuit

to the address of the patch memory, we use the index generator shown in Fig. 9.3

[28, 29, 74].

The index generator stores addresses (vectors) of the ROM to be updated, and

their corresponding indices. The patch memory stores the updated data of the

ROM. When the address does not match any elements in the index generation func-

tion, the output of the ROM is sent to the output bus. In this case, the output the

patch memory is disabled. When the address matches to an element in the index

generation function, the index generator produces the corresponding index, and the

corresponding data of the patch memory is sent to the output bus. In this case, the

output of the ROM is disabled. This method can be also used to improve the yield

of large-scale memory, which can be “patched” instead of discarded.

9.5 Periodic Table of the Chemical Elements

Consider Table 9.3, which shows a part of periodic table of the chemical elements.

Figure 9.4 shows its implementation. This stores, Atomic Number (integer), Chemi-

cal Symbol, Density, Specific Heat, State, and Category. We assume that the number

of elements in the database is at most 127. The database consists of two circuits:

1. A circuit to produce the Atomic Number from a Chemical Symbol.

2. A circuit to produce Density, State and Category from an Atomic Number.

The first circuit is implemented by an index generator, and the second circuit is

implemented by an ordinary memory. Chemical Symbol consists of two characters

from the 26-letter English alphabet (uppercase and lowercase) and special symbols

(blank, etc.). Since each character requires 6 bits, to represent 2 characters, we need

2 � 6 D 12 bits. On the other hand, to represent an Atomic Number, we need only

7 bits, since the total number of elements in the table is at most 127. In this case,

9.6 English–Japanese Dictionary 85

Table 9.3 Periodic table of the chemical elements

Atomic Chemical English Specific

number symbol name Density heat State Category

1 H Hydrogen 0.082 14:304 Gas Other nonmetal

2 He Helium 0.147 5:188 Gas Noble gas

3 Li Lithium 0.534 3:489 Solid Alkali metal

4 Be Beryllium 1.848 1:824 Solid Alkaline earth metal

5 B Boron 2.34 1:025 Solid Metalloid

6 C Carbon 3.51 0:513 Solid Other nonmetal

7 N Nitrogen 1.2506 1:042 Gas Other nonmetal

8 O Oxygen 1.429 0:916 Gas Other nonmetal

9 F Fluorine 1.696 0:824 Gas Halogen

10 Ne Neon 0.8999 1:029 Gas Noble gas

11 Na Sodium 0.971 1:227 Solid Alkali metal

12 Mg Magnesium 1.738 1:025 Solid Alkaline earth metal

13 Al Aluminum 2.6989 0:902 Solid Other metal

14 Si Silicon 2.33 0:712 Solid Metalloid

15 P Phosphorus 1.82 0:757 Solid Other nonmetal

16 S Sulfur 2.07 0:732 Solid Other nonmetal

17 Cl Chlorine 3.214 0:477 Gas Halogen

18 Ar Argon 1.848 0:138 Gas Noble gas

19 K Potassium 0.862 0:766 Solid Alkali metal

20 Ca Calcium 1.55 0:653 Solid Alkaline earth metal

Index
Generator

Memory

Chemical

Symbol

12 7

Atomic

Number

Density

Specific

Heat

State

Category

Fig. 9.4 Circuit for the periodic table

the number of possible input combinations is 212, while the number of the regis-

tered vectors is at most 127. Note that each chemical element has its unique atomic

number.

9.6 English–Japanese Dictionary

For simple English–Japanese communication, we prepare a dictionary consisting of

1,500 English words. To make a list of 1,500 English words using a single memory

or a single circuit is unrealistic. Therefore, we partition the list into three groups, so

that each list contains at most 500 words. Let the names of the three lists be Word

list A, Word list B, and Word list C. The maximum number of letters in the word

86 9 Index Generation Functions

Index

Generator Memory

English

Words

904

Index Japanese

Words

80

Fig. 9.5 Implementation of English–Japanese dictionary

lists is 13, but we only consider the first 8 letters. For English words consisting of

fewer than 8 letters, we append blanks to make the length of words 8. We represent

each alphabetic character by 5 bits. So, all the English words are represented by 40

bits. We assume that each group has at most 500 English words, and each word has

unique address from 1 to 500. The address is represented by 9 bits.

Figure 9.5 shows the English–Japanese dictionary consisting of the index gen-

erator and a memory. In this dictionary, the index generator finds the index for

the English word, and the memory produces the Japanese translation. Note that,

in Japanese, 80 outputs are needed to represent the Chinese characters and KANA

characters.

9.7 Properties of Index Generation Functions

The index generators in Sects. 9.2 and 9.3 have common properties:

1. The values of the nonzero outputs are distinct.

2. The number of nonzero output values is much smaller than the total number of

the input combinations.

3. High-speed circuits are required.

4. Data must be updated.

The last condition is very important in communication networks. This means that

index generators must be programmable.

Example 9.7.1. Consider the decomposition chart in Fig. 9.6. It shows an input in-

dex generation function F.X/ with weight 7. X1 D .x1; x2; x3; x4/ denotes the

bound variables, and X2 D .x5/ denotes the free variable. Note that the column

multiplicity of this decomposition chart is 7.

Lemma 9.7.1. The C-measure of an index generation function with weight k is at

most k C 1.

Proof. Since the number of nonzero outputs is k, the column multiplicity never

exceeds k C 1. �

9.7 Properties of Index Generation Functions 87

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x2

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x4

0 0 1 0 0 3 0 4 5 0 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 6 0 0 0 0 7 0 0 0

x5

Fig. 9.6 Decomposition chart for F

Lemma 9.7.2. Let F be an index generation function with weight k. Then, there

exists a functional decomposition

F.X1; X2/ D G.H.X1/; X2/;

where G and H are index generation functions, and the weight of G is k, and the

weight of H is at most k.

Proof. Consider a decomposition chart, in which X1 denotes the bound vari-

ables, and X2 denotes the free variables. Let X1 D .x1; x2; : : : ; xp /, where

p � dlog2.k C 1/e. Let H be a function where the input variables are X1, and the

output values are defined as follows: Consider the decomposition chart, where as-

signments of values to X1 label columns (i.e., bound variables). For the assignments

to X1 corresponding to columns with only zero elements, H D 0. For other inputs,

the outputs are distinct integers from 1 to wh , where wh denotes the number of

columns that have nonzero element(s). Since wh � k, the weight of H is at most

k, and the number of output values of H is at most k C 1. On the other hand, the

function G is obtained from F by reducing some columns that have all zero outputs

in the decomposition chart. Thus, the number of nonzero outputs in G is equal to

the number of nonzero outputs in F . Thus, G is also an index generation function

with weight k. �

Example 9.7.2. Consider the decomposition chart in Fig. 9.6. Let the function F.X/

be decomposed as F.X1; X2/ D G.H.X1/; X2/, where X1 D .x1; x2; x3; x4/ and

X2 D .x5/. Table 9.4 shows the function H . It is a 4-variable 3-output index gen-

eration logic function with weight 6. The decomposition chart for the function G is

shown in Fig. 9.7. As shown in this example, the functions obtained by decomposing

the index generation function F are also index generation functions, and the weights

of F and G are both 7.

88 9 Index Generation Functions

Table 9.4 Truth table for H x1 x2 x3 x4 y1 y2 y3

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 0 0

0 1 0 0 0 1 1

0 1 0 1 0 0 0

0 1 1 0 1 0 0

0 1 1 1 1 0 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

Fig. 9.7 Decomposition

chart for G
0 0 0 0 1 1 1 1 y1

0 0 1 1 0 0 1 1 y2

0 1 0 1 0 1 0 1 y3

0 0 1 0 3 4 5 0 0

1 0 0 2 0 0 6 7 0

x5

9.8 Realization Using . p ; q / -Elements

Definition 9.8.1. A . p ; q / -element realizes an arbitrary p-input q-output logic

function. Its memory size is q2p .

Theorem 9.8.1. An arbitrary two-valued input n-variable index generation func-

tion with weight k can be realized as a multilevel network of .p; q/-elements. The

number of such elements is at most
l

n �q
p �q

m

, where p > q and q D dlog2.k C 1/e.

Proof. An index generation logic function F with weight k can be decomposed as

F.X1; X2/ D G.H.X1/; X2/;

where X1 D .x1; x2; : : : ; xp /. In this case, by Lemma 9.7.2, G.X0
1; X2/ is also

an index generation logic function with weight k. Note that the number of input

variables for G is reduced to n� .p � q/, since the number of output variables of H

is q D dlog2.k C 1/e. By iterating this operation
l

n �p
p �q

m

times, we can reduce the

number of variables to p or fewer. Thus, the index generator can be realized by using

only .p; q/-elements. The number of elements is at most
l

n �p
p �q

m

C 1 D
l

n �q
p �q

m

. �

9.8 Realization Using .p; q/-Elements 89

Fig. 9.8 Realization of index

generation function F x1

x2

x3

x4

x5

y1

y2

y3

f1

f2

f3
H

G

Example 9.8.1. The number of nonzero outputs in the 5-variable index generation

function F.X/ shown in Fig. 9.6 is k D 7. Since q D dlog2.k C 1/e D dlog2.7 C

1/e D 3, the index generator can be realized by two .4; 3/ elements as shown in

Fig. 9.8.

When realizing an index generator by .p; q/-elements, increasing p decreases the

number of .p; q/-elements, but increases the total amount of memory. On the other

hand, decreasing p increases the number of .p; q/-elements, but decreases the total

amount of memory. The next theorem shows a strategy to design index generators

using .p; q/-elements. It finds a value of p that minimizes the least upper bound on

the total amount of memory without increasing the number of elements.

Theorem 9.8.2. When an index generator is implemented as a multilevel network of

.p; q/-elements, the least upper bound on the total amount of memory is minimized

when p � q D 1 or p � q D 2.

Proof. When an index generation function is decomposed into .p; q/-elements, for

each decomposition, we can reduce the number of input variables by r D p � q. To

reduce n inputs into q, we need s D
˙

n�q
r

�

functional decompositions. To realize

the index generator, we need s .p; q/-elements. Thus, the total amount of memory

necessary to implement the index generator is MEM D s � 2p q. When n is suffi-

ciently large, MEM can be approximated by
�

2r

r

�

� .n � q/ � 2q q. Since n and q are

fixed for a given problem, only r can be changed. Note that 2r

r
takes its minimum

when r D 1 or r D 2. Hence we have the theorem. �

Since networks with fewer levels are desirable, we often select r D p � q D 2

to design the index generator.

Theorem 9.8.1 shows that we can design an index generator as a multilevel net-

work of .p; q/-elements by iterations of functional decompositions.

The next Example 9.8.2 shows that we can generate various multilevel logic net-

works, including cascades.

Example 9.8.2. Let us design index generators, where the number of inputs is

n D 48 and the weight is k D 255. Since q D dlog2.255 C 1/e D 8, when

p D 10, the total amount of memory is minimized, and also the number of lev-

els is minimized. For each .p; q/-element, we can reduce the number of input lines

by two. So, by using 20 .p; q/-elements, we can reduce the number of inputs into

90 9 Index Generation Functions

88 8 88 8 8

Fig. 9.9 Cascade realization of index generator

4

2

4

8

2

6 2

6

6

8

8

4

6

8

4

4

6

2

8

2

4

8

8

8k x 20 = 160 kbit

4

6

8

8

6

2

2 6

4

2

10

10

10

10

Fig. 9.10 Index generator (p D 10)

8. For example, we have the LUT cascade as shown in Fig. 9.9. Or, we have the

multilevel logic network as shown in Fig. 9.10, where the number of levels is 10.

In this case, the variables are permuted during functional decompositions. Note

that both structures require the same amount of memory: 160K bits. We can fur-

ther reduce the number of levels by using elements with more inputs. Figure 9.11

shows an example with p D 11 and q D 8. In this case, the number of elements is

.48 � 8/=.11 � 8/ D 14, the number of levels is 8, and the total amount of memory

is 212 Kibits, where 1 Kibit denotes 210 D 1024 bits. Figure 9.12 show an exam-

ple with p D 12 and q D 8. In this case, the number of elements is .48 � 8/=

.12 � 8/ D 10, the number of levels is 5, and the total amount of memory is

320 Kibits.

Theorem 9.8.2 shows the strategy for general index generators. It minimizes the

least upper bound on the total amount of memory. For a particular index generator,

the total amount of memory can be minimum for cases other than p � q D 2. The

next example illustrates this.

Example 9.8.3. Consider the 6-variable index generation function F.X/ shown in

Table 9.5. Let the function F.X/ be decomposed as F.X1; X2/ D G.H.X1/; X2/,

where X1 D .x1; x2; x3; x4/ and X2 D .x5; x6/. The column multiplicity of the

decomposition chart in Table 9.5 is 2. Table 9.6 is the truth table of H , and Table 9.7

is the truth table of G. This index generator can be implemented as Fig. 9.13. In this

case, the weight of the function is k D 7, but H is realized by a (4,1)-element.

9.9 Realization of Logic Functions with Weight k 91

11

11

11

11 8

4

16k x 13 + 4k = 212 kbit

7

1

2

6

5 8

8

3

3

6

5
7

4

4

2

1

8

7 8

8

1

Fig. 9.11 Index generator (p D 11)

Fig. 9.12 Index generator

(p D 12)
12

12

12

12
8

8

8

44

4
8

4

32k x 10 = 320 kbit

4

4

8

8

8

Table 9.5 Index generation

function F
x1 x2 x3 x4 x5 x6 f1 f2 f3

0 – – – – – 0 0 0

– 0 – – – – 0 0 0

– – 0 – – – 0 0 0

– – – 0 – – 0 0 0

1 1 1 1 0 0 0 0 1

1 1 1 1 0 1 0 1 0

1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 0 0

9.9 Realization of Logic Functions with Weight k

Up to now, we have considered the realization of index generation functions. Next,

we consider the realization of general logic functions.

92 9 Index Generation Functions

Table 9.6 Truth table for H x1 x2 x3 x4 y1

1 1 1 1 1

– 0 0 0 0

0 – 0 0 0

0 0 – 0 0

0 0 0 – 0

Table 9.7 Truth table for G y1 x5 x6 f1 f2 f3

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 1

1 0 1 0 1 0

1 1 0 0 1 1

1 1 1 1 0 0

Fig. 9.13 Index generator for

Table 9.5
x1
x2

x4

x6

x5

x3 f1
f2
f3

H

G

Theorem 9.9.1. An arbitrary two-valued n-variable u-output function with weight

k is realized as a multilevel network of .p; q/-elements. The number of elements

needed is at most
l

n�q
p�q

m

C
l

u
q

m

, where p > q and q D dlog2.k C 1/e.

Proof. An arbitrary logic function with weight k can be realized as a cascade of an

index generator and a decoder, where the index generator produces unique indices

for k input combinations, and the decoder converts each index into corresponding

outputs. The number of inputs of the decoder is at most dlog2.k C 1/e. By Theorem

9.8.1, the index generator can be realized with s1 D
l

n�q
p�q

m

elements. Also, note

that the decoder can be realized by s2 modules of q-input q-output elements, where

s2 is given by s2 D
l

u
q

m

. Thus, total number of elements is s1Cs2 D
l

n�q
p�q

m

C
l

u
q

m

.

�

Corollary 9.9.1. An arbitrary two-valued n-variable single-output logic function

with weight k is realized as a multilevel network of .p; q/-elements. The number of

elements needed is at most
l

n�q
p�q

m

, where p > q and q D dlog2.k C 1/e.

9.10 Remarks 93

Fig. 9.14 Index generator

with weight k �32 6
5

6 5

5

9.10 Remarks

Index generation functions are multiple-output logic functions useful for pattern

matching and communication circuits. Logic synthesis for index generation func-

tions is considered in Chaps. 10 and 11. This chapter is based on [124].

Problems

9.1. Design an index generator where the number of inputs is n D 32, and

the weight is k D 63. Use 8-input 6-output LUTs. Show both the cascade and

minimum-delay realizations.

9.2. An index generation function can be directly implemented by a PLA. Discuss

the advantage and disadvantage to implement an index generation function using

memory instead of a PLA. Consider the case of n D 48 and k D 400.

9.3. When k � 32, an arbitrary index generation function of 12 variables with

weight k can be realized by the circuit structure shown in Fig. 9.14. Compare this re-

alization with an LUT cascade realization with respect to the size and speed. Assume

that we use 6-LUTs.

9.4. Design an index generator for n D 16 and k D 3 by using .4; 2/-elements.

Chapter 10

Hash-Based Synthesis

In Chap. 5, we considered cascade-based realizations of logic functions with small

C-measure. When the weight k of the function satisfies the relation dlog2.k C1/e<

K , the function can be efficiently realized by a cascade of K-input cells. Also, as

shown in Chap. 9, an index generation function can be implemented by a multilevel

network of .p; q/-elements, or by a multilevel network with K-LUTs. However,

when dlog2.k C 1/e � K , such methods are not directly applicable.

This chapter presents the hybrid method, the super hybrid method, and the

parallel sieve method. These methods efficiently implement index generation func-

tions using memories. They are particularly suitable for FPGA realizations, since

most FPGAs have both LUTs and embedded memories inside. These methods use

pairs of smaller memories to implement most of the registered vectors.

10.1 Hash Function

Hash functions are often used in software implementations. To show the idea, con-

sider the following:

Example 10.1.1. Assume that one needs to find a name of an employee from his or

her 10-digit telephone number, in a company with 5,000 employees. A straightfor-

ward method to do this is to build a complete table of 10-digit telephone numbers

showing the names of the employees. However, this method is unrealistic, since the

table has 1010 entries, most of which are empty. To avoid such a problem, a hash

table can be used. Let x be the telephone number, and consider the hash function1:

hash.x/ D x .mod 9973/:

In this case, the name of the employee can be found from the hash table with 9973

entries, since the value of hash.x/ is between 0 and 9972. When two or more

1 9,973 is the largest prime number less than 10,000.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 10,

c Springer Science+Business Media, LLC 2011

95

96 10 Hash-Based Synthesis

Table 10.1 Registered

vector table
Index Vector

1 0 0 0 0 1 0

2 0 1 0 0 1 0

3 0 0 1 0 1 0

4 0 0 1 1 1 0

5 0 0 0 0 0 1

6 1 1 1 0 1 1

7 0 1 0 1 1 1

Table 10.2 Example of an

index generation function
x1 x2 x3 x4 x5 x6 f

0 0 0 0 1 0 1

0 1 0 0 1 0 2

0 0 1 0 1 0 3

0 0 1 1 1 0 4

0 0 0 0 0 1 5

1 1 1 0 1 1 6

0 1 0 1 1 1 7

different employees have the same hash value, a collision occurs. In such a case,

the employees with the same hash value are represented by a linked list. Note that

using a hash table, the number of digits for table look-up is reduced from 10 to 4.

This chapter shows a hash method for hardware implementation. With this method,

the number of variables can be reduced and the size of memories can be also

reduced.

Besides index generation functions, this design method can implement an

n-variable function where the number of nonzero outputs k is much smaller than 2n.

Example 10.1.2. Table 10.1 shows a registered vector table consisting of 7 vectors.

The corresponding index generation logic function shown in Table 10.2 produces

a 3-bit number (e.g., 001) of the matched vector. When no entry matches the input

vector, the function produces 000.

10.2 Index Generation Unit

Figure 10.1 shows the Index Generation Unit (IGU). The programmable hash

circuit has n inputs and p outputs. It is used to rearrange the nonzero elements. We

consider two types of programmable hash circuits. The first type is the double-input

hash circuit shown in Fig. 10.2. It performs a linear transformation yi D xi ˚ xj

or yi D xi , where i ¤ j . It uses a pair of multiplexers for each variable yi . The

upper multiplexers have the inputs x1; x2; : : : ; xn. The register with dlog2 ne bits

specifies which variable to select by the multiplexer. The lower multiplexers have

the inputs x1; x2; : : : ; xn, except for xi . For the i -th input, the constant input 0 is

10.2 Index Generation Unit 97

Correct

Index

f

Main

Memory

AUX

Memory

Temporary Index

Registered

Vector
equal

Comparator

AND

Programmable

Hash Circuit

p

n-p

p q

n-p

q
n-p

X1

X2

X2

Y1

Fig. 10.1 Index generation unit (IGU)

Fig. 10.2 Double-input

hash circuit

n

n

n

n

n

n

111 ji xxy ⊕=

222 ji xxy ⊕=

tjtip xxy ⊕=

Fig. 10.3 Single-input

hash circuit n

nn
22 ixy =

11 ixy =

n
ipp xy =

connected instead of xi . By setting yi D xi ˚ 0, we can implement yi D xi . The

second type of a programmable hash circuit is the single-input hash circuit shown

in Fig. 10.3. It consists of only p multiplexers, and selects p variables from n input

variables. Note that both types of hash circuits produce only specific kinds of hash

98 10 Hash-Based Synthesis

functions. We have found that these functions are suitable for our application. The

main memory has p inputs and dlog2.k C1/e outputs. The main memory produces

correct outputs only for registered vectors. However, it may produce incorrect out-

puts for nonregistered vectors, because the number of input variables is reduced.

In an index generation function, if the input vector is nonregistered, then it should

produce 00 : : : 0. To check whether the main memory produces the correct output

or not, we use the AUX memory. The AUX memory has dlog2.k C 1/e inputs and

.n � p/ outputs: It stores the X2 part of the registered vectors for each index. The

comparator checks if the inputs are the same as the registered vector or not. If

they are the same, the main memory produces a correct output. Otherwise, the main

memory produces a wrong output, and the input vector is nonregistered. Thus, the

output AND gates produce 00 : : : 0, showing that the input vector is nonregistered.

Note that the main memory produces the correct outputs only for the registered

vectors.

Example 10.2.1. Consider the registered vectors in Table 10.3. The number of vari-

ables is four, but only two variables x1 and x4 are necessary to distinguish these

four registered vectors. Figure 10.4 shows the IGU. In this case, the programmable

hash circuit produces Y1 D .x1; x4/ from X D .x1; x2; x3; x4/. The main memory

stores the indices for X1 D Y1 D .x1; x4/, and the AUX memory stores the values

of X2 D .x2; x3/ for the corresponding registered vector.

Table 10.3 Index

generation function
Inputs Index

x1 x2 x3 x4 f

0 0 1 0 1

0 1 1 1 2

1 1 0 0 3

1 1 1 1 4

10 011
01
00

10
11

001
010
011
100

Comparator

same011 10
010
001

011
100

01
11
10
11

x1 x4
11

01

10

00

41111

fx4x3x2x1

30011

21110

10100

x1 x2 x3 x4
1 1 0 0

011

1
Main Memory

AUX Memory

x2 x3

1 0

x2 x3

Fig. 10.4 When the input vector is registered

10.2 Index Generation Unit 99

When the input vector is registered

Suppose that a registered vector .x1; x2; x3; x4/ D .1; 1; 0; 0/ is applied to the IGU

in Fig. 10.4. First, the programmable hash circuit selects two variables, x1 and x4,

and produces the value X1 D .x1; x4/ D .1; 0/. Second, the main memory produces

the corresponding index .0; 1; 1/. Third, the AUX memory produces the values of

X2 D .x2; x3/ D .1; 0/ corresponding registered vector .1; 1; 0; 0/. Fourth, the

comparator confirms that the values of X2 D .x2; x3/ of the input vector is equal to

the output of the AUX memory. And, finally, the AND gate produces the index for

the input vector.

When the input vector is not registered

Suppose that a nonregistered vector .x1; x2; x3; x4/ D .1; 0; 1; 0/ is applied to the

IGU in Fig. 10.5. In this case, the main memory also produces the index .0; 1; 1/,

and the AUX memory produces the values of X2 D .x2; x3/ for the corresponding

registered vector .1; 1; 0; 0/. However, in this case, the comparator indicates that

X2 D .x2; x3/ D .0; 1/ is different from the output X2 D .x2; x3/ of the AUX

memory. Thus, the AND gate produces zero output, which shows that the input

vector is not registered.

Unfortunately, not all index generation functions have the nice properties of

Example 10.2.1. So, we decompose the given function into two:

1. A function that is implemented by an IGU.

2. The remaining part.

1 0 1 0
000

Comparator

10 011
01
00

10
11

001
010
011
100

011 10
010
001

011
100

01
11
10
11

x1 x4
41

31

20

10

41111

fx4x3x2x1

30011

21110

10100

x1 x2 x3 x4

0
Main Memory

AUX Memory

different

x2 x3

x2 x3

0 1

Fig. 10.5 When the input vector is not registered

100 10 Hash-Based Synthesis

Given an index generation function f .X1; X2/, where X1 D .x1; x2; : : : ; xp/ and

X2 D .xpC1; xpC2; : : : ; xn/, we decompose it into two disjoint subfunctions:

f .X1; X2/ D Of1.Y1; X2/ _ f2.X1; X2/;

where each column of the decomposition chart for Of1.Y1; X2/ has at most one

nonzero element. In this case, Of1.Y1; X2/ can be implemented by an IGU, where

the inputs to the main memory is Y1 D .y1; y2; : : : ; yp/. Since f2.X1; X2/ has

fewer nonzero elements than the original function, it is simpler to implement.

Theorem 10.2.1. Consider the IGU in Fig. 10.1. Assume that Y1D.y1; y2; : : : ; yp/,

where yi D xi˚xj for j 2 fpC1; pC2; : : : ; ng, or yi D xi, are applied to the input

to the main memory. If the main memory of an IGU implements the function Qg.Y1/,

where Qg.Y1/ produces the nonzero value when the column Y1 of the decomposition

chart for Of1.Y1; X2/ has a nonzero value, and Qg.Y1/ produces 0 otherwise, then

only the values for X2 must be stored in the AUX memory.

Proof. Consider the decomposition chart of the function Of1.Y1; X2/. By construc-

tion, each column of the decomposition chart has at most one nonzero element.

When a registered vector is applied to the IGU, the main memory produces a

nonzero output. In this case, the X2 part of the input vector is equal to the output of

the AUX memory, showing that the vector is registered. Thus, the IGU produces the

correct nonzero output.

Assume that the input vector is not registered, but the output of the AUX memory

is equal to the X2 part of the input vector. We have two cases:

1. The main memory produces the zero-output.

In this case, even if the X2 part of the input vector is equal to the output of the

AUX memory, the output of the main memory is zero. Thus, the IGU produces

the correct output.

2. The main memory produces a nonzero output.

Due to the construction of the IGU, the input vector is registered. However, this

contradicts the assumption. So, such a case never happens. �

10.3 Reduction by a Linear Transformation

As will be suggested by Conjecture 11.5.2, most incompletely specified index gen-

eration functions with weight k can be represented by at most p D 2dlog2.k C
1/e � 3 variables. However, there exist functions that require more variables.

Example 10.3.1 shows such a function. In this case, we can often reduce the number

of variables by a linear transformation of the input variables.

Example 10.3.1. Consider the incompletely specified index generation function

shown in Table 10.4. Note that all the variables are essential in f . Now, replace

the variables x1, x2, x3, and x4 with y1 D x1 ˚ x4, y2 D x2 ˚ x4, y3 D x3,

10.3 Reduction by a Linear Transformation 101

Table 10.4 Original index

generation function
Inputs Index

x1 x2 x3 x4 f

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

0 0 0 1 4

0 0 0 0 5

Table 10.5 Transformed

index generation function
Inputs Index

y1 y2 x3 x4 g

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

1 1 0 1 4

0 0 0 0 5

Table 10.6 Registered vector

table for a 6-variable function
Vector

x1 x2 x3 x4 x5 x6 Index

1 0 0 0 0 0 1

0 1 0 0 0 0 2

0 0 1 0 0 0 3

0 0 0 1 0 0 4

0 0 0 0 1 0 5

0 0 0 0 0 1 6

0 0 0 0 0 0 7

and y4 D x4, respectively. Then, f can be represented as the index generation

function g.y1; y2; y3; y4/ shown in Table 10.5. Note that g can be represented us-

ing only y1, y2, and x3, since they can uniquely specify five different patterns. The

programmable hash circuit in Fig. 10.3 performs this linear transformation.

Example 10.3.2. In the registered vector table in Table 10.6, the number of 0’s is

much larger than that of 1’s.

1. A single-input hash circuit is used.

In this case, all the variables are necessary to represent the function, since any

change of each variable from .0; 0; 0; 0; 0; 0/ will change the value of the func-

tion. Thus, the main memory requires 6 variables.

2. A double-input hash circuit is used.

Consider the transform:

y1 D x1 ˚ x5

y2 D x2 ˚ x5

y3 D x3 ˚ x6

y4 D x4 ˚ x6

102 10 Hash-Based Synthesis

Table 10.7 Registered vector

table for IGU with

double-input hash circuit

Vector

y1 y2 y3 y4 Index

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

0 0 0 1 4

1 1 0 0 5

0 0 1 1 6

0 0 0 0 7

Table 10.8 Registered vector

table for IGU with

triple-input hash circuit

Vector

z1 z2 z3 Index

1 0 0 1

0 1 0 2

0 0 1 3

0 1 1 4

1 0 1 5

1 1 0 6

0 0 0 7

Table 10.7 shows the transformed function. In this case, all the patterns are

different. This means that these four variables are sufficient to represent the func-

tion. In fact, this is a minimum solution when a double-input hash circuit is used.

3. A triple-input hash circuit is used.

Consider the transform:

z1 D x1 ˚ x5 ˚ x6

z2 D x2 ˚ x4 ˚ x6

z3 D x3 ˚ x4 ˚ x5

Table 10.8 shows the transformed function. In this case, all the patterns are dif-

ferent. This means that three variables are sufficient to represent the function. In

fact, this is a minimum solution when a hash circuit with any number of inputs is

used.

We have developed a heuristic algorithm [135] to find a linear transformation that

reduces the number of variables, when the double-input hash circuit is used. To find

a linear transformation, we use the following:

Theorem 10.3.1. Let f .x1; x2; : : : ; xn/ be an incompletely specified index

generation function. Let Y1 D .y1; y2; : : : ; yp/, where yi D xi ˚ xj and

j 2 fp C 1; p C 2; : : : ; ng, and X2 D .xpC1; xpC2; : : : ; xn/. Consider the trans-

formed function g.Y1; X2/ D f .X1; X2/. Then, f can be represented using only

Y1, if each column of the decomposition chart .Y1; X2/ has at most one specified

element.

10.4 Hybrid Method 103

10.4 Hybrid Method

From here, we consider methods to implement an index generation function using

memories. In the index generation function, the number of registered vectors k, is

usually much smaller than 2n, the total number of the input combinations.

Definition 10.4.1. The hybrid method is an implementation of an index generation

function using the circuit consisting of an IGU as shown in Fig. 10.6. An IGU is used

to realize most of the registered vectors, while a rewritable PLA is used to realize

remaining registered vectors. The OR gate in the output combines the indices to

form a single output. The rewritable PLA can be replaced by another circuit, such

as an LUT cascade or a CAM.

In the hybrid method, the main memory has p D q C 2 inputs, and realizes 88% of

the registered vectors, where q D dlog2.k C 1/e. The rest of the registered vectors

are implemented by the rewritable PLA.

Example 10.4.1. For the circuit shown in Fig. 10.7, the values of only X2 D
.x4; x5; x6/ are compared with the output of the AUX memory to check if the main

memory produces the correct output.

Rewritable PLA
X2

X1

OR

IGU1
X1

X2

f (X1, X2)

Fig. 10.6 Index generator using hybrid method

x4 x6x5

z

3

z2

z

1 f1

f2

f3y1

y2

y3

x1

x1

x6

x6

x2

x2

x3

x3

x4

x4

x5

x5

Main
Memory

AUX

Memory

Comparator

Fig. 10.7 6-variable function implemented by a hybrid method

104 10 Hash-Based Synthesis

Table 10.9 Decomposition

chart for f .X1; X2/

Table 10.10 Decomposition

chart for Of .Y1; X2/

(transformed function)

Example 10.4.2. Consider the index generation function defined by Table 10.2.

Table 10.9 is a decomposition chart of a 6-variable function f .X1; X2/ with weight

k D 7. In this function, transform the variables X1 D .x1; x2; x3/ into Y1 D
.y1; y2; y3/ D .x1 ˚ x6; x2 ˚ x5; x3 ˚ x4/. The decomposition chart of the

transformed function Of .Y1; X2/ is shown in Table 10.10. In the transformed func-

tion, the columns of the original truth tables are permuted. Also, each row has

a different permutation. In the original table, three columns for .x1; x2; x3/ D
.0; 0; 0/; .0; 1; 0/; .0; 0; 1/ have two nonzero elements. On the other hand, in the

decomposition chart in Table 10.10, for the transformed function Oh.Y1; X2/, only

one column .y1; y2; y3/ D .0; 1; 0/ has two nonzero elements. Let Of1.Y1; X2/ be

the function where the nonzero element 4 is replaced by 0. The decomposition chart

is shown in Table 10.11. Table 10.12 shows the decomposition chart of the function
Of2.Y1; X2/ that is realized by the rewritable PLA. In this case, the function has only

one nonzero element. Of1.Y1; X2/ is implemented by the main memory shown in

Table 10.13 and the AUX memory shown in Table 10.14. The output of the main

memory Of .Y1/ shows the nonzero value of the function Of1 for the column Y1 D
.y1; y2; y3/. The AUX memory shown in Table 10.14 stores the corresponding val-

ues of x4; x5, and x6 when f .X1; X2/ takes nonzero values. Figure 10.8 shows

that the pair of the main memory and the AUX memory is sufficient to represent

10.4 Hybrid Method 105

Table 10.11 Decomposition

chart for Of1.Y1; X2/

Table 10.12 Decomposition

chart for Of2.Y1; X2/

Table 10.13 Function Oh.Y1/

realized by the main memory
y3 0 0 0 0 1 1 1 1

y2 0 0 1 1 0 0 1 1

y1 0 1 0 1 0 1 0 1

Oh.Y1/ 2 5 1 0 6 7 3 0

Table 10.14 Contents

of the AUX memory
z3 z2 z1 x4 x5 x6

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 0 0 1

1 1 0 0 1 1

1 1 1 1 1 1

106 10 Hash-Based Synthesis

7111

6110

101

5100

011

312010

001

000

03760152

1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

y3

y2

y1

x6x5x4

1 1 17

1 1 06

1 0 05

0 0 04

0 1 03

0 1 02

0 1 01

0 0 00

x6x5x4

Main
Memory

AUX

Memory

Fig. 10.8 Index generator implemented using a sparse matrix technique

the information of Table 10.11. Table 10.13 is implemented by the main memory.

The function that is implemented by the rewritable PLA has nonzero output 4.

The corresponding input values are .x1; x2; x3; x4; x5; x6/ D .0; 0; 1; 1; 1; 0/. The

nonzero output is 4, and its binary representation is .1; 0; 0/. This is implemented

by ORing the most significant bit of the AND gates. Figure 10.7 shows the whole

circuit for function f . The AUX memory and comparator check if .x4; x5; x6/ is

the input that produces the nonzero output.

10.5 Registered Vectors Realized by Main Memory

In this part, we assume that the nonzero elements in the index generation function

are uniformly distributed in the decomposition chart. In this case, we can estimate

the fraction of registered vectors realized by the main memory.

Lemma 10.5.1. Let f .X/ be a uniformly distributed index function of n variables

with weight k. Consider a decomposition chart, and let p be the number of bound

variables. Then, the probability that a column of the decomposition chart has all

zero elements is approximately e��, where � D k
2p .

Proof. The probability that a function takes a specified value is ˛ D k
2n . The proba-

bility that a function takes a zero value is ˇ D 1 � ˛. Since the decomposition chart

has 2n�p rows, the probability that a column of the chart has all zero elements is

ˇ2n�p

D .1 � ˛/2n�p

:

10.5 Registered Vectors Realized by Main Memory 107

Since ˛ D k
2n is sufficiently small, by Lemma 3.7.1, ˇ D 1�˛ can be approximated

by e�˛. Thus, we have

ˇ2n�p

' e�˛2n�p

D e�� ;

where � D k
2p , �

Theorem 10.5.1. Consider a set of uniformly distributed index generation functions

f .x1; x2; : : : ; xn/ with weight k. Consider an IGU whose inputs to the main memory

are x1; x2; : : : ; and xp . Then, the expected number of registered vectors of f that

can be realized by the IGU is 2p.1 � e��/, where � D k
2p .

Proof. Let .X1; X2/ be a partition of the input variables X , where X1 D
.x1; x2; : : : ; xp/ and X2 D .xpC1; xpC2; : : : ; xn/. Consider the decomposition

chart for f .X1; X2/, where X1 labels the column variables and X2 labels the row

variables. If a column has at least one care element, then the IGU can realize an

element of the column. From Lemma 10.5.1, the probability that each column has

at least one nonzero element is 1 � e�� , where � D k
2p . Since there are 2p columns,

the expected number of registered vectors realized by the IGU is 2p.1 � e��/. �

Example 10.5.1. Table 10.9 is the decomposition chart for a 6-variable index gen-

eration function with weight k D 7. Note that X1 D .x1; x2; x3/ denotes the

bound variables, and X2 D .x4; x5; x6/ denotes the free variables. In this case,

three columns .x1; x2; x3/ D .0; 0; 1/, .0; 1; 1/, .1; 0; 1/, and .1; 1; 0/ have all zero

elements. In the other words, the fraction of columns that have all zero elements

is 4
8

D 0:5. In Lemma 10.5.1, we have n D 6, p D 3, and � D k
2p D 0:875. It

shows that the probability that a column has all zero elements is e�� D 0:4169. In

Theorem 10.5.1, the expected number of vectors realized by the IGU is

2p.1 � e��/ D 8 � 0:583 D 4:665:

In Table 10.9, four vectors for 1, 2, 3, 6 can be realized by an IGU. The remaining

vectors should be realized by other parts of the circuit.

Corollary 10.5.1. Consider a set of uniformly distributed incompletely specified in-

dex generation functions f .x1; x2; : : : ; xn/ with weight k. Consider an IGU whose

inputs to the main memory are x1; x2; : : : ; and xp . Then, the fraction of registered

vectors of f that can be realized by the IGU is

ı D
1 � e��

�
;

where � D k
2p .

For example, when k
2p D 1

4
, we have ı ' 0:8848, when k

2p D 1
2

, we have

ı ' 0:7869, and when k
2p D 1, we have ı ' 0:63212.

Example 10.5.2. Consider the case of n D 40 and k D 1730. Let us compare two

realizations: LUT cascade and hash-based. Since q D dlog2.kC1/e D dlog2.1730C
1/e D 11, the number of bound variables is p D 13.

108 10 Hash-Based Synthesis

1. Realization with an LUT cascade alone

Let p D 13 be the number of inputs for cells. Then, from Lemma 5.1.5, the

number of levels s of the cascade is given by

s D

�

n � q

p � q

�

D

�

40 � 11

13 � 11

�

D

�

29

2

�

D 15:

For each cell, the size of the memory is 2p � q D 213 � 11 bits. Thus, the total

amount of memory is 213 � 11 � 15 D 1351680 bits.

2. Realization with the hybrid method

From the Corollary 10.5.1, the fraction of registered vectors of f that can be

realized by the IGU is

ı '
1 � e��

�
D 0:9015:

The main memory has p D 13 inputs and q D 11 outputs. The AUX memory

has q D 11 inputs and r D n � p D 27 outputs. The LUT cascade realizes the

index generation function with weight 1730 � .1 � 0:901/ ' 171. In this case,

each cell in the cascade has dlog2.171 C 1/e D 8 outputs. Let the number of

inputs of cells be 10. Then, the number of levels in the LUT cascade is

�

n � q

p � q

�

D

�

40 � 8

10 � 8

�

D

�

32

2

�

D 16:

Note that the size of a cell except for the last stage is 210 � 8 bits. The size of the

cell in the last stage is 210 � 11 bits. Thus, the total amount of memory for the

cascade is 210 � 8 � 15 C210 � 11 D 134,144 bits. The size of the main memory

is 213 � 11 D 90,112 bits. The size of the AUX memory is 211 � 27 D 55,296

bits. Thus, the total amount of memory is 279,552 bits, which is 20.7% of the

total memory for the LUT cascade-only realization.

In this example, the hybrid method requires a smaller amount of memory than the

LUT cascade alone.

10.6 Super Hybrid Method

In the hybrid method, about 88% of the registered vectors are implemented by an

IGU, and the remaining 12% are implemented by the PLA. When we use two IGUs,

about 96% of the registered vectors are implemented by IGUs and the remaining

4% are implemented by the PLA.

Definition 10.6.1. The super hybrid method is an implementation of an index

generation function using a circuit consisting of two IGUs, as shown in Fig. 10.9.

10.6 Super Hybrid Method 109

Rewritable PLA

OR

IGU1
X1

X2

X1

X2

X'1

X'2

IGU2

f(X1,X2)

Fig. 10.9 Index generator implemented by super hybrid method

IGU1 is used to realize most of the registered vectors, IGU2 is used to realize the

registered vectors not realized by IGU1, and the rewritable PLA is used to realize

registered vectors not realized by either IGU . The OR gate in the output combines

the indices to form a single output. The rewritable PLA can be replaced by another

circuit, such as an LUT cascade, a CAM or an IGU.

The super hybrid method shown in Fig. 10.9 is more complicated than the hybrid

method, but requires smaller memory overall. In this method, the main memory in

IGU1 has p D q C 1 inputs, and realizes 79% of the registered vectors. The main

memory in IGU2 has p D q inputs, and realizes 16.6% of registered vectors. The

rest of the registered vectors are implemented by the rewritable PLA.

Hybrid Method. In a typical hybrid method, the main memory has p D qC2 inputs

and q D dlog2.k C 1/e outputs, while the AUX memory has q inputs and n � q � 2

outputs. Therefore, the total amount of memory is

M1 D q � 2qC2 C .n � q � 2/ � 2q D .4n C 12q � 8/ � 2q�2:

Super Hybrid Method. In a typical super hybrid method, in IGU1, the main mem-

ory has p1 D q C 1 inputs and q outputs, while the AUX memory has q inputs and

n�q �1 outputs. Also, in IGU2, the main memory has p2 D q �1 inputs and q �2

outputs, while the AUX memory has q � 2 inputs and n � q C 1 outputs. Therefore,

the total amount of memory is

M2 D q�2qC1C.n�q�1/�2q C.q�2/�2q�1C.n�qC1/�2q�2 D .5nC5q�7/�2q�2:

This implies that, when n � 7 log2.k C 1/ � 1, the super hybrid method requires

a smaller amount of memory.

Theorem 10.6.1. 1. In a typical hybrid method, about 88% of the registered vectors

can be realized by an IGU.

110 10 Hash-Based Synthesis

2. In a typical super hybrid method, about 96% of the registered vectors can be

realized by two IGUs.

Proof. Hybrid Method

In this case, the number of inputs to the main memory is p D dlog2.k C 1/e C 2.

Thus, 2p � 4.k C 1/ and � D k
2p � k

4.kC1/
' 1

4
. From Corollary 10.5.1, the

fraction of registered vectors realized by the IGU is

ı D
1 � e��

�
:

When � D 1
4

, we have ı D 4.1 � e�0:25/ D 0:8848.

Super Hybrid Method

In this case, p1 D dlog2.k C 1/e C 1. Thus, 2p1 � 2.k C 1/ and �1 � k
2.kC1/

' 1
2

.

When �1 D 1
2

, we have ı1 D 4.1�e�0:5/ D 0:7869. Thus, the fraction of remaining

vectors is 0.213.

Note that p2 D dlog2.k C 1/e � 1. Thus, 2p2 � 1
2
.k C 1/, and �2 � k2

2p2
'

0:213k
0:5.kC1/

' 0:426. When, �2 D 0:426, we have ı2 D 1�e�0:426

0:426
D 0:8142:

Thus, the total number of registered vectors realized by IGU1 and IGU2 is

0:7896 k C 0:8142 � 0:2134 k D 0:9603 k:

Thus, we have the theorem. �

Example 10.6.1. Consider the index generation function with n D 40 and k D
1730. In this case, q1 D dlog2.k C 1/e D dlog2.1730 C 1/e D 11.

Rewritable PLA

The number of vectors realized by the rewritable PLA is 1730.

Hybrid Method

The main memory has p D q1 C 2 D 13 inputs and q1 D 11 outputs. The AUX

memory has q1 D 11 inputs and r D n � p D 27 outputs. Since, � D 1730
213 , from

Corollary 10.5.1, the fraction of registered vectors of f that can be realized by the

IGU is

ı '
1 � e��

�
D 0:901:

Thus, the number of vectors realized by the IGU is 1730 � 0:901 D 1599, and the

number of remaining vectors to be realized by the rewritable PLA is 171.

10.7 Parallel Sieve Method 111

The size of the main memory is 213 � 11 D 90,112 bits. The size of the

AUX memory is 211 � 27 D 55,296 bits. Thus, the total amount of memory is

145,408 bits.

Super Hybrid Method

The first main memory has p1 D q1 C 1 D 12 inputs and q1 D 11 outputs. The

first AUX memory has q1 D 11 inputs and r1 D n � p1 D 27 outputs.

Since, �1 D 1730
212 D 0:422, from Corollary 10.5.1, the fraction of registered

vectors of f that can be realized by IGU1 is

ı1 '
1 � e��1

�1

D 0:8156:

Thus, the number of vectors realized by IGU1 is 1730 � 0:8156 D 1411, and the

number of the remaining vectors is 1730 � 1411 D 319.

The second main memory has p2 D q1 � 1 D 10 inputs and q2 D 9 outputs.

The second AUX memory has q2 D 9 inputs and r2 D n � p2 D 30 outputs. Since

�2 D 319
2p2

D 0:3115, the fraction of registered vectors of f that can be realized by

IGU2 is

ı2 '
1 � e��2

�2

D 0:859223:

Thus, the number of vectors realized by IGU 2 is 319 � 0:859223 D 274, and the

number of the remaining vectors is 45.

The size of the first main memory is 212 � 11 D 45,056 bits. The size of the first

AUX memory is 211 � 28 D 57,344 bits. The size of the second main memory is

210 �9 D 9,216 bits. The size of the second AUX memory is 29 �30 D 15,360 bits.

Thus, the total amount of memory is 126,976 bits. The number of vectors realized

by the rewritable PLA is 45.

Thus, for this problem, the super hybrid method requires a smaller amount of

memory than the hybrid method.

A problem with the super hybrid method is that the second main memory has

only q � 2 outputs. Thus, the indices of the registered vectors in the second main

memory should be smaller than or equal to 2q�2 � 1. The first main memory stores

registered vectors whose indices are greater than 2q�2.

10.7 Parallel Sieve Method

The hybrid method uses only one IGU, while the super hybrid method uses two

IGUs. By increasing the number of IGU’s, we have the parallel sieve method. The

parallel sieve method is especially useful when the number of the registered vectors

is very large [85] (Fig. 10.11).

112 10 Hash-Based Synthesis

Correct

Index

f

Main

Memory

AUX

Memory

Temporary Index

Registered

Vector
equal

Comparator

AND

Programmable

Hash Circuit

p

n-p

p q

n-p

q
n-p

X1

X2

X2

Y1

Fig. 10.10 Index generator unit (IGU)

IGU1

IGU2

IGU3

IGUr

OR

Fig. 10.11 Index generator implemented by parallel sieve method

Definition 10.7.1. The parallel sieve method is an implementation of an index

generation function using the circuit consisting of multiple IGUs as shown in

Fig. 10.11. IGUiC1 is used to realize a part of the registered vectors not realized

by IGU1, IGU2, : : :, or IGUi . The OR gate in the output combines the indices to

form a single output. In the standard parallel sieve method, the number of inputs

to the main memory is selected as

pi D dlog2.ki C 1/e:

Example 10.7.1. By using the standard parallel sieve method, realize an index gen-

eration function with n D 40 and k1 D 10; 000. Note that q1 D dlog2.k1 C 1/e D 14.

Consider Fig. 10.11.

10.7 Parallel Sieve Method 113

1. In IGU1, the number of inputs for the main memory is p1 D q1 D 14.

By Theorem 10.5.1, the number of the vectors realized by IGU1 is 2p1.1 �

e��1/ where �1 D k1

2p1 , which is 16384 � .1 � 0:5432/ D 7484. The number of

remaining vectors is k2 D k1 � 7484 D 2516.

2. In IGU2, since q2 D dlog2.2516 C 1/e D 12, the number of the inputs for the

main memory is p2 D q2 D 12. The number of the vectors realized by IGU2 is

2p2.1 � e��2/ where �2 D k2

2p2 , which is 4096 � 0:4589 D 1879. The number of

remaining vectors is k3 D k2 � 1879 D 637.

3. In IGU3, since q3 D dlog2.637 C 1/e D 10, the number of inputs for the

main memory is p3 D q3 D 10. The number of vectors realized by IGU3 is

2p3.1 � e��3/ where �3 D k3

2p3 , which is 1024 � 0:46317 D 474. The number of

remaining vectors is k4 D k3 � 474 D 163.

4. In IGU4, since q4 D dlog2.163 C 1/e D 8, the number of inputs for the main

memory is p4 D q4 D 8. The number of vectors realized by IGU4 is 2p4.1 �

e��4/ where �4 D k4

2p4 , which is 256�0:46317 D 120. The number of remaining

vectors is k4 D k3 � 120 D 43.

5. In IGU5, since q5 D dlog2.43 C 1/e D 6, the number of inputs for the main

memory is p5 D q5 D 6. The number of vectors realized by IGU5 is 2p5.1 �

e��5/ where �5 D k5

2p5 , which is 64 � 0:48925 D 31. The number of remaining

vectors is k5 D k4 � 31 D 12.

6. In IGU6, since the number of the remaining vectors is only k5 D 12, they can

be implemented by an IGU [132], or rewritable PLA or an LUT cascade.

Note that, for each IGUi , the main memory has pi inputs and pi outputs, while the

AUX memory has pi inputs and .n�pi / outputs. Thus, the total amount of memory

for IGUi is

pi2
pi C .n � pi /2

pi D n2pi :

The amount of memory for each IGUi is:

IGU1 W 40 � 214 D 640 � 210:

IGU2 W 40 � 212 D 160 � 210:

IGU3 W 40 � 210:

IGU4 W 40 � 28 D 10 � 210:

IGU5 W 40 � 26 D 2:5 � 210:

The total amount of memory for the standard parallel sieve method is

5
X

iD1

n2ni D 640 C 160 C 40 C 10 C 2:5 D 852:5

Kibits.

114 10 Hash-Based Synthesis

10.8 Experimental Results

10.8.1 List of English Words

To demonstrate the usefulness of the design method, first we realized lists of

frequently used English words by the hybrid method shown in Fig. 10.6 and the

super hybrid method shown in Fig. 10.9. Here, we use three kinds of English word

lists: List 1, List 2, and List 3. The numbers of letters in the word lists are at most

13, but we only consider the first 8 letters. For the English words consisting of fewer

than 8 letters, we append blanks to the end of words to make them 8-letter words.

Each English alphabet letter is represented by 5 bits. Thus, each English word is rep-

resented by 40 bits. The numbers of words in the lists are 1,730, 3,366, and 4,705,

respectively. Within each word list, each English word has a unique index, an inte-

ger from 1 to k, where k D 1,730 or 3,360 or 4,705. The numbers of bits for the

indices are 11, 12, and 13, respectively.

The number of inputs for the main memory is dlog2.k C 1/e C 2. List 1 consists

of k D 1730 words. The number of bits for the index is q D dlog2.1 C k/e D
dlog2.1 C 1730/e D 11. The number of bound variables is p D q C 2 D 13. The

number of columns in the decomposition chart is 2p D 213 D 8; 192. The number

of columns that has only one nonzero element is 1,389. The number of columns that

has two or more nonzero elements is 165. The number of registered vectors that are

not realized by the main memory is 176. In other words, about 90% of the registered

vectors are realized by the main memory, and the remaining 10% of the registered

vectors are realized by the rewritable PLA. Table 10.15 shows the design results for

three English word lists by the hybrid method shown in Fig. 10.6.

Table 10.15 compares the amount of hardware for the hybrid method, and the

super hybrid method. In the super hybrid method, the number of vectors realized by

the rewritable PLA is smaller than 4% of the registered vectors. This is because we

optimized the hash functions.

Table 10.15 Realization of

English word lists by hybrid

method

List 1 List 2 List 3

of words: k 1,730 3,366 4,705

of inputs: n 40 40 40

of outputs: q 11 12 13

of inputs for the main p 13 14 15

memory :

of columns with only one 1389 2752 3980

nonzero element

of columns with two or 165 293 351

more nonzero elements

of registered vectors not 176 321 374

realized by main memory

10.8 Experimental Results 115

10.8.2 Randomly Generated Functions

Next, we generated index generation functions with the same sizes by pseudo-

random numbers. We did the similar experiments for List 2 and List 3. The

experimental results using randomly generated functions and English word lists are

close to the theoretical results obtained in Sect. 10.5. This shows that the hash func-

tion generated by the hash network effectively scatters the nonzero elements in the

decomposition charts.

10.8.3 IP Address Table

To verify the effectiveness of the method, we also used IP addresses of computers

that accessed our web site in a certain period. List 1 contains 1,730 addresses, List 2

contains 3,366 addresses, and List 3 contains 4,588 addresses. The number of inputs

are all 32, but the number of outputs for Lists 1–3 are 11,12, and 13, respectively.

Also, in this case, results produced by the real address tables, the data obtained from

the random address tables, and the data obtained by analytical results in Sect. 10.5

were similar (Table 10.16). (Experimental results are omitted.)

Table 10.16 Amount of hardware for English word lists

Size of Lists List 1 List 2 List 3

of inputs n 40 40 40

of outputs q 11 12 13

of vectors k 1,730 3,366 4,705

Hybrid Method List 1 List 2 List 3

of inputs for main memory p 13 14 15

Size of main memory q2p 90,112 196,608 425,984

Size of AUX memory r2q 55,296 106,496 204,800

Total amount of 145,408 303,104 630,784

memory

of remaining vectors 176 321 374

Super Hybrid Method List 1 List 2 List 3

of inputs for main memory 1 p1 12 13 14

of inputs for main memory 2 p2 10 11 12

Size of main memory 1 q12
p1 45,056 98,304 212,992

Size of AUX memory 1 r12
q1 57,344 110,592 212,992

Size of main memory 2 q22
p2 9,216 20,480 40,960

Size of AUX memory 2 r22
q2 15,360 2,969 28,672

Total amount of 126,976 232,345 495,616

memory

of remaining vectors 30 61 42

116 10 Hash-Based Synthesis

10.9 Remarks

This chapter presented the hybrid method, the super hybrid method, and the parallel

sieve method to realize index generation functions. In these methods, an index

generation function f is decomposed into nonoverlapping index generation func-

tions, and each function is realized by an IGU or a rewritable PLA. In this chapter,

a rewritable PLA is used to realize the remaining vectors. However, other methods

can also be used: a CAM, an LUT cascade, or an IGU implemented by the method

shown in Chap. 11. This chapter is based on [126, 128, 136].

Problems

10.1. In Example 10.1.1, suppose that, in a company with 5,000 employees, each

person has a unique employee number between 1 and 5,000 inclusive. Suppose that

hash.x/ D x.mod 9973/ is used to find the employee number from his or her 10-

digit telephone number. Calculate the expected number of collisions in the hash

table. Do the same calculation when the number of the employees is 2,000, instead

of 5,000. Assume that the hash function produces a uniform distribution.

10.2. Let f .x/ be the index generation function, where f .x/ D i when x is the i -th

prime number, and f .x/ D 0 otherwise. Let �.x/ be the prime-counting function

that gives the number of primes less than or equal to x, for any integer number x.

For example, �.8/ D 4 because there are four prime numbers (2, 3, 5, and 7) less

than or equal to 8. It is known that �.100; 000/ D 9; 592.

Design the circuit of f .x/ that works for x � 100; 000, by the standard parallel

sieve method. Estimate the size of the circuit, and compare it with the single-

memory realization.

10.3. Design an 8-digit ternary-to-binary converter [119]. Use the binary-coded-

ternary code to represent a ternary digit. That is, 0 is represented by .00/; 1 is

represented by .01/; and 2 is represented by .10/. .11/ is an unused code. Let

Ey D .ym�1; ym�2; : : : ; y0/ be the outputs of the converter, where yi 2 f0; 1g.

Then, in general, yi depends on all the inputs xi .i D 0; 1; : : : ; n � 1/. When

this converter is implemented by a two-valued logic circuit, unused combinations

occur. So, we have an incompletely specified function. For example, the truth ta-

ble of the 2-digit ternary to 4-bit binary converter is shown in Table 10.17. In the

case of binary-coded-ternary representation, .11/ is an undefined input, and the

corresponding output is a don’t care. In Table 10.17, the binary-coded-ternary repre-

sentation is denoted by Ew D .w3; w2; w1; w0/, the ternary representation is denoted

by Ex D .x1; x0/, and the binary representation is denoted by Ey D .y3; y2; y1; y0/.

Design a converter for an 8-digit ternary number to a 13-digit binary number by the

standard parallel sieve method. Compare the memory size with that of the single-

memory realization.

10.9 Remarks 117

Table 10.17 Truth table for a ternary-to-binary converter

Binary-coded Ternary Ternary Binary

w3 w2 w1 w0 x1 x0 y3 y2 y1 y0 Decimal

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 1

0 0 1 0 0 2 0 0 1 0 2

0 1 0 0 1 0 0 0 1 1 3

0 1 0 1 1 1 0 1 0 0 4

0 1 1 0 1 2 0 1 0 1 5

1 0 0 0 2 0 0 1 1 0 6

1 0 0 1 2 1 0 1 1 1 7

1 0 1 0 2 2 1 0 0 0 8

Table 10.18 1-out-of-15 to binary converter

1-out-of-15 code

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 Index

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 6

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 7

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 12

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

10.4. A linear transformation of the input variables, in general, changes a function

into an another function. However, it does not change the weight of the function.

Prove this.

10.5. In the proof of Lemma 10.5.1, ˇ2n�p

is approximated by e�� , where � D k
2p ,

ˇ D 1 � ˛, and ˛ D k
2n . When k D 2p, compute the approximation er-

ror: ERROR D e�� � ˇ2n�p
: Make a table similar to Table 3.1 for ˛ D

2�1; 2�2; 2�3; : : : ; 2�14, and 2�15.

10.6. Consider the 15-variable incompletely specified index generation function

f .X/ shown in Table 10.18. Show that at least 14 variables are necessary to repre-

sent the function. Next, consider the linear transformation:

118 10 Hash-Based Synthesis

y1 D x1 ˚ x3 ˚ x5 ˚ x7 ˚ x9 ˚ x11 ˚ x13 ˚ x15;

y2 D x2 ˚ x3 ˚ x6 ˚ x7 ˚ x10 ˚ x11 ˚ x14 ˚ x15;

y3 D x4 ˚ x5 ˚ x6 ˚ x7 ˚ x12 ˚ x13 ˚ x14 ˚ x15;

y4 D x8 ˚ x9 ˚ x10 ˚ x11 ˚ x12 ˚ x13 ˚ x14 ˚ x15:

Show that f can be represented with y1; y2; y3, and y4.

Chapter 11

Reduction of the Number of Variables

This chapter considers a method to reduce the number of variables needed to

represent incompletely specified logic functions. When the number of specified

minterms is k, most functions can be represented with at most 2dlog2.k C 1/e � 2

variables.

11.1 Optimization for Incompletely Specified Functions

For completely specified logic functions, logic minimization is a process of reducing

the number of products to represent the given function. However, for incompletely

specified functions (i.e., functions with don’t cares), at least two problems exist

[46]. The first is to reduce the number of the products to represent the function,

and the second is to reduce the number of variables. The first problem is useful for

sum-of-products expression (SOP)-based realizations [13], while the second prob-

lem is useful for memory-based realizations, since reducing the number of variables

reduces the memory size.

Example 11.1.1. Consider the 4-variable function shown in Fig. 11.1, where the

blank cells denote don’t cares. The SOP with the minimum number of products

is F1 D x1x4 _ x2 Nx3; while the SOP with the minimum number of variables is

F2 D x1x2 _ x1x4 _ x2x4: Note that F1 shown in Fig. 11.2 has two products

and depends on four variables, while F2 shown in Fig. 11.3 has three products and

depends on only 3 variables. x3 is a nonessential variable, since F2 does not in-

clude it.

As shown in this example, the expression corresponding to the minimal number of

products is different from the expression corresponding to the minimal number

of variables. This chapter considers the minimization of the number of variables

in incompletely specified functions. Indeed, it is shown that many variables can be

eliminated when the fraction of don’t cares is large.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 11,

c Springer Science+Business Media, LLC 2011

119

120 11 Reduction of the Number of Variables

Fig. 11.1 4-variable

incompletely specified logic

function

x1

x4

x2

x3

01

11

0

0

Fig. 11.2 Expression with

the fewest products 1x

1

1 0

0
4x

2x

3x

1

0

Fig. 11.3 Expression with

the fewest variables 1x

1

1 0

0
4x

2x

3x

1

0

11.2 Definitions and Basic Properties

Definition 11.2.1. An incompletely specified logic function f is a mapping

D ! B , where D � Bn, B D f0; 1g.

Definition 11.2.2. An incompletely specified logic function is represented by a pair

of characteristic functions F0 and F1, where F0.Ea/ D 1 iff f .Ea/ D 0, and

F1.Ea/ D 1 iff f .Ea/ D 1. Note that F0F1 D 0. If Ea 2 D, then the value of f .Ea/ is

specified, and is called care value. Otherwise, the value of f .Ea/ is unspecified, and

is called don’t care.

11.2 Definitions and Basic Properties 121

Table 11.1 Function for

Fig. 11.1
x1 x2 x3 x4 f

0 0 0 1 0

0 1 1 0 0

1 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 0 0 1

Example 11.2.1. Consider the function in Fig. 11.1. In this case n D 4. Table 11.1

also shows this function. The characteristic functions are

F0 D Nx1 Nx2 Nx3x4 _ Nx1x2x3 Nx4 _ x1 Nx2 Nx3 Nx4 and

F1 D Nx1x2 Nx3x4 _ x1 Nx2 Nx3x4 _ x1x2 Nx3 Nx4:

In this case, the function is specified for only 6 out of 16 possible minterms.

Definition 11.2.3. f depends on xi if there exists a pair of vectors

Ea D .a1; a2; : : : ; ai ; : : : ; an/ and

Eb D .a1; a2; : : : ; bi ; : : : ; an/;

such that both f .Ea/ and f .Eb/ are specified, and f .Ea/ ¤ f .Eb/.

If f depends on xi , then xi is essential in f and xi must appear in every expression

for f .

Definition 11.2.4. Two functions f and g are compatible when the following

condition holds: For any Ea 2 Bn, if both f .Ea/ and g.Ea/ are specified, then

f .Ea/ D g.Ea/.

Lemma 11.2.1. Let f0 D f .jxi D 0/ and f1 D f .jxi D 1/. Then, xi is nonessen-

tial in f iff f0 and f1 are compatible.

If xi is nonessential in f , then f can be represented by an expression without xi .

Example 11.2.2. Consider the function f in Fig. 11.4. It is easy to verify that all

the variables are nonessential. Note that f can be represented as F1 D Nx2 _ x3 or

F2 D x1 ˚ Nx4.

Essential variables must appear in every expression for f , while nonessential vari-

ables may appear in some expressions and not in others. Algorithms to represent

a given function by using the minimum number of variables have been considered

[14, 32, 38, 46, 67].

122 11 Reduction of the Number of Variables

Fig. 11.4 4-variable function

without essential variables
x1

x4

x2

x3

0

10

1

11.3 Algorithm to Minimize the Number of Variables

This section describes an algorithm to represent an incompletely specified index

generation function f W D ! f1; 2; : : : ; kg, where D � Bn, using the minimum

number of variables. To show the idea of the method, we use the following:

Example 11.3.1. Let us minimize the number of variables to represent the index

generation function shown in Fig. 11.5.

1. Let the four vectors be Ea1 D .1; 0; 0; 1/, Ea2 D .1; 1; 1; 1/, Ea3 D .0; 1; 0; 1/, and

Ea4 D .1; 1; 0; 0/.

2. To distinguish Ea1 and Ea2, either x2 or x3 is necessary. Thus, we have the condition

x2 _ x3 D 1, where x1 D 1 denotes that x1 must appear in the expression. Thus,

x2 _ x3 D 1 denotes either x2 or x3 must appear in the expression. In the same

way, to distinguish Ea1 and Ea3, we have the condition x1 _ x2 D 1; to distinguish

Ea1 and Ea4, we have the condition x2 _ x4 D 1; to distinguish Ea2 and Ea3, we

have the condition x1 _ x3 D 1; to distinguish Ea2 and Ea4, we have the condition

x3 _ x4 D 1; and to distinguish Ea3 and Ea4, we have the condition x1 _ x4 D 1.

3. To distinguish all the vectors, all the conditions must hold at the same time. This

is expressed by the condition R D 1, where

R D .x2 _ x3/.x1 _ x2/.x2 _ x4/.x1 _ x3/.x3 _ x4/.x1 _ x4/:

4. By the distributive law, and the absorption law, we have

R D x1x2x4 _ x1x2x3 _ x2x3x4 _ x1x3x4:

5. Since every product has three literals, each corresponds to a minimum solution.

Thus, f can be represented by 3 variables. Since no variable appears in all prod-

uct terms, no variable is essential.

In principle, the above method produces the minimum number of variables to rep-

resent an incompletely specified index generation function. However, the straight-

forward application is quite inefficient. Also, we have an efficient minimization

algorithm for SOPs, but do not have one for product-of-sums expressions. Thus,

instead of obtaining R directly, first we obtain NR, the complement of R, and per-

form simplification, and then convert NR into the SOP for R as follows:

11.3 Algorithm to Minimize the Number of Variables 123

Fig. 11.5 Index generation

function with 4 variables
1x

4x

2x

3x

4

2

3 1

a

b

c

d

e

f g

Fig. 11.6 7-segment display

Algorithm 11.3.1. (Algebraic Method)

1. Let A be the set of vectors Eai , such that f .Eai / D i , where i D 1; 2; : : : ; k.

2. For each pair of vectors Eai D .a1; a2; : : : ; an/ 2 A and Ebj D .b1; b2; : : : ; bn/ 2
A, associate a product defined by s.i; j / D

Vn
r D1 yr , where yr D 1 if ar D br

and yr D Nxr if ar ¤ br , where r D 1; 2; : : : ; n. Note that there are k.k � 1/=2

pairs.

3. Define a covering function NR D
W

i<j s.i; j /.

4. Represent NR by the a minimum SOP.

5. Represent R, the complement of NR by a minimum SOP.

6. The product with the fewest literals corresponds to the minimum solution.

In Algorithm 11.3.1, Steps 4, 5, and 6 compute a minimum covering. Since NR has

only complemented literals, we generate only products with complemented literals.

Applying absorption law yields the minimum SOP for NR.

By first detecting the essential variables, we can reduce the computational effort

to derive the covering function. The next example illustrates this.

Example 11.3.2. The 7-segment display shown in Fig. 11.6 displays a decimal num-

ber by using 7 segments: a, b, c, d, e, f, and g.

Table 11.2 shows the correspondence between segment data and the binary num-

ber. Consider a logic circuit that converts 7-segment data into the corresponding

124 11 Reduction of the Number of Variables

Table 11.2 7-segment to

BCD converter
7-segment BCD code

a b c d e f g 8 4 2 1

0 1 1 0 0 0 0 0 0 0 1

1 1 0 1 1 0 1 0 0 1 0

1 1 1 1 0 0 1 0 0 1 1

0 1 1 0 0 1 1 0 1 0 0

1 0 1 1 0 1 1 0 1 0 1

1 0 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 0 1 1 1 0 0 1

1 1 1 1 1 1 0 1 0 1 0

Binary Coded Decimal (BCD) representation of a digit. The straightforward circuit

requires 7 inputs. However, only 5 inputs are necessary to distinguish the decimal

numbers. This means that only 5 segments are needed to distinguish between the

10 digits.

1. Let the vectors be

Ea1 D .0; 1; 1; 0; 0; 0; 0/; Ea2 D .1; 1; 0; 1; 1; 0; 1/; Ea3 D .1; 1; 1; 1; 0; 0; 1/;

Ea4 D .0; 1; 1; 0; 0; 1; 1/; Ea5 D .1; 0; 1; 1; 0; 1; 1/; Ea6 D .1; 0; 1; 1; 1; 1; 1/;

Ea7 D .1; 1; 1; 0; 0; 0; 0/; Ea8 D .1; 1; 1; 1; 1; 1; 1/; Ea9 D .1; 1; 1; 1; 0; 1; 1/;

and

Ea10 D .1; 1; 1; 1; 1; 1; 0/:

2. First, find the essential variables.

From Ea6 and Ea8, we can see that b is essential. From Ea8 and Ea9, we can see that

e is essential. From Ea3 and Ea9, we can see that f is essential. From Ea8 and Ea10,

we can see that g is essential.

3. Next, we derive NR. Since b, e, f , and g are essential, we can ignore the pairs,

where the essential variables are inconsistent. For example, from the pair

.Ea1; Ea2/, we have the product Na Nc Nd Ne Ng. Note that, in this case, two vectors are

inconsistent with the essential variable g. Since the essential variable g is always

included in the solution, we know that g D 1. Thus, we need not generate it.

From Ea4 and Ea9, we have Na Nd . Thus, NR D Nb _ Ne _ Ng _ Nf _ Na Nd :

4. By using De Morgan’s law, and the distributive law, we have

R D befg.a _ d/ D abefg _ bdefg:

5. Since each product has five literals, each corresponds to a minimum solution.

Thus, the binary numbers can be represented by 5 variables.

Thus, we can eliminate either segments c and d , or a and c, and still determine

which digit is being represented.

11.4 Analysis for Single-Output Logic Functions 125

11.4 Analysis for Single-Output Logic Functions

This section derives the number of variables to represent single-output incompletely

specified logic functions. In the analysis that follows, we consider a set of functions

(e.g., all incompletely specified functions) restricted by conditions (e.g. the number

of care values is 2u).

Definition 11.4.1. A set of functions is uniformly distributed, if the probability of

occurrence of any function is the same as any other function.

For example, the set of 4-variable incompletely specified functions with 1 care value

consists of 32 members, 16 having a single 1 and 16 having a single 0. If the func-

tions are uniformly distributed, the probability of the occurrence of any one of them

is 1
32

.

Theorem 11.4.1. Consider a set of uniformly distributed incompletely specified

functions, where u combinations are mapped to 0, u combinations mapped to 1,

and the other 2n � 2u combinations are mapped to don’t cares. Let � be the prob-

ability that f .x1; x2; : : : ; xn/ can be represented by using only x1; x2; : : : ; xp�1;

and xp , where p < n. Then, � � .1 � Q̨ /u, where Q̨ D u
2p .

Proof. Let f .X1; X2/ be an incompletely specified function, where X1 D .x1;

x2; : : : ; xp/ and X2 D .xpC1; xpC2; : : : ; xn/. Consider the decomposition chart of

f .X1; X2/, where X1 labels the columns, and X2 labels the rows. If no column has

both 0 and 1, a completely specified function can be formed by setting all column

entries to the same value, yielding a function independent of X2. From here, we

obtain the probability �.

Assume that u 0’s are already distributed to the decomposition chart. Thus, at most u

columns have 0’s. Next, we distribute u 1’s to the decomposition chart. The probabil-

ity of distributing a single 1 to a column not containing 0’s is at least 2p�u
2p D 1 � Q̨ .

Thus, the probability of distributing u 1’s to the columns without 0’s is larger than

or equal to .1 � Q̨ /u. Hence, we have the relation:

� � .1 � Q̨ /u:

�

Theorem 11.4.1 considers the probability for one partition: X1 D .x1;

x2; : : : ; xp/ and X2 D .xpC1; xpC2; : : : ; xn/. However, in practice, we can se-

lect a minimum set of variables to represent the function. The following theorem

considers such a case:

Theorem 11.4.2. Consider a set of uniformly distributed incompletely specified

functions, where u combinations are mapped to 0, u combinations mapped to 1, and

the other 2n � 2u combinations are mapped to don’t cares. Then, the probability

that f .x1; x2; : : : ; xn/ can be represented by using only p variables is at least

1 � �.n
p/;

126 11 Reduction of the Number of Variables

where � D 1 � �, and � is the probability that a function can be represented by

using only x1; x2; : : : ; xp�1, and xp .

Proof. The probability that a function cannot be represented by using x1; x2; : : : ;

xp�1, and xp is � D 1 � �. Since there are
�

n
p

�

ways to choose p variables out

of n variables, the probability that a function cannot be represented by using any

combinations of p variables is �.n
p/: The probability that a function can be presented

by using at least one combination of p variables is

1 � �.n
p/:

�

From Theorem 11.4.2, we have the following:

Conjecture 11.4.1. Consider a set of uniformly distributed functions of n variables,

where u combinations are mapped to 0, u combinations are mapped to 1, and the

other 2n � 2u combinations are mapped to don’t cares. If

p � 2 log2 u � 2;

then more than 95% of the functions can be represented with p variables.

(Explanation supporting the Conjecture) Since � D 1�� < 1:0, 1��.n
p/ approaches

1.0, as n increases. When p < n,
�

n
p

�

� n.n � 1/=2. Assume that n � 20. The

condition that �.n
p/ � 0:05 is � < 0:984. Thus, if � � 0:0156, then at least 95% of

the functions can be realized with p products. When Q̨ is sufficiently small, 1 � Q̨ is

approximated by e�Q̨ . Thus,

� � .1 � Q̨ /u ' e�Q̨u D e� u2

2p :

When p � 2 log2 u � 2, we have � > e�4 D 0:0183. (End of explanation)

From experimental results in Sect. 11.6 , we have the following:

Conjecture 11.4.2. Consider a set of uniformly distributed functions of n variables,

where u combinations are mapped to 0, u combinations are mapped to 1, and the

other 2n�2u combinations are mapped to don’t cares. Then, the fraction of the func-

tions represented with p D 2dlog2 ue � 2 variables approaches 1.0, as n increases.

11.5 Extension to Multiple-Output Functions

In practical applications, many functions have multiple outputs, and the outputs

values are different for different inputs. So, we now consider such a class of func-

tions. First, we consider the class of index generation functions, which are special

case of multiple-output functions. Then, we extend the theory to general multiple-

output functions.

11.5 Extension to Multiple-Output Functions 127

11.5.1 Number of Variables to Represent Index Generation

Functions

This section derives the number of variables to represent an incompletely specified

index generation function with k registered vectors. The basic idea is as follows: a

function f .X1; X2/ is represented by a decomposition chart, where X1 labels the

columns and X2 labels the rows. If each column has at most one care element, then

the function can be represented by using only variables in X1. The next example

illustrates this.

Example 11.5.1. Table 11.3 shows a registered vector table consisting of 6 vectors.

When no entry matches the input vector, the function produces 0. Consider the de-

composition chart shown in Table 11.4. In Table 11.4, x1, x2, and x3 specify the

columns, and x4 and x5 specify the rows, and blank elements denote don’t cares.

Note that, in Table 11.4, each column has at most one care element. Thus, the func-

tion can be represented by only the column variables: x1,x2, and x3.

From here, we obtain the probability of such a condition by a statistical analysis.

Theorem 11.5.1. Consider a set of uniformly distributed incompletely specified in-

dex generation functions f .x1; x2; : : : ; xn/ with weight k, where 2 � k < 2n�2. Let

�.k/ be the probability that f can be represented with x1; x2; : : : ; and xp , where

p < n. Then,

�.k/ ' exp

�

�
k2

2pC1

�

: (11.1)

Proof. Let .X1; X2/ be a partition of the input variables X , where X1 D .x1;

x2; : : : ; xp/ and X2 D .xpC1; xpC2; : : : ; xn/. Consider the decomposition chart for

Table 11.3 Registered vector

table
x1 x2 x3 x4 x5 f

0 0 1 0 0 1

0 1 0 0 1 2

0 1 1 1 0 3

1 0 0 1 1 4

1 0 0 1 1 5

1 1 1 1 0 6

Table 11.4 Decomposition

chart for f .X1; X2/

128 11 Reduction of the Number of Variables

f .X1; X2/, where X1 labels the column variables and X2 labels the row variables.

If each column has at most one care element, then f can be represented by using

only X1. Assume that k care elements are distributed in the decomposition chart.

Then, the probability that each column has at most one care element is

�.k/ D
2p

2p
�

2p � 1

2p
�

2p � 2

2p
� � � � �

2p � .k � 1/

2p

D 1 �

�

1 �
1

2p

�

�

�

1 �
2

2p

�

� � � � �

�

1 �
k � 1

2p

�

D

k�1
Y

iD0

�

1 �
i

2p

�

:

That is, in such a distribution, ‘1’ can be placed in any column, ‘2’ can be placed in

any column except that for ‘1’, etc.

Next, �.k/ can be approximated as follows:

�.k/ '

k�1
Y

iD0

exp

�

�
i

2p

�

D exp

�

k�1
X

iD1

i

2p

!

D exp

�

�
k.k � 1/

2 � 2p

�

' exp

�

�
k2

2pC1

�

�

The above theorem shows the case when the input variables are removed without

considering the property of the function. In practice, we can remove the maximum

number of nonessential variables by an optimization program.

Theorem 11.5.2. Consider a set of uniformly distributed incompletely specified in-

dex generation functions f .x1; x2; : : : ; xn/ with weight k, where 2 � k < 2n�2.

The probability that f can be represented with p < n variables is greater than

1 � �.n
p/;

where � D 1 � �.k/, and �.k/ is the probability that f can be represented with

x1; x2; : : : ; xp�1, and xp .

The proof of Theorem 11.5.2 is similar to that of Theorem 11.4.2. From Theorem

11.5.2, we have the following:

Conjecture 11.5.1. Consider a set of uniformly distributed incompletely specified

index generation functions with weight k. If p � 2dlog2.k C 1/e � 3, then more

than 95% of the functions can be represented with p variables.

11.5 Extension to Multiple-Output Functions 129

From experimental results, we have the following:

Conjecture 11.5.2. Consider a set of uniformly distributed incompletely specified

index generation functions with weight k. Then, the fraction of the functions repre-

sented with p D 2dlog2.k C 1/e � 3 variables approaches 1.0, as n increases.

Note that there exist functions that require more than p D 2dlog2.k C 1/e � 3

variables, as shown below. However, the fraction of such functions approaches 0.0,

as n increases.

Example 11.5.2. Consider the n-variable incompletely specified index generation

function f with weight k D n C 1:

f .1; 0; 0; : : : ; 0; 0/ D 1

f .0; 1; 0; : : : ; 0; 0/ D 2

f .0; 0; 1; : : : ; 0; 0/ D 3

:::
:::

f .0; 0; 0; : : : ; 1; 0/ D n � 1

f .0; 0; 0; : : : ; 0; 1/ D n

f .0; 0; 0; : : : ; 0; 0/ D n C 1

f .a1; a2; a3; : : : ; an�1; an/ D d (for other combinations):

In this function, all the variables are essential, and no variable can be removed.

Theorem 11.5.3. To represent an incompletely specified index generation function

with weight k, at least dlog2.k C 1/e variables are necessary.

Proof. To distinguish k C 1 outputs, at least dlog2.k C 1/e variables are necessary.

Note that one output is used to show that there is no matched vector. Nonzero outputs

denote registered vectors, while zero outputs denote nonregistered vectors. �

11.5.2 Number of Variables to Represent General

Multiple-Output Functions

Theorem 11.5.4. Let F be an arbitrary n variable m output function, and let D be

a set of k randomly selected vectors in Bn. Let OF be an incompletely specified func-

tion defined on only D. The probability that OF can be represented with x1; x2; : : : ;

and xp , for p < n, is �.k/, where �.k/ is defined in (11.1).

Proof. For each vector in D, assign a unique index in f1; 2; : : : ; kg. From D, we

can define an incompletely specified index generation function: D ! f1; 2; : : : ; kg.

Next, for each vector in D, obtain the output value of F , and make a truth ta-

ble showing the function f1; 2; : : : ; kg ! Bm. Note that this function can be

130 11 Reduction of the Number of Variables

implemented by memory with dlog2.kC1/e inputs. Thus, the incompletely specified

function OF can be realized as the cascade connection of the index generation circuit

and memory.

By Theorem 11.5.1, the index generation function can be represented with at

most p variables. Thus, the function OF can be also represented with at most p

variables. �

Similarly to Conjecture 11.5.2, we have the following:

Conjecture 11.5.3. When k minterms are selected randomly, the fraction of

multiple-output functions with only k minterms that can be represented by at

most p D 2dlog2.k C 1/e � 3 variables approaches 1.0, as n increases.

11.6 Experimental Results

11.6.1 Random Single-Output Functions

For different n, we randomly generated 1,000 functions, where u combinations are

mapped to 0, u combinations are mapped to 1, and the other 2n � 2u combinations

are mapped to don’t cares. We minimized the number of variables by an exact opti-

mization algorithm, which is similar to Algorithm 11.3.1 shown in Sect. 11.3.

Table 11.5 shows the average numbers of variables to represent the single-output

functions, where the set of variables are selected by the optimization algorithm.

For example, 16-variable functions where 15 minterms are mapped to zeros, 15

minterms are mapped to ones, and the other minterms are mapped to don’t cares,

require, on the average, only 5.157 variables to represent the functions.

Table 11.5 shows that the necessary number of variables to represent the func-

tions mainly depends on u. The last column of the table shows the number of

variables to represent incompletely specified functions by Conjecture 11.4.2. For

Table 11.5 Average numbers

of variables to represent

single-output logic functions

with u 1’s and u 0’s

u n D 16 n D 20 n D 24 2dlog2.u C 1/e � 2

7 3.334 3.145 3.017 4

15 5.157 4.981 4.940 6

31 7.126 6.980 6.003 8

63 9.179 8.972 8.861 10

127 11.362 10.971 10.776 12

255 13.754 12.990 12.725 14

511 15.739 15.098 14.805 16

1023 16.000 17.508 16.918 18

2047 16.000 19.705 18.996 20

4095 16.000 20.000 21.394 22

8191 16.000 20.000 23.630 24

11.6 Experimental Results 131

Table 11.6 Average number

of variables to represent

incompletely specified index

generation function

k n D 16 n D 20 n D 24 2dlog2.k C 1/e � 3

7 3.052 3.018 3.003 3

15 4.980 4.947 4.878 5

31 6.447 6.115 6.003 7

63 8.257 8.007 8.000 9

127 10.304 10.000 9.963 11

255 12.589 11.996 11.896 13

511 14.890 14.019 13.787 15

1023 15.991 16.293 15.874 17

2047 16.000 18.758 17.965 19

4095 16.000 19.992 20.093 21

example, when u D 15, to represent a uniformly distributed function, Conjecture

11.4.2 shows that 6 variables are sufficient. On the other hand, experimental results

show that only 4, 5, or, 6 variables are necessary to represent the functions. We note

that the variance is very small.

11.6.2 Random Index Generation Functions

We generated uniformly distributed index generation functions. Table 11.6 shows

the average numbers of variables to represent n-variables index generation functions

with k registered vectors. For the other 2n � k combinations, the outputs are set

to don’t cares. The values are the average of 1,000 randomly generated functions.

Table 11.6 shows that the necessary number of variables to represent the functions

strongly depends on k.

The last column of Table 11.6 shows the number of variables to represent in-

completely specified index generation functions with weight k given by Conjecture

11.5.2. For example, when k D 31, to represent a uniformly distributed function,

Conjecture 11.5.2 shows that 9 variables are sufficient. On the other hand, ex-

perimental results show that only 6 or 7 variables are necessary to represent the

functions. Again, the variance is very small.

11.6.3 IP Address Table

To verify the effectiveness of the method in a practical application, we used distinct

IP addresses of computers that accessed our web site over a period of a month. We

considered four lists of different sizes: List 1, List 2, List 3, and List 4. Table 11.7

shows the results. The first row shows the number of registered vectors: k. The sec-

ond row shows the number of inputs: n. The third row shows the number of outputs:

q D dlog2.k C 1/e. The fourth row shows the number of variables sufficient to rep-

resent the functions given by Conjecture 11.5.2, i.e., 2dlog2.k C 1/e � 3. The fifth

132 11 Reduction of the Number of Variables

Table 11.7 Realization of IP address tables

List 1 List 2 List 3 List 4

of vectors: k 1,670 3,288 4,591 7,903

of inputs: n 32 32 32 32

of outputs: q 11 12 13 13

2dlog2.k C 1/e � 3 19 21 23 23

of variables using Single-input hash: ns 18 20 21 23

of variables using Double-input hash: nd 17 19 20 21

Single-memory realization (�1010 bits) 4.72 5.15 5.58 5.58

Realization using Single-input hash (�106 bits) 2.95 12.7 27.5 109.3

Realization using Double-input hash (�106 bits) 1.51 6.3 13.9 27.5

row shows the number of variables to represent the function, where the number

of variables was minimized by Algorithm 11.3.1. In this case, selected input vari-

ables are connected to the main memory through the single-input hash circuit shown

Fig. 10.3. The sixth row shows the number of variables to represent the function,

where a linear transformation is used to reduce the number of variables. In this case,

the double-input hash circuit shown in Fig. 10.2 is used. The seventh row shows the

number of bits to represent the function by a single memory: q2n. The eighth row

shows the total number of bits to represent the function by using the single-input

hash circuit shown in Fig. 10.3: q2ns C n2q , where the first term denotes the size of

the main memory, while the second term denotes the size of the AUX memory. The

last row shows the total number of bits needed to represent the function by using the

double-input hash circuit shown in Fig. 10.2: q2nd C n2q . As shown in Table 11.7,

the total amount of memory can be drastically reduced.

11.6.4 Benchmark Multiple-Output Functions

We reduced the number of variables for selected PLA benchmark functions [159].

Table 11.8 shows the numbers of variables to represent benchmark functions (bc0,

chkn, in2, in7, intb, and vg2) for different values of care minterms k. In the table,

n denotes the number of original input variables, q denotes the number of outputs,

and W denotes the number of products in the PLA. The rightmost column shows

the upper bound derived by Conjecture 11.5.3: 2dlog2.k C 1/e � 3. Out of 2n com-

binations, we randomly selected k different combinations as care minterms, and set

other 2n � k minterms to don’t cares. Then, we minimized the number of variables.

From the table, we observe that the number of variables strongly depends on k, but

is virtually independent of n, q, W , and the function name. Again, for these bench-

mark functions, the upper bounds on the number of products given by the Conjecture

11.5.3 are valid.

11.7 Remarks 133

Table 11.8 Number of variables needed to represent incompletely specified multiple-output

PLA benchmark functions

k bc0 chkn in2 in7 intb vg2 Conj. 11.5.3

n D 26 n D 29 n D 19 n D 27 n D 15 n D 25

q D 11 q D 7 q D 7 q D 10 q D 7 q D 8 Upper

W D 179 W D 142 W D 135 W D 55 W D 631 W D 110 bound

15 4 4 4 4 5 4 5

31 6 5 6 6 7 6 7

63 8 7 7 8 8 7 9

127 9 9 8 8 10 9 11

255 11 10 9 10 12 11 13

511 12 12 10 12 14 13 15

1023 14 14 13 13 15 14 17

11.7 Remarks

For incompletely specified index generation functions, reduction of the number of

variables is quite effective. Combined with the hash method presented in the pre-

vious chapter, this method drastically reduces the amount of memory to implement

the function. An extension to multi-valued input functions is considered in [137].

This chapter is based on [111, 131, 132, 137].

Problems

11.1. Minimize the number of variables for the incompletely specified logic func-

tion whose characteristic functions are:

F0 D Nx5f Nx1x2.x3 _ Nx4/ _ x1x2.x3 ˚ x4/g _ x5fx2 Nx3x4 _ Nx1 Nx3 Nx4 _ Nx1x2 Nx3g:

F1D Nx5. Nx1 Nx2x3_x1 Nx3 Nx4_x1 Nx2x4/_x5.x1 Nx2 Nx3_x1 Nx2 Nx4_x1x2x3x4_ Nx1 Nx2x3x4/:

11.2. Consider the incompletely specified function of 8 variables in Table 11.9.

Minimize the number of variables.

11.3. Consider a binary matrix of 8 columns and 7 rows, where 0’s and 1’s are

distributed uniformly.

1. Calculate the probability that all the rows are distinct.

2. Remove the first column. Calculate the probability that all the rows are distinct.

11.4. Let n D 10 and k D 31. Consider a decomposition chart of an index gen-

eration function f .X1; X2/ with weight k, where X1 D .x1; x2; : : : ; x9/ and

X2 D .x10/. Calculate the probability that each column has at most one nonzero el-

ement. Also, calculate the probability, among the 10 partitions, where X1 D X �xi ,

134 11 Reduction of the Number of Variables

Table 11.9 Incompletely

specified function of 8

variables

a b c d e f g h F

v1 0 0 1 0 0 0 0 0 0

v2 0 1 0 0 0 0 1 0 0

v3 0 0 1 0 0 1 1 0 0

v4 0 0 0 1 0 0 1 0 1

v5 0 1 0 0 1 1 0 0 1

v6 1 0 0 1 0 1 0 0 1

Table 11.10 4-Valued input

index generation function
x1 x2 x3 x4 x5 x6 x7 x8 f

A A G A G C T A 1

A A G C A C G C 2

G A A G A T C A 3

C T G G A G G G 4

T A G G G A T A 5

T A T G C C A G 6

T G A C C G C G 7

X2 D .xi /, and X D .x1; x2; : : : ; x10/ for .i D 1; 2; : : : ; 10/, there exist at least

one partition, in which each column has at most one nonzero element. It is suggested

that you use a computer or a calculator to obtain this value.

11.5. Consider a set of uniformly distributed incompletely specified index gener-

ation functions of n variables with weight k. Derive the probability that all the

variables are essential, for n D 2r and k D 2r .

11.6. Show a 4-variable incompletely specified index generation function satisfying

the following conditions:

1. Four combinations are mapped to 1.

2. Four combinations are mapped to 0.

3. All other 8 combinations are mapped to don’t cares.

4. All the variables are essential.

11.7. The four bases found in deoxyribonucleic acid (DNA) are adenine (abbrevi-

ated A), cytosine (C), guanine (G), and thymine (T). Consider the DNA patterns

shown in Table 11.10. Find the minimum set of variables to distinguish these

patterns.

11.8. Consider a set of uniformly distributed, incompletely specified index gener-

ation functions f W D ! I , where B D f0; 1g, D � Bn and I D f1; : : : ; kg.

Then, the probability that f can be represented with only x1; x2; : : : ; xp�1 and xp ,

where p < n is ın�p D M
n�p, where n�p D ˇ2n�p

C 2n�p˛ˇ2n�p�1, ˛ D k
2n ,

ˇ D 1 � ˛, and M D 2p. Prove this.

11.9. Consider a set of uniformly distritbuted index generation functions f W
Bn ! I , where B D f0; 1g and I D f0; 1; : : : ; kg. Let PR be the probability

that f .x1; x2; : : : ; xn/ can be represented by using only p variables. Then

11.7 Remarks 135

PR D 1 � .1 � ın�p/.
n
p/;

where ın�p is the probability that f .x1; x2; : : : ; xn/ can be represented by using

only x1; x2; : : : ; xp�1, and xp . Compute the numerical values of PR when n D 20

and k D 2047, for p D 17; 18, and 19. You can use the results of the previous

problem.

11.10. Consider a group of 64 people. Obtain the probability that the birthdays of

all the people are distinct. Assume that the probabilities of the birth are the same

for all 365 days in a year. Calculate the expected number of distinct birthdays in the

group of 64 people.

11.11. Assume that the probabilities of birth are the same for all 365 days in a year.

Calculate the expected number of distinct birthdays in a room with 365 people.

Chapter 12

Various Realizations

This chapter shows various realizations of index generation functions.

12.1 Realization Using Registers, Gates, and An Encoder

An index generator can be directly implemented using a Programmable Logic Array

(PLA) or a Content Addressable Memory (CAM). An index generator can also be

implemented using ordinary logic elements. Figure 12.1 [98] shows an index gener-

ator for an LPM implemented by registers, gates, and a priority encoder. A register

pair (Reg. 1 and Reg. 0) is used to store each digit of a ternary vector. For exam-

ple, if the digit is * (don’t care), the register pair stores (1,1). Thus, for n bit data,

we need a 2n-bit register. The comparison circuit consists of an n-input AND gate

and n comparison circuits, each of which produces a 1 if and only if the input bit

matches the stored bit or the stored bit is don’t care (* or 11).

For each prefix vector of an n-input LPM index generator, we need a 2n-bit regis-

ter, n comparison circuits, and an n-input AND gate. For an n-input index generator

with k registered prefix vectors, we need k registers of 2n bits, nk comparison cir-

cuits, and k AND gates with n inputs. In addition, we need a priority encoder with k

inputs and dlog2.k C 1/e outputs to generate the LPM address.

The demerit of this circuit is that it becomes complex as the number of registered

vectors increases.

12.2 LUT Cascade Emulator

In an LUT cascade, once the number of inputs and outputs for each cell are fixed,

only a limited class of functions can be realized. Thus, the LUT cascade emula-

tor1 having the architecture shown in Fig. 12.2 has been developed [96]. It consists

1 In some publications [113], the emulator was called an LUT cascade. However, later the sequen-

tial circuit that emulates an LUT cascade is called an LUT cascade emulator.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 12,

cSpringer Science+Business Media, LLC 2011

137

138 12 Various Realizations

Inputs

P
rio

rity
 E

n
c
o

d
e

r

Register pairs

1-bit Comparison circuit

AND

Outputs

log2(k+1)

n

Input

Reg.1 Reg.0

Reg.1 Reg.0

0 : 0 1
1 : 1 0

* : 1 1

Reg.1 Reg.0

Reg.1 Reg.0

0 : 0 1
1 : 1 0

* : 1 1

Fig. 12.1 Index generator implemented using registers, gates, and a priority encoder

Fig. 12.2 LUT cascade

emulator

Programmable

Interconnection

Network

Shifter

Memory

for

Logic

Control

Network

Shifter

Output Register

Primary Outputs

Primary

Inputs

Memory for

Interconnection

of a large memory that stores the data for cells, a programmable interconnection

network, and a control circuit. It emulates an LUT cascade sequentially. That is,

the outputs of the various LUTs are produced in sequence starting with the leftmost

LUT. Although the emulator is slower than the LUT cascade, it is more flexible than

the LUT cascade.

A shifter that drives the programmable interconnection network is used for

memory packing [118], while a shifter that drives the output register is used to ac-

cumulate the outputs.

Example 12.2.1. Let us emulate the LUT cascade with four cells shown in Fig. 12.3

by the emulator [123].

12.3 Realization Using Cascade and AUX Memory 139

X1 X2 X3 X4

1 2 43

1st cell

X1

0
0
a b c d

2nd cell

X2

1
0

3rd cell

X3

0
1

4th cell

X4

1
1

1
2

3
4

Fig. 12.3 Operation of an LUT cascade emulator

Step 1 To emulate Cell1, the two most significant bits of the address for memory

for logic are set to .0; 0/ to specify the first page of the memory for logic, which

corresponds to the first cell. Also, the values of X1 are set to the lower address

bits of the memory for logic, as shown in Fig. 12.3a. This is done through the

programmable interconnection network in Fig. 12.2. By reading the content of

the first page, we obtain the outputs of Cell1.

Step 2 To emulate Cell2, the two most significant bits of address are set to .0; 1/

to specify the second page. Also, the values of X2 are set to the middle address

bits, and the outputs of Cell1 are connected to the least significant bits through

the programmable interconnection network, as shown in Fig. 12.3b. By reading

the content of the second page, we obtain the outputs of Cell2.

Step 3 To emulate Cell3, the two most significant bits of address are set to .1; 0/ to

specify the 3rd page. Also, the values of X3 are set to the middle address bits,

and the outputs of Cell2 are connected to the least significant bits through the

programmable interconnection network, as shown in Fig. 12.3c. By reading the

content of the 3rd page, we obtain the outputs of Cell3.

Step 4 To emulate Cell4, the two most significant bits of address are set to .1; 1/ to

specify the last page. Also, the values of X4 are set to the middle address bits,

and the outputs of Cell3 are connected to the least significant bits through the

programmable interconnection network, as shown in Fig. 12.3d. By reading the

content of the 4th page, we obtain the outputs of Cell4. At this point, the outputs

of all LUTs have been obtained, and the complete circuit’s output is specified.

12.3 Realization Using Cascade and AUX Memory

Here, we show a method to reduce hardware by using an auxiliary memory and a

comparator. Figure 12.4 illustrates the idea of the method.

140 12 Various Realizations

Circuit

for g

AUX

memory

Data
Temporary Index

Registered

Vector

equal

Correct

Index

f

Comparator

AND
n

n

n

)1(log2 +k

Fig. 12.4 Index generator using auxiliary memory

Algorithm 12.3.1. (Simplification of Index Generators).

1. Let f be an index generation function. Let g be the function where the output

values for the nonregistered inputs in f are replaced by don’t cares.

2. Reduce the number of variables to represent g. Produce the circuit for g. In

general, the circuit for g is simpler than the circuit for f .

3. When the query data matches a registered vector, the circuit g produces correct

outputs. When the query data does not match any registered vector, the circuit

for g may produce wrong output values.

4. To detect the correct outputs, we use an auxiliary (AUX) memory with q D
dlog2.k C 1/e inputs and n outputs. The AUX memory stores corresponding reg-

istered vector for each address.

5. Apply the output address of the circuit for g to the AUX memory, and read out

the registered vector in the AUX memory. If the output vector of the AUX memory

equals to the input vector, then the circuit for g produces the correct output value.

If the output vector of the AUX memory is different from the input vector, then the

input vector is not registered. In this case, the comparator sends 0 to the AND

gate. Thus, the circuit produces 0.

An ordinary logic circuit can be simplified by don’t cares [110]. The present

method has the following features:

� The number of nonzero outputs (k) of the index generation function is much

smaller than the total number of input combinations 2n. In g, the outputs for the

nonregistered inputs are set to don’t cares.

� To verify the correctness of the output of the circuit for g, we use the AUX

memory.

The total amount of hardware is smaller than the direct implementation of f . In

logic synthesis using memories, reduction of support variables is important. In the

index generation functions, the fraction of don’t cares is very large, and we can

often reduce the number of support variables. Details are shown in Chap. 11.

Example 12.3.1. (LUT Cascade and LUT Memory) Let us design the index gen-

erator for the registered vector table shown in Table 12.1. Since the number of the

12.3 Realization Using Cascade and AUX Memory 141

Table 12.1 Registered

vector table
Index x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 0 0 1 0 0 1 0 1 1 0 0

2 0 0 1 1 1 1 1 0 1 0 1

3 0 0 1 1 1 1 1 0 1 1 0

4 0 1 0 0 1 1 0 0 1 0 1

5 0 1 0 0 1 1 0 1 1 1 1

6 1 0 0 0 0 1 0 0 1 0 0

7 1 0 0 0 1 1 0 0 1 0 1

8 1 0 0 0 1 1 0 1 0 0 1

9 1 0 0 0 1 1 0 1 1 1 1

10 1 0 1 0 0 0 0 1 0 0 1

11 1 0 1 0 0 1 0 0 1 0 0

12 1 1 0 0 0 1 1 0 1 0 1

13 1 1 0 0 1 0 0 1 1 1 1

14 1 1 0 1 0 0 0 0 0 0 0

15 1 1 0 1 0 0 0 1 0 0 1

Table 12.2 Reduced

registered vector table
Index x1 x2 x3 x8 x10 x11

1 0 0 1 1 0 0

2 0 0 1 0 0 1

3 0 0 1 0 1 0

4 0 1 0 0 0 1

5 0 1 0 1 1 1

6 1 0 0 0 0 0

7 1 0 0 0 0 1

8 1 0 0 1 0 1

9 1 0 0 1 1 1

10 1 0 1 1 0 1

11 1 0 1 0 0 0

12 1 1 0 0 0 1

13 1 1 0 1 1 1

14 1 1 0 0 0 0

15 1 1 0 1 0 1

registered vectors is 15, the index generator has 4 outputs. It has 11 inputs, as well.

Let g be a function, where the output values for the nonregistered input vectors are

replaced by don’t cares. By reducing the number of variables, g can be represented

with only six variables fx1; x2; x3; x8; x10; x11g. This can be obtained by Algo-

rithm 11.3.1 with the help of a computer program. Sufficiency can be verified by

Table 12.2, where all the reduced vectors are different. Thus, six bits are sufficient

to distinguish the indices. Also, the set is minimal. That is, deletion of any vari-

able makes at least one pair of indices indistinguishable. Next, realize the reduced

function g by an LUT cascade. Figure 12.5 shows an index generator using the AUX

memory. Note that, in Fig. 12.5, only six variables fx1; x2; x3; x8; x10; x11g are used

as the inputs for the LUT cascade. We designed the cascade with 5-LUTs. Table 12.3

shows the content of the AUX memory, where the values for fx4; x5; x6; x7; x9g are

stored.

142 12 Various Realizations

u1

u2

u3

u4

x1

x2

x3

x8

x10 x11

z3

z2

z1

z0

AUX

Memory

x4
x5
x6

x9

x7

y4

y5

y6

y9

y7

Comparator

f3

f2

f1

f0

Fig. 12.5 Index generator using auxiliary memory

Table 12.3 Truth table for

auxiliary memory
z3 z2 z1 z0 y4 y5 y6 y7 y9

0 0 0 1 0 0 1 0 1

0 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1

0 1 0 1 0 1 1 0 1

0 1 1 0 0 0 1 0 1

0 1 1 1 0 1 1 0 1

1 0 0 0 0 1 1 0 0

1 0 0 1 0 1 1 0 1

1 0 1 0 0 0 0 0 0

1 0 1 1 0 0 1 0 1

1 1 0 0 0 0 1 1 1

1 1 0 1 0 1 0 0 1

1 1 1 0 1 0 0 0 0

1 1 1 1 1 0 0 0 0

The second cell realizes the temporary index .z3; z2; z1; z0/. This index is used

to read the AUX memory. The output of the AND memory .y4; y5; y6; y7; y9/ is

compared with the input values .x4; x5; x6; x7; x9/. If they agree, the temporary

index is correct, then .f3; f2; f1; f0/ D .z3; z2; z1; z0/ is the output. Otherwise, the

input query data is not in the AUX memory, and .f3; f2; f1; f0/ D .0; 0; 0; 0/ is

produced at the output.

Figure 12.5 shows the circuit. The total memory is

32 � 4 � 2 C 16 � 5 D 256 C 80 D 336

bits. Tables 12.4 and 12.5 are truth tables for the cells in the cascade.

12.4 Comparison of Various Methods 143

Table 12.4 Truth table for

the first cell
Index x1 x2 x3 x8 x10 u1 u2 u3 u4

1 0 0 1 1 0 0 0 0 1

2 0 0 1 0 0 0 0 1 0

3 0 0 1 0 1 0 0 1 1

4 0 1 0 0 0 0 1 0 0

5 0 1 0 1 1 0 1 0 1

6 1 0 0 0 0 0 1 1 0

7 1 0 0 0 0 0 1 1 0

8 1 0 0 1 0 1 0 0 0

9 1 0 0 1 1 1 0 0 1

10 1 0 1 1 0 1 0 1 0

11 1 0 1 0 0 1 0 1 1

12 1 1 0 0 0 1 1 0 0

13 1 1 0 1 1 1 1 0 1

14 1 1 0 0 0 1 1 0 0

15 1 1 0 1 0 1 1 1 1

Table 12.5 Truth table for

the second cell
Index u1 u2 u3 u4 x11 z3 z2 z1 z0

1 0 0 0 1 0 0 0 0 1

2 0 0 1 0 1 0 0 1 0

3 0 0 1 1 0 0 0 1 1

4 0 1 0 0 1 0 1 0 0

5 0 1 0 1 1 0 1 0 1

6 0 1 1 0 0 0 1 1 0

7 0 1 1 0 1 0 1 1 0

8 1 0 0 0 1 1 0 0 0

9 1 0 0 1 1 1 0 0 1

10 1 0 1 0 1 1 0 1 0

11 1 0 1 1 0 1 0 1 1

12 1 1 0 0 1 1 1 0 0

13 1 1 0 1 1 1 1 0 1

14 1 1 0 0 0 1 1 0 0

15 1 1 1 1 1 1 1 1 1

12.4 Comparison of Various Methods

Example 12.4.1. Estimate the amount of hardware to implement index generation

functions for

1. n D 10 and k D 500. Use a single LUT.

2. n D 10 and k D 15. Use an LUT cascade.

3. n D 48 and k D 100. Use the hybrid method.

144 12 Various Realizations

4. n D 48 and k D 1;000. Use the super hybrid method.

5. n D 32 and k D 500;000. Use the standard parallel sieve method.

(Solution)

1. Single LUT.

When n D 10 and k D 500. The number of inputs for the memory is n D 10,

and the number of outputs is q D dlog2.500 C 1/e D 9. Thus, the size of the

memory is 210 � 9 D 9 Kibits, where 1 Kibit denotes 210 bits.

2. LUT Cascade.

When n D 10 and k D 15. Consider an LUT cascade with .K D 6/-input LUTs.

The number of inputs is n D 10, the number of rails is w D dlog2.15 C 1/e D 4,

and the number of outputs is m D w D 4. The number of cells is

s D
l n � w

K � w

m

D

�

10 � 4

6 � 4

�

D
6

2
D 3:

The total amount of memory is

26 � 4 � 3 D 3 � 28 D 0:75 � 210;

or, 0.75 Kibits.

3. Hybrid Method.

When n D 48, k1 D 100. q D dlog2.100 C 1/e D 7. In this case, an LUT

cascade would be too large, and so we use the hybrid method. Let the number of

inputs to the main memory be p D q C 2 D 9. In this case, by Corollary 10.5.1,

the fraction of remaining registered vectors is

1 D 1 � ı1 D
� � 1 C e��

�
:

Since p D 9 and k1 D 100, we have � D 0:1953, and

1 D 1 � 0:9084 D 0:0916:

Thus, the number of remaining vectors is 1k1 ' 9, which can be implemented

by an LUT cascade or a rewritable PLA.

The sizes of memories are as follows:

Main memory: 9-input, 7-outputs: 29 � 7 D 3:5 � 210 D 3:5 Kibits.

AUX memory: 7-input, 41-outputs: 27 � 41 D 5:1 � 210 D 5:1 Kibits.

Thus, the total memory size is 8.6 Kibits.

4. Super Hybrid Method.

When n D 48, k1 D 1;000. q1 D dlog2.1000 C 1/e D 10. In the hybrid method,

the remaining vector is 10% of the original vectors. That is, 100, which is fairly

large. Thus, we use the super hybrid method. In the super hybrid method, we use

12.4 Comparison of Various Methods 145

the first main memory with p1 D q1 C 1 D 11 inputs, and q1 D 10 outputs. The

fraction of vectors not realized by the first IGU is

1 D 1 � ı1 D
�1 � 1 C e��1

�1

:

When, k1 D 1;000 and p1 D 11, we have �1 D 0:48828 and 1 D 0:2088. The

number of remaining vectors is k2 D k11 ' 209. q2 D dlog2.209 C 1/e D 8.

The second main memory has p2 D q2 C 1 D 8 C 1 D 9 inputs and q2 D 8

outputs. The fraction of vectors not realized by the second IGU is

2 D 1 � ı2 D
�2 � 1 C e��2

�2

:

When, k2 D 209 and p2 D 9, we have �2 D 0:398437; and 2 ' 0:1752. Thus,

the number of remaining vectors is k3 D k22 ' 36, which can be implemented

by an LUT cascade or a rewritable PLA.

The sizes of memories are as follows:

first main memory: 11-input, 10-outputs: 211 � 10 D 20 Kibits.

first AUX memory: 10-input, 37-outputs: 210 � 37 D 37 Kibits.

second main memory: 9-input, 8-outputs: 29 � 8 D 4 � 210 D 4 Kibits.

second AUX memory: 8-input, 39-outputs: 28 � 39 D 9:75 Kibits.

Thus, the total memory size is 70.75 Kibits.

5. Standard Parallel Sieve Method.

When k1 D 500;000, we have q1 D dlog2.500; 000 C 1/e D 19. In the super

hybrid method, the remaining vector is 4% of the original vectors. That is, 20000,

which is very large. Thus, we use the standard parallel sieve method. In the stan-

dard parallel sieve method, the first main memory has p1 D q1 D 19 inputs and

q1 D 19 outputs. The fraction of vectors not realized by the first IGU is

1 D 1 � ı1 D
�1 � 1 C e��1

�1

When k1 D 500;000 and p1 D 19, we have �1 D 0:953674 and 1 D 0:35546:

Thus, the number of remaining vectors is k2 D k11 ' 177; 733. and q2 D
dlog2.177733 C 1/e D 18.

The second main memory has p2 D q2 D 18 inputs and q2 D 18 outputs.

The fraction of vectors not realized by the second IGU is

2 D 1 � ı2 D
�2 � 1 C e��2

�2

:

When, k2 D 177; 733 and p2 D 18, we have �2 D 0:6779976, and the number

of remaining vectors is k3 D k22 ' 48662.

146 12 Various Realizations

In the similar way, we have

p3 D 16; k4 ' 14; 316:

p4 D 14; k5 ' 4; 771:

p5 D 13; k6 ' 1; 155:

p6 D 11; k7 ' 273:

p7 D 9; k8 ' 62:

Thus, the number of remaining vectors is k8 ' 62, which can be implemented

by an LUT cascade or a rewritable PLA.

Note that for each IGUi , the main memory has pi inputs and pi outputs, while

the AUX memory has pi inputs and .n � pi / outputs. Thus, the total amount of

memory is

pi2
pi C .n � pi /2

pi D n2pi :

So, the total amount of memory for the parallel sieve method is

r
X

iD1

n2pi D 32 � .219 C 218 C 216 C 214 C 213 C 211 C 29/:

It is about 24-Mibit, where 1 Mibit denotes 220 bits.

Example 12.4.2. Consider a system that detects computer viruses. A complete sys-

tem using only hardware is too complex, so we use two-stage method: In the first

stage, suspicious patterns are detected by hardware, and in the second stage, a com-

plete match is performed by software only for the patterns detected in the first stage.

Here, we consider the hardware part in the first stage. Assume that we check the

text using a window of four characters, and the number of suspicious patterns is

k D 500;000. Fig. 12.6 shows the circuit to detect the suspicious patterns. Eight

4-stage shift registers are used to store four characters. These registers work as a

window. Note that the number of inputs to the memory is 4 � 8 D 32, and the

number of outputs is dlog2.k C 1/e D 19.

Memory

R
eg
.

Input (text)

Output

8

8

)1(log2 +k

R
eg
.

8

R
eg
.

8

R
eg
.

8

8 8 8

Fig. 12.6 Virus scanning circuit

12.5 Code Converter 147

A straightforward implementation requires a memory with impractical size:

dlog2.kC1/e232 D 76 Gibits, where 1 Gibit denotes 230 bits. If we use the standard

parallel sieve method shown in Example 12.4.1, we need only 24 Mibits.

12.5 Code Converter

In this part, we consider a class of code converters that can be treated as index

generation functions.

Definition 12.5.1. An m-out-of-n code consists of
�

n
m

�

binary code words whose

weights are m.

Definition 12.5.2. An m-out-of-n to binary converter realizes an index generation

function with
�

n
m

�

nonzero elements. It has n inputs and dlog2

�

n
m

�

C 1e outputs.

When the number of 1’s in the inputs is not m, the converter produces the all 0 code.

The m-out-of-n code is produced in ascending lexicographical order. That is, the

smallest number is denoted by .0; 0; : : : ; 0; 1; 1; : : : ; 1/, while the largest number is

denoted by .1; 1; : : : 1; 0; 0; : : : ; 0/.

Example 12.5.1. When n D 6 and m D 3, we have the function shown in

Table 12.6.

Table 12.6 Registered vector

table for 3-out-of-6 to binary

converter

3-out-of-6 code

x1 x2 x3 x4 x5 x6 Index

0 0 0 1 1 1 1

0 0 1 0 1 1 2

0 0 1 1 0 1 3

0 0 1 1 1 0 4

0 1 0 0 1 1 5

0 1 0 1 0 1 6

0 1 0 1 1 0 7

0 1 1 0 0 1 8

0 1 1 0 1 0 9

0 1 1 1 0 0 10

1 0 0 0 1 1 11

1 0 0 1 0 1 12

1 0 0 1 1 0 13

1 0 1 0 0 1 14

1 0 1 0 1 0 15

1 0 1 1 0 0 16

1 1 0 0 0 1 17

1 1 0 0 1 0 18

1 1 0 1 0 0 19

1 1 1 0 0 0 20

148 12 Various Realizations

Theorem 12.5.1. Let f .x1; x2; : : : ; xn/ be a m-out-of-n to binary converter.

Let X1 D .x1; x2; : : : ; xp/ and X2 D .xpC1; xpC2; : : : ; xn/ be a partition of

X D .x1; x2; : : : ; xn/. Then, the column multiplicity � p of the decomposition

f .X1; X2/ is

�p D 2p (when 1 � p � m)

�p D 1 C

m
X

iD0

p

i

!

(when m < p < n � 1)

�p D

n

m

!

C 1 (when p D n � 1, or n)

Example 12.5.2. Consider the case of m D 2 and n D 9. The profile of the 2-out-

of-9 to binary converter is

.�1; �2; �3; �4; �5; �6; �7; �8; �9/ D .2; 4; 8; 12; 17; 23; 30; 37; 37/

Thus, it can be realized by an LUT cascade as shown in Fig. 12.7. Note that the

rightmost LUT has 8 inputs. Lemma 4.2.2 shows that an 8-LUT can be realized

with 5 modules of 6-LUTs. Thus, the total number of 6-LUTs to implemented the

function is 6 C 5 C 5 � 6 D 41.

Example 12.5.3. Consider the case of m D 2 and n D 20. The profile of the 2-out-

of-20 converter is

.2; 4; 8; 12; 17; 23; 30; 38; 47; 57; 68; 80; 93; 107; 122; 138; 155; 173; 191; 191/

In this case, the LUT cascade realization is not attractive. Thus, we consider a

tree-type realization. Partition the inputs into X1 D .x1; x2; : : : ; x10/ and X2 D
.x11; x12; : : : ; x20/. The column multiplicity of the decomposition with respect to

.X1; X2/ and .X2; X1/ are the same and are both 57. Thus, it can be realized by the

circuit shown in Fig. 12.8.

Another implementation is IGU shown in Fig. 10.1. If we can use the linear trans-

formation with many EXOR inputs, then the number of inputs to the main memory

is reduced to 9. The derivation of such a linear transformation is beyond the scope

of the book.

Fig. 12.7 LUT cascade

realization of 2-out-of-9

to binary converter

x1x2...x6

5
6

x7

6

x8

6

x9

12.6 Remarks 149

Fig. 12.8 Tree-type

realization of 2-out-of-20

to binary converter

10 6

10 6

8
X1

X2

Fig. 12.9 Tree-type

realization of 3-out-of-20 to

binary converter

X1

X2

10 8

10 8

11

Example 12.5.4. Consider the case of m D 3 and n D 20. The profile of the 3-out-

of-20 converter is

.2; 4; 8; 16; 27; 43; 65; 94; 131; 177; 233; 300; 379; 471; 577; 698; 835; 988;

1141; 1141/

In this case, the LUT cascade realization is impractical. To realize a tree-type circuit,

we partition the inputs into X1 D .x1; x2; : : : ; x10/ and X2 D .x11; x12; : : : ; x20/.

The column multiplicity of the decomposition with respect to .X1; X2/ and

.X2; X1/ are the same and equal to 177. Thus, it can be realized by the tree-

type circuit shown in Fig. 12.9. Unfortunately, the output LUT has 16 inputs and 11

outputs, and is rather large. Since the function is an index generation function, it

can be realized as shown in Chap. 10.

Another implementation is IGU shown in Fig. 10.1. If we can use the linear trans-

formation with many EXOR inputs, then the number of inputs to the main memory

is reduced to 11. Again, the derivation of such a linear transformation is beyond the

scope of the book.

12.6 Remarks

This chapter presented various methods to implement index generation functions.

Given the number of variables n, the number of registered vectors k, and available

devices, we can select the best design method among various methods: single-

memory, LUT cascade, LUT cascade emulator, the hybrid method, the super hy-

brid method, and the standard parallel sieve method. This chapter is based on

[85, 97, 98, 123].

150 12 Various Realizations

Problems

12.1. Realize the index generation function shown in Table 12.1. Use an LUT cas-

cade, where each LUT has at most 6 inputs. Compare the amount of memory to

implement the function by the method shown in Example12.3.1 and the LUT cas-

cade.

12.2. Realize the index generation function shown in Table 12.1. Use an LUT cas-

cade emulator, where each LUT has at most 6 inputs. Explain the operation of the

emulator. Compare the size of memory with the LUT cascade realization.

12.3. The standard parallel sieve method presented in Chapter 10 uses IGUs with

different sizes. Consider the parallel sieve method that uses IGUs with the same

sizes. Discuss the advantage and disadvantage of this approach [136].

12.4. Realize the 2-out-of-12 to binary converter.

Chapter 13

Conclusions

This book showed various methods to realize logic functions with LUTs. These

methods can be used to design FPGAs as well as custom integrated circuits. Main

applications are communication circuits and pattern matching circuits, where fre-

quent reconfiguration is needed. Major results are as follows:

1. Chapter 4 showed a general method to realize logic functions by LUTs. The

number of 6-LUTs to realize an n-variable function is .2n�4 �3/=3 or less, when

n D 2r .

2. Chapter 5 derived the number of LUTs to realize logic functions with small C-

measure �.f /. The number of 6-LUTs to realize an n-variable function (n �

8) is:

(a) 5n � 35 or less, when �.f / � 32.

(b) 2n � 11 or less, when �.f / � 16.

(c) n � 5 or less, when �.f / � 8 .n D 3r/.

(d) n � 4 or less, when �.f / � 8 .n ¤ 3r/.

3. Chapter 6 showed a method to reduce the number of LUTs using nonstrict en-

coding in a functional decomposition. This method is a way to find a nondisjoint

decomposition.

4. Chapter 7 showed various functions with small C-measures. These include

symmetric functions, sparse functions, LPM functions, segment index encoder

functions, and WS functions. Thus, these functions can be efficiently realized by

a cascade-based method.

5. Chapter 8 derived upper bounds on the column multiplicity of a decomposition

chart for logic functions with weight u. The number of 6-LUTs needed to realize

an n variable function is:

(a) 10 or less, when n D 9 and u � 55.

(b) 15 or less, when n D 10 and u � 47.

(c) 15 or less, when n D 10 and u � 64, for most functions.

6. Chapter 9 introduced index generation functions, and showed their applications.

An index generation function with weight k can be realized by .p; q/-elements,

where a .p; q/-element is an LUT with p D dlog2.k C 1/e C 1 inputs and q

outputs, where p > q.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2 13,

c Springer Science+Business Media, LLC 2011

151

152 13 Conclusions

7. Chapter 10 showed three methods to realize index generation functions: the

hybrid method, the super hybrid method, and the parallel sieve method. In these

methods:

(a) The output values for nonregistered inputs are set to don’t cares, and an in-

completely specified logic function is realized by a main memory.

(b) The output of the main memory is verified by an auxiliary memory. If the

output is correct, the circuit produces it as is; otherwise the outputs are set to

00 : : : 0.

(c) A hash circuit is used to randomize the distribution of registered vectors.

(d) A main memory is used to realize most of the registered vectors.

(e) To realize the remaining vectors, the same method is recursively used until

the final stage is sufficiently small.

8. Chapter 11 showed a reduction method of the number of variables to represent

incompletely specified functions. It was shown that most index generation func-

tions with weight k can be represented with p D 2dlog2.k C 1/e � 1 or fewer

variables. A method was introduced to reduce the number of variables by using

a linear transformation of the input variables.

9. Chapter 12 reviewed various methods to realize index generation functions.

Solutions

Problems of Chapter 2

2.1 In the CAM, if two or more rows match, then the priority encoder selects the

first one. In the PLA, the product for the first row is not necessary to implement,

since the outputs are (0,0). Also, note that the pattern of the top row is disjoint from

other rows, and it can be ignored. The second pattern (row) and the third pattern

(row) intersect. When .x1 ; x2; x3; x4/ D .0; 1; 1; 0/, both the second and the third

patterns match. However, the second pattern has the priority. So, we have to modify

the third pattern to make these patterns disjoint. We have to implement the PLA

shown in Table 13.1.

2.2 A synchronous memory requires one clock pulse to read out the data. So, it

is unsuitable for combinational circuits. On the other hand, asynchronous memory

requires no clock pulse to read out the data. The data can be read out immediately.

So, it can be used as an ordinary logic gate.

2.3 With the miniaturization of transistors and interconnections in LSIs, the delay

time of the transistors reduces, while that of the interconnection increases. Also, the

number of logic devices that can be included in an FPGA increases. Thus, the re-

duction of the delay time is more important than the reduction of the logic elements.

To reduce the delay time, increasing the number of inputs to an LUT is the most

effective.

2.4 To implement NOR or NAND in CMOS, transistors must be connected in series.

A series connection of up to four transistors is permitted and it still maintains the

performance. Thus, when the number of inputs to a PLA is large, a static CMOS

circuit is hard to implement. Dynamic CMOS is a method to implement a logic

function that is small and dissipates relatively less power.

2.5

1. Form a blank truth table of n inputs and m outputs, where m D dlog2 W e.

2. From the top word to the bottom word, fill in the truth table entries.

3. From the truth table, obtain a simplified sum-of-products expression.

4. Program the PLA.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2, 153

c Springer Science+Business Media, LLC 2011

154 Solutions

Table 13.1 Pattern for PLA x1 x2 x3 x4 x5 f1 f0

0 1 1 0 � 0 1

0 1 1 1 � 1 0

1 0 0 1 1 1 1

2.6

1. Form the truth table from the PLA.

2. Form a disjoint sum-of-products expression. Reduce the number of products, if

possible.

3. For each product, form a CAM word.

Problems of Chapter 3

3.1 The left-hand-side is

SB.4; 1/ � SB.4; 2/

D .x1 ˚ x2 ˚ x3 ˚ x4/ � .x1x2 ˚ x1x3 ˚ x1x4 ˚ x2x3 ˚ x2x4 ˚ x3x4/:

The right-hand-side is

SB.4; 3/ D x1x2x3 ˚ x1x2x4 ˚ x1x3x4 ˚ x2x3x4:

The straightforward expansion of the left-hand-side will produce a complicated ex-

pression. So, we use the Shannon’s expansion to prove the equality.

When, x1 D 0: The left-hand-side is

.x2 ˚ x3 ˚ x4/ � .x2x3 ˚ x2x4 ˚ x3x4/

D f.x2 ˚ x3/ ˚ x4gfx2x3 ˚ .x2 ˚ x3/x4g

D x2x3x4 ˚ .x2 ˚ x3/x4 ˚ .x2 ˚ x3/x4

D x2x3x4:

The right-hand-side is x2x3x4.

When, x1 D 1: The left-hand-side is

.1 ˚ x2 ˚ x3 ˚ x4/ � .x2 ˚ x3 ˚ x4 ˚ x2x3 ˚ x2x4 ˚ x3x4/

D f.x2 ˚ x3/ ˚ Nx4gf.x2 ˚ x3/ ˚ x2x3 ˚ .x2 ˚ x3/x4 ˚ x4g

D Œ.x2 ˚ x3/ ˚ .x2 ˚ x3/x4 ˚ .x2 ˚ x3/x4� ˚ Œ.x2 ˚ x3/ Nx4 ˚ x2x3 Nx4�

D .x2 ˚ x3/x4 ˚ x2x3 Nx4

Problems of Chapter 3 155

The right-hand-side is

x2x3 ˚ x2x4 ˚ x3x4 ˚ x2x3x4 D .x 2 ˚ x 3/x 4 ˚ x 2x 3.1 ˚ x 4/

D .x 2 ˚ x 3/x 4 ˚ x 2x 3 Nx 4

Therefore, the equality holds.

3.2 For h, the number of the functions is at most 22k

. For g, the number of the

functions is at most 22n�kC1
. Thus, the total number of functions is at most

22k

� 22n�kC1

D 22kC2n�kC1

:

3.3 For h, the number of functions is at most .22k
/m D 2m2k

. For g, the number of

functions is at most 22n�kCm
. Thus, the total number of functions is at most

2m2k

� 22n�kCm

D 2m2kC2n�kCm

:

3.4 When X1 D .x1; x2; x3/, as shown in Fig. 13.1, the column multiplicity is four.

3.5 In an n variable function, the total number of possible input combination is 2n.

Thus, the number of functions with weight k is

2n

k

!

:

3.6 Note that

S9
6 D Ny3y2y1 Ny0;

S9
5 D Ny3y2 Ny1y0;

S9
4 D Ny3y2 Ny1 Ny0; and

S9
3 D Ny3 Ny2y1y0:

Fig. 13.1 Decomposition

chart for W GT 5

x3

x2

x1

0 1 1 1

0 0 1 1

0 1 0 1

0 0 0 2 2 3

0 1 1 3 3 4

1 0 1 3 3 4

1 1 2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 2 1

2 2 3 2

2 2 3 2

3 3 4 3 4 4 5

x5 x4

156 Solutions

Table 13.2 Condensed

decomposition chart for

SYM12

Thus, we have

S 9
f3 ; 4;5;6g D Ny3y2y1 Ny0 _ Ny3y2 Ny1y0 _ Ny3y2 Ny1 Ny0 _ Ny3 Ny2y1y0

D Ny3.y2. Ny1 _ Ny0/ _ Ny2y1y0/

D Ny3.y2 ˚ y1y0/:

3.7 Consider the decomposition chart of SYM12. Let X1 D .x1; x2; : : : ; x8/ and

X2 D .x9; x10; x11; x12/. Since it is a symmetric function, we can write a con-

densed decomposition chart shown in Table 13.2 instead of the full table. Note

that the labels show the weights of X1 or X2. Thus, for example, the column 4

represents
�

9
4

�

D 126 columns of weight 4. It is clear that the number of different

column patterns is 8.

Problems of Chapter 4

4.1 Since �6 D 16, f can be realized by a circuit shown in Fig. 13.2. Note

that the first block has 6 inputs and dlog2.16/e D 4 outputs. Thus, the second

block has 4 C 4 D 8 inputs. Also, note that an arbitrary 8-variable function can

be realized with at most five 6-LUTs. Thus, f can be realized with 4 C 5 D 9

LUTs.

4.2 Consider the expansion of the function

f .X1; X2/ D
_

Eai 2B 4

f .Eai ; X2/X
Eai

1 :

Among 16 subfunctions f .Eai ; X2/, Eai 2 B4, only 10 functions are distinct. So, f

can be realized as Fig. 13.3. Note that 10 LUTs are used to realize these 10 different

subfunctions, while 5 LUTs are used to realize a 4-MUX.

4.3 From (4.2) and (4.3), we have the following relations:

g0.Y / D f0.Y /

g1.Y / D f0.Y / ˚ f2.Y /

Problems of Chapter 4 157

Fig. 13.2 Realization of

10-variable function
46

4
4

5

Fig. 13.3 Realization of

10-variable function with

6-LUTs

22

22

4-MUX

1

1

1

1

1

6

6

6

6 g1

g2

g3

g10

1

1

1

1

X2

X2

X2

X2

Fig. 13.4 Reed–Muller type

module
g0

g1

g2

g3

x1 x2

g2.Y / D f0.Y / ˚ f1.Y /

g3.Y / D f0.Y / ˚ f1.Y / ˚ f2.Y / ˚ f3.Y /

Thus, instead of the Shannon’s expansion, we can also use the Reed–Muller expan-

sion to realize the function. The universal logic element for this expansion is shown

in Fig. 13.4, which can be implemented by a 6-LUT.

4.4 The function f .X1; X2/ can be expanded as

f .X1; X2/ D g0.Ea0; X2/ _ g1.Ea1; X2/ _ � � � _ g4k�1.Ea4k�1; X2/;

where Ea0 D .0; 0; : : : ; 0; 0/, Ea1 D .0; 0; : : : ; 0; 1/, . . . , Ea15 D .1; 1; : : : ; 1; 1/. Thus,

f .X1; X2/ can be realized as the circuit similar to Fig. 4.12. Since the column

158 Solutions

multiplicity is �, the number of different column functions gi .Eai ; X2/ is �. So, in

Fig. 4.12, the LUTs producing the same functions can be shared, and only � LUTs

are sufficient to produce gi .Eai ; X2/. The number of 6-LUTs to realize .2k/-MUX

is 4k�1
3

. Thus, we need at most � C 4k�1
3

LUTs.

Problems of Chapter 5

5.1 Tree-type Realization. Advantage: fast. Disadvantage : layout is complex.

Cascade realization. Advantage: layout is simple. Disadvantage : slow.

5.2 Figure 13.5 shows a realization of a 4-bit adder by 6-LUTs. The expressions for

the outputs are:

z0 D x0 ˚ y0

z1 D .x1 ˚ y1/ ˚ .x0y0/

z2 D .x2 ˚ y2/ ˚ .x1y1/ ˚ .x1 ˚ y1/.x0y0/

c2 D .x2y2/ ˚ .x2 ˚ y2/.x1y1/ ˚ .x2 ˚ y2/.x1 ˚ y1/.x0y0/

z3 D .x3 ˚ y3/ ˚ c2

z4 D .x3y3/ ˚ c2.x3 ˚ y3/

In total, it uses 6 LUTs.

5.3 The outputs of the circuits are y3 D SB.12; 8/, y2 D SB.12; 4/, y1 D SB.12; 2/,

and y0 D SB.12; 1/. Each function yi is a symmetric function of 12 variables.

x0

y0

x0
y0
x1
y1

x0
y0
x1
y1

x0y0
x1y1
x2y2

z0

z1

z2 c2

x3
y3

c2 z4

x3
y3

c2 z3

x0y0
x1y1
x2y2

Fig. 13.5 Realization of 4-bit adder by 6-LUTs

Problems of Chapter 5 159

Fig. 13.6 Tree-type

realization of WGT12 using

6-LUTs

6
3

6 3

3

3

4

4

Fig. 13.7 Cascade

realization of WGT12 using

6-LUTs

36

3

3

4

12

4

4

4

4 4

Fig. 13.8 Cascade

realization of 7-variable

functions by 6-LUTs
2

6

x7

3
f1

f2

f3

y1

6

X1

Tree-type realization. The input variables XD.x1; x2; : : : ; x12/ are partitioned into

X1 D .x1; x2; : : : ; x6/ and X2 D .x7; x8; : : : ; x12/. Each output can be implemented

by seven 6-LUTs as shown in Fig. 5.9. Thus, WGT12 can be implemented by

7�4 D 28 LUTs. However, when the function is decomposed as g.h1.X1/; h2.X2//

as shown in Fig. 13.6, the number of LUTs is reduced to 3 C 3 C 4 D 10.

Cascade realization. The input variables X D .x1; x2; : : : ; x12/ are partitioned

into X1 D .x1; x2; : : : ; x6/, X2 D .x7; x8; x9/, X3 D .x10; x11/, and X4 D .x12/.

When X1 denotes the bound variables, �6 D 7. When .X1; X2/ denotes the

bound variables, �9 D 10. When .X1; X2; X3/ denotes the bound variables,

�11 D 12. Figure 13.7 shows the realization. In this case, the total number of

LUTs is 3 C 4 C 4 C 4 D 15.

5.4 Figure 13.8 shows the cascade realization of 7-variable functions. First, each

function is decomposed as f .X1; x7/ D g.h.X1/; x7/, where X1 D .x1; x2; : : : ; x6/.

Note that, the column multiplicity is at most 40. So, the outputs of h can be encoded

160 Solutions

Table 13.3 Encoding for

intermediate functions
y1 y2 y3 y4 y5 y6

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

.

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 0 1 1

1 0 0 0 0 0

1 0 0 1 0 1

1 0 0 1 1 0

1 0 0 1 1 1

by 6 bits as shown in Table 13.3. Note that in the first 32 codes, y1 D 0, while

in the remaining 8 codes, y1 D 1. Let the function with y1 D 0 be f0.X1; x7/,

and let the function with y1 D 1 be f1.X1; x7/. Then, f can be represented by

f D Ny1f0.X1; x7/ _ y1f1.X1; x7/, where y1 denotes the first bit. The LUTs in the

middle column realize f0.X1; x7/ and f1.X1; x7/. The LUTs in the output column

realize f .X1; x7/. Note that this realization requires 12 LUTs. It is possible to

realize each function independently by using Lemma 4.2.1, which requires only

3 � 3 D 9 LUTs.

5.5 Let .X1; X2/ be a partition of the input variables, where X1 D .x1; x2; : : : ; xk/

and X2 D .xkC1; xkC2; : : : ; xn/. Consider the decomposition chart where X1

denotes the bound variables. The number of different column patterns is �k.n/.

Next, consider the decomposition chart with the partition . OX1; OX2/, where OX1 D
.x1; x2; : : : ; xk ; xkC1/ and OX2 D .xkC2; xkC3; : : : ; xn/. In this chart, the number

of the columns is halved, while the number of the rows is doubled. The number

of different column patterns is at most 2�k.n/, since the column functions of the

original decomposition chart are split into two parts, where the upper and the lower

parts have at most �k.n/ patterns. Thus, we have the first relation.

Next, consider the decomposition chart with the partition . LX1; LX2/, where LX1 D
.x1; x2; : : : ; xk�2; xk�1/ and LX2 D .xk ; xkC1; : : : ; xn/. In this case, the number of

the columns is reduced by half, while the number of the rows is increased by two.

The number of different column patterns is at most �2
k
.n/, since the upper (lower

parts) of the column functions of the new decomposition chart have at most �k.n/

patterns. Thus, we have the second relation.

5.6 Consider the decomposition chart for f .X1; X2/, where X1 D .x1; x2; x3;

x4; x5/ and X2 D .x6; x7; x8/. The number of columns is 25 D 32, and the number

of rows is 23 D 8. Consider a function whose column multiplicity is 32. Since the

Problems of Chapter 6 161

column functions are 3-variable functions, there are 223
D 256 candidate functions.

The number of ways to choose 32 different column functions is

256

32

!

:

Next, the number of ways to order 32 columns is 32Š So, the total number of

functions is

256

32

!

� .32Š/ D .256Š/=.224Š/:

Problems of Chapter 6

6.1 Consider the decomposition f .X1; X2/ D g.h.X1/; X2/. The column multi-

plicity is �4 D 5. So, we need three intermediate variables .h3; h2; h1/. Note that

x1‰0 D x1‰1 D 0, Nx1‰2 D Nx1‰3 D 0, x3‰0 D x3‰1 D x3‰2 D x3‰3 D 0,

Nx3‰4 D 0.

To Nx1‰0 assign the code 000,

to Nx1‰1 assign the code 001,

to Nx1‰4 assign the code 010,

to x1‰4 assign the code 110,

to x1‰2 assign the code 100,

to x1‰3 assign the code 101.

From these, we have intermediate variables:

h3 D x1.‰2 _ ‰3 _ ‰4/ D x1

h2 D Nx1‰4 _ x1‰4 D ‰4 D x3

h1 D Nx1‰1 _ x1‰3 D Nx1x2 Nx3 _ x1 Nx3 Nx4:

Note that, in this case, two variables can be simplified.

6.2 First, consider the decomposition f .X/ D g.h.X1/; X2/, where X1 D .x1; x2;

x3; x4; x5/, and X2 D .x6; x7; x8/. The equivalence classes of the decomposi-

tions are

‰0 D Nx1 Nx2 Nx3 Nx4 Nx5;

‰1 D x1x2x3x4x5;

‰2 D ‰0 _ ‰1:

162 Solutions

Since � D 3, a standard encoding requires u D dlog2 3e D 2 intermediate variables.

‰i and x1 satisfy the condition of Theorem 6.3.1: Nx1‰1 D 0, and x1‰0 D 0.

To Nx1‰0, assign the code 00.

To Nx1‰2, assign the code 01.

To x1‰2, assign the code 11.

To x1‰1, assign the code 10.

Thus, we have the following intermediate variables:

h1 D Nx1‰2 _ x1‰2 D ‰2;

h2 D x1‰1 _ x1‰2 D x1:

Note that

Nh2
Nh1 D ‰0;

h2
Nh1 D ‰1:

Therefore, ‰i .i D 0; 1; 2/ can be represented by .h2; h1/. Thus, f can be repre-

sented as

f .X/ D ‰0 Nx6 Nx7 Nx8 _ ‰1x6x7x8

D Nx1
Nh1 Nx6 Nx7 Nx8 _ x1

Nh1x6x7x8

Figure 13.9 shows the realization using 5-LUTs.

6.3 Consider the decomposition

f .X1; X2/ D g.h1.X1/; h2.X1/; : : : ; hu.X1/; X2/:

Let ‰i .X1/,.i D 0; 1; : : : ; � � 1/ be the equivalence classes of the decomposition.

Let xj ; xk ; 2 X1. If the number of different nonzero functions in each of

xj xk‰i ;

xj Nxk‰i ;

Fig. 13.9 Realization of

symmetric function by

5-LUTs

x1

x2

x5 x6

x3

x4

x1

h1

x7

x8

Problems of Chapter 7 163

Nxj xk ‰i ;

Nxj Nxk‰i ;

.i D 1; 2; : : : ; �/ is equal to or less than 2u�2, then hu.X1/ and hu�1.X1/ can be

represented as follows: hu.X1/ D xj and hu�1.X1/ D xk .

Problems of Chapter 7

7.1 From Lemma 7.2.1, we have

.�1; �2; �3; �4; �5; �6; �7; �8; �9/ D .2; 3; 4; 5; 6; 7; 8; 4; 2/:

7.2 When X1 D .x2; x1; x0/, as shown in Fig. 13.10, the column multiplicity is 8.

When X1 D .x3; x2; x1; x0/, as shown in Fig. 13.11, the column multiplicity is 11.

7.3 Suppose that X is partitioned as .X2; X1/, where X1 D .xn�p�1; xn�p�2;

: : : ; x0/ and X2 D .xn�1; xn�2; : : : ; xn�p/. We assume that the integer represented

by X D .xn�1; xn�2; : : : ; x1; x0/ is
Pn�1

iD0 2ixi . Consider the decomposition chart.

Assume that both the columns and rows are labeled in ascending order of the val-

ues of X1 and X2, respectively. In scanning left-to-right and then top-to-bottom, the

Fig. 13.10 Decomposition

chart for f .X1; X2/

x2

x1

x0

x4 x3

0

3

6

8

0

1

0 1

1 1 000

1 0

1

0 0

0 0

0 0 1 1 1

3

6

9

1

4

6

9

1

4

7

9

1

1

1 1

0 0 0 01 1 1 1

4

7

2

10

5

7

2

10

5

8

2

10

5

8

3

11

x3

x2

x1

0 0 1 1 1 1 1

0 1 0 1 1 1 1

1 1 1 0 0 1 1

0 0

0 0

0 0

0 1 0 1

0 0 0 0 1

0 1 1 1 0

1 0 0 1 1

1 0 1 0

1 1

0 0

0 0

0 1 0 1 0 1 1 1 x0

0

1

1 3 4 4 5 5 5

6 8

0 1 1 2 2 2 4

6 6 7 7 7 8

3 3

8 9 9 9 10 10 10 11

x4

Fig. 13.11 Decomposition chart for f .X1; X2/

164 Solutions

values of g.X/ will increase from 0 to 1, and then decrease from 1 to 0. In the chart,

remove the rows with all 0’s and rows with all 1’s. Then, the column patterns of

the decomposition chart are .0; 1/, .1; 1/, and .1; 0/. Thus, the column multiplicity

is three.

7.4 When the function is represented as an SOP with k products, the C-measure

increases exponentially with k. For example, when n D 2k, consider the function

f D x1xk _ x2xkC1 _ x3xkC3 _ � � � _ xkx2k :

Let X1 D .x 1; x 2; : : : ; xk/ and X2 D .xkC1; xkC2; : : : ; x2k/. In this case, the

column multiplicity with respect to the decomposition .X1; X2/ is 2k . Thus,

�.f / D 2k .

7.5 Let ni be the number of variables in Xi , where i D 1; 2; 3; 4.

1. Since f is symmetric with respect to X1,X2, and X3, the number of different

column patterns is at most

.n1 C 1/ � .n2 C 1/ D 12:

2. Since f is symmetric with respect to X4, the column functions are also symmet-

ric. The number of symmetric functions of n4 variables is 2n4C1 D 8. Thus, the

number of different column patterns is at most 8.

7.6 When X1 is the set of bound variables, the column functions have �1 differ-

ent patterns. When .X1; X2/ is the set of bound variables, the number of different

column patters is at most �1 � �2.

7.7 Consider the case of n D 8. Table 13.4 shows the function of the priority en-

coder. Note that this is an LPM function. Thus, the C-measure is at most 8 C 1 D 9.

In general, we can show that the C-measure of the priority encoder function of n

variables is n C 1.

7.8 Table 13.5 shows the decomposition chart of the WS function, while Table 13.6

shows the decomposition chart of the threshold function. The column multiplicity

is four.

Table 13.4 Priority encoder

(n D 8)
x1 x2 x3 x4 x5 x6 x7 x8 output

1 – – – – – – – 0001

0 1 – – – – – – 0010

0 0 1 – – – – – 0011

0 0 0 1 – – – – 0100

0 0 0 0 1 – – – 0101

0 0 0 0 0 1 – – 0110

0 0 0 0 0 0 1 – 0111

0 0 0 0 0 0 0 1 1000

Problems of Chapter 7 165

Table 13.5 A decomposition

chart of a WS function

Table 13.6 A decomposition

chart of a threshold function

7.9 Let the input variables X D .x31; x30; : : : ; x1; x0/ be partitioned into

X1 D .x31; x30; : : : ; x25; x24/;

X2 D .x23; x22; : : : ; x17; x16/;

X3 D .x15; x14; : : : ; x9; x8/; and

X4 D .x7; x6; : : : ; x1; x0/:

Then,

f .X/ D

31
X

iD0

2ixi

!

.mod 17/

is implemented as

f .X/ D .h1.X1/ C h2.X2/ C h3.X3/ C h4.X4// .mod 17/:

Figure 13.12 shows the circuit to compute the modulo. The circuit A1 computes

h1.X1/ D

31
X

iD24

2ixi

!

(mod 17)

D

224

7
X

iD0

2ixiC24

!

(mod 17)

D

7
X

iD0

2ixiC24

!

(mod 17):

166 Solutions

Fig. 13.12 Mod 17 circuit

with LUTs
8 5

A1

8 5

A2

8 5

A3

8 5

A
4

A5

5

X1

X2

X3

X4

A6

A7

5

5

The circuit A2 computes

h2.X2/ D

23
X

iD16

2ixi

!

(mod 17)

D

216

7
X

iD0

2ixiC16

!

(mod 17)

D

7
X

iD0

2ixiC16

!

(mod 17):

The circuit A3 computes

h3.X3/ D

15
X

iD8

2ixi

!

(mod 17)

D

28

7
X

iD0

2ixiC8

!

(mod 17)

D

7
X

iD0

2ixiC8

!

(mod 17):

The circuit A4 computes

h4.X4/ D

7
X

iD0

2i xi

!

(mod 17):

The circuits A5, A6, and A7 compute

.h1 C h2/ (mod 17) ;

.h3 C h4/ (mod 17) ;

Problems of Chapter 8 167

and

f .X/;

respectively. Note that in the above equations, we used the relations:

224 � 216 � 28 � 1 .mod 17/:

7.10 The proofs are easily derived from the relations:

2k � �1 (mod 2k C 1)

2k � 1 (mod 2k � 1):

7.11 Consider the decomposition table .X1; X2/, where X1 D .x1; x2; : : : ; xk/,

and X2 D .xkC1; xkC2; : : : ; xn/. Consider two columns: .a1; a2; : : : ; ak/ and

.b1; b2; : : : ; bk/. If
k
X

iD1

ai wi D

k
X

iD1

bi wi ;

then, two columns have the same patterns due to the definition of the threshold

function. Thus, the column multiplicity is at most 1 C
P k

iD1 wi .

Problems of Chapter 8

8.1 From Table 8.3, we can conjecture that �.8; 20/ � 16, since �.8; 23/ D 16.

Consider the case when the column multiplicity is maximum.

8 columns have weight 1, 6 columns have weight 2, and all other columns have

weight 0.

Thus, the column multiplicity is 8C6C1 D 15. In this way, we have �.8; 20/ D 15.

8.2 First, convert the SOP into a disjoint SOP. Then, obtain the sum of volumes for

the cubes.

8.3 Let gi .y1; y2; : : : ; yn/, where .i D 0; 1; : : : ; 22n

� 1/, be 22n

differ-

ent functions of n variables. Let the function f .x1; x2; : : : ; x2n ; y1; y2; : : : ; yn/

represent gi .y1; y2; : : : ; yn/, when .x1; x2; : : : ; x2n / denotes the integer i , where

0 � i � 22n

� 1. Consider the decomposition chart of f .X; Y /, where X D .x1;

x2; : : : ; x2n/, and Y D .y1; y2; : : : ; yn/. In this case, all the columns represent 22n

distinct functions gi . Thus, the column multiplicity is 22n
.

8.4

1. 5 LUTs (Fig. 4.9).

2. 4 LUTs (Fig. 5.3).

3. 21 LUTs (Fig. 4.12).

4. 15 LUTs. (Fig. 13.13).

168 Solutions

Fig. 13.13 Realization of

10-variable function with

weight 47

5

5

5 4

4

1

6 2

5

1 1

28

6

6

6

2

6

66

2

6

6

Fig. 13.14 Cascade realization of index generation function with 32 inputs

8

8

8

8

6

6

2

4

4

2 6

2

4

4 6

2

6

4

2 4

2

6
6

Fig. 13.15 Multilevel realization of index generation function with 32 inputs

Problems of Chapter 9

9.1 Cascade Realization.

Consider Lemma 5.1.5. Let s be the number of cells in the cascade. Note that n D
32; K D 8; w D dlog2.k C 1/e D 6. We have:

s �
l n � w

K � w

m

D
32 � 6

8 � 6
D 13:

Figure 13.14 shows the cascade with 13 cells. Minimum-delay Realization:

Fig. 13.15 shows the multilevel realization.

Problems of Chapter 9 169

6

5
5

5 5
5 5

5 5
5 5

5
5 5

Fig. 13.16 LUT Cascade Realization of the index generation function

Fig. 13.17 Index generator

using .4; 2/-elements 4
2

4

4

4

2

2

2

2

2

2

9.2 Advantage: Memory is cheaper than PLA. Memory dissipates lower power

than PLA.

Disadvantage: Single-memory realization is usually too large. Logic design using

smaller memories is more complicated than with PLA’s.

9.3 The LUT cascade is shown in Fig. 13.16. The total number of bits for the

LUTs is

2 6 � 5 � 7 D 2240:

On the other hand, the total number of bits for the realization shown in Fig. 9.14 is

2 6 � 5 � 2 C 210 � 5 D 5760:

Thus, the realization shown in Fig. 9.14 is faster, but larger than the cascade

realization.

9.4 Figure 13.17 shows the circuit.

170 Solutions

Problems of Chapter 10

10.1 Suppose that balls are thrown independently and uniformly into v bins. Then,

˛ D 1
v

is the probability of having a ball in a particular bin. Also, ˇ D 1 � ˛ is the

probability of not having a ball in a particular bin. When, we throw u balls,

1. The probability that a bin has no ball is ˇu.

2. The probability that a bin has at least one ball is 1 � ˇu.

3. The probability that a bin has exactly one ball is

u

1

!

˛ � ˇu�1 D u � ˛ � ˇu�1:

4. The probability that a bin bas more than one ball is

� D .1 � ˇu/ � u � ˛ � ˇu�1

D 1 � ˇu�1 � .ˇ C u˛/ D 1 � ˇu�1 � .1 � ˛ C u˛/

D 1 � ˇu�1 � Œ1 C .u � 1/˛�

D 1 � .1 � ˛/u�1 � Œ1 C .u � 1/˛�

' 1 � e˛ .u�1/ � Œ1 C .u � 1/˛�:

Here, we used the approximation 1 � ˛ ' e�˛ .

Since there are v bins, the expected number of bins with more than one ball is �v.

When u D 5000 and v D 9973, we have �v D 903. When u D 2000 and v D 9973,

we have �v D 175.

10.2 Since the maximum number is N D 100; 000, x can be represented with n D 17

bits. Also, there exist k1 D 9592 prime numbers between 1 and 100,000.

1. In IGU1, the number of inputs for the main memory is p1 D q1 D dlog2 �
.k1 C 1/e D 14. The number of the vectors realized by IGU1 is 2p1.1 � e��1/,

where �1 D k1

2p1
; that is 214 � 0:4431444 D 7260. The number of the remaining

vectors is k2 D k1 � 7260 D 2332.

2. In IGU2, since q2 D dlog2.2332 C 1/e D 12, we have p2 D q2 D 12. The

number of the vectors realized by IGU2 is 2p2.1 � e��2/, where �2 D k2

2p2
; that

is 4096 � 0:4340989 D 1778. The number of the remaining vectors is k3 D
k2 � 1778 D 554.

3. In IGU3, since q3 D dlog2.554 C 1/e D 10, we have p3 D q3 D 10. The

number of vectors realized by IGU3 is 2p3.1 � e��3/, where �3 D k3

2p3
; that

is 1024 � 0:4178433 D 427. The number of the remaining vectors is k4 D
k3 � 427 D 127.

4. In IGU4, since q4 D dlog2.127 C 1/e D 7, we have p4 D q4 D 7. The number

of vectors realized by IGU4 is 2p4.1 � e��4/, where �4 D k4

2p4
; that is 128 �

0:6292353 D 80. The number of the remaining vectors is k5 D k4 � 80 D 47.

Problems of Chapter 10 171

5. In IGU 5 , since q5 D dlog2.47 C 1/e D 6, we have p5 D q5 D 6. The number

of vectors realized by IGU5 is 2p 5 .1 � e�� 5 /, where �5 D k5

2p5
; that is 64 �

0:5201948 D 33. The number of the remaining vectors is k6 D k5 � 33 D 14.

6. In IGU6, since the number of the remaining vectors is only k6 D 14, they can be

implemented by an IGU [132], or rewritable PLA or an LUT cascade.

Memory for the IGUs is distributed as follows:

IGU1 W 17 � 214 D 272 � 210:

IGU2 W 17 � 212 D 68 � 210:

IGU3 W 17 � 210:

IGU4 W 17 � 27 D 2:125 � 210:

IGU5 W 17 � 26 D 1:0625 � 210:

The total amount of memory for the parallel sieve method is

5
X

iD1

n2ni D .272 C 68 C 17 C 2:125 C 1:0625/ � 210 ' 360 � 210

bits or 360 Kibits. The single-memory realization requires

14 � 217 D 1:75 � 220

bits or 1.75 Mibits.

10.3 In this case, n D 16 and k1 D 38 D 6561. We assume that the probabilities of

appearing 0’s and 1’s are made to equal by a hash circuit.

1. In IGU1, the number of inputs for the main memory is p1 D q1 D dlog2 �
.k1 C 1/e D 13. The number of the vectors realized by IGU1 is 2p1.1 � e��1/,

where �1 D k1

2p1
; that is 213 � 0:5510768 D 4514. The number of the remaining

vectors is k2 D k1 � 4514 D 2047.

2. In IGU2, since q2 D dlog2.2047 C 1/e D 11, we have p2 D q2 D 11. The

number of the vectors realized by IGU2 is 2p2.1 � e��2/, where �2 D k2

2p2
; that

is 2048 � 0:6319409 D 1294. The number of the remaining vectors is k3 D
k2 � 1294 D 753.

3. In IGU3, since q3 D dlog2.753 C 1/e D 10, we have p3 D q3 D 10. The

number of vectors realized by IGU3 is 2p3.1 � e��3/, where �3 D k3

2p3
; that

is 1024 � 0:5206631 D 533. The number of the remaining vectors is k4 D
k3 � 533 D 220.

4. In IGU4, since q4 D dlog2.220 C 1/e D 8, we have p4 D q4 D 8. The number

of vectors realized by IGU4 is 2p4.1 � e��4/, where �4 D k4

2p4
; that is 256 �

0:5765734 D 147. The number of the remaining vectors is k5 D k4 � 147 D 73.

172 Solutions

5. In IGU5, since q5 D dlog2.73 C 1/e D 7, we have p5 D q5 D 7. The number

of vectors realized by IGU5 is 2p5.1 � e��5/, where �5 D k5

2p5
; that is 128 �

0:4346513 D 55. The number of the remaining vectors is k6 D k5 � 55 D 18.

6. In IGU6, since the number of the remaining vectors is only k6 D 18, they can be

implemented by an IGU [132], or rewritable PLA or an LUT cascade.

Memory for the IGUs is distributed as follows:

IGU1 W 16 � 213 D 128 � 210:

IGU2 W 16 � 211 D 32 � 210:

IGU3 W 16 � 210:

IGU4 W 16 � 28 D 4 � 210:

IGU5 W 16 � 27 D 2 � 210:

The total amount of memory for the parallel sieve method is

5
X

iD1

n2ni D .128 C 32 C 16 C 4 C 2/ � 210 D 182 � 210

bits or 182 Kibits. The single-memory realization requires

13 � 216 D 0:8125 � 220

bits or 0.8125 Mibits.

10.4 Suppose a linear transformation changes an input vector Ea into another vector
Eb. Let A be the transformation matrix. Then, we have the relation:

EaA D Eb;

where Ea; Eb 2 Bn, A is a 0-1 matrix, and the addition is mod 2 sum. Assume that

A is nonsingular. Then, the mapping is 1-to-1. This means that the minterms are

permuted by the transform. Thus, the number of 1’s in the original function is the

same as in the transformed one.

10.5 When k D 2p, ✝ D 1, and ˛ D 2p

2n D 1
2n�p : Let z D 1

˛
. Then, we have

z D 2n�p and ˇ2n�p
D .1 � 1

z
/z. Note that e�1 ' 0:3678794. Table 13.7 shows the

approximation error.

10.6 The function f can be represented by g.y1; y2; y3; y4/ as shown in Table 13.8.

In this case, we can assume that only one variable among the inputs x1; x2; : : : ; x15

takes value 1, and other variables take value 0. Since the function is represented with

p D dlog2.k C 1/e D 4 variables, it is an optimal linear transformation.

Problems of Chapter 11 173

Table 13.7 Approximation

error for ˇ2n�p
˛ ˇ2n�p

Error

2�1 0.25000000 0.11787945

2�2 0.31640625 0.05147320

2�3 0.34360892 0.02427053

2�4 0.35607412 0.01180532

2�5 0.36205530 0.00582416

2�6 0.36498654 0.00289293

2�7 0.36643770 0.00144173

2�8 0.36715975 0.00071970

2�9 0.36751989 0.00035956

2�10 0.36769974 0.00017971

2�11 0.36778960 0.00008984

2�12 0.36783454 0.00004492

2�13 0.36785698 0.00002246

2�14 0.36786821 0.00001124

2�15 0.36787382 0.00000562

Table 13.8 Transformed

1-out-of-15 to binary

converter

Transformed code

y4 y3 y2 y1 Index

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

Problems of Chapter 11

11.1 To solve manually, write a Karnaugh map of the function. Only one variable

x5, can be removed.

11.2 From .Ev1; Ev4/, we have Nc Nd Ng.

From .Ev2; Ev4/, we have Nb Nd .

From .Ev3; Ev4/, we have Nc Nd Nf .

From .Ev1; Ev5/, we have Nb Nc Ne Nf .

From .Ev2; Ev5/, we have Ne Nf Ng.

174 Solutions

From .Ev3; Ev5/, we have Nb Nc Ne Ng.

From .Ev1; Ev6/, we have Na Nc Nd Nf .

From .Ev2; Ev6/, we have Na Nb Nd Nf Ng.

From .Ev3; Ev6/, we have Na Nc Nd Ng.

NR D Nc Nd Ng _ Nb Nd _ Nc Nd Nf _ Nb Nc Ne Nf _ Ne Nf Ng _ Nb Nc Ne Ng _ Na Nc Nd Nf _ Na Nb Nd Nf Ng _ Na Nc Nd Ng

D Nc Nd Ng _ Nb Nd _ Nc Nd Nf _ Nb Nc Ne Nf _ Ne Nf Ng _ Nb Nc Ne Ng

R D .c _ d _ g/.b _ d/.c _ d _ f /.b _ c _ e _ f /.e _ f _ g/.b _ c _ e _ g/

D .c _ d _ fg/.b _ c _ e _ fg/.b _ d/.e _ f _ g/

D Œfg _ c _ d.b _ e/�.b _ d/.e _ f _ g/

D .fg _ c/.b _ d/.e _ f _ g/ _ d.b _ e/.b _ d/.e _ f _ g/

D .fg _ c/.b _ d/.e _ f _ g/ _ dŒe _ b.f _ g/�

The product with the minimum literals is de.

The function can be represented by only two variables, d and e.

11.3

1. Similar to the proof of Theorem 11.5.1, we have

PR D
256

256
�

255

256
�

254

256
�

253

256
�

252

256
�

251

256
�

250

256

D

6
Y

iD0

�

1 �
i

256

�

' e�
P6

iD1
i

256 D e� 21
256 D 0:9212:

2. In a similar way, we have

PR D
128

128
�

127

128
�

126

128
�

125

128
�

124

128
�

123

128
�

122

128

D

6
Y

iD0

�

1 �
i

128

�

' e�
P6

iD1
i

128 D e� 21
128 D 0:8487:

11.4 From the proof of Theorem 11.5.1, we have

�.k/ D

k�1
Y

iD0

�

1 �
i

2p

�

;

Problems of Chapter 11 175

where k D 31 and p D 9.

�.k/ D

30
Y

iD0

�

1 �
i

512

�

'

30
Y

iD0

e� i
512 D e�

P30
iD1

i
512 D e� 465

512 D 0:40

There are 10 different partitions. So, the probability that, in all 10 partitions, at least

one column has two or more nonzero elements is .1��.k//10. Thus, the probability

that at least one variable is redundant is

1 � .1 � �.k//10 D 0:994:

11.5 First, obtain the probability that the function f .X/ does not depend on

x1. Consider the decomposition .X1; X2/, where X1 D .x2; x3; : : : ; xn/, and

X2 D .x1/.

1. The probability that f takes a specified value is ˛ D k
2n .

2. The probability that a column has at least one don’t care is 1 � ˛2.

3. The probability that f does not depend on x1 is

 D .1 � ˛2/2n�1

:

4. The probability that f depends on x1 is 1 � .

5. The probability that f depends on all the variables is .1 � /n.

When n D 2r and k D 2n, we have ˛ D 2r

2n D 2�r . Thus, D .1 � 2�n /2n�1
:

Since 2�n is sufficiently small, 1 � 2�n can be approximated by e�2�n
. Thus,

 ' e�2�n
�2n�1

D e�
1
2 ' 0:6065:

Thus, the probability that all the variables are essential is

.1 � /n ' 0:393n:

11.6 Consider the 4-variable function f .X/ such that

f .0; 1; 1; 1/ D 1

f .1; 0; 1; 1/ D 1

f .1; 1; 0; 1/ D 1

f .1; 1; 1; 0/ D 1

f .0; 1; 0; 1/ D 0

f .1; 0; 0; 1/ D 0

f .1; 0; 1; 0/ D 0

f .0; 1; 1; 0/ D 0

f .a1; a2; a3; a4/ D d; (for other combinations):

176 Solutions

In this case, all the variables are essential.

11.7 Two variables are sufficient to distinguish all the patterns: .x1; x7/, .x2; x7/,

.x4; x6/, .x4; x7/, .x5; x6/, or .x6; x7/.

11.8 Let .X1; X2/ be a partition of the input variables X , where X1 D .x1;

x2; : : : ; xp/ and X2 D .xpC1; xpC2; : : : ; xn/. Consider the decomposition chart

for f .X1; X2/, where X1 labels the column variables and X2 labels the row vari-

ables. If each column has at most one care element, then f can be represented by

using only X1. Such a condition is true if one of the following is satisfied:

1. A column has only don’t cares. The probability of this condition is ˇ2n�p
.

2. A column has only one care element, and the other 2n�p �1 elements have don’t

cares. The probability of this condition is 2n�p˛ˇ2n�p�1.

Thus, we have n�p D ˇ2n�p

C 2n�p˛ˇ2n�p�1. Since all the M D 2p columns

must satisfy this condition, we have ın�p D M
n�p :

11.9

� When p D 17, PR D 0:0011.

� When p D 18, PR D 0:3817.

� When p D 19, PR D 0:9461.

11.10 The probability that the birthdays are all different is the same as the probabil-

ity that each column of the decomposition chart has at most one care element (See

the proof of Theorem 11.5.1). Thus,

�.k/ D

k�1
Y

iD0

�

1 �
i

N

�

D

k�1
Y

iD1

�

1 �
i

N

�

;

where k D 64 and N D 365.

�.k/ ' 2:81 � 10�3:

Consider the distribution of u distinct balls into v distinct bins, where u D 64 and

v D 365. Assume that any distribution is as likely as any other. We can use the same

argument as in the previous exercise. The probability that a bin has at least one ball

is 1 � ˇu, where ˇ D 1 � ˛ and ˛ D 1
v
. Note that

1 � ˇu D 1 � .1 � ˛/u ' 1 � e�˛ u:

The expected number of bins with at least one ball is

.1 � ˇu/v ' .1 � e�˛ u/v:

By setting u D 64 and v D 365, we have 58.7, as the expected number of distinct

birthdays.

Problems of Chapter 12 177

11.11 We can use the same argument as the problem 11.10. The probability that

a bin has at least one ball is 1 � ˇu, where ˇ D 1 � ˛ and ˛ D 1
v
. The expected

number of bins with at least one ball is

.1 � ˇu/ � v ' .1 � e�˛ u/v:

By setting u D 365 and v D 365, we have

.1 � e�˛ u/v D .1 � e�1/ � 365 D 0:632 � 365 D 230:724;

as the expected number of distinct birthdays.

Problems of Chapter 12

12.1 Figure 13.18 shows the cascade realization. The amount of memory for the

cascade is

64 � 4 � 3 C 32 � 4 D 896:

Note that the method shown in Example 12.3.1 requires 336 bits.

12.2 Figure 13.19 shows the LUT cascade emulator. The counter has two bits.

1. When the value of the counter is 00, set the MSBs to 00. Also, MUX A selects

the variables x1; x2; x3, and x4. Also, MUX B selects x5 and x6. In this case,

Page 0 is used to emulate Cell0.

2. When the value of the counter is 01, set the MSBs to 01. Also, MUX A selects

the outputs from the memory, which corresponds to the rail outputs. Also, MUX

B selects x7 and x8. In this case, Page 1 is used to emulate Cell1.

3. When the value of the counter is 10, set the MSBs to 10. Also, MUX A selects

the outputs from the memory, which corresponds to the rail outputs. Also, MUX

B selects x7 and x8. In this case, Page 2 is used to emulate Cell2.

4. When the value of the counter is 11, set the MSBs to 11. Also, MUX A selects

the outputs from the memory, which corresponds to the rail outputs. Also, MUX

B selects x11. In this case, Page 3 is used to emulate Cell3. Since this is the last

cell, the output terminal shows the function value.

Fig. 13.18 Cascade

realization of index generator

4

4

4 4

4

4

6 1

4

2 2

4

178 Solutions

2

4

4

2

output

x5, x6

x7, x8

x9, x10

x11

x1, x2

x3, x4

counter

A

B

Page 0

Page 1

Page 2

Page 3
4

4

Fig. 13.19 LUT cascade emulator

Fig. 13.20 Tree-type

realization of 2-out-of-12 to

binary converter
X1

X2

6 5

6 5

7

12.3 Advantage: Since the sizes of the IGUs are the same, the design of the circuit

is easy. Also, the delays of the IGUs are the same. Addition of new registered vectors

is easier.

Disadvantage: The approach requires more memory than the method presented in

Chap. 10.

12.4 The profile of the 2-out-of-12 to binary converter is

.2; 4; 8; 12; 17; 23; 30; 38; 47; 57; 67; 67/

In this case, the LUT cascade realization is not attractive. To realize a tree-type cir-

cuit, we partition the inputs into X1 D .x1; x2; : : : ; x6/ and X2 D .x7; x8; : : : ; x12/.

The column multiplicity with the decomposition with respect to .X1; X2/ and

.X2; X1/ are the same and both equal to 23. Thus, it can be realized by the tree-

type circuit shown in Fig. 13.20. By using a linear transformation, the number of

variables can be reduced to 7, which is the optimum.

Bibliography

1. E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA perfor-

mance and density, ” Proceedings of the 2000 ACM/SIGDA Eighth International Symposium

on Field Programmable Gate Arrays, pp.3–12, Feb. 10–11, 2000, Monterey, California.

2. E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA perfor-

mance and density,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.

12, No. 3, March 2004, pp.288–298.

3. C. Akrout, et al., “Reprogrammable logic fuse based on a 6-device SRAM cell for logic

arrays,” US Patent 5063537.

4. http://www.altera.com

5. Altera, “Implementing high-speed search applications with Altera CAM,” Application Note

119, Altera Corporation, July 2001.

6. Altera, “Stratix IV FPGA Core Fabric Architecture,” http://www.altera.com/

7. E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA per-

formance and density,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

Vol. 12, No. 3, March 2004, pp.288–298.

8. R. L. Ashenhurst, “The decomposition of switching functions,” International Symposium on

the Theory of Switching, pp. 74–116, April 1957.

9. Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis

and Verification, Release 70911. http://www.eecs.berkeley.edu/ alanmi/abc/

10. V. Bertacco and M. Damiani, “The disjunctive decomposition of logic functions,”ICCAD-97,

pp. 78–82, Nov. 1997.

11. T. Bengtsson, A. Martinelli, and E. Dubrova, “A BDD-based fast heuristic algorithm for dis-

joint decomposition,” ASPDAC 2003, pp.191–196.

12. R.E. Bryant,“Graph-based algorithms for Boolean function manipulation,” IEEE Trans. Com-

put. Vol. C-35, No. 8, pp.677–691, Aug. 1986.

13. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, Logic

Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, Boston, 1984.

14. F. M. Brown, Boolean Reasoning: The logic of Boolean Equations, Kluwer Academic Pub-

lishers, Boston, 1990.

15. S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field Programmable Gate Arrays,

Kluwer Academic Publishers, Boston (1992).

16. S. Brown , “FPGA architectural research: A Survey,” IEEE Design & Test of Computers,

vol. 13, no. 4, 1996, pp. 9–15.

17. S-C. Chang, M. Marek-Sadowska, and T. Hwang, “Technology mapping for LUT FPGA’s

based on decomposition of binary decision diagrams,” IEEE Trans. on CAD, Vol. CAD-15,

No. , pp. 1226–1236, Oct. 1996.

18. L. Chisvin and R. J. Duckworth, “Content-addressable and associative memory: Alternatives

to the ubiquitous RAM, ” IEEE Computer, Vol. 22, pp. 51–64, July 1989.

179

180 Bibliography

19. G. R. Chiu, D. P. Singh, V. Manohararajah, and S. D. Brown, “Mapping arbitrary logic func-

tions into synchronous embedded memories for area reduction on FPGAs”, Proceedings of the

International Conference on Computer-aided design, (ICCAD-2006), Nov. 2006, San Jose,

California, pp.135–142.

20. J. Cong and Y. Ding, “Combinational logic synthesis for LUT based field programmable gate

arrays,” ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol.1,

No.2, pp.145–204, April 1996.

21. J. Cong and Y.-Y Hwang, “Partially-dependent functional decomposition with applications

in FPGA synthesis and mapping,” Fifth Int. Symp. on Field-Programmable Gate Arrays,

pp. 35–42, Feb. 1997.

22. J. Cong and S. Xu, “Technology mapping for FPGAs with embedded memory blocks,”Feb.

1998, pp.179–188.

23. J. Cong and K. Yan, “Synthesis for FPGAs with embedded memory blocks”, In Proc. of

the 2000 ACM/SIGDA 8th International Symposium on Field Programmable Gate Arrays,

pp. 75–82, ACM Press NY, 2000, Monterey, California.

24. J. Cong and K. Minkovich, “Optimality study of logic synthesis for LUT-Based FPGAs,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26,

Issue 2, Feb. 2007, pp.230–239.

25. H. A. Curtis, A New Approach to the Design of Switching Circuits, D. Van Nostrand Co.,

Princeton, NJ, 1962.

26. M. Davio, J.-P Deschamps, and A. Thayse, Digital Systems with Algorithm Implementation,

John Wiley & Sons, New York , 1983, p. 368.

27. D. L. Dietmeyer, Logic Design of Digital Systems (Second Edition), Allyn and Bacon Inc.,

Boston, 1978.

28. C. H. Divine, “Memory patching circuit with increased capability,” US Patent 4028679.

29. C. H. Divine and J. C. Moran, “Memory patching circuit with repatching capability,”

US Patent 4028684.

30. S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix matching using Bloom

filters,” ACM SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.

31. J. Ditmar, K. Torkelsson, and A. Jantsch, “A reconfigurable FPGA-based content addressable

memory for internet protocol characterization,” Proc. FPL2000, LNCS 1896, Springer, 2000,

pp. 19–28.

32. M. Fujita and Y. Matsunaga, “Multi-level logic minimization based on minimal support and

its application to the minimization of look-up table type FPGAs,” ICCAD-91, pp. 560–563,

1991.

33. R. J. Francis, J. Roze, and Z. Vranesic, “Chortle-crf: Fast technology mapping for lookup

table-based FPGAs,” DAC-1991, pp. 227–233, June 1991.

34. D. Green, Modern Logic Design, Addison-Wesley Publishing Company,1986.

35. H. Gouji, T. Sasao, and M. Matsuura,“On a method to reduce the number of LUTs in LUT

cascades,” Technical Report of IEICE, VLD2001-99, Nov. 2001.

36. S. Guccione, D. Levi, and D. Downs,“A reconfigurable content addressable memory,” Lecture

Notes in Computer Science, Springer-Verlag, Berlin, Volume 1800,May 2000. Parallel and

Distributed Processing, p.882.

37. P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory access speeds,

” Proc. INFOCOM, IEEE Press, Piscataway, N.J., 1998, pp. 1240–1247.

38. C. Halatsis and N. Gaitanis, “Irredundant normal forms and minimal dependence sets of a

Boolean functions,” IEEE Trans. on Computers, Vol. C-27, No. 11, pp. 1064–1068, Nov.

1978.

39. S. Hassoun and T. Sasao (eds.), Logic Synthesis and Verification, Kluwer Academic Publish-

ers, Oct. 2001.

40. J-D. Huang, J-Y. Jou, and W-Z. Shen, “Compatible class encoding in Roth-Karp decomposi-

tion for two-output LUT architecture,” ICCAD 1995, Nov. 1995, pp.359–363.

41. Ting-Ting Hwang, R. M. Owens, M. J. Irwin, and Kuo Hua Wang,“Logic synthesis for field-

programmable gate arrays,”IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,Vol. 13,

No. 10, pp. 1280–1287, Oct. 1994.

Bibliography 181

42. Y. Iguchi, T. Sasao, and M. Matsuura, “Realization of multiple-output functions by recon-

figurable cascades,” International Conference on Computer Design: VLSI in Computers &

Processors (ICCD-2001), Austin, TX, Sept. 23–26, 2001. pp. 388–393.

43. Y. Iguchi, T. Sasao, and M. Matsuura, “On designs of radix converters using arithmetic de-

compositions,” ISMVL-2006, Singapore, May 17–20, 2006.

44. J.-H. R. Jiang, J.-Y. Jou, and J.-D. Huang, “Compatible class encoding in hyper-function de-

composition for FPGA synthesis,” Design Automation Conference, pp. 712–717, June 1998.

45. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni, “ Multi-valued decision diagrams: theory

and applications,” Journal of Multiple-Valued Logic, Vol. 4, No.1–2, 1998, pp. 9–62.

46. Y. Kambayashi, “Logic design of programmable logic arrays,” IEEE Trans. on Computers,

Vol. C-28, No. 9, pp. 609–617, Sept. l979.

47. K. Keutzer, “ DAGON: technology binding and local optimization by DAG matching,” 24th

ACM/IEEE Design Automation Conference June 28–July 01, 1987.pp.341–347.

48. S. P. Khatri, R. K. Brayton, A. Sangiovanni-Vincentelli, “Cross-talk immune VLSI design

using a network of PLAs embedded in a regular layout fabric,” Proceedings of the 2000

IEEE/ACM International Conference on Computer-Aided Design, Nov. 05–09, 2000, San

Jose, California.

49. T. Kohonen, Content-Addressable Memories, Springer Series in Information Sciences, Vol. 1,

Springer Berlin Heidelberg 1987.

50. Y. Komamiya, Theory of Computing Networks, Researches of ETL, Sept. 1959.

51. V. Kravets and K. Sakallah, “Constructive library-aware synthesis using symmetries,” Proc.

DATE-2000, pp. 208–213.

52. S. Krishnamoorthy and R. Tessier, “Technology mapping algorithms for hybrid FPGAs

containing lookup tables and PLAs”, In IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 22, No. 5, 2003, pp. 545–559.

53. A. M. Kumar, J. Bobba, and V. Kamakoti, “MemMap: Technology mapping algorithm for area

reduction in FPGAs with embedded memory arrays using reconvergence analysis,” Design,

Automation, and Test in Europe – DATE-2004, March 2004, pp.922–929.

54. Y-T. Lai, M. Pedram and S. B. K. Vrudhula, “BDD based decomposition of logic functions

with application to FPGA synthesis”, 30th ACM/IEEE Design Automation Conference, June

1993.

55. Y-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-based algorithm for integer linear

programming, spectral transformation, and functional decomposition,” IEEE Trans. CAD,

Vol. 13, No. 8, pp. 959–975, Aug. 1994.

56. P-F. Lin and J. B. Kuo, “A 1-V 128-kb four-way set-associative CMOS cache memory us-

ing wordline-oriented tag-compare (WLOTC) structure with the content-addressable-memory

(CAM) 10-transistor tag cell,” IEEE Journal of Solid-State Circuits, Vol. 36, pp. 666–675,

April 2001.

57. A. Ling, D. P. Singh, and S. D. Brown, “FPGA technology mapping:a study of optimality,”

42nd Design Automation Conference, 13–17 June 2005, pp. 427–432.

58. C. Legl, B. Wurth, and K. EcKl, “Computing support-minimal subfunctions during functional

decomposition,” IEEE Trans. VLSI, Vol. 6, No. 3, pp. 354–363, Sept. 1998.

59. A. Martinelli, R. Krenz, and E. Dubrova, “Disjoint-support boolean decomposition combin-

ing functional and structural methods,” Proceedings of the Asia and South Pacific Design

Automation Conference, 2004 (ASP-DAC 2004), 27–30, Jan. 2004. pp.597–599.

60. Y. Matsunaga, “An exact and efficient algorithm for disjunctive decomposition,” SASIMI’98,

pp. 44–50, Oct. 1998.

61. H. J. Mattausch, T. Gyohten, Y. Soda, T. Koide, “Compact associative-memory architecture

with fully-parallel search capability for the minimum Hamming distance,” IEEE Journal of

Solid-State Circuits, Vol. 37, No. 2, pp. 218–227, Feb. 2002.

62. K. McLaughlin, N. O’Connor, and S. Sezer, “Exploring CAM design for network processing

using FPGA technology,” Advanced International Conference on Telecommunications and

International Conference on Internet and Web Applications and Services (AICT-ICIW’06),

p. 84, 19–25, Feb. 2006.

182 Bibliography

63. C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design: OBDD - Foun-

dations and Applications, Springer, 1998.

64. S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram with attributed edges

for efficient Boolean function manipulation,”Proc. 27th ACM/IEEE Design Automation Conf.,

pp. 52–57, June 1990.

65. S. Minato, “Graph-based representations of discrete functions,” in T. Sasao and M. Fujita

(e.d.), Representations of Discrete Functions, Kluwer Academic Publishers, 1996.

66. S. Minato and G. De Micheli, “Finding all simple disjunctive decompositions using irredun-

dant sum-of-products forms,” ICCAD-99, pp. 111–117, Nov. 1998.

67. A. Mishchenko, C. Files, M. Perkowski, B. Steinbach, and Ch. Dorotska, “Implicit algorithms

for multi-valued input support manipulation,” Proc. 4th Intl. Workshop on Boolean Problems,

Sept. 2000, Freiberg, Germany.

68. A. Mishchenko and T. Sasao, “Logic synthesis of LUT cascades with limited rails: A direct

implementation of multi-output functions,”, IEICE Technical Reports, VLD2002-99, Nov.

2002.

69. A. Mishchenko and T. Sasao, “Encoding of Boolean functions and its application to LUT cas-

cade synthesis, ” International Workshop on Logic and Synthesis (IWLS2002), New Orleans,

Louisiana, June 4–7, 2002, pp.115–120.

70. A. Mishchenko, “Fast computation of symmetries in Boolean functions,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems Vol. 22, Issue 11, pp. 1588–

1593, Nov. 2003.

71. A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to technology mapping for

LUT-based FPGAs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems Vol. 26, Issue 2,pp. 250–253, Feb. 2007.

72. A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, “Combinational and sequential

mapping with priority cuts,” Proc. ICCAD’07, Nov. 2007, pp.354–361.

73. A. Mishchenko, R. K. Brayton, and S. Chatterjee, “Boolean factoring and decomposition of

logic networks”, Proc. ICCAD’08, Nov. 2008, pp.38–45.

74. J. C. Moran, “Memory patching circuit,” US Patent 4028678.

75. M. Motomura et al., “A 1.2-million-transistor, 33-MHz, 20-b dictionary search processor

(DISP) ULSI with a 160-Kbyte CAM, ” IEEE J. Solid-State Circuits, Vol. 25, No. 5, Oct.

1990, p. 1158–1165.

76. V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area minimization in

LUT-based FPGA technology mapping”, IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, Vol. 25, No. 11, November 2006, pp. 2331–2340.

77. R. Murgai and R. K. Brayton, “Optimum functional decomposition using encoding,” Design

Automation Conference. DAC 1994, pp.408–414, June 1994.

78. R. Murgai, R. Brayton, and A. Sangiovanni Vincentelli, Logic Synthesis for Field-

Programmable Gate Arrays, Springer, July 1995.

79. R. Murgai, F. Hirose, and M. Fujita, “Logic synthesis for a single large look-up table,” Proc.

International Conference on Computer Design,pp. 415–424, Oct. 1995.

80. S. Muroga, VLSI System Design, John Wiley & Sons, 1982, pp. 293–306.

81. S. Nagayama, T. Sasao, and J. T. Butler, “Programmable numerical function generators based

on quadratic approximation: Architecture and synthesis method,” ASPDAC 2006, Yokohama

Jan. 2006, pp. 378–383.

82. S. Nagayama, T. Sasao, and J. T. Butler “Compact numerical function generators based on

quadratic approximation: architecture and synthesis method,” IEICE Transactions on Funda-

mentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No.12, Dec.

2006, pp.3510–3518, Special Section of VLSI Design and CAD Algorithms.

83. H. Nakahara, T. Sasao, and M. Matsuura, “A design algorithm for sequential circuits using

LUT rings,” IEICE Transactions on Fundamentals of Electronics, Communications and Com-

puter Sciences, Vol. E88-A, No.12, Dec. 2005, pp.3342–3350.

84. H. Nakahara and T. Sasao, “A PC-based logic simulator using a look-up table cascade emu-

lator,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, Vol. E89-A, No.12, Dec. 2006, pp. 3471–3481.

Bibliography 183

85. H. Nakahara, T. Sasao, M. Matsuura, and Y. Kawamura, “A Parallel sieve method for a virus

scanning engine,” 12th EUROMICRO Conference on Digital System Design, Architectures,

Methods and Tools, Patras, Greece (DSD 2009).

86. K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K. Yoshizumi, H. Qin, and Y. Iguchi, “Pro-

grammable logic device with an 8-stage cascade of 64K-bit asynchronous SRAMs,” Cool

Chips VIII, IEEE Symposium on Low-Power and High-Speed Chips, April 20–22, 2005,

Yokohama, Japan.

87. K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K. Yoshizumi, H. Nakahara, and Y. Iguchi,

“A memory-based programmable logic device using a look-up table cascade with syn-

chronous SRAMs,” 2005 International Conference on Solid State Devices and Materials

(SSDM 2005), Kobe, Japan, Sep. 2005.

88. K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K. Yoshizumi, H. Nakahara and Y. Iguchi,

“A memory-based programmable logic device using look-up table cascade with synchronous

static random access memories,” Japanese Journal of Applied Physics, Vol. 45, No. 4B, 2006,

April, 2006, pp. 3295–3300.

89. G. Nilsen, J. Torresen and O. Sorasen, “A variable word-width content addressable memory

for fast string matching,” NorChip 2004, pp. 214–217.

90. K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and

architectures: A tutorial and survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3,

pp. 712–727, March 2006.

91. S. Panda, F. Somenzi, and B. F. Plessier,“Symmetry detection and dynamic variable ordering

of decision diagrams,” ICCAD1994, Nov. 1994, pp.628–631.

92. C. A. Papachristou,“Characteristic measures of switching functions,” Information Science,

Vol.13, No.1, pp.51–75, 1977.

93. G. Papadopoulos and D. Pnevmatikatos, “Hashing + memory = low cost, exact pattern match-

ing,” in 15th International Conference on Field Programmable Logic and Applications, Aug.

2005, pp. 39–44.

94. S. Posluszny, N. Aoki, D. Boerstler, J. Burns, S. Dhong, U. Ghoshal, P. Hofstee, D. LaPotin,

K. Lee, D. Meltzer, H. Ngo, K. Nowka, J. Silberman, and O. Takahashi,“Design methodology

for a 1.0 GHz microprocessor,”Proc. ICCD-1998, (Computer Design: VLSI in Computers and

Processors), Oct. 5–7, 1998, pp. 17–23.

95. J. Qiao, M. Ikeda, and K. Asada, “ Finding an optimal functional decomposition for LUT-

based FPGA synthesis,” in Proceedings of the 2001 conference on Asia South Pacific design

automation, pp. 225–230, Jan. 2001, Yokohama, Japan.

96. H. Qin, T. Sasao, M. Matsuura, K. Nakamura S. Nagayama and Y. Iguchi “A realization of

multiple-output functions by a look-up table ring,” IEICE Transactions on Fundamentals of

Electronics, Vol.E87-A, Dec. 2004, pp.3141–3150.

97. H. Qin, T. Sasao, and J. T. Butler, “Implementation of LPM address generator on FP-

GAs,” International Workshop on Applied Reconfigurable Computing (ARC2006), Delft, the

Netherlands, March 1–3, 2006, also appeared in Lecture Notes in Computer Science 3985,

pp.170–181.

98. H. Qin, T. Sasao, and J. T. Butler, “On the design of LPM address generators using multiple

LUT Cascades on FPGAs,” International Journal of Electronics, Vol. 94, Issue 5, May 2007,

pp.451–467.

99. J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field programmable gate

arrays: The effect of logic block functionality on area efficiency,”IEEE J. Solid State Circ.

25,5, pp. 1217–1225, Oct. 1990.

100. J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-programmable

gate arrays,” Proc. IEEE, Vol. 81, No. 7, pp.1013–1029, July 1993.

101. J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,”IBM Journal of Research and

Development, pp. 227–238, April 1962.

102. R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,” ICCAD-93,

pp. 42–47, 1993.

103. A. Sangiovanni-Vincentelli, A. El Gamal, J. Rose, “ Synthesis method for field programmable

gate arrays,” Proceedings of the IEEE, Vol.81, No.7,July 1993, pp.1057–1083.

184 Bibliography

104. T. Sasao and P. Besslich, “On the complexity of MOD-2 Sum PLA’s,” IEEE Trans. on Comput.

Vol. 39. No. 2, pp. 262–266, Feb. 1990.

105. T. Sasao, “Bounds on the average number of products in the minimum sum-of-products ex-

pressions for multiple-valued input two-valued output functions,” IEEE Trans. on Comput.

Vol. 40, No. 5, pp. 645–651, May 1991.

106. T. Sasao, “FPGA design by generalized functional decomposition,” In Logic Synthesis and

Optimization, Kluwer Academic Publisher, pp. 233–258, 1993.

107. T. Sasao and J. T. Butler, “A design method for look-up table type FPGA by pseudo-

Kronecker expansion,” IEEE International Symposium on Multiple-Valued Logic, Boston,

May 1994, pp. 97–106.

108. T. Sasao and M. Matsuura, “DECOMPOS: An integrated system for functional decomposi-

tion,” 1998 International Workshop on Logic Synthesis,Lake Tahoe, June 1998.

109. T. Sasao, “Totally undecomposable functions: applications to efficient multiple-valued de-

compositions,” IEEE International Symposium on Multiple-Valued Logic, Freiburg, Germany,

May 20–23, 1999, pp. 59–65.

110. T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.

111. T. Sasao, “On the number of dependent variables for incompletely specified multiple-valued

functions,” 30th International Symposium on Multiple-Valued Logic, pp. 91–97, Portland,

Oregon, U.S.A., May 23–25, 2000.

112. T. Sasao,“ A new expansion of symmetric functions and their application to non-disjoint

functional decompositions for LUT-type FPGAs,” International Workshop on Logic Synthe-

sis, Dana Point, California, U.S.A., May 31–June 2, 2000, pp.105–110.

113. T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of multiple-output function for

reconfigurable hardware,” International Workshop on Logic and Synthesis (IWLS01), Lake

Tahoe, CA, June 12–15, 2001, pp. 225–230.

114. T. Sasao, “Design methods for multi-rail cascades,” (invited paper) International Workshop

on Boolean Problems (IWBP2002), Freiberg, Germany, Sept. 19–20, 2002, pp. 123–132.

115. T. Sasao and M. Matsuura, “A method to decompose multiple-output logic functions,” Design

Automation Conference, pp. 428–433, San Diego, USA, June 2–6, 2004.

116. T. Sasao, J. T. Butler, and M. D. Riedel, “Application of LUT cascades to numerical function

generators,” The 12th Workshop on Synthesis And System Integration of Mixed Information

technologies (SASIMI2004), Oct. 18–19, 2004, Kanazawa, Japan, pp.422–429.

117. T. Sasao, H. Nakahara, M. Matsuura and Y. Iguchi, “Realization of sequential circuits by look-

up table ring,” The 2004 IEEE International Midwest Symposium on Circuits and Systems

(MWSCAS 2004), Hiroshima, July 25–28, 2004, pp.I:517-I:520.

118. T. Sasao, M. Kusano, and M. Matsuura, “Optimization methods in look-up table rings,”

International Workshop on Logic and Synthesis (IWLS-2004), June 2–4, Temecula, Califor-

nia, U.S.A. .pp. 431–437.

119. T. Sasao, “Radix converters: Complexity and implementation by LUT cascades,” ISMVL-

2005, pp. 256–263.

120. T. Sasao, “Analysis and synthesis of weighted-sum functions,” International Workshop on

Logic and Synthesis (IWLS-2005), Lake Arrowhead, CA, USA, June 8–10, 2005,pp.455–462.

121. T. Sasao, Y. Iguchi, T. Suzuki, “On LUT cascade realizations of FIR filters,” DSD2005, 8th

Euromicro Conference on Digital System Design: Architectures, Methods and Tools, Porto,

Portugal, Aug. 30–Sept. 3, 2005, pp.467–474.

122. T. Sasao, S. Nagayama, and J. T. Butler, “Programmable numerical function generators: Ar-

chitectures and synthesis system,” FPL2005, Tampere, Aug.24–26, 2005, pp.118–123.

123. T. Sasao, Y. Iguchi, and M. Matsuura, “LUT cascades and emulators for realizations of logic

functions,”RM2005, Tokyo, Japan, Sept.5–Sept.6, 2005, pp.63–70.

124. T. Sasao, “Design methods for multiple-valued input address generators,” ISMVL-2006

(invited paper), Singapore, May 17–20, 2006.

125. T. Sasao and J. T. Butler, “Implementation of multiple-valued CAM functions by using LUT

cascade, ” International Symposium on Multi-Valued Logic, May 17–20, 2006, Singapore,

May 17–20, 2006.

Bibliography 185

126. T. Sasao, “A Design method of address generators using hash memories,” IWLS-2006,

pp. 102–109, Vail, Colorado, U.S.A, June 7–9, 2006.

127. T. Sasao, “Analysis and synthesis of weighted-sum functions,” IEEE TCAD, Special issue on

International Workshop on Logic and Synthesis, Vol. 25, No. 5, May 2006, pp. 789–796.

128. T. Sasao and M. Matsuura, “An implementation of an address generator using hash memo-

ries,” 10th EUROMICRO Conference on Digital System Design, Architectures, Methods and

Tools (DSD-2007), Aug. 27–31, 2007, Lubeck, Germany, pp.69–76.

129. T. Sasao and H. Nakahara, “Implementations of reconfigurable logic arrays on FPGAs,”

International Conference on Field-Programmable Technology 2007 (ICFPT’07), Dec. 12–14,

2007, Kitakyushu, Japan, pp.217–223.

130. T. Sasao, S. Nagayama and J. T. Butler, “Numerical function generators using LUT cascades,”

IEEE Transactions on Computers, Vol.56, No.6, June 2007, pp.826–838.

131. T. Sasao, “On the number of variables to represent sparse logic functions,” 17th International

Workshop on Logic & Synthesis (IWLS-2008), Lake Tahoe, California, USA, June 4–6, 2008,

pp.233–239.

132. T. Sasao, “On the number of variables to represent sparse logic functions,” ICCAD-2008, San

Jose, California, USA, Nov.10–13, 2008, pp. 45–51.

133. T. Sasao, “On the number of LUTs to realize sparse logic functions,” International Workshop

on Logic and Synthesis (IWLS-2009), July 31–Aug.2, 2009.

134. T. Sasao and A. Mishchenko, “LUTMIN: FPGA logic synthesis with MUX-based and cascade

realizations,” International Workshop on Logic and Synthesis (IWLS-2009), July 31–Aug. 2,

2009.

135. T. Sasao, T. Nakamura, and M. Matsuura, “Representation of incompletely specified index

generation functions using minimal number of compound variables,” 12th EUROMICRO

Conference on Digital System Design, Architectures, Methods and Tools, Patras, Greece DSD-

2009 .

136. T. Sasao, M. Matsuura, and H. Nakahara, “A realization of index generation functions using

modules of uniform sizes,” International Workshop on Logic and Synthesis (IWLS-2010),

Irvine, California, June 11–13, 2010, pp.201–208.

137. T. Sasao, “On the numbers of variables to represent multi-valued incompletely specified func-

tions,” 13th EUROMICRO Conference on Digital System Design, Architectures, Methods and

Tools, Lille, France DSD-2010, Sept. 2010, pp.pp.420–423.

138. T. Sasao, “Index generation functions: Recent developments,” International Symposium on

Multiple-Valued Logic (ISMVL-2011), Tuusula, Finland, May 23–25, 2011. (invited paper).

139. H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis for look-up table based FPGAs

using functional decomposition and support minimization,” ICCAD, pp. 353–359, Nov. 1995.

140. C. Scholl and P. Molitor, “Communication based FPGA synthesis for multi-output Boolean

functions,” Asia and South Pacific Design Automation Conference, pp. 279–287, Aug. 1995.

141. C. Scholl, R. Drechsler, and B. Becker, “Functional simulation using binary decision dia-

grams,” ICCAD’97, pp. 8–12, Nov. 1997.

142. K. J. Schultz, CAM-Based Circuits for ATM Switching Networks, PhD thesis, University of

Toronto, 1996.

143. D. A. Simovici, D. Pletea, and R. Vetro, “Information-theoretical mining of determining sets

for partially defined functions,” ISMVL-2010, May 2010, pp.294–299.

144. H. Song, and J. W. Lockwood, “Efficient packet classification for network intrusion detection

using FPGA,” International Symposium on Field-Programmable Gate Arrays (FPGA’05),

Monterey, CA, Feb 20–22, 2005.

145. I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis, “Scalable multigigabit pattern matching

for packet inspection,” IEEE Trans. VLSI Syst. Vol.16, No.2, pp.156–166, 2008.

146. V. Y-S Shen, A. C. Mckellar, and P. Weiner, “A fast algorithm for the disjunctive decomposi-

tion of switching functions,” IEEE Trans. on Comput., Vol. C-20, No. 3, pp. 304–309, March

1971.

147. W.-Z. Shen, J.-D. Huang, and S.-M. Chao, “Lamda set selection in Roth-Karp decomposition

for LUT-based FPGA technology mapping,” 32nd Design Automation Conference, pp. 65–69,

June 1995.

186 Bibliography

148. D. E. Taylor, “Survey and taxonomy of packet classification techniques,” ACM Computing

Surveys, Vol. 37, Issue 3, pp. 238–275, Sept., 2005.

149. M.Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed IP routing

lookups,” ACM SIGCOMM Computer Communication Review, Vol. 27, No. 4, pp. 25–38,

1997.

150. W. Wan and M. A. Perkowski,“A new approach to the decomposition of incompletely speci-

fied functions based on graph-coloring and local transformations and its application to FPGA

mapping,” IEEE EURO-DAC’92, pp. 230–235, Hamburg, Sept. 7–10, 1992.

151. S. J. E. Wilton, “SMAP: Heterogeneous technology mapping for FPGAs with embed-

ded memory arrays,” In Proc. o f the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 171–178, 1998.

152. S. J. E. Wilton, J. Rose, and Z. Vranesic, “The memory/logic interface in FPGA’s with large

embedded memory arrays,” IEEE Transactions on Very Large Scale Integration(VLSI) Sys-

tems, Vol. 7, Issue 1, March 1999, pp.80–91.

153. S. J. E. Wilton, “Heterogeneous technology mapping for area reduction in FPGAs with em-

bedded memory arrays,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems Vol. 19, Issue 1, Jan. 2000, pp.56–68.

154. I. Wegener, Branching Programs and Binary Decision Diagrams: Theory and Applications,

Society for Industrial Mathematics, Jan. 1987.

155. B. Wurth, K. Eckl, and K. Anterich, “Functional multiple-output decomposition: Theory and

implicit algorithm,” Design Automation Conf., pp. 54–59, June 1995.

156. http://www.xilinx.com

157. Xilinx,“Designing flexible, fast CAMs with Virtex family FPGAs,” Application Note,

XAPP203, Sept. 23, 1999.

158. Xilinx, “Advantages of the Virtex-5 FPGA, 6-input LUT architecture,” WP284 (v1.0), Dec.

19, 2007, http://www.xilinx.com/

159. S. Yang, “Logic synthesis and optimization benchmark user guide, Version 3.0,” MCNC, Jan.

1991.

160. S. S. Yau and C. K. Tang, “Universal logic modules and their applications,” IEEE Transac-

tions on Computers, vol. 19, no. 2, pp. 141–149, Feb. 1970.

161. F. Zane, G. Narlikar, and A. Basu, “CoolCAM: Power-efficient TCAMs for forwarding en-

gines”, Proceeding of IEEE INFOCOM ’03, April, 2003.

Index

Symbols

K-feasible, 21, 22

.p; q/-element, 88

1-MUX, 25

2-MUX, 25

3-MUX, 25

7-segment display, 123

A

address table, 81

alphabetic character, 86

arithmetic decomposition, 64

Ashenhurst decomposition, 12

asynchronous memory, 3

atomic number, 84

AUX memory, 98

B

BCAM, 5

BCD, 124

BDD, 14, 55

binary CAM, 5

Binary Coded Decimal, 124

binary decision diagram, 14

bound variables, 12

C

C-measure, 34

CAM, 4

category, 84

cells, 34

characteristic functions, 120

chemical symbol, 84

Chinese characters, 86

collision, 96

column function, 12

column multiplicity, 12

comparator, 98

compatible, 121

condensed decomposition chart, 156

cone, 21

Curtis decomposition, 13

cut, 22

cut-set, 22

D

decomposition chart, 12

density, 84

depends on, 121

dictionary, 85

digital filters, 62

directed acyclic graph, 21

disjoint decomposition, 13

disjoint encoding, 42

distributed arithmetic, 62

double-input hash circuit, 96

DRAM, 3

dynamic PLA, 4

E

ECFN, 53

EEPROM, 7

elementary functions, 61

elementary symmetric functions, 18

embedded block RAMs, 8

embedded memories, 8

encoding method, 41

essential, 121

F

fanin size, 21

fanout-free cone, 22

187

188 Index

FeRAM, 7

firmware, 83

flash RAM, 7

FPGA, 6

free variables, 12

FTP, 82

functional decomposition, 12

G

generalized decomposition, 13

Gibits, 147

H

hash function, 95

hash table, 95

hybrid method, 95, 103

I

IGU, 96

incompletely specified logic function, 120

index, 81

index generation function, 81

Index Generation Unit, 96

index generator, 81

input vector, 62

Internet Protocol version 4, 58

interval function, 68

IP addresses, 81

IP forwarding table, 59

IPv4, 58

island-style, 6

K

K-LUT, 6

KANA characters, 86

Kibit, 90

Komamiya, 19

L

leakage current, 8

linear transformation, 96, 117

linked list, 96

literal, 11

logical product, 11

longest prefix match, 57

look-up tables, 6

LPM, 57

LPM function, 58

LPM index generator, 58

LPM table, 57

LUT, 6

LUT cascade, 34

LUT cascade emulator, 137

M

m-out-of-n code, 147

m-out-of-n to binary converter, 147

MAC address, 82

main memory, 98

maximum fanout free cone, 22

memory packing, 138

memory patch, 83

memory size, 88

Mibit, 146

minimum length encoding, 42

modulo m function, 65

MRAM, 7

MTBDD, 17

multiple-output functions, 126

multiplexer, 25

multiterminal BDD, 17

MUX, 25

N

natural order, 34

NFG, 61

nondisjoint decomposition, 13, 45

nondisjoint encoding, 43

nonessential, 119, 121

nonvolatile, 3

nonvolatile memory, 7

numerical function generator, 61

O

OBDD, 14

ordered BDD, 14

output AND gates, 98

P

parallel sieve method, 95, 112

partially symmetric, 18

patch memory, 84

periodic table, 84

PLA, 4

power dissipation, 8

primary input, 21

primary output, 21

prime-counting function, 116

priority encoder, 5

Index 189

priority encoder function, 68

product, 11

product term, 11

profile, 33

programmable hash circuit, 96

pseudo-Kronecker expansion, 32

Q

QRMTBDD, 55

QROBDD, 15

quasi-reduced ordered BDD, 15

R

radix converters, 62

rails, 34

range match, 5

rd73, 20

reduced ordered BDD, 15

Reed–Muller expansion, 32

refreshing, 3

registered vector table, 81

registered vectors, 81

rewritable PLA, 4

ROBDD, 15

ROM, 3

root, 21

Roth–Karp decomposition, 13

S

SB.n; k/, 18

segment index encoder function, 60

segment index logic function, 60

sense amplifier, 3

Shannon expansion, 32

SIE, 60

simple disjoint decomposition, 13

single-input hash circuit, 97

SOP, 11

sparse, 57

sparse function, 71

specific heat, 84

SRAM, 3

standard parallel sieve method, 112

state, 84

static PLA, 4

strict encoding, 42

sum-of-products expression, 11

super hybrid method, 95, 108

SYM12, 38

SYM9, 50

symmetric function, 18

symmetric with respect, 18

synchronous memory, 3

T

t -MUX, 25

TAC, 82

TCAM, 5, 59

Telnet, 82

term, 11

terminal access controller, 82

ternary CAM, 5

ternary content addressable memory, 59

ternary-to-binary converter, 116

threshold, 63

threshold function, 63

totally symmetric, 18

totally symmetric function, 56

U

uniformly distributed, 76, 125

V

volatile, 3

W

Web, 82

weight, 11, 71, 81

weight vector, 62, 63

WGT n, 19

WGT12, 40

WGT3, 48

WGT4, 48

WGT5, 51

WGT7, 20, 48, 51

WS function, 62

	Memory-Based Logic Synthesis
	Preface
	Acknowledgements
	Contents

	Memory-Based Logic Synthesis
	1 Introduction
	1.1 Motivation
	1.2 Organization of the Book

	Memory-Based Logic Synthesis
	2 Basic Elements
	2.1 Memory
	2.2 Programmable Logic Array
	2.3 Content Addressable Memory
	2.4 Field Programmable Gate Array
	2.5 Remarks
	Problems

	Memory-Based Logic Synthesis
	3 Definitions and Basic Properties
	3.1 Functions
	3.2 Logical Expression
	3.3 Functional Decomposition
	3.4 Binary Decision Diagram
	3.5 Symmetric Functions
	3.6 Technology Mapping
	3.7 The Mathematical Constant e and Its Property
	3.8 Remarks
	Problems

	Memory-Based Logic Synthesis
	4 MUX-Based Synthesis
	4.1 Fundamentals of MUX
	4.2 MUX-Based Realization
	4.3 Remarks
	Problems

	Memory-Based Logic Synthesis
	5 Cascade-Based Synthesis
	5.1 Functional Decomposition and LUT Cascade
	5.2 Number of LUTs to Realize General Functions
	5.3 Number of LUTs to Realize Symmetric Functions
	5.4 Remarks
	Problems

	Memory-Based Logic Synthesis
	6 Encoding Method
	6.1 Decomposition and Equivalence Class
	6.2 Disjoint Encoding
	6.3 Nondisjoint Encoding
	6.4 Remarks
	Problems

	Memory-Based Logic Synthesis
	7 Functions with Small C-Measures
	7.1 C-Measure and BDDs
	7.2 Symmetric Functions
	7.3 Sparse Functions
	7.4 LPM Functions
	7.5 Segment Index Encoder Function
	7.6 WS Functions
	7.7 Modulo Function
	7.8 Remarks
	Problems

	Memory-Based Logic Synthesis
	8 C-Measure of Sparse Functions
	8.1 Logic Functions with Specified Weights
	8.2 Uniformly Distributed Functions
	8.3 Experimental Results
	8.3.1 Benchmark Functions
	8.3.2 Randomly Generated Functions
	8.3.2.1 10-Variable Random Functions
	8.3.2.2 16-Variable Random Functions

	8.4 Remarks
	Problems

	Memory-Based Logic Synthesis
	9 Index Generation Functions
	9.1 Index Generation Functions and Their Realizations
	9.2 Address Table
	9.3 Terminal Access Controller
	9.4 Memory Patch Circuit
	9.5 Periodic Table of the Chemical Elements
	9.6 English–Japanese Dictionary
	9.7 Properties of Index Generation Functions
	9.8 Realization Using (p,q)-Elements
	9.9 Realization of Logic Functions with Weight k
	9.10 Remarks
	Problems

	Memory-Based Logic Synthesis
	10 Hash-Based Synthesis
	10.1 Hash Function
	10.2 Index Generation Unit
	10.3 Reduction by a Linear Transformation
	10.4 Hybrid Method
	10.5 Registered Vectors Realized by Main Memory
	10.6 Super Hybrid Method
	10.7 Parallel Sieve Method
	10.8 Experimental Results
	10.8.1 List of English Words
	10.8.2 Randomly Generated Functions
	10.8.3 IP Address Table

	10.9 Remarks
	Problems

	Memory-Based Logic Synthesis
	11 Reduction of the Number of Variables
	11.1 Optimization for Incompletely Specified Functions
	11.2 Definitions and Basic Properties
	11.3 Algorithm to Minimize the Number of Variables
	11.4 Analysis for Single-Output Logic Functions
	11.5 Extension to Multiple-Output Functions
	11.5.1 Number of Variables to Represent Index Generation Functions
	11.5.2 Number of Variables to Represent General Multiple-Output Functions

	11.6 Experimental Results
	11.6.1 Random Single-Output Functions
	11.6.2 Random Index Generation Functions
	11.6.3 IP Address Table
	11.6.4 Benchmark Multiple-Output Functions

	11.7 Remarks
	Problems

	Memory-Based Logic Synthesis
	12 Various Realizations
	12.1 Realization Using Registers, Gates, and An Encoder
	12.2 LUT Cascade Emulator
	12.3 Realization Using Cascade and AUX Memory
	12.4 Comparison of Various Methods
	12.5 Code Converter
	12.6 Remarks
	Problems

	Memory-Based Logic Synthesis
	13 Conclusions

	Solutions
	Bibliography
	Index
	Cover
	Memory-Based Logic Synthesis
	Preface
	Acknowledgements
	Contents

	Memory-Based Logic Synthesis
	1 Introduction
	1.2 Organization of the Book
	1.1 Motivation

	Memory-Based Logic Synthesis
	2 Basic Elements
	2.1 Memory
	2.3 Content Addressable Memory
	2.2 Programmable Logic Array
	2.4 Field Programmable Gate Array
	Problems
	2.5 Remarks

	3 Definitions and Basic Properties
	3.1 Functions
	3.2 Logical Expression
	3.3 Functional Decomposition
	3.4 Binary Decision Diagram
	3.5 Symmetric Functions
	3.6 Technology Mapping
	3.8 Remarks
	3.7 The Mathematical Constant e and Its Property
	Problems

	Memory-Based Logic Synthesis
	4 MUX-Based Synthesis
	4.1 Fundamentals of MUX
	4.2 MUX-Based Realization
	4.3 Remarks
	Problems

	Memory-Based Logic Synthesis
	5 Cascade-Based Synthesis
	5.1 Functional Decomposition and LUT Cascade
	5.2 Number of LUTs to Realize General Functions
	5.3 Number of LUTs to Realize Symmetric Functions
	5.4 Remarks
	Problems

	Memory-Based Logic Synthesis
	6 Encoding Method
	6.1 Decomposition and Equivalence Class
	6.2 Disjoint Encoding
	6.3 Nondisjoint Encoding
	Problems
	6.4 Remarks

	Memory-Based Logic Synthesis
	7 Functions with Small C-Measures
	7.1 C-Measure and BDDs
	7.2 Symmetric Functions
	7.4 LPM Functions
	7.3 Sparse Functions
	7.5 Segment Index Encoder Function
	7.6 WS Functions
	7.7 Modulo Function
	7.8 Remarks
	Problems

	8 C-Measure of Sparse Functions
	8.1 Logic Functions with Specified Weights
	8.2 Uniformly Distributed Functions
	8.3 Experimental Results
	8.3.1 Benchmark Functions
	8.3.2 Randomly Generated Functions
	8.3.2.1 10-Variable Random Functions

	8.4 Remarks
	8.3.2.2 16-Variable Random Functions

	Problems

	Memory-Based Logic Synthesis
	9 Index Generation Functions
	9.2 Address Table
	9.1 Index Generation Functions and Their Realizations
	9.3 Terminal Access Controller
	9.4 Memory Patch Circuit
	9.5 Periodic Table of the Chemical Elements
	9.6 English–Japanese Dictionary
	9.7 Properties of Index Generation Functions
	9.8 Realization Using (p,q)-Elements
	9.9 Realization of Logic Functions with Weight k
	9.10 Remarks
	Problems

	10 Hash-Based Synthesis
	10.1 Hash Function
	10.2 Index Generation Unit
	10.3 Reduction by a Linear Transformation
	10.4 Hybrid Method
	10.5 Registered Vectors Realized by Main Memory
	10.6 Super Hybrid Method
	10.7 Parallel Sieve Method
	10.8 Experimental Results
	10.8.1 List of English Words
	10.8.2 Randomly Generated Functions
	10.8.3 IP Address Table

	Problems
	10.9 Remarks

	Memory-Based Logic Synthesis
	11 Reduction of the Number of Variables
	11.1 Optimization for Incompletely Specified Functions
	11.2 Definitions and Basic Properties
	11.3 Algorithm to Minimize the Number of Variables
	11.4 Analysis for Single-Output Logic Functions
	11.5 Extension to Multiple-Output Functions
	11.5.1 Number of Variables to Represent Index Generation Functions
	11.5.2 Number of Variables to Represent General Multiple-Output Functions

	11.6 Experimental Results
	11.6.1 Random Single-Output Functions
	11.6.2 Random Index Generation Functions
	11.6.3 IP Address Table
	11.6.4 Benchmark Multiple-Output Functions

	Problems
	11.7 Remarks

	12 Various Realizations
	12.2 LUT Cascade Emulator
	12.1 Realization Using Registers, Gates, and An Encoder
	12.3 Realization Using Cascade and AUX Memory
	12.4 Comparison of Various Methods
	12.5 Code Converter
	12.6 Remarks
	Problems

	Memory-Based Logic Synthesis
	13 Conclusions

	Solutions
	Bibliography
	Index

