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Preface

The beautiful and exotic collective behaviors of swarming species such as
some bacteria, ant colonies, bee colonies, flocks of birds, schools of fish, and
others, have fascinated and attracted the interest of researchers for many
years. Collaborative swarming behavior that we observe in these groups pro-
vides survival advantages. The behavior results in what is sometimes called
“collective intelligence” or “swarm intelligence” where groups of relatively
simple and “unintelligent” individuals can accomplish very complex tasks
using only limited local information and simple rules of behavior (e.g., co-
ordinated group motion for predator avoidance). With the development of
technology, including the technology on sensing, computation, information
processing, power storage and others, it has become feasible to develop engi-
neered autonomous multi-agent dynamic systems such as systems composed
of multiple robots, satellites, or ground, air, surface, underwater or deep
space vehicles (i.e., “vehicle swarms”). The studies on the dynamics and
mechanisms of the behavior of swarms in nature can provide guidelines for
developing principles for decentralized and cooperative coordination and con-
trol algorithms for engineering multi-agent dynamic systems. In other words,
we can learn from the swarms in nature and utilize the resulting concepts and
ideas in developing artificial engineering swarms (e.g., for vehicle swarms).
This is the focus of this book.

Overview of the Book

In this book we have taken a systems theoretic perspective and investigate
problems such as aggregation, social foraging, formation control, swarm track-
ing, distributed agreement, and engineering optimization inspired by swarm
behavior. We have been concerned mostly with stability of the intended be-
havior, or controller development to achieve an intended behavior. We inves-
tigate the dynamic performance using analytic tools or simulations. We have
used techniques from nonlinear control theory including Lyapunov stability,
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LaSalle’s invariance principle, sliding mode control, output regulation, and
from the literature on parallel and distributed computation. After introduc-
ing the above mentioned problems in Chapter 1 and Chapter 2 in Part I we
have grouped the investigations in three main groups: (i) swarms composed
of agents with dynamics evolving in continuous time (Part II); (ii) swarms
composed of agents with dynamics evolving in discrete time (Part III);
(iii) swarm based optimization techniques (Part IV).

Part II, which constitutes the part on continuous time swarms, consists of
five chapters. The first chapter (Chapter 3) investigates swarms composed of
agents with single integrator dynamics which is the simplest case. We develop
a potential functions based approach in this chapter which serves as a proof
of concept and paves the road for developing some of the results on swarms
composed of agents with more complex dynamics. The second chapter on
continuous time swarms (Chapter 4) investigates the stability and dynamics
of swarms composed of double integrator agents under sensing uncertainties.
Then in Chapter 5 we consider swarms composed of fully actuated robotic
agents and build on the potential functions based results for swarms of single
integrator agents. The agent dynamics are allowed to also contain model un-
certainties and disturbances and the sliding mode control technique (known
for its robustness characteristics) is used to suppress the uncertainties and
achieve the desired behavior. In Chapter 6, on the other hand, swarms com-
posed of robotic agents with non-holonomic dynamics are investigated under
model uncertainties and disturbances and results are obtained using once
more the sliding mode control technique. A completely different approach
is taken in Chapter 7 where the formation control problem is investigated
in swarms composed of agents with general nonlinear dynamics within the
framework of output regulation in nonlinear systems.

Part III consists of three chapters. Chapter 8 investigates the stability and
dynamics of a one dimensional swarm with nonlinear inter-agent interactions
and time delays in synchronous and asynchronous settings. The analysis of
the asynchronous case is done using tools from the literature on parallel and
distributed computation. Chapter 9, on the other hand, extends the analy-
sis to the problem of distributed agreement, which is referred to also as the
consensus problem by some authors in the literature, and shows that the
agents will achieve agreement despite only local unidirectional interactions,
dynamically changing topology, time delays in information sensing, and asyn-
chronous operation. Chapter 10 returns to the problem of formation control
and develops a strategy for path (way-point) planning for autonomous agents
to achieve a desired geometric formation in discrete time setting. The proce-
dure developed is based on potential functions and Newton’s iteration.

Part IV presents two swarm based optimization techniques which have
been very popular in recent years. Chapter 11 presents the Bacteria Forag-
ing Optimization algorithm, which is an optimization technique inspired by
the foraging behavior of bacteria colonies enhanced with evolutionary events.
Chapter 12, on the other hand, presents the Particle Swarm Optimization
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algorithm in which the particles search the space in parallel for the opti-
mal solution based on their current momentum, past experience, and the
experience of their neighbors. Substantial evidence has been collected in the
literature showing the effectiveness of these optimization algorithms.

Intended Audience

Multi-agent dynamic systems have many potential commercial and defense
applications including pollution clean up, search and rescue operations, fire-
fighter assistance, surveillance, demining operations, and others. These ap-
plications range in many different areas such as agriculture (for cultivation
or applying pesticides for protection), forestry (for surveillance and early
detection of forest fires), in disaster areas (such as for search in areas with
radioactive release after a nuclear disaster), border patrol and homeland secu-
rity, search and coverage in warehouses under fire, fire distinction, health care,
etc. There are enormous investments around the world in developing practi-
cal engineering autonomous multi-agent dynamic systems. These investments
are both in the line of developing the related hardware for the autonomous
agents and in the line of developing efficient, robust, flexible, and scalable
decentralized coordination and control algorithms with guaranteed perfor-
mance. This book presents results obtained within the efforts in this line of
research. It can be used as textbook for a course on multi-agent dynamic
systems. It can be used also as a supplementary book in courses on nonlinear
control systems or optimization or discrete-time control systems. It can serve
as a reference book for graduate students, researchers and engineers perform-
ing studies and or implementation work in the area of multi-agent dynamic
systems from variety of fields including robotics, electrical and computer en-
gineering, mechanical and mechatronics engineering, aerospace engineering,
computer science, physics, biology, or even chemistry.
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Basic Principles
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Introduction

1.1 Swarms in Biology and Engineering

In engineering, the terminology of “swarms” has come to mean a set of agents

possessing independent individual dynamics but exhibiting intimately coupled be-

haviors and collectively performing some task. Another terminology to describe

such systems is the term “multi-agent dynamic systems.” Examples of engineering

swarms include autonomous ground, air, underwater or surface vehicles, satellites or

deep space vehicles performing a cooperative task such as surveillance or monitor-

ing of an area, extracting the map of an area, searching for an object, cultivating crop

fields, cleaning mines, collectively carrying an object, etc. In biology, the terminol-

ogy of swarms is reserved for certain species when they are in certain behavioral

modes (e.g., honey bees after hive fission occurs and the swarm of bees is searching

for, or flying to, a new home). There are also various synonymous expressions to

swarms used in biology to describe various collective behavior of different species.

Examples include “colonies” of ants or bees, “flocks” of birds, “schools” or “shoals”

of fish, “herds” of antelopes, “packs” of wolf, etc. The coordinated behavior of such

groups has fascinated and attracted the interest of researchers and scientists in bi-

ology and engineering for many years. From engineering perspective it is some-

times useful to use biological swarms as examples of behaviors that are achievable

in multi-agent dynamic systems technologies (e.g., via a “bio-inspired design” ap-

proach). Moreover, operational principles from such biological systems can be used

as guidelines in engineering for developing distributed cooperative control, coor-

dination, and learning strategies for autonomous multi-agent dynamic systems. In

other words, development of such highly automated systems is likely to benefit from

biological principles including modeling of biological swarms, coordination strat-

egy specification, and analysis to show that group dynamics achieve group goals.

In contrast, from a biologist’s perspective multi-agent (multi-vehicle) systems tech-

nologies have adjustable physical characteristics that can make them useful hard-

ware simulation testbeds to emulate the dynamics of animal groups and hence help

understand the mechanisms of animal group decision making. These close connec-

tions between biology and engineering call for an integrated view of swarms.
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To develop a generic swarms perspective, one can first begin by defining agents

(vehicles, animals, software agents) to have sensory capabilities (e.g., to sense posi-

tion or velocity of other agents or sense environmental characteristics), processing

ability (e.g., a brain or an on-board computer), the ability to communicate or ex-

change information (e.g., via direct communication or through the environment),

and the ability to take actions via actuators (e.g., move to a location at a velocity

or pick up some object and fix it). Sensor and actuator limitations (e.g., sensing

range, bandwidth) and errors (e.g., sensor noise, sensing and/or communication de-

lay), along with limited agent processing abilities (e.g., due to finite memory and

computational throughput) make any agent error-prone. Physical agent characteris-

tics (e.g., of a wheeled robot or a flying vehicle) along with agent motion dynam-

ics (e.g., a fast or a slow agent) and its sensory and processing capabilities (e.g.,

comprehensive and long range sensing abilities and extensive computation capabil-

ities or limited sensing and computation capabilities) constrain how the agent can

move in its environment and the rates at which it can sense and act in spatially

distributed areas and interact with the other agents. Note also that there might be

various ways through which agents influence each other and exchange information

or communicate (either directly or indirectly). In biology this may be via chemical

communication (e.g., in bacteria or ants through pheromones) or signals (e.g., the

waggle dance of the honey bee) or through the environment (e.g., by modifying the

environment and therefore resulting in a change in the behavior of the other agents).

In engineering it may be via an ad-hoc wireless network. Moreover, methodolo-

gies similar to those in biology can be developed as well. Regardless, it is useful

to think of the agents as nodes, and arcs between nodes as representing abilities to

sense or communicate with other agents. The existence of an arc may depend on

the communication or sensing range of agents, the properties of the environment

(e.g., walls may adversely effect sensing or communication, too many signals in

the environment can result in signal collisions), communication network and link

imperfections (e.g., noise and random delays), along with local agent abilities (e.g.,

an ability to only communicate with one other agent at a time) and goals (e.g., a

desire to communicate with only the agents that can help it complete its task). One

can view a multi-agent dynamic system as a set of such communicating agents that

work collectively to solve a task.

By its nature, operation of swarm systems in biology is distributed and decen-

tralized meaning that each agent/individual operates based on its own local (and

limited) sensing and action rules without global knowledge or global planning. In

other words, the sensing, computation, and cognitive capabilities of the individual

agents are limited and they are unable to conceive neither the global emergent be-

havior of the swarm nor the large scale outcome of this behavior (e.g., the nest which

is being built) and there is no global planner which dictates the individual agent

behaviors. For example, it is known that insects such as ants or termites operate

based on very simple rules which are guided by the chemicals (called pheromones)

laid by the other individuals in the swarm/colony and the environmental cues (e.g.,

changes in the environment), and have limited capabilities. However, they can col-

lectively build fascinating structures and achieve goals which individual insects are
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incapable of achieving alone. There is no centralized controller or global supervisor

of the swarm. In engineering, in the case where the number of agents is very small

it might be possible to develop centralized coordination strategies for a multi-agent

system. However, centralized strategies result in decreased robustness and flexibil-

ity and increased computational complexity in the system. Moreover, as the number

of agents increases, centralized algorithms become intractable. Therefore, similar to

the case of swarms in nature, the common approach is to use decentralized coordi-

nation and control algorithms which operate based on local limited information.

Multi-agent robotic systems possess various potential advantages over single

robot systems. First of all multi-robot systems are more flexible and they can re-

adjust and re-organize (in space and time) based on the needs of the task under con-

sideration, whereas single robotic systems do not have this capability. Multi-robot

systems can operate in parallel (and different agents can concurrently perform dif-

ferent tasks) and therefore in a more efficient manner (provided that appropriate

cooperation algorithms are developed), whereas in single agent robotic systems the

robot usually has to finish (or interrupt) its current task before starting another task.

Multi-agent robotic systems possess improved robustness properties since if one

agent fails the other agents can continue (after re-organization and re-planning if

needed) and complete the task, whereas for a single robotic system if the agent fails

the task will fail as well. Moreover, since the robots in a multi-agent robotic system

are usually simpler (in both hardware and algorithmic levels) they are less prone

to errors such as development bugs (in both hardware and software). Furthermore,

since the individual agents in a multi-robot system are usually very simple com-

pared to a single complex and intelligent robot in a single robot system, they can

be produced in mass at very low-cost and result in a cost-effective robotic system

meaning that the total cost of a multi-robot system can be lower than the cost of a

single complex and capable robot. Despite their simplicity, as in biological swarms,

multi-agent robotic systems collectively are capable of performing complex tasks

which are beyond the capabilities of any individual agent in the swarm. Moreover,

multi-agent robotic systems can have improved task/mission capabilities compared

to single robotic systems and perform tasks which are not achievable by a single

(complex) robot. In other words, the set of tasks a multi-agent system can perform

can be much larger than the set of tasks of a single agent. Moreover, the range of

possible applications and areas of use of a given multi-agent system can be wider

compared to those for a single robot system.

There have been several multi-agent system behaviors and task achievement

goals that have been studied in the literature. For instance, coordinated motion has

received significant recent attention in cooperative robotics (e.g., to make the agents

to aggregate and stay in a tight group, achieve a spatial pattern or a geometric for-

mation, or track a moving object) and biology (e.g., formation of fruiting bodies by

bacteria, foraging behavior of ants, or cohesive flight of swarms of bees). Such prob-

lems are also closely related to a group reaching a consensus or agreement (since

often preference can be linked to position). The problem of distributed agreement is

another problem which has been popular in the multi-agent dynamic systems com-

munity. A substantial portion of this book is also concerned with coordinated motion
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or distributed agreement and develops various different techniques to achieve these

goals. Coordinated motion and distributed agreement are, however, only particular

multi-agent system objectives, and often are not the only possible objectives. There

are other related problems such as task allocation or scheduling, executing spatially

distributed tasks (e.g., cooperative mapping of a large area by multiple robots), or

task execution under time or energy or other constraints. For example, task allo-

cation often arises in multi-agent system problems where the “tasks” arise via in-

teractions with the environment, and the tasks must be allocated across the agents

and properly scheduled in time for efficient execution (e.g., via dynamic allocation

of tasks to various robots). In this context, methods from distributed scheduling,

load balancing, and assignment are integrated into coordinated motion methods to

achieve a multi-objective method that must balance tight group cohesion with the

pressing need to complete tasks (e.g., to search a large region). In problems where

agents must be distributed across large regions to execute spatially distributed tasks

(e.g., monitoring a large region with a small number of sensor-limited robots or pro-

viding particular service to customers distributed over a large region by a limited

number of robots, or in biology when animals distribute themselves across spa-

tially distributed food sources to maximize their feeding rates) similar strategies

need to be deployed in order to achieve efficient coverage and the most beneficial

outcome/performance. In such problems, the environmental conditions (such as the

distribution/density of the food sources in biology or the frequency/density and spa-

tial distribution of service requests in engineering) should be taken into account in

the optimization process in addition to the agent dynamics. Moreover, time can play

a critical role during or before a particular collective task. For example, in some

applications a group of error-prone agents must work together to find and select, as

fast as possible, the best task to perform. In such group choice problems there is a

complex interplay between the need to search for more/better tasks and the need to

come to agreement on which is the best of the discovered tasks. Generally, there is a

speed-accuracy trade-off where if a choice is made fast then it is more error-prone.

In contrast, if more time is allowed, agents can profitably combine their erroneous

task quality estimates and fully search the space to ensure that a better task choice

is made. However, the limited resources of the group may not allow for compre-

hensive search. There might be also applications in which in a heterogeneous group

of autonomous agents with different sensing, computation, and actuation capabili-

ties, an agent might search (through the communication network) for and request a

service from another agent which has the capability to provide the needed service.

Heterogeneous robot groups operating with efficient division of labor and service

discovery techniques can result in effective multi-agent systems with high perfor-

mance. In summary, in problems/situations such as these, significant attention must

be given to achieving tasks that are not quantifiable using only standard inter-agent

distance/velocity patterns as in conventional studies of coordinated motion. Task

achievement demands that agent motion characteristics achieve the task and hence

traditional inter-vehicle spacing and velocity objectives may need to be augmented

(or replaced) with task oriented objectives.
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Dynamics of multi-agent systems can exhibit rich and complex characteristics.

Combining agent, sensing, and communication characteristics results in a multi-

scale system with local spatio-temporal agent actions dynamically combining into

an “emergent” global spatio-temporal pattern of group behavior. For a given set of

error-prone agents and a task, there is a need to predict what behavioral pattern will

exist for the multi-agent system to verify that the task will be achieved (especially in

safety-critical applications). Moreover, for a given desired objective or behavior for

the multi-agent system, there is a need to know how to design local agent character-

istics in engineering (or how evolution adapted these in biology) so that the desired

objective reliably emerges. These form two key theoretical research problems, and

investigations on validation of correct behaviors of multi-agent systems are pro-

gressing rapidly for certain problems. For instance, methods from Lyapunov stabil-

ity theory, which we use extensively in this book as well, have been quite useful to

establish conditions on local agent dynamics so that appropriate coordinated motion

and task allocation emerges. Statistical and simulation-based methods have also met

with some success in spite of the complexity of the systems. On the other hand, there

has been relatively little work on the establishment of an experimentally-validated

multi-scale mathematical model of a biological swarm, one that can in some way

also lead to analytical tractability and the subsequent elucidation of principles of

species-generic swarm behavior in nature (e.g., how the mechanism of actions at the

local level dynamically combine in agent-to-agent and agent-to-environment inter-

actions for robust achievement of emergent behaviors in spite of error-prone agents).

There have been some studies in the swarm robotics community investigating

behavior based and learning strategies which lead to emergence of cooperation in

simple tasks such as pulling a stick from a hole in the ground, a task which individ-

ual agents cannot achieve on their own. The success of such initial studies provides

stepping stones for more comprehensive investigations. It is possible to model and

analyze swarm behavior from different perspectives. Two fundamentally different

approaches which are worth mentioning are spatial and non-spatial approaches.

The distinctive property of the spatial approach is that the space (the environment)

is either explicitly or implicitly present in the model and the analysis. In contrast, in

the non-spatial approaches the space (such as the position and surroundings of the

agents) is not present in the model and the population level swarming dynamics are

usually described in a non-spatial way in terms of frequency distributions of groups

of various size. For example, one possible assumption is that groups of various sizes

split or merge into other groups based on the inherent group dynamics (such as the

density of the group), environmental conditions (which are also general and inde-

pendent from the position/location in the space), and encounters of other groups.

The studies on modeling and analysis of swarm dynamics can be also classified

from the perspective of representation of individual agents and overall swarm behav-

ior and can be divided into two distinct frameworks which are individual-based (or

Lagrangian) framework and continuum (or Eulerean) framework. In the individual-

based models the basic description is the dynamic motion equation of each indi-

vidual (or agent) and therefore it is a natural approach for modeling and analysis

of complex social interactions and aggregations. Then, the resulting coordinated
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swarming behavior in its most basic form is due to the interplay between a long

range attraction and a short range repulsion between the individuals (species or

agents). Indeed, it is known that in nature for some species such as fish the mecha-

nisms for aggregation and coordinated behavior can be described by such a model.

However, there might be other factors affecting the coordinated motion of the agents

such as the environment (which might affect the behavior of different agents in dif-

ferent manner) or task oriented goals which may also force different patterns or

modes of behavior. In contrast, in the Eulerean framework the swarm dynamics are

described using a continuum model of the flux, namely concentration or popula-

tion density of the swarm and there is no distinct equation for the individual agent

dynamics. In other words, in the Eulerean models individual agents and their dy-

namics are not important and the swarm is viewed as a continuum described by its

density in one, two, or three dimensional space and its dynamics are described by

spatio-temporal partial differential equations of its density. The basic equation of the

Eulerean models is the advection-diffusion-reaction equation, where advection and

diffusion are the joint outcome of individual behavior and environmental influences,

and the reaction term is due to the population dynamics.

Each of the above approaches has its advantages and disadvantages and can repre-

sent different aspects of swarm behavior/dynamics. For example, in order to model

and analyze the social foraging behavior it is useful to include both individual agent

dynamics and the effect of the environment on the agent and the overall swarm dy-

namics. In contrast, in order to model the distributed agreement problem and the

agreement mechanisms (which sometimes might be independent of the position of

the agents and its absolute location in the environment) it might be sufficient to an-

alyze only the dynamics of the agreement variable (or the relative differences of the

agent “opinions” or “estimates” of the agreement variable) independent of the other

variables/parameters. Moreover, if the behavior of every single individual is impor-

tant or there is a need for independent controller development for every agent (which

is usually the case in engineering) the individual based-models might be more suit-

able. In contrast, in the case in which only overall population dynamics and the

swarm density are of primary interest (and the dynamics of the agents on individ-

ual level are unimportant/irrelevant) one can consider a continuum model. In this

book we use individual/agent based swarm models. The effect of the environment

is either present or not depending on the particular problem under consideration.

As mentioned above, the behavior and success of swarms in nature provides im-

portant inspiration for development of engineering multi-robot systems. Swarming

behavior in nature can result from several different mechanisms. For example, in-

dividuals may respond directly to local physical cues such as concentration of nu-

trients or distribution of some chemicals (which may be laid by other individuals).

This process is called chemotaxis and is used by organisms such as bacteria or so-

cial insects (e.g., by ants in trail following or by honey bees in cluster formation).

As another example, individuals may respond directly to other individuals (rather

than the cues they leave about their activities) as seen in some organisms such as

fish, birds, and herds of mammals. Evolution of swarming behavior in nature is

driven by the advantages of such collective and coordinated behavior for avoiding
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predators and increasing the chance of finding food. It has been demonstrated by bi-

ologists that social foragers perform chemotaxis more successfully as a group over

noisy gradients than individually. In other words, individuals do much better collec-

tively compared to the case when they forage on their own. In fact, for many organ-

isms, swarming often occurs during “social foraging.” Since foraging is in principle

an optimization process, biomimicry of foraging behavior can sometimes result in

powerful optimization algorithms. The bacteria foraging optimization and the parti-

cle swarm optimization presented in Part IV of this book as well as the ant colony

optimization algorithm (which is not included here) are examples of optimization

algorithms which have been inspired from the foraging behavior of various species

and in particular, bacteria, birds, and ants, respectively.

The behavior of individuals (and therefore swarms) in nature usually is not de-

terministic. In other words, in addition to the error prone behavior, there is some

randomness (a probabilistic component) in the operation of the swarms in nature.

This results in multiple stable modes of behavior meaning that the emergent behav-

ior of the swarm can converge to different persisting modes of operation. In addition

to the current mostly deterministic studies, developing widely accepted and tractable

models supported with corresponding analytical investigations for such swarm be-

havior will further enhance the literature on swarms.

Because of the interdisciplinary nature of the field, the studies on coordinated

multi-agent dynamic systems have a moderately wide spectrum of perspectives.

This book focuses on the system dynamics and control perspective. Noting that it by

no means completely covers the topic, even from this particular perspective, the ob-

jective is to present important results on mathematical modeling, and coordination

and control of multi-agent dynamical systems as well as swarm based optimization

algorithms.

1.2 For Further Reading

There have been many relevant works in the field of swarms undertaken by re-

searchers from different disciplines or ares of research including biology, physics,

engineering, and computer science. Below we briefly point out to some of these

works. A similar treatment can be found in [78, 87].

1.2.1 Early Works in Biology

Early works on understanding and modeling coordinated animal behavior as well

as empirically verifying the developed/proposed models has been performed by

biologists. The work in [105] classifies the work of biologists into the above

mentioned individual-based (Lagrangian) and continuum (Eulerean) frameworks.

Another work which presents a useful background and a review of the swarm model-

ing concepts and literature such as spatial and non-spatial models, individual-based

versus continuum models and so on can be found in [181].

One of the early works within the individual-based framework is the work by

Breder in [28], where the author suggested a simple model composed of a constant
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attraction term and a repulsion term which is inversely proportional to the square

of the distance between two individuals. Similar work was performed by Warburton

and Lazarus in [254] where the authors study also the effect of a family of attrac-

tion/repulsion functions on swarm cohesion. An example work within the continuum

framework is the work in [172] where the authors present a swarm model which is

based on non-local interactions of the individuals in the swarm. Their model consists

of integro-differential advection-diffusion equations with convolution terms that de-

scribe attraction and repulsion. In [106], on the other hand, a general continuous

model for animal group size distribution, which is a non-spatial patch model and

constitutes an example work on non-spatial approaches, is presented. The authors

consider a population with fixed size which is divided into groups of various dy-

namic sizes. For that purpose they introduce several assumptions about fusion and

fission of groups of various sizes in order to describe and analyze the population

dynamics.

Other works on model development for biological swarms by mathematical bi-

ologists include [102, 159]. The work by Grindrod in [102] is an effort to generate

a model for (spatial) aggregation and clustering of species and consider its stability

(i.e., its ability to preserve the swarm density). While [102] consider a continuum (in

space) model of a swarm, the article in [159] describes a spatially discrete model.

The authors show that their model can describe the swarming behavior, i.e., the

aggregation of individuals in dense populations.

In [65] Durrett and Levin present a comparative study and compare four different

approaches to modeling the dynamics of spatially distributed systems by using three

different examples, each with different realistic biological assumptions. In particu-

lar they investigate the mean field approaches (in which every individual is assumed

to have equal probability of interacting with every other individual), patch models

(that group discrete individuals into patches without additional spatial structure),

reaction-diffusion equations (in which infinitesimal individuals are distributed in

space), and interacting particle systems (in which individuals are discrete and the

space is treated explicitly). They show that the solutions of all the models do not

always agree, and argue in favor of individual-based models that treat the space ex-

plicitly. In the work in [190] Parrish and her colleagues survey similarities and dif-

ferences between different models of swarm aggregations and present preliminary

results of efforts to unify all the models within a single framework. An important

work to mention here is also the work by Grünbaum in [103, 104] where the author

explains how social foragers perform chemotaxis over noisy gradients more suc-

cessfully as a group than individually. In other words, the work shows that social

foragers perform better than individual (selfish) foragers. Another related work is

the article in [107] where the dynamic behavior of migrating herds is investigated

by means of two dimensional discrete stochastic (or individual based) models. The

authors use an individual based model with a hierarchical decision scheme involving

short-range repulsion and long-range attraction together with density-independent

and density-dependent decisions.
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Comprehensive treatments of swarms in biology can be found in [189] and [34]

and references therein. General useful references in biology are the books by Mur-

ray [178] and Edelshtein-Keshet [67]. The work in [226] presents foraging theory.

Note that aggregation and collective behavior for many organisms usually occurs

during social foraging. Moreover, foraging behavior of various species in biology

constitutes inspiration for some biologically inspired optimization algorithms.

1.2.2 Early Works in Physics

There are related studies performed by physicists investigating swarming behavior.

The general approach the physicists take is to model each individual as a particle,

which they usually call a self-driven or self-propelled particle, and study the collec-

tive behavior due to their interaction. In particular, they analyze either the dynamic

model of the density function or perform simulations based on a model for each

individual particle. Some articles consider the Newton’s equation of motion. How-

ever, this is not the only type of model they consider. Many researchers consider a

discrete time model that assumes that particles are moving with constant absolute

velocity and at each time step each one travels in the average direction of motion

of the particles in its neighborhood with some random perturbation. Using such a

model they try to study the effect of the noise on the collective behavior and to

validate their models through extensive simulations.

In [200] Rauch et al. explored a simplified set of swarm models, which were

driven by the collective motion of social insects such as ants. In their model the

swarm members move in an energy field that models the nutrient or chemotactic

profile in biology. They show that some interesting phenomena such as formation of

stable lines of traffic flow emerge. In [239] Toner and Tu proposed a nonequilibrium

continuum model for collective motion of large groups of biological organisms and

later in [240] they develop a quantitative continuum theory of flocking. They show

that their model predicts (models or represents) the existence of an ordered phase

of flocks, in which all individuals in even arbitrarily large flocks move together.

In [41] a simple self-driven lattice-gas model for collective biological motion

is introduced. The authors show the existence of a transition from individual ran-

dom walks to collective migration. Similarly, Vicsek et al. in [251], which is a work

which has caught attention of the engineering community in the recent years, intro-

duce a simple simulation model for system of self-driven particles. They assume that

particles are moving with constant absolute velocity and at each time step assume

the average direction of motion of the particles in its neighborhood with some ran-

dom perturbation. They show that high noise (and/or low particle density) leads to a

no transport phase, where the average velocity is zero, whereas in low noise (and/or

high particle density) the swarm is moving in a particular direction (that may de-

pend on the initial conditions). They call this transition from a stationary state to

a mobile state kinetic phase transition. Similarly, in [45] they present experimental

results and mathematical model for forming bacterial colonies and collective mo-

tion of bacteria. The model is a simple self-propelled particle model that tries to

capture the effect of nutrient diffusion, reproduction, extracellular slime deposition,
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chemoregulation, and inhomogeneous population. Other results in the same spirit

include [44, 46, 47, 252]. In [46] a nonequilibrium model was compared to some

equilibrium XY model in ferromagnets, in [44] the authors demonstrate similar re-

sults in one dimension, in [252] the effect of fluctuations on the collective motion of

self-propelled particles is investigated, and in [47] the effect of noise and dimension-

ality on the scaling behavior of swarms of self-propelled particles is investigated.

Results of similar nature by different authors can be found in [146, 171, 224].

In [171] the authors consider a dynamic model of swarms of self-propelled particles

with attractive long-range interactions. They show that the system can be found in

either a coherent traveling state or an incoherent oscillatory state and that the in-

crease in noise intensity leads to a transition from a coherent to oscillatory state.

Similarly, in [224] the authors propose a model that represents several kinds of clus-

ter motion observed in nature including collective rotation, chaos, and wandering.

The article in [146] describes a model that exhibits coherent localized solutions in

one and two dimensions. The solution of the model is of finite extent and the density

drops sharply to zero at the edges of the swarm as in biological swarms. Moreover,

they develop a continuum version of their discrete model and show that the two

models agree.

1.2.3 Early Works in Engineering and Computer Science

The field of coordinated multi-agent dynamic systems has become popular in the

past decade in the engineering community as well. One of the earliest works in the

community is the work by Reynolds [206] on simulation of a flock of birds in flight

using a behavioral model based on few simple rules and only local interactions.

Since then the field has witnessed many developments some of which are presented

in this book.

Early work on swarm stability is given by Beni and coworkers in [129] and [17].

In [129] they consider a synchronous distributed control method for discrete one and

two dimensional swarm structures and prove stability in the presence of disturbances

using Lyapunov methods. Then, in [17] they consider a linear swarm model and

provide sufficient conditions for asynchronous convergence (without time delays)

of the swarm to a synchronously achievable configuration.

In [201] Reif and Wang introduce the concept of very large scale robotic (VLSR)

systems and consider a distributed control approach based on artificial force laws

between individual robots and robot groups. The force laws are inverse-power or

spring force laws incorporating both attraction and repulsion. The force laws can be

distinct and to some degree they reflect the “social relations” among robots. There-

fore, they call the method social potential fields method. Individual robot motion

depends on the resultant artificial force imposed by the other robots and other com-

ponents of the system such as obstacles. The approach is a distributed approach

since each robot performs its own force and control calculations in a (possibly)

asynchronous manner. It is one of the early works employing artificial potentials

to specify inter-agent interactions. However, it is based only on simulations and no

analytical investigations of the stability are performed.
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Many of the early works on swarms have been limited to either one or two dimen-

sional space. Note that in one dimension, the problem of collective motion without

collisions is very similar to the problem of platooning of vehicles in automated

highway systems. Automated highway systems and in particular platooning have

been studied extensively in the literature. Example works include [16, 48, 231, 232].

Concepts related to swarm stability or formation stability from the literature on au-

tomated highway systems include string stability in one dimensions and mesh sta-

bility [188] in two dimensions.

As mentioned before search is an important task for multi-agent dynamic sys-

tems. Gelenbe et al. provide a survey of autonomous search strategies by robots

and animals in [98]. They first review the literature on coordination and search by

robots, then summarize the research in the field of animal search.

Coordinated motion and distributed formation control of robots are important

problems in the multi-agent formation control literature. In systems under minimal-

istic assumptions it might be difficult to achieve even simple formations. In [230]

the authors consider asynchronous distributed control and geometric pattern forma-

tion of multiple anonymous robots. The robots are anonymous in the sense that they

all execute the same algorithm and they cannot be distinguished by their appear-

ances. Moreover, the robots do not necessarily have a common coordinate system.

The authors present an algorithm for moving the robots to a single point and also

characterize the class of geometric patterns that the robots can form in terms of their

initial configuration, and present some impossibility results.

There are many other important studies on cooperative control and coordination

of swarms of agents and in particular formation control of autonomous air or land ve-

hicles using various different approaches. Some examples include [14, 99, 196, 258].

In [258] the author considers cooperative control and coordination of a group of

holonomic mobile robots to capture/enclose a target by making group formations.

Results of a similar nature using behavior based strategy can be found also in [14],

where the authors consider a strategy in which the formation behavior is integrated

with other navigational behavior and present both simulation and implementation re-

sults for various types of formations and formation strategies. In [99], on the other

hand, the authors describe formation control strategies for autonomous air vehicles.

They use optimization and graph theory approach to find the best set of communi-

cation channels that will keep the aircraft in the desired formation. Moreover, they

describe reconfiguration strategies in case of faults or loss of aircraft.

Other work on formation control and coordination of multi-agent (multi-robot)

teams can be found in [13, 55, 56, 68, 145, 180]. In [55, 56] a feedback lineariza-

tion technique using only local information for controller design to exponentially

stabilize the relative distances of the robots in the formation is proposed. Similarly,

in [68, 180], the concept of control Lyapunov functions together with formation

constraints is used to develop a formation control strategy and prove stability of

the formation (i.e., formation maintenance). The results in [145], on the other hand,

are based on using virtual leaders and artificial potentials for robot interactions in a

group of agents for maintenance of a predefined group geometry. By using the sys-

tem kinetic energy and the artificial potential energy as a Lyapunov function closed
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loop stability is shown. Moreover, a dissipative term is employed in order to achieve

asymptotic stability of the formation. In [13], the results in [145] are extended to

the case in which the group is moving in a sampled gradient field. Similarly, the

article in [131] investigates formation control in three dimensional space, whereas

the article in [196] presents a cooperative search method for a group of agents using

artificial potentials and based on the concept of rivaling force.

One should note here that not all types of formations may be possible. In other

words, there may exist formations that may not be feasible given the system dynam-

ics. The article in [233] describes a systematic framework for studying feasibility of

formations for both undirected and directed type formations. Note also that many

works utilize artificial potential functions to achieve coordinated motion. The con-

cept of artificial potential functions is not new, and it has been used extensively for

robot navigation and control [138, 139, 208]. The main difference of the present

studies from the earlier studies such as those in [138, 139, 208] is that in the present

studies artificial potentials are also employed to specify inter-agent interactions.

Developing models for swarming behavior is important in engineering not only

because we can use them in developing swarms of autonomous agents, but also

we can use these ideas in “controlling” natural flocks (herds, schools, swarms) of

animals. An interesting example for this is the article in [249], where the authors

develop a mobile robot that gathers a flock of ducks and maneuvers them safely to

a specified goal position. They use a potential-field model of flocking behavior and

using it investigate methods for generalized flock control (in simulation). Then they

use the robot to control a real flock of ducks and show that the real world behavior

of the ducks is similar to the expected one from simulations.

There are optimization methods inspired from the behavior of swarms in nature.

Two of these methods, which are bacterial foraging optimization and particle swarm

optimization, will be treated in more detail in this book. Another related and popular

nature inspired optimization technique is “ant colony optimization” which is an op-

timization method based on foraging in ant colonies and is discussed in [25, 58, 60].

In the ant colony optimization algorithm the focus is on biomimicry for the solution

of combinatorial optimization algorithms (e.g., shortest path algorithms).

Finally, we would like to mention that models of multi-agent systems with inter-

acting particles may represent not only biological or engineering swarms, but also

other systems and can be used in different engineering applications. The book [134],

in addition to presenting the particle swarm optimization algorithm, discusses sev-

eral different systems such as the operation of a brain that can be modeled as swarms

of interacting agents.
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Swarm Coordination and Control Problems

There are a number of different swarm coordination and control tasks that will be

investigated in this book. In this chapter, we briefly introduce these problems. In par-

ticular, we present aggregation, social foraging, formation control, swarm tracking,

and distributed agreement. We also present the problem of function minimization

since we will approach it using biologically inspired direct search methods in the

last part of this book. At the end of the chapter we also point out other tasks investi-

gated in the multi-agent systems literature which are of immediate relevance to the

tasks or behaviors considered in this book.

In order to state the problems we will assume a generic swarm and will denote

the number of agents in the swarm with N. We will not specify the dynamic motion

models of the agents (robots, vehicles, UAVs, etc.) in the swarm. However, we will

assume that the dynamics of the variables of interest evolve in R
n. The variables

of interest, which we will denote with xi(t), i = 1, ...,N, may represent different

variables based on the application under consideration. In other words, sometimes

they will represent the complete state of the agents, whereas in some other cases

they will represent the agent outputs which might be part of the agent states or some

linear or nonlinear function of them. In order to be consistent with the notation in

the control systems literature we will denote with ui(t), i = 1, ...,N, the control

inputs of the agents. The problems or behaviors will be stated rather generically and

not in detail and with the mathematical rigor they could be stated. The objective

is to introduce the problems at high-level without any dependence on the low-level

agent dynamics or other system/application dependent properties. Besides giving a

conceptual idea about the tasks, this will allow their application to broader class of

swarm systems.

2.1 Aggregation

Aggregation (or gathering together) is a basic behavior that many swarms in nature

exhibit. Moreover, many of the collective behaviors seen in biological swarms and

some behaviors to be possibly implemented in engineering multi-agent dynamic

systems emerge in aggregated swarms. In other words, aggregation behavior is a
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basic behavior of multi-agent systems which facilitates achieving cooperative tasks.

Therefore, developing mathematical models for swarm aggregations and studying

the dynamics and properties of these models are important. The aggregation task

can be stated as follows.

Problem 1. (Aggregation) Consider a swarm of N agents with states (or outputs)

xi(t), i = 1, ...,N, evolving in R
n. Let the corresponding control inputs of the agents

be denoted by ui(t), i = 1, ...,N. Design the control inputs ui(t), i = 1, ...,N, such

that the agents converge to a close vicinity of each other, or basically as t → ∞ for

all agents i = 1, ...,N and j = 1, ...,N, we have

lim
t→∞

‖xi(t)− x j(t)‖ ≤ ε (2.1)

for some ε > 0.

Note that this definition has some similarities with the control theoretic concept of

uniform ultimate boundedness. The value of ε is a measure of the ultimate swarm

size. Its value may depend on the number of agents in the swarm as well as the

controller parameters. Note here that for the aggregation problem, implicitly it is

assumed that the agents cannot occupy the same position in the space and such

situations need to be avoided since they mean collisions between physical agents.

In practical applications, the agents are not point agents and they have physical size.

Therefore, in applications it may not be possible to achieve an arbitrarily small ε and

its value may need to be scaled based on the number of agents in the swarm (hence

the dependence on N). The case in which collisions between agents is not an issue

and the swarm is desired to collapse to a single point is a different problem which

will also be discussed below.

Another issue which is not explicitly specified in the problem definition above

is the connectivity or interaction topology of the swarm (i.e., when we view agents

as nodes and interactions as arcs of a graph). In fact, the problem might need to be

solved under various interaction topologies which can be represented with a com-

plete (strongly connected) graph, a connected graph, or time dependent uniformly

connected graph. In this book we mostly utilize interaction topologies which can

be represented with a strongly connected graph. However, the discussions are di-

rectly extendable to interaction topologies which can be represented with a con-

nected or uniformly connected time varying graph. Note also that in some applica-

tions it might be more convenient to specify the distance of the agents to a common

point such as the centroid

x̄(t) =
1

N

N

∑
i=1

xi(t)

of the swarm instead of the inter-agent distances in (2.1). Therefore, the aggregation

problem can be equivalently stated as follows.

Problem 2. (Aggregation) Consider a swarm of N agents with states (or outputs)

xi(t), i = 1, ...,N, evolving in R
n. Let the corresponding control inputs of the agents

be denoted by ui(t), i = 1, ...,N. Design the control inputs ui(t), i = 1, ...,N, such
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that the agents converge to a close vicinity of the swarm centroid x̄(t) or basically

as t → ∞ for all agents i = 1, ...,N, we have

lim
t→∞

‖xi(t)− x̄(t)‖ ≤ ε (2.2)

for some ε > 0.

Note that the above two definitions are equivalent and can be used interchangeably.

2.2 Social Foraging

Aggregation in biological swarms usually occurs during social foraging. Social for-

aging has many advantages, one of which is increasing the probability of success

for the individuals in the swarm. Therefore, social foraging is an important problem

since swarm studies in engineering may benefit from similar advantages.

In social foraging the environment affects the motion or behavior of the agents.

The environment may have favorable regions (representing food or nutrients in bio-

logical swarms or targets or goals in engineering applications) to which the agents

may want or need to move and unfavorable regions (representing toxic or hazardous

substances in biological swarms or threats or obstacles in engineering applications)

which the agents may want or need to avoid. Therefore, the studies on social forag-

ing usually incorporate determining strategies to move towards and achieve aggre-

gation in the favorable regions while avoiding unfavorable ones.

Let us represent the environment with the function σ : R
n →R, which we call the

resource profile in this book. Let us assume that regions or points with lower values

of the resource profile are “favorable” to the agents in the swarm and they desire to

move to the minimum points of the profile. For example, without loss of generality

one can assume that at a point y ∈ R
n if σ(y) < 0 it is an attractant or nutrient rich

point, if σ(y) = 0 it is a neutral point, and if σ(y) > 0 it is point which contains

noxious substances. Moreover, for any two points y1,y2 ∈ R
n if σ(y1) < σ(y2) then

it means that y1 is more favorable compared to y2. Note that these constitute just a

convention and the reverse case (i.e., the case in which σ(y) < 0 represents noxious,

σ(y) = 0 represent neutral, and σ(y) > 0 represents attractant) and other cases can

be equivalently handled. Under these assumptions the social foraging problem can

be stated as follows.

Problem 3. (Social Foraging) Consider a swarm of N agents with states (or outputs)

xi(t), i = 1, ...,N, evolving in R
n. Assume that the swarm moves in an environment

(a resource profile) represented by a function σ : R
n → R. Let the corresponding

control inputs of the agents be denoted by ui(t), i = 1, ...,N. Design the control

inputs ui(t), i = 1, ...,N, so that the agents converge to a close vicinity of local

minimums cσ j of the profile σ(x) (favorable regions), while simultaneously avoiding

local maximums (unfavorable regions) and keeping cohesiveness or basically as

t → ∞ for all agents i = 1, ...,N, we have
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lim
t→∞

‖xi(t)− cσ j‖ ≤ ε j (2.3)

for some ε j > 0 and cσ j ∈ R
n such that f (cσ j) ≤ f (x) holds for some ε j2 and for all

x satisfying ‖x− cσ j‖ ≤ ε j2. Moreover, it should be the case that ‖xi(t)− xk(t)‖ ≤ ε
for all agents i = 1, ...,N, and k = 1, ...,N, and for some ε > 0.

Note that the social foraging problem as defined above is basically aggregation in

particular (desired) region(s) of the space corresponding to a favorable region(s) of

the environment. As one would recall in the aggregation problem introduced in the

preceding section the effect of the environment is not taken into account and there-

fore the location where the aggregation occurs is somehow unimportant, whereas

in social foraging it is of primary interest. Note also that the problem is stated such

that different individuals are allowed to converge to the vicinity of different local

minima. If needed this can be further narrowed to require aggregation in the vicinity

of one local minimum only.

Social foraging has some advantages over individual (selfish) foraging. It has

been observed in some biological systems that social foragers perform better than

individual foragers. Social foraging is, in particular, more advantageous when the

resource profile is (or the measurements of it are) noisy. This is because in a noisy

profile individual foragers can get stuck at locations which they may perceive as

local minima due to the noise. In contrast, in the case of social foraging this can be

avoided since the motions of the agents are affected by the other agents in the swarm

as well and they can “pull out” the stuck agent out of such a trap. In other words, the

overall motion of the swarm in social foraging can exhibit some averaging effects

which can filter high frequency noise and improve the performance of the overall

swarm and therefore the performance of individual agents as well.

2.3 Formation Control and Swarm Tracking

The formation control problem is basically the problem in which a group of agents

are required to form and keep geometric configuration(s). It can be further catego-

rized into various stages/tasks which are basically formation acquisition (or stabi-

lization), formation maintenance, and formation reconfiguration (or switching).

In formation stabilization, the task is convergence of a group of agents which are

initially at non-structured and possibly random positions to a particular geometrical

configuration, and thereby construction of a structured formation. The geometric

configuration usually has to match a pre-defined geometric pattern or shape. How-

ever, there are cases in which achieving uniform structure is more important than

achieving particular shape. The convergence may be required to be asymptotic, ex-

ponential, or in finite time depending on the application under consideration.

Other terms used interchangeably with formation stabilization are formation ac-

quisition or formation achievement. These last two terms are mostly used when in

the formation stabilization task it is also required that the final shape of the forma-

tion matches a pre-defined geometric pattern. In a typical formation acquisition task,
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the scale of the pre-defined geometric pattern (i.e., the distances between the nodes

in the geometric pattern indicating the desired final positions of agents relative to

each other) may or may not be specified. A change in the scale or orientation of the

formation constitute formation maneuvers which will be briefly discussed below.

In this book we mostly consider the problem of formation stabilization and

achievement of a predefined geometric shape or pattern with predefined inter-agent

distances and fixed scale. In other words, we consider formation control in the con-

text of the following definition.

Problem 4. (Formation Control - Formation Acquisition/Stabilization) Consider a

swarm of N agents with states (or outputs) xi(t), i = 1, ...,N, evolving in R
n. Let the

corresponding control inputs of the agents be denoted by ui(t), i = 1, ...,N. Given a

set of desired inter-agent distances {di j|i, j ∈ {1, . . . ,N}, i �= j}, where di j denotes

the desired distance between agents i and j, design the control inputs ui(t), i =
1, ...,N, such that as t → ∞ for all agent pairs (i, j), i, j = 1, ...,N, we have

lim
t→∞

‖xi(t)− x j(t)‖ = di j (2.4)

In the above definition the desired inter-agent distances di j are such that the con-

figuration of the agents corresponds to a particular geometric shape such as line,

triangle, tetrahedron, etc. Often after a formation is acquired (or sometimes simulta-

neously as the formation is acquired) the agents are required to move cohesively and

possibly track a trajectory which brings the problem of formation maintenance. In

other words, formation maintenance problems focus on maintenance of an achieved

formation structure of a swarm during any continuous motion of the swarm. It is

possible to define the formation such that flexibility in the shape is allowed meaning

that the shape can be deformed if needed or it might be required that the formation is

rigid during the entire motion. Deformation in shape might be allowed in the cases

in which the shape is not of paramount importance and proper navigation in the

environment possibly filled with obstacles is not possible with the initial shape. In

contrast, rigidity is required when the geometrical shape of the formation is neces-

sary for a collective task the swarm of robots is required to perform (such as carrying

an object, for example) and deforming the formation may jeopardize achievement

of the task. Sometimes the agents might need to catch and enclose (surround) a

moving target, form a predefined formation around it and track it, or escort it with

a given formation. In such cases, in contrast to the trajectory tracking problems not

all information (such as velocity and/or acceleration) of the moving target might be

known by the agents. This is a special type of formation maintenance which we will

refer to as swarm tracking. The swarm tracking task can be stated more formally as

follows.

Problem 5. (Swarm Tracking) Consider a swarm of N agents with states (or out-

puts) xi(t), i = 1, ...,N, and target with state (or output) xT (t) all evolving in R
n.

Let the corresponding control inputs of the agents be denoted by ui(t), i = 1, ...,N.

Given a set of desired inter-agent distances {di j|i, j ∈ {1, . . . ,N}, i �= j}, where

di j denotes the desired distance between agents i and j, design the control inputs

ui(t), i = 1, ...,N, such that as t → ∞ both the conditions
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lim
t→∞

xT (t) ∈ conv{x1(t), . . . ,xN(t)} (2.5)

and

lim
t→∞

∣
∣
∣‖xi(t)− x j(t)‖−di j

∣
∣
∣≤ ε, ∀i �= j ∈ {1, . . . ,N} (2.6)

are satisfied where conv{x1, . . . ,xN} denotes the convex hull of x1, . . . ,xN and ε > 0

is a small constant.

The swarm tracking problem is the generalized (extended) counterpart to multi-

agent systems of pursuit-evasion problems for single agents. It is assumed that the

moving target is maneuvering in order to evade capture (or being enclosed) by the

swarm of agents and the swarm does not have full information about the motion

of the target. In some applications, in addition to stabilizing and keeping a forma-

tion it might be needed to perform various formation maneuvers without modify-

ing the overall geometrical shape of the formation. Common formation maneuvers

include translation, rotation, expansion, and contraction. It is possible to formally

define these maneuvers as well. Simply stated, translation constitutes moving the

formation from one position in space to another without modifying its orientation

or relative distances between agents; rotation constitutes changing the orientation

of the geometrical shape without modifying its position in the space or relative

distances between agents; expansion or contraction constitutes modifying the rela-

tive distances between agents (either uniformly decreasing or uniformly increasing)

without modifying its position or orientation in the space. All these maneuvers can

be viewed under the broader concept of formation reconfiguration. Another form

of formation reconfiguration is formation switching, or basically changes from one

shape to another. Note that formation switching is a formation maneuver which re-

quires change in both relative bearings and relative distances between the agents in

the swarm. Such shape changes might be needed due to task requirements or might

occur as a reaction to environmental changes. For example, a swarm moving in a tri-

angular formation might need to switch to a line formation when passing through a

narrow passage in which it is impossible to keep the initial formation, and to switch

back after clearing the passage.

2.4 Distributed Agreement

An important and amazing feature of swarms in nature is that they usually have the

capacity to achieve agreement on a common global variable in a distributed man-

ner using only local limited information and local interactions. Examples of swarms

exhibiting such behavior or phenomena include distributed synchronization of the

flashing of fireflies in which thousands of fireflies flash in unison, distributed deci-

sion making in swarm of bees during nest site selection in which a swarm of bees

after leaving the old hive chooses in a finite time the best new nest/hive among the

available ones, reaching consensus in opinion in closed social networks, and oth-

ers. It is scientifically interesting to study and uncover the mechanisms of this phe-

nomena. Moreover, at different stages of swarm studies and different multi-agent
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dynamic systems applications there may arise situations in which the agents may

need to agree on some information which could be agent position, velocity, oscilla-

tion phase, target to be handled or any other decision variable. Moreover, due to the

limited resources and agent capacities this agreement might need to be done using

only local limited information and available local interactions. Therefore, there is

a need to develop mathematical models and corresponding control strategies which

guarantee agreement.

The problems of developing distributed or decentralized control strategies for

agreement are called distributed agreement problems. There are also studies which

refer to the distributed agreement problem as distributed consensus seeking. Note

that these two terms can be used interchangeably to describe the same problem.

It is said that agreement or consensus is achieved if the corresponding variables

of interest of all agents converge to the same value. The variable of interest can

represent the whole state of the agents in which case the problem can be referred as

a state agreement problem whereas on other case it can represent part of the agent

states (such as heading of the agents) and the neighborhoods might be defined based

on another part of the states (such as for example the relative positions of the agents)

in which case one can refer to the problem as an output agreement problem. We state

the distributed agreement problem as follows.

Problem 6. (Distributed Agreement) Consider a swarm of N agents with states (or

outputs) xi(t), i = 1, ...,N, evolving in R
n. Let the corresponding control inputs of

the agents be denoted by ui(t), i = 1, ...,N. Assume that at every time instant t each

agent i can interact with (i.e., obtain information from) a possibly different (i.e.,

time varying) subset of agents Ni(t) called its neighbors. Design the control in-

puts ui(t), i = 1, ...,N, and determine conditions on the neighborhood (interaction)

topology (or, if possible, appropriately design the interaction topology as well), so

that as t → ∞ for all agents i = 1, ...,N, we have

lim
t→∞

xi(t) = xc (2.7)

for some xc ∈ R
n.

The state xc in the above definition is referred to as the consensus state.

The distributed agreement problem has some similarities with the formation con-

trol and aggregation problems. In particular, one may have the impression that dis-

tributed agreement is a special case of formation control under the condition that

di j = 0 for all agents i and j. However, re-examining carefully the above definition

one can see that there are also important differences. First of all, the consensus state,

i.e., the state (or output) to which all xi(t) converge, is emergent in the distributed

agreement problem. Its value is usually dependent on the initial states (or outputs)

xi(0) and the changes in the interaction (neighborhood) topology over time. More-

over, the connectivity properties of the neighborhood (information flow) topology

are of paramount importance in distributed agreement problems. Also, since the in-

teraction (and therefore the information flow) can be time varying the uniformity in

the connectivity over time plays crucial role in achieving agreement. Moreover, in
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formation control or aggregation two agents occupying the same state is undesirable

since it implies collision between agents, whereas in the distributed agreement prob-

lem it is the sole objective. Note also that the control strategies or update rules that

lead to agreement are usually called consensus protocols in the literature. Although

it is possible to use continuous-time agent dynamics and continuous-time protocols

to model the agreement problem, here we will approach the problem using discrete-

time techniques. It is possible also to further generalize the distributed agreement

problem such that agreement is achieved over a common trajectory and not a fixed

value. In other words, it can be generalized such that xc in (2.7) is a time varying

function xc(t). Note, however, that still xc(t) and its properties are emergent and not

predefined.

2.5 Function Minimization

Function minimization is a fundamental problem in many engineering disciplines.

Various classical methods for function minimization are available. In this book we

will discuss alternative solution methods inspired from the behavior or operation of

swarms in nature. In particular, we will present the bacterial foraging optimization

(BFO) and the particle swarm optimization (PSO) algorithms. These methods are

direct search methods which have been inspired by the foraging behavior of swarms

in nature. In other words, they are based on mimicing (to some extend) the behavior

of foraging behavior of swarms in nature. Beside their ease of implementation, em-

pirical studies have demonstrated that the presented bioinspired optimization algo-

rithms have effective performance. Moreover, they can be implemented on parallel

and asynchronous computing systems. Below we briefly specify the basic optimiza-

tion (function minimization) problem.

Problem 7. (Function Minimization) Consider an objective function f : R
n → R to

be minimized. Determine a point (or a set of points) x∗ ∈ R
n such that for some

neighborhood N(x∗) of x∗ and for all x ∈ N(x∗)

f (x∗) ≤ f (x)

is satisfied.

The above problem definition corresponds to unconstrained optimization. In other

words, there are no restrictions over x. There are also problems in which, in ad-

dition to minimizing the objective function, the variable of interest has to satisfy

certain conditions or constraints which might be expressed in forms of equalities or

inequalities. Moreover, in the above definition no restriction on the objective func-

tion f (x) has been specified. Usually continuity and/or smoothness requirements on

f (x) need to be imposed since otherwise the problem becomes much more difficult

to solve. Note also that the foraging problem presented in the preceding sections has

some similarities with the function minimization problem presented here.
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2.6 Related Problems and Behaviors and Further Reading

There are also problems in the multi-agent dynamic systems literature which are

very much related to the problems presented above but not discussed in this book.

Some of these problems are formation structure breakdowns, flocking, rendezvous,

and synchronization. Below we briefly mention these as well.

2.6.1 Formation Structure Breakdowns

During cohesive motion of swarms in the form of structured formations sometimes

it might be inevitable to have structure break-downs or changes different from the

formation maneuvers discussed above in the context of formation reconfiguration.

Some relevant formation operations that may result in structure change include

merging, splitting, and agent loss. Merging is combining of two formations via some

interaction links in between to form a single formation. Splitting is the “reverse” of

merging or basically division of a given formation into two or more smaller forma-

tions via breaking some of the interaction links. In agent loss, one or more agents

together with the attached interaction links are lost and there is a need to reconfig-

ure the interaction topology and/or the geometrical shape of the formation. Various

properties such as rigidity or persistency might be needed to be preserved during

such operations. Works investigating maintenance of rigidity and persistence during

changes on the formation structure due to merging, splitting, or agent loss can be

found in [8, 69, 263, 264].

2.6.2 Flocking

Flocking, in general, can be defined as collective motion behavior of a large number

of interacting agents with a common group objective. Usually the common direction

of motion is emergent from the interactions between the agents in the swarm. The in-

teractions between agents are based on the so-called “nearest neighbor rule” (where

the agents adjust their motion based only on their nearest neighbors). The pioneer-

ing work by Reynolds [206] proposed three simple rules to implement a flocking

behavior, namely separation, alignment, and cohesion. These rules have been used

to develop realistic computer simulations of the flocking behavior of animal swarms.

The work in [251] based on the self-propelled particle systems can be also viewed as

a simplified model of flocking which investigates the effects of noise on the overall

system dynamics and phase transition from disordered to ordered behavior.

Flocking has many similarities with the formation control problem for the case in

which the geometric shape of the formation is not specified a priori. Also, achieving

common orientation in a large flock despite the fact that not all agents can inter-

act with each other, is in a sense a distributed agreement problem. Mathematical

analysis on a simplified model of achieving common orientation during the flock-

ing behavior based on “nearest neighbor rules” is provided and some corresponding

convergence results are established in [126]. Recent empirical studies in [42, 43]

investigate the effect of neighborhood size and asynchronism [42] and turn angle
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restrictions (a type of non-holonomic constraint) [43] on the flocking behavior of

the system in [251]. See also [211] for a more comprehensive treatment.

An important attempt to rigorously model and analyze flocking behavior can be

found in [234, 235] for systems with point mass dynamics and in [236] for agents

with non-holonomic unicycle dynamics. Similarly the work in [182] investigates sta-

ble flocking of agents with point mass dynamics. The agent interactions are based

on “nearest neighbor rules” and potential functions are utilized for aggregation and

alignment. Several algorithms are proposed and analyzed with and without group

objectives and it is shown that under certain conditions flocking will be achieved

and the flock will have a lattice-type structure. Three rules, which are flock center-

ing, collision avoidance, and velocity matching, are used for achieving the flocking

behavior.

2.6.3 Rendezvous

Rendezvous is the problem in which the task is meeting (or gathering) of agents at

a point or a small region in the space in finite time [205]. It can be thought as a

specific form of aggregation or flocking [9] or a specific form of distributed agree-

ment (consensus seeking) and therefore also specific form of formation stabilization

(to a single point). The main difference from these problems is that in rendezvous

the gathering has to occur in finite time [74, 101, 148, 149], whereas aggregation

or agreement (consensus) are allowed to be achieved asymptotically. The neighbor-

hoods can be time dependent and based on nearest neighbors. The problem can be

investigated in different settings such as synchronous [148] or asynchronous [149]

or for agents under cyclic pursuit (i.e., swarms where each agent follows the preced-

ing agent and the interaction topology forms a ring) [165, 166]. We will not consider

rendezvous in this book.

2.6.4 Synchronization of Coupled Nonlinear Oscillators

As mentioned above a good example of distributed agreement in nature is the syn-

chronization of the flashing of fireflies [228]. This phenomenon can be viewed

also as distributed synchronization of coupled oscillators. Synchronization of cou-

pled oscillators is usually mathematically represented by the so-called Kuramoto

model [216, 227]. The Kuramoto model can be viewed as a special case of the

single integrator aggregation model considered in the following sections. It can

be viewed also as an example of a continuous-time consensus protocol. There are

various studies in the literature which investigate continuous-time consensus pro-

tocols [72, 126, 184, 203, 205]. Alternative discrete-time consensus protocols are

considered in [126, 176, 203, 205]. The discrete-time consensus protocols are usu-

ally based on taking convex combinations between the states (outputs) of the neigh-

boring agents.
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2.6.5 Other Behaviors

The possibilities for multi-agent dynamic systems are enormous. Although we are

interested in particular aspect which is mostly coordinated motion, as mentioned

earlier, there are other aspects as well. Another aspect in swarm coordination

and control is cooperative operations to achieve a common or shared objective

different than cooperative motion. Various examples of this, including surveil-

lance, sweeping and coverage tasks, and others can also be found in the literature,

e.g. [33, 49, 59, 85, 143, 177, 195, 209, 210]. An attempt to study emergence can

be found in [142]. Studies on mobile sensor networks are also relevant to studies on

swarms. A survey on sensor networks can be found in [6]. Recent related books on

multi-agent dynamic systems include [32, 202, 221].
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Continuous Time Swarms
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Swarms of Single Integrator Agents

3.1 Single Integrator Agent Model

The simplest mathematical representation of agents (e.g., robots, satellites, un-

manned ground or air vehicles) used for studying swarm behavior is the single in-

tegrator model. In this model the motion of an agent i, i = 1, . . . ,N, is given by

ẋi = ui, (3.1)

where xi ∈ R
n is the state of agent i and ui ∈ R

n is its control input. We refer to

this model as a higher-level or kinematic agent model since it ignores the lower-

level vehicle dynamics of the individual agents. However, it is a relevant and useful

model since it can be used for studying higher level algorithms, independent of de-

tailed agent dynamics, and for obtaining “proof of concept” type results for swarm

behavior. Moreover, in certain control tasks involving path planning, the trajecto-

ries generated using the higher-level agent model in (3.1) can be used as reference

trajectories for the actual agents to track. Furthermore, (3.1) is a realistic simplified

kinematic model for a class of omni-directional mobile robots with so-called univer-

sal (or Swedish) wheels [35, 111, 261]. In different contexts the state xi can represent

different entities. For example, for robotic swarms it may represent the position of

agent i, whereas in distributed agreement problems it may represent the current esti-

mate of the variable to be agreed upon (i.e., the “opinion”) of agent i. Nevertheless,

in implementations of the results obtained for (3.1) with real-life robotic agents it

may be necessary to consider the effects of the actual low-level agent dynamics.

Given the agent dynamics in (3.1), in this chapter we will discuss developing

control algorithms for obtaining several different swarm behaviors including ag-

gregation, social foraging, formation control, and swarm tracking. Our approach to

solving these problems will be a potential functions based approach.

We assume all individuals in the swarm move simultaneously and know the exact

relative position of the other individuals. Let x⊤ = [x⊤1 ,x⊤2 , ...,x⊤N ] ∈ R
Nn denote the

vector of concatenated states of all the agents. In this chapter the control input ui of

individual i in (3.1) will have the form
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ui = −∇xi
J(x) (3.2)

where J : R
Nn → R is a potential function which represents the interaction (i.e., the

attraction and/or repulsion relationship) between the individual agents and needs to

be chosen by the designer based on the swarm application under consideration and

the desired behavior from the swarm. We will discuss which properties the potential

functions should satisfy for different problems and present results for some potential

functions.

3.2 Aggregation

Aggregation is one of the most basic behaviors seen in swarms in nature (such as

insect colonies) and is sometimes the initial phase in collective tasks performed by a

swarm [25]. Below, we discuss how to achieve aggregation for the single integrator

model in (3.1).

3.2.1 Potential Function Design

If only simple aggregation is desired from the swarm, then the potential function J

can be selected as J(x) = Jaggregation(x) where

Jaggregation(x) =
N−1

∑
i=1

N

∑
j=i+1

[

Ja

(

‖xi − x j‖
)

− Jr

(

‖xi − x j‖
)]

. (3.3)

Here, Ja : R
+ → R represents the attraction component, whereas Jr : R

+ → R rep-

resents the repulsion component of the potential function. Although not the only

choice, the above potential function is very intuitive since it represents an interplay

between attraction and repulsion components. Note also that it is based only on the

relative distances between the agents and not the absolute agent positions.

Given the above type of potential function, the control input of individual i, i =
1, . . . ,N, can be calculated as

ui = −
N

∑
j=1, j �=i

[

∇xi
Ja

(

‖xi − x j‖
)

−∇xi
Jr

(

‖xi − x j‖
)]

. (3.4)

Note that since ẋi = ui, the motion of the individual is along the negative gradient

and leads to a decent motion towards a minimum of the potential function J. More-

over, since the functions Ja(‖y‖) and Jr(‖y‖) create a potential field of attraction

and repulsion, respectively, around each individual, the above property restricts the

motion of the individuals toward each other along the gradient of these potentials

(i.e., along the combined gradient field of Ja(‖y‖) and Jr(‖y‖)).
One can show that, because of the chain rule and the definition of the functions

Ja and Jr, the equalities
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∇yJa(‖y‖) = yga(‖y‖)
∇yJr(‖y‖) = ygr(‖y‖)

are always satisfied for some functions ga : R
+ → R and gr : R

+ → R. Here ga :

R
+ → R

+ represents (in a sense the magnitude of) the attraction term, whereas

gr : R
+ → R

+ represents (in a sense the magnitude of) the repulsion term. Note

also that the combined term −yga(‖y‖) represents the actual attraction, whereas the

combined term ygr(‖y‖) represents the actual repulsion, and they both act on the line

connecting the two interacting individuals, but in opposite directions. The vector y

determines the alignment (i.e., it guarantees that the interaction vector is along the

line on which y is located) as well as affects the magnitude of the attraction and

repulsion components. The terms ga(‖y‖) and gr(‖y‖), on the other hand, affect

correspondingly only the magnitude of the attraction and repulsion, whereas their

difference determines the direction of the interaction along vector y.

Let us define the function g(·) as

g(y) = −y
[

ga(‖y‖)−gr(‖y‖)
]

. (3.5)

We call the function g(·) an attraction/repulsion function and assume that on large

distances attraction dominates, that on short distances repulsion dominates, and that

there is a unique distance at which the attraction and the repulsion balance. In other

words, we assume that g(·) satisfies the following assumptions.

Assumption 1. The function g(·) in (3.5) and the corresponding ga(·) and gr(·) are

such that there exist a unique distance δ at which we have ga(δ) = gr(δ). Moreover,

we have ga(‖y‖) > gr(‖y‖) for ‖y‖ > δ and gr(‖y‖) > ga(‖y‖) for ‖y‖ < δ.

One issue to note here is that for the attraction/repulsion functions g(·) defined as

above we have g(y) =−g(−y). In other words, the above g(·) functions are odd (and

therefore symmetric with respect to the origin). This is an important feature of the

g(·) functions that leads to reciprocity in the inter-agent relations and interactions.

In this chapter we will consider swarms with such reciprocal interactions.

In order for the above assumptions to be satisfied the potential function de-

signer should choose the attraction and repulsion potentials such that the mini-

mum of Ja(‖xi − x j‖) occurs on or around ‖xi − x j‖ = 0, whereas the minimum of

−Jr(‖xi − x j‖) (or the maximum of Jr(‖xi − x j‖)) occurs on or around ‖xi − x j‖ →
∞, and the minimum of the combined Ja(‖xi − x j‖) − Jr(‖xi − x j‖) occurs at

‖xi − x j‖ = δ. In other words, at ‖xi − x j‖ = δ the attraction/repulsion potential be-

tween two interacting individuals has a global minimum. Note, however, that when

there are more than two individuals, the minimum of the combined potential does

not necessarily occur at ‖xi − x j‖ = δ for all j �= i. Moreover, there exists a family

of minima. However, this does not constitute a problem since in the aggregation

problem we are not concerned with which minimum (or relative configuration) the

swarm converges to. Note also that one can view J(x) as the potential energy of the

swarm, whose value depends on the inter-individual distances (such that it is high

when the agents are either far from each other or too close to each other) and the
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motion of the swarm in (3.2) (and therefore the one in (3.4)) is towards a minimum

energy configuration (one that is not necessarily unique).

It has been observed in nature that there are attraction and repulsion forces (with

attraction having longer range than repulsion) between individuals that lead to the

swarming behavior. For example, for fish attraction is generally based on vision

and has a long range, whereas repulsion is based on the pressure on the side of the

fish and has a short range (but is stronger than attraction). Moreover, it has been

observed that both attraction and repulsion are always “on” and the resulting behav-

ior is due to the interplay between these two forces, and there is a distance (called

the “equilibrium distance” in biology) at which attraction and repulsion between

two individuals balance. Note that the above model captures these properties by

having attraction and repulsion terms in the motion equation acting in opposite di-

rections, and the “equilibrium distance” is the unique distance δ at which we have

ga(δ) = gr(δ).
One potential function which satisfies the above conditions, including Assump-

tion 1, and has been used in the literature for swarm aggregations (see for exam-

ple [92]) is

J(x) =
N−1

∑
i=1

N

∑
j=i+1

[
a

2
‖xi − x j‖2 +

bc

2
exp

(

−‖xi − x j‖2

c

)]

. (3.6)

Its corresponding attraction/repulsion function can be calculated as

g(y) = −y

[

a−bexp

(

−‖y‖2

c

)]

. (3.7)

The equilibrium distance for this function can be easily calculated as δ=
√

c ln(b/a).
Swarming in nature normally occurs in a distributed fashion. In other words,

there is no leader (or boss) and each individual decides independently its direction

of motion. The above potential function based interaction model captures this in its

simplest form by having separate equations of motion for each individual that do not

depend on an external variable (such as a command from a boss or another agent).

In contrast, an individual’s motion depends only on the position of the individual

itself and its observation of the positions (or relative positions) of other individuals.

3.2.2 Analysis of Swarm Motion

In this section we will discuss the collective motion of the swarm without taking

into consideration whether the swarm is cohesive (has aggregated/clustered) or not.

Let us define the centroid of the swarm (to which sometimes we will also loosely

refer as the swarm center) as

x̄ =
1

N

N

∑
i=1

xi.

Note that since the functions g(·) are odd, and therefore symmetric with respect to

the origin, the centroid x̄ of the swarm is stationary for all t. This is stated formally

in the following lemma.
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Lemma 1. The centroid x̄ of the swarm consisting of agents with dynamics in (3.1)

and with control input in (3.4) with an attraction/repulsion function g(·) which is

odd and satisfies Assumption 1 is stationary for all t.

Proof: The time derivative of the centroid is given by

˙̄x = − 1

N

N

∑
i=1

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

(xi − x j)

= − 1

N

N−1

∑
i=1

N

∑
j=i+1

{[

ga

(

‖xi − x j‖
)

−gr

(
‖xi − x j‖

)
]

(xi − x j)

+

[

ga

(

‖x j − xi‖
)

−gr

(

‖x j − xi‖
)]

(x j − xi)

}

= 0.

Let us denote the invariant set of equilibrium (or stationary) points for the swarm

with

Ωe = {x : ẋ = 0}.
Note that x ∈Ωe implies that ẋi = 0 for all i = 1, . . . ,N, implying that all individuals

are stationary (i.e., have stopped) whenever the state is within that set.

Theorem 1. Consider a swarm consisting of agents with dynamics in (3.1) and with

control input in (3.4) with an attraction/repulsion function g(·) which is odd and

satisfies Assumption 1. For any x(0) ∈ R
Nn, as t → ∞ we have x(t) →Ωe.

Proof: The potential function J(x) serves as a Lyapunov function for the system.

Taking the gradient of J(x) with respect to the state xi of individual i we obtain

∇xi
J(x) =

N

∑
j=1, j �=i

[∇xi
Ja(‖xi − x j‖)−∇xi

Jr(‖xi − x j‖)] = −ẋi, (3.8)

which follows from (3.4).

Now, taking the time derivative of the Lyapunov function along the motion of the

system we obtain

J̇(x) = [∇xJ(x)]⊤ ẋ =
N

∑
i=1

[∇xi
J(x)]⊤ ẋi =

N

∑
i=1

[−ẋi]
⊤

ẋi = −
N

∑
i=1

‖ẋi‖2 ≤ 0,

for all t implying a decrease in J(x) unless ẋi = 0 for all i = 1, . . . ,N. If the function

g(·) is chosen such that the set defined as Ω0 = {x : J(x)≤ J(x(0))} is compact, then

using the LaSalle’s Invariance Principle we can conclude that as t →∞ the state x(t)
converges to the largest invariant subset of the set defined as

Ω1 = {x ∈Ω0 : J̇(x) = 0} = {x ∈Ω0 : ẋ = 0} ⊂Ωe.

Note, however, that in general Ω0 may not necessarily be compact for every g(·),
which may happen if the corresponding J(·) is not radially unbounded. Therefore,
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the fact that J̇(x)≤ 0 does not, in general, directly imply boundedness. In particular,

for some potential functions the small increase in J(x) due to one or more agents

departing far away from the swarm might be compensated by the motion of the other

agents resulting in overall decrease in J(x). However, this case is not possible here

since for every individual i we have [∇xi
J(x)]⊤ ẋi = −‖ẋi‖2 ≤ 0, which implies that

every individual moves in a direction of decrease of J(x). From the properties of the

attraction/repulsion functions in Assumption 1 we know that attraction dominates on

large distances and repulsion dominates on short distances. This, on the other hand,

implies that on large distances decrease in J(x) is due to agents moving towards

each other, whereas on short distances decrease is due to agents moving away from

each other. In other words, agents continuously departing from the rest of the swarm

cannot result in decrease in J(x). Therefore, the agent states are bounded and the set

defined as Ωx = {x(t) : t ≥ 0} ⊂ Ω0 is compact and we still can apply LaSalle’s

Invariance Principle arriving at the conclusion that as t →∞ the state x(t) converges

to the largest invariant subset of the set defined as

Ω2 = {x ∈Ωx : J̇(x) = 0} = {x ∈Ωx : ẋ = 0} ⊂Ωe.

Since in both of the above cases both Ω1 and Ω2 are invariant themselves and

satisfy Ω1 ⊂ Ωe and Ω2 ⊂ Ωe, we have x(t) →Ωe as t → ∞ and this concludes the

proof.

Note that in some engineering swarm applications such as uninhabited air vehi-

cles (UAV’s) individuals never stop. Therefore, the results here may seem not to be

applicable. However, in some biological examples such as fruiting body formation

by bacteria or engineering applications in which a group of agents are required to

“gather together” to be loaded on a vehicle and transferred to a new area it is pos-

sible (or desirable) to have the agents aggregate and stop. Moreover, note also that

the results here are based on relative inter-individual interactions and describe only

aggregation. It is possible to extend them to mobile swarms by having a motion (or

drift) term in the equation of motion together with the aggregation term described

here. For example, consider the case in which given a reference trajectory {xr, ẋr},

which is known (or estimated) by all the agents, the agents move based on

ẋi = ui = ẋr −∇xi
J(x) (3.9)

Then, defining x̃i = xi − xr one obtains

˙̃xi = −∇xi
J(x) = −

N

∑
j=1, j �=i

[

ga

(

‖x̃i − x̃ j‖
)

−gr

(

‖x̃i − x̃ j‖
)]

(x̃i − x̃ j)

which is exactly the model considered above. Then, for the swarm with motion dy-

namics given by (3.9), the result in Theorem 1 implies that the relative dynamics

of the agents will eventually stop and all the agents will move with the velocity

ẋi = ẋr, i = 1, ...,N (somehow) along the reference trajectory {xr, ẋr} (with possibly

a constant shift) as a single cohesive entity (in a minimum energy relative configu-

ration). Further, if the agent controllers are chosen as
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ẋi = ui = ẋr −α(xi − xr)−∇xi
J(x) (3.10)

then one can also show that as t → ∞ we will have x̄ = xr and ˙̄x = ẋr implying that

the centroid x̄ of the swarm will track the reference trajectory exactly (in addition to

achieving a constant relative configuration).

We would like to emphasize that the above approach is distributed in a sense

that in order to be able to implement their controllers the individuals do not have to

know the global potential energy function J(x) given in (3.3). Instead, it is sufficient

if they know the local, or their internal potential energy function, given by

Ji(x) =
N

∑
j=1, j �=i

[Ja(‖xi − x j‖)− Jr(‖xi − x j‖)] , (3.11)

since

ui = −∇xi
Ji(x) = −∇xi

J(x),

where the global potential J(x) in (3.3) can be written as J(x) = 1
2 ∑

N
i=1 Ji(x) in terms

of the local potentials Ji(x) in (3.11).

The result in Theorem 1 is important. It proves that asymptotically the individuals

will converge to a constant position and therefore to a constant relative arrangement.

However, it does not specify any bound on the resulting size of the swarm. This issue

will be investigated in the following section.

3.2.3 Swarm Cohesion Analysis

In this section, we will establish bounds on the ultimate “swarm size.” To this end,

we define the distance between the position xi of individual i and the centroid x̄ of the

swarm as ei = xi− x̄. The ultimate bound on the magnitude of ei will quantify the size

of the swarm. Taking the time derivative of ei we have ėi = ẋi − ˙̄x = ẋi, since from

Lemma 1 we have ˙̄x = 0. Now, for each individual i choose Vi = 1
2
‖ei‖2 = 1

2
e⊤i ei as

the corresponding Lyapunov function. Taking the time derivative of Vi we obtain

V̇i = ė⊤i ei = −
N

∑
j=1, j �=i

[

ga

(
‖xi − x j‖

)
−gr

(
‖xi − x j‖

)]

(xi − x j)
⊤ei. (3.12)

Below, first we analyze the case in which we have a linear attraction and a bounded

repulsion.

Linear Attraction and Bounded Repulsion Case

In this section we consider the special case in which the attraction part satisfies

ga

(
‖y‖
)
= a (3.13)

for some finite positive constant a > 0 and for all y, which corresponds to linear at-

traction since the actual attraction is given by yga

(
‖y‖
)
= ay, whereas the repulsion

is constant or bounded as
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gr(‖xi − x j‖)‖xi − x j‖ ≤ b, (3.14)

for some finite positive constant b. Note that the potential function in (3.7) satisfies

both of these conditions.

Theorem 2. Consider a swarm consisting of agents with dynamics in (3.1) and with

control input in (3.4) with an attraction/repulsion function g(·) which is odd, sat-

isfies Assumption 1, and has linear attraction and bounded repulsion (i.e., satisfies

the conditions (3.13) and (3.14)). As time progresses all the members of the swarm

will converge to a hyperball

Bε(x̄) = {x : ‖x− x̄‖ ≤ ε},

where

ε =
b

a
.

Moreover, the convergence will occur in finite time bounded by

t̄ = max
i∈{1,...,N}

{

− 1

2a
ln

(
ε2

2Vi(0)

)}

.

Proof: Choose any swarm member (agent) i. Incorporating the value of ga(‖xi −
x j‖) in (3.12) we obtain

V̇i = −a
N

∑
j=1, j �=i

(xi − x j)
⊤ei +

N

∑
j=1, j �=i

gr

(
‖xi − x j‖

)
(xi − x j)

⊤ei.

Now, note that

N

∑
j=1, j �=i

(xi − x j) =
N

∑
j=1

(xi − x j) = Nxi −
N

∑
j=1

x j = Nxi −Nx̄ = Nei. (3.15)

Substituting this in the V̇i equation we obtain

V̇i = −aN‖ei‖2 +
N

∑
j=1, j �=i

gr(‖xi − x j‖)(xi − x j)
⊤ei

≤ −aN‖ei‖
[

‖ei‖−
1

aN

N

∑
j=1, j �=i

gr(‖xi − x j‖)‖xi − x j‖
]

,

which implies that V̇i < 0 is satisfied as long as ‖ei‖> 1
aN ∑N

j=1, j �=i gr(‖xi−x j‖)‖xi−
x j‖. This, on the other hand, implies that as t → ∞ asymptotically the inequality

‖ei‖ ≤
1

aN

N

∑
j=1, j �=i

gr(‖xi − x j‖)‖xi − x j‖,
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will be satisfied. Note that this inequality relation holds for any type of repulsion,

provided that the attraction is linear. Then, using the bound on the repulsion in (3.14)

we conclude that asymptotically for this case we will have

‖ei‖ ≤
b(N −1)

aN
<

b

a
� ε,

which provides a bound on the maximum ultimate swarm size. Now, notice that for

‖ei‖ ≥ ε we have V̇i ≤ −a‖ei‖2 = −2aVi, which has a solution Vi(t) ≤ Vi(0)e−2at .

Using this and solving for the equality 1
2
ε2 = Vi(0)e−2at for t one can show that

‖ei‖ < ε will be reached for all i in a finite time bounded by

t̄ � max
i∈{1,...,N}

{

− 1

2a
ln

(
ε2

2Vi(0)

)}

.

This concludes the proof.

Remark: One issue to notice here is that, if we had only attraction (i.e., if we had

gr

(

‖xi−x j‖
)

≡ 0 for all i and j, j �= i), then the above equation would imply that the

swarm shrinks to a single point, which is the centroid x̄. In contrast, if we had only

repulsion (i.e., if we had ga

(

‖xi − x j‖
)

≡ 0 for all i and j, j �= i), then the swarm

would disperse in all directions away from the centroid x̄ towards infinity. Having the

attraction dominate at large distances prevents the swarm from dispersing, whereas

having the repulsion dominate on short distances prevents it from collapsing to a

single point, and the equilibrium is established in between.

Above we could establish an explicit bound on the swarm size for the case when the

attraction is linear and the repulsion is bounded. Next, we will analyze the case for

which we have an unbounded repulsion.

Linearly Bounded from Below Attraction and Unbounded Repulsion

By linearly bounded from below attraction we mean the case in which we have

ga(‖xi − x j‖) ≥ a, (3.16)

for some finite positive constant a and for all ‖xi − x j‖. For the repulsion functions,

on the other hand, we will consider the unbounded functions satisfying

gr(‖xi − x j‖) ≤
b

‖xi − x j‖2
. (3.17)

The simplest example of attraction/repulsion function g(·) satisfying the above as-

sumptions is the case in which the equalities are satisfied it is given by

g(xi − x j) =

[

a− b

‖xi − x j‖2

](

xi − x j

)
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which corresponds to the potential function

J(x) =
N−1

∑
i=1

N

∑
j=i+1

[
a

2
‖xi − x j‖2 −b ln

(

‖xi − x j‖
)]

.

Theorem 3. Consider a swarm consisting of agents with dynamics in (3.1) and with

control input in (3.4) with an attraction/repulsion function g(·) which is odd, satis-

fies Assumption 1, and has linearly bounded from below attraction satisfying (3.16)

and unbounded repulsion satisfying (3.17). As time progresses the root mean square

of the distances of the swarm members to the swarm centroid will satisfy

erms �

√

1

N

N

∑
i=1

‖ei‖2 ≤
√

b

2a
� εrms.

Proof: First, we define the cumulative (or overall) Lyapunov function for the swarm

motion dynamics as V =∑N
i=1 Vi and note that since at equilibrium ėi = ẋi = 0 (which

was shown in Theorem 1), we have also V̇i = 0 for all i and therefore V̇ = 0. In other

words, at equilibrium we have

V̇ = −
N

∑
i=1

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

(xi − x j)
⊤ei

= −
N−1

∑
i=1

N

∑
j=i+1

{[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

(xi − x j)
⊤ei

+

[

ga

(

‖x j − xi‖
)

−gr

(

‖x j − xi‖
)]

(x j − xi)
⊤e j

}

= −
N−1

∑
i=1

N

∑
j=i+1

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

‖xi − x j‖2

= −1

2

N

∑
i=1

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

‖xi − x j‖2 = 0,

where the third line was obtained using the fact that for any α ∈ R we have

α(xi − x j)
⊤ei +α(x j − xi)

⊤e j = α‖xi − x j‖2, (3.18)

which is true since xi − x j = ei − e j. From the result on V̇ in the above equation one

obtains

N

∑
i=1

N

∑
j=1, j �=i

ga(‖xi − x j‖)‖xi − x j‖2 =
N

∑
i=1

N

∑
j=1, j �=i

gr(‖xi − x j‖)‖xi− x j‖2. (3.19)

Note that since the actual attraction term is yga(‖y‖), we have ga

(

‖xi−x j‖
)

‖xi−
x j‖ ≥ a‖xi − x j‖ for this case (and hence the name linearly bounded from below

attraction). Using this fact, from (3.19) one obtains
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a
N

∑
i=1

N

∑
j=1, j �=i

‖xi − x j‖2 ≤
N

∑
i=1

N

∑
j=1, j �=i

gr(‖xi − x j‖)‖xi − x j‖2.

Similarly, from the bound on gr

(

‖xi−x j‖
)

we know that gr

(

‖xi−x j‖
)

‖xi−x j‖2 ≤
b and obtain

N

∑
i=1

N

∑
j=1, j �=i

gr

(

‖xi − x j‖
)

‖xi − x j‖2 ≤ bN(N −1).

Using the fact that ei = 1
N ∑N

j=1(xi − x j) (see equation (3.15)) and the equality

in (3.18) for the sum of the squares of the error one can show that

N

∑
i=1

‖ei‖2 =
1

N

N

∑
i=1

N

∑
j=1, j �=i

(xi −x j)
⊤ei =

1

N

N−1

∑
i=1

N

∑
j=i+1

‖xi −x j‖2 =
1

2N

N

∑
i=1

N

∑
j=1, j �=i

‖xi −x j‖2

holds (where we again used the fact in (3.18) to obtain the second equality).

Combining these equations with (3.19) we obtain

2aN
N

∑
i=1

‖ei‖2 ≤ bN(N −1)

which implies that at equilibrium we have

1

N −1

N

∑
i=1

‖ei‖2 ≤ b

2a
.

Then, for the root mean square of the error we have

erms �

√

1

N

N

∑
i=1

‖ei‖2 ≤
√

b

2a
� εrms, (3.20)

which concludes the proof.

The inequality in (3.20) establishes a bound on the swarm size and implies that the

swarm will be cohesive. Moreover, it shows that ‖ei‖ will be ultimately bounded by

‖ei‖ ≤
√

bN

2a
= εrms

√
N,

for all t. In other words, no agent in the swarm can diverge to infinity.

The equality in (3.19) states, in a sense, that at equilibrium the total attraction

and the total repulsion in the swarm will balance. This is consistent with the earlier

discussions on the motion of the swarm towards a minimum of J(x) or basically to

a minimum potential energy configuration. In fact, the result in (3.19) corresponds

to a (local) minimum of the potential function J(x).

Remark: The cumulative Lyapunov function V is only one way to quantify the

cohesion/dispersion of the swarm. In other words, instead of V , we could equally

well choose
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V̄ =
1

2

N−1

∑
i=1

N

∑
j=i+1

‖xi − x j‖2,

which would quantify the inter-agent distances instead of the distances to the cen-

troid. In some applications, where the centroid of the swarm is moving or the relative

motion or relative positions of the agents to each other is more important than their

relative motion to a predefined point such as their centroid, it may be better to use

a function like V̄ . In fact, we arrive at the same conclusion using V̄ since it can be

shown that

˙̄V = −N

2

N

∑
i=1

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

‖xi − x j‖2 = NV̇ .

Almost Constant Attraction and Unbounded Repulsion

In this section we discuss the attraction functions that satisfy ga(‖xi − x j‖) → 0 as

‖xi − x j‖→ ∞. However, we assume also that

ga(‖xi − x j‖) ≥
a

‖xi − x j‖
. (3.21)

For the repulsion function we use the same type of functions as in the previous

section, i.e., functions satisfying (3.17). An example of attraction/repulsion function

g(·) satisfying the above assumptions could be stated as

g(xi − x j) =

[
a

‖xi − x j‖
− b

‖xi − x j‖2

](

xi − x j

)

which corresponds to the potential function

J(x) =
N−1

∑
i=1

N

∑
j=i+1

[

a‖xi− x j‖−b ln
(

‖xi − x j‖
)]

. (3.22)

For this case we have the following theorem.

Theorem 4. Consider a swarm consisting of agents with dynamics in (3.1) and with

control input in (3.4) with an attraction/repulsion function g(·) which is odd, sat-

isfies Assumption 1, and has almost constant attraction satisfying (3.21) and un-

bounded repulsion satisfying (3.17). As time progresses the average of the distances

of the swarm members to the swarm centroid will satisfy

eavg �
1

N

N

∑
i=1

‖ei‖ ≤
b

a
� εavg,
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Proof: For this case we have

a
N

∑
i=1

N

∑
j=1, j �=i

‖xi − x j‖ ≤
N

∑
i=1

N

∑
j=1, j �=i

gr(‖xi − x j‖)‖xi − x j‖2.

Also, since

‖ei‖ =
1

N

∥
∥
∥
∥
∥

N

∑
i=1

(xi − x j)

∥
∥
∥
∥
∥
≤ 1

N

N

∑
i=1

‖xi − x j‖,

holds (which is obtained using the equality in (3.15)) in a similar manner to earlier,

one obtains

aN
N

∑
i=1

‖ei‖ ≤ bN(N −1)

which, on the other hand, implies that

1

N −1

N

∑
i=1

‖ei‖ ≤
b

a
.

In other words, the average of the errors satisfies

eavg �
1

N

N

∑
i=1

‖ei‖ ≤
b

a
� εavg,

at equilibrium, implying cohesiveness of the swarm.

From the above result one can also deduce that ‖ei‖ will be ultimately bounded by

the bound

‖ei‖ ≤
Nb

a
= Nεavg.

We would like to emphasize that in the results obtained so far the bounds obtained

(i.e., ε, εrms, and εavg) are independent of the number of individuals N. Therefore, it

could be the case that as the number of individuals increase the density of the swarm

may also increase. This might happen even for the case with unbounded repulsion,

which guarantees that the individuals will not occupy the same point, but does not

necessarily guarantee uniform swarm density. Such a behavior will not be consistent

with real biological swarms. By creating a private or safety area for each agent, it is

possible to account for the finite body sizes of the agents and also to achieve swarm

size which increases with the number of agents implying, in a sense, more uniform

swarm density. This will be discussed in the next section.

3.2.4 Agents with Finite Body Size

In this section, we will discuss how the potential functions could be chosen to han-

dle finite body size or some private or safety area for the swarm members. In other

words, the agents will be viewed as entities with finite body size instead of points
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without dimensions. In particular, we will consider individuals which are hyper-

spheres in the n-dimensional space.

Assume that all the agents have the same size and let η be the radius of the

hypersphere representing the body size or private (safety) area of each agent. Let xi

be the center of the hypersphere for individual i. Then, in order for two individuals

i and j not to collide ‖xi − x j‖ > 2η needs to be satisfied. Note that this is not

guaranteed to be the case given the attraction/repulsion functions considered in the

preceding sections. The main reason for that is the fact that, even in the case of

unbounded repulsion, for the repulsion function gr(·) we have

lim
‖xi−x j‖→0+

gr(‖xi − x j‖)‖xi − x j‖ = ∞.

Therefore, since as ‖xi − x j‖ → 0+ the repulsion becomes unbounded, the agents

cannot occupy the same point, i.e., collisions between point-individuals are pre-

vented. In the case in which the agents have finite body size, the attraction and repul-

sion can be taken from the outer surface of the body and the corresponding potential

function modified accordingly. In particular, modifying the repulsion function to be

of “hard-limiting” type satisfying

lim
‖xi−x j‖→2η+

gr(‖xi − x j‖)‖xi − x j‖ = ∞,

will be sufficient, where η is the parameter representing the radius of the safety area,

or the body size, of the individuals as mentioned above.

One repulsion function which satisfies the above condition is given by

gr(‖xi − x j‖) =
b

(‖xi − x j‖2 −4η2)2

for η> 0, which corresponds to the repulsive potential

Jr(‖xi − x j‖) = − b

2(‖xi− x j‖2 −4η2)
. (3.23)

Note that with the assumption that initially all the agents are sufficiently far apart

from each other, i.e., that we have ‖xi(0)− x j(0)‖ > 2η for all (i, j), j �= i, this type

of repulsion function will guarantee that ‖xi(t)−x j(t)‖> 2η is satisfied for all t and

all (i, j), j �= i.

In contrast to the potential functions considered in the preceding section, the hard

limiting repulsion function guarantees that the swarm will scale with the number of

individuals leading to a more uniform density. To see this, first consider the two

dimensional space R
2. The private area of an individual is a disk with center xi and

radiusη with occupation area equal to Ai = πη2. Given the fact that ‖xi(t)−x j(t)‖>
2η for all t and all (i, j), j �= i and the safety areas of the swarm members are disjoint,

the total area occupied by the swarm will be Ats = Nπη2.
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Assume that all the swarm members are “squeezed” cohesively as close as pos-

sible in an area (a disk) of radius r around the swarm center x̄. Then, we have

πr2 ≥ Nπη2,

from which we obtain that a lower bound on the radius of the smallest circle which

can enclose all the individuals is given by

rmin = η
√

N.

This, on the other hand, implies that in R
2 the swarm will have a size which is

always greater than η
√

N. This is important because it shows that the lower bound

on the swarm size depends on N, implying that the swarm size will scale with the

number of individuals. In particular, even the size of the smallest possible swarm

will be greater than rmin because of the unoccupied area “lost” between the agents

in the swarm. The most compact swarm is achieved when the individuals are located

on a regular grid with the grid points as the edges of equilateral triangles with edge

size equal to 2η and the total of (N − 2) triangles. Defining ρ as the density (the

number of individuals per unit area/volume) of the swarm the above inequalities

imply that

ρ≤ 1

πη2
.

In other words, the density of the swarm is upper bounded implying that the swarm

cannot become arbitrarily dense.

With similar analysis to above, one can show that on R
n for any n the lower bound

on the swarm size is given by

rmin = η n
√

N.

This bound implies that as the dimension n of the state space gets larger, the relative

effect of N on the swarm size gets smaller, which is an intuitively expected result.

As in the two dimensional case, the smallest swarm occurs when the individuals

are placed on a regular grid where each individual is located at the vertex of an

equilateral shape (triangle in R
2, tetrahedron in R

3, etc.). Similar to the n = 2 case

it can be shown that the density of the swarm is upper bounded by

ρ≤ β(n)

ηn
,

where β(n) is a constant for a given n. In other words, it depends only on the dimen-

sion n of the state space.

Having relatively uniform swarm density is an important characteristic of real

biological swarms and therefore, a desired characteristic of mathematical models

of swarms. The discussion in this section shows that incorporation of hard-limiting

type of repulsion functions will lead to a behavior which can be more consistent

with biology. Moreover, in engineering applications creating a safety area around

each individual might be more effective in avoiding collisions.
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3.2.5 Simulation Examples

This section is devoted to illustrative numerical simulation examples that provide

better insight into the dynamics of the swarm. Although the theory holds for arbi-

trary dimension n of the state space, in the examples below either n = 2 or n = 3 are

used for easy visualization.

First, the case for linear attraction and bounded repulsion is considered. Fig-

ure 3.1(a) shows the paths of the agents in a swarm of N = 51 individuals with

initial agent positions which are apart from each other, whereas Figure 3.1(b) illus-

trates the case in which the agents start very close to each other (N = 60 for this

case). The initial and final positions of the agents are represented with circles while
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(a) Agents start apart from each other. (b) Agents start with close initial positions.

Fig. 3.1. Swarm with linear attraction and bounded repulsion between agents.

their paths are shown with dots. It is easily seen that, as expected, all the agents

move toward each other in Figure 3.1(a) and away from each other in Figure 3.1(b)

and form a cohesive swarm cluster with “comfortable” inter-agent distances. The

center of the swarm is stationary for all time (although not shown in the plots).

In these simulations, the potential function J(x) in (3.6) with the corresponding

attraction repulsion function g(·) in (3.7) with parameters a = 1, b = 20, and c = 0.2
was used. For these values of the parameters, the swarm members are expected to

converge to a ball with radius ε ≈ 3.8 around the centroid of the swarm. Note that

the actual swarm size is much smaller than this since ε is a conservative bound, as

discussed earlier.

Note that at their final positions, the distance between the agents in the swarm is

less than the distance δ in Assumption 1 at which attraction and repulsion balance.

This is expected since even though two agents are closer to each other than δ, they

cannot push each other because the other members are pulling them in a direction

opposite of their repulsion. Then the equilibrium occurs when the attraction and re-

pulsion balance and this balance occurs on inter-agent distances less then δ. Similar

results are obtained when different parameters are used in g(·). The main reason for

this is the fact that all agents are affected by all other agents. If the model is modified
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such that agents are affected only by their neighbors, then inter-agent distances in

the swarm would converge to δ.
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(a) Aggregation of the swarm. (b) Average distance of the agents to x̄.

Fig. 3.2. Almost constant attraction and unbounded repulsion (N = 31).

Next, the case of almost constant attraction and unbounded repulsion is consid-

ered with the potential function in (3.22) with parameters a = b = 0.2. The plot in

Figure 3.2(a) shows the behavior of N = 31 agents with initial positions chosen at

random. As one can see, the individuals form a cohesive cluster (around the cen-

troid) as predicted by the theory. For this case, we have the bound εavg = b
a

= 1 as

the ultimate size of the swarm. Figure 3.2(b) shows the average eavg of the distances

of the individual positions to the swarm centroid. Note that the average converges

to a value smaller than εavg, confirming the analytical derivations. The behavior of

the swarm for the other two cases is similar.
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Fig. 3.3. Hard-limiting repulsion (N = 31).
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Finally, we consider the case of hard-limiting repulsion with potential function

in (3.23) and η = 1. In other words, it is assumed that the agents have a safety area

of radius η= 1 and therefore keep a distance of at least 2η= 2 units apart from each

other. Figure 3.3(a) shows the final positions of the agents for a swarm with N = 31

individuals in a two dimensional space. As can be seen from the figure, the agents

do not collide with each other and are distributed in almost a grid like arrangement.

Figure 3.3(b), on the other hand, shows the minimum, the average, and the maxi-

mum distances between the agents in the swarm. As one can see from the figure, the

minimum distance between agents is greater than 2η = 2. In contrast, although not

shown in the current plots, as the number of individuals increases, while the min-

imum distance between agents continues to be greater than 2η = 2, the maximum

distance scales with the number of agents. This implies that the swarm size scales

with the number of agents while the density of the swarm remains relatively con-

stant (as expected from the discussions in the earlier sections). Having the swarm

density nearly constant is an important feature of the real biological swarms and this

shows that the swarm model with hard-limiting repulsion can represent that feature.

3.3 Social Foraging

3.3.1 Introduction

For the case of social foraging, in addition to the inter-agent interactions, the dy-

namics of the swarm will be affected by the environment. In order to incorporate

the effect of the environment within the potential functions framework it (the en-

vironment) can also be represented by a potential function. Let σ : R
n → R be

the potential which represents the environment. We will call this potential the “re-

source profile.” It is a potential function/profile representing the resources in the

environment which can be nutrients or some attractant or repellent substances (e.g.,

food/nutrients, pheromones laid by other individual, or toxic chemicals in biological

swarms or goals, targets, obstacles or threads in engineering swarm applications).

Assume that the areas that are minimum points are “favorable” to the agents in the

swarm. In particular, for a point y ∈R
n assume that σ(y) < 0 represents attractant or

nutrient rich, σ(y) = 0 represents a neutral, and σ(y) > 0 represents a noxious envi-

ronment at y. In the context of multi-agent (i.e., multi-robot) systems the profile σ(·)
models the environment containing obstacles or threats to be avoided (analogous to

toxic substances) and targets or goals to be moved towards (analogous to food).

Note also that the resource profile σ(·) can be a combination of several sub-profiles.

Modeling the environment this way, the potential function J can be chosen as

J(x) = J f oraging(x) where

J f oraging(x) =
N

∑
i=1

σ(xi)+ Jaggregation(x)

=
N

∑
i=1

σ(xi)+
N−1

∑
i=1

N

∑
j=i+1

[

Ja

(

‖xi − x j‖
)

− Jr

(

‖xi − x j‖
)]

. (3.24)
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Then, in light of equation (3.2) the control input for each individual i = 1, . . . ,N,

can be calculated as

ui = −∇xi
σ(xi)−

N

∑
j=1, j �=i

[

∇xi
Ja

(

‖xi − x j‖
)

−∇xi
Jr

(

‖xi − x j‖
)]

= −∇xi
σ(xi)−

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

(xi − x j). (3.25)

Here, we assume that the aggregation potential Jaggregation(x) and its related at-

traction/repulsion function g(·) satisfy the conditions stated in the preceding section.

In particular, we assume that g(·) is odd and satisfies Assumption 1.

The term −∇xi
σ(xi) represents the motion of the individuals towards regions

with higher nutrient concentration in biological swarms and towards goals or tar-

gets in engineering swarms and away from regions with high concentration of toxic

substances in biological swarms and away from threats or obstacles in engineering

swarms. Note that the implicit assumption that the individuals know the gradient of

the profile at their position is not very restrictive since it is known that some organ-

isms such as bacteria are able to construct local approximations to gradients [193].

Similar to the case for aggregation in the preceding section, the objective here is

to analyze the qualitative properties of the collective behavior (motions in n-space)

of the individuals. Considering first the motion of the centroid of the swarm one can

obtain

˙̄x = − 1

N

N

∑
i=1

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

(xi − x j)

= − 1

N

N

∑
i=1

∇xi
σ(xi). (3.26)

This is because

1

N

N

∑
i=1

N

∑
j=1, j �=i

[

ga

(

‖xi − x j‖
)

−gr

(

‖xi − x j‖
)]

(xi − x j) = 0,

holds due to the fact that inter-agent attraction/repulsion relationships are reciprocal

(i.e., g(·) is an odd function of the form (3.5) we have g(xi−x j) =−g(x j−xi) for all

pairs (i, j)). The above equation implies that the centroid of the swarm moves along

the average of the gradient of the resource profile evaluated at the current positions

of the agents. However, this does not necessarily mean that it will converge to a

minimum. Moreover, this does not imply that we can reach any conclusions about

the motions of the individuals. In fact, the convergence properties of the swarm to

minimum (or critical) points of the profile depends on the properties of the profile.

One can see that the collective behavior in (3.26) has a kind of averaging (fil-

tering or smoothing) effect. This may be important if the resource profile σ(·) is a

noisy function (or there is a measurement error or noise in the system as discussed
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in [103, 104]). In other words, if the resource profile σ(·) were a “noisy function”

and the agents were moving individually (without inter-agent attraction/repulsion),

then they could get stuck at a local minima, whereas if they swarm, since they are

moving collectively, the other individuals will “pull” them out of such local minima.

This in turn will lead to better performance by swarming agents compared to the

performance of “selfish” agents as seen in some biological examples [103, 104].

For the foraging swarm we will consider only the case of attraction/repulsion

functions which are continuous and have linear attraction as in (3.13) and bounded

repulsion as in (3.14).

3.3.2 Swarm Cohesion Analysis

Before proceeding with analysis of the swarm behavior for different resource pro-

files, in this section we will analyze the cohesiveness of the swarm under some

general conditions satisfied by several resource profiles. To this end, as before, let

ei = xi − x̄ denote the relative position between the position xi of individual i and

the centroid x̄ of the swarm. The ultimate bound on the magnitude of ei will again

quantify the size of the swarm. Note that

ėi = −∇xi
σ(xi)−

N

∑
j=1, j �=i

[

a−gr

(

‖xi − x j‖
)]

(xi − x j)+
1

N

N

∑
j=1

∇x j
σ(x j),

where gr(·) is such that (3.14) is satisfied. Defining a Lyapunov function as Vi =
1
2
‖ei‖2 = 1

2
e⊤i ei, and since ei = 1

N ∑N
j=1(xi − x j) holds one can easily obtain

V̇i = −aN‖ei‖2 +
N

∑
j=1, j �=i

gr(‖xi − x j‖)(xi − x j)
⊤ei

−
[

∇xi
σ(xi)−

1

N

N

∑
j=1

∇x j
σ(x j)

]⊤

ei. (3.27)

Now, if we can show that there is a constant ε such that for all ‖ei‖ > ε we have

V̇i < 0, then we will guarantee that in that region ‖ei‖ is decreasing and eventually

‖ei‖ ≤ ε will be achieved. With this in mind, we have two assumptions about the

resource profile σ(·). Note that these two assumptions do not have to be satisfied

simultaneously.

Assumption 2. There exists a constant σ̄> 0 such that

‖∇yσ(y)‖ ≤ σ̄

for all y.

Assumption 3. There exists a constant Aσ > −aN such that

[

∇xi
σ(xi)−

1

N

N

∑
j=1

∇x j
σ(x j)

]⊤

ei ≥ Aσ‖ei‖2

for all xi and x j.
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Note that Assumption 2 requires only that the gradient of the resource profile σ(·)
is bounded and is a very reasonable assumption that is satisfied with almost any

realistic profile (e.g., plane and Gaussian profiles). In contrast, Assumption 3 is a

more restrictive assumption. It requires the gradient of the profile at xi to have a

“large enough” component along ei so that the effect of the profile does not prevent

swarm cohesion. Therefore, it may be satisfied only by few profiles (e.g., a quadratic

profile). With this in mind we state the following result.

Theorem 5. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction

and bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14), or basically

ga(‖xi − x j‖) = a and gr(‖xi − x j‖)‖xi − x j‖ ≤ b for some a > 0, b > 0 and all

‖xi − x j‖). Then, as t → ∞ we have xi(t) → Bε(x̄(t)), where

Bε(x̄(t)) = {y(t) : ‖y(t)− x̄(t)‖ ≤ ε}

and

• If Assumption 2 is satisfied, then

ε = ε1 =
(N −1)

aN

[

b +
2σ̄

N

]

,

• If Assumption 3 is satisfied, then

ε = ε2 =
b(N −1)

aN + Aσ
.

Proof: Case 1: From the V̇i equation in (3.27) we obtain

V̇i ≤ −aN‖ei‖2 +
N

∑
j=1, j �=i

gr(‖xi − x j‖)‖xi − x j‖‖ei‖

+

∥
∥
∥
∥
∥
∇xi

σ(xi)−
1

N

N

∑
j=1

∇x j
σ(x j)

∥
∥
∥
∥
∥
‖ei‖

≤ −aN‖ei‖
[

‖ei‖−
b(N −1)

aN
− 2σ̄(N −1)

aN2

]

,

which implies that as long as ‖ei‖ > ε1 we have V̇i < 0. Above, the inequality in the

last line is obtained using the fact that gr(‖xi − x j‖)‖xi− x j‖ ≤ b and the inequality

∥
∥
∥
∥
∥
∇xi

σ(xi)−
1

N

N

∑
j=1

∇x j
σ(x j)

∥
∥
∥
∥
∥
≤ 2σ̄(N −1)

N
,

which follows from Assumption 2.
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Case 2: Similarly, using Assumption 3, one can show that V̇i satisfies

V̇i ≤−(aN + Aσ)‖ei‖
[

‖ei‖−
b(N −1)

aN + Aσ

]

.

Therefore, one can conclude that as long as ‖ei‖ > ε2 we have V̇i < 0.

This result is analogous to Theorem 2 in Section 3.2 and is important because it

shows the cohesiveness of the swarm and provides a bound on the swarm size, de-

fined as the radius of the hyperball centered at x̄(t) and containing all the individu-

als. Therefore, in order to analyze the collective behavior of the swarm we need to

consider the motion of the centroid.

In species that engage in social foraging it has been observed that the individ-

uals in swarms desire to be close, but not too close, to other individuals. In the

mean time, they want to find more food. The balance between these desires de-

termines the size of the swarm. The dynamics in (3.25) capture this by having an

inter-individual attraction/repulsion term, and also a term due to the environment

(or the nutrient profile) affecting their motion. In the results above, the resulting

swarm sizes depend on the inter-individual attraction/repulsion parameters (a and

b) and the parameters of the nutrient profile (σ̄ and Aσ). Moreover, the dependence

on these parameters makes intuitive sense. Larger attraction (larger a) leads to a

smaller swarm size, larger repulsion (larger b) leads to a larger swarm size, larger

σ̄ (fast changing landscape) leads to a larger swarm. These concepts are found in

foraging theory in biology and model the balance of the desire of the individuals to

“stick together” with the desire to “get more food” that was created by evolutionary

forces. Note that for Assumption 3 to be satisfied we have the condition Aσ > −aN.

The threshold Aσ = −aN is the point at which the inter-individual attraction is not

guaranteed to “hold the swarm together” since it is counterbalanced by the repul-

sion from the resource profile. In other words, beyond that threshold, the repulsion

from a critical point of the resource profile (i.e., toxic substances or an immediate

danger) is so intense that the “desire to keep away from the critical point of the re-

source profile” dominates the “desire to stick together.” Therefore, if this condition

is not satisfied we cannot anymore guarantee cohesiveness of the swarm, i.e., it can

happen that the swarm members move arbitrary far from each other. This helps to

quantify the inherent balance between the sometimes conflicting desires for swarm

cohesiveness and for following cues from the environment to find food. Such be-

havior can be seen in, for example, fish schools when a predator attacks the school.

In that case the fish move very fast in all directions away from the predator [191]

resulting in a scattering behavior sometimes called explosion.

Note that the desire of the individuals to “stick together” depends on the inter-

individual attraction parameter a and the number of individuals N. This is somewhat

consistent with some biological swarms, where it has been observed that individuals

are attracted more to larger (or more crowded) swarms (even though that attraction

may not be linearly proportional to the number of individuals).

One issue to note here is that as N gets large both ε1 and ε2 approach constant

values. This implies that for a large N the individuals will form a cohesive swarm of
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a constant size independent of the number of the individuals and the characteristics

of the profile. Unfortunately, as mentioned earlier for aggregating swarms, this is

not biologically very realistic.

The above result is an asymptotic result, i.e., xi(t)→Bε(x̄(t)) as t →∞. However,

from stability theory it is well known that for any ε∗ > ε, xi(t) will enter Bε∗(x̄(t))
in a finite time. In other words, it can be shown that a swarm of any size ε∗ a little

larger than ε will be formed in a finite time.

In the following sections, we will analyze the behavior of the swarm on differ-

ent resource profiles. In particular, we will discuss plane, quadratic, Gaussian, and

multi-modal Gaussian profiles.

3.3.3 Swarm Motion in Various Resource Profiles

Motion along a Plane Resource Profile

In this section we assume that the resource profile is described by a plane equation

of the form

σ(y) = a⊤σ y + bσ, (3.28)

where aσ ∈ R
n and bσ ∈ R. One can see that the gradient of the profile is given by

∇yσ(y) = aσ

and Assumption 2 holds with σ̄ = ‖aσ‖. However, note also that

∇xi
σ(xi)−

1

N

N

∑
j=1

∇x j
σ(x j) = aσ−

1

N

N

∑
j=1

aσ = 0

for all i, implying that the last term in (3.27) vanishes. Therefore, from Theorem 5

(and also from Theorem 2 in Section 3.2) one can deduce that for this profile the

bound on the swarm size is given by

ε = εp =
b(N −1)

aN
<

b

a
.

Note also that for this case we have

˙̄x(t) = −aσ,

which implies that the centroid of the swarm will be moving with the constant ve-

locity vector −aσ (and eventually will diverge towards infinity where the minimum

of the profile occurs).

The motions in this section can be viewed as a model of a foraging swarm that

moves in a constant direction (while keeping its cohesiveness) with a constant speed

such as the one considered in [107]. Another view of the system in this section could

be as a model of a multi-agent system in which the autonomous agents move in a

formation with a constant speed. In fact, transforming the system to ei coordinates

we obtain
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ėi =
N

∑
j=1, j �=i

g(ei − e j), i = 1, . . . ,N,

which is exactly the model of an aggregating swarm discussed in Section 3.2. There-

fore, all the results obtained in Section 3.2 for aggregation apply for ei. In particular,

we have ėi(t) → 0 as t →∞. In other words, the swarm converges to a constant con-

figuration or a formation (i.e., constant relative positions) and moves with a constant

speed in the direction of −aσ.

Quadratic Resource Profiles

In this section, we will consider a quadratic resource profile given by

σ(y) =
Aσ

2
‖y− cσ‖2 + bσ, (3.29)

where Aσ ∈ R, bσ ∈ R, and cσ ∈ R
n. Note that this profile has a global extremum

(either a minimum or a maximum depending on the sign of Aσ) at y = cσ. Its gradient

at a point y ∈ R
n is given by

∇yσ(y) = Aσ(y− cσ).

Assume that Aσ > −aN. Then, with few manipulations one can show that for this

profile Assumption 3 holds with strict equality. Therefore, the result of Theorem 5

holds with the bound

εq = ε2 =
b(N −1)

aN + Aσ
.

Now, let us analyze the motion of the centroid x̄. Substituting the gradient in the

equation of motion of x̄ given in Eq. (3.26) we obtain

˙̄x = −Aσ(x̄− cσ).

Defining the distance between the centroid x̄ and the extremum point cσ as eσ =
x̄− cσ, we have

ėσ = −Aσeσ,

which implies that as t → ∞ we have eσ(t) → 0 if Aσ > 0 and that eσ(t) → ∞ if

Aσ < 0 and eσ(0) �= 0. Therefore, we have the following result.

Lemma 2. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is given by (3.29). As t → ∞ we have

• If Aσ > 0, then x̄(t)→ cσ (i.e., the centroid of the swarm converges to the global

minimum cσ of the profile), or
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• If Aσ < 0 and x̄(0) �= cσ, then x̄(t) → ∞ (i.e., the centroid of the swarm diverges

from the global maximum cσ of the profile).

Note that this result holds for any Aσ (i.e., we do not need the assumption

Aσ > −aN). Note also that for the case with Aσ > 0 for any finite ε∗ > 0 (no mat-

ter how small) it can be shown that ‖x̄(t)− cσ‖ < ε∗ is satisfied in a finite time. In

other words, ‖x̄‖ enters any ε∗ neighborhood of cσ in a finite time. In contrast, for

the case with Aσ < 0 and x̄(0) �= cσ for any D > 0 (no matter how large) it can be

shown that ‖x̄(t)− cσ‖ > D is satisfied in a finite time, implying that ‖x̄‖ exits any

bounded D-neighborhood of cσ in a finite time. If Aσ < 0 and x̄(0) = cσ, on the other

hand, then x̄(t) = cσ for all t. In other words, for this case the swarm will be either

“trapped” around the maximum point because of the inter-individual attraction (i.e.,

desire of the individuals to be close to each other) or will disperse in all directions if

the inter-individual attraction is not strong enough (i.e., Aσ <−aN). Note, however,

that even if they disperse, the centroid x̄ will not move and will be stationary at cσ.

As mentioned above, such a dispersal behavior can be seen in fish schools when

attacked by a predator [191]. In other words, the effect of the presence of a predator

can be represented by a large intensity quadratic repellent resource profile. Never-

theless, we would like to also mention that the situation x̄(t) = cσ,t ≥ 0 corresponds

to an unstable equilibrium of the system and even very small perturbation which

results in x̄(t) �= cσ will lead to x̄(t) diverging away from cσ.

Here, we did not consider the Aσ = 0 case. This is because if Aσ = 0, then the pro-

file is uniform everywhere and ∇yσ(y) = 0 for all y ∈ R
n. Therefore, the existence

of the profile does not affect the motion of the individuals and stability analysis is

reduced to the analysis of simple aggregation presented in Section 3.2.

Combining the results of Theorem 5 and Lemma 2 together with the above ob-

servations gives us the following result.

Theorem 6. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is given by (3.29) and that Aσ >−aN. Then,

the following hold

• If Aσ > 0, then for any ε∗ > εq all individuals i = 1, . . . ,N, will enter Bε∗(cσ) in

a finite time,

• If Aσ < 0 and x̄(0) �= cσ, then for any D < ∞ all individuals i = 1, . . . ,N, will

exit BD(cσ) in a finite time.

This result is important because it gives finite time convergence to nutrient rich

regions (targets, goals) of the resource profile or divergence from toxic regions

(threads, obstacles) of the profile of all agents in the swarm.

Now, assume that instead of the quadratic resource profile in (3.29) we have

a profile which is a sum of quadratic functions. In other words, assume that the

resource profile is given by
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σ(y) =
M

∑
i=1

Aσi

2
‖y− cσi‖2 + bσ,

where Aσi ∈ R, and cσi ∈ R
n for all i = 1, . . . ,M, and bσ ∈ R. Its gradient at a point

y is given by

∇yσ(y) =
M

∑
i=1

Aσi(y− cσi).

Defining

Aσ =
M

∑
i=1

Aσi

and

cσ =
∑M

i=1 Aσicσi

∑M
i=1 Aσi

we obtain

∇yσ(y) = Aσ(y− cσ),

which is exactly the same as above. The point cσ is the point of the unique extremum

of the combined resource profile function. Therefore, the above results will directly

transfer without any modification. This also is true because it can be shown that

M

∑
i=1

Aσi

2
‖y− cσi‖2 =

Aσ

2
‖y− cσ‖2 +C,

where C is a constant.

Quadratic resource profiles are rather simple profiles and the results in this sec-

tion are intuitively expected. However, note also that more complicated resource

profiles can be locally modeled (or approximated) as quadratic in regions near ex-

tremum points. In the following sections, we will discuss resource profiles which are

not necessarily quadratic. Moreover, later we will allow the environmental resource

profile to have multiple extremum points.

Gaussian Resource Profiles

In this section, we consider resource profiles that are described by a Gaussian-type

of equation,

σ(y) = −Aσ

2
exp

(

−‖y− cσ‖2

lσ

)

+ bσ, (3.30)

where Aσ ∈ R, bσ ∈ R, lσ ∈ R
+, and cσ ∈ R

n. Note that this profile also has the

unique extremum (either a global minimum or a global maximum depending on the

sign of Aσ) at y = cσ. Its gradient is given by

∇yσ(y) =
Aσ

lσ
(y− cσ)exp

(

−‖y− cσ‖2

lσ

)

.
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Calculating the time derivative of the centroid of the swarm by using (3.26) one can

obtain

˙̄x = − Aσ

Nlσ

N

∑
i=1

(xi − cσ)exp

(

−‖xi− cσ‖2

lσ

)

.

Compared to the quadratic case, here we cannot write ˙̄x as a function of eσ =
x̄− cσ. This is because of the nonlinearity of the gradient of the profile. However,

intuitively we would expect that we still should be able to get some results similar to

the ones in the preceding section. To this end we note that Assumption 2 is satisfied

with

σ̄=
|Aσ|√

2lσ
exp

(

−1

2

)

.

Therefore, Theorem 5 holds and we know that as t → ∞ all the individuals will

converge to (and stay within) the

εG = ε1 =
(N −1)

aN

[

b +
|Aσ|
N

√
2

lσ
exp

(

−1

2

)]

neighborhood of the (mobile) centroid x̄.

Now, we have to analyze the motion of x̄ in order to determine the overall behav-

ior of the swarm.

Lemma 3. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is given by (3.30). Then, as t → ∞ we have

• If Aσ > 0, then ‖eσ(t)‖ ≤ maxi=1,...,N ‖ei(t)‖ � em(t),
• If Aσ < 0 and ‖eσ(0)‖ > em(0) (here we assume that xi(0) �= x j(0) for all pairs

of individuals (i, j), j �= i,1 ≤ i, j ≤ N and therefore em(0) > 0), then ‖eσ‖→∞.

Proof: To start with, let Vσ = 1
2
e⊤σ eσ. Then, its derivative along the motion of the

swarm is given by

V̇σ = − Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi− cσ‖2

lσ

)

(xi − cσ)
⊤eσ

= − Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi− cσ‖2

lσ

)

‖eσ‖2 − Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi − cσ‖2

lσ

)

e⊤i eσ,

where we used the fact that xi − cσ = ei + eσ.

Case 1: Aσ > 0:

Bounding V̇σ from above we obtain
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V̇σ ≤ − Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi− cσ‖2

lσ

)

‖eσ‖2 +
Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi − cσ‖2

lσ

)

‖ei‖‖eσ‖

≤ − Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi− cσ‖2

lσ

)

‖eσ‖

⎡

⎣‖eσ‖−
∑N

i=1 exp
(

− ‖xi−cσ‖2

lσ

)

‖ei‖

∑N
i=1 exp

(

− ‖xi−cσ‖2

lσ

)

⎤

⎦

≤ − Aσ

Nlσ

N

∑
i=1

exp

(

−‖xi− cσ‖2

lσ

)

‖eσ‖
[

‖eσ‖− em

]

,

where em = maxi=1,...,N ‖ei‖. The above inequality implies that as long as ‖eσ(t)‖>
em(t), i.e., the minimum point cσ is outside the swarm boundary, then the centroid

of the swarm will be moving toward it. Therefore, as t → ∞ we will asymptotically

have ‖eσ(t)‖ ≤ em(t), i.e., cσ will be within the swarm.

Case 2: Aσ < 0:

With analysis similar to the case 1 above it can be shown that

V̇σ ≥ |Aσ|
Nlσ

N

∑
i=1

exp

(

−‖xi− cσ‖2

lσ

)

‖eσ‖
[

‖eσ‖− em

]

,

which implies that we have V̇σ > 0. In other words, if ‖eσ‖ > em, then ‖eσ‖ will

increase. From Theorem 5 we have that em is decreasing. Therefore, since by hy-

pothesis ‖eσ(0)‖> em(0) we have that V̇σ > 0 holds. Now, given any large but fixed

D > 0 and ‖eσ(t)‖ ≤ D we have

exp

(

−‖xi − cσ‖2

lσ

)

‖eσ‖
[

‖eσ‖− em

]

≥ exp

(

− (D2 + ε2
3)

lσ

)

D
[

D− ε3

]

> 0,

implying that

V̇σ ≥
|Aσ|
lσ

exp

(

− (D2 + ε2
G)

lσ

)

D
[

D− εG

]

> 0

from which using (a corollary to) the Chetaev Theorem [136] we conclude that ‖eσ‖
will exit the D-neighborhood of cσ.

Note that the result in Lemma 3 makes intuitive sense. If we have a hole (i.e., a

minimum) it guarantees that the agents will “gather” around its lowest potential

point (as expected). If we have a hill (i.e., a maximum) and all the agents are located

on one side of the hill, it guarantees that the agents diverge from it (as expected).

If there is a hill, but the individuals are spread around it, then we can conclude

neither convergence nor divergence. This is because it can happen that the swarm

may move to one side and diverge or the inter-individual attraction forces can be

counterbalanced by the inter-individual repulsion combined with the repulsion from

the hill so that the swarm does not move away from the hill.

The above result in Lemma 3, together with the result in Theorem 5, allow us to

state the following.
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Theorem 7. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is given by (3.30). Then, as t → ∞ we have

• If Aσ > 0, then all individuals i = 1, . . . ,N, will enter (and stay within) B2εG
(cσ),

• If Aσ < 0 and ‖eσ(0)‖≥ em(0), then all individuals i = 1, . . . ,N, will exit BD(cσ)
for any fixed D > 0.

For the case Aσ > 0, Theorem 5 states that the swarm will have a maximum size of

εG, i.e., ‖eσ‖ ≤ εG for all i = 1, . . . ,N. Lemma 3 states that the swarm centroid will

converge to the em and therefore to the εG neighborhood of cσ, i.e., ‖eσ‖ ≤ em ≤ εG.

Combining these two bounds we obtain the 2εG in the first case in Theorem 7.

Theorem 7 is a parallel of Theorem 6. However, here we have a weaker result

since for the Aσ > 0 case we cannot guarantee that x̄(t) → cσ. Moreover, the region

around cσ in which the individuals converge is larger (2εG) compared to the region

in Theorem 6 (εq).

Multimodal Gaussian Resource Profiles

Now, we will consider a resource profile which is a combination of Gaussian re-

source profiles. In other words, we will consider the profiles given by

σ(y) = −
M

∑
i=1

Aσi

2
exp

(

−‖y− cσi‖2

lσi

)

+ bσ, (3.31)

where cσi ∈ R
n, lσi ∈ R

+, Aσi ∈ R for all i = 1, . . . ,M, and bσ ∈ R. Note that since

the Aσi’s can be positive or negative there can be both hills and valleys leading to

more irregular combined resource profiles.

The gradient of the profile at a point y ∈ R
n is given by

∇yσ(y) =
M

∑
i=1

Aσi

lσi

(y− cσi)exp

(

−‖y− cσi‖2

lσi

)

.

Note that for this profile, Assumption 2 is satisfied with

σ̄ =
M

∑
i=1

|Aσi|√
2lσi

exp

(

−1

2

)

.

Therefore, from Theorem 5 we have

εmG = ε1 =
(N −1)

aN

[

b +
1

N

M

∑
i=1

|Aσi|
√

2

lσi

exp

(

−1

2

)]

as the bound on the swarm size. In other words, as t → ∞ we will have xi(t) →
BεmG

(x̄(t)), where εmG is as given above.
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Using the profile gradient equation we can write the equation of motion of the

swarm centroid x̄ as

˙̄x = − 1

N

M

∑
j=1

Aσ j

lσ j

N

∑
i=1

(xi − cσ j)exp

(

−‖xi− cσ j‖2

lσ j

)

.

It is not obvious from this equation how the centroid x̄ will move. Therefore, for this

type of profile it is not easy to show convergence of the individuals to a minimum

of the profile for the general case. However, under some conditions it is possible to

show convergence to the vicinity of a particular cσ j (if cσ j is the center of a valley)

or divergence from the neighborhood of a particular cσ j (if cσ j is the center of a hill).

Lemma 4. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is given by (3.31). Moreover, assume that

for some k,1 ≤ k ≤ N, we have

‖xi(0)− cσk‖ ≤ hk

√

lσk

for some hk and for all i = 1, . . . ,N, and that for all j = 1, . . . ,M, j �= k we have

‖xi(0)− cσ j‖ ≥ h j

√

lσ j

for some h j, j = 1, . . . ,M, j �= k and for all i = 1, . . . ,N. (This means that the swarm

is sufficiently close to cσk and sufficiently far from other cσ j, j �= k.) Moreover, as-

sume that
Aσk√

lσk

hk exp
(
−h2

k

)
>

1

α

M

∑
j=1, j �=k

|Aσ j|
√

lσ j

h j exp
(
−h2

j

)
,

is satisfied for some 0 < α < 1. Then, for eσk = x̄− cσk as t → ∞ we will have

• If Aσk > 0, then ‖eσk(t)‖ ≤ εmG +αhk

√
lσk

• If Aσk < 0 and ‖eσk(0)‖ ≥ em(0)+αhk

√
lσk, then ‖eσk(t)‖ ≥ εmG +αhk

√
lσk,

where em = maxi=1,...,N ‖ei‖.

Proof: Let Vσk = 1
2
e⊤σkeσk be the Lyapunov function.

Case 1: Aσk > 0: Taking the derivative of Vσk along the motion of the swarm one

can show that

V̇σk ≤ − Aσk

Nlσk

N

∑
i=1

exp

(

−‖xi − cσk‖2

lσk

)

‖eσk‖
[

‖eσk‖− em−αhk

√

lσk

]

,

which implies that we have V̇σk < 0 as long as ‖eσk‖ > em +αhk

√
lσk, and from

Theorem 5 we know that as t → ∞ we have em(t) ≤ εmG.
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Case 2: Aσk < 0: Similar to above, for this case it can be shown that

V̇σk ≥ |Aσk|
Nlσk

N

∑
i=1

exp

(

−‖xi − cσk‖2

lσk

)

‖eσk‖
[

‖eσk‖− em−αhk

√

lσk

]

,

which implies that if ‖eσk‖ > em +αhk

√
lσk, then we have V̇σ > 0. In other words,

‖eσk‖ will increase. From Theorem 5 we have that em is decreasing. Therefore, since

by hypothesis ‖eσk(0)‖> em(0)+αhk

√
lσk we have that V̇σ > 0 holds at t = 0. Now,

consider the boundary ‖eσk‖ = εmG +hk

√
lσk. It can be shown that on the boundary

we have

V̇σ ≥
|Aσk|hk(1−α)

(
εmG + hk

√
lσk

)
exp
(
−h2

k

)

√
lσk

> 0,

from which once again using (a corollary to) the Chetaev Theorem we conclude that

‖eσk‖ will exit the εmG + hk

√
lσk-neighborhood of cσk.

Now, as in the preceding section we can combine this result (i.e., Lemma 4) together

with Theorem 5 to obtain the following theorem.

Theorem 8. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is given by (3.31). Assume that the condi-

tions of Lemma 4 hold. Then, as t → ∞ all individuals will

• Enter the hyperball Bε5
(cσk), where ε5 = 2εmG +αhk

√
lσk, if Aσk > 0, or

• Leave the hk

√
lσk-neighborhood of cσk, if Aσk < 0.

In order for the results in Theorem 8 to make sense, we need

2εmG +αhk

√

lσk < hk

√

lσk.

This implies that

εmG <

(
1−α

2

)

hk

√

lσk

is needed which sometimes may not be easy to satisfy. However, one issue to note

is that εmG is a very conservative bound which holds for extreme situations and

pathological cases as well. In reality, the actual size of the swarm is typically much

smaller than the bound. Therefore, effectively, εmG can be replaced with em(∞) <
εmG and it may be easier to satisfy the above condition.

3.3.4 Analysis of Individual Behavior in a Cohesive Swarm

The results in the previous sections specify whether the swarm will diverge or con-

verge, and if it converges they specify in which regions of the profile it will con-

verge, together with bounds on the swarm size. The results above do not provide

information about the ultimate behavior of the individuals. In other words, they do
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not specify whether the individuals will eventually stop moving or will end up in os-

cillatory motions within the specified regions. In this section, we will investigate the

ultimate behavior of the agents. In particular, we will analyze the ultimate behavior

of the agents in a quadratic profile with Aσ > 0, a Gaussian profile with Aσ > 0, and

in a multimodal Gaussian profile with the conditions of Lemma 4 for the Aσk > 0

case satisfied.

As was the case in aggregating swarms we will show that for the above mentioned

cases as t →∞ the state x(t) converges to Ωe, i.e., eventually all the individuals stop

moving.

Theorem 9. Consider a foraging swarm consisting of agents with dynamics in (3.1)

and with control input in (3.25) with inter-agent attraction/repulsion function g(·)
as given in (3.5) which is odd, satisfies Assumption 1, and has linear attraction and

bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)). Assume that the

resource profile σ(·) of the environment is one of the following

• A quadratic profile in Eq. (3.29) with Aσ > 0, or

• A Gaussian profile in Eq. (3.30) with Aσ > 0, or

• A multimodal Gaussian profile in Eq. (3.31) with conditions of Lemma 4 for the

Aσk > 0 case satisfied.

Then, as t → ∞ we have the state x(t) →Ωe.

Proof: The proof is very similar to the proof of Theorem 1.

One issue to note here is that for the cases excluded in the above theorem, i.e.,

for the plane profile, quadratic profile with Aσ < 0, Gaussian profile with Aσ < 0,

and the multi-modal Gaussian profile for Aσ < 0 case or not necessarily satisfying

the conditions of Lemma 4, the set Ωc = {x : J(x) ≤ J(x(0))} may not be compact.

Therefore, we cannot apply the LaSalle’s Invariance Principle. Moreover, since they

are (possibly) diverging, intuitively we do not expect them to stop their motion.

Furthermore, note that for the plane profile we have Ωe = /0. In other words, there is

no equilibrium for the swarm moving in a plane profile.

3.3.5 Simulation Examples

This section provides illustrative numerical simulation examples of a foraging

swarm moving in the profiles discussed in the preceding sections. The dimension

of the state space is once more selected as n = 2 for ease of visualization of the

results. In all the simulations, the region [0,30]× [0,30] in the space is used as the

simulation region and the simulations are performed with N = 11 agents. The at-

traction/repulsion function g(·) with linear attraction and bounded repulsion in (3.7)

is used in the simulations with parameters a = 0.01, b = 0.4, and c = 0.01 for most

of the simulations, and a = 0.1 for some of them.

Figure 3.4(a) shows the swarm dynamics in a plane resource profile with aσ =
[0.1,0.2]⊤. One easily can see that, as expected, the swarm moves along the nega-

tive gradient −aσ exiting the simulation region and heading toward unboundedness.
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(a) Response for plane resource profile. (b) Multimodal Gaussian profile.

Fig. 3.4. Plane profile result and multimodal Gaussian profile.

Note that initially some of the individuals move in a direction opposite to the neg-

ative gradient. This is because the inter-agent attraction is much stronger than the

intensity of the resource profile.

0 10 20 30
0

5

10

15

20

25

30

The paths of the individuals (A
σ
 > 0)

0 10 20 30
0

5

10

15

20

25

30

The paths of the individuals (A
σ
 < 0)

Fig. 3.5. Response for quadratic resource profile.

Figure 3.5 shows the dynamics of the swarm in a quadratic resource profile with

extremum at cσ = [20,20]⊤ and magnitude Aσ = ±0.02. The plot on the left of

the figure shows the paths of the individuals and the centroid of the swarm for the

case Aσ > 0, whereas the one on the right is for the case Aσ < 0. Once more, it

is observed that the results obtained are in parallel with the expectations from the

analysis performed in the preceding sections. Note also that the centroid x̄ of the

swarm converges to the minimum of the profile cσ for the Aσ > 0 case, and diverges

from the maximum for the Aσ < 0 case.

Results of similar nature are obtained also for the Gaussian resource profile as

shown in Figure 3.6. The plot on the left of the figure shows the paths of the
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Fig. 3.6. Response for Gaussian resource profile.

individuals and the centroid of the swarm for the case Aσ > 0, whereas the one

on the right is for the case Aσ < 0. The point cσ = [20,20]⊤ is the extremum of the

resource profile for these simulations as well. The other parameters of the profile are

Aσ = ±2 and lσ = 20. Note that for the Aσ > 0 case, even though in theory we could

not prove that x̄(t) → cσ, in simulations we observe that this is apparently the case.

This was systematically observed in all the simulations performed with Gaussian

resource profiles.
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Fig. 3.7. The response for a multimodal Gaussian profile (initial positions close to a mini-

mum).

The resource profile in Figure 3.4(b) is used in order to illustrate the dynamics

of the swarm in a multimodal Gaussian profile. Note that it has several minima and

maxima. Its global minimum is located at [15,5]⊤ with a “magnitude” of 4 and a

spread of 10. The plot in Figure 3.7 shows two example runs with initial member

positions nearby a local minimum, and it shows convergence of the entire swarm to

that minimum. The attraction parameter a was chosen to be a = 0.01 for this case.
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Fig. 3.8. The response for a multimodal Gaussian profile.
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Fig. 3.9. The response for a multimodal Gaussian profile.

Figure 3.8, on the other hand, illustrates the case in which the value of the attraction

parameter was increased to a = 0.1. One can see that the attraction is so strong that

the individuals climb gradients to form a cohesive swarm. For this and similar cases,

the manner in which the overall swarm will behave (where it will move) depends on

the initial distribution of the agents in the swarm. For these two runs they happened

to be located such that the swarm diverged. For some other simulation runs (not

presented here) with different initial conditions the entire swarm converges to either

a local or global minimum. Figure 3.9 shows two runs for which the value of the

attraction parameter was decreased again to a = 0.01 and the positions of the agents

are initialized all over the region. For both of the simulations one can see that the

swarm fails to form a cohesive cluster since the initial positions of the individuals are

such that they move to nearby local minima and the attraction is not strong enough to

“pull them out” of these valleys. This causes formation of several groups or clusters

of individuals at different locations of the space. For these reasons, the centroid x̄ of

the swarm does not converge to any minimum. Note, however, that this is expected

since for this case the conditions of Theorem 8 are not satisfied. Nevertheless, the
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result of Theorem 5 still holds. The only issue is that εmG is large and contains all the

region within which all the agents eventually converge and remain within. Finally,

note also that during their motion to the groups, the agents try to avoid climbing

gradients and this results in motions resembling the motion of individuals in real

biological swarms.

3.4 Formation Control

The formation control problem is an important problem in multi-agent systems and

robotics that has seen recent substantial progress. It can simply be described as the

problem of choosing the control inputs for the agents such that they asymptotically

form and maintain an arbitrary predefined geometric shape. Given the single inte-

grator agent model in (3.1) and the control input in the form of (3.2) it is straight-

forward to design a potential function J(x) (and therefore the corresponding attrac-

tion/repulsion function g(·)) so that the formation control problem is solved at least

locally. With this objective, we will assume that the attraction/repulsion functions

g(·) are pair dependent. In other words, we will assume that the potential function

J(x) can be denoted as

J f ormation(x) =
N−1

∑
i=1

N

∑
j=i+1

[

Ji ja

(

‖xi − x j‖
)

− Ji ja

(

‖xi − x j‖
)]

(3.32)

and the corresponding control input is given by

ui = −
N

∑
j=1, j �=i

[

∇xi
Ji ja

(

‖xi − x j‖
)

−∇xi
Ji jr

(

‖xi − x j‖
)]

= −
N

∑
j=1, j �=i

[

gi ja

(

‖xi − x j‖
)

−gi jr

(

‖xi − x j‖
)]

(xi − x j). (3.33)

Note that for all pairs (i, j) it is still assumed that the pair dependent attrac-

tion/repulsion functions

gi j(y) = y
[

gi ja

(
y
)
−gi jr

(
y
)]

(3.34)

are odd satisfying gi j(xi − x j) = −g ji(x j − xi) and satisfy Assumption 1 possi-

bly with pair dependent equilibrium distances δi j. Note, however, that (xi − x j) =
(xk − xl) does not necessarily imply gi j(xi − x j) = gkl(xk − xl). In other words, in

this new potential function, the attraction and repulsion functions, and therefore the

equilibrium distance δi j for different pairs of individuals, can be different.

For the potential function in (3.6) the above simply mean that the parameters a,b,

and c of the potential function will be pair dependent (i.e., they will be of the form

ai j,bi j, and ci j) as
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J(x) =
N−1

∑
i=1

N

∑
j=i+1

[
ai j

2
‖xi − x j‖2 +

bi jci j

2
exp

(

−‖xi − x j‖2

ci j

)]

. (3.35)

Here the control input for agent i will be of the form

ui = −
N

∑
j=1, j �=i

[

ai j −bi j exp

(

−‖xi − x j‖2

ci j

)]

(xi − x j). (3.36)

Let us assume that the desired formation is uniquely specified a priori by forma-

tion constraints of the form

‖xi − x j‖ = di j,

for all (i, j), j �= i and it is required that the formation is achieved (i.e., stabilized)

from any initial position of the agents. Here, the term “uniquely” is used somewhat

loosely since with constraints of the above form (where only relative distances are

used) a formation can be specified uniquely only in terms of relative inter-individual

arrangement and rotation or translation of the whole swarm will not destroy the ge-

ometrical shape of the formation. If rotation and translation is not allowed, then

different types of formation constraints need to be specified. In particular, leader

based strategies, or constraints including desired global reference coordinates for

the agents can be deployed. By allowing global reference coordinate points for

the agents the local minima problem (inherent in the potential function based ap-

proaches) may also be resolved. However, in many realistic situations the agents

may not possess global coordinate information. Finally, note also that in order for

the problem to be solvable at all, the formation constraints should not be conflicting

and the formation should be feasible.

With the above requirements in mind, the idea is to choose each of the potential

functions and therefore the corresponding attraction/repulsion functions gi j(·) such

that δi j = di j for every pair of individuals (i, j). Here, δi j is the distance at which the

attraction and repulsion between agents i and j balance (see Assumption 1). This,

in turn, results in the fact that the potential function J(x) for the swarm (3.32) has a

minimum achieved at the desired formation.

Remark: Note that under the stated assumptions for the formation control case

considered here, i.e., the swarm with dynamics given in (3.1) with control input

given by (3.33), all the theorems stated for aggregating swarms in Section 3.2 still

hold (some of them possibly with simple modifications). In other words, the centroid

of the swarm x̄ is stationary for all time ( ˙̄x = 0 for all t–see Lemma 1), and as time

progresses all the agents in the swarm stop motion (as t → ∞, ẋi = 0 for all i–

see Theorem 1). Moreover, provided that the attraction is linear and the repulsion

bounded (i.e., the conditions in (3.13) and (3.14) are satisfied as in Theorem 2) all

the agents converge to a hyperball Bε(x̄) = {x : ‖x− x̄‖ ≤ ε}, where ε= bmax
amin

, amin =

min1≤i, j≤N{ai j}, and bmax = max1≤i, j≤N{bi j}. The same is true for the results with

other types of attraction/repulsion functions (Theorems 3 and 4).

From the above remark, one can easily deduce the following result.
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Corollary 1. Consider a swarm consisting of agents with dynamics in (3.1) and with

control input in (3.33) with pair dependent inter-agent attraction/repulsion func-

tions gi j(·) as given in (3.34) which are odd, satisfy Assumption 1, and have linear

attraction and bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)).

Assume that gi j(·) are chosen such that the distance δi j at which the inter-agent

attractions and repulsions balance satisfy δi j = di j, where di j are the desired for-

mation distances. Then, the equilibrium at the desired formation is locally asymp-

totically stable. Moreover, if gi j(·) are such that J(x) has unique minimum at the

desired formation, then asymptotic stability holds globally.

The above result is by nature local since, as mentioned before, the potential func-

tion based methods suffer from the local minima problem. In other words, there

exist local minima of the potential function J(x) which do not correspond to the

desired formation and since the motion of the agents is along the gradient there is a

chance that the system will converge to such a minimum instead of the global mini-

mum corresponding to the desired formation. Convergence to the desired formation

is only guaranteed if the initial positions of the agents are “sufficiently close” to

that configuration. In other words, the desired formation has a region of attraction

whose size may be different for different applications. If the potential function J(x)
is such that it has a single (unique) minimum at the desired formation, then Corol-

lary 1 implies global asymptotic stability of the desired formation. J(x) might have

unique minimum for some simple formations (such as forming equilateral triangle

by three agents) or can be designed intelligently such that to have unique minimum.

However, in that case global desired position coordinates for the agents also need to

be included in the potential function.

In the case when the swarm has to achieve the formation, and as a formation track

a given reference trajectory {xr, ẋr} which is known (or estimated by all the agents),

the control inputs of the agents can be chosen as in (3.9) or as in (3.10) and provided

the other conditions of Corollary 1 are satisfied, then formation stabilization and

maintenance as well as tracking of the desired trajectory will be guaranteed. In the

next section, we will discuss a similar problem in which the agents do not know the

velocity xr of the reference trajectory.

3.4.1 Simulation Examples

In this section, the dynamics of the swarm model for the formation control will be

investigated with a simple numerical simulation. Assume that there are six agents in

the swarm which are required to create a formation of an equilateral triangle with

three of the agents in the middle of each edge and distances between two neigh-

boring agents equal to 1. For this case, the potential functions (or the correspond-

ing attraction/repulsion functions) for each pair of individuals are chosen such that

the global potential function a minimum at the desired formation. This is done by

choosing gi j(·)’s such that the equilibrium distances are one of δi j = 1, δi j = 2, or

δi j =
√

3 for different pairs (i, j) of individuals depending on their relative location

in the desired formation. Figure 3.10 shows the trajectories of the agents as well
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Fig. 3.10. Equilateral triangle formation of 6 agents.

as the formed geometric shape with initial positions chosen at random. As one can

see the agents move and create the required formation while avoiding collisions in

accordance with the expectations since we used unbounded repulsion.

3.5 Swarm Tracking

In this section, we will discuss the problem in which a swarm of agents with single

integrator dynamics in (3.1) is required to catch or intercept a moving target and

surround (or enclose or capture) it possibly forming a geometric formation around

it. Let us denote with xt ∈ R
n the position vector of the target, which is moving

based on some motion equation of the form

ẋt = gt(xt , t).

If the target dynamics gt(xt ,t) and in particular its velocity ẋt is available, then one

can use the procedure discussed in the Section 3.4 in order to solve the problem.

Therefore, in this section we will assume that the velocity ẋt is unknown; however

it is bounded ‖ẋt‖ ≤ γt for some known bound γt > 0. Note that such an assumption

is very realistic since any realistic agent has a bounded velocity. We also assume

that the agents know the relative position of the target xt . This is not a restrictive

assumption since there are sensors (such as laser scanners) for measuring relative

positions.

In order to satisfy both the tracking and formation control specifications, we con-

sider potential functions J(x,xt) which are composed of two parts–the inter-agent

interactions (or formation control) part and the agent-target interaction (or tracking)

part. In particular, we consider potential functions of the form
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J(x,xt) = Wt

N

∑
i=1

Jit

(

‖xi − xt‖
)

+Wf J f ormation(x) (3.37)

= Wt

N

∑
i=1

Jit

(

‖xi − xt‖
)

+Wf

N−1

∑
i=1

N

∑
j=i+1

[

Ji ja

(

‖xi − x j‖
)

− Ji ja

(

‖xi − x j‖
)]

where Jit(‖xi − xt‖) is the potential between agent i and the target. The second term

in the potential is the same type of potential as considered in Section 3.4 for forma-

tion control. In particular, we choose pair dependent potential functions since the

agents are required to form some kind of formation around the target (although this

is not the primary objective and potentials similar to those used in Section 3.2 for ag-

gregation will also work). With the above form for the potential function, each agent

takes care of the tracking task by itself and keeps certain distances between itself

and its neighbors. For the tracking part, it is required that Jit(‖xi − xt‖) is attrac-

tive towards the target so that the agents catch up with the target, encircle/enclose

it, and track (move together with) it. The formation part J f ormation(x), on the other

hand, is selected so that it has a minimum at the desired formation and all the other

assumptions for formation achievement discussed in Section 3.4 are satisfied.

Here, note that in general the functions Jit(‖xi−xt‖) can be chosen differently for

different agents (although we will use the same function for all agents i here). How-

ever, there are constraints that these functions should satisfy. First of all, note that

since Jit(·) is a function of the distance ‖xi − xt‖, due to the chain rule there always

exists a corresponding function hit : R
+ → R

+ such that the gradient ∇yJit(‖y‖) can

be expressed as

∇yJit(‖y‖) = yhit(‖y‖). (3.38)

We have also the following assumption about Jit(‖xi − xt‖).

Assumption 4. The potential functions Jit(‖xi − xt‖) are such that the correspond-

ing functions hit(·) (in ∇yJit(‖y‖) = yhit(‖y‖)) satisfy hit(‖y‖) ≥ 0 for all y and

hit(‖y‖) = 0 is satisfied only for ‖y‖ = 0.

With the assumptions above, we choose the control laws so that each agent is mov-

ing based on the equation

ui = −α∇xi
J(x,xt)−βsign(∇xi

J(x,xt)) (3.39)

for all i = 1, ...,N where α ≥ 0 and β ≥ γt are positive constants, and sign(·) is the

signum function that operates elementwise for a vector y ∈ R
n. The gain β is chosen

such that it satisfies β≥ γt , where γt is the known bound on the (unknown) velocity

of the target.

Before starting to analyze the performance of the system we highlight a few

useful properties of the potential functions. The gradient of the J(x,xt) with respect

to the position xi of agent i can be expressed as

∇xi
J(x,xt) = Wt(xi − xt)hit(‖xi − xt‖)+Wf

N

∑
j=1, j �=i

(xi − x j)gi j(‖xi − x j‖) (3.40)



3.5 Swarm Tracking 69

whereas its gradient with respect to the position xt of the target is given by

∇xt J(x,xt) = −Wt

N

∑
i=1

(xi − xt)hit(‖xi − xt‖) (3.41)

By observing the equalities in (3.40) and (3.41), the equality in (3.41) can be

rewritten as

∇xt J(x,xt) = −
N

∑
i=1

∇xi
J(x,xt)+Wf

N

∑
i=1

N

∑
j=1, j �=i

(xi − x j)gi j(‖xi − x j‖) (3.42)

Moreover, the second term is zero since the attraction/repulsion functions (xi −
x j)gi j(·) are odd (see Assumption 1) resulting in a the symmetry/reciprocity in

the interaction between individuals (see the proof of Lemma 1 seen earlier in Sec-

tion 3.2), which results in the equality

∇xt J(x,xt) = −
N

∑
i=1

∇xi
J(x,xt). (3.43)

Now, we can state the following result.

Theorem 10. Consider a swarm consisting of agents with dynamics in (3.1) and

with control input in (3.39) with pair dependent inter-agent attraction/repulsion

functions gi j(·) as given in (3.34) which are odd, satisfy Assumption 1, and have lin-

ear attraction and bounded repulsion (i.e., satisfies the conditions (3.13) and (3.14)).

Moreover, assume that the tracking potentials Jit(‖xi − xt‖) satisfy Assumption 4.

Then, as t → ∞ we will have

xt ∈ conv{x1,x2, . . . ,xN}

where conv{x1,x2, . . . ,xN} denotes the convex hull of the positions of the agents in

the swarm (implying that the agents will enclose the target).

Proof: The time derivative of potential function J is given by

J̇ =
N

∑
i=1

[∇xi
J(x,xt)]

⊤ẋi +[∇xt J(x,xt)]
⊤ẋt (3.44)

Substituting the agent dynamics in (3.1) and the control input in (3.39) as well as

the condition in (3.43) in the J̇ equation, one obtains

J̇ = −
N

∑
i=1

[∇xi
J(x,xt)]

T [α∇xi
J(x,xt)+βsign(∇xi

J(x,xt))]−
N

∑
i=1

[∇xi
J(x,xt)]

⊤ẋt

≤ −α
N

∑
i=1

‖∇xi
J(x,xt)‖2 −β

N

∑
i=1

‖∇xJ(x,xt)‖+ γt

N

∑
i=1

‖∇xi
J(x,xt)‖ (3.45)

Since we have β≥ γt , the time derivative of J is bounded by
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J̇ ≤−α
N

∑
i=1

‖∇xi
J(x,xt)‖2 (3.46)

This equation implies that as time tends to infinity, we have J̇ → 0, which in-

dicates that J converges to a constant value implying that the system converges to

a constant configuration corresponding to a minimum of J. This is because (3.46)

also implies that ‖∇xi
J(x,xt)‖ → 0 for all i. Also, from (3.43) we see that we have

‖∇xt J(x,xt)‖→ 0. In other words, as t → ∞ we have

(x,xt) →Ω⊂ {(x,xt)|J̇ = 0}

where

Ω= {(x,xt)|∇xt J(x,xt) = 0,∇xi
J(x,xt) = 0, i = 1, ...,N}

Then, from (3.43) we have

−Wt

N

∑
i=1

(xi − xt)hit(‖xi − xt‖) = 0

Rearranging this equation, we obtain

N

∑
i=1

xihit(‖xi − xt‖) = xt

N

∑
i=1

hit(‖xi − xt‖) (3.47)

which is guaranteed to be achieved as t → ∞. This is an important observation be-

cause it provides a relation between the position of the target and the position of the

agents at equilibrium. Then, since from Assumption 4 we have hit(‖xi − xt‖) ≥ 0

and from the fact that it cannot be the case that hit(‖xi − xt‖) = 0 simultane-

ously (i.e., we have at least one i for which we have hit(‖xi − xt‖) > 0) we have

∑N
i=1 hit(‖xi − xt‖) �= 0 using which one obtains

xt =
∑N

i=1 xihit(‖xi − xt‖)
∑N

i=1 hit(‖xi − xt‖)
.

Defining

ηi =
hit(‖xi − xt‖)

∑N
i=1 hit(‖xi − xt‖)

, i = 1, . . . ,N,

the position of the target can be represented as

xt =
N

∑
i=1

ηixi.

Here, note that for all y and for all agents i the corresponding ηi satisfy 0 ≤ ηi ≤ 1

and their sum is given by ∑N
i=1ηi = 1 implying that as t → ∞ we will have xt →

conv{x1,x2, . . . ,xN}, where conv{x1,x2, . . . ,xN} is the convex hull of the positions

of the agents. In other words, as t → ∞ the agents will “surround” or “enclose” the

target, and this concludes the proof.
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3.5.1 Simulation Examples

This section presents illustrative simulations of the swarm tracking technique dis-

cussed above. It is assumed that the target moves in a n = 2 dimensional space with

the (unknown) dynamics

[
ẋt1

ẋt2

]

=

[
0.25 + 0.3sin(t)
1.9sin(0.25t)

]

.

In (3.39) α= 0.1 and β= 2 were used as controller parameters in all the simula-

tions.

The tracking potential Jit

(

‖xi − xt‖
)

in (3.37) is chosen as

Jit

(

‖xi − xt‖
)

=
1

4
‖xi − xt‖4

whose gradient is given by

∇xi
Jit

(

‖xi − xt‖
)

= ‖xi − xt‖2(xi − xt)

from which we have hit

(

‖xi − xt‖
)

= ‖xi − xt‖2 which satisfies the conditions

stated, including Assumption 4. The weights of the tracking potential and aggre-

gatin/formation potential were chosen as Wt = 0.6 and Wf = 1−Wt = 0.4.

Figure 3.11 shows the results for a simulation in which the agents were not re-

quired to form a predefined geometrical formation around the target. Instead, the

objective was to have them aggregate around the target and follow it in this manner.

For this simulation, for inter-agent interactions the aggregation potential in (3.6)

with parameters a = 1, b = 20, and c = 10 were used. Figure 3.11(a) presents the
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(a) Paths of target and agents. (b) Final positions of target and agents.

Fig. 3.11. Enclose target (no formation required with N = 6).

trajectories of the agents and the target, whereas Figure 3.11(b) presents their posi-

tions at the instant at which the simulation was stopped. The position of the target
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is denoted by a star (located at the center of the swarm), while the positions of the

agents are denoted with circles. As one can see, for this case, as predicted by theory,

the agents enclose the target as it moves and forms a regular polygon (hexagon in

this case since there are N = 6 agents in the swarm) around it.

Figure 3.12 shows the results for a simulation in which it was desired that a

swarm of N = 6 agents forms an equilateral triangle around the target (although

it is not the main objective–the main objective is to surround the target). For this

simulation, for inter-agent interactions we use the aggregation potential in (3.35)

with parameters bi j = 20 and ci j = 10, and ai j calculated as ai j = bi j exp

(

− d2
i j

ci j

)

,

where di j is the desired inter-agent distance in the desired formation. Figure 3.12(a)
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(a) Agent and target trajectories. (b) Final positions of target and agents.

Fig. 3.12. Enclose target (equilateral triangle formation with N = 6).

shows the trajectories of the agents and the target, whereas Figure 3.12(b) shows

their positions at the instant at which the simulation was stopped. The figures show

that the objective of enclosing of the target by the agents was achieved, while the

formation objective (which is not necessarily the primary objective) was achieved

with a small error.

3.6 Further Issues

In this section we will discuss further issues that can be considered for swarms

consisting of agents with dynamics which can be represented by the single integrator

model in (3.1).

3.6.1 General Neighborhood Topology

In the swarms considered in this chapter (and in general in this book) the neighbor-

hood topology of the agents can be represented as a complete graph. In other words,

it was assumed that all the agents can sense the (relative) positions of all the other
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agents. This assumption could be relaxed and most of the results will hold with

possibly simple modifications for the more general case in which the neighborhood

in the swarm is represented with a bi-directional (reciprocal) strongly connected

graph. In other words, most of the results will hold with possibly simple modifica-

tions (excluding possibly the formation control and swarm tracking cases) for the

case in which every agent is not necessarily a neighbor of every other agent but

there is path from every agent to every other agent in the swarm through interme-

diate agents. For the case of formation control, further issues need to be considered

since usually having a strongly connected neighborhood topology may not be suffi-

cient to uniquely specify a geometric formation.

3.6.2 Non-reciprocal Agent Interactions

The assumption that the attraction repulsion functions are odd leads to reciprocal

interactions between agents which is a key for the fact that the swarms considered

in this chapter are non-drifting unless there is an external influence as in the for-

aging swarm or the swarm tracking cases. Swarms with non-reciprocal interactions

may drift even if there are no external influences in the system and express more

complex behavior. Analyzing the dynamics of such systems for the agent dynamics

in (3.1) within the potential functions framework in this chapter is outside the scope

of this book. However, we will consider some non-reciprocal interactions for swarm

models with discrete time state dynamics in the following parts of this book.

3.6.3 For Further Reading

This chapter is based on the results in [92–94]. Artificial potential functions have been

extensively used for robot navigation and control - see for example [138, 208] for the

pioneering works on the topic. One of the related works in specifying inter-individual

interactions in a group of robotic agents is the work on social potential fields in [201].

Other related recent work on using potential function for multi-agent coordination

can be found in [13, 68, 145, 152, 183, 258]. Earlier related work in the literature

on mathematical biology on using potential functions to model group dynamics in

swarms in nature can be found in [28], where the authors uses a model composed

of a constant attraction term and a repulsion term which is inversely proportional to

the square of the distance between two individuals and in [254] the authors study the

effect of a family of potential functions on swarm cohesion. These works (i.e., those

in [28, 254]) as well as the work in [105] discuss also the attraction and repulsion

forces between individuals which lead to the swarming behavior in nature.

The related works in [212, 237, 258] employ the agent model in (3.1) to study

multi-agent coordinations. The work in [184] also analyze distributed agreement

(consensus) problems using the agent model in (3.1). They also use a consensus

protocol which is very similar to the attraction potential used in this chapter. Dis-

tributed agreement (which will be treated in a later chapter in this book) is in a sense

aggregation to a single point. The difference there is that the inter-agent interactions

are local and possibly time-dependent. Work on swarms with general topology can

be found in [147]. Swarms with non-reciprocal interactions are considered in [37].



4

Swarms of Double Integrator Agents

In this chapter we consider a double-integrator model of an agent. As in the last

chapter, we characterize swarm cohesiveness as a stability property and use a Lya-

punov approach to develop conditions under which local agent actions lead to cohe-

sive foraging. The conditions here allow for the presence of “noise” characterized

by uncertainty on sensing other agent’s position and velocity, and in sensing nutri-

ents (a resource profile) that each agent is foraging for. The results quantify claims

in biology that social foraging is in a certain sense superior to individual foraging

when noise is present, and provide clear connections between local agent-agent in-

teractions and emergent group behavior. Moreover, the simulations at the end of

the chapter show that very complicated but orderly group behaviors, reminiscent of

those seen in biology, emerge in the presence of noise.

4.1 Double Integrator Model

We consider swarms composed of an interconnection of N agents, each with point

mass dynamics given by

ẋi = vi (4.1)

v̇i =
1

Mi

ui

where xi ∈ R
n is the position, vi ∈ R

n is the velocity, Mi is the mass, and ui ∈ R
n is

the (force) control input for the ith agent. The above equations imply that ui = Miẍi

(force is mass times acceleration). Integrating acceleration once we get velocity,

twice and we get position; hence, the term “double integrator model.” It is assumed

that all agents know their own dynamics. For some organisms like bacteria that

move in highly viscous environments it can be assumed that Mi = 0, and if a velocity

damping term is used in ui for this, we obtain the model studied in Chapter 3. In this

chapter, we do not assume Mi = 0. Moreover, we will assume that each agent can

sense information about the position and velocity of other agents, but possibly with

some errors (what we will call “noise”), something not considered in Chapter 3.
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Agent to agent interactions considered here are, like in Chapter 3, of the “attract-

repel” type where each agent seeks to be in a position that is “comfortable” relative

to its neighbors (and here all other agents are its neighbors). There are many ways to

define attraction and repulsion, each of which can be represented by characteristics

of how we define ui for each agent. Attraction here will be represented by a term in

ui like

−ki
p (xi − x j)

where ki
p > 0 is a scalar that represents the strength of attraction. Then, if the agents

are far apart, there is a large attraction between them, and if they are close, there is

a small attraction. For repulsion, we use a term in ui of the form

ki
r exp

(

− 1
2
‖xi − x j‖2

ri
s
2

)

(xi − x j) (4.2)

where ki
r > 0 is the magnitude of the repulsion, and ri

s > 0 quantifies the region

size around the agent from which it will repel its neighbors. When ‖xi − x j‖ is big

relative to ri
s the whole term approaches zero so there is no repulsion. Note that

these correspond to the attraction/repulsion function in (3.7) in Chapter 3 with the

corresponding potential function in (3.6). In particular, this function satisfies the

linear attraction and bounded repulsion property.

Here, similar to Chapter 3, we will model the agent’s environment as a resource

profile σ(x), where x ∈ R
n. We will assume that σ(x) is continuous with finite slope

at all points. Agents move in the direction of the negative gradient of σ(x) (i.e.,

in the direction of −∇σ(x) = − ∂σ
∂x

) in order to move away from “bad” areas and

into “good” areas of the environment (e.g., to avoid noxious substances and find

nutrients). That is, they will use a term in their ui that holds the negative gradient

of σ(x). Clearly, there are many possible shapes for σ(x), including ones with many

peaks and valleys like the ones we studied in Chapter 3. Here, we only consider the

“plane” profile since it is simple yet representative. In this case, we have σ(x) =
σp(x) where

σp(x) = a⊤σ x + bσ

where aσ ∈ R
n and bσ is a scalar. Here, ∇σp(x) = aσ. Below, we will assume that

each agent can sense the gradient, but only with some errors, which we will refer to

as “noise.” We will consider the case where the agents seek to follow different plane

profiles. When we want to refer to agent i as following a possibly different profile

than agent j, j �= i, we will use σi
p, ai

σ, and bi
σ for the plane profiles.

4.2 Stability Analysis of Swarm Cohesion Properties

Cohesion and swarm dynamics will be quantified and analyzed using stability anal-

ysis of the swarm error dynamics that we derive next.
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4.2.1 Controls and Error Dynamics

Given N agents, let

x̄ =
1

N

N

∑
i=1

xi

be the centroid of the swarm and

v̄ =
1

N

N

∑
i=1

vi

be the average velocity of the group of agents. The objective of each agent is to

move so as to end up at x̄ and v̄. The problem is that since all the agents are moving

at the same time, x̄ and v̄ are time-varying; hence, in order to study the stability of

swarm cohesion we study the dynamics of an error system with

ei
p = xi − x̄

and

ei
v = vi − v̄

Alternative choices for the error system could be made. For instance,

ẽi
p =

N

∑
j=1

(xi − x j)

could be used. This corresponds to computing the errors to every other agent and

then trying to get all those errors to go to zero. Note, however, that

ẽi
p = N

(

xi −
1

N

N

∑
j=1

x j

)

= N (xi − x̄) = Nei
p

So this error definition is a scaled version of what we use.

The error dynamics are given by

ėi
p = ei

v

ėi
v =

1

Mi

ui −
1

N

N

∑
j=1

1

M j

u j (4.3)

Some animal’s senses and sensory processing may naturally provide x̄ and v̄, but

not all the individual positions of the other agents that it could then use to compute x̄

and v̄. We could assume that each agent knows its own position and velocity and can

sense x̄ and v̄. Here, however, we only assume that each agent i can sense directly

the differences xi − x̄ and vi − v̄, and possibly with some noise. In particular, let

di
p ∈ R

n and di
v ∈ R

n be these sensing errors for agent i, respectively. We assume

that di
p(t) and di

v(t) are any trajectories that are sufficiently smooth and fixed a priori

for all the time (but below we will study the stability for the case when the di
p and
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di
v trajectories can be any of a certain class). We will refer to these terms somewhat

colloquially as “noise” but clearly our framework is entirely deterministic. Thus,

each agent actually senses

êi
p = ei

p −di
p

êi
v = ei

v −di
v

and below we will also assume that it can sense its own velocity.

It is important to highlight our motivation for studying the addition of noise. On

the one hand, it adds another element of realism to how a sensor for ei
p and ei

v might

operate and the results below will help quantify the effects of the noise on cohesion.

We also, however, view our approach as progress in the direction of not requiring

that each agent can sense the variables of all the other agents or even the accurate

values of x̄ and v̄. How? Here, as will be seen below, we will assume that our noise is

bounded so that each agent actually only needs to be able to sense the swarm center

and average velocity with a low degree of accuracy. In specific types of agents, this

actually may not require that each agent senses position and velocity of every other

agent (e.g., if for some organism it can compute an approximate center of gravity of

the positions of all other agents via some type of averaging).

The ith agent will also try to follow the plane nutrient profile σi
p defined earlier.

We assume that it senses the gradient of σi
p, but with some sufficiently smooth error

di
f (t) that is fixed a priori for all the time (as with di

p and di
v we will allow below di

f

to be any in a certain class of trajectories) so each agent actually senses

∇σi
p (xi)−di

f

This can be viewed as either sensing error or “noise” (variations, ripples) on the

resource profile.

Suppose the general form of the control input for each agent is

ui = − Mik
i
pêi

p −Mik
i
vêi

v −Mikvi + (4.4)

Mik
i
r

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

ri
s
2

⎞

⎟
⎠

(
êi

p − ê j
p

)
−Mik

i
f

(
ai
σ−di

f

)

The term Mi is used in each term so it will cancel with the 1/Mi term in Equa-

tion (4.3). We think of the scalars ki
p > 0 and ki

v > 0 as the “attraction gains” which

indicate how aggressive each agent is in aggregating. The gain ki
r > 0 is a “repul-

sion gain” which sets how much that agent wants to be away from others and ri
s

represents its repulsion range. Also note that in the repulsion term

êi
p − ê j

p =
(
(xi − x̄)−di

p

)
−
(
(x j − x̄)−d j

p

)
= (xi − x j)−

(
di

p −d j
p

)

Obviously, if di
p = 0 for all i, there is no sensing error on repulsion, and a repulsion

term of the form explained in Equation (4.2) is obtained. The gain k > 0 works as a
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“velocity damping gain;” note that we use the same such gain for all agents. The last

term in Equation (4.4) indicates that each agent wants to move along the negative

gradient of the ith resource profile with the gain ki
f > 0 proportional to that agent’s

desire to follow its profile.

The sensing errors create the possibility that agents will try to move away from

each other when they may not really need to, and they may move toward each other

when they should not. Similarly, the attraction gains ki
p and ki

v dictate how the at-

traction forces operate, but the presence of the noise results in additive noise terms

to ui that are multiplied by ki
p and ki

v. Hence, raising the attraction gains also has

a negative influence on ui in that it results in more noise entering the control and

hence possibly poor aggregating decisions by individuals (e.g., if ‖xi − x j‖ is small

but di
p is relatively large, noise will set the control value). Clearly, this complicates

the situation for the whole swarm to achieve cohesiveness.

To study stability properties, we will substitute the above choice for ui into the

error dynamics in Equation (4.3). First, consider the v̇i term of ėi
v = v̇i − ˙̄v and note

that

v̇i =
1

Mi

ui = −ki
pei

p + ki
pdi

p − ki
vei

v + ki
vdi

v − kvi

+ki
r

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

ri
s
2

⎞

⎟
⎠

(
êi

p − ê j
p

)
− ki

f

(
ai
σ−di

f

)
(4.5)

Next, substituting ui into ˙̄v and we have

˙̄v = − 1

N

N

∑
j=1

k j
pe j

p +
1

N

N

∑
j=1

k j
pd j

p −
1

N

N

∑
j=1

k j
ve j

v +
1

N

N

∑
j=1

k j
vd j

v −
1

N

N

∑
j=1

kv j +

1

N

N

∑
l=1

kl
r

N

∑
j=1, j �=l

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êl

p − ê
j
p

∥
∥
∥

2

rl
s
2

⎞

⎟
⎠

(

êl
p − ê j

p

)

−

1

N

N

∑
j=1

k
j
f

(

a
j
σ−d

j
f

)

(4.6)

Define k̄p = 1
N ∑N

j=1 k
j
p and ∆k

j
p = k

j
p − k̄p. Since

N

∑
j=1

e j
p =

N

∑
j=1

(x j − x̄) = Nx̄−
N

∑
j=1

x̄ = 0

we have
N

∑
j=1

k j
pe j

p =
N

∑
j=1

∆k j
pe j

p +
N

∑
j=1

k̄pe j
p =

N

∑
j=1

∆k j
pe j

p

Similarly, define k̄v and ∆k
j
v, so we have ∑N

j=1 k
j
ve

j
v = ∑N

j=1∆k
j
ve

j
v. So Equation (4.6)

becomes
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˙̄v = − 1

N

N

∑
j=1

∆k j
pe j

p +
1

N

N

∑
j=1

k j
pd j

p −
1

N

N

∑
j=1

∆k j
ve j

v +
1

N

N

∑
j=1

k j
vd j

v −
1

N

N

∑
j=1

kv j +

1

N

N

∑
l=1

kl
r

N

∑
j=1, j �=l

exp

⎛

⎜
⎝

− 1
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∥
∥
∥êl

p − ê
j
p

∥
∥
∥

2
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s
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⎟
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(

êl
p − ê j
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)

−

1

N

N

∑
j=1

k
j
f

(

a
j
σ−d

j
f

)

(4.7)

Define E i = [ei
p
⊤
, ei

v
⊤
]
⊤

and E = [E1⊤,E2⊤, . . . ,EN⊤
]
⊤

. Since

kvi −
1

N

N

∑
j=1

kv j = kvi − kv̄ = kei
v

from Equations (4.5) and (4.7) we have

ėi
v = v̇i − ˙̄v = −ki

pei
p −
(
ki

v + k
)

ei
v + gi +φ(E)+ δi(E) (4.8)

where

gi = ki
pdi

p + ki
vdi

v + ki
f d

i
f − ki

f ai
σ (4.9)

φ(E) =
1

N

N

∑
j=1

∆k j
pe j

p +
1

N

N

∑
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∆k j
ve j

v −
1

N

N

∑
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k j
pd j
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N

N

∑
j=1

k j
vd j

v +

1

N

N

∑
j=1

k
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(

a
j
σ−d

j
f

)

(4.10)

δi(E) = ki
r

N

∑
j=1, j �=i

exp
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êi

p − ê j
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êl
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)

(4.11)

which is a nonlinear non-autonomous system. If I is an n× n identity matrix, the

error dynamics of the ith agent may be written as

Ė i =

Ai
︷ ︸︸ ︷
[

0 I

−ki
pI −

(
ki

v + k
)

I

]

E i +

B
︷︸︸︷
[

0

I

]
(
gi +φ(E)+ δi(E)

)
(4.12)

Note that any matrix
[

0 I

−k1I −k2I

]
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with k1 > 0 and k2 > 0 has eigenvalues given by the roots of (s2 + k2s+ k1)
n
, which

are in the strict left half plane. Thus, the matrix Ai above is Hurwitz if ki
p > 0, ki

v > 0

and k > 0.

4.2.2 Cohesive Social Foraging with Noise

Our analysis methodology involves viewing the error system in Equation (4.12) as

generating E i(t) trajectories for a given E i(0) and the fixed sensing error trajectories

di
p(t), di

v(t), an di
f (t), t ≥ 0. We do not consider, however, all possible sensing error

trajectories. We only consider a class of ones that satisfy for all t ≥ 0

‖di
f (t)‖ ≤ Di

f

‖di
p(t)‖ ≤ Di

p1

∥
∥E i(t)

∥
∥+ Di

p2
(4.13)

‖di
v(t)‖ ≤ Di

v1

∥
∥E i(t)

∥
∥+ Di

v2

where Di
p1

, Di
p2

, Di
v1

, Di
v2

and Di
f are known non-negative constants for i = 1, . . . ,N.

Hence, we assume for position and velocity the sensing errors have linear relation-

ship with the magnitude of the state of the error system. Basically, the assumption

means that when two agents are far away from each other, the sensing errors can in-

crease. The noise di
f on the nutrient profile is unaffected by the position of an agent.

By considering only this class of fixed sensing error trajectories we prune the set of

possibilities for E i trajectories and it is only that pruned set that our analysis holds

for.

Uniform Ultimate Boundedness of Inter-agent Trajectories

We first establish that the inter-agent trajectories are uniformly ultimately bounded.

Following this, we derive the ultimate bound on the inter-agent trajectories.

Theorem 11. Consider the swarm described by the model in Equation (4.3) with

control input ui given in Equation (4.4). Assume that the nutrient profile for each

agent is a plane defined by ∇σi
p(x) = ai

σ and the noise satisfies Equation (4.13). Let

βi
1 =

(
ki

p + 1
)2

+
(
ki

v + k
)2

2ki
p (ki

v + k)
+

√
√
√
√

(

ki
p

2 +(ki
v + k)2 −1

2ki
p (ki

v + k)

)2

+
1

ki
p

2
(4.14)

for i = 1, . . . ,N. If for all i we have

ki
pDi

p1
+ ki

vDi
v1

<
1

βi
1

(4.15)

and the parameters are such that

N

∑
i=1

βi∗
1

(

ki
pDi

p1
+ ki

vDi
v1

+
√

∆ki
p

2 +∆ki
v
2

)

N (1−θi)
(
1−βi

1

(
ki

pDi
p1

+ ki
vDi

v1

)) < 1 (4.16)
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for some constants 0 < θi < 1, where

i∗ = argmax
i
βi

1, i = 1, . . . ,N

then the trajectories of Equation (4.12) are uniformly ultimately bounded.

Proof: To study the stability of the error dynamics, it is convenient to choose

Lyapunov functions for each agent as

Vi

(
E i
)

= E i⊤PiE
i (4.17)

with Pi = P⊤
i a 2n×2n matrix and Pi > 0 (a positive definite matrix). Then we have

V̇i = E i⊤PiĖ
i + Ė i

⊤
PiE

i = E i⊤
(

PiAi + A⊤
i Pi

)

︸ ︷︷ ︸

−Qi

E i + 2E i⊤PiB
(
gi +φi(E)+ δi(E)

)

(4.18)

Note that when Qi = Q⊤
i and Qi > 0, the unique solution Pi of PiAi + A⊤

i Pi = −Qi

has Pi = P⊤
i and Pi > 0 as needed.

Choose for the composite system

V (E) =
N

∑
i=1

Vi(E
i)

where Vi

(
E i
)

is given in Equation (4.17). Since for any matrix M > 0 and vector X

λmin(M)X⊤X ≤ X⊤MX ≤ λmax(M)X⊤X

where λmin(M) and λmax(M) denote the minimum and maximum eigenvalue of M,

respectively, from Equation (4.17) we have

N

∑
i=1

(

λmin(Pi)
∥
∥E i
∥
∥

2
)

≤V (E) ≤
N

∑
i=1

(

λmax(Pi)
∥
∥E i
∥
∥

2
)

It can be shown that the function F(ψ) = exp

(
− 1

2 ‖ψ‖2

ri
s
2

)

‖ψ‖, with ψ any real

vector, has a unique maximum value of exp(− 1
2
)ri

s which is achieved when ‖ψ‖= ri
s

(a property used in Chapter 3). Defining

∆i = ki
r exp

(

−1

2

)
N

∑
j=1, j �=i

r j
s +

1

N
exp

(

−1

2

)
N

∑
l=1

kl
r

N

∑
j=1, j �=l

r j
s (4.19)

we have
∥
∥δi(E)

∥
∥≤ ∆i for i = 1, . . . ,N. Define

ãσ =
1

N

N

∑
i=1

ki
f ai

σ



4.2 Stability Analysis of Swarm Cohesion Properties 83

Then substituting Equation (4.12) into (4.18), and using Equation (4.19) and the fact

that ‖B‖ = 1 we have

V̇ (E) =
N

∑
i=1

V̇i(E
i) =

N

∑
i=1

[

−E i⊤QiE
i + 2E i⊤PiB

(
gi +φi(E)+ δi(E)

)]

≤
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2
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∥
)
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(4.20)

with ci
1, ci

2 and ai j constants and

ci
1 = λmin(Qi)

(

1− 2λmax(Pi)

λmin(Qi)

(
ki

pDi
p1

+ ki
vDi

v1

)
)

ci
2 = 2λmax(Pi)

(

ki
pDi

p2
+ ki

vDi
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+ ki
f D

i
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∥
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N
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vD j
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1
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k
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ai j =
2

N
λmax(Pi)

(

k j
pD j

p1
+ k j

vD j
v1

+

√

∆k
j
p

2
+∆k

j
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2
)

Obviously ci
2 > 0, ai j > 0, and if we have

ki
pDi

p1
+ ki

vDi
v1

<
1

βi
0

(4.21)

where
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βi
0 =

2λmax(Pi)

λmin(Qi)

then ci
1 > 0.

Before we proceed, note that in Equation (4.21), we want βi
0 to be as small as pos-

sible so that the system may tolerate noise with the largest possible bounds (Di
p1

and

Di
v1

) while keeping stability. Notice that we can influence the size of the βi
0 by the

choice of Qi > 0. Next, we explain why letting βi
0 = βi

1 (defined in Equation (4.14))

renders Equation (4.21) less restrictive in terms of allowing as high of magnitude

of noise as possible. First, βi
0 is minimized by letting Qi = ki

qI with ki
q > 0 a free

parameter. Next, we find

βi
1 = βi

0

∣
∣
Qi=ki

qI
= minβi

0

Specifically, it can be proven that the 2n×2n matrix Pi has n repeated values of the

eigenvalues of P̃i, where P̃iÃi + Ã⊤
i P̃i = −Q̃i with

Ãi =

[
0 1

−ki
p −
(
ki

v + k
)

]

, Q̃i =

[
ki

q 0

0 ki
q

]

Then it can be shown that λ1,2(P̃i), the two eigenvalues of P̃i, are given by

1

2

⎡

⎢
⎣

(
ki

p + 1
)2

ki
q +
(
ki

v + k
)2

ki
q

2ki
p (ki

v + k)
±

√
√
√
√

(
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p

2
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q +(ki
v + k)2

ki
q − ki

q

2ki
p (ki

v + k)

)2

+
ki

q
2

ki
p

2

⎤

⎥
⎦

where λ1(P̃i) is defined by the “+” and λ2(P̃i) by the “−”. Here λmax(P̃i) = λ1(P̃i)
and λmin(P̃i) = λ2(P̃i). Comparing the above equation with Equation (4.14), we have

λ1(P̃i) = 1
2
ki

qβ
i
1. Since λmax(Pi) = λmax(P̃i) and λmin(Q̃i) = ki

q,

minβi
0 =

2λmax(Pi)

λmin(Qi)

∣
∣
∣
∣
Qi=ki

qI

=
2λmax(P̃i)

λmin(Q̃i)
=

ki
qβ

i
1

ki
q

= βi
1 (4.22)

Thus, from (4.21) and (4.22), if Equation (4.15) holds, then by choosing Qi = ki
qI,

the corresponding constant ci
1 for (4.20) is positive.

Now for simplicity, we choose Qi = I for all i (so ki
q = 1) and use Equation (4.22),

so ci
1, ci

2 and ai j of (4.20) are simplified to become

ci
1 = 1−βi

1

(
ki

pDi
p1

+ ki
vDi

v1

)
(4.23)

ci
2 = βi

1

(
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pDi

p2
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vDi
v2

+ ki
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f +
∥
∥ki
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∥
∥+

1

N
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vD j

v2
+

1

N
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k
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f D

j
f +∆i

)

(4.24)

ai j =
βi

1

N

(

k j
pD j

p1
+ k j

vD j
v1

+

√

∆k
j
p

2
+∆k

j
v

2
)

(4.25)
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Now, return to (4.20) and note that for any θi, 0 < θi < 1,

− ci
1

∥
∥E i
∥
∥

2
+ ci

2

∥
∥E i
∥
∥ = −(1−θi)ci

1

∥
∥E i
∥
∥

2 −θici
1

∥
∥E i
∥
∥

2
+ ci

2

∥
∥E i
∥
∥

≤ −(1−θi)ci
1

∥
∥E i
∥
∥

2
, ∀
∥
∥E i
∥
∥≥ ri

= σi
∥
∥E i
∥
∥

2
(4.26)

where ri =
ci

2

θici
1

and σi = −(1− θi)ci
1 < 0. This implies that as long as ‖E i‖ ≥ ri,

the first two terms in (4.20) combined will give a negative contribution to V̇ (E).
Next, we seek conditions under which V̇ (E) < 0. To do this, we consider the third

term in (4.20) and combine it with the above results. First, note that the third term

in (4.20) can be over-bounded by replacing ai j by ai∗ j where

ai∗ j = max
1≤i≤N

ai j (4.27)

which were defined in the statement of the theorem via Equation (4.25). Next, we

consider the general situation where some of the E i are such that ‖E i‖ < ri and

others are not. Accordingly, define sets

ΠO =
{

i :
∥
∥E i
∥
∥≥ ri, i ∈ 1, . . . ,N

}
=
{

i1O, i2O, . . . , i
NO
O

}

and

ΠI =
{

i :
∥
∥E i
∥
∥< ri, i ∈ 1, . . . ,N

}
=
{

i1I , i2I , . . . , i
NI
I

}

where NO and NI are the size of ΠO and ΠI , respectively, and NO + NI = N. Also,

ΠO

⋃
ΠI = {1, . . . ,N} and ΠO

⋂
ΠI = φ. Of course, we do not know the explicit

sets ΠO and ΠI; all we know is that they exist. The explicit values in the sets clearly

depend on time, but we will allow that time to be arbitrary so the analysis below will

be for all t. For now, we assume NO > 0, that is, the set ΠO is non-empty. We will

later discuss the NO = 0 case. Then using analysis ideas from the theory of stability

of interconnected systems, and Equations (4.20), (4.26) and (4.27), we have

V̇ (E) ≤ ∑
i∈ΠO

σi
∥
∥E i
∥
∥

2
+ ∑

i∈ΠO

(

∥
∥E i
∥
∥ ∑

j∈ΠO

ai∗ j
∥
∥E j
∥
∥

)

+ ∑
i∈ΠO

(

∥
∥E i
∥
∥ ∑

j∈ΠI

ai∗ j
∥
∥E j
∥
∥

)

+ ∑
i∈ΠI

(

−ci
1

∥
∥E i
∥
∥

2
+ ci

2

∥
∥E i
∥
∥

)

+ ∑
i∈ΠI

(

∥
∥E i
∥
∥ ∑

j∈ΠO

ai∗ j
∥
∥E j
∥
∥

)

+ ∑
i∈ΠI

(

∥
∥E i
∥
∥ ∑

j∈ΠI

ai∗ j
∥
∥E j
∥
∥

)

Note for each fixed NO, there exist positive constants K1(NO), K2(NO), K3(NO) and

K4(NO) such that,

K1(NO) ≥ ∑
j∈ΠI

ai∗ j
∥
∥E j
∥
∥



86 4 Swarms of Double Integrator Agents

K2(NO) ≥ ∑
i∈ΠI

(

−ci
1

∥
∥E i
∥
∥

2
+ ci

2

∥
∥E i
∥
∥

)

(4.28)

K3(NO) ≥ ∑
i∈ΠI

∥
∥E i
∥
∥

K4(NO) ≥ ∑
i∈ΠI

(

∥
∥E i
∥
∥ ∑

j∈ΠI

ai∗ j
∥
∥E j
∥
∥

)

Then, we have

V̇ (E) ≤ ∑
i∈ΠO

σi
∥
∥E i
∥
∥

2
+ ∑

i∈ΠO

(

∥
∥E i
∥
∥ ∑

j∈ΠO

ai∗ j
∥
∥E j
∥
∥

)

+ K1 ∑
i∈ΠO

∥
∥E i
∥
∥+ K2 +

K3 ∑
j∈ΠO

ai∗j
∥
∥E j
∥
∥+ K4

= ∑
i∈ΠO

σi
∥
∥E i
∥
∥

2
+ ∑

i∈ΠO

(

∥
∥E i
∥
∥ ∑

j∈ΠO

ai∗ j
∥
∥E j
∥
∥

)

+ ∑
i∈ΠO

(

K1 + K3ai∗i
)∥
∥E i
∥
∥+

K2 + K4

Let w⊤ =
[

‖E i1O‖,‖E i2O‖, . . . ,‖E i
NO
O ‖
]

(the composition of this vector can be differ-

ent at different times) and the NO ×NO matrix S = [s jn] be specified by

s jn =

{

−(σi
j

O + ai∗j), j = n

−ai∗j, j �= n
(4.29)

(the σi
j

O is a constant, not to be confused with the notation we use for the plane

profile) so we have

V̇ (E) ≤−w⊤Sw+ ∑
i∈ΠO

(

K1 + K3ai∗i
)∥
∥E i
∥
∥+ K2 + K4

For now, assume that S > 0 in the above equation and thus, λmin(S) > 0, then we

have

V̇ (E) ≤−λmin(S) ∑
i∈ΠO

∥
∥E i
∥
∥

2
+ ∑

i∈ΠO

(

K1 + K3ai∗i
)∥
∥E i
∥
∥+ K2 + K4

So when the
∥
∥E i
∥
∥ for i ∈ ΠO are sufficiently large, the sign of V̇ (E) is determined

by −λmin(S)∑i∈ΠO

∥
∥E i
∥
∥2

and V̇ (E) < 0. This analysis is valid for any value of NO,

1 ≤ NO ≤ N; hence for any NO �= 0 the system is uniformly ultimately bounded if

S > 0, so we seek to prove that next.

A necessary and sufficient condition for S > 0 is that its successive principal

minors are all positive. Define |Sm| as the determinants of the principal minors of S,

m = 1, . . . ,NO. Then
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|Sm| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−(σi1O + ai∗1) −ai∗1 . . . −ai∗1

−ai∗2 −(σi2O + ai∗2) . . . −ai∗2

...
...

. . .
...

−ai∗m −ai∗m . . . −(σimO + ai∗m)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−σi1O 0 . . . ai∗1

ai∗mσ
imO

0 −σi2O . . . ai∗2

ai∗mσ
imO

...
...

. . .
...

−ai∗m −ai∗m . . . −(σimO + ai∗m)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−σi1O 0 . . . ai∗1

ai∗mσ
imO

0 −σi2O . . . ai∗2

ai∗mσ
imO

...
...

. . .
...

0 0 . . . −σimO

(

1 +∑m
j=1

ai∗ j

σ
i

j
O

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(

1 +
m

∑
j=1

ai∗ j

σi
j

O

)
m

∏
k=1

(

−σikO

)

Since −σikO > 0 for k = 1, . . . ,m, to have all the above determinants positive we need

m

∑
j=1

ai∗j

σi
j

O

> −1

that is

m

∑
j=1

βi∗
1

(

k
j
pD

j
p1

+ k
j
vD

j
v1

+

√

∆k
j
p

2
+∆k

j
v

2
)

N

(

1−θi
j

O

)(

1−β
i

j
O

1

(

k
i

j
O
p D

i
j

O
p1

+ k
i

j
O

v D
i

j
O

v1

)) < 1

for all m = 1, . . . ,NO. Since 1 ≤ m ≤ NO ≤ N, the equation above is satisfied when

Equation (4.16) is satisfied and thus, S > 0 for all NO �= 0. Hence, when ‖E i‖ is

sufficiently large, V̇ (E)< 0 and the uniform ultimate boundedness of the trajectories

of the error system is achieved.

To complete the proof, we need to consider the case when NO = 0. Note that when

NO = 0, ‖E i‖< ri for all i. If we have NO = 0 persistently, then we could simply take

maxi ri as the uniform ultimate bound. If otherwise, at certain moment the system

changes such that some ‖E i‖ ≥ maxi ri, then we have NO ≥ 1 immediately, then all

the analysis above, which holds for any 1 ≤ NO ≤ N, applies. Thus, in either case

we obtain the uniform ultimate boundedness. This concludes the proof.

Uniform ultimate boundedness is obtained when Equations (4.15) and (4.16) are

satisfied. Note that these conditions do not depend on ki
r and ri

s; these two parameters

can affect the size of the ultimate bound, but it is the attraction gains ki
p and ki

v and
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damping gain k that determine if boundedness can be achieved for given parameters

that quantify the size of the noise. The conditions also do not depend on Di
p2

and

Di
v2

, but these too will affect the size of the ultimate bound. The conditions do not

depend on ki
f , ai

σ and Di
f since our error system quantifies swarm cohesiveness, not

how well the resource profile is followed.

From Equation (4.14), if both ki
p and ki

v are fixed, when k is sufficiently large,

increasing k will increase βi
1, which means Di

p1
and Di

v1
have to be decreased to

satisfy Equation (4.15). This means that although we may expect a large k to dampen

the error system faster, it could make the system be more vulnerable to noise. Note

that when all other parameters are fixed, βi
1 goes to infinity when ki

p either goes to

infinity or approaches zero. Thus, when ki
p is the only free parameter, there exists

some upper bound for Di
p1

beyond which Equation (4.15) can never hold whatever

ki
p is. This is because when Di

p1
is large enough, ki

p has to be sufficiently small

to decrease the product ki
pDi

p1
in Equation (4.15), while the βi

1 corresponding to

this sufficiently-small ki
p will be so large that Equation (4.15) cannot be satisfied.

Basically, this means that if Di
p1

is too large and leads to potential instability, it

cannot be remedied by merely tuning ki
p. In comparison, if ki

v is a free parameter

with other parameters fixed and Di
p1

sufficiently small, then for any arbitrarily large

Di
v1

, we can always find some ki
v such that (4.15) still holds. This is because ki

v and

k always appear together in βi
1 and thus, for any large Di

v1
, we are free to decrease

ki
v such that the product of ki

vDi
v1

is small.

Finally, note that the smaller ∆k
j
p

2
(∆k

j
v

2
) is, meaning ki

p (ki
v) and k

j
p (k

j
v) are

closer to each other for all i and j, the easier it is to meet the condition specified by

Equation (4.16). This means that better approximations of the agent parameters may

facilitate the boundedness of the error system. In fact when all agents are identical,

the sufficient condition (4.16) can be immediately simplified to

β1 (kpDp1
+ kvDv1

)

(1−θ)(1−β1 (kpDp1
+ kvDv1

))
< 1

by letting ki
p = kp, ki

v = kv, βi
1 = β1, Di

p1
= Dp1

and Di
v1

= Dv1
for all i. Note the

term

√

∆ki
p

2 +∆ki
v
2

is zero now since ki
p = k̄p and ki

v = k̄v for all i. Furthermore,

when Di
p1

= Di
v1

= 0 for all i, the conditions (4.15) and (4.16) will always hold.

This means when agents are identical and noise is constant, or with constant bound,

the trajectories of the error system are always uniformly ultimately bounded. Also

note that since the agents are in general not identical and have different parameters,

the conditions stated by the theorem are quite conservative.

Ultimate Bound on Inter-Agent Trajectories

So far we have shown that the swarm error system is uniformly ultimately bounded

when certain conditions are satisfied. We have shown that the bound exists but have

not specified it as we now seek to do. If we define the bound as Rb > 0, then the set
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Ωc =
{

E :
∥
∥E i
∥
∥≤ Rb, i = 1, . . . ,N

}

is attractive and compact. One such bound is given by the Corollary below. Before

we state the Corollary, some new notation needs to be introduced. Notice that for

each given NO, 1 ≤ NO ≤ N, the set ΠO can have NNO
= C

NO
N types of compositions,

where C
NO
N is the number of combinations of choosing NO members from a set with

N members. (Note that the special case of NO = 0 will be considered separately

at the end of the proof for the Corollary.) Let Π
(k)
O be the set ΠO corresponding to

the kth composition, k = 1, . . . ,NNO
. Let the NO ×NO matrix S(k) be specified in the

same way as S, defined in Equation (4.29), but corresponding to the kth composition,

k = 1, . . . ,NNO
. Define for k = 1, . . . ,NNO

ak
d(NO) = λmin(S

(k)
NO×NO

)

bd(NO) = K1(NO)+ K3(NO)â

cd(NO) = K2(NO)+ K4(NO)

where K1, K2, K3 and K4 are defined in (4.28), and

â = max
1≤i≤N, 1≤ j≤N

ai j = max
1≤ j≤N

ai∗ j

with ai∗ j defined in Equation (4.27). Note that in Theorem 11 we do not highlight

the difference between compositions because it does not matter, while in the proof

for the Corollary below it will make things more clear to do so. Also note that bd

and cd are not affected by the composition because we may choose K1, K2, K3 and

K4 in such a way that (4.28) always holds for any composition with 0 ≤ NI ≤ N −1

(and thus, 1 ≤ NO ≤ N). In the following Corollary and proof, all notation is the

same as in Theorem 11 unless otherwise specified.

Corollary 2. Define r∗ = max1≤i≤N ri, with ri defined in Equation (4.26) via some

set of θi that satisfy Equation (4.16). When the conditions in Theorem 11 are all

satisfied, there exists some constant 0 < θd < 1 such that the uniform ultimate bound

of the trajectories of the error system is

Rb = max{rb,r
∗}

where

rb =
b∗d +

√

Nb∗d
2 + 4a∗dc∗d

2a∗dθd

(4.30)

with a∗d , b∗d , and c∗d are all constants and

a∗d = mink,NO
ak

d(NO)

b∗d = maxNO
bd(NO)

c∗d = maxNO
cd(NO)

for NO = 1, . . . ,N and k = 1, . . . ,NNO
.
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Proof: Note that when the conditions of Theorem 11 are all satisfied, a set of con-

stants θi exists and can be found. Also recall that both ci
1 and ci

2 are constants, then

ri =
ci

2

θici
1

and σi = −(1− θi)ci
1, defined in (4.26), are constants for all i and can be

found. Thus, numeric values of a∗d , b∗d , and c∗d can be found in terms of known pa-

rameters. Now we will first show that this Corollary applies to a fixed NO �= 0 with

a particular composition k.

With V (E) defined in Theorem 11, for NO �= 0 and Π
(k)
O , from (4.30) we have

V̇ (E) ≤ −ak
d ∑

i∈Π(k)
O

∥
∥E i
∥
∥

2
+ bd ∑

i∈Π(k)
O

∥
∥E i
∥
∥+ cd

= ∑
i∈Π(k)

O

⎡

⎣−ak
d

(

∥
∥E i
∥
∥− bd

2ak
d

)2

+
b2

d

4ak
d

⎤

⎦

︸ ︷︷ ︸

F i

+cd (4.31)

with ak
d , bd and cd all positive constants. Notice we want to find a bound r′b such

that V̇ (E) < 0 so long as there exist some
∥
∥E i
∥
∥ > r′b, i ∈ Π

(k)
O . Before we start to

solve for this r′b, note that F i in Equation (4.31) can be visualized by Figure 4.1,

where F i is a parabolic function with respect to ‖E i‖ and crosses the ‖E i‖ axis

at two points rA and rB, respectively. To have V̇ (E) < 0, one possibility is such

that ‖E i‖ > rB and thus, F i < 0 for all i ∈ Π
(k)
O . (Note that due to the nature of

our problem, we do not consider the case of ‖E i‖ < rA, though this also results in

F i < 0.) We call this situation the “best situation.” While in a more general case,

we have some ‖E i‖ > rB while all the other ‖E i‖ ≤ rB, i ∈ Π
(k)
O and we call such a

situation the “normal situation.” For the best situation case, each ‖E i‖ just needs to

be a little bigger than rB to achieve V̇ (E) < 0, which means r′b is just a little bigger

than rB. In comparison, to get V̇ (E) < 0 for the normal situation, generally it means

those ‖E i‖ that satisfy ‖E i‖ > rB have to be further to the right on ‖E i‖ axis (i.e.,

much bigger than rB) to counteract the “positive” effects brought in by those ‖E i‖
with ‖E i‖ ≤ rB, meaning r′b needs to be much bigger than rB. With this idea, we can

see that the worst r′b happens when there is only one F i, call it i = i′, free to change

while all the other F i, with i = i1O, . . . , i
NO
O and i �= i′, are fixed at their respective

maximum (or most “positive” value). Basically this depicts a situation when there is

only one agent having its norm of error ‖E i′‖ slide along ‖E i‖ axis (to the right) to

bring V̇ (E) down to negative value while all other agents in Π
(k)
O stay in positions as

bad as they can (in the sense of keeping stability). Note that by construction, when

this ‖E i′‖ slides along ‖E i‖ axis, it always stay in the region of ‖E i′‖ ≥ ri′ . This

seemingly trivial comment in fact plays a significant role in completing the proof,

which will become clear soon.

From Equation (4.31) we can see that each F i achieves its maximum of
b2

d

4ak
d

with
∥
∥E i
∥
∥ = bd

2ak
d

. Then based on the analysis above, we can solve for the r′b by letting

all F i =
b2

d

4ak
d

except for i = i′. From Equation (4.31), for some constant 0 < θd < 1
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Fig. 4.1. F i vs ‖E i‖.

we have

V̇ (E) ≤

⎡

⎣−ak
d

(
∥
∥
∥E i′
∥
∥
∥− bd

2ak
d

)2

+
b2

d

4ak
d

⎤

⎦+ ∑
i∈Π(k)

O ,i�=i′

b2
d

4ak
d

+ cd

= −ak
d

∥
∥
∥E i′
∥
∥
∥

2

+ bd

∥
∥
∥E i′
∥
∥
∥+(NO −1)

b2
d

4ak
d

+ cd

= −ak
d(1−θd)

∥
∥
∥E i′
∥
∥
∥

2

−ak
dθd

∥
∥
∥E i′
∥
∥
∥

2

+ bd

∥
∥
∥E i′
∥
∥
∥+(NO −1)

b2
d

4ak
d

+ cd

≤ −ak
d(1−θd)

∥
∥
∥E i′
∥
∥
∥

2

,∀
∥
∥
∥E i′
∥
∥
∥≥ r′b

where

r′b =
bd +

√

NOb2
d + 4ak

dcd

2ak
dθd

Note that in setting ‖E i‖ = bd

2ak
d

to get F i =
b2

d

4ak
d

, we may violate the prerequisite of

i ∈Π
(k)
O since it may happen that ri > bd

2ak
d

for some i ∈Π
(k)
O . But this violation only

adds more conservativeness to the resultant r′b and does not nullify the fact that r′b is

a valid bound. Specifically, when ri > bd

2ak
d

for some i ∈ Π
(k)
O , the corresponding F i

become “less” positive, as seen from Figure 4.1, and thus, the actual bound will be

smaller than the r′b obtained above. Hence, r′b is still a valid (upper) bound.

Since rb ≥ r′b with rb defined in Equation (4.30), and the positive constant a∗d ≤
ak

d , we have V̇ (E) ≤ −a∗d(1−θd)
∥
∥E i
∥
∥2

when
∥
∥E i
∥
∥≥ rb. Now note that the choice

of NO and composition k in the above proof are in fact arbitrary (except that NO �= 0)

and can be time-varying. So we actually have Rb ≥ rb ≥ r′b for any 1 ≤ NO ≤ N and

any composition at any time t. That is, the proof above is actually valid for the

general case when NO (NO �= 0) and the composition are time-varying.

To complete the proof, we need to show that Rb is also a valid bound for the

case of NO = 0, i.e., an empty set ΠO. Notice that NO = 0 means ‖E i‖ < ri for
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i = 1, . . . ,N. Also notice that ri ≤ max1≤i≤N ri ≤ Rb for all i. Then by definition, as

long as NO = 0, the trajectories of the swarm error system stay within the bound Rb.

This completes the proof.

The value of Rb is affected by two components: rb and r∗. We will discuss rb first.

It is easy to see from Equation (4.30) that increasing a∗d helps to decrease rb. Notice

that a∗d is a function including many parameters, so it is difficult to provide clear

relationships to their effects on rb. But we may get some ideas based on intuition.

Note that a∗d is related to the minimum eigenvalue of matrix S defined in (4.29),

where the components −(σikO + ai∗j) on the main diagonal reflect the stabilizing ef-

fect of the isolated parts of the composite system, while the cross terms −ai∗ j reflect

the destabilizing effect of the interconnection parts of the composite system. So, the

larger magnitude those main diagonal components have (or relatively, the smaller

magnitude those cross terms have), the “more stable” the composite system is and

thus, we may expect the larger a∗d is. Based on this analysis and Equation (4.23),

since smaller Di
p1

and Di
v1

gives larger ci
1 and thus, larger σikO in magnitude (imply-

ing “better stability”), it may render larger a∗d and thus, smaller rb. When σikO are

relatively big, from Equation (4.25), we may deduce that smaller N and thus, larger

ai∗ j (implying “worse stability”) may lead to smaller a∗d and thus, larger rb.

Note that b∗d is affected by ai∗ j via â. Larger ai∗ j may lead to larger b∗d and thus, a

larger bound rb. This is consistent with the analysis in the previous remark. Similar

conclusions may be drawn by inspecting c∗d since it includes K4, which is affected by

ai∗ j. It is interesting to note that from Equation (4.30), smaller N means smaller rb,

while in the previous remark we mention that smaller N leads to larger ai∗ j and thus,

larger rb. These seemingly contradictive conclusions in fact make sense intuitively.

Too large N does not help in reducing rb because with each agent desiring to keep

certain distance from others, large N leads to a large swarm radius. Too small N does

not always help reducing rb because the effect of noise becomes more significant

when N is small. In other words, with smaller N, the swarm cannot “average” out the

noise and thus, the bound on the trajectories is not reduced. This “noise-averaging”

idea will become more clear in the following sections, when we deal with identical

agents, and later in simulations.

The value of Rb is also affected by r∗. Note that r∗ is determined by ci
1 and ci

2

for all i. Specifically, smaller ci
2 and larger ci

1 are helpful in decreasing r∗. Then

from Equations (4.23) and (4.24), we can see that all the noise bounds (Di
p1

, Di
v1

,

Di
p2

, Di
v2

, and Di
f ) affect r∗. Smaller noise bounds help decrease r∗ and thus, may

decrease Rb. So do smaller ki
f , ki

r and ri
s.

Finally, similar to Theorem 11, lots of conservativeness is introduced into the

deduction of Corollary 2. One example is that K1, K2, K4, and thus, b∗d and c∗d , are

actually functions of NO. When NO increases, b∗d and c∗d will generally decrease.

This fact is not considered in the above deduction because of the complexity that

originated in the use of both heterogeneous swarm agents and multiple resource

profiles in the environment.
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4.2.3 Special Case: Identical Agents

Here, we will study the stability of the system when all the agents are identical (i.e.,

with ki
p = kp, ki

v = kv, ki
r = kr, ri

s = rs, and ki
f = k f , for all i), but with different types

of noise and nutrient profiles. Equation (4.4) becomes

ui = −Mikpêi
p −Mikvêi

v −Mikvi +

Mikr

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

rs
2

⎞

⎟
⎠

(
êi

p − ê j
p

)
−Mik f

(
ai
σ−di

f

)
(4.32)

Also Ai = A in Equation (4.12) for all i. Note that with all agents being identical, we

have ∆ki
p = 0 and ∆ki

v = 0 for all i. Also,

1

N

N

∑
l=1

kr

N

∑
j=1, j �=l

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êl

p − ê
j
p

∥
∥
∥

2

rl
s
2

⎞

⎟
⎠

(

êl
p − ê j

p

)

= 0

Letting d̄p = 1
N ∑N

i=1 di
p, d̄v = 1

N ∑N
i=1 di

v, d̄ f = 1
N ∑N

i=1 di
f , and āσ = 1

N ∑N
i=1 ai

σ. Then,

Equation (4.7) can be simplified to

˙̄v = −kv̄+ kpd̄p + kvd̄v + k f d̄ f − k f āσ
︸ ︷︷ ︸

z(t)

(4.33)

and

ėi
v = −kpei

p − (kv + k)ei
v + gi +φ(E)+ δi(E) (4.34)

where gi, φ(E), and δi(E) are respectively

gi = kpdi
p + kvdi

v + k f d
i
f − k f a

i
σ (4.35)

φ(E) = −kpd̄p − kvd̄v − k f d̄ f + k f āσ (4.36)

δi(E) = kr

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

rs
2

⎞

⎟
⎠

(
êi

p − ê j
p

)
(4.37)

Using the idea of deriving Equation (4.19) we have

∥
∥δi(E)

∥
∥≤ krrs(N −1)exp

(

−1

2

)

(4.38)

Noise with Constant Bounds

In this case, we assume that di
p(t) and di

v(t) are sufficiently smooth and bounded by

some constants for all i,
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‖di
p‖ ≤ Dp

‖di
v‖ ≤ Dv (4.39)

where Dp ≥ 0 and Dv ≥ 0 are known constants. The sensing error on the gradient

of the nutrient profile is assumed to be sufficiently smooth and bounded by a known

constant D f ≥ 0 such that for all i,

‖di
f‖ ≤ D f (4.40)

Theorem 12. Consider the swarm described by the model in Equation (4.3) with

control input ui given as in Equation (4.32). Assume that the nutrient profile for

each agent is a plane defined by ∇σi
p(x) = ai

σ. Also assume the noise satisfies Equa-

tions (4.39) and (4.40). Let ‖a∗σ‖ = maxi

∥
∥ai

σ− āσ
∥
∥. Then, the trajectories of the

swarm error system are uniformly ultimately bounded, and E i for all i will converge

to the set Ωb, where

Ωb =
{

E :
∥
∥E i
∥
∥≤ β1β2, i = 1,2, . . . ,N

}
(4.41)

is attractive and compact, with

β1 =
(kp + 1)2 +(kv + k)2

2kp(kv + k)
+

√
√
√
√

(
k2

p +(kv + k)2 −1

2kp(kv + k)

)2

+
1

k2
p

and

β2 = 2kpDp + 2kvDv + 2k f D f + k f‖a∗σ‖+ krrs(N −1)exp

(

−1

2

)

Moreover, there exists some finite T and constant 0 < θ< 1 such that

‖v̄(t)‖ ≤ exp [−(1−θ)kt]‖v̄(0)‖ , ∀ 0 ≤ t < T

and

‖v̄(t)‖ ≤ δ

kθ
, ∀ t ≥ T

with δ= kpDp + kvDv + k f D f + k f‖āσ‖.

Proof: To find the set Ωb note that by following the deduction in Theorem 11, we

obtain an equation similar to (4.20), where c1, c2 and ai j have the same form as in

Equation (4.23), (4.24) and (4.25), except that now Di
p1

= Di
v1

= 0 since the noise

has a constant bound, the norm of ∆i in Equation (4.19) is simplified to ‖δi(E)‖ in

(4.38), and the term of

√

∆k
j
p

2
+∆k

j
v

2
in ai j is zero. So after simplification, we have

ai j = 0, c1 = 1, and

c2 = β1

(

2kpDp + 2kvDv + 2k f D f + k f ‖a∗σ‖+ krrs(N −1)exp

(

−1

2

))

= β1β2
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where Dp, Dv, D f and β1 are the counterparts of Di
p2

, Di
v2

, Di
f and βi

1 in Equa-

tion (4.24), respectively. From (4.20), we have

V̇ (E) ≤
N

∑
i=1

(
−‖E i‖2 +β1β2‖E i‖

)

and the uniform ultimate boundedness is specified in the discussion just after Theo-

rem 11. Moreover, if
∥
∥E i
∥
∥> β1β2 (4.42)

for all i, we have V̇ (E) < 0. So the set

Ωb =
{

E :
∥
∥E i
∥
∥≤ β1β2, i = 1,2, . . . ,N

}

is attractive and compact. Also we know that within a finite amount of time, E i →
Ωb. This means that we can guarantee that if the swarm is not cohesive, it will seek

to be cohesive, but only if it is a certain distance from cohesiveness as indicated by

(4.42).

To study the boundedness of v̄(t), choose a Lyapunov function

Vv̄ =
1

2
v̄⊤v̄

defined on D = {v̄ ∈ R
n | ‖v̄‖ < rv} for some rv > 0, and we have

V̇v̄ = v̄⊤ ˙̄v = −kv̄⊤v̄ + v̄⊤z(t)

with z(t) defined in Equation (4.33). Since

∥
∥
∥d

j
p

∥
∥
∥ ≤ Dp for all j, we have

∥
∥d̄p

∥
∥ =

∥
∥
∥

1
N ∑N

j=1 d
j
p

∥
∥
∥≤ Dp. Similarly,

∥
∥d̄v

∥
∥≤ Dv and

∥
∥d̄ f

∥
∥≤ D f . Thus, we have

‖z(t)‖ ≤
∥
∥kpd̄p

∥
∥+
∥
∥kpd̄v

∥
∥+
∥
∥k f d̄ f

∥
∥+
∥
∥k f āσ

∥
∥≤ δ

If δ < kθrv for all t ≥ 0, all v̄ ∈ D and some positive constant θ < 1, then it can be

proven that for all ‖v̄(0)‖ < rv and some finite T we have

‖v̄(t)‖ ≤ exp [−(1−θ)kt]‖v̄(0)‖ , ∀ 0 ≤ t < T

and

‖v̄(t)‖ ≤ δ

kθ
, ∀ t ≥ T

Since this holds globally we can take rv → ∞ so these equations hold for all v̄(0).
This completes the proof.

The size of Ωb in Equation (4.41), which we denote by |Ωb|, is directly a function

of several known parameters. If there are no sensing errors, i.e., Dp = Dv = D f = 0,

then Ωb reduces to the set representing the no-noise case. For fixed values of N, kp,

kv, k, and kr, if we increase rs, each agent has a larger region from which it will repel

its neighbors so |Ωb| is larger. For fixed kr, kp, kv, k, and rs if we let N → ∞, then

|Ωb| → ∞ as we expect due to the repulsion.
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It is interesting to note that in some swarms N is very large and when there is no

biasing of sensing errors, we have d̄p ≈ d̄v ≈ d̄ f ≈ 0. This reduces the bound defined

by β2. Also when ‖a∗σ‖ is decreased, implying that ai
σ is closer to a

j
σ for all i and j,

then β2 is smaller. In the special case when all ai
σ are the same, we have ‖a∗σ‖ = 0

and |Ωb| is minimized with respect to resource profiles. This means when ‖a∗σ‖ is

large, the agents pursue resource profiles that are far different from each other and

the swarm is spread out, while when those profiles are equal to each other, all the

agents move along the same profile and smaller swarm size is achieved.

If δ and θ are fixed, with increasing k we get that ‖v̄(t)‖ decreases faster for

0 ≤ t < T and has smaller bound for t ≥ T . If δ gets larger with k and θ fixed,

‖v̄(t)‖ has larger bound for t ≥ T ; hence if the magnitude of the noise increases,

this increases δ and hence there can be larger magnitude changes in the ultimate

average velocity of the swarm (e.g., the average velocity could oscillate). Note that

if in Equation (4.33) z(t) ≈ 0 (e.g., due to noise that destroys the directionality of

the resource profile aσ), then the above bound may be reduced but the swarm could

be going in the wrong direction.

Regardless of the size of the bound it is interesting to note that while the noise

destroys the ability of an individual agent to follow a gradient accurately, the average

sensing errors of the group are what changes the direction of the group’s movement

relative to the direction of the gradient of σp(x). In some cases when the swarm is

large (N big), it can be that d̄p ≈ d̄v ≈ d̄ f ≈ 0 since the average sensing error is zero

and the group will perfectly follow the proper direction for foraging (this may be

a reason why for some organisms, large group size is favorable). In the case when

N = 1 (i.e., single agent), there is no opportunity for a cancellation of the sensor

errors; hence an individual may not be able to climb a noisy gradient as easily as a

group.

Finally, note that there is an intimate relationship between sensor noise and obser-

vations of biological swarms that there is a type of “inertia” of a swarm. Note that

for large swarms (high N) there can be regions where the average sensor noise is

small so that agents in that region move in the right direction. In other regions there

may be alignments of the errors and hence the agents may not be all moving in the

right direction so they may get close to each other and impede each other’s motion,

having the effect of slowing down the whole group. With no noise, the group inertia

effect is not found since each agent is moving in the right direction. The presence

of sensor noise generally can make it more difficult to get the group moving in the

proper direction. Large swarms can help move the group in the right direction, but

at the expense of possibly slowing their movement initially in a transient period.

Constant Errors

In this case, we assume each agent senses the velocity and position of other members

and the nutrient profile with some constant errors.

Theorem 13. Consider the swarm described by the model in Equation (4.3) with

control input ui given as in Equation (4.32). Assume that the nutrient profile for
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each agent is a plane defined by ∇σi
p(x) = ai

σ. Also assume the noise di
p, di

v, and

di
f are time-invariant for each agent so that d̄p = 1

N ∑N
i=1 di

p, d̄v = 1
N ∑N

i=1 di
v, d̄ f =

1
N ∑N

i=1 di
f , and āσ = 1

N ∑N
i=1 ai

σ are constants. Then, the error dynamics of the swarm

system are uniformly ultimately bounded and E i, i = 1, . . . ,N, will converge to the

attractive and compact set Ωt defined by

Ωt =
{

E :
∥
∥E i
∥
∥≤ αiβ1, i = 1, . . . ,N

}
(4.43)

where β1 is defined in Theorem 12 and

αi =
∥
∥kp

(
di

p − d̄p

)
+ kv

(
di

v − d̄v

)
+ k f

(
di

f − d̄ f

)
− k f

(
ai
σ− āσ

)∥
∥+

krrs(N −1)exp

(

−1

2

)

Moreover, ei
v → 0 and

vi(t) →
kpd̄p + kvd̄v + k f d̄ f − k f āσ

k
(4.44)

for all i as t → ∞.

Proof: From Equations (4.18) and (4.34) we have

V̇i = −E i⊤QiE
i + 2E i⊤PiB

(
gi +φ(E)+ δi(E)

)

≤ −λmin(Qi)
∥
∥E i
∥
∥

2
+ 2
∥
∥E i
∥
∥λmax(Pi)

∥
∥kp

(
di

p − d̄p

)
+ kv

(
di

v − d̄v

)
+

k f

(
di

f − d̄ f

)
− k f

(
ai
σ− āσ

)∥
∥+ 2

∥
∥E i
∥
∥λmax(Pi)krrs(N −1)exp

(

−1

2

)

= −λmin(Qi)
∥
∥E i
∥
∥

2
+ 2
∥
∥E i
∥
∥λmax(Pi)α

i

= −λmin(Qi)
∥
∥E i
∥
∥

(
∥
∥E i
∥
∥−2

λmax(Pi)

λmin(Qi)
αi

)

Following the idea in Theorem 11, we have by letting Qi = I, β1 as the counterpart

of βi
1 in Theorem 11. So we have

V̇i ≤−
∥
∥E i
∥
∥
(∥
∥E i
∥
∥−αiβ1

)

That is, V̇i < 0 if
∥
∥E i
∥
∥> αiβ1. So the set

Ωt =
{

E :
∥
∥E i
∥
∥≤ αiβ1, i = 1,2, . . . ,N

}

is attractive and compact. Also we know that within a finite amount of time,

E i → Ωt .

Next, to find the ultimate velocity of each agent in the swarm, we consider Ωt

and a Lyapunov function V o(E) = ∑N
i=1 V o

i

(
E i
)

with
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V o
i

(
E i
)

=
1

2
kp

(

ei
p −

γ

kp

)⊤(

ei
p −

γ

kp

)

+
1

2
ei

v

⊤
ei

v +

krr
2
s

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

r2
s

⎞

⎟
⎠ (4.45)

where the constant γ = kp

(
di

p − d̄p

)
+ kv

(
di

v − d̄v

)
+ k f

(

di
f − d̄ f

)

− k f

(
ai
σ− āσ

)
.

Note that this Lyapunov function is not positive definite, but V o
i (E i) > 0. Here, we

think of the swarm moving so as to minimize V o(E) with the ith agent trying to

minimize V o
i (E i). Agents try to place themselves at positions to reduce the first

term in Equation (4.45), achieve a velocity to reduce the second term, and move to

a distance from each other to minimize repulsion quantified in the last term. There

is a resulting type of balance that is sought between the conflicting objectives that

each of the three terms represent.

Now we have

∇ei
p
V o

i = kpei
p − γ− kr

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

r2
s

⎞

⎟
⎠

(
êi

p − ê j
p

)

∇ei
v
V o

i = ei
v

so from this and Equation (4.34)

V̇ o
i =

[

∇ei
p
V o

i
⊤,∇ei

v
V o

i
⊤
]

Ėi

= kpei
p

⊤
ei

v − γ⊤ei
v − kr

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

r2
s

⎞

⎟
⎠

(
êi

p − ê j
p

)⊤
ei

v +

ei
v

⊤
(

−kpei
p − kvei

v − kei
v + kp

(
di

p − d̄p

)
+ kv

(
di

v − d̄v

)
+ k f

(
di

f − d̄ f

)
−

k f

(
ai
σ− āσ

)
+ kr

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

r2
s

⎞

⎟
⎠

(
êi

p − ê j
p

)

⎞

⎟
⎠

= −(kv + k)ei
v

⊤
ei

v

Hence, V̇ o = −(kv + k)∑N
i=1 ‖ei

v‖2 ≤ 0 on E ∈ Ω for any compact set Ω. Choose Ω
so it is positively invariant, which is clearly possible, and so Ωe ∈Ω where

Ωe = {E : V̇ o(E) = 0} = {E : ei
v = 0, i = 1,2, . . . ,N}

From LaSalle’s Invariance Principle we know that if E(0) ∈ Ω then E(t) will con-

verge to the largest invariant subset of Ωe. Hence ei
v(t) → 0 as t → ∞. From Equa-

tion (4.33), we have
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v̄(t) → kpd̄p + kvd̄v + k f d̄ f − k f āσ

k

as t → ∞ since in this case z(t) is a constant with respect to time. Thus, vi(t) ap-

proaches this value also for all i as t → ∞. This completes the proof.

From (4.44) we see that all agents will ultimately be moving at the same velocity

despite the existence of constant errors. Contrast this with the earlier more general

cases where it is possible that v̄ and vi ultimately, for example, oscillate. Next, note

that even if ai
σ = a

j
σ for all i and j, the presence of d̄p, d̄v, and d̄ f represent the

effects of sensor errors and they can result in the swarm not properly following the

direction of the profile even when they all intend to go in the same direction. In the

case when we have d̄p ≈ d̄v ≈ d̄ f ≈ 0 with N large enough, then all those agents

will be following the “averaged” profile − k f

k
āσ. That is, due to the desire to stay

together, they each sacrifice following their own profile and compromise to follow

the averaged profile. In the special case when āσ = 0 or ai
σ = 0 for all i (no resource

profile effect), and no sensor errors, both v̄(t) and vi(t) will go to zero as t → ∞,

representing the aggregation of the group independent of the environment. The size

of Ωt in Equation (4.43), which we denote by |Ωt |, is directly a function of several

known parameters. All the remarks for the previous case, i.e., noise with constant

bounds, apply here.

4.3 Stability Analysis of Swarm Trajectory Following

In this section, we briefly analyze the stability of the swarm error system when each

agent is trying to track their respective trajectories. This is done by applying the

same approach as in Section 4.2 to a slightly reformulated system model. Specifi-

cally, redefine the errors as

ei
p = xi − xi

d

ei
v = vi − vi

d

where xi
d is a sufficiently smooth desired position trajectory for agent i, i = 1, . . . ,N,

and vi
d = ẋi

d . We assume that there exist known bounds for ẋi
d and v̇i

d such that

∥
∥ẋi

d

∥
∥≤ Dxi

d
∥
∥v̇i

d

∥
∥≤ Dvi

d

where Dxi
d

and Dvi
d

are known positive constants. Assume the nutrient profile for

each agent is a plane defined by ∇σi
p(x) = ai

σ. Also let ėi
p, ėi

v, êi
p, êi

v, ui, and E i

be defined in the same form as in Section 4.2.1. Then the error dynamics of the ith

agent are

Ė i =

[
0 I

−ki
pI −

(
ki

v + k
)

I

]

E i +

[
0

I

]
(
gi + δi(E)

)
(4.46)
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where

gi = ki
pdi

p + ki
vdi

v + ki
f d

i
f − ki

f a
i
σ (4.47)

δi(E) = ki
r

N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

ri
s
2

⎞

⎟
⎠

(
êi

p − ê j
p

)
− kvi

d − v̇i
d (4.48)

Let di
f (t), di

p(t), and di
v(t) be specified in the same way as in Section 4.2.2. Then we

have the following theorem.

Theorem 14. Consider the swarm described by the model in Equation (4.3) with

control input ui given in Equation (4.4). Let βi
1 be defined in Theorem 11. If for all i

we have

ki
pDi

p1
+ ki

vDi
v1

<
1

βi
1

(4.49)

then the trajectories of the error system, specified by Equation (4.46), are uniformly

ultimately bounded. Furthermore, E i for all i will converge to an attractive and

compact set Ω f defined as

Ω f =

{

E :
∥
∥E i
∥
∥≤ c̃i

2

c̃i
1

, i = 1, . . . ,N

}

(4.50)

where

c̃i
1 = 1−βi

1

(
ki

pDi
p1

+ ki
vDi

v1

)
(4.51)

c̃i
2 = βi

1

(

ki
pDi

p2
+ ki

vDi
v2

+ ki
f Di

f + ki
f

∥
∥ai

σ

∥
∥+ kDxi

d
+ Dvi

d
+ δ̂i
)

(4.52)

with δ̂i = ki
rri

s(N −1)exp
(
− 1

2

)
. Moreover, if we have for any i and j

∥
∥
∥xi

d − x
j
d

∥
∥
∥≤ Dx (4.53)

where Dx is a known constant, then the swarm will stay cohesive and

‖xi − x̄‖ ≤ c̃i
2

c̃i
1

+
1

N

N

∑
j=1

c̃
j
2

c̃
j
1

+ Dx (4.54)

for all i.

Proof: Note that gi and δi(E), defined in Equation (4.47) and (4.48), are bounded

by ki
pDi

p2
+ki

vDi
v2

+ki
f Di

f +ki
f

∥
∥ai

σ

∥
∥ and kDxi

d
+Dvi

d
+ δ̂i, respectively. By following

exactly the same method in the proof of Theorem 11, we obtain

V̇ (E) ≤
N

∑
i=1

(

−c̃i
1

∥
∥E i
∥
∥

2
+ c̃i

2

∥
∥E i
∥
∥

)

(4.55)
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where V (E) is the Lyapunov function defined for the whole error system, as speci-

fied in the proof of Theorem 11. Then the uniform ultimate boundedness of the error

system and the set Ω f are easily obtained via Equation (4.55).

When Equation (4.53) is satisfied, we can show that the cohesiveness of the

swarm is conserved. To see this, note that for arbitrary i and j with i �= j,

∥
∥xi − x j

∥
∥=
∥
∥
∥

(
ei

p + xi
d

)
−
(

e j
p + x

j

d

)∥
∥
∥≤
∥
∥ei

p − e j
p

∥
∥+
∥
∥
∥xi

d − x
j

d

∥
∥
∥≤
∥
∥E i
∥
∥+
∥
∥E j
∥
∥+Dx

(4.56)

so from Equation (4.50) and (4.56) we have

‖xi − x̄‖ =
1

N

∥
∥
∥
∥
∥

N

∑
j=1

(xi − x j)

∥
∥
∥
∥
∥
≤ 1

N

N

∑
j=1

∥
∥xi − x j

∥
∥≤ c̃i

2

c̃i
1

+
1

N

N

∑
j=1

c̃
j
2

c̃
j
1

+ Dx

This is Equation (4.54). This completes the proof.

Comparing Equation (4.20) with (4.55), we can see that the latter one does not in-

clude any cross term. This is because the errors for the swarm cohesion case are

defined as the difference between an agent and the swarm centers (x̄ and v̄), which

are affected by all the agents in the swarm, while the errors for the trajectory fol-

lowing case are defined as the difference between an agent and the given position

and velocity trajectories, which are not affected by the behaviors of any agent. This

absence of a cross term significantly simplifies the proof of the theorem.

By comparing Theorems 11 and 14, we can see that Theorem 14 will hold when-

ever Theorem 11 holds, as long as Dxi
d

and Dvi
d

exist. This means that a cohesion

property of a swarm in a certain environment guarantees the stability of that swarm

in following any bounded trajectory in the same environment. Similar to the case

of Theorem 11, when Equation (4.49) holds, uniform ultimate boundedness is ob-

tained. This condition only depends on ki
p, ki

v, Dp1
, and Dv1

. Although the remaining

parameters, including ki
r, ri

s, ki
f , Dp2

, Dv2
, D f , and ai

σ, do not affect the bounded-

ness of the error system, they do affect the ultimate bound. In the special case when

Di
p1

= Di
v1

= 0 for all i, Equation (4.49) always holds and thus, the swarm error

system is always bounded. Smaller
∥
∥ai

σ

∥
∥ may decrease the bound. Smaller magni-

tudes of the position and velocity trajectories also help in decreasing the ultimate

bound. Our analysis includes the possibility that the resource profiles indicate that

the agents should go in the opposite direction that is indicated by (xi
d , vi

d). If there

is an alignment between where the resource profiles say to go and the (xi
d , vi

d), then

the size of the bound decreases.

Finally, note that in the special case when vi
d and all sensing errors are constant,

we have that ei
v → 0 as t → ∞ for all i, meaning vi of each agent will be precisely

following the given constant velocity trajectory ultimately in such a case. To see

this, let γi = ki
pdi

p + ki
vdi

v − kvi
d + ki

f di
f − ki

f ai
σ and construct for all i a Lyapunov

function
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V o
i

(
E i
)

=
1

2
ki

p

(

ei
p −

γi

ki
p

)⊤(

ei
p −

γi

ki
p

)

+
1

2
ei

v

⊤
ei

v +

ki
rri

s

2
N

∑
j=1, j �=i

exp

⎛

⎜
⎝

− 1
2

∥
∥
∥êi

p − ê
j
p

∥
∥
∥

2

r2
s

⎞

⎟
⎠ (4.57)

Note that v̇i
d = 0 when vi

d is constant. Then by following the method in the proof of

Theorem 13, the above claim holds.

4.4 Simulation Examples

In this section, we will show some simulation results for both the no-noise and

noise cases. Unless otherwise stated, in all the following simulations the parameters,

which we refer to as “normal parameters,” are: N = 50, ki
p = kp = 1, ki

v = kv = 1,

k = 0.1, ki
f = k f = 0.1, ki

r = kr = 10, ri
s = rs = 0.1, and the three dimensional nutrient

plane profile ∇σi
p(x) = ai

σ = [1, 2, 3]⊤ for all i.

4.4.1 No-Noise Case

All the simulations in this case are run for 20 seconds. The position and veloc-

ity trajectories of the swarm agents with the normal parameters are shown in Fig-

ure 4.2. All the agents are assigned initial velocities and positions randomly. At

the beginning of the simulation, they appear to move around erratically. But soon,

they swarm together and continuously reorient themselves as a group to slide down

the plane profile. Note how these agents gradually catch up with each other while

still keeping mutual spacing. Recalling from the previous sections that for this case

vi(t) →− k f

k
aσ for all i as t → ∞, and this can be seen from Figure 4.2(b) since the

final velocity of each swarm agent is indeed −[1, 2, 3]⊤.

Next, we change the values of some of the parameters to show their impact on

the system behavior. Figures 4.3(a) and (b) show the results of keeping all normal

parameters unchanged except for increases of kr to 1000 and rs to 1, respectively.

Since both kr and rs are parameters affecting the repulsion range of each agent, as

expected we find that the final swarm size becomes larger than in the previous case,

while the swarm velocity and settling speed do not change much. Effects of other

parameters are also as expected.

4.4.2 Noise Case

Now we will consider the case when noise exists. In our simulations, the solutions

of Duffing’s equation are used as “noise” so that the noise is guaranteed to be dif-

ferentiable. Of course many other choices are possible, e.g., ones that lead to errors

on a higher or lower frequency spectrum. Duffing’s equation is in the form
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Fig. 4.2. No noise case with normal parameters.
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Fig. 4.3. No noise case with parameters changed.

ϑ̈+ δDϑ̇−ϑ+ϑ3 = γD cos(ωDt)

In the simulations we use δD = 0.25, γD = 0.30 and ωD = 1.0 so that the solution ϑ
of Duffing’s equation demonstrates chaotic behavior. We will simulate many such

equations to generate noise on position, velocity, and resource profile gradient sens-

ing. We denote by ϑi the solution to the ith Duffing’s equation that we simulate. Note

that the magnitude of ϑ is always bounded by a value of 1.5. Thus, we can easily set

the noise bounds with some scaling factors. For example, in the case of noise with

a linear bound, the position sensing noise is generated by di
p =

Dp1
ϑi

1

1.5 ‖E i‖+
Dp2

ϑi
2

1.5
so that Equation (4.13) is satisfied.

In this case, we run the simulations for 80 seconds. All the normal parameters

used in the no-noise case are kept unchanged except the number of agents in the

swarm in certain simulations, which is specified in the relevant figures. Figures 4.4

and 4.5 illustrate the case with linear noise bounds for a typical simulation run. The

noise bounds are Dp1
= Dv1

= 0.05, Dp2
= Dv2

= 1, and D f = 10, respectively.
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Forming a swarm may help the agents go down the gradient of the nutrient profile

without being significantly distracted by noise. Figure 4.4 shows that the existence

of noise does affect the swarm’s ability to follow the profile, which is indicated by

the oscillation of the position and velocity trajectories. But with all the agents work-

ing together, especially when the agents number N is large, they are able to move

in the right direction and thus, minimize the negative effects of noise. In compari-

son, Figure 4.5 shows the case when there is only one agent. Since the single agent

cannot benefit from the averaging effects possible when there are many agents, the

noise more adversely affects its performance in terms of accurately following the

nutrient profile.

−200

−150

−100

−50

0

50

−200

−150

−100

−50

0

50

−250

−200

−150

−100

−50

0

50

x

Swarm agent position trajectories

y

z

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20
Swarm velocities, x dimension

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20
Swarm velocities, y dimension

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20
Swarm velocities, z dimension

Time, sec.

(a) Agent position trajectories. (b) Agent velocity trajectories.

Fig. 4.4. Linear noise bounds case (N = 50).
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Fig. 4.5. Linear noise bounds case (N = 1).
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4.5 Further Issues

4.5.1 Extensions and Generalizations

In this chapter, we have derived conditions under which social foraging swarms con-

sisting of agents with double-integrator dynamics maintain cohesiveness and follow

a resource profile even in the presence of sensor errors and noise on the profile. We

also studied the case where all agents are identical, and special types of noise. While

we only studied the “plane profile,” extensions to profiles with other shapes are pos-

sible. Moreover, even though we only studied one type of attraction and repulsion

function the results can be extended to other classes using approaches such as the

ones in Chapter 3. Our simulations illustrated advantages of social foraging in large

groups relative to foraging alone since they show that a noisy resource profile can be

more accurately tracked by a swarm than an individual. Moreover, the simulations

produced agent trajectories that are curiously reminiscent of those seen in biology

(e.g., by some insects).

It would be interesting to determine if the model here, with appropriately chosen

parameters, is an acceptably accurate representation for some social organisms and

whether the predictions of the analysis would also accurately represent their group-

level behavior.

4.5.2 For Further Reading

This chapter is based on the results in [153]. For some key steps in our proofs

we used the theory of stability of interconnected systems and the interested reader

should see [170] for more details. The notion that animals can forage in noisy envi-

ronments more efficiently as a group than individually has been studied for some or-

ganisms [104, 151]. Additional work on gradient climbing by engineering swarms,

including work on climbing noisy gradients, is in [13, 187]. Swarms composed of

agents with double-integrator dynamics but without sensing errors have been con-

sidered in [97, 127, 128].
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Swarms of Fully Actuated Agents with Model

Uncertainty

5.1 Fully Actuated Agent Model with Uncertainty

In this chapter, we consider a swarm of N agents whose dynamics evolve based

on a more realistic agent dynamics model compared to the single integrator and

the double integrator point mass models considered in the preceding chapters. In

particular, we assume that the dynamics of the agents obey the fully actuated model

Mi(xi)ẍi + fi(xi, ẋi) = ui,1 ≤ i ≤ N (5.1)

where xi represents the position or configuration of agent i, Mi(xi)∈R
n×n is its mass

or inertia matrix, fi(xi, ẋi) ∈ R
n represents the centripetal, Coriolis, gravitational

effects, and additive disturbances. It is a realistic model for fully actuated omni-

directional mobile robots or for some fully actuated robotic manipulators [35, 111,

261]. What makes the model even more realistic is that it is assumed that (5.1)

contains uncertainties and disturbances. In particular, it is assumed that

fi(xi, ẋi) = f k
i (xi, ẋi)+ f u

i (xi, ẋi),1 ≤ i ≤ N

where f k
i (·, ·) represents the known part and f u

i (·, ·) represents the unknown part.

The unknown part is assumed to be bounded with a known bound, i.e.,

‖ f u
i (xi, ẋi)‖ ≤ f̄i(xi, ẋi),1 ≤ i ≤ N

where f̄i(xi, ẋi) are known for all i. Moreover, besides the additive disturbances and

uncertainties, it is assumed that for all i the mass/inertia matrix is unknown but is

nonsingular and lower and upper bounded by known bounds. In other words, the

matrices Mi(xi) satisfy

Mi‖y‖2 ≤ y⊤Mi(xi)y ≤ M̄i‖y‖2,1 ≤ i ≤ N (5.2)

where y ∈ R
n is arbitrary and Mi and M̄i are known and satisfy 0 < Mi < M̄i < ∞.

These uncertainties provide an opportunity for developing algorithms that are robust

with respect to the above types of realistic uncertainties and disturbances.
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Our objective is, given the agent dynamics in (5.1) together with all the stated

assumptions, to develop appropriate controllers such that a desired behavior is

achieved by the swarm. In other words, we would like to design each of the control

inputs ui so that the swarm coordination and control objectives, such as aggregation,

foraging, formation control, swarm tracking, etc., are achieved. We will use sliding

mode control techniques for that purpose.

5.2 Controller Development

5.2.1 Aggregation, Foraging, and Formation Control

We know from Chapter 3 that if the agents are forced to move based on the equation

(see Equations (3.1) and (3.2))

ẋi = −∇xi
J(x) (5.3)

where x⊤ = [x⊤1 ,x⊤2 , ...,x⊤N ]∈R
Nn denotes the vector of concatenated positions of all

the agents and J : R
Nn → R is an appropriately designed potential function which

represents the inter-agent interactions and/or the effects of the environment (the

resource profile) on the behavior of the agents, then the swarm will behave in a

predictable manner. In other words, if we can force the agents with the dynamics

in (5.1) to move based on (5.3) and choose the potential functions appropriately,

then the results in Chapter 3 will be recovered (meaning we will achieve stable

aggregation, foraging, formation stabilization, swarm tracking or other coordinated

behavior based on the context) for swarms composed of agents with vehicle dynam-

ics obeying (5.1). This is exactly the approach we will take in this chapter.

The sliding mode control technique has the property of reducing the motion (and

the analysis) of a system to a lower dimensional space, which makes it very suitable

for this application (since we want to enforce the system dynamics to obey (5.3),

which constitutes only a part of the agents state in (5.1)). Moreover, it is a robust

strategy which can suppress disturbances and system uncertainties. This is also an

important desirable property since the agent dynamics contain disturbances and un-

certainties.

With the objective to achieve satisfaction of (5.3) let us first define the n-

dimensional sliding manifold for agent i as

si = ẋi +∇xi
J(x) = 0, i = 1, . . . ,N (5.4)

Our objective is to drive the agents to their corresponding sliding manifolds si = 0

since once all the agents reach their corresponding sliding manifolds si = 0 we have

ẋi = −∇xi
J(x), i = 1, . . . ,N

satisfied which is exactly the motion equation in (5.3).

Given the vehicle dynamics in (5.1), the problem becomes to design the control

inputs ui such that to enforce occurrence of sliding mode. A sufficient condition for
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sliding mode to occur, referred to as the sliding condition in the literature, is given

by [53]

s⊤i ṡi < 0 (5.5)

for all i = 1, . . . ,N. This condition guarantees that sliding mode occurs and that

the sliding manifold is asymptotically reached. For our case, however, we need the

sliding mode to occur in all surfaces (i.e., for all agents) in finite time. Therefore,

actually we need to enforce satisfaction of the inequality

s⊤i ṡi < −εi‖si‖ (5.6)

for some εi > 0. The condition in (5.6) is called the reaching condition and guar-

antees that sliding mode occurs in finite time [53]. In fact using the comparison

principle [136] one can show that the condition in (5.6) guarantees that the sliding

surface si = 0 is reached in finite time bounded by

ti ≤
‖si(0)‖

εi

Then, sliding mode on all surfaces will occur in finite time bounded by

t̄sm = max
i=1,...,N

{
ti
}

= max
i=1,...,N

{‖si(0)‖
εi

}

(5.7)

In order to be able to satisfy the reaching condition we need to establish a con-

nection between the control input ui in equation (5.1) and the inequality in (5.6).

Differentiating the sliding manifold equation with respect to time we obtain

ṡi = ẍi +
d

dt

[
∇xi

J(x)
]

From the vehicle dynamics of the agents in (5.1) we have

ẍi = M−1
i (xi) [ui − fi(xi, ẋi)]

where Mi(xi) is always invertible from the assumption in (5.2). Substituting this

value in the equation of the derivative of si and evaluating the value of s⊤i ṡi one

obtains

s⊤i ṡi = s⊤i

[

M−1
i (xi)ui −M−1

i (xi) fi(xi, ẋi)+
d

dt

[
∇xi

J(x)
]
]

One issue to note here is that the potential function J(x) is not static. It depends on

the relative positions of the individuals. Therefore, uncertainties and disturbances

(including those acting on the system dynamics) as well as the agent motions can

affect the time derivative of J(x). In order to make the analysis easier we will con-

sider only a certain class of potential functions J(x). In particular, we will consider

the potential functions which satisfy the following assumption.
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Assumption 5. The potential function J(x) satisfies

‖∇xi
J(x)‖ ≤ α(x)

for all xi and
∥
∥∇x j

[∇xi
J(x)]

∥
∥≤ β(x)

for all xi and x j, where α(x) and β(x) are known and finite and ‖ · ‖ denotes the

Euclidean norm (the vector and the induced matrix norms, respectively).

The above assumption is in a sense a smoothness assumption since it requires

bounds on the “first” and the “second” derivatives of J(x). It is satisfied by many

potential functions and certainly by most of the potential functions considered in

Chapter 3 (excluding possibly only the potential functions with unbounded repul-

sion). For some J(x) it is even possible to find constants ᾱ and β̄ such that α(x) ≤ ᾱ
and β(x) ≤ β̄ for the range of operating conditions. Later we will show an example

of such a function.

Initially it may seem as if Assumption 5 is a restrictive assumption since α(x)
and β(x) must be known. However, note that in order to implement the potential

functions based approach one already has to know the potential function J(x) and

once it is known finding α(x) and β(x) is straightforward. Therefore, Assumption 5

is not a significant restriction. Moreover, the potential functions representing the

inter-individual interactions are usually chosen by the system designer and there-

fore satisfaction of Assumption 5 can be guaranteed a priori. In the case of social

foraging, on the other hand, the external resource profile contributes to the poten-

tial function J(x). However, this does not bring extra restrictions since any realistic

environmental profile has bounded gradients.

Below, we have one more reasonable assumption which states that all the agents

are initially at rest.

Assumption 6. At time t = 0 we have ẋi(0) = 0 for all i = 1, . . . ,N.

Using Assumptions 5 and 6 one can establish a bound on
∥
∥ d

dt
[∇xi

J(x)]
∥
∥ as

∥
∥
∥
∥

d

dt
[∇xi

J(x)]

∥
∥
∥
∥

=

∥
∥
∥
∥
∥

[
N

∑
j=1

∇x j
[∇xi

J(x)]

]

ẋ j

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

[
N

∑
j=1

∇x j
[∇xi

J(x)]

]

[
s j −∇x j

J(x)
]

∥
∥
∥
∥
∥

≤ Nβ(x) [α(x(0))+α(x)] � J̄i(x), (5.8)

where the last inequality was established using

‖s j(t)‖ ≤ ‖s j(0)‖ = ‖∇x j
J(x(0))‖ ≤ α(x(0)). (5.9)

The second inequality in this equation follows from Assumption 5, whereas the

equality in the middle follows from Assumption 6. For now, assume that the first

inequality holds; below we will show that it really does hold.
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Given the bound in (5.8) we can choose ui such that s⊤i ṡi < −εi‖si‖ hold for all i

and for all t ≥ 0. In particular, by choosing

ui = −Ki(x)sign(si)+ f k
i (xi, ẋi), (5.10)

where the sign function is operated elementwise on si as sign(si) = [sign(si1),
. . . ,sign(sin)]

⊤, we obtain

s⊤i ṡi < −‖si‖
[

1

M̄i

Ki(x)−
1

Mi

f̄i(xi, ẋi)− J̄i(x)

]

Then, by choosing the gain Ki(x) of the control input as

Ki(x) > M̄i

(
1

Mi

f̄i(xi, ẋi)+ J̄i(x)+ εi

)

(5.11)

for some εi > 0, one can guarantee that the reaching condition in equation (5.6) is

satisfied and that sliding mode occurs in finite time. This equation also guarantees

that the first inequality in (5.9) and therefore the bound in (5.8) hold for all t ≥ 0.

The above discussion constitutes a constructive proof of a result which can be

formally summarized as follows.

Theorem 15. Consider a system of N agents with vehicle dynamics given by (5.1).

Assume that the artificial potential function J(x) satisfies Assumption 5 and that

Assumption 6 holds. Let the controllers for the agents are given by (5.10) with gains

as in (5.11). Then, sliding mode occurs in all the surfaces si and (5.3) is satisfied in

a finite time bounded by the bound in (5.7).

In the controller in (5.10), in addition to the switching sliding mode term, the known

part f k
i (xi, ẋi) of the vehicle dynamics was also utilized. If there are not known parts,

then this portion of the controller can be set to zero. It is good to also emphasize

that the exact value of the mass/inertia matrix Mi(xi) of the robot is not needed

for implementation of the controller in (5.10)-(5.11) and, similar to the case with

additive disturbances, its lower and upper bounds are sufficient.

5.2.2 Swarm Tracking

The swarm tracking problem is different from the aggregation, foraging, and forma-

tion control problems in the sense that instead of motion dynamics of the form (5.3),

we require the agents to move based on

ẋi = −η∇xi
J(x,xt)−λsign(∇xi

J(x,xt)) (5.12)

where η > 0 and λ > 0 are positive constants (see Equation (3.39)1 in Chapter 3).

Therefore, the n-dimensional sliding manifold for agent i is defined as

si = ẋi +η∇xi
J(x)+λsign(∇xi

J(x,xt)) = 0, i = 1, . . . ,N (5.13)

1 We slightly changed notation here in order not to confuse with the bounds in Assumption 5.
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in order to achieve the motion dynamics in (5.12). This results in

s⊤i ṡi = s⊤i

[

M−1
i (xi)ui −M−1

i (xi) fi(xi, ẋi)+η
d

dt

[
∇xi

J(x,xt)
]

+λ
d

dt

[
sign(∇xi

J(x,xt))
]
]

(5.14)

However, the term d
dt

[
sign(∇xi

J(x,xt))
]

is unbounded at the instants at which the

gradient ∇xi
J(x,xt) switches sign. Therefore, the sliding mode control procedure

discussed above is not directly applicable. To avoid this problem we introduce the

low pass filters

µżi = −zi +λsign(∇xi
J(x,xt)) (5.15)

where µ is a small positive constant. With proper choice of the parameter µ one has

zi
∼= [λsign(∇xi

J(x,xt))]eq (5.16)

where the subscript eq denotes the equivalent (effective or average) value of the

discontinuous signal. Therefore, although λsign(∇xi
J(x,xt)) is not differentiable, its

approximation zi is differentiable and can be used in the definition of the sliding

manifold.

Using this, the new sliding manifold definition for the swarm tracking case be-

comes

si = ẋi +η∇xi
J(x)+ zi = 0, i = 1, . . . ,N (5.17)

which results in

s⊤i ṡi = s⊤i

[

M−1
i (xi)ui −M−1

i (xi) fi(xi, ẋi)+η
d

dt

[
∇xi

J(x,xt)
]
+ żi

]

Moreover, noting that

∥
∥
∥
∥

∂

∂t
[λsign(∇xi

J(x,xt))]eq

∥
∥
∥
∥

= ‖ż‖ ≤ 2λ

µ
� Jz (5.18)

by choosing the control input as in equation (5.10) with gain Ki(x) satisfying

Ki(x) > M̄i

(
1

Mi

f̄i(xi, ẋi)+ηJ̄i(x)+ Jz + εi

)

(5.19)

it is guaranteed that in finite time all the agents i = 1, ...,N, will start moving based

on the motion equations

ẋi = −η∇xi
J(x,xt)− zi

∼= −η∇xi
J(x,xt)− [λsign(∇xi

J(x,xt))]eq (5.20)

and the results on swarm tracking case obtained for swarms of single integrator

agents in Chapter 3 will be recovered for swarms of agents with fully actuated dy-

namics as well.
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The model for the motion dynamics of the agents in (5.1) is more general than

the single integrator model considered in Chapter 3 and the double integrator model

considered in Chapter 4. Moreover, it allows for possible system uncertainties and

additive disturbances. Despite all these, due to the robustness properties of the slid-

ing mode control algorithm, satisfaction of Equations (5.3) or (5.20) in finite time

is guaranteed. This fact, on the other hand, implies that, provided that the stated as-

sumptions are satisfied, the results derived for the single integrator model in Chap-

ter 3 are recovered also for the swarms composed of agents with dynamics given

in (5.1) as well.

We would like to emphasize here that besides providing important conclusions

about swarms composed of agents with single integrator dynamics, the results in

Chapter 3 serve also as proof of concept for swarm behavior and can be reproduced

for a swarm composed of agents with other vehicle dynamics (as we do in this chap-

ter). In other words, in engineering swarm applications with agents with particular

motion dynamics one can use the results in Chapter 3 and develop corresponding

control algorithms taking into account the agent dynamics to achieve the required

swarming behavior. The control algorithm based on sliding mode control theory dis-

cussed in this section is one such method that could be applied if the agent dynamics

are described by (5.1).

The design of the sliding mode surface considered here is similar to conventional

sliding mode control problems. However, there is also small difference. In classical

sliding mode control problems, the surface s = 0 is chosen such that on it the track-

ing error asymptotically decays to zero. Here, the surfaces si = 0 are chosen so that

the system motion equation obeys certain dynamics. Even though ẋi can be viewed

as the output of the system and si as the output error and it can be argued that at

si = 0 the output error becomes zero, there is still a difference since here the si = 0

surfaces are not constant surfaces and they can dynamically vary as the agents move.

Theorem 15 suggests that the results on swarm stability described in Chapter 3

for swarms composed of agents with single integrator dynamics will be recovered

for swarms composed of agents obeying the dynamics in (5.1). However, in real ap-

plications usually it is not possible to achieve an ideal sliding mode due to actuator

non-idealities, numerical errors, and the system uncertainties (unmodeled dynamics

and disturbances) which may lead to the so called chattering phenomena. There-

fore, in practical implementations it may not be possible to ideally recover all the

stability results that could be obtained for the single integrator model. For example,

the statement that x̄ is stationary for all time, although in theory should hold after

sliding mode occurs on all surfaces, may not necessarily hold in practice due to chat-

tering affects and there may be small deviations of the center. Nevertheless, even in

practical implementations despite the non-idealities (including the disturbances and

unmodeled dynamics) the qualitative results about the overall swarm behavior (such

as swarm cohesiveness, bounds on the swarm size, finite time convergence, etc.) will

be recovered with only small perturbations.

In the sections below we will revisit the swarm control problems considered in

Chapter 3, will show that Assumption 5 is satisfied, will derive the corresponding

bounds and controller gains, and present simulation results.
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5.3 Potential Functions and Bounds

5.3.1 Aggregation

In order to achieve aggregation we will use potential functions of the form consid-

ered in Chapter 3. In particular, we will consider potential functions in the form (3.3)

and satisfying all the assumptions stated in Section 3.2. An example potential func-

tion which was used in Chapter 3 is the function in equation (3.6) which is given by

J(x) = Jaggregation(x) =
N−1

∑
i=1

N

∑
j=i+1

[
a

2
‖xi − x j‖2 +

bc

2
exp

(

−‖xi − x j‖2

c

)]

(5.21)

Here we will use the same function in order to be consistent with the results in

Chapter 3. The negative gradient of this potential at xi is given by

−∇xi
J(x) =

N

∑
j=1, j �=i

g(xi − x j) = −
N

∑
j=1, j �=i

(xi − x j)

[

a−bexp

(

−‖xi − x j‖2

c

)]

where g(xi − x j) is the attraction/repulsion function in equation (3.7).

Note that this potential function also satisfies Assumption 5 and the bounds α(x)
and β(x) can be derived as shown below. Considering the norm of the gradient

‖∇xi
J(x)‖ we have

‖∇xi
J(x)‖ ≤ a

N

∑
j=1, j �=i

‖xi − x j‖+ b
N

∑
j=1, j �=i

‖xi − x j‖exp

(

−‖xi − x j‖2

c

)

≤ N

[

a max
1≤ j≤N

‖xi − x j‖+ b

√
c

2
exp

(

−1

2

)]

� α(x) (5.22)

where we used the inequality ‖xi − x j‖exp
(

− ‖xi−x j‖2

c

)

≤
√

c
2

exp
(
− 1

2

)
, the proof

of which is straightforward. Similarly, considering
∥
∥∇x j

[∇xi
J(x)]

∥
∥ for j �= i we have

∥
∥∇x j

[∇xi
J(x)]

∥
∥ =

∥
∥
∥
∥
∥
∇x j

[
N

∑
k=1,k �=i

(xi − xk)

[

a−bexp

(

−‖xi − xk‖2

c

)]]
∥
∥
∥
∥
∥

≤ a + b

∥
∥
∥
∥
∇x j

[

(xi − x j)exp

(

−‖xi− x j‖2

c

)]∥
∥
∥
∥

≤ a + b

∥
∥
∥
∥

(

I +
2

c
(xi − x j)(xi − x j)

⊤
)

exp

(

−‖xi − x j‖2

c

)∥
∥
∥
∥

≤ a + b

(

1 +
2

c
‖xi − x j‖2

)

exp

(

−‖xi − x j‖2

c

)

≤ a + 2bexp

(

−1

2

)

When j = i, on the other hand, we have
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‖∇xi
[∇xi

J(x)]‖ ≤ N

[

a + 2bexp

(

−1

2

)]

� β(x) (5.23)

which also constitutes the bound β(x). Using the above values of α(x) and β(x)
one can easily calculate the bound J̄i(x) in equation (5.8) in Assumption 5. One

issue to note, however, is that the above bounds α(x) and β(x) are very conservative

and result in large J̄i(x) and the actual bounds can be much smaller. Therefore, in

implementation the procedure will probably still perform satisfactorily with much

smaller J̄i(x).
Another issue to mention here is that for the considered potential J(x) in (5.21)

we have β(x) = β̄, i.e., β(x) is independent of x. Similarly, α(x) depends only on the

relative distances ‖xi − x j‖ between the individuals. From the results in Chapter 3

and those in the preceding section we know that for J(x) in (5.21) once on the sliding

mode surface the system will be well behaved (i.e., its states will be bounded and

the position of all the agents will converge to a small hyperball around its center)

and also that the sliding mode surface will be reached in a finite time. This implies

that for any given initial position x(0) there is a constant ᾱ(x(0)) such that α(x) ≤
ᾱ(x(0)) for all t ≥ 0 implying that both of the bounds in Assumption 5 can be set as

constants for the potential function J(x) in (5.21).

5.3.2 Social Foraging

In this section we will consider the case of social foraging swarms, i.e., swarms

moving in an environment modeled as a potential field (resource profile). Once again

we consider a swarm the motion of which was determined by a potential function

of the form

J(x) = J f oraging(x) =
N

∑
i=1

σ(xi)+ Jaggregation(x)

where Jaggregation(x) is the potential in (5.21) and determines the inter-agent interac-

tions in the swarm, whereas the term σ : R
n → R represents a “resource profile” of

attractant/repellent substances (e.g., nutrients and/or toxic substances in biology) or

simply is a model of the environment. The gradient of the potential at the position

xi of agent i is given by

−∇xi
J(x) = −∇xi

σ(xi)−
N

∑
j=1, j �=i

(xi − x j)

[

a−bexp

(

−‖xi − x j‖2

c

)]

As in Chapter 3, in this model it is assumed that the regions of lower values of

σ(·) constitute more favorable regions. Then, note that the individuals try to move

to more favorable regions along the negative gradient of the profile (due to the first

term in the gradient equation), while trying to stay cohesive (due to the second term

in the gradient equation).

In order to be able to apply the sliding mode control strategy discussed in this

chapter one needs to derive the bounds α(x) and β(x) in Assumption 5 depend-

ing on the resource profile under consideration. The derivation of these bounds is

straightforward and their values for various resource profiles is as presented below.
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Plane Resource Profiles

For a plane resource profile of the form

σ(y) = a⊤σ y + bσ

the values of α(x) and β(x) in equation (5.8) in Assumption 5 are given by

α(x) = ‖aσ‖+ N

[

a max
1≤ j≤N

‖xi − x j‖+ b

√
c

2
exp

(

−1

2

)]

which is the value in equation (5.22) with only ‖aσ‖ added and the expression of

β(x) is exactly the same as in equation (5.23).

Quadratic Resource Profiles

For a quadratic resource profile of the form

σ(y) =
Aσ

2
‖y− cσ‖2 + bσ

the values of α(x) and β(x) in equation (5.8) in Assumption 5 are given by

α(x) = Aσ‖xi − cσ‖+ N

[

a max
1≤ j≤N

‖xi − x j‖+ b

√
c

2
exp

(

−1

2

)]

and

β(x) = |Aσ|+ N

[

a + 2bexp

(

−1

2

)]

which can easily be derived as was done above.

Multimodal Gaussian Resource Profiles

For a multimodal Gaussian resource profile of the form

σ(y) = −
M

∑
i=1

Aσi

2
exp

(

−‖y− cσi‖2

lσi

)

+ bσ (5.24)

the values of α(x) and β(x) can be determined as

α(x) =
M

∑
i=1

|Aσi|
√

1

2lσi

exp

(

−1

2

)

+ N

[

a max
1≤ j≤N

‖xi − x j‖+ b

√
c

2
exp

(

−1

2

)]

and the expression of β(x) is once again exactly the same as in equation (5.23).

Here we will consider only multimodal Gaussian profiles since the values of the

corresponding bounds α(x) and β(x) for a single Gaussian can easily be deduced

from the above bounds.
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5.3.3 Formation Control

In order to achieve the desired formation once more we will use the modified version

of the aggregation potential in equation (5.21) such that it has a minimum at the

desired formation. In particular, we will use the potential

J(x) = J f ormation(x) =
N−1

∑
i=1

N

∑
j=i+1

[
ai j

2
‖xi − x j‖2 +

bi jci j

2
exp

(

−‖xi− x j‖2

ci j

)]

(5.25)

where the parameters ai j,bi j, and ci j depend on the desired relative distances of the

agents or basically formation constraints in the form of

‖xi − x j‖ = di j,1 ≤ i, j ≤ N

Note that J f ormation(x) is very similar to Jaggregation(x) and the corresponding bounds

α(x) and β(x) can be expressed as

α(x) = N

[

amax max
1≤ j≤N

‖xi − x j‖+ bmax

√
cmax

2
exp

(

−1

2

)]

and

β(x) = N

[

amax + 2bmax exp

(

−1

2

)]

where amax=max1≤i, j≤N{ai j}, bmax=max1≤i, j≤N{bi j}, and cmax=max1≤i, j≤N{ci j}.

5.3.4 Swarm Tracking

The potential function for the swarm tracking problem is composed of two parts and

has the form

J(x,xt) = Wt

N

∑
i=1

1

4
‖xi − xt‖4 +Wf J f ormation(x) (5.26)

where J f ormation(x) is the formation potential in (5.25) that specifies the geometrical

shape to be acquired by the swarm around the target, whereas the first term specifies

the requirement by the agents to track the moving target and to surround/enclose it.

The negative gradient of the potential at the position xi of agent i is given by

−∇xi
J(x,xt) = −Wt‖xi − xt‖2(xi − xt)

−Wf

N

∑
j=1, j �=i

(xi − x j)

[

ai j −bi j exp

(

−‖xi − x j‖2

ci j

)]

(5.27)

Then, the bounds α(x) and β(x) can be calculated as

α(x) = Wt‖xi − xt‖3 +Wf N

[

amax max
1≤ j≤N

‖xi − x j‖+ bmax

√
cmax

2
exp

(

−1

2

)]
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and

β(x) =
Wt

3
‖xi − xt‖2 +Wf N

[

amax + 2bmax exp

(

−1

2

)]

where amax, bmax, and cmax are as defined above (for the formation control case).

The bounds α(x) and β(x) derived above are needed in order to be able to calcu-

late the value (or expression) of J̄i(x) in equation (5.8), which, on the other hand, is

needed in order to be able to calculate the gain Ki(x) in equation (5.11) of the control

input in equation (5.10). In other words, once J̄i(x) is calculated the sliding mode

controller developed in the preceding section can be implemented and the results

for the single integrator case recovered. In the following section we will provide

illustrative numerical simulation examples.

5.4 Simulation Examples

In this section we will provide simulation examples in order to illustrate the effec-

tiveness of the sliding mode control method discussed in this chapter and to gain

further insights on the dynamics of the swarm. As usual, for ease of plotting we use

only n = 2 or n = 3; however, qualitatively the results will be the same for higher

dimensions. We consider agents (robots) with point mass dynamics with unknown

mass and additive sinosoidal disturbances. In other words, we consider the model

Miẍi + fi(xi, ẋi) = ui,1 ≤ i ≤ N,

where Mi is the unknown mass which satisfies Mi ≤ Mi ≤ M̄i and the unknown

additive uncertainty or disturbance in the system is given by

fi(xi, ẋi) = f u
i (xi, ẋi) = sin(0.2t)1v

where 1v is a vector of ones in R
n (for n = 2 or n = 3). Since in principle it does

not make any difference for the simulations, here we assumed that f k
i (xi, ẋi) = 0

(there is no known part in fi(xi, ẋi)). Note that f u
i (xi, ẋi) satisfies the boundedness

assumption

‖ f u
i (xi, ẋi)‖ =

∥
∥sin(0.2t)1v

∥
∥≤

√
n � f̄i

Without loss of generality we assume unity mass Mi = 1 for all the agents. As

controller parameters in the simulations below we choose Mi = 0.5 and M̄i = 1.5,

f̄i =
√

n (for the simulations below either n = 2 or n = 3), and εi = 1. Moreover,

in order to avoid numerical problems and to speed up the simulations we approxi-

mated the signum function with a hyperbolic tangent. In other words, instead of the

sign(si) term in the controller we used tanh(γsi) with γ = 10. Besides helping with

numerical problems similar to the boundary layer approaches this smooths the con-

trol action and reduces unwanted chattering due to the discontinuity in the controller.

Figure 5.1 shows the similarity between the sign(si) and the tanh(γsi) functions and

the effect of the parameter γ. As the value of γ increases the tanh(γsi) becomes closer

to the sign(si) function. There are rigorous methods to prevent the chattering in the

system (such as using a state observer [26] or using a boundary layer); however,

they are outside of the scope of this chapter and book.
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Fig. 5.1. Signum versus hyperbolic tangent.

5.4.1 Aggregation

In the simulations on swarm aggregation we used the parameters a = 0.01, b = 20,

and c = 1 for the potential function in (5.21) and in the controller we used the

bounds J̄i(x) = 10N, which is much smaller than the bound computed using the

above α(x) and β(x). Figure 5.2(a) shows in R
3 the paths of the agents in a swarm

composed of N = 10 individuals. The initial positions of the agents were chosen

randomly and their initial velocities were set to zero (as is needed by Assumption 6).

The initial positions of the agents are represented with circles and their paths with
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(a) The paths of the agents in the swarm. Inter-agent distances in the swarm.

Fig. 5.2. Aggregating swarm of agents with fully actuated vehicle dynamics subject to exter-

nal disturbances and model uncertainty.

dots. Their positions after 40 seconds are also represented with circles. It is easily

seen that all the agents move toward each other and form a cohesive swarm cluster

reproducing the results obtained in Chapter 3 for swarms composed of agents with

single integrator dynamics. The maximum, average, and the minimum inter-agent
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distances during the motion of the swarm are depicted in Figure 5.2(b). As can be

seen from the figure, no collisions between agents occur and the final swarm size

becomes about 3.8 units.

5.4.2 Social Foraging

For illustrating the case of social foraging we will investigate one case only. In par-

ticular, we will consider the case in which the environment potential is a multimodal

Gaussian resource profile and for easy comparison we will use the same multimodal

Gaussian resource profile we used in Chapter 3. Figure 5.3(a) shows the mentioned

profile which is of the form in equation (5.24) with M = 10 Gaussians (which are

either hills or valleys) and corresponding parameters

Aσ ∈ {5,−2,3,2,−2,−4,−2,−2,2,2}
lσ ∈ {10,12.5,12.5,10,2,10,2,2,2,2}

cσ ∈
{[

15

20

]

,

[
20
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]

,

[
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,

[
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]

,

[
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]

,
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]

,
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,
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The hills in the profile represent unfavorable regions, while the valleys represent fa-

vorable ones. We would expect the swarm to avoid hills and to move towards the val-

leys (provided the parameters are appropriately chosen). For the attraction/repulsion

parameters a,b, and c we use the same parameters as for the swarming case above.
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(a) The environment resource profile. (b) Paths of the agents moving.

Fig. 5.3. Motion swarm of agents with fully actuated vehicle dynamics in multi-modal gaus-

sian environmental resource profile.

Figure 5.3(b) shows a simulation run for the model with the above parameters and

randomly chosen initial positions. The initial velocities are once again set to zero. It

is easily seen from the figure that the expectations are satisfied and the agents move

towards valleys while avoiding hills. One can easily see the similarity of the result

with the results obtained in Chapter 3.
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5.4.3 Formation Control

In this section, we consider the application of the procedure to the formation con-

trol (formation acquisition/stabilization) problem. In particular, we consider N = 6

agents which are required to form an equilateral triangle formation (with any orien-

tation) in R
2 with three of the agents at the corners of the triangle and three of the

agents at the middle points of the vertices.

As parameters of the potential function J f ormation(x) in equation (5.25) we used

bi j = 20,ci j = 0.2 for all i, j, and calculated ai j using

ai j = bi j exp

(

−
d2

i j

ci j

)

which, given the desired inter-agent distances di j ∈ {1,
√

3,2} based on the desired

relative positions of the agents resulted in ai j ∈ {0.1348,6.1180× 10−6,4.1223×
10−8}. We would like to remind here that the above type potentials may have local

minima leading to only local results. If global convergence to the desired formation

is desired then potentials with unique minimum (at the desired formation) should be

chosen.

Figure 5.4 illustrates the application of the procedure to the formation control

problem. The system is once more initialized at rest with random initial positions.

Figure 5.4(a) shows the paths of the agents for 30 seconds, whereas Figure 5.4(b)
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(a) Paths of the agents. (b) Final positions of agents.

Fig. 5.4. N = 6 acquiring an equilateral triangle formation.

depicts the positions of the swarm members after 30 seconds. As expected, as the

time progresses the agents move to their required inter-individual distances and

quickly create the desired formation. The centroid x̄ of the agents is denoted by

a star. During the transient, before occurrence of sliding mode, it is possible for the

centroid to move. However, once all the agents reach their prospective sliding man-

ifolds it is expected that the centroid will remain stationary after that point. Close
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examination of the centroid position (not shown here) shows that this expectation

is satisfied and x̄ is stationary. Note that even though we considered an example of

a formation stabilization, as mentioned before, the procedure can easily be applied

to the case in which the formation has to move (as a whole entity) and track some

desired trajectory.

5.4.4 Swarm Tracking

Let us consider a target which moves based on the dynamics

ẋt1 = 0.25

ẋt2 = sin(0.25t)

For the controller parameters, we use η = 0.1,λ = 2.0, f i =
√

2, and εi = 1. For

the filters, we chose µ = 0.02. The parameters specifying the relative importance of

the formation and tracking constraints are chosen as Wt = 0.5 and Wf = 1−Wt = 0.5.

As parameters of the potential function J f ormation(x) we used bi j = 20,ci j = 20 for

all i, j, and calculated ai j as in the formation control case in the preceding section.

Figure 5.5(a) shows the paths of the target and the pursuing agents. The target is

initially located at point [5,5] in the space while the agent positions are initialized

randomly within [0,2.5]× [0,2.5]. As one can see, the agents quickly catch-up with

the target and enclose/surround it. They also form the desired geometrical shape
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(a) Paths of target and agents. (b) Final positions of agents and target.

Fig. 5.5. N = 6 acquiring an equilateral triangle formation while tracking and enclosing a

moving target.

around the target and continue their motion keeping in the formation as seen in

Figure 5.5(b). Although it is not always guaranteed that the agents will form the

desired formation (due to the local minima problem), they always enclose the target

as expected.
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5.5 Further Issues

5.5.1 Extensions and Generalizations

In this chapter, we discussed a control algorithm based on the sliding mode control

technique. Using this approach, a swarm consisting of agents with fully actuated dy-

namics will, depending on the problem, aggregate and form a cohesive group, cohe-

sively forage and follow a resource profile, acquire a desired geometrical formation

or track a moving target/trajectory even in the presence of model uncertainties and

additive disturbances in the agent dynamics. In this aspect we showed that under the

developed control strategy the results in Chapter 3 developed for swarms composed

of agents with single integrator dynamics will be recovered also for agents with

fully actuated agent dynamics with model uncertainties and disturbances. However,

in contrast to the results in Chapter 4, in this chapter we did not consider measuring

errors such as sensor errors for measuring inter-agent distances and/or noise on the

resource profile. The results can easily be extended in that direction by making use

of the robustness properties of the sliding mode control technique.

5.5.2 For Further Reading

This chapter is based mostly on the results in [81] and some on those in [259].

Sliding mode control for following gradients of potential fields, robot navigation and

obstacle avoidance was first used in [109, 111, 112, 246] on which the development

in this chapter is also based. Note that agents with point mass or fully actuated

dynamics (but without uncertainties) are being considered in the literature (see for

example [13, 145, 187, 265, 266]). Using a low pass filter to extract the equivalent

value of a switching signal is very similar to the approach of sliding mode observers

based on the equivalent control method [61, 62, 115]. Valuable tutorials on sliding

mode control can be found in [244, 262]. Similarly, the books [245, 247] are good

general references on sliding mode control.
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Swarms of Non-holonomic Unicycle Agents with

Model Uncertainty

6.1 Non-holonomic Unicycle Agent Model with Uncertainty

In this chapter, we consider a swarm composed of N agents whose dynamics have

velocity constraints and evolve based on the equations

ṗxi = vi cos(θi),
ṗyi = vi sin(θi),
θ̇i = wi,

v̇i = 1
mi

[ui1 + fvi
] ,

ẇi = 1
Ii

[ui2 + fwi
] ,

(6.1)

where xi(t) = [pxi(t), pyi(t)]
⊤ denotes the position of agent i at time instant t in

cartesian coordinates, θi is the steering angle, vi is the linear speed, and wi is the

angular speed of agent i. The quantities mi and Ii are positive constants and represent

the mass and the moment of inertia of agent i, respectively. The control inputs for

agent i are the force input ui1 = Fi and the torque input ui2 = τi. The functions fvi

and fwi
represent unknown additive disturbances for agent i and are assumed to be

bounded such that

| fvi
| < f +

vi
and | fwi

| < f +
wi

for known bounds f +
vi

and f +
wi

. In addition to the unknown additive system distur-

bances it is assumed that the exact values of the mass mi and the inertia Ii for agent

i are unknown. However, they are assumed to be upper and lower bounded in the

form

0 < Mi < mi < Mi and 0 < Ii < Ii < Ii

where the bounds Mi,Mi, Ii, and Ii are known. The model in Equation (6.1), which is

also graphically illustrated in Figure 6.1, is sometimes called the unicycle model. It

has non-holonomic constraints since the agents cannot move in the direction of the

main axis connecting the two actuated/driving wheels. This can be mathematically

represented with the (non-holonomic, velocity) constraint
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ṗxi sin(θi)− ṗyi cos(θi) = 0

which basically states that the inner product of the agent velocity vector and the

vector along the shaft/axel is always zero meaning that the motion of the agent

is always perpendicular to the shaft axis. Many robots in the research laboratories

around the world (for example differentially driven robots) have dynamics which

obey the model in Equation (6.1).

Fig. 6.1. Illustration of an agent with the non-holonomic unicycle dynamics.

In the next section we will discuss a potential functions and sliding mode control

based approach for controller development for the model in (6.1). The approach will

be similar to the approach in Chapter 5.

6.2 Controller Development

6.2.1 Aggregation, Foraging, and Formation Control

We know from Chapter 3 that if the agents are forced to move based on the equation

(see Equations (3.1) and (3.2))

ẋi = −∇xi
J(x) (6.2)

where x⊤ = [x⊤1 ,x⊤2 , ...,x⊤N ] ∈ R
Nn denotes the lumped vector of concatenated po-

sitions xi ∈ R
n of all agents and J : R

Nn → R is an appropriately defined potential

function which represents the inter-agent interactions and/or the effects of the envi-

ronment on the behavior of the agents, then the swarm will behave in a predictable

manner. For the case in this chapter since xi(t) = [pxi(t), pyi(t)]
⊤ ∈R

2 we have n = 2

or basically the motion of the agents is in a 2-dimensional space, although the fact

that the internal dynamics of the agents in Equation (6.1) belong to R
5. Therefore,
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similar to the case in Chapter 5, if we can force the agents with the dynamics in (6.1)

to move based on (6.2) and choose the potential functions appropriately, then the re-

sults in Chapter 3 will be recovered for swarms composed of agents with unicycle

vehicle dynamics with uncertainties obeying (6.1). This is the approach we will take

in this chapter as well. However, because of some technical reasons we will develop

the controller for the case

‖∇xi
J(x)‖ ≥ ε (6.3)

for some predefined small ε > 0. The consequence of this fact is that for the case

here the results in Chapter 3 for swarms composed of agents with single-integrator

dynamics will be recovered with some error/perturbation, the amount of which de-

pends on the value of ε. Nevertheless, the overall qualitative behavior of the swarm

here (i.e., swarms consisting of agents with the non-holonomic unicycle agent dy-

namics with uncertainties obeying the motion model in (6.1) under the condition

in (6.3) and the controller discussed in the sections below) will be similar to the

behavior of swarms consisting of agents with single-integrator dynamics discussed

in Chapter 3. Note also that by choosing ε very small the error can be made very

small as well. However, this will be achieved with the price that the bounds utilized

in the sliding mode controller will become larger. The reader should note also that

it is also possible to introduce a boundary layer and a corresponding controller with

appropriate analysis.

As mentioned in Chapter 5, sliding mode control is a widely used technique in

various application areas, mainly because of its suppressive and robust characteris-

tics against uncertainties and disturbances in the system dynamics. In sliding mode

control, a switching controller with high enough gain is applied to suppress the ef-

fects of modeling uncertainties and disturbances, and the agent dynamics are forced

to move along a stabilizing manifold, which is also called a sliding manifold. The

value of the gain is computed using the known bounds on the uncertainties and

disturbances.

Below we design a sliding mode control scheme to force the motion of each in-

dividual agent along the negative gradient of the potential function J(x), i.e. forcing

each agent to obey Equation (6.2) where depending on the context (which can be

aggregation, foraging, or formation control in this section) J(x) is an appropriately

defined artificial potential function. Let

−∇xi
J(x) =

[
−Jpxi

(x)
−Jpyi

(x)

]

denote the gradient of the potential at xi. In order to achieve satisfaction of (6.2)

there is a need for the equality

−∇xi
J(x) =

[
−Jpxi

(x)
−Jpyi

(x)

]

=

[
vi cos(θi)
vi sin(θi)

]

(6.4)

to be satisfied. In other words, the translational speed vi and the steering angle θi

have to obey

vi = ‖∇xi
J(x)‖, θi = ∠

([
−Jpxi

(x),−Jpyi
(x)
]⊤)

(6.5)
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where for an arbitrary vector [x,y]⊤ ∈ R
2 the expression ∠

(
[x,y]⊤

)
denotes the

counter-clockwise angle form the cartesian coordinate x-axis to the vector [x,y]⊤.

Note that since the inputs in the agent model (6.1) are ui1 and ui2 implying that

the above vi and θi in (6.5) cannot be applied directly, the terms

vid � ‖∇xi
J(x)‖, θid � ∠

([
−Jpxi

(x),−Jpyi
(x)
]⊤)

(6.6)

need to be considered as desired set-point values for vi and θi, respectively.

In order to unify the controller development for all the cases/contexts consid-

ered in this section (which are aggregation, foraging, and formation control) and to

make the development of the sliding mode controller possible we have the following

assumption.

Assumption 7. For all i there exist known and bounded functions αi(x) > 0 and

βi(x) > 0 such that

|v̇id | =
∥
∥
∥
∥

d

dt
∇xi

J(x)

∥
∥
∥
∥
≤ αi(x)

and

|θ̈id | =
∥
∥
∥
∥

d2

dt2
tan−1

(
Jpyi

(x)

Jpxi
(x)

)∥
∥
∥
∥
≤ βi(x)

are satisfied.

The properties of the bounds αi(x) and βi(x) in Assumption 7 depend on the prop-

erties of the potential function, which is chosen by the designer, as well as the trans-

lational speeds of the agents. In other words, the procedure requires that the agents

know the linear speeds of the other agents in the swarm. Moreover, in order for

the procedure discussed below to be implementable the artificial potential function

needs to be chosen such that Assumption 7 is satisfied. We will derive such bounds

for the potential functions considered in the following sections.

From the discussion above, and with the definition of the desired translational

speed vid and desired steering angle θid in (6.6), the objective is to design the control

inputs ui1 and ui2 in (6.1) to force the motion of the agents so that the differences

(vi−vid) and (θi−θid) converge to zero. With this objective in mind let us step back

and define the sliding surfaces for the translational speed vi and for the steering

angle θi, respectively, as

svi
= vi − vid (6.7)

sθi
= cθi

(θ̇i − θ̇id)+ (θi −θid), (6.8)

where cθi
> 0 is a positive constant. With these definitions, the objective becomes

to design the control inputs ui1 and ui2 so that svi
→ 0 and sθi

→ 0, since if this is

achieved we will have vi → vid and θi → θid . Note here that the existence of the

additional term cθi
(θ̇i − θ̇id) in (6.8) is because of the double integrator relationship

between θi and the applicable input ui2 as opposed to the single integrator relation-

ship between vi and ui1.
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In order to be able to compute the value of sθi
in Equation (6.8) one needs the

time derivative of θid . Note that θid is in fact the inverse tangent of
Jpyi

Jpxi
. Taking its

derivative with respect to time and with simple manipulation one obtains

θ̇id =

d
dt

(
Jpyi

Jpxi

)

1 +
(

Jpyi

Jpxi

)2
=

d
dt

(
Jpyi

)
· Jpxi

− d
dt

(Jpxi
) · Jpyi

(Jpxi
)2 +

(
Jpyi

)2
(6.9)

and using this one can calculate the value of θ̇id for a given potential J(x). One issue

to note here is that as ‖∇xi
J(x)‖→ 0 the value of θ̇id becomes unbounded. This, on

the other hand, leads to unbounded βi(x). However, for the case in which (6.3) is

satisfied θ̇id is bounded and this is the case for which we develop the sliding mode

controller. Still, for the time intervals in which ‖∇xi
J(x)‖ < ε holds, to preserve

bounded θ̇id , which is needed for calculating sθi
in (6.8), we add a small positive

constant ε̄ to the denominator of the above equation and calculate θ̇id as

θ̇id =
d
dt

(
Jpyi

)
· Jpxi

− d
dt

(Jpxi
) · Jpyi

(Jpxi
)2 +

(
Jpyi

)2
+ ε̄

(6.10)

This avoids unboundedness for the price of a small deviation from the sliding surface

sθi
resulting in a small boundary layer around it.

As mentioned also in the preceding chapter, it is well known from the sliding

mode control theory that if we have the reaching conditions

svi
ṡvi

≤−εi1|svi
| (6.11)

sθi
ṡθi

≤−εi2|sθi
| (6.12)

satisfied for some constants εi1 > 0 and εi2 > 0, then svi
= 0 and sθi

= 0 will be

achieved in finite time. In fact, provided that Equations (6.11) and (6.12) are satis-

fied and using the comparison principle one can show that svi
= 0 and sθi

= 0 are

achieved in finite time bounded by

tvi
≤ |svi

(0)|
εi1

and tθi
≤ |sθi

(0)|
εi2

respectively. Then, from (6.7) one can see that vi = vid for t ≥ tvi
and from (6.8) we

have for t ≥ tθi

(

θi(t)−θid(t)
)

=
(

θi(tθi
)−θid(tθi

)
)

e

−(t−tθi
)

cθi (6.13)

implying exponential convergence of θi(t) to θid(t). The speed of convergence de-

pends on the slope − 1
cθi

of the sliding line. From above, the bound on the time for

the occurrence of the sliding mode on all surfaces can be found as
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t̄sm = max
i∈{1,...,N}

{

max{tvi
,tθi

}
}

(6.14)

In order to achieve satisfaction of Equation (6.11) we choose the first control

input ui1 as

ui1 = −Ki1(x)sign(svi
) (6.15)

so that the time derivative of svi
becomes

ṡvi
= −Ki1(x)

mi

sign(svi
)+

1

mi

fvi
− v̇id

and we have

svi
ṡvi

= svi

(

−Ki1(x)

mi

sign(svi
)+

1

mi

fvi
− v̇id

)

= −Ki1(x)

mi

|svi
|+ 1

mi

fvi
svi

− v̇idsvi

≤ −
(

Ki1(x)

mi

− 1

mi

| fvi
|− |v̇id|

)

|svi
| (6.16)

Then by choosing the gain Ki1(x) such that the inequality

Ki1(x) ≥
Mi

Mi

f +
vi

+ Miαi(x)+ Miεi1 (6.17)

is satisfied, where αi(x) is the bound in Assumption 7 such that |v̇id | ≤ αi(x), one

guarantees that the inequality in (6.11) holds and sliding mode occurs (i.e., svi
= 0

is achieved) in finite time.

Similarly, for the second sliding surface choosing the control input as

ui2 = −Ki2(x)sign(sθi
) (6.18)

the time derivative of sθi
becomes

ṡθi
= −Ki2(x)cθi

Ii

sign(sθi
)+

cθi

Ii

fwi
− cθi

θ̈id + wi − θ̇id (6.19)

and we have

sθi
ṡθi

= sθi

(

−Ki2(x)cθi

Ii

sign(sθi
)+

cθi

Ii

fwi
− cθi

θ̈id + wi − θ̇id

)

≤ −
(

Ki2(x)cθi

Ii
− cθi

Ii
| fwi

|− cθi
|θ̈id |− |wi|− |θ̇id|

)

|sθi
| (6.20)

Then, by choosing the gain Ki2(x) such that the inequality

Ki2(x) ≥
Ii

Ii

f +
wi

+ Iiβi(x)+
Ii

cθi

|wi|+
Ii

cθi

|θ̇id |+
Ii

cθi

εi2 (6.21)

is satisfied, where βi(x) is the bound in Assumption 7 such that |θ̈id | ≤ βi(x), one can

guarantee that the inequality in (6.12) holds and the second sliding surface sθi
= 0

in (6.8) will as well be reached in finite time.

The results in the above discussion can be formally summarized as follows.
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Theorem 16. Consider a system of N agents with vehicle dynamics given by (6.1).

Assume that (6.3) holds and Assumption 7 is satisfied. Let the controllers ui1 and ui2

for the agents be given by (6.15) and (6.18) with gains satisfying (6.17) and (6.21),

respectively. Then, sliding mode occurs in all surfaces svi
and sθi

in a finite time

bounded by the bound in (6.14).

One issue to emphasize here is that at the instance of occurrence of sliding mode

vi = vid is reached but it is not necessarily the case that θi = θid . In fact, as was

mentioned above, after occurrence of sliding mode we have θi → θid exponentially

fast (see Equation (6.13)) and the speed of convergence depends on the slope of

the sliding surface − 1
cθi

. Therefore, one needs to choose cθi
as small as possible in

order to achieve faster convergence. Note also that decreasing the parameter cθi
will

require increasing the controller gain Ki2.

Once sliding mode occurs on all surfaces Equation (6.2) is satisfied exponen-

tially fast, and from the results in Chapter 3 we know that the desired behavior will

be exhibited by the swarm composed of agents with non-holonomic unicycle dy-

namics with uncertainties (6.1). However, note that this holds only for the case in

which ‖∇xi
J(x)‖ ≥ ε is satisfied. For the case in which ‖∇xi

J(x)‖ < ε, to overcome

unboundedness we will use the expression in (6.10) for the derivative θ̇id instead

of the actual value in (6.9) resulting in a small error. Note that the effect of this on

the cases for aggregation and foraging is only a small increase in the swarm size.

For the case of formation control it leads to small formation error. In other words,

the results in Chapter 3 obtained for swarms composed of agents with single in-

tegrator dynamics are recovered with small error for swarms composed of agents

obeying (6.1).

6.2.2 Swarm Tracking

In this section we consider controller development for the swarm tracking problem.

Recall that the swarm tracking problem is concerned with swarm of agents which

are required to capture a moving target, enclose it and form a predefined geomet-

rical formation around it. Let us assume that the target trajectory is specified by

{xt , ẋt , ẍt}. We have the following assumption about the target dynamics.

Assumption 8. The velocity of the target is known and bounded such that ‖ẋt‖ ≤ γtv

for a known bound γtv > 0. Moreover, the unknown acceleration of the target is also

bounded such that ‖ẍt‖ ≤ γta for a known bound γta > 0.

Recall from the previous chapters that in contrast to the motion in (6.2), which

is used for aggregation, foraging, and formation control, for the swarm tracking

problem we use agent dynamics of the form

ẋi = −η∇xi
J(x,xt)−λsign(∇xi

J(x,xt)) (6.22)

where η > 0 and λ > 0 are positive constants and J(x,xt) is an artificial potential

function which specifies the tracking and formation constraints. Similar to the case

of aggregation, foraging, and formation control considered in the preceding section,

here we develop the controller for the case in which
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‖∇xi
J(x,xt)‖ ≥ ε (6.23)

is satisfied. In order to achieve the tracking and formation control objectives λ needs

to be chosen such that λ > γtv is satisfied, i.e., the value of λ must be larger than

the upper bound on the target velocity. However, there is one problem in using

the dynamics in Equation (6.22) which is the fact that the time derivative of the

sign(∇xi
J(x,xt)) function is unbounded at the instances when ∇xi

J(x,xt) switches

sign. The time derivative of the right hand side of (6.22) is needed for the devel-

opment of the sliding mode controller. In particular, it is needed for calculating the

derivative of the desired steering angle θ̇id as well as the bounds αi(x) and βi(x)
which are used for calculating the gains of the sliding mode controller (see for ex-

ample Equations (6.17) and (6.21) in the preceding section). In order to overcome a

similar problem a low-pass filter was utilized in Chapter 5. In contrast, here a differ-

ent strategy is taken and a continuous and differentiable approximation of the sign

function is used. In particular, the motion dynamics of agent i are required to satisfy

ẋi = −η∇xi
J(x,xt)−λh(∇xi

J(x,xt)) (6.24)

instead of the dynamics in (6.22). Here the function h : R
2 → R

2 is the elementwise

version of the scalar function which for a scalar y ∈ R is defined as

h(y) =

⎧

⎨

⎩

−1, y < −ε
sin
(πy

2ε

)
, |y| ≤ ε

1, y > ε
(6.25)

where ε > 0 is a small constant. Figure 6.2 depicts an instance of the function for

ε = 1. Note that this function overcomes the problems of discontinuity and un-
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Fig. 6.2. Function h(.) with ε= 1.

boundedness of the derivative of the signum function since both it and its derivative

are continuous and bounded. In the mean time, it introduces a boundary layer and

has the same behavior as the sign function outside the interval [−ε,ε]. This, on the

other hand, implies that, when the components of the gradient∇xi
J(x,xt) are outside
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the interval [−ε,ε], equations (6.22) and (6.24) are equivalent. Then, from the results

in Chapter 3 we know that the potential J(x,xt) is decreasing. Note that for boundary

layer here we utilize the same ε as in Equation (6.23) which implicitly specifies the

bound on the allowed tracking error. Therefore, as long as the gradient is larger than

the allowed ε> 0, decrease in the potential is guaranteed. Moreover, when the agents

continue to move based on (6.24) and the components of the gradient ∇xi
J(x,xt) are

within the interval [−ε,ε] the time derivative J̇ of the potential function becomes

J̇ ≤ −η‖∇xi
J(x,xt)‖2

2 −λ∇xi
J⊤(x,xt)sin

(
π∇xi

J(x,xt)

2ε

)

+ γtv‖∇xi
J(x,xt )‖1.

The second term on the right hand side of the equation always satisfies

λ∇xi
J⊤(x,xt)sin

(
π∇xi

J(x,xt)

2ε

)

≥ 0

which means that the potential function continues further to decrease within some

region inside the interval [−ε,ε].
Similar to the preceding section one needs to design the control inputs of the

agents such that (6.24) is satisfied. In other words, the objective is to force the agents

to move according to equation (6.24). Therefore,

−η∇xi
J(x,xt)−λh(∇xi

J(x,xt)) =

[
vi cos(θi)
vi sin(θi)

]

(6.26)

needs to be satisfied. Defining Zi as

Zi � η∇xi
J(x,xt)+λh(∇xi

J(x,xt)) �

[
Zpxi

Zpyi

]

(6.27)

analogous to the case in the preceding section, the desired linear speed and steering

angle for agent i can be specified respectively as

vid � ‖Zi‖, θid � ∠

([
−Zpxi

,−Zpyi

]⊤)
(6.28)

Here we have an assumption which is analogous to Assumption 7.

Assumption 9. For all i there exist known and bounded functions αi(x) > 0 and

βi(x) > 0 such that

|v̇id | =
∥
∥Żi

∥
∥=

∥
∥
∥
∥
η

d

dt
∇xi

J(x,xt)+λ
d

dt
h(∇xi

J(x,xt))

∥
∥
∥
∥
≤ αi(x)

and

|θ̈id | =
∥
∥
∥
∥

d2

dt2
tan−1

(
Zpyi

(x,xt )

Zpxi
(x,xt )

)∥
∥
∥
∥
≤ βi(x)

are satisfied.
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Then, following the same steps as in the preceding section one can show that by

choosing the sliding surfaces svi
and sθi

as in Equations (6.7) and (6.8) with the

new definitions of the desired translational speed vid and desired steering angle θid

in (6.28) (instead of those in (6.5)) and the control inputs ui1 and ui2 as in (6.15)

and (6.18) with corresponding gains Ki1 and Ki2 satisfying (6.17) and (6.21), respec-

tively, with the new bounds αi(x) and βi(x) in Assumption 9, sliding mode occurs

on all surfaces in finite time bounded by the bound in (6.14). The only difference

here is that the value of θ̇id is calculated based on

θ̇id =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt

(

Zpyi

)

·Zpxi
− d

dt (Zpxi)·Zpyi

(Zpxi)
2
+
(

Zpyi

)2 , ‖∇xi
J(x)‖ ≥ ε

d
dt

(

Zpyi

)

·Zpxi
− d

dt (Zpxi)·Zpyi

(Zpxi)
2
+
(

Zpyi

)2
+ε̄

, ‖∇xi
J(x)‖ < ε

instead of using (6.9) or (6.10) and the bounds αi(x) and βi(x) in Assumption 9

needed for determining the values of the gains Ki1 and Ki2 are calculated based on

Zi in (6.27). Note also that whenever Equation (6.23) is satisfied d
dt

h(∇xi
J(x,xt)) = 0

and the value of the bound αi(x) depends only on the value of d
dt
∇xi

J(x,xt).

6.3 Potential Functions and Bounds

6.3.1 Aggregation

Similar to the case in Chapter 5, in order to achieve aggregation we will use po-

tential functions of the form considered in Chapter 3. In other words, once again

we will consider potential functions in the form (3.3) and satisfying all the assump-

tions stated in Section 3.2. For convenience we repeat here the potential function in

equation (3.6) which is given by

J(x) = Jaggregation(x) =
N−1

∑
i=1

N

∑
j=i+1

[
a

2
‖xi − x j‖2 +

bc

2
exp

(

−‖xi − x j‖2

c

)]

(6.29)

In order to be consistent with the results in Chapter 3 and Chapter 5 we consider the

same potential function here and derive the bounds for it. As was shown before, the

negative gradient of this potential at xi is given by

−∇xi
J(x) = −

N

∑
j=1, j �=i

(xi − x j)

[

a−bexp

(

−‖xi− x j‖2

c

)]

Let us first derive a bound αi(x) such that |v̇id | ≤ αi(x). From Equation (6.6)

we have the desired velocity for agent i as vid � ‖∇xi
J(x)‖. Then, using the fact

that |v̇id | ≤
∥
∥ d

dt
∇xi

J(x)
∥
∥ one can determine the bound αi(x) by overbounding

∥
∥ d

dt
∇xi

J(x)
∥
∥. Taking the time derivative of ∇xi

J(x) one obtains
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d

dt
(∇xi

J(x)) =

[
d
dt

(Jpxi
)

d
dt

(Jpyi
)

]

=
N

∑
j=1, j �=i

G(xi − x j)(ẋi − ẋ j) (6.30)

where G(xi − x j) is a 2×2 matrix (since in this chapter n = 2) given by

G(xi − x j) = aI + bexp

(

−‖xi − x j‖2

c

)(
2

c
(xi − x j)(xi − x j)

⊤− I

)

(6.31)

where I is the 2×2 identity matrix. Then, we have

|v̇id | ≤
N

∑
j=1, j �=i

‖G(xi − x j)‖‖ẋi − ẋ j‖ ≤
N

∑
j=1, j �=i

‖G(xi − x j)‖(‖ẋi‖+‖ẋ j‖)

≤ 2
N

∑
j=1, j �=i

‖G(xi − x j)‖ max
k∈{1,...,N}

‖ẋk‖ (6.32)

where ‖G‖ denotes the induced 2-norm of the matrix G. From (6.31) one can com-

pute

‖G(xi − x j)‖ ≤ a + 2bexp(−1)+ b ≤ a + 2b

where we used the fact that the maximum of ‖xi − x j‖2 exp
(

− ‖xi−x j‖2

c

)

occurs at

‖x‖ =
√

c and the inequality ‖xi − x j‖2 exp
(

− ‖xi−x j‖2

c

)

≤ cexp(−1) is always sat-

isfied. Then the bound can be calculated as

|v̇id | ≤ 2N(a + 2b) max
j∈{1,...,N}

{v j} � αi(x) (6.33)

Note that for the implementation of the algorithm the agents need to know the speeds

of their neighbors which are all the other agents in the particular setting here.

In order to determine βi(x) > 0 such that |θ̈id | ≤ βi(x) (which is needed in order

to determine the controller gain Ki2) we differentiate |θ̇id | which from Equation (6.9)

can be expressed as

θ̇id =
d
dt

[
∇xi

J(x)†
]⊤

∇xi
J(x)

‖∇xi
J(x)‖2

where ∇xi
J(x)† � [Jpyi

,−Jpxi
]⊤. Differentiating θ̇id and overbounding the result one

obtains the bound on |θ̈id | as

|θ̈id | ≤

∥
∥
∥

d2

dt2 [∇xi
J(x)]

∥
∥
∥

‖∇xi
J(x)‖ + 3

∥
∥ d

dt
[∇xi

J(x)]
∥
∥

2

‖∇xi
J(x)‖2

In order to determine the value of θ̇id in (6.9) as well as to calculate the bound

βi(x) one needs the values of d
dt

[∇xi
J(x)] and d2

dt2 [∇xi
J(x)]. The value of d

dt
[∇xi

J(x)]
for the potential function in Equation (6.29) can be calculated from Equations (6.30)
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and (6.31). In fact, the bound on ‖ d
dt

[∇xi
J(x)]‖ is given byαi(x) calculated in (6.33).

From Equation (6.30) for d2

dt2 [∇xi
J(x)] one obtains

d2

dt2
(∇xi

J(x)) =
N

∑
j=1, j �=i

[
d

dt

(

G(xi − x j)
)

(ẋi − ẋ j)+ G(xi− x j)(ẍi − ẍ j)

]

(6.34)

where

d
dt

(

G(xi −x j)
)

= − 2b
c

exp
(

− ‖xi−x j‖2

c

)[

(ẋi − ẋ j)
⊤(xi −x j)

(
2
c
(xi −x j)(xi −x j)

⊤− I
)

−(ẋi − ẋ j)(xi −x j)
⊤− (xi −x j)(ẋi − ẋ j)

⊤
]

and G(xi − x j) was defined in (6.31). Then, using the inequalities

‖xi − x j‖exp

(

−‖xi − x j‖2

c

)

≤
√

c

2
exp

(

−1

2

)

and

‖xi − x j‖3 exp

(

−‖xi − x j‖2

c

)

≤ 3c

2

√

3c

2
exp

(

−3

2

)

it is easy to show that

∥
∥
∥

d
dt

(

G(xi − x j)
)∥
∥
∥ ≤ 6b

c

(√
3c
2

exp
(
− 3

2

)
+
√

c
2

exp
(
− 1

2

)
)

‖ẋi − ẋ j‖

Defining

β̄ =
6b

c

(√

3c

2
exp

(

−3

2

)

+

√
c

2
exp

(

−1

2

))

(6.35)

one has

∥
∥
∥
∥

d2

dt2
[∇xi

J(x)]

∥
∥
∥
∥
≤ N

[

4β̄ max
1≤ j≤N

{
v2

j

}
+ 2(a + 2b) max

1≤ j≤N

[

K j1(x)+ f +
v j

M j

]]

Then, βi(x) can be defined as

βi(x) �
N

ε

[

4β̄ max
1≤ j≤N

{
v2

j

}
+ 2(a + 2b) max

1≤ j≤N

[

K j1(x)+ f +
v j

M j

]]

+ 3

(
αi(x)

ε

)2

(6.36)

where ε is the lower bound on ‖∇xi
J(x)‖ in Equation (6.3).

Note here that in order to calculate βi(x), in addition to the value of αi(x) and the

velocities of its neighbors, the agent needs the values of K j1(x), f +
v j , and M j from

their neightbors as well. This brings a restriction on the control algorithm since

these values need to be sensed or communicated. However, for many applications

the values of parameters such as f +
v j , M j, M j, and ε j1 might be independent from
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the agent identity and fixed variables with values known a priori by all agents and

the values of K j1 (needed for calculating can be calculating βi(x)) can easily be

calculated from these and the corresponding values of α j(x). This, together with the

fact that the value of α j(x) is the same for all agents (see Equation (6.33)), results in

relaxing the requirement for exchanging the values of K j1(x), f +
v j , and M j between

agents.

6.3.2 Social Foraging

The bounds for the case of social foraging swarms, i.e., swarms moving in an envi-

ronment modeled as a potential field (called a resource profile), can be derived in a

similar manner to those for aggregating swarms. Recall that for the social foraging

swarms case the motion of the swarm is along the negative gradient of a potential

function of the form

J(x) = J f oraging(x) =
N

∑
i=1

σ(xi)+ Jaggregation(x)

where Jaggregation(x) is the potential in (6.29) that determines the inter-agent inter-

actions in the swarm, whereas the term σ : R
2 → R is a “resource profile” which

represents the effect of the environment on the motion of the swarm. Once again the

negative gradient of the potential at the position xi of agent i is given by

−∇xi
J(x) = −∇xi

σ(xi)−
N

∑
j=1, j �=i

(xi − x j)

[

a−bexp

(

−‖xi − x j‖2

c

)]

Using these below we will describe how to determine the bounds αi(x) and βi(x)
for several resource profiles.

Plane Resource Profiles

Recall that a plane resource profile can be represented with equation of the form

σ(y) = a⊤σ y + bσ

for which we have
d

dt
(∇xi

σ(x)) =
d

dt
(aσ) = 0

Therefore, for the plane profile the values of αi(x) and βi(x) are the same as for

the case of aggregating swarms discussed in the preceding section and are given by

Equations (6.33) and (6.36), respectively.
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Quadratic Resource Profiles

For a quadratic resource profile of the form

σ(y) =
Aσ

2
‖y− cσ‖2 + bσ

we have

d

dt
(∇xi

σ(x)) =
d

dt
(Aσ(xi − cσ)) = Aσẋi and

d2

dt2
(∇xi

σ(x)) = Aσẍi

Therefore, for this case for agent i the bounds αi(x) and βi(x) can be calculated as

αi(x) � |Aσ|vi + 2N(a + 2b) max
j∈{1,...,N}

{v j} (6.37)

and

βi(x) �
|Aσ|
ε

Ki1(x)+ f +
vi

Mi

(6.38)

+
N

ε

[

4β̄ max
1≤ j≤N

{
v2

j

}
+ 2(a + 2b) max

1≤ j≤N

[

K j1(x)+ f +
v j

M j

]]

+ 3

(
αi(x)

ε

)2

where β̄ is defined in (6.35).

Multimodal Gaussian Resource Profiles

For a multimodal Gaussian resource profile of the form

σ(y) = −
M

∑
j=1

Aσ j

2
exp

(

−‖y− cσ j‖2

lσ j

)

+ bσ

we have

d

dt
(∇xi

σ(x)) = −
M

∑
j=1

Aσ j

lσ j

exp

(

−‖xi − cσ j‖2

lσ j

)[

1 + 2(xi− cσ j)(xi − cσ j)
⊤
]

ẋi

Therefore, for this case for agent i we have

αi(x) �
M

∑
j=1

|Aσ j|
lσ j

[

1 + 2lσ j exp(−1)
]

vi + 2N(a + 2b) max
j∈{1,...,N}

{v j} (6.39)

Similarly, calculating the value of d2

dt2 (∇xi
σ(x)) (which is not shown here), over-

bounding it and calculating βi(x) one obtains



6.3 Potential Functions and Bounds 139

βi(x) �
β̄1

ε
v2

i +
β̄2

ε

[
Ki1(x)+ f +

vi

Mi

]

(6.40)

+
N

ε

[

4β̄ max
1≤ j≤N

{
v2

j

}
+ 2(a + 2b) max

1≤ j≤N

[

K j1(x)+ f +
v j

M j

]]

+ 3

(
αi(x)

ε

)2

where β̄ is as defined in Equation (6.35) and

β̄1 =
M

∑
j=1

|Aσ j|
lσ j

[(
2

lσ j
+ 4

)√

lσ j

2
exp

(

−1

2

)

+ 3lσ j

√

3lσ j

2
exp

(

−3

2

)]

and

β̄2 =
M

∑
j=1

|Aσ j|
lσ j

(

1 + 2lσ j exp(−1)
)

6.3.3 Formation Control

Recall that in the preceding chapters for formation control we used a potential func-

tion of the form

J(x) = J f ormation(x) =
N−1

∑
i=1

N

∑
j=i+1

[
ai j

2
‖xi − x j‖2 +

bi jci j

2
exp

(

−‖xi− x j‖2

ci j

)]

where the parameters ai j,bi j, and ci j depend on the desired relative distances of the

agents di j in the desired formation. These formation constraints can be expressed in

the form

‖xi − x j‖ = di j,1 ≤ i, j ≤ N

From the similarity of J f ormation(x) with Jaggregation(x) one can easily deduce that the

corresponding bounds αi(x) and βi(x) can be expressed as

αi(x) � 2N(amax + 2bmax) max
j∈{1,...,N}

{v j}

and

βi(x) �
N

ε

[

4β̄ max
1≤ j≤N

{
v2

j

}
+ 2(amax + 2bmax) max

1≤ j≤N

[

K j1(x)+ f +
v j

M j

]]

+3

(
αi(x)

ε

)2

where amax=max1≤i, j≤N{ai j}, bmax=max1≤i, j≤N{bi j}, and cmax=max1≤i, j≤N{ci j},

and β̄ is defined in (6.35).

6.3.4 Swarm Tracking

For the swarm tracking problem again we consider a potential function of the same

form considered in the preceding chapters which is composed of two parts and can

be expressed as
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J(x,xt) = Wt

N

∑
i=1

1

4
‖xi − xt‖4 +Wf J f ormation(x)

where J f ormation(x) is the potential considered for the case of formation control that

was discussed in the preceding section. Recall that it specifies the geometrical shape

to be formed by the swarm around the target, whereas the first term specifies the

requirement by the agents to track the moving target and to surround/enclose it. We

would like to remind the reader here that the motion of the agents in the swarm

tracking case is different from the previous cases and is given by (6.22) or (6.24)

(and not by (6.2)).

The negative gradient of the potential at the position xi of agent i can be calculated

as

−∇xi
J(x,xt) = −Wt‖xi − xt‖2(xi − xt)

−Wf

N

∑
j=1, j �=i

(xi − x j)

[

ai j −bi j exp

(

−‖xi − x j‖2

ci j

)]

The time derivative of the first term in the above equation is given by

d

dt

(

−Wt‖xi −xt‖2(xi −xt)
)

= −Wt

(

2(xi −xt)
⊤(ẋi − ẋt )(xi −xt)+‖xi −xt‖2(ẋi − ẋt)

)

Similarly the time derivative of h(y) in (6.25) for a y ∈ R can be calculated as

d

dt
h(y) =

{(
π
2ε

)
cos
(
πy
2ε

)

ẏ, |y| ≤ ε

0, |y| > ε
(6.41)

which always (for all finite y ∈ R) satisfies

∥
∥
∥
∥

d

dt
h(y)

∥
∥
∥
∥
≤ ᾱ(y)ẏ

where ᾱ(y) is defined as

ᾱ(y) =

{(
π
2ε

)
, |y| ≤ ε

0, |y| > ε
(6.42)

Using the above, and the bound calculated in the preceding section for the formation

control case, the bound αi(x) can be expressed as

αi(x) �

(

η+λ
π

ε

)(

3Wt‖xi − xt‖2(vi + γtv)+ 2Wf N(amax + 2bmax) max
j∈{1,...,N}

{v j}
)

where γtv is the bound on the velocity of the agent such that ‖ẋt‖ ≤ γtv given in As-

sumption 8 and amax, bmax, and cmax are as defined above (for the formation control

case).

Taking the second derivative of h(y) in (6.25) for a y ∈ R and utilizing ᾱ(y)
in (6.42) one obtains
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d2

dt2
h(y) = ᾱ(y)

(

−
( π

2ε

)

sin
(πy

2ε

)

ẏ + cos
(πy

2ε

)

ÿ
)

(6.43)

which with the second derivative of the potential function J(x,xt) (not shown here)

the bound βi(x) can be calculated as

βi(x) �

(

η+λ
π

ε

)(Wt

ε

[

6‖xi − xt‖(vi + γtv)
2 + 3‖xi− xt‖2

(
Ki1(x)+ f +

vi

Mi

+ γta

)]

+
NWf

ε

[

4β̄ max
1≤ j≤N

{
v2

j

}
+ 2(amax + 2bmax) max

1≤ j≤N

[

K j1(x)+ f +
v j

M j

]])

+
1

2
λ
(π

ε

)2
(
αi(x)

ε

)

+ 3

(
αi(x)

ε

)2

(6.44)

where γta is the bound on the acceleration of the agent such that ‖ẍt‖ ≤ γta given in

Assumption 8.

Note that for calculating the values of the bounds βi(x) above the values of the

corresponding αi(x) are used. Then the values of these bounds αi(x) and βi(x)
are used for determining the controller gains Ki1(x) and Ki2(x) in equations (6.17)

and (6.21), respectively. We would like to also emphasize that all bounds computed

in this section are very conservative and that usually the procedure works satis-

factorily with smaller values of the bounds αi(x) and βi(x) and therefore smaller

controller gains Ki1(x) and Ki2(x) as well.

6.4 Simulation Examples

In this section we present numerical simulation results to reproduce the swarm be-

havior obtained in Chapter 3 for the single integrator agent model and in Chap-

ter 5 for the fully actuated agent model for swarms composed of agents with non-

holonomic unicycle dynamics with model uncertainties in (6.1). In other words, we

will test and verify the effectiveness of the control scheme discussed in the preced-

ing sections of this chapter.

As in Chapter 5, in order to avoid numerical problems such as high frequency

chattering which might occur due to the discontinuous characteristics of the sign

function in the controller equations in (6.15) and (6.18) we used the function

tanh(γy) instead of the sign function. Here γ is a smoothness parameter which de-

termines the slope of the function around y = 0 and therefore the similarity between

the sign and tanh functions. We used the value of γ = 10 as a smoothness param-

eter for all of the cases below. Moreover, we used εi1 = εi2 = 1 for calculating the

controller gains.

The actual values of the mass and the inertia of agents are unknown and deter-

mined randomly at the beginning of the simulation by the program according to

upper and lower bounds Mi = Ii = 1.2 and Mi = Ii = 1.0. The bounded unmodeled

dynamics and disturbances are assumed to be

fvi(t) = 1.2sin(1.2t) and fwi(t) = 1.2cos(0.2t)
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with the corresponding known bounds on them f +
vi = f +

wi = 1.2. The size of the

boundary layer was chosen as ε = 0.1 and the value of ε̄ which is added to the

denominator in the equation of θ̇id within the boundary layer in order to prevent un-

boundedness was chosen as ε̄= 0.01. The rest of the parameters are case dependent

and hence specified in the corresponding sections below.

Before proceeding to results for the particular cases, note that for the simulations

below all the steering angles θi and θid were projected within [−π,π). Moreover, the

relative angle differences were calculated (mod 2π) with −π radians shift. In other

words, θi − θid were calculated using [(θi − θid +π)(mod 2π)−π]. This results in

considering the smaller angle between the two orientations as the angle difference

(and forces the agent to turn in that direction instead of the opposite direction).

6.4.1 Aggregation

First we consider the case of swarm aggregation. We performed several simula-

tions with a different number of agents. However, since the simulations obtained

for different parameters and agent numbers are in principle the same (do not differ

qualitatively) here we show only the ones for N = 10 and potential function pa-

rameters a = 0.01, b = 20, and c = 1. As was mentioned in the preceding sections

the bounds αi(x) and βi(x), and therefore the controller gains Ki1(x) and Ki2(x), are

very conservative and the procedure usually works for much smaller bounds. For

this reason, in order to avoid numerical problems we saturated the controller gains

of all the agents at K1max = 10 and K2max = 20. As a slope parameter of the orien-

tation sliding line/surface we used cθi
= 0.1 for all agents. The simulation results

show that the agents aggregate as predicted by theory.

Figure 6.3(a) shows the motion (the trajectories) for random initial positions and

orientations. The agents are plotted as polygons so that their orientations are explic-

itly shown. It is observed that the agents aggregate quickly and after aggregation

they start to reorient themselves since there the variation of the time-varying poten-

tial function (which is due to the motion of the other agents in the group) is higher.

Figure 6.3(b) depicts the inter-agent distances during the motion of the swarm. The

curves specify the maximum, minimum, and average distances between the agents

of the swarm. The distance decreases exponentially as expected and they converge

to constant values similar to the results obtained before. For the above values of the

parameters a, b, and c the distance at which the attraction and repulsion between

two individuals balance is δ= 2.7570. As can be seen from the figure, no collisions

between agents occur and the final swarm size becomes approximately 6.8. An in-

teresting observation here is that at their final positions the agents are distributed

in almost a grid-like arrangement. Also, one should note that the distances between

final positions of swarm members change for different values of attraction and re-

pulsion parameters. For example, increasing the attraction parameter a or decreasing

the repulsion parameter b results in a decrease in the inter-agent distances at the final

positions.

The effect of disturbances results in the fact that even after aggregation the control

inputs ui1 and ui2 do not converge to zero. Instead, they continue to counterbalance



6.4 Simulation Examples 143

−10 0 10 20 30 40 50
10

15

20

25

30

35

40

45

50

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50
The intermember distances

time

d
is

ta
n
c
e

 

 

maximum

average

minimum

(a) The paths of the agents in the swarm. (b) Inter-agent distances in the swarm.

Fig. 6.3. Aggregating swarm of agents with non-holonomic vehicle dynamics subject to ex-

ternal disturbances and model uncertainty.

disturbances to preserve cohesiveness. Figure 6.4 shows the ui1 and ui2 inputs for

a randomly selected agent. Normally, because of the highly conservative values of

the bounds, these inputs would become very large. However, as mentioned above to

avoid numerical problems here we saturated them. It is interesting to note from Fig-

ure 6.4(a) that ui1 is saturated only at the beginning of the motion of the swarm and

in a short period of time (only few seconds) it converges to a function such that to

counterbalance the additive disturbance fvi(t). In contrast, in order to accommodate

the abrupt changes in the direction of the gradient (which occurs after aggregation)

the value of ui2 shown in Figure 6.4(b) is continued to be saturated with high fre-

quency after aggregation. The reader can easily note that the behavior of the swarm

is similar to the behavior of the swarms presented in Chapter 3 and Chapter 5.
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Fig. 6.4. The ui1 and ui2 control inputs of an arbitrary agent in the swarm.
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6.4.2 Social Foraging

Figure 6.5(a) shows the paths of the agents for the case of a social foraging swarm

with N = 10 agents and parameters of the inter-agent potential function as for the

aggregation case or a = 0.01, b = 20, and c = 1. The environmental resource profile

is the same multimodal Gaussian profile considered in the preceding chapters which

is composed of M = 10 Gaussians (see for example Section 5.4.2). For the simula-

tion presented in Figure 6.5 the control input gains were saturated at K1max = 20 and

K2max = 40 and the slope parameter of the orientation sliding line/surface is chosen

as cθi
= 0.05. The contour curves in Figure 6.5(a) show the equipotential contours

of the environmental potential. As can be seen from the figure the agents tend to

move towards the minima of the profile while staying cohesive with close neighbors

and avoiding maxima. Figure 6.5(b) shows the positions of the agents (indicated as
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(a) The paths of the agents. (b) The final positions of the agents.

Fig. 6.5. Foraging swarm of agents with non-holonomic vehicle dynamics subject to external

disturbances and model uncertainty.

circles) at the end of the simulation (i.e., after 100 seconds) as well as the motion of

the centroid of the swarm (indicated as stars). As one can see, the agents have ag-

gregated around respective local minima points of the resource profile as expected

by the theory. The shape of the control inputs ui1 and ui2 of the agents is in principle

similar to those obtained for the aggregation case above (except that the gains are

saturated at different values) and therefore not shown here.

6.4.3 Formation Control

Figure 6.6 illustrates a result of an application of the method to the formation control

problem. Figure 6.6(a) shows the paths of the agents, whereas in Figure 6.6(b) the

final positions of the agents marked as small circles, together with the movement

of the swarm centroid marked with stars, are depicted. For this formation control

simulation the control input gains are saturated at K1max = 50 and K2max = 100 and

the slope parameter of the orientation sliding line/surface was chosen as cθi
= 0.05.
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(a) The paths of the agents. (b) The final positions of the agents.

Fig. 6.6. A swarm of N = 6 agents with non-holonomic vehicle dynamics subject to external

disturbances and model uncertainty forming an equilateral triangle formation.

In this simulation a group of six agents are required to form an equilateral triangle

formation with lateral site equal to 2 units. For this reason the desired inter-agent

distances di j are equal to 1, 2, or
√

3 depending on the relative positions of the agents

in the triangle. We used the values bi j = 20 and ci j = 0.2 for all i, j, as parameters

of the potential function J f ormation(x) and calculated ai j (again) using

ai j = bi j exp

(

−
d2

i j

ci j

)

which, given the above mentioned desired inter-agent distances results in ai j ∈
{0.1348,6.1180× 10−6,4.1223× 10−8} depending on the inter-agent distances in

the desired formation. As one can observe from the figure the objective is achieved

despite the uncertainties and disturbances in the agent dynamics.

6.4.4 Swarm Tracking

In this subsection the simulation results for swarm tracking will be presented. The

target is assumed to move with non-holonomic dynamics similar to the dynamics of

the agents. The equations of motion of the target are given by

ẋT = vT cos(θT ),
ẏT = vT sin(θT ),
θ̇T = wT ,

(6.45)

and the control inputs (the translational and angular speeds) of the target are as-

sumed to be
vT (t) = 1.5,
wT (t) = 0.5sin(0.4t)

We use γtv = 1.5 and γta = 0.75 as bounds on the velocity and the acceleration of

the target. The parameters of equation (6.24) are selected as η = 0.1 and λ = 1.6
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(λ> γtv). The approximation function of signum in (6.25) is used with ε= 0.1 which

is also the value of the boundary layer. The parameters specifying the weights of the

formation and tracking potentials in the artificial potential function are chosen as

Wt = 0.1 and Wf = 0.9 giving higher importance to the formation. The geometrical

shape for the formation is chosen to be the same equilateral triangle as in the pre-

ceding section with parameters bi j = 20 and ci j = 20 for all i, j, and the values of

ai j were calculated using the equation provided in the preceding section. The slope

parameter of the orientation sliding line/surface was chosen as cθi
= 0.05.
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(a) The paths of agents and target. (b) The final positions of agents and target.

Fig. 6.7. A swarm of N = 6 agents with non-holonomic vehicle dynamics subject to exter-

nal disturbances and model uncertainty tracking a moving target and forming an equilateral

triangle formation.

Figure 6.7 shows the results for a typical simulation run. The paths of the agents

are shown in Figure 6.7(a), whereas Figure 6.7(b) presents the relative positions of

the agents marked with circles and the target marked with a star at the end of the

simulation. The initial configuration of the target is given by [3,3,0] while the agent

positions are initialized randomly within [0,30]× [0,30] with random orientations.

As can be seen from the figure, the agents enclose/surround the target very fast, form

the desired formation around it, and move together with it.

The plots of the ui1 and ui2 controller inputs for an arbitrary agent are shown in

Figure 6.8. They were saturated at K1max = 100 and K2max = 200 as can be seen from

the figure. However, as one can also notice after some transient their values settle to

counterbalance the disturbances as the swarm moves in a formation surrounding the

target.

6.5 Further Issues

6.5.1 Model Equivalence

Note that although in the model in (6.1) the control inputs are the force ui1 = Fi and

the torque ui2 = τi, the model is equivalent to the case in which the control inputs
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Fig. 6.8. The ui1 and ui2 control inputs of an arbitrary agent in the swarm.

are the voltages ūi1 = VRi
and ūi2 = VLi

to the motors driving the two wheels of a

differentially driven robot depicted in Figure 6.1. To see this note that

vi =
ri(wRi

+ wLi
)

2
and wi =

ri(wRi
−wLi

)

2Li

where wRi
and wLi

are the turning angular speeds of the right and the left motors, re-

spectively, ri is the radius of the wheels, and 2Li is the length of the axel connecting

the two wheels. The first order motor dynamics of the wheels can be represented as

ẇRi
= fRi

(·)+ bRi
VRi

ẇLi
= fLi

(·)+ bLi
VLi

(6.46)

where VRi
and VLi

are the voltages applied to the right and the left motors, respec-

tively, whereas fRi
(·), fLi

(·), bRi
, and bLi

represent respectively the system functions

and parameters including uncertainties. Using these we have

v̇i =
ri

2

(

fRi
(·)+ fLi

(·)
)

+
ri

2

(

bRi
VRi

+ bLi
VLi

)

and

ẇi =
ri

2Li

(

fRi
(·)− fLi

(·)
)

+
ri

2Li

(

bRi
VRi

−bLi
VLi

)

Then, redefining

fvi
=

miri

2

(

fRi
(·)+ fLi

(·)
)

and fwi
=

Iiri

2Li

(

fRi
(·)− fLi

(·)
)

and

Fi =
miri

2

(

bRi
VRi

+ bLi
VLi

)

and τi =
Iiri

2Li

(

bRi
VRi

−bLi
VLi

)

one obtains the model in (6.1). In other words, the relation between the model

in (6.1) and an alternative agent model given by
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ṗxi =
ri(wRi

+wLi
)

2
cos(θi),

ṗyi =
ri(wRi

+wLi
)

2
sin(θi),

θ̇i =
ri(wRi

−wLi
)

2Li
,

ẇRi
= fRi

(·)+ bRi
VRi

ẇLi
= fLi

(·)+ bLi
VLi

(6.47)

is just a simple linear transformation. Therefore, the results in this chapter hold also

for swarms composed of agents with dynamics represented with Equation (6.47).

6.5.2 Extensions and Generalizations

One restriction here is that to calculate the bounds αi(x) and βi(x) and therefore

implement the control algorithm for agent i one needs not only the position but also

the velocity of its neighbors. In the particular setting here the neighbors of an agent

are all the other agents. However, this is not necessarily required to be the case

in general and the procedure can be extended to the case in which not all agents

are neighbors of each other (but there is a strongly connected interaction graph).

Moreover, the neighbor agent velocities can be estimated using adaptive methods or

vision based techniques.

The shortcomings of the raw form of the sliding mode control scheme are the so-

called chattering effect and possible generation of high-magnitude control signals.

These shortcomings may possibly be avoided or relaxed via usage of observers,

integration, and adaptive or some filtering techniques. Alternative methods can also

be employed. A simple study in this direction for a target tracking problem using

fully actuated agents and adaptive backstepping can be found in [73]. Also note that

the effect of introducing of the tanh function instead of the sign function (which has

in a sense a boundary layer effect) or using the desired orientation in (6.10) was

not mathematically analyzed. It is also possible to introduce a boundary layer and

rigorously analyze the behavior of the system within the layer.

6.5.3 For Further Reading

There are studies which consider only the kinematic part of the dynamics in (6.1)

consisting of only the first three equations [56, 68, 89, 150, 166, 212, 216, 237, 266]

ṗxi = vi cos(θi),

ṗyi = vi sin(θi),

θ̇i = wi, (6.48)

Some authors [236] have considered a four-state part of the model in (6.1) or the

complete five state model [144] using alternative techniques. It is also possible to

add one more integrator to the force input terminal of the model in (6.1) and extend

it to a six state model which, under certain conditions, can be completely linearized

via the feedback linearization method [78].
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It is well known that for the dynamics in (6.1) the position xi = (pix, piy) and

the orientation θi of the robot cannot be simultaneously stabilized by a continuous

static (time-invariant) feedback [29]. In order to avoid this problem one may, for

some di > 0, define

zi =
[

pix + di cos(θi), piy + di sin(θi)
]⊤

(6.49)

as the output of the system and set the control objective based on the position of

that output. This output may represent the position of a gripper at the end of a hand

of length di or a sensor positioned in front of the robot. With respect to that out-

put the system is input-output feedback linearizable with a well defined relative

degree equal to two [144]. The drawback is that under the feedback linearizing con-

troller the zero dynamics of the system are only marginally stable, which may lead

to instability in the internal unobservable dynamics during tracking of certain tra-

jectories [78, 144]. This may not be a problem in some applications since internal

unobservable dynamics constitutes of the orientation angle θi. However, if having

unstable θi is unacceptable one should not use a feedback linearizing controller and

seek different techniques as was done in this chapter.

A simplified version of the kinematic model in (6.48) with all agents moving with

a fixed translational speed vi = v for all i is called the Dubins’ vehicle model and is

widely used in the literature [63, 166, 213]. In some studies it is also represented in

the form

ṗi = e jθi

θ̇i = ui (6.50)

where the vector pi ∈C ≈R
2 denotes the position of agent/particle i in complex no-

tation and e jθi = cos(θi)+ j sin(θi) (here j =
√
−1). This was the model considered

in [216] where the authors studied the connection between oscillator synchroniza-

tion and collective motions.

The Dubins’ vehicle model is found useful in various studies where each vehi-

cle of interest is required to move with a constant translational speed because of

dynamic constraints (such as the ones for flight of certain unmanned aerial vehi-

cles (UAVs) at a specified altitude) [213, 238] or optimality considerations (such as

using the maximum available speed of each vehicle) [27, 213].

This chapter is based on the works in [88, 90, 163]. The primary gradient track-

ing tools were developed earlier in [110, 112, 113] and here were applied to the

swarm related problems. For general references on sliding mode control one can

see the tutorials [244, 262] and the books [245, 247]. Implementations of potential

function based strategies on real mobile robots with unicycle dynamics can be found

in [167, 168].
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Formation Control Using Nonlinear Servomechanism

In this chapter we consider the formation control problem in the context of output

regulation of nonlinear systems or basically nonlinear servomechanism, which is

a completely different approach from the potential functions method discussed in

the preceding chapters. First we formulate the problem for general nonlinear agent

dynamics and present two different type of controllers which are namely the full

information and error feedback controllers. Following that we discuss how various

formation maneuvers can be achieved using the procedure presented. Finally, nu-

merical simulation examples are presented in order to illustrate the technique.

7.1 General Non-linear Agent Model

Let us consider a multi-agent system which consists of N agents with motion dy-

namics described by the general non-linear model of the form

ẋi = fi(xi,µi,ui),

yi = hi(xi,µi),1 ≤ i ≤ N, (7.1)

where xi ∈ R
ni represents the local state of agent i, ui ∈ R

mi represents its local

control input, µi ∈ R
ri represents the local exogenous inputs (i.e., local reference

inputs and possibly disturbances) affecting the dynamics of agent i and yi ∈R
mi is its

local output. The outputs yi are assumed to be variables which are used to define the

formation. For example, for vehicle formations xi may represent the internal vehicle

states, whereas yi the position and/or orientation or basically the configuration of

the vehicle. It is assumed that the functions fi and hi are known and smooth for all

i = 1, . . . ,N.

The signals µi are assumed to be generated by the local neutrally stable systems

µ̇i = gµi
(µi), i = 1, . . . ,N, (7.2)

where gµi
are also known and smooth. Local reference inputs could be, for example,

variables which determine the relative positions of the individuals in the formation.
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Therefore, these local systems could be used to generate the reference trajectories

for the agents during formation maneuvers such as expansion/contraction, rotation,

topology change or reconfiguration of the formation or others. Moreover, they can

model any local neutrally stable (i.e., mostly constant or periodic) disturbances act-

ing on the agent dynamics.

In this chapter we consider only the formation control problem, i.e., the problem

in which the group of agents moves in a predefined formation. However, the pro-

cedure can easily be extended to work for other behaviors such as aggregation and

foraging as well. To begin with, we assume that the desired formation is uniquely

determined by a set of constraints as defined below.

Assumption 10. There are a set of predefined constraints

ηi, j(yi,y j,t) = 0,1 ≤ i, j,≤ N, j �= i, (7.3)

which uniquely determine the formation.

We would like to mention here that the word uniquely in Assumption 10 is used

in a loose sense, meaning uniquely in terms of geometrical shape and translation

and rotation of the complete formation might be allowed. The time dependence of

the constraints is due to the fact that it might be needed for the swarm to perform

formation maneuvers as time progresses. Moreover, note that Equation (7.3) is de-

fined as if there are constraints for every pair (i, j) of individuals. However, it is not

absolutely necessary to have constraints for every pair of agents. It is sufficient to

have only minimal number of constraints, which “uniquely” determine the desired

formation. For example, in R
2 for every agent it is sufficient to have constraints with

respect to only two appropriately chosen preceding agents. It is possible to obtain

such a set of minimal number of constraints, by using the concepts of rigid and

unfoldable graphs from graph theory.

For many applications involving collective of autonomous robots, marine ve-

hicles, uninhabited aerial vehicles (UAV’s) or space vehicles such as satellites or

inter-terrestrial vehicles the constraints in (7.3) may be just requirements in terms

of relative distances of the form

ηi, j(yi,y j,t) = ‖yi − y j‖−di j(t) = 0,1 ≤ i, j,≤ N, j �= i, (7.4)

where di j(t) is the (possibly time varying) desired distance between agents i and j

in the formation. Note, however, that the procedure is not limited to such constraints

only.

In the framework here, we assume that there exists a virtual leader for the for-

mation and the individuals are (i.e., the formation is) required to follow (track) that

leader. In other words, the virtual leader generates the reference trajectories for the

whole formation. Then, the objective is to design each of the local control inputs ui

such that the formation constraints in (7.3) are satisfied and the formation follows

the trajectories of the virtual leader. We assume that the dynamics of the virtual

leader are generated by the neutrally stable system
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ṡ = gl(s),

yl = ql(s), (7.5)

where s ∈ R
r and gl is known and smooth. Note that in many applications we can

choose (i.e., design) the virtual leader dynamics based on the mission requirements.

To achieve leader following, in addition to the formation constraints in Assump-

tion 10, the agents in the swarm are required to satisfy a set of tracking constraints

as defined below.

Assumption 11. There are a set of predefined constraints

ηi,l(yi,yl , t) = 0,1 ≤ i ≤ N, (7.6)

which need to be satisfied by the agents during motion.

As in the case of formation constraints, for many robotic, UAV, marine or space

applications, the tracking constraints may be just requirements in terms of relative

distances of the agents to the virtual leader and be of the form

ηi,l(yi,yl,t) = ‖yi − yl‖−dil(t) = 0,1 ≤ i ≤ N, (7.7)

where dil(t) is the (possibly time varying) desired distance between agent i and the

virtual leader.

Note that for each application, depending on the application requirements, we

may have different formation and tracking constraints. For example, for an applica-

tion in which a swarm of agents is required to complete a search and rescue mission

it may be desired that the agents move in a different formation compared to an ap-

plication in which a swarm of agents is required to guard an object. Similarly, the

formation needed by a group of satellites might be different from the formation

needed by a group of military robots. However, it is also important to realize that

the two sets of constraints, i.e., the formation constraints in Assumption 10 and the

tracking constraints in Assumption 11, cannot be just arbitrary. In other words, in

order for the problem to be solvable the formation constraints and the tracking con-

straints need to be nonconflicting with each other, i.e., simultaneous satisfaction of

both of the constraints in (7.3) and (7.6) should be feasible.

One can easily note that since the required motion dynamics of the agents are tied

to the dynamics of the virtual leader through the tracking constraints, it is possible

to view the dynamics of the virtual leader as external inputs to the individual agent

dynamics. With this in mind, for each agent i we define si = [s⊤,µ⊤i ]⊤ and each of

the local exosystems becomes

ṡi = gi(si) =

[
gl(s)

gµi
(µi)

]

, (7.8)

which are neutrally stable and the gi(si) functions are known and smooth. We would

like to emphasize that the assumption that we know the dynamics gi is not absolutely

necessary. In fact, we only need to know the dynamics of an internal model which
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can generate the same output signals as the system in (7.8) (the output of that system

will be defined later). If we use a state feedback controller with full information, then

the internal model is the system itself. If we use an error feedback controller, on the

other hand, the internal model is an immersion of the system.

In order to approach the problem from the perspective of output regulation it

might be possible to view the constraints ηi, j and ηi,l as the new outputs of the

system and develop the local controllers ui to regulate these outputs to zero. How-

ever, here we will not take this approach. Instead, we have the following simplifying

assumption.

Assumption 12. There exist known smooth mappings qi(si), i = 1, . . . ,N such that

ηi, j(qi(si),q j(s j)) = 0,1 ≤ i, j ≤ N, j �= i,

ηi,l(qi(si),ql(s)) = 0,1 ≤ i ≤ N. (7.9)

Assumption 12 constitutes, in a sense, a “feasibility assumption.” We say that

the problem is feasible if the formation constraints (7.3) and the tracking con-

straints (7.6) can both be simultaneously satisfied. In fact, if this is the case, then

there always exists mappings qi(si), i = 1, . . . ,N, satisfying (7.9). Therefore, this

part of the assumption is very realistic and not restrictive at all. The part that restricts

the assumption a little bit is the requirement that the mappings qi(si), i = 1, . . . ,N
are known since, in general, these mappings may not necessarily be always known.

Nevertheless, in many practical formation control applications and in particular for

applications with constraints in terms of relative distances between the agents and

missions such as tracking constant or periodic trajectories it is possible to determine

such mappings.

The mappings qi(si) constitute reference trajectories for the individual agents

which, if tracked by the agents lead to simultaneous satisfaction of both the forma-

tion and tracking constraints. Note also that it is possible to view qi(si) as the output

trajectories of virtual agents whose internal dynamics are given by the exogenous

systems in (7.8). With this perspective, the control objective is to design the control

input to each of the actual agents with vehicle dynamics in (7.1) so as to track the

trajectory generated by the corresponding virtual agent.

Having defined the problem, in the next section we will discuss the nonlinear

servomechanism based controller.

7.2 Nonlinear Servomechanism Based Controller Development

We start by noting that if we can force the output of each system to satisfy yi =
qi(si), then we will guarantee that both the formation constraints and the tracking

constraints are simultaneously satisfied. With this objective in mind we can redefine

the new (error) output of each agent as

ei = h̄i(xi,si) = yi −qi(si) = hi(xi,µi)−qi(si),
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and rewrite the system to obtain

ẋi = f̄i(xi,si,ui),

ei = h̄i(xi,si),1 ≤ i ≤ N, (7.10)

where we used the notation f̄i since we used si instead of µi in fi. The objective in

this new formulation is to find the local control inputs ui so that asymptotic conver-

gence of the output error ei to zero is achieved, i.e., so that

lim
t→∞

ei = 0 (7.11)

for all i = 1, ...,N. Note that with this formulation the problem of formation con-

trol and trajectory following (i.e., both the formation constraints and the tracking

constraints satisfied) in the presence of disturbances is equivalent to the problem of

decentralized nonlinear output regulation (servomechanism) of the class of systems

described with the dynamics in (7.10). Depending on the available information, two

different approaches for controller design are possible, which are the full informa-

tion (namely a state feedback) controller and the error feedback controller. Below

we discuss these controllers. We start with the full information controller.

7.2.1 Full Information Controller

In this section we assume that the states si of the exosystems are known and briefly

discuss conditions on the solvability of the problem. The problem is said to be solv-

able if there exist smooth controllers ui(t) such that (7.11) is satisfied or basically

all the local output errors go to zero. Let us define the first approximation of the

system around the origin as Ai = ∂ fi
∂xi

(0,0,0), Bi = ∂ fi
∂ui

(0,0,0), and Ci = ∂hi

∂xi
(0,0).

Then, based on the results on the nonlinear output regulation problem in [124, 125],

necessary conditions for the solvability of the problem can be stated as

(i) Each of the pairs (Ai,Bi), i = 1, ...,N, is controllable and

(ii) There exist mappings xi = πi(si) and ui = ci(si) for all i = 1, ...,N, with πi(0) = 0

and ci(0) = 0, defined in a neighborhood So
i of the origin of R

ri+r, respectively,

such that

∂πi(si)

∂si

gi(si) = f̄i(πi(si),si,ci(si)), (7.12)

0 = hi(πi(si),si)−qi(si),1 ≤ i ≤ N,

for all si ∈ So
i , respectively.

The equations in (7.12) are called regulator equations or Francis-Byrnes-Isidori

(FBI) equations. The vector of the mappings xi = πi(si) is the equation of a manifold

on which the vector of the output errors ei is zero and the vector of the control inputs

ui = ci(si), sometimes called a friend in the literature, is the control input which

renders this manifold invariant. Therefore, for the solvability of the problem we

need the existence of such a manifold and the corresponding controller.
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Given that the states si of the exosystems are known and assuming that the non-

linear partial differential equations in Equation (7.12) are solvable for the mappings

πi(si) and ci(si), the above two conditions are also sufficient for the solvability of the

problem. In fact, a full information controller which locally asymptotically achieves

ei(t) → 0 is given by

ui = ci(si)+ Ki

(
xi −πi(si)

)
, (7.13)

where each of the matrices Ki is chosen such that the matrices (Ai −BiKi) are Hur-

witz for all i. Note that the controller in (7.13) renders the system matrix of the first

approximation of the system in (7.10) Hurwitz. Then, by redefining x̃i = xi −πi(si)
and analyzing the dynamics of the first approximation one can show that x̃i → 0 im-

plying that xi → πi(si) and ui → ci(si) which from the relations in (7.12) lead to the

satisfaction of the requirements in (7.11). From this respect the term Ki

(
xi −πi(si)

)

in the full information controller in (7.13) renders the zero-error manifold xi = πi(si)
locally attractive, whereas the term ci(si) keeps the state xi of the system on the

manifold once it is reached, i.e., ci(si) renders the zero-error manifold xi = πi(si)
invariant. The fact that ei(t)→ 0 for all i implies that yi = hi(xi,µi)→ qi(si) and that

asymptotically the formation control and collective trajectory tracking objectives

are achieved.

Note that the individuals do not need to have information about the other agents

in the system. They only need to know the information about the virtual leader and

their local inputs (specifying their desired relative position). Note, however, that in-

herently there is a drawback in this since it cannot guarantee avoidance of collisions

between the agents. In order to guarantee avoidance of collisions there is a need

to augment (or redesign) the stabilizing controller with a collision avoidance term.

One possibility is to use a collision avoidance method based on artificial potential

fields. However, discussing such an approach is outside of the scope of this chapter

since it needs further investigations.

7.2.2 Error Feedback Controller

In the full information controller it was assumed that the exogeneous state si and the

mappings πi(si) and ci(si) are known. However, sometimes it may not be possible

to know si or to solve (7.12) for the mappings πi(si) and ci(si). For example, if si

contains unmeasurable disturbances, then it may not be known. Despite that, if we

would like to have ei(t)→ 0 as t →∞, then one may need to develop a decentralized

dynamic error feedback controller (i.e., a controller that uses only the local output

information ei) which still achieves the objective.

In order for the error feedback nonlinear servomechanism problem to be solvable

we need a few more necessary and sufficient conditions to be satisfied in addition to

the conditions (i) and (ii) above required for the solvability of the problem using a

full information controller. These conditions can be stated as follows

(iii) For all i = 1, ...,N, the autonomous systems with outputs

ṡi = gi(si),

ui = ci(si),
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are immersed into

ξ̇i = ϕi(ξi),

ui = γi(ξi), (7.14)

defined on neighborhoods Ωi of the origins of R
pi , respectively, in which

ϕi(0) = 0 and γi(0) = 0.

(iv) For all i = 1, ...,N, the matrices

Φi =
[
∂ϕi

∂ξi

]

ξi=0
and Γi =

[
∂γi

∂ξi

]

ξi=0

are such that each of the pairs

[
Ai 0

MiCi Φi

]

,

[
Bi

0

]

, (7.15)

is stabilizable for some Mi and each of the pairs

[
Ci 0

]
,

[
Ai BiΓi

0 Φi

]

, (7.16)

is detectable.

If these conditions are satisfied, the decentralized error feedback nonlinear ser-

vomechanism problem is solvable and the local controllers which solve the problem

are given by

ξ̇i = ϕi(ξi)+ Miei,

χ̇i = Ψiχi + Liei,

ui = γi(ξi)+ Giχi,1 ≤ i ≤ N, (7.17)

where the matrices Ψi, Li, and Gi are chosen such that the matrices

Ãi =

[
Āi B̄iGi

LiC̄i Ψi

]

,

where

Āi =

[
Ai BiΓi

MiCi Φi

]

, B̄i =

[
Bi

0

]

, and C̄i =
[

Ci 0
]
,

are Hurwitz. Note that such a triple of matrices, i.e., Ψi, Li, and Gi, always exists.

In other words, the above conditions guarantee the existence of such a stabilizing

controller. For example, one possible choice is an observer based controller given

by [136]

Ψi = Āi − B̄iKi −HiC̄i, Gi = Ki, Li = −Hi, (7.18)

where Ki and Hi are such that the matrices (Āi − B̄iKi) and (Āi −HiC̄i) are Hurwitz.

Note that the controller in (7.17) consists of two parts in parallel. The first part,

which is due to the immersion, is called internal model or servocompensator and is
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able to asymptotically recover ci(si), whereas the second part is called stabilizing

compensator and renders the interconnection of the system and the internal model

asymptotically stable.

We would like to emphasize here once more that the results described above

are local results for the general nonlinear agent/vehicle dynamics given in Equa-

tion (7.1). In other words, since they have been derived based on the first approx-

imation of the system dynamics, they do not hold globally, i.e., they may not, in

general, hold for all possible initial conditions. If, however, the vehicle dynamics

for the agents are linear, then the results will hold globally.

7.3 Formation Reconfiguration

In addition to satisfaction of the formation and tracking constraints another require-

ment on the system might be to perform different formation maneuvers such as ex-

pansion/contraction, rotation, and reconfiguration during motion. To achieve these

we use the local exogeneous inputs µi. With this objective we assume that the tra-

jectory qi(si) to be tracked by the ith agent can be written as

qi(si) = ql(s)+ q f (µi)

where the functions q f (µi) are appropriately defined and specify the reference tra-

jectories to achieve the needed maneuvers. For example, in a two dimensional space

it can be defined as

q f (µi) = µi1R(µi2)

where µi1 and µi2 are the local variables (reference inputs or parameters) and R :

R → R
2 is the unity “rotation vector”

R(µi2) =

[
cos(µi2)
sin(µi2)

]

With this formulation µi1 determines the relative distance of agent i to the virtual

leader, whereas µi2 determines the relative angle between its position and the po-

sition of the virtual leader in some global coordinate frame (located for example

on the virtual leader). Here µi1 can be used for expansion/contraction and topology

change (formation reconfiguration) maneuvers, whereas µi2 can be used for rotation

and topology change maneuvers. In order to illustrate the basic idea, below we will

stick to the two dimensional case keeping in mind that similar ideas hold for higher

dimensional models as well.

If the desired formation is fixed, then µi1 and µi2 can be chosen as constants

(parameters), i.e., for a fixed formation the dynamics of µi1 and µi2 can be stated as

µ̇i1 = 0,
µ̇i2 = 0, i = 1, . . . ,N,

(7.19)

and µi1(t) = µi1(0) and µi2(t) = µi2(0) for all t ≥ 0 and for all i = 1, ...,N. Other-

wise they might need to be dynamically varied appropriately in order to achieve the
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desired maneuver. It is also possible to assume that they are fixed and design the

controller accordingly. Then, occasionally when there is a need for formation ma-

neuver switch their values. We will take this last approach and develop the controller

with the assumption that µi1 = µ̄i1 and µi2 = µ̄i2, where µ̄i1 and µ̄i2 are constants and

occasionally switch their values as desired. However, we will also briefly discuss

how they can be dynamically varied to achieve the desired formation maneuvers.

Assuming that the tracking constraints are given by (7.7) in order for them to be

satisfied we need to have

‖qi(si)−ql(s)‖ = ‖q f (µi)‖ = dil ,

which for the two dimensional case above is reduced to the form

‖µi1R(µi2)‖ = dil.

This, on the other hand, results in the requirement

µi1 = µ̄i1 = dil, i = 1, . . . ,N,

which is obtained using the fact that ‖R(µi2)‖ = 1. Similarly, in order for the forma-

tion constraints to be satisfied we need

‖qi(si)−q j(s j)‖ = ‖q f (µi)−q f (µ j)‖ = di j,

which for the two dimensional case above becomes

‖µi1R(µi2)−µ j1R(µ j2)‖ = di j.

Then, using the cosine theorem we have

‖dilR(µi2)−d jlR(µ j2)‖ =
√

d2
il −2dild jl cos(µi2 −µ j2)+ d2

jl = di j,

from which µi2 −µ j2 can be expressed as

µi2 −µ j2 = cos−1

(

d2
il + d2

jl −d2
i j

2dild jl

)

.

If the constraints are feasible, then for fixed formations there exist constant values

µ̄i1 = dil for all i = 1, ...,N, and µ̄i2 and µ̄ j2 for all i = 1, ...,N, and j = 1, ...,N, such

that the above conditions are satisfied. Since the cosine inverse has two possible

solutions we need the relative angle and the constraints of at least two agents j and

k in order to be able to uniquely determine the desired relative angle of agent i.

Below we will briefly discuss how to generate different formation maneuvers

such as expansion/contraction, rotation, or topology change or basically reconfigu-

ration of the formation. In these discussions we will use the two dimensional case

above. However, one can easily develop counterparts for higher dimensional spaces

as well.
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7.3.1 Expansion/Contraction

Let us first consider the expansion/contraction maneuver while keeping constant

relative angles with respect to the virtual leader. Assume that at some time t1 an

expansion or contraction maneuver is requested from the swarm (possibly by an

external operator). In other words, assume that at time t1 the desired inter-agent

distances di j(t) and dil(t) are reset as

dil(t
+
1 ) = ρ1dil(t

−
1 ), ∀i,

di j(t
+
1 ) = ρ1di j(t

−
1 ), ∀i, j,

where ρ1 > 0 is a positive constant determining the amount of expansion/contraction

and satisfies ρ1 > 1 for expansion and ρ1 < 1 for contraction. Note that for proper

expansion/contraction all the desired distances are reset by the same relative amount.

Then, to achieve the maneuver, the easiest method is to reset the values of the “mag-

nitude parameter” µi1 accordingly as

µi1(t
+
1 ) = ρ1µi1(t

−
1 ), ∀i.

As was mentioned above for this case the controller is designed as if the value of µi1

is constants, i.e., assuming that µ̇i1 = 0. Therefore, after each switch there will be a

short transient during which the system will expand or contract to the new desired

relative positions.

7.3.2 Rotation

Now let us consider the rotation maneuver while keeping constant relative distances

with respect to the virtual leader, i.e., keeping constant formation size. Analogous to

the expansion/contraction maneuver, assume that at some time t3 a rotation maneu-

ver is requested from the swarm. In other words, assume that at time t3 the desired

relative angles (with respect to some global coordinate system), say θil(t), are reset

as

θil(t
+
3 ) = θil(t

−
3 )+ρ2, ∀i,

where ρ2 is a rotation parameter which satisfies ρ2 > 0 for rotation in the counter

clockwise direction and ρ2 < 0 for rotation in the clockwise direction. To achieve

the desired rotation, again the simplest method is to reset the values of µi2 as

µi2(t
+
3 ) = µi1(t

−
3 )+ρ2, ∀i.

Similar to the expansion/contraction maneuver, for this case there will be a short

transient after each reset. However, the controller is simple since it is designed based

on the assumption that µi2 is constant.
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7.3.3 Topology Change

We would like to briefly mention here also that with appropriate simultaneous reset-

ting or variation of the values of both µi1 and µi2 for all the agents, it is possible to

achieve formation reconfiguration (i.e., switching from one formation to another).

For example, in a swarm of agents to switch from any (e.g., triangular) formation to

a line formation we can reset µi1 and µi2 from their original values to µi1 = id and

µi2 = π for all i, where d is the desired inter-agent distance in the line formation. In

other words, as the system is moving in a given formation, similar to the previous

cases we can just “reset” the reference trajectories qi(si) based on the next desired

formation. Then, the nonlinear servomechanism based controller will guarantee that

the new formation is achieved after a short transient.

Note that it is possible to vary the dynamics of the local inputs µi and achieve

smoother transitions. In that case, in order to satisfy the stated assumptions the dy-

namics should be stable. Another option is to have piecewise constant inputs to

the local exosystems in (7.2). We will not pursue these options here. However, the

reader should be aware that such options exist.

7.4 Illustrative Examples

In this section we will provide few simulation examples in order to illustrate the

effectiveness of the method discussed in the preceding sections. Assume that we

have a system consisting of N = 6 agents, with point mass dynamics moving in a

two dimensional space. In other words, we have

ẋi = vi,

v̇i = µi3 + ui,

yi = xi,

where xi ∈ R
2 is the position, vi ∈ R

2 is the velocity, µi3 ∈ R
2 represents the local

external disturbances acting on the system, and ui ∈ R
2 is the control (force) input

(without loss of generality we assumed unity mass for all the agents). Note that we

used the notation µi3 for the local external disturbances since we reserved µi1 ∈ R

and µi2 ∈ R for denoting the local external reference inputs to be used for gener-

ating different formation maneuvers. Point mass dynamics may seem to be simple.

However, they are suitable for illustrating the procedure. Moreover, note that such

dynamics are being used by many researchers for formation control studies. Let us

assume that the agents are required to move in some predefined formation pattern.

In particular, we will consider the problem of moving in an equilateral triangle for-

mation of the form shown in Figure 7.2 along a circular trajectory. Note that the

formation constraints for this type of formation are of type of (7.4) with desired

inter-agent distances di j depending on the relative position of the agents in the for-

mation as well as the size of the triangle. In particular, in the simulations below

we require an equilateral triangle formation with side lengths equal to 2
√

3. This,

depending on the relative positions of the agents in the formation, results in desired
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inter-agent distances di j =
√

3, di j = 3, and di j = 2
√

3. Initially we illustrate the

constant formation case, following which perform formation maneuvers as well.

The virtual leader dynamics which can generate circular trajectory can be expressed

by the linear system of the form

ṡ = Gls,

yl = Cls, (7.20)

where s ∈ R
4 and

Gl =

⎡

⎢
⎢
⎣

0 −β 0 0

β 0 0 0

0 0 0 −β
0 0 β 0

⎤

⎥
⎥
⎦

, Cl =

[
1 0 0 0

0 0 1 0

]

.

Here β is a parameter which determines the frequency of rotation around the circle.

Note that the dynamics of the virtual leader in the two dimensions of the output

space are decoupled from each other. This will ease the development of the con-

troller since one can design the controller for each dimension separately using the

lower order decoupled sub-system. Assume that the parameter β = 1 and the ini-

tial state of the virtual leader is s(0) = [10,0,10,10]⊤. Also, let us fix the position

of the virtual leader at the center of the triangle. Then, from the above formation

constraints the required (fixed) relative positions for the agents with respect to the

leader can be determined as

µ11 = µ21 = µ31 = 1, µ41 = µ51 = µ61 = 2,

and the corresponding relative angles can be set as

µ12 =
π

2
, µ22 = −π

6
, µ32 =

7π

6
, µ42 =

π

6
, µ52 =

5π

6
, µ62 =

3π

2
,

which result in

q f (µ1) = µ11R(µ12) =

[
0

1

]

, q f (µ2) = µ21R(µ22) =

[ √
3

2

− 1
2

]

,

q f (µ3) = µ31R(µ32) =

[

−
√

3
2

− 1
2

]

, q f (µ4) = µ41R(µ42) =

[√
3

1

]

,

q f (µ5) = µ51R(µ52) =

[
−
√

3

1

]

, and q f (µ6) = µ61R(µ62) =

[
0

−2

]

.

Using these the desired position trajectory of agent i is given by

qi(si) =

[
s1

s3

]

+ µi1R(µi2).

As discussed before, one can assume the values of the local reference inputs µi1

and µi2 are constant and still achieve formation maneuvers by switching their values.
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However, for that case during formation maneuvers after the instants at which the

values of the local inputs switch there will be short transient. Nevertheless, it is ex-

pected that the new formation will be achieved in a short period of time. Therefore,

we will design the controller assuming that the derivatives of the local reference

inputs are zero or basically assuming that (7.19) is satisfied.

Under this assumption the manifold and the friend equations are simple and

given by

πi1(si) =

[
s1

s3

]

+ µi1R(µi2),

πi2(si) = β

[
s2

s4

]

,

ci(si) = −µi3 −β2

[
s1

s3

]

.

Note also that since the functions qi(si) are independent from the external distur-

bances µi3, the controller developed using the procedure described will automati-

cally achieve disturbance rejection.

Using the above definitions the full information controller is given by

ui = ci(si)−α1 (xi −πi1(si))−α2 (vi −πi2(si))

which for the given values of the manifold equations is given by

ui = −µi3 −β2

[
s1

s3

]

−α1

(

xi −µi1R(µi2)−
[

s1

s3

])

−α2

(

vi −β

[
s2

s4

])

.

For the stabilizing part of the controller we chose the parameters as α1 = 2 and

α2 = 3, which lead to the poles at −1 and −2. Figure 7.1 shows the response of

the system for about 10 seconds for the case of constant desired formation. For this

simulation we assumed that the local external disturbances acting on the system are

constant as well satisfying

µ̇i3 = 0

for all i. In particular, assuming that µi3 = µ̄i3 is the constant value of the disturbance

we used µ̄i3 = [10,5]⊤. As one can see from the figure, initially the individuals are

not in the required formation; however, they form the formation very fast (exponen-

tially fast) and follow the required trajectory keeping the formation. This is achieved

despite the disturbance present in the system. One drawback is that the full infor-

mation controller assumes that the external inputs si = [s,µi]
⊤ are known including

the disturbances µi3 and uses this information. However, the disturbance may not

necessarily be measurable. For that case, one can use the error feedback controller

which does not require the knowledge of si and still guarantees satisfaction of the

constraints.

Figure 7.2 shows the relative positions of the agents after 10 seconds. The agent

positions are shown by small circles and are located at the desired locations on the

sides and corners of the triangle. The virtual leader position is shown by a circle and

a star and is located at the center of the triangle as desired.
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Fig. 7.1. The response for the full information controller with α1 = 2 and α2 = 3.
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Fig. 7.2. The final positions of the agents in the formation.

Next, let us consider different formation maneuvers using the full information

controller. Figure 7.3 shows the trajectories of the agents as well as the inter-agent

distances during a formation expansion maneuver. The agents start from random

initial positions as before and form the required triangle while tracking the circular

trajectory of the virtual leader. Then at t = 15s a request/command for expanding

the formation to twice its size is received and as one can see from the figure the
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inter-agent distances are increased accordingly. The larger formation is achieved

quickly.
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(a) Agent trajectories. (b) Inter-agent distances.

Fig. 7.3. Agent trajectories and inter-agent distances during an expansion maneuver.

Figure 7.4 shows the trajectories of the agents and the relative angles of the agents

with respect to the virtual leader during a formation rotation maneuver. Similarly to

the expansion maneuver the agents start the rotation maneuver at time t = 15s. The

desired amount of rotation is π
3

which results in the fact that every agent moves to

the position of its preceding agent. As one can see from Figure 7.4(b) the maneuver

is successfully achieved as expected.
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(a) Agent trajectories. (b) Relative angles.

Fig. 7.4. Agent trajectories and relative angles of the agents to the virtual leader during a

rotation maneuver.

Next, let us consider a formation reconfiguration maneuver. In particular let us

assume that the agents are required to switch from the triangle formation to a line

formation. Similarly to the above two cases the maneuvers starts at at time t = 15s.
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Figure 7.5 shows the agent trajectories and the final positions of the agents around

t = 50s. The leader is at the center of the agents and shown with a circle and a star

whereas the agents are spread on both sides of the leader with equal steps of 1 unit.

Figure 7.6 shows the inter-agent distances and the relative angles of the agents to

the virtual leader during the maneuver. As one can see from the figure the relative
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(a) Agent trajectories. (b) Final relative positions.

Fig. 7.5. Agent trajectories and final relative positions of the agents during a reconfiguration

maneuver.
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Fig. 7.6. Inter-agent distances and relative angles of the agents to the virtual leader during a

reconfiguration maneuver.

angles with respect to the leader frame converge to either − π
2

or + π
2

depending on

whether the agent is on one side of the leader or the other. Similarly, the inter-agent

distances converge to the expected/desired values in the line formation.

Before developing the error feedback controller note once more that for this prob-

lem since all the local inputs are constant the dynamics of the system are decoupled
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for the two dimensions of the output space. Therefore, to ease the problem we will

also decouple the problem of the servocontroller design. In other words, we will

consider each dimension as a separate single-input-single-output system and de-

sign the controller for that dimension. Actually, we will design a controller for one

dimension only and use the same structure for the other dimension too, since the

dynamics in both dimensions have the same structure.

Considering only the single dimensional subsystem generating the controller

(i.e., the friend) we have

⎡

⎢
⎢
⎢
⎢
⎣

ṡ1

ṡ2

µ̇i1

µ̇i2

µ̇i31

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 −β 0 0 0

β 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

s1

s2

µi1

µi2

µi31

⎤

⎥
⎥
⎥
⎥
⎦

ci1(si) = −µi31 −β2s1

where µi31 is the first component of µi3. Using the transformation

τi(si) =

⎡

⎣

−µi1 −β2s1

β3s2

β4s1

⎤

⎦

the system is immersed into

τ̇i(si) =

⎡

⎣

0 1 0

0 0 1

0 −β2 0

⎤

⎦τi(si),

ci1(si) =
[

1 0 0
]
τi(si),

which is in observable canonical form. This system is the immersion in (7.14). Since

the exosystem dynamics (i.e., the dynamics of the virtual leader and the local ex-

ternal inputs and disturbances) are linear, the immersion is also linear. Note that for

this system taking again only the decoupled one dimension we have

Ai =

[
0 1

0 0

]

,Bi =

[
0

1

]

,Ci =
[

1 0
]
,

Φi =

⎡

⎣

0 1 0

0 0 1

0 −β2 0

⎤

⎦ , and Γi =
[

1 0 0
]
.

By choosing

Mi =

⎡

⎣

0

0

1

⎤

⎦ ,

the interconnection of the internal model (i.e., the immersion) and system is stabi-

lizable for any nonzero constant β.
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Let the vector P1 denote the desired pole locations of the closed loop system and

P2 denote that of the observer in the observer based controller in (7.18). Then, the

stabilizing controller matrices can be obtained by using the Matlab command place

as

Li = place(Āi,C̄
⊤
i ,P2)

⊤,

Gi = place(Āi, B̄i,P1),

Ψi = Āi − B̄iGi −LiC̄i,

where Āi, B̄i, and C̄i are as defined in the preceding section. For the pole locations at

P1 = P2 = [−1,−1.5,−2,−2.5,−3] the stabilizing controller matrices are given by

Ψi =

⎡

⎢
⎢
⎢
⎢
⎣

−10 1 0 0 0

−61.25 −10 −22.5 −27.5 −62.5
−65.25 0 0 1 0

−62.5 0 0 0 1

−36.75 0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎦

, Gi =

⎡

⎢
⎢
⎢
⎢
⎣

37.75

10

23.5
27.5
62.5

⎤

⎥
⎥
⎥
⎥
⎦

, and

Li =
[

10 23.5 65.25 62.5 37.75
]
.

The plot in Figure 7.7 shows the motion of the system with the above error feed-

back controller for about 50 seconds. Note that compared to the full information

case it takes more time for the system to converge to the desired formation and to

follow the trajectory of the virtual leader. This is due to the fact that it takes some

time for the observer states to converge and therefore to generate the appropriate

control input. Nevertheless, it still converges in a short period of time. The plot in

Figure 7.8 shows the trajectories of the six agents for the last 12.5 seconds of the

above case. As one can see, they have converged to the desired formation and fol-

low the desired trajectory. The final positions of the agents are exactly the same as

shown in Figure 7.2 for the full information controller case and therefore are not

shown here.

Next let us consider different formation maneuvers using the error feedback con-

troller. Figure 7.9(a) shows the inter-agent distances during an expansion maneuver,

whereas Figure 7.9(b) shows the relative angles during a rotation maneuver. In both

cases the maneuver starts at t = 60s some time after the initial formation is settled.

For the expansion maneuver the formation is expected to expend to twice of ini-

tial size, whereas for the rotation maneuver it is required to rotate π
2

radians in the

counter clockwise direction. As one can see from the figure after short transient

the required maneuvers are achieved. The other plots are very similar to the ones

presented above and therefore are not presented here.

For the formation reconfiguration (topology change) maneuver case we consider

the same formation as in the full information controller. In other words, the swarm

has to move from an equilateral triangle formation to a line formation. The maneu-

ver again starts at t = 60s. Figure 7.10(a) shows the inter-agent distances, whereas

Figure 7.10(b) shows the relative angles during the maneuver. As one can see from

the figure, they converge to the expected values. In the new formation the relative

distances between the agents vary from one unit to six units depending on their
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Fig. 7.7. The response for the error feedback controller for about 50 seconds.

relative location in the new formation, whereas the relative angles with respect to

the leader converge to either − π
2

or + π
2

depending on which side of the leader they

are located in. The other plots for the maneuver, i.e., the plots of the trajectories of

the agents and the initial and the final formation as similar to those shown for the

previous cases and therefore not shown here.

As one can notice the transient for the error feedback case is more severe com-

pared to the full information controller case. The main reason for that is due to the

observer based controller. One can see also from the plot in Figure 7.7 that collisions

between agents might be possible during transient. As was mentioned before in its

current form the procedure does not guarantee collision avoidance. This problem

could be overcome by augmenting the controller with a potential functions based

collision avoidance term, which is active only when the agents approach a collision

and vanishes at steady state (when the agents have already formed the formation and

the output error has converged to zero). This was done in [79] for formation con-

trol of nonholonomic mobile robots. Another approach could be to first design the

collision avoidance controller (based on some appropriate method) and augment it

to the system dynamics and then design the servomechanism based controller (dis-

cussed here) to the augmented dynamics. However, achieving rigorous conclusions

on these issues may need careful consideration and further research.
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Fig. 7.8. The response for the error feedback controller after 37.5 seconds.
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(a) Inter-agent distances (translation). (b) Relative angles (rotation).

Fig. 7.9. Agent trajectories for a translation and relative angles for a rotation maneuvers.

7.5 Further Issues

7.5.1 Extensions and Generalizations

The reader should note that the results discussed in this chapter are local results for

the general nonlinear vehicle (i.e., agent) dynamics given in (7.1). In other words,
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(a) Inter-agent distances. (b) Relative angles.

Fig. 7.10. Inter-agent distances and relative angles of the agents to the virtual leader during a

reconfiguration maneuver.

they do not, in general, hold for all possible initial conditions. If, however, the ve-

hicle dynamics for the agents are linear, then the results will hold globally. In the

output regulation literature there are global or semiglobal results available for a

class of nonlinear systems [137, 217–219]. If the agent/vehicle dynamics of the

swarm members are of the form which could be transformed to one of the forms

considered in one of [137, 217–219], then using the corresponding approach in the

mentioned articles with any necessary modifications to fit within the formation con-

trol problem here one can design the controller which will achieve following the

leader while keeping the formation globally or semiglobally.

The full information controller in Equation (7.13) is based on the assumption

that si is measurable and we know the analytic expressions of πi(si) and ci(si). In

order to find the analytic expressions for πi(si) and ci(si), one needs to solve the

partial differential equations in (7.12), which may not be always possible. How-

ever, one can always approximate these mappings arbitrarily closely [38, 122]. If

one cannot solve for πi(si) and ci(si), but still would like to use the full informa-

tion controller in (7.13), then he or she can arbitrarily closely approximate them

by using polynomials or neural networks (or any other universal approximators) as

was done in [38, 122]. This, however, brings the drawback that convergence of the

output errors ei(t) to zero is not guaranteed anymore. Nevertheless, as was shown

in [38, 122] with appropriate choice of the approximator, regulation with arbitrary

accuracy can be achieved. In other words, the output errors ei(t) are still guaranteed

to be bounded with bounds being proportional to the approximation error. Moreover,

better approximation will lead to a smaller tracking error and the tracking error can

be also made arbitrarily small with the appropriate choice of the approximator. We

believe that extension of this approach to the context of the formation control prob-

lem considered here is quite possible. However, analyzing the effects of the output

errors may need careful further investigation.

The assumption that the system in (7.5) is neutrally stable limits the procedure to

tracking the class of constant and periodic (e.g., sinusoidal) trajectories. However,
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note that it still covers many trajectories which may be of interest. Such reference

trajectories can be found in many practical applications such as orbiting satellites

around the earth, agents guarding an object, etc. Moreover, it is possible to generate

and track more complicated trajectories. One approach to this is to apply appropriate

switching in the exosystem generating the external dynamics and in the controller as

was discussed in [80, 83]. Another approach is to include a piecewise constant input

to the exosystem (i.e., virtual leader) dynamics in (7.5). To see this note that the

output of a linear neutrally stable system with piecewise constant inputs (for which

the results here directly follow) can generate many trajectories by appropriate choice

of the input. In particular, note that the output of a system which is a chain of d

integrators is a spline of degree d [141]. Given any smooth trajectory, it is possible

to approximate it using splines [255]. Then, choosing an appropriate sequence of

piecewise constant inputs to the virtual leader dynamics (chosen as a set of cascaded

integrators) it might be possible to generate these splines (and therefore the desired

trajectory). The only shortcoming for this case is that we need the switching between

the values of the input to be slow enough (implying that the reference trajectory is

smooth enough) so that tracking can be achieved. Here slow enough and smooth

enough will depend on the time constants and the speed of the response of the agent

dynamics in (7.1).

7.5.2 For Further Reading

The output regulation problem for linear systems was studied extensively in the

70’s in [50–52, 75–77] and other related papers. Output regulation of nonlinear

systems was first pursued by Huang and Rugh [121] for systems with constant

exogenous signals and by Isidori and Byrnes [124, 125]. Other relevant work in-

clude [38, 122, 123, 253] which approximate the solutions of the regulator equa-

tions. Results on robust regional, semiglobal, and global regulation of nonlinear

systems or regulation in systems with parameterized exosystems and adaptive inter-

nal models can be found in [137, 217, 219, 220]. Recent works on decentralized or

switched output regulation can be found in [83, 96, 260].

In [96] the decentralized output regulation problem for a class of nonlinear sys-

tems including interconnected systems was analyzed in the framework of [124].

Note that the system here is a special case of the systems considered there. There-

fore, the results in this chapter rely heavily on the results in [124]. One issue to

be noted, however, is that despite the fact that the controller design presented here

is based on decentralized output regulation results in [96], the existence of the vir-

tual leader brings some kind of centralization to the controller. In the decentralized

output regulation framework the controller of each subsystem of the overall sys-

tem (which corresponds to each agent in the case here) uses only local information.

Here, a similar procedure is used; however, there is coupling between the agents

due to the virtual leader dynamics. This may not be desirable in some applications

and may seem to be a shortcoming. Note, however, that many current approaches

contain similar centralization (see for example [13]).
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The notion of a virtual leader for formation control was introduced in [68]. The

formation control problem discussed in this chapter is very similar to that consid-

ered in [68]. However, the approach here to the solution of the problem is completely

different. There the authors use formation function (which is in a sense an artificial

potential function) which attains unique global minimum at the desired formation

and gradient descent (i.e., motion along the negative gradient of the formation func-

tion) to achieve the desired formation. In contrast, here we use techniques from

nonlinear output regulation literature, which are fundamentally different. This also

allows us not only to track the virtual leader and to form the desired formation, but

also to reject constant or periodic disturbances, whereas no issue of disturbances is

discussed in [68]. For a work on achieving formation maneuvers using a different

method the reader can consult [187]. Recently, as an extension of the results in this

chapter, adaptive internal models have been also employed for the formation con-

trol and reconfiguration problem. A work in this direction can be found in [108]. A

work which considers the same problem of formation control and trajectory track-

ing using an alternative approach or basically adaptive fuzzy systems can be found

in [64].
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Discrete Time Swarms



8

One-Dimensional Discrete-Time Swarm

8.1 The Swarm Model

The simplest case which can be considered in a discrete-time setting is the case in

which a swarm moves in one-dimensional space. In this chapter we will consider

this case. First, we describe the model of a single agent. Then, we present the one-

dimensional swarm model (i.e., when many agents are arranged next to each other

on a line). The model we consider also allows for asynchronous operation and time

delays in neighbor position sensing. Therefore, the analysis of the swarm dynamics

is relatively difficult. For this reason, we first analyze the dynamics of the swarm

under the assumption of synchronous operation and perfect sensing (without time

delays). Then, we build on the results obtained for this case and investigate the

dynamics of the asynchronous swarm with sensing delays.

8.1.1 Agent Model

Consider a swarm which moves in one-dimensional space and consists of agents

represented with a schematic shown in Figure 8.1. Each agent is assumed to have

(left and right)

Position sensors

Neighbor

for movements

Driving device

Left−looking
proximity sensor

Right−looking

proximity sensor

Fig. 8.1. Single agent representation.

a driving device for performing its movements and neighbor position sensors for

sensing the position of the adjacent (left and right) neighbors. It is assumed that
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there is no restriction on the range of these sensors. In other words, it is assumed

that they can provide the accurate position of the neighbors of the given agent even if

the neighbors are far away. In addition to the neighbor position sensors it is assumed

that each agent also has two close proximity sensors on both sides (left and right).

These sensors have sensing range of ε > 0 and can sense instantaneously in this

proximity. Therefore, if another agent reaches an ε distance from it, then this will be

instantaneously known by both of the agents. However, if the neighbors of the agent

are out of the range of the proximity sensor, then it will return an infinite value (i.e.,

−∞ for the left sensor and +∞ for the right sensor) or some large number which will

be ignored by the agent. The use of this sensor is to avoid collisions with the other

agents in the swarm.

In the next section we describe the interaction model between the agents with

these properties or basically the model of a swarm composed of agents described in

this section arranged on a line.

8.1.2 One-Dimensional Swarm Model

Consider a discrete-time one-dimensional swarm described by the model

x1(t + 1) = x1(t), ∀t,

xi(t + 1) = max
{

xi−1(t)+ ε,min
{

pi(t),xi+1(t)− ε
}}

, ∀t ∈ Ti, i = 2, . . . ,N −1,

xN(t + 1) = max
{

xN−1(t)+ ε, pN(t)
}

, ∀t ∈ TN , (8.1)

where xi(t), i = 1, . . . ,N, represents the state (position) of agent i at time t and Ti ⊆
T = {0,1,2,3, . . .} is the set of time instants at which agent i updates its position.

At the other time instants it is assumed that agent i is stationary. In other words, it is

assumed that

xi(t + 1) = xi(t), ∀t �∈ Ti and i = 2, . . . ,N. (8.2)

The variables pi(t), i = 1, . . . ,N, represent the intended next positions or desired

next way points of the agents and are given by

pi(t) = xi(t)−g
(
xi(t)− ci(t)

)
, i = 2, . . . ,N, (8.3)

where g(·) is an attraction/repulsion function to be discussed below. The objective

of agent i is to move to position pi(t). If there are not collision situations, then

individual i will move to pi(t), otherwise it will stop at the safe distance ε form its

neighbor. Note that although the dynamics in (8.1) are discrete, it is assumed that

the agents traverse the path between their current positions xi(t) and intended next

positions pi(t) and therefore, they can detect collision situations and stop if there are

any. This also prevents the agents from jumping to the other side of their neighbors.

The quantities ci(t) in (8.3) represent the perceived centers or perceived midpoints

of the adjacent neighbors of individual i. In other words, we have
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ci(t) =
1

2

[
xi−1(τ

i
i−1(t))+ xi+1(τ

i
i+1(t))

]
, ∀i = 2, . . . ,N −1,

and

cN(t) =
1

2

[
xN−1(τ

N
N−1(t))+ d + xN(t)

]
,

where the constant d represents the comfortable inter-agent distance. The variable

τi
j(t), j = i− 1, i + 1, is used to represent the time index at which agent i obtained

position information of its neighbor j. It satisfies 0 ≤ τi
j(t) ≤ t for t ∈ Ti, where

τi
j(t) = 0 means that agent i did not obtain any position information about agent j

so far (it still has the initial position information), whereas τi
j(t) = t means that it

has the current position information of agent j. The difference (t − τi
j(t)) ≥ 0 can

be viewed as a sensing delay or a communication delay in obtaining the position

information of agent j by agent i.

Note that in the swarm model in (8.1) it is implicitly assumed that xi+1(t)−
xi−1(t) > 2ε. Later we will show that this always will be the case provided that

xi+1(0)− xi−1(0) > 2ε (which is satisfied by assumption). Also, notice that the first

agent is always stationary at position x1(0). The other agents (except agent N), on

the other hand, try to move to the position ci(t) which their current information tells

them is the middle of their adjacent neighbors. However, they do not jump directly

to ci(t). Instead, they take a step toward it through the attraction/repulsion function

g(·) and move to pi(t). Moreover, note that due to the delays ci(t) may not be the

midpoint between agents i − 1 and i + 1 at time t. The last agent (agent N), on

the other hand, tries to move to the middle of its current position and the point it

perceives to be a (comfortable) distance d from its left neighbor. In other words, it

tries to move to the point half-way from the comfortable distance.

In the above setting only the Nth agent knows (or decides on) the value of the

comfortable distance d. The advantage of this is that it does not require the achieve-

ment of agreement between the individuals (by negotiation or other means) on the

value of d. The disadvantage is that the other agents do not have influence on the

value of the comfortable inter-agent distance. Note also that the value of the com-

fortable inter-agent distance should be larger (usually much larger) than the collision

distance. Therefore, we assume that d ≫ ε, where the constant ε is the range of the

proximity sensors as discussed in the preceding section.

The elements of T (and therefore of Ti) should be viewed as indices of the se-

quence of physical times at which the updates occur (similar to the times of events

in discrete event systems), not as actual times. In other words, the elements of the

sets Ti are integers that can be mapped to actual times. Note that this is consistent

with the assumptions that the agents traverse the path from their current position

xi(t) to their intended next position pi(t). The idle time in (8.2) can be thought of as

the time during which the agent traverses the path and the sequence Ti represents the

indexes of the times (events) at which the agent either arrives at pi(t) or encounters

a neighbor. The sets Ti are independent from each other for different i. However, it is

possible to have Ti ∩Tj �= /0 for i �= j (i.e., two or more agents may sometimes move
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simultaneously or in discrete event system terms one or more agents can simultane-

ously arrive at their respective destinations or simultaneously encounter neighbors).

The function g(·) describes the attractive and repelling relationships between an

agent and its adjacent neighbors. It can be viewed as the gradient of a potential

function as in the case of continuous-time swarm models considered in the pre-

ceding chapters. It is composed of only an attractive component whose minimum

occurs when its argument is zero. Therefore, from (8.3) one can see that it results in

attraction of agent i toward the perceived midpoint ci(t) of its neighbors. As already

mentioned above, the attraction/repulsion function g(·) determines the step size that

an agent will take toward the perceived middle of its neighbors (if it is not already

there). We assume that g(·) is sector bounded

αy2 ≤ yg(y) ≤ ᾱy2 (8.4)

where α and ᾱ are two constants satisfying

0 < α < ᾱ < 1.

Figure 8.2 shows the plot of one such g(·). In the figure the plots of αy(t) and ᾱy(t)
for α= 0.1 and ᾱ = 0.9 are also shown to illustrate the sector boundedness.
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Fig. 8.2. An example g(·) function together with 0.1y(t) and 0.9y(t).

We would like to emphasize once more that the model in (8.1) is in a sense a

discrete event model which does not allow for collisions between the agents or for

jumps resulting in change of the order of the agents. This is because it is assumed

that the agents do not directly jump to their next way points. Instead they traverse the

path between their current position and the next way point and if during movement

a given agent i suddenly finds itself within an ε range of one (or both) of its neigh-

bors, it will restrain its movement toward that neighbor (or neighbors) according to

equation (8.1).

We will use the notation x(t) = [x1(t), . . . ,xN(t)]⊤ to represent the position vector

at time t of all agents in the swarm. Define the swarm comfortable position as

xc = [x1(0),x1(0)+ d, . . . ,x1(0)+ (N−1)d]⊤.
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The problem is to analyze whether the swarm will converge to this position or not. In

other words, we will analyze the stability of this position by considering the motions

of the agents when they are initially located at positions different from xc. We will

consider two cases: synchronous operation with no delays and totally asynchronous

operation. The underlying assumptions for these cases are described below.

Assumption 13. (Synchronism, No Delays) For all agents i the sets Ti and the times

τi
j(t) satisfy Ti = T and τi

j(t) = t for both of its neighbors j = i−1, i+ 1.

This assumption states that all the agents will move at the same time instants. More-

over, every agent will always have the current position information of its adjacent

neighbors. Note that when this assumption holds there are no idle times and (8.2)

becomes irrelevant.

The next assumption, on the other hand, allows the agents to move at totally inde-

pendent time instants. Moreover, it allows the “delay” between two measurements

performed by an individual to become arbitrarily large. However, it also states that

there always will be a next time when the agent will perform a measurement.

Assumption 14. (Total Asynchronism) For all agents i the sets Ti are infinite, and

if {t i
ℓ} is a sequence of elements of Ti that tends to infinity, then limℓ→∞ τ

i
j(t

i
ℓ) = ∞

for both of its neighbors j = i−1, i+ 1.

The first question one can ask about the motion of a swarm described by (8.1) is

whether the agent states are bounded or diverge from each other and become un-

bounded. Intuitively, since there is only attraction toward the perceived midpoint of

the corresponding neighbors acting on the agents one would expect that the agent

states and inter-agent distances are bounded. However, note also that it is not that

obvious since there is asynchronism and time delays (which can become arbitrarily

large) in sensing. Nevertheless, it can be shown that it is the case (i.e., the states are

bounded) as is formally stated in the following lemma.

Lemma 5. For the swarm described in (8.1)-(8.2) if Assumption 14 holds, then

given any x(0), there exists a constant b̄ = b̄(x(0)) such that xi(t) ≤ b̄, for all t

and all i,1 ≤ i ≤ N.

Proof: We prove this via contradiction. Assume that xi+1(t)→∞ for some i+1,1≤
i ≤ N. This implies that x j(t) → ∞ for all j ≥ i + 1. We will show that it must be

the case that xi(t) → ∞ as well. Assume the contrary, i.e., assume that xi+1(t) → ∞,

while xi(t) ≤ b < ∞ for some b and for all t. Then we have xi+1(t)− xi(t) → ∞,

whereas xi(t)− xi−1(t) < 2b1 for some b1 < b/2. Let b2 be a constant such that
(

1 + 1
α

)

b < b2 <∞. Note that b2 > b1. From Assumption 14 there is always a time

t i
1 ∈ Ti at which agent i performs position sensing of its neighbors and τi

i−1(t) ≥ t i
1

and τi
i+1(t) ≥ t i

1 for t ≥ t i
1 and

xi(t)− xi−1(τi
i−1(t)) < 2b1,

xi+1(τi
i+1(t))− xi(t) > 2b2.

This implies that we have xi(t)− ci(t) < −(b2 − b1) < 0. There exists also a time

t i
2 ≥ t i

1 at which agent i moves to the right and its new position satisfies
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xi(t
i
2 + 1) = xi(t

i
2)−g

(
xi(t

i
2)− ci(t

i
2)
)

≥ xi(t
i
2)−α(xi(t

i
2)− ci(t

i
2))

> xi(t
i
2)+α(b2 −b1)

> xi(t
i
2)+ b > b.

This contradicts the assumption that xi(t) ≤ b for all t and implies that xi(t) → ∞ as

well. Repeating the argument for the other agents one obtains that xi(t) → ∞ for all

i �= 1.

Since x1 = x1(0) for all t the above implies that x2(t)− x1(t) → ∞ as t → ∞.

Moreover, it must be the case that xi(t)−xi−1(t)→∞ for all i = 2, . . . ,N. To see this

assume that xi(t)− xi−1(t) → ∞, whereas xi+1(t)− xi(t) < b3 for some b3. There

exist a time t i
3 ∈ Ti at which agent i performs position sensing of its neighbors and

τi
i−1(t) ≥ t i

3 and τi
i+1(t) ≥ t i

3 for t ≥ t i
3. Moreover, for t ≥ t i

3 we have

xi(t)− xi−1(τi
i−1(t)) > 2b4,

xi+1(τi
i+1(t))− xi(t) < 2b3,

where b4 > b3 and xi(t) < b for some b > b4. This implies that we have xi(t)−
ci(t) > (b4 −b3) > 0. There exists also a time t i

4 ≥ t i
3 at which agent i moves to the

left and its new position satisfies

xi(t
i
4 + 1) = xi(t

i
4)−g

(
xi(t

i
4)− ci(t

i
4)
)

≤ xi(t
i
4)−α(xi(t

i
4)− ci(t

i
4))

< xi(t
i
4)−α(b4 −b3)

< xi(t
i
4) < b.

Note that as long as we have xi(t)−ci(t) > (b4−b3) > 0 the agent will be moving to

the left and xi(t) will always be bounded by b. Therefore, it cannot be the case that

xi+1(t)− xi(t) < b3 for some b3, while xi(t)− xi−1(t) → ∞. Therefore, if xi(t) → ∞
for some i > 1, then it must be the case that xi(t) → ∞ and xi(t)− xi−1(t) → ∞ for

all i = 2, . . . ,N.

Now let us consider individual N. From above we know that there exists a time

tN
5 such that xN(t)− xN−1(t) > d. However, there is always a time tN

6 > tN
5 such

that agent N performs position sensing and τN
N−1(t) ≥ tN

6 for t ≥ tN
6 . Then, we have

xN(t)− xN−1(τ
N
N−1(t)) > d and at some time tN

7 > tN
6 the agent moves and

xN(tN
7 + 1) = xN(tN

7 )−g
(
xN(tN

7 )− cN(tN
7 )
)

< xN(tN
7 ),

implying that it moves to the left. In fact, as long as we have xN(t)−xN−1(τN
N−1(t))>

d individual N moves to the left and it cannot diverge far away from its neighbor.

Assuming that at time tN
6 we have xN(t)− xN−1(t) < b for some b > d, this implies

that xN(t)−xN−1(t) < b for all t > tN
6 . Therefore, the N′th individual cannot diverge

leading to a contradiction.

Given the swarm model in (8.1)-(8.2) the above results states that both agent posi-

tions and inter-agent distances are bounded (implying that the swarm will not dis-

solve) despite the asynchronism in the agent motions and the (possibly arbitrarily
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large) time delays in neighbor position sensing. Therefore, the main question to be

answered is whether the agent position vector x(t) will converge to some constant

value and if so is this constant position vector the comfortable position xc. If the

agent’s positions do not converge to a constant position then there will be a need to

analyze also whether the swarm dynamics will have periodic solutions or will ex-

hibit chaotic behavior. As mentioned previously, we are concerned with the asymp-

totic stability of the comfortable position xc and that is what we are going to analyze

next. In the next section we will analyze the system in the case of synchronism with

no delays. The result for the synchronous case will be used later in the proof of the

system under total asynchronism.

8.2 The System under Total Synchronism

In this section we will analyze the stability properties of the system under the con-

dition that Assumption 13 holds (i.e., all agents move at the same time instants and

they always have the current position information of their neighbors). First, we will

show that xc is the only equilibrium of the system.

Lemma 6. For the swarm described in (8.1)-(8.2) assume that Assumption 13 holds

(i.e., we have synchronism with no delays). If x(t) → x̄ as t → ∞, where x̄ is a con-

stant vector, then x̄ = xc.

Proof: First of all, note that the inter-agent distances on all the states that the system

can converge to are such that x̄i− x̄i−1 > ε for all i (i.e., it is impossible for the states

to converge to positions that are very close to each other). To prove this, we assume

that x̄i − x̄i−1 = ε for some i and x̄ j − x̄ j−1 > ε for all j �= i and seek to show a

contradiction. In that case, x̄i+1 − x̄i > ε so

x̄i − c̄i = x̄i −
x̄i−1 + x̄i+1

2
< 0

and we have from model constraints in (8.1) that

x̄i−1 + ε< x̄i −g

(

x̄i −
x̄i−1 + x̄i+1

2

)

< x̄i+1 − ε.

From (8.1) this implies that at the next time instant t i ∈ Ti agent i will move to

the right toward agent i + 1. Therefore, it must be the case that x̄i+1 − x̄i = ε since

otherwise x̄i − x̄i−1 = ε also cannot hold. Continuing in this manner one can prove

that all inter-agent distances must be equal to ε. However, in that case, from the last

equality in (8.1) we have

x̄N −g

(
ε−d

2

)

= x̄N−1 + ε
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which implies that

g

(
ε−d

2

)

= 0

must be satisfied. However, since d ≫ ε and from the properties of the function g(·)
and in particular condition (8.4) this cannot hold. In fact, we have

x̄N −g

(
ε−d

2

)

> x̄N−1 + ε−g

(
ε−d

2

)

> x̄N−1 + ε

and this implies that on the next time instant tN ∈ TN agent N will move to the right.

Therefore, no inter-agent distance can converge to ε. For this reason, to find x̄ we

can drop the min and max operators and consider only the middle terms in (8.1).

Since x(t) → x̄ as t → ∞ it should be the case that ultimately

x̄1 = x̄1

x̄i = x̄i −g

(

x̄i −
x̄i−1 + x̄i+1

2

)

, i = 1, . . . ,N −1

x̄N = x̄N −g

(

x̄N − x̄N−1 + d + x̄N

2

)

from which we obtain

x̄1 = xc
1

2x̄i = x̄i−1 + x̄i+1, i = 1, . . . ,N −1

x̄N = x̄N−1 + d. (8.5)

Solving the second equation for x̄N−1 we have 2x̄N−1 = x̄N−2 + x̄N from which we

obtain x̄N−1 = x̄N−2 + d. Continuing in this manner, we obtain

x̄i = x̄i−1 + d,

for all i = 1, . . . ,N −1. Then since the first agent is stationary we have x̄1 = x1(t) =
x1(0) = xc

1 and this proves the result.

As mentioned above, the implication of this lemma is basically that xc is the unique

fixed point or equilibrium point of the system described by (8.1). Note that although

the result was proven for the synchronous system without time delays, the same

holds also for the asynchronous system. Moreover, as can be seen this fixed point

corresponds to the arrangement with the comfortable inter-agent distances. The next

objective is to analyze the stability of this fixed point. Toward that objective let

us first analyze whether the agents move close to each other resulting in collision

possibilities.

Lemma 7. Consider the swarm described in (8.1)-(8.2). Assume that xi(0) −
xi−1(0) > ε for all i = 2, . . . ,N. Moreover, assume that Assumption 13 holds (i.e.,

we have synchronism with no delays). Then, xi(t)− xi−1(t) > ε for all i = 2, . . . ,N,

and for all t.
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Proof: We will prove this by induction. By assumption for t = 0 we have xi(0)−
xi−1(0) > ε for all i = 2, . . . ,N. Assume that for some t we have xi(t)− xi−1(t) > ε
for all i = 2, . . . ,N. Then, with a simple manipulation one can show that at that time

t we have
xi−1(t)+ ε < xi(t) < xi+1(t)− ε
xi−1(t)+ ε < ci(t) < xi+1(t)− ε

(8.6)

and

ci+1(t)− ci(t) > ε, (8.7)

for all i = 2, . . . ,N. Noting that it is possible to write the g(·) function as

g(y(t)) = α(t)y(t),

where 0 < α ≤ α(t) ≤ ᾱ < 1, and using this in the swarm dynamics equation we

have

xi(t + 1) = xi(t)−αi(t)
(
xi(t)− ci(t)

)

=
(
1−αi(t)

)
xi(t)+αi(t)ci(t).

Therefore, we have

xi(t) < ci(t) ⇒ xi(t) < xi(t + 1) < ci(t)
xi(t) > ci(t) ⇒ xi(t) > xi(t + 1) > ci(t).

These inequalities together with (8.6) and (8.7) imply that

xi(t + 1)− xi−1(t + 1) > ε

and this completes the proof.

This lemma implies that for the synchronous case with no delays, provided that

initially the agents are sufficiently apart from each other, the proximity sensors will

not be used and that we can drop the min and max operations in (8.1) and the system

can be represented as

x1(t + 1) = x1(t)

xi(t + 1) = xi(t)−g

(

xi(t)−
xi−1(t)+ xi+1(t)

2

)

, i = 2, . . . ,N −1,

xN(t + 1) = xN(t)−g

(

xN(t)− xN−1(t)+ d + xN(t)

2

)

.

Define the following change of coordinates

e1(t) = x1(t)− xc
1

ei(t) = xi(t)− (xi−1(t)+ d), i = 2, . . . ,N.



186 8 One-Dimensional Discrete-Time Swarm

Then, one obtains the following representation of the system

e1(t + 1) = e1(t) = 0,

e2(t + 1) = e2(t)−g
(

e2(t)−e3(t)
2

)

,

ei(t + 1) = ei(t)−g
(

ei(t)−ei+1(t)
2

)

+ g
(

ei−1(t)−ei(t)
2

)

, i = 3, . . . ,N −1,

eN(t + 1) = eN(t)−g
(

eN (t)
2

)

+ g
(

eN−1(t)−eN(t)
2

)

.

Using again the fact that g(y(t)) = α(t)y(t) for 0 < α< α(t) < ᾱ< 1 we can repre-

sent the system with

e2(t +1) =
(

1− α2(t)
2

)

e2(t)+ α2(t)
2 e3(t),

ei(t +1) =
(

1− αi(t)
2 − αi−1(t)

2

)

ei(t)+
αi−1(t)

2 ei−1(t)+
αi(t)

2 ei+1(t), i = 3, . . . ,N −1,

eN(t +1) =
(

1− αN(t)
2 − αN−1(t)

2

)

eN(t)+
αN−1(t)

2 eN−1(t),

where we dropped e1(t) since it is zero for all t. Defining e(t) = [e2(t), . . . ,eN(t)]⊤

it can be seen that our system is, in a sense, a linear time varying system, which can

be represented in a matrix form as

e(t + 1) = A(t)e(t), (8.8)

where A(t) is a symmetric tridiagonal matrix of the form

A(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b2(t) a2(t) 0 . . . 0

a2(t) b3(t) a3(t)
. . .

...

0 a3(t)
. . .

. . . 0
...

. . .
. . . bN−1(t) aN−1(t)

0 . . . 0 aN−1(t) bN(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with diagonal elements given by

{b2(t), . . . ,bN(t)} =

{(

1− α2(t)

2

)

,

(

1− α3(t)

2
− α2(t)

2

)

, . . . ,

(

1− αN−1(t)

2
− αN−2(t)

2

)

,

(

1− αN(t)

2
− αN−1(t)

2

)}

and off-diagonal elements equal to

{a2(t), . . . ,aN−1(t)} =

{
α2(t)

2
, . . . ,

αN−1(t)

2

}

.

First, we will investigate the properties of the matrix A(t) which will be useful later

in deriving our stability result. In particular, we will show that all the eigenvalues of

A(t) lie strictly within the unit circle.
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Lemma 8. The spectrum of the matrix A(t) in (8.8), ρ(A(t)) satisfies

ρ(A(t)) < 1

for all t. In other words, all the eigenvalues of A(t) lie strictly within the unit circle.

Proof: First, note that for the given A(t) we have

‖A(t)‖1 = ‖A(t)‖∞ = 1

for all t. On the other hand, for any given matrix A(t) it is well known that the two

norm satisfies

‖A(t)‖2 ≤
√

‖A(t)‖1‖A(t)‖∞.

Hence, since because of the symmetry of A(t) we have ρ(A(t)) = ‖A(t)‖2 and also

due to the general properties of the spectral radius we obtain

ρ(A(t)) ≤ 1

for all t. Note that this can be deduced from the Gerschgorin’s theorem as well. Let

us define

Z2(t) = {x : |x−b2(t)| ≤ a2(t)}
Zk(t) = {x : |x−bk(t)| ≤ ak−1(t)+ ak(t)} , k = 3, ...,N −1

ZN(t) = {x : |x−bN(t)| ≤ aN−1(t)}
which are called Gerschgorin’s disks. Then, from the Gerschgorin’s theorem one

can deduce that all the eigenvalues of A(t) will be located in the region

Z(t) = ∪N
k=2Zk(t)

Moreover, since A(t) is a symmetric matrix, all of its eigenvalues are real and the

eigenvalues of A(t) are located on the intersection of Z(t) with the real line, which is

located within the unit circle. However, this does not exclude the case λ(A(t)) = 1

or basically that ρ(A(t)) = 1. Therefore, for the sake of contradiction let us assume

that there is an eigenvalue such that λ(A(t)) = 1 and that ρ(A(t)) = 1. Then, from

the definition of the eigenvalues one can deduce that the matrix (A(t)− I) must be a

singular matrix. Defining the matrix

P =

⎡

⎢
⎢
⎢
⎢
⎣

1 . . . . . . 1

0
. . .

...
...

. . .
. . .

...

0 . . . 0 1

⎤

⎥
⎥
⎥
⎥
⎦

one can show that the matrix multiplication P⊤(A(t)− I)P results in
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P⊤(A(t)− I)P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−α2(t)
2

0 0 . . . 0

0 −α3(t)
2

0
. . .

...

0 0
. . .

. . . 0
...

. . .
. . . −αN−1(t)

2
0

0 . . . 0 0 −αN(t)
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which is nonsingular since

α≤ αi(t) ≤ ᾱ

is satisfied for all t and i = 2, . . . ,N. Then, since the matrix P is nonsingular it must

be the case that (A(t)− I) is also nonsingular resulting in a contradiction. Therefore,

(A(t)− I) cannot be a singular matrix and hence λ = 1 cannot be an eigenvalue of

A(t) resulting in the fact that

ρ(A(t)) < 1

for each t.

This lemma basically states that the eigenvalues of A(t) (which are all real numbers

since A(t) is symmetric) do not depend on the time index (or iteration number) t and

lie strictly within the unit circle for each t. Before proceeding let us define

ρ̄ = sup
α≤αi≤ᾱ,i=2...N

{ρ(A)}.

Then, from the above result we have

ρ̄ < 1.

Using this, one can state the following result for the system under total synchronism.

Theorem 17. Consider the swarm described in (8.1)-(8.2) composed of N agents

with g(·) as given in (8.4), if Assumption 13 holds and xi+1(0)− xi(0) > ε, i =
1, . . . ,N −1, then we have x(t) → xc as t → ∞.

Proof: The result directly follows from Lemma 8. Since the eigenvalues of A(t)
lie strictly within the unit disk for all t, for every t given the matrix A(t) there

exist corresponding positive definite and symmetric matrices P(t) = P(t)⊤ > 0 and

Q(t) = Q(t)⊤ > 0 such that the Lyapunov equation

A(t)⊤P(t)A(t)−P(t) = −Q(t)

is satisfied. In fact, at any instant t given the matrix A(t) and any positive definite

and symmetric matrix Q(t) = Q(t)⊤ > 0 this equation has a unique positive definite

and symmetric solution P(t) = P(t)⊤ > 0. Choose, Q(t) = γI for some γ> 0 and for

all t and solve

A(t)⊤P(t)A(t)−P(t) = −γI
for P(t). Note that existence of solutions which are positive definite (strictly bounded

away from singularity) and symmetric for all t is guaranteed from the fact that the
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eigenvalues of A(t) lie strictly within the unit disk for all t. Choose the common

time varying Lyapunov function for the system in (8.8) as

V (t) = e(t)⊤P(t)e(t)

Note that this function is positive definite, radially unbounded and decrescent since

the P(t) matrices are strictly bounded away from singularity. In other words, defining

λmin = min
t
{λ(P(t))} and λmax = max

t
{λ(P(t))}

one can see that

λmin‖e(t)‖2 ≤V (t) ≤ λmax‖e(t)‖2

is satisfied. Then, calculating the difference between two instances of V (t) one ob-

tains

V (t + 1)−V(t) = −γ‖e(t)‖2

which implies that as t → ∞ we have e(t) → 0. Then, the result follows from the

definition of the relative inter-agent dynamics e(t).

This result implies that (8.8) defines a contraction. In fact, taking the norm of both

sides of (8.8) one can see that

‖e(t + 1)‖2 = ‖A(t)e(t)‖2 ≤ ‖A(t)‖2‖e(t)‖2 ≤ ρ̄‖e(t)‖2 < ‖e(t)‖2

which is an alternative way of looking at the dynamics of the relative inter-agent

distances.

The above theorem implies that the agent positions will asymptotically converge

to the comfortable position xc. It is an important result; however, it is derived only

under the assumption that the agents move synchronously and there are no time

delays in neighbor position sensing.

Our objective is to prove that the same type of convergence will be achieved for

the totally asynchronous case. We will investigate that case in the following section

and the result of Theorem 17 will be useful in the analysis there.

8.3 Asynchronous Swarm

In this section we return to the totally asynchronous case. In other words, we inves-

tigate the system under Assumption 14. To prove convergence to the comfortable

position xc we will use the result from the synchronous case and a result from [22].

For convenience we present this result here.

Consider a function f : X → X , where X = X1 × . . .×Xn, and x = [x1, . . . ,xn]
⊤

with xi ∈ Xi. The function f is composed of functions fi : X → Xi in the form f =
[ f1, . . . , fn]

⊤ for all x ∈ X . Consider the problem of finding the point x∗ such that

x∗ = f (x∗)
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using an asynchronous algorithm. In other words, use an algorithm in which

xi(t + 1) = fi

(
x1(τ

i
1(t)), . . . ,xn(τ

i
n(t))

)
, ∀t ∈ Ti, (8.9)

where τi
j(t) are times satisfying 0 ≤ τi

j(t) ≤ t, ∀t ∈ T. For all the other times t �∈ Ti,

xi is left unchanged. In other words, we have

xi(t + 1) = xi(t), ∀t �∈ Ti. (8.10)

Consider the following assumption.

Assumption 15. ([22]) There is a sequence of nonempty sets {X(t)} with

· · · ⊂ X(t + 1) ⊂ X(t) ⊂ ·· · ⊂ X ,

satisfying the following two conditions:

1. Synchronous Convergence Condition (SCC): We have

f (x) ∈ X(t + 1),∀t and x ∈ X(t).

Furthermore, if {yt |yt = f (yt−1)} is a sequence such that yt ∈ X(t) for every t,

then every limit point of {yt} is a fixed point of f .

2. Box Condition (BC): For every t, there exist sets Xi(t) ⊂ Xi such that

X(t) = X1(t)×X2(t)× . . .Xn(t).

The synchronous convergence condition implies that the limit points of the se-

quences generated by the synchronous iteration x(t + 1) = f (x(t)) are fixed points

of f . The box condition, on the other hand, implies that combining components of

vectors in X(t) results in a vector in X(t). In other words, if x ∈ X(t) and x̄ ∈ X(t),
then replacing ith component of x with the ith component of x̄ results in a vector in

X(t). An example when the box condition holds is when X(t) is a sphere in R
n with

respect to some weighted maximum norm.

Assumption 15 is about the convergence of the synchronous iteration (i.e. itera-

tion (8.9) under total synchronism). The result below shows that if the synchronous

algorithm is convergent, the asynchronous algorithm will also converge provided

that Assumption 14 is satisfied.

Theorem 18. Asynchronous Convergence Theorem [22]: Consider the asyn-

chronous iteration in (8.9)-(8.10). If the Synchronous Convergence Condition and

Box Condition of Assumption 15 hold together with Assumption 14, and the initial

solution estimate x(0) = [x1(0), . . . ,xn(0)]⊤ belongs to the set X(0), then every limit

point of {x(t)} is a fixed point of f .

This is a powerful result that can be applied to many different problems. The main

idea behind its proof is as follows. Assume there is a time instant t1 such that

x j(τi
j(t1)) ∈ X j(t) for all j and all i, which implies that the perceived x(t1) is in the

set X(t). Then Assumption 14 (the total asynchronism assumption) guarantees that
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there is another time t2 > t1 at which all the processors (agents) will have performed

an update, i.e., for all i there are time instants t i ∈ Ti such that t1 ≤ t i ≤ t2. Then,

since x j(τi
j(t1)) ∈ X j(t) for all t ≥ t1 the synchronous convergence condition in As-

sumption 15 together with the iteration in (8.9) guarantee that x(t2 + 1) ∈ X(t + 1).
In fact, it is guaranteed that x(t) ∈ X(t + 1) for all t ≥ t2 + 1. In addition, the box

condition implies that each x j(t2 + 1) ∈ X j(t + 1). Then, once again due to the total

asynchronism assumption (Assumption 14) there will be always another time in-

stant t3 > t2 such that all processors (agents) will have obtained information from

(performed sensing of) their neighbors (i.e., τi
j(t3) > t2 + 1 for all i and j) and

x j(τ
i
j(t3)) ∈ X j(t +1) for all j and all i and this completes the induction step. Then,

since initially we have x j(τi
j(0)) = x j(0) ∈ X j(0) and the above reasoning shows

that the iteration has the same contraction properties as its synchronous counterpart

convergence of the asynchronous iteration is guaranteed from the convergence of

the synchronous iteration.

Note that the swarm model in (8.1)-(8.2) is in agreement with the general itera-

tion model in (8.9)-(8.10). Therefore, the above theorem can be used to prove the

stability of xc for the asynchronous swarm as is stated in the following result.

Theorem 19. For the N-agent swarm modeled in (8.1)-(8.2) with g(·) as given

in (8.4), if Assumption 14 holds and xi+1(0)− xi(0) > ε, i = 1, . . . ,N − 1, then the

agent positions will converge asymptotically to the comfortable position xc.

Proof: In order to prove this result we once again consider the synchronous case.

Recall that for this case the system can be described by

e(t + 1) = A(t)e(t).

In the previous section it was shown that for the synchronous case we have λ(A(t))≤
ρ̄< 1 for all t and that e(t)→ 0 as t →∞. This implies that A(t) is a maximum norm

contraction mapping for all t. Define the sets

E(t) = {e ∈ R
N−1 : ‖e‖∞ ≤ ρ̄t‖e(0)‖∞}.

Then since A(t) is a maximum norm contraction mapping for all t we have e(t) ∈
E(t) for all t and

. . . ⊂ E(t + 1)⊂ E(t) ⊂ . . . ⊂ E = R
N−1.

Moreover, each E(t) can be expressed as

E(t) = E2(t)×E3(t)× . . .EN(t)

where E j(t) corresponds to the jth dimension (inter-agent distance). Since the po-

sition with comfortable inter-agent distance e = 0 (i.e., x = xc) is the unique fixed

point of the system and the synchronous swarm converges to it, it is implied that As-

sumption 15 above is satisfied. Applying the Asynchronous Convergence Theorem

the result is obtained.

This result is important because it states that the stability of the system will be

preserved (i.e., the system will converge to the comfortable distance) even though
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we have totally asynchronous motions and imperfect information due to the time

delays. Note that the fact that in the asynchronous case in (8.1) the min and max

operations are preserved does not change the result in Theorem 19 since the stability

properties of the synchronous system is preserved even with them (i.e., the min and

max operations) present in the model.

A relevant issue to mention here is the speed of convergence of the algorithm.

Theorem 19 guarantees that the agent positions will asymptotically converge to the

comfortable position xc; however, it does not provide information about the speed

of convergence. In fact, it can be seen from Assumption 14 that it is not possible

to establish a lower bound on the speed of convergence due to the asynchronism

(and the fact that there is no restriction on the sets Ti and therefore the update

times) and the possibility of arbitrarily large time delays. Therefore, the conver-

gence speed may vary depending on the properties of the sets Ti and the time de-

lays τi
j(t) and sometimes may take very long. If a faster convergence is desired

restrictions on the sets Ti such as restricting it to contain one instant from every in-

terval {t −B + 1,t −B + 2, ...,t − 1,t} and a bound on the time delay of the form

t −B + 1 ≤ τi
j(t) ≤ t for some B > 0 need to be imposed. Such a uniformity in the

updates and sensing will bring uniformity in the convergence. Of course the con-

vergence properties of the synchronous iteration due to the properties of the func-

tion g(·) have also important role in the convergence of the asynchronous one. An

asynchronous algorithm which satisfies the above type of uniformity restrictions is

referred to as a partially asynchronous algorithm.

Note also that the swarm equation in (8.1) is naturally distributed, where each

individual i performs the computation only of its next position xi(t +1) based on the

perceived (measured or obtained by communication) position of its two neighbors.

Moreover, it performs this computation only at the times it is “awake” (i.e., only at

t ∈ Ti). Therefore, the computational load of the individuals is minimal.

A direct consequence of Theorem 19 is the stability of a swarm in which one

agent in the middle is stationary, whereas all the other middle agents try to move

similar to the middle agents in the model in (8.1) and both of the edge agents try

to move to a distance d from their neighbors. In other words, suppose the swarm is

described by

x1(t +1) = min
{

p1(t),x2(t)− ε
}

, ∀t ∈ T1,

x j(t +1) = x j(t), ∀t and for some j,1 ≤ j ≤ N,

xi(t +1) = max
{

xi−1(t)+ε,min
{

pi(t),xi+1(t)− ε
}}

,∀t ∈ Ti, i = 2, ..,N −1, i �= j,

xN(t +1) = max
{

xN−1(t)+ε, pN(t)
}

, ∀t ∈ TN , (8.11)

where pi(t)’s are as defined before and the perceived center for the first agent is

c1(t) =
1

2
[x2(τ

1
2(t))−d + x1(t)].

Here again it is implicitly assumed that xi+1(t)− xi−1(t) > 2ε, as was the case in

the preceding section. Recall that this is always the case provided that xi+1(0)−



8.4 Simulation Results 193

xi−1(0) > 2ε. In this case we have the following corollary as a direct consequence

of Theorem 19.

Corollary 3. For the N-agent swarm modeled in (8.11)-(8.2) with g(·) as given

in (8.4), if Assumption (14) holds and xi+1(0)− xi(0) > ε, i = 1, . . . ,N − 1, then

the agent positions will converge asymptotically to xc, where xc is defined such that

xc
j = x j(0) and xc

i = x j(0)+ (i− j)d, for all i �= j.

The usefulness of this result is for systems in which the “leader” of the swarm is

not the first (or the last) agent, but an agent in the middle. It is also worth mention-

ing here that if the first and the last agents in (8.11) employ two different desired

inter-agent distances d1 and dN , d1 �= dN , then these will be the inter-agent distances

on the corresponding sides of the stationary agent j. This result is also directly im-

plied by Theorem 19 and can be stated as another corollary. The proofs follow from

considering each side of the stationary agent separately and applying Theorem 19.

8.4 Simulation Results

In this section we provide numerical simulation examples. We chose N = 7 agents

and d = 1 as the desired comfortable distance. As an attraction/repulsion function

we used the function

g(y) = αy +βsin(y)

with α= 0.5 and β= 0.4. To achieve asynchronism and time delays at each time step

the agents are set up to sense their neighbor positions (independently for each neigh-

bor) and to update their own position with some probability. In particular, we defined

two threshold probabilities 0 < p̄sense < 1 and 0 < p̄move < 1. At each time instant

t for each agent i three random numbers 0 < pi
sensele f t

(t) < 1, 0 < pi
senseright

(t) < 1,

and 0 < pi
move(t)< 1 are generated with uniform probability density. If pi

sensele f t
(t)>

p̄sense agent i performs position sensing on its left (i.e., obtains the current position

of its left neighbor). Otherwise, it keeps the old position information of its left neigh-

bor. Similarly, pi
senseright

(t) > p̄sense agent i senses the position of its right neighbor.

Furthermore, if pi
move(t) > p̄move, then agent i updates its position according to (8.1).

Otherwise, it keeps its current position according to (8.2).

We performed several simulations with different parameters. Figure 8.3(a) shows

a simulation of a contracting swarm (i.e., a swarm in which the agents are far apart

from each other initially). The parameters for this simulation are chosen as p̄sense =
0.9 and p̄move = 0.9 which mean 0.1 probability of sense and move. The agents

move to the comfortable position (d = 1 apart from each other) as time progresses,

as expected.

Figure 8.3(b) shows a simulation of an expanding swarm (i.e., a swarm in which

the agents are close to each other initially). In this simulation the results are also

as the theory predicts and the swarm converges to the desired comfortable relative

position. The parameters for this simulation were chosen the same as those for the

simulation in Figure 8.3(a).
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(a) Contracting swarm. (b) Expanding swarm.

Fig. 8.3. Swarm motion ( p̄sense = 0.9, and p̄move = 0.9).

Note that the values of p̄sense and p̄move effectively specify the amount of asyn-

chronism and the time delays in the system. In particular, larger values p̄sense and

p̄move mean larger delays in neighbor position sensing and less motion (more idle)

time for the agents and therefore slower convergence. In contrast, decreasing the val-

ues of p̄sense and p̄move result in more frequent moves and more current information

(or basically less asynchronous swarm) and therefore in faster convergence.

Figure 8.4 shows another simulation in which sense and move probability param-

eters were changed to p̄sense = 0.99 and p̄move = 0.99, resulting in 0.01 probability

of sense and move. As can be seen from the figure the results are similar to those

obtained in Figure 8.3. The only difference is that it takes much longer time to con-

verge in the second case. In particular, while the iterations in Figure 8.3 are up to

3.000, in Figure 8.4 they are up to 30.000. These results are in parallel with the ex-

pectations. Cross varying the simulation parameters also results in expected results

(simulations not shown).
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(a) Contracting swarm. (b) Expanding swarm.

Fig. 8.4. Swarm motion ( p̄sense = 0.99, and p̄move = 0.99).
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8.5 Further Issues

8.5.1 Extensions and Generalizations

The results in this chapter can be extended to the case in which there is no station-

ary agent and the agents on both sides employ the same value d for the comfortable

inter-agent distances. In fact, a swarm model with similar properties will be dis-

cussed in the context of distributed agreement in the next chapter of this book.

Another interesting extension which can be investigated is to consider a swarm

with no stationary agent and the agents on both sides employ different values d1

and d2 for the desired (comfortable) inter-agent distances. For that case one would

expect that there will not be an equilibrium for the system and the swarm will either

move in one direction or exhibit periodic (or chaotic) behavior.

A further extension could be to consider swarms which move in higher dimen-

sional spaces and investigate problems such as formation control (i.e., achieving and

maintaining a predefined geometrical shape).

8.5.2 For Further Reading

This chapter is based on the works in [91, 95]. Note that here we corrected a small

error present in [91, 95]. Moreover, new proofs for some of the results were pre-

sented here. The single agent model described in this chapter was first used in [158]

and is taken from there. In fact, the work in [155, 158] is very much related to the

content of this chapter. However, different tools are used for analysis in there. Other

related work are the articles in [154, 156, 157] where the authors considered mov-

ing swarms and proved cohesiveness results assuming partial asynchronism and the

existence of a bound on the maximum step size. The analysis tools and some of the

concepts and assumptions used in this chapter are based on the work on parallel and

distributed computation in [22].



9

Asynchronous Distributed Agreement in Discrete

Time Swarms

9.1 Model of the System

In this chapter we consider a substantially different problem from the problems

considered so far in this book. It is the problem of distributed agreement in a swarm

of agents using only local interactions. This problem has been considered in the

literature under various names including synchronization and consensus. However,

we believe that the term distributed agreement is the most appropriate terminology

for the problem under consideration.

Let us consider a multi-agent system (a swarm) consisting of N individuals with

states denoted by xi ∈ R
n which could represent position, orientation, synchroniza-

tion frequency or some other physical variable depending on the problem. It could

also represent some other information (e.g. cognitive variables) to be agreed upon

in a distributed manner by the agents. By “agreement” here we mean the situation in

which all agents reach the same value. By “distributed manner,” on the other hand,

we mean using only local information, i.e., each agent uses information from only

its immediate neighbors and does not have information about the global picture.

With that purpose let us assume that each agent can communicate only with a fixed

or time-dependent subset of the swarm. We will refer to this subset as the neighbors

of the given agent. Given agent i we denote with Ni(t) the set of its neighbors and

with Ni(t) = |Ni| the number of its neighbors at time t. In other words, Ni(t) denotes

the number of elements in the set Ni(t). In applications this subset representing the

neighbors of a given agent may be determined based on the distance between the

agents (due to, for example, the finite range of communication or sensing), based on

physical layout or topology of the environment (walls may cause agents to be out of

sight etc.) or by some other (e.g., heuristic, probabilistic or ad-hoc) means. Under

these conditions, intuitively one would think that the best way to achieve agreement

in a distributed fashion is to use averaging. Guided by this intuition let us consider

a swarm model in which each agent i updates its state by
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xi(t + 1) =
1

wi(t)

⎡

⎣wii(t)xi(t)+ ∑
j∈Ni(t)

wi j(t)x j(τi j(t))

⎤

⎦ ,∀t ∈ Ti, (9.1)

where xi(t), i = 1, . . . ,N, represents the state of agent i at time t, the variables

wi j(t),1 ≤ i, j ≤ N are weighting factors representing the importance of the state

of a neighbor agent j for agent i, and the variables wi(t) are given by

wi(t) = wii(t)+ ∑
j∈Ni(t)

wi j(t), i = 1, . . . ,N.

similar to the case in Chapter 8, the set Ti ⊆ T = {0,1,2, . . .} is the set of time indices

at which agent i updates its state. At the other time instants agent i is stationary, i.e.,

it does not perform update and

xi(t + 1) = xi(t),∀t �∈ Ti (9.2)

holds. It is assumed that the weighting factors wi j(t) satisfy wmin ≤wi j(t)≤wmax for

some wmin > 0 and wmax < ∞ for all i, j and all t. The variables τi j(t), j ∈ Ni(t), i =
1, . . . ,N, are used to represent the time index of the state information of j ∈ Ni(t) to

which agent i has access to. They satisfy 0 ≤ τi j(t) ≤ t for t ∈ Ti, where τi j(t) = 0

means that agent i has not yet obtained any information about agent j (it still has

the initial state information), whereas τi j(t) = t means that it has the current state

information of agent j. The difference (t − τi j(t)) ≥ 0 can be viewed as a sensing

delay or a communication delay in obtaining information about agent j by agent i.

Note that this definition can represent both of the following cases: (i) the agents are

memoryless and when at time t agent j becomes a neighbor of agent i it performs

(relative) position sensing of agent j but possibly gets an old distance due to the

time delay in sensing; (ii) the agents have memory and keep record of all its past

neighbors and when at time t agent j becomes a neighbor of agent i it may perform

sensing of the state of agent j with some probability or use the old recorded infor-

mation about it. The first case may arise in, for example, robot gathering algorithms,

whereas the second may, for example, serve as a crude representation of interactions

in social networks and adaptation of attitudes or beliefs.

The reader may have already noticed that the model in Equation (9.1) is a

weighted averaging model which takes convex combinations of the available infor-

mation from a subset of the agents, which are the neighbors of a given agent, with

possible time delays. Note that j ∈ Ni(t) does not necessarily mean that i ∈ N j(t) as

well. In other words, communication is unidirectional. Moreover, even if j ∈ Ni(t)
and i∈N j(t) hold simultaneously, this does not imply τi j(t) = τ ji(t). In other words,

even if two agents i and j are mutually neighbors of each other at a given time in-

stant, it does not mean that they have the current or equally outdated information

about each other implying that they do not necessarily communicate information to

each other simultaneously. In fact, it is possible that they might obtain information

about each other as well as update their states at totally independent time instants.

The elements of the set T (and therefore of the sets Ti) should not be viewed as ac-

tual times but as indices of the sequence of ordered physical times T = {t0,t1,t2, . . .}
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at which the updates generated by all the agents occur (similar to the times of events

in discrete event systems). By “ordered” here it is meant that for all k we have

tk < tk+1. In other words, elements of the set T are integers that can be mapped into

the actual times (i.e., the times of the events) {tk|tk < tk+1} and the physical time in-

tervals (tk+1 − tk) between subsequent indices (events) are not necessarily uniform.

The sets Ti are independent from each other for different i. However, it is possible

to have Ti ∩Tj �= /0 for i �= j (i.e., it may happen that sometimes two or more agents

update their states simultaneously). Note that the set T is needed only for analysis

purposes only; it is not required for the agents to know it.1 Similarly, the agents

do not need to know neither the sets Ti nor the set of physical times T . One can

view these sets as global times viewed/observed by an external observer, while the

agents operate on their local independent clocks. In other words, there is no need

for a global clock or means for synchronization for implementing (9.1).

The swarm model in (9.1) has the properties that: (i) agents use local information;

(ii) sensing/interaction/information exchange is unidirectional; (iii) agents update

their states in asynchronous manner; (iv) agents do not necessarily have the exact

information about the states of the other agents in the swarm. Therefore, it is very

suitable for describing operation of distributed multi-agent systems since the above

features are natural properties of such systems. Synchronous operation is often not

possible in nature and is difficult to implement in artificial multi-agent systems such

as swarms of robots since it requires a global clock to which all the agents must

be subjected to undermining the distributed (decentralized) nature of the system.

Moreover, local sensing/interaction and information exchange and possible delays

are also very realistic properties. The problem of distributed agreement can be stated

more formally as follows.

Definition 1. It is said that the swarm asymptotically reaches agreement if the states

of all agents converge to a common value or basically if as t → ∞

lim
t→∞

xi(t) = xa, (9.3)

is satisfied for some constant vector xa ∈ R
n and for all i.

The question here is whether this equation will be satisfied despite the local inter-

actions (dynamic neighborhood), the asynchronism in the updates, and the time

delays in the sensing/information flow.

It is common to use a directed graph to represent the interaction (information

flow) topology. Let G(t) = (N ,A(t)) denote the information flow or interaction

graph of the system/swarm at time t, where N = {1,2, . . . ,N} is the fixed set of

nodes and A(t) ⊂ N × N denotes the set of directed arcs (or information flow

links) at time t. Agent i ∈ N denotes the ith node or vertex of the graph, whereas the

arc (i, j) ∈ A(t) represents a directed information flow link from agent i to agent j at

time t. In other words, if (i, j) ∈ A(t), then agent j can receive or obtain information

1 The set T is also needed in artificial implementations of the iteration in (9.1). In practice

in natural or artificial multi-agent systems whose operation obeys (9.1) it is an emergent

set.
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from agent i at instant t implying that i ∈N j(t). Note once more that the information

flow is unidirectional meaning that (i, j) ∈ A(t) does not imply that ( j, i) ∈ A(t).
Agent i is said to be connected to agent j if there is a directed path from i to

j. In other words, there is a sequence of arcs (i1, i2),(i2, i3), . . . ,(ip−1, ip) such that

i1 = i and ip = j. If there is a (directed) path from every i to every j, then the graph

is said to be strongly connected. A directed tree is a directed graph in which every

node, except the root, has exactly one incoming edge (arc). If the tree connects all

the vertices of the graph, then it is called a spanning tree. Note that if a graph has a

spanning tree, then there is at least one node (agent) which is connected to all other

nodes (agents).

As we mentioned above, in this chapter we assume that the communication topol-

ogy can be time-dependent. Let us denote with Ḡ = {G1, . . . ,GM} = {Gp|p =
1, . . . ,M} the set of all possible interaction graphs. Note that Ḡ is finite and for each

t we have G(t) ∈ Ḡ . The union of a set of graphs {Gi = (N ,Ai)} ⊂ Ḡ with the

same vertex set is the graph defined as ∪Gi = (N ,∪Ai). It is said that a sequence

of graphs {G(t)} has a spanning tree over an interval I if the graph ∪t∈I G(t) has

a spanning tree. Let P = {1, . . . ,M} and σ : T → P denote the switching sequence

of the communication/interaction graphs. Also, given a switching sequence σ(t)
denote with {Gσ(t)} = {Gp(t) = (N ,Ap(t))} the corresponding sequence of com-

munication graphs. Now, we have the following assumption.

Assumption 16. The switching sequence σ(t) is such that there exists a constant

I ≥ 0 such that for every interval I of length I the corresponding sequence of com-

munication graphs {Gσ(t)} has a spanning tree.

Assumption 16 is a minimal necessary assumption for achieving convergence of the

agent’s states to a common value. In fact, if it is not satisfied it would mean that there

exists at least one agent which is never connected to part of the agents in the swarm

and cannot receive information from them either directly or indirectly through other

agents. This, on the other hand, will prevent the system states from converging to

the same value. As will be discussed below in the case of synchronous motion and

perfect information Assumption 16 is also sufficient for achieving agreement. How-

ever, in the case of asynchronism and time delays there is a need for extra conditions

imposed on the information updates or the delay time.

As was done in Chapter 8, the easiest approach to analyze the system behavior

is first to consider the system under synchronous motion and no time delays and

later on with the intuition gained build on the results for the synchronous system to

analyze the convergence properties of the asynchronous system in (9.1)-(9.2). This

is the approach taken here.

9.2 System under Total Synchronism

We start with the following assumption (which is similar to Assumption 17 in

Chapter 8).
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Assumption 17. (Synchronism, No Delays) The sets Ti and the times τi j(t) satisfy

Ti = T for all i and τi j(t) = t for all i and j ∈ Ni(t).

This assumption states that all the agents in the swarm will move at the same time

instants. Moreover, every agent will always have the current state information of its

neighbors. Under this assumption the motion dynamics of the system become

xi(t + 1) =
1

wi(t)

⎡

⎣wii(t)xi(t)+ ∑
j∈Ni(t)

wi j(t)x j(t)

⎤

⎦ (9.4)

for all t ∈ T and all i. Now the objective is to show that under Assumption 16 the

condition in Equation (9.3) will be satisfied for the synchronous system in Equa-

tion (9.4). With this objective let us first define

m(t) = min
i=1,...,N

{xi(t)} and M(t) = max
i=1,...,N

{xi(t)}. (9.5)

Here m(t) and M(t) are vectors of dimension n and the minimum and the maximum

operators are elementwise. We would like to emphasize that the values of m(t) and

M(t) depend on the initial configuration x(0) of the system as well as the switching

sequence σ(t). Here x(t) denotes the concatenation of the states of all agents with

x(t) =
(
x⊤1 (t),x⊤2 (t), . . . ,x⊤N (t)

)⊤ ∈ R
N×n.

It is easy to see that {m(t)} is non-decreasing and {M(t)} is non-increasing along

the solutions of (9.4). In other words, we have m(t +1)≥m(t) and M(t +1)≤M(t)
for all t. This is because of the convexity property of the weighted averaging in (9.4).

By taking convex combination between a set of numbers/points the minimum value

cannot decrease and the maximum value cannot increase. Since m(t) and M(t) are

monotonic and bounded their limits exist and as we will see below they are equal.

In other words, we have

lim
t→∞

m(t) = m = M = lim
t→∞

M(t).

This final value is the agreement value defined as xa in (9.3). Note that since there

is no stochastisity in the system the value of xa is uniquely determined by the ini-

tial agent states x(0) and the switching sequence σ(t).2 The agents or an external

observer do not know the agreement value xa a priori since they either do not have

global information or do not know the switching sequence a priori. In fact, if the

agreement value xa was known a priori to the agents the agreement problem would

become much simpler.

Besides the fact that m(t) is non-decreasing and M(t) is non-increasing it is guar-

anteed that an increase in m(t) or a decrease in M(t) will occur in at most a finite

number of time steps, the number of which is bounded by the maximal information

flow path in the communication graph (which is always less than the number of

agents N) and the uniformity in connectivity parameter I in Assumption 16. To see

2 This statement holds provided that the switching sequence σ(t) is given. In fact there could

be some stochasticity in the switching sequence itself.
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this consider the following. Denote at time t = tk with NM the set of agents j such

that x j(tk) = M(tk) and with Nm the set of agents j such that x j(tk) = m(tk).
3 Based

on Assumption 16 in at most I time steps, say time t = tk + I there will be a directed

edge from the rest of the agents towards either an agent in NM or Nm or between

agents in the two sets. Then, from the dynamics in (9.4) and the properties of convex

combinations we know that at time t = tk + I + 1 the value of the state of the agent

which had the directed in-link will change and therefore the number of agents in

NM ∪Nm will decrease by at least one. Repeating the argument and noting that the

number of agents in NM ∪Nm can be at most N one can see that at time t = tk +
I×N +1 we have NM ∪Nm = /0 meaning that both the minimum and the maximum

values will change. In fact, at time t = tk + I × (N − 1) + 1 it will be guaranteed

that there is at most one agent in NM ∪Nm and that either the minimum m(tk) has

increased or the maximum M(tk) has decreased. In other words, it is guaranteed

that for all t either m(t + I × (N −1)+1) > m(t) or M(t + I × (N −1)+1) < M(t).
Note that in practice, based on the switching sequence σ(t), usually it may happen

that m(t + η) > m(t) or M(t + η) < M(t) for some η < I × (N − 1)+ 1 and I ×
(N − 1)+ 1 is the length of the worst case interval for which the above condition

is guaranteed to hold for any switching sequence satisfying Assumption 16. These

observations intuitively imply that agreement occurs. To show that this is the case

in more mathematical manner let us define the metric

ρ(x,y) =
n

∑
j=1

max
i=1,...,N

{

|xi j − yi j|
}

for vectors x,y ∈ R
N×n such that x =

(
x⊤1 ,x⊤2 , . . . ,x⊤N

)⊤
and y =

(
y⊤1 ,y⊤2 , . . . ,y⊤N

)⊤
.

Here xi,yi ∈ R
n are sub-components of x,y and xi j,yi j ∈ R denote the j’th elements

of the vectors xi,yi. Similarly, the agreement set Xa ⊂ R
N×n can be defined as

Xa =
{

x ∈ R
N×n : xi = x j,∀i, j

}

(9.6)

where the partition of the vectors is as defined above. The generalized distance of a

given x ∈ R
N×n to the agreement set Xa is given by

ρ(x,Xa) = inf
y∈Xa

{

ρ(x,y)
}

With the above definition
{
ρ,RN×n

}
is a metric space. Now, let us define the Lya-

punov function candidate as

V (x(t)) =
n

∑
j=1

(

M j(t)−m j(t)
)

(9.7)

where m(t) and M(t) are the minimum and maximum defined in (9.5) and m j(t)
and M j(t) are their j’th components, respectively. Note that V (x(t)) ≥ 0 for all

x(t) ∈ R
N×n. Moreover, the distance of a given x(t) to Xa satisfies

3 Here the analysis is performed as if xi(t),M(t),m(t) ∈ R. However, the analysis holds for

xi(t),M(t),m(t) ∈ R
n by considering elementwise operations.



9.2 System under Total Synchronism 203

ρ(x(t),Xa) ≥
1

2

n

∑
j=1

(

M j(t)−m j(t)
)

and

ρ(x(t),Xa) ≤
n

∑
j=1

(

M j(t)−m j(t)
)

implying that

ρ(x(t),Xa) ≤V (x(t)) ≤ 2ρ(x(t),Xa)

is satisfied for all t. This, on the other hand, implies that V (x(t)) can serve as a

Lyapunov function for the system. Taking the time difference one obtains

V (x(t + 1))−V(x(t)) =
n

∑
j=1

(M j(t + 1)−m j(t + 1))−
n

∑
j=1

(M j(t)−m j(t))

=
n

∑
j=1

(M j(t + 1)−M j(t))−
n

∑
j=1

(m j(t + 1)−m j(t)) ≤ 0

which follows from the facts that M(t) is non-increasing and m(t) is non-decreasing.

This implies that the system is stable in the sense of Lyapunov. In order to show

asymptotic convergence let us define V (k) = V (x(k × (I × (N − 1) + 1))), where

k = 0,1,2, ... is the index representing the times at which contraction is guaranteed.

From the discussion above we know that such contraction is always guaranteed for

any switching sequence satisfying Assumption 16.4 Then, we have

V (k + 1)−V(k) < 0

which implies that as k → ∞ we have V (k) → 0. This, on the other hand, due to

the properties of V (x(t)) also implies that as t → ∞ we have V (x(t)) → 0 and the

set of agreement states Xa is asymptotically stable. Therefore, we have proved the

following result.

Theorem 20. Consider a swarm composed of N agents with motion dynamics

given by (9.4) with dynamic (time-dependent) interconnection topology (interaction

graph). If Assumption 16 and Assumption 17 hold, then as t →∞ we have x(t)→ Xa

and (9.3) is satisfied, i.e., the states of the agents in the swarm will asymptotically

converge to a common value xa.

This is an important result which basically states that despite the local unidirectional

inter-agent interactions the swarm will reach agreement provided that the uniformity

in the connectivity assumption (Assumption 16) is satisfied. Therefore, the mapping

consisting of concatenation of all (9.4) for all i is a contraction mapping in R
N×n.

Defining the set Y (t) ⊂ R
n as

4 Another possible way to define V (k) could be to take V (k) = V (tk) where {tk} ⊂ T is a

subsequence such that either m(tk+1) > m(tk) or M(tk+1) < M(tk) holds and contraction

occurs.
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Y (t) = {x ∈ R
n|m(t) ≤ x ≤ M(t)}

from above we know that Y (t +1)⊆Y (t) for all t. Moreover, we have Y (t + I×(N−
1)+ 1) ⊂ Y (t) since contraction is guaranteed every I × (N − 1)+ 1 steps. Let us

define Ȳ (k) =Y (k×(I×(N−1)+1)), where k = 0,1,2, ... is the index representing

the times at which contraction is guaranteed. Then Ȳ (k + 1) ⊂ Ȳ (k) is satisfied for

all k. Also let us define

X(k) = Ȳ (k)× Ȳ (k)×·· ·× Ȳ (k)
︸ ︷︷ ︸

N copies of Ȳ (k)
(9.8)

and let x̄a = xa × xa ×·· ·× xa ∈ Xa. Then, from the discussion above we have

x̄a ⊂ ·· · ⊂ X(k + 1)⊂ X(k) ⊂ ·· · ⊂ X(0) ⊂ R
N×n.

In other words, since (9.3) holds, under the dynamics in (9.4) the above defined sets

X(k) uniformly contract until the state of the system converges to a value x̄a ∈Xa (for

some xa ∈ R
n). In particular, any sequence {xk} such that xk ∈ X(k) converges to x̄a.

For any switching sequence σ(t) satisfying Assumption 16, there is always such a

corresponding sequence of contracting sets X(k) and corresponding agreement state

x̄a ∈ Xa (whose value also depends on x(0)). In other words, under Assumption 16

all the limit points of the synchronous iteration in 9.4 are fixed points of the iteration

which are also agreement states and within the set Xa.

Having shown that the synchronous system with no delays will converge we re-

turn to the asynchronous system in the next section.

9.3 Asynchronous System

In this section we return to the asynchronous system in Equations (9.1)-(9.2). We

start with an assumption which allows the agents to move at totally independent

time instants. However, it also guarantees that the agents will perform measure-

ment/communication with their neighbors and will update their state (will move)

in at most B time steps for some finite B. In other words, there is uniformity in

the measurement/communication as well as the update/move times, or basically the

time delay and the times between two moves is uniformly bounded. The value of the

bound B does not need to be known by the agents. It is needed for analysis purposes

and it is sufficient for it just to exist.

Assumption 18. There exists a finite positive constant B such that for every agent i

and for all t ≥ 0 the following conditions hold:

• At least one of the elements of {t,t + 1, ...,t + B−1} belongs to Ti.

• Given the switching sequence σ(t) for every j ∈ Ni(t) we have t−B < τi j(t)≤ t.
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Assumption 18, which is borrowed from [22], basically states that any agent per-

forms a move in at most B time steps and that the information about the neighbors

(used by the agent during determination of its next state/way-point) is outdated by

at most B time steps.5 Assuming such bounds is very reasonable since if there are

agents which do not perform update/move for unbounded amount of time or do

not perform position sensing of their neighbors they are not effectively part of the

swarm.

Note that since the sets Ti are infinite and there are only a finite number of agents

in the swarm, some of them may become neighbors of i only finitely many times,

while others become its neighbor infinitely many times as t → ∞. The second part

of Assumption 18 can be relaxed to state that given the switching sequence σ(t) the

agent i regularly updates its (perceived) information about members j which become

its neighbors, i.e., j ∈ Ni(t), infinitely often as time goes to infinity (and therefore

its state affects the update in (9.1) as time goes to infinity). Still even if some of

the agents do not become neighbors at all, under Assumption 16 information flow

in the swarm is guaranteed and at least one of these two agents is able to obtain

information about the state of the other agent indirectly through other intermediate

agents.

Under Assumption 18 using the result for the synchronous case, the box condi-

tion in (9.8), and Theorem 18 in Chapter 8 (the asynchronous convergence theorem

from [22]) one can show that as t → ∞ we have x(t) → Xa, where Xa is the agree-

ment set in (9.6), implying that (9.3) is satisfied. Still, here we will provide also an

alternative proof based on Lyapunov argument. We state the result first.

Theorem 21. Consider a swarm composed of N agents with motion dynamics given

by (9.1)-(9.2) with dynamic (time-dependent) interconnection topology (interaction

graph). If Assumption 16 and Assumption 18 hold, then as t →∞ we have x(t)→ Xa

and (9.3) is satisfied, i.e., the states of the agents in the swarm will asymptotically

converge to a common value xa.

Proof: Let us once more denote the concatenation of the states of all agents with

x(t) =
(
x⊤1 (t),x⊤2 (t), . . . ,x⊤N (t)

)⊤ ∈ R
N×n. Initially at t = 0 we have x(0) ∈ X(0)

by hypothesis, where X(k),k = 0,1,2, ..., is given in Equation (9.8). Given that

x(t) ∈ X(k) at some tk and for all t ≥ tk we will show that there exist a time tk+1

such that x(t) ∈ X(k + 1) for all t ≥ tk+1. Then, in the light of the discussion for

the synchronous case in the preceding section and application of the asynchronous

convergence theorem in [22] the result follows. Still we will show that a Lyapunov

argument can be used to deduce the same result as well. Let

xpi(t) = (x1(τi1(t)),x2(τi2(t)), . . . ,xN(τiN(t))) (9.9)

denote the “perceived” system state by agent i. We use this notation for convenience.

Here, if j ∈ Ni(t), then x j(τi j(t)) is the perceived state of neighbor j, otherwise if

5 Assumption 18 is similar to Assumption 14 in Chapter 8 but also has some differences.

Systems whose operation obeys Assumption 14 in Chapter 8 can be referred to as to-

tally asynchronous systems, whereas those whose operation obeys Assumption 18 can be

referred to as partially asynchronous systems [22].
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j �∈ Ni(t) we take x j(τi j(t)) = x j(t) since it does not affect the state update of agent

i in (9.1).

By Assumption 18 since for every i and j ∈ Ni(t) we have t −B < τi j(t) ≤ t, it is

guaranteed that after time t̄k = tk +B we have τi j(t) ≥ tk for all t ≥ t̄k = tk +B for all

agents i and for all j ∈ Ni(t). In other words, all agents perform sensing of (or com-

munication with) all of their neighbors (arising due to the switching sequence σ(t))
by time t̄k or in at most B steps after time tk; this is guaranteed by Assumption 18.

Note that the perceived minimum by individual i

mpi(t) = min
j=1,...,N

{x j(τi j(t))} ≤ m(t)

cannot decrease and the perceived maximum

Mpi(t) = max
j=1,...,N

{x j(τi j(t))} ≥ M(t)

cannot increase. Here m(t) and M(t) are the minimum and maximum defined in (9.5).

Note that the asynchronism and the time delay in the iteration do not change the

properties of these sequences. Also the inequalities mpi(t)≤m(t) and Mpi(t)≥M(t)
hold due to the facts that m(t) is non-decreasing (m(t−1)≤ m(t) for all t) and M(t)
is non-increasing (M(t −1)≥ M(t) for all t) and the facts that the perceived mpi(t)
and Mpi(t) correspond to possibly older information. Therefore, since x(t)∈X(k) for

t ≥ tk and τi j(t)≥ tk for t ≥ t̄k = tk +B and for all j ∈ Ni(t), we have mpi(t)≥ m(tk)
and Mpi(t) ≤ M(tk) for all t ≥ t̄k = tk + B implying that

xpi(t) ∈ X(k),∀t ≥ t̄k = tk + B,∀i

In other words, for t ≥ t̄k = tk + B the agents “perceive” that the state of the sys-

tem belongs to X(k). Then, as in the synchronous case defining the sets NM as the

set of agents j such that x j(tk) = M(tk) and Nm as the set of agents j such that

x j(tk) = m(tk), we know that for t ≥ t̄k = tk + B this information will also be per-

ceived by all agents.6 From Assumption 18 we know that every agent will perform

a move in at most B time steps. Similarly from Assumption 16 we know that there

will be a spanning tree every interval of length I. Then, with a similar reasoning

to the synchronous case after I ×B time steps it is guaranteed that the number of

agents in Nm ∪ NM will decrease by at least one. Repeating the argument as in

the synchronous case we obtain that after I × B× (N − 1) + 1 either an increase

in m(t) or a decrease in M(t) will occur. Then, for the function in (9.7) defining

V (k) = V (x(k(B + I×B× (N−1)+ 1))) we once again obtain

V (k + 1)−V(k) < 0 (9.10)

which implies that as t → ∞ we have V (x(t)) → 0 and that x(t) ∈ X(k + 1) for

all t ≥ tk+1 = tk + B + I ×B× (N − 1)+ 1. This completes the induction step and

6 Here again the analysis is performed as if the variables are one-dimensional. However, as

before it holds for vector-type variables with elementwise operations.
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convergence can be deduced from the asynchronous convergence theorem. Looking

at the system from Lyapunov perspective one can see that the inequality in (9.10)

is not sufficient to provide an alternative argument. This is because there is a de-

lay in the system and the delayed states need also be included into the system

state. Therefore, let us define the extended state of agent i as x̄i(t) = (xi(t),xi(t −
1), ...,xi(t −B+1))= (x̄1

i (t), x̄
2
i (t), ..., x̄

B
i (t)) and the extended state of the system as

x̄(t) = (x̄⊤1 (t), x̄⊤2 (t − 1), ..., x̄⊤N (t −B + 1))⊤. Similarly, the extended agreement set

can be defined as

X̄a =
{

x̄ ∈ R
N×n×B : x̄k

i = x̄k
j,∀i, j ∈ {1, ...,N},∀k ∈ {1, ...,B}

}

(9.11)

Also define the metric in R
N×n×B as

ρ(x̄, ȳ) =
n

∑
j=1

max
k=1,...B

{

max
i=1,...,N

{

|x̄k
i j − ȳk

i j|
}}

where x̄, ȳ ∈ R
N×n×B such that x̄k

i j represents the j’th element of the k’th sub-

components of the vector x̄i and similarly for ȳk
i j. Then, the generalized distance

of a given x̄ ∈ R
N×n×B to the extended agreement set X̄a can be calculated as

ρ(x̄, X̄a) = inf
ȳ∈X̄a

{

ρ(x̄, ȳ)
}

Let us also define

m̄(t) = min
k=t,...,t−B+1

{

min
i=1,...,N

{xi(k)}
}

(9.12)

and

M̄(t) = max
k=t,...,t−B+1

{

max
i=1,...,N

{xi(k)}
}

(9.13)

as the minimum and the maximum of the extended system state. Note that due to

the fact that the minimum is nondecreasing and the maximum is nonincreasing we

have

m(t −B + 1)≤ m̄(t) ≤ m(t) ≤ M(t) ≤ M̄(t) ≤ M(t −B + 1)

for all t. Defining the Lyapunov function as

V̄ (x̄(t)) =
n

∑
j=1

(

M̄ j(t)− m̄ j(t)
)

(9.14)

one can see that the relation

0 ≤V (x(t)) ≤ V̄ (x̄(t)) ≤V (x(t −B + 1))

is satisfied for all t. Careful consideration also shows that

ρ(x̄(t), X̄a) ≤ V̄ (x̄(t)) ≤ 2ρ(x̄(t), X̄a)
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is also satisfied which implies that V̄ (x̄(t)) can serve as a Lyapunov function for

the system. Then, from the fact that V (x(t)) → 0 as t → ∞ one can conclude that

V̄ (x̄(t))→ 0 as t →∞ and that the set of agreement states X̄a is asymptotically stable

and this completes the proof.

This result is important because it states that the stability of the system will be

preserved (i.e., all agent states will converge to a common value) even though we

have asynchronous state update mechanism and imperfect information due to time

delays in sensing the states of the agent neighbors on top of time varying or switch-

ing communication topology. The main arguments of the proof are based on a

convexity-type condition and the contraction properties of the iteration (due to the

averaging in the agent motion dynamics). The asynchronism and the time delays

slow down the convergence but do not change the main stability properties of the

motion. The speed of convergence is bounded below by a constant which depends

on the value of µ = B + I ×B× (N − 1)+ 1 since it is guaranteed that contraction

will occur in at most µ time steps.

A special case of this result occurs when the communication topology is fixed. If

this is the case Assumption 16 basically becomes the following.

Assumption 19. The interaction graph G = (N ,A) has a spanning tree.

The corresponding result can be stated as follows.

Corollary 4. Consider a swarm composed of N agents with motion dynamics given

by (9.1)-(9.2) with fixed (static) interconnection topology (interaction graph). If As-

sumption 19 and Assumption 18 hold, then as t →∞ we have x(t)→ Xa and (9.3) is

satisfied, i.e., the states of the agents in the swarm will asymptotically converge to a

common value xa.

9.4 Simulation Examples

In this section numerical simulation examples for both fixed and dynamic neigh-

borhood topology cases of asynchronous swarm agreement are presented. The

dimension of the state space is chosen as n = 3, i.e., the agent dynamics evolve in

R
3. To achieve asynchronism artificially at each time step the agents are set up to

sense their neighbor states and to update their own state with some probability. In

particular, two threshold probabilities 0 < p̄sense < 1 and 0 < p̄move < 1 are defined.

At each time instant t, for each individual i, total of (Ni(t)+ 1) random numbers,

which include p
i j
sense(t), j = 1, . . . ,Ni(t) and one pi

move(t), are generated with uni-

form probability density in the interval [0,1]. If at time t we have p
i j
sense(t) > p̄sense,

then agent i receives the current state of its neighbor j ∈ Ni(t). Otherwise, it keeps

the old state information of agent j. Similarly, if at step t we have pi
move(t) > p̄move,

then individual i updates its state according to the dynamics in (9.1). Otherwise, it

keeps its current state according to (9.2). The pseudo-code in Table 9.1 shows the

logic based on which the agents move. This implementation is not a real discrete

event based asynchronous system. Instead it mimics such systems and is sufficient
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Table 9.1. Pseudo-code of Agent Dynamics

initialize p̄sense and p̄move

initialize the positions of the agents (randomly)

determine the neighborhoods Ni, i = 1, ...,N (fixed topology only)

for t=1:final time do

for each agent i do

determine the set of its neighbors Ni(t) (dynamic topology only)

for each agent j ∈ Ni(t)

generate p
i j
sense(t)

if p
i j
sense(t) > p̄sense

obtain the current state information of agent j

end

end

generate pi
move(t)

if pi
move(t) > p̄move,

update state using (9.1)

else

keep current state using (9.2)

end

end

end

for illustrating the theoretical results presented in this chapter. Another issue here is

how to determine the set of neighbors of the agents at each step. In fact, there could

be various procedures for determining the neighbors of the agents both in the fixed

and the dynamic topologies. These might include strategies based on the nearest

neighbors in the motion space of the form

Ni(t) = { j | j �= i, ‖xi(t)− x j(t)‖ ≤ δi}

where the agents within δi distance from agent i (which can be viewed as the sens-

ing range of agent i) are its neighbors. Other alternatives could be nearest neighbors

in some other space not related to the states that are being agreed upon (such as for

example orientation agreement in multi-agent dynamic systems where the nearest

neighbors are determined based on the positions and not the orientations), nearest

neighbors based on the performance with respect to some evaluation function, ran-

dom determination procedure, and others. For many applications the neighborhoods

will just emerge as the system dynamics progress. For the illustrative simulations

here we assign the neighbors randomly. The pseudo-code for determining the neigh-

borhoods randomly is shown in Table 9.2. In particular, for the fixed topology case

before the main loop, whereas for the dynamics topology case at each time step t,

a total of N × (N − 1) random numbers are generated (i.e., different random num-

bers p
i j

nbr(t) for every possible pairs (i, j), j �= i). Also, a constant p̄nbr was defined

and if at time t for a pair (i, j), j �= i the condition p
i j

nbr(t) > p̄nbr is satisfied, then

agent j is assigned as a neighbor of agent i for time t, i.e., j ∈ Ni(t). Since p
i j
nbr(t) is
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Table 9.2. Pseudo-code For Random Neighborhood

initialize p̄nbr

for each agent i do

for each agent j �= i do

generate p
i j
nbr

(t)

if p
i j
nbr

(t) > p̄nbr

j ∈ Ni(t)
end

end

end

independent and possibly different from p
ji
nbr(t), j ∈ Ni(t) does not imply i ∈ N j(t)

or vice versa.

Figure 9.1 shows the result for a simulation of a system with fixed communication

topology for N = 100 agents. The initial states of the agents are chosen randomly

in the interval [0,1]. Moreover, the (fixed) neighbors of the agents also assigned

randomly with probability of 0.1 (i.e., p̄nbr = 0.9). Also for these simulations the

parameters p̄sense = 0.5 and p̄move = 0.5 were used. As is seen from Figure 9.1(a) all

agent states converge to the same value. The three distinct lines in the figure are due

to the fact that the agent states evolve in R
3 (i.e., xi ∈ R

3) and all three coordinates

are plotted on the same plot. Figure 9.1(b) shows the plot of the average of the
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(a) States of agents. (b) Distance between agent states.

Fig. 9.1. Simulation for fixed neighborhood topology.

distances between the states of the agents given by

e(t) =
2

N(N −1)

N−1

∑
i=1

N

∑
j=i+1

||xi(t)− x j(t)||

with respect to time. As predicted by the analysis it is seen to converge to zero. Ex-

perimenting with other fixed neighborhood topologies such as the fully connected
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and the cyclic (ring) neighborhood topologies shows that similar results are ob-

tained (results not shown here). The fully connected neighborhood topology con-

verges very fast. In the ring topology, on the other hand, the convergence is slower

since the length of the path in the spanning tree there is much longer. The only point

here is that the spanning tree assumption (Assumption 16) should be satisfied. For

the fully connected and the ring topologies it is always satisfied, however for the

random neighborhood for large values of p̄nbr it might not be satisfied and for these

cases convergence may not be guaranteed in general.

For the dynamic topology case, in addition to the asynchronism and time delays

at each time step the neighbors of the agents were re-assigned randomly based on

the procedure shown in Table 9.2. The plots in Figure 9.2 show respectively the

evolution of the agent states and the sum of the distances between them with re-

spect to time. For these simulations again the same probability values p̄sense = 0.5,

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Agent motions

Time

A
g
e
n
t 
p
o
s
it
io

n
s

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average distance between agent states

Time

A
v
e
ra

g
e

(a) States of agents. (b) Distance between agent states.

Fig. 9.2. Simulation for dynamic neighborhood topology ( p̄sense = 0.5, p̄move = 0.5, and

p̄nbr = 0.9).

p̄move = 0.5, and p̄nbr = 0.9 were used. As one can see, once more the states of all

agents converge to a common value. For this case, however, convergence is slower

compared to the corresponding fixed topology case.

Although the fact that a bound B on the time delay and the time between two sub-

sequent moves (recall Assumption 18) was not explicitly imposed, effectively such a

bound exists in the above simulations despite the fact that with the above type of im-

plementation theoretically infinite delays are also possible. In particular, in the simu-

lations by choosing the values of p̄sense, p̄move, and p̄nbr one can change the speed of

convergence (of the implemented simulation algorithm). In fact, decreasing p̄sense,

p̄move or p̄nbr leads to faster convergence (since it results in higher probabilities to

sense, move, and become neighbors), whereas increasing p̄sense, p̄move or p̄nbr leads

to slower convergence. This is because decreasing p̄sense and p̄move implies that the

agents will move and sense the states of their neighbors more often (implying that

effectively the bound B in Assumption 18 will decrease). In other words, the values

of these parameters determine the resulting effective value of the bound B which,
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on the other hand, affects the speed of convergence. Decreasing p̄nbr, on the other

hand, leads to a more connected communication topology (implying that effectively

the bound I in Assumption 16 will decrease). Note from the proof of Theorem 21

that both B and I affect the worst case time for the set to contract and to guarantee

decrease in the Lyapunov function. The plots in Figures 9.3, 9.4, and 9.5 investi-

gate these effects. For the simulation in Figure 9.3 the probability threshold for
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(a) States of agents. (b) Distance between agent states.

Fig. 9.3. Simulation for dynamic neighborhood topology ( p̄sense = 0.5, p̄move = 0.5, and

p̄nbr = 0.5).
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Fig. 9.4. Simulation for dynamic neighborhood topology ( p̄sense = 0.5, p̄move = 0.2, and

p̄nbr = 0.9).

the agents becoming neighbors was decreased from p̄nbr = 0.9 to p̄nbr = 0.5 (while

keeping p̄sense = 0.5 and p̄move = 0.5). As one can see from the figure the system

converges (i.e. agreement is achieved) much faster as expected. For the simulation

in Figure 9.4 the probability threshold for the agents to move was decreased to
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Fig. 9.5. Simulation for dynamic neighborhood topology ( p̄sense = 0.2, p̄move = 0.5, and

p̄nbr = 0.9).

p̄move = 0.2 (while keeping p̄sense = 0.5 and p̄nbr = 0.9). This resulted in only a very

slight difference compared to the simulation in Figure 9.2 and substantial increase in

convergence speed is not achieved. This is probably because for the current imple-

mentation even though the agents move more often they still use the same amount

of outdated information which prevents the achievement of a substantial increase in

the convergence speed. For the simulation in Figure 9.5 the probability threshold

for the agents to sense was decreased to p̄sense = 0.2 (while keeping p̄move = 0.5
and p̄nbr = 0.9). This also resulted in a faster convergence compared to the case in

Figure 9.2. Note that the synchronous case corresponds to the case with p̄move = 0

and p̄sense = 0 (move at each step with always the current information) which both

for the fixed and dynamic topology cases converges much faster compared to the

corresponding asynchronous case with time delays considered here. Note also that

the speed of convergence is not affected by the dimension of the state space n (since

actually each dimension is independent and they do not effect each other). In con-

trast, the number of agents can effect the convergence rate as is expected from the

bound obtained in the proof of Theorem 21. In particular, higher number of agents N

combined with low connectivity properties of the interconnection graph may result

in slower convergence since the length of the information flow paths in the spanning

three can be large.

9.5 Further Issues

9.5.1 Application Areas of the Agreement Model

The distributed agreement model discussed in this chapter can be used for repre-

senting different applications/systems including distributed orientation alignment

in schools of fish or bird flocks, distributed synchronization in fireflies, distributed

decision making as in deciding on a new nest site by a swarm of honeybees and oth-

ers. It can represent also the operation of self-propelled particle systems studied by



214 9 Asynchronous Distributed Agreement in Discrete Time Swarms

physicists such as those considered in [46]. Moreover, it may serve as a crude rep-

resentation of interactions in social networks (and adaptation of attitudes or beliefs,

for example). More detailed information on social networks can be found in [1].

Robot gathering algorithms such as those considered in [74, 101, 149] can also

be represented by the model in (9.1). In other words, (9.1) can be used for high-

level representation of the rendezvous or gathering problem in asynchronous multi-

vehicle systems. In particular, consider a networked system of agents which have

continuous-time vehicle dynamics and have sensing/communication, computation,

and motion capabilities. Assume that they operate on the (infinite) sequence of be-

haviors wait-sense-compute-move. Let at time index t agent i be located at xi(t). Af-

ter performing a sensing of its current neighbors, during its compute state/behavior

it computes using (9.1) the new way point (position point or path point) xi(t + 1).
Then, it moves (using some local control) in some (unspecified but bounded) amount

of time to its new position (the move behavior), waits for some amount of time and

performs new neighbor position sensing. Note that during the wait, sense, and move

behaviors no new way points are computed which corresponds to (9.2). The agent

does not need to know at which time instant the other agents move and there is no

need for a global clock. The asynchronism in the system comes from the fact that

the times for the completion of the behaviors and in particular of the move behav-

ior by different agents is not necessarily uniform. The model in (9.1) provides a

high-level view of such systems and the results developed in this chapter will hold

for such systems as well. However, this representation is not concerned with the

low-level vehicle dynamics and control of the agents. The only requirement is that

appropriate low-level control/navigation algorithms should be designed such that

the agents move to their next computed way points in some finite (unspecified but

bounded) amount of time. In other words, in order for Assumption 18 to be satis-

fied the sequence wait-sense-compute-move must be completed in a finite amount

of time.

Another issue to be emphasized here is that although the model in (9.1) seems

to use global/actual positions/states of the agents it is suitable also for represent-

ing applications in which the relative positions/states can be measured (instead of

gloabl/actual positions/states). To see this note that, by taking wi j(t) = 1,1≤ i, j ≤N

and by rearranging, the model in (9.1) can be rewritten as

xi(t + 1) = xi(t)+
1

Ni(t)+ 1
∑

j∈Ni(t)

[x j(τi j(t))− xi(t)] ,∀t ∈ Ti.

In some applications it might be easier to measure relative states instead of global

states. Then one can use this relative information based model instead of (9.1) since

they are equivalent under the assumption that wi j(t) = 1,1 ≤ i, j ≤ N.

9.5.2 Extensions and Generalizations

It is possible to extend the results discussed in this chapter in several ways. First of

all the uniformity in the connectivity (occurrence of a spanning tree) in Assump-

tion 16 can be removed if communication is bidirectional or if uniformity in the
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occurring cycles is assumed. A synchronous system under these conditions was

analyzed in [175, 176] and the results there can be extended to the asynchronous

system discussed in this chapter.

Once convergence of the synchronous system is established and the box condition

in (9.8) is satisfied, then convergence of the corresponding asynchronous iteration

follows from the asynchronous convergence theorem in [22]. (For more definitions

and discussions see [22].) The asynchronous convergence theorem is a general result

which is not limited to linear iterations and can be applied to nonlinear iterations as

well. In fact, the two main arguments of the proof of convergence in the linear case

are a convexity-type condition and the contraction properties (for more informa-

tion on contraction mappings see [21]) of the iteration. Therefore, as long as these

properties are preserved together with the box condition the results will still hold.

Consider the nonlinear system in which individual i moves according to

xi(t + 1) = fi (t,x1(τi1(t)), . . . ,xN(τiN(t))) ,∀t ∈ Ti, (9.15)

and it is stationary otherwise. This iteration can be also represented by fi(t,xpi(t))
where xpi(t)∈ X ⊂R

N×n (which is defined in (9.9)) is the perceived state of the sys-

tem by agent i at time t and the time dependence in fi is due to the time-dependent

communication topology. For simplicity it is assumed that fi : N×X → Y are con-

tinuous for all i. Also, assume that Assumption 16 is satisfied. Then, under cer-

tain convexity conditions it is possible to show that agreement will be achieved.

In [176] Moreau considered a synchronous version of the nonlinear system in (9.15)

with corresponding convexity type assumption and proved asymptotic agreement.

With some manipulation and application of the asynchronous convergence theorem

in [22] the result there can be extended to the asynchronous case. More concrete

ideas on this can be found in [86].

The synchronous system in Equation (9.4) can be represented as a time varying

discrete time system. To see this one can define the (i, j)′th entry of a matrix A(G , t)
at time t as

[A(G , t)]i j =

{
wi j(t)

wi(t)
, if (i, j) ∈ A(t) or i = j,

0, otherwise,
(9.16)

and the system can be represented as

x(t + 1) = A(G ,t)x(t), (9.17)

where x(t) = [x1(t), . . . ,xN(t)]⊤ ∈ R
N×n represents the state of all agents at time t.

(Note that the definition of x(t) is different from before and here it is a matrix not

a vector.) This is a discrete time system whose stability properties depend on the

properties of the matrix A(G ,t). The matrix A(G ,t) is a stochastic matrix for all t.

This directly follows from the definition of its elements in (9.16). A (row) stochas-

tic matrix is a matrix with non-negative entries which are also less than one and

with sum of each row equal to one. Stochastic matrices have the property that one

of their eigenvalues is λ = 1 and all the other eigenvalues lie within the unit circle.

Moreover, multiplication of stochastic matrices is also stochastic. (More informa-

tion on stochastic matrices can be found in [118].) Using these properties and under
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Assumption 16 for the synchronous system with the dynamics in (9.4), alternatively

to the proof presented in this chapter, it is possible to show that the condition (9.3)

is satisfied. This is the approach taken in [126, 203].

9.5.3 For Further Reading

This chapter is based on the work in [86]. The first work on distributed agreement

was performed in the 80’s in the context of parallel and distributed computation

with the corresponding results collected in [22]. In this chapter we closely follow

the notation in [22]. Moreover, the result for the asynchronous case can alternatively

be proved using the Asynchronous Convergence Theorem in [22] (this was the ap-

proach taken in [86]). Similar work was done also on load balancing in computer

networks or in flexible manufacturing systems in the framework of discrete event

systems (DES) [192]. The analysis in [192] uses metric spaces and Lyapunov ap-

proach and the proofs in this chapter are inspired by the treatment there. Moreover,

the book [169] is a good reference for stability analysis of general dynamical sys-

tems in metric spaces. Directed graphs are commonly used to represent interaction

topologies in multi-agent dynamical systems (as we did here). More information on

graph theory can be found in [100] (or any other text on graph theory).

Recent studies on distributed agreement or consensus or closely related problems

can be found in [10, 24, 71, 72, 126, 175, 176, 184, 203, 216]. In [126] Jad-

babaie and coworkers considered a simple model of n interacting particles with time-

dependent bidirectional communication links and showed that the one-dimensional

system state (the heading in their case) will converge to the same value provided

that the union of the communication graphs is uniformly jointly connected. Ren

and Beard [203] extended the results to unidirectional communication and relaxed

the connectivity assumption to the assumption that the union of the communication

graphs has a spanning tree. The works in [126, 203] have some common aspects

with those in [22] but also have some differences. Independently, Moreau [176] con-

sidered a more general nonlinear interaction model and showed that under unidirec-

tional communication agreement will be achieved if for any uniformly bounded time

interval there is an agent which is connected to all other agents (equivalent to the

spanning tree assumption of [203]), whereas for bidirectional communication the

same will be achieved without uniformity in connectedness. Later in [175] the same

author relaxed the uniformity in connectedness assumption for the unidirectional

case as well, but assumed uniformity in the communication cycles in the graph.

The results in [175, 176] are based on convexity analysis and are more general than

those in both [126] and [203]. Similarly, in [10] Angeli and Bliman provide an ex-

tension of the result by Moreau [176] by relaxing the convexity assumption and al-

lowing for a known and bounded time-delay. Another relevant reference is the work

in [150], where the authors consider a group of unicycles and show that the ren-

dezvous problem is solvable (i.e., a controller achieving stabilization to a point exits)

if and only if the communication graph has a globally reachable node or basically a

spanning tree (in contrast to the work in [126] and [203] where the analysis is based

on a specific control law). However, they consider only the fixed communication
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topology case. The article in [71] briefly discusses asynchronous protocols, poses

some open questions, and shows some simulation based preliminary results on asyn-

chronous protocols using a custom Java based simulator. The article in [24], besides

discussing the current results in the literature, presents some new results for syn-

chronous systems/protocols with delays as well. More detailed treatment of consen-

sus algorithms can be found also in the book [204].

In [72] the authors emphasize the role of information flow and graph Laplacians

and derive Nyquist-like criterion for stabilizing vehicle formations. In [184] Olfati-

Saber and Murray describe consensus protocols for networks of dynamic agents

with fixed and switching communication topologies and show that connectivity of

the network is key in reaching consensus. They determine a class of directed com-

munication graphs which guarantee reaching average consensus and they establish

connection with the Fiedler eigenvalue of the graph Laplacian and the speed of con-

vergence. Moreover, they also consider time delays and channel filtering affects.

In [216] Sepulchre and coworkers study connections between models of coupled

phase oscillators and kinematic models of swarms (groups of self-propelled parti-

cles) and design control laws for stabilizing collective motions of groups.

The distributed agreement model in (9.1) has distinguishing properties: (i) the

agents update their states in asynchronous manner; (ii) they do not necessarily have

the exact information about the states of the other agents. Therefore, it is more real-

istic and more suitable for describing distributed agreement in multi-agent dynamic

systems since these features are natural properties of such systems.



10

Formation Control with Potential Functions and

Newton’s Iteration

10.1 Path Planning for a Single Agent

In this chapter, we consider again the formation control problem. However, we take

a different approach for solving the problem. In particular, we consider a discrete-

time model for agent motion dynamics. Such a model does not necessarily represent

dynamics of physical agents. However, one can view the model as a high-level rep-

resentation which generates way-points for the physical agents. In other words, it

serves as an iterative path planner for the physical agents. In that case, each agent

should poses a low-level controller which should guarantee that the agent will move

to the next way-point in a finite time. We will first describe the procedure for a single

agent to move from its current position to one of the desired target locations in an

environment with obstacles. Following that, we will discuss how the procedure can

be modified to solve the formation control problem. The main idea is to define poly-

nomial type potential functions such that the positions of the targets and obstacles

constitute the zeros of these functions. Then using an iterative strategy which gen-

erates the way-points based on the negative gradient of the target function, and the

positive gradient of the obstacle function, solve for the zeros of the target function

(i.e., move towards the target positions) and avoid the zeros of the obstacle function

(i.e., avoid the obstacles).

As was mentioned above, polynomial type artificial potential functions are used

to define the positions of the targets and obstacles in the state space. We will now

describe how these functions are being generated. Consider an n-dimensional posi-

tion space and let y = [y1, . . . ,yn]
⊤ ∈ R

n denote any vector in R
n. Assume that there

are m targets in the space and represent this set of targets with

HT (y) = {ti ∈ R
n|i = 1, . . . ,m}

where ti = [ti1, . . . ,tin]
⊤ ∈ R

n represents the position of the i’th target. Define the

corresponding target function FT : R
n → R

n as
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FT (y) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

f1(y)
f2(y)

...

fn(y)

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(10.1)

such that for every ti ∈ HT (y) we have FT (ti) = 0. In other words, given a set of

targets HT (y) the corresponding nonlinear target function FT (y) is defined such that

every ti ∈ HT (y) is a root of FT (y). To this end, the first components ti1 of all target

vectors ti are used to form the function f1(y) in the form

f1(y) = y1y2 −
[

y1Pm−1
2 (y1)− (y1 − t11)(y1 − t21) . . . (y1 − tm1)

]

(10.2)

Similarly, the j’th and ( j−1)’th components of the ti vectors are used to create the

function f j(y). In other words, the j’th and ( j − 1)’th components of the vectors ti
are taken into account such that the zeros of the function f j(y) are given by

[
(t1( j−1),t1( j)),(t2( j−1),t2( j)), . . . ,(tm( j−1),tm( j))

]
(10.3)

This can be achieved by defining Pm−1
j (y j−1) as an (m − 1)’th order polynomial

for which we have Pm−1
j (ti( j−1)) = ti( j) for all targets i = 1, . . . ,m and components

j = 2, . . . ,n and choosing f j(y) as

f j(y) = y j −Pm−1
j (y j−1)

Then, the target function constructed this way can be written as

FT (y) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(y1,y2)
f2(y1,y2)
f3(y2,y3)

...

fn(yn−1,yn)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y1y2 −Pm
1 (y1)

y2 −Pm−1
2 (y1)

y3 −Pm−1
3 (y2)
...

yn −Pm−1
n (yn−1)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10.4)

This target function is a special type of artificial potential function that has zeros

at the target points. For a better understanding of the procedure, we provide a nu-

merical example. Let the dimension of the space be n = 2, the number of targets be

m = 3 and the positions of the targets be given as t1 = [1,1], t2 = [2,3], t3 = [3,8]. In

this case, the Pm−1
2 (y1) = P2

2 (y1) polynomial becomes a second order polynomial in

the form of

P2
2 (y1) = c1(y1 − t11)(y1 − t21)+ c2(y1 − t21)(y1 − t31)+ c3(y1 − t11)(y1 − t31)

(10.5)

where c1, c2, and c3 are parameters which are calculated such that the condition

in (10.3) is satisfied. In other words, the values of c1, c2, and c3 are calculated using

the conditions

P2
2 (t j1) = c1(y1 − t11)(y1 − t21)+ c2(y1 − t21)(y1 − t31)+ c3(y1 − t11)(y1 − t31) = t j2

(10.6)
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for all targets j = 1,2,3. This means that (y2 −P2
2 ) has zeros at t1, t2, and t3. Solving

equations (10.6) for the above targets one can obtain the values c1 = 4, c2 = 0.5,

and c3 = −3 for the parameters in equation (10.5).

Given the above P2
2 (y1), the P3

1 (y1) polynomial becomes a third order polynomial

of the form

P3
1 (y1) = y1P2

2 (y1)− (y1 − t11)(y1 − t21)(y1 − t31) (10.7)

Using these, the corresponding target function FT (y) can be calculated as

FT (y) =

{
y1y2 − (0.5y3

1 + 3.5y2
1−9y1 + 6)

y2 −1.5y2
1 + 2.5y1−2

}

(10.8)

Thus, one can see that FT (y) has zeros at t1, t2, and t3, i.e., FT (t j) = 0 for all targets

j = 1,2,3. Then, given any initial position y, moving to a desired target position

is analogous to finding (solving for) a zero of the function FT (y) = 0. Moreover,

by using an iterative method for solving the problem one can also simultaneously

generate the path from the current position to the target position. There are various

methods for solving this type of problem; here we use Newton’s method. We would

like to emphasize that other methods can be used as well.

Having constructed the target function FT (y), the next step is to solve the equation

FT (y) = 0 by an iterative method, and as we mentioned above, we will use a Newton

iteration. Given that the agent is located at position y(k) at iteration k its position

can be updated based on the Newton’s method as

y(k + 1) = y(k)+λ∆ya(k) (10.9)

where λ is a step size parameter and the step vector is given by

∆ya(k) = −
[

∇FT (y(k))
]−1

FT (y(k)). (10.10)

Note here that the step ∆ya(k) is an attraction step towards one of the targets. The

agent moves towards the target within whose basin of attraction it is located (which

is usually the closest target). The parameter λ> 0 is a step size parameter which de-

termines the coarseness of the steps. It is needed because adding ∆xa(k) directly to

the current position may result in large step size due to large relative difference be-

tween the agent and the targets and this may lead to convergence problems. Another

issue to mention here is that the above implementation does not guarantee avoid-

ance of collisions with possible obstacles in the space. In order to add collision

avoidance one can use an approach that is in principle similar to moving towards

the targets, with the difference of moving in the opposite direction (in order to avoid

the obstacles). In other words, given a set of r obstacles in the space

HO(y) = {oi ∈ R
n|i = 1, . . . ,r}

where oi = [oi1, . . . ,oin]
⊤ ∈ R

n represents the position of the i’th obstacle, one can

define the corresponding obstacle function as FO : R
n →R

n such that FO(oi) = 0 for

all oi ∈ HO(y). Then, the motion of the agent can be modified as



222 10 Formation Control with Potential Functions and Newton’s Iteration

y(k + 1) = y(k)+λ
(

∆ya(k)+∆yr(k)
)

(10.11)

where ∆ya(k) is as defined in (10.10) and

∆yr(k) =

{ 1
(

1+
( ‖R(k)‖

Cr

)µ)

‖R(k)‖3
R(k)− εr

(1+( εr
Cr

)
µ
)ε3

r

1, ρ(y(k),HO(y)) < εr,

0, ρ(y(k),HO(y)) ≥ εr.
(10.12)

Here, R(k) constitutes a repulsion vector at step k and is calculated as

R(k) = +
[

∇FO(y(k))
]−1

FO(y(k)) (10.13)

ρ(y(k),HO(y)) is the distance between y(k) and the set HO(y), and 1 = [1, . . . ,1]⊤ ∈
R

n is a vector of ones. Once again the step size parameter λ serves as a scaling

factor of the step to achieve better accuracy and convergence. An issue to note here

is that with the above formulation, the repulsion is only invoked if the agent is a very

close distance εr to an obstacle. Note also that in order to guarantee avoidance of

collisions in close vicinity of obstacles the repulsion force dominates since it grows

unbounded as the agent gets closer to an obstacle as shown in Figure 10.1. The
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Fig. 10.1. Plot of the value of the repulsion versus R(k) for different values of Cr and µ (in

one-dimensional space).

parameters Cr and µ determine the shape and the steepness of the repulsion function

as can be seen in Figure 10.1. In particular, decreasing µ or increasing Cr increases

its steepness and results in faster growth of the repulsion with respect to the decrease

in the value of R(k).
Having set the framework for a single agent in this section, in the next section we

will return to the main problem under consideration–which is the formation control

problem–and discuss how we can use the above framework and ideas to solve the

problem.
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10.2 Controller Development

Consider a swarm consisting of N agents which are moving in an n-dimensional

space. Let xi = [xi1, . . . ,xin]
⊤ ∈R

n denote the position vector of agent i. Since we are

mainly concerned with the formation control problem, the objective of every agent

is to achieve a predefined geometrical shape or a formation pattern in coordination

with other agents. The approach is based on the strategy discussed in the preceding

section. Therefore, the method is iterative and the agents update their motion plans

at each step utilizing the new position information of other agents.

The approach consists of three steps, the first of which is to define for every

agent its desired relative positions with respect to the other agents as mobile targets

and the other agents themselves as mobile obstacles. The second step is to generate

the corresponding target and obstacle functions (which are basically polynomial

potential functions as was discussed in the preceding section) based on these defined

target/obstacle positions. The third step is to update the positions of the agents based

on their time varying target and obstacle functions. We utilize Newton’s update rule

for updating the positions of the agents.

In order to achieve the desired formation (i.e., the desired predefined geometric

shape), given any initial positions, the agents should move and locate themselves at

the desired inter-agent distances. Assume that the desired formation is defined by

the desired inter-agent distances or formation constraints

‖xi − x j‖ = di j

for all i, j = 1, ...,N, j �= i. Here di j > 0 represents the inter-agent distance between

agents i and j in the desired formation. In order for the problem to be solvable these

distances should be non-conflicting.

Guided by the discussion for the single agent case presented in the preceding

section, in order to develop a strategy which moves the agents such that to achieve

the desired formation, we define the target set for each agent as the set of points that

consists of the points defined at the desired distances from the other agents. In other

words, given an agent i, the set of its targets j = 1, ...,N, j �= i at time k are defined

as

H i
T (k) =

{

t j(k) = x j(k)+
di j

‖xi − x j‖
(

xi(k)− x j(k)
)

| j = 1, . . . ,N, j �= i

}

.

Similarly, in order to avoid collisions between agents, they are viewed as obstacles

to each other. In other words, the obstacle set for agent i at time k is defined as

H i
O(k) =

{
o j(k) = x j(k)| j = 1, . . . ,N, j �= i

}
.

In order to further illustrate the procedure let us assume that there are three agents

which are required to form an equilateral triangle with edge lengths d as shown in

Figure 10.2. For this case, there exist two non-stationary (moving) target points

for every agent at every step and the target points for a given agent are located on

the lines that connect the agents to the other agents and at a distance d from these
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Fig. 10.2. Example equilateral triangle formation.

agents as shown in Figure 10.3. For example, for the agent in the lower left corner

in Figure 10.3 the target set consists of the points labeled as stars. Similarly for the

agent located on the upper left corner the target set consists of the points labeled

as triangles. Note that at each step–after the motion of the agents–the positions of

these points change and therefore, the target sets are time-varying.
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Fig. 10.3. The positions of the targets for each agent.

It is obvious that there are (N−1) target points in the set H i
T (k). These targets are

defined by the desired distances di j of the agent to the other agents in the desired for-

mation. Note that here the problem is specified assuming that there is a predefined

desired distance di j between all possible agent pairs (i, j) and the agents should try

to simultaneously keep their distance to all other agents j �= i (i.e., for simplicity

it is assumed that the interaction/constraints graph is fully connected or complete).

However, we would like to emphasize here as well that it is possible to define a

unique formation by using graph-theoretic concepts, and in particular the concept of
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rigid graphs with minimum connections, and choosing a smaller number of desired

inter-agent distances and therefore fewer targets for each agent. To avoid collisions,

the set of obstacles should still in principle include all the other agents. However,

practically for a given agent the set of obstacles consists only of the other agents

which are very close to it. In other words, the repulsion between agents is invoked

only if agents get to a pre-specified repulsion distance to each other and there is no

need to maintain constant complete connection graph for repulsion.

In order to reduce computational complexity, we will further redefine the tar-

get and obstacle sets. In particular, for each agent i we will redefine the target and

obstacle sets as follows

H i
T (k) =

⋃

j=1,...N, j �=i

H
i j
T (k) and H i

O(k) =
⋃

j=1,...N, j �=i

H
i j
O (k)

where

H
i j
T (k) =

{

t j(k) = x j(k)+
di j

‖xi − x j‖
(

xi(k)− x j(k)
)

, j �= i

}

and

H
i j
O (k) =

{
o j(k) = x j(k), j �= i

}

consist of only one target and one obstacle, respectively. In other words, H
i j
T (k)

contains the target for agent i based on only agent j �= i. Similarly, H
i j
O (k) contains

the obstacle for agent i based on only agent j �= i. Then, given agent i we generate

separate target and obstacle functions F
i j
T (k) and F

i j
O (k) for the j’th agent ( j �= i)

instead of single target and obstacle functions F i
T (k) and F i

O(k) that cover all of the

targets and all of the obstacles, respectively. Then the attraction step of agent i is

generated based on

∆xai(k) =
N

∑
j=1, j �=i

1

‖Ai j(k)‖
Ai j(k) (10.14)

where

Ai j(k) = −
[

∇F
i j
T (k)

]−1

F
i j
T (k). (10.15)

Similarly, its repulsion step is generated as follows

∆xri(k) =
N

∑
j=1, j �=i

R̄i j(k) (10.16)

where

R̄i j(k) =

⎧

⎨

⎩

1
(

1+

(
‖Ri j (k)‖

Cr

)µ)

‖Ri j(k)‖3

Ri j(k)− εr

(1+( εr
Cr

)
µ
)ε3

r

, ‖xi(k)− x j(k)‖ < εr,

0, ‖xi(k)− x j(k)‖ ≥ εr,
(10.17)

and

Ri j(k) = +
[

∇F
i j
O (k)

]−1

F
i j
O (k). (10.18)
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Note that with this type of definition of the target and obstacle sets one needs

to define 2N(N − 1) target/obstacle functions for N agents. However, this results

in polynomials which are only first order which leads to a significant decrease in

computational complexity.

In this case, for each agent i we have N − 1 number of target sets H
i j
T (k) and

equivalently for each of them there exists n×1 dimensional target function F
i j
T (k).

The Pm
1 (k), Pm−1

2 (k), and Pm−1
n (k) polynomials in equation (10.4) which are used

to form the target and obstacle functions simplify significantly. In particular, the

Pm−1
2 (k) = P0

2 (k) to Pm−1
n (k) = P0

n (k) polynomials become constant numbers (i.e.,

polynomials of degree zero) and Pm
1 (k) = P1

1 turns into a first order polynomial. In

other words, for agent i we have

P
i j
2 = t j2(k), . . . ,P

i j
n = t jn(k)

and

P
i j
1 = xi1(k)t j2(k)− (xi1(k)− t j1(k))

Here t j1(k) to t jn(k) are the components of the target vectors t j(k). Note that the

value of t j(k) can be different at each step since the agents move.

As was the case in the preceding section, we use a step size parameter here as

well and update the position of agent i based on

xi(k + 1) = xi(k)+λi∆xi(k) (10.19)

where λi > 0 is the step size parameter to be determined by the designer and ∆xi(k)
is the unit step vector determining the direction of motion which is calculated as

∆xi(k) =
∆xai(k)+∆xri(k)

‖∆xai(k)+∆xri(k)‖
. (10.20)

Here we assume that each agent might have different step size parameter λi.

Since the method we consider here is discrete, once the robots achieve the for-

mation they start to oscillate around their target point with a deviation which is pro-

portional to the step size. In other words, the step size parameter λ determines also

the final accuracy in the formation. In order to further improve the formation accu-

racy one can employ an adaptive step size such that adaptation is invoked whenever

the formation error is sensed to be small. In particular, one possible straightforward

implementation of adaptive step size could be to decrease the step size once the for-

mation error for a given agent is less than twice its current step size. In other words,

for any agent i basically set

if ξi j < 2λi ∀ j �= i then λi = αiλi (10.21)

where 0 < αi < 1 is a scaling down parameter, ξi j is given by ξi j = |δi j −di j|, and

δi j = ‖xi−x j‖ and di j are, respectively, the current and the desired distance between

agents i and j.

Finally, we would like to also stress here that although the procedure was de-

scribed considering the formation control problem, it is very easy to accommodate
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also the problem of distributed agreement within this framework. The only modi-

fication which is needed for that purpose is to set di j = 0 for all pars (i, j) and to

remove inter-agent collision avoidance. Similarly, it can be modified to handle the

aggregation, social foraging, and swarm tracking problems as well.

10.3 Simulation Examples

In this section we present illustrative numerical simulation examples. We perform

simulations for n = 2 and n = 3 dimensional spaces. For n = 2 there are N = 6 agents

in the swarm which are required to form an equilateral triangle formation with edge

lengths equal to d = 6 and to arrange themselves such that three of the agents are

located at the corners of the triangle, whereas the other three agents are located at

the intermediate points of the edges. Therefore, depending on the relative position

in the desired formation, the distances between agents is either d = 6, d/2 = 3, or

(d/2)
√

3 = 3
√

3. For the case of n = 3 there are N = 8 agents in the swarm which

are required to form a tetrahedron shape with edge length equal to d = 6. Here again

four of the agents are required to locate themselves at the corners of the tetrahedron,

while the remaining four are required to locate at the center points of its side faces.

Therefore, depending on the relative position in the desired formation, there are four

possible desired inter-agent distances which are d = 6, d/3 = 2, d/
√

3 = 2
√

3, and

d
√

2/3 = 2
√

6. We use an adaptive step size which is initialized as λi = 0.1 for

all agents i = 1, ...,N, and the adaptation is performed as in equation (10.21) with

αi = 0.5 for all i. The other parameters we have used in the simulations below are

the repulsion range εr = 0.5, and the repulsion function parameters Cr = 0.01 and

µ = 0.1. The simulations were set to stop either if the number of steps/iterations

reached the predefined number of maximum iterations Nmax = 400 or if the average

formation error becomes smaller than εstop = 0.001.

Figure 10.4 shows the trajectories of the agents during a simulation for n = 2 in

which N = 6 agents form an equilateral triangle formation. Final relative positions

and the formed geometric shape are also shown in the figure. As can be seen from

the figure, the agents arrange themselves in the desired formation. The simulation

lasts for about 163 steps and stops once the formation error decreases below εstop =
0.001. Checking the step size of the agents after stopping one can see that adaptation

has been employed and the step size has been decreased to λi < 0.001 for all i.

Figure 10.5 shows the plots of the inter-agent distances and the average distance

error (the formation error)

e(k) =
1

N(N −1)

N−1

∑
i=1

N

∑
j=i

|‖xi(k)− x j(k)‖−di j|.

As can be seen from Figure 10.5(a) the inter-agent distances converge to the de-

sired values of d = 6, d/2 = 3, and (d/2)
√

3 = 3
√

3. Similarly, one can observe in

Figure 10.5(b) that the formation error converges to zero (actually it converges to a

value less than εstop = 0.001).
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Fig. 10.4. The paths of N = 6 agents forming an equilateral triangle formation.
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Fig. 10.5. Equilateral triangle formation (n = 2, N = 6): distance between agents and average

inter-agent distance error.

Figure 10.6 shows simulation results for n = 3 in which N = 8 agents are required

to form a tetrahedron formation. The paths of the agents as well as the formation

achieved can be seen in Figure 10.6(a). The final formation is also depicted in Fig-

ure 10.6(b) for better visualization. To make it even clearer, some of the inter-agent

connection lines are omitted. In other words, although the simulation was performed

using a complete graph connection topology some of these connection lines are not

depicted in Figure 10.6(b) to prevent confusion in the shape of the formation.

This simulation lasted for about 309 steps. Adaptive step size was employed

again and it was observed once more that after stopping, the step size for all agents

i has been decreased to λi < 0.001. The plots of the inter-agent distances and the
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Fig. 10.6. Tetrahedron formation (n = 3, N = 8): agent paths and the final formation.
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Fig. 10.7. Tetrahedron formation (n = 3, N = 8): distance between agents and average inter-

agent distance error.

formation error with respect to the step k are shown in Figure 10.7. As can be seen

from the figure, the formation error converges to zero and the inter-agent distances

converge to the desired distances of d = 6, d/3 = 2, d/
√

3 = 2
√

3, and d
√

2/3 =

2
√

6.

We would like to also mention here that as all the potential function methods,

and also due to the properties of the Newton’s method, the agents might sometimes

get stuck on a local minimum. Therefore, the objective of forming the formation

might be unsuccessful. To prevent or overcome such situations one can carefully

re-assign the neighborhood desired distance requirements so that the current agent

positions are “close enough” to the final formation. In other words, one can carefully

re-assign the neighbor distance requirements such that the current position of the
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agents is close to their relative position in the desired formation so that to avoid

local minima. Other procedures for avoiding local minima can also be employed.

10.4 Further Issues

10.4.1 Extensions and Generalizations

As was already mentioned in the preceding sections the method described in this

chapter is based on artificial potential functions and Newton’s iteration. It is high-

level path planning procedure which is independent of low-level dynamics of the

agents and therefore can be applied to different types of agents or systems of het-

erogeneous agents. As this is a big advantage, it requires also that the agents possess

low-level controllers which will guarantee that they move from their current way-

points to their next way-points in finite time.

One shortcoming of the procedure described is that similar to the other potential

functions based strategies it can suffer from the so-called local minima problem.

Therefore, strategies to avoid local minima might be incorporated in conjunction

to the method described. The method can suffer also from the limitations of the

Newton’s iteration. Therefore, alternative iteration strategies can also be considered.

As the reader is already aware, the present strategy can easily be adapted to solve

the problem of distributed agreement. The only modification which is needed for

that purpose is to set di j = 0 for all pairs (i, j) and to remove inter-agent collision

avoidance. The other main difference from the framework here could be that the

neighborhood relations for the distributed agreement case might be dynamic. It can

also be modified to handle the aggregation, social foraging, and swarm tracking

problems as well.

10.4.2 For Further Reading

This chapter is based on the work in [114]. The work there has been also inspired by

earlier results obtained by Erkmen and coworkers in [70]. In order to solve for the

zeros of the target function (and to set the paths for the agents) we used Newton’s

iteration method in this chapter. However, although we have not tested them, we

believe that other possible iterative methods solving the zeros of a function can

be equally used. For alternative strategies one can consult any book on numerical

methods.
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Bacteria Foraging Optimization

Natural selection tends to eliminate animals with poor “foraging strategies” (meth-

ods for locating, handling, and ingesting food) and favor the propagation of genes of

those animals that have successful foraging strategies since they are more likely to

enjoy reproductive success (they obtain enough food to enable them to reproduce).

After many generations, poor foraging strategies are either eliminated or shaped

into good ones. Such evolutionary principles have led scientists to hypothesize that

it is appropriate to model the activity of foraging as an optimization process. In this

chapter, we first explain the biology and physics underlying the chemotactic (for-

aging) behavior of E. coli bacteria. Next, we introduce an algorithmic optimization

model of E. coli foraging behavior. Finally, we show that this algorithm can perform

optimization for a multiple-extremum function minimization problem.

11.1 Bacterial Foraging by E. coli

The E. coli bacterium has a plasma membrane, cell wall, and capsule that contain,

for instance, the cytoplasm and nucleoid. Up to six flagella are used for locomotion.

The cell is about 2µm in length and weighs about 1 picogram. When E. coli grows,

it gets longer, then divides in the middle into two “daughters.” Given sufficient food

and held at the temperature of the human gut (one place where they live) of 37 deg.

C, E. coli can synthesize and replicate everything it needs to make a copy of itself

in about 20 min. Mutations in E. coli occur at a rate of about 10−7 per gene, per

generation.

11.1.1 Swimming and Tumbling

E. coli locomotion is achieved via a set of relatively rigid flagella that enable it to

“swim” via each of them rotating in the same direction at about 100− 200 revolu-

tions per second. Each flagellum is a left-handed helix configured so that as the base

of the flagellum (i.e., where it is connected to the cell) rotates counterclockwise, as

viewed from the free end of the flagellum looking towards the cell, it produces a
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force against the bacterium, so it pushes the cell. You may think of each flagellum

as a type of propeller. If a flagellum rotates clockwise, then it will pull at the cell.

From an engineering perspective, the rotating shaft at the base of the flagellum is

quite an interesting contraption that seems to use what biologists call a “universal

joint” (so the rigid flagellum can “point” in different directions, relative to the cell).

In addition, the mechanism that creates the rotational forces to spin the flagellum in

either direction is described by biologists as being a biological “motor.”

An E. coli bacterium can move in two different ways: it can “run” (swim for a

period of time) or it can “tumble,” and it alternates between these two modes of

operation its entire lifetime (i.e., it is rare that the flagella will stop rotating). First,

we explain each of these two modes of operation. Following that, we will explain

how it decides how long to swim before it tumbles, which will enable it to perform

“nutrient hill climbing.”

If the flagella rotate clockwise, each flagellum pulls on the cell and the net effect

is that each flagellum operates relatively independent of the others and so the bac-

terium “tumbles” about (i.e., the bacterium does not have a set direction of move-

ment and there is little displacement). See Figure 11.1(a). To tumble after a run,

the cell slows down or stops first. Since bacteria are so small they experience al-

most no inertia, only viscosity, so that when a bacterium stops swimming, it stops

within the diameter of a proton. Call the time interval during which a tumble occurs

a “tumble interval.” Under certain experimental conditions (an isotropic, homoge-

neous medium—one with no nutrient or noxious substance gradients) for a “wild

type” cell (one found in nature), the mean tumble interval is about 0.14±0.19 sec.

(mean ± standard deviation, and it is exponentially distributed) [19, 20]. After a

tumble, the cell will generally be pointed in a random direction, but there is a slight

bias toward being placed in the direction it was traveling before the tumble.

Clockwise Rotation of Flagella, Tumble

Counterclockwise Rotation of Flagella, Swim

(a) (b) (c)

Fig. 11.1. Bundling phenomenon of flagella shown in (a), swimming and tumbling behavior

of the E. coli bacterium is shown in (b) in a neutral medium and in (c) where there is a nutrient

concentration gradient, with darker shades indicating higher concentrations of the nutrient.

(Note: Relative sizes of the bacteria and lengths of runs are not to scale.)

If the flagella move counterclockwise, their effects accumulate by forming a

“bundle” (it is thought that the bundle is formed due to the viscous drag of the

medium) and hence, they essentially make a “composite propeller” and push the
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bacterium so that it runs (swims) in one direction (see Figure 11.1(a)). On a run,

bacteria swim at a rate of about 10− 20 µmeters/sec., but in a rich medium they

can swim even faster [162]. Call the time interval during which a run occurs the

“run interval.” Under certain experimental conditions (an isotropic, homogeneous

medium—the same as the one mentioned above) for a wild type cell, the mean run

interval is about 0.86±1.18 sec. (and it is exponentially distributed) [19, 20]. Also,

under these conditions, the mean speed is 14.2±3.4 µm/sec. Runs are not perfectly

straight since the cell is subject to Brownian movement that causes it to wander off

course by about 30 deg. in 1 sec. in one type of medium, so this is how much it typi-

cally can deviate on a run. In a certain medium, after about 10 sec. it drifts off course

more than 90 deg. and hence, essentially forgets the direction it was moving [19].

11.1.2 Chemotaxis and Climbing Nutrient Gradients

The motion patterns (called “taxes”) that the bacteria will generate in the presence

of chemical attractants and repellents are called “chemotaxes.” For E. coli, encoun-

ters with serine or aspartate result in attractant responses, while repellent responses

result from the metal ions Ni and Co, changes in pH, amino acids like leucine, and

organic acids like acetate. What is the resulting emergent pattern of behavior for

a whole group of E. coli bacteria? Generally, as a group they will try to find food

and avoid harmful phenomena, and when viewed under a microscope, you will get

a sense that a type of intelligent behavior has emerged, since they will seem to in-

tentionally move as a group.

To explain how chemotaxis motions are generated, we simply must explain how

the E. coli decides how long to run since, from the above discussion, we know what

happens during a tumble or run. First, note that if an E. coli is in some substance

that is neutral, in the sense that it does not have food or noxious substances, and if

it is in this medium for a long period of time (e.g., more than one minute), then the

flagella will simultaneously alternate between moving clockwise and counterclock-

wise so that the bacterium will alternately tumble and run. This alternation between

the two modes will move the bacterium, but in random directions, and this enables

it to “search” for nutrients (see Figure 11.1(b)). For instance, in the isotropic homo-

geneous environment described above, the bacteria alternately tumble and run with

the mean tumble and run lengths given above, and at the speed that was given. If the

bacteria are placed in a homogeneous concentration of serine (i.e., one with a nutri-

ent but no gradients), then a variety of changes occur in the characteristics of their

motile behavior. For instance, mean run length and mean speed increase and mean

tumble time decreases. They do, however, still produce a basic type of searching

behavior; even though it has some food, it persistently searches for more. As an ex-

ample of tumbles and runs in the isotropic homogeneous medium described above,

in one trial motility experiment lasting 29.5 sec., there were 26 runs, the maximum

run length was 3.6 sec., and the mean speed was about 21 µm/sec. [19, 20].

Next, suppose that the bacterium happens to encounter a nutrient gradient (e.g.,

serine) as shown in Figure 11.1(c). The change in the concentration of the nutrient

triggers a reaction such that the bacterium will spend more time swimming and less
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time tumbling. As long as it travels on a positive concentration gradient (i.e., so that

it moves towards increasing nutrient concentrations) it will tend to lengthen the time

it spends swimming (i.e., it runs farther). The directions of movement are “biased”

towards increasing nutrient gradients. The cell does not change its direction on a run

due to changes in the gradient—the tumbles basically determine the direction of the

run, aside from the Brownian influences mentioned above.

On the other hand, typically if the bacterium happens to swim down a concen-

tration gradient (or into a positive gradient of noxious substances), it will return to

its baseline behavior so that essentially it tries to search for a way to climb back

up the gradient (or down the noxious substance gradient). For instance, under cer-

tain conditions, for a wild-type cell swimming up serine gradients, the mean run

length is 2.19± 3.43 sec., but if it swims down a serine gradient, mean run length

is 1.40± 1.88 sec. [20]. Hence, when it moves up the gradient, it lengthens its

runs. The mean run length for swimming down the gradient is the one that is ex-

pected, considering that the bacteria are in this particular type of medium; they act

basically the same as in a homogeneous medium so that they are engaging their

search/avoidance behavior to try to climb back up the gradient.

Finally, suppose that the concentration of the nutrient is constant for the region it

is in, after it has been on a positive gradient for some time. In this case, after a pe-

riod of time (not immediately), the bacterium will return to the same proportion of

swimming and tumbling as when it was in the neutral substance so that it returns to

its standard searching behavior. It is never satisfied with the amount of surrounding

food; it always seeks higher concentrations. Actually, under certain experimental

conditions, the cell will compare the concentration observed over the past 1 sec.

with the concentration observed over the 3 sec. before that and it responds to the

difference [19]. Hence, it uses the past 4 sec. of nutrient concentration data to de-

cide how long to run [215]. Considering the deviations in direction due to Brownian

movement discussed above, the bacterium basically uses as much time as it can

in making decisions about climbing gradients [18]. In effect, the run length results

from how much climbing it has done recently. If it has made lots of progress and

hence, has just had a long run, then even if for a little while it is observing a homo-

geneous medium (without gradients), it will take a longer run. After a certain time

period, it will recover and return to its standard behavior in a homogeneous medium.

Basically, the bacterium is trying to swim from places with low concentrations of

nutrients to places with high concentrations. An opposite type of behavior is used

when it encounters noxious substances. If the various concentrations move with

time, then the bacteria will try to “chase” after the more favorable environments

and run from harmful ones. Clearly, nutrient and noxious substance diffusion and

motion will affect the motion patterns of a group of bacteria in complex ways.

11.1.3 Underlying Sensing and Decision-Making Mechanisms

The E. coli bacterium’s sensors are receptor proteins, which are signaled directly by

external substances (e.g., amino acids) or via the periplasmic substrate-binding pro-

teins. The “sensor” is very sensitive, in some cases requiring less than 10 molecules
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of attractant to trigger a reaction, and attractants can trigger a swimming reaction

in less than 200 ms. You can then think of the bacterium as having a “high gain”

with a small attractant detection threshold (detection of only a small number of

molecules can trigger a doubling or tripling of the run length). On the other hand,

the corresponding threshold for encountering a homogeneous medium after being in

a nutrient rich one is larger. Also, there is a type of time-averaging that is occurring

in the sensing process. The receptor proteins then affect signaling molecules inside

the bacterium. Also, there is in effect an “adding machine” and an ability to com-

pare values and to arrive at an overall decision about which mode the flagella should

operate in; essentially, the different sensors add and subtract their effects, and the

more active or numerous have a greater influence on the final decision.

It is interesting to note that the “decision-making system” in the E. coli bacterium

must have some ability to sense a derivative, and hence, it has a type of memory. At

first glance it may seem possible that the bacterium senses concentrations at both

ends of the cell and finds a simple difference to recognize a concentration gradient

(a spatial derivative); however, this is not the case. Experiments have shown that

it performs a type of sampling, and roughly speaking, it remembers the concentra-

tion a moment ago, compares it with a current one, and makes decisions based on

the difference (i.e., it computes something like an Euler approximation to a time

derivative).

In summary, we see that with memory, a type of addition mechanism, an ability to

make comparisons, a few simple internal “control rules,” and its chemical sensing

and locomotion capabilities, the bacterium is able to achieve a complex type of

searching and avoidance behavior. Evolution has designed this control system. It is

robust and clearly very successful at meeting its goals of survival when viewed from

a population perspective.

11.1.4 Elimination and Dispersal Events

It is possible that the local environment where a population of bacteria lives changes

either gradually (e.g., via consumption of nutrients) or suddenly due to some other

influence. There can be events such that all the bacteria in a region are killed or a

group is dispersed into a new part of the environment. For example, local significant

increases in heat can kill a population of bacteria that are currently in a region with a

high concentration of nutrients (you can think of heat as a type of noxious influence).

Or, it may be that water or some animal will move populations of bacteria from one

place to another in the environment. Over long periods of time, such events have

spread various types of bacteria into virtually every part of our environment.

What is the effect of elimination and dispersal events on chemotaxis? It has the

effect of possibly destroying chemotactic progress, but it also has the effect of as-

sisting in chemotaxis since dispersal may place bacteria near good food sources.

From a broad perspective, elimination and dispersal is part of the population-level

motile behavior.
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11.2 E. coli Bacterial Foraging for Optimization

Suppose that we want to find the minimum of J(x), x ∈ R
p, where we do not have

measurements, or an analytical description, of the gradient ∇J(x). Here, we use

ideas from bacterial foraging to solve this “nongradient” optimization problem.

First, suppose that x is the position of a bacterium and J(x) represents the com-

bined effects of attractants and repellents from the environment, with, for example,

J(x) < 0, J(x) = 0, and J(x) > 0 representing that the bacterium at location x is

in nutrient-rich, neutral, and noxious environments, respectively. Basically, chemo-

taxis is a foraging behavior that implements a type of optimization where bacteria

try to climb up the nutrient concentration (find lower and lower values of J(x)) and

avoid noxious substances and search for ways out of neutral media (avoid being at

positions x where J(x) ≥ 0).

11.2.1 An Optimization Model for E. coli Bacterial Foraging

To define our optimization model of E. coli bacterial foraging, we need to define a

population (set) of bacteria, and then model how they execute chemotaxis, swarm-

ing, reproduction, and elimination/dispersal. After doing this, we will highlight the

limitations (inaccuracies) in our model.

Population and Chemotaxis

Define a chemotactic step to be a tumble followed by a tumble, or a tumble followed

by a run. Let j be the index for the chemotactic step. Let k be the index for the

reproduction step. Let ℓ be the index of the elimination-dispersal event. Let

P( j,k, ℓ) = {xi( j,k, ℓ)|i = 1,2, . . . ,S}

represent the positions of each member in the population of the S bacteria at the jth

chemotactic step, kth reproduction step, and ℓth elimination-dispersal event. Here,

let J(i, j,k, ℓ) denote the cost at the location of the ith bacterium xi( j,k, ℓ) ∈ R
p

(sometimes we drop the indices and refer to the ith bacterium position as xi). Note

that we will interchangeably refer to J as being a “cost” (using terminology from

optimization theory) and as being a nutrient surface (in reference to the biological

connections). For actual bacterial populations, S can be very large (e.g., S = 109),

but p = 3. In our computer simulations, we will use much smaller population sizes

and will keep the population size fixed. We will allow p > 3, so we can apply the

method to higher dimensional optimization problems.

Let Nc be the length of the lifetime of the bacteria as measured by the number

of chemotactic steps they take during their life. Let C(i) > 0, i = 1,2, . . . ,S, denote

a basic chemotactic step size that we will use to define the lengths of steps during

runs. To represent a tumble, a unit length random direction, say φ( j), is generated;

this will be used to define the direction of movement after a tumble. In particular,

we let
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xi( j + 1,k, ℓ) = xi( j,k, ℓ)+C(i)φ( j)

so that C(i) is the size of the step taken in the random direction specified by the

tumble. If at xi( j + 1,k, ℓ) the cost J(i, j + 1,k, ℓ) is better (lower) than at xi( j,k, ℓ),
then another step of size C(i) in this same direction will be taken, and again, if that

step resulted in a position with a better cost value than at the previous step, another

step is taken. This swim is continued as long as it continues to reduce the cost, but

only up to a maximum number of steps, Ns. This represents that the cell will tend to

keep moving if it is headed in the direction of increasingly favorable environments.

Swarming Mechanisms

The above discussion was for the case where no cell-released attractants are used

to signal other cells that they should swarm together. Here, we will also have cell-

to-cell signaling via an attractant and will represent that with Ji
cc(x,xi( j,k, ℓ)), i =

1,2, . . . ,S, for the ith bacterium. Let

dattract = 0.1

be the depth of the attractant released by the cell (a quantification of how much

attractant is released) and

wattract = 0.2

be a measure of the width of the attractant signal (a quantification of the diffusion

rate of the chemical). The cell also repels a nearby cell in the sense that it consumes

nearby nutrients and it is not physically possible to have two cells at the same loca-

tion. To model this, we let

hrepellent = dattract

be the height of the repellent effect (magnitude of its effect) and

wrepellent = 10

be a measure of the width of the repellent. The values for these parameters are

simply chosen to illustrate general bacterial behaviors, not to represent a particular

bacterial chemical signaling scheme. The particular values of the parameters were

chosen with the nutrient profile in mind, which we will use later in Figure 11.3.

For instance, the depth and width of the attractant is small relative to the nutrient

concentrations represented in Figure 11.3. Let

Jcc(x,P( j,k, ℓ)) =
S

∑
i=1

Ji
cc(x,xi( j,k, ℓ))

=
S

∑
i=1

[

−dattract exp

(

−wattract

p

∑
m=1

(xm − xm
i )2

)]

+
S

∑
i=1

[

hrepellent exp

(

−wrepellent

p

∑
m=1

(xm − xm
i )2

)]
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denote the combined cell-to-cell attraction and repelling effects, where x =
[x1, . . . ,xp]⊤ is a point on the optimization domain and xm

i is the mth component of

the ith bacterium position xi (for convenience, we omit some of the indices). An ex-

ample for the case of S = 2 and the above parameter values is shown in Figure 11.2.

Here, note that the two sharp peaks represent the cell locations, and as you move

radially away from the cell, the function decreases and then increases (to model the

fact that cells far away will tend not to be attracted, whereas cells close by will tend

to try to climb down the cell-to-cell nutrient gradient towards each other and hence

try to swarm). Note that as each cell moves, so does its Ji
cc(x,xi( j,k, ℓ)) function, and

this represents that it will release chemicals as it moves. Due to the movements of

all the cells, the Jcc(x,P( j,k, ℓ)) function is time-varying in that, if many cells come

close together, there will be a high amount of attractant and hence, an increasing

likelihood that other cells will move towards the group. This produces the swarm-

ing effect. When we want to study swarming, the ith bacterium, i = 1,2, . . . ,S, will

hill-climb on

J(i, j,k, ℓ)+ Jcc(x,P)

(rather than the J(i, j,k, ℓ) defined above) so that the cells will try to find nutrients,

avoid noxious substances, and at the same time try to move towards other cells, but

not too close to them. The Jcc(x,P) function dynamically deforms the search land-

scape as the cells move to represent the desire to swarm (i.e., we model mechanisms

of swarming as a minimization process).

15

20

2

20

25

Fig. 11.2. Cell-to-cell chemical attractant model, S = 2.
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Reproduction and Elimination/Dispersal

After Nc chemotactic steps, a reproduction step is taken. Let Nre be the number of

reproduction steps to be taken. For convenience, we assume that S is a positive even

integer. Let

Sr =
S

2
(11.1)

be the number of population members who have had sufficient nutrients so that they

will reproduce (split in two) with no mutations. For reproduction, the population is

sorted in order of ascending accumulated cost (higher accumulated cost represents

that it did not get as many nutrients during its lifetime of foraging and hence, is not

as “healthy” and thus unlikely to reproduce); then the Sr least healthy bacteria die

and the other Sr healthiest bacteria each split into two bacteria, which are placed at

the same location. Other fractions or approaches could be used in place of Equa-

tion (11.1); this method rewards bacteria that have encountered a lot of nutrients,

and allows us to keep a constant population size, which is convenient in coding the

algorithm.

Let Ned be the number of elimination-dispersal events, and for each such event

event, each bacterium in the population is subjected to elimination-dispersal with

probability ped . We assume that the frequency of chemotactic steps is greater than

the frequency of reproduction steps, which is in turn greater in frequency than

elimination-dispersal events (e.g., a bacterium will take many chemotactic steps

before reproduction, and several generations may take place before an elimination-

dispersal event).

Foraging Model Limitations

Clearly, we are ignoring many characteristics of the actual biological optimization

process in favor of simplicity and capturing the gross characteristics of chemotactic

hill-climbing and swarming. For instance, we assume that consumption does not af-

fect the nutrient surface (e.g., while a bacterium is in a nutrient-rich environment, we

do not increase the value of J near where it has consumed nutrients) where clearly

in nature, bacteria modify the nutrient concentrations via consumption. A tumble

does not result in a perfectly random new direction for movement; however, here

we assume that it does. Brownian effects buffet the cell, so that after moving a small

distance, it is within a pie-shaped region of its start point at the tip of the piece of pie.

Basically, we assume that swims are straight, whereas in nature they are not. Tum-

ble and run lengths are exponentially distributed random variables, not constant, as

we assume. Run-length decisions are actually based on the past 4 sec. of concentra-

tions, whereas here we assume that at each tumble, older information about nutrient

concentrations is lost. Although naturally asynchronous, we force synchronicity by

requiring, for instance, chemotactic steps of different bacteria to occur at the same

time, all bacteria to reproduce at the same time instant, and all bacteria that are sub-

jected to elimination and dispersal to do so at the same time. We assume a constant

population size, even if there are many nutrients and generations. We assume that
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the cells respond to nutrients in the environment in the same way that they respond

to ones released by other cells for the purpose of signaling the desire to swarm.

(A more biologically accurate model of the swarming behavior of certain bacteria is

given in [256].) Clearly, other choices for the criterion of which bacteria should split

could be used (e.g., based only on the concentration at the end of a cell’s lifetime,

or on the quantity of noxious substances that were encountered). We are also ignor-

ing conjugation and other evolutionary characteristics. For instance, we assume that

C(i), Ns, and Nc remain the same for each generation. In nature it seems likely that

these parameters could evolve for different environments to maximize population

growth rates.

11.2.2 Bacterial Foraging Optimization Algorithm (BFOA)

For initialization, you must choose p, S, Nc, Ns, Nre, Ned , ped , and the C(i), i =
1,2, . . . ,S. If you use swarming, you will also have to pick the parameters of the

cell-to-cell attractant functions; here we will use the parameters given above. Also,

initial values for the xi, i = 1,2, . . . ,S, must be chosen. Choosing these to be in

areas where an optimum value is likely to exist is a good choice. Alternatively, you

may want to simply randomly distribute them across the domain of the optimization

problem. The algorithm that models bacterial population chemotaxis, swarming,

reproduction, elimination, and dispersal is given below (initially, j = k = ℓ = 0).

For the algorithm, note that updates to the xi automatically result in updates to P.

Clearly, we could have added a more sophisticated termination test than simply

specifying a maximum number of iterations.

1. Elimination-dispersal loop: ℓ = ℓ+ 1

2. Reproduction loop: k = k + 1

3. Chemotaxis loop: j = j + 1

a) For i = 1,2, . . . ,S, take a chemotactic step for bacterium i as follows.

b) Compute J(i, j,k, ℓ). Let

J(i, j,k, ℓ) = J(i, j,k, ℓ)+ Jcc(xi( j,k, ℓ),P( j,k, ℓ))

(i.e., add on the cell-to-cell attractant effect to the nutrient concentration).

c) Let Jlast = J(i, j,k, ℓ) to save this value, since we may find a better cost via

a run.

d) Tumble: generate a random vector ∆(i) ∈ R
p with each element ∆m(i), m =

1,2, . . . , p, a random number on [−1,1].
e) Move: let

xi( j + 1,k, ℓ) = xi( j,k, ℓ)+C(i)
∆(i)

√

∆⊤(i)∆(i)

This results in a step of size C(i) in the direction of the tumble for bacterium

i.

f) Compute J(i, j + 1,k, ℓ), and then let J(i, j + 1,k, ℓ) = J(i, j + 1,k, ℓ) +
Jcc(xi( j + 1,k, ℓ),P( j + 1,k, ℓ)).



11.2 E. coli Bacterial Foraging for Optimization 243

g) Swim (note that we use an approximation, since we decide swimming be-

havior of each cell as if the bacteria numbered {1,2, . . . , i} have moved, and

{i+1, i+2, . . . ,S} have not; this is much simpler to simulate than simulta-

neous decisions about swimming and tumbling by all bacteria at the same

time):

i. Let m = 0 (counter for swim length).

ii. While m < Ns (if have not climbed down too long)

• Let m = m+ 1.

• If J(i, j + 1,k, ℓ) < Jlast (if doing better), let Jlast = J(i, j + 1,k, ℓ)
and let

xi( j + 1,k, ℓ) = xi( j + 1,k, ℓ)+C(i)
∆(i)

√

∆⊤(i)∆(i)

and use this xi( j + 1,k, ℓ) to compute the new J(i, j + 1,k, ℓ) as we

did in (f) above.

• Else, let m = Ns. This is the end of the while statement.

h) Go to next bacterium (i+1) if i �= S (i.e., go to (b) above to process the next

bacterium).

4. If j < Nc, go to step 3. In this case, continue chemotaxis, since the life of the

bacteria is not over.

5. Reproduction:

a) For the given k and ℓ, and for each i = 1,2, . . . ,S, let

Ji
health =

Nc+1

∑
j=1

J(i, j,k, ℓ)

be the health of bacterium i (a measure of how many nutrients it got over

its lifetime and how successful it was at avoiding noxious substances). Sort

bacteria and chemotactic parameters C(i) in order of ascending cost Jhealth

(higher cost means lower health).

b) The Sr bacteria with the highest Jhealth values die and the other Sr bacteria

with the best values split (and the copies that are made are placed at the

same location as their mother).

6. If k < Nre, go to step 2. In this case, we have not reached the number of specified

reproduction steps, so we start the next generation in the chemotactic loop.

7. Elimination-dispersal: for i = 1,2, . . . ,S, with probability ped , eliminate and dis-

perse each bacterium (this keeps the number of bacteria in the population con-

stant). To do this, if you eliminate a bacterium, simply disperse one to a random

location on the optimization domain.

8. If ℓ < Ned , then go to step 1; otherwise end.

Matlab code for this can be obtained at:

http://www.ece.osu.edu/~passino
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11.2.3 Guidelines for Algorithm Parameter Choices

The bacterial foraging optimization algorithm requires specification of a variety of

parameters. First, you can pick the size of the population, S. Clearly, increasing the

size of S can significantly increase the computational complexity of the algorithm.

However, for larger values of S, if you choose to randomly distribute the initial pop-

ulation, it is more likely that you will start at least some bacterium near an optimum

point, and over time, it is then more likely that many bacterium will be in that region,

due to either chemotaxis or reproduction.

What should the values of the C(i), i = 1,2, . . . ,S, be? You can choose a biologi-

cally motivated value; however, such values may not be the best for an engineering

application. If the C(i) values are too large, then if the optimum value lies in a val-

ley with steep edges, it will tend to jump out of the valley, or it may simply miss

possible local minima by swimming through them without stopping. On the other

hand, if the C(i) values are too small, then convergence can be slow, but if it finds a

local minimum, it will typically not deviate too far from it. You should think of the

C(i) as a type of “step size” for the optimization algorithm.

The size of the values of the parameters that define the cell-to-cell attractant

functions Ji
cc will define the characteristics of swarming. If the attractant width is

high and very deep, the cells will have a strong tendency to swarm (they may even

avoid going after nutrients and favor swarming). On the other hand, if the attractant

width is small, and the depth shallow, there will be little tendency to swarm and each

cell will search on its own. Social versus independent foraging is then dictated by

the balance between the strengths of the cell-to-cell attractant signals and nutrient

concentrations.

Next, large values for Nc result in many chemotactic steps, and, hopefully, more

optimization progress, but of course, more computational complexity. If the size

of Nc is chosen to be too short, the algorithm will generally rely more on luck and

reproduction, and in some cases, it could more easily get trapped in a local minimum

(“premature convergence”). You should think of Ns as creating a bias in the random

walk (which would not occur if Ns = 0), with large values tending to bias the walk

more in the direction of climbing down the hill.

If Nc is large enough, the value of Nre affects how the algorithm ignores bad

regions and focuses on good ones, since bacteria in relatively nutrient-poor regions

die (this models, with a fixed population size, the characteristic where bacteria will

tend to reproduce at higher rates in favorable environments). If Nre is too small, the

algorithm may converge prematurely; however, larger values of Nre clearly increase

computational complexity.

A low value for Ned dictates that the algorithm will not rely on random

elimination-dispersal events to try to find favorable regions. A high value increases

computational complexity but allows the bacteria to look in more regions to find

good nutrient concentrations. Clearly, if ped is large, the algorithm can degrade to

random exhaustive search. If, however, it is chosen appropriately, it can help the

algorithm jump out of local optima and into a global optimum.
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11.2.4 Relations to the Genetic Algorithm

There are algorithmic analogies between the genetic algorithm and the above opti-

mization model for foraging. There are analogies between the fitness function and

the nutrient concentration function (both a type of “landscape”), selection and bac-

terial reproduction (bacteria in the most favorable environments gain a selective

advantage for reproduction), crossover and bacterial splitting (the children are at

the same concentration, whereas with crossover they generally end up in a region

around their parents on the fitness landscape), and mutation and elimination and dis-

persal. However, the algorithms are not equivalent, and neither is a special case of

the other. Each has its own distinguishing features. The fitness function and nutrient

concentration functions are not the same (one represents likelihood of survival for

given phenotypic characteristics, whereas the other represents nutrient/noxious sub-

stance concentrations, or for other foragers predator/prey characteristics). Crossover

represents mating and resulting differences in offspring, something we ignore in

the bacterial foraging algorithm (we could, however, have made less than perfect

copies of the bacteria to represent their splitting). Moreover, mutation represents

gene mutation and the resulting phenotypical changes, not physical dispersal in an

environment.

From one perspective, note that all the typical features of genetic algorithms

could augment the bacterial foraging algorithm by representing evolutionary char-

acteristics of a forager in their environment. From another perspective, foraging

algorithms can be integrated into evolutionary algorithms and thereby model some

key survival activities that occur during the lifetime of the population that is evolv-

ing (i.e., foraging success can help define fitness, mating characteristics, etc.). For

the bacteria studied here, foraging happens to entail hill-climbing via a type of bi-

ased random walk, and hence, the foraging algorithm can be viewed as a method to

integrate a type of approximate stochastic gradient search (where only an approxi-

mation to the gradient is used, not analytical gradient information) into evolutionary

algorithms. Of course, standard gradient methods, quasi-Newton methods, etc., de-

pend on the use of an explicit analytical representation of the gradient, something

that is not needed by a foraging or genetic algorithm. Lack of dependence on ana-

lytical gradient information can be viewed as an advantage (fewer assumptions), or

a disadvantage (e.g., since, if gradient information is available, then the foraging or

genetic algorithm may not exploit it properly).

11.3 Example: Function Optimization via E. coli Foraging

As a simple illustrative example, we use the algorithm to try to find the minimum of

the function in Figure 11.3 (note that the point [15,5]⊤ is the global minimum point).

We assume that this surface can be sampled, but that the (analytical) gradient is not

known.
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Fig. 11.3. Nutrient landscape.

11.3.1 Nutrient Hill-Climbing: No Swarming

According to the above guidelines, choose S = 50, Nc = 100, Ns = 4, Nre = 4,

Ned = 2, ped = 0.25, and the C(i) = 0.1, i = 1,2, . . . ,S. The bacteria are initially

spread randomly over the optimization domain. The results of the simulation are

illustrated by motion trajectories of the bacteria on the contour plot of Figure 11.3,

as shown in Figure 11.4. In the first generation, starting from their random initial

positions, searching is occurring in many parts of the optimization domain, and you

can see the chemotactic motions of the bacteria as the black trajectories where the

peaks are avoided and the valleys are pursued. Reproduction picks the 25 healthiest

bacteria and copies them, and then, as shown in Figure 11.4 in generation 2, all the

chemotactic steps are in five local minima. This again happens in going to genera-

tions 3 and 4, but bacteria die in some of the local minima (due essentially to our

requirement that the population size stay constant), so that in generation 3, there are

four groups of bacteria in four local minima, whereas in generation 4, there are two

groups in two local minima.

Next, with the above choice of parameters, there is an elimination-dispersal event,

and we get the next four generations shown in Figure 11.5. Notice that elimination

and dispersal shifts the locations of several of the bacteria and thereby the algorithm

explores other regions of the optimization domain. However, qualitatively we find a

similar pattern to the previous four generations where chemotaxis and reproduction

work together to find the global minimum; this time, however, due to the large num-

ber of bacteria that were placed near the global minimum, after one reproduction
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Fig. 11.4. Bacterial motion trajectories, generations 1–4, on contour plots.

step, all the bacteria are close to it (and remain this way). In this way, the bacterial

population has found the global minimum.

11.3.2 Swarming Effects

Here we use the parameters defined earlier to define the cell-to-cell attraction func-

tion. Also, we choose S = 50, Nc = 100, Ns = 4, Nre = 4, Ned = 1, ped = 0.25, and

the C(i) = 0.1, i = 1,2, . . . ,S. We will first consider swarming effects on the nu-

trient concentration function with contour map shown on Figure 11.6 which has a

zero value at [15,15]⊤ and decreases to successively more negative values as you

move away from that point; hence, the cells should tend to swim away from the

peak. We will initialize the bacterial positions by placing all the cells at the peak

[15,15]⊤. Using these conditions, we get the result in Figure 11.6. Notice that in the

first generation, the cells swim radially outward, and then in the second and third

generations, swarms are formed in a concentric pattern of groups. Notice that with

our simple method of simulating health of the bacteria and reproduction, some of

the swarms are destroyed by the fourth generation. This simulation bears produces a

qualitative behavior similar to the one seen in [31]. We omit additional simulations

that show the behavior of the swarm on the surface in Figure 11.3, since qualitatively

the behavior is as one would expect from the above simulations.
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11.4 Further Issues

11.4.1 Extensions and Generalizations

The E. coli foraging model we created had several limitations that were outlined in

the chapter. Removal of these limitations would allow for a number of extensions

and generalizations of the bacterial foraging optimization method. For instance, the

modeling of Brownian effects so that the bacteria cannot swim straight could be

incorporated. The tumble and run lengths could be made exponentially distributed

random variables consistent with what has been found in nature. Run-length deci-

sions could be based on the past 4 sec. of concentrations. The model and optimiza-

tion algorithm could be specified to be asynchronous. A time-varying population

size could be used. Other criteria by which bacteria split could be incorporated. Fi-

nally, one could add the effects of conjugation and other evolutionary characteristics

(e.g., evolve C(i), Ns, and Nc).

There are many species of bacteria that evidently perform some type of opti-

mization during their motile behavior. Some optimize their position based on other

chemicals, and others based on non-chemcial stimuli (e.g. light, magnetism, or

heat). Each of these holds the potential for the creation of a bioinspired optimiza-

tion method. In this chapter, we simply introduced one type of bacterial chemotactic

behavior by one species for certain types of chemicals. We stuck to this one case as

it is simple, yet representative. It could be, however, that other forms of bioinspired

methods could work as well or better than the one developed here for specific types

of optimization problems.

11.4.2 For Further Reading

This chapter is based on [193, 194]. An application of bacterial foraging optimiza-

tion to adaptive control can be found in [193]. Similarly, a work on using bac-

terial foraging optimization for search and chemical concentration map building

by multiple mobile robots can be found in [243]. Many other applications of the

method (often called “BFO” or “BFOA”) can be found via a search on the internet.

Our presentation of bacterial motile behaviors was based on the work in [7, 11, 12,

18–20, 23, 30, 31, 162, 179, 215, 256]. While in this chapter we outlined the rela-

tions between bacterial foraging optimization and the genetic algorithm, relations to

other non-gradient methods are outlined in [194].
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Particle Swarm Optimization

In this chapter we consider the Particle Swarm Optimization (PSO) algorithm, which

is another biologically inspired optimization algorithm. Consider again the problem

in which we want to find the minimum of a function J(x), x ∈ R
n. Assume that

measurements or an analytical expression of the gradient ∇J(x) are not available.

Moreover, even if they are available, assume the function is very non-uniform or

noisy so that this information is not useful. The PSO algorithm is another population

based optimization algorithm which can be used to solve such problems. It is a direct

search (non-gradient) algorithm where a population of particles “search” in parallel

for the minimum of a given function in a multi-dimensional (n-dimensional) space

(or region/domain) without using gradient information. Below we describe the basic

PSO iteration. Then we discuss a modified decentralized and asynchronous version

better suited for parallel and distributed implementations. Moreover, we discuss var-

ious neighborhood strategies including static and dynamic (i.e., time-varying) neigh-

borhoods.

12.1 Basic PSO Iteration

The PSO algorithm has been inspired by the foraging behavior of species like birds

in nature. In the basic iteration a population of particles, which constitute potential

solutions, in search for better solutions update their positions (i.e., estimates) based

on three components. At every iteration, every particle determines its velocity using

• its previous velocity,

• its best previous position, and

• the best previous position of its neighborhood.

The previous velocity constitutes the momentum component, the previous best posi-

tion constitutes the cognitive component, and the best previous position of the neigh-

borhood constitutes the social component of the iteration. These concepts have been

inspired from the operation of the swarms in nature. There are different variations of

the algorithm in the literature. The variation which is most widely used is the version
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vi(t + 1) = wi(t)vi(t)+ϕi1(t)(pi(t)− xi(t))+ϕi2(t)(gi(t)− xi(t))

xi(t + 1) = xi(t)+ vi(t + 1) (12.1)

Here xi(t) ∈ R
n represents the position of the i’th particle at time t (i.e., the estimate

of this particle about the minimum point of the function being optimized at time t),

pi(t) ∈ R
n represents the best position obtained by the i’th particle until time t (i.e.,

the point with the lowest function value among all the points the particle has visited

so far and refereed to as the local best), gi(t) ∈ R
n represents the best position of

the neighborhood of the i’th particle until time t (referred to as the neighborhood

best or sometimes as the global best. Assuming that there are N particles in the

swarm the index i varies from 1 to N. Note that for particle i the terms in the velocity

equation (the first equation) in (12.1) constitute the momentum, cognitive, and social

components, respectively. The parameters/variabiles

ϕi1(t) ∈ [0, ϕ̄1]
n and ϕi2(t) ∈ [0, ϕ̄2]

n

which are referred to as the learning coefficients, are n-dimensional random vec-

tors drawn from a uniform distribution. These random vectors determine the rela-

tive significance/weight of the cognitive and social components, respectively. The

parameter wi(t) > 0 is the inertia weight which determines the importance of the

previous velocity (inertia) of the particle for the current update. It can be set as a

constant or varied with time in order to improve the convergence properties of the

algorithm. One can see that a swarm/particle with large inertia weight tends to per-

form more coarse global search, whereas a swarm/particle with small inertia weight

tends to perform finer local search. One approach to vary the inertia weight is to

start with a large inertia weight to favor search over larger regions at the beginning

and gradually decrease the value of the weight to favor finer search close to the end.

The above PSO implementation may sometimes exhibit the so called explosion

behavior, which is basically a scattering of the particles all over the search space

(which is instability from control theoretic view point), and may not converge. In

order to prevent such behavior, a bound Vmax on the velocity vi(t + 1) of the par-

ticles is imposed and the particle positions are projected within a search region

[xmin,xmax]
n ∈ R

n. Adaptive algorithms which vary the value of wi(t) may also be

used for that purpose.

In addition to the model in (12.1) there are other possible PSO variations involv-

ing slightly different parameters. One such variation is PSO with a constriction fac-

tor which is proposed by Clerc and Kennedy in [40]. This version of the algorithm

prevents the above mentioned scattering of particles by appropriate choice of the al-

gorithm parameters without using the velocity bound Vmax. In this implementation,

the update equation for every particle i = 1, . . . ,N, can be written as

vi(t + 1) = χ
[

vi(t)+ϕi1(t)(pi(t)− xi(t))+ϕi2(t)(gi(t)− xi(t))
]

xi(t + 1) = xi(t)+ vi(t + 1) (12.2)

Here, the constant parameter χ > 0 is the constriction parameter which, provided

that it is chosen appropriately, prevents the explosion behavior mentioned above
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without a need for bounding the velocity of the particles and projecting the states.

Different choices of the parameters ϕ̄1 and ϕ̄2 (which determine the interval from

which ϕi1(t) and ϕi2(t) are drawn) and the constriction factor χ> 0 in (12.2) lead to

different behavior of the swarm. One choice which leads to satisfactory performance

and prevention of the explosion behavior is to select the components of the learning

coefficient vectors ϕi1(t) and ϕi2(t) from the intervals for which the sum of the

upper bounds satisfy the relation

ϕ= ϕ̄1 + ϕ̄2 > 4

and the constriction parameter χ > 0 is calculated using the relation (refer to [40])

χ =

{
2κ

ϕ−2+
√

ϕ2−4ϕ
, if ϕ> 4,

κ, otherwise.
(12.3)

Here κ is a constant which is chosen from κ ∈ [0,1]. Choosing ϕ̄1 = 2.05 and ϕ̄2 =
2.05 and the coefficient κ = 1, the constriction parameter χ can be calculated as

χ = 0.7298.

The main concepts of this chapter can be illustrated equally well on any of the

above (i.e., (12.1) and (12.2)) or other PSO variations. We will mostly use the model

in (12.2) throughout the chapter and in the simulations without a particular reason

for that.

12.2 Synchronous and Asynchronous PSO Implementations

12.2.1 Traditional PSO Implementations

Synchronous PSO

A large portion of the studies on PSO have been performed using synchronous op-

eration. In such implementations all particles update their estimates xi(t) using the

basic iteration formula, such as the one in (12.1) or (12.2), after which neighbors

exchange information and update the value/position of the neightborhood/global

best gi(t) at the same time. In this manner, all particles update their neighborhood

bests “synchronously” (or concurrently) using the same current information. Such

an iteration can easily be implemented on a single computer in a sequential manner.

It is suitable for optimization problems which are not computationally intensive.

However, in optimization problems which require intensive computations, such as

problems in which the evaluation of the function J(x) being optimized is compu-

tationally expensive or is based on some kind of measurement from the external

environment and time consuming (compared to the extra communication burden),

sequential implementation might be inefficient. To solve this problem it is possible

to implement the algorithm in a parallel manner distributed over several computers.

Since the algorithm is population based, in general, it is easy to distribute it over

several processors. For that purpose the swarm can be divided to several groups
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of particles and the iteration of every group can be assigned to a different proces-

sor. Then, at the end of each iteration the processors can be synchronized to ex-

change their function evaluation information to determine the global/neighborhood

best value and its corresponding position gi(t). In such a synchronous parallel and

distributed implementation, in addition to the extra cost of synchronization, proces-

sors which finish their iterations early have to wait for the other processors. In het-

erogeneous systems this might be disadvantageous, although there might be some

advantages rising from synchronizing the operation such as all particles having the

current/same information. Therefore, given the possible disadvantages such parallel

and synchronous implementations are only feasible if the benefit of parallelization

outweighs the costs.

As is obvious from the above discussion a common assumption in the syn-

chronous implementations of the PSO algorithm is that the particles have access

to the current information about the achievements of their neighbors (i.e., the parti-

cles know the current best position of their neighbors) and use this information for

calculating the current neighborhood best gi(t) which is used as the social compo-

nent in (12.1) or (12.2). Such an assumption is very realistic when the algorithm is

running on a single computer. However, as was mentioned above, enforcing it in par-

allel implementations requires achieving synchronization between particle updates

and information exchange.

Sequential Asynchronous PSO

There are different possible asynchronous implementations of the algorithm with

different levels of asynchronism. Here we will briefly mention some of them and

in the next section discuss the decentralized asynchronous implementation in more

detail. The most commonly used “asynchronous” PSO implementation is the se-

quential asynchronous implementation. It is obtained when the iteration of all par-

ticles are performed on a single computer in a sequential manner. However, as a

difference from the sequential synchronous implementation, each particle updates

the neighborhood/global best gi(t) just before updating its estimate (not necessarily

simultaneously/concurrently with the other particles/agents). In this manner a given

particle uses the updated information from the particles which have completed their

iteration before it (i.e., the particles earlier in the sequence of the ongoing iteration),

whereas the not-updated-yet information from the particles which are later in the se-

quence. Therefore, the value of the neighborhood/global best gi(t) for every particle

is based on information which is a mixture of the achievements of the particles in the

current and the previous iterations. If a particle is early in the sequence it uses more

from the results of the previous iteration and less from the results of the current it-

eration. In contrast, if a particle is performing an update late in the sequence, then it

uses more updated information from the current iteration and less information from

the previous iteration. Note that such an implementation is not a truly asynchronous

implementation in the sense that particles are still unable to perform independent

iterations from each other.
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Centralized Parallel Asynchronous PSO

Another asynchronous PSO implementation is the centralized parallel asynchronous

implementation. In such an implementation the information of the global best value

is collected and the updates are performed on a central single computer (a master

computer), whereas the function evaluations are performed in parallel by the other

computers (slave computers). The master computer passes the values of xi(t) and

other necessary information to the slave computers and assigns them function eval-

uations. Each slave computer which finishes its iterations (note that the computers

may finish their iterations at different time instants due to, for example, heterogene-

ity in the system) passes the value of the function to the master. The master updates

the global best g(t) and the particle estimate xi(t) for that particle using the update

formula in (12.1) or (12.2) and immediately assigns new function evaluation (possi-

bly new particle j) to that slave processor (without waiting for the other processors

to finish) in order to prevent idle time and increase speed. Only one slave processor

can communicate with the master at a given time. Note once more that in this set-up

all iterations are performed on the master computer while only the function evalua-

tions are performed on the slave computers. This implementation is very similar in

principle to the sequential asynchronous implementation except that it increases the

speed of the algorithm in problems with time consuming function evaluations. Still

it has the disadvantage of being centralized and failure of the master processor (or

the communication links with it) might lead to failure of the optimization process.

12.2.2 Decentralized Asynchronous PSO Formulation

In this section we discuss a decentralized asynchronous formulation of the PSO

algorithm which also allows for time delays. Such a realization is much more suit-

able for parallel and distributed implementations of the algorithm. Since PSO is a

population based algorithm it is by its nature suitable for parallel and distributed

implementations unless synchronization is enforced explicitly. The current formu-

lation is inspired from the concepts we used in the distributed agreement chapter

(Chapter 9). In the version presented here the update of each of the particles can

be performed on a different processor/computer without a need for synchronization

or centralization. Note that the information exchange is needed (and therefore cou-

pling between particles occurs) only for calculation of the neighborhood best gi(t).
Therefore, the new formulation should allow the calculation of gi(t) to be performed

totally asynchronously by each of the processors.

Given particle i let us denote with Ni(t) the set of its neighbors at time t. Let each

particle calculate its neighborhood best gi(t) at time t by

gi(t) = argmin{JNi
(t),J(pi(t)),J(gi(t −1))} (12.4)

where

JNi
(t) =

{
min j∈Ni(t){J(p j(τ ji(t)))}, ∀t ∈ Ti1,
JNi

(t −1), ∀t �∈ Ti1,
(12.5)
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and p j(·) is the best estimate of neighbor j ∈ Ni(t). Equation (12.4) basically states

that particle i determines its current neighborhood best gi(t) as the minimum of the

previous neighborhood best gi(t −1), its own current best pi(t), and the “perceived

best” of its current neighbors p j(τ ji(t)), j ∈ Ni(t) (which are the particles it could

obtain information from). The set Ti1 ⊆ {0,1,2, . . .} in (12.5) denotes the set of time

instants at which particle i receives information from one or more of its neighbors

(and uses this information to update its neighborhood best gi(t)). At the other time

instants t �∈ Ti1 processor i does not obtain information from the other processors.

This does not mean that processor i does not perform position (estimate) updates

during these times (i.e., during t �∈ Ti1). In fact, as can be seen from (12.4)-(12.5),

at every time instant t the particle has an estimate of the global best gi(t) and the

particle may be continuing updating its estimate xi(t). In the case that no information

is obtained from the neighbors, the value of gi(t) is determined based on its old value

gi(t −1) and the best pi(t) of the particle.

Similar to the case of distributed agreement in Chapter 9, the variables τi j(t), j ∈
Ni(t), i = 1, . . . ,N, in (12.5) are used to represent the time index at which a given par-

ticle i obtained information from its neighbor j ∈ Ni(t). They satisfy 0 ≤ τi j(t) ≤ t

for t ∈Ti1, where τi j(t) = 0 would mean that particle i did not obtain any information

from a neighbor particle j so far (it still has the initial p j(0) and J(p j(0))), whereas

τi j(t) = t means that it has the current best information of particle j (i.e., it has p j(t)
and J(p j(t))). The difference (t − τi j(t)) ≥ 0 can be viewed as a communication

delay in obtaining information from particle/processor j by particle/processor i. In

other words, p j(τ ji(t)) is the (possibly outdated) position of the best value of par-

ticle j ∈ Ni(t) currently perceived by particle i. The delay might be occurring due

to, for example, congestion in the network traffic or some other reasons. This also

models the implementations in which each processor updates its estimate for some

time and obtains information from its neighbors once in a while (which could be a

strategy with the objective to decrease the communication burden).

Note that a particle i can obtain information from only those particles which

are its neighbors (i.e., it can obtain information from only j ∈ Ni(t)). In our for-

mulation we allow also for unidirectional communication implying that j ∈ Ni(t)
does not necessarily mean that i ∈ N j(t). In other words, the neighborhood defi-

nitions are not necessarily mutual or reciprocal. Moreover, even if j ∈ Ni(t) and

i ∈ N j(t) hold simultaneously, this does not imply τi j(t) = τ ji(t). In other words,

even if two particles i and j are neighbors of each other at a given time instant, it

does not mean that they have the current or equally outdated information about each

other’s best estimate implying that they do not necessarily communicate with each

other simultaneously. Furthermore, we take one step further and assume that the

processors may not necessarily be dedicated processors and they might be allowed

to perform other jobs as well. To be able to represent such a system, we assume that

a given processor i updates its estimate using (12.2) (or (12.1)) at the time instances

t ∈ Ti2 ⊆ {0,1,2, . . .} and at the other time instances t �∈ Ti2 its update is “freezed”

vi(t + 1) = vi(t),

xi(t + 1) = xi(t), (12.6)
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for all t �∈ Ti2. In other words, the processors update their estimates based on
(

vi(t + 1)
xi(t + 1)

)

=

{
update using (12.2), ∀t ∈ Ti2,
update using (12.6), ∀t �∈ Ti2.

(12.7)

Note that this is just a more formal representation of the fact that processors might

perform PSO updates at some instants, while might be busy with other jobs at other

times.

Besides allowing the particles to be able to sometimes update their estimates

and sometimes to freeze them, it is assumed that the processors can update their

estimates at totally independent time instants as was the case with communicat-

ing/obtaining information to/from their neighbors. In other words, the sets Ti1 and

Ti2 are assumed to be independent from each other for a given i. Moreover, they (i.e.,

the sets Ti1 and Ti2) are independent from Tj1 and Tj2 for j �= i as well. However,

it is possible to have Tiℓ1
∩Tjℓ2

�= /0 for i, j = 1, . . . ,N, and ℓ1, ℓ2 = 1,2 (i.e., there

might be time instances at which two or more processors may update their neighbor-

hood information and/or their estimates simultaneously). The elements of the sets

Tiℓ, i = 1, . . . ,N, ℓ = 1,2 should be viewed as indices of the sequence of physical

times at which the updates occur (similar to the times of events in discrete event

systems), not as actual times. In other words, they are integers that can be mapped

to actual times and the physical times between subsequent indices are not neces-

sarily uniform. From this point of view the set of neighbors of a given particle i at

time t (i.e., the set Ni(t)) may represent the set of particles from which particle i ob-

tained information between time instants/indexes (t −1) and t. Note also that many

of these concepts were present in the distributed agreement problem in Chapter 9.

The pseudocode of the iteration of a particle in the decentralized asynchronous

PSO algorithm discussed above is shown in Table 12.1. The discussed algorithm

has important differences from the PSO implementations presented in the preceding

section including the standard synchronous PSO, the sequential asynchronous PSO,

and centralized parallel synchronous and asynchronous PSO. First of all, it is com-

pletely decentralized and does not require existence of a central master processor to

collect all the data and to perform the iterations. Note that a centralized architecture

may be more prone to failures, whereas a decentralized one is more robust. There-

fore, the decentralized asynchronous PSO formulation is more suitable for parallel

implementations as well as implementations using concepts from the multi-agent

systems field. Moreover, it may allow PSO to be implemented on a large number of

computers over a large area much easily compared to its other versions.

In the next section we will discuss various static and dynamic particle neighbor-

hood topologies that can be employed in PSO.

12.3 Particle Neighborhoods

12.3.1 Static Neighborhood

In most of the PSO implementations particle neighborhoods are fixed a priori

and kept unchanged throughout the optimization process. In other words, given a
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Table 12.1. Pseudocode of the Iteration of Particle i in the Decentralized Asynchronous PSO

Algorithm

Initialize the parameters of the algorithm

Initialize randomly the particle estimate xi(0) and velocity vi(0)
Calculate the initial function value f (xi(0))
Initialize the particle best pi(0) = xi(0) and Jpi(0) = J(xi(0))
Initialize randomly the neighborhood best gi(0)
Calculate the best function value Jgi(0) = J(gi(0))
while (Stopping criteria has not reached) do

Listen for information from neighbors

if (Information from neighbors available (implying t ∈ Ti1)) then

Update the neighborhood (global) best gi(t) using the received information

end if

if (Ready to do calculation (implying t ∈ Ti2)) then

Calculate the new function value J(xi(t))
if (J(xi(t)) < Jpi(t −1)) then

Set the particle best pi(t) = xi(t) and Jpi(t) = J(xi(t))
Broadcast pi(t) and Jpi(t)

end if

if J(xi(t)) < Jgi(t) then

Set the neighborhood (global) best gi(t) = xi(t) and Jgi(t) = J(xi(t))
end if

Calculate the next estimate using (12.1) or (12.2)

else

Do not calculate a new estimate (see (12.6))

end if

end while

particle i the time-invariant set of particles Ni from which it can obtain informa-

tion from throughout the optimization process is predefined a priori. There are vari-

ous neighborhood definition strategies. One possible strategy is to define the swarm

neighborhood as a ring such that each particle has only two neighbors (one on its

virtual right and one on its virtual left) and the neighborhood connections of the sys-

tem form a ring as shown in Figure 12.1(a). In sequential implementations this can

be realized easily so that a particle obtains information from the particles which are

just before and after the given particle in the iteration sequence, i.e., particles (i−1)
and (i+1) are set as neighbors of particle i. Another possible strategy is to define a

global neighborhood in which every particle is a neighbor of every other particle in

the swarm as shown in Figure 12.1(b). A third strategy could be to set the neighbor-

hood relations randomly. These are not the only neighborhood definition strategies

and there are other possible strategies as well. It is up to the user to choose the neigh-

borhood which best suits their application. Sometimes physical constraints might be

needed to be taken into account in neighborhood definitions as well.

Note that a neighborhood in which a particle is a neighbor of only a subset of

the particles in the swarm (such as in the ring topology in Figure 12.1(a)) consti-

tutes a local neighborhood in which every particle maintains its own neighborhood
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(a) Ring topology. (b) Fully connected topology.

Fig. 12.1. Example neighborhood topologies.

best gi(t), whereas in the global neighborhood (i.e., the fully connected neighbor-

hood topology in Figure 12.1(b)) there is only one global best (since there is only

one overall neighborhood) and for all i we have gi(t) = g(t). It is known that, in gen-

eral, PSO with the global neighborhood topology converges faster than PSO with

local neighborhood topologies.1 However, it is also known that PSO with the global

neighborhood topology is more prone to premature convergence in a sense that the

point to which the particles converge might not be a satisfactory point. Note also that

in practice the neighborhood relations are taken as reciprocal. However, in principle,

as we will see in the formulations below, this is not mandatory and they do not have

to be reciprocal.

12.3.2 Dynamic Neighborhood

In some applications it might be more advantageous to have particle neighborhoods

be dynamic or basically to change as the optimization process evolves. For example,

one approach can be to start with local neighborhoods with low number of neigh-

bors (such as the ring neighborhood topology) and gradually increase the number

of neighbors of the particles and finish the iteration with a global neighborhood.

For the ring topology the easiest way to accomplish this is to gradually increase the

number of neighbors of each particle on their virtual right and virtual left. This type

of dynamic neighborhood is pre-set and does not depend on external conditions

or information such as the values of the function measurements J(xi(t)). In some

applications, particle neighborhoods might emerge as dynamic. For example, con-

sider a PSO inspired robot search application in which at the high-level the robots

act as PSO particles for path planning and way point generation in a search for a

chemical source or some other substance. Given the fact that the communication

ranges of the robots are limited and that they can exchange information only if they

are within each other’s communication range, as the robots move they will enter or

1 By convergence here it is meant that all particles converge to a common point and the

iteration is ended. There is not an implication that the point to which the particles have

converged is a minimum point of the function being optimized J(x).
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exit each other’s communication ranges and therefore the neighborhoods will dy-

namically emerge as the search process progresses. Similarly, consider the case in

which the PSO algorithm is run in parallel as a batch process in a general purpose

computer laboratory. Moreover, assume that the group of processors in the lab is het-

erogeneous meaning that not all have the same computational power. Furthermore,

assume that no synchronization is enforced explicitly and a particle/processor which

finishes its iteration broadcasts its information, reads the information obtained from

the other processors, and continues its operation with its next iteration. In such a

case, since the processors will be finishing their iterations at different time instants,

the set of computers from which a given computer receives information might be

changing at every iteration resulting in an emergent dynamic neighborhood.

In this section we will present three models for neighborhood representation.

As one can infer from the discussion above, in real applications the dynamically

changing subset of neighbors may be determined based on the physical layout or

topology of the optimization/computing facility, the communication/internet traffic

at the time of execution of the PSO algorithm, the distance between the particles in

either the function or variable spaces or by some other means. It might depend also

on the optimization problem under consideration. The neighborhood representations

described can to some extent describe the above cases and have been inspired by the

multi-robot search application of the algorithm as well as the parallel decentralized

asynchronous PSO implementation described in the preceding section. They can

also be used explicitly as dynamic neighborhood determination rules if desired.

Nearest Neighbors in the Search Space

One possible strategy to determine particle neighborhoods is to exploit the near-

est neighbors rule which is based on the distance between particles in the search

space. It can serve also as representation of the particle neighborhoods in the PSO

inspired robot search application mentioned above or similar applications where the

distance in the search space is a communication/interaction constraint. In this strat-

egy, every particle is assumed to have a perception area and it is assumed that it

can communicate only with the particles which are within that area (see Figure 12.2

where representative perception areas or neighborhood sizes for some particles are

shown with circles). Assuming that the size/radius of the perception area of particle

i is given by δi > 0, a mathematical expression for representing its neighborhood at

time t (given the nearest neighbors rule) is given by

Ni(t) = { j, j �= i | ‖xi(t)− x j(t)‖ ≤ δi} (12.8)

Here Ni(t) denotes the set of neighbors of particle i at time t given the size of

its perception area is δi > 0. Note that this set can change with time. Moreover,

note also that, in general, the perception areas of the particles can be different. If

the perception areas of all particles are equal, then δi = δ for some δ > 0. In case

of equal perception areas of particles, neighborhoods become reciprocal, meaning

that if particle i is a neighbor of particle j at time t, then particle j is a neighbor

of particle i at time t as well. Otherwise, the neighborhood relations may not be
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reciprocal leading to the fact that particle i is a neighbor of particle j at time t does

not necessarily imply that particle j is also a neighbor of particle i at time t. For
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Fig. 12.2. Representation of nearest neighbors in the search space.

example, in Figure 12.2 the sizes of the perception areas of the particles are different

and while particle j is a neighbor of particles i and r, the reverse is not true and

particles i and r are not neighbors of particle j.

Nearest Neighbors in the Function Space

The neighborhood discussed above is based on distances in the search space. The

neighborhood relations could also be determined based on the distances in function

space as

Ni(t) = { j, j �= i | ‖J(xi(t))− J(x j(t))‖ ≤ δi} (12.9)

Here J(·) represents the function being optimized and the difference between func-

tion values are used to determine the neighborhood of the particles. In particular,

neighbors of a particle i with neighborhood size δi are all particles j whose func-

tion values J(x j(t)) are at most δi apart from its function value J(xi(t)). Figure 12.3

illustrates this situation where, for example, particle j is a neighbor of particle k

even though they are far from each other in the search space. In contrast, although

particle n is very close to particle k in the search space it is not its neighbor. Here

again δi can be different for different particles allowing for non-reciprocal neigh-

borhood relations. If all the particles have the same neighborhood radius, then once

more δi = δ for all i and the neighborhoods become reciprocal. Note that this type

of neighborhood links particles with similar performance/estimates irrespective of

their distance in the search space. This strategy is similar to the elitist crossover

strategies in the Genetic Algorithm (GA). In other words, it is similar to strategies

in GA in which individuals with high fitness values are only allowed to crossover

among each other and not with individuals with low fitness values.
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Fig. 12.3. Representation of nearest neighbors in the function space.

Random Neighborhood

Random neighborhoods can also be a model for representing dynamic neighbor-

hoods in some applications (such as the parallel and decentralized asynchronous

PSO implementation discussed above). It can be also intentionally used as a strat-

egy for dynamic neighborhood determination. For the second case one can define

a probability threshold 0 < ε < 1 before the PSO iteration is applied and at every

instance t, for every pair (i, j) generate a random number εi j ∈ [0,1] with uniform

probability density. In this manner, and provided that εi j for pair (i, j) is generated

independently from ε ji for pair ( j, i), at each step a total of

2×
(

N

2

)

= N(N −1)

uniformly distributed random numbers are generated, where N represents the num-

ber of particles in the swarm. Then the neighborhood of particle i is determined

based on

Ni(t) = { j, j �= i | εi j ≤ ε} (12.10)

In other words, if εi j ≤ ε then particle j is a neighbor of particle i at time t implying

that particle i can obtain information from particle j at time t. Here again, since εi j

and ε ji are independent, the neighborhood relations do not have to be reciprocal,

i.e., given that particle i is a neighbor of particle j, the inverse of the statement–

particle j is also a neighbor of particle i–may not be true. In order for the reverse to

hold, (i.e., in order for particle j to be a neighbor of particle i at time t as well) the

randomly generated number ε ji must also satisfy the condition ε ji ≤ ε. If recipro-

cal neighborhood relations are desired for the random neighborhood, then one can

generate
(

N

2

)

=
N(N −1)

2

random numbers (instead of N(N − 1)) and assign ε ji = εi j for all pairs (i, j) and

( j, i).
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There might be other possibilities to determine the particle neighbors randomly

or via other means. For example, one other option could be to have different thresh-

olds εi for the particles instead of a single global threshold ε leading to different

average number of neighbors for different particles. This, on the other hand, can

in a sense represent “more social” and “less social” types of particles. Neighbor-

hood determination strategies based on a combination or a hybrid of the above or

other strategies may also be possible. It is up to application designer to choose the

neighborhood which suits their application and optimization process best.

We would like to emphasize once more that in many applications (such as for

example the decentralized, distributed, and parallel asynchronous PSO implementa-

tion) particle neighborhoods may not depend on any predefined rule but might just

turn out as dynamic. The neighborhood representations presented here might serve

as models for representing neighborhood relations in such applications.

Discussion on Neighborhoods

The PSO optimization problem, from some perspectives, has similarities with aggre-

gation and more specifically with the social foraging in multi-agent systems (such

as swarms in nature). Dynamic neighborhoods allow a particle to be in different

groups at different times (like in swarms in nature) and adjust it’s prediction (or

opinion) about the position of the best value/condition of the environment. Gen-

erally, there exists no bidirectional communication in swarms in nature like flocks

of birds, which inspired the PSO algorithm, and communication in such systems is

unidirectional in general. Moreover, as mentioned above, unidirectional and vari-

able neighborhood realization is more appropriate for distributed and asynchronous

implementations of the PSO algorithm and for applications such as PSO-inspired

search for multi-robot systems. Given the facts that most swarm robot systems work

using sampled data and application of gradient based approaches in sampled data

systems may be difficult, algorithms such as PSO might be a more effective strategy

in such applications.

Neighborhoods based on the distance in the function space is an implementation

similar to some elitist crossover strategies in the genetic algorithms. It brings, in a

sense, a caste system or a hierarchy in which only particles with “similar perfor-

mance” interact or exchange information with each other. It might expedite conver-

gence in some problems but also might lead to separation of the swarm to several

sub-swarms (which is not necessarily undesired) if the neighborhood parameters

are not set properly. Actually such partitioning or division of the swarm is possible

in all the dynamic strategies presented here, unless the conditions discussed below

are satisfied. In optimization of convex functions, or convex functions with some

additive noise, the neighborhood in function space may be equivalent to the neigh-

borhood in the search space. However, for more general problems they can be also

significantly different.

The random neighborhood topology brings one more randomness aspect to the

PSO iteration (in addition to the steps of random length in the direction of the local

best and the global best). This is in contrast to the two distance-based neighborhood

determination strategies discussed, in which particle neighborhoods are determined
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in a deterministic manner (i.e., no randomness aspect to determine neighborhood).

This might enhance the performance of the algorithm since allowing each particle

at each step to exchange information with a random (and therefore different) subset

of the other particles may result in probing different (and possibly linearly indepen-

dent) search directions in the space which may lead to better performance in some

problems.

As was already mentioned above, in some PSO implementations dynamic neigh-

borhoods are an emergent property and do not bring any computational overhead to

the algorithm. However, the above neighborhood topologies can also be intention-

ally used as neighborhood determination strategies. In that case, they bring extra

computational burden on the algorithm. This computational burden depends on the

number of particles in the swarm. In particular, for the nearest neighbors in the

search space at every step an extra N(N − 1)/2 distance calculations in R
n and

N(N −1) comparison operations, for the nearest neighbors in the function space at

every step extra N(N − 1)/2 distance calculations in R and N(N − 1) comparison

operations, and for the random neighborhoods an extra N(N − 1) random number

generations and the same number of comparisons have to be performed. This might

be a disadvantage especially in time constrained applications. Therefore, one needs

to take these into consideration as well in choosing the neighborhood topology.

12.3.3 Directed Graph Representation of Particle Neighborhoods

A directed graph can be used to represent all the neighborhoods (information flow

topology in the swarm). Such a representation helps to visualize the interaction links

in the swarm and also allows us to exploit definitions from the graph theory literature

in specifying the connectivity properties of the interaction topology of the swarm.

For this purpose, let us represent with a graph G(t) = (N ,A(t)) the neighborhood

(or information flow) topology of the particle swarm at time t (see Figure 12.4). Here

N = {1,2, . . . ,N} represents a constant node/particle set, A(t)⊂ N ×N represents

the directed arcs at time t. In other words, in this representation the i’th particle is

represented as a node i ∈ N , whereas the arc (i, j)∈ A(t) represents the information

flow link directed from particle i to particle j at time t. In other words, if (i, j)∈ A(t),
then it means that particle j is able to receive information from particle i at time t and

particle i is a neighbor of particle j at time t meaning that i ∈ N j(t). We would like

to emphasize once more that, in general, the information flow can be unidirectional

and (i, j) ∈ A(t) does not necessarily mean that (j, i) ∈ A(t) as well. For example

in Figure 12.4 particle i is a neighbor of particles o, l, and m. However, the reverse

is not true. In order to have bidirectional information flow, the related conditions

(discussed above) for determining the neighbors must be satisfied.

If the neighborhood topology is stationary, the communication graph G(t) is

time-independent and during all iterations G(t) = G for some predetermined static

topology/graph G and for all time steps t ≥ 0. As was the case for distributed agree-

ment in Chapter 9, the connection properties of the graph affect the information

flow in the system and therefore may also affect the performance of the PSO algo-

rithm. Recall that usually the fully connected swarm converges faster than swarms
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Fig. 12.4. Directed graph representation of particle neighborhoods.

with other neighborhood topologies. Moreover, consider the case of a swarm with

a static neighborhood topology in which there are more than one group of parti-

cles and there is no connection (i.e., there is no communication link) between the

groups. This effectively results in the fact that there are more than one sub-swarms

which perform the optimization independently. This may lead to the result that the

sub-swarms may converge to different points in the search space. Similar issues

arise for the case of dynamic neighborhood as well. One important issue in PSO

with time-varying neighborhoods is that certain connectivity conditions should be

preserved in order for all particles to be able to converge to the same point. Other-

wise, the swarm may act as if there are more than one sub-swarms in the system,

each of which performs updates mutually independently. For instance, if G(t) is

not strongly connected, then the particle swarm could be separated into two (or

more) sub-swarms and these sub-swarms could continue to search independently

and could converge to different points in the space. Therefore, in order to avoid (or

at least classify) such situations, conditions on the connectivity properties of the

interaction (i.e., communication) graph/topology need to be imposed.2 Before that,

we recall a few more useful concepts (definitions) form the graph theory literature.

In a graph, if there is a directed path from node i to node j, then node i is said

to be connected to node j. In other words, if there exists a series of arcs from node

i to node j such that i = i1, j = ip, and (i1, i2),(i2, i3), . . . ,(ip−1, ip), then node i

is connected to node j (see Figure 12.5). For example, in Figure 12.5 node i is

connected to node k since there exist the links (i,o) and (o,k) (or also the links (i, l)
and (l,k)). If there exists a path from every node i to every other node j, then the

graph is said to be a strongly connected graph. It is important to note that it is not

necessary that there exists a direct arc from every node i to every node j (as is the

case in the fully connected topology, i.e., the global neighborhood) for the graph to

be strongly connected and it is sufficient to have a path from every node i to every

other node j consisting of a sequence of arcs through intermediate nodes. The graph

in Figure 12.5 is strongly connected since it satisfies this condition. However, if in

Figure 12.5 the link (l, i) was not present, the graph would not be strongly connected

since node i would not be able to get information from any other node.

2 Note here that we do not mean that separation of the swarm into sub-swarms is a bad

property. In fact, in some applications it might even be useful.
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Fig. 12.5. Strongly connected graph.

Due to the finite number of particles (number of nodes in the graph), the pos-

sible number of neighborhood (communication) graphs is finite. Given a particle

swarm consisting of N particles, let the set Ḡ = {G1, . . . ,GM} represent all the

possible neighborhood topologies in the particle swarm. In this case any valid in-

terconnection graph G(t) (whether static or dynamic) is within Ḡ , i.e., G(t) ∈ Ḡ
for every t. In the static topology case the properties of the graph G are important

for the performance and behavior of the PSO algorithm. In the dynamic topology

case, on the other hand, the properties of the set of the sequence of communica-

tion/neighborhood graphs, {G(t)} is more significant than the properties of the in-

stantaneous communication/neighborhood graphs G(t). In particular, the properties

of the union of the sequence of graphs {G(t)} plays a significant role for the connec-

tivity and information flow in the swarm. The union of graphs which have the same

node set {Gi = (N ,Ai)} ⊂ Ḡ is defined as ∪Gi = (N ,∪Ai). For a time interval I,

if the union ∪t∈IG(t) is strongly connected, then the sequence of graphs {G(t)} is

said to be strongly connected over interval I. Notice that in this case, over interval I,

all nodes are connected to each other and information from any node/particle could

flow through the swarm of particles.

12.3.4 Connectivity of the Swarm

As was mentioned earlier, the change of particle neighbors with respect to time may

result in separation of the swarm into a number of sub-swarms. The assumptions

below provides sufficient conditions in order to ensure continuation of information

flow throughout the entire swarm.

Assumption 20. There exist a constant I > 0 such that for every interval I of length

I the sequence of interaction/communication graphs {G(t) = (N ,A(t))} is strongly

connected.

The assumption above could be referred to as the uniformity of connections in the

communication graph. In other words, it basically states that the sequence of com-

munication/interaction graphs is jointly uniformly strongly connected. This is ex-

plained with a simple representative schematic in Figure 12.6, where although the
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Fig. 12.6. Directed graph representation of Assumption 20.

individual graphs at times t = 1, t = 2, and t = 3 are not strongly connected, the

union of the graphs over the interval I = {1,2,3} is strongly connected.

If the communication is bidirectional, the strong connectivity is equivalent to

the spanning tree assumption which was needed in the distributed agreement case

in Chapter 9. Strong connectivity is required in order to ensure that every particle

eventually has access to the experience of every other particle and in this manner

the swarm is able to improve its estimates. Note that even though here the swarm

converges to a common point as well, the problem is completely different from the

distributed problem in Chapter 9. This is because the objective here is not only to

reach agreement at a point, but this point also has to be a minimum of the function

J(x) being optimized. For that reason bidirectional flow of information is needed

for improved performance while spanning tree assumption (instead of strong con-

nectivity) could be sufficient for achieving convergence of all particles to a single

point, it can undermine the broader objective to minimize J(x).
There are various parameters and properties that affect the performance of the

three neighborhood determination strategies discussed in the preceding section,

which also affect whether Assumption 20 is satisfied or not for a specific neigh-

borhood determination strategy. For instance, the performance of the particle swarm
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exchanging information based on nearest neighbors in the search space in addition

to the sizes of the perception areas depends on the number of particles performing

search and the size of the search space, i.e., density of particles in the search space. If

the density of particles in the search space is low and the sizes of the perception ar-

eas of the particles are small, the possibility of existence of strong connectedness in

the particle swarm is small. As the particle density or the size of the perception areas

increase, the number of particles that can exchange information among each other

increases which also increases the possibility of existence of strong connectedness in

the particle swarm and therefore satisfaction of Assumption 20. On the other hand,

the performance of the swarm operating with neighborhood determination based on

nearest neighbors in function space is also affected by the function being optimized

in addition to the number of particles and the size of the perception ranges. The dif-

ference between the minimum and maximum values of the function being minimized

determines the effective size of the space and the density of particles. In other words,

for this case the density of the particles in the function space together with the sizes

of the perception areas are the primary parameters for the connectedness of the com-

munication graph. Since initially particles might be scattered, and as time progresses

they get close to each other, for the cases in which distance based neighborhood is en-

forced artificially the perception areas might be set large at the beginning and slowly

decreased as time progresses in order to ensure connectivity.

The performance of the swarm with a random neighborhood solely depends on

the number of particles in the swarm and the probability threshold ε for two particles

being neighbors. These two parameters are significant to satisfy Assumption 20. Re-

call that for this case particle j becomes a neighbor of a given particle i with some

probability and the threshold ε represents the probability of being neighbors. There-

fore, a larger value of ε or larger number of particles in the swarm will on average

result in higher number of neighborhood relations/connections and a higher possi-

bility of existence of strong connectedness in particle swarm leading to satisfaction

of Assumption 20.

For the stationary comunication/neighborhood topologies, Assumption 20 can be

stated as below in order to preserve the global connectivity property of the swarm.

Assumption 21. The static interaction graph {G = (N ,A)} is strongly connected.

Satisfaction of Assumption 21 ensures connectivity in the swarm. If there is no

strong connectivity in the neighborhood topology of the swarm with fixed neighbor-

hood, then it means that at least one particle is not connected to the other particles in

the swarm and this particle cannot obtain information directly or indirectly from the

(at least part of) the other particles. This fact may prevent the convergence of all par-

ticles to a common point. Even though it is typically not stated explicitly in the works

on PSO in the literature, the particle neighborhoods are generally chosen such that

Assumption 21 is satisfied. Assumption 20 and Assumption 21 provide sufficient

conditions for continuation of information flow between particles in the swarm.

Note here that it is not claimed that separation of the swarm to several sub-swarms

is always a disadvantageous property. There might be cases in which it is advanta-

geous since it may allow the sub-swarms to search/explore concurrently different
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regions of the space thus identifying more than one potential minima/solution.

This, on the other hand, may allow the user to freely choose between these min-

ima/solutions based on other conditions/considerations which may not be directly

coded within the function to be minimized and therefore into the PSO iteration.

Given these perspectives, the above assumptions provide sufficient conditions which

need to be satisfied in case it is desired (for one reason or another) that the swarm

not to separate into sub-swarms.

The particles (the agents) in the decentralized asynchronous PSO algorithm with

dynamic neighborhood and time delays are fully autonomous and independent and

they can join or exit neighborhood groups or even the optimization process without

destructing the overall iteration. Therefore, the number of agents does not have to be

fixed a priori in that version of the algorithm. This shows that this version of the al-

gorithm is easily scalable. Moreover, as was mentioned earlier, particle/agent and/or

communication failures do not necessarily result in the failure of the optimization

process since the active (unfailed) agents/particles can still continue their iterations

and complete the process. Besides these advantages, it is suitable for applications in

which function evaluations (i.e., the determination of the function values J(xi(t)))
are obtained by some kind of measurement from the external environment instead

of just pure computation.

An important issue in PSO, as is in other optimization algorithms, is how to

determine the stopping criteria for the optimization process. In other words, the

question is how do we know when to stop since a “good enough” solution has been

reached. There might be various criteria which can be used for that purpose. One

such criterion could be to have fixed number of iterations. In other words, the parti-

cles/agents/processors are given a fixed number of iterations a priori and each stops

after finishing these iterations. Another criterion could be that agents stop if they are

unable to achieve sufficient decrease/increase for a certain period of time or number

of iterations. A third criterion could be the distance between the particles and the

iterations are stopped when the swarm has almost collapsed to a single point. In the

decentralized implementation, stopping criteria based on some kind of negotiation

between the particles can also be considered in which a particle/processor decides

to stop and passes such a request to the other particles/processors (its neighbors)

and they negotiate about stopping or not. A combination of the above or other stop-

ping criteria are also possible. Moreover, in the decentralized asynchronous PSO

particle-specific stopping criteria are also possible, i.e., different particles can have

different stopping criteria. For example, one particle might be set to stop after 500

iterations, while another particle might be required to perform 1000 iterations.

From the fact that in PSO the dynamics/iterations of the particles are relatively

independent, it is also easy to set different parameter values (of, for example, the

constriction factor χ and/or the learning coefficients ϕi
1 and ϕi

2) for different par-

ticles. In this manner, it might be possible to obtain particles with different search

tendencies/characteristics such as particles performing more coarse search (e.g., par-

ticles having large ϕ̄1 and ϕ̄2 values) and those performing finer search (e.g., par-

ticles having small ϕ̄1 and ϕ̄2 values). Such a variation might be even easier in its

decentralized asynchronous and distributed implementations.
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12.4 Simulation Examples

In this section we test the performance of the PSO algorithm in several optimiza-

tion problems. The first function we consider is the function considered for social

foraging in earlier chapters as well as in Chapter 11 for bacterial foraging optimiza-

tion. Note that for this function the dimension of the state space is n = 2. For this

case, the number of particles in the swarm we used is N = 20. The performance

of a synchronous implementation of PSO with constriction factor in (12.2) with

fully connected static neighborhood topology for randomly generated initial parti-

cle positions and zero initial velocities can be seen in Figure 12.7. Figure 12.7(a)
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Fig. 12.7. Synchronous PSO with fully connected neighborhood (N = 20 particles).

shows the paths of the particles over the contour plot of the function, whereas Fig-

ure 12.7(b) shows the value of the global best with respect to the iterations. For

this simulation, the bounds on the learning coefficients ϕ̄1 and ϕ̄2 are selected as

2.05 (i.e., the ϕi
1 j and ϕi

2 j are uniformly distributed random variables satisfying

ϕi
1 j ∈ [0,2.05] and ϕi

2 j ∈ [0,2.05]) and as a constriction factor χ= 0.7298 was used.

The minimum of the function is found to be x∗ = [15.0162,4.9837] and has the

value J(x∗) = −3.9867. As can be seen, PSO was able to locate it in less than 300

iterations (note that the horizontal axis in Figure 12.7(b) is in log scale). Recall that

for the global neighborhood there is one single global minimum in contrast to the

neighborhood/local minimums for the other topology cases. As can be seen from

the figure and as expected it is constantly decreasing throughout the iterations. The

stopping criteria for this case was set as

e(t) =
2

M(M −1)

M−1

∑
i=1

M

∑
j=i+1

‖xi(t)− x j(t)‖ ≤ η (12.11)

with η = 10−8. In other words, when the average distance between particles in the

swarm becomes less than η = 10−8 the optimization process is terminated since

the swarm has collapsed to almost a single point. Note that it is possible to use

alternative stopping criteria as well.
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Another simulation with the same set of parameters but for different initial condi-

tions can be seen in Figure 12.8. As can be seen from the figure, this time the swarm
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Fig. 12.8. Synchronous PSO with fully connected neighborhood (N = 20 particles) converges

to a local minimum.

converges to a local minimum of the function because of the bias of the initial posi-

tions of the particles. In order to avoid such performance it is better to have a higher

number of particles. Moreover, running the algorithm several times and choosing

the best found value might be useful as well. Also, trying different neighborhood

topologies might also enhance performance. As was mentioned before, PSO with

full neighborhood converges fast but is more prone to converge to a local minimum.

Our experience is that PSO with a random dynamic neighborhood might do better

in problems such as the one considered here.

As another set of simulations we consider a set of benchmark functions com-

monly used in the PSO literature. The names and expressions of the functions con-

sidered are given in Table 12.2. Note that the global minimum for the DeJongF4,

Table 12.2. Benchmark Functions

Function Expression

DeJongF4 ∑n
i=1 ix4

i

Griewank ∑n
i=1

(
x2

i

4000

)

−∏n
i=1 cos

(
xi√

i

)

+1

Rastrigin ∑n
i=1

(
x2

i −10cos(2πxi)+10
)

Rosenbrock ∑n−1
i=1

(
(1−xi)

2 +100(xi+1 −x2
i )

2
)

Griewank, and Rastrigin functions is located at the origin (x∗ = [0, ...,0]⊤), whereas

for the Rosenbrock function it is located at x∗ = [1, ...,1]⊤.

For these simulations we use the decentralized asynchronous PSO implementation

discussed in this chapter with a dynamic neighborhood. The neighborhood determi-

nation strategy used is the random neighborhood strategy in (12.10) with neighbor-

hood probability threshold ε = 0.02. The algorithm was run on a single computer
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in a sequential manner and the asynchronism in information exchange and estimate

updates were introduced artificially using probabilistic methods. The pseudo-code

of the algorithm used is shown in Table 12.3 and described in more detail below.

Table 12.3. Pseudocode of the PSO Algorithm Used

Initialize the parameters of the algorithm

Initialize randomly initial particle estimates xi(0) and zero velocities vi(0)
Calculate the initial function values J(xi(0))
Initialize the particle bests pi(0) = xi(0) and Jpi(0) = J(xi(0))
Initialize the neighborhood bests gi(0) = xi(0) and Jgi(0) = J(xi(0))
Initialize p̄sense, p̄move and ε
while (Stopping criteria is not met) do

for each agent i do

Determine the set of its neighbors Ni(t) using (12.10)

for each particle j ∈ Ni(t) do

Generate p
i j
sense(t)

if p
i j
sense(t) > p̄sense then

Obtain the current best information of neighbor j ∈ Ni(t)
else

Use the old saved information of neighbor j ∈ Ni(t)
end if

Update the neighborhood (global) best gi(t) using p j(τi j(t))
end for

Generate pi
move(t)

if pi
move(t) > p̄move then

Calculate the new function value J(xi(t))
if (J(xi(t)) < Jpi(t −1)) then

Set the particle best pi(t) = xi(t) and Jpi(t) = J(xi(t))
end if

if J(xi(t)) < Jgi(t) then

Set the neighborhood (global) best gi(t) = xi(t) and Jgi(t) = J(xi(t))
end if

Calculate particle next estimate using (12.2)

else

Do not calculate a new estimate and velocity (see (12.6))

end if

end for

end while

As can be seen from Table 12.3, in order to achieve asynchronism at each time

instant, particles are set to sense their neighbors state and to update their own states

using the iteration in (12.2) with some probability. For this purpose, two thresholds

0 < p̄sense < 1 and 0 < p̄move < 1 are defined. At each time step t, particle i gener-

ates a total of (Ni(t)+1) uniformly distributed random numbers in the interval [0,1],

namely pi
move and p

i j
sense(t), j = 1, . . . ,Ni(t). Here Ni(t) = |Ni(t)| is the number of

neighbors of particle i, or basically the number of elements of the set Ni(t). The
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numbers p
i j
sense(t), j = 1, . . . ,Ni(t) determine whether particle i can obtain informa-

tion from a neighbor j ∈ Ni(t) or not. If p
i j
sense(t) > p̄sense, then particle i is able

obtain the current information from its neighbor particle j and use the information

acquired from particle j for determining the global/neighborhood best value. Oth-

erwise, it uses old information from agent j ∈ Ni(t). This introduces, in a sense, a

delay in the information flow. Similarly, if pi
move(t) > p̄move, then particle i updates

its state estimate using (12.2), implying that the particle is at its “awake” state. Oth-

erwise, it keeps its current estimate using (12.6), implying that the particle is at its

“asleep” state. We would like to point out that this kind of implementation is not a

real decentralized asynchronous implementation of the algorithm but it mimics such

properties.

For the simulations using the functions in Table 12.2 the dimension of the state

space is chosen as n = 20 (i.e., the search space is a subset of R
20) for all the func-

tions considered. Moreover, we used a swarm consisting of N = 100 particles. The

initial particle positions were generated randomly and the initial velocities of the

particles were set to zero. The ranges for the learning coefficients and the value of

the constriction factor were the same as in the previous simulation and were ba-

sically satisfying ϕi
1 j ∈ [0,2.05], ϕi

2 j ∈ [0,2.05], and χ = 0.7298. As a difference

from the previous case the stopping criteria was set as predefined constant number

of iterations Niterations = 3162 ≃ 103.5.

Figure 12.9 shows the results for the DeJongF4 function. The function itself for

n = 2 is shown in Figure 12.9(a). As mentioned above, its global minimum is located

at the origin. However, the region around the minimum is relatively flat, which might

create algorithmic difficulties in some cases. For this simulation the initial particle

positions were generated from within [−20,20]n. Figure 12.9(b) shows the plot of

the global best value versus the iterations. The value plotted in the figure is min-

imum among the local/neighborhood bests g(t) = min{gi(t)}. Note that both the

vertical and horizontal axes are in logarithmic scale. As can be seen from the figure,

the value of the global best is constantly decreasing and at the end of the iteration

it is equal to g = min{gi} = 1.5113. The plot in Figure 12.9(c) shows the evolution

of the average distance between particles or basically e(t) in (12.11) with respect to

the iteration number. As can be seen from the figure, at the end of the iterations its

value is in the order of 10−4. This basically means that the swarm has sufficiently

collapsed although there might be a little more room for further improvement. Fig-

ure 12.9(d) shows the average distance of the particles to the global best position

(the origin) again in logarithmic scales. As one can see, the distance to the origin is

less than 1.5.

Figure 12.10 shows the results for the Griewank function. Figure 12.10(a) shows

the shape of the function in a two dimensional space. It is a function with multiple

hills and valleys which might be misleading for the optimization process. The initial

particle positions were generated from within [−20,20]n for this simulation as well.

Figure 12.10(b) depicts the value of the global best versus the iteration number.

It can be seen that after Niterations = 3162 iterations the global best value obtained

is 0.7455 which is close to the global minimum located at the origin and equal to

zero. It is easy to see from Figure 12.10(c) that the particles have again converged
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Fig. 12.9. Simulations for the DeJongF4 benchmark function.

very close to each other and the average distance between them is of order 10−3.

Similarly, the average distance of the particles to the global minimum is less than

10 as can be seen from Figure 12.10(d).

The results for the Rastrigin function are shown in Figure 12.11. As can be seen

from Figure 12.11(a) the Rastrigin function is somehow similar to the Griewank

function but is more hilly and more noisy which makes it a difficult function to min-

imize. For this function initial particle positions were initialized within the region

[−6,6]n. The decentralized asynchronous PSO with dynamic neighborhood shows

similar performance for this function as well. As can be seen from Figure 12.11(c),

at the end of the Niterations = 3162 iterations the average distance between particles

is again in the order of 10−4. The average distance to the minimum is around 3.8
and the lowest function value achieved is g = 22.4382. Note that given the number

of dimensions in the search space, the initial search range, and the difficulty of the

function this is not unimpressive performance.

The results for the Rosenbrock function are shown in Figure 12.12. Note that

different from the previous cases its global minimum is located at x∗ = [1, ...,1]⊤.

Its shape in n = 2 dimensions can be seen in Figure 12.12(a). It seems a fairly

smooth function. However, it is also difficult to minimize. For this function ini-

tial particle positions were initialized within the region [−4,4]n. One can see from
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(c) Average distance between particles. (d) Average distance to the minimum.

Fig. 12.10. Simulations for the Griewank benchmark function.

Figure 12.12(c) that after Niterations = 3162 iterations the inter-particle distances

have reached again the order of 10−4. The average distance to the minimum is

around 1.18 and the best function value reached is g = 19.5670. This might be seen

unsatisfactory. However, note that for a higher number of particles, and provided

that the swarm was allowed to run for longer period of time, it would probably

reach a much better function value. Also, since there is some stochasticity in the

algorithm the performance may change from run to run.

12.5 Further Issues

The problem of PSO optimization has some similarities with the problem of con-

sensus seeking or distributed agreement in multi-agent systems and the dynamic

neighborhood allows a particle to be part of different neighborhoods at different

time instants and to adjust its estimate (its opinion) based on the information in

these neighborhoods (just as in real biological systems in which there are no fixed

neighborhoods). In natural swarms like flocks of birds or human social networks (on

which the original PSO was inspired) communication (which does not necessarily

mean direct communication) or sensing is rarely bidirectional and this is also present
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(a) Rastrigin function for n = 2. (b) The best function value.
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(c) Average distance between particles. (d) Average distance to the minimum.

Fig. 12.11. Simulations for the Rastrigin benchmark function.

in the model/formulation considered in this chapter. Moreover, in natural swarms the

information sensing and motion by the agents are usually done in a decentralized

and asynchronous manner and the formulation in this chapter reflects that property

as well. Furthermore, the model allows for uncertainties due to possible delays in

the information flow or other reasons. All these allow for a distributed agent-based

implementation of the algorithm in which each particle is programmed as a differ-

ent software agent which runs on a possibly different processor/computer (similar to

the case in real biological swarms) and occasionally communicates with some of the

other agents in its environment/neighborhood. There is no need for a global clock

for synchronization and the delays in the model account for communication/network

delays which could be present in the system. The agents may fail, join or leave the

group without leading to catastrophical failure of the overall operation. For these

reasons we believe that decentralized and distributed asynchronous PSO formula-

tion with time delays presented in this chapter has better philosophical connections

with the operation of natural distributed multi-agent systems (such as schools of fish,

flocks of birds, swarms of honeybees, social networks, etc.). Moreover, it allows for

much more flexible implementation of the PSO algorithm. Furthermore, its current

formulation has the prospect of creating new potential application areas of the al-

gorithm. The PSO inspired search by multiple robots in a sampled environment
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(a) Rosenbrock function for n = 2. (b) The best function value.
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Fig. 12.12. Simulations for the Rosenbrock benchmark function.

example (which was mentioned several times throughout the chapter) is one such

application. Since implementing gradient based methods might be difficult in a sam-

pled environment, algorithms like PSO might be more efficient in such applications.

Synchronous operation is difficult to implement in such artificial multi-agent sys-

tems since it requires a global clock to which all the agents must be subjected to,

therefore undermining the distributed (decentralized) nature of the problem.

The PSO algorithm has become a very popular algorithm in recent years. It is

very easy to implement and seems fairly affective given the cost of implementation.

These seem to be the main reasons behind its popularity. The performance of the

PSO algorithm has been studied from many different perspectives in the literature

and it has been applied on many optimization problems. Below, we highlight some

areas of possible further study on the algorithm as well as briefly mention some of

the studies that have already been done in the literature.

12.5.1 Extensions and Generalizations

As we mentioned above, the performance of the PSO algorithm with respect to the

values of the algorithm parameters such as the learning, constriction, inertia coef-

ficients, neighborhood structure and others have been investigated in the literature.
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There are also studies investigating the convergence of the swarm. These studies

look at the problem from the perspective of a single particle and investigate whether

the particle will eventually stop or not. Note that this is not really a convergence

analysis from the perspective of the optimization function. In function minimiza-

tion the main objective is to reach a point which is a (possibly local) minimum of

the function. Usually an algorithm which guarantees that a minimum will be reached

is considered as good or trusted algorithm. Therefore, there is a need to rigorously

prove (or disprove) that PSO guarantees convergence to a critical (minimum) point.

In other words, given a function J : R
n →R, the question is to find out whether PSO

guarantees always to find a x∗ such that

J(x∗) ≤ J(x)

for all x∈B(x∗)⊂R
n, in some neighborhood B(x∗) of x∗. The study can be directed

to show convergence to points satisfying

∇J(x∗) = 0

which will include all critical points. This is an open question and rigorously proving

or disproving such a convergence would be a very nice contribution to the field.

It would also significantly effect the popularity of the algorithm. In such formal

studies, in addition to the mathematical formulation presented in this chapter, the

graph representation of the neighborhood structure of the PSO algorithm may also

be useful since it might be possible to utilize already available results from the graph

theory literature in conjunction with possibly convex analysis or other techniques.

We believe that although the fact that PSO does not use gradient information it is

somehow gradient related. However, as can be seen also from the simulation results

above, it may not be always guaranteed that it will converge to a critical point unless

some extra conditions are imposed.

12.5.2 For Further Reading

The Particle Swarm Optimization algorithm was proposed in 1995 by Kennedy and

Eberhart [66, 133] and since then has gained a lot of momentum. There has been

also a book published on the topic [134]. The decentralized asynchronous PSO im-

plementation with dynamic neighborhoods, which was mostly emphasized in this

chapter, was proposed and studied in [2, 3, 82, 84] and most of this chapter is

based on the work there. Note once more that although the main update/iteration

formula of the decentralized asynchronous particle swarm optimization algorithm

is the same as the classical implementations, the calculation of the neighborhood

best gi(t) is based on a completely different philosophy.

There are studies which deal with analyzing particle trajectories or the conver-

gence of the particles including [40, 130, 185, 186, 241, 248]. Note, however, that

these works do not consider convergence to a critical point. Instead they deal with

the convergence of the particles to some point or not. There are also studies, such as
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the ones in [15, 36], which investigate the effects of parameters on the performance

of the algorithm and try to determine a good or standard set of parameters, for the

best performance possible.

The studies in [132, 135] examine the performance of PSO with various neigh-

borhood topologies, or basically the effect of the neighborhood topology on the

performance of the algorithm. In addition, besides the works in [3, 84], there have

also been other recent studies on PSO involving dynamic particle neighborhoods

from different aspects [119, 173, 229]. Also, representative studies on parallel im-

plementation of PSO can be found in [140, 214, 250], where in [214] a parallel

synchronous implementation is adapted, whereas in [140, 250] a centralized paral-

lel asynchronous implementation is used.

Some studies focus on improving the performance of PSO by combining it with

other methods. Examples of such studies include [160, 161, 225], where evolu-

tionary computation operators such as selection, crossover, and mutation are incor-

porated into the PSO algorithm, and [39, 54, 207], where other non-evolutionary

approaches are used. There are also attempts to combine the Kalman Filter with

PSO [174]. Adaptation of the parameters is also another approach considered in the

literature [120, 222, 223, 257].

Examples of work on PSO inspired robotic search can be found in [4, 5, 57,

116, 117, 164, 197–199, 242], where [4, 5, 198, 242] use dynamic neighborhood

topology. The distance in the search space based neighborhood topology in (12.8)

(i.e., the nearest neighbor rule) allows one to represent the interactions in PSO-

inspired multi-robot search applications.
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187. Ögren, P., Fiorelli, E., Leonard, N.E.: Formations with a mission: Stable coordination

of vehicle group maneuvers. In: Symposium on Mathematical Theory of Networks and

Systems (August 2002)

188. Pand, A., Seiler, P., Hedrick, K.: Mesh stability of look-ahead interconnected systems.

IEEE Trans. on Automatic Control 47(2), 403–407 (2002)

189. Parrish, J.K., Hamner, W.M. (eds.): Animal Groups in Three Dimensions. Cambridge

University Press, Cambridge (1997)
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262. Young, K.D., Utkin, V.I., Özgüner, Ü.: A control engineer’s guide to sliding mode con-

trol. IEEE Trans. on Control Systems Technology 7(3), 328–342 (1999)

263. Yu, C., Fidan, B., Anderson, B.: Persistence acquisition and maintenance for au-

tonomous formations. In: Proc. 2nd Int. Conf. on Intelligent Sensors, Sensor Networks

and Information Processing (ISSNIP), pp. 379–384 (December 2005)

264. Yu, C., Fidan, B., Anderson, B.: Principles to control autonomous formation merging.

In: Proc. American Control Conference, pp. 762–768 (June 2006)

265. Zhai, S., Fidan, B.: Single view depth estimation based formation control of robotic

swarms: Fundamental design and analysis. In: Mediterranean Conference on Control

and Automation, Ajaccio, Corsica, France, pp. 1156–1161 (June 2008)
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