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Preface

The major aim of this monograph is to show that the nonsmooth dynamics frame-

work (involving keywords like complementarity problems, piecewise-linear char-

acteristics, inclusions into normal cones, variational inequalities, multivalued char-

acteristics) is a convenient and efficient way to handle analog switched circuits. It

has been long known in the circuits community that such nonsmooth switched sys-

tems are difficult to simulate numerically, for various reasons that will be recalled.

In parallel the simulation of nonsmooth mechanical systems (i.e. mainly mechan-

ical systems with nonsmooth interface or contact laws, like unilateral constraints,

impacts, Coulomb’s friction and its many extensions, etc.) has been the object of a

lot of research studies (see for instance the recent monographs Acary and Brogliato

2008 and Studer 2009). This field has now reached a certain degree of maturity,

and has proved to be a quite useful and efficient approach in many areas of me-

chanics. Here we would like to show that the tools that have been employed in the

contact mechanics context, can be successfully extended to the simulation of analog

switched circuits. To the best of our knowledge it is the first time that such exten-

sive numerical simulations using the nonsmooth dynamics framework for analog

switched circuits are presented and published.

Vincent Acary

Olivier Bonnefon

Bernard Brogliato

Montbonnot
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Part I

Theoretical Framework

This part is mainly dedicated to introduce the basic mathematical tools which are

needed to correctly understand what the nonsmooth dynamical systems (NSDS) ap-

proach is. Some basic ingredients from convex analysis, complementarity theory,

variational inequalities, are indeed necessary if one wants to go further. In this part

we will also present a short history of nonsmooth models and their numerical sim-

ulation in electrical circuits. They are better known as piecewise-linear representa-

tions in the circuits community.



Chapter 1

Introduction to Switched Circuits

Good models should describe the real physics only as far as

needed and should not carry too much additional ballast, which

would slow down the numerical processes necessary to solve

them, but would also obscure the desired results. . . It is a matter

of fact that the more compact mathematical formulations yield

at the end the better numerical codes.

C. Glocker in Glocker (2005)

1.1 Simple Examples of Switched Circuits

This section is dedicated to introduce simple circuits that contain electronic devices

with a nonsmooth current/voltage characteristic. Examples are RLC circuits with

so-called ideal diodes, ideal Zener diodes, ideal switches. The main peculiarities of

their dynamics are highlighted through detailed analysis. The parallel with simple

nonsmooth mechanical systems is made. Last, but not least, the numerical method

that will be used in the remainder of the book is introduced.

1.1.1 Diode Modeling

The diode represents a basic electronic device and its modeling is a central issue.

Several models of the diode in Fig. 1.1 may be used, as depicted in Fig. 1.2. Each

one of these models possesses some drawbacks and some advantages.

The first model in Fig. 1.2(a) is the Shockley law, that describes accurately the

diode behaviour. Its drawback is that it introduces stiffness in the dynamics, hence

it may considerably slow down the simulations. The model of Fig. 1.2(c) separately

considers the two modes of the diode with conditional “if” and “then” statements.

In a circuit the number of modes grows exponentially with the number of ideal com-

ponents such as ideal diodes. Such a “hybrid” modeling approach then quickly be-

comes untractable and yields simulation times which are not acceptable (see Chap. 8

for numerical results on the buck converter, using a hybrid simulator). The model in

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits,

Lecture Notes in Electrical Engineering 69,

DOI 10.1007/978-90-481-9681-4_1, © Springer Science+Business Media B.V. 2011
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Fig. 1.1 Diode symbol

Fig. 1.2 Four models of diodes

Fig. 1.2(d) is a piecewise-linear approximation of the ideal diode of Fig. 1.2(b). Its

drawback is also that it introduces stiffness in the dynamics.

The model that will be mostly chosen in the present work, is the ideal diode

model of Fig. 1.2(b) with a > 0 and b > 0. This nonsmooth model possesses the ad-

vantage that it keeps the main physical features of the diode (the “on”–“off” property

with possible residual current and voltage), and allows one to avoid stiffness issues

so that the solvers are well-conditioned. This model is not only nonsmooth, but it

is multivalued since i(t) may take any value in [−b,+∞) when v(t) = −a. Also,
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Fig. 1.3 The ideal diode

voltage/current law

contrary to the model of Fig. 1.2(c) it is not purely logical (boolean), it is an analog

model. This analog model is represented by so-called complementarity relations

0 � i(t) + b ⊥ v(t) + a � 0, (1.1)

whose meaning is that

if i(t) + b > 0 then v(t) + a = 0,

and if v(t) + a > 0 then i(t) + b = 0.
(1.2)

When inserted into a dynamical circuit with resistors, capacitors, inductors, this will

lead to a specific class of nonsmooth dynamical systems.

These arguments will be illustrated in this book through concrete simulation ex-

periments and comparisons between various software packages.

Remark 1.1 One may also adopt the convention of Fig. 1.3 to define the volt-

age/current law of the diode in the case of vanishing residual current and voltage.

This does not influence the results, however.

1.1.2 An RCD Circuit

Let us consider the circuit of Fig. 1.4, that is composed of a resistor R, a voltage

source u(t), an ideal diode, and a capacitor C mounted in series. The current through

the circuit is denoted as x(·), and the charge of the capacitor is denoted as

z(t) =

∫ t

0

x(s)ds.

The dynamical equations are:
{

ż(t) = −
u(t)
R

− 1
RC

z(t) + 1
R

v(t),

0 � v(t) ⊥ w(t) =
u(t)
R

− 1
RC

z(t) + 1
R

v(t) � 0
(1.3)
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Fig. 1.4 A circuit with an

ideal diode, a resistor, a

capacitor and a voltage source

for all t ∈ R
+. It is noteworthy that the complementarity conditions in (1.3) do not

involve any unilateral constraint on the state z(t). Therefore one may expect that a

solution of (1.3) starting at z(0) ∈ R will be a continuous function of time. More

precisely, at each time t one can solve the linear complementarity problem

0 � v(t) ⊥
u(t)

R
−

1

RC
z(t) +

1

R
v(t) � 0,

whose solution depends on the sign of u(t)
R

− 1
RC

z(t). The solution v(t) is unique

and is given by

v(t) = R max

[

0,−
u(t)

R
+

1

RC
z(t)

]

.

Inserting it in the first line of (1.3) yields:

ż(t) = −
u(t)

R
−

1

RC
z(t) + max

[

0,−
u(t)

R
+

1

RC
z(t)

]

. (1.4)

The max(·) function is not differentiable (it has a corner at 0) but it is continu-

ous (actually, since max[0, x] is the projection of x on the convex cone R
+ it is a

Lipschitz continuous function of x). We deduce that the right-hand-side of (1.4) is

Lipschitz continuous in z and u. As such (1.4) can be recast into an Ordinary Dif-

ferential Equation (ODE) with Lipschitz vector field. Provided u(t) possesses some

basic regularity properties, this system has continuously differentiable solutions and

uniqueness of the solutions holds.

The circuit of Fig. 1.4 has a single-valued dynamics despite the diode defines

a multivalued voltage/current law.

Let [0, T ], T > 0 be the integration interval, and t0 = 0 < t1 < · · · < tn−1 <

tn = T , with ti+1 − ti = h > 0 the time step, n = T
h

. For a continuous function f (·)

the value fk denotes f (tk). The backward Euler scheme used to discretize (1.3) is

given by:
{

zk+1 = zk − h
uk+1

R
− h

RC
zk+1 + h

R
vk+1,

0 � vk+1 ⊥ wk+1 =
uk+1

R
− 1

RC
zk+1 + 1

R
vk+1 � 0.

(1.5)



1.1 Simple Examples of Switched Circuits 7

Fig. 1.5 A circuit with an

ideal Zener diode, a resistor,

an inductor and a voltage

source

After some manipulations one finds:

0 � vk+1 ⊥ wk+1 =

(

1 +
h

RC

)−1[

−h
uk+1

R
+ zk

]

+
1 + h

R
vk+1 � 0 (1.6)

which is a Linear Complementarity Problem (LCP) one has to solve at each step to

advance the algorithm from step k to step k + 1. Plugging the obtained vk+1 into the

first line of (1.5) allows one to calculate zk+1. From a numerical point of view there

is consequently no particular difficulty with this system, however one has to keep

in mind that it is nonsmooth and this will affect greatly the possible order of the

standard integration methods for ODEs (see Acary and Brogliato 2008 for details).

1.1.3 An RLZD Circuit

We now consider the circuit of Fig. 1.5 that contains a Zener diode. Two cur-

rent/voltage laws of Zener diodes are depicted in Fig. 1.6. The model of Fig. 1.6(a) is

an ideal Zener diode with some residual voltage a > 0. The second one may be seen

as a kind of regularization of the ideal model. Indeed looking at the voltage/current

law that is obtained by inverting the graphs of Fig. 1.6, one sees that the character-

istic of the ideal model possesses two vertical branches, which are replaced by two

linear branches with slope ≫ 1 in the piecewise-linear model of Fig. 1.6(b). Both

models are multivalued at i(t) = 0.

For the time being we shall denote the current/voltage laws corresponding to

both models as v(t) ∈ F1(−i(t)) and v(t) ∈ F2(−i(t)) respectively. Applying the

Kirchhoff’s Voltage Laws (KVL) in the circuit we obtain the dynamical equations,

where x(t) = i(t):
{

ẋ(t) = −R
L
x(t) + u(t)

L
+ v(t)

L
,

v(t) ∈ Fi(−x(t)), i = 1 or i = 2.
(1.7)

It is noteworthy that the multifunctions Fi(·) are quite similar to the sign multifunc-

tion

sgn(x) =

{

{1} if x > 0,

{−1} if x < 0,

[−1,1] if x = 0.
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Fig. 1.6 Two models of Zener diode

Indeed one has

F1(x) =

{

{Vz} if x > 0,

{−a} if x < 0,

[−a,Vz] if x = 0,

and

F2(x) =

{

{αx + Vz} if x > 0,

{βx − a} if x < 0,

[−a,Vz] if x = 0,

for some α > 0, β > 0.1 The multivalued part of the graph (v(t),−i(t)) may be

necessary to merely guarantee the existence of a static equilibrium for (1.7). Let x∗

denote the fixed point of (1.7). Then

−Rx∗ + u(t) ∈ Fi(x
∗). (1.8)

If u(t) ∈ [−a,Vz], x∗ necessarily belongs to the multivalued part of the graph in

Fig. 1.6. Thus we get that the equilibrium inclusion in (1.8) implies that x∗ = 0 and

u(t) ∈ Fi(0) = [−a,Vz]. The Zener diode multivaluedness at i = 0 allows a time-

varying u(t) while the system stays at its equilibrium i∗ = 0. This is equivalent,

from a mathematical point of view, to mechanical systems with Coulomb’s friction

where contact keeps sticking for tangential forces that stay inside the friction cone.

The implicit Euler method for (1.7) writes as:
{

xk+1 = xk − hR
L
xk+1 + h

uk+1

L
+ h

L
vk+1,

vk+1 ∈ Fi(−xk+1), i = 1 or i = 2.
(1.9)

At each step one therefore has to solve the generalized equation with unknown xk+1:

0 ∈ xk+1 −

(

1 + h
R

L

)−1[

xk + h
uk+1

L
+

h

L
Fi(−xk+1)

]

. (1.10)

1In the sequel we shall often neglect the brackets {a} to denote the singletons.
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Fig. 1.7 Iterations of the backward Euler method for (1.7)

The first problem is to determine whether this has a unique solution whatever

the data at step k. The answer is yes, as can be checked graphically. Indeed solving

(1.10) boils down to calculating the intersection between two graphs: the graph of

the single-valued mapping z �→ z − ak with

ak =

(

1 + h
R

L

)−1[

xk + h
uk+1

L

]

,

and the graph of the multivalued mapping z �→ −αhFi(−z) with

αh =

(

1 + h
R

L

)−1
h

L
.

Few iterations are depicted in Fig. 1.7 for the case where u(t) ≡ 0, when ak < 0 and

ak > 0. In both cases one sees that after a finite number of steps the solution is calcu-

lated to be zero. This occurs at step k + 11 for the first case and at step k + 5 for the

second case. One says that a sliding motion (or a sliding mode) has occurred in the

system, where the solution converges in finite-time towards a “switching surface”

and then stays on it.

From a more general mathematical point of view, the mathematical argument

that is behind the existence and the uniqueness of the intersection, is the maximal

monotonicity of the multifunctions z �→ Fi(−z). Roughly speaking, in the plane

monotonicity means that the graph of the multivalued mapping never decreases, and

maximality means that the gap at the discontinuity at z = 0 is completely filled-in.

This is the case for the graphs in Fig. 1.6.
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1.1.4 An RCZD Circuit

Let us consider the circuit of Fig. 1.5 where the inductor is replaced by a capacitor C.

Let us denote

x(t) =

∫ t

0

i(s)ds,

the charge of the capacitor. We shall this time adopt a different convention for the

voltage/current law of the Zener diode, as shown in Fig. 1.8. The dynamical equa-

tions are:
{

ẋ(t) = −1
RC

x(t) + 1
R

(u(t) − v(t)),

v(t) ∈ Fz(i(t)).
(1.11)

In view of the state variable definition the second line of (1.11) rewrites as v(t) ∈

Fz(ẋ(t)), i.e.:

0 ∈ v(t) − Fz

(

−x(t)

RC
+

u(t)

R
−

v(t)

R

)

. (1.12)

Letting

y
�
=

−x(t)

RC
+

u(t)

R
−

v(t)

R
, and B

�
=

−x(t)

RC
+

u(t)

R
,

we can rewrite (1.12) as:

−
y

R
+

B

R
∈ Fz(y) (1.13)

that is a generalized equation with unknown v(t). Solving (1.13) boils down to

finding the intersection of two graphs as depicted in Fig. 1.9. Clearly the solution

is unique for any value of B if R > 0 (the intersection is depicted in three cases

in Fig. 1.9 at the points a, b and c, where b is in the multivalued part of the graph

of the mapping Fz). Once again this is due to the maximal monotonicity of the

multivalued mapping Fz(·). Calculations yield x(t)
C

− u(t) > Vz ⇒ v∗ = −Vz for c,
x(t)
C

− u(t) < 0 ⇒ v∗ = 0 for a, and 0 <
x(t)
C

− u(t) < Vz ⇒ v∗ ∈ [−Vz,0] for b.

The implicit discretization of (1.11) is given by:

{

xk+1 = xk − h
RC

xk+1 + h
R

(uk+1 − vk+1),

vk+1 ∈ Fz(ik+1),
(1.14)

where

ik+1 =
xk+1 − xk

h
.

To advance the algorithm one has to solve the generalized equation:

0 ∈ vk+1 − Fz

(

−
1

RC
xk+1 +

1

R
uk+1 −

1

R
vk+1

)

. (1.15)
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Fig. 1.8 Zener diode voltage/current law

Fig. 1.9 Solving the generalized equation (1.12)

One computes that

xk+1 = −
1

RC

(

1 +
h

RC

)−1(

xk +
h

R
uk+1

)

+
h

R2C

(

1 +
h

RC

)−1

vk+1.
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Fig. 1.10 A circuit with an

ideal diode, a resistor, an

inductor and a current source

Inserting this value into (1.15) one gets a generalized equation which has a unique

solution vk+1 for similar reasons as above, provided h is small enough so that

1

R
−

h

R2C

(

1 +
h

RC

)−1

> 0.

The problems in (1.6), (1.10), (1.15) and (1.18) are the Onestep NonSmooth

Problem (OSNSP) to be solved at each step of the Euler scheme. When the

number of variables grows they have to be solved numerically. The design of

good solvers for OSNSP is a central topic of research.

We do not present numerical results on these systems that may exhibit sliding

modes. The reader is referred to Part III and especially Chaps. 7 and 8 where many

simulation results are presented.

1.1.5 An RLD Circuit

Let us consider the circuit of Fig. 1.10, that is composed of an ideal diode with zero

residual current and voltage, mounted in parallel with an inductor/resistor (L/R)

and a current source i(t). The current through the inductor/resistor is denoted as

x(t). The application of Kirchhoff’s law for the current at node A and for the voltage

in the resistor/inductor/diode loop, yields the following dynamics:

{

ẋ(t) = −R
L
x(t) + v(t),

0 � w(t) = x(t) − i(t) ⊥ v(t) � 0
(1.16)

for all t � 0, where v(t)
L

is the voltage across the diode. We shall see in Sect. 2.5.5

another way to write the dynamics in (1.16), using some basic convex analysis, and

which is at the roots of Moreau’s time-stepping method.
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For the time being, let us propose a time-discretization of (1.16). A backward

Euler algorithm for (1.16) is:

{

xk+1 = xk − hR
L
xk + hvk+1,

0 � wk+1 = xk+1 − ik+1 ⊥ vk+1 � 0.
(1.17)

Inserting the value of xk+1 in the complementarity condition 0 � xk+1 − ik+1 ⊥

vk+1 � 0 one obtains

0 �

(

1 − h
R

L

)

xk − ik+1 + hvk+1 ⊥ vk+1 � 0, (1.18)

which is an LCP with unknown vk+1. Since h > 0 it may be deduced by simple

inspection that such a problem always possesses a unique solution.

Notice now from the complementarity condition of (1.16) that the state x(t) is

unilaterally constrained as x(t) � i(t) for all t � 0. Suppose that at some time t � 0

this constraint is violated (it may for instance be that initially x(0) < i(0)). A jump

in x(·) is necessary at t to continue the integration on the right of t (otherwise, this

dynamical system will possess a solution on [0, t), and not on [0,+∞)). In passing

this shows that the dynamical system in (1.16) should contain a third ingredient, in

a similar way as mechanical systems with impacts: a state reinitialization law. We

shall come back to this issue in Sect. 2.4.3.2 in a more general setting.

Let us assume now that at step k one has xk − ik = −δ for some δ > 0. If h is

small enough and the signal i(t) is continuous, then −hR
L
xk + xk − ik+1 is negative

as well (actually, we could directly suppose that xk − ik+1 < 0). Therefore the so-

lution of the linear complementarity problem is vk+1 = 1
h
(hR

L
xk − xk + ik+1) > 0.

Inserting this value in the first line of (1.17) one obtains:

xk+1 = ik+1. (1.19)

So at step k + 1 one has xk+1 − ik+1 = 0 while vk+1 > 0: the complementarity

condition is satisfied. The state has jumped and the jump value is xk+1 −xk = ik+1 −

ik + δ, that is close to δ if the time-step is very small and i(t) does not vary too

much on [tk, tk+1]. For instance, if i(t) is null (no current source) the backward

Euler scheme computes xk+1 = 0 while xk < 0.

The basic implicit Euler method automatically computes state jumps for in-

consistent states.

This suggests that the backward Euler scheme in (1.17) approximates the dynam-

ics in (1.16) with an additional ingredient:

x(t+) = i(t+) + max[0, x(t−) − i(t+)]. (1.20)

The notation f (t+) generically denotes limτ→t,τ>t f (τ) for a function f (·) which

possesses a discontinuity of the first kind at t and a right-limit at t (same for the

left-limit).
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Since the state x(·) may jump, the derivative of x(·) has to be understood in the

distributional sense at a jump time t , i.e. a Dirac measure (x(t+) − x(t−))δt . From

a rigorous mathematical point of view, the dynamics in (1.16) has to be rewritten as

an equality of measures. If the state jumps at time t , a continuous variable v(t) is

not sufficient to correctly model the dynamics. A measure di should be considered

such that

di = v(t)dt + σδt (1.21)

with

σδt = (x(t+) − x(t−))δt

= {i(t+) − x(t−) + max[0, x(t−) − i(t+)]}δt . (1.22)

The dynamics (1.16) written as a measure differential equation is

dx = −
R

L
x(t)dt + di, (1.23)

which can be decomposed into a smooth dynamics:

ẋ(t) = −
R

L
x(t) + v(t), (1.24)

almost everywhere, and a jump dynamics at time t :

x(t+) − x(t−) = σ. (1.25)

Physically the voltage across the diode approximates such a Dirac measure and

the current x(t) varies abruptly. Notice that if x(t−) − i(t+) < 0 then σ has a mag-

nitude |σ | = i(t+) − x(t−) > 0, and if x(t−) − i(t+) > 0 then σ has a magnitude

|σ | = 0. In the second case there is logically no state jump. The measure di is a

non negative measure for all t � 0, and it can be checked that the complementarity

condition is respected at the jump times, provided it is written with right-limits:

0 � x(t+) − i(t+) ⊥ di � 0.

Clearly (1.20) may be rewritten as

x(t+) − i(t+) = proj[R+;x(t−) − i(t+)], (1.26)

where proj[K;x] denotes the projection of the vector x on the convex set K , that is

equivalent to:

x(t+) = i(t+) + argminz∈R+

1

2
[z − x(t−) + i(t+)]2. (1.27)

As we shall see later this will be generalized to more complex circuits (see

Sect. 2.4.3.2), and looks like an inelastic impact law in mechanics.

State inequality constraints (also named unilateral constraints) induce state

jumps in circuits. These jumps should obey some physical rule.
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Remark 1.2 There is a slight difference between the scheme in (1.17) and the one

in (1.5), which is fully implicit. However changing the first line of (1.17) to xk+1 =

xk − hR
L
xk+1 + hvk+1 does not influence much the presented results.

In the numerical practice one prefers to use the slack variable σk ≈ di((tk, tk+1])

which corresponds to an impulse over the time interval. This yields the following

scheme:
{

xk+1 = xk − hR
L
xk + σk+1,

0 � wk+1 = xk+1 − ik+1 ⊥ σk+1 � 0.
(1.28)

Inserting the value of xk+1 into the complementarity condition, one obtains:

0 �

(

1 − h
R

L

)

xk − ik+1 + σk+1 ⊥ σk+1 � 0. (1.29)

This choice has to major advantages:

1. The value σk+1 is homogeneous to an impulse. It remains a finite value when

a jump occurs on a time-interval when h vanishes. One does not want to try

to approximate unbounded quantities like a Dirac measure. In fact, it is simply

impossible to numerically approximate a Dirac measure! However it is possible

to approximate the measure of a bounded interval of time by a Dirac measure,

because such a quantity is bounded. This is precisely what is done when one

computes σk = di((tk, tk+1]): this quantity is to be thought of as the measure of

an interval of integration [tk, tk+1) by the Dirac measure di.

2. This permits to obtain an LCP whose “matrix” is equal to 1, not to h. The LCP

is better conditioned. In higher dimensional systems this will be translated into

matrices which do not tend to become singular as h vanishes.

Such arguments are more clearly explained within the framework of measure

differential inclusions, see Sect. 2.5.5 in Chap. 2.

When state jumps occur, the mathematical formulation of the dynamics has

to be adapted. A Measure Differential Equation (MDE) has to be written. The

numerical time-integration should also be adapted taking into account that a

numerical pointwise evaluation of measures is a nonsense.

There is a second issue to be solved, besides possible state jumps (electrical im-

pacts): what happens when the trajectory evolves on the boundary of the admissible

domain {x ∈ R | x − i(t) � 0}, i.e. when x(t) = i(t) on some time interval [a, b),

a < b? Usually a non zero v will be necessary to keep the state on the boundary,

otherwise the unilateral constraint would be violated on the right of t = a, because

the dynamics ẋ = −R
L
x(t) implies that x(t) decreases.

In order to calculate the suitable value for v(t) on [a, b), let us remark that since

x(t) − i(t) = 0 for all t ∈ [a, b) then one must have ẋ(t) − di
dt

(t) � 0 on [a, b).

Moreover the complementarity condition has to be satisfied as well between the
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right-derivative ẋ(t+) and v, for if ẋ(t+) − di
dt

(t) > 0 at some t ∈ [a, b) then x(t) >

i(t) in a right-neighborhood of t (the only assumption needed here is that ẋ(·) and
di
dt

(·) be right-continuous functions). Therefore one can write 0 � ẋ(t+) − di
dt

(t) ⊥

v(t) � 0 on [a, b), which yields:

0 � −
R

L
x(t) + v(t+) −

di

dt
(t) ⊥ v(t+) � 0. (1.30)

This is an LCP with unknown v(t+). In fact since we have assumed that x(t) = i(t)

on [a, b) we are solely interested in studying what happens on the right of t = b.

However (1.30) is true on the whole of [a, b). If −R
L
x(t) − di

dt
< 0 then v(t+) =

R
L
x(t) + di

dt
> 0 on [a, b): the voltage v(t) keeps the trajectory on the boundary of

the admissible domain, in a way quite similar to the contact force in mechanics.

The voltage v(·) across the diode plays the role of a Lagrange multiplier as-

sociated with the constraint w(t) = x(t) − i(t) � 0.

Since we suppose that x(·) and i(·) are continuous functions, we may rewrite

(1.30) at t = b as:

0 � −
R

L
i(b) + v(b+) −

di

dt
(b+) ⊥ v(b+) � 0. (1.31)

One sees that all depends on the values of i(t) and its derivative at t = b. If

−R
L
i(b)− di

dt
(b+) > 0 then v(b+) = 0, while if −R

L
i(b)− di

dt
(b+) � 0 then v(b+) =

R
L
i(b) + di

dt
(b+) � 0. In the first case one obtains after insertion of v(t+) in (1.16):

ẋ(b+) −
di

dt
(b+) = −2

(

R

L
i(b) +

di

dt
(b+)

)

> 0, (1.32)

from which one deduces that the trajectory detaches from the constraint boundary,

in other words x(t) > i(t) in a right neighborhood of t = b. In the second case one

gets:

ẋ(b+) −
di

dt
(b+) = 0, (1.33)

while v(b+) � 0, so that the trajectory stays on the boundary on the right of t = b.

In both cases the complementarity conditions in (1.16) are verified. Obviously once

the trajectory no longer lies on the boundary of the admissible domain, then (1.30)

is no longer valid.

From a numerical point of view, this situation is taken into account by the time-

stepping scheme in (1.17) and also by the time-stepping scheme (1.28) at the im-

pulse level.
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Let us recapitulate the above developments. The circuit in Fig. 1.10 with an

ideal diode, involves unilateral constraints on the state and complementar-

ity conditions between two slack variables w(t) and v(t). These features,

which are closely linked to the modeling approach, imply some peculiarities

of the dynamics: state jumps may occur, and the trajectory may evolve on the

boundary of the admissible domain. In the first case, the dynamics involves

a measure di which contains positive Dirac measures, in the second case the

variable v is a positive function.

Example 1.3 (State jumps simulation) Let us illustrate the above on the following

example (R = L = 1 in (1.16)).
{

ẋ(t) = −x(t) + v(t),

0 � v(t) ⊥ w(t) = x(t) − i(t) � 0,

x(t+) = i(t+) + max[0, x(t−) − i(t+)] at jump times,

(1.34)

where

i(t) =

{

0 for all t ∈ [0,5),

2 for all t ∈ (5,10),

−2 for all t � 10.

Let x(0−) = −2. The analytical solution of (1.34) with this value for the current

source is:

x(t) =

⎧

⎨

⎩

x(0+) = 0, x(t) = 0, v(t) = 0 on t ∈ (0,5),

x(5+) = 2, x(t) = 2, v(t) = 2 on t ∈ [5,10),

x(10+) = 2, x(t) = 2e10−t , v(t) = 0 on t ∈ [10,+∞).

(1.35)

Hence x(·) jumps initially and at t = 5, and on 5 < t � 10 the voltage v(t) keeps

the solution on the boundary x(t) = i(t). Mathematically speaking, the dynamics in

(1.34) at t = 0 has to be written as an equality of measures: (x(0+) − x(0−))δ0 =

2δ0 = σδ0, where the diode voltage is a Dirac measure at t = 0. The same applies

at t = 5. Physically a peak of voltage at the inductor ports implies a peak of voltage

across the diode, by Kirschhoff’s law which holds at state jumps.

Various solutions are simulated with the above implicit Euler method and are

depicted in Figs. 1.11 and 1.12. The numerical method (1.28) computes the values

of σk+1 which is the impulse of the Dirac over (tk, tk+1], and one may recover the

values of vk+1 by dividing by h. This is what is plotted in Fig. 1.12, where one sees

that the smaller h, the higher and more narrow peak. It is nevertheless crucial to keep

in mind at this stage that a numerical method cannot, strictly speaking, guarantee

any kind of convergence of a discrete signal towards a Dirac measure: this is simply

meaningless. Only the convergence of its impulse has a rigorous meaning.

At t = 10 there is no state jump, however the multiplier v(t) possesses a jump

that comes from the complementarity conditions. Figure 1.13 depicts the approxi-

mation of the impulse of v(·) on intervals (tk, tk+1], i.e. the value σk+1. It is apparent

from Fig. 1.13 that the discrete-time signal σk+1 converges at t = 5 as k → +∞ to

the analytical value of the Dirac measure magnitude, equal to 2. Outside t = 5 the
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Fig. 1.11 Solutions of (1.34): the state xk vs. time tk

impulse σk+1 tends to zero as expected. Since v(t) is a function of bounded varia-

tions outside t = 5, we have

σk+1 ≈

∫

(tk,tk+1]

v(t)dt, (1.36)

and

lim
|tk+1−tk |→0

∫

(tk,tk+1]

v(t)dt = 0. (1.37)

Remark 1.4 The fact that we write the interval as (tk, tk+1] may be explained by the

rules for differential measures, see Sect. A.5.

These simulations have been done using the automatic circuit equation formula-

tion module described in Chap. 6 and the software package SICONOS.

Remark 1.5 The implicit Euler method approximates well the current reinitializa-

tion in (1.20) (equivalently in (1.26) or (1.27)). In practice one does not use such

fully implicit algorithms, but so-called θ -methods. One has to be careful with the

discretization with a θ -method because a wrong discretization of the Lagrange mul-

tiplier v(t) may yield absurd results (see Acary and Brogliato 2008, Sect. 1.1.6.2).
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Fig. 1.12 Solutions of (1.34): the multiplier vk vs. time tk

1.1.6 More Examples: Order-Two and Order-Three Circuits

The circuits of the foregoing section have a state vector of dimension 1. Circuits with

dimension 2 and dimension 3 state vector are presented now. First let us consider the

circuits of Figs. 1.14 and 1.15, and let x1(t) be the charge of the capacitors and x2(t)

be the current through the inductors. The variable v(t) may represent either a current

or a voltage, depending on the circuit. Their dynamical equations are summarized

as follows:

(a)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ1(t) = x2(t) − 1
RC

x1(t) − v(t)
R

,

ẋ2(t) = − 1
LC

x1(t) − v(t)
L

,

0 � v(t) ⊥ w(t) = v(t)
R

+ 1
RC

x1(t) − x2(t) � 0,

(1.38)

(b)

⎧

⎪

⎨

⎪

⎩

ẋ1(t) = −x2(t) + v(t),

ẋ2(t) = 1
LC

x1(t),

0 � v(t) ⊥ w(t) = 1
C

x1(t) + Rv(t) � 0.

(1.39)
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Fig. 1.13 Solutions of (1.34): the impulse σk vs. time tk

Fig. 1.14 RLC circuits with an ideal diode

Since R > 0, the circuits of Fig. 1.14 have a single-valued dynamics despite

the diode defines a multivalued voltage/current law.

One sees that in each case (1.38) and (1.39) the complementarity relations define

an LCP with a unique solution whatever the values of x1(t) and x2(t), because
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Fig. 1.15 RLC circuits with an ideal diode

the LCP matrices are equal to 1
R

and R respectively. A similar manipulation as in

Sect. 1.1.2 may be done for these two circuits.

(c)

⎧

⎨

⎩

ẋ1(t) = x2(t),

ẋ2(t) = −R
L
x2(t) − 1

LC
x1(t) −

v(t)
L

,

0 � v(t) ⊥ w(t) = −x2(t) � 0,

(1.40)

(d)

⎧

⎪

⎨

⎪

⎩

ẋ1(t) = x2(t) − 1
RC

x1(t),

ẋ2(t) = − 1
LC

x1(t) − v(t)
L

,

0 � v(t) ⊥ w(t) = −x2(t) � 0.

(1.41)

One may replace the ideal diode by a Zener diode, in which case the dynamical

structure is the same, except that the complementarity conditions are replaced by

v(t) ∈ Fz(w(t)), where Fz(·) is a multivalued mapping. More generally, one may

introduce any nonsmooth electronic device with piecewise-linear voltage/current

law into the dynamics, keeping the same system’s structure. More will be said on

the circuit (1.41) in Sect. 2.5.10.

Let us now consider the circuit in Fig. 1.16 which contains a Zener and an ideal

diodes, with the conventions of Figs. 1.8 and 1.3. Its dynamics is given by:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1(t) = x2(t),

ẋ2(t) = − 1
L1C

x1(t) −
R1+R3

L1
x2(t) + R1

L1
x3(t) − 1

L1
v1(t) − 1

L1
v2(t),

ẋ3(t) = R1
L2

x2(t) − R1+R2
L2

x3(t) + 1
L2

v1(t) − 1
L2

u(t),

v1(t) ∈ Fz(x2(t) − x3(t)),

0 � v2(t) ⊥ x2(t) � 0,

(1.42)

where u(t) is a voltage source, x1(t) is the charge of the capacitor, i.e. x1(t) =
∫ t

0 x2(s)ds, x2(t) is the current through the diode, x3(t) is the current through the

inductor L2, v1(t) is the Zener diode voltage and v2(t) is the ideal diode voltage.

This is an order three dynamical system, where the multivalued part is due to the

Zener and the ideal diodes characteristics.

Remark 1.6 When analysing the circuit in (1.16) we have seen that state jumps are

necessary to enable one to integrate the dynamics over [0,+∞). The jumps obey
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Fig. 1.16 A circuit with Zener and ideal diodes

the rule in (1.20). A similar behaviour can be observed on the circuits (1.40), (1.41)

and (1.42). Indeed the nonsmooth constraints in these circuits involve unilateral

constraints on the state. If the initial data in (1.40) and (1.41) is such that x2(0
−) > 0

(respectively < 0 in (1.42)) then an initial jump is needed to bring x2(0
+) to a non

positive value (respectively non negative in (1.42)). See Sect. 2.4.3.2 for details on

state jump rules for electrical circuits (electrical impacts).

The implicit Euler discretization of (1.42) proceeds exactly as in the above cases.

Let us write (1.42) compactly as
{

ẋ(t) = Ax(t) − Bv(t) + Eu(t),

v(t) ∈ F (w(t)),
(1.43)

where

v(t) = (v1(t) v2(t))
T , w(t) =

(

x2(t) − x3(t)

x2(t)

)

= Cx(t), (1.44)

and the matrices A, B , C, E are easily identified.2 One obtains:
⎧

⎨

⎩

xk+1 = (I3 − hA)−1[xk − hBvk+1 + hEuk+1],

wk+1 = Cxk+1,

vk+1 ∈ F (wk+1),

(1.45)

2See Chap. 2 and (2.23) for details on how to obtain the multivalued mapping F (·) from the

nonsmooth part of (1.42).
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Fig. 1.17 A circuit with an ideal switch

where I3 is the 3×3 identity matrix. Similarly to (1.6), (1.10), (1.15) and (1.18), the

problem in (1.45) is a Onestep NonSmooth Problem (OSNSP) to be solved at each

step. A fundamental property of the OSNSP is the uniqueness of solutions xk+1

at step k. For the time-being we shall admit that the OSNSP (1.45) has a unique

solution for any data at step k. The proof will require some convex analysis and is

therefore postponed to Sect. 2.5.12 of Chap. 2.

1.1.7 A Circuit with an Ideal Switch

The circuits that are introduced in the foregoing sections, all include some non-

smooth electronic device that implies some kind of switches in the dynamics. Not

all switches are equivalent, however. This section is dedicated to present a novel

kind of switch that is widely spread in electronics.

Let us now consider the circuit of Fig. 1.17, that is composed of an inductor, a

resistor, a capacitor and a switch whose voltage/current law is given by:

u(t) =

{

Roni(t) if uc(t) > 0,

Roffi(t) if uc(t) < 0,
(1.46)

where i(t) is the current through the capacitor, and uc(t) is the voltage signal that

triggers the switch. The ideal switch corresponds to Ron = 0 and Roff = +∞. Let

x1(t) =
∫ t

0 i(s)ds be the charge of the capacitor, and x2(t) be the current through

the inductor. It is noteworthy that the switch model in (1.46) is a nonsmooth model.

Indeed the switch induces a jump in the variable u(t) when uc(t) changes its sign

at time t , and the jump is equal to |(Ron − Roff)i(t)|. In the framework of this book,

we shall naturally embed the switching law in (1.46) into a multivalued model of

the form u(t) ∈ Fs(x1(t), x2(t), uc(t)). It will be seen below why this is in fact a

necessary step. The dynamical equations are:
⎧

⎪

⎨

⎪

⎩

ẋ1(t) = −1
RC

x1(t) + x2(t) −
u(t)
R

,

ẋ2(t) = −1
LC

x1(t) −
u(t)
L

,

u(t) ∈ Fs(i(t), uc(t)).

(1.47)
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The multifunction Fs(i(t), uc(t)) may be represented by a set of complemen-

tarity relations given in (4.40). Inserting (1.46) into (1.47) we obtain the following

piecewise-linear dynamical system:

(Σon)

{

ẋ1(t) = −1
(R+Ron)RC

x1(t) + R
R+Ron

x2(t)

ẋ2(t) = −( 1
LC

+ Ron

(R+Ron)LC
)x1(t) − RonR

L(R+Ron)
x2(t)

if uc(t) > 0,

(Σoff)

{

ẋ1(t) = −1
(R+Roff)RC

x1(t) + R
R+Roff

x2(t)

ẋ2(t) = −( 1
LC

+ Roff

(R+Roff)LC
)x1(t) + RoffR

L(R+Roff)
x2(t)

if uc(t) < 0.

(1.48)

For the time-being the switching condition is of the exogenous type since uc(·)

is a function of time. However uc(·) may be equal to a function of the state (x1, x2)

in which case the switches are state-dependent. From the point of view of the math-

ematical analysis of the dynamical system, this is quite important because state-

dependent switches are more difficult. In view of (1.48) the multivalued function

Fs(·) is given by:

u(t) ∈

⎧

⎪

⎨

⎪

⎩

Ron(
−1

(R+Ron)RC
x1(t) + R

R+Ron
x2(t)) if uc(t) > 0,

[um(t), uM (t)] if uc(t) = 0,

Roff(
−1

(R+Roff)RC
x1(t) + R

R+Roff
x2(t)) if uc(t) < 0,

(1.49)

with um = min[a, b] and uM = max[a, b], where

a = Ron

(

−1

(R + Ron)RC
x1(t) +

R

R + Ron

x2(t)

)

,

and

b = Roff

(

−1

(R + Roff)RC
x1(t) +

R

R + Roff

x2(t)

)

.

In the numerical practice one often chooses Ron ≪ 1 and Roff ≫ 1. The limit case

of an ideal switch is when Ron = 0 and Roff = +∞. Then the dynamics in (1.48)

becomes:

(Σon)

{

ẋ1(t) = −1
RC

x1(t) + x2(t)

ẋ2(t) = −1
LC

x1(t)
if uc(t) > 0,

(Σoff)

{

ẋ1(t) = 0

ẋ2(t) = −( 1
LC

+ 1
RC

)x1(t) + x2(t)
if uc(t) < 0.

(1.50)

The value of the state variable x1(·) in (Σoff) is given by its value just before the

switch between (Σon) and (Σoff) occurs. It appears clearly from both (1.48) and

(1.50) that there is a jump in the vector field of this circuit. We are therefore fac-

ing a dynamical system whose dynamics belongs to discontinuous piecewise-linear

systems, written as:

ẋ(t) =

{

A1x(t) if uc(t) > 0,

A2x(t) if uc(t) < 0,
(1.51)
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or, if some state feedback is introduced in the switching conditions:

ẋ(t) =

{

A1x(t) if x(t) ∈ χ1,

A2x(t) if x(t) ∈ χ2,
(1.52)

where χ1 and χ2 are disjoint subsets of R
2 which may be assumed to cover R

2, i.e.

χ1 ∪ χ2 = R
2. The matrices A1 and A2 are easily identifiable. Precisely, one has to

know how the system is defined on the boundary between χ1 and χ2, since the right-

hand-side of the system is discontinuous on this boundary. This is especially crucial

if the boundary defines an attractive surface: the two vector fields point outside their

respective domains of application when the state attains the boundary surface S12

between χ1 and χ2. One has to define what is the dynamics on S12. Usually one

resorts to the theory of Filippov’s differential inclusions, see Chap. 2, Sect. 2.4.4.

Let us come back to another type of switching circuit, for instance circuit (b) of

Fig. 1.14, whose dynamics is in (1.39):
⎧

⎨

⎩

ẋ1(t) = −x2(t) + v(t),

ẋ2(t) = 1
LC

x1(t),

0 � v(t) ⊥ w(t) = 1
C

x1(t) + Rv(t) � 0.

(1.53)

The nonsmooth part of (1.53) is the LCP 0 � v(t) ⊥ w(t) = 1
C

x1(t)+Rv(t) � 0,

whose solution v(t) may be found by inspection:

v(t) = max

[

0,
−1

RC
x1(t)

]

. (1.54)

The max(·) function is not differentiable at zero, however it is continuous every-

where. This means that the dynamics in (1.53), which we rewrite as:
{

ẋ1(t) = −x2(t) + max[0, −1
RC

x1(t)],

ẋ2(t) = 1
LC

x1(t),
(1.55)

has a piecewise-linear continuous right-hand-side. The switching surface is given

by x1 = 0, and the dynamics is perfectly defined on it. The dynamics of the circuit

(b) of Fig. 1.14 is an ordinary differential equation.

The two circuits in (1.48) and (1.53) belong to the class of piecewise-linear

dynamical systems. However, a major discrepancy between them is that (1.48)

has a discontinuous right-hand-side, whereas the right-hand-side of (1.53) is

continuous. Mathematically, the first one will be embedded into differential

inclusions, while the second one is an ordinary differential equation.

It is a general fact that one always has to be careful when a switching occurs in a

dynamical system. The underlying mathematical structure of the system depends on

the switching rules. The circuits of Figs. 1.14(b) and 1.17 possess different switch-

ing rules, and they are of a different mathematical nature.
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Fig. 1.18 Circuits as

feedback systems

1.2 A Unified Dynamical Framework: Lur’e Dynamical Systems

All the above nonsmooth circuits with no external excitation may be recast into the

general framework of Fig. 1.18, that is made of a smooth part in negative feedback

with a multivalued part (called in the Systems and Control community a Lur’e sys-

tem, that is a widely used formalism to study the so-called absolute stability). The

same applies for the discretized systems as depicted in Fig. 1.19 (see e.g. (1.45)). It

is noteworthy that the bouncing ball can also be interpreted this way, see Fig. 2.26.

The interest of this interconnection is that if the linear part is dissipative with supply

rate 〈v(t),w(t)〉 and if the multivalued part is maximal monotone, then the overall

dynamical system is well-posed and stable.

Consider as an example (1.40). The linear part of the interconnection is:
{

ẋ1(t) = x2(t),

ẋ2(t) = −R
L
x2(t) − 1

L
x1(t) + 1

L
(−v(t)).

(1.56)

The multivalued nonsmooth part is:

0 � v(t) ⊥ w(t) = −x2(t) � 0. (1.57)

For the discretized case see for instance (1.17). See also Remark 2.79.

The feedback branch contains a static multivalued operator v(t) ∈ F (w(t))

where w(t) may take various values depending on the circuit. For instance in (1.7)

one has w(t) = −x(t), and in (1.11) one has w(t) =
−x(t)
RC

+
u(t)
R

−
v(t)
R

. The mul-

tivalued mapping w(t) �→ v(t) for the systems in (1.16) and (1.3) is given by the

complementarity conditions 0 � v(t) ⊥ w(t) � 0. As pointed out above this de-

fines a multivalued mapping since v(t) may take any non negative value when

w(t) = 0. We shall see in Chap. 2 that the complementarity mapping can be ex-

pressed as an inclusion as well for some multivalued mapping F (·). It follows from

these simple examples that the variable w(t) possesses the generic form w(t) =

Cx(t) + Dv(t) + Fu(t) for suitable matrices C, D, F . The linear system block is

easily identified in the examples, and takes the form ẋ(t) = Ax(t) + Bv(t) + Eu(t)

for suitable matrices A, B , E. It is noteworthy that this dynamical framework, that is
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Fig. 1.19 Discretized

circuits as feedback systems

Fig. 1.20 A piecewise-

nonlinear DIAC model

(Diode for Alternative

Current)

part of what we shall call later the nonsmooth dynamics systems (NSDS) approach,

allows for nonlinear electronic devices (for instance, nonlinear resistors, capacitors

and inductors, or nonlinear nonsmooth devices like the DIAC in Fig. 1.20).

The discrete-time system is advanced from step k to step k + 1 by solving a

OSNSP that is given by the feedback branch in Fig. 1.19.

1.3 An Aside on Nonsmooth Mechanics: The Bouncing Ball

The analogies between mechanics and electricity are well-known. We will not in this

book provide an exhaustive presentation of all possible analogies between electrical

circuits and mechanical systems on the one hand, and between electronic devices

and mechanical components on the other hand. It is however interesting to point out

some discrepancies and some analogies between circuits and mechanical systems
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Fig. 1.21 The bouncing-ball

through a simple example: the bouncing ball. The dynamics of the bouncing ball

that is represented in Fig. 1.21 may be written as follows:

{

mq̈(t) + mg + u(t) = λ(t),

0 � λ(t) ⊥ w(t) = q(t) � 0,

q̇(t+) = −eq̇(t−) if q(t) = 0 and q̇(t−) � 0.

(1.58)

The first two lines represent the dynamics outside the impact times, i.e. either

when the ball is not in contact with the ground q(t) > 0, or when it is in persistent

contact with the ground, i.e. q(t) = 0 on some interval [t1, t2], t2 > t1. The third line

is an impact law, which reinitializes the ball’s velocity according to a restitution rule

known as Newton’s restitution law. The physical parameter e ∈ [0,1] is the resti-

tution coefficient. The reader is referred to Acary and Brogliato (2008) for more

details on the bouncing ball’s dynamics. The dynamics in (1.58) is quite similar

to the dynamics in (1.40) and (1.41), or in (1.34). There is, however, an impor-

tant discrepancy. In the electrical circuits, the state jumps have two origins: either

a “bad” initial value which does not respect the unilateral constraint, or a discon-

tinuous exogenous excitation (like i(t)) in (1.34). In the bouncing ball the velocity

jumps originate from a more intrinsic reason: if the conditions of the third line of

(1.58) are satisfied at some t , then there is no function λ(t) which may keep the set

{q ∈ R | q � 0} invariant. A Dirac measure that produces a velocity sign reversal is

necessary. This is in fact due to a higher relative degree between w(·) and λ(·). In

the case of the above circuits the relative degree is equal to one, but for (1.58) it is

equal to 2, since one needs to differentiate w(·) twice to recover λ.3 See also Re-

mark 2.82 for an explanation on the fundamental difference between the bouncing

ball and circuits with a relative degree equal to one.

On a time interval [t1, t2], t2 > t1 where q(t) = 0, one may compute λ(t) us-

ing a reasoning similar to what we did for the circuit in (1.16). The fact that

q(t) = q̇(t) = 0 on [t1, t2] and 0 � λ(t) ⊥ w(t) = q(t) � 0 implies, under the right-

continuity of the acceleration q̈(·), that 0 � λ(t) ⊥ q̈(t) � 0. Indeed if q̈(t) < 0

3In a system ẋ(t) = Ax(t) + Bλ(t), w(t) = Cx(t) + Dλ(t), with λ(t) ∈ R, w(t) ∈ R, the relative

degree r is the integer � 0 such that r = 0 if D �= 0, r � 1 if D = 0 and CAi−1B = 0 for all i < r ,

while CAr−1B �= 0.
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for some t ∈ [t1, t2] then q̇(·) and q(·) both become negative on the right of t (see

Proposition 7.1.1 in Glocker 2001), which is not permitted. On the other hand if

q̈(t) > 0 then they both become positive on the right of t , so that the orthogonality

has to be satisfied between the acceleration and the contact force. Then replacing

the acceleration by its value one obtains

0 � λ(t) ⊥
1

m
λ(t) − g −

1

m
u(t) � 0, (1.59)

which is an LCP with unknown λ(t), and which possesses a unique solution what-

ever u(t) (see Theorem 2.43 in the next chapter). This solution, when inserted back

into the dynamics, determines the sign of the acceleration and whether or not the

contact is kept or lost.

It will be shown in the next chapter, particularly in Sect. 2.5.13, that the bouncing

ball dynamics also lends itself to an interconnection as in Fig. 1.18.

1.4 Conclusions

Several simple circuits and a simple mechanical system have been analysed in the

previous sections. They can all be embedded into the class of differential inclusions

ẋ(t) ∈ G(x(t), t) (1.60)

where G : R
n × R

+ → R
n is some multivalued mapping. The circuits of Figs. 1.10,

1.4, 1.14 and 1.15, can be embedded into the class of linear complementarity sys-

tems:
{

ẋ(t) = Ax(t) + Bv(t) + Eu(t),

0 � v(t) ⊥ w(t) = Cx(t) + Dv(t) + Fu(t) � 0,

State jump law,

(1.61)

where x(t) ∈ R
n, v(t) ∈ R

m, u(t) ∈ R
l , and the matrices have suitable dimensions.4

The reader will easily identify the matrices for each circuit. The major discrepancy

between (1.16) and (1.3) is that in the former D = 0, while in the latter D = 1
R

> 0.

In terms of relative degree between the “input” λ and the “output” w, the systems in

(1.40) and (1.41) have a relative degree r = 1 while the systems in (1.3), (1.38) and

(1.39) have a relative degree r = 0. The relative degree is taken here in the sense

of Systems and Control Theory, i.e. it is equal to the number of times one needs to

differentiate the “output” so that the “input” appears explicitly. The bouncing ball

system has a relative degree r = 2. It is clear from these worked examples that r has

a strong influence on the nature of the solutions of the circuits: roughly speaking,

when r = 0 solutions are continuous, and for r � 1 solutions may contain the Dirac

measure and its derivatives up to the order r − 1, see Acary et al. (2008).

4Usually one writes λ instead of v, since this slack variable has the mathematical meaning of a

Lagrange multiplier.
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As we shall see in Chap. 2, close links exist between complementarity conditions

and inclusions into normal cones to convex sets. This means that we will be able,

under certain conditions, to interpret systems like (1.61) as differential inclusions

whose multivalued (or set-valued) part is a normal cone to a convex set. The advan-

tages for doing so are that some developments made in this section, will become

extremely clear in the framework of differential inclusions. However a prerequisite

is some understanding of basic convex analysis. The Zener diode circuit will be

embedded into another type of differential inclusions, called Filippov’s differential

inclusions.

One important feature of the modeling approach and of the associated nu-

merical method which are presented in this chapter through simple examples,

is that one does not consider, when studying switching circuits, topological

changes of the circuit depending on the switches status (open or closed). There

is a single state vector that remains unchanged whatever the system’s config-

uration.

It is noteworthy that this is independent on the type of numerical method (time-

stepping or event-driven algorithms), despite we shall deal only with time-stepping

methods in this book.

1.5 Historical Summary

The following material does not pretend to be exhaustive. It only aims at pro-

viding the reader with some rough information on the history of nonsmooth cir-

cuit theory. Modeling electrical circuits devices with piecewise-linear, nonsmooth

components started some decades ago. It may be traced back in the early sev-

enties with some works on piecewise-linear resistive networks (Fujisawa et al.

1972). Chua and his co-workers (Kang and Chua 1978; Chua and Ying 1983;

Chua and Dang 1985) introduced some canonical form representations of continu-

ous piecewise-linear functions and applied it to resistive circuits. More recent works

in this spirit may be found in Wen et al. (2005), Parodi et al. (2005), Yamamura and

Machida (2008), Repetto et al. (2006), and Carbone and Palma (2006). A compar-

ative study between various approaches is made in Kevenaar and Leenaerts (1992).

These approaches do not consider multivalued characteristics, nor unilateral effects.

In other words, in case of planar characteristics, there are no vertical branches.

Switched-capacitor networks have been studied by various authors (Vlach et al.

1984, 1995; Huang and Liu 2009; Bedrosian and Vlach 1992; Vlach and Opal 1997;

Zhu and Vlach 1995). The fact that there may exist “electrical impacts” due to

inconsistent initial data, and that suitable numerical techniques should be found

to cope with such issues, is pointed out in Vlach et al. (1995) and Vlach and

Opal (1997). Complementarity was introduced for the modeling and the analysis of



1.5 Historical Summary 31

piecewise-linear circuits in Stevens and Lin (1981), van Bokhoven and Jess (1978),

van Bokhoven (1981), and van Eijndhoven (1984). Later on van Stiphout (1990),

Vandenberghe et al. (1989), and Leenaerts (1999) analyzed piecewise-linear circuits

with the complementarity approach. See the book of Leenaerts and Van Bokhoven

(1998) for a good account to all these works. In particular Leenaerts (1999) intro-

duces the backward Euler method for linear complementarity systems. More re-

cently one may find several studies of nonsmooth circuits (i.e. circuits with non-

smooth devices) that significantly improve and enlarge the scope of the previous

works. The analysis (well-posedness, stability, and numerical analysis) of linear

complementarity systems, which model linear circuits with ideal diodes, transistors,

switches, power converters, and of relay systems, has been investigated in Camli-

bel et al. (2002a, 2002b), Heemels et al. (2000, 2001), Camlibel (2001), Enge and

Maisser (2005), Vasca et al. (2009), and Batlle et al. (2005). In particular back-

ward Euler time-stepping methods as introduced in Leenaerts (1999) have been

studied for linear complementarity systems in Camlibel et al. (2002a) with con-

vergence results. There is a strong analogy between such implicit Euler scheme and

Moreau’s catching up algorithm that was designed for sweeping processes of order

one and two, see Acary and Brogliato (2008, §1.4.3.5). The first convergence proofs

for Moreau’s catching up algorithm are due to Monteiro Marques in the eighties

and may be found in the book of Monteiro Marques (1993). See also Heemels and

Brogliato (2003) and Brogliato (2003) for surveys on complementarity systems. In-

teresting works dealing with the analogy between nonsmooth mechanical devices

and nonsmooth electrical devices may be found in Glocker (2005) and Moeller and

Glocker (2007). In Glocker (2005) a numerical time-stepping scheme is proposed

that is quite close to the time-stepping methods analyzed in this book. The buck

DC-DC converter is modeled in Glocker (2005) as a Lagrangian system with inertia

matrix the matrix of the inductances, where the state variables are the generalized

charges and currents in the fundamental loops, and in Moeller and Glocker (2007)

as a Lagrangian system with inertia matrix the matrix of the capacitances, where

the state variables are the nodal fluxes and voltages. This shows that in the nons-

mooth framework also there is a strong analogy between mechanical and electrical

systems. Other works may be found in Yuan and Opal (2003), Chung and Ioinovici

(1994), Opal (1996), De Kelper et al. (2002), and Liu et al. (1993), that witness the

intense activity in this field. The analysis of circuits with multivalued nonsmooth

devices, using variational inequalities and Moreau’s superpotentials, is proposed in

Addi et al. (2007, 2010), Goeleven (2008), Goeleven and Brogliato (2004), and

Brogliato and Goeleven (2005). The interpretation and the analysis of nonsmooth

circuits as the negative feedback interconnection of passive and multivalued mono-

tone operators (Lur’e systems) has been done in Brogliato (2004), Brogliato et al.

(2007), and Brogliato and Goeleven (2010). The extension of all previous works

to the case where the solutions may contain not only Dirac measures, but deriva-

tives of the Dirac (which are Schwarz’s distributions) was considered in Acary et al.

(2008), where the modeling, well-posedness and numerical analysis is presented for

such distribution differential inclusions. This may find applications in electrical cir-

cuits when some feedback controllers that augment the relative degree between the

complementarity variables, is applied.
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The issue of numerical simulation and its corollary, i.e. the development of soft-

ware packages, has been also a very active field during the past twenty years. It

has been noticed many times that simulators of the SPICE family are not suitable

for the simulation of circuits whose solutions are not smooth enough (Maffez-

zoni et al. 2006; Wang et al. 2009; Mayaram et al. 2000; Maksimovic et al. 2001;

Valsa and Vlach 1995; Biolek and Dobes 2007; Lukl et al. 2006). This has mo-

tivated the development of many simulators for such analog nonsmooth circuits

(SCISIP: Lukl et al. 2006, SWANN: Valsa and Vlach 1995, WATSCAD: Bliss et al.

1992, CPPSIM
5), most of them being old and no longer maintained, or dedicated

to a very narrow class of switched systems. Commercial software packages for the

simulation of analog, switched circuits are also numerous. Among them we may cite

those of the SPICE family: NGSPICE (http://ngspice.sourceforge.net/), ELDO (from

Mentor Graphics), SMASH (from Dolphin), VIRTUOSO SPECTRE (from Cadence),

SABER (from Synopsis). Other packages based on hybrid simulators are PLECS

(from Plexim), PSIM (from Powersys). It is also worth citing the package LMGC90

that has been developed in Montpellier (France).6 Despite LMGC90 is dedicated to

the simulation of granular matter (and is therefore far from circuits applications), it

is based on the NSDS approach with Moreau-Jean’s time-stepping algorithm. Com-

parisons between the results obtained with the INRIA platform SICONOS and some

of these tools are presented later in this book.

This quite short summary proves that the field of modeling, analysis and simula-

tion of nonsmooth circuits has been and is still a very active field of research.

5http://www.cppsim.com/index.html.

6http://www.lmgc.univ-montp2.fr/~dubois/LMGC90/index.html.

http://ngspice.sourceforge.net/
http://www.cppsim.com/index.html
http://www.lmgc.univ-montp2.fr/~dubois/LMGC90/index.html


Chapter 2

Mathematical Background

This chapter is devoted to present the mathematical tools which are used in this book

to analyze the nonsmooth circuits and their time-discretizations. This chapter does

not aim at being exhaustive. The unique objective is that the book be sufficiently

self-contained and that all the mathematical notions which are the foundations of the

nonsmooth dynamical systems that are presented, be easily available to the readers

who are not familiar with such tools. For this reason the results are given without

proofs. After a brief recall of some basic tools, we come back to the circuits of

Chap. 1 and rewrite their dynamics using new mathematical frameworks. Many of

the tools which are presented in this chapter, will be used, or presented in an other

way in Chap. 4.

2.1 Basics from Convex and Nonsmooth Analysis

In this section one recalls some definitions and properties that are associated with

convex sets and functions, their subdifferentiation, and multifunctions (or set-valued

functions). Classical and introductory references are Hiriart-Urruty and Lemaréchal

(2001) and Rockafellar (1970) for convex analysis, Smirnov (2002) for multivalued

functions, Facchinei and Pang (2003) and Murty (1988) for variational inequalities

and complementarity problems.

2.1.1 Convex Sets and Functions

2.1.1.1 Definitions and Properties

Definition 2.1 (Convex sets) A subset C of R
n is said convex if (1 − λ)x + λy ∈ C

whenever x ∈ C and y ∈ C and λ ∈ (0,1).

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits,

Lecture Notes in Electrical Engineering 69,

DOI 10.1007/978-90-481-9681-4_2, © Springer Science+Business Media B.V. 2011
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Fig. 2.1 Planar convex and non-convex sets

As a consequence C is convex if and only if it contains all the convex combina-

tions of its elements. Examples of planar convex and non-convex sets are depicted

in Fig. 2.1.

Definition 2.2 (Cones) A subset C of R
n is called a cone if it is closed under posi-

tive scalar multiplication, i.e. λx ∈ C when x ∈ C and λ > 0.

Examples of convex and non-convex cones in three dimensions are depicted in

Fig. 2.2. The sets in Fig. 2.1(c) and (h) are non-convex cones. The set in Fig. 2.1(g)

is a convex cone. When a cone C is closed, then necessarily 0 ∈ C. The set of

solutions to Ax � 0 where A is a constant matrix, is a polyhedral convex cone.

Definition 2.3 (Polar cones) Let C ⊆ R
n be a non empty convex cone. The polar of

C is the set

C◦ = {s ∈ R
n | 〈s, x〉 � 0 for all x ∈ C}. (2.1)

Examples of cones and their polar cone are depicted in Fig. 2.3. Polarity may

be seen as a generalization, in a unilateral way, of orthogonality. Hence, if C is

a subspace then C◦ is its orthogonal subspace. The polar cone obtained from C

depends on the scalar product that is used in the definition: changing the scalar
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Fig. 2.2 Convex and non-convex cones

Fig. 2.3 Convex cones and

their polar cones

product changes C◦. When C is a non empty closed convex cone, then C◦ is also

a non empty closed convex cone, and C◦◦ = C (i.e. the polar of the polar is the

original cone).

Many authors rather speak of conjugate or dual cones, which are defined as C∗ =
{s ∈ R

n | 〈s, x〉 � 0 for all x ∈ C}. Therefore C◦ = −C∗. The polar cone to R
n
+ is

R
n
−, whereas its dual cone is simply itself.
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Remark 2.4 Given a non empty set C, not necessarily convex, one may define also

its dual cone as the set C∗ = {s ∈ R
n | sT y � 0 for all y ∈ C}. This is indeed a cone

as can be checked.

An interesting result is the next one:

Proposition 2.5 Let Ci , 1 � i � m, be non empty convex cones of R
n. Then

(
∑m

i=1 Ci)
◦ = C◦

1 ∩ C◦
2 ∩ · · · ∩ C◦

m.

Obviously this also holds for dual cones.

Definition 2.6 (Convex functions) Let C be a non empty convex set in R
n. A func-

tion f : C → R is said convex on C when, for all pairs (x, y) ∈ C × C and all

λ ∈ (0,1), it holds that:

f (λx + (1 − λ)y) � λf (x) + (1 − λ)f (y).

If this holds with strict inequality then the function is said strictly convex. If f (·)
is not identically +∞ it is named a proper function.

The sum of two convex functions is again convex. The composition of a con-

vex function f : R
n → R with a linear mapping A : R

m → R
n, denoted as

(f ◦ A)(·) = f (A(·)), is again convex. The domain of a function f (·) is defined

as dom(f ) = {x ∈ R
n|f (x) < +∞}, so a proper function has dom(f ) �= ∅. Convex

functions may have a bounded domain. For instance the indicator function of a con-

vex set C, defined as ψC(x) = 0 if x ∈ C, ψC(x) = +∞ if x /∈ C, takes the value

+∞ everywhere outside the set C. Thus dom(ψC) = C. It is nevertheless a convex

function, and C ⊆ R
n is a convex set if and only if ψC(·) is a convex function. In-

dicator functions have been introduced by J.J. Moreau in the context of unilaterally

constrained mechanical systems. They may be interpreted as a nonsmooth potential

function associated with the contact forces, when frictionless unilateral constraints

are considered.

Differentiable convex functions, i.e. the functions f (·) which possess a gradient

∇f (x) at all x ∈ R
n, enjoy the following properties.

Proposition 2.7 Let f : U → R be a function of class C1, with U ⊂ R
n an open

set, and let C ⊆ U be a convex subset of U . Then f (·) is convex on C if and only if

f (y) � f (x) + 〈∇f (x), y − x〉 for all x and y in C.

We will see that this is generalized when f (·) fails to be C1 but is only subdif-

ferentiable. When the function is at least twice differentiable, it can be also charac-

terized from its Hessian matrix.

Proposition 2.8 Let f : U → R be a function of class C2, with U ⊂ R
n an open

convex set. Then f (·) is convex on U if and only if its Hessian matrix ∇2f (x) is

semi-positive definite for all x ∈ U , i.e. 〈∇2f (x)y, y〉 � 0 for all y ∈ R
n.
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However many convex functions are not differentiable everywhere (most of

them, in fact). A first example is the above indicator function of a set C. The sim-

plest example is the absolute value function f : R → R, x �→ |x|, which is not

differentiable in the usual sense at x = 0. We will see later that it is nevertheless

subdifferentiable at x = 0: the usual derivative (the slope) is replaced by a set of

derivatives (called the subgradients). The usual result that a convex function has a

minimum at x if and only if its derivative is zero at x, extends to subdifferentiable

convex functions.

Definition 2.9 (Conjugate functions) Let f : R
n → R ∪ {+∞} be a proper convex

function. The conjugate of f (·) is the function f ∗(·) defined by:

R
n ∋ y �→ f ∗(y) = sup

x∈dom(f )

{〈y, x〉 − f (x)}. (2.2)

The mapping f �→ f ∗ is called the Legendre-Fenchel transform, or the conjugacy

operation.

As we shall see below, the conjugacy operation is useful when one wants to invert

the graph of a certain multifunction (see all definitions below) that may represent the

characteristic of some electronic device. Representing the (current, voltage) charac-

teristic or the (voltage, current) characteristic amounts then to invert a graph and

this is done through the Legendre-Fenchel transform.

Theorem 2.10 (Fenchel-Moreau) Assume that f (·) is convex, proper and lower

semi-continuous. Then f ∗∗(·) = f (·).

Applying twice the conjugacy operation yields the original function.

Example 2.11 Let us compute the conjugate function g(y) = f ∗(y) of the absolute

value function f (x) = |x|. We get:

g(y) = sup
x∈R

(〈x, y〉 − |x|). (2.3)

If x > 0 then g(y) = supx∈R x(y − 1). So if y > 1 one obtains g(y) = +∞, and if

y � 1 one obtains g(y) = 0. If x < 0 then g(y) = supx∈R x(y +1). So if y � −1 one

obtains g(y) = 0, and if y < −1 one obtains g(y) = +∞. If x = 0 clearly g(y) = 0.

We deduce that g(y) = ψ[−1,1](y), the indicator function of the interval [−1,1]. By

the Fenchel-Moreau theorem, it follows that g∗(x) = f ∗∗(x) = |x|. More generally

the conjugate of f : R
n → R, x �→ ‖x‖ is the indicator function of the unit ball

of R
n. The above calculations can be easily generalized by varying the slopes of the

absolute value function. Take f : R → R, x �→ ax if x � 0, x �→ bx if x � 0. Then

f ∗(y) = ψ[a,b](y).

Example 2.12 Let C be a closed non empty convex cone, and C◦ its polar cone.

Then the indicator function of C, ψC(·), is the conjugate to the indicator function of

C◦, i.e. ψ∗
C(·) = ψC◦(·).



38 2 Mathematical Background

Fig. 2.4 Epigraph of the

absolute value function

Fig. 2.5 Epigraph of the

indicator of C

Let us now introduce a notion that is useful to characterize the convexity of a

function, and which also permits to link convex functions and convex sets.

Definition 2.13 (Epigraph of a function) Let f : R
n → R ∪ {+∞} be a proper

function (not necessarily convex). The epigraph of f (·) is the non empty set:

epi(f ) = {(x, η) ∈ R
n × R | η � f (x)}.

Notice that η is taken in R so it does not take the infinite value. In particular

a function is convex if and only if its epigraph is convex. This may even be taken

as a definition of convex functions. The epigraph of the absolute value function

is depicted in Fig. 2.4. This is a convex cone of the plane, defined as epi(|x|) =
{(x, η) ∈ R × R | η � |x|} ⊂ R

2. Consider now the set C = {x ∈ R
2 | (x1 − a)2 +

(x2 − b)2 � r2} that is a closed disk with radius r centered at (a, b). The epigraph

of its indicator function ψC(·) is depicted in Fig. 2.5: epi(ψC) = {(x, η) ∈ C × R |
η � 0}. This is a half cylinder pointing outwards the plane (x1, x2).
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Fig. 2.6 Lower and upper

semi-continuous functions

Remark 2.14 Convex functions can be identified with their epigraph. Convex sets

can be identified with their indicator function. This permits to pass from functions

to sets, i.e. from analysis to geometry.

Before introducing the next notion, let us recall that the notation lim inf means

the lower limit. Given a subset S ⊆ R
n, l = lim infy→x f (x) for x ∈ clS means

that:1 for all ǫ > 0, there exists a neighborhood N(x) such that f (y) � l − ǫ for all

y ∈ N(x), and in any neighborhood N(x), there is y ∈ N(x) such that f (x) � l + ǫ.

Definition 2.15 (Lower and upper semi-continuity) Let f : S ⊆ R
n → R, and let

x ∈ S. Then f (·) is lower semi-continuous at x if f (x) � lim infy→x f (y). It is

upper semi-continuous at x if f (x) � lim supy→x f (y).

A function is both lower and upper semi-continuous at x if and only if it is con-

tinuous at x. There is a local version of lower and upper semi-continuity at a point

x, which states that the property holds in a small ball centered at x. An example

of a locally lower and upper semi-continuous function is depicted in Fig. 2.6. The

function f (·) is locally lower semi-continuous at x2 and x3. It is locally upper semi-

continuous at x0 and x1. It is neither lower nor upper semi-continuous at x4. Lower

semi-continuous functions have a closed epigraph. Lower semi-continuity is an im-

portant property for the existence of a minimum of a function.

Remark 2.16 For the time being we dealt only with single-valued functions, i.e.

functions that assign to each x ∈ R
n a singleton {f (x)}. There exists a notion of

upper semi-continuity for multivalued functions (see below for a definition). How-

ever it is not a generalization of the upper semi-continuity of single-valued func-

tions, in the sense that a single-valued function that is upper semi-continuous in the

sense of multivalued functions, is necessarily continuous. This is why J.-B. Hiriart-

Urruty has proposed to name the multivalued upper semi-continuity the outer semi-

continuity (Hiriart-Urruty and Lemaréchal 2001, §0.5), to avoid confusions.

1clS is the closure of the set S.
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A way to characterize the lower semi-continuity of a function f (·) is through its

epigraph. Indeed f (·) is lower semi-continuous if and only if its epigraph epi(f ) is

closed. This can be checked in Fig. 2.6: locally the epigraph is open at x0 and x1,

whereas it is closed at x2 and x3. The indicator function ψC(·) of a closed non empty

set is lower semi-continuous. For instance the epigraph of the indicator function

depicted in Fig. 2.5 is a closed half cylinder (an unbounded, but closed set).

Remark 2.17 As a matter of fact, convex functions that take bounded values on R
n

(i.e. dom(f ) = R
n) necessarily are continuous functions. They are even locally Lip-

schitz continuous at every point. This means that the semi-continuity is a notion that

is automatically satisfied by bounded convex functions. The only convex function

we shall meet for which this is not the case is the indicator of a convex set of R
n,

that is not continuous on R
n but is lower semi-continuous.

Definition 2.18 (Normal and tangent cones to a non empty convex set) Let C ⊆ R
n

be a closed convex set. The (outward) normal cone to C at x ∈ C is the set:

NC(x) = {s ∈ R
n | 〈s, y − x〉 � 0 for all y ∈ C}.

The tangent cone to C at x ∈ C is the set:

TC(x) =
{

y ∈ R
n | ∃ (xk)k�0, xk ∈ C with lim

k→+∞
xk = x, and ∃ (αk)k�0, αk � 0,

such that lim
k→+∞

αk = 0 and lim
k→+∞

xk =
xk − x

αk

= y

}

.

There are other, equivalent ways to define the tangent cone, like

TC(x) = cl

(

⋃

y∈C

⋃

λ>0

λ(y − x)

)

,

where cl(·) denotes the closure (the closure of a set S ⊆ R
n is the set plus its bound-

ary; it is also the smallest closed set of R
n that contains S). It is important to remark

that the normal cone is defined through a variational process: one varies y inside

C to find the normal vectors s that form NC(x). The normal cone (see Fig. 2.7) is

the outward normal cone, i.e. it points outside the set C. The definition of a tangent

cone as given in Definition 2.18 is not very friendly. There is a much simpler way

to characterize the tangent cone when C is convex, as the next proposition shows.

Proposition 2.19 Let C ⊂ R
n be a closed non empty convex set and let x ∈ C. Then

the tangent and normal cones are closed convex cones, and NC(x) = (TC(x))◦ and

TC(x) = (NC(x))◦.

Therefore starting from the definition of the normal cone, we may state at x ∈ C:

TC(x) = {d ∈ R
n | 〈s, d〉 � 0 for all s ∈ NC(x)},

which is also a variational definition of the tangent cone. One finds that when x ∈
Int(C), then NC(x) = {0} and TC(x) = R

n.
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Fig. 2.7 Normal cones

Fig. 2.8 Tangent cones

One sees in Fig. 2.8 that the tangent cones locally reproduce the “shape” of the

set C. When C is polyhedral at x then TC(x) ≈ C. When C is differentiable at x

then TC(x) is an inwards halfspace. It is also visible in the figures that the tangent

and normal cones are polar cones one to each other. The fact that both the normal

and tangent cones to C at x are the empty set when x /∈ C is a consequence of the

definition of the indicator function of C, that takes infinite values in such a case.

Example 2.20 (Closed convex polyhedra) Let us assume that the set C is defined as

C = {x ∈ R
n | Ex + F � 0,E ∈ R

m×n,F ∈ R
m}. In other words C is defined with

m inequalities Eix + Fi � 0 where the m vectors Ei ∈ R
1×n are the rows of the

matrix E and the Fis are the components of F . Let us define the set of the active

constraints at x ∈ C as

I (x) = {i = 1, . . . ,m | Eix + Fi = 0}

that is a set of indices. Then:

TC(x) = {d ∈ R
n | 〈Ei, d〉 � 0 for i ∈ I (x)}, (2.4)
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and

NC(x) =

{

∑

i∈I (x)

αiE
T
i , αi � 0

}

. (2.5)

Therefore the normal cone is generated by the outwards normal vectors to the facets

that form the set C at x. When x /∈ C one ususally defines TC(x) and NC(x) both

equal to ∅.

Remark 2.21 The fact that NC(·) and TC(·) are polar cones has a strong physical

meaning. In mechanical systems subject to frictionless unilateral constraints, (nor-

mal) contact forces belong to NC(·) whereas velocities belong to TC(·). Thus the

contact forces and the velocity form a pair of reciprocal variables (sometimes also

called dual variables), whose product is a mechanical power. In electricity the volt-

age and the current are reciprocal variables since their product is an electrical power.

2.1.1.2 Subdifferentiation

Definition 2.22 (Subgradients, subdifferentials) A vector γ ∈ R
n is said to be a

subgradient of a convex function f (·) at a point x if it satisfies:

f (y) − f (x) � γ T (y − x) (2.6)

for all y ∈ R
n. The set of all subgradients of f (·) at x is the subdifferential of f (·)

at x and is denoted ∂f (x).

When f (x) is finite, the inequality (2.6) says that the graph of the affine function

h(y) = f (x) + γ T (y − x) is a non vertical supporting hyperplane to the convex

epigraph of f (·) at (x, f (x)), see (2.8) below. If a function f (·) is differentiable

at x, then ∂f (x) = {∇f (x)}. The following holds:

Theorem 2.23 Let f : R
n → R be a convex function. Then f (·) is minimized at x

over R
n if and only if 0 ∈ ∂f (x).

This is a generalization of the usual stationarity condition for differentiable func-

tions.

Proposition 2.24 Let f (·) be a lower semi-continuous, proper and convex func-

tion. Then ∂f (·) is a closed convex set, possibly empty. If x ∈ Int(dom(f )), then

∂f (x) �= ∅. In particular, if f : R
n → R is convex, then for all x ∈ R

n, ∂f (x) is a

non empty, convex and compact set of R
n.

Example 2.25 Let us start with the absolute value function. If x �= 0, then it is dif-

ferentiable and ∂|x| = {1} if x > 0, ∂|x| = {−1} if x < 0. At x = 0 one looks for

reals γ such that |y| � γy for all reals y. If y > 0 one finds γ � 1. If y < 0 then

one finds γ � −1. One concludes that −1 � γ � 1. Therefore ∂|0| = [−1,1]. That

x = 0 is a minimum is obvious.
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Example 2.26 (Normal cone as the subdifferential of the indicator function) Let

C ⊆ R
n be a non empty closed convex set, and such that Int(C) contains an n-

dimensional ball of radius r > 0. Then the subgradients of the indicator function of

C at x are the vectors γ satisfying ψC(y) − ψC(x) � γ T (y − x) for all y ∈ R
n. Let

x ∈ Int(C). We get ψC(y) � γ T (y − x). Let y ∈ Int(C), so that 0 � γ T (y − x) for

all y ∈ Int(C). In view of the assumptions on x and C there exists a ball of positive

radius centered at x, contained in Int(C). We may choose y in C such that y − x is

anywhere inside this ball. It follows that necessarily γ = 0. Therefore ∂ψC(x) = {0}
when x ∈ Int(C). Let now x /∈ C, so that ψC(y) � +∞ + γ T (y − x) for all y ∈ R

n.

Take for instance y ∈ C so that we get γ T (x − y) � +∞. This is impossible and

we conclude that ∂ψC(x) = ∅ when x /∈ C. Let now x ∈ Bd(C), the boundary of the

set C. We get ψC(y) � γ T (y − x) for all y ∈ R
n. Take y ∈ C, then the subgradients

have to satisfy γ T (y − x) � 0 for all y ∈ C. Precisely, such vectors γ belong to the

normal cone NC(x), see Definition 2.18. We conclude that provided one takes as a

convention that NC(x) = ∅ if x �∈ C, then ∂ψC(·) = NC(·).

Example 2.27 (Normal cone to a finitely represented set) If C is finitely represented,

i.e. C = {x ∈ R
n | g(x) � 0}, with g(·) lower semi-continuous, proper, and convex

such that 0 �∈ ∂g(x), then:

NC(x) =
{ {0} if g(x) < 0,

∅ if g(x) > 0,

R+∂g(x) if g(x) = 0.

The three different cases correspond respectively to x in the interior of C, x

outside C, and x on the boundary of C. The notation R+∂g(x) is for {λη | λ > 0

and η ∈ ∂g(x)}. One can say that on Bd(C) the normal cone is generated by

the subgradients of the function g(·). Consider for instance the set of R
2 defined

as C = {(x1, x2) | x2 � |x1|}. Thus g(x) = |x1| − x2, and there is a corner at

x1 = x2 = 0. One has ∂g(0,0) =
([−1,1]

−1

)

. Therefore at the corner point NC((0,0)) =
{λη | η1 ∈ [−1,1], η2 = −1, λ > 0}. We will see below that this can be interpreted

as the normal cone to the epigraph of the absolute value function. This is depicted

in Fig. 2.9.

Remark 2.28 This notion of a generalized derivative of a convex function that is not

differentiable in the usual sense, is totally disjoint from the notion of generalized

derivatives in the sense of Schwartz’ distributions. A Schwartz’ distribution T is

a functional (i.e. a function of functions) which associates with test functions ϕ(·)
taken in a special space of functions, a real (or complex) number denoted 〈T ,ϕ〉.
For instance, the generalized derivative of the absolute value function in the sense

of Schwartz’ distributions, is the function f : R → R with f (x) = −1 is x < 0,

f (x) = 1 if x > 0, and f (0) can be given any bounded value. The distribution

is then defined as 〈T ,ϕ〉 =
∫

dom(ϕ)
f (t)ϕ(t)dt . The so-called Heavyside function

has a generalized derivative that is the Dirac measure at t = 0, however it is not

a convex function and therefore does not possess a subdifferential in the sense of

Definition 2.22.
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Fig. 2.9 Normal cones to a

finitely represented set

The usual differentiation rule for composed functions, the so-called chain rule,

extends to subdifferentiation as follows.

Proposition 2.29 (Chain rule) Let f : R
n → R ∪ {+∞} be a convex lower semi-

continuous function, and A : R
m → R

n be an affine mapping.2 Assume that a point

y0 = Ax0 exists at which f (·) is finite and continuous. The subdifferential in the

sense of convex analysis of the composite functional f ◦ A : R
n → R ∪ {+∞} is

given by

∂(f ◦ A)(x) = AT
0 ∂f (Ax), ∀ x ∈ R

n. (2.7)

For the sum of convex functions the result is as follows.

Theorem 2.30 (Moreau-Rockafellar: subdifferentiate of a sum) Let fi : R
n → R∪

{+∞}, 1 � i � 2 be proper convex functions, and let f (·) =
∑2

i=1 fi(·). Assume

that the convex sets dom(fi), 1 � i � 2, have a point in common x̄ and that f1(·) is

continuous at x̄. Then

∂f (x) =
2
∑

i=1

∂fi(x), for all x ∈ dom(f1) ∩ dom(f2).

The result can obviously be extended to cope with the sums of more than two

functions.

2I.e. Ax = A0x + b with A0 linear.
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Fig. 2.10 Normal cone to the

epigraph

The Normal Cone to the Epigraph There is a relationship between the subgra-

dients of a function and the normal cone to the epigraph of the function. Indeed:

Nepif (x, f (x)) = {(λγ,−λ), γ ∈ ∂f (x) and λ � 0}. (2.8)

The normal cone to the epigraph is therefore generated by the vectors (γ,−1) where

γ is a subgradient. Normal cones to the epigraph of the function f (x) = ax if x � 0

and f (x) = bx if x � 0 are depicted in Fig. 2.10.

Inversion of Graphs The graph of the subdifferential ∂f (·) is equal to the set

gr(∂f ) = {(x, y) ∈ R
n × R

n | y ∈ ∂f (x)}.
The conjugacy operation on a convex lower semi-continuous proper function (i.e.

not identically equal to +∞) defines the inversion of the graph of its subdifferential.

In fact, if f (·) is a closed proper convex function, ∂f ∗(·) is the inverse of ∂f (·) in

the sense of multivalued mappings. In other words:

x ∈ ∂f (y) if and only if y ∈ ∂f ∗(x). (2.9)

This is illustrated in Fig. 2.11 for the absolute value function (see Examples 2.11,

2.25 and 2.26). In particular one has N[−1,1](1) = R+ and N[−1,1](−1) = R−. Inver-

sion of graphs occurs when passing from (i(t), v(t)) to (v(t), i(t)) characteristics of

electronic devices, see for instance the Zener diode voltage/current law in Fig. 1.8.

Link with Optimization let f (·) be a proper lower semi-continuous convex func-

tion. We consider the constrained optimisation problem:

(COPT): min
x∈C

f (x) = min
x∈Rn

(f + ψC)(x).

Clearly one has:

x is a solution of (COPT) ⇔ 0 ∈ ∂(f + ψC)(x).
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Fig. 2.11 Conjugating, subdifferentiating and inverting

Now if f (·) is continuous at a point in C we can rewrite the right-hand-side of

the equivalence as (see Theorem 2.30):

0 ∈ ∂f (x) + ∂ψC(x) = ∂f (x) + NC(x). (2.10)

If f (·) is of class C1 one obtains −∇f (x) ∈ NC(x) as a necessary and sufficient

condition to be fullfilled by a solution.

Remark 2.31 Convex functions can be identified with their epigraph. Convex sets

can be identified with their indicator function. This permits to pass from functions

to sets, i.e. from analysis to geometry.

2.1.2 Multivalued Functions

The normal cone to a convex set C ⊆ R
n defines a multivalued mapping, since it

assigns to each x in C a set NC(x) ⊆ R
n. Normal cones are an important example of

set-valued mappings, or multifunctions. Another example taken from the previous

section is the subdifferential ∂f (·) when f (x) = |x|. At x = 0 one has ∂f (0) =
[−1,1]. We conclude that the subdifferentials of convex functions f (·) usually are

multifunctions x �→ ∂f (x).
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2.1.2.1 Definitions

Definition 2.32 (Multivalued function, domain, image, graph, inverse map) A mul-

tivalued function F(·) (or multi-function, or set-valued function, or set-valued map)

from a normed space X to a normed space Y is a map that associates with any x ∈ X

a set: F(x) ⊂ Y . A multifunction is completely characterized by its graph, defined

as

gr(F ) = {(x, y) ∈ X × Y | y ∈ F(x)}.
The domain of the multifunction F(·) is the set

dom(F ) = {x ∈ X | F(x) �= ∅}.
The image of the multivalued function F(·) is defined as

im(F ) = {y ∈ Y | ∃ x ∈ X such that y ∈ F(x)}.
The inverse map F−1 : Y → X of F(·) is defined by:

F−1(y) = {x ∈ X | (x, y) ∈ gr(F )}.

In most applications X and Y are subsets of or equal to R
n or R

m, respectively,

for some n and m. Notice that some authors adopt the convention F : X ⇒ Y to

distinguish multivalued mappings, which we shall not do here. There are several

different classes of multivalued maps. As pointed out in the introduction of this sec-

tion, subdifferentials are multivalued functions. These are in fact the most common

multifunctions we will encounter in this monograph. Other examples are:

• F : R → R, x �→ [−1,1], which assigns to each x an interval, see Fig. 2.12(a).

• F : R → R, x �→ [−|x|, |x|], see Fig. 2.12(b).

• The inverse of many single-valued function is set-valued. For instance the func-

tion in Fig. 2.12(c) is single valued, and its inverse in Fig. 2.12(d) is set-valued

since F(0) = [−a, b] (a > 0, b > 0).

We shall not meet multifunctions of the type of Fig. 2.12(a) and (b) in this book.

2.1.2.2 Maximal Monotone Mappings

Definition 2.33 (Maximal monotone mapping) A multivalued mapping F : S ⊆
R

n → R
n is said to be monotone on S if for every pairs (x1, y1) and (x2, y2) in its

graph one has:

〈x1 − x2, y1 − y2〉 � 0. (2.11)

It is strictly monotone on S if the inequality is strict > 0 for all x �= y. It is ξ−
monotone on S if there exists a constant c > 0 such that:

〈x1 − x2, y1 − y2〉 � c‖x1 − x2‖ξ . (2.12)

If ξ = 2 is strongly monotone on S. It is maximal monotone if its graph is not

properly contained in the graph of any other monotone mapping.
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Fig. 2.12 Multivalued functions

The maximality is to be understood in terms of inclusions of graphs. If the map-

ping is maximal, then adding anything to its graph so as to obtain the graph of a new

multivalued mapping, destroys the monotonicity (the extended mapping is no longer

monotone). In other words, for every pair (x, y) ∈ (Rn × R
n) \ gr(F ) there exists

(x′, y′) ∈ gr(F ) such that 〈x − x′, y − y′〉 < 0. This is illustrated in Fig. 2.13. The

mapping whose graph is in Fig. 2.13(a) is monotone, however it is not maximal.

The one in Fig. 2.13(b) is maximal monotone. Intuitively, starting from a mono-

tone mapping, maximality is obtained after “filling-in” the gaps (consequently con-

tinuous monotone mappings are maximal). In the planar case maximal monotone

mappings have a non decreasing curve.

Operations that Preserve the Monotonicity, and Some Properties

• If F : R
n → R

n is monotone then its inverse mapping F−1(·) is monotone (in the

single valued case, a non decreasing function has a non decreasing inverse).

• If F : R
n → R

n is monotone then λF(·) is monotone for any λ > 0.

• If F1 : R
n → R

n and F2 : R
n → R

n are monotone, then (F1 +F2)(·) is monotone.

• F : R
n → R

n is monotone, then for any matrix A and vector b, the mapping

T (x) = AT F(Ax + b) is monotone.

• F(·) is maximal monotone if and only if F−1(·) is maximal monotone.

• The graph of a maximal monotone mapping is closed.

• If F(·) is maximal monotone, then both F(·) and F−1(·) are closed-convex-

valued.
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Fig. 2.13 Monotone mappings

Link with Subdifferentials of Convex Functions The following holds, which is

the generalization that when a convex function R → R is differentiable, then its

gradient is non decreasing.

Theorem 2.34 Let f : R
n → R∪{+∞} be convex and proper. Then the multivalued

mapping ∂f : R
n → R

n is monotone. A proper lower semi-continuous function is

convex if and only if ∂f (·) is maximal monotone.

As a corollary, the normal cone to a non empty closed convex set of R
n is a

maximal monotone mapping. Indeed the indicator function of such a set is proper,

lower semi-continuous and convex. Let M be a positive semidefinite matrix (not

necessarily symmetric). Then the mapping x �→ Mx is maximal monotone. If M is

positive definite then it is even strongly monotone.

2.1.2.3 Generalized Equations

A generalized equation is an equation of the form 0 ∈ F(x), where F(·) is a mul-

tivalued function. It is of great interest to study the conditions that assure the ex-

istence and the uniqueness of solutions to such equations, as a prerequisite to the

development of efficient numerical algorithms to solve them (see for instance (2.10)

that represents the necessary and sufficient conditions of a constrained optimisation

problem). The notion of monotonicity has long been recognized as a crucial prop-

erty that guarantees the well-posedness of generalized equations. The next result

concerns generalized equations of the form:

0 ∈ F(x) + NC(x), (2.13)
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where C ⊆ R
n and F : C → R

n is a function. Implicitly it is understood that the

solution satisfies x ∈ C, since otherwise NC(x) = ∅. Let C be convex. This gener-

alized equation therefore states that −F(x) ∈ NC(x), i.e. −F(x) is a subgradient

of the indicator function ψC(·) at the point x. We have already encountered such a

generalized equation in (2.10).

Theorem 2.35 Let C be closed convex and F(·) be continuous. Then:

• If F(·) is strictly monotone on C, the generalized equation in (2.13) has at most

one solution.

• If F(·) is ξ -monotone on C for some ξ > 1, the generalized equation in (2.13)

has a unique solution.

Example 2.36 Let F : R
2 → R

2, x �→
(

cosx
sinx

)

, and C = {(x1, x2) ∈ R
2 | x1 � 0}.

We know from (2.5) that NC(0) =
{

α
(−1

0

)

, α � 0
}

= R−e1 where e1 = (1 0)T . We

deduce that all x with x1 = 2kπ , k � 0, are solutions of the generalized equation

−F(x) ∈ NC(x). Clearly F(·) is not monotone on C. Notice in passing that the

solutions have to lie on the boundary of C, for otherwise one has NC(x) = {(0 0)T }
in the interior of C and it is impossible to have both components of F(·) which

vanish at the same time.

Let us now state a result which related inclusions into normal cones and projec-

tions, for a particular value of the function F(·).

Proposition 2.37 Let M = MT > 0 be a n × n matrix, and C ⊆ R
n be a closed

convex non empty set. Then

M(x − y) ∈ −NC(x)

�
x = argmin

z∈C

1

2
(z − y)T M(z − y)

�
x = projM(C;y),

(2.14)

where projM indicates that the projection is done in the metric defined by M .

Notice one thing: we may rewrite the first inclusion as Mx + NC(x) ∋ My, i.e.

(M · +NC)(x) = My. Let M be positive semidefinite. Then using basic arguments

from nonsmooth analysis one may deduce that the operator x �→ Mx + NC(x)

is maximal monotone, being the sum of two maximal monotone operators. Thus

it has an inverse operator that is also maximal monotone and we may write x =
(M ·+NC)−1(My). In case M is definite positive symmetric we recover the projec-

tion operator.
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2.2 Non Convex Sets

All the sets that we will meet in this book are convex sets, therefore we shall not need

extensions of the foregoing definitions to the non convex case. Let us just mention

in passing that such generalizations exist, and may be useful in other fields like

contact mechanics where the sets one works with usually are finitely represented.

That is, there exists functions fi : R
n → R, 1 � i � m, such that R

n ∋ C = {x ∈
R

n | fi(x) � 0,1 � i � m}. When the functions fi(·) are linear, or affine functions

of the form fi(x) = Aix + ai such that C is not empty, then C is a polyhedron,

hence it is convex. When the functions fi(·) are nonlinear, assuming the convexity

of C is much too stringent and other notions have to be used.

2.3 Basics from Complementarity Theory

In Chap. 1 we have seen that complementarity is a notion that is often met in the

nonsmooth modeling approach of electronic devices and mechanical systems with

unilateral constraints. Complementarity theory is the branch of applied mathematics

that deals with problems involving complementarity relations. There are many dif-

ferent such problems and we will present only few of them (see for instance Acary

and Brogliato 2008 for an introduction, Facchinei and Pang 2003 and Cottle et al.

1992 for more complete presentations). Most importantly we shall insist on the links

that exist between complementarity problems and convex analysis, normal cones to

convex sets, generalized equations, and variational inequalities.

2.3.1 Definitions

Definition 2.38 (Linear Complementarity Problem (LCP)) Let M ∈ R
n×n be a con-

stant matrix, q ∈ R
n be a constant vector. A linear complementarity problem (LCP)

is a problem of the form:
{

z � 0,

w = Mz + q � 0,

wT z = 0,

(2.15)

where z is the unknown of the LCP.

A more compact way to write the complementarity between two variables w and

z is:

0 � w ⊥ z � 0. (2.16)

This is adopted in the sequel. We will often name (2.16) the complementarity rela-

tions, or complementarity conditions between w and z. Strictly speaking, the com-

plementarity constraint is the equality wT z = 0. It is also worth noting that due

to the non negativity conditions, wT z = 0 is equivalent to its componentwise form

wizi = 0 for all i ∈ {1, . . . , n}.
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Fig. 2.14 Cone

complementarity problem

Definition 2.39 (Nonlinear Complementarity Problem (NCP)) Let F : R
n → R

n be

a nonlinear function. A nonlinear complementarity problem (NCP) is a problem of

the form:

0 � x ⊥ F(x) � 0 (2.17)

where x is the unknown of the NCP.

When F(x) is affine then one obtains an LCP.

Definition 2.40 (Cone Complementarity Problem (CCP)) Let C ⊂ R
n be a cone,

and F : C → R
n a mapping. A Cone Complementarity Problem (CCP) is a problem

of the form:

C ∋ x ⊥ F(x) ∈ C∗ (2.18)

where x is the unknown of the CCP.

Obviously we may also write equivalently C ∋ x ⊥ −F(x) ∈ C◦ using the polar

cone. The LCP is a CCP with F(·) affine and C = R
n
+. A CCP in the plane is

depicted in Fig. 2.14. It is apparent that for F(x) to be non zero, x has to lie on

the boundary of C. When x is in the interior of C then F(x) = (0 0)T , due to the

orthogonality imposed between x and F(x) and the fact that the boundaries of polar

cones satisfy some orthogonality constraints. One therefore finds again a similar

conclusion to the one drawn in Example 2.36. This suggests a close relation between

the CCP and normal cones, see Sect. 2.3.3 for a confirmation of this observation.

Definition 2.41 (Mixed Linear Complementarity Problem (MLCP)) Given the ma-

trices A ∈ R
n×n, B ∈ R

m×m, C ∈ R
n×m, D ∈ R

m×n, and the vectors a ∈ R
n, b ∈
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R
m, the mixed linear complementarity problem denoted by MLCP(A,B,C,D,a, b)

consists in finding two vectors u ∈ R
n and v ∈ R

m such that
{

Au + Cv + a = 0,

0 � v ⊥ Du + Bv + b � 0.
(2.19)

The MLCP can be defined equivalently in the following form denoted by MLCP(M,

q,E ,I )
{

w = Mz + q,

wi = 0, ∀i ∈ E ,

0 � zi ⊥ wi � 0, ∀i ∈ I ,

(2.20)

where E and I are finite sets of indices such that card(E ∪I ) = n and E ∩I = ∅.

The MLCP is a mixture between an LCP and a system of linear equations. In

this book we shall see that MLCPs are common in nonsmooth electrical circuits,

arising directly from their physical modeling and their time-discretization. To pass

from (2.19) to (2.20), one may do as follows: define z =
(

u
v

)

, M =
(

A C
D B

)

, q =
(

a
b

)

.

There is another way to define mixed complementarity problems as follows:

Definition 2.42 (Mixed Complementarity Problem (MCP)) Given a function F :
R

q → R
q and lower and upper bounds l, u ∈ R̄

q , find z ∈ R
q , w,v ∈ R

q
+ such that

⎧

⎪

⎨

⎪

⎩

F(z) = w − v,

l � z � u,

(z − l)T w = 0,

(u − z)T v = 0,

(2.21)

where R̄ = R ∪ {+∞,−∞}.

Note that the problem (2.21) implies that

−F(z) ∈ N[l,u](z). (2.22)

The relation (2.22) is equivalent to the MCP (2.21) if we assume that w is the pos-

itive part of F(z), that is w = F+(z) = max(0,F (z)) and v is the negative part of

F(z), that is v = F−(z) = max(0,−F(z)). In case F(z) = Mz + q one obtains a

mixed linear complementarity problem.

2.3.2 Complementarity Problems: Existence and Uniqueness

of Solutions

The fact that an LCP possesses at least one, several, or no solutions, heavily depends

on the properties of the matrix M in (2.15). For instance, the LCP

0 �

(

x1

x2

)

⊥
(

0

−1

)

+
(

0 1

1 0

)(

x1

x2

)

� 0
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has an infinity of solutions of the form x = (x1 0)T , x1 � 1. On the other hand, the

scalar LCP

0 � x ⊥ −x + q � 0

has no solution if q = −1. Indeed the orthogonality implies x(x + 1) = 0, that is

x = 0 or x = −1. The second solution is not acceptable, and x = 0 yields −1 � 0.

If q = 0 there is a unique solution x = 0. If q = 1 there are two solutions: x = 0 and

x = 1.

The fundamental result of complementarity theory is as follows:

Theorem 2.43 The LCP 0 � x ⊥ Mx + q � 0 has a unique solution for all q if and

only if M is a P -matrix.

This was proved by Samelson et al. (1958). The important point of this theorem

is that the “if and only if” condition holds because one considers all possible vec-

tors q . As the above little example shows, by varying q one may obtain LCPs whose

matrix is not a P -matrix and which anyway do possess solutions, possibly a unique

solution. A P -matrix is a matrix that has all its principal minors positive.3 A posi-

tive definite matrix is a P -matrix. In turn a P -matrix that is symmetric, is positive

definite. However many P -matrices are neither symmetric nor positive definite. For

instance the matrices
(

2 24

0 2

)

,

(

2 1

2 2

)

,

(

1 0

6 1

)

,

(

1 −1 −3

1 1 1

1 −3 α

)

with α > 0, are P -matrices. The determinants of the second and the third matrices

are negative, so they are not positive definite. The following holds (Lootsma et al.

1999):

Lemma 2.44 If M ∈ R
n×n is a P -matrix, then M−1 is a P -matrix.

Consequently the class of P -matrices plays a crucial role in complementarity

problems. Other classes of matrices exist which assure the existence of solutions

to LCPs. For instance copositive matrices and P0-matrices. A matrix M ∈ R
n×n is

said copositive on a cone C ⊆ R
n if xT Mx � 0 for all x ∈ C. It is strictly copositive

on a cone C ⊆ R
n if xT Mx > 0 for all x ∈ C \ {0}. It is copositive plus on a cone

C ⊆ R
n if it is copositive on C and {xT Mx = 0, x ∈ C} ⇒ (M + MT )x = 0. When

C = R
n
+ then one simply says copositive. For instance

(

1 −1
1 0

)

is copositive on R
2
+,

⎛

⎜

⎝

2 2 1 2

3 3 2 3

−2 1 5 −2

1 −2 1 2

⎞

⎟

⎠

is strictly copositive on R
4
+.

3If A is an m×n matrix, I is a subset of {1, . . . ,m} with k elements and J is a subset of {1, . . . , n}
with k elements, then we write [A]I,J for the k × k minor of A that corresponds to the rows with

index in I and the columns with index in J . If I = J , then [A]I,J is called a principal minor. They

are sometimes called subdeterminants.
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The study of copositive matrices is a hard topic, especially when copositivity on

general convex sets is considered. One may simplify it in some cases. For instance if

C is a closed convex polyhedral cone represented as {Gz | z ∈ R
p
+} where G ∈ R

n×p

has rank p, then copositivity of M on C is equivalent to the copositivity of GT MG

on R
p
+ (Hiriart-Urruty and Seeger 2010). There exists criteria to test the copositivity

on positive orthant (cones of the form R
p
+). Well-known results are the following

ones:

Proposition 2.45 Let M = MT ∈ R
2×2. Then M is copositive on R

2
+ if and only if

a11 � 0, a22 � 0, a12 + √
a11a22 � 0. Let M = MT ∈ R

3×3. Then M is copositive

on R
3
+ if and only if a11 � 0, a22 � 0, a33 � 0, b12

�= a12 + √
a11a22 � 0, b13

�=
a13 + √

a11a33 � 0, b23
�= a23 + √

a22a33 � 0, and

√
a11a22a33 + a12

√
a33 + a13

√
a22 + a23

√
a11 +

√

2b12b13b23 � 0.

See Hiriart-Urruty and Seeger (2010) for references and more results on coposi-

tive matrices, see also Goeleven and Brogliato (2004) for the first application in the

field of Lyapunov stability of fixed points of evolution variational inequalities. The

next proposition states some results on existence of solutions of complementarity

problems with copositive matrices.

Proposition 2.46

(i) Consider the LCP in (2.15). Suppose that M is copositive plus and that there

exists an x∗ satisfying x∗ � 0 and Mx∗ + q � 0. Then the LCP in (2.15) has a

solution.

(ii) Consider the CCP in (2.18), with C a closed convex cone. Suppose that M

is such that the homogeneous LCP 0 � x ⊥ Mx � 0 has x = 0 as its unique

solution. Then if M is copositive on C, the CCP in (2.18) has a non empty and

bounded set of solutions.

A matrix is P0 if all its principal minors are non negative. For instance

(

0 1

0 0

)

,

(

0 1 1

0 0 1

0 0 0

)

are P0. So a P0-matrix is not necessarily positive semidefinite, however posi-

tive semidefinite matrices are P0-matrices, and symmetric P0-matrices are positive

semidefinite. The following lemma holds (Lin and Wang 2002):

Lemma 2.47 Let M ∈ R
n×n be invertible. Then the following statements are equiv-

alent:

• M is a P0-matrix,

• MT is a P0-matrix,

• M−1 is a P0-matrix.
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The P0 property is not sufficient to guarantee the existence of solutions. Consider

the LCP with q = (−1 1)T , M =
(

0 1
0 1

)

that is a P0-matrix. One may check by

inspection that it has no solution. However the following is true.

Proposition 2.48 Consider the LCP in (2.15). Suppose that M is such that the

homogeneous LCP 0 � x ⊥ Mx � 0 has x = 0 as its unique solution. Then M is a

P0-matrix if and only if for all vectors q the LCP (2.15) has a connected solution

set.

This proposition does not state that the solution set is non empty, however. There-

fore relaxing the P -property to the P0-property destroys almost completely the

powerful result of Theorem 2.43. It follows from Theorems 2.46 and 2.48 that the

copositivity is much more useful than the P0 property. We will, quite unfortunately,

encounter P0-matrices in nonsmooth electrical circuits!

Remark 2.49 A positive semidefinite matrix is copositive plus.

Other classes of matrices exist which guarantee under various conditions on q

that the LCP (2.15) has solutions. We refer the reader to the above mentioned liter-

ature for more details on these classes.

Let us end this section by pointing out an important addendum to Theorem 2.43:

Proposition 2.50 Let the matrix M be a P -matrix. Then the unique solution of the

LCP in (2.15) is a piecewise-linear function of q , therefore Lipschitz continuous.

This result is sometimes used to characterize the right-hand-side of some nons-

mooth dynamical systems.

2.3.3 Links with Inclusions into Normal Cones

To see how things work, let us start with the complementarity conditions 0 � x ⊥

y � 0 with x and y scalar numbers. Let us show that this is equivalent to the in-

clusion −x ∈ NC(y) with C = R+. Suppose x and y satisfy the inclusion. If y > 0

then NC(y) = {0} so that x = 0. If y = 0 then NC(y) = R− so x � 0. Now if x > 0

then −x < 0 and necessarily y = 0. Finally if x = 0 then y may be anywhere in R+.

Consequently x and y satisfy 0 � x ⊥ y � 0. Conversely let 0 � x ⊥ y � 0. If

y > 0 then x = 0. If y = 0 then x � 0 so that −xz � xy for any z � 0. If y > 0

then x = 0 so that xz = 0 � xy = 0 for any z � 0. In any case the scalar s
�= −x

satisfies s(z − y) � 0 for all z � 0, which precisely means that s ∈ NC(y), see Def-

inition 2.18. We have shown that for x ∈ R and y ∈ R

0 � x ⊥ y � 0 ⇔ −x ∈ NC(y). (2.23)

Obviously due to the symmetry of the problem we may replace the right-hand-

side of (2.23) by −y ∈ NC(x). In fact the following is true, in a more general setting.
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Proposition 2.51 Let C ⊆ R
n be a non empty closed convex cone. Then:

C ∋ x ⊥ y ∈ C◦ ⇔ y ∈ NC(x). (2.24)

We may also write CCPs with the dual cone C∗ as C ∋ x ⊥ y ∈ C∗ ⇔ −y ∈
NC(x). The link with Fig. 2.14 is now clear. In this figure one has −F(x1) ∈ NC(x1)

which is generated by the outwards normal vector to the right boundary of C. Also

NC(x2) = {(0 0)T } and one has F(x2) = (0 0)T . If y = −M(x − q) for some q and

positive definite symmetric M then one may use Proposition 2.37 to calculate the

solution x of the cone complementarity problem (2.24) as the projection of q in the

metric defined by M on the cone C.

The link between the generalized equation (2.13) and the CCP is clear as well

from Proposition 2.51. Finally let us see how to relate Propositions 2.37 and 2.50.

Indeed one may easily deduce the following equivalences:

0 � x ⊥ Mx + q � 0

�
−Mx − q ∈ NR

n
+(x)

�
−x − M−1q ∈ M−1NR

n
+(x),

x = projM(Rn
+;−M−1q)

(2.25)

where the second equivalence is obtained under the assumption that M = MT > 0.

Since the projection operator is a single-valued Lipschitz continuous function, the

result follows.

2.3.4 Links with Variational Inequalities

Let us start with a simple remark about the generalized equation (2.13) when C is

convex. Using the definition of the normal cone in Definition 2.18, we may write

equivalently:

Find x ∈ C such that: 〈F(x), y − x〉 � 0 for all y ∈ C (2.26)

which is a variational formulation of the generalized equation. In fact (2.26) is a

variational inequality (VI). In a more general setting, we have the following set of

equivalences which extends Proposition 2.37. Let φ(·) be a proper, convex lower

semi-continuous function R
n → R. Then for each y ∈ R

n there exists a unique x
�=

Pφ(y) ∈ R
n such that

〈x − y, v − x〉 + φ(v) − φ(x) � 0, for all v ∈ R
n. (2.27)

The mapping Pφ : R
n → R

n is called the proximation operator. It is single-valued,

non expansive and continuous. The next equivalences hold:
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x ∈ R
n: 〈Mx + q, v − x〉 + φ(v) − φ(x) � 0, for all v ∈ R

n

�
x ∈ R

n: x = Pφ(x − (Mx + q))

�
x ∈ R

n: Mx + q ∈ −∂φ(x).

(2.28)

The first formulation in (2.28) is called a VI of the second kind. Such variational

inequalities are met in the study of static circuits (i.e. circuits with resistors and

nonsmooth electronic devices) or in the study of the fixed points of dynamical cir-

cuits, see Addi et al. (2010). The link between (2.28) and (2.26) is done by setting

φ(·) = ψC(·), the indicator function of C, and F(x) = Mx + q .

2.3.5 Links with Optimization

We have seen that there is a close link between inclusions into a normal cone (which

are a special case of generalized equations) and optimization one side, and a close

link between complementarity problems and inclusions into a normal cone on the

other side. See (2.10) and Sect. 2.3.3 respectively. Consequently, there must exist a

link between complementarity and optimization.

Let us consider the following optimization problem:

Minimize Q(x) = Cx +
1

2
xT Dx

subject to Ax � b,

x � 0,

(2.29)

where D ∈ R
n×n is symmetric (if it is not, replace it by D + DT without modify-

ing Q(x)). The so-called Karush-Kuhn-Tucker necessary conditions that have to be

satisfied by any solution of (2.29) are:
⎧

⎨

⎩

CT + Dx − AT y − u,

0 � y ⊥ Ax − b � 0,

0 � u ⊥ x � 0.

(2.30)

Defining λ =
(

y
u

)

, ÃT = (AT In), b̃ =
(

b
0

)

, this may be rewritten more compactly as:

{

CT + Dx − ÃT λ,

0 � λ ⊥ Ãx − b̃ � 0.
(2.31)

This is under the form of an MLCP, see (2.19). If the matrix D is invertible, one has

x = D−1(−CT + ÃT λ) and we obtain:

0 � λ ⊥ ÃD−1(−CT + ÃT λ) − b̃ � 0, (2.32)

that is an LCP with matrix M = ÃD−1ÃT and vector q = −ÃD−1CT − b̃. Condi-

tions on A and D such that this LCP is well-posed may be studied.



2.4 Mathematical Formalisms 59

2.4 Mathematical Formalisms

This section provides a quick overview of the definition and the well-posedness of

various types of nonsmooth dynamical systems, and on the nature of their solutions

(usually the solutions are at most C0[R+;R
n], and they can contain jumps, or even

Dirac measures or higher degree distributions). In view of the fact that complemen-

tarity problems, generalized equations, inclusions into normal cones, variational in-

equalities, possess strong links, it will not come as a surprise that their dynamical

counterparts also are closely related. As we shall see later in this chapter and also

in Chap. 4, the models of electrical circuits do not necessarily exactly fit within

the mathematical formalisms below, in particular because in the simple circuits of

Chap. 1, no algebraic equality appears. In more complex circuits the dynamical

equations generation usually yields differential algebraic equations (DAE). Study-

ing such “simplified” models is however a first mandatory step. For a more complete

exposition of various nonsmooth models and formalisms we refer the reader to Part I

of Acary and Brogliato (2008).

To start with, let us provide a general definition of what one calls a differential

inclusion.

Definition 2.52 A differential inclusion may be defined by

ẋ(t) ∈ F(t, x(t)), t ∈ [0, T ], x(0) = x0, (2.33)

where x : R → R
n is a function of time t , ẋ : R → R

n is its time derivative, F :
R × R

n → R
n is a set-valued map which associates to any point x ∈ R

n and time

t ∈ R a set F(t, x) ⊂ R
n, and T > 0.

In general the inclusion will be satisfied almost everywhere on [0, T ], because

x(·) may not be differentiable for all t ∈ [0, T ]. If x(·) is absolutely continuous then

ẋ(·) is defined up to a set of Lebesgue measure zero on [0, T ]. In fact it happens that

there are several very different types of differential inclusions, depending on what

the sets F(x) look like.

Remark 2.53 One should not think that since the right-hand-side is multivalued then

necessarily a differential inclusion has several solutions starting from a unique ini-

tial x0. This depends a lot on the properties of F(t, x), and many important classes

of differential inclusions enjoy the property of uniqueness of solutions.

Definition 2.52 implicitly assumes that the solutions possess a certain regularity,

for instance they are not discontinuous. When state jumps are present, one has to

enlarge this definition to so-called measure differential inclusions. We shall not give

a general definition of a measure differential inclusion (see Leine and van de Wouw

2008, Sect. 4.3 for this). In Sect. 2.4.1 important cases are presented. The literature

on each of the class of nonsmooth dynamical systems presented below, is vast. Not

all the references will be given, some classical or useful ones are provided, anyway.
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2.4.1 Moreau’s Sweeping Process, Measure Differential Inclusions

The sweeping process is a particular differential inclusion that has been introduced

by Moreau (1971, 1972, 1973, 1977) in the context of unilateral mechanics. It has

received considerable attention since then.

2.4.1.1 First Order Sweeping Process

The basic first order sweeping process as introduced by J.J. Moreau is a differential

inclusion of the form

−ẋ(t) ∈ NC(t)(x(t)), almost everywhere on [0, T ], x(0) = x0 ∈ C(0), (2.34)

where C : [0, T ] → R
n is a moving set. A function x : [0, T ] → R

n is a solution of

(2.34) if:

• x(t) ∈ C(t) for all t ∈ [0, T ],
• x(·) is differentiable at almost every point t ∈ (0, T ),

• x(·) satisfies the inclusion (2.34) for almost every t ∈ (0, T ).

An important extension is the perturbed sweeping process:

−ẋ(t) ∈ NC(t)(x(t) + f (t, x(t)),

almost everywhere on [0, T ], x(0) ∈ C(0). (2.35)

Remark 2.54 Why the name sweeping process? When x(t) ∈ Int(C(t)), where Int

means the interior, then the normal cone NC(t)(x(t)) = {0n}, the zero vector of R
n.

The solution of (2.34) stays at rest, while the solution of (2.35) evolves according to

an ordinary differential equation. When x(t) lies on the boundary of C(t), then the

normal cone is not reduced to the zero vector, and the meaning of the inclusion is

that there exists an element of NC(t)(x(t)), call it γ (t) ∈ R
n, such that the solution

x(·) does not quit C(·) in a right neighborhood of t . If C(·) is moving then x(·) has

the tendency to be swept by C(·). This is depicted in Fig. 2.15.

A basic existence and uniqueness of solutions result is the next one, that is sim-

plified from Edmond and Thibault (2005, Theorem 1). The notions of absolutely

continuous functions and sets may be found in Sect. A.1. Recall that L1([0, T ],R)

is the set of Lebesgue integrable functions such that
∫ b

a
‖f (t)‖dt < +∞ for all

0 � a � b � T .

Theorem 2.55 Let C(t) be for each t a non empty with non empty interior closed

convex subset of R
n, which varies in an absolutely continuous way. Suppose that:

• For every η > 0 there exists a non negative function kη(·) ∈ L1([0, T ],R) such

that for all t ∈ [0, T ] and for any (x, y) ∈ B[0, η] × B[0, η] one has: ‖f (t, x) −
f (t, y)‖ � kη(t) ‖x − y‖;
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Fig. 2.15 A moving convex set C(t) (the normal cones are depicted with dashed lines)

• there exists a non negative function β(·) ∈ L1([0, T ],R) such that for all t ∈
[0, T ] and for any x ∈ ∪s∈[0,T ]C(s), one has ‖f (t, x)‖ � β(t)(1 + ‖x‖).

Then for any x0 ∈ C(0) the perturbed sweeping process in (2.35) has a unique

absolutely continuous solution.

Uniqueness is to be understood in the class of absolutely continuous functions.

A quite similar result can be stated when C(·) is Lipschitz continuous in the Haus-

dorff distance. Then the solutions are Lipschitz continuous.4 The next result is an

existence result in the case where C(t) may jump, and consequently the state x(·)
may jump as well. One easily conceives that the inclusions in (2.34) and (2.35) have

to be rewritten because at the times when x(·) jumps, its derivative is a Dirac mea-

sure. Then one has to resort to measure differential inclusions to treat in a proper

way such systems. The relevant definitions can be found in Sects. A.3, A.4, A.5

and A.6. The next theorem is a simplified version of Edmond and Thibault (2006,

Theorem 4.1).

Theorem 2.56 Let C(t) be for each t a non empty closed convex subset of R
n,

and let the set valued map C(·) be RCBV on [0, T ].5 Suppose there exists some non

4It is a fact that the solutions functional set is a copy of the multifunction C(t) functional set.

5See Sect. A.4.
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negative real β such that ‖f (t, x)‖ � β(1 + ‖x‖) for all (t, x) ∈ [0, T ] × R
n. Then

for any x0 ∈ C(0) the perturbed sweeping process

−dx ∈ NC(t)(x(t)) + f (t, x(t))dλ, x(0) = x0 (2.36)

has at least one solution in the sense of Definition A.7.

The inclusion in (2.36) is a measure differential inclusion, see Sect. A.6 for an in-

troduction to such evolution problems. λ is the Lebesgue measure (i.e. dλ = dt), dx

is the differential measure associated with x(·). Roughly speaking, dx is the usual

derivative outside the instants of jump, and it is a Dirac measure at the discontinuity

times. This formalism may appear at first sight a mathematical fuss, however it is a

rigorous way to represent such dynamical systems and naturally leads to powerful

time-discretizations. In Edmond and Thibault (2006) it is considered a multivalued

perturbation term in (2.36). In Moreau (1977) the perturbation is zero (this is the

original version of the first order sweeping process) and uniqueness of solutions is

proved. In Brogliato and Thibault (2010) the uniqueness of solutions is proved for

both the absolutely continuous and the RCBV cases, when f (t, x) = Ax +u(t). For

an introduction to the sweeping process see Kunze and Monteiro Marquès (2000).

2.4.1.2 Second Order Sweeping Process

The second order sweeping process has been developed for Lagrangian mechan-

ical systems subject to m unilateral constraints fi(q) � 0, 1 � i � m. However

since some electrical circuits may be recast into the Lagrangian formalism (see

Sect. 2.5.4), it is of interest to briefly recall it. The unilateral constraints define an

admissible domain of the configuration space: Φ = {q ∈ R
n | fi(q) � 0,1 � i � m},

where q is the vector of generalized coordinates. In such systems the velocity may

be discontinuous at the impact times, and the post-impact velocity is calculated as

a function of the pre-impact one via a restitution law. Following similar steps as

for the above measure differential inclusions, we may define the differential mea-

sure associated with the generalized acceleration, denoted as dv, where v(·) is al-

most everywhere equal to the generalized velocity q̇(·). The original point is in the

right-hand-side of the inclusion. If the constraints are perfect (no friction), then the

contact reaction force R lies in the normal cone to Φ at q: −R(t) ∈ NΦ(q(t)). One

would like, however, to go a step further: the measure differential inclusion should

encapsulate the restitution law at impact times (more exactly, it should encapsu-

late a particular restitution law, since the choice of restitution laws is a modeling

choice). J.J. Moreau has proposed to replace the inclusion −R(t) ∈ NΦ(q(t)) by the

inclusion:

−R(t) ∈ NTΦ (q(t))(w(t)) (2.37)

which is the normal cone at w(t) = v(t+)+ev(t−)
1+e

to the tangent cone to Φ at q(t),

and e ∈ [0,1] is a restitution coefficient. Let us now write the Lagrange measure

differential inclusion:

−M(q(t))dv + F(q(t), v(t+), t)dt ∈ NTΦ (q(t))(w(t)) (2.38)
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where F(q(t), v(t+), t) accounts for the nonlinear and exogenous terms of the dy-

namics (Coriolis, centripetal forces, control inputs), and M(q) = MT (q) is pos-

itive definite. In order to analyze the differential inclusion in (2.38) we will use

Proposition 2.37 and the material in Sects. A.5 and A.6. As we saw just above

for the first order sweeping process with discontinuous state, at an impact time

the velocity v(·) undergoes a discontinuity, and its differential measure is dv =

(v(t+)− v(t−))δt +[v̇(t)]dt + dζv , see (A.3) in Sect. A.3. One has dt ({t}) = 0 and

dζv({t}) = 0 because these two measures are non atomic. From the interpretation of

the inclusion of a measure in a convex cone we obtain:

−M(q(t))(v(t+) − v(t−)) ∈ NTΦ (q(t))

(

v(t+) + ev(t−)

1 + e

)

. (2.39)

Since the right-hand-side is a cone, we may multiply the left-hand-side by any non

negative scalar and the inclusion remains true. Let us multiply it by 1
1+e

:

−M(q(t))

(

v(t+) − v(t−) + ev(t−) − ev(t−)

1 + e

)

∈ NTΦ (q(t))

(

v(t+) + ev(t−)

1 + e

)

. (2.40)

Using Proposition 2.37 we deduce that at an impact time t :

v(t+) + ev(t−)

1 + e
= projM(q(t))(TΦ(q(t));v(t−)), (2.41)

that is:

v(t+) = −ev(t−) + (1 + e)projM(q(t))(TΦ(q(t));v(t−)), (2.42)

which is a generalized formulation of the well-known Newton’s impact law between

two frictionless rigid bodies. The advantage of Moreau’s rule is that it provides in

one shot the whole post-impact velocity vector. Also it is based on a geometrical

analysis of the impact process which may serve as a basis for further investigations.

It can be shown that Moreau’s impact law is energetically consistent for e ∈ [0,1]
(i.e. the kinetic energy decreases at impacts), and it guarantees that the post-impact

velocity is admissible (i.e. it points inside Φ).

When q(t) ∈ Int(Φ), then simple calculations show that NTΦ (q(t))(w(t)) = {0n}
since TΦ(q(t)) = R

n. Thus the differential inclusion (2.38) is the smooth Lagrange

dynamics. Notice that when q(t) lies on the boundary of Φ , and if v(t−) belongs

to the interior of TΦ(q(t)), then from (2.42) we get projM(q(t))(TΦ(q(t));v(t−)) =
v(t−) and v(t+) = v(t−).

The well-posedness of the second order sweeping process has been studied

in Monteiro Marques (1985, 1993), Mabrouk (1998), Dzonou et al. (2007), and

Dzonou and Monteiro Marques (2007). The position q(·) is absolutely continuous,

and the velocity v(·) is RCLBV. For non mathematical introductions to the La-

grangian sweeping process, see Acary and Brogliato (2008) and Brogliato (1999).
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Fig. 2.16 An RLC circuit

with a controlled voltage

source

2.4.1.3 Higher Order Sweeping Process

The so-called higher-order sweeping process, defined and studied in Acary et al.

(2008), is an extension of the above measure differential inclusion in cases where

the solutions are not measures but distributions of larger degree. The interested

reader may have a look at Acary et al. (2008) or at Acary and Brogliato (2008,

Chaps. 5 and 11). Circuits with nonsmooth electronic devices may possess cur-

rents and/or voltages which are distributions (Dirac measure and its derivatives),

provided the current and/or voltage sources are controlled by internal variables. It

is known in circuits theory modeled by differential-algebraic equations (DAE) that

such internally-controlled sources may increase the index of the system. This is di-

rectly linked to the relative degree of the complementarity variables. Clearly in the

case of circuits made of dissipative elements, getting solutions that contain distribu-

tions of degree strictly larger than 2 (i.e. derivatives of Dirac measures) is possible

only with controlled sources. Let us provide an example, with the RLCD circuit de-

picted in Fig. 2.16. Let us assume that the voltage u(·) is a dynamic feedback of the

“output” the voltage across the diode, λ(t):
{

u = λ + Lx3,

ẋ3(t) = x4(t),

ẋ4(t) = λ(t).

(2.43)

Inserting this control input inside the circuit’s dynamics, one obtains:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ1(t) = x2(t),

ẋ2(t) = − R
LC

x2(t) − 1
RC

x1(t) + x3(t),

ẋ3(t) = x4(t),

ẋ4(t) = λ(t),

0 � λ(t) ⊥ w(t) = −x2(t) � 0.

(2.44)

This dynamics is written under the form of a linear complementarity system (see

(2.53) below). It is easily calculated that D = CB = CAB = 0 while CA2B = 1,
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so that the relative degree between λ and w is equal to 3. The dynamical system as

it is written in (2.44) is not complete, in the sense that one cannot perform its time-

integration without adding supplementary modeling informations. In fact, it is miss-

ing in (2.44) a state re-initialization rule which enables one to compute a state jump

when the admissible domain boundary x2 = 0 is attained. In Acary et al. (2008)

a complete framework is proposed that enables one to give a rigorous meaning to

the dynamics in (2.44), together with a time-stepping method and some preliminary

convergence results. Such a dynamical system is then embedded into a differential

inclusion whose solutions are Schwartz’ distributions, and which is an extension

of (2.38). The state jumps are automatically taken into account in the formulation.

Then the system can be integrated in time and the domain {x ∈ R
4 | x2 � 0} is an

invariant subset of the state space.

To summarize, Moreau’s sweeping processes are particular differential in-

clusions into normal cones to moving sets. It was originally introduced in the

field of Mechanics. Electrical circuits with nonsmooth electronic devices have

recently been recast into sweeping processes, which facilitates their analysis.

2.4.2 Dynamical Variational Inequalities

Dynamical variational inequalities (DVI) are evolution problems of the form:
{

x(t) ∈ dom(ϕ) for all t � 0,

〈ẋ(t) + f (x(t), t), v − x(t)〉 + ϕ(v) − ϕ(x(t)) � 0 for all v ∈ R
n,

(2.45)

for some convex, proper and lower semi-continuous function ϕ : R
n → R. The DVI

in (2.45) may be named a VI of the second kind. Let us choose ϕ(·) = ψC(·) for

some non empty, closed convex set C ∈ R
n. Then we obtain:

{

x(t) ∈ C for all t � 0,

〈ẋ(t) + f (x(t), t), v − x(t)〉 � 0 for all v ∈ C,
(2.46)

which is a DVI of the first kind. From (2.6) it easily follows that −ẋ(t) − f (x(t), t)

is a subgradient of ϕ(·) at x(t). We may therefore rewrite (2.45) equivalently as:
{

x(t) ∈ dom(ϕ) for all t � 0,

ẋ(t) + f (x(t), t) ∈ −∂ϕ(x(t)),
(2.47)

which is a differential inclusion. If ϕ(·) = ψC(·), the indicator function of the set C,

then ∂ϕ(x) = NC(x), the normal cone to C at x. Then the DVI (2.45) is an inclusion

into a normal cone. Suppose now that ϕ(·) = ψC(t,x)(·), i.e. the set C may depend

on t and x. Then we obtain:
{

x(t) ∈ C(t, x(t)) for all t � 0,

〈ẋ(t) + f (x(t), t), v − x(t)〉 � 0 for all v ∈ C(t, x(t)),
(2.48)
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which is a quasi DVI. Moreau’s sweeping process is one particular type of a QDVI

with C(x) = TΦ(q) (the tangent cone to the admissible domain of the configuration

space), see (2.37) and (2.38). A well-known result for the existence and uniqueness

of solutions of DVIs is Kato’s Theorem (Kato 1968). Let us present one extension

of Kato’s theorem. Let us introduce the following class of differential inclusions,

where x(t) ∈ R
n:
{

ẋ(t) ∈ −A(x(t)) + f (t, x(t)), a.e. on (0, T ),

x(0) = x0.
(2.49)

The following assumption is made:

Assumption 2.57 The following items hold:

(i) A(·) is a multivalued maximal monotone operator from R
n into R

n, with do-

main dom(A), i.e., for all x ∈ dom(A), y ∈ dom(A) and all x′ ∈ A(x), y′ ∈
A(y), one has

(x′ − y′)T (x − y) � 0. (2.50)

(ii) There exists L � 0 such that for all t ∈ [0, T ], for all x1, x2 ∈ R
n, one has

‖f (t, x1) − f (t, x2)‖ � L‖x1 − x2‖.

(iii) There exists a function Φ(·) such that for all R � 0:

Φ(R) = sup

{∥

∥

∥

∥

∂f

∂t
(·, v)

∥

∥

∥

∥

L 2((0,T );Rn)

∣

∣

∣

∣

‖ v ‖L 2((0,T );Rn)� R

}

< +∞.

The following is proved in Bastien and Schatzman (2002).

Proposition 2.58 Let Assumption 2.57 hold, and let x0 ∈ dom(A). Then the dif-

ferential inclusion (2.49) has a unique solution x : (0, T ) → R
n that is Lipschitz

continuous with essentially bounded derivatives.

It suffices to recall that the subdifferential of a convex proper lower semi-

continuous function ϕ(·) defines a maximal monotone mapping (see Theorem 2.34),

to conclude about the well-posedness of the DVI in (2.45) using Proposition 2.58.

2.4.3 Complementarity Dynamical Systems

Just as there are many kinds of complementarity problems, there are many kinds of

complementarity systems, i.e. systems that couple an ordinary differential equation

to a set of complementarity conditions between two slack variables. The circuits

whose dynamics are in (1.3), (1.16), and (1.38) are particular complementarity sys-

tems.
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2.4.3.1 Some Classes of Complementarity Systems

Let us give a very general complementarity formalism as follows:
{

G(ẋ(t), x(t), t, λ) = 0,

C∗ ∋ λ ⊥ w(t) ∈ C,

F (x(t), t, λ,w(t)) = 0,

(2.51)

where C ⊆ R
m is a closed convex cone, C∗ is its dual cone, λ ∈ R

m may be inter-

preted as a Lagrange multiplier, x(t) ∈ R
n, F(·) and G(·) are some functions. The

variables λ and w form a pair of slack variables. Such a formalism is by far too gen-

eral to be analyzed efficiently (and to be subsequently simulated efficiently!). One

has to split the class of dynamical systems in (2.51) into more structured subclasses.

Some examples are given now.

Definition 2.59 (Dynamical Complementarity Systems) A dynamical complemen-

tarity system (DCS) in an explicit form is defined by:
{

ẋ(t) = f (x(t), t, λ(t)),

w(t) = h(x(t), λ(t)),

0 � w(t) ⊥ λ(t) � 0.

(2.52)

If the smooth dynamics and the input/output function are linear, we speak of

linear complementarity systems.

Definition 2.60 (Linear Complementarity Systems) A linear complementarity sys-

tem (LCS) is defined by:
{

ẋ(t) = Ax(t) + Bλ(t),

w(t) = Cx(t) + Dλ(t),

0 � w(t) ⊥ λ(t) � 0.

(2.53)

When the functions F(·) and G(·) are linear and the cone C is a non negative

orthant one gets:

Definition 2.61 (Mixed Linear Complementarity Systems) A mixed linear com-

plementarity system (MLCS) is defined by:
{

Eẋ(t) = Ax(t) + Bλ(t) + F,

Mw(t) = Cx(t) + Dλ(t) + G,

0 � w(t) ⊥ λ(t) � 0.

(2.54)

If both the matrices E and M are square full rank and E = F = 0, we are back to

an LCS as in (2.53). See for instance Example 7 in Brogliato (2003) for a system that

fits within MLCS. One may also call such systems descriptor variable complemen-

tarity systems. As shown in Brogliato (2003) many systems with piecewise-linear

characteristics may be recast into (2.54).

Remark 2.62 It is not clear whether or not the variable x in (2.54) should be called

the state of the MLCS. Indeed if E is not full rank then some of the components of
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x do not vary and satisfy only an algebraic constraint. As such they cannot be called

a state variable. Some examples are given in Chap. 7, Sects. 7.2 and 7.3.

Definition 2.63 (Nonlinear Complementarity Systems) A nonlinear complementar-

ity system (NLCS) is defined by:
{

ẋ(t) = f (x(t), t) + g(x(t))λ(t),

w(t) = h(x(t), λ(t)),

0 � w(t) ⊥ λ(t) � 0.

(2.55)

If g(x) = −∇h(x), one obtains so-called gradient type complementarity systems

which are defined as follows:

Definition 2.64 (Gradient Complementarity System) A gradient complementarity

system (GCS) is defined by:
{

ẋ(t) + f (x(t)) = ∇g(x(t))λ(t),

w(t) = g(x(t)),

0 � w(t) ⊥ λ(t) � 0.

(2.56)

The above complementarity systems are autonomous, without explicit depen-

dence on time. Obviously one may define non autonomous CS, with exogenous

inputs. For instance the non autonomous LCS dynamics is:
{

ẋ(t) = Ax(t) + Bλ(t) + Eu(t),

w(t) = Cx(t) + Dλ(t) + Fu(t),

0 � w(t) ⊥ λ(t) � 0.

(2.57)

More details on the definitions and the mathematical properties of CS can be

found in Camlibel et al. (2002b), Camlibel (2001), van der Schaft and Schumacher

(1998), Shen and Pang (2007), Heemels and Brogliato (2003), Brogliato (2003),

and Brogliato and Thibault (2010). Roughly speaking, a lot depends on the relative

degree between the two complementarity variables w and λ. The relative degree is

the number of times one needs to differentiate the “output” w along the dynamics

in order to recover the “input” λ. As an example let us consider the following scalar

LCS:
{

ẋ(t) = x(t) + λ,

0 � λ ⊥ w(t) = x(t) � 0.
(2.58)

Then ẇ(t) = ẋ(t) = λ(t) so that the relative degree is r = 1. If now w(t) =
x(t) + λ(t) then r = 0. Most of the results on existence and uniqueness of solutions

to complementarity systems hold for relative degrees 0 or 1, in which case only

measures appear in the dynamics. When r � 2 distributional solutions have to be

considered, see Acary et al. (2008) where such LCS are embedded into the higher

order sweeping process. The well-posedness of (2.57) has been shown in Camli-

bel et al. (2002b) when (A,B,C,D) defines a dissipative system (see Brogliato

et al. 2007 for a definition). Local existence and uniqueness results are presented in

van der Schaft and Schumacher (1998) for (2.55). Global existence and uniqueness

of RCLBV (with state jumps) and absolutely continuous solutions is shown for LCS
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(2.57) and NLCS (2.55) in Brogliato and Thibault (2010), under an “input-output”

constraint. In Acary et al. (2008) LCS with high relative degree have been embed-

ded into the so-called higher order sweeping process, that is a differential inclusion

whose solutions are distributions.6

In the field of electrical circuits, one shall often encounter systems of the type

(2.54) with a singular matrix E. From the material of Chap. 1 and the analysis of

the dynamics of the circuits in Fig. 1.10, one easily guesses that the dynamics in

(2.51) through (2.57) are not complete: a state reinitialization rule is missing (this

was already pointed out in (1.61)). See Sect. 2.4.3.2 for more details on jump rules

in a complementarity setting.

2.4.3.2 State Jump Laws

State jump rules are a well-known and widely studied topic in nonsmooth mechan-

ics, where they correspond to velocity discontinuities created by impacts between

rigid bodies. The realm of impact dynamics in nonsmooth mechanics is vast, and it

has its counterpart in nonsmooth circuits. It is apparent from most of the examples

which are analyzed in Chap. 1, that we may in a first instance write the dynamics of

the presented circuits as:
{

ẋ(t) = Ax(t) + Bλ(t) + Eu(t),

w(t) = Cx(t) + Dλ(t) + Fu(t),

0 � w(t) ⊥ λ(t) � 0

(2.59)

for some matrices A, B , C, D, E and F of appropriate dimensions. The state is x(t),

the external excitation is u(t) (it may be voltage sources or current sources). Let us

analyze intuitively the necessity for state jumps (see also the analysis we made for

the circuit in (1.16)). Suppose for instance that D = 0, and that w(t) = 0 for some t .

Assume that at t , u(·) jumps from a value u(t−) such that Cx(t−) + Fu(t−) = 0

to a value u(t+) such that Cx(t−) + Fu(t+) < 0. In order to respect the model

dynamics the state has to jump to a value such that Cx(t+) + Fu(t+) > 0. If such

a right-limit does not exist, we may conclude that the model is not well-posed and

should be changed. The necessity for state jumps may also arise in some circuits

with ideal switches, from topology changes. When the switch is ON, the dynamics is

a certain differential-algebraic equation (DAE). When the switch is OFF, it becomes

another DAE. However the value of the state just before the switch, may not be

admissible initial data for the DAE just after the switch. It is well-known that a

DAE with inconsistent initial data, has a solution that may be a distribution (Dirac

and derivatives of Dirac).

State jumps have been introduced in Sect. 1.1.5 for the circuit in Fig. 1.10. There

the numerical method in (1.17) suggested the jump law in (1.20) (equivalently (1.26)

and (1.27)). In particular the form (1.27) is a quadratic program, hence an attractive

6This seems to be the very first instance of a distribution differential inclusion, with a complete

analysis and a numerical scheme.
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formulation from a numerical point of view. Before stating the state jump law pre-

sented in Frasca et al. (2007, 2008) and Heemels et al. (2003) (below the formulation

is different from the one in these papers, and rather follows from convex analysis

arguments as in Brogliato and Thibault (2010, Remark 2), we need some prepara-

tory material. The quadruple (A,B,C,D) is said to be passive if the linear matrix

inequality:
(

−AT P + PA −PB + CT

−BT P + C D + DT

)

� 0 and P = P T > 0 (2.60)

has a solution P . The quadratic function V (x) = 1
2
xT Px is then a so-called storage

function of the system ẋ(t) = Ax(t) + Bλ(t), w(t) = Cx(t) + Dλ(t), with supply

rate ω(λ,w) = λT w. The linear matrix inequality in (2.60) is then equivalent to the

dissipation inequality:

V (x(t)) − V (x(0)) �

∫ t

0

ω(w(s), λ(s))ds for any t � 0. (2.61)

Let us define the set K = {z ∈ R
n | Cz + Fu(t+) ∈ QD}, with QD = {z ∈ R

m |
z � 0,Dz � 0, zT Dz = 0}. Q∗

D and K∗ are their dual cones. If D = 0 then QD =
R

m
+ = Q∗

D .

Proposition 2.65 Let us consider the LCS in (2.59), and suppose that (A,B,C,D)

is passive with storage function V (x) = 1
2
xT Px, P = P T > 0. Suppose a jump

occurs in x(·) at time t , so that x(t+) = x(t−) + Bpt where λ = ptδt . Suppose

that F and C are such that Fu(t) ∈ Q∗
D + Im(C). For any x(t−) there is a unique

solution to:

x(t+) = argmin
x∈K

1

2
(x − x(t−))T P(x − x(t−)) (2.62)

that is equivalent to:

P(x(t+) − x(t−)) ∈ −NK(x(t+)) (2.63)

and to

K ∋ x(t+) ⊥ P(x(t+) − x(t−)) ∈ K∗. (2.64)

Then the post-jump state x(t+) is consistent with the complementarity system’s dy-

namics on the right of t .

The equivalences are a consequence of Propositions 2.37 and 2.51. The condition

Fu(t) ∈ Q∗
D + Im(C) is a sort of constraint qualification condition, which guaran-

tees that the LCP 0 � λ ⊥ Cx + Fu + Dλ � 0 has a solution (see Sect. 5.2.2 for a

similar condition, stated in a different context). Notice that we have implicitly as-

sumed that λ is a measure, which indeed is the case. Recall also that the LCS in

(2.59) can be interpreted, by splitting y into its components satisfying wi(t
+) > 0

and those satisfying wj (t
+) = 0, as a DAE. Such a DAE corresponds to what one

may call a mode of the system. Consistency of x(t+) means consistency with re-

spect to this DAE. In other words, the state jump rule does not only have a physical
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motivation but also guarantees that the system is coherent once x(·) has jumped to a

new value, in the sense that there is a unique mode of the LCS such that the resulting

DAE has x(t+) as its consistent initial state.

We note that BT PBpt = BT P(x(t+) − x(t−)). If B ∈ R
n×m has full rank m

(which in particular implies that m < n) then the multiplier magnitude at t is given

uniquely by pt = (BT PB)−1BT P(x(t+) − x(t−)).

Remark 2.66 This way of modeling and formulating state jump rules for electrical

circuits with nonsmooth electronic devices, is inspired from J.J. Moreau’s frame-

work of unilateral mechanics, see Sect. 2.4.1 and e.g. Brogliato (1999, pp. 199–200).

Notice that (2.63) means that x(t+) is the projection of x(t−) onto K in the metric

defined by the matrix P . Compare with (2.42) with e = 0. In Frasca et al. (2008) the

state jumps in electrical circuits are given a physical meaning in terms of charge/flux

conservation. It is noteworthy that Proposition 2.65 does not apply to the controlled

circuit (2.44) which has to be embedded into the higher order sweeping process.

Let D have full rank m. Then QD = {0}, Q∗
D = R

m, K = R
n and K∗ = {0}.

Therefore from Proposition 2.65 x(t+) = x(t−): there is no state jumps, and the

trajectories are continuous functions of time. This is quite consistent with the ob-

servation that when D is a P -matrix, then the complementarity conditions of the

LCS define an LCP that has a unique solution λ∗ whatever u(t) and x(t). Moreover

this λ∗ is a Lipschitz function of u and x. Consequently the LCS in (2.57) is an

ordinary differential equation with a Lipschitz continuous right-hand-side, and with

C1(R+;R
n) solutions.

When D = 0, then one has QD = R
m
+, Q∗

D = {0}, K = {z ∈ R
n | Cz +

Fu(t+) � 0}. Then a state jump may occur depending on the value of u(t+) (see

Sect. 5.2 for further comments on state jumps).

Complementarity dynamical systems constitute a large class of nonsmooth

systems. Existence and uniqueness of global solutions have been shown in

particular cases only. Simple electrical circuits with nonsmooth electronic

devices like ideal diodes are modeled with linear complementarity systems.

They undergo state jumps which may be justified from physical energetical

arguments, similarly to restitution laws of mechanics.

2.4.3.3 Examples

Let us end this section on complementarity dynamical systems by providing fur-

ther illustrating examples (several examples have already been presented in the

foregoing chapter). Let us consider the electrical circuit in Fig. 2.17 that is com-

posed of two resistors R with voltage/current law u(t) = Ri(t), four capacitors
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Fig. 2.17 Electrical circuit

with capacitors, resistors and

ideal diodes

Fig. 2.18 A 4-diode bridge wave rectifier

C with voltage/current law Cu̇(t) = i(t), and two ideal diodes with characteris-

tics 0 � v1(t) ⊥ i1(t) � 0 and 0 � v2(t) ⊥ i3(t) � 0 respectively. The state vari-

ables are x1(t) =
∫ t

0 i1(t)dt , x2(t) =
∫ t

0 i2(t)dt , x3(t) = v2(t), and λ1(t) = −i3(t),

λ2(t) = v1(t).

The dynamics of this circuit is given by:

(

ẋ1(t)

ẋ2(t)

ẋ3(t)

)

=

⎛

⎜

⎝

−2
RC

1
C

0

1
C

−2
RC

1

0 0 0

⎞

⎟

⎠

(

x1(t)

x2(t)

x3(t)

)

+

(

0 1
R

0 0
1
C

0

)

λ(t),

0 � λ(t) ⊥ w(t) =

(

0 0 1
−2
RC

1
RC

0

)

(

x1(t)

x2(t)

x3(t)

)

+

(

0 0

0 1
R

)

λ(t) � 0.

(2.65)

The matrices A, B , C and D in (2.53) are easily identified. It is noteworthy that

the feedthrough matrix D is positive semi-definite only.

Let us consider the four-diode bridge wave rectifier in Fig. 2.18, with a capacitor

C > 0, an inductor L > 0, a resistor R > 0. Its dynamics is given by:
[

ẋ1(t)

ẋ2(t)

]

=

[

0 − 1
C

1
L

0

][

x1(t)

x2(t)

]

+

[

0 0 − 1
C

1
C

0 0 0 0

]

λ(t),

0 � w(t) ⊥ λ(t) � 0,

(2.66)
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where x1 = vL, x2 = iL, λ = (−vDR1 − vDF2 iDF1 iDR2)
T , y = (iDR1 iDF2 −

vDF1 − vDR2)
T and

w =

⎡

⎢

⎣

0 0

0 0

−1 0

1 0

⎤

⎥

⎦

[

x1

x2

]

+

⎡

⎢

⎣

1
R

1
R

−1 0
1
R

1
R

0 −1

1 0 0 0

0 1 0 0

⎤

⎥

⎦
λ. (2.67)

Notice that in this example the dimension of the state vector is 2 while the dimension

of the LCP variables is 4 (in a Systems and Control language, the “input” has a larger

dimension than the state). The matrix D is a full rank, positive semi-definite matrix.

As a second example of a diode bridge, let us consider the circuit obtained from the

circuit of Fig. 2.18 by dropping the capacitor and the inductance outside the bridge,

and adding a capacitor C in parallel with the resistor inside the bridge. The state x

is the voltage across the capacitor. We assume that each diode has a current/voltage

law of the form Vk ∈ −∂ϕk(ik), k = 1,2,3,4, for some convex, proper lower semi-

continuous functions ϕk(·). The material of Sect. 2.3.3 together with Example 2.26

should help the reader to find that if ϕk(·) = ψK(·) for some convex set K , then

the diode k possesses a complementarity formulation of its current/voltage law. The

dynamics of this circuit is given by:

ẋ(t) = −
1

RC
x(t) +

(

1
C

0 1
C

0
)

λ(t),

w(t) =

⎛

⎜

⎝

1

0

1

0

⎞

⎟

⎠
x(t) +

⎛

⎜

⎝

0 −1 0 0

1 0 1 −1

0 −1 0 0

0 1 0 0

⎞

⎟

⎠
λ(t),

(2.68)

with w1 = VDR1, w2 = iDF2, w3 = VDF1, w4 = VDR2, and λ = (iDR1 VDF2

iDF1 iDR2)
T . The matrix D has rank 2, it is positive semi-definite since it is skew

symmetric.

These three examples show that electrical circuits may yield LCS as in (2.53)

with matrices D that may be positive semi-definite with full rank, skew sym-

metric, or positive semi-definite with low rank. The fact that the D matrix,

which is the system’s LCP matrix, may be non symmetric, is a strong feature

of electrical circuits with ideal diodes.

In Chap. 7 we will study other examples that yield MLCS as in (2.54).

2.4.4 Filippov’s Inclusions

Filippov’s inclusions are closely linked to so-called variable structure systems, or

switching systems. The study of such systems started in the fifties in the former
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USSR, and is still a very active field of research in control theory, because of the

efficiency of sliding mode controllers (Yu and Kaynak 2009; Utkin et al. 2009). Let

us start from a switching system of the form:

ẋ(t) = Aix(t) + ai(t) if x(t) ∈ χi, i ∈ I1, x(0) = x0 ∈ R
n (2.69)

for constant matrices Ai and time-functions ai(t), and a partitioning of R
n in poly-

hedral sets χi is defined:

(i) the sets χi are finitely represented as χi = {x ∈ R
n | Cix + Di � 0}, Ci ∈

R
mi×n, Di ∈ R

mi×1,

(ii)
⋃m

i=1 χi = R
n,

(iii) for all i �= j , (χi \ ∂χi) ∩ (χj \ ∂χj ) = ∅,

(iv) the sets χi have an nonempty interior.

Conditions (iii) and (iv) imply that χi ∩ Int(χj ) = ∅ for all i �= j . We denote

the set of indices of the partition as I1, i.e. the set of polyhedra is {χi}i∈I1
. Ob-

viously I1 may be finite, or infinite. The properties (ii) and (iii) mean that the

polyhedral sets χi cover R
n, and their interiors are disjoint: only their boundary

may be common with the boundary of other sets. The dynamics in (2.69) defines a

polyhedral switching affine system. We may write compactly the system (2.69) as

ẋ(t) = f (x(t), t) for some function f (·, ·) that is constructed from the vector fields

fi(x, t) = Aix + ai(t). It is clear that unless some conditions are imposed on the

boundaries ∂χi , the vector field f (·, ·) is discontinuous on ∂χi . The simplest ex-

ample is when fi(x) = ai , fj (x) = aj , i �= j , and ai �= aj . Then three situations

may occur when a solution reaches a boundary between two cells χi and χj : (i) the

trajectory crosses the switching surface ∂χi (that coincides with ∂χj at the consid-

ered point in the state space), (ii) the trajectory remains on the boundary and then

evolves on it (this is called a sliding motion, (iii) there are several possible future

trajectories: one that stays on the boundary, and others that leave it (this is called a

spontaneous jump in the solution derivative).

2.4.4.1 Simple Examples

The simplest cases that enable one to clearly see this are the scalar switching sys-

tems:

ẋ(t) = g(t) +
{

1 if x < 0,

−1 if x > 0,
(2.70)

ẋ(t) = g(t) +
{

−1 if x < 0,

1 if x > 0,
(2.71)

ẋ(t) = g(t) +
{

1 if x < 0,

1 if x > 0,
(2.72)

with x(0) ∈ R and |g(t)| �
1
2

for all t � 0, where g(·) is a continuous function of

time (for instance g(t) = 1
2

sin(t)). In (2.70)–(2.72) we intentionally ignored the

value of the discontinuous vector field f (x, t) at x = 0. It is easy to see that:
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• In case (2.70) all trajectories with x(0) �= 0 converge (in finite time) to the “sur-

face” x = 0.

• In case (2.71) all trajectories starting with x(0) < 0 diverge to −∞, all trajectories

with x(0) > 0 diverge to +∞.

• In case (2.72) all trajectories starting with x(0) < 0 reach x = 0 in finite time; all

trajectories starting with x(0) > 0 diverge to +∞.

In all three cases we are not yet able to determine what happens on the “surface”

x = 0. The solution proposed by Filippov is to embed these systems into a class

of differential inclusions, whose right-hand-side is the closed convex hull of the

vector fields at a discontinuity, disregarding the value (if any) of the vector fields on

surfaces of zero measure in the state space. This gives for the three above cases:

ẋ(t) ∈ {g(t)} +
{

1 if x < 0,

−1 if x > 0,

[−1,1] if x = 0,

(2.73)

ẋ(t) ∈ {g(t)} +
{−1 if x < 0,

1 if x > 0,

[−1,1] if x = 0,

(2.74)

ẋ(t) = 1 + g(t) (2.75)

with x(0) ∈ R. Some comments arise:

• Since Filippov ignores values on sets of measure zero, one can in particular as-

sign any value to the vector field on x = 0 in (2.70), (2.71) or (2.72): this does

not change the right-hand-sides of the differential inclusions in (2.73), (2.74) or

(2.75);

• Let us write (2.70)–(2.72) as ẋ(t) = g(t) + h(x(t)). Suppose we assign the value

h(0) = a to the vector field in the above three systems in (2.70), (2.71) and (2.72).

Then:

– the three systems have a fixed point at x = 0 if and only if g(t) = −a for all t ;

– if x(0) = 0, then (2.70) has a solution on R
+ if and only if g(t) = −a; this

solution is x(t) ≡ 0. Otherwise the system can not be given a solution, because

if at some t one has x(t) = 0, then ẋ(t) �= 0 so that the trajectory has to leave

the origin. However the vector field outside x = 0 tends to immediately push

again the solution to x = 0: a contradiction. We conclude that the trajectories

that start with x(0) �= 0 exist until they reach x = 0, and not after;

– if x(0) = 0, then (2.71) has a unique global in time solution that diverges

asymptotically either to +∞ or −∞ depending on the sign of g(0)+ a; (2.72)

also has a unique solution that diverges to +∞.

Consider now the three Filippov’s systems in (2.73), (2.74) and (2.75). Then:

• x = 0 is a fixed point of (2.73) and (2.74). However (2.75) has no fixed point

except if g(t) ≡ −1;

• the trajectories of (2.73) with x(0) �= 0 reach x = 0 in a finite time t∗, and then

stay on the “surface” x = 0; this is due to the fact that on the switching surface

x = 0, there is always one element of the multivalued part of the right-hand-side,
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i.e. [−1,1], that is able to compensate for g(t) and to guarantee that ẋ(t) = 0

for all t > t∗; the origin x = 0 is an attractive surface called a sliding surface

(the name surface is here not quite appropriate, but will be in higher dimensional

systems).

• the differential inclusion in (2.74) has at least three solutions starting from x(0) =
0: x(t) ≡ 0, x(t) = t +

∫ t

0 g(s)ds and x(t) = −t +
∫ t

0 g(s)ds. A spontaneous

jump exists. Actually for all T > 0 the functions x(t) = 0 for t ∈ [0, T ], and

x(t) = t − T +
∫ t

T
g(s)ds for t � T or x(t) = −t − T +

∫ t

T
g(s)ds for t � T are

solutions.

The conclusion to be drawn from these simple examples is that embedding

switching systems into Filippov’s inclusions, may drastically modify their dynam-

ics. This is a modeling step whose choice has to be carefully made from physical

considerations.

2.4.4.2 Filippov’s Sets

The general definition of a Filippov’s set, starting from a general bounded vector

field f (x) (with possible points of discontinuity) is as follows:

F(x) =
⋂

ǫ>0

⋂

μ(N)=0

convf ((x + ǫBn) \ N) (2.76)

where Bn is the unit ball of R
n, μ is the Lebesgue measure and conv(v1, v2, . . . , vn)

denotes the closed convex hull of the vectors v1, v2, . . . , vn. Let us provide some

insight on (2.76):

• by construction F(x) is always non empty, closed and convex for each x;7

• let x ∈ R
n. One considers the convex hull of all the values of f (z), with z ∈

x + ǫBn and ǫ → 0. If f (·) is continuous at x then there is only one such values

that is nothing else but f (x), and F(x) = {f (x)}. If f (·) is discontinuous at x

then all the different values that it takes in a neighborhood of x are taken into

account;

• the definition of the set in (2.76) disregards what happens on subspaces of mea-

sure zero in R
n, denoted as N in (2.76). In R

3, it ignores the “isolated” values the

vector field f (x) may take on planes, lines, points. For instance in (2.70) one may

assign any value of the right-hand-side at x = 0, without changing its Filippov’s

set in (2.73). Similarly for the other two systems;

• as alluded to above, embedding switching systems into Filippov’s inclusions is a

particular choice; other notions exist, see Cortés (2008) for an introduction.

• in practice the computation of a solution in the sense of Filippov may not always

be easy, because it may boil down to calculate the intersection between a hyper-

surface and a polyhedral set. This is particularly true when switching attractive

surfaces with co-dimension larger than 2 exist.

7The boundedness of f (x) is essential here.
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Starting from (2.76), the Filippov’s differential inclusion is:

ẋ(t) ∈ F(x(t)), x(0) = x0 ∈ R
n. (2.77)

When particularized to the switching systems in (2.69), one obtains for x ∈ Σ
�=

χi1 ∩ χi2 ∩ · · · ∩ χik with i1 �= i2 �= · · · �= ik :

F(x) = conv(Ai1x + ai1,Ai2x + ai2, . . . ,Aikx + aik ) (2.78)

and one disregards the possible values on Σ which is of codimension k > 0 and

therefore of measure zero in R
n. The set F(x) in (2.78) is a polyhedral set of R

n: a

segment if k = 2, a triangle if k = 3, etc.

2.4.4.3 Existence of Absolutely Continuous Solutions

It happens that a differential inclusion whose right-hand-side is a Filippov’s set,

always possesses at least one solution that is absolutely continuous. Before stating

the result let us provide a definition.

Definition 2.67 (Outer semi-continuous differential inclusions) A differential in-

clusion is said to be outer semi-continuous if the set-valued map F : R
n → R

n

satisfies the following conditions:

1. it is closed and convex for all x ∈ R
n;

2. it is outer semi-continuous, i.e. for every open set M containing F(x), x ∈ R,

there exists a neighborhood Ω of x such that F(Ω) ⊂ M .

Filippov’s sets satisfy such requirements when the discontinuous vector field f (·)
is bounded, and the next Lemma applies to Filippov’s differential inclusions.

Lemma 2.68 Let F(x) satisfy the conditions of Definition 2.67, and in addition

‖F(x)‖ � c(1 + ‖x‖) for some c > 0 and all x ∈ R
n. Then there is an absolutely

continuous solution to the differential inclusion ẋ(t) ∈ F(x(t)) on R
+, for every

x0 ∈ R
n.

This result extends to time-varying inclusions F(t, x) (Theorem 5.1 in Deimling

1992). The notation ‖F(x)‖ � c(1 + ‖x‖) means that for all ξ ∈ F(x) one has

‖ξ‖ � c(1 + ‖x‖): this is a linear growth condition. In view of (2.78) a solution has

to satisfy the differential equation

ẋ(t) =
k
∑

j=1

αij (Aij x(t) + aij ), (2.79)

for some αij ∈ (0,1) with
∑k

j=1 αij = 1.
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2.4.4.4 Uniqueness of Solutions

The uniqueness of solutions is a more tricky issue than the existence one, as in gen-

eral it is not guaranteed by the Filippov’s set. Example (2.74) shows that even in very

simple cases uniqueness may fail. In order to obtain the uniqueness property one has

to impose more on the set-valued mapping F(·). The maximal monotone property

can be used to guarantee the uniqueness of the solutions, see Proposition 2.58. It is

easy to check that the system in (2.73) fits within the framework of Proposition 2.58,

whereas the system in (2.74) does not.

When the switching surface is of codimension 1 (said otherwise: there is only one

differentiable switching surface), then the following criterion that is due to Filippov

(1964, 1988), assures the uniqueness of solutions.

Proposition 2.69 Let us consider the polyhedral switching system in (2.69) with two

cells χ1 and χ2 with a common boundary ∂χ1 = ∂χ2 denoted as Σ . Let us denote

f : R
n → R

n its discontinuous piecewise-linear vector field. If, for each x ∈ Σ ,

either fχ1
(x) = A1x + a1 points into χ2, or fχ2

(x) = A2x + a2 points into χ1, then

there exists a unique Filippov’s solution for any x(0) ∈ R
n.

The proposition says that if the switching surface Σ is attractive, or if it is cross-

ing, then the differential inclusion constructed with the Filippov’s set (2.76) enjoys

the uniqueness of solutions property, within the set of absolutely continuous func-

tions. When Σ is attractive then the solution slides along it (a sliding motion), in the

other case it justs crosses Σ .

Notice that if the convex combination in (2.79) is unique so is the solution. The

point is that when the discontinuity surface is of codimension larger than 2, the

conditions of Proposition 2.69 are no longer sufficient to guarantee the uniqueness

of such a convex combination.

Example 2.70 This example is taken from Johansson (2003). We consider the fol-

lowing piecewise-linear system:
{

ẋ1(t) = x2(t) − sgn(x1(t)),

ẋ2(t) = x3(t) − sgn(x2(t)),

ẋ3(t) = −2x1(t) − 4x2(t) − 4x3(t) − x3(t) sgn(x2(t)) sgn(x1(t) + 1),

(2.80)

where sgn(·) is here just the discontinuous single valued sign function. This switch-

ing system has four cells χi . The surfaces Σ1 = {x ∈ R
3 | x1 = 0, |x2| � 1}, Σ2 =

{x ∈ R
3 | x2 = 0, |x3| � 1}, and the line Σ12 = {x ∈ R

3 | x1 = 0, x2 = 0, |x3| � 1}
are attractive. Therefore the Filippov solutions slide on these surfaces once they at-

tain them. Both Σ1 and Σ2 are of codimension 1 so that Proposition 2.69 applies.

However Σ12 is of codimension 2. It can be checked that the following two sets of

coefficients:

α1 =
1 + sgn(x3)

4
, α2 =

1 + x3

2
, α3 = −

x3

2
+ α1, α4 =

1

2
− α1

and

β1 = α2, β2 = α1, β3 = α4, β4 = α3,
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both define differential equations as in (2.79) whose solution is a solution of the

Filippov’s inclusion for (2.80).

There exists a more general property than monotonicity which guarantees the

uniqueness of solutions: the one-sided-Lipschitz-continuity. This property, that is

useful to show uniqueness of solutions, was introduced for stiff ordinary differential

equations by Dekker and Verwer (1984) and Butcher (1987), and for differential in-

clusions in Kastner-Maresch (1990–1991) and Dontchev and Lempio (1992). It was

already used by Filippov to prove the uniqueness of solutions for ordinary differen-

tial equations with discontinuous right-hand-side Filippov (1964). Let us provide a

definition that may be found in Dontchev and Farkhi (1998).

Definition 2.71 The set valued map F : R
n → 2R

n \∅ where F(t, x) is compact for

all x ∈ R
n and all t � 0, is called one-sided Lipschitz continuous (OSLC) if there

is an integrable function L : R
+ → R such that for every x1, x2 ∈ R

n, for every

y1 ∈ F(t, x1), there exists y2 ∈ F(t, x2) such that

〈x1 − x2, y1 − y2〉 � L(t)‖x1 − x2‖2.

It is called uniformly one-sided Lipschitz continuous (UOSLC) if this holds for all

y2 ∈ F(t, x2).

It is noteworthy that L(·) may be constant, time-varying, positive, negative, or

zero. We recall that here 〈·, ·〉 simply means the inner product in R
n, but the OSLC

condition may also be formulated for other inner products.

Example 2.72 All set-valued mappings that may be written as F(t, x) = f (t, x) −
ϕ(x), with ϕ : R

n → R
n are multivalued monotone mappings, and f (t, x) is Lips-

chitz continuous, are UOSLC. The OSLC constant L is equal to max(0, λ), where

λ is the Lipschitz constant of the function f (·, ·).

Example 2.73 Consider F(x) = sgn(x), the set-valued sign function. For all x1, x2,

and y1 ∈ F(x1), y2 ∈ F(x2), one has 〈x1 − x2, y1 − y2〉 � 0. Therefore the multi-

function −F(·) satisfies 〈x1 −x2,−y1 +y2〉 � 0 and is UOSLC with constant L = 0

(this is consistent with Example 2.72 with ϕ(x) = ∂|x|). However F(·) is not OSLC,

hence not UOSLC. Indeed take x1 > 0, x2 < 0, so that y1 = 1, y2 = −1. We get

(x1 − x2)(y1 − y2) = 2(x1 − x2) > 0. OSLC implies that 2(x1 − x2) � L(x1 − x2)
2

for some L. A negative L is impossible, and a nonnegative L yields L �
2

x1−x2
. As

x1 − x2 approaches 0, L diverges to infinity.

As shown in Cortés (2008), the one-sided-Lipschitz-continuity cannot be satis-

fied by discontinuous vector fields as in (2.69), with L > 0. However a maximal

monotone mapping F(·) necessarily has its opposite −F(·) that is UOSLC with

L = 0. The next result holds.

Lemma 2.74 Let F(·, ·) be UOSLC with constant L, and let x1 : [t0,+∞) → R
n,

x2 : [t0,+∞) → R
n be two absolutely continuous solutions of the DI: ẋ(t) ∈
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F(t, x(t)), i.e. ẋ1(t) ∈ F(t, x1(t)) and ẋ2(t) ∈ F(t, x2(t)) almost everywhere on

[t0,+∞). Then

‖x1(t) − x2(t)‖ � exp(L(t − t0)) ‖x1(t0) − x2(t0)‖ (2.81)

for all t � t0. In particular, the differential inclusion: ẋ(t) ∈ F(t, x(t)) enjoys the

uniqueness of solutions property.

When particularized to maximal monotone mappings one has to consider inclu-

sions of the form ẋ(t) ∈ −F(t, x(t)) (see (2.49) and Proposition 2.58).

2.4.4.5 Detection of the Sliding Modes

Let us consider the switching system in (2.69). It is of interest to propose a criterion

for the detection of the attractive surfaces. First of all notice that a sliding mode may

occur if the (discontinuous) vector field points towards the switching surface on both

sides of it: this is called a first-order (or regular) sliding mode. But it may also occur

if it is tangent to the switching surface on both sides of it, while its time derivatives

still both point towards the switching surface: this is called a second-order sliding

mode. And so on for higher order sliding modes.

To start with let us assume that the boundary Σij between the two cells χi and

χj , is included into the subspace {x ∈ R
n | cT

ijx + dij = 0}. Suppose also that the

polyhedron χi is such that cT
ijx + dij � 0 for all x ∈ χi (and consequently cT

ijx +
dij � 0 for all x ∈ χj ). Then the set:

Sij = {x ∈ Σij | cT
ij (Aix + ai) < 0 and cT

ij (Ajx + aj ) > 0} (2.82)

is a first-order (or regular) sliding set for the switching system (2.69) on Σij . If at

some point x ∈ Σij one has cT
ij (Aix + ai) = cT

ij (Ajx + aj ) = 0 while d2

dt2 cT
ijx(t) =

cT
ij < 0 in χi and d2

dt2 cT
ijx(t) > 0 in χj (in other words cT

ij (A
2
i x + Aiai) < 0 and

cT
ij (A

2
jx + Ajaj ) > 0) then a second-order sliding mode occurs. It is possible to

construct a linear programme to calculate the points inside a regular sliding set as

follows (Johansson 2003):

(x∗, ǫ∗) = argmin ǫ

subject to:

⎛

⎜

⎜

⎝

Ci

Cj

−cT
ijAi

cT
ijAj

⎞

⎟

⎟

⎠

x +

⎛

⎜

⎜

⎝

Di

Dj

−cT
ijai

cT
ijaj

⎞

⎟

⎟

⎠

�

⎛

⎜

⎝

0

0

ǫ

ǫ

⎞

⎟

⎠
.

If ǫ∗ > 0 then the switching system has a non empty regular sliding set on Sij .
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2.4.5 Maximal Monotone Inclusions, Unilateral Differential

Inclusions

Maximal monotone differential inclusions are essentially differential inclusions as

in (2.49). They are not “standard” differential inclusions, because their right-hand-

side may not be a compact subset of R
n. The most typical example is when the

right-hand-side is a normal cone to a convex non empty set. In view of the material

of Sect. 2.4.2 we will not investigate more such differential inclusions.

Remark 2.75 (Relay systems) A popular class of discontinuous systems in the Sys-

tems and Control research community, is made of so-called relay systems. Their

well-posedness has been investigated in several papers, see e.g. Lootsma et al.

(1999), Lin and Wang (2002) and Acary and Brogliato (2010). Relay systems are as

follows:

{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

u(t) ∈ −Sgn(y(t)),

(2.83)

where Sgn(y) = (sgn(y1) sgn(y2) · · · sgn(ym))T , sgn(·) is the sign multifunction,

x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
m. Such discontinuous systems may belong to the

class of Filippov’s differential inclusions, or maximal monotone differential inclu-

sions, and can also be rewritten into a complementarity systems formalism. Some

subclasses of relay systems are Filippov’s inclusions (see for instance the simple

example (2.73) and replace g(t) by a linear term Ax(t)), and other subclasses are

of the maximal monotone type with a right-hand-side that is not necessarily a Filip-

pov’s set (see Acary and Brogliato 2010). This last result may come as a surprising

fact because the right-hand-side of relay systems contains the multivalued sign func-

tion, that is a common ingredient in simple Filippov (and sliding mode) systems. It

is however easily checked that the system:

ẋ(t) ∈ −CT Sgn(Cx(t)) (2.84)

with C =
(

1 −1
1 1

)

, Sgn(z) = (sgn(z1, . . . , sgn(zn))
T for any vector z ∈ R

n, has a

maximal monotone right-hand-side x �→ CT Sgn(Cx). However the set CT Sgn(Cx)

may strictly contain the Filippov’s set of the associated discontinuous vector field

at x = 0, that is the closed convex hull of the vectors (2,0)T , (0,2)T , (0,−2)T ,

(−2,0)T . This indicates that the Filippov framework for embedding switching sys-

tems may not always be the most suitable framework.

In Lootsma et al. (1999) and Lin and Wang (2002) the uniqueness of continu-

ous, piecewise-analytic solutions is proved, relying on complementarity arguments.

In Acary and Brogliato (2010) relay systems are recast into differential inclusions

(2.49) and the well-posedness is shown via Proposition 2.58.



82 2 Mathematical Background

2.4.6 Equivalences Between the Formalisms

We have seen in Sects. 2.3.3, 2.3.4 and 2.3.5 the close link between generalized

equations, complementarity problems, and variational inequalities. Quite naturally

similar relations exist between their dynamical counterparts. In Sect. 2.4.2 the link

between dynamical variational inequalities and differential inclusions into normal

cones is established, see (2.47). To start with let us consider the DVI in (2.45), with

ϕ(·) = ψC(·) (the indicator function of C) for some non empty closed convex set C.

Then the DVI is equivalent to (2.46) and using (2.24) it is easy to obtain that it is

also equivalent to the complementarity system:
{

ẋ(t) = −f (x(t), t) + λ(t),

C ∋ x(t) ⊥ λ(t) ∈ C∗.
(2.85)

As another example we may consider the differential inclusion in (2.73). As seen

in Sect. 2.4.4 this is a Filippov differential inclusion. This is also a differential in-

clusion of the type (2.49) whose set-valued right-hand-side is a maximal monotone

operator x �→ sgn(x), where sgn(·) is the multivalued sign function. We also have

the following for two reals y and z:

y ∈ sgn(z) ⇔ y =
λ1 − λ2

2
,

λ1 + λ2 = 2,

{

0 � λ1 ⊥ −z + |z| � 0,

0 � λ2 ⊥ z + |z| � 0.

(2.86)

Indeed let z > 0, then λ2 = 0 and λ1 � 0 so that λ1 = 2 and y = 1. Let z < 0, then

λ1 = 0 and λ2 � 0 so that λ2 = 2 and y = −1. Let z = 0, then λ1 � 0 and λ2 � 0.

Since λ1 = 2−λ2 we get y = 1−λ2 so y � 1. Similarly λ2 = 2−λ1 and y = λ1 −1

so y � −1. Finally when z = 0 we obtain that y ∈ [−1,1]. The complementarity

conditions in (2.86) do represent the multivalued sign function. One may therefore

rewrite in an equivalent way the differential inclusion (2.73) as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ(t) = −λ1−λ2
2

,

λ1 + λ2 = 2,

0 � λ1 ⊥ −x(t) + |x(t)| � 0,

0 � λ2 ⊥ x(t) + |x(t)| � 0,

(2.87)

which is a complementarity system that may be recast into (2.51). Still there exists

another formalism (Camlibel 2001):
{

ẋ(t) = 1 − 2λ1,

0 �
(−x

1

)

+
(

0 1
−1 0

)(

λ1

λ2

)

⊥
(

λ1

λ2

)

� 0.
(2.88)

This complementarity system belongs to the class in (2.54) with E and M iden-

tity matrices of appropriate dimensions, F = 1, G =
(

0
1

)

. It may also be recast into

(2.57) choosing u(t) ≡ 1. Let us continue with another mathematical formalism for

(2.73). We know from Example 2.25 that the subdifferential of the absolute value

function x ∈ R �→ |x|, is the sign multifunction. We can therefore use (2.47) and its



2.4 Mathematical Formalisms 83

equivalent form in (2.45) to rewrite equivalently (2.73) as the dynamical variational

inequality:
{

x(t) ∈ R for all t � 0,

〈ẋ(t), v − x(t)〉 − |v| + |x(t)| � 0 for all v ∈ R.
(2.89)

Let us provide the detailed proof of the fact that the multivalued relay function

may be rewritten as a variational inequality. The variational inequality formalism of

y ∈ −sgn(x) is: x ∈ R and

〈y, v − x〉 + |v| − |x| � 0 for all v ∈ R.

Indeed:

• x = 0: we get 〈y, v〉 + |v| � 0 for all v, i.e. y ∈ [−1,+1],
• x > 0: we get 〈y, v − x〉 + |v| − x � 0 for all v. Take v = 0: 〈y,−x〉 − x � 0 i.e.

x(y + 1) = 0 which implies y = −1.

• x < 0: we get 〈y, v − x〉 + |v| − x � 0 for all v. Take v = 0: 〈y,−x〉 + x � 0 i.e.

x(y − 1) = 0 which implies y = 1.

The sign multifunction, also called the relay multifunction, is maximal mono-

tone, it is a Filippov’s set, and it can be represented through various comple-

mentarity relations or with variational inequalities of the second kind.

This however does not contradict the comments in Remark 2.75 that circuits with

relay functions may not always be Filippov’s inclusions, because a lot depends then

on the matrices A, B , C, D. Let us finally notice that using Examples 2.11, 2.25,

2.26, and finally (2.9), one infers that the following holds:

y ∈ sgn(x) ⇔ x ∈ N[−1,1](y). (2.90)

Let us now consider the LCS in (2.59). Let us assume that D = 0, and that there

exists a matrix P = P T > 0 such that

PB = CT . (2.91)

This may be a consequence of the LMI in (2.60) (see Sect. A5 in Brogliato et al.

2007). Let us make the state space variable change z = Rx, where R is the symmet-

ric positive definite square root of P . We further define the following two sets:

K(t) := {x ∈ R
n | Cx + Fu(t) � 0} (2.92)

and

S(t) := R(K(t)) = {Rx | x ∈ K(t)}, (2.93)

which are convex polyhedral for each fixed t . In Brogliato and Thibault (2010) it

is shown that, when the input signal u(·) is absolutely continuous and under certain

conditions, the LCS in (2.59) is equivalent to a perturbed sweeping process and to

a dynamical variational inequality. When u(·) is locally BV, things are a bit more
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tricky in the sense that the perturbed sweeping process formalism has to be recast

into measure differential inclusions, and encapsulates the LCS one. The following

constraint qualification is supposed to hold:

Rge(C) − R
m
+ = R

m, (2.94)

where Rge is the range. This is quite similar to the constraint qualification in Propo-

sition 2.65 when D = 0. The equality in (2.94) means that for all x ∈ R
m, there

exists y ∈ Rge (C) and z ∈ R
m
+ such that z−y = x. Obviously it holds whenever the

linear mapping associated with C is onto, i.e. the matrix C has rank m, but also in

many other cases. Then we have the following result when solutions are absolutely

continuous: the LCS in (2.59) is equivalent to the differential inclusion

−ż(t) + RAR−1z(t) + REu(t) ∈ NS(t)(z(t)), (2.95)

which is a perturbed sweeping process, that is in turn equivalent to the DVI

〈ż(t) − RAR−1z(t) − REu(t), v − z(t)〉 � 0

for all v ∈ S(t), z(t) ∈ S(t) for all t � 0. (2.96)

The passage from the complementarity system to the perturbed sweeping process

uses the fact that thanks to (2.91) one can formally rewrite the complementarity

system into a gradient form in the z coordinates.

The equivalences between various formalisms are understood as follows: given

an initial condition x(0) = R−1z(0), then both systems possess the same unique so-

lution over R
+. The rigorous proof may be found in Brogliato and Thibault (2010),

where it is also shown that the state jump laws in Proposition 2.65 readily fol-

low from basic convex analysis arguments. When the state is prone to disconti-

nuities then the measure differential inclusion formalism has to be used, similarly to

(2.36) where the solution is to be understood as in Definition A.7. The state variable

change z = Rx relying on the input/output property PB = CT has been introduced

in Brogliato (2004), where the equivalence between passive LCS and inclusions into

normal cones is established. Equivalences between gradient complementarity sys-

tems in (2.64), projected dynamical systems, dynamical variational inequalities and

inclusions into normal cones are shown in Brogliato et al. (2006). Such studies are

rooted in Cornet (1983) and Henry (1973).

Complementarity dynamical systems, dynamical variational inequalities, dif-

ferential inclusions into normal cones, belong to the same family of non-

smooth evolution problems. The dynamics of electrical circuits with nons-

mooth electronic devices such as ideal diodes, can be recast into such mathe-

matical formalisms.

2.5 The Dynamics of the Simple Circuits

Let us now return to Sect. 1.1 of Chap. 1 and use the material of this chapter to

rewrite the dynamics of the simple circuits. The objective of this section is to show
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how one may take advantage of the mathematical tools which have been introduced

in the foregoing sections, to analyze and better understand the dynamics of nons-

mooth electrical circuits.

2.5.1 The Ideal Diode Voltage/Current Law

Let us consider the ideal diode of Fig. 1.1 whose complementarity formalism is in

Fig. 1.2(b). Using (2.23) we may rewrite its voltage/current law as

−(v(t) + a) ∈ NR+(i(t) + b) ⇔ −(i(t) + b) ∈ NR+(v(t) + a). (2.97)

A variational inequality formalism is also possible using (2.26) and (2.13): find

v(t) � −a such that:

〈v(t) + a, y − i(t) − b〉 � 0 for all y � 0. (2.98)

2.5.2 The Piecewise-Linear Diode Voltage/Current Law

We now consider the diode of Fig. 1.2(d). Let us see how the MCP formulation in

(2.21) may be used to represent its characteristic. First of all its voltage/current law

is expressed in a complementarity formalism as:

0 � −v(t) + Roff i(t) ⊥ −v(t) � 0, (2.99)

which we may again rewrite as

−v(t) + Roff i(t) ∈ NR+(−v(t)). (2.100)

Using (2.25) we infer that

−v(t) = proj
(

R+;Roff i(t)
)

. (2.101)

Let us now turn our attention to (2.21). We may choose w = F+(z) = F(z) = v(t)−
Roff i(t) = w � 0,8 with v = 0 in (2.21), z = −v(t), l = 0 and u = +∞. Thus we

rewrite equivalently the voltage/current law as:
⎧

⎨

⎩

v(t) − Roff i(t) � 0,

0 � −v(t) � +∞,

v(t)(v(t) − Roff i(t)) = 0.

(2.102)

2.5.3 A Mixed Nonlinear/Unilateral Diode

The various diode models in Fig. 1.2 may be enlarged towards mixed models that

contain some unilateral effects, and nonlinear smooth behaviour. Consider for in-

stance the voltage/current law whose graph is in Fig. 2.19. The function v �→ g(v)

8F+(z) = max(0,F (z)).
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Fig. 2.19 A diode with a

mixed nonlinear/unilateral

behaviour

satisfies g(0) = 0 and g(v) < 0 for all v > 0. The voltage/current law may take

various equivalent forms:

0 � −g(v(t)) + i(t) ⊥ v(t) � 0 ⇔ −g(v(t)) + i(t) ∈ −NR+(v(t)). (2.103)

One checks that v(t) > 0 implies that i(t) = g(v(t)), while v(t) = 0 implies

i(t) � 0. Let us now consider the circuit of Fig. 2.20, with a voltage source u(t).

The state variables are x1(·) the capacitor charge, and x2(·) the current i(t) through

the circuit. The convention of Fig. 1.1 is chosen. One obtains:
{

ẋ(t) =
(

0 1
−1
LC

0

)

x(t) +
(

0
1
L

)

(v(t) + u(t)),

0 � w(t) = −g(v(t)) + x2(t) ⊥ v(t) � 0,
(2.104)

which is an NLCS as in (2.55), letting λ(t) = v(t). The complementarity conditions

in (2.104) define an NLCP (or NCP). If x2(t) < 0 and x2(t) is in the image of g(·),
then −g(v(t)) = −x2(t) > 0 for some v(t) > 0. Uniqueness holds if the function

g(·) is monotone (strictly decreasing). If x2(t) > 0 then v(t) = 0 is a solution of the

NCP. In Sect. 2.3.2 we gave results for LCP only. Well-posedness results for NCPs

as in (2.17) exist, see for instance Facchinei and Pang (2003), Propositions 2.2.12

and 3.5.10.

2.5.4 From Smooth to Nonsmooth Electrical Powers

The introduction of the indicator function and of its subdifferential, allows one to

embed the ideal diode into a rigorous mathematical framework that is useful for

the analysis of circuits which contain such devices. As depicted in Fig. 2.21 it also

permits in a quite convenient way to define the electrical power that is associated

with such a nonsmooth multivalued electrical device. This is quite related with so-

called Moreau’s superpotential functions. So-called electrical superpotentials have
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Fig. 2.20 A circuit with a

mixed diode

Fig. 2.21 From smooth to nonsmooth powers

been introduced in Addi et al. (2007, 2010) and Goeleven (2008). Let us consider a

proper convex lower semi-continuous function ϕ : R → R∪{+∞}. Suppose that an

electrical device has the ampere-volt characteristic that is represented by v ∈ ∂ϕ(i).

Then ϕ(·) is called an electrical superpotential. Superpotentials have been intro-

duced in mechanics by Moreau (1968). Consider Fig. 1.3 and let us reverse the

coordinates so as to obtain the characteristic of v(t) as a function of i(t). The su-

perpotential of the ideal diode is easily found to be ϕ(i) = ψR+(i), the indicator

function of R
+. Thus v ∈ ∂ψR+(i) so that v = 0 if i > 0 while v � 0 if i = 0. The

(i, v) characteristic is maximal monotone. One may draw the parallel between the

ampere-volt characteristic of a constant positive resistor, u = Ri, whose power func-



88 2 Mathematical Background

Fig. 2.22 Subdifferentials

tion is E = 1
2
Ri2, and the ampere-volt characteristic of the ideal diode v ∈ ∂ψR+(i)

whose power multifunction is ψR+(i). The same applies to the Zener diode, with a

different superpotential, see (1.7) and Figs. 2.11 or 2.22.

Remark 2.76 As a convention superpotentials define a maximal monotone mapping.

This means that the current/voltage mapping has to be chosen in accordance. The

conventions of Fig. 1.1 and (2.97) are not suitable.

2.5.5 The RLD Circuit in (1.16)

From (2.24) one deduces that 0 � w(t) = x(t) − i(t) ⊥ v(t) � 0 is equivalent to

v(t) ∈ −NR+(x(t)− i(t)). From the fact that NR+(x(t)− i(t)) = ∂ψR+(x(t)− i(t))

and that ψR+(x(t)− i(t)) = ψ[i(t),+∞)(x(t)) we find that (1.16) may be equivalently

rewritten as:

−ẋ(t) −
R

L
x(t) ∈ N[i(t),+∞)(x(t)). (2.105)

When i : R → R is not a constant function, this is a first order perturbed sweep-

ing process. When i(·) is an absolutely continuous function, it follows from The-

orem 2.55 that x(·) is also absolutely continuous. If i(·) is of local bounded vari-

ations and right continuous, then it may jump and at the times of discontinuities

in i(·), x(·) may jump as well. In this situation Theorem 2.56 applies. Suppose

for instance that at time t one has x(t−) = i(t−) and that i(t+) > i(t−). Then if

x(t−) = x(t+) it follows that x(t+) < i(t+): this is not possible since it implies that
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N[i(t+),+∞)(x(t+)) = ∅. There fore a jump has to occur in x(·) at t to keep the state

inside the set [i(t),+∞).

Assume that x(·) jumps at t = t1. From Theorem 2.56 we know that it is of local

bounded variation and right continuous provided i(·) is. The differential inclusion

in (2.105) has to be interpreted as a measure differential inclusion, i.e.:

−dx −
R

L
x(t+)dt ∈ N[i(t+),+∞)(x(t+)), (2.106)

where dx is the differential measure associated with x(·). Thus (2.106) represents

the inclusion of measures into a normal cone to a convex set. Recall that due to the

way we constructed this inclusion, the elements of the normal cone are the −v(t)

and that they also are measures. More precisely, it follows from the first line of

(1.16) that if x(·) jumps at t , then necessarily v is a Dirac measure with atom equal

to t (something like δt ). At t = t1 which is an atom of the differential measure dx

one obtains:

−x(t+1 ) + x(t−1 ) ∈ N[i(t+1 ),+∞)(x(t+1 )), (2.107)

since dt ({t1} = 0. We now may use (2.14) to infer that:

x(t+1 ) = proj([i(t+1 ),+∞);x(t−1 )). (2.108)

It may be verified by inspection that (2.108) is equivalent to (1.26). Remember

that we deduced (1.26) from the backward-Euler discretization algorithm of (1.16).

This result suggests that the backward-Euler method in (1.17) is the right time-

discretization of the measure differential inclusion (2.106). The advantage of using

(2.106) is that it provides the whole dynamics in one shot. And it provides a rigorous

explanation of the state jump rule.

Remark 2.77 All quantities are evaluated at their right limits in (2.106). Intuitively,

this is because one wants to represent the dynamics in a prospective way. More

mathematically, this permits to integrate the system on the whole real axis even in

the presence of jumps in i(·).

Let us investigate the time-discretization of (2.106), with time step h > 0. We

propose in a systematic way to approximate dx by
xk+1−xk

h
on [tk, tk+1), and to

approximate the right–limits by the discrete variable at tk+1. Then one obtains from

(2.106):

−xk+1 + xk − h
R

L
xk ∈ N[ik+1,+∞)(xk+1) = NR+(xk+1 − ik+1). (2.109)

Using (2.24) this is equivalent to:

R− ∋ −xk+1 + xk − h
R

L
xk ⊥ xk+1 − ik+1 ∈ R, (2.110)

because R− is the polar cone to R+. Transforming again we get:

0 � xk+1 − xk + h
R

L
xk ⊥ xk+1 − ik+1 � 0. (2.111)
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Recalling that the elements of NR+(xk+1 − ik+1) are equal to −σk+1 = −hvk+1

(see Sect. 1.1.5), one finds that (2.111) is equal to the complementarity conditions

of (1.17). It suffices to replace xk+1 by its value in the first line of (1.17) to recover

an LCP with unknown hvk+1.

Therefore the time-discretization of the measure differential inclusion (2.106)

yields the backward Euler scheme in (1.17). From the BV version of Theorem 2.88

the approximated piecewise-linear solution xN (·) converges to the right continuous

of local bounded variations solution of (2.106), including state jumps. The mea-

sure differential inclusion formalism is very well suited for the derivation of time-

stepping schemes. Moreover it shows that the scheme has to be implicit. Indeed it

is easy to see that writing N[ik+1,+∞)(xk) in the right-hand-side of (2.109) yields a

discrete-time system which cannot be advanced to step k + 1. The implicit way is

the only way.

Remark 2.78 In the left-hand-side of (2.109) we can replace R
L
xk by R

L
xk+1 to get

a fully implicit scheme, then we get the same algorithm if the same operation is

performed in (1.17).

Remark 2.79 Let us rewrite (2.105) as:
{

ẋ(t) + R
L
x(t) = −v(t),

v(t) ∈ N[i(t),+∞)(x(t)).
(2.112)

The representation as a Lur’e system in Fig. 1.18 is clear. From (2.109) the same

can be done with respect to Fig. 1.19.

The measure differential inclusion in (2.106) is the correct formalism for the

circuit of Fig. 1.10 when the current source delivers a current i(t) that jumps.

It allows one to encompass all stages of motion (continuous and discontinuous

portions of the state trajectories) and to get a suitable discretization in one

shot.

2.5.6 The RCD Circuit in (1.3)

Using (2.25) the second line of (1.3) can be rewritten as − v(t)
R

− u(t)
R

+ 1
RC

z(t) ∈
NR+(v(t)). This is equivalent to v(t) = proj(R+;−u(t)+ 1

C
z(t)). Inserting this into

the first line of (1.3) one obtains:

ż(t) = −
u(t)

R
+

1

RC
z(t) +

1

R
proj

(

R+;−u(t) +
1

C
z(t)

)

. (2.113)

Since the projection operator is single valued Lipschitz continuous, (2.113) is noth-

ing else but an ordinary differential equation with Lipschitz continuous right-hand-

side.
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Fig. 2.23 Two Zener diodes

mounted in series

2.5.7 The RLZD Circuit in (1.7)

The inclusion that represents the Zener diode voltage/current law is v(t) ∈
Fzi

(−i(t)) in (1.7). From Fig. 1.6(a) it follows that the graph of this voltage/current

law is maximal monotone. From Theorem 2.34 we may write it as the subdifferen-

tial of some convex lower semi-continuous proper function. This function is given

by f1(−i) =
{

ai if i � 0
−Vzi if i � 0 (see Fig. 2.22). Thus Fzi

(−i(t)) = ∂f1(−i). We infer that

the dynamics of this circuit is given by the differential inclusion:

ẋ(t) +
R

L
x(t) −

u(t)

L
∈

1

L
∂f1(−x(t)). (2.114)

The right-hand-side of (2.114) takes closed convex values, and the multivalued map-

ping y �→ 1
L
∂f1(y) is maximal monotone. Therefore this differential inclusion may

be recast either into Filippov’s inclusions, or in maximal monotone inclusions (see

Sects. 2.4.4 and 2.4.5).

Similar developments hold for the voltage/current law in Fig. 1.6(b). Both char-

acteristics can also be represented in a complementarity formalism.

2.5.8 Coulomb’s Friction and Zener Diodes

Let us consider the Zener diode characteristic in Fig. 1.6 with a = 0. If two diodes

are mounted in opposite series as in Fig. 2.23, then the voltage/current law is given

by:

v(t) ∈ Vz ∂|z(t)|, z(t) = −i(t), (2.115)

where each diode has the voltage/current law vj (t) ∈ Fz1
(−ij (t)) of Fig. 1.6 on

the left, with a = 0. One obtains (2.115) by performing the operations as de-

picted in Fig. 2.24. This may be proved using Moreau-Rockafellar’s Theorem

2.30. One has v2 ∈ ∂f2(−i) with f2(−i) =
{

0 if − i < 0
Vz(−i) if − i > 0 , −v1 ∈ ∂f1(−i) with

f1(−i) =
{

−Vz(−i) if − i < 0
0 if − i > 0 . By Theorem 2.30 one has v2 −v1 ∈ ∂f2(−i)+∂f1(−i) =

∂(f1 + f2)(−i). And ∂f2(−i) + ∂f1(−i) =
{

−Vz(−i) if i < 0
Vz(−i) if − i > 0 , whose subdifferential

is multivalued at i = 0.
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Fig. 2.24 The sum of the two Zener voltage/current laws

Reversing the sense of the diodes does not change the voltage/current law of the

two-diode system, as may be checked. Consider now the circuit of Fig. 2.25, where

each Zener box contains two Zener diodes mounted in series as in Fig. 2.23. Its

dynamics is given by:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L di1
dt

(t) + 1
C

∫ t

0
(i1(s) − i2(s))ds = v1(t),

L di2
dt

(t) + 1
C

∫ t

0
(i2(s) − i1(s))ds = v2(t),

v1(t) ∈ Vz ∂|z1(t)|, z1(t) = −i1(t),

v2(t) ∈ Vz ∂|z2(t)|, z2(t) = −i2(t).

(2.116)

Denoting x1(t) =
∫ t

0 i1(s)ds and x2(t) =
∫ t

0 i2(s)ds we can rewrite (2.116) as:

⎧

⎪

⎨

⎪

⎩

ẍ1(t) + 1
LC

(x1(t) − x2(t)) ∈ −Vz

L
sgn(x1(t)),

ẍ2(t) + 1
LC

(x2(t) − x1(t)) ∈ −Vz

L
sgn(x2(t)),

x1(0) = x10, x2(0) = x20, ẋ1(0) = ẋ10, ẋ2(0) = ẋ20,

(2.117)

where we used ∂|x| = sgn(x) for all reals x, and Proposition 2.29 with A = −1.

The circuit in Fig. 2.25 has therefore exactly the same dynamics as a two degree-of-

freedom mechanical system made of two balls subjected to Coulomb’s friction at the

two contact points, related by a constant spring and moving on a line (see Sect. 3.11

in Acary and Brogliato 2008). The quantity Vz plays the role of the friction coeffi-

cient, L plays the role of the mass, 1
C

is the stiffness of the spring. As shown in Pratt

et al. (2008) such a system can undergo, with a specific choice of the initial data,

an infinity of events (stick-slip transitions in Mechanics) when a specific external
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Fig. 2.25 Circuit with Zener

diodes

excitation is applied to it. Obviously the dynamics in (2.117) can be recast into the

framework of Fig. 1.18. It is also a Filippov’s differential inclusion and Lemma 2.68

applies.

Remark 2.80 In Glocker (2005), Moeller and Glocker (2007) it is shown that the

DC-DC buck converter can be written as a Lagrangian system, whose mass matrix

consists of a diagonal matrix with either inductances or capacitances as its entries

(this depends on the choice of the state variables). This is related to the choice of the

state variables as the capacitors charges and the currents. We recover from another

example that such a choice of the state variables yields a Lagrangian system whose

mass matrix is made of the inductances. Indeed we can rewrite (2.117) as:

Mẍ(t) + Kx(t) ∈ −B Sgn(Cx(t)) (2.118)

with xT = (x1 x2), M =
(

L 0
0 L

)

, K =
( 1

C
− 1

C

− 1
C

1
C

)

, Sgn(Cx) = (sgn(x1) sgn(x2))
T ,

B =
( Vz 0

0 Vz

)

, C = I2 the identity matrix. One remarks that the condition (2.91)

is trivially satisfied with P = B−1. The multivalued mapping x �→ B Sgn(Cx) is

maximal monotone. The system is already under the canonical form in (2.49) and

Proposition 2.58 applies.

2.5.9 The RCZD Circuit in (1.11)

The voltage/current law v(t) ∈ Fz(i(t)) in (1.11) may be rewritten using the subd-

ifferential of the convex lower semi-continuous proper function f (i) =
{

−Vzi if i � 0
0 if i � 0

(see Fig. 2.22). We obtain that Fz(i) = ∂f (i). From (1.11) we deduce that

v(t) ∈ ∂f

(

−
1

RC
x(t) +

u(t)

R
−

v(t)

R

)

, (2.119)
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that is a generalized equation. Since f (·) is convex proper lower semi-continuous,

this is equivalent to:

0 ∈
1

RC
x(t) −

u(t)

R
+

v(t)

R
+ ∂f ∗(v(t)) = N[−Vz,0](v(t)), (2.120)

where we made use of (2.9) to pass from (2.119) to (2.120) (see also Fig. 2.11). The

last equality should be obvious from Fig. 1.8(a) and from Fig. 2.11. Since R > 0

it follows that the mapping v �→ v
R

is strongly monotone. From Theorem 2.35 one

infers that the generalized equation (2.120) has a unique solution. In Chap. 1 we

studied this generalized equation in a graphical way, see Fig. 1.9.

Now let us rewrite (2.120) as:

1

RC
x(t) −

u(t)

R
+

v(t)

R
∈ −N[−Vz,0](v(t)). (2.121)

Using Proposition 2.37 we deduce that:

v(t) = proj

(

[−Vz,0];−
1

RC
x(t) +

u(t)

R

)

. (2.122)

Inserting (2.122) into (1.11) one finds that the dynamics of this circuit is an ordinary

differential equation with Lipschitz continuous right-hand-side.

2.5.10 The Circuit in (1.41)

2.5.10.1 Embedding into Differential Inclusions

First of all it follows from (2.23) (or from (2.25)) that the linear complementarity

system in (1.41) can be rewritten as the differential inclusion:
{

ẋ1(t) = x2(t) − 1
RC

x1(t),

ẋ2(t) ∈ − 1
LC

x1(t) − ∂ψR−(x2(t)),
(2.123)

where ψR+(·) is the indicator function of R
+, and we used several tools from convex

analysis: the equivalence (2.23) and Proposition 2.29. This allows us to transform

the complementarity 0 � v(t) ⊥ −x2(t) � 0 into −v(t) ∈ ∂ψR+(−x2(t)). Letting

f (x2)
�= ψR+(−x2) we get ∂f (x2) = −∂ψR+(−x2) and since f (x2) = ψR−(x2) we

obtain that v(t) ∈ ∂ψR−(x2(t)). Thus for obvious definitions of the matrices A, B

and C9 we may rewrite the system (2.123) as:

ẋ(t) − Ax(t) ∈ −BNR−(Cx(t)), (2.124)

with the state vector xT = (x1 x2). For such a circuit it may be checked that the

“input-output” relation (2.91) is satisfied trivially because B = CT . Therefore us-

ing again Proposition 2.29 we infer that there exists a proper convex lower semi-

continuous function g(·) such that ∂g(x) = BNR−(Cx(t)). Using Theorem 2.34

9The matrix C in (2.124) is not to be confused with the capacitor value in (2.123).
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it follows that the multivalued operator x �→ ∂g(x) is maximal monotone. Using

again Proposition 2.29 we infer that g(x) = NK(x) where K = {x ∈ R
2 | Cx � 0}

is a convex set. Therefore we can rewrite (2.124) as:

ẋ(t) − Ax(t) ∈ −NK(x(t)) (2.125)

which fits within (2.49) so that Proposition 2.58 applies. Notice that the condi-

tion x0 ∈ dom(A) of Proposition 2.58 translates into x2(0) � 0 for our circuit. If

x2(0
−) > 0 then a jump has to be applied initially to the state, according to Propo-

sition 2.65. In such a case the right mathematical formalism for (2.123) is that of a

measure differential inclusion:

dx − Ax(t)dt ∈ −NK(x(t)) (2.126)

and the solution has to be understood in the sense of Definition A.7. In particular at

an atom t of the differential measure dx one obtains x(t+) − x(t−) ∈ −NK(x(t+))

and it follows from (2.14) that x(t+) = proj(K;x(t−)). Notice that we wrote x(t+)

in the normal cone argument, because the solution is right-continuous, see Defini-

tion A.7. Therefore within the framework of measure differential inclusions one has

x(t) = x(t+).

2.5.10.2 Linear Complementarity Problems

Let us now consider this system from another point of view. Let us assume that

on some time interval [t1, t2], t1 < t2, one has x2(t) = 0 for all t ∈ [t1, t2]. Let us

first construct an LCP which allows us to compute ẋ2(t) at any time t inside [t1, t2]
(in fact we are interested mainly by what happens on the right of t = t2 since we

suppose that x2(·) is identically zero on the whole interval). From (1.41) it follows

that v(t) = −Lẋ2(t)− 1
C

x1(t). Since x2(t) = 0 and the state is continuous, it follows

that the complementarity 0 � v(t) ⊥ −x2(t) � 0 implies:

0 � v(t) ⊥ −ẋ2(t) � 0. (2.127)

Indeed if −ẋ2(t) < 0 it follows from Proposition 7.1.1 in Glocker (2001) (see also

Proposition C.8 in Acary and Brogliato 2008) that x2(τ ) > 0 in a right neighborhood

of t , which is forbidden. Moreover if −ẋ2(t) > 0 then by the same proposition it

follows that x2(τ ) < 0 in a right neighborhood of t , and therefore v(τ) = 0 in this

neighborhood. Consequently the complementarity between v and ẋ2 holds as well.

Starting from (2.127) it easily follows:

0 � −Lẋ2(t) −
1

C
x1(t) ⊥ −ẋ2(t) � 0, (2.128)

which is an LCP with unknown −ẋ2(t). From Theorem 2.43 this LCP has a unique

solution, which can be found by simple inspection:

(i) if x1(t) < 0 then −ẋ2(t) = 0: the trajectory stays on the boundary;

(ii) if x1(t) > 0 then −ẋ2(t) = 1
LC

x1(t) > 0: the trajectory leaves the boundary;

(iii) if x1(t) = 0 then −ẋ2(t) = 0: this is a degenerate case.
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Now notice that we may instead work with the multiplier v(t) and rewrite the

LCP (2.128) as:

0 �
1

C
x1(t) +

1

L
v(t) ⊥ v(t) � 0. (2.129)

Then we have:

(i) if x1(t) < 0 then v(t) = − 1
LC

x1(t) > 0 and from the dynamics −ẋ2(t) = 0: the

trajectory stays on the boundary;

(ii) if x1(t) > 0 then v(t) = 0 and from the dynamics −ẋ2(t) = 1
LC

x1(t) > 0: the

trajectory leaves the boundary;

(iii) if x1(t) = 0 then v(t) = 0 and from the dynamics −ẋ2(t) = 0: this is a degen-

erate case.

One may therefore work with either LCP in (2.128) or in (2.129) and reach the

same conclusions.

2.5.10.3 Some Comments

For such a simple system both the differential inclusion and the complementarity

formalisms may be used to design a backward Euler numerical scheme, as done in

Chap. 1 for several circuits, and in Sects. 2.6.1 and 2.6.2 in a more general setting.

The obtained set of discrete-time equations boils down to solving an LCP at each

time step. If the trajectory is in a contact mode as in Sect. 2.5.10.2, the LCP solver

takes care of possible “switching” between the contact and the non-contact modes.

The material in Sect. 2.5.10.2 is useful when one wants to use an event-driven nu-

merical method. From the knowledge of the state vector xk at some discrete time tk ,

and under the condition that x2(tk) = 0, one then constructs an LCP as in (2.128) or

(2.129) to advance the method. The LCP that results from the time-stepping back-

ward Euler method in (2.142) and the event-driven LCP obtained from (2.129), are

obviously not equal one to each other.

2.5.11 The Switched Circuit in (1.52)

Concerning a piecewise–linear system as in (1.52), one has to know whether the

vector field is continuous or discontinuous on the switching surface that is defined

here by the boundary bdχ that separates χ1 and χ2. At the points x such that x ∈ ∂χ

and A1x �= A2x, something has to be done. One solution is to embed the right-hand-

side into Filippov’s sets (see Sect. 2.4.4), so as to obtain a Filippov’s differential

inclusion.

If one considers the piecewise–linear system in (1.51) where the triggering sig-

nal uc(t) is purely exogenous, the picture is different. The system is then a non-

autonomous system (due to the exogenous switches). One may assume that uc(t) is

such that the switching instants satisfy tk+1 > tk + δ for some δ > 0. An ambiguity
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still remains in (1.51) because the right-hand-side is not specified when uc = 0. One

may choose to write the right-hand-side as a convex combination of A1x(t) and

A2x(t) if t corresponds to a switching instant.

2.5.12 Well-Posedness of the OSNSP in (1.45)

The OSNSP in (1.45) possesses a unique solution xk+1 at each step k, for any data.

To prove this, let us transform the system (1.42), that is written compactly as

{

ẋ(t) = Ax(t) − Bv(t) + Eu(t),

v(t) ∈ F (w(t)),

w(t) = Cx(t).

(2.130)

A key property of the pair (B,C) is that there exists a 3 × 3 matrix P = P T > such

that:

PB1 = CT
1 , PB2 = CT

2 , (2.131)

where B1 and B2 are the two columns of B , C1 and C2 are the two rows of C. The

matrix P is given by

P =

⎛

⎝

1
C

0 0

0 L1 0

0 0 L2

⎞

⎠ .

Let us consider the symmetric positive definite square root of P , i.e. R = RT >

and R2 = P . Let us perform the state vector change z = Rx. The system in (2.130)

can be rewritten as:
{

ż(t) = RAR−1z(t) − RBv(t) + REu(t),

v1(t) ∈ F1(C1x(t)), v2(t) ∈ F2(C2x(t)),
(2.132)

with obvious definitions of F1(·) and F2(·) from (1.42). A key property of the

multivalued functions Fi(·) is that there exist proper convex lower semi-continuous

functions ϕi(·) such that Fi(·) = ∂ϕi(·). These functions are given by ϕ1(x) =
{

−Vzx if x < 0
0 if x > 0 , and ϕ2(x) = ψK(x) with K = R

+. We may rewrite (2.132) as:

{

ż(t) = RAR−1z(t) − RB1v1(t) − RB2v2(t) + REu(t),

v1(t) ∈ ∂ϕ1(C1R
−1z(t)), v2(t) ∈ ∂ϕ2(C2R

−1z(t)).
(2.133)

Using (2.131) the terms RB1v1 and RB2v2 may be rewritten as R−1CT
1 v1

and R−1CT
2 v2, respectively. Using the inclusions in (2.133) one obtains the

two terms R−1CT
1 ∂ϕ1(C1R

−1z) and R−1CT
2 ∂ϕ2(C2R

−1z). Now we may use

Proposition 2.29 to deduce that R−1CT
1 ∂ϕ1(C1R

−1z) = ∂(ϕ1 ◦ C1R
−1)(z) and

R−1CT
2 ∂ϕ2(C2R

−1z) = ∂(ϕ2 ◦ C2R
−1)(z). Let us denote ϕ1 ◦ C1R

−1(·) = φ1(·)
and ϕ2 ◦ C2R

−1(·) = φ2(·), and Φ(·) = φ1(·) + φ2(·). A key property is that since

the functions φ1(·) and φ2(·) are proper convex lower semi-continuous, then the
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multivalued mapping ∂Φ(·) = ∂φ1(·) + ∂φ2(·) is maximal monotone (see Theo-

rem 2.30 and the properties in Sect. 2.1.2.2). Introducing this in the first line of

(2.133) we obtain:

−ż(t) + RAR−1z(t) + REu(t) ∈ ∂Φ(z(t)), (2.134)

that is equivalent to (2.130) in the sense that if x(·) is a solution of (2.130) then

z = Rx is a solution of (2.134), and vice-versa. Let us now proceed with the implicit

Euler discretization of the transformed differential inclusion (2.134). We obtain:

−zk+1 + zk + hRAR−1zk+1 + hREuk+1 ∈ h∂Φ(zk+1), (2.135)

which we rewrite as

0 ∈ (I3 − hRAR−1)zk+1 + zk + hREuk+1 + h∂Φ(zk+1). (2.136)

It is noteworthy that the generalized equation (2.136) is strictly equivalent to

the generalized equation (1.45). However it is now in a more suitable form 0 ∈
F(zk+1) = Mzk+1 + qk + h∂Φ(zk+1), where M is positive definite for sufficiently

small h > 0 and h∂Φ(·) is maximal monotone. It follows that the multivalued map-

ping F(·) is strongly monotone, and from Theorem 2.35 the generalized equation

0 ∈ F(zk+1) has a unique solution. We have thus proved the following:

Lemma 2.81 Let h > 0 be sufficiently small so that (I3 − hRAR−1) is positive

definite. The OSNSP in (1.45) has a unique solution for any data xk and uk+1.

The arguments that we used to prove Lemma 2.81 generalize those which we

used to study the OSNSP in (1.18) and (1.15). As an illustration let us consider the

OSNSP in (1.18). Using the equivalence in (2.23) it may be rewritten as

0 ∈ hvk+1 + qk + NK(vk+1), (2.137)

with qk = (1 − hR
L
)xk − ik+1 and K = R

+. Since the normal cone to a convex non

empty set defines a maximal monotone mapping and since h > 0, the proof follows.

2.5.13 The Bouncing Ball

Let us come back on the dynamics in (1.58). This may be recast into the Lagrangian

sweeping process (2.38):
{

mdv + mgdt + u(t)dt = λ,

−λ ∈ NT
R+ (q(t))(w(t)).

(2.138)

The interpretation as the negative interconnection of two blocks is then clear. The

first block of Fig. 2.26 is the Lagrangian dynamics with input λ and output w(t). The

second block is the nonsmooth part due to the unilateral constraint and the impact

law. It is fed by w(t), and its output is −λ. The analogy between Figs. 2.26 and 1.18

is clear. Another example showing the analogy between Mechanics (with Coulomb

friction) and circuits (with Zener diodes) is worked in Sect. 2.5.4.
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Fig. 2.26 Bouncing-ball

feedback interconnection

with the corner law

Notice that (2.138) is a measure differential inclusion, so that λ and dv are dif-

ferential measures as defined in Appendix A.5. The solution has to be understood

as in Definition A.7. The first line in (2.138) is therefore an equality of measures

which we may write as dμ = λ. At an impact time t one has dμ({t}) = dv({t}) =

v(t+) − v(t−) and dt ({t}) = 0 (see Sect. A.5). The measure λ thus has a density p

with respect to the Dirac measure δt and we obtain p = m(v(t+) − v(t−)). Going

on as in (2.40) through (2.42) one recovers the restitution law in (1.58).

The negative feedback interconnection of Fig. 2.26 shows that the bouncing ball

may be interpreted as a Lur’e system: the Lagrangian dynamics defines a dissipative

subsystem, and the feedback path is a maximal monotone operator. The advantage

of Moreau’s sweeping process is that it allows one to represent the nonsmooth dy-

namics in one shot, without requiring any “hybrid-like” point of view. The stability

Brogliato (2004) and the time-discretization method (Acary and Brogliato 2008)

follow from it.

Remark 2.82 Compare (2.105), or (2.106), with (2.138). In (2.106) the multivalued

part is a normal cone to a time varying set. In (2.138) the multivalued part is a

normal cone to a state-dependent set (a tangent cone). So if i(·) is a constant in

(2.106) the multivalued part of the inclusion that represents the electrical circuit is

just a normal cone to a constant convex set. In the case of the bouncing ball the set

remains state-dependent even if u(t) = 0.

2.6 Time-Discretization Schemes

In Chap. 1 the backward Euler method has been introduced on the simple examples

which are studied. An insight on how the sliding trajectories that evolve on attractive

switching surfaces are simulated, is given in Fig. 1.7. This can be generalized to

more complex systems, as shown in Acary and Brogliato (2010). The numerical

schemes that will be used in the next chapters of this book are some extensions of the

backward Euler method. In this part let us focus on the implicit (or backward) Euler

scheme only. Since the objective of this book is more about “practical” numerics

than pure numerical analysis, only few results of convergence will be given in this
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section. The first result concerns the maximal monotone differential inclusions in

(2.49), the second result is for linear complementarity systems (LCS) as in (2.53),

and the third result concerns Moreau’s sweeping process in (2.36).

2.6.1 Maximal Monotone Differential Inclusions

Let T > 0. The differential inclusion (2.49) is time-discretized on [0, T ] with a

backward Euler scheme as follows:
{

xk+1−xk

h
+ A(xk+1) ∋ f (tk, xk), for all k ∈ {0, . . . ,N − 1},

x0 = x(0),
(2.139)

where h = T
N

. The fully implicit method uses f (tk+1, xk+1) instead of f (tk, xk).

The convergence and order results stated in Proposition 2.83 below have been de-

rived for the semi-implicit scheme (2.139) in Bastien and Schatzman (2002). So the

analysis in this section is based on such a discretization. However this is only a par-

ticular case of a more general θ -method which is used in practical implementations.

The next result is proved in Bastien and Schatzman (2002).

Proposition 2.83 Under Assumption 2.57,10 there exists η such that for all h > 0

one has

For all t ∈ [0, T ], ‖x(t) − xN (t)‖ � η
√

h. (2.140)

Moreover limh→0+ maxt∈[0,T ] ‖x(t) − xN (t)‖2 +
∫ t

0 ‖x(s) − xN (s)‖2ds = 0.

Thus the numerical scheme has at least order 1
2

, and convergence holds.

2.6.2 Linear Complementarity Systems

Let us consider the LCS in (2.53). Its backward Euler discretization is:
{

xk+1 = xk + hAxk+1 + hBλk+1,

wk+1 = Cxk+1 + Dλk+1,

0 � λk+1 ⊥ wk+1 � 0.

(2.141)

Easy manipulations yield xk+1 = (In −hA)−1(xk +hBλk+1) where we assume that

h is small enough to guarantee that In − hA is an invertible matrix. Inserting this

into the complementarity conditions leads to the LCP:

0 � λk+1 ⊥ C(In − hA)−1(xk + hBλk+1) + Dλk+1 � 0, (2.142)

with unknown λk+1 and LCP matrix hC(In −hA)−1B +D. As one may guess a lot

depends on whether or not this LCP possesses a unique solution.

10See Sect. 2.4.2.
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Assumption 2.84 There exists h∗ > 0 such that for all h ∈ (0, h∗) the LCP(M,bk+1)

has a unique solution for all bk+1.

Assumption 2.85 The system (A,B,C,D) is minimal (the pair (A,B) is control-

lable, the pair (C,A) is observable), and B is of full column rank.

The approximation of the Dirac measure at t = 0 is given by hλ0 ≈ δ0. Assump-

tion 2.84 secures that the one-step-nonsmooth-problem algorithm to solve the LCP

generates a unique output at each step, for h > 0 small enough.

Let us now state a convergence result taken from Camlibel et al. (2002a).

The interval of integration is [0, T ], T > 0. The convergence is understood as

limh→0〈xN (t)−x(t), ϕ(t)〉 = 0 for all ϕ ∈ L 2([0, T ];R
n) and all t ∈ [0, T ], which

is the weak convergence in L 2([0, T ];R
n).

Theorem 2.86 Consider the LCS in (2.53) with D � 0 and let Assumption 2.84

hold. Let (λN
k , xN

k ,wN
k ) be the output of the one-step-nonsmooth-problem solver,

with the initial impulsive term being approximated by (hλ0, hx0, hw0). Assume that

there exists a constant α > 0 such that for h > 0 small enough,one has ‖hλ0‖ � α

and ‖λN
k ‖ � α for all k � 0. Then for any sequence {hk}k�0 that converges to zero,

one has:

(i) There exists a subsequence {hkl
} ⊆ {hk}k�0 such that ({λN }kl

, {wN }kl
) con-

verges weakly to some (λ,w) and {xN }kl
converges to some x(·).

(ii) The triple (λ, x(·),w) is a solution of the LCS in (2.53) on [0, T ] with initial

data x(0) = x0.

(iii) If the LCS has a unique solution for x(0) = x0, the whole sequence ({λN }k,
{wN }k) converges weakly to (λ,w) and the whole sequence {xN }k converges

to x(·).

If the quadruple (A,B,C,D) is such that Assumption 2.85 holds and is passive,

then (iii) holds.

We emphasize the notation x(·) since the solutions are functions of time, whereas

the notation λ and w means that these have to be considered as measures. Other re-

sults of convergence for the case D = 0 can be found in Shen and Pang (2007, The-

orem 7), under the condition that the Markov parameter CB satisfies some relaxed

positivity conditions (a condition similar to the property in (2.91) which implies that

CB = BT PB � 0).

Remark 2.87 What happens when the system to be simulated does not enjoy the

uniqueness of solutions property? Let us consider for instance the Filippov’s dif-

ferential inclusion in (2.74) with g(t) ≡ 0, which has three solutions starting from

x(0) = 0, x(t) ≡ 0, x(t) = t and x(t) = −t . Its implicit Euler discretization is:

xk+1 − xk ∈ h sgn(xk+1). (2.143)

In Fig. 2.27, we can study this generalized equation graphically as we did in Fig. 1.7.
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Fig. 2.27 Iterations for (2.143)

At step k there are three intersections (solutions of the generalized equation):

x1
k+1 = 0, x2

k+1 = h and x3
k+1 = −h. At step k + 1 starting from x2

k+1 or x3
k+1 there

are two solutions: x
2,1
k+2 = 0 or x

2,2
k+2 = 2h, and x

3,1
k+2 = 0 or x

3,2
k+2 = −2h. After that

the solutions are unique. We conclude from this simple example that despite non-

uniqueness holds, the backward Euler method still performs well in the sense that

its output is made of three approximated solutions: one that stays around zero and

two that diverge as t . In practice either the implemented solver chooses one of them

more or less randomly, or the designer has to add some criterion that obliges the

method to choose a particular solution out of the three. Similar conclusions have

been obtained in an event-driven method context in Stewart (1990, 1996).

2.6.3 Moreau’s Sweeping Process

We shall focus in this section on a basic result that was obtained by Moreau (1977)

for sweeping processes of bounded variations with f (t, x) = 0 in (2.36). Gener-

alizations for the case where the perturbation is not zero, even multivalued, exist

(Edmond and Thibault 2006) which are based on the same type of approximation.

Let us therefore consider the differential inclusion:

−dx ∈ NC(t)(x(t)), x(0) = x0, (2.144)

where the set-valued map t �→ C(t) is either absolutely continuous, or Lipschitz

continuous in the Hausdorff distance, or right-continuous of bounded variation, see
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Fig. 2.28 The catching-up algorithm

Sects. A.1, A.2 and A.4 for the definitions. When the solution is absolutely contin-

uous, then dx = ẋ(t)dt , and since the right-hand-side is a cone, the left-hand-side

may be simplified to −ẋ(t). Under suitable hypothesis on the multivalued function

t �→ C(t), numerous convergence and consistency results (Monteiro Marques 1993;

Kunze and Monteiro Marquès 2000) have been given together with well-posedness

results, using the so-called “Catching-up algorithm” defined in Moreau (1977):

−(xk+1 − xk) ∈ ∂ψC(tk+1)(xk+1), (2.145)

where xk stands for the approximation of the right limit of x(·). It is noteworthy that

the case with a Lipschitz continuous moving set is also discretized in the same way.

By elementary convex analysis (see (2.25) or (2.14)), the inclusion (2.145) is

equivalent to:

xk+1 = prox[C(tk+1);xk]. (2.146)

Contrary to the standard backward Euler scheme with which it might be con-

fused, the catching-up algorithm is based on the evaluation of the measure dx on

the interval (tk, tk+1], i.e. dx((tk, tk+1]) = x+(tk+1)− x+(tk). Indeed, the backward

Euler scheme is based on the approximation of ẋ(t) which is not defined in a clas-

sical sense for our case. When the time step vanishes, the approximation of the

measure dx tends to a finite value corresponding to the jump of x(·). This remark

is crucial for the consistency of the scheme. Particularly, this fact ensures that we

handle only finite values.

Figure 2.28 depicts the evolution of the discretized sweeping process. The name

catching-up is clear from the figure: the algorithm makes xk catch-up with the mov-

ing set C(tk), so that it stays inside the moving set.
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We give below a brief account on the properties of the discretized sweeping

process. More may be found in Monteiro Marques (1993) and Kunze and Mon-

teiro Marquès (2000). Let us first deal with the Lipschitz continuous sweeping pro-

cess.

Theorem 2.88 Suppose that the mapping t �→ C(t) is Lipschitz continuous in the

Hausdorff distance with constant l, and C(t) is non empty, closed and convex for

every t ∈ [0, T ]. Let x0 ∈ C(0). Consider the algorithm in (2.145), with a fixed time

step h = T
N

> 0. Let m ∈ N be such that mT < N . Then:

(a) var[0,T ](xN ) � ‖xN (0)‖ + lT , for all t ∈ [tk, tk+1] and all N ∈ N,

(b) ‖xN (t) − xN (s)‖ � l(|t − s| + 2
m

), for all t, s ∈ [tk, tk+1],
(c) from which it follows that ‖x(t) − x(s)‖ � l|t − s| for all t, s ∈ [0, T ], where

(x(t) − x(s)) is the limit in the weak sense of {xN (t) − xN (s)}N∈N,

(d) ‖ẋN (t)‖ � l for all t �= tk , where ẋN (t) = 1
h
(xk+1 − xk) for t ∈ [tk, tk+1),

(e) the “velocity” ẋN (·) converges weakly to ẋ∗(·), i.e. for all ϕ(·) ∈ L 1([0, T ];R
n)

one has
∫ T

0

〈ẋN (t), ϕ(t)〉dt →
∫ T

0

〈ẋ∗(t), ϕ(t)〉dt,

(f) xN (·) → x(·) uniformly and ẋ(·) = ẋ∗(·) almost everywhere in [0, T ],
(g) the limit satisfies ẋ(t) ∈ NC(t)(x(t)) almost everywhere in [0, T ].

In the absolutely continuous and the bounded variations cases, the catching-up

algorithm may be used also to prove Theorems 2.55 and 2.56, with similar steps as

in Theorem 2.88. In the BV case the formalism has to be that of measure differential

inclusions (see Moreau 1977, §3 for a proof of existence of solutions). This book

is dedicated to electrical circuits, for more details on the numerical simulation of

mechanical systems please see Acary and Brogliato (2008).

2.7 Conclusions and Recapitulation

Chapters 1 and 2 introduce simple examples of circuits with nonsmooth electronic

devices, and the main mathematical tools one needs to understand, analyze and sim-

ulate them. Despite they possess simple topologies, these circuits are embedded into

a variety of mathematical formalisms (some of which being equivalent):

• complementarity systems,

• Filippov’s differential inclusions,

• differential inclusions with a maximal monotone multivalued part,

• dynamical variational inequalities,

• Moreau’s sweeping processes (perturbed, first order),

• measure differential inclusions,

• piecewise-linear systems.
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The solutions (i.e. the trajectories) of such systems ususally are absolutely contin-

uous, or right-continuous of local bounded variations (with possible occurrence of

jumps, i.e. state discontinuities). In the more general situation where the dynamical

equations are obtained from an automatic equations generation tool, the dynamics

will not exactly fit within these classes of multivalued systems, however, but will

contain them as particular cases. Mainly because the obtained dynamics will con-

tain equalities stemming from Kirschhoff’s laws in current and voltage, which make

it belong to the descriptor systems family.

As we have seen many of these circuits can be written as complementarity

systems as in (2.57). A crucial parameter is the relative degree of the quadruplet

(A,B,C,D). Let u(t) = 0 and let the initial data satisfy Cx(0) + Dλ(0) � 0.

• If r = 0 the solutions are continuously differentiable (D �= 0), see (1.3), (1.38),

(1.39).

• If r = 1 the solutions are continuous (D = 0 and CB �= 0), see (1.16), (1.40),

(1.41).

• If r = 2 the solutions are discontinuous (D = CB = 0 and CAB �= 0), see (1.58).

• If r � 3 the solutions are Schwarz’ distributions (Dirac measure and its deriva-

tives) (D = CB = CAB = CAi−1B = 0 and CAr−1B �= 0), see (2.44) and Acary

et al. (2008).

The solutions regularity is therefore intimately linked to the relative degree be-

tween the two slack variables.

Why such nonsmooth models? Mainly because conventional (say SPICE-like)

solvers are not adequate for the analog simulation of switched circuits (see Maffez-

zoni’s counterexample in Chap. 7, Sect. 7.1). This is advocated in many publications

(Maffezzoni et al. 2006; Wang et al. 2009; Mayaram et al. 2000; Maksimovic et al.

2001; Valsa and Vlach 1995; Biolek and Dobes 2007; Lukl et al. 2006). On the other

hand working with nonsmooth models implies to take into account inconsistent ini-

tial data treatment, and thus creates new challenges. NSDS takes care of all this and

is a suitable solution for the simulation of circuits with a large number of events.

The price to pay is low order on smooth portions of the state trajectories.

The NSDS method (which we could also name the Moreau-Jean’s method (Jean

1999; Acary et al. 2010)) is a “package” which comprises:

• modeling with nonsmooth electronic devices (multivalued and piecewise-linear

current/voltage characteristics),

• Moreau’s time-stepping scheme (originally called the catching-up algorithm in

the context of contact mechanics),

• OSNSP solvers (complementarity problems, quadratic programs).

In the remaining chapters of this book the NSDS method will be presented in

detail.
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Chapter 3

Conventional Circuit Equation Formulation
and Simulation

In this chapter, some basic facts on the circuit equation formulation and simulation

which are shared by most of the analog SPICE-like simulators are presented. The

formulation of the circuit equations is based on two basic ingredients:

• conservative laws given by the Kirchhoff laws in currents and voltages,

• constitutive equations of the electrical components,

which lead to a Differential Algebraic Equation (DAE). We will give some details

on the DAEs in Sects. 3.1 to 3.6 and the chapter will end in Sect. 3.7 on conventional

techniques for the numerical analog simulation of circuits.

3.1 Circuit Topology and Kirchhoff’s Laws

3.1.1 The Circuit Network as a Connected Oriented Graph

Let us consider a circuit composed of b branches denoted by the branch set

B = {1, . . . , b}, (3.1)

and n nodes denoted by the node set

N = {1, . . . , n}. (3.2)

Let us assume for the moment that the circuit is composed of simple two-terminal

(one-port) elements. The circuit topology is usually represented by a connected ori-

ented graph. This graph is built by associating a vertex to each circuit node and an

edge to each branch between two nodes. The orientation is arbitrarily chosen for

each branch. In the sequel, we assume that the graph contains no self-loop (or loop

in the sense of the graph theory) that is, there is no edge that connects a vertex to

itself. A loop (in the sense of electrical network theory) is identified to a directed

cycle in graph theory. Finally, in graph theory, a cut is a partition of the vertices of a

graph into two disjoint subsets. The cut-set is the set of all edges whose end points

are in the different sets generated by the cut.
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In order to write Kirchhoff’s laws in currents and voltages, a rooted spanning

tree is chosen. The set of branches is divided into two sets: the tree branches which

corresponds to the edges of the spanning tree and the links which are the remaining

edges of the connected graph. The number of tree branches in the spanning tree with

n node is n − 1, therefore the number of links is b − n + 1. By definition of a tree,

adding one link to the spanning tree forms a unique cycle. A basic loop or a mesh

(in the sense of electrical network theory) is identified to each cycle generated by

adding a link. There are therefore b − n + 1 basic loops in the circuit which are

oriented as the associated link. A basic cut of the circuit is associated to each branch

of the spanning tree and the associated basic cut-set contains its tree branch and the

corresponding links. There are n − 1 basic cuts and the associated cut-sets.

In the following sections, some fundamental matrices associated with this con-

nected oriented graph and a chosen rooted spanning tree are presented. Kirchhoff’s

laws in currents and branch voltages are expressed in terms of these fundamental

matrices and this fact shows that these laws depend solely on the topology of the

circuit.

3.1.2 The Incidence Matrix A and Kirchhoff’s Current Laws

The first fundamental matrix is called the incidence matrix and is denoted by A ∈
R

(n−1)×b . This matrix A is an unimodular matrix which allows to construct the

graph of the corresponding circuit. Each row i of A specifies if the branch j is

connected to the node i. The value Aij = 1 specifies that the current of the branch j

comes into the node i and the value Aij = −1 when it leaves the node. If the branch

j is not connected to the node i the value is set to Aij = 0. A column of A represents

the terminal nodes of a given branch. Note that in our convention the incidence

matrix consists of n − 1 rows. A root node is arbitrarily chosen as a reference node

(ground node) where the topology is not expressed, in order to obtain full row rank

matrix.

It holds that rank(A) = n − 1 (even with the reference node), therefore the inci-

dence matrix A ∈ R
(n−1)×b of the circuit has full row rank. The incidence matrix A

can be split into [ATree,ALink]. The matrix ATree ∈ R(n−1)×(n−1) corresponds to the

tree branches, it is square and invertible, and ALink ∈ R(n−1)×(b−n+1) corresponds to

the links.

By construction of the incidence matrix A, Kirchhoff’s Current Laws (KCL) are

given by

AI = 0, (3.3)

where I ∈ R
b is the vector composed of the current in each branch. The KCL ex-

press that the sum of currents at a node taking into account the orientation, must be

zero.
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3.1.3 The Loop Matrix B and Kirchhoff’s Voltage Laws

The second fundamental matrix is called the loop matrix and is denoted by

B ∈ R
(b−n+1)×b . The loop matrix B is a totally unimodular matrix and is built as

follows. For each basic loop (as it has been defined above), the entry Bij specifies if

the branch j is concerned by the basic loop i. The value Bij = 1 or Bij = −1 is set

depending on the orientation of the branch with respect to the given orientation of

the basic loop. The value Bij = 0 specifies that the branch is not concerned by the

basic loop.

By construction of the incidence matrix B , the KVL are given by:

BU = 0, (3.4)

where U ∈ R
b is the vector composed of the branch voltages. The KVL express that

the sum of branch voltages along a basic loop, taking into account the orientation,

must be zero.

3.1.4 KVL in Terms of Nodes Voltages

A fundamental relation in standard graph theory asserts that

ABT = 0 or BAT = 0. (3.5)

By choosing the node voltages V ∈ R
n−1 except on the reference node (ground

node), such that:

AT V = U, (3.6)

the KVL are automatically satisfied due to (3.5). Indeed, one has

BU = BAT V = 0. (3.7)

In the sequel, the equation (3.6) will be preferably used to express the KVL. This is

mainly due to the fact that the incidence matrix is usually directly given by the user

input and the form (3.6) does not need the computation of the loop matrix B .

Others fundamental matrices can also be introduced in the study of the network

topology, such as the node-to-reference path matrix and the cut-set matrix. These

matrices are interesting in more thorough studies of the circuits as in the index

investigation of the generated equations (Tischendorf 1999; Günther and Feldmann

1993, Bächle and Ebert 2005a, 2005b; Günther et al. 2005). For more details on

network topology, we refer to Seshu and Reed (1961) and Branin (1967).

Remark 3.1 The case of multi-terminal elements can also be included in the equa-

tions (3.3), (3.4) or (3.6) for expressing the Kirchhoff laws. Clearly, the introduction

of multi-terminal elements such as transistors avoids to speak of standard connected

graphs. Nevertheless, equivalent circuits with only two-port elements can be for-

mulated. Note for a multi-terminal element that the Kirchhoff laws are valid in the

following sense. For t -terminal elements, the branch currents for each terminal and

the branch voltages across any pair of terminals are well-defined. The sum of all

branch currents flowing into the element and the sum of branch voltages along a

closed terminal loop must be zero.
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3.2 The Sparse Tableau Analysis (STA)

The Sparse Tableau Analysis (STA) (Hachtel et al. 1971) is one of the most basic

ways to express the equations of a circuit. As we said before, Kirchhoff’s Laws de-

pend solely on the topology of the circuits. To complete the mathematical model,

the physical behavior of the electrical components in each branch has to be char-

acterized. In transient analysis, this behavior is described by differential equations

of the unknowns, I , U and V which are called the Branch Constitutive Equation

(BCE). The BCE for all branches can be formally written as:

F(I,U, İ , U̇ ) = 0, (3.8)

where İ and U̇ respectively denote the time-derivatives of I and U . Thanks to (3.6),

the BCE can be equivalently written as

F(I,AT V, İ ,AT V̇ ) = 0. (3.9)

In practice, the BCE for a particular branch involves only a subset of the unknowns.

For instance, for standard two-terminal elements (resistive, capacitive or inductive

elements), only the currents and voltages of the single branch are used to describe

the behavior of the element.

The STA considers simply that the whole circuit equations are given by:
{

AI = 0,

AT V = U,

F(I,U, İ , U̇ ) = 0.

(3.10)

The terminology of this approach is justified by the fact that it keeps the intrinsic

sparsity of the description of the network. Let us consider for instance that the BCE

are given a linear time invariant equation such that F(I,U, İ , U̇ ) = Z I + Y V = 0.

If we have only two-terminal elements, each raw of Z and respectively Y , will have

a single non zero entry. The matrix of the linear system to be solved for (I,V ,U)

of the form
[

A 0 0

0 AT −Id

Z 0 Y

]

, (3.11)

will be therefore very sparse. More generally, the number of terminals of an element

is usually limited and an equivalent linear time-invariant behavior will be obtained

after the time-discretization and a Newton linearization around the current point.

The sparsity of the description which is mainly due to the topology of the circuits

will be conserved.

3.3 The Modified Nodal Analysis

In order to reduce the number of unknowns for a given circuit, Ho et al. (1975)

introduced the Modified Nodal Analysis (MNA) which favors the nodal unknowns,

i.e. the node voltages. Unlike the STA which can be used for very general circuits,
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some underlying assumptions have to be made. The main assumption states that the

BCE can be explicitly written for a part of the unknowns in each branch. This leads

to the following classification of branches.

3.3.1 Classification of the Branches

In the MNA, the branches are assumed to be classified in one of the following types:

1. current-defined branches denoted by the current-defined branch set I ⊂ B.

2. voltage-defined branches denoted by the voltage-defined branch set U ⊂ B.

Let us assume that B = I ∪ U and I ∩ U = ∅. For a current-defined branch k ∈ I, the

current Ik is defined as an explicit relation of the form

Ik = ik(U, IU, U̇ , İU, t), (3.12)

where ik is a given function which characterizes the branch. For a voltage-defined

branch k ∈ U, the voltage Uk is defined as an explicit relation of the form:

Uk = uk(IU,UB\{k}, İU, U̇B\{k}, t), (3.13)

where uk is a given function which characterizes the branch.

The conventional MNA assumes that all the node potentials {Vk}k∈N\{0} and the

currents in the voltage-defined branches, IU = {Ik, k ∈ U} form a sufficient set of

unknowns to describe the circuit. The laws (3.12) in the current-defined branches

are substituted in the KCL (3.3) and the laws in the voltage-defined branches (3.13)

are kept in the set of equations. By splitting the incidence matrix with respect to

current-defined and voltage-defined laws such that

A = [AI AU] , (3.14)

one gets:
{

AIi(A
T V, IU,AT V̇ , İU, t) + AUIU = 0,

AT
UV − u(IU,AT

B\{k}VB\{k}, İU,AT
B\{k}V̇B\{k}, t) = 0,

(3.15)

where the functions i(·) = [ik(·), k ∈ I]T and u(·) = [uk(·), k ∈ U]T collect the func-

tions respectively defining the current-defined and the voltage-defined branches.

3.3.2 Standard Resistive, Capacitive and Inductive Branches

It can be interesting to enter into more details of the description of the branches

to structure the formulation (3.15). To this end, three main types of branches are

usually considered:
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1. Resistive elements in the branches indexed by R ⊂ I which are characterized by

branch constitutive equations of the form

Ik = Sk(UR, t), for all k ∈ R ⊂ I. (3.16)

For these branches the conductance matrix G(UR, t) can be defined as the Jaco-

bian matrix of S with respect to UR, that is

G(UR, t) = ∇UR
S(UR, t). (3.17)

2. Capacitive elements in the branches indexed by C ⊂ I which are characterized by

branch constitutive equations of the form

Ik =
d

dt
qk(UC, t), for all k ∈ C ⊂ I, (3.18)

where qk is the charge into the capacitive branch k. Let q be the vector with

entries qk, k ∈ C. The capacitance matrix, C(UC, t) is generally defined by the

Jacobian matrix of q with respect to UC, that is

C(UC, t) = ∇UC
q(UC, t). (3.19)

3. Inductive elements in the branches indexed by L ⊂ U which are characterized by

branch constitutive equations of the form

Uk =
d

dt
φk(IL, t), for all k ∈ L ⊂ U, (3.20)

where φk is the flux in the inductive branch k. Let φ be the vector with entries

φk, k ∈ L. The inductance matrix L(IL, t) can be defined as the Jacobian matrix

of φ with respect to IL, that is

L(IL, t) = ∇IL
φ(IL, t). (3.21)

Remark 3.2 In the remaining part of this book, the matrices G(UR, t), C(UC, t) and

L(IL, t) will be assumed to be positive-definite matrices. In some pathological cases,

this assumption is not satisfied, for instance with some negative resistive elements.

With only two-terminal elements, the matrices are diagonal. The symmetry of these

matrices cannot generally be assumed with multi-terminal elements.

Usually, the remaining branches of the circuits are considered as voltage-

controlled sources, and current-controlled sources and correspond respectively to

the branches indexed by

V = U \ L (3.22)

and

J = I \ {R ∪ C}. (3.23)

The incidence matrix A can be split following the branch sets R, C, J, L and V such

that:

A = [AR AC AJ AL AV] . (3.24)
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The conventional MNA leads therefore to
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

AC
d
dt

q(AT
CV, t) + ARS(AT

RV, t) + ALIL + AVIV

+ AJi(A
T V, IL, IV,AT V̇ , İL, İV, t) = 0,

AT
L V − d

dt
φ(IL, t) = 0,

AT
V V − u(IL, IV,AT V, İL, İV,AT V̇ , t) = 0.

(3.25)

Using the definitions of the capacitance matrix (3.19) and the inductance ma-

trix (3.21), the time derivative of the charge q and the flux φ can be expressed as

d

dt
q(AT

CV, t) = C(UC, t)AT
C

d

dt
V + qt (A

T
CV, t),

d

dt
φ(IL, t) = L(IL, t)

d

dt
IL + φt (A

T
CV, t),

(3.26)

where qt , respectively φt , denotes the partial derivative of q , respectively φ,with

respect to t . The system (3.25) can be simplified as follows
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ACC(AT V, t)AT
C

dV
dt

+ ACqt (A
T
CV, t) + ARS(AT

RV, t)

+ ALIL + AVIV + AJi(A
T V, IL, IV,AT V̇ , İL, İV, t) = 0,

−AT
L V + L(IL, t)

dIL

dt
+ φt (IL, t) = 0,

AT
V V − u(IL, IV,AT V, İL, İV,AT V̇ , t) = 0.

(3.27)

3.4 The Charge/Flux Oriented MNA

In the framework of the MNA, another choice of the unknowns can be made by

adding the charge of capacitors q , and the flux of the inductors φ in the unknown

vector (Estèvez Schwarz and Tischendorf 2000; Günther et al. 2005). This results in

the so-called charge/flux oriented MNA formulation:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

AC
d
dt

q(AT
CV, t) + ARS(AT

RV, t) + ALIL + AVIV

+ AJi(A
T V, IL, IV,AT V̇ , İL, İV, t) = 0,

AT
L V − d

dt
φ(IL, t) = 0,

AT
V V − u(IL, IV,AT V, İL, İV,AT V̇ , t) = 0,

q − qC(AT
CV, t) = 0,

φ − φL(IL, t) = 0.

(3.28)

3.5 Standard DAEs Stemming from the MNA

In this section, the dynamics (3.27) which stems from the MNA is analyzed in the

light of the DAE theory. We will not enter into a thorough description of what is a

DAE and its fundamental properties. For more details, we refer the reader to Brenan

et al. (1989), Hairer and Wanner (1996), and Ascher and Petzold (1998).
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3.5.1 Various Forms of DAEs

3.5.1.1 Linear Time Invariant (LTI) Case with Independent Sources

In the case that the voltage-controlled and the current-controlled sources are some

inputs which only depend on t , the sources are called independent sources. If we

consider the Linear Time Invariant (LTI) case with independent sources, (3.27) can

be written as
⎧

⎪

⎨

⎪

⎩

ACCAT
C

dV
dt

+ ARGAT
RV + ALIL + AVIV + AJi(t) = 0,

−AT
L V + L dIL

dt
= 0,

AT
V V − u(t) = 0,

(3.29)

with the standard abuse of notation such that C(AT V, t) = C, L(IL, t) = L and

S(AT
RV, t) = GAT

RV in the LTI case. The system (3.29) forms the following LTI

DAE for the unknowns X = [V, IL, IV]:

MẊ = JX + U(t), (3.30)

with

M =

[

ACCAT
C 0 0

0 L 0

0 0 0

]

, (3.31)

J =

⎡

⎣

−ARGAT
R −AL −AV

AT
L 0 0

AT
V 0 0

⎤

⎦ , (3.32)

U(t) =

[

−AJi(t)

0

−u(t)

]

. (3.33)

The system is most of the time a DAE and not only an implicit ODE. Indeed, the

requirements to obtain an ODE is the invertibility of the matrix M . Obviously, if

there are some voltage-controlled sources, then M cannot be invertible. When there

is no voltage-controlled sources, the matrix M is also not necessarily invertible. This

point will be discussed in Sect. 3.6.

3.5.1.2 Nonlinear Case with Independent Sources

With independent sources, the following nonlinear DAE is obtained from (3.27):

M(X, t)Ẋ = D(X, t) + U(t) (3.34)

where X = [V T , IT
L , IT

V ]T and
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M(X, t) =

[

ACC(AT V, t)AT
C 0 0

0 L(IL, t) 0

0 0 0

]

, (3.35)

D(X, t) =

⎡

⎣

−ACqt (A
T
CV, t) − ARS(AT

RV, t) − ALIL − AVIV

AT
L V − φt (IL, t)

AT
V V

⎤

⎦ , (3.36)

U(t) =

[

−AJi(t)

0

−u(t)

]

. (3.37)

3.5.1.3 Nonlinear Case with General Controlled Sources

Up to this point, we have assumed that the current and voltage sources are inde-

pendent sources, which are only given by some functions of time t . Under this as-

sumption, the obtained DAE formulation (3.34) is linear in Ẋ. This is one of the

main interests of the MNA besides the classification of branches which allows one

to drastically reduce the number of unknowns.

If the controlled current and voltage sources are general function of unknowns

as they have been defined in (3.12) and (3.13), the structure of the DAE (3.34)

is lost. In practice, the controlled current and voltage sources are assumed to be

sufficiently smooth allowing us to use the linearized behavior around the current

point X̄ = [Ū , ĪL, ĪV]T , ¯̇X = [ ¯̇U, ¯̇I L,
¯̇IV]T . Thanks to this linearization, the sources

are inserted in the same formulation.

In the numerical practice, the linearization is used in the Newton-Raphson loop

and leads to the evaluation of the Jacobian of the function i(·) in (3.12) (and respec-

tively u(·) in (3.13)) with respect to their arguments:

AJi(U, IL, IV, U̇ , İL, İV, t) = AJi(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,
¯̇IV, t̄)

+ AJ∇U i(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,
¯̇IV, t̄)(AT (V − V̄ ))

+ AJ∇IL
i(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,

¯̇IV, t̄)(IL − ĪL)

+ AJ∇IV
i(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,

¯̇IV, t̄)(IV − ĪV)

+ AJ∇U̇ i(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,
¯̇IV, t̄)(AT (V̇ − ¯̇V ))

+ AJ∇İL
i(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,

¯̇IV, t̄)(İL − ¯̇I L)

+ AJ∇İV
i(Ū , ĪL, ĪV, ¯̇U, ¯̇I L,

¯̇IV, t̄)(İV − ¯̇IV). (3.38)

Inserting the linearized behavior of the controlled current sources in (3.27) yields

new terms into the formulation (3.34). For instance, the matrix M(X, t) is modified

such that

M(X, t) =

[

ACC(AT V, t)AT
C

+ AJ∇U̇ i(X̄, ¯̇X)AT AJ∇IL
i(X̄, ¯̇X) AJ∇İV

i(X̄, ¯̇X)

0 L(IL, t) 0

∇U u(X̄, ¯̇X)AT ∇IL
u(X̄, ¯̇X) ∇IV

u(X̄, ¯̇X)

]

. (3.39)
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These new terms in M(X, t) can be interpreted as capacitive-like or inductive-like

elements. The same augmentation has also to be done for D(X, t) and U(t) to obtain

a similar expression to (3.34) where the sources have been linearized.

We will not enter into deeper details of this technical aspect of the current and

voltage sources. In the sequel we will only keep the expression (3.34) for the sake

of simplicity. Another numerical way to take into account this source is to explicitly

evaluate the nonlinear terms with the previous values of the state. The controlled

current and voltage sources can also be used to model the non-linear constitutive

behavior of some particular components. The linearization of their behavior allows

us to integrate their formulation in the MNA and to interpret their contribution to

the circuit.

3.5.2 Index and Solvability

For a discussion of the solvability and the index of the obtained DAE, we refer to

Günther and Feldmann (1993), Reissig and Feldmann (1996), März and Tischendorf

(1997), Tischendorf (1999), Estèvez Schwarz and Tischendorf (2000), and Günther

et al. (2005). In the sequel, we summarize the major results of the latter works.

3.5.2.1 Steady State Solutions

If the circuit contains neither capacitive branches nor inductive branches, or if we

consider steady-state analysis of the circuits, the DAE reduces to a purely algebraic

systems of nonlinear equations as

0 = D(X, t) + U(t), (3.40)

where X = [V, IL, IV]T and

D(X, t) =

⎡

⎣

−ARS(AT
RV, t) − ALIL − AVIV

AT
L V

AT
V V

⎤

⎦ , (3.41)

U(t) =

[

−AJi(t)

0

−u(t)

]

. (3.42)

According to (3.17), the Jacobian matrix of the system is then given by

J (X, t) = ∇XD(X, t) =

⎡

⎣

−ARG(AT
RV, t)AT

R −AL −AV

AT
L 0 0

AT
V 0 0

⎤

⎦ . (3.43)

For the solvability of the steady-state systems (3.40), the following theorem on

the incidence matrix is recalled.
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Theorem 3.3 (Theorem 1.1 in Estèvez Schwarz and Tischendorf 2000) The follow-

ing relations are satisfied for the incidence matrix A split into [AC AL AR AV AJ]:

1. the cut-sets of current sources are forbidden by the KCL; this implies that the

matrix [AC AL AR AV] has full row rank,

2. the loops of voltage sources are forbidden by the KVL; this implies that the matrix

[AV] has full column rank,

3. The matrix [AC AR AV] has full row rank if and only if the circuit does not

contain a cut-set consisting only of inductors and/or currents sources.

4. Let QC be any projector onto kerAT
C . Then, the matrix QT

CAV has full column

rank if and only if the circuit does not contain a loop consisting only of capacitors

and voltage sources.

We recall the definition of a projector. For R
n = R1 ⊕R2, the linear application Q

is a projector onto R1 along R2 if and only if Q2 = Q, imQ = R1, and kerQ = R2.

For a linear application A, kerA denotes the Kernel (or null) space of A i.e.

kerA = {x | Ax = 0}, (3.44)

and imA denotes the range space of A i.e.

imA = {y | ∃x, y = Ax}. (3.45)

Proof Let us recall that A has full row rank. If there is no cut-set of current sources,

we can choose a spanning tree of the circuit with only branches that belong to C ∪

L ∪ R ∪ V. Then the matrix [AC AL AR AV] has full row rank. The same argument is

valid if the circuit does contain a cut-set consisting only of inductors and/or currents

sources. In this case, [AC AR AV] has full row rank.

If the circuit does not contain any loop of voltage sources, the incidence matrix

AV is also an incidence matrix of the corresponding forest (a set of trees) and then

is full column rank. If the circuit does not contain any loop of voltage sources and

capacitors, the incidence matrix [AV AC] is also a full column rank matrix. For the

last point in Theorem 3.3, let us assume there is a loop consisting only of capacitors

and voltage sources. Then the matrix [AC AV] has dependent columns. It exists a

nontrivial vector x, y such that

ACx + AVy = 0, (3.46)

and since AV has full column rank, one necessarily has x 
= 0. If y = 0, we have

ACx = 0 and the circuit contains at least a loop with capacitors only. This is ex-

cluded by assumption. Multiplying (3.46) by QT
C , we get

QT
CAVy = 0. (3.47)

Since y 
= 0, the matrix QT
CAV does not have full column rank. Conversely, let us

assume that there exists y 
= 0 such that (3.47) is satisfied. Then AVy ∈ kerQT
C =

imAC. There exists x such that (3.46) holds, and then there is a loop consisting only

of capacitors and/or voltage sources. Since AVy 
= 0, the loop contains at least one

voltage source. �
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We can add the following result on the solvability of (3.40) based on some topo-

logical considerations.

Theorem 3.4 Let us assume that G defined in (3.17) is positive definite. The ma-

trix (3.43) is invertible if and only if the circuit does not contain neither a loop of

independent voltage sources and/or inductors, nor cut-set of independent current

sources and/or capacitors.

Proof The following inclusion trivially holds for kerJ (X, t),

ker

⎡

⎣

−ARG(AT
RV, t)AT

R

AT
L

AT
V

⎤

⎦ × ker [−AL −AV ] ⊂ kerJ (X, t). (3.48)

Remarking that kerAT
R ⊂ kerARG(AT

RV, t)AT
R , we obtain the following inclusion

ker

⎡

⎣

AT
R

AT
L

AT
V

⎤

⎦ × ker [−AL −AV ] ⊂ kerJ (X, t). (3.49)

If the circuit contains a loop of independent voltage sources and/or inductors, the

incidence matrix [AL AV] has dependent columns, that is ker[AL AV] 
= {0}. If the

circuit contains a cut-set of independent current sources and/or capacitors, the graph

made of the branches in R ∪ L ∪ V has c components with c � 2. The rank of the

(reduced) incidence matrix [AL AV] is the rank of the graph, that is nG − c where

nG is the number of vertices of the graph. The number of rows in [AL AV] is nG −

1, therefore [AL AV] does not have full row rank since nG − 1 > nG − c. Due to

the inclusion (3.49), we can conclude if the Jacobian matrix J (X, t) is invertible,

ker[AL AV] = {0} and ker[ −AL −AV ] = {0} and the circuit does not contain neither

a loop of independent voltage sources and/or inductors nor a cut-set of independent

current sources and/or capacitors.

Conversely, let [x, y]T be a vector such that J (X, t)
[ x

y

]

= 0:

ARG(AT
RV, t)AT

Rx + [AL AV]y = 0 and x ∈ ker[ALAV]T . (3.50)

Let us denote by QLV a projector on ker[AL AV]T . By definition of the projector

onto a null space, we have

[AL AV]T QLV = 0, (3.51)

and then

QT
LV[AL AV] = 0. (3.52)

Multiplying (3.50) by QT
LV, we get

QT
LVARG(AT

RV, t)AT
Rx = 0. (3.53)

Since x ∈ ker[AL AV]T , QLVx = x and we can write

xT QT
LVARG(AT

RV, t)AT
RQLVx = 0. (3.54)
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Since G is positive definite, we obtain AT
RQLVx = AT

Rx = 0 and

x ∈ ker[AR AL AV]T . (3.55)

If the circuit does not contain cut-set of independent current sources and/or capac-

itors, the matrix [AR AL AV] has full row rank, then x = 0. The condition (3.50)

reduces to y ∈ ker[AL AV]. If the circuit does not contain a loop of independent volt-

age sources and/or inductors, the matrix [AL AV] has full column rank and y = 0. �

Standard analog simulators refuse to simulate in a steady-state analysis sys-

tems that do not fulfill the assumptions of Theorem 3.4.

3.5.2.2 Notion of Differential Index

Let us now consider the DAE (3.34). One of the main notions concerning the

solvability of a DAE is the index. There are many notions of index for DAEs

which are not necessarily equivalent. For a detailed presentation, we refer to

the following standard books (Brenan et al. 1989; Hairer and Wanner 1996;

Griepentrog and März 1986). To fix the ideas, we give the definition of the dif-

ferential index.

Definition 3.5 (Differential index, see Brenan et al. 1989) The differential index ν

of the general nonlinear and sufficiently smooth DAE

F(ẏ, y, t) = 0, (3.56)

is the smallest integer such that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

F(ẏ, y, t) = 0,
d
dt

F(ẏ, y, t) = 0,

...
dν

dtν
F(ẏ, y, t) = 0,

(3.57)

uniquely determines the variable ẏ as a function of (y, t).

Briefly speaking, the differential index corresponds to the number of differentia-

tions with respect to time to obtain a differential system which is similar to an ODE.

In the case of a semi-explicit LTI DAE
{

ẋ = Ax + Bz,

0 = Cx + Dz,
(3.58)

the evaluation of the differential index amounts to checking the regularity of the

system’s Markov parameters: D,CB,CAB,CA2B, . . .
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1. if D is a regular matrix, a single differentiation of the algebraic equation in (3.58)

determines uniquely ẋ and ż as
{

ẋ = Ax + Bz

ż = −D−1(CAx + CBz).
(3.59)

Then the differential index is one;

2. if D is a singular matrix, a complete orthogonal decomposition (Golub and

Van Loan 1996) can be performed

QDZ = D̄ =

[

D̄11 0

0 0

]

, (3.60)

such that Q and Z are orthogonal matrices and D̄11 a regular matrix of the same

rank as D. Applying the change of variable
[

x̄

z̄

]

= ZT

[

x

z

]

, (3.61)

we obtain

˙̄x = Āx̄ + B̄z̄, (3.62a)

0 = C̄1x̄ + D̄11z̄1, (3.62b)

0 = C̄2x̄. (3.62c)

Since D11 is regular, z̄1 appears to be an index-1 variable because a single deriva-

tion of (3.62b) yields

˙̄z1 = −D̄−1
11 C̄1[Ā, B̄]ZT

[

x

z

]

. (3.63)

For z̄2, we need to derive (3.62c) twice and we get

˙̄z2 = −(C̄2B̄2)
−1C̄2Ā[Ā, B̄]ZT

[

x

z

]

, (3.64)

since C̄2B̄2 is also a regular matrix. After two differentiations with respect to

time, we obtain an explicit evaluation ẋ and ż as
⎧

⎪

⎨

⎪

⎩

ẋ = Ax + Bz,

ż = Z2

[

Id

−D̄−1
11 C̄1

−(C̄2B̄2)
−1C̄2Ā

]

[Ā, B̄]ZT
[ x

z

]

.
(3.65)

We conclude that the differential index is 2.

3. Similar transformations can be performed for higher index systems by stating

additional assumptions on the regularity of CAνB for a DAE of index ν + 2,

ν � 1.

In the case of an LTI DAE

Mẏ = Jy + f, (3.66)
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another transformation is often used. If the matrix pencil λM + J is regular, there

exist non singular matrices P and Q such that

PMQ =

[

Id 0

0 N

]

and PJQ =

[

C 0

0 Id

]

, (3.67)

where N is a matrix of nilpotency k. This transformation leads to a DAE of the form
{

ẏ1 = Cy1 + f1,

Nẏ2 = Cy1 + f2.
(3.68)

A simple calculation shows that y2 may be expressed as

y2 =

k−1
∑

i=0

(−1)iN i d
if2

dt i
. (3.69)

We can therefore conclude that the degree of nilpotency k of N is the differential

index of the DAE.

3.5.2.3 Topological Index Results for the MNA

To summarize the results on the index based on topological considerations, we cite

two main theorems of Tischendorf (1999) and Estèvez Schwarz and Tischendorf

(2000).

Theorem 3.6 (Part of Theorem 3.2 in Estèvez Schwarz and Tischendorf (2000)) Let

us consider the DAE (3.34) given by the MNA formulation of the circuit with only

independent sources. Let us assume that the Jacobian matrices G(UR, t), C(UC, t)

and L(IL, t) are positive definite.

1. If the circuit contains neither cut-sets with only inductive and/or independent

current sources, nor loops with capacitive elements and independent voltage

sources, then the DAE (3.34) is of differential index one.

2. If the circuit contains cut-sets with only inductive and/or independent current

sources, or loops with capacitive elements and independent voltage sources, then

the DAE (3.34) is of differential index two.

Theorem 3.6 is completed by the statements of the explicit constraints in the

index-1 case and the hidden constraints in the index-2 case. Moreover, the result

is given in a more general framework with controlled current and voltage sources.

The following theorem shows that the conditions of Theorem 3.6 are necessary and

sufficient conditions.

Theorem 3.7 (Theorem 3.3 in Estèvez Schwarz and Tischendorf 2000) If the dif-

ferential index of the DAE (3.34) is one, then the network contains neither cut-sets

with only inductive and/or independent current sources, nor loops with capacitive

elements and independent voltage sources. If the differential index of the DAE (3.34)
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is two, then the network contains at least a cut-set with only inductive and/or inde-

pendent current sources, or a loop with capacitive elements and independent voltage

sources.

Similar results have also been obtained for the charge-oriented MNA (3.28) and

using the tractability index introduced in Griepentrog and März (1986) and März

(1992).

3.6 Semi-Explicit DAE Forms

When we examine the structure of the DAE (3.34), a question is raised about the

possibility to obtain a semi-explicit DAE of the form
{

N(x, t)ẋ = f (x, z, t),

0 = g(x, z, t),
(3.70)

where N(x, t) is a regular matrix.

When the DAE (3.34) is of index one, as in most of the cases, the semi-explicit

form of the DAE (3.34) is of low interest because standard numerical time integra-

tion schemes correctly work on index one DAEs. Nevertheless, we are interested in

this question for our further developments with nonsmooth elements.

The question is also closely related to the notion of index. Indeed, if we consider

a DAE in the implicit form as (3.56), a semi-explicit form can be straightforwardly

obtained by setting
{

ẏ = z,

0 = F(z, y, t).
(3.71)

By doing such a change of variable, the resulting differential index of (3.71) is

equal to the index of the original DAE (3.56) plus one. The quest for a semi-explicit

form (3.70) is therefore constrained by the increase of the index and in some sense

the question of the redundancy of unknowns.

3.6.1 A First Naive Attempt

To outline a part of the algebraic equations in (3.34), we may split the vector of

unknowns X as follows: X = [xT , zT ]T with x = [V T , IT
L ]T and z = [IV]T . One

gets the following equivalent system
{

N(x, t)ẋ = f (x, z, t),

0 = g(x, z, t)
(3.72)

with
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Fig. 3.1 Simple circuits illustrating DAE formulations

N(x, t) =

[

ACC(AT V, t)AT
C 0

0 L(IL, t)

]

, (3.73)

f (x, z, t) =

[

−ACqt (A
T
CV, t) − ARS(AT

RV, t) − ALIL − AVIV − AJi(t)

AT
L V − φt (IL, t)

]

,

(3.74)

g(x, z, t) = [AT
V V − u(t) ] . (3.75)

Unfortunately, this formulation does not lead to a semi-explicit DAE, because the

matrix N(x, t) is not necessarily regular due to the matrix ACC(AT V, t)AT
C which

is almost never invertible. Assuming that the matrices C and L are positive-definite,

the matrix ACCAT
C is regular if a spanning tree of the circuit with only capacitive

elements can be found. In others terms, for each node, there is path to the reference

node (ground) with only capacitive elements.

Example 3.8 To illustrate the various formulations, let us consider the simple circuit

depicted in Fig. 3.1(a). The reduced incidence matrix is given by

A =

[

1 −1 0 0 0

0 1 1 −1 0

0 0 0 1 −1

]

, (3.76)

which can be split into

AC =

[

1 0

0 1

0 0

]

, AR =

[

−1 0 0

1 −1 0

0 1 −1

]

, and AJ =

[

0

−1

1

]

. (3.77)

The matrix

ACCAT
C =

[

C1 0 0

0 C2 0

0 0 0

]

, (3.78)
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is obviously singular since there is no tree of capacitive branches that spans the

whole circuit. The equation of the circuit in the standard MNA form is given by

[

C1 0 0

0 C2 0

0 0 0

][

V̇1

V̇2

V̇3

]

=

[

−1/R 1/R 0

1/R −1/R 0

0 0 −1/R

][

V1

V2

V3

]

+

[

0

−i

i

]

. (3.79)

The DAE (3.79) is of differential index 1 since a single differentiation of the third

equation allows us to uniquely define V̇ in terms of V .

3.6.2 A Second Attempt

Assuming that C(AT V, t) is positive definite and L(IL) is positive definite, another

method that may be used to obtain a regular matrix is to put all the capacitor branch

voltages with the inductive currents in the unknown vector, that is x = [UT
C , IT

L ]T

and to write the law C dUC

dt
= IC to fill the matrix N such that

N(x, t) =

[

C(x, t) 0

0 L(x, t)

]

, (3.80)

such that N(x, t) is regular. In order to state the remaining equations, we have to

choose z = [V T , IT
V , IT

C ]T and one gets

f (x, z, t) =

[

IC − qt (UC, t)

AT
L V − φt (IL, t)

]

, (3.81)

and

g(x, z, t) =

[

−Id 0

0 AL

0 0

]

[

UC

IL

]

+

⎡

⎣

AT
CV

ACIC + ARS(AT
RV, t) + AVIV + AJi(t)

AT
V V − u(t)

⎤

⎦ . (3.82)

In the LTI case, one obtains
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

C 0
0 L

][ U̇C

İL

]

=
[ IC

AT
V V

]

,

0 =

[

−Id 0
0 AL

0 0

]

[UC

IL

]

+

[

0 AT
C 0

AC ARGAT
R AV

0 AT
V 0

]

[

IC

V
IV

]

+

[

0
AJi(t)

−u(t)

]

.
(3.83)

This method is not appropriate because it increases the size of the vector of un-

knowns. Although this change of unknowns is very similar to the method evoked

in the beginning of this section to pass from (3.56) to (3.71), it does not lead to an

increase of the index of the problem.
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Theorem 3.9 If the circuit does not contain neither cut-sets with only inductive

and/or independent current sources, nor loops with capacitive elements and inde-

pendent voltage sources, then:

1. the DAE (3.83) is of differential index one,

2. the matrix
⎡

⎣

0 AT
C 0

AC ARGAT
R AV

0 AT
V 0

⎤

⎦ (3.84)

is regular.

Proof Let
[

x

y

z

]

be a vector such that

AT
Cy = 0, (3.85)

AT
V y = 0, (3.86)

ACx + ARGAT
Ry + AVz = 0, (3.87)

i.e.
[

x

y

z

]

∈ ker D̃.

Let us denote QCV a projector on ker[AC AV]T . By definition, we recall that

[AC AV]T QCV = 0 and QT
CV[AC AV] = 0. (3.88)

Multiplying (3.87) by QT
CV, we obtain

QT
CV[AC AV]

[

x

z

]

+ QT
CVARGAT

Ry = 0. (3.89)

By definition, QT
CV[AC AV] = 0, and using (3.85) and (3.86), we have that

QCVy = y. Then (3.89) can be written as

QT
CVARGAT

RQCVy = 0. (3.90)

Multiplying by yT and recalling that G is positive definite, we have

AT
RQCVy = 0, or equivalently AT

Ry = 0. (3.91)

The relations (3.91), (3.85) and (3.86) result in y ∈ ker[AC AR AV]T . According to

Theorem 3.3, if the circuit does not contain cut-set consisting of inductors and/or

current sources only, the matrix [AC AR AV] has full row rank. Then, we can con-

clude that y = 0 and

[AC AV]

[

x

z

]

= 0. (3.92)
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Let us multiply (3.92) by QT
C , we get that

QT
CAVz = 0. (3.93)

According to Theorem 3.3 again, if the circuit does not contain any loop consisting

of capacitors and voltage sources only, the matrix QT
CAV has full column rank, then

z = 0. Due the fact that AV has full column rank, we conclude that x = 0. The matrix

in (3.84) is therefore regular and the DAE (3.83) is of index one. �

Example 3.10 To illustrate the second approach, let us consider the circuit depicted

in Fig. 3.1(b). The reduced incidence matrix is split into

AC =

⎡

⎢

⎣

1 0

0 −1

0 1

0 0

⎤

⎥

⎦
AR =

⎡

⎢

⎣

−1 0 0

1 0 0

0 −1 0

0 1 −1

⎤

⎥

⎦
and AJ =

⎡

⎢

⎣

−1

0

0

1

⎤

⎥

⎦
. (3.94)

The matrix

ACCAT
C =

⎡

⎢

⎣

C1 0 0 0

0 C2 −C2 0

0 −C2 C2 0

0 0 0 0

⎤

⎥

⎦
, (3.95)

is obviously singular since there is no tree of capacitive branches that spans the

whole circuit. The equations of the circuit in the standard MNA form are given by

⎡

⎢

⎣

C1 0 0 0

0 C2 −C2 0

0 −C2 C2 0

0 0 0 0

⎤

⎥

⎦

⎡

⎢

⎣

V̇1

V̇2

V̇3

V̇4

⎤

⎥

⎦
=

⎡

⎢

⎣

−1/R 1/R 0 0

1/R −1/R 0 0

0 0 1/R −1/R

0 0 −1/R 2/R

⎤

⎥

⎦

⎡

⎢

⎣

V1

V2

V3

V4

⎤

⎥

⎦

+

⎡

⎢

⎣

−i

0

0

i

⎤

⎥

⎦
. (3.96)

The DAE (3.96) is of differential index 1 since a single differentiation yields

⎡

⎢

⎣

C1 0 0 0

0 C2 −C2 0

0 −C2 C2 0

0 0 0 0

⎤

⎥

⎦

⎡

⎢

⎣

V̈1

V̈2

V̈3

V̈4

⎤

⎥

⎦

=

⎡

⎢

⎣

−1/R 1/R 0 0

1/R −1/R 0 0

0 0 1/R −1/R

0 0 −1/R 2/R

⎤

⎥

⎦

⎡

⎢

⎣

V̇1

V̇2

V̇3

V̇4

⎤

⎥

⎦
. (3.97)

Combining (3.96) and (3.97), we determine the derivatives of the unknowns as
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⎡

⎢

⎣

V̇1

V̇2

V̇3

V̇4

⎤

⎥

⎦
= 1/R

⎡

⎢

⎣

−1/C1 1/C1 0 0

−1/C1 1/C1 −1/(2C2) −1/(2C2)

−1/C1 1/C1 1/(2C2) −1/(2C2)

−1/(2C1) 1/(2C1) 1/(4C2) −1/(4C2)

⎤

⎥

⎦

+

⎡

⎢

⎣

V1

V2

V3

V4

⎤

⎥

⎦

⎡

⎢

⎣

−i/C1

−i/C1

−i/C1

−i/2C1

⎤

⎥

⎦
. (3.98)

The index can be also be exhibited by performing a row compression of the

matrix C̃ = ACCAT
C using a transformation P based on the range of C̃ and C̃T as

P =

⎡

⎢

⎣

−1 0 0 0

0 −1/2 1/2 0

0 1/2 1/2 0

0 0 0 0

⎤

⎥

⎦
. (3.99)

The following change of unknown

X = P T

[

x

z

]

, (3.100)

yields
⎧

⎨

⎩

[C1 0
0 C2

]

ẋ = 1
R

[ −1 −1/2

−1/2 0

]

x + 1
R

[ 1/2 0

1/2 −1/2

]

z,

0 = 1
R

[ 1/2 1/2

0 −1/2

]

x + 1
R

[ 0 −1/2

−1/2 1

]

z.
(3.101)

The fact that the matrix 1
R

[ 0 −1/2

−1/2 1

]

is invertible shows that the DAE (3.101) is of

index 1. In the semi-explicit form (3.101), the variable x = [V1,V3 − V2]
T appears

to be an “index-0 variable”, due to the fact that ẋ is explicitly given as a function

of the unknown variables x and z. On the contrary, the variable z = [V3 + V2,V4]
T

appears as an “index-1 variable”, because we have to derive with respect to time the

algebraic equations to obtain ż in terms of x and z.

Let us now introduce the branch voltages UC1
and UC2

. The formulation given

by (3.80)– (3.82) yields
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[C1 0
0 C2

][ U̇C1

U̇C2

]

=
[ IC1

IC2

]

,

⎡

⎢

⎢

⎣

1 0
0 1
0 0
0 0
0 0
0 0

⎤

⎥

⎥

⎦

[ UC1

UC2

]

+

⎡

⎢

⎢

⎣

0 0 −1 0 0 0
0 0 0 1 −1 0
1 0 −1/R 1/R 0 0

0 1 1/R −1/R 0 0

0 −1 0 0 1/R −1/R

0 0 0 0 −1/R 2/R

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

IC1

IC2

V1

V2

V3

V4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0
0
i
0
0

−i

⎤

⎥

⎥

⎦

,

(3.102)

and yields also an index-1 DAE.

3.6.3 The Proposed Solution

In the previous section, a semi-explicit formulation which does not increase the

index (at least in the index-1 case) is proposed. The main drawback of the formula-



130 3 Conventional Circuit Equation Formulation and Simulation

tion (3.80) is the increase of the number of unknowns. For each capacitive branch

of the circuit two variables are added, i.e. UC and IC. We propose in this section to

reduce this number of unknowns by substitution when it is directly possible. Let us

consider a splitting of the incidence matrix of the capacitive branches as:

AC =

[

ÃCF ÃCL

ÂCF ÂCL

]

, (3.103)

such that ÃCF is invertible. This splitting is built by firstly splitting the set of ca-

pacitive branches in the set CF and the set CL by choosing a spanning forest of the

capacitive branches. The subscript F stands for “forest” and the subscript L stands

for “links”. If the circuit does not contain a loop of capacitors, then CL = ∅. Sec-

ondly, the set of nodes N is split into two subsets Ñ and N̂. The set Ñ is built by

choosing the nodes contained in the spanning forest and removing for each compo-

nent (connected graph) a reference node. If the ground node is already in the forest,

it is not removed again. According to this construction, ÃCF is invertible. Let us now

apply this splitting to the semi-explicit DAE (3.80) with (3.81) and (3.82). The split

KCL yields:

ICF = −Ã−1
CF

[

ÃCLICL + ÃRS(AT
RV, t) + ÃVIV + ÃLIL + ÃJi(t)

]

,

0 = (ÂCL − ÂCFÃ
−1
CF

ÃCL)ICL + (ÂR − ÂCFÃ
−1
CF

ÃR)S(AT
RV, t)

+(ÂL − ÂCFÃ
−1
CF

ÃL)IL + (ÂV − ÂCFÃ
−1
CF

ÃV)IV + (ÂJ − ÂCFÃ
−1
CF

ÃJ)i(t).

(3.104)

By identification with (3.70), we get

N(x, t) =

[

C(x, t) 0

0 L(x, t)

]

, (3.105)

f (x, z, t) =

⎡

⎣

−Ã−1
CF

[ÃCLICL + ÃRS(AT
RV, t) + ÃVIV + ÃLIL] − qt (UCF , t)

ICL − qt (UCL , t)

AT
L V − φt (IL, t)

⎤

⎦ ,

(3.106)

and

g(x, z, t) =

[

−Id 0

0 ÂL − ÂCFÃ
−1
CF

ÃL

0 0

]

[

UC

IL

]

+

⎡

⎢

⎢

⎢

⎣

AT
CV

(ÂCL − ÂCFÃ
−1
CF

ÃCL)ICL + (ÂR − ÂCFÃ
−1
CF

ÃR)S(AT
RV, t)

+(ÂV − ÂCFÃ
−1
CF

ÃL)IV + (ÂJ − ÂCFÃ
−1
CF

ÃJ)i(t)

AT
V V − u(t)

⎤

⎥

⎥

⎥

⎦

.

(3.107)

With this substitution, we have eliminated the currents ICF . It is worth noting

that this substitution in only based on topological considerations. It can be done
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only one time in the initialization process. In the same vein, a substantial part of the

node potential V can be eliminated by writing

Ṽ = Ã−T
CF

(UCF + ÂT
CF

V̂ ). (3.108)

This latter substitution is done in practice but for the sake of readability it is not

reported here. We end with the following variable definition:

x =

[

UC

IL

]

, z =

[

V̂

ICL

IV

]

. (3.109)

3.7 Basics on Standard Circuit Simulation

In this section, we recall the basic ingredients of the conventional approach for sim-

ulating a circuit in the standard SPICE-like analog approach. Further details can be

found in any standard textbooks on simulation of electrical circuits (Chua et al.

1991) or in the SPICE reference manual. In the comprehensive review of Günther

et al. (2005), the reader will find more informations on less conventional approaches

for the simulations of circuits.

Three main ingredients are at the heart of the approach:

• Computation of the initial conditions,

• Time-discretization of the DAE resulting from the MNA,

• Solving a nonlinear systems by a Newton-like method.

The following sections will focus on each of these points, starting from the MNA

formulation with independent sources ((3.34) to (3.37)).

3.7.1 Computation of the Initial Conditions

The computation of consistent initial conditions amounts to performing a steady

state analysis (DC operating point). The problem that we have to solve is the system

of nonlinear equations (3.40) for the initial condition X0 at the given initial time t0,

i.e.:

0 = D(X0, t0) + U(t0). (3.110)

As we said in Sect. 3.5.2.1, the solvability of this problem depends on the topology

of the circuit if the branch constitutive equations are well defined. Theorem 3.4 gives

the condition on the circuit topology for the solvability of (3.110). In practice, the

user can prescribe a part of the initial conditions. In this case, the prescribed known

values are then dropped from the unknown vector.
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3.7.2 Time-Discretization of the MNA

The approximate solution of the DAE (3.34) is computed at discrete time points,

tk by numerical integration usually using linear implicit multi-step methods (Hairer

and Wanner 1996). To simplify the presentation, let us rewrite (3.34) in a more

compact form as:
{

0 = Eẏ(t) + f (x(t), t),

0 = y(t) − g(x(t)),
(3.111)

with y = [qT , φT ]T , x = [V T , IT
V , IT

L ]T ,

E =

[

AC 0

0 Id

0 0

]

, g(x, t) =

[

qC(AT
CV )

φL(IL)

]

, (3.112)

and

f (x, t) =

⎡

⎣

ACqt (A
T
CV, t) + ARS(AT

RV, t) + ALIL + AVIV + AJi(t)

AT
L V − φt (IL, t)

AT
V V − u(t)

⎤

⎦ . (3.113)

Briefly speaking, the approach consists in an approximation of ẏ by a Backward

Differentiation Formulas (BDF) pioneered by Gear (1971) as:

ẏk =
1

hk

ρ
∑

i=0

γk,iyk−i −

ρ
∑

i=0

βk,i ẏk−i, (3.114)

where ρ is the number of steps required by the integrator, hk is the length of the

time-step k, γk,i, βk,i are the coefficients of the method to ensure a certain order

of consistency, yk−i, ẏk−i are the already computed values for i = 1, . . . , ρ. The

formula (3.114) is expressed in terms of the unknowns at step k by

ẏk = αkyk + rk, (3.115)

where αk and rk can be easily identified from (3.114). Without going into deeper

details, the substitution of ẏ in (3.111) by (3.115) yields a system of nonlinear equa-

tions:

0 = Eẏk + f (xk, t) = E(αkg(xk) + rk) + f (xk, tk). (3.116)

3.7.3 Solving Nonlinear Systems

The system of nonlinear equations (3.116) (as well for (3.110)) is usually solved

with the Newton’s method. The solution is sought as the limit of the sequence xα
k

for α defined by

∇T
x R(xα

k )(xα+1
k − xα

k ) = −R(xα
k ), (3.117)
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Fig. 3.2 Newton’s method failure

where the nonlinear residue is defined as

R(x) = E(αkg(x) + rk) + f (x, tk). (3.118)

The nonlinear system (3.117) yields

(αkE∇T
x g(xα

k ) + ∇T
x f (xα

k , tk))(x
α+1
k − xα

k ) = −R(xα
k ). (3.119)

The solvability of (3.117) relies on the regularity of the matrix pencil {∇T
x g(xα

k ),

∇T
x f (xα

k , tk)}. This regularity is satisfied if the DAE (3.111) is of index one. In

Example 3.11, we illustrate one of the motivations to deal with nonsmooth models

rather than nonlinear stiff models.

Example 3.11 (Numerical overflow with stiff nonlinear model) The exponential

characteristic of the diode (or the quadratic response of a MOS transistor to VGS

when it goes from the weak inversion region to the strong inversion region) may

cause convergence problems when a DC analysis tries to find an equilibrium point

belonging to a region different from the initial guess, or when a transient analysis

tries to compute the evolution of the device’s current across two regions.

This will be illustrated in the case of the diode when the Newton method tries

to find two successive polarization points of a circuit with a voltage source E(t), a

resistor R and a diode D (see Fig. 3.2(a) for the circuit’s description and Fig. 3.2(b)

for the algorithm).

The process for finding the new polarization point at time t +h starts with the ini-

tial guess U0
D(t +h), i.e. the polarization point obtained for time t : UD(t). The first

iterate U1
D(t +h) is given by the intersection between the tangent to the diode’s char-

acteristic and the source-resistor characteristic. Due to the stiffness of the diode’s

characteristic, this value U1
D(t + h) will result in a numerical overflow during the

computation of the next iterate U2
D(t + h).

Several solutions try to overcome these problems, yielding an increase of the

number of iterations. Note that the secant method replacing Newton-Raphson al-

gorithm is also prone to such kind of drawback. The huge number of iterations
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required to compute the solution of a set of nonlinear equations is a key problem

when one wants to simulate a circuit involving a large number of components with

stiff characteristics for a large number of cycles. This is the case for instance in

power electronics.

3.7.4 Implementation Details and the Stamping Method

In the standard implementation of the MNA as in the SPICE family simulators, the

incidence matrices AC,AL,AR are never formed, but the product with the capaci-

tance matrix, the inductance matrix or the conductance matrix is directly inserted

into M(X, t),D(X, t) and U(t). This algorithm is usually called the “stamp me-

thod”, which is an algorithmic method used to fill the table equation from the com-

ponents. It consists in writing a sub-table for each type of component, this sub-table

being the contribution of the component in the tableau equation.

For the sake of simplicity, let us consider the LTI case of (3.27)

⎧

⎨

⎩

ACCAT
C

dV
dt

+ ARSAT
RV + ALIL + AVIV + AJi(t) = 0 (KCL),

−AT
L V + L dIL

dt
= 0 (BCEL),

AT
V V − u(t) = 0 (BCEV),

(3.120)

which forms the following linear time invariant DAE equivalent to (3.34):

MẊ = JX + U(t), (3.121)

with

M =

[

ACCAT
C 0 0

0 L 0

0 0 0

]

, (3.122)

J =

⎡

⎣

−ARSAT
R −AL −AV

AT
L 0 0

AT
V 0 0

⎤

⎦ , (3.123)

U(t) =

[

−AJi(t)

0

−u(t)

]

. (3.124)

Let us show several standard examples of stamp in the MNA.

1. Resistive element stamp which corresponds to an element of ARSAT
R in J :

⎛

⎜

⎝

Vi (column in J ) Vj (column in J )

KCL(i) (line in J ) − 1
Rk

1
Rk

KCL(j) (line in J ) 1
Rk

− 1
Rk

⎞

⎟

⎠
(3.125)

where Rk = 1
Sk

is the resistance of the branch k.
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2. Capacitive element stamp which corresponds to an element of ACCAT
C in M :

⎛

⎝

V̇i (column in M) V̇j (column in M)

KCL(i) (line in M) Ck −Ck

KCL(j) (line in M) −Ck Ck

⎞

⎠ (3.126)

where Ck = 1
Sk

is the capacitance of the branch k.

3. Inductive element stamp which corresponds to an element of L in M and of AT
L

and AL in J :
⎛

⎜

⎜

⎜

⎜

⎝

Vi (col-

umn in J )

Vj (col-

umn in J )

İL,k (col-

umn in M)

IL,k (col-

umn in J)

KCL(i) (line in M or J ) −1

KCL(j) (line in M or J ) 1

BCEL(k) (line in M) −1 1 Lk

⎞

⎟

⎟

⎟

⎟

⎠

(3.127)

where Lk is the inductance of the branch k.

4. Voltage independent sources (u = f (t)) which correspond to elements of AT
V

and AV in J and an element in U(t):
⎛

⎜

⎜

⎝

Vi Vj Ik RSH

KCL(ic) −1

KCL(jc) 1

BCEL(k) −1 1 f (t)

⎞

⎟

⎟

⎠

. (3.128)

5. Current independent sources (i = f (t)) which correspond to elements in U(t):

⎛

⎝

RSH

KCL(ic) f (t)

KCL(jc) −f (t)

⎞

⎠ . (3.129)

The fully nonlinear case is treated in the same way by directly evaluating the

components of F element by element. The matrices M(X, t), D(X, t) and U(t)

and the Jacobian matrices of F and U are filled following the same linearization

procedure as in Sect. 3.5.1.3. The main consequence is the cheap evaluation of the

Jacobians for a circuit which is a very sparse matrix. The evaluation is only slightly

more expensive than evaluating the right-hand-side in (3.117). This is one of the

reasons why the modified Newton method is almost never used in practice.



Chapter 4

Nonsmooth Modeling of Electrical Components

In the NonSmooth Dynamical Systems (NSDS) approach, the standard description

of elements by means of explicit and smooth functions is enriched by new elements

described by generalized equations. The characteristics of the electronic devices can

be then nonsmooth and even multivalued. These new elements are called the elec-

trical “nonsmooth elements”. Some examples have already been studied in Chaps. 1

and 2. The description of nonsmooth components relies a lot on mathematical no-

tions from Convex Analysis and the Mathematical Programming theory. A signifi-

cant amount of informations on these aspects has already been provided in Chap. 2,

starting from the very simple academic circuits examples presented in Chap. 1. In

this chapter we take advantage of the material of the foregoing chapters to arrive

at the general mathematical formalisms which are used in the NSDS approach to

simulate the electrical circuits of Chaps. 7 and 8. The first subsections briefly re-

call some basic facts which are exposed in more details in Chap. 2, in particular

Sects. 2.1 and 2.3. In a way similar to the foregoing chapter, the time argument is

dropped from the state variables, in order to lighten the presentation of the dynam-

ics.

4.1 General Nonsmooth Electrical Element

In order to precise what can be the constitutive laws of nonsmooth electronic de-

vices, let us start with a very general definition of a generalized equation.

Definition 4.1 Let y ∈ R
n and λ ∈ R

n be two vectors. A generalized equation

(Robinson 1979) between y and λ is given by the following inclusion:

0 ∈ F(y,λ) + T (y,λ), (4.1)

where F : R
n×n → R

n is assumed to be a continuously differentiable mapping and

T : R
n×n � R

n a multivalued mapping with a closed graph.
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This definition clearly extends (2.13) since a supplementary variable λ is added,

and the multivalued mapping T (·, ·) may not be a normal cone. Using this definition

of a generalized equation, a nonsmooth element will be defined in its full generality

by the following constitutive equations:

y = gNS(INS,UNS, λ, t)

0 = hNS(INS,UNS, λ, t)

]

Input/Output Relations,

0 ∈ F(y,λ, t) + T (y,λ, t) ] Inclusion rule

(4.2)

where INS ∈ R
m and UNS ∈ R

m−1 are two vectors which collect the currents and

voltages at the m port of the nonsmooth elements. These currents and voltages are

the controlling variables of the nonsmooth elements and are added to the set of

unknowns of the circuit model. The variables y and λ are not necessarily physical

values but are used to describe the internal behavior of the components.

The first two equations in (4.2) defined by the functions gNS(·) and hNS(·) will

be called the input/output relations of the electrical nonsmooth components as they

define the relations between the external variable INS,UNS with respect to the in-

ternal component variables y and λ. Inserting these new nonsmooth elements in the

standard MNA (3.27), we obtain the following system:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ACC(AT V, t)AT
C

dV
dt

+ ACqt (A
T
CV, t) + ARS(AT

RV, t)

+ ALIL + AVIV + AJi(A
T V, IL, IV,AT V̇ , İL, İV, t) + ANSINS = 0,

−AT
L V + L(IL, t)

dIL

dt
+ φt (IL, t) = 0,

AT
V V − u(IL, IV,AT V, İL, İV,AT V̇ , t) = 0,

y = gNS(INS,AT
NSV,λ, t),

0 = hNS(INS,AT
NSV,λ, t),

0 ∈ F(y,λ, t) + T (y,λ, t),

(4.3)

where ANS is the incidence matrix of the branches concerned by nonsmooth el-

ement. In the sequel, we will specialize this general nonsmooth element and its

associated generalized equation in order to precise what type of behavior may be

modeled.

4.2 Nonsmooth Elements as Inclusions into the Subdifferential

of Convex Functions and Variational Inequality (VI)

The set of relations in (4.2) is too generic to be useful in applications. It has to be

refined in order to yield tractable mathematical formalisms. A standard example of

a multivalued function with a closed graph is the subdifferential of a proper convex

and lower semi-continuous function ϕ : R
n → R, which is denoted by

∂ϕ(x) = {γ ∈ R
n | ϕ(s) − ϕ(x) � γ T (s − x) for all s}. (4.4)

The subdifferential is the set of all subgradients, see Definition 2.22. There are other

definitions of generalized gradients of nonsmooth functions, see for instance Clarke
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(1975) and Mordukhovich (1994). For the sake of simplicity, we will consider

only the subgradient in the sense of Convex Analysis, which has been presented

in Chap. 2.

A first class of nonsmooth electrical components is given by the inclusion into

the subdifferential of convex functions such as

−F(y) ∈ ∂ϕ(λ), (4.5)

which we have named an electrical superpotential in Sect. 2.5.4. For the numerical

tractability, this inclusion (4.5) is often transformed into a variational inequality of

the form:

F T (y)(x − λ) + ϕ(x) − ϕ(λ) � 0 for all x, (4.6)

which is also equivalent to

λ = Pϕ(λ − F(y)), (4.7)

where Pϕ is the proximation operator associated to ϕ(·). The proximation operator

is defined by the following equivalence

x = Pϕ(z) ⇔ x = argmin
u

1

2
‖z − u‖2 + ϕ(u). (4.8)

For the inclusion (4.7) we obtain a characterization of the nonsmooth element by

means of an optimization problem given by

λ = argmin
u

1

2
‖λ − F(y) − u‖2 + ϕ(u). (4.9)

All these equivalences are an extension of the results presented in Sects. 2.3.3,

2.3.4 and in Proposition 2.37. They allow one to work with different formulations

of the same objects, which proves to be convenient for numerical simulation.

Example 4.2 (Relay with dead-zone component) Let us consider the following con-

vex proper continuous function depicted in Fig. 4.1(a):

ϕ(x) =

{
−x for x � −1,

1 for −1 � x � 1,

x for x � 1.

(4.10)

The sub-differential of ϕ(·) is depicted in Fig. 4.1(b), and it is given by

∂ϕ(x) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

−1 for x < −1,

[−1,0] for x = −1,

0 for −1 < x < 1,

[0,1] for x = 1,

1 for x > 1.

(4.11)

The model which is obtained in this example corresponds to a relay component

with a dead-zone given by the following inclusion:

y ∈ ∂ϕ(λ). (4.12)

This is a simple extension of the “basic” relay multifunction of Sect. 2.4.6. No-

tice that the multivalued mapping y �→ λ of Fig. 4.1(b) is maximal monotone (see

Sect. 2.1.2.2, in particular Theorem 2.34).
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Fig. 4.1 The relay with

dead-zone multivalued

mapping

4.3 Nonsmooth Elements as Inclusions into Normal Cones and

Variational Inequalities

As introduced in Sect. 2.1.2.3, another type of generalized equations is given under

the form of an inclusion into a normal cone to a set C:

−F(y) ∈ NC(t,y)(λ). (4.13)

As for subgradients, there are also multiple definitions of the normal cone to a set,

however we restrict ourselves in this book to normal cone to convex sets and we

will assume that C(t, y) ⊂ R
n is a closed non empty convex set. The normal cone

is given in this case by

NC(λ) = {s ∈ R
n, sT (x − λ) � 0 for all x ∈ C(t, y)}. (4.14)

Due to the definition of the normal cone, the inclusion can be equivalently stated

in terms of the following variational inequality:

F(y)T (x − λ) � 0 for all x ∈ C(t, y), (4.15)

which is also equivalent to the projection form

λ = PC(t,y)(λ − F(y)). (4.16)
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Fig. 4.2 The relay

multivalued mapping

The projection form is particularly interesting for numerical applications in the de-

sign of numerical solvers.

Example 4.3 (Relay component) Let us consider the normal cone to the interval

[−1,1] which is explicitly given by

N[−1,1](λ) =

{
R+ for λ = 1,

0 for −1 < λ < 1,

R− for λ = −1.

(4.17)

The inclusion −F(y) ∈ N[−1,1](λ) yields therefore

λ =

{
1 for F(y) < 0,

[−1,1] for F(y) = 0,

−1 for F(y) > 0.

(4.18)

When F(·) is the identity, the inclusion y ∈ N[−1,1](λ) which is a multivalued map-

ping λ �→ y, models the relay multivalued mapping depicted in Fig. 4.2. Note that

the equivalence in (2.90) holds and may be used to derive these results.

4.4 Complementarity Problems

Let us specialize a little bit more the formulation (4.13). If C is supposed to be a

cone, the inclusion −F(y) ∈ NC(λ) is equivalent to a complementarity problem of

the form

C∗ ∋ F(y) ⊥ λ ∈ C, (4.19)

where C∗ is the dual cone of C (see Remark 2.4). A particularly interesting cone

is the non negative orthant, R
n
+. In this case, we obtain standard complementarity

problem of the form

0 � F(y) ⊥ λ � 0, (4.20)

where the non-negativity inequality on vectors has to be understood componentwise.

See Sect. 2.3 for more details on complementarity theory, and the relationships be-

tween complementarity problems and other formalisms.
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4.5 The Linear Input/Output Relation Case

In the LTI case, the input/output relations in the constitutive equations in (4.2) of

the nonsmooth elements reduce to

[y] = K

[

INS

UNS

]

+ Lλ + a(t),

[0] = E

[

INS

UNS

]

+ Fλ + b(t).

(4.21)

In the numerical practice, most of the nonsmooth elements define a part or all of

their currents and voltages INS and UNS as an explicit function of λ. More precisely,

we can perform a splitting of the vector INS and UNS as:

INS =

[

ĨNS

ÎNS

]

, UNS =

[

ŨNS

ÛNS

]

, (4.22)

yielding an explicit rewriting of the linear input/output relations as:

[y] = K

[

INS

UNS

]

+ Lλ + a(t),

[

ĨNS

ŨNS

]

= Ê

[

ÎNS

ÛNS

]

+ Fλ + b(t).

(4.23)

We will see that when this reformulation is possible the number of equations in the

MNA can be reduced by substituting ĨNS into the KCL.

4.5.1 Some Instances of Linear Nonsmooth Components

Together with the various formulations of the generalized equations, we obtain vari-

ous types of linear components with complementarity and/or inclusion into sets. For

instance

• Mixed linear complementarity component:
⎧

⎪
⎨

⎪
⎩

[y] = K
[ INS

UNS

]

+ Lλ + a(t),

[0] = E
[ INS

UNS

]

+ Fλ + b(t),

0 � y ⊥ λ � 0.

(4.24)

• Mixed linear relay component:

⎧

⎪
⎨

⎪
⎩

[y] = K
[ INS

UNS

]

+ Lλ + a(t),

[0] = E
[ INS

UNS

]

+ Fλ + b(t),

−y ∈ N[−1,1]p (λ),

(4.25)

where [−1,1]p = [−1,1] × · · · × [−1,1], p times (here p generically denotes

the dimension of the vectors y and λ).
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Notice that (4.24) is a particular case of the MLCP in (2.19). In (4.25) one finds a

generalized relay mapping, where the variables y and λ do not only satisfy the last

inclusion, but also a set of linear constraints. One may use (2.25) or (2.14) in order

to study further (4.25). The reason why we have written −y and not y then clearly

appears from a simple analogy. If the matrix L = LT > 0 then one deduces from

(4.25) that:

λ = projL

(

[−1,1]p;−L−1K

[

INS

UNS

]

− L−1a(t)

)

(4.26)

with [−1,1]p = C in (2.14). Inserting (4.26) into the second line of (4.25) yields a

nonlinear equation for the unknowns INS and UNS.

4.6 Generic Piecewise-Linear Components

As we said in Sect. 1.5, the literature on piecewise-linear modeling of electrical

components is vast. A lot of expressions based mainly on absolute value function

(Kang and Chua 1978; Chua and Ying 1983; Chua and Dang 1985) have been de-

veloped. In this section, we are interested in implicit expressions of piecewise-linear

models in the complementarity framework. To this end, we report some of the main

models introduced in the pioneering works of Leenaerts and Van Bokhoven (1998).

4.6.1 The First Model Description of van Bokhoven

In van Bokhoven (1981), a first model of piecewise-linear function z = fpwl(x) is

presented as
{

z = Ax + Bλ + f,

y = Cx + Dλ + g,

0 � y ⊥ λ � 0,

(4.27)

with A ∈ R
m×n, B ∈ R

m×k , C ∈ R
k×n and D ∈ R

k×k . The second equation in (4.27)

defines k hyperplanes in R
n parametrized by x and then in which state the model

is. It may define 2k polytopes of R
n. In each polytope, a linear mapping defined by

the first line of (4.27) is defined. The model of piecewise-linear component is then

equivalent to (4.24).

Example 4.4 Let us consider a piecewise-linear continuous function fpwl : R → R

defined by

fpwl(x) =

{

a1x + f1 if cx + g � 0,

a2x + f2 if cx + g � 0.
(4.28)

The continuity of fpwl(·) on the surface cx + g = 0 implies

a1x + f1 = a2x + f2 for x = −
g

c
. (4.29)
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Fig. 4.3 Multivalued

mapping. Example of

Leenaerts and Van Bokhoven

(1998)

A simple evaluation of the model (4.27) yields

A = [a1], B =

[

−
a2 − a1

c

]

, C = [c], D = [1]. (4.30)

Example 4.5 The model can also handle mappings that are not one-to-one as it has

been shown in Leenaerts and Van Bokhoven (1998) with this example:
⎧

⎪
⎨

⎪
⎩

z = [−1]x +
[

−1 1
]

λ + [1],

y =
[

−1
1

]

x +
[

−1 1
1 −1

]

λ +
[

1
0

]

,

0 � y ⊥ λ � 0.

(4.31)

The corresponding function is depicted in Fig. 4.3.

4.6.2 The Second Model Description of van Bokhoven

In order to have more insight on the model, another model in presented in Leenaerts

and Van Bokhoven (1998) with only definition of hyperplanes and a symmetrization

of the unknowns x and z. The model is written as
{

0 = Idz + Ax + Bλ + f,

y = Dz + Cx + Idλ + g,

0 � y ⊥ λ � 0,

(4.32)

where Id is the identity matrix.

Example 4.6 The function depicted in Fig. 4.3 can be written in the model (4.32)

as:
⎧

⎨

⎩

0 = Idz + [0]x + [−2 2]λ + [0],

y =
[

−1
−1

]

z +
[ −1/2

−1/2

]

x + Idλ +
[

−1/2

1

]

,

0 � y ⊥ λ � 0.

(4.33)
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Fig. 4.4 Ideal diode with

residual current and voltage

4.7 Special Instances of Nonsmooth Components

We give in this section some examples of ideal components or idealized components

that can be put under the form described in the previous sections. Similarly as above,

some of them (the simplest ones) have been introduced in Chap. 1 (the ideal diode,

the Zener diode, the ideal switch).

4.7.1 Ideal Diode

Let us start with the most simple nonsmooth component which is the ideal diode.

The ideal diode with residual current and voltage can be defined by
{

y = −UNS + a,

0 = −INS + λ − b,

0 � y ⊥ λ � 0.

(4.34)

The characteristic between INS and −UNS is depicted in Fig. 4.4. The set of relations

in (4.34) is a simple instance of (4.24). It can easily be rewritten equivalently as an

inclusion into a normal cone, using (2.23).

4.7.2 Zener Diode

Let us consider, now, another electrical device: the ideal Zener diode whose

schematic symbol is depicted in Fig. 4.5(a). A Zener diode is a type of diode that

permits the current to flow in the forward direction like a normal diode, but also in

the reverse direction if the voltage is larger than the rated breakdown voltage known

as “Zener knee voltage” or “Zener voltage”, denoted by Vz > 0. The ideal charac-

teristic between the current INS and the voltage UNS can be seen in Fig. 4.5(b). The

Zener diode can be put into the form of an inclusion into a sub-differential with

ϕ(x) =

{
Vzx if x � 0,

0 if x < 0.
(4.35)
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Fig. 4.5 The Zener diode

One gets

UNS ∈ ∂ϕ(−INS) (4.36)

for some convex lower semi-continuous function ϕ(·). Equivalently, the Zener diode

model can be written as an inclusion into the normal cone of the interval [0,Vz] by

−INS ∈ N[0,Vz](UNS), (4.37)

so that ϕ(·) and ψ[0,Vz](·) are conjugate functions. The nonsmooth component can

be therefore written as
⎧

⎨

⎩

y = INS,

0 = −UNS + λ,

−y ∈ N[0,Vz](λ),

(4.38)

or
{

y = UNS,

0 = INS + λ,

y ∈ ∂ϕ(λ).

(4.39)

One sees that (4.38) is a special instance of (4.25).

4.7.3 Ideal Switch

A switch is modeled by a piecewise-linear two-port element having a zero thresh-

old Vc. When Vc is positive, the switch is ON, and is equivalent to a small resis-

tance Ron. When Vc is negative, the switch is OFF, and is equivalent to a large

resistance Roff. The notation for the current and the potentials at the ports of the
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Fig. 4.6 Ideal switch

switch is depicted in Fig. 4.6 (compared with the convention in (1.46) here we have

U(t) = −u(t)):

U =

{

RonI if Vc < 0,

RoffI if Vc � 0.

The ideal switch is modeled with nonlinear complementarity relations:
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

U = (λ2 + Ron)I,

y1 = Roff − λ2 − Ron,

y2 = Vc + λ1,

0 �
(
y1

y2

)

⊥
(
λ1

λ2

)

� 0.

(4.40)

The set of relations in (4.40) is a particular instance of (4.24) with INS = [I ],

UNS = [U ] and a(t) is the controlling tention Vc(t) if these tension is an external

source.

4.7.4 Explicit Ideal Switch. Glocker’s Model

The model proposed by Glocker (2005) is based on the sign multifunction as follows

U ∈ VT sgn(−I ), (4.41)

where the parameter VT � 0 is a priori chosen by the user depending on the status of

the switch. For VT = 0, the switch is a perfect conductor; we obtain I free, U = 0.

For VT → +∞, the switch is a perfect isolator with a saturation for |V | = VT ; we

obtain for |U | � VT I = 0,U free.

In practice, the value of VT is set a priori by the user and this necessarily yields

an explicit evaluation in the numerical practice. In order to bind the value with a

control voltage Vc as in Fig. 4.6, the following complementarity problem may be

added
{

y = 1
α
VT + Vc,

0 � y ⊥ VT � 0,
(4.42)

where α > 0 is a user defined parameter. With this added complementarity, we ob-

tain that if Vc < 0, VT = −αVc > 0 and if Vc � 0, VT = 0. The saturation voltage

VT is a function of Vc through the coefficient α that can be set sufficiently large to

avoid saturation effect if needed.
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Table 4.1 Parameters for Sah’s model of nMOS transistor

Symbol Definition Typical values

μ Mobility of majority carriers 750 cm2 V−1 s−1 for a NMOS

250 cm2 V−1 s−1 for a PMOS

ǫOX Permittivity of the silicon oxide ǫr SiO2
· ǫ0

ǫr SiO2
Relative permittivity of the silicon oxide ǫr SiO2

≈ 3.9 F m−1

ǫ0 Vacuum permittivity 8.8542.10−12 F m−1

tOX Oxide thickness ≈4 nm in a 180 nm technology

W Channel width ≈130 nm in a 180 nm technology

L Channel length ≈180 nm in a 180 nm technology

VT Threshold voltage Depending on technology

The complete model of the ideal switch can be written as

⎧

⎨

⎩

y = 1
α
λ + Vc,

0 � y ⊥ λ � 0,

U ∈ λ sgn(−I ),

(4.43)

with α > 0 and

UNS =

[

U

Vc

]

, and INS = I. (4.44)

4.7.5 MOSFET Transistor

One could benefit from a simplification of devices models (e.g. MOS models) in

the form of a piecewise-linear representation instead of the complex model im-

plemented in SPICE-like simulators. For instance, in Leenaerts and Van Bokhoven

(1998), the authors considered the Sah model of the nMOS static characteristic:

IDS =
K

2
· (f (VG − VS − VT ) − f (VG − VD − VT )), (4.45)

where the function f : R −→ R is defined as:

f (x) =

{

0 if x < 0,

x2 if x � 0,
(4.46)

and

K = μ
ǫOX

tOX

W

L
. (4.47)

The parameters are defined in Table 4.1. The notation for the currents and the po-

tentials at the ports of the nMOS is depicted in Fig. 4.7.
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Fig. 4.7 nMOS transistor

symbol

The piecewise and quadratic nature of this function is approximated by the fol-

lowing s + 2 segments piecewise-linear function (Leenaerts and Van Bokhoven

1998):

fpwl(x) = αix + βi, for ai � x � ai+1, i = −1, . . . , s + 1, (4.48)

with a−1 = −∞ and as+1 = +∞. The complete model of the piecewise-linear

nMOS transistor with s + 2 segments in (4.48) can be recast under the following

mixed linear complementarity form:

y(t) =

[ 0 . . . 0

−b . . . −b
︸ ︷︷ ︸

×s+1

−b . . . −b

0 . . . 0
︸ ︷︷ ︸

×s+1

]T

UNS(t) + λ(t)

+ [h1 . . . hs−1 h1 . . . hs−1 ]T ,

0 = I3 INS(t) +

[
−c1 . . . −cs−1 c1 . . . cs−1

0 0 0 0 0

c1 . . . cs−1 −c1 . . . −cs−1

]

λ(t),

0 � y(t) ⊥ λ(t) � 0,

UNS =

[

VGD(t) = VG(t) − VD(t)

VGS(t) = VG(t) − VS(t)

]

, INS =

[
ID(t)

IG(t)

IS(t)

]

.

(4.49)

The parameters are given as follows: b = K
2

, hi = b(VT + ai), i = 1 . . . s. The

values ci are computed from the linear approximation in (4.48). Using some basic

convex analysis, one obtains the compact formulation of (4.49):

{
−y(t) ∈ NK(λ(t)),

y(t) = BUNS(t) + λ(t) + h(t),

0 = INS(t) + Cλ(t)

(4.50)
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with K = (R+)2(s+1). In the case of the MOSFET transistor, the inclusion is an

equality as expected since its piecewise-linear characteristic is single valued. The

pMOS transistor is represented in the same way, changing the values of hi , i(t) to

−i(t) and b to −b.

Contrarily to the other models of components, the complementarity variables y

and λ in (4.50) have no direct physical meaning. They are just slackness variables

which permit us to express the presence of the operating point in the different seg-

ments of the model. For more details on the construction and the calibration of such

a model, we refer to Leenaerts and Van Bokhoven (1998).

Remark 4.7 The piecewise-linear model in (4.48) has s + 2 segments. Multiple

choices are possible in order to adjust the number of slack variables and conse-

quently the size of the OSNSP-MLCP to be solved at each step with respect to the

accuracy. In practice one should therefore be very careful about choosing a reason-

able piecewise-linear approximation of the devices so that the MLCP size does not

increase too much.

For instance, the function f (·) may be approximated by the following 6-segment

piecewise-linear function in Leenaerts and Van Bokhoven (1998) (see Fig. 4.8):

fpwl(x) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

0 if x < 0,

0.09 · x if 0 � x < 0.1,

0.314055 · x − 0.0224055 if 0.1 � x < 0.2487,

0.780422 · x − 0.138391 if 0.2487 � x < 0.6185,

1.94107 · x − 0.856254 if 0.6185 � x < 1.5383,

4.82766 · x − 5.29668 if 1.5383 � x

and the coefficients are computed as
⎧

⎪
⎨

⎪
⎩

c1 = 0.09, c2 = 0.2238, c3 = 0.4666,

c4 = 1.1605, c5 = 2.8863,

a1 = 0, a2 = 0.1, a3 = 0.2487,

a4 = 0.6182, a5 = 1.5383

(4.51)

with the following parameter values

ǫr SiO2
= 3.9,

tOX = 20 nm,

μ = 750 cm2 V−1 s−1,

W = 1 µm,

L = 1 µm,

VT = 1 V.

The relative error between f (·) and fpwl(·) is kept below 0.1 for 0.1 � x <

3.82. The absolute error is less than 2 · 10−3 for 0 � x < 0.1 and 0 for nega-

tive x. In practice, the values of VG,VS,VD,VT in logic integrated circuits allow

a good approximation of f (·) by fpwl(·). Figure 4.9 displays the static character-

istic IDS(VGS,VDS) of an nMOS obtained with the SPICE level 1 model and the
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Fig. 4.8 Piecewise-linear

approximation of f (·)

Fig. 4.9 Static characteristic of an nMOS transistor with a simple piecewise-linear model and

SPICE level 1 model

piecewise-linear approximation of the Sah model. Bottom figures include both mod-

els results with two different viewpoints to display the regions where differences

appear.

The largest differences occur for large VDS and either a large positive VGS or

a large positive VGD . Indeed this yields a high value of x in one of the f (x)

in f (VGS − VT ) − f (VGD − VT ) and the linear approximation fpwl(·) differs

from f (·). For small values of VDS , errors compensate due to the difference

f (VGS − VT ) − f (VGD − VT ). For simulating cMOS logic circuits, the useful

operating region is the square (VGS,VDS) ∈ [0,5]2 and the error is moderate.

The piecewise-linear model results in Fig. 4.9 were reached by an LCP algorithm.
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This means that the definition of fpwl(·) is turned into an LCP formulation. For a

given value of (VD,VG,VS), the λ values corresponding to the intervals in which

VGS − VT and VGD − VT fall are computed, allowing then to compute IDS .

Once again one recognizes that (4.49) is a particular instance of (4.24).

4.7.6 Nonlinear and Nonsmooth MOS Transistor

Like it was described in (4.45), it consists in modeling the MOS considering two

domains, VGS(t) > VT and VGD(t) > VT . In this case, the MOS design can be

described with the equations (4.52) below. Like in the previous ideal model, IG(t)

is supposed equal to zero. It leads to define IDS(t) = ID(t) = −IS(t), the current

through the MOS transistor:
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

IDS(t) = I1(t) + I2(t),

I1(t) =

{
K
2
(VGS(t) − VT )2 if VGS(t) > VT ,

0 if VGS(t) � VT ,

I2(t) =

{
−K

2
(VGD(t) − VT )2 if VGS(t) > VT ,

0 if VGD(t) � VT .

(4.52)

It is equivalent to the developed system:

IDS(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

0 if VGS(t) < VT ∧ VGD(t) < VT ,
K
2
(VGS(t) − VT )2 if VGS(t) > VT ∧ VGD(t) < VT ,

K((VGS(t) − VT )VDS(t)

− 1
2
VDS(t)2) if VGS(t) > VT ∧ VGD(t) > VT ,

−K
2

(VGD(t) − VT )2 if VGS(t) < VT ∧ VGD(t) > VT .

The system (4.52) can be reformulated as the complementarity system:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

IDS(t) = K
2
(λ4(VGS(t) − VT )2 − λ2(VGD(t) − VT )2),

⎛

⎝

y1(t)

y2(t)

y3(t)

y4(t)

⎞

⎠ =

(
1−λ2

VT −VGD(t)+λ1

1−λ4

VT −VGS(t)+λ3(t)

)

,

0 �

(
λ1(t)

λ2(t)

λ3(t)

λ4(t)

)

⊥

⎛

⎝

y1(t)

y2(t)

y3(t)

y4(t)

⎞

⎠ � 0.

(4.53)

The set of relations in (4.53) can be recast into the general form in (4.2) with

UNS(t) =

[

VGD(t)

VGS(t)

]

, INS(t) = [IDS(t)] .

Comparison between the piecewise-linear model and the piecewise-nonlinear

model is given in Sect. 8.1.3.6.
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Fig. 4.10 The comparator component

4.7.7 Comparator Component

This device is usually modeled with a differentiable single-valued function. For ex-

ample, the arctangent function can be used. In this section we propose to model a

comparator with a piecewise-linear function:

Voutput =

{

Vmax if V+ − V− < ǫ,

Vmin if V+ − V− > −ǫ.

The component symbol and behavior are described in Fig. 4.10. Note that it differs

from the relay described in Fig. 4.2. In this model, there is a ramp between the

two constant parts. Such a ramp is sometimes called a regularization of the relay

nonsmooth multifunction. The piecewise-linear model of this design is described

with the following complementarity system:
⎧

⎪
⎪
⎨

⎪
⎪
⎩

y1 = V+ − V− + λ1 + ǫ,

y2 = V+ − V− + λ2 − ǫ,

Voutput = Vmax + Vmax−Vmin
2ǫ

(λ1 − λ2),

0 � y ⊥ λ � 0.

(4.54)

The set of relations in (4.54) can be recast into the general form in (4.2) with Ins

empty and

UNS =

[

Voutput

V+ − V−

]

.



Chapter 5

Time-Stepping Schemes and One Step Solvers

5.1 Summary of the Mathematical Formalisms

It has been seen in Chaps. 1, 2 and 3 that electrical circuits with nonsmooth multi-

valued electronic devices, can be recast under various mathematical formalisms (see

Sect. 2.7 for a summary). For the sake of the numerical integration of those circuits,

one needs a small set of general formulations which are suitable for a subsequent

time-discretization. In other words, the simple examples that are analyzed in details

in Chaps. 1 and 2 possess a too simple dynamics to be characteristic representa-

tives of the general issue of nonsmooth circuits. Especially, the material of Chap. 3

teaches us that DAEs are ubiquitous in circuits (a well-known fact, indeed). It is

therefore necessary to obtain mathematical formalisms that incorporate not only the

nonsmooth and multivalued models of the electronic devices (ideal diodes, Zener

diodes, etc.), but also the equations obtained from the MNA (see Sects. 3.5 and 3.6).

5.1.1 Nonsmooth DAE Formulation. Differential Generalized

Equation (DGE)

Starting from (3.34), the extended MNA formulation with nonsmooth components

and nonlinear behavior can be written as:

Problem (DGE)

M(X, t)Ẋ = D(X, t) + U(t) + R ] Differential Algebraic Equations

y = G(X,λ, t)

R = H(X,λ, t)

]

Input/output relations

on nonsmooth components

0 ∈ F(y,λ, t) + T (y,λ, t) ] Generalized equation

X = [V T , IT
L , IT

V , IT
NS]T ] Variable definition

(5.1)

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits,

Lecture Notes in Electrical Engineering 69,

DOI 10.1007/978-90-481-9681-4_5, © Springer Science+Business Media B.V. 2011
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http://dx.doi.org/10.1007/978-90-481-9681-4_5
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The nonlinear feature refers here to the differential-algebraic part of the dynamics,

i.e. the first line in (5.1). Compared to (3.35), (3.36), (3.37) and (4.2), the definitions

of M , F , U , G and H are extended as follows:

M(X, t) =

⎡

⎢

⎣

ACC(AT V, t)AT
C 0 0 0

0 L(IL, t) 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎦
, (5.2)

D(X, t) =

⎡

⎢

⎣

−ACqt (A
T
CV, t) − ARS(AT

RV, t) − ALIL − AVIV

AT
L V − φt (IL, t)

AT
V V

0

⎤

⎥

⎦
, (5.3)

U(t) =

⎡

⎢

⎣

−AJi(t)

0

−u(t)

0

⎤

⎥

⎦
, (5.4)

R = H(X,λ, t) =

⎡

⎢

⎣

−ANSINS

0

0

hNS(INS,AT
NSV,λ, t)

⎤

⎥

⎦
,

G(X,λ, t) = [gNS(INS,AT
NSV,λ, t)].

(5.5)

The functions h(·), g(·) and F(·) and the multivalued mapping T (·) are built by

concatenation of the corresponding functions of the nonsmooth components, i.e.:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

hNS(INS,AT
NSV,λ, t) =

[

hk(INS,AT
NSV,λ, t), k ∈ NS

]T
,

gNS(INS,AT
NSV,λ, t) =

[

gk(INS,AT
NV,λ, t), k ∈ NS

]T
,

F (INS,AT
NSV,λ, t) =

[

Fk(INS,AT
NSV,λ, t), k ∈ NS

]T
,

T (INS,AT
NSV,λ, t) =

[

Tk(INS,AT
NSV,λ, t), k ∈ NS

]T
.

(5.6)

In the linear-time-invariant case, the extended MNA formulation with nonsmooth

components can be written as follows:

Problem (DGE)LTI

MẊ = JX + U(t) + R ] Differential Algebraic Equations

y = CX + Dλ + a(t)

R = Bλ

]

Input/output relations

on nonsmooth components

0 ∈ F(y,λ, t) + T (y,λ, t) ] Generalized equation

X = [V T , IT
L , IT

V , IT
NS]T ] Variable definition

(5.7)

Similarly to the nonlinear case the definitions of M , J and U are extended as

follows:
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M =

⎡

⎢

⎣

ACCAT
C 0 0 0

0 L 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎦
,

J =

⎡

⎢

⎣

−ARSAT
R −AL −AV −ANS

AT
L 0 0 0

AT
V 0 0 0

EUAT
NS 0 0 EI

⎤

⎥

⎦
, (5.8)

U(t) =

⎡

⎢

⎣

−AJi(t)

0

−u(t)

b

⎤

⎥

⎦
.

The matrix EU and EI are introduced as sub-matrices of E such that

E

[

INS

UNS

]

= EUUNS + EI INS, (5.9)

and are built from the concatenation of each nonsmooth element. The matrices B ,

C and D are defined by:

B =

⎡

⎢

⎣

0

0

0

F

⎤

⎥

⎦
, C = [KUAT 0 0 KI ] , and D = [L]. (5.10)

The matrices KU and KI are introduced as sub-matrices of K such that:

K

[

INS

UNS

]

= KUUNS + KI INS. (5.11)

5.1.2 The Semi-Explicit Nonsmooth DAE: Semi-Explicit DGE

Starting from (3.70), the extended MNA formulation with nonsmooth component

and nonlinear behavior can be written as follows:

Problem (SEDGE)

ẋ = N−1(x, t)[f (x, z, t)] + r1

0 = g(x, z, t) + r2

]

Differential Algebraic

Equations

0 = hNS(x, z, zNS, λ, t)

y = gNS(x, z, zNS, λ, t)

r = [r1, r2]
T = HzNS

]

Input/output relations

on nonsmooth components

0 ∈ F(y,λ, t) + T (y,λ, t) ] Generalized equation

x = [IT
L ,UT

C ]T

and z = [V̂ T , IT
V , IT

CL
]T , zNS = [INS]

]

Variable definition

(5.12)
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The definitions of the mappings N , f , g are the same as in (3.105), (3.106) and

(3.107) with the substitution (3.108). Only the matrix H remains to be defined by:

H
�
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−Ã−1
CF

ÃNS

0

0

0

(ÂNS − ÂCFÃ
−1
CF

ÃNS)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (5.13)

With the LTI variant of nonsmooth elements, the semi-explicit formulation de-

scribed in (5.12) leads to the system:

Problem (SEDGE)LTI

ẋ = J1xx + J1zz + U(t) + r1

0 = J2xx + J2zz + U2(t) + r2

]

Differential Algebraic

Equations

y = Kxx + Kzz + KzNS
zNS + Lλλ + a(t)

0 = Exx + Ezz + EzNS
zNS + Fλλ + b(t)

r = [r1, r2]
T = HzNS

]

Input/output relations

on nonsmooth components

0 ∈ F(y,λ, t) + T (y,λ, t) ] Generalized equation

x = [IT
L ,UT

C ]T and z = [V T , IT
V , IT

CL
, IT

NS]T ] Variable definition

(5.14)

For most of the nonsmooth electrical components, the good choice of y and λ per-

mits to write the variable zNS = INS as an explicit function of x, z and λ. Its substi-

tution in (5.14) yields the following simplified system
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ = J1xx + J1zz + u(t) + r1,

0 = J2xx + J2zz + D1λ + c(t),

y = Cxx + Czz + D2λ + a(t),

r1 = Bλ,

0 ∈ F(y,λ, t) + T (y,λ, t).

(5.15)

With the new definition of a new variable ŷ and λ̂ as

ŷ =

[

ŷe

ŷi

]

=

[

0

y

]

, λ̂ =

[

z

λ

]

, (5.16)

the system (5.15) can be compacted as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = Ax + u(t) + r̂ ,

ŷ = Cx + Dλ + â(t),

r̂ = B̂λ̂,

0 ∈ F̂ (ŷ, λ̂, t) + T̂ (ŷ, λ̂, t).

(5.17)

5.2 Principles of the Numerical Time-Integration Scheme

For the sake of readability, the main principles of the numerical time integration

scheme are exposed on the following LTI system:
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Problem (P)LTI

ẋ = Ax + u(t) + r
]

Differential Equations

y = Cx + Dλ + a(t)

R = Bλ

]

Input/output relations

on nonsmooth components

0 ∈ y + NK(λ) ] Generalized equation

x(t0) = x0 ] Initial conditions

(5.18)

and its associated nonlinear version:

Problem (P)

ẋ = f (x, t) + u(t) + r
]

Differential Equations

y = g(x,λ, t)

R = h(x,λ, t)

]

Input/output relations

on nonsmooth components

0 ∈ y + NK(λ) ] Generalized equation

x(t0) = x0 ] Initial conditions

(5.19)

The set K is assumed to be a non empty polyhedral convex set. The problems (5.18)

and (5.19) are special instances of the problems presented in Sect. 5.1 and espe-

cially (5.17). Besides their simplicity, they are interesting because we are able to

state some of their mathematical properties like their relative degree and then the

expected nonsmoothness of their solution. The more general cases will be devel-

oped in Sect. 5.3.

The time integration methods that will be presented in the sequel are only event-

capturing time-stepping schemes, or shortly called, time-stepping schemes. These

systems can also be integrated with event-tracking schemes, also called event-

driven schemes. The advantages and the drawbacks of these two classes of methods

are pointed out in Acary and Brogliato (2008). Briefly speaking, event-capturing

schemes are well suited when the system size is quite large with a lot of possible

modes and the number of events is also large. For the simulation of switched elec-

trical circuits, our choice is clearly to promote event-capturing schemes.

The two main principles for the design of the event-capturing schemes are:

1. The fully implicit evaluation of the generalized equation, also named the

inclusion rule in (5.18) and (5.19).

2. A consistent evaluation of the unknown variables and their derivatives ac-

cording to their smoothness. For instance, time-stepping schemes must not

approximate high order time-derivatives of functions which are not suffi-

ciently smooth or must not try to point-wisely evaluate distributions.

These two main principles will be illustrated and implemented in the next sec-

tions on the systems (5.18) and (5.19). The question of consistency for a certain level
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of smoothness of the solution is crucial in the design of a time-stepping scheme.

This is the reason why the time-stepping schemes are presented according to the ex-

pected smoothness of the solution. In the meantime, the smoothness of the solution

will be related to the relative degree of the systems and the consistency of the initial

conditions.

The following notation is used throughout this part. We denote by 0 = t0 < t1 <

· · · < tk < · · · < tN = T a finite partition (or a subdivision) of the time interval

[0, T ] (T > 0). The integer N stands for the number of time intervals in the subdi-

vision. The length of a time step is denoted by hk = tk+1 − tk . For simplicity sake,

we consider only in the sequel a constant time length h = hk (0 � k � N − 1). Then

N = T
h

. The approximation of f (tk), the value of a real function f (·) at the time tk ,

is denoted by fk . For θ ∈ [0,1], the notation fk+θ stands for θfk+1 + (1 − θ)fk .

5.2.1 Time-Stepping Solutions for a Solution of Class C1

The problem (P)LTI has a unique C1 trajectory x(t) if the variable λ(t) can be esti-

mated as a Lipschitz continuous function of x. Then ẋ is also Lipschitz continuous.

For K = R
m
+, we obtain a C1 trajectory when the relative degree is equal to 0, i.e.

the matrix D is regular and the following inclusion:

0 ∈ Cx + Dλ + a + NK(λ) (5.20)

possesses a unique solution for all x. There is neither notion of consistent initial

conditions in this case, since we assume that

0 ∈ Cx0 + Dλ(t0) + a(t0) + NK(λ(t0)) (5.21)

has a solution, nor hard constraints on the state vector x.

The following time-stepping scheme is used for (P)LTI when a solution of

class C1 is expected
⎧

⎪

⎨

⎪

⎩

xk+1 − xk = h(Axk+θ + uk+θ + rk+γ ),

yk+1 = Cxk+1 + Dλk+1 + ak+1,

rk+1 = Bλk+1,

0 ∈ yk+1 + NK(λk+1),

(5.22)

with θ ∈ [0,1] and γ ∈ [0,1]. The initial value of λ0 = λ(t0) is given by the

solution of (5.21).

The discretized system (5.22) amounts to solving at each time-step the following

OSNSP:
{

yk+1 = Mλk+1 + q,

0 ∈ yk+1 + NK(λk+1),
(5.23)
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with

M = D + hγC(I − hθA)−1B, (5.24)

and

q = ak+1 + C(I − hθA)−1
[

(I + h(1 − θ)A)xk + huk+θ + h(1 − γ )Bλk

]

.

(5.25)

For the nonlinear dynamics of the problem (P) in (5.19), the following scheme

is implemented:
⎧

⎪

⎨

⎪

⎩

xk+1 − xk = h(f (xk+θ , tk+θ ) + uk+θ + rk+γ ),

yk+1 = g(xk+1, λk+1, tk+1),

rk+1 = h(xk+1, λk+1, λk+1),

0 ∈ yk+1 + NK(λk+1).

(5.26)

A OSNSP equivalent to (5.23) cannot be explicitly written but the problem still

appears as a MCP. We will see how one can perform a Newton linearization of (5.26)

to retrieve (5.23), in Sect. 5.2.6.

Example 5.1 Let us illustrate the influence of the parameters θ and γ on the be-

havior of the numerical scheme (5.22). Let us consider the circuit (b) described

in Fig. 1.14. The dynamical system which models the circuit is given by (1.39) and

we identify D = [R]. The solution x(t) of the problem is of class C1.

In Fig. 5.1, simulation results are given with the following data: h = 5 × 10−2,

x0 = [1 1]T , R = 10, L = 1 and C = 1/(2π)2. Three numerical simulations are

compared to the exact solution. With θ = 1 and γ = 1, we retrieve a fully implicit

Euler scheme. The main discrepancy when θ = 1/2 and γ = 1/2 is the numerical

damping, which is drastically attenuated. If the numerical damping does not hamper

the convergence of the scheme, the quality of the solution for a finite time-step is

modified.

Remark 5.2 Note that the order of consistency of the scheme is not necessarily

improved when θ = 1/2 and γ = 1/2 as we can expect for a smooth solution. In-

deed, the mid-point rule is known to be of order 2 for solutions of class C2. In the

case of a solution of class C1, the order is not necessarily achieved. Higher order

time-stepping schemes, for instance Runge–Kutta schemes or BDF methods cannot

achieve a higher order of consistency as it has been shown in Acary and Brogliato

(2008, Chap. 9). Their usefulness for such a nonsmooth modeling is therefore doubt-

ful. Their interest can lie in improving the efficiency over smooth phases of evolu-

tion.

5.2.2 Time-Stepping Schemes for an Absolutely Continuous

Solution

In this case, the problem (P)LTI is expected to have a unique trajectory x(t) which

is only absolutely continuous. Its time-derivative ẋ(t) and the variable λ(t) are as-
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Fig. 5.1 Solution of (1.39) with the time-stepping scheme (5.22). (1) Exact solution x(tk). (2) xk

with θ = 1, γ = 1. (3) xk with θ = 1/2, γ = 1. (4) xk with θ = 1/2, γ = 1/2
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sumed to be right-continuous functions of bounded variations. Since λ may have

some discontinuities, some care has to be taken for its discretization and the θ–

method as in (5.22) can no longer be used. For K = R
m
+, this situation is encoun-

tered when the relative degree of the system is equal to 1, i.e., when the matrix D is

rank deficient or only positive semi-definite.

The question of consistent initial conditions is also raised since the inclusion

(5.20) with a rank deficient matrix D imposes some constraints on the state vector x.

For instance, with D = 0, the initial conditions must satisfy

Cx0 + a(t0) ∈ K∗. (5.27)

If the condition (5.27) does not hold, the trajectory x(t) has to jump at the initial

time, and the solution is no longer continuous. This case will therefore be treated in

Sect. 5.2.3 when a solution of bounded variation is expected.

The following time-stepping scheme is used for (P)LTI when a absolutely con-

tinuous solution is expected:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk+1 − xk = h(Axk+θ + uk+θ + rk+1),

yk+1 = Cxk+1 + Dλk+1 + ak+1,

rk+1 = Bλk+1,

0 ∈ yk+1 + NK(λk+1),

(5.28)

with θ ∈ [0,1].

In the time-discretization (5.28), the θ -method is not applied to variables like r

and λ which are supposed to be of bounded variations. The discretized system (5.28)

amounts to solving at each time-step the following OSNSP:

{

yk+1 = Mλk+1 + q,

0 ∈ yk+1 + NK(λk+1),
(5.29)

with

M = D + hC(I − hθA)−1B, (5.30)

and

q = ak+1 + C(I − hθA)−1
[

(I + h(1 − θ)A)xk + huk+θ

]

. (5.31)

For the nonlinear dynamics of the problem (P) in (5.19), the following scheme is

implemented:

⎧

⎪

⎨

⎪

⎩

xk+1 − xk = h(f (xk+θ , tk+θ ) + uk+θ + rk+1) ,

yk+1 = g(xk+1, λk+1, tk+1),

rk+1 = h(xk+1, λk+1, λk+1),

0 ∈ yk+1 + NK(λk+1).

(5.32)
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Example 5.3 Let us illustrate the behavior of the numerical scheme (5.22) on the

simple example given by a RLCZD circuit. Let us consider the dynamics of the cir-

cuit in Fig. 1.15(c), where we replace the ideal diode by an ideal Zener diode. Choos-

ing the same state variables (x1 is the capacitor charge, x2 is the current through the

circuit), we obtain:
{

ẋ1(t) = x2(t),

ẋ2(t) + R
L
x2(t) + 1

LC
x1(t) = 1

L
v(t),

(5.33)

where v(·) is the voltage of the Zener diode. We saw that v(t) ∈ ∂Fz(−i(t))

in (1.11), thus we get

{

ẋ1(t) − x2(t) = 0,

ẋ2(t) + R
L
x2(t) + 1

LC
x1(t) ∈ 1

L
∂Fz(−x2(t)),

(5.34)

which is a differential inclusion. The solution is sought as an absolutely continuous

solutions. The variable λ(t) is a function of bounded variations that can encounter

jumps. The system can be written in the form (5.18) as
⎧

⎨

⎩

ẋ(t) = Ax(t) + Bλ(t),

y(t) = Cx(t) + Dλ(t) + a,

0 ∈ y(t) + N
R

2
+
(λ(t)),

(5.35)

with

A =

[

0 1

− 1
LC

−R
L

]

, B =

[

0 0

1 0

]

, C =

[

0 1

0 0

]

,

D =

[

0 1

−1 0

]

, a =

[

0

Vz

]

.

(5.36)

Note that the matrix D is a skew–symmetric matrix, which has full rank and is

positive semi-definite.

In Fig. 5.2, a numerical simulation is reported with the initial conditions

x1(0) = 1, x2(0) = 1 and R = 0.1,L = 1,C = 1
(2π)2 , Vz = 5. The time step is

h = 5 × 10−3. The effect of the choice of θ is mainly the decrease of the numerical

damping of the scheme when θ = 1/2.

One of the questions that can be raised is the use of the scheme (5.22) on the sys-

tem (5.35) whose solutions are not of class C1. In Fig. 5.3, we compare the solution

obtained with the scheme (5.22) for two values of γ . For γ = 1, the scheme (5.22)

is equivalent to (5.28). For γ = 1/2, we note that the state is almost approximated

in the same way, but the variable v(t) is subjected to instabilities when it reaches the

multivalued part of the characteristics. This is typical of the behavior of higher or-

der estimations of functions of bounded variations. Note that nothing is said on the

convergence of the scheme (5.22) in the state variable. Only the qualitative behavior

of the scheme is commented.

Other instabilities will be shown in Sect. 5.2.4.
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Fig. 5.2 Simulation of (5.35) with the time-stepping scheme (5.28). (a) θ = 1 (b) θ = 1/2

Fig. 5.3 Simulation of (5.35) with the time-stepping scheme (5.22). (a) θ = 1/2, γ = 1

(b) θ = 1/2, γ = 1/2
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5.2.3 Time-Stepping Solutions for a Solution of Bounded

Variations

If some jumps in the state are expected, the state x(t) is usually assumed to be a

right continuous function of bounded variations. This is particularly the case when

the initial conditions are inconsistent or the external excitations a(t) force the state

to jump in order to satisfy the conditions (5.27).

As it has been illustrated in Sect. 1.1.5, the variable λ has to be replaced by a mea-

sure that can contain Dirac distributions. In the same vein, the time-derivative of the

state x(t) cannot be considered in the usual sense, but as a differential measure dx

associated with a RCBV function. As in (2.126), the dynamics in the problem (5.18)

is written in terms of a measure differential equation as

dx = Ax(t)dt + u(t)dt + Bdi, (5.37)

where dx is the differential measure associated with the RCBV function ẋ(t) and di

is also a measure. The absolutely continuous function λ(t) is the Radon-Nikodym

derivative of di with respect to the Lebesgue measure, i.e.:

di

dt
= λ(t). (5.38)

If the singular part of the differential measure is neglected, a decomposition of the

measure can be written as:

di = λ(t)dt +
∑

i

σiδti (5.39)

where δti is the Dirac measure at time of discontinuities ti and σi the amplitude.

Thanks to this decomposition, the differential measure equation (5.37) can be writ-

ten as a smooth dynamics:

ẋ(t) = Ax(t) + u(t) + Bλ(t), dt—almost everywhere, (5.40)

and a jump dynamics at ti :

x(t+i ) − x(t−i ) = Bσi . (5.41)

The time discretization of (5.37) has to take into account the nature of the solu-

tion to avoid point-wise evaluation of measures which is a nonsense as previously

pointed out in Sect. 1.1.5. Only the measure of the time-intervals (tk, tk+1] are con-

sidered such that:

dx((tk, tk+1]) =

∫ tk+1

tk

Ax(t) + u(t) dt + Bdi((tk, tk+1]). (5.42)

By definition of the differential measure, we get

dx((tk, tk+1]) = x(t+k+1) − x(t+k ). (5.43)

The measure of the time-interval by di is kept as an unknown variable denoted by

σk+1 = di((tk, tk+1]). (5.44)
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Finally, the remaining Lebesgue integral in (5.42) is approximated by an implicit

Euler scheme
∫ tk+1

tk

Ax(t) + u(t) dt ≈ hAxk+1 + uk+1. (5.45)

As we said earlier in Remark 2.66, the matrix D in (P)LTI needs to be at least

rank-deficient to expect some jumps in the state. Let us start with the simplest case

of D = 0.

The following time-stepping scheme is used for (P)LTI when a solution of

bounded variations is expected and D = 0
⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk+1 − xk = h(Axk+1 + uk+1) + σk+1,

yk+1 = Cxk+1 + ak+1,

rk+1 = Bσk+1,

0 ∈ yk+1 + NK(σk+1).

(5.46)

The discretized system (5.46) amounts to solving at each time-step the following

OSNSP
{

yk+1 = Mσk+1 + q,

0 ∈ yk+1 + NK(σk+1),
(5.47)

with

M = C(I − hA)−1B, (5.48)

and

q = ak+1 + C(I − hA)−1[xk + huk+1]. (5.49)

It is worth noting that the matrix M remains consistent when the time-step h van-

ishes if CB is assumed to be regular. This was not necessarily the case in (5.24).

Remark 5.4 The following time-stepping scheme can also be used with an approx-

imation of the integral term in (5.45) based on a θ -method:
⎧

⎪

⎨

⎪

⎩

xk+1 − xk = h(Axk+θ + uk+θ ) + rk+1,

yk+1 = Cxk+1 + ak+1,

rk+1 = Bσk+1,

0 ∈ yk+1 + NK(σk+1).

(5.50)

The scheme remains consistent even if θ = 1/2, but the order 2 is not retrieved if

some jumps are encountered. The principal benefit of the latter scheme (5.50) is to

reduce the numerical damping inherent to the backward Euler approximation.

Example 5.5 Let us consider the example in Sect. 1.1.5 of a simple RLD circuit

whose dynamical equations are given by:
{

Lẋ(t) + Rx(t) = λ(t),

0 � y(t) = x(t) − i(t) ⊥ λ(t) � 0.
(5.51)
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Fig. 5.4 Simulation of system (1.5). (1) scheme (5.46). (2) scheme (5.50) with θ = 1/2.

(3) scheme (5.22) with θ = 1/2, γ = 1/2

As we have seen in Sect. 1.1.5, the solution jumps due to inconsistent initial

conditions and due to the jump in the input i(t). In Fig. 5.4, numerical simula-

tions are performed with the same data as in Example 1.3 and by means of the

schemes (5.46), (5.50) and (5.22). The values of xk, yk, λk, σk are plotted with

respect to time. When the value of λk (respectively σk) is not defined by the

scheme, it is computed with σk/h (respectively hλk). The scheme (5.46) repro-

duces exactly the same results as the scheme in Sect. 1.1.5 and we note that the

θ -scheme (5.50) can be used with θ = 1/2 yielding to slightly less numerical damp-

ing. The scheme (5.22) with θ = 1/2 and γ = 1/2 implies some instabilities on the

values of λk and then σk . Furthermore, the trajectory is not correctly approximated

and it does not to converge toward to the expected solution. This behavior forbids

the use of such a scheme when a solution of bounded variations is expected.

For a general rank-deficient matrix D, the situation is more difficult. The relative

degree r is non uniform and then some components in y and λ can be viewed as

relative degree “0” variables and other as relative degree “1” variables. Without

entering into deepest details, we will assume that the matrix D has the form

D =

[

D̃ 0

0 0

]

, (5.52)
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where D̃ ∈ R
d×d is regular, and that the set K can be written as

K = K̃ × K̂ with K̃ ⊂ R
d . (5.53)

The decomposition of the matrices C and B is done in a natural way as

C =

[

C̃

Ĉ

]

with C̃ ∈ R
d×n and B = [ B̃ B̂ ] with B̃ ∈ R

n×d . (5.54)

The dynamics can be decomposed in
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dx = Ax(t)dt + u(t)dt + B̃λ̃(t)dt + B̂d̂i,

ỹ(t) = C̃x(t) + ã(t) + D̃λ̃(t),

ŷ = Ĉx + â(t),

0 ∈ ỹ + N
K̃

(λ̃),

0 ∈ ŷ + N
K̂

(d̂i).

(5.55)

The time-stepping scheme is a merge between the time-stepping scheme for an

absolutely continuous solution (5.28) and the time-stepping scheme for a solution

of bounded variations (5.46), yielding:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

xk+1 − xk = h(Axk+1 + uk+1) + rk+1,

ỹk+1 = C̃xk+1 + ãk+1 + Dλ̃k+1,

ŷk+1 = Ĉxk+1 + âk+1,

rk+1 = hB̃λk+1 + B̂σ̂k+1,

0 ∈ ỹk+1 + NK(λ̃k+1),

0 ∈ ŷk+1 + NK(σ̂k+1).

(5.56)

In the measure dynamics (5.55), a clear distinction is made between the com-

ponents of y that are expected to jump (ŷ) and those (ỹ) that are expected to be

absolutely continuous. In the time-stepping scheme (5.56), their numerical counter-

parts ŷk+1 and ỹ are also treated in a distinct manner. The OSNSP that we have to

solve is given by
{

wk+1 = Mzk+1 + q,

0 ∈ wk+1 + NK(zk+1),
(5.57)

with

wk+1 =

[

ỹk+1

ŷk+1

]

, zk+1 =

[

λ̃k+1

σ̂k+1

]

, (5.58)

M =

[

D̃ + hC̃(I − hA)−1B̃ C̃(I − hA)−1B̂

hĈ(I − hA)−1B̃ Ĉ(I − hA)−1B̂

]

(5.59)

and

q =

[

ak+1 + C̃(I − hθA)−1(xk + huk+1)

Ĉ(I − hθA)−1(xk + huk+1)

]

. (5.60)

As for (5.48), we note that the matrix M in (5.59) is regular when h vanishes if D̃

and CB are assumed to be regular.
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Fig. 5.5 Two configurations of the 4-diode bridge rectifier

The assumptions (5.52) and (5.53) are quite strong assumptions on the structure

of the dynamics which do not usually hold in the numerical practice. Nevertheless,

a complete orthogonal decomposition of the matrix D can be invoked to identify a

equivalent matrix D.

5.2.4 Illustrations of Wrong Discretizations

In this section, we continue to illustrate the differences between the various schemes

presented in Sects. 5.2.1, 5.2.2 and 5.2.3.

Let us consider first two configurations of the 4-diode bridge illustrated in

Fig. 5.5. The following values are taken for all configurations: R = 1 k�, L =
10−2 H, C = 1 µF and CF = 300 pF. The differences between the two configura-

tions lie in the presence of a capacitor in the diode bridge. In Fig. 5.5(a), the resistor

inside the bridges is supplied by a LC oscillator. The dynamical equations (5.18) are

stated choosing:

x =

[

VL

IL

]

, and y =

⎡

⎢

⎣

IDR1

IDF2

V2 − V1

V1 − V3

⎤

⎥

⎦
, λ =

⎡

⎢

⎣

V2

−V3

IDF1

IDR2

⎤

⎥

⎦
, (5.61)
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Fig. 5.6 Simulation of the configuration (Fig. 5.5(a)) with the scheme (5.22). Timestep h = 10−6.

(1) θ = 1, γ = 1 (2) θ = 1/2, γ = 1/2

and with

A =

[

0 −1/C

1/L 0

]

, B =

[

0 −1/C 1/C 0

0 0 0 0

]

, u = 0,

C =

⎡

⎢

⎣

0 0

0 0

−1 0

1 0

⎤

⎥

⎦
, D =

⎡

⎢

⎣

1/R 1/R −1 0

1/R 1/R 0 −1

1 0 0 0

0 1 0 0

⎤

⎥

⎦
, a = 0.

(5.62)

For this first configuration, the matrix D has full rank. The solution x(t) is a solution

of class C1 and the scheme (5.22) can be used without any restrictions. The results

are depicted in Fig. 5.6. As we can expect, the scheme approximates correctly the

trajectory x(t) and the variable λ(t) and y(t). As before, we note that the use of

a midpoint rule decreases the numerical damping and improves the quality of the

solution for a fixed time-step.

The other configuration depicted in Fig. 5.5(b) can be written as in (5.18)

choosing:
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Fig. 5.7 Simulation of the configuration (Fig. 5.5(b)) with the scheme (5.28). Timestep h = 10−6.

(1) θ = 1 (2) θ = 1/2

x =

[

VL

IL

VR

]

, y =

⎡

⎢

⎣

V2

IDF2

V2 − V1

VL − V3

⎤

⎥

⎦
, and λ =

⎡

⎢

⎣

IDR1

−V3

IDF1

IDR2

⎤

⎥

⎦
, (5.63)

and with

A =

[

0 −1/C 0

1/L 0 0

0 0 −1/(RCF )

]

,

B =

[

0 −1/C 1/C 0

0 0 0 0

1/CF 0 1/CF 0

]

, u = 0,

C =

⎡

⎢

⎣

0 0 1

0 0 0

−1 0 1

1 0 0

⎤

⎥

⎦
, D =

⎡

⎢

⎣

0 −1 0 0

1 0 1 −1

0 −1 0 0

0 1 0 0

⎤

⎥

⎦
, a = 0.

(5.64)

For this second configuration, the matrix D does not have full rank (rank(D) = 2).

The solution x(t) is a solution of bounded variations and a jump can be encountered

due to inconsistent initial conditions. Due to the fact that D is not in the simple

form (5.52), it is difficult to know a priori the smoothness of the variables y(t)

and λ.

In Fig. 5.7, the state x1 and x3 are depicted. The simulation is performed with the

scheme (5.28) and we note that the jump at the initial time is correctly approximated.

In Fig. 5.8, the simulation is performed with the scheme (5.22). We note that the

trajectory does not seem to be consistently approximated due to an initial error at

the jump time. It is worth noting that none of the previous schemes are dedicated to

simulate systems with solutions of bounded variations.

In Figs. 5.9 and 5.10, we give the details of the variables λ(t) and y(t) for

the schemes (5.28) and (5.22) and various values of θ and γ . In Fig. 5.9, the



5.2 Principles of the Numerical Time-Integration Scheme 173

Fig. 5.8 Simulation of the configuration (Fig. 5.5(b)) with the scheme (5.22). Timestep h = 10−6.

(1) θ = 1, γ = 1 (2) θ = 1/2, γ = 1/2

scheme (5.28) integrates the variables without instabilities. Note that the values λ2,k

and y3,k approximate some absolutely continuous functions, while the values λ1,k ,

λ4,k and y1,k , y4, k approximate some functions of bounded variations. For the val-

ues λ3,k and y2,k , we notice in Figs. 5.9(c) and (f) that the scheme tries to evaluate

at the initial point a measure. A correct estimation of these values would involve a

variable σk in place of λk which is homogeneous to an impulse. Due to the fact that

it is difficult to know a priori the nature of y and λ when D is rank-deficient, it is

difficult to adapt correctly the scheme. In this situation, y should be also replaced

by its associated measure and suitably integrated. In Fig. 5.10, we notice that the

scheme (5.22) develops some instabilities on the values λk and yk which approxi-

mate functions of bounded variations and is completely wrong in the approximation

of measures.

We end this series of simulation by noting that the values of V2 and V3 are not

everywhere uniquely defined. This fact is clearly related to the rank deficiency of

the matrix D. To illustrate this behavior, we report in Fig. 5.11 the similar simu-

lation as in Fig. 5.9 but with another OSNSP solver which is more sensible to the

non-uniqueness of the solution. Some instabilities can be noticed which are the con-

sequences of the non-uniqueness of V2 and V3 when the voltage VL is negative.

Indeed, the values of the node potentials belongs to a whole interval when the all

the diode are in the OFF states.

5.2.5 How to Choose a Scheme in Practice?

From the above developments, one sees that the choice of a numerical scheme is not

a trivial task when the mathematical nature of the solution is not known in advance.

In practice, the following procedure is implemented:

1. The numerical simulation is first performed with the scheme (5.28), which is

the most versatile one. By using two different time-steps, wrong evaluations of

measures at jumps times can be detected.
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Fig. 5.9 Simulation of the configuration (Fig. 5.5(b)) with the scheme (5.28). Timestep h = 10−6.

(1) θ = 1 (2) θ = 1/2
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Fig. 5.10 Simulation of the configuration (Fig. 5.5(b)) with the scheme (5.22). Timestep

h = 10−6. (1) θ = 1, γ = 1 (2) θ = 1/2, γ = 1/2
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Fig. 5.11 Simulation of the configuration (Fig. 5.5(b)) with the scheme (5.28). Timestep

h = 10−6. θ = 1



5.2 Principles of the Numerical Time-Integration Scheme 177

2. If jumps are detected, the scheme (5.50) is used for a correct evaluation of the

impulses.

3. If no jump is detected, the scheme (5.22) can be tried with γ �= 1. If some insta-

bilities are detected on the variables λ, we keep the value γ = 1.

5.2.6 Newton’s Method for the Nonlinear Dynamics

In the nonlinear case, two choices are possible for solving the OSNSP. The first

one is to use a dedicated numerical solver which is able to directly deal with the

nonlinearities. The other possibility is to perform an external Newton Loop based

on the linearization of the dynamics. We propose in this section to give an overview

of the linearization of the scheme (5.26) that is recalled:
⎧

⎪

⎨

⎪

⎩

xk+1 − xk = h(f (xk+θ , tk+θ ) + uk+θ + rk+γ ),

yk+1 = g(xk+1, λk+1, tk+1),

rk+1 = h(xk+1, λk+1, λk+1),

0 ∈ yk+1 + NK(λk+1).

(5.65)

This procedure leads to a linearized problem equivalent to (5.22). The first line of

the problem (5.65) can be written under the form of a residual term R depending

only on xk+1 and rk+1 such that

R(xk+1, rk+1) = 0, (5.66)

with R(x, r) = x − xk − hθf (θx + (1 − θ)xk, tk+θ ) − hγ r − h(1 − γ )rk . The so-

lution of this system of nonlinear equations is sought as a limit of the sequence

{xα
k+1, r

α
k+1}α∈N such that:

⎧

⎪

⎨

⎪

⎩

x0
k+1 = xk,

RL(xα+1
k+1 , rα+1

k+1 ) = R(xα
k+1, r

α
k+1) + [∇T

x R(xα
k+1, r

α
k+1)](x

α+1
k+1 − xα

k+1)

+[∇T
r R(xα

k+1, r
α
k+1)](r

α+1
k+1 − rα

k+1) = 0.

(5.67)

In order to simplify the notation, we introduce the so-called “free” residual term as

Rfree(x) = x − xk − hf (θx + (1 − θ)xk, tk+θ ),

together with the following definitions:

R(x, r) = Rfree(x) − hγ r − h(1 − γ )rk,

Rα
k+1 = R(xα

k+1, r
α
k+1) = Rfree(x

α
k+1, r

α
k+1) − hγ rα

k+1 − h(1 − γ )rk,

Rα
free,k+1 = Rfree(x

α
k+1, r

α
k+1) = xα

k+1 − xk − hf (θxα
k+1 + (1 − θ)xk, tk+θ ).

The computation of the Jacobian of R with respect to x, denoted by W leads to

Wα
k+1 = ∇T

x R(xα
k+1, r

α
k+1) = I − hθ∇T

x f (xα
k+1, tk+1). (5.68)

At each time-step, we have to solve the following linearized problem:

Rα
k+1 + Wα

k+1(x
α+1
k+1 − xα

k+1) − hγ (rα+1
k+1 − rα

k+1) = 0, (5.69)
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that is

hγ rα+1
k+1 = rc + Wα

k+1x
α+1
k+1 , (5.70)

with

rc = hγ rα
k+1 − Wα

k+1x
α
k+1 + Rα

k+1

= −Wα
k+1x

α
k+1 + Rα

free,k+1 − h(1 − γ )rk. (5.71)

Note that the W is clearly non singular for small h. The same operation is performed

with the second equation of (5.65) with the residual term

Ry(x, y,λ) = y − g(x,λ, tk+1) = 0, (5.72)

leading to the following linearized equation:

yα+1
k+1 = yα

k+1 − Rα
y,k+1 + Cα

k+1(x
α+1
k+1 − xα

k+1) + Dα
k+1(λ

α+1
k+1 − λα

k+1), (5.73)

with

Cα
k+1 = ∇T

x g(tk+1, x
α
k+1, λ

α
k+1),

Dα
k+1 = ∇T

λ g(tk+1, x
α
k+1, λ

α
k+1),

(5.74)

and

Rα
y,k+1 = yα

k+1 − g(xα
k+1, λ

α
k+1). (5.75)

The same operation is performed with the third equation of (5.65) with the resid-

ual term

Rr(r, x,λ) = r − g(x,λ, tk+1) = 0. (5.76)

In another notation, we obtain:

rα+1
k+1 = r1 + Kα

k+1x
α+1
k+1 + Bα

k+1λ
α+1
k+1 , (5.77)

with

r1 = h(xα
k+1, r

α
k+1, tk+1) − Kα

k+1x
α
k+1 − Bα

k+1λ
α
k+1 (5.78)

and

Kα
k+1 = ∇T

x h(xα
k+1, r

α
k+1, tk+1),

Bα
k+1 = ∇T

λ h(xα
k+1, r

α
k+1, tk+1),

(5.79)

and the residual term:

Rα
r,k+1 = rα

k+1 − h(xα
k+1, r

α
k+1, tk+1). (5.80)

Inserting (5.77) into (5.69), we get the following linear relation between xα+1
k+1 and

λα+1
k+1 :

(I − hγ (Wα
k+1)

−1Kα
k+1)x

α+1
k+1 = xp + hγ (Wα

k+1)
−1Bα

k+1λ
α+1
k+1 , (5.81)

with

xp = xfree + h(Wα
k+1)

−1(g(xα
k+1, λ

α
k+1, tk+1) − Bα

k+1λ
α
k+1 − Kα

k+1x
α
k+1),

xfree = −W
α,−1
k+1 Rα

free,k+1 + xα
k+1.

(5.82)
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Defining

K̃α
k+1 =

(

I − hγ (Wα
k+1)

−1Kα
k+1

)

(5.83)

and inserting (5.81) into (5.73), we get the following linear relation between yα+1
k+1

and λα+1
k+1 :

yα+1
k+1 = yp +

[

hγCα
k+1(K̃

α
k+1)

−1(Wα
k+1)

−1Bα
k+1 + Dα

k+1

]

λα+1
k+1 , (5.84)

with

yp = yα
k+1 − Rα

yk+1 + Cα
k+1((K̃

α
k+1)

−1xp − xα
k+1) − Dα

k+1λ
α
k+1. (5.85)

To summarize, the OSNSP we have to solve in each Newton iteration is:
{

yα+1
k+1 = Mα

k+1λ
α+1
k+1 + qα

k+1,

−yα+1
k+1 ∈ NK(λα+1

k+1 ),
(5.86)

with Mk+1 ∈ R
m×m and q ∈ R

m defined by:
{

Mα
k+1 = hγCα

k+1(K̃
α
k+1)

−1(Wα
k+1)

−1Bα
k+1 + Dα

k+1,

qα
k+1 = yp.

(5.87)

The problem (5.86) is equivalent to the linear OSNSP that we obtained in (5.23).

For the other schemes, the same procedure can be performed.

5.3 Time-Discretization of the General Cases

Let us go into details of the discretization of the general cases obtained by the

adapted version of the MNA including nonsmooth electrical elements. For the most

general form (DGE) in (5.1), a proposed scheme could be:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(Xk+1, tk+1)(Xk+1 − Xk) = h(D(Xk+1, tk+1) + U(tk+1) + Rk+1),

yk+1 = G(Xk+1, λk+1, tk+1),

Rk+1 = H(Xk+1, λk+1, tk+1),

0 ∈ F(yk+1, λk+1, tk+1) + T (yk+1, λk+1, tk+1).

(5.88)

This scheme respects the first principle in the beginning of Sect. 5.2, i.e. a fully im-

plicit integration of the generalized equation. In order to improve this basic scheme,

further knowledge is needed. For instance, if the variable X is supposed to be abso-

lutely continuous, a θ -method can be used. Unfortunately, at that time, it is difficult

from the structure of (5.2)–(5.5) to guess a priori the smoothness of the solution.

This is still an open issue. In the same vein, if the system encounters jumps, the

dynamics and the inclusion in (5.1) have to be written in terms of measures and the

numerical integration should be performed with impulses. Without any more math-

ematical results for the smoothness of solutions for the specific of (5.1), it is difficult

to say more. In practice, the scheme is employed as a compromise between the mid-

point rules developed in the previous sections and the scheme with impulses. After
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a first simulation, it is often possible to improve the numerical integration with a

more dedicated scheme. The LTI case (DGE)LTI in (5.7) is treated as well.

Concerning the semi-explicit systems (SEDGE) in (5.12), the proposed default

scheme is
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xk+1 − xk = hN−1(xk+θ , tk+θ )[f (xk+θ , zk+θ , tk+θ )] + hr1,k+γ ,

0 = g(xk+θ , zk+θ , tk+θ ) + r2,k+γ ,

0 = hNS(xk+1, zk+1, zNS,k+1, λk+1, tk+1),

yk+1 = gNS(xk+1, zk+1, zNS,k+1, λk+1, tk+1),

rk+1 = [r1,k+1, r2,k+1]
T = h(zNS,k+1),

0 ∈ F(yk+1, λk+1, tk+1) + T (yk+1, λk+1, tk+1),

(5.89)

with θ ∈ [0,1] and γ ∈ [0,1]. In this case, we assume that the trajectories x(t) and

z(t) are at least functions of bounded variations. The default values for the param-

eters are θ = 1/2 and γ = 1. If the solution is smooth enough, γ is chosen equal

to 1/2. In the case of jumps, the variable λk+1 is substituted by the impulse σk+1.

5.4 One-Step NonSmooth Problems (OSNSP) Solvers

The difficult part in solving the various OSNSP that have been formulated in the

above developments is the inclusion rule. Without any specific structure, the gener-

alized equation (4.1) is hard to solve even if some fixed point and Newton methods

can be designed. We will restrict ourselves in this section to the case of an inclusion

into a normal cone to a convex set K :

−F(y,λ, t) ∈ NK(λ). (5.90)

For the numerical purposes, let us rewrite the problem (5.88) as a global inclusion

0 ∈ F(ζ ) + NC(ζ ), (5.91)

where the unknown variable ζ = [XT
k+1, y

T
k+1, λ

T
k+1]

T ∈ R
n+2m and the function

F : R
n+2n → R

n+2m is defined by

F(ζ ) =

[

M(Xk+1)(Xk+1 − Xk) − h
[

D(Xk+1, tk+1) + U(tk+1) + H(Xk+1, λk+1, tk+1)
]

G(Xk+1, λk+1, tk+1) − yk+1

F(yk+1, λk+1, tk+1)

]

.

(5.92)

The normal cone NC is the normal cone to the following convex set

C = R
n × R

m × K ⊂ R
n+2m. (5.93)

We will see in the next section that the nonlinearity of F(.) can be directly treated by

the numerical one-step solver. As it has been done in Sect. 5.2.6, another approach is

to perform an outer Newton linearization of this problem by searching the solution

as the limit for α of the following linearized problem

0 ∈ ∇T
ζ F(ζα)(ζα+1 − ζα) + F(ζα) + NC(ζα+1), (5.94)
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for a given ζ 0. At each time-step k and at each Newton iteration α, the prob-

lem (5.94) appears to be affine in ζ .

The problem (5.91) is a VI written in the form of an inclusion into a normal cone

to a convex set. The choice of the numerical solver depends mainly on the structure

of the convex set K . Indeed, from a very general convex set K to a particular choice

of K , the numerical solvers range from the numerical methods for VI to nonlinear

equations, passing through various complementarity problem solvers. The conver-

gence and the numerical efficiency are improved in proportion as the structure of K

becomes simpler. In the sequel, major choice of K will be given leading to various

classes of well-known problems in mathematical programming theory. We refer to

Facchinei and Pang (2003) for a thorough presentation of the available numerical

solvers and to Acary and Brogliato (2008, Chap. 12) for a comprehensive summary

of the numerical algorithms.

5.4.1 K is a Finite Representable Convex Set

In practice, the convex set is finitely represented by

K = {λ ∈ R
m | h(λ) = 0, g(λ) � 0}, (5.95)

where the functions h : R
m → R

m, g : R
m → R

m are assumed to be smooth with

non vanishing Jacobians. More precisely, we assume that the following constraints

qualification holds:

∀λ ∈ K, ∃d ∈ R
m, such that

{

∇T hi(λ)d < 0, i = 1 . . .m,

∇T gj (λ)d < 0, j ∈ I (λ),
(5.96)

where I (λ) is the set of active constraints at λ, that is

I (λ) = {j ∈ 1 . . .m,gj (λ) = 0}. (5.97)

In this case, general algorithms for VI can be used. To cite a few, the minimization

of the so-called regularized gap function (Fukushima 1992; Zhu and Marcotte 1993,

1994) or generalized Newton methods (Facchinei and Pang 2003, Chaps. 7 & 8) can

be used. If F(.) is affine (possibly after the linearization step described in (5.94))

and the functions h(.) and g(.) are also affine, the VI is said to be an affine VI for

which the standard pivoting algorithms for LCP (Cottle et al. 1992) are extended in

Cao and Ferris (1996).

5.4.2 K is a Generalized Box

Let us consider the case when K is a generalized box, i.e.:

K = {λ ∈ R
m | ai � λi � bi, ai ∈ R, bi ∈ R, i = 1 . . .m}, (5.98)
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with R = {R∪{+∞,−∞}}. In this case, the problem (5.91–5.93) can be recast into

an MCP by defining p = n + m + m + m and the bounds l, u as l = [0n 0m 0m a]T

and u = [0n 0m 0m b]T .

The MCP can be solved by a large family of solvers based on Newton-type meth-

ods and interior-points techniques. In contrast to the interior-point methods, it is not

difficult to find comparisons of numerical methods based on Newton’s method for

solving MCPs. We refer to Billups et al. (1997) for an impressive comparison of

the major classes of algorithms for solving MCPs. If F(.) is affine, the MLCP is

equivalent to a box-constrained affine VI. For this problem, the standard pivoting

algorithm such as Lemke’s method is extended in Sargent (1978). A special case of

a generalized box is the positive orthant of R
m, that is K = R

m
+. Standard theory

and most of the numerical algorithms for LCPs apply in this MCLP case.

When the circuit is simple and of low size in terms of the number of unknown

variables, it is sometimes possible to write the DAE as an ODE and perform the

explicit substitution of X by y and λ in the formulation (5.88). If the cone is also

simply defined by a positive orthant, we arrive then at a standard LCP (Denoyelle

and Acary 2006). Unfortunately, the LCP formulation is not amenable for more

complicated cases where an automatic circuit equation formulation is used.



Part III

Numerical Simulations

This part presents extensive simulation results obtained with the INRIA SICONOS

open-source platform (http://siconos.gforge.inria.fr/). The results show the effi-

ciency of the NSDS approach. The examples consist first of some academic circuit

cases, followed by the buck converter and the delta-sigma converter.

http://siconos.gforge.inria.fr/


Chapter 6

The Automatic Circuit Equations Formulation
(ACEF) Module and the SICONOS Software

The SICONOS Platform is a scientific computing software dedicated to the model-

ing, simulation, control, and analysis of nonsmooth dynamical systems (NSDS). It is

developed in the Bipop team-project at INRIA1 in Grenoble, France, and distributed

under GPL GNU license.

SICONOS aims at providing a general and common tool for nonsmooth problems

in various scientific fields like applied mathematics, mechanics, robotics, electri-

cal circuits, and so on. However, the platform is not supposed to re-implement the

existing dedicated tools already used for the modeling of specific systems, but to

integrate them.

The Automatic Circuit Equations Formulation (ACEF) module is the implemen-

tation of the automatic circuit equation extended to general nonsmooth components.

From a SPICE netlist, possibly augmented by some nonsmooth components, the

ACEF build a dynamical formulation that can be simulated by SICONOS.

6.1 An Insight into SICONOS

The present part is dedicated to a short presentation of the general writing process

for a problem treated with SICONOS, through a simple example. The point is to

introduce the main functionalities, the main steps required to model and simulate

the systems behavior, before going into more details in Sect. 6.2, where the NSDS

will be described. The chosen example is a four-diode bridge wave rectifier as shown

in Fig. 6.1.

An LC oscillator, initialized with a given voltage across the capacitor and a null

current through the inductor, provides the energy to a load resistance through a full-

wave rectifier consisting of a four ideal diodes bridge. Both waves of the oscillating

voltage across the LC are provided to the resistor with current flowing always in the

1The French National Institute for Research in Computer Science and Control (http://bipop.

inrialpes.fr).

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits,

Lecture Notes in Electrical Engineering 69,

DOI 10.1007/978-90-481-9681-4_6, © Springer Science+Business Media B.V. 2011
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http://bipop.inrialpes.fr
http://dx.doi.org/10.1007/978-90-481-9681-4_6
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Fig. 6.1 A four-diode bridge wave rectifier

same direction. The energy is dissipated into the resistor and results in a damped

oscillation.

One of the ways to define a problem with SICONOS consists in writing a C++ file.

In the following, for the diode bridge example, only snippets of the C++ commands

will be given, just to enlighten the main steps. It is noteworthy that one can also use

an XML description or the Python interface.

6.1.1 Step 1. Building a Nonsmooth Dynamical System

In the present case, the oscillator is a time-invariant linear dynamical system, and

using the Kirchhoff current and voltage laws and branch constitutive equations, its

dynamics is written as (see Fig. 6.1 for the notation)

[
V̇L

İL

]
=

[
0 − 1

C
1
L

0

]
.

[
VL

IL

]
+

[
0 0 − 1

C
1
C

0 0 0 0

]
.

⎡
⎢⎣

−VDR1

−VDF2

IDF1

IDR2

⎤
⎥⎦ . (6.1)

If we denote

x =

[
V̇L

İL

]
, λ =

⎡
⎢⎣

−VDR1

−VDF2

IDF1

IDR2

⎤
⎥⎦ , A =

[
0 −1

C
1
L

0

]
,

r =

[
0 0 − 1

C
1
C

0 0 0 0

]
λ,

(6.2)

the dynamical system (6.1), (6.2) results in

ẋ = Ax + r. (6.3)

The first step of any SICONOS problem is to define and build some Dynam-

icalSystemobjects objects. The corresponding command lines to build a

FirstOrderLinearTIDS object are:
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The suffix DS to the name of a class such as the FirstOrderLinearTIDS

object means that this class inherits from the general class of DynamicalSystem.

Thereafter, it is necessary to define the way the previously defined dynamical sys-

tems will interact together. This is the role of the Interaction object composed

of a Relation object, a set of algebraic equations, and of a NonSmoothLaw

object.

The linear relations between the voltages and the currents inside the circuit are

given by

⎡
⎢⎣

IDR1

IDF2

−VDF1

−VDR2

⎤
⎥⎦ =

⎡
⎢⎣

0 0

0 0

−1 0

1 0

⎤
⎥⎦ ·

[
VL

IL

]

+

⎡
⎢⎣

1/R 1/R −1 0

1/R 1/R 0 −1

1 0 0 0

0 1 0 0

⎤
⎥⎦ ·

⎡
⎢⎣

−VDR1

−VDF2

IDF1

IDR2

⎤
⎥⎦ , (6.4)

which can be stated by the linear equation

y = Cx + Dλ, (6.5)

with

y =

⎡
⎢⎣

IDR1

IDF2

−VDF1

−VDR2

⎤
⎥⎦ , D =

⎡
⎢⎣

1/R 1/R −1 0

1/R 1/R 0 −1

1 0 0 0

0 1 0 0

⎤
⎥⎦ ,

λ =

⎡
⎢⎣

−VDR1

−VDF2

IDF1

IDR2

⎤
⎥⎦ .

(6.6)

Completed with the relation between r and λ (see (6.2)) it results in a linear

equation as

r = Bλ. (6.7)
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This corresponds to a SICONOS FirstOrderLinearTIR object, i.e., a linear

and time-invariant coefficients relation. The corresponding code is as follows:

To complete the Interaction object, a nonsmooth law is needed to define

what the behavior will be when a nonsmooth event occurs.

Thus the behavior of each diode of the bridge, supposed to be ideal, can be de-

scribed with a complementarity condition between the current and the reverse volt-

age (variables (y,λ)). Depending on the diode position in the bridge, y stands for the

reverse voltage across the diode or for the diode current. Then, the complementarity

conditions, as the results of the ideal diodes characteristics, are given by

0 � −VDR1 ⊥ IDR1 � 0

0 � −VDF2 ⊥ IDF2 � 0

0 � IDF1 ⊥ −VDF1 � 0

0 � IDR2 ⊥ −VDR2 � 0

⇐⇒ 0 � y ⊥ λ � 0, (6.8)

which correspond to a ComplementarityConditionNSL object which is an

inherited class form of the NonSmoothLaw class. The SICONOS code is as follows:

The Interaction is built using the concerned DynamicalSystem, the

Relation, and the NonSmoothLaw defined above:

This is the end of the first step, you have now a DynamicalSystem and an In-

teraction. Before dealing with the Simulation, we first create the Model object

that handles the NonSmoothDynamicalSystem and the Simulation.
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From this point, the diode bridge system is completely defined by the NonS-

moothDynamicalSystem and handled by the Model object DiodeBridge.

In the next section, a strategy of simulation will be defined and applied to this model.

6.1.2 Step 2. Simulation Strategy Definition

It is now necessary to define the way the dynamical behavior of the NonSmooth-

DynamicalSystem will be computed. This is the role of Simulation class.

In SICONOS, two different strategies of simulation are available: the time-stepping

schemes or the event-driven algorithms. To be complete, a Simulation object

requires:

• a discretization of the considered time interval of study,

• a time-integration method for the dynamics,

• a way to formalize and solve the possibly nonsmooth problems.

For the diode bridge example, the Moreau’s time-stepping scheme is used

(Sect. 9.4), where the integration of the equations over the time steps is based on

a θ -method. The nonsmooth problem is written as an LCP and solved with a pro-

jected Gauss–Seidel algorithm (Sect. 12.4.6). The resulting code in SICONOS is

The last step is the simulation process with first the initialization and then the

time-loop:

For a more detailed access to the simulation values inside a step, a time loop can

be written explicitly:
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6.2 SICONOS Software

6.2.1 General Principles of Modeling and Simulation

The SICONOS software is mostly written in C++ and thus entirely relies on the

object-oriented paradigm. In this first section we will not go into details on how to

build these objects,2 but rather on what they are and what they are used for.

As explained in Sect. 6.1, the central object is the Model. The model is the

overall object composed of a nonsmooth dynamical system and a simulation object.

The nonsmooth dynamical system object contains all the informations to describe

the system and the simulation object contains all the informations to simulate it. The

compulsory process to handle a problem with SICONOS is first to build a nonsmooth

dynamical system and then to describe a simulation strategy, see Sect. 6.2.1.2. Ad-

ditionally, a control of the Model object can possibly be defined, see Sect. 6.2.1.3.

The way the software is written relies also on this “cutting-out” with clearly

separated modeling and simulation components as explained in Sect. 6.2.4.

6.2.1.1 NSDS Modeling in SICONOS Software

An NSDS can be viewed as a set of dynamical systems that may interact in a nons-

mooth way through interactions. The modeling approach in the SICONOS platform

consists in considering the NSDS as a graph with dynamical systems as nodes and

nonsmooth interactions as branches. Thus, to describe each element of this graph

in SICONOS, one needs to define a NonSmoothDynamicalSystem object com-

posed of a set of DynamicalSystem objects and a set of Interaction objects.

A DynamicalSystem object is just a set of equations to describe the behavior

of a single dynamical system, with some specific operators, initial conditions, and

so on. A complete review of the dynamical systems available in SICONOS is given

in Sect. 6.2.2.1.

An Interaction object describes the way one or more dynamical systems

are linked or may interact. For instance, if one considers a set of rigid bodies, the

Interaction objects define and describe what happens at contact. The Inter-

2This is the role of the tutorial, users, guide or others manuals that may be found at http://siconos.

gforge.inria.fr/.

http://siconos.gforge.inria.fr/
http://siconos.gforge.inria.fr/
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Fig. 6.2 SICONOS

nonsmooth dynamical system

modeling principle

action object is characterized by some “local” variables, y (also called output),

and λ (input) and is composed of

• a NonSmoothLaw object that describes the mapping between y and λ,

• a Relation object that describes the equations between the local variables

(y,λ) and the global ones (those of the DynamicalSystem object).

One can find a review of the various possibilities for the Relation and the NonS-

moothLaw objects in Sects. 6.2.2.2 and 6.2.2.3. As summarized in Fig. 6.2, build-

ing a problem in SICONOS relies on the proper identification and construction of

some DynamicalSystems and of all the potential interactions.
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6.2.1.2 Simulation Strategies for the NSDS Behavior

Once an NSDS has been fully designed and described thanks to the objects detailed

above, it is necessary to build a Simulation object, namely to define the way the

nonsmooth response of the NSDS will be computed.

First of all, let us introduce the Event object, which is characterized by a type

and a time of occurrence. Each event has also a process method which de-

fines a list of actions that are executed when this event occurs. These actions de-

pend on the object type. For the objects related to nonsmooth time events, namely

NonSmoothEvent, an action is performed only if an event-driven strategy is cho-

sen. For the SensorsEvents and ActuatorEvent related to control tools (see

Sect. 6.2.1.3), an action is performed for both time-stepping and event-driven strate-

gies at the times defined by the control law. Finally, thanks to a registration mecha-

nism, user-defined events can be added.

To build the Simulation object, we first define a discretization, using a

TimeDiscretisation object, to set the number of time steps and their respec-

tive size. Note that the initial and final time values are part of the Model. The time

instants of this discretization define TimeDiscretisationEvent objects used

to initialize an EventsManager object, which contains the list of Event objects

and their related methods. The EventsManager object belongs to the simulation

and will lead the simulation process: the system integration is always done between

a “current” and a “next” event. Then, during the simulation, events of different types

may be added or removed, for example when the user creates a sensor or when an

impact is detected.

Thereafter, to complete the Simulation object, we need:

• some instructions on how to integrate the smooth dynamics over a time step,

which is the role of the OneStepIntegrator objects,

• some details on how to formalize and solve the nonsmooth problems when they

occur, this is done with the OneStepNSProblem objects.

To summarize, a Simulation object is composed of a TimeDiscretisa-

tion, a set of OneStepIntegrator plus a set of OneStepNSProblem and

belongs to a Model object. The whole simulation process is led by the chosen type

of strategy, either time-stepping or event-driven. To proceed, one needs to instanti-

ate one of the classes that inherits from Simulation object: TimeStepping or

EventDriven.

6.2.1.3 Control Tools

In SICONOS, some control can be applied on an NSDS. The principle is to get

information from the systems thanks to some Sensor objects, used by some Ac-

tuator objects to act on the NSDS components. Each Sensor or Actuator

object has its own TimeDiscretisation object, a list of time instants where
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data are to be captured for sensors or where action occurs for actuators. Those in-

stants are scheduled as events into the simulation’s EventsManager object and

thus processed when necessary.

The whole control process is handled with a ControlManager object, which

is composed of a set of Sensor objects and another set of Actuator objects. The

ControlManager object “knows” the Model object and thus all its components.

Each DynamicalSystem object has a specific variable, named z, which is a

vector of discrete parameters (see Sect. 6.2.2.1). To control the systems with a sam-

pled control law, the Actuator object sets the values of z components according

to the user instructions.

6.2.2 NSDS Related Components

In the following paragraphs, we turn our attention to the specific types of systems,

relations, and laws available in the platform.

6.2.2.1 Dynamical Systems

The most general way to write dynamical systems in SICONOS is

g(ẋ, x, t, z) = 0,

which is an n-dimensional set of equations where

• t is the time,

• x ∈ R
n is the state,3

• the vector of algebraic variables z ∈ R
s is a set of discrete states, which evolves

only at user-specified events. The vector z may be used to set some perturbation

parameters or to stabilize the system with a sampled control law.

Under some specific conditions, we can rewrite this as

ẋ = rhs(x, t, z),

where “rhs” means right-hand side. Note that in this case ∇ẋg(·, ·, ·, ·) must be in-

vertible. From this generic interface, some specific dynamical systems are derived,

to fit with different application fields. They are separated into two categories: first-

and second-order (Lagrangian) systems, and then specialized according to the type

of their operators (linear or not, time invariant, etc.).

The following list reviews the dynamical systems implemented in SICONOS

which inherit from the DynamicalSystem class:

3The typical dimension of the state vector can range between a few degrees of freedom and more

than several hundred thousands, for example for mechanical or electrical systems. The implemen-

tation of the software has been done to deal either with small- or large-scale problems.
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• FirstOrderNonLinearDS class, which describes the nonlinear dynamical

systems of first order in the form
{

Mẋ(t) = f (t, x(t), z) + r,

x(t0) = x0
(6.9)

with M a n × n matrix, f (x, t, z) the vector field, and r the input due to the

nonsmooth behavior.

• FirstOrderLinearDS class, which describes the linear dynamical systems

of first order in the form (coefficients may be time invariant or not)
{

ẋ(t) = A(t, z)x(t) + b(t, z) + r,

x(t0) = x0.
(6.10)

Simple Electrical circuits for instance fit into this formalism, as shown in the

diode bridge example in Sect. 6.1.

• LagrangianDS and also LagrangianLinearTIDS and class, which de-

scribes the Lagrangian nonlinear and linear dynamical systems are also imple-

mented.

6.2.2.2 Relations

As explained above, some relations between local(y,λ), and global variables (x, r),

have to be set to describe the interactions between systems. The general form of

these algebraic equations is
{

y = output(x, t, z, . . .),

r = input(λ, t, z, . . .),
(6.11)

and is contained in the abstract Relation class. Any other Relation objects are

derived from this one.

As for DynamicalSystems they are separated in first- and second-order rela-

tions and specified according to the type and number of variables, the linearity of

the operators, etc. The possible cases inherit from the Relation class as follows:

• FirstOrderR class, which describes the nonlinear relations of first order as
{

y = h(X, t,Z),

R = g(λ, t,Z).
(6.12)

Note that we use upper case for all variables related to DynamicalSystem

objects. Remember that a Relation object applies through the Interaction

object to a set of dynamical systems, and thus, X, Z, . . . are concatenation of x,

z, . . . of the DynamicalSystem objects involved in the relation.

• FirstOrderLinearTIR class, which describes the first-order linear and time-

invariant relations:
{

y = CX + FZ + Dλ + e,

R = Bλ.
(6.13)

Once again, see for instance the diode-bridge example in Sect. 6.1.
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Fig. 6.3 Some multivalued piecewise-linear laws: saturation, relay, relay with dead zone

• LagrangianScleronoumousR, LagrangianRheonomousR, La-

grangianCompliantR and LagrangianLinearR class are also imple-

mented for mechanical applications.

6.2.2.3 Nonsmooth Laws

The NonSmoothLaw object is the last required object to complete the Inter-

action object. We present here a list of the existing laws in SICONOS which inherit

from the generic NonmSmoothLaw class:

• ComplementarityConditionNSL class which models a complementarity

condition as

0 � y ⊥ λ � 0. (6.14)

• RelayNSL class which models the simple relay mapping as
{

ẏ = 0 : |λ| � 1,

ẏ �= 0 : λ = sign(y).
(6.15)

• PiecewiseLinearNSL class which models 1D piecewise-linear set-valued

mapping with fill-in graphs as depicted in Fig. 6.3.

6.2.3 Simulation-Related Components

6.2.3.1 Integration of the Dynamics

To integrate the dynamics over a time step or between two events, OneStepIn-

tegrator objects have to be defined. Two types of integrators are available at the

time in the platform, listed below:

• Moreau class for Moreau’s time-stepping scheme, based on a θ -method,

• Lsodar class for the event-driven strategy; this class is an interface for LSO-

DAR, odepack integrator (see http://www.netlib.org/alliant/ode/doc).

http://www.netlib.org/alliant/ode/doc
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Fig. 6.4 General design of

SICONOS software

6.2.3.2 Formalization and Solving of the Nonsmooth Problems

Depending on the encountered situation, various formalizations for the nonsmooth

problem are available:

• LCP class which describes the linear complementarity problem
{

w = Mz + q,

0 � w ⊥ z � 0,

• FrictionContact2D(3D) class, for two(three)-dimensional contact and

friction problems,

• QP class for the quadratic programming problem,

• Relay class for the relay problem.

From a practical point of view, the solving of nonsmooth problems relies on low-

level algorithms (from the SICONOS/Numerics package).

6.2.4 SICONOS software design

6.2.4.1 Overview

SICONOS is composed of three main parts: Numerics, Kernel and Front-End, as

represented in Fig. 6.4.

The SICONOS/Kernel is the core of the software, providing high-level descrip-

tion of the studied systems and numerical solving strategies. It is fully written in

C++, using extensively the STL utilities. A complete description of the Kernel is

given in Acary and Brogliato (2008, Sect. 14.3.4.2).

The SICONOS/Numerics part holds all low-level algorithms, to compute basic

well-identified problems (ordinary differential equations, LCP, QP, etc.).

The last component, SICONOS/Front-End, provides interfaces with some spe-

cific command-languages such as Python or SCILAB. This to supply more pleasant

and easy-access tools for users, during pre/post-treatment. Front-End is only an op-

tional pack, while the Kernel cannot work without Numerics.
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6.2.4.2 The SICONOS/Numerics library

The SICONOS/Numerics library which is a stand-alone library, contains a collec-

tion of low-level numerical routines in C and F77 to solve linear algebra problems

and OSNSP. It is based on well-known netlib libraries such as BLAS/LAPACK,

ATLAS, Templates. Numerical integration of ODE is also provided thanks to ODE-

PACK (LSODE solver). At the present time, the following OSNSP solvers are im-

plemented:

• LCP solvers:

– Splitting based methods (PSOR, PGS, RPSOR, RPGS) of Acary and Brogliato

(2008, Sect. 12.4.6).

– Lemke’s algorithm of Acary and Brogliato (2008, Sect. 12.4.7).

– Newton’s method of Acary and Brogliato (2008, Sect. 12.5.4).

• MLCP solvers:

– Splitting based methods of Acary and Brogliato (2008, Sect. 12.4.6).

• NCP solvers.

– Newton’s method based on the Fischer–Burmeister function

– Interface to the PATH solver described in Acary and Brogliato (2008,

Sect. 13.5.3).

– QP solver based on QLD due to Prof. K. Schittkowski of the University of

Bayreuth, Germany (modification of routines due to Prof. M.J.D. Powell at the

University of Cambridge).

• Frictional contact solvers:

– Projection-type methods of Acary and Brogliato (2008, Sect. 13.7.2).

– NSGS splitting based method of Acary and Brogliato (2008, Sect. 13.7.4).

– Alart–Curnier’s method of Acary and Brogliato (2008, Sect. 13.6.1).

– NCP reformulation method of Acary and Brogliato (2008, Sect. 13.4.3).

6.2.4.3 SICONOS Kernel Components

As previously said, Kernel is the central and main part of the software. The whole

dependencies among Kernel parts are fully depicted in Fig. 6.5. All the Kernel im-

plementation is based on the principle we gave in Sect. 6.2.1. It is mainly composed

of two rather distinct parts, modeling and simulation, that handle all the objects

used, respectively, in the NSDS modeling (see Sect. 6.2.1.1) and the Simulation

description (see Sect. 6.2.1.2).

The Utils module contains tools, mainly to handle classical objects such as matri-

ces or vectors and is based on the Boost library,4 especially, uBLAS,5 a C++ library

that provides BLAS functionalities for vectors, dense and sparse matrices.

4http://www.boost.org.

5http://www.boost.org/libs/numeric/ublas/doc/index.htm.

http://www.boost.org
http://www.boost.org/libs/numeric/ublas/doc/index.htm
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Fig. 6.5 Kernel components dependencies

The Input–Output module concerns objects for data management in XML format,

thanks to the libxml2 see footnote6 library. More precisely, all the description of the

Model, NSDS and Simulation, can be done thanks to an XML input file.

Control package provides objects like Sensor and Actuator, to add control

of the dynamical systems through the Model object, as explained in Sect. 6.2.1.3.

A plug-in system is available, mainly to allow the user to provide one’s own

computation methods for some specific functions (vector field of a dynamical sys-

tem, mass, etc.), this without having to recompile the whole platform. Moreover,

the platform is designed in a way that allows user to add dedicated modules through

object registration and object factories mechanisms (for example to add a specific

nonsmooth law, a user-defined sensor, etc.).

To conclude, class diagrams for modeling and simulation components are given

in Figs. 6.6 and 6.7, which make clearer the various links between all the objects

presented before.

6.3 The ACEF Module and Algorithms

The most technical part in the automatic circuit equation formulation is protected

under patent Acary et al. (2009). This section presents the algorithms used by the

automatic circuit equation formulation.

6http://xmlsoft.org/.

http://xmlsoft.org/
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Fig. 6.7 Simplified class diagram for Kernel simulation part

6.3.1 A Module Able to Read a Circuit File: A Parser

The first step consists in reading and storing in memory a circuit from a textual

description, a netlist SPICE file. The Application Programming Interface (API) of

this module is briefly shown in the sequel:

(A) File read and store function:

• int ParserReadFile(char *file)

Read and store in the local memory a netlist file

(B) Topological exploration functions:

• int ParserInitComponentList(char *type)

Specify the type of component.

• int ParserNextComponent(void * data)

Get data about the current component.

• int ParserGetNbElementsOfType(char *type)

Get the number of component of a specified type.

(C) Source values functions:

• int ParserComputeSourcesValues(double time)

Set time

• int ParserGetSourceValue(char *type,void*

id,double* value)

Get value of the corresponding source

(D) Initial values and simulation parameters function:

• int ParserGetICvalue(int * numNode,int * icGiven,

double * icValue)

Get initial values.

• int ParserGetTransValues(double * step, double *

stop, double * start)

Get simulation parameters
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Algorithm 1 Build INS

Ensure: indexins dimension of INS.

Ensure: indexλ dimension of λ.

indexins ← 0

indexλ ← 0

for all nonsmooth component k do

COMP(k).indexStartIns ← indexins // index concerning component k in INS

indexins ← indexins + sizeCompIns // Where sizeCompIns is the dimension of INSk

COMP(k).indexStartλ ← indexλ // index concerning component k in λ

indexλ ← indexλ + sizeCompλ // Where sizeCompλ is the dimension of λk

if nonsmooth component k is nonlinear then

COMP(k).geval ← geval // Plug functions gNS and hNS . Used by the Newton linearization.

COMP(k).heval ← heval

end if

end for

6.3.2 Build the Vector of Unknowns INS

With the notation of the system (4.25), Algorithm 1 builds the INS composed of

all the INSk
. For each nonsmooth component, a location in the system h and g is

reserved. At the end, the stamp algorithm of a nonsmooth component will consist in

writing in this location its contribution.

6.3.3 An Algorithm to Choose the Unknowns

The algorithm described in this section builds the vectors of unknowns x and z of

Sect. 3.6. It is based on the spanning tree algorithm. It also ensures the building of

the subset CF and CL.

Following the development in Sect. 3.6.3, Algorithm 2 cuts the node indices in

two complementary subsets:

– Ñ : The set of node indices whose KCL is written to build the system N(x, t)x′ =

f (x, z, t).

– N̂ : The complementary set of the previous set.

It also defines two complementary subsets of C such that

C = CF ∪ CL.

For each branch with index in CL, an unknown has been added in z. For each branch

with index in CF, a KCL has been selected. This relation is stored in the list M. M is

a list of couples used in Algorithm 3. Each couple of M contains an index of a capac-

itive branch and an index of a node. More precisely, a couple (c, n) means that the

KCL of the node n will be used to describe the dynamic of the branch c. In the mean-

time, Algorithm 2 builds the following vectors of unknowns: x = [IL,UCF ,UCL ]T

and z = [V, IV, INS, ICL]T .
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Algorithm 2 Build x and z

Require: Algorithm 1

Require: Spanning Tree (ST) of the capacitor branches indexed by C

Require: Init_ST: prepare an transversal (or depth-transversal) tree exploration.

Require: Next_branch_in_ST: return the branch indexes of an ST’s edge.

Require: Next_branch_not_in_ST: return the branch indexes not included in the

ST.

Require: index k: index of the current branch.

Require: index ik jk: Nodes index of the current branch.

Require: index l: a node index.

Ensure: Build x and z, the vectors of unknowns.

Ensure: subset Ñ, CF, CL.

Ensure: A list of couple M.

// Initialize x with IL and UC .

x ← [IL,UC]T

// Initialize z with IV .

z ← [V, IV, INS]T

// Initialize Ñ.

Ñ ← ∅

// Initialize M.

M ← ∅

Init_ST()

k ← Next_branch_in_ST()

while k do

l ← ik or jk with l /∈ Ñ.

add l in Ñ

add k in CF

add (k, l) in M

k ← Next_branch_in_ST ()

end while

k ←Next_branch_not_in_ST()

while k do

Add an unknown Ik in z

add k in CL

k ←Next_branch_not_in_ST()

end while

6.3.4 Building the System N(x, t)ẋ = f (x,z, t) of (3.70)

The first step consists in building a system (3.70), i.e. N(x, t)ẋ = f (x, z, t) with

a regular matrix N(x, t). This algorithm specifies which physical law will be used

in each line of the system. The writing in memory is ensured by the stamp method

of each component. For each component and equation, an amount of memory has

been allocated to store all the necessary parameters, that specify where and how
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Algorithm 3 How build the system N(x, t)x′ = f(x, z, t) with N(x, t) a regular matrix?

Require: x and z built by Algorithm 2.

Require: index k: index of the current branch.

Require: index ikjk: nodes index of the current branch.

Require: index l: a node index.

Require: integer i: current line number of the system, initialized to 0.

Require: memoryAlloc: a system function that reserved some memory.

Ensure: Stamp method to build the system N(x, t)x′ = f(x, , z, t).

for all Inductive branches do

// The law LİLk
= Vik

− Vjk
will be used to fill the line i of the system.

BCE(k).line ← i

i ← i + 1

end for

// Difference with the standard MNA start here

for all couple (k, l) ∈ M do

// The law KCL(l) will be used to fill the line i of the system with the, using Il = CkU̇k .

KCL(l).line ← i

i ← i + 1

end for

for all k ∈ CL do

// Allocate memory for this BCE capacitor branch

BCE(k)=memoryAlloc(sizeForCapacitorBranch)

// The law Ik = CkU̇k will be used to fill the line number i of the system.

BCE(k).line ← i

end for

to write the component contribution in the equation system. Moreover, the contri-

bution of a component is written when the named function ‘stamp’ is called. In

other words, memory has been allocated to customize the stamp algorithm. The

stamp algorithm consists in analyzing these parameters to fill the system of equa-

tion. Algorithm 3 describes more precisely the process of building the matrix N

of (3.105).

Remark 6.1 Our implementation consists in using some object oriented structures.

We use some component and equation classes. For each component and equation, a

corresponding instance of object is built.

6.3.5 Building the Relation 0 = g(x, z, t) of (3.70)

The previous section describes an algorithm to build a part of the dynamical sys-

tem (3.70). This section presents an algorithm that specifies which law will be used

to build the remaining part of the system, 0 = g(x, z, t).
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Algorithm 4 How to build the system 0 = g(x, z, t)?

Require: x and z built by the Algorithm 2.

Require: index k: index of the current branch.

Require: index ikjk:Nodes index of the current branch.

Require: indexl: a node index.

Require: integer i: current line number of the system, initialized to dim(x).

Ensure: It customizes the stamp methods to build the system 0 = g(x, z, t)

// KCL not written

for all l ∈ N̂ do

// The KCL(l) is recorded as the law of the line i of the system.

KCL(l).line ← i

i ← i + 1

end for

// BCE of voltage defined branches

for all k ∈ B̂ and the branch k is voltage defined do

// the law BCE: Vik
− Vjk

= uk(IL, IV,ATV, İL, İV,ATV̇, t) will be used to fill the line i of the system with.

BCE(k).line ← i

i ← i + 1

end for

// KVL of the capacitor branches

for all k ∈ C do

// The law KVL of the capacitor branch k: UCi
= Vik

− Vjk
will be used to fill the line i of the system with.

KVL(k).line ← i

i ← i + 1

end for

Note that it consists in adding all physical equations of the complete circuit that

are not written in Algorithm 3:

– KCL not used in the Algorithm 3. Indeed, for each node index in N̂ , the corre-

sponding KCL has not been written.

– Branch Constitutive Equation of voltage branch defined, not used in the Algo-

rithm 3.

– KVL of the capacitor branches.

6.3.6 The Stamp Method for Nonsmooth Components

Algorithms 4 and 3 specify which laws are used to fill each line of the system (3.70).

These algorithms are run only once. The stamp methods have to update the system

following the rules imposed by the previous algorithms. It could be said that the

Algorithms 4, 3 and 2 customize the stamp methods. Algorithm 12 shows how, in

the nonlinear case, the stamp methods are called at each step of the simulation.

Algorithms 9, 10 and 11 describe the stamp methods for the diode and the MOS

transistor. Moreover, Algorithms 5, 6, 7 and 8 show how the stamp methods set the

content of the memory. As it has been underlined Sect. 6.3.6, it depends strongly on

Algorithm 2.
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Algorithm 5 Resistor stamp algorithm

Require: k: an index of resistor.

Require: R: value from the circuit description.

Ensure: Fill the contribution of the component in the system

// It concerns only the KCL(node1) and KCL(node2)

MEM_F[KCL(node1).line,node1] ← + 1
R

// It means 1
R

is added

MEM_F[KCL(node1).line,node2] ← − 1
R

// It means 1
R

is subtracted

MEM_F[KCL(node2).line,node1] ← − 1
R

MEM_F[KCL(node2).line,node2] ← + 1
R

Algorithm 6 Inductor stamp algorithm

Require: k: an index of inductor.

Require: Lk: is the index of IL in the vector x.

Require: L: value from the circuit description.

Ensure: Fill the contribution of the component in the system

// It concerns the KCL(node1), KCL(node2) and BCE(k)

MEM_N[BCE(k).line,Lk] ← +L

MEM_F[BCE(k).line,node1] ← +1

MEM_F[BCE(k).line,node2] ← −1 // Lk is the index ofIL in the vector x

MEM_F[KCL(node1).line,Lk] ← +1

MEM_F[KCL(node2).line,Lk] ← −1

6.3.7 Some Stamp Examples

For the sake of simplicity, this section provides some examples of the stamp algo-

rithm of the form (5.12).

1. Diode stamp in H

⎛
⎝

INSj

KCL(i) +1

KCL(j) −1

⎞
⎠ (6.16)

2. Diode stamp in gNS

(
Vj Vi

(line in gNS) +1 −1

)
(6.17)

3. Diode stamp in hNS

(
Insj λj

(line in hNS) +1 −1

)
(6.18)
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Algorithm 7 Capacitor stamp algorithm

Require: k: an index of capacitor.

Require: UCk: index of the unknown Uk in x

Require: ICk: index of the unknown Ik in z

Require: C: value from the circuit description.

Ensure: Fill the contribution of the component in the system

// It concerns the KCL(node1), KCL(node2), KVL(k), and may be BCE(k)

// About KVL

MEM_F[KVL(k).line,UCk] ← −1

MEM_F[KVL(k).line,node1] ← +1

MEM_F[KVL(k).line,node2] ← −1

if node1 ∈ Ñ then

if k ∈ CL then

MEN_F[KCL(node1).line, ICk] ← −1

else

MEM_N[KCL(node1).line,UCk] ← +C

end if

end if

if node2 ∈ Ñ then

if k ∈ CL then

MEN_F[KCL(node2).line, ICk] ← +1

else

MEM_N[KCL(node2).line,UCk] ← −C

end if

end if

if k ∈ CL then

// Write the BCE

MEM_N[BCE(k).line,UCk] ← +C

MEM_F[BCE(k).line, ICk] ← +1

end if

6.3.8 The ACEF Global Execution Algorithm

In this section, it is shown how the algorithms of the previous sections are used to

get the system of equations.

6.3.9 An Example of the Stamp Method with Nonsmooth

Component

In Sect. 6.3.9.1, the standard MNA is applied on a smooth circuit and leads to a

full implicit DAE. In Sect. 6.3.9.2, the previous algorithms are applied on a cir-
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Algorithm 8 Capacitor stamp after inversion algorithm

Require: k: an index of capacitor.

Ensure: Fill the contribution of the component in the system

// It could concern the KCL(node1) or KCL(node1)

if KCL(node1).line � dim(x) then

// get the current expression from the system ẋ = .. and add it in the line KCL(node1).line of the system f2

end if

if KCL(node2).line � dim(x) then

// get the current expression from the system ẋ = .. and subtract it in the line KCL(node2).line of the system f2

end if

Algorithm 9 Diode stamp algorithm

Require: k: an index of diode.

Require: InsIndex: index of the unknown INSk
in z.

Ensure: Fill the contribution of the component in the system

MEM_F[KCL(node1).line,dim(x) + InsIndex] ← +1

MEM_F[KCL(node2).line,dim(x) + InsIndex] ← −1

// About the equation h: 0 = −INSk
+ λk

MEM_H[COMP(k).indexStartIns,dim(x) + InsIndex] ← −1

MEM_H[COMP(k).indexStartIns,dim(x) + dim(z) + COMP(k).indexStartλ]

← +1

// About the equation g: yk = V1 − V2

MEM_G[COMP(k).indexStartλ,dim(x) + node1] ← +1

MEM_G[COMP(k).indexStartλ,dim(x) + node2] ← −1

Fig. 6.8 Circuit containing a

loop of capacitors

cuit with a nonsmooth and nonlinear MOS transistor and leads to a semi-explicit

system.

6.3.9.1 Standard MNA Algorithm

The circuit is depicted in Fig. 6.8. The vectors of unknowns are x =

(U12,U23,U34,U41)
T and z = (V1,V2,V3,V4,V5, I50)

T .
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Algorithm 10 Linear and nonsmooth MOS stamp algorithm

Require: k: index of the mos component.

Require: nodeg: index of the gate node.

Require: nodes: index of the source node.

Require: noded: index of the drain node.

Require: InsIndex: index of the unknown INSk
in z (ie Ids).

Ensure: Fill the contribution of the component in the system

Nhyp = COMP(k).Nhyp

// KCL contribution

MEM_F[KCL(noded).line,dim(x) + InsIndex] ← +1

MEM_F[KCL(nodes).line,dim(x) + InsIndex] ← −1

// About the equation h:0 = −INSk
+ Cλ

// −INSk

MEM_H[COMP(k).indexStartIns,dim(x) + InsIndex] ← −1

for all 0 � n < Nhyp do

MEM_H[COMP(k).indexStartIns,dim(x)+dim(z)+COMP(k).indexStartλ+n]

← COMP[k].mCoefs[n]

MEM_H[COMP(k).indexStartIns,dim(x) + dim(z) + COMP(k).indexStartλ

+ Nhyp + n] ← −COMP[k].mCoefs[n]

end for

// About the equation Y=g().

for all 0 � n < Nhyp do

MEM_G[COMP(k).indexStartλ + n,dim(x) + nodeg] ← 1

MEM_G[COMP(k).indexStartλ + n + Nhyp,dim(x) + nodeg] ← 1

MEM_G[COMP(k).indexStartλ + n,dim(x) + nodes] ← −1

MEM_G[COMP(k).indexStartλ + n + Nhyp,dim(x) + noded] ← −1

MEM_G[COMP(k).indexStartλ + n,dim(x) + dim(z) + COMP(k).indexStartλ

+ n] ← 1

MEM_G[COMP(k).indexStartλ + n + Nhyp,dim(x) + dim(z)

+ COMP(k).indexStartλ + n + Nhyp] ← 1

MEM_G[COMP(k).indexStartλ + n,dim(x) + dim(z) + dim(λ) + 1]

← COMP[k].mh[n]

MEM_G[COMP(k).indexStartλ + n + Nhyp,dim(x) + dim(z) + dim(λ) + 1]

← COMP[k].mh[n]

end for

Let us start to write M in (3.30). This yields

⎛
⎜⎝

KCL(1)

KCL(2)

KCL(3)

KCL(4)

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎝

U̇12 U̇23 U̇34 U̇41

C 0 0 −C

−C C 0 0

0 −C C 0

0 0 −C C

⎞
⎟⎟⎟⎟⎠

ẋ = RHS.
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Algorithm 11 Nonlinear and nonsmooth MOS stamp algorithm

Require: k: index of the mos component.

Require: nodeg: index of the gate node.

Require: nodes: index of the source node.

Require: noded: index of the drain node.

Require: InsIndex: index of the unknown INSk
in z (ieIds).

Ensure: Fill the contribution of the component in the system

K = COMP(k).K

VT = COMP(k).VT

// KCL contribution

MEM_F[KCL(noded).line,dim(x) + InsIndex] ← +1

MEM_F[KCL(nodes).line,dim(x) + InsIndex] ← −1

// About the equation h: 0 = −INSk
+ K

2
(λ4(Vgs − VT)2 − λ2(Vgd − VT)2)

// −INSk

MEM_H[COMP(k).indexStartIns,dim(x) + InsIndex] ← −1

// dh
dVg

MEM_∇zH[COMP(k).indexStartIns,nodeg] ← K(λ4 ∗ (Vg − Vs − VT)

− λ2(Vg − Vd − VT))

// dh
dVs

MEM_∇zH[COMP(k).indexStartIns,nodes] ← −K(λ4 ∗ (Vg − Vs − VT))

// dh
dVd

MEM_∇zH[COMP(k).indexStartIns,noded] ← K(λ2 ∗ (Vg − Vd − VT))

// dh
dλ2

MEM_∇λH[COMP(k).indexStartIns,COMP(k).indexStartλ + 1]

← −K
2

K((Vg − Vd − VT)2)

// dh
dλ4

MEM_∇λH[COMP(k).indexStartIns,COMP(k).indexStartλ + 3]

← K
2

K((Vg − Vs − VT)2)

// About the equation g:

// dg
dVg

MEM_∇zG[COMP(k).indexStartλ + 1,nodeg] ← −1

MEM_∇zG[COMP(k).indexStartλ + 3,nodeg] ← −1

// dg
dVd

MEM_∇zG[COMP(k).indexStartλ + 1,noded] ← +1

// dg
dVs

MEM_∇zG[COMP(k).indexStartλ + 3,nodes] ← +1

// dg
dλ1

MEM_∇λG[COMP(k).indexStartλ + 1,COMP(k).indexStartλ] ← +1

// dg
dλ2

MEM_∇λG[COMP(k).indexStartλ,COMP(k).indexStartλ + 1] ← −1

// dg
dλ3

MEM_∇λG[COMP(k).indexStartλ + 3,COMP(k).indexStartλ + 2] ← +1

// dg
dλ4

MEM_∇λG[COMP(k).indexStartλ + 2,COMP(k).indexStartλ + 3] ← −1
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Algorithm 12 ACEF global algorithm

Require: circuit.cir: a netlist file

Ensure: The simulation result is stored in memory(not yet describe in this version)

// read and store the circuit

ParserReadFile(“circuit.cir”)

// Build Ins

Perform Algorithm 1

// Build x and z using the parser interface

Perform Algorithm 2

// Prepare the stamp Algorithms

Perform Algorithms 3 and 4

t ← Tinit // Initialize t to initial time

while t < Tend do

// We are now ready to stamp the system N(x, t) = f(x, z, t)

for all component k do

COMP(k).stamp()

end for

// We are now ready to stamp the system 0 = g(x, z, t)

for all capacitor k do

COMP(k).stampAfterInversion()

end for

// Solve the complementarity problem to get current point of the simulation

...

end while

The obtained matrix is not regular because of the cycle {1-2, 2-3, 3-4, 4-1}, so it

leads to a implicit DAE. The Right-hand-side RHS is not detailed here.

The previous algorithms are now applied. The chosen solution is to use a Span-

ning Tree {1-2, 2-3, 3-4} to write the KCL. For the capacitive branch {4,1}, I41 is

added in the vector of unknowns z. Algorithm 3 provides the following semi-explicit

system:

⎛
⎜⎝

KCL(1)

KCL(2)

KCL(3)

I41

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎝

U̇12 U̇23 U̇34 U̇41

C 0 0 −C

−C C 0 0

0 −C C 0

0 0 0 C

⎞
⎟⎟⎟⎟⎠

ẋ

= 0x +

⎛
⎜⎜⎜⎜⎝

V1 V2 V3 V4 V5 I50 I41

− 1
R

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1
R

− 1
R

0 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

z.
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Multiplying by N−1, all the currents are then expressed as a linear combination of

the unknowns:

I41 unknown variable,

I12 = I41 −
V1

R
,

I23 = I41 −
V1

R
,

I43 = I41 −
V1

R
−

V3 − V5

R
.

(6.19)

The last step consists in writing the missing equations with the relation (6.19):

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

KCL(4)

KCL(5)

U12

U23

U34

U41

VD50

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U12 U23 U34 U41

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 V2 V3 V4 V5 I50 I41

1
R

0 − 1
R

0 1
R

0 −1 + 1

0 0 1
R

0 − 1
R

−1 0

−1 1 0 0 0 0 0

0 −1 1 0 0 0 0

0 0 −1 1 0 0 0

0 0 0 −1 1 0 0

0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

E

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

NI = NE = 11.

Note that the first line KCL(1) expresses that the current which goes in the ca-

pacitor cycle is equals to the current that goes out.

6.3.9.2 A Nonsmooth Nonlinear Example

This section provides an example composed of a MOS component with nonlinear

model described by (4.53). Let us consider the following netlist file describing our

example:
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The circuit is depicted in Fig. 6.9.

The MOS model is described by (4.53), that leads to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

IDS = I50 = K
2
(λ4(V4 − VT )2 − λ2(V5 − V4 − VT )2),

( y1

y2

y3

y4

)
=

(
1−λ2

VT −V5+V4+λ1

1−λ4

VT −V4+λ3

)
,

0 �

(
λ1

λ2

λ3

λ4

)
⊥

( y1

y2

y3

y4

)
� 0.

(6.20)

An ideal transistor adds only IDS in the vector INS, in our case it is:

INS = (I50).

The vector X is defined by:

X = (IL,UC1
,UC2

,UC3
,UC4

)T .

Concerning Z, note that I34 has been added by Algorithm 2

Z = (V1,V2,V3,V4,V5,V6, I01, I50, I34).

The spanning tree that is used is composed of the edges: (2,1), (2,4) and (1,3).

M = {(C1,2), (C2,4), (C3,1)},

CF = {C1,C2,C3},

CL = {C4},

Ñ = {2,4,1},

N̂ = {3,5,6}

and the index concerning the nonsmooth law:

indexins = 1 indexλ = 4.

The content of the MOS component memory is:
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Fig. 6.9 Circuit with a loop of capacitors and a nonsmooth electrical element

– COMP(kmos).indexStart = 0

– COMP(kmos).indexStart = 0

– and the functions to compute g,h and the gradient ∇ has been plugged.

The aim of these algorithms is to fill the memory of the law:

– BCE(kL).line = 0

– KCL(2).line = 1

– KCL(4).line = 2

– KCL(1).line = 3

– BCE(C4).line = 4

– KCL(3).line = 5

– KCL(5).line = 6

– KCL(6).line = 7

– BCE(VIN).line = 8

– KVL(C1).line = 9

– KVL(C2).line = 10

– KVL(C3).line = 11

– KVL(C4).line = 12

We are now ready to build the system using the stamp algorithm of each compo-

nent.

About MEM_N:

L

C1 −C2

C2

−C1 −C3

C4



214 6 The Automatic Circuit Equations Formulation (ACEF) Module

About MEM_F:

IL Uc1 Uc2 Uc3 Uc4 V1 V2 V3 V4 V5 V6 I01 I50 I43

−1 1

− 1
R2

−1

−1

1

−1 1

1 1
R1

1

−1 −1 1

1 −1 1

−1 −1 1

−1 −1 1

After the inversion of N , we get the missing current through the node 3:

C3U̇C3
= I34 +

V4

R2
+ I01.

The second stamp after the inversion of N change only the line 6 about the KCL(3):

1
R2

1 ,

We note that ∇xh and ∇xg are null.

∇zh = K(λ4(V4 + VT ) + λ2(V5 − V4 − VT )) −Kλ2(V5 − V4 − VT ) ,

∇λh = −K(V5 − V4 − VT )2/2 K(−V4 − VT )2/2 ,

∇zg =
1 −1

1

and ∇λg =

−1

1

−1

1

.



Chapter 7

Simple Circuits

This chapter is devoted to present numerical simulation results obtained with the

SICONOS platform, on several simple circuits: the first circuit has been built to show

that conventional analog simulators fail to converge; the other circuits are classical

diode-bridge wave rectifiers, and the last one is a circuit that exhibits a sliding mode.

In this chapter and in Chap. 8, five simulation software packages were used:

SICONOS: the platform developed at INRIA Grenoble Rhône-Alpes (France) deal-

ing with nonsmooth dynamical systems with dedicated time integrators and algo-

rithms to solve sets of equations and inequalities (for instance LCP: linear comple-

mentarity problems).

NGSPICE: an open-source version of the original SPICE3F5 software developed by

Berkeley university. Even if this version may differ from existing commercial ones,

it shares with them a common set of models and the solving algorithms belong also

to the same class that deals with regular functions.

SMASH: a commercial version of SPICE developed by Dolphin Integration (see

http://www.dolphin.fr).

ELDO: a commercial version of SPICE with Newton-Raphson and OSR (one step

relaxation) algorithms developed by Mentor Graphics (http://www.mentor.com).

PLECS: a SIMULINK/MATLAB toolbox dedicated to the simulation of power elec-

tronics circuits (see http://www.plexim.com). The models and algorithms come

from the hybrid approach. In our work the freely available demonstration version

of PLECS has been used.

7.1 Maffezzoni’s Example

This section is devoted to the modeling and the simulation of the circuit in Fig. 7.1.

In Maffezzoni et al. (2006) it is shown that Newton-Raphson based methods fail

to converge on such a circuit, with the switch model as in (1.46). The diode model

is the equivalent resistor model in Fig. 1.2(d). On the contrary the OSNSP solver

correctly behaves on the same model, as demonstrated next.

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits,

Lecture Notes in Electrical Engineering 69,

DOI 10.1007/978-90-481-9681-4_7, © Springer Science+Business Media B.V. 2011
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http://dx.doi.org/10.1007/978-90-481-9681-4_7
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Fig. 7.1 A simple switched

circuit

7.1.1 The Dynamical Model

The dynamics of the circuit in Fig. 7.1 is obtained using the algorithm of auto-

matic circuit equation formulation of Chap. 6. In a first step, the vector of unknown

variables is built, in a second step, the dynamical system is written, and in a last

step, the nonsmooth laws are added. Applying the automatic equations generation

algorithm leads to the following 9-dimensional unknown (dynamic and algebraic

unknown variables) vector: X = (V1 V2 V3 V4 IL I03 I04 Is Id)T in the system (5.1)

or x = (IL) and z = (V1 V2 V3 V4 I03 I04 Is Id)T in the system (5.14), where the po-

tentials and the currents are depicted in Fig. 7.1. Building the dynamical equations

consists in writing the Kirchhoff current laws at each node, the constitutive equa-

tion of the smooth branch, and the nonsmooth law of the other branches. The two

nonsmooth devices are the diode and the switch. It yields the following system, that

fits within the general framework in (3.32). For the semi-explicit DAE, we obtain:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L dIL

dt
(t) = V1(t) − V2(t),

Id(t) + Is(t) − IL(t) = 0, IL(t) − V2(t)
R

= 0,

I03(t) = 0, I04(t) − Is(t) = 0,

V4(t) = 20, V3 = e(t).

(7.1)

For the input/output relations of the nonsmooth components, we get:

{

V1(t) = 1
2
(τ1(t) − 1)RoffId(t) − 1

2
(τ1(t) + 1)RonId(t),

2(V4(t) − V1(t)) = [(1 + τ2(t))Roff + (1 − τ2(t))Ron]Is(t).
(7.2)

Finally, the inclusion rule is written as:

{

V1(t) ∈ −N[−1,1](τ1(t))

100(V3(t) − V2(t)) ∈ −N[−1,1](τ2(t)).
(7.3)
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Fig. 7.2 Equivalent linear

circuit

On this example, the fully implicit (θ = 1) Moreau’s time-stepping scheme reads

as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L(IL,k+1 − IL) = h(V1,k+1 − V2,k+1),

Id,k+1 + Is,k+1 − IL,k+1 = 0, IL,k+1 − 1
R

V2,k+1 = 0,

I03,k+1 = 0, I04,k+1 − Is,k+1 = 0,

V4,k+1 = 20, V3,k+1 = e(tk+1),

2V1,k+1 = (τ1,k+1 − 1)RoffId,k+1 − (τ1,k+1 + 1)RonId,k+1,

2(V4,k+1 − V1,k+1) = [(1 + τ2,k+1)Roff + (1 − τ2,k+1)Ron]Is,k+1,

V1,k+1 ∈ −N[−1,1](τ1,k+1),

100(V3,k+1 − V2,k+1) ∈ −N[−1,1](τ2,k+1).

(7.4)

7.1.2 Simulation Results: Failure of the Newton-Raphson

Algorithm

The simulation consists of two phases: a linear behavior followed by a change in the

state of the switch.

7.1.2.1 A Linear Behavior

The time step has been fixed to 0.1 µs and the initial state is {0,7.5,0}. While the

value of V3 − V2 is positive, the Newton-Raphson algorithm converges in one it-

eration. It is a linear circuit shown in Fig. 7.2. During this period, IL and V2 are

increasing and V3 is decreasing. When V2 becomes equals to V3, the switch will

change its state.

7.1.2.2 The Switch Change of State

We denote N the integer such that the switch will change its state on [tN , tN+1]. Fig-

ure 7.3 depicts the initial linearized circuit used by the Newton-Raphson iterations

to compute the state at tN+1. Setting V3 to the value e(tN+1), that is 1.20 V, leads

to change the switch’s state. Figure 7.4 shows the equivalent circuit after the first
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Fig. 7.3 Circuit state at

t = tN

Fig. 7.4 Equivalent linear

model, first step

Fig. 7.5 Equivalent linear

model, second step

Newton-Raphson iteration. We note that the switch is now OFF, due to the negative

value of V2 − V3. The second Newton-Raphson iteration causes the decreasing of

V2 resulting in changing the states of the diode and of the switch. Figure 7.5 points

out the new state of the circuit. The third iteration results in a new setting of both the

switch and diode components depicted in Fig. 7.6. On this example, the lineariza-

tion performed at each Newton-Raphson iteration leads to an oscillation between

two incorrect states and never converges to the correct one. The Newton-Raphson

iterations enter into an infinite loop without converging.
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Fig. 7.6 Equivalent linear

model, third step

7.1.2.3 The Newton-Raphson Iterations at t = tN

The next table summarizes the oscillation between two incorrect states:

k = 0 k = 1 k = 2 k = 3 k = 4 . . .

S ON OFF ON OFF ON . . .

D OFF OFF ON OFF ON . . .

Solution

OFF

ON

(7.5)

7.1.3 Numerical Results with SICONOS

The time step has been fixed to 0.1 µs, the values of the parameters are R = 1 �,

Ron = 0.001 �, Roff = 1000 �, L = 2.10−4 H and the initial condition is

IL(0) = 0 A. Figure 7.7(a) depicts the current evolution through the inductor L.

Using the NSDS approach the OSNSP solver converges and computes the correct

state. For such a simple system, any OSNSP solver gives a correct solution. We have

used indifferently PATH and a SEMISMOOTH Newton method.

Remark 7.1 In Maffezzoni et al. (2006) an event-driven numerical method is pro-

posed to solve the non convergence issue. However it is reliable only if the switching

times can be precisely estimated, a shortcoming not encountered with the NSDS and

the Moreau’s time-stepping method.

7.1.4 Numerical Results with ELDO

ELDO does not provide any nonsmooth switch model. But it furnishes the

‘VSWITCH’ one described in (7.6), where RS is the controlled resistor value of

the switch, and Vc the voltage control yielding to the model:

RS(t) =

⎧

⎪

⎨

⎪

⎩

Ron if Vc(t) � Von,

Roff if Vc(t) � Voff,

(Vc(t)(Roff − Ron ) + Ron Voff

− Roff Von)/(Voff − Von) otherwise.

(7.6)
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Fig. 7.7 Switched circuit simulations

Setting Voff to 0 and choosing a small value for Von lead to a model close to (1.46)

for the chosen parameters. Simulations have been done using different sets of pa-

rameters. It is noteworthy that the behavior of ELDO depends on these values. For

example, using a backward scheme Euler with the time step fixed to 0.1 µs and

Von = 10−4 V, Voff = 0 V, Roff = 1000 �, Ron = 0.001 � causes trouble during the

ELDO simulation: ‘Newton no-convergence’ messages appear. Figure 7.7(b)
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Fig. 7.8 A 4-diode bridge wave rectifier

shows the ELDO simulation. The values are very close to the SICONOS simulation,

except for the steps corresponding to the ‘no-convergence’ messages. In this

case, the resulting current value is absurd.

This academic example demonstrates that standard analog tools (SPICE-like

simulators) can fail to simulate a switched circuit.

7.2 A First Diode-Bridge Wave Rectifier

The chosen example is a four-diode bridge wave rectifier as shown in Fig. 7.8. In

this sample, an LC oscillator initialized with a given voltage across the capacitor

and a null current through the inductor provides the energy to a load resistance

through a full-wave rectifier consisting of a 4-ideal-diode bridge. Both waves of the

oscillating voltage across the LC are provided to the resistor with current flowing

always in the same direction. The energy is dissipated in the resistor resulting in a

damped oscillation. This section presents the modeling and the simulation of this

circuit using the SICONOS platform and the automatic circuit equation formulation

presented in Chap. 6.

7.2.1 Dynamical Equations

The automatic circuit equation formulation leads to the system (7.7), (7.9) and (7.8).

The vector of unknown variables is (UC, IL,V1,V2,V3, IDF1, IDF2, IDR1,

IDR2)
T ∈ R

9. The potentials V1, V2, V3 are the potentials at the points indicated

on the figure. We obtain:
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⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−C0U̇C(t) + IL(t) − IDR2(t) + IDF1(t) = 0,

LİL(t) + V1(t) = 0,
V3(t)−V2(t)

R
− IDR1(t) − IDF1(t) = 0,

V2(t)−V3(t)
R

+ IDR2(t) + IDF2(t) = 0,

UC(t) − V1(t) = 0,

(7.7)

⎧

⎪

⎨

⎪

⎩

0 � λ1(t) ⊥ V2(t) − V1(t) � 0,

0 � λ2(t) ⊥ −V3(t) � 0,

0 � λ3(t) ⊥ V2(t) � 0,

0 � λ4(t) ⊥ V1(t) − V3(t) � 0,

(7.8)

with:

λ1 = −IDF1 λ2 = −IDF2 λ3 = −IDR1 λ4 = −IDR2. (7.9)

One may identify this dynamics with the canonical form in (2.54), where x may

be chosen as the above vector of unknown variables. One has:

E =

⎛

⎜

⎜

⎜

⎜

⎝

−C0 0 0 · · · 0

0 L 0 · · · 0

0 · · · 0
...

0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

∈ R
9×9, M = I4,

C =

⎛

⎜

⎝

0 0 −1 1 0 · · · 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 · · · 0

0 0 1 0 −1 0 · · · 0

⎞

⎟

⎠
∈ R

4×9.

Here I4 is the 4 × 4 identity matrix.

7.2.2 Simulation Results

Figure 7.9 shows a simulation with SICONOS using the following numerical values:

L = 10−2 H, C = 10−6 H, R = 103 �, V1(0) = 10 V. The initial time is zero and the

total simulation time is 5 × 10−3 s with a step of 10−6 s. The nonsmooth problem

is written as a Mixed Linear Complementarity Problem (MLCP). It has been solved

using indifferently PATH and SEMISMOOTH methods. Obviously an enumerative

solver is also convenient for a problem of such a size. The comparison is made with

the SPICE simulator SMASH. In this case, the system is equivalent to an ODE with

Lipschitz right-hand-side. The simulation with standard SPICE simulator together

with low order schemes (Backward Euler) still works.

It is possible to modify the time-stepping algorithm described in Chap. 5 so that

the time-step is adapted according to the local error. A practical error estimation

is based on halved time-steps. Figure 7.10 presents the result of the step control

mechanism using 10−3 for the relative and absolute tolerance. It is noteworthy that

the time step is not decreased to pass through the diodes switching.
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Fig. 7.10 Step size control using a 10−3 tolerance. 193 steps +95 rejected

Fig. 7.11 Filtered full wave

rectifier

7.3 A Second Diode-Bridge Wave Rectifier

A little bit more complex example was simulated: a sinusoidal voltage supply pro-

viding energy to a resistor through a 4-diode bridge full-wave rectifier filtered with

a capacitor (see Fig. 7.11). The automatic circuit equation formulation leads to the

system (7.10) with the complementarity constraints in (7.9) and (7.8). The vector of

unknown variables is (UC,V1,V2,V3, IE, IDF1, IDF2, IDR1, IDR2)
T ∈ R

9. The po-

tentials V1, V2, V3 are the potentials at the points indicated in the figure. We obtain:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−CU̇C(t) + V2(t)−V3(t)
R

+ IDR1(t) + IDF1(t) = 0,

−IE(t) + IDR1(t) − IDF2(t) = 0,

IDF2(t) − IDR1(t) + IDR2(t) − IDF1(t) = 0,

V1(t) = e(t),

UC(t) = V3(t) − V2(t).

(7.10)
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One may once again identify the dynamics of this circuit with the MLCS dynam-

ics in (2.54), choosing for x the above vector of unknown variables. Figures 7.12,

7.13 and 7.14 show what happens with the SPICE algorithms when the time step is

forced to a “high value” (here 10 µs): the SPICE simulator seems to converge but

the results are erroneous while the nonsmooth approach provides accurate results.

The SPICE package that has been used for these simulations is SMASH and the time-

integration scheme is the trapezoidal rule. The results are taken from Denoyelle and

Acary (2006).

Figures 7.15 and 7.16 show a comparison between SMASH results with a time

step of 0.1 µs and SICONOS results with respectively time steps of 2 µs and 1 µs.

The 2 µs results are already very close to SMASH ones. At 1 µs the differences are

almost unnoticeable, whereas a factor of 10 is gained on the time step.

These results suggest that with a small number of stiff components in a circuit,

the convergence of the Newton-Raphson algorithm is already impaired, even

if several tricks were added in the SPICE software to help it. When the integra-

tion time period becomes too large, some diodes may be completely blocked

at a time step and completely passing at the next time step. The SPICE algo-

rithms are not designed to handle such a case: they need to step a sufficient

number of times to cover properly all the switching period which is very short

here.

On the contrary, the nonsmooth approach is able to compute a consistent so-

lution with relatively far time steps, assuming that it exists and it is unique,

which is true here.

Similar circuits like parallel resonant converters can be modeled and simulated

in a similar way by SICONOS,1 showing the wide range of applicability of the NSDS

method in this field of electrical engineering.

7.4 The Ćuk Converter

In this section, we are interested in a special type of DC/DC power converter: the

Ćuk converter (Middlebrook and Ćuk 1976). The circuit is described in Fig. 7.17.

The converter is supplied by a constant voltage supply E = 10 V and loads a resistor

R = 50 �. The switch is modeled by a linear MOS transistor described in Sect. 4.7.5

with two hyperplanes. The parameters of the nMOS model are VT = 5 V and

K = 10. The diode threshold voltage is 0.2 V. The capacitance are C1 = C2 = 10 µF

and the inductances are L1 = L2 = 250 µH. There is no feedback on the regulation

of the switch. The voltage VG at the gate of nMOS model is given a periodic door

1See http://siconos.gforge.inria.fr/Examples/EMPowerConverter.html.

http://siconos.gforge.inria.fr/Examples/EMPowerConverter.html
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Fig. 7.17 The Ćuk converter

Fig. 7.18 Regulation

function of the switch VG(t)

function of period T described in Fig. 7.18. In our numerical simulation, the pa-

rameters of the control of the switch are VGmax = 10, T = 10 µs, Td = 0.95 µs,

Ton = 7.5 µs.

The results are displayed in Fig. 7.19 up to = 0.001 s and in Fig. 7.20 for the

remaining simulation up to t = 0.01 s. The standard behaviour of the Ćuk converter

is found with the SICONOS software as well as with the SPICE solver and the results

are very similar. The main discrepancy between the nonsmooth approach and the

SPICE approach is the choice of the time-step. The SICONOS simulations are per-

formed with a time-step h = 10−7 s and the SPICE simulations are performed with

a time-step of 10−10 s. This last choice is mainly motivated by the numerical con-

vergence problem of the Newton method when large time-steps are chosen. The gap

between this two time-steps results in a gain of CPU time.

The nonsmooth approach allows the use of larger time-step for the same ac-

curacy in avoiding the numerical convergence problem of the Newton method

when the electrical characteristics are stiff. This results in more robustness of

the simulating process and in lower simulation times.

7.5 A Circuit Exhibiting Sliding Modes

The goal of this section is to focus on the very interesting feature of the nonsmooth

approach: the possibility to simulate consistently multivalued components and then
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Fig. 7.19 Simulation values versus time (s) for the Ćuk Converter. (1) C1 voltage, (2) C1 voltage,

(3) VG gate voltage, (4) MOS switch drain voltage, (5) L1 current and (6) L2 current
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Fig. 7.20 Simulation values versus time (s) for the Ćuk Converter. (1) C1 voltage, (2) C1 voltage,

(5) L1 current and (6) L2 current
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Fig. 7.21 RLC Zener-diodes

circuit

coherently ideal components. The point is not to show that ideal components are bet-

ter for the physical modeling accuracy, but rather that the regularization or standard

hybrid approaches are not convenient for a high-level description and design.

Our goal is to show that it is better to have a right simulation with an ideal

model rather than a simulation which does not work correctly with a regular-

ized model and pseudo-physics.

Let us consider a multivalued component, more precisely, we choose a multival-

ued behavior of a couple of Zener-diodes as the one which has been already intro-

duced in Sect. 2.5.8. The goal is to outline the efficiency of the nonsmooth model

by inclusions to handle such a behavior, even when a sliding mode occurs. In this

context, the sliding mode has to be understood as a mode whose operating point of

the component is inside the multivalued part of the graph in Fig. 2.24. The circuit is

depicted in Fig. 7.21.

7.5.1 Models and Dynamical System

The choice of the vector of unknowns is [I,Vcap]
T and it yields:

L
dI (t)

dt
= −RI (t) − Vcap(t) + V (t), C

dVcap(t)

dt
= I (t). (7.11)

7.5.1.1 Nonsmooth Model of Double Opposite Zener Diodes

For simplicity’s sake, the two Zener diodes D1 and D2 in Fig. 7.21 are modeled as a

single component. The behavior of the whole component is given by (see Fig. 2.24):

−I ∈ N[−Vz,Vz](V ), (7.12)

which can be equivalently written as a complementarity problem (see the material

in Sect. 2.4.6, especially (2.90)):
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{

V = λ2 − Vz,

y1 = Vz − V,

y2 = I + λ1.

and 0 �

(

y1

y2

)

⊥

(

λ1

λ2

)

� 0. (7.13)

7.5.1.2 A Hybrid Single Valued Ideal Model in VERILOG/ELDO

Using a Netlist and a VERILOG description of the relation (7.14) to represent the

couple of Zener diodes, a hybrid single valued model reads as:

V =

{

Vz if I < 0,

0 if I = 0,

−Vz if I > 0.

(7.14)

7.5.1.3 A Smooth Model Using Hyperbolic Tangent Function in ELDO

Another approach consists in using the hyperbolic tangent function to approximate

the multivalued components D1 and D2, i.e. the vertical branch in Fig. 2.24 or in

Fig. 1.8(b), is replaced by a stiff smooth curve. The relation between V and I is

V = −Vz tanh(av). The coefficient a is chosen sufficiently large in order to neglect

the influence of the regularization. We chose the value 105 to simulate the circuit

using ELDO.

7.5.2 Simulation and Comparisons

The initial conditions are chosen as I (0) = 0 A, Vcap(0) = −10 V and the value of

Vz is 0.5 V. The simulation using the LCP is successfully achieved with SICONOS.

The result is shown in Fig. 7.22(a). This electrical circuit dissipates some energy,

so Vcap oscillates with a decreasing amplitude up to a threshold value Vz. After the

first event at t = tb, the current i vanishes and the voltage through the capacitor

Vcap is stabilized to a nonzero value, equal to v through the double Zener diodes

component. Notice that this equilibrium point is located in the multivalued part of

the characteristic.

Such a behaviour exactly corresponds to the dynamics (7.11–7.12), for which

the segment {(I,Vcap) | I = 0,−Vz � Vcap � Vz} is an attractive sliding surface,

attained in a finite time. When I = 0, it follows from (7.12) that Vcap ∈ [−Vz,Vz].

Figure 7.22(a) shows also the ELDO simulation using the Netlist and the VERILOG

relation (7.14). In this case the simulation is correctly done until tb. At the first event

at time tb , the simulation cannot be continued because the equilibrium point of the

circuit is not handled by the model.

The simulation using the hyperbolic function has been made using ELDO. We

focus our attention on the difference due to the regularization of the multivalued
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Fig. 7.22 Simulation of the circuit with a sliding mode

model. Figure 7.22(b) zooms on the moment where the current vanishes. At this

instant, the circuit is equivalent to an RLC circuit where the value of R is the coeffi-

cient of the tangent to the hyperbolic curve a. Note that using a coefficient a larger

than 105 leads to an artificial v oscillation around the value of Vcap. The conclusion

is that we cannot expect to observe the convergence toward an ideal behavior with

such a regularization.
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The NSDS method with Moreau’s implicit time-stepping scheme allows one

to perfectly simulate sliding mode phenomena. This is not the case for the

other approaches.

More details on the simulation of sliding mode systems may be found in Acary

and Brogliato (2010).



Chapter 8

Buck and Delta-Sigma Converters

This chapter is dedicated to the numerical simulation of the buck and the delta-sigma

converters. Comparisons between the results obtained with the NSDS SICONOS ap-

proach and other approaches are presented.

8.1 The Buck Converter with Load Resistor

The studied buck converter with a load resistor is depicted in Fig. 8.1. The elec-

tronic components are modeled with either linear or piecewise-linear or set-valued

relations, yielding a nonsmooth dynamical system of the linear-time-invariant com-

plementarity systems class. The features of the models are given thereafter:

– Power MOSFETS pMOS/nMOS: they are described as an assembly of a

piecewise-linear current source IDS = f (VGS,VDS) and the intrinsic diode (Dp-

MOS and DnMOS) with an ideal characteristic. The capacitors were not taken

into account. The diodes residual voltage is 1 V. The MOSFETs transconductance

KP was set to 10 A V−2 and their threshold voltage to respectively VT = −2 V

for the pMOS and VT = 2 V for the nMOS. One can notice that the sum of their

absolute values largely exceeds the supply voltage VI = 3 V, thus providing non-

overlapping conduction times. The other physical parameters are chosen as fol-

lows: μ = 750 cm2 V−1 s−1 for a nMOS and μ = 250 cm2 V−1 s−1 for a pMOS,

εOx = εr SiO2
× ε0 with εr SiO2

≈ 3.9, tOX ≈ 4 nm, W = 130 nm, L = 180 nm.

The piecewise-linear model uses 6 segments given by the following data:

c1 = 0.09, c2 = 0.2238, c3 = 0.4666, c4 = 1.1605, c5 = 2.8863, a1 = 0, a2 = 0.1,

a3 = 0.2487, a4 = 0.6182, a5 = 1.5383. The relative error between f (·) and

fpwl(·) (see Sect. 4.7.5) is kept below 0.1 for 0.1 � x < 3.82. The absolute er-

ror is less than 2 × 10−3 for 0 � x < 0.1 and 0 for negative x. In practice, the

values of VG,VS,VD,VT in logic integrated circuits allow a good approximation

of f (·) by fpwl(·).

– Compensator amplifier: It is modeled as a 1 × 105 gain and an output low-pass

filter with a cutoff frequency of 30 MHz that is Rp = 1 � and Cp = 5.3 nF.

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits,

Lecture Notes in Electrical Engineering 69,

DOI 10.1007/978-90-481-9681-4_8, © Springer Science+Business Media B.V. 2011
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Fig. 8.1 Buck converter

– Comparator: It is modeled as a piecewise-linear function whose value is 0 if

x < −0.15 V and 3 if x > 0.15 V.

– Ramp voltage: The frequency is 600 kH and the bounds are 0 and 0.75VI =

2.25 V. The rise time is 1.655 ns and the fall time is 10 ns.

– Standard values for other components: VI = 3 V, L = 10 µH, C = 22 µF,

Rload = 10 �, R11 = 15.58 k�, R12 = 227.8 k�, R21 = 5.613 M�, C11 = 20 pF,

C21 = 1.9 pF.

– Values exhibiting a sliding mode: L = 4 µH, C = 10 µF, R11 = 10 k�,

R21 = 8 M�, C11 = 10 pF.

The reference voltage Vref rises from 0 to 1.8 V in 0.1 ms at the beginning of the

simulation. The output voltage Voutput is regulated to track the reference voltage Vref

when VI or Vref or the load current vary. The error voltage Verror is a filtered value

of the difference between Voutput and Vref . This voltage signal is converted into a

time length thanks to a comparison with the periodic ramp signal. The comparator

drives the pMOS transistor which in turn provides more or less charge to the output

depending on the error level. The operation of a buck converter involves both a rel-

atively slow dynamics when the switching elements (MOS and diodes) are keeping

their conducting state, and a fast dynamics when the states change. The orders of

magnitude are 50 ps for some switching details, 1 µs for a slow variation period and

100 µs at least for a settling period of the whole circuit requiring a simulation.

8.1.1 Dynamical Equations

The nonsmooth DAE has been generated using the automatic circuit equation for-

mulation described in Chap. 6. It leads to a dynamical system with 25 variables
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Fig. 8.2 SICONOS buck converter simulation using standard parameters

coupled to an inclusion rule. The dimension of the inclusion rule is 24. The size of

the x vector is 5, composed of the capacitor voltages, and of the inductor current.

8.1.2 Numerical Results with SICONOS

The start-up of the converter was simulated thanks to SICONOS. As initial condi-

tions, all state variables are zeroed. The detailed analysis of the switching events

requires to use a time step as small as 50 ps. The simulations are carried with a fixed

time-step, 4 × 106 steps are then computed for the 200 µs long settling of the output

voltage. The OSNSP solvers which are used are PATH with a convergence toler-

ance of 10−7, and a semi-smooth Newton method based on the Fischer-Bursmeister

reformulation (DeLuca et al. 1996), implemented in SICONOS and using a conver-

gence tolerance of 10−12. The overall result is shown in Fig. 8.2.

Simulation Time The CPU time required to achieve the simulation is 60 s on a

Pentium 4 processor clocked at 3 GHz. It includes 19 s in the MLCP solvers, 40 s

in matrices products. The time to export the resulting data is not included.

– Figure 8.2(a) is the output potential, following the ramp Vref .

– Figure 8.2(b) is the current through the inductor. Until 0.0001 s, IL is loading the

capacitor C. After 0.0001 s, IL has to keep the capacitor charge constant.
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Fig. 8.3 SICONOS buck converter simulation using L = 7 µH, C = 15 µF, R11 = 12 k�,

R21 = 6 M�, C11 = 15 pF

Fig. 8.4 SICONOS buck converter simulation using sliding mode parameters

– Figures 8.2(c) and 8.3(a) zoom on the pMOS drain potential with standard pa-

rameters.

– Figures 8.2(d) and 8.3(b) zoom on the Verror and Vramp voltages.

– Figure 8.4(a) using sliding mode parameters,1 shows the stabilization of the com-

parator output to an unsaturated value. It also shows the stabilization of the current

through the pMOS allowing the Verror signal to follow the Vramp signal.

– Figure 8.4(b) using sliding mode parameters, shows the Verror and Vramp voltages.

8.1.2.1 Focus on the pMOS Component During the Sliding Mode

The Fig. 8.5 focuses on the pMOS component during the interval from 196 µs to

199 µs. The goal is to show the stabilization of the pMOS current during the sliding

mode. From Fig. 8.5 two behaviors can be distinguished. The first one happens

during the interval [197.350 µs,198.055 µs], when the transistor pMOS oscillates

between two states:

1See Sect. 2.4.4 for a definition of sliding surfaces in switching systems.
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Fig. 8.5 Focus on the pMOS component

– The comparator output tension is high. VGD and VGS are below V T 0, so the

current ISD is positive, consequently IL grown. It can be said that the transistor

is ON.

– The comparator output tension is low. The transistor is locked, the current ISD is

null and the current through the diode DnMOS is positive. It can be said that the

transistor is OFF, the system is braking.

The second behavior is observable during the interval [198.055 µs, 198.32 µs]. It

is the stabilization of VGS below V T 0, implying a current through the transistor P

that is equal to the current dissipated through the loading resistor. Using a multival-

ued comparator leads to the stabilization of the comparator output to an intermediate

value.

8.1.2.2 Robustness of the NSDS Method

The simulation has been tested with many parameter values, see Figs. 8.2, 8.3

and 8.4. The robustness of the nonsmooth modeling and solving algorithms enables

one to perform with the same CPU time the simulation of such cases. This is not the

case with the SPICE algorithms, see Sect. 8.1.3.2.
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8.1.2.3 Simulation Using a Nonlinear MOS Model

Similar results are obtained with the nonlinear MOS model presented in Sect. 4.7.5.

They are not detailed here because no important discrepancy can be noticed.

8.1.3 Comparisons and Discussions

In this section the results obtained with different software packages relying on vari-

ous modeling approaches, are compared.

8.1.3.1 Simulation with SPICE

The simulation of the buck converter was done with several versions of SPICE (the

open-source package NGSPICE and ELDO) and two kinds of MOS models:

The MOS Level 3 Model This model takes more physical effects into account

than the piecewise-linear model used in SICONOS simulations, in particular the

voltage-dependent capacitors. It is an important issue since these varying capaci-

tances cause some convergence problems when node 2 switches between VI and

the ground. Adding a small capacitor of a few picoFarad between this node and the

ground helps to solve the problem but may yield artifacts (spikes) on the current of

the VI alim and the MOS transistors.

An nMOS Simplified Model (Sah Model) with fixed capacitors and a quadratic

static characteristic:

IDS = max(0,VGS − V tN )2 − max(0,VGD − V tN )2.

This model is very close to the piecewise-linear model used in SICONOS simula-

tions. The implementation in Netlists was done thanks to voltage-dependent current

sources that are very likely not compiled by the various SPICE simulators tested.

Thus the measured CPU time is increased with respect to a compiled version. An

estimation of the CPU time with a compiled simplified model may be given by mul-

tiplying the MOS level 3 CPU time by the ratio of the Newton-Raphson iterations

required respectively during the simulations with each model. An additional correc-

tion should be done to reflect that the computation of the Jacobian matrix entries

linked to a compiled simplified model would require less time than with a MOS

level 3 model. Even if the SPICE simulation includes other operations, the Jacobian

matrix loading time is indeed known to be generally predominant.

• Power MOSFETS intrinsic diodes are modeled by the classical Shockley equation

with an emission coefficient N = 1:
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Fig. 8.6 Comparison of piecewise-linear and SPICE (tanh based) comparator models

I = IS(e
q.V

N.k.T − 1) when V > −5N
k.T

q
,

I = −IS when V < −5N
k.T

q
,

with V and I the voltage and the current through the diode, IS the saturation

current, a default value 10−14 A, electron q charge 1.6 × 10−19 C, k Boltzmann

constant 1.38 × 10−23 J K−1, T temperature in K and N emission coefficient.

• The comparator is modeled as a nonlinear voltage controlled-voltage-source de-

fined as Vout = 1.5(tanh(10Vin) + 1). Thus the 3-segment characteristic used as

the nonsmooth model of Fig. 4.10(b) is regularized to help the convergence of

SPICE (see a comparison of the piecewise-linear comparator as used in SICONOS

simulations with the SPICE one in Fig. 8.6).

The power supply VI is raised from 0 in 50 ns at the beginning to help the con-

vergence.2 The SPICE tolerance values used are 1 nA for currents, 1 µV for voltages

and 0.00075 for relative differences. The maximum number of Newton-Raphson

iterations is set to 100 (the default values are 10 for NGSPICE and 13 for ELDO).

Usually, SPICE simulators integrate with a time step adjusted according to dif-

ferent strategies based on an estimation of the local truncation error (LTE) or the

number of Newton-Raphson iterations required by previous steps. Since SICONOS

simulations were carried with a fixed time step of 50 ps, simulators were forced to

use this value as a maximum. Even when SPICE simulators use a fixed time step,

they may compute LTE to assess a solution found by the Newton-Raphson algo-

2This is not required with the SICONOS algorithms that find a consistent initial solution from

scratch.
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Table 8.1 Numerical comparisons on the buck converter example

SIMULATOR MODEL Number of Newton iterations CPU time (s)

Standard compensator values

NGSPICE simple 8024814 632

NGSPICE level 3 failed

ELDO simple 4547579 388

ELDO level 3 4554452 356

SICONOS LCP – 60

Sliding mode compensator values

NGSPICE simple 8070324 638

NGSPICE level 3 8669053 385

ELDO simple 5861226 438

ELDO level 3 5888994 367

SICONOS LCP – 60

rithm. This computation of LTE was disabled because it could impair the perfor-

mance of SPICE with respect to SICONOS.3

8.1.3.2 Simulation Comparisons

The Table 8.1 displays the results with the standard and the sliding mode values of

compensator components. An estimation of the CPU time with a compiled simpli-

fied model is added.

These results have to be compared to the 60 s CPU time achieved with the NSDS

method with SICONOS. Depending on the model and the SPICE simulator, the CPU

time is from 5.9 to 10.6 larger than with SICONOS. Moreover, it was necessary to

add a parasitic capacitor on the connection between the pMOS and nMOS transistors

to allow the convergence of the NGSPICE simulator with the MOS level 3 model.

All the SICONOS simulations presented in this chapter have been obtained

in one-shot from the dynamical equations automatically generated from the

Netlist, without any further parameter tuning.

3For NGSPICE, it implied a slight modification of the source code since no standard option is

provided to do it.
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Fig. 8.7 SICONOS buck converter simulation using sliding mode parameters and multivalued com-

parator

Fig. 8.8 ELDO buck converter simulation using sliding mode parameters and Vout = 1.5

(tanh(10000Vin) + 1) for the comparator

8.1.3.3 Sliding Mode Using a Multivalued Comparator

This section focuses on the simulation with sliding parameters and using a multival-

ued model for the comparator, i.e. a model whose graph possesses a vertical branch

at zero, like the relay multifunction. The rise time of the ramp voltage has been in-

creased to 3.2 ns. The model used in SICONOS consists in setting the ε gap to 0 in

the model depicted in Fig. 4.10(b). Figure 8.7 shows the SICONOS simulation using

a fully implicit time-stepping method. It could be noted that the comparator output

is stabilized to an unsaturated value, corresponding to intermediate value in the mul-

tivalued part of the characteristic. The simulation using ELDO has been done using

the model Vout = 1.5(tanh(10000Vin) + 1) for the comparator. The MOS level 3

leads to “Newton no-convergence” messages, so the MOS Sah model has been used

to run the simulation displayed in Fig. 8.8. It is noteworthy that this simulation with

ELDO does not handle the stabilization of the comparator output on the sliding sur-

face. Indeed despite this is not visible in Fig. 8.8(b), the trajectory keeps oscillating

around the attractive surface, as witnessed by the values observed in Fig. 8.8(a).
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8.1.3.4 Simulation with PLECS

PLECS is a SIMULINK/MATLAB toolbox dedicated to the simulation of power elec-

tronics circuits.4 The electronic circuits are modeled as hybrid systems: at each

instant, the circuit is described according to one of a set of topologies specified by

the ON or OFF state of ideal switches (diodes, transistors . . . ). A topology is valid

when the computed value of some variables (for instance a diode current or voltage)

is kept within some bounds. When a topology is no more valid, a new topology has

to be found as well as the possible jump of variables linked to this topology switch-

ing. Even if this approach targets the same kind of systems as the NSDS method, its

models and algorithms differ mainly in:

Hybrid systems approach NSDS approach

Each topology is described by a separate set of

equations.

A single set of equations and constraints

describes the whole system.

Checking the topology switching conditions is

critical and may be computationally expensive.

There is no topology switching: constraints

are met at each time step.

Determining the new topology and the new state

value after a topology switch is not obvious. It

may be quick if it can benefit from prior

knowledge about the circuit’s operation but may

also involve heavy computations to check all

possible transitions if no rule is available.

At each time step, the new values are

computed to meet equations and constraints

thanks to proper time integration schemes

and one step problem solving based on

optimization algorithms

The switch models (diodes and transistors) available in the PLECS toolbox are

ideal: the transistors are supposed to be controlled by a boolean signal forcing a

conducting or blocking state. The power nMOS and pMOS are controlled by oppo-

site signals issued from the feedback loop, thus there is no flyback conduction by

the nMOS diode (see the description of the PLECS circuit and the SIMULINK model

in Figs. 8.9 and 8.10).

The CPU time required to achieve the simulation of 200 µs varies between 2 min

15 s and 6 min 50 s on a Pentium 4 clocked at 3 GHz, depending on the values

of the resistors, capacitors and inductor. This should be compared to the 24 s of

the SICONOS simulation, obtained independently from these components values.

This demonstrates the robustness and efficiency of the time-stepping scheme and

the one step solving algorithms of SICONOS. Figures 8.11 and 8.12 show the results

when the standard parameters are used: L = 10 µH, C = 22 µF, R11 = 15.58 k�,

R12 = 227.8 k�, R21 = 5.613 M�, C11 = 20 pF, C21 = 1.9 pF.

Remark 8.1 On both Figs. 8.7(a) and 8.4(b) it is seen that the sliding surface is

attained in finite time after an accumulation of switches. This is a classical phe-

nomenon in nonsmooth dynamical systems, see Filippov’s example in Acary and

Brogliato (2010).

4See http://www.plexim.com.

http://www.plexim.com
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Fig. 8.9 PLECS circuit part of the buck converter with a load resistor

8.1.3.5 Global Error Evaluation

It consists in computing the experimental order of the simulation. Since the analytic

solution is unknown, the reference trajectory is a simulation using a very small time

step. In order to compute the order of SICONOS and ELDO, the following simula-

tions have been performed:

Time step (ps) 10 20 40 80 160 320 640 1200

ELDO Global error (nA) 0.15 0.443 0.966 2.1 4.5 8.2 20 34

SICONOS Global error (nA) 0.246 0.513 1.026 2.2 4.7 9.2 21 40

ELDO Log2 (global error) −32.6 −31 −30 −28.8 −27.7 −26.8 −25.6 −24.8

SICONOS Log2 (global error) −31.9 −30.8 −29.8 −28.7 −27.7 −26.7 −25.5 −24.5

A 5 ps trajectory is the reference used to compute the global error. Figure 8.13

shows the log2 (Global error) as a function of log2 (time step): the experimental

order of the global error is 1. So the experimental order of the method used at each

step is 2.

8.1.3.6 Global Error Evaluation as a Function of the Number of Hyperplanes

In this section, we focus on the incidence of the number of hyperplanes used to

approximate the square function of the transistor. It consists in comparing the sim-

ulation output using the model of transistor (4.52) to the simulation output using

the model of transistor (4.45). To achieve this goal, the simulation has been done
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Fig. 8.11 PLECS buck converter simulation using standard parameters. Time in seconds

Fig. 8.12 PLECS buck converter simulation using standard parameters, zoom view of steady state.

Time in µs
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Fig. 8.13 Global error

Fig. 8.14 Global error evaluation as a function of the number of hyperplanes

using a transistor model composed of 2 until 15 hyperplanes. For each step of the

simulation, the state vector error has been computed. Figure 8.14 shows the aver-

age error and the maximum error. It is noteworthy that the obtained curve is not

monotone decreasing. It comes from the fact that more the number of hyperplanes

is important, more the maximal error to the square model is small, but for any value,

the approximation is not necessarily better. Nevertheless, Fig. 8.14 shows that the

errors become small using a large number of hyperplanes.
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Fig. 8.15 Buck converter supplying a resistor load and an inverter chain

8.2 The Buck Converter Loaded by a Resistor and an Inverter

Chain

An inverter chain is supplied by the converter in parallel with the resistor. The input

of this chain starts to oscillate between 0 and 1.8 V after 150 µs, i.e. 50 µs after the

reference voltage reaches 1.8 V. The simulated circuit is shown in Fig. 8.15.

8.2.1 Simulation as a Nonsmooth Dynamical System with

SICONOS

The inverter MOSFETs transistors are modeled with a piecewise-linear characteris-

tic

IDS = f (VGS,VDS).

Their parameters are:

• Transconductance KP: 4.3 × 10−5 A V−2 for the pMOS, 12.9 × 10−5 A V−2 for

the nMOS.

• Threshold voltage: −0.6 V for the pMOS and 0.6 V for the nMOS.

• Output capacitive load: 20 fF.
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Two chain lengths were tested. In the first case, the chain includes only 2 inverters

to enable a CPU time comparison with PLECS whose evaluation version is limited

to 6 switches. To emulate a large current drawn from the output of the converter,

the 2-inverter chain is supposed to be 8000 times large, i.e. 8000 chains switching

simultaneously as a synchronous logic circuit. The transconductance and capaci-

tance are therefore multiplied by 8000. The switching frequency of the chain input

is 200 MHz. The CPU time required to achieve the simulation of 200 µs with a 1 ns

time step is 52 seconds on a Pentium 4 clocked at 3 GHz. Results are displayed

in Figs. 8.16 and 8.17. Figure 8.18 shows the start-up of the inverters switching

simulated with a 0.5 ns time step to enhance the waveform accuracy.

A 100 inverters long chain was also simulated. The reference voltage rises from

0 to 1.8 V in 50 µs, and the chain input starts to switch 30 µs later at 25 MHz.

A 3 � load resistor is supplied in parallel with the inverter chain. To emulate a

large current drawn from the output of the converter, the 100-inverter chain is sup-

posed to be 2400 times large, i.e. 2400 chains switching simultaneously as a syn-

chronous logic circuit. The transconductance and capacitance are therefore multi-

plied by 2400. The CPU time required to achieve the simulation of 100 µs with

a 0.25 ns time step is 3 hours on a Pentium 4 clocked at 3 GHz. The results are

displayed in Figs. 8.19, 8.20 and 8.21.

In Fig. 8.20, one can notice a decrease of 0.02 V of the converter output voltage

between times 80 µs and 100 µs caused by the start of the inverters switchings that

suddenly increases the current drawn. The effect of this supply voltage variation on

the inverters delay is in turn displayed in Fig. 8.21 showing the inverters voltages at

times 83 µs and 99 µs. This effect is computed thanks to the modeling of the MOS

transistor characteristic. Simulators based on an ideal switch model in series with a

resistor cannot show it.

8.2.2 Simulation with PLECS

Only 2 inverters could be used due to the limitations of the evaluation version. The

inverter MOS transistors are ideal switches with a RON value of 0.54 � to approxi-

mately match the transconductance of the 8000 parallel MOS modeled in SICONOS.

The load capacitor is set to 8000×20 fF = 0.16 nF (see the description of the PLECS

circuit and the SIMULINK model in Figs. 8.22 and 8.23).

The CPU time required to achieve the simulation of 200 µs is 4 hours 8 min on a

Pentium 4 clocked at 3 GHz, i.e. 300 times the SICONOS simulation time.

8.3 The Delta-Sigma Converter

This section is dedicated to the numerical simulation of a double-bit second order

Delta-Sigma converter as depicted in the Fig. 8.24. The inputs are the nodes spg1
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Fig. 8.19 SICONOS simulation results, buck converter supplying a load resistor and a 100 inverters

chain (first 100 µs)

and spg2. The circuit is composed of two switched capacitor integrators. The ref-

erence levels from the quantizer are {−2.5,2.5}, it oscillates between theses two

values in such a manner that its local average equals the average input value. The

components are modeled as piecewise-linear components. The features of the non-

smooth models are given thereafter:

– The switches are modeled using the model of transistor in Sect. 4.7.5, their thresh-

old voltage is VT = 1 V, the transconductance KP was set to 2.45 × 10−4 A V−2

and the supply voltage is 3 V.

– The comparator is modeled as a piecewise-linear function depicted in Fig. 4.10(b)

using the parameters value vmin = −2.5 V, vmax = 2.5 V and ε = 0.01 V.

The value of the first and second integrator are given thereafter:

– The values of the capacitors are: Cint10 = Cint11 = 4 pF, C10 = C11 = C12 =

C13 = C14 = 2 pF, Cint20 = Cint21 = 1 pF and C20 = C21 = C22 = C23 = C24 =

0.5 pF.

– The OPA are represented using a comparator modeled with the piecewise-linear

function described in Fig. 4.10(b) using the parameters Vmin = −5 V, Vmax = 5 V

and ε = 1 × 10−3 V. The output of this comparator is the output node plus the

output of an OPA. The negative output of the OPA is a voltage-controlled source.

The values used for the quantizer are given thereafter:
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Fig. 8.20 SICONOS simulation results, buck converter supplying a load resistor and a 100 inverters

chain; Zoom on the start-up of the inverter chain

– The inverters are represented using a comparator modeled with the piecewise-

linear function described in Fig. 4.10(b) using the parameters Vmin = 2.5 V,

Vmax = −2.5 V and ε = 1 × 10−4 V. Their capacitor value is 0.01 pF.

The unnamed capacitors are all set to 0.025 pF.

8.3.1 Dynamical Equations

The dynamics is obtained from the automatic equations generation algorithm. The

size of the state vector is 39 and the number of algebraic equations is 65 in the

system (5.14). Using a switch model composed of two hyperplanes leads to a nons-

mooth law of dimension 156. The simulation consists in doing 4 × 106 fixed steps

with a size of 0.1 ns. It needs 10 minutes on a CPU Pentium 4 processor clocked

at 3 GHz. It must be underline that our implementation is not based on the sparse

matrices. The nonsmooth problem has been solved using either the PATH library

or a semi-smooth Newton method based on the Fischer-Burmeister reformulation

(DeLuca et al. 1996) that is our own implementation in SICONOS using a conver-

gence tolerance of 10−12.
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Fig. 8.24 Delta-Sigma converter
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Fig. 8.25 ELDO simulation

Fig. 8.26 SICONOS simulation

8.3.2 Numerical Results with SICONOS

The results obtained with SICONOS are depicted in Fig. 8.26. The same simula-

tion is made with ELDO in Fig. 8.25, showing that both the NSDS and the SPICE

approaches yield very close results.
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8.3.3 Comparisons and Discussions

It is noteworthy that the simulations using a quadratic model for the transistor leads

to messages of “no-convergence” of the ELDO Newton-Raphson algorithm. More-

over such simulations provide a wrong value of the OPA output. This is not the case

with SICONOS.

Remark 8.2 It is crucial to keep in mind that the NSDS SICONOS package is an

open-source academic tool, that does not possess the degree of optimization of

the commercial software packages like ELDO or SMASH. The reported computa-

tion times for SICONOS have therefore to be considered as rough upper bounds that

may significantly be improved.

8.4 Conclusions

Chapters 7 and 8 show through numerous examples that the NSDS ap-

proach may supersede the SPICE and hybrid approaches in many instances

of switched circuits. Despite SICONOS is a software package developed in an

academic context (and which consequently can not benefit from the global

code optimization of commercially available packages), the results which are

shown in Chaps. 7 and 8 clearly demonstrate its power and its efficiency.



Appendix A

Some Facts in Real Analysis

This chapter provides an introduction to the mathematical tools which are needed to

rigorously define what is a measure differential inclusion as the one in Sect. 2.4.1.

This is not mandatory reading for those who prefer to focus on the numerical and

modeling aspects only.

A.1 Absolutely Continuous Functions and Sets

Definition A.1 (Absolutely continuous function) Let f : I ⊂ R → R be a function.

It is said absolutely continuous if for all ǫ > 0, there exists δ > 0 such that for all

finite sequences of disjoint intervals (ak, bk) of I such that
∑

k |bk − ak| < δ, one

has
∑

k |f (bk) − f (ak)| < ǫ.

An absolutely continuous function f (·) on an interval I ⊂ R is such that f ∈

L1(I ), and there exists g(·) with g ∈ L1(I ) with
∫

I
f (s)ϕ̇(s)ds = −

∫

I
g(s)ϕ(s)ds

for all test functions ϕ(·) which are continuously differentiable and with compact

support in I . This means that g(·) is the derivative of f (·) in the sense of distribu-

tions, so that ḟ (·) is equal to g(·) almost everywhere in I . One denotes ḟ = g and

one has

f (s) − f (t) =

∫ s

t

g(τ)dτ (A.1)

which is known as the Lebesgue-Vitali theorem. The distance of a point x to a set

C is defined by dC(x) = inf{‖x − y‖, y ∈ C}.

Definition A.2 (Absolutely continuous multifunction) A set-valued mapping C :

I → R varies in an absolutely continuous way if there exists an absolutely continu-

ous function v : I → R such that, for any x ∈ R and s, t ∈ I , one has:

|dC(t)(x) − dC(s)(x)| � |v(t) − v(s)|
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A.2 Lipschitz Continuous Functions and Sets

Definition A.3 (Lipschitz continuous function) Let f : R
n → R

m be a function. It

is said Lipschitz continuous if there exists a bounded constant k > 0 such that for all

x, y ∈ R
n one has ‖f (x) − f (y)‖ � k‖x − y‖.

A function that is Lipschitz continuous is also absolutely continuous. Lipschitz

continuity of f (·) is equivalent to absolute continuity of f (·) plus boundedness of

the derivative ḟ = g.

Before introducing this notion for set-valued maps, let us introduce the Haus-

dorff’s distance.

Definition A.4 (Hausdorff distance) Let A and B be two non empty sets of R
n. We

define the distance between a point x and a set A as

ρ(x,A) = inf
a∈A

‖x − a‖

and

dH (A,B) = max

{

sup
x∈A

ρ(x,B), sup
x∈B

ρ(x,A)

}

(A.2)

which is the Hausdorff’s distance between A and B .

Definition A.5 (Lipschitz continuous multifunction) Let C : R
n → R

m be a set-

valued map. It is Lipschitz continuous in the Hausdorff distance if there exists a

constant k > 0 such that dH (C(t),C(s)) � k|t − s| for all t , s ∈ I .

There exists a geometric definition of Lipschitz continuity for set-valued maps,

in terms of inclusions of sets (see e.g. Definition 2.2 in Acary and Brogliato 2008).

This is equivalent to the above definition when the Hausdorff distance is replaced

by the so-called Pompeiu-Hausdorff distance, see e.g. Rockafellar and Wets (1997,

Chap. 9).

A.3 Functions of Bounded Variations in Time

Let I be an interval, and define a subdivision Sn of I as x0 < x1 < · · · < xn. The

variation of a function f : R → R
n on I with respect to the subdivision Sn is defined

as

varI,Sn(f ) =

n
∑

i=0

‖f (xi+1) − f (xi)‖.

The function f (·) is said to have a bounded variations on I if

sup
Sn

varI,Sn(f ) � C
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for some bounded constant C. Then varI (f ) is called the total variation of f (·)

on I . A function that has a bounded variations on any compact subinterval of I is

said to be of local bounded variations (LBV). If it is right continuous and LBV it

will be denoted RCLBV. If it is right continuous and BV it is denoted as RCBV.

BV functions have the following fundamental properties:

• Let Ef be the set of points x where f (·) has discontinuities. Then Ef is count-

able.

• If f (·) is BV, then it is Riemann integrable.

• BV functions have left and right limits at all points (of their domain of defini-

tion).1

• The derivative of a BV function can be decomposed into three parts: a Lebesgue

integrable part, a purely atomic measure, and a measure that is singular with re-

spect to the Lebesgue measure and is non atomic (see below).

• Functions of special bounded variations possess a derivative that is the sum of a

Lebesgue integrable function, and a purely atomic measure. The third part van-

ishes for SBV functions.

In most engineering applications, it may be reasonably assumed that the deriva-

tive of a BV function is just the sum of an integrable function, and a purely atomic

measure of the form
∑

i δi for some set of i.

• We denote by LBV(I ;R
n) the space of functions of locally bounded variations,

i.e. of bounded variations on every compact subinterval of I .

• We denote by RCLBV(I ;R
n) the space of right-continuous functions of locally

bounded variations. It is known that if x ∈ RCLBV(I ;R
n) and [a, b] denotes a

compact subinterval of I , then x can be represented in the form (see e.g. Shilov

and Gurevich 1966):

x(t) = Jx(t) + [x](t) + ζx(t), ∀t ∈ [a, b] (A.3)

where Jx is a jump function, [x] is an absolutely continuous function and ζx is

a singular function. Here Jx is a jump function in the sense that Jx is right-

continuous and given any ε > 0, there exist finitely many points of discontinuity

t1, . . . , tN of Jx such that
∑N

i=1 ‖Jx(ti) − Jx(t
−
i )‖ + ε > var(Jx, [a, b]), [x]

is an absolutely continuous function in the sense that for every ε > 0, there ex-

ists δ > 0 such that
∑N

i=1 ‖[x](βi) − [x](αi)‖ < ε, for any collection of disjoint

subintervals ]αi, βi] ⊂ [a, b](1 � i � N) such that
∑N

i=1(βi − αi) < δ, and ζx is

a singular function in the sense that ζx is a continuous and of bounded variations

function on [a, b] such that ζ̇x = 0 almost everywhere on [a, b].

• By u ∈ RCSLBV(I ;R
n) it is meant that x is a right-continuous function of spe-

cial locally bounded variations, i.e. x is of bounded variations and can be written

as the sum of a jump function and an absolutely continuous function on every

compact subinterval of I . So, if x ∈ RCSLBV(I ;R
n) then

x = [x] + Jx (A.4)

1Throughout the book the right (left) limits at t are denoted either as f +(t) (f −(t)) or as f (t+)

(f (t−)).
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where [x] is a locally absolutely continuous function called the absolutely con-

tinuous component of x and Jx is uniquely defined up to a constant by

Jx(t) =
∑

t�tn

x(t+n ) − x(t−n ) =
∑

t�tn

x(tn) − x(t−n ) (A.5)

where t1, t2, . . . , tn, . . . denote the countably many points of discontinuity of x

in I .

A.4 Multifunctions of Bounded Variation in Time

A moving set t �→ K(t) is said of right continuous bounded variation in time on

[0, T ], if there exists a right continuous non-decreasing function r : [0, T ] → R

such that

dH (K(t),K(s)) � r(t) − r(s), for all 0 � s � t � T .

Let r(0) = 0. For any partition 0 = t0 < t1 < · · · < tN = T of [0, T ], this yields

N−1
∑

i=0

dH (K(ti+1),K(ti)) �

N−1
∑

i=0

[r(ti+1) − r(ti)] = r(T ).

Therefore the first inequality can be interpreted as requiring that t �→ K(t) is of

bounded variations. We conclude that the above definition of the variation of a func-

tion, can be extended to set-valued functions, where the Euclidean distance is re-

placed by the Hausdorff’s distance.

A.5 Differential Measures

Details on differential measures may be found in Schwartz (1993), Monteiro Mar-

ques (1993), and Moreau (1988).

Definition A.6 Let x : I → R
n be a BV function, I �= ∅, I ⊆ R. Let ϕ(·) be a

continuous real function on I , with compact support. Let P denote the set of finite

partitions of I , each partition PN with nodes t0 < t1 < · · · < tN . Let θk ∈ [tk−1, tk]

for all intervals of the partition PN . The Riemann-Stieltjes sums S(ϕ,PN , θ;x) =
∑N

k=1 ϕ(θk)(x(tk)−x(tk−1)) converge as N → +∞ to a limit independent of the θk .

This limit is denoted as
∫

ϕdx (A.6)

where dx is the differential measure associated to x(·). The map x �→ dx is linear.

If x(·) is constant, dx = 0. If dx = 0 and x(·) is right-continuous in the interior

of I , then x(·) is constant. If x(·) is a step function, then dx is the sum of a finite
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collection of Dirac measures with atoms at the discontinuity points of x(·). For

a � b, a, b ∈ I :

dx([a, b]) = x(b+) − x(a−),

dx([a, b)) = x(b−) − x(a−),

dx((a, b]) = x(b+) − x(a+),

dx((a, b)) = x(b−) − x(a+).

In particular, we have

dx({a}) = x(a+) − x(a−)

Obviously when measuring a singleton only the part of the differential measure

that corresponds to the jump function Jx(t) may play a role because the other

two parts corresponding to [x](t) and ζx(t) are non atomic: therefore necessarily

d[x]({a}) = [ẋ(t)]dt ({a}) = 0 and dζx({a}) = 0.

For any RCLBV mapping x : I → R
n on a subinterval I of R one has:

x(t) = x(s) +

∫

(s,t]

dx for all s, t ∈ I with s � t.

which is the BV counterpart of (A.1).

The next results are useful when dealing with quadratic functionals of BV func-

tions (like quadratic Lyapunov functions in stability analysis; Brogliato 2004). For

x ∈ LBV(I ;R
n), x+ and x− denote the functions defined by

x+(t) = x(t+) = lim
s→t,s>t

x(s), ∀t ∈ I, t < sup{I }

and

x−(t) = x(t−) = lim
s→t,s<t

x(s), ∀t ∈ I, t > inf{I }

(where sup{I } (resp. inf{I }) denotes the supremum (resp. infimum) of the set I ). If

x, y ∈ LBV (I ;R
n) then xT y ∈ LBV (I ;R) and

d(xT y) = (y−)T dx + (x+)T dy = (y+)T dx + (x−)T dy. (A.7)

Let us also recall that

2(x−)T dx � d(xT x) = (x+ + x−)T dx � 2(x+)T dx. (A.8)

A.6 Measure Differential Inclusion (MDI)

Roughly speaking, a measure differential inclusion is a differential inclusion whose

solution may jump, so that its derivative contains Dirac measures. Consequently

the left-hand-side of the inclusion is a measure, say dv, and the set-valued right-

hand-side F(w(t)) contains measures. One has to give a rigorous meaning to such

inclusions. Recall that λ is here the Lebesgue measure (dλ = dt), μ is the measure

associated with the variation function varC(·), that is the variation of the set val-

ued map C(·) over [0, T ]. The following definition is adapted from Edmond and

Thibault (2006, Definition 2.1).
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Definition A.7 Let C(·) and f (·, ·) satisfy the conditions of Theorem 2.56. A func-

tion x : [0, T ] → R
n is a solution of the differential inclusion (2.36) provided that:

• x(·) is of bounded variation, right continuous, and it satisfies x(0) = x0 and x(t) ∈

C(t) for all t ∈ [0, T ].

• there exists a positive Radon measure ν that is absolutely continuously equiva-

lent to the measure µ + λ, with respect to which the differential measure dx is

absolutely continuous with density dx
dν

∈ L1
ν([0, T ],R

n) and

dx

dν
(t) + f (t, x(t))

dλ

dν
∈ −NC(t)(x(t)),

ν-almost everywhere t ∈ [0, T ]. (A.9)

One sees that the inclusion is now written in (A.9) with the densities of the

measures dx and dλ, which are functions of time. This is equivalent to the writ-

ing in (2.36) that is an inclusion of measures. Suppose that ν = δt + dt for some

t ∈ [0, T ]. Then if t is an atom of dx (a discontinuity time of the function x(·))

one obtains that dx
dν

(t) = (x(t+) − x(t−)). Outside atoms of dx one obtains sim-

ply dx
dν

(t) = dx
dt

(t) = ẋ(t). The fact that one may choose other “basis” measures ν

enlarges the scope of the formalism.

Notice in passing that (A.9) allows us to give a meaning to the inclusion of a

measure into a set (here a closed convex cone). Let the measure ν be non negative

and let dx be absolutely continuous with respect to ν. Writing dx = xνdν ∈ K(t) for

some closed convex cone K(t) means that the density of dx with respect to ν, dx
dν

(·),

belongs to K(t). So in case t is an atom of dx one simply gets (x(t+) − x(t−)) ∈

K(t).
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