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Chapter 1

Introduction

1.1 Motivation

Everyday, more than half of American adult internet users read or write email mes-

sages at least once. Email is one of the top two activities people pursue online

[Madden and Reinie, 2003], and it is often the reason why people purchase a home

computer [Kraut et al., 2000]. It is so successful that the term email has been offi-

cially added both as a noun and as a verb to the English language.

There are multiple reasons for this success. Email is a great tool for collaboration,

especially across different locations and time zones. It is very fast, cheap, convenient

and robust. Email can also be easily adapted to manage numerous tasks, store infor-

mation, archive documents, maintain contacts, etc. As explained by Whittaker et al.

[2005]:

“Various reasons have been put forward for e-mail’s success. Unlike face to face com-

munication, its affordances free participants from the constraints of space and time –

allowing senders and recipients to communicate at times and in places that are con-

venient to each (Clark & Brennan, 1991; Kraut & Attewell, 1997; Sproull & Kiesler,

1991). Another significant property is its malleability. Studies of e-mail usage have

repeatedly documented the striking number of different purposes to which it is put: e-

mail can support conversations, operate as a task manager, document delivery system,

archive, and contact manager – to name but a few (Bellotti et al., 2003; Mackay, 1988;

Whittaker, Jones, & Terveen, 2002a; Whittaker & Sidner, 1996). And at a technical

level, it operates using a highly simple protocol.”

Email adoption has increased consistently. In 2003 fifty-two percent of the total

US population were email users, while projections to 2010 show this percentage

growing to 61% [eMarketer.com, 2006]. The Clinton administration left 32 million

emails to the National Archives, while the Bush administration is expected to leave

more than 100 million in 2009 [Shipley and Schwalbe, 2007]. It is estimated that

office workers in the U.S. spend at least 25% of the day on email, not counting the

use of handheld devices [Shipley and Schwalbe, 2007].

V.R. Carvalho: Modeling Intention in Email, SCI 349, pp. 1–4, 2011.
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2 1 Introduction

These large volumes of email data have motivated new research in office

automation. Machine learning techniques have been recently applied to several

different email-related tasks. Some of the most well-known applications are adaptive

spam filtering [Cormack and Lynam, 2006], email foldering [Brutlag and Meek,

2000, Klimt and Yang, 2004], automatic learning of email user’s activities

[Huang et al., 2004, Surendran et al., 2005], and integration of email with search en-

gines [Goodman and Carvalho, 2005] and to-do lists [Bennett and Carbonell, 2005],

to name a few.

On the other hand, this widespread email adoption has serious impacted work

productivity. Workers receive far more messages than they can possibly handle,

making it increasingly difficult to manage commitments, negotiate shared tasks and

keep track of different requests in a task-oriented working group. It is also linked to

the proliferation of costly errors in email addressing, such as accidentally sending

messages to unintended recipients, as well as forgetting to address desirable recipi-

ents in emails. Because of our increasing dependence on email, it is critical that we

address these shortcomings.

1.2 Overview

In this work we investigated how machine learning techniques can improve different

aspects of work-related email management. In particular, we focused on a few inten-

tional aspects of email exchange (as explained below), and provided evidence that

machine learning models can potentially lead to effective prioritization of incoming

messages, prevention against disastrous information leaks, better delegation and co-

ordination of shared tasks, improved tracking of commitments and deadlines, better

integration with personal calendars and to-do lists, among other improvements.

Email Acts

We began by proposing the use of a taxonomy of “email acts” as a framework to

model intentions behind work-related email messages. This taxonomy was based

on the ideas of Speech Act Theory [Austin, 1962, Searle, 1969] and other unique

characteristics of electronic mail. Email acts are noun-verb pairs that express typi-

cal intentions in email communication — for instance, a request of information, a

commitment to a task or a proposal of a meeting. We showed that there is an ac-

ceptable level of human agreement over the categories of this taxonomy, and that

machine learning algorithms can learn the proposed email-act categories reasonably

well [Cohen, Carvalho, and Mitchell, 2004].

We then extended this initial model in two different ways. First, we improved

prediction accuracy on all email acts by carrying out a careful n-gram analysis

along with email entity preprocessing [Carvalho and Cohen, 2006a]. Second, we

studied the structure of email negotiations by considering the sequential relations

among email acts of messages in the same message thread. Because this task es-

sentially requires relational information, we developed a new collective classifica-

tion algorithm based on dependency networks in which inference is performed in
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a temperature-driven Gibbs sampling procedure [Carvalho and Cohen, 2005]. We

showed that some of the email act classifiers can benefit from this collective predic-

tion framework.

Email Leaks

In another intent modeling task, we explored various machine learning methods for

a new effort: detecting email information leaks, i.e., messages that were acciden-

tally addressed to unintended recipients. Email information leaks are a widespread

problem that can severely harm individuals and corporations — for instance, a sin-

gle email leak can potentially cause expensive law suits, brand reputation damage,

negotiation setbacks and serious financial losses.

We addressed this problem as an outlier detection task, where unintended email

recipients were modeled as outliers. Due to the difficulty of obtaining considerable

amounts of real email leaks, we created artificial cases of unintended recipients

by simulating realistic types of leaks from real-world data, such as misspellings of

email addresses, typos, similar first/last names, etc. Using a combination of textual

and non-textual features, we developed a classification-based reranking model that

correctly predicted leak-recipients in almost 82% of the test messages. Additionally,

we tested the effectiveness of our approach on real information leaks, successfully

predicting two actual leaks in the Enron corpus [Carvalho and Cohen, 2007].

Email Recipient Recommendation

We also addressed the related problem of recommending intended recipients for

a message under composition — a task that can prevent a user from forgetting to

add an important person (such as a collaborator or manager) as a recipient, poten-

tially avoiding costly misunderstandings and communication delays. Recommend-

ing email recipients can also be potentially used to identify people in an organization

that worked in a similar topic or project, or to find people with specific expertise or

skills. Empirical data from a large real-world email collection support the claim

that forgetting to include message recipients is a very common error in corporate

environments.

We proposed different models for this task, and evaluated their predictive per-

formance on a large email collection. Experiments showed that a simple model

based on the K-Nearest Neighbors algorithm generally outperformed all other pro-

posed methods, including frequency or recency baselines as well as more refined

formal models previously proposed for Expert Search [Balog et al., 2006]. We also

showed that combining the rankings from baseline models using data fusion tech-

niques can improve overall ranking performance. Furthermore, these techniques can

naturally be adapted to improve email address auto-completion, i.e., suggesting the

most likely addresses based on a few initial letters of the intended contact. Over-

all we showed that intelligent message addressing techniques are able to visibly

improve email auto-completion, as well as to provide valuable assistance for users

when composing messages [Carvalho and Cohen, 2008].



4 1 Introduction

Human Evaluation

We implemented many of the previously proposed methods for email recipient rec-

ommendation and leak prediction in Cut Once, an extension to the popular Mozilla

Thunderbird email client. Cut Once was written in Javascript, thus requiring careful

design decisions to optimize memory and processing resources on client machines.

Based on Cut Once, we designed and evaluated a 4-week long user study

that lead to very positive results. More than 15% of the human subjects re-

ported that Cut Once prevented real email leaks, and more than 47% of

them utilized the provided recipient recommendations. It left an overall pos-

itive impression in the large majority of the users, and was even able to

change the way three of the subjects compose emails — instead of the usual

address-then-compose, some users started relying on Cut Once to perform a

compose-then-address procedure. More than 80% of the subjects would perma-

nently use Cut Once in their email clients in case a few interface/optimization

changes are implemented. Overall, the study showed that both leak prediction

and recipient recommendation are welcome additions and can be potentially

adopted by a large number of email users [Balasubramanyan, Carvalho, and Cohen,

2008][Carvalho, Balasubramanyan, and Cohen, 2009].



Chapter 2

Email “Speech Acts”

2.1 Introduction

One important use of work-related email is negotiating and delegating shared tasks

and subtasks. Email task management could be made more efficient if we were able

to automatically detect the intent of an email message — for example, to determine

if the email contains a request, a commitment by the sender to perform some task,

or an amendment to an earlier proposal.

The idea of embedding a shallow semantic layer to email communication has

been advocated before. The Coordinator system Winograd [1988] proposed a tax-

onomy of action-oriented “intentions” for email exchange, where the appropriate

intentions would be manually selected by the sender on each message. Automat-

ing this process, however, and successfully adding such a semantic layer to email

communication is still a challenge to current email clients.

In this chapter we proposed the use of a taxonomy of “email speech acts” for

modeling intentions behind work-related email messages. This taxonomy is based

on the ideas of Speech Act Theory Austin [1962], Searle [1969] and other unique

characteristics of electronic mail. Email acts are noun-verb pairs that express typical

intentions in email communication — for instance, to request for information, to

commit to perform a task or to propose a meeting.

A method for accurate classification of email into such categories would have

many potential applications. For instance, it could be used to help an email user

track the status of ongoing joint activities. Delegation and coordination of joint tasks

is a time-consuming and error-prone activity, and the cost of errors is high: it is not

uncommon that commitments are forgotten, deadlines are missed, and opportunities

are wasted because of a failure to properly track, delegate, and prioritize subtasks.

We believe such classification methods could be used to partially automate this sort

of email activity tracking in the sender’s email client as well as in the recipient’s.

Besides improving task management and delegation, another application for

email acts classification could be predicting hierarchy position in structured orga-

nizations or email-centered teams. For instance it has been observed Carvalho et al.

[2007] that leadership roles in small email-centered workgroups can be predicted

V.R. Carvalho: Modeling Intention in Email, SCI 349, pp. 5–34, 2011.
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6 2 Email “Speech Acts”

by the distribution of email acts on the messages exchanged among the group

members. The same general idea was suggested by Leusky [2004], with a different

taxonomy of email intentions. Predicting the leadership role is useful for many pur-

poses, such as analysis of group behavior for teams without an explicitly assigned

leader.

2.2 A Taxonomy of Email Acts

In order to model some of the most common intentions associated with email use,

we proposed the taxonomy of “Email Speech Acts” presented in Figure 2.1. Specif-

ically, we assumed that a single email message may contain multiple intentions or

acts, and that each act is described by a verb-noun pair drawn from this ontology

(e.g., “deliver data”).

This taxonomy drew inspiration from Speech Act Theory Austin [1962], Searle

[1969], as well as from a number of act taxonomies proposed in the research areas

of dialog systems, speech recognition and machine translation Levin et al. [2003],

Paul et al. [1998], Stolcke et al. [2000]. A more detailed discussion on Speech Act

Theory and other related references can be found in Section 2.8.1.

The proposed act taxonomy was also based on the unique characteristics of elec-

tronic mail. In fact, an important guideline in defining the proposed taxonomy was

that it should be tailored to the application in mind, i.e. work related email exchange,

and not be intended to represent any general-purpose act taxonomy1. This explains,

for instance, acts such as Request Data or Deliver Data in the proposed taxonomy,

associated with very common uses of email: to request or deliver files, links, attach-

ments, tables, etc.

To define the noun and verb ontology in Figure 2.1, we first examined email from

several corpora (including our own inboxes) to find regularities, common usage pat-

terns, and then performed a more detailed analysis of one corpus. The ontology was

further refined in the process of labeling the corpora described below.

In refining this ontology, we adopted several principles. First, we believe that it

is more important for the ontology to reflect observed linguistic behavior than to

reflect any a priori view of the space of possible speech acts. As a consequence,

the taxonomy of verbs contains concepts that are atomic linguistically, but combine

several illocutionary points. (For example, the linguistic unit “let’s do lunch” is both

directive, as it requests the receiver, and commissive, as it implicitly commits the

sender. In our taxonomy this is a single “propose” act.) Also, acts which are ab-

stractly possible but not observed in our data were not represented (for instance,

declarations).

Second, we believe that the taxonomy must reflect common non-linguistic uses of

email, such as the use of email as a mechanism to deliver files. We have grouped this

1 This guideline goes along the majority of dialog act taxonomies previously proposed in the

literature (see Section 2.8.2), where taxonomies were commonly designed for a specific

application or domain.
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with the linguistically similar speech act of delivering information. The definition

of the verbs in Figure 2.1 can be found in Table 2.1.

In grouping linguistically similar acts, we were guided by the multiple character-

istics and purposes of email communication as well as by the fact that the taxonomy

granularity has a direct impact on the human agreement levels over the same taxon-

omy. In other words, inter-annotator agreement levels for smaller taxonomies tend

to be higher than the ones observed for larger taxonomies. As a result, after many

refinement iterations, the above-mentioned principles allowed the production of a

relatively small taxonomy (Figure 2.1), one that is still sufficiently rich to represent

the most common uses of email in the workplace.

Table 2.1 Description of Verbs in Email Act Taxonomy

Request A request asks (or orders) the recipient to perform some activity. A question is

also considered a request (for delivery of information).

Propose A propose message proposes a joint activity, i.e., asks the recipient to perform

some activity and commits the sender as well, provided the recipient agrees to

the request. A typical example is an email suggesting a joint meeting.

Commit A commit message commits the sender to some future course of action, or con-

firms the senders’ intent to comply with some previously described course of

action.

Deliver A deliver message delivers something, e.g., some information, a PowerPoint

presentation, the URL of a website, the answer to a question, a message sent

“FYI”, or an opinion.

Amend An amend message amends an earlier proposal. Like a proposal, the message

involves both a commitment and a request. However, while a proposal is associ-

ated with a new task, an amendment is a suggested modification of an already-

proposed task.

Refuse A refuse message rejects a meeting/action/task or declines an invita-

tion/proposal.

Greet A greet message thank someone, congratulate, apologize, greet, or welcomes

the recipient(s).

Remind A reminder message reminds recipients of coming deadline(s) or threats to keep

commitment.

In addition to the verbs described in Table 2.1, we also considered two aggrega-

tions of verbs: the set of Commissive acts was defined as the union of Deliver and

Commit, and the set of Directive acts was defined as the union of Request, Propose

and Amend.

The nouns in Figure 2.1 constitute possible objects for the email speech act verbs.

The nouns fall into two broad categories. Information or Delivery nouns are asso-

ciated with email speech acts described by the verbs Deliver, Remind and Amend,

in which the email explicitly contains information. We also associate information

nouns with the verb Request, where the email contains instead a description of the

needed information. (E.g., “Please send your Social Security Number” versus “My
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Social Security Number is” — the request act is actually for a “deliver information”

activity) Information includes data believed to be fact as well as opinions, and also

attached data files.

Activity nouns are generally associated with email speech acts described by the

verbs Propose, Request, Commit, and Refuse. Activities include Meetings, as well

as other ongoing task activities.

Notice every email speech act is itself an activity. The verb-noun pair indicates

that any email speech act can also serve as the noun associated with some other

email speech act. For example, just as (deliver information) is a legitimate speech

act, so is (commit (deliver information)). Automatically constructing such nested

speech acts is an interesting and difficult topic; however, here we considered only the

problem of determining top level the verb for such compositional speech acts. For

instance, for a message containing a (commit (deliver information)) our goal would

be to automatically detect the commit verb, but not the inner (deliver information)

compound noun.

Fig. 2.1 Taxonomy of email acts used in most experiments. Shaded nodes are the ones for

which classifiers were constructed.

2.3 Corpus

The CSpace email corpus contains approximately 15,000 email messages collected

from a management course at Carnegie Mellon University. This corpus originated

from working groups who signed agreements to make certain parts of their email
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accessible to researchers. In this course, 277 MBA students, organized in approxi-

mately 50 teams of four to six members, ran simulated companies in different mar-

ket scenarios over a 14-week period Kraut et al. [In submission].

This corpus tends to be very task-oriented, with many instances of task delegation

and negotiation. Messages were mostly exchanged with members of the same team.

Accordingly, we partitioned the corpus into three subsets according to the teams.

The 1F3 team dataset had 351 messages total, while the 2F2 and 3F2 teams had,

respectively, 341 and 443 messages.

Another corpus considered was PW CALO, a dataset generated during a four-

day exercise conducted at SRI specifically to generate an email corpus. During this

time a group of six people assumed different work roles (e.g. project leader, finance

manager, researcher, administrative assistant, etc.) and performed a number of group

activities. There are 222 email messages in this corpus.

These corpora are very task-related, and associated with a small working groups,

so it is not surprising that they contain many instances of the email acts described

above. All messages from these corpora were labeled according to the guidelines

presented in Appendix A. The labels were applied at the message level, instead of

the sentence or paragraph level. This was important not only because “intentions” in

emails are not always constrained within sentences or paragraphs, but also because

it does not require an automatic segmentation preprocessing step — which could

generate undesirable errors by itself. Further discussion on the segmentation issues

and segmentation issues is presented in Section 2.8.4.

2.4 Inter-Annotator Agreement

There is a considerable amount of subjectivity involved in tagging email acts. Ideally

we would like to reduce the subjectivity involved, an effort that would lead to higher

agreement among human annotators. In the related literature, the agreement between

annotators or coders is typically measured in terms of the Kappa statistic Carletta

[1996], Cohen [1960]. The Kappa statistic κ is defined as:

κ =
P(A)−P(R)

1−P(R)

where P(A) is the empirical probability of agreement on a category, and P(R) is

the probability of agreement for two annotators that label at random (with the em-

pirically observed frequency of each class). Hence κ values ranges from -1 to +1

— where -1 indicates complete disagreement between annotators, zero indicates a

completely random assignment of labels, and +1 indicates a complete agreement

between annotators.

For email act tagging, because a single email may contain several speech acts,

each message can be annotated with several labels. In order to evaluate inter-

annotator agreement, we double-labeled all messages from 3F2, the team with the

largest number of exchanged messages, and calculated the Kappa values for each

act separately.
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Results in Table 2.2 show the Kappa values for most frequent acts on Team 3F2.

Kappas ranging between 0.72 and 0.82 were obtained — values generally accepted

to indicate good levels of agreement, as discussed later.

Table 2.2 Inter-Annotator Agreement on Team 3F2

Act Kappa

Deliver 0.75

Commit 0.72

Request 0.81

Propose 0.72

Amend 0.83

We also took doubly-annotated messages which had only a single verb label and

constructed the 5-class confusion matrix for the two annotators shown in Table 2.3.

Note that agreements are higher for messages with a single act.

Table 2.3 Inter-Annotator Agreement on Team 3F2 for Messages with a Single Act

Request Propose Amend Commit Deliver Kappa

Request 55 0 0 0 0 0.97

Propose 1 11 0 0 1 0.77

Amend 0 1 15 0 0 0.87

Commit 1 3 1 24 4 0.78

Deliver 1 0 2 3 135 0.91

Several possible verbs/nouns were not considered for further automation (such

as Refuse, Greet, and Remind), either because they occurred very infrequently in

the corpus, or because they did not appear to be important for task-tracking. The

primary reason for restricting ourselves in this way was our expectation that human

annotators would be slower and less reliable if given a more complex taxonomy.

In fact, reaching a reasonable inter-annotator agreement is not a trivial task and

it is well known that inter-coder agreement can be largely influenced by the choice

of dataset, tagging scheme and coding manual adopted. Generally speaking, tax-

onomies with fewer acts tend to have higher inter-coder agreement. Researchers

have consistently mentioned the merging of categories (or the use of smaller ones)

in taxonomies as a means to improve the kappa coefficient of agreement Finke et al.

[1998], Kim et al. [2006], Lesch et al. [2005].

Given a value of Kappa, how can we judge if it represents sufficiently good agree-

ment? In other words, is there a benchmark for interpreting the obtained values of
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Kappa? Unfortunately, there is no absolute answer and a benchmark of “good agree-

ment” is typically arbitrary. Because Kappa has been so widely adopted (from so-

cial sciences to medical domain), the accepted “good agreement” benchmark varies

considerably. An interesting compilation of different benchmarks for Kappa is pre-

sented by Emam [1999]. An acceptable level of agreement depends only on the

specific target task. Generally speaking, researchers in the natural language pro-

cessing community agree that Kappa values higher than 0.8 represent substantial

and reliable agreement, while values between 0.67 and 0.8 can still be considered

acceptable depending on the particular task.

In addition to inter-annotator agreement, we also used Kappa as a metric for clas-

sification tasks. Classification error rate is typically a poor measure of performance

for skewed classes, since low error rates can be obtained by simply guessing the

majority class. Kappa controls for this, since in a highly a skewed class, randomly

guessing classes according to the frequency of each class is very similar to always

guessing the majority class; thus R in the formula will be very close to 1.0. As we

show later, empirically Kappa measurements on our datasets were usually closely

correlated to the more widely used F1-measure.

2.5 Classifying Email into Acts

In this section we addressed the problem of how to automatically classify an email

message into acts. We began with a cleaning procedure on the original datasets. All

messages were preprocessed by removing quoted material, attachments, and non-

subject header information. This preprocessing was performed manually, but was

limited to operations which can be reliably automated. In addition, signature files

and quoted text from previous messages were removed from all messages using an

automated technique described elsewhere Carvalho and Cohen [2004].

After cleaning, we extracted all single tokens as features from the emails and

represented each message as a “bag-of-features”. In our initial experiments, we fixed

the document representation to be unweighted word frequency counts and varied

the learning algorithm. In these experiments, we pooled all the data from the four

corpora, a total of 9602 features in the 1357 messages, and since the nouns and

verbs are not mutually exclusive, we formulated the task as a set of several binary

classification problems, one for each verb.

The following learning algorithms were considered. VPerceptron is an imple-

mentation of the voted perceptron algorithm Freund and Schapire [1999] in aver-

aging mode. DTree is a simple decision tree learning system, which learns trees of

depth at most five. AdaBoost is an implementation of the confidence-rated boosting

method described by Schapire and Singer [1999], used to boost the DTree algorithm

10 times. SVM is a support vector machine with a linear kernel2.

Table 2.4 reports the classification error rates and F1 measures for some of the

most common verbs, using a 5-fold cross-validation split over all labeled messages.

Here F1 is the harmonic precision-recall mean, defined as F1 = 2×Precision×Recall
Recall+Precision

.

2 We used the LIBSVM implementation Chang and Lin [2001] with default parameters.
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Table 2.4 Classification Results in a 5-fold Cross-validation Experiment for Different Learn-

ers and Acts

Act VPerceptron AdaBoost SVM DTree

Request Error 0.25 0.22 0.23 0.20

F1 0.58 0.65 0.64 0.69

Propose Error 0.11 0.12 0.12 0.10

F1 0.19 0.26 0.34 0.13

Deliver Error 0.26 0.28 0.27 0.30

F1 0.80 0.78 0.78 0.76

Commit Error 0.15 0.14 0.17 0.15

F1 0.21 0.44 0.47 0.11

Directive Error 0.25 0.23 0.23 0.19

F1 0.72 0.73 0.73 0.78

Commissive Error 0.23 0.23 0.24 0.22

F1 0.84 0.84 0.83 0.85

Meet Error 0.18 0.17 0.14 0.18

F1 0.57 0.62 0.72 0.60

Overall, the SVM learner presented consistently good performance over all acts,

and will be considered as baseline henceforth. One surprise was that DTree (which

we had intended merely as a base learner for AdaBoost) works surprisingly well for

some acts — indicating that some acts may have a few highly discriminative fea-

tures. For instance, for Requests, the feature “?” is considerably more discriminative

than most other features.

2.6 Collective Classification of Email Acts

Previously we have considered email act classification as a task similar to traditional

text classification — with methods that used features based only on the content of

the message. However, it seems reasonable that the context of a message in a thread

can also be informative.

Specifically, in a sequence of messages, the intent of a reply to a message M

will be related to the intent of M: for instance, an email containing a Request for

a Meeting might well be answered by an email that Commits to a Meeting. More

generally, because negotiations are inherently sequential, one would expect strong

sequential correlation in the email acts associated with a thread of task-related email

messages, and one might hope that exploiting this sequential correlation among

email messages in the same thread would improve email act classification.

The sequential aspects of work-related interactions and negotiations have been

investigated by many previous researchers Murakoshi et al. [2000], Schoop [2003].

For example, Winograd and Flores [1986] proposed the highly influential idea of

action-oriented conversations based on a particular taxonomy of linguistic acts; an

illustration of one of their structures can be seen in Figure 2.2. However, it is not
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immediately obvious to what extent prior models of negotiation apply to email. One

problem is that email is non-synchronous, so multiple acts are often embedded in a

single email. Another problem is that email can be used to actually perform certain

acts—notably, acts that require the delivery of files or information—as well as being

a medium for negotiation. In our previous work, we also noted that certain speech

acts that are theoretically possible are either extremely rare or absent, at least in the

corpora we analyzed. In short, it cannot be taken for granted that prior linguistic

theories apply directly to email.

Fig. 2.2 Diagram of a “Conversation for Action” Structure from Winograd & Flores [1986]

In this section we studied the use of the sequential information contained in email

threads, and more specifically, whether it could improve performance for email act

classification. We first showed that sequential correlations do exist; further, that they

can be encoded as “relational features”, and used to predict the intent of email

messages without using textual features. We then combined these relational fea-

tures with textual features, using an iterative collective classification procedure. We

showed that this procedure produces a consistent improvement on some, but not all,

email acts.

Dataset

Recall that the majority of messages in the CSpace corpus (see Section 2.3) were

exchanged with members of the same team, and accordingly, we partitioned the cor-

pus into subsets according to the teams for many of the experiments. The 1F3 team

dataset has 351 messages total, while the 2F2 team has 341, and the 3F2 team has

443. In the experiments below, we considered only the subset of messages that were

in threads (as defined by the reply-To field of the email message), which reduced

our actual dataset to 249 emails from 3F2, 170 from 1F3, and 137 from 2F2.
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More precisely, all messages in the original CSpace database of monitored email

messages contained a parentID field, indicating the identity of the message to which

the current one is a reply. Using this information, we generated a list of children

messages (or messages generated in-reply-to this one) to every message. A thread

thus consists of a root message and all descendent messages, and in general has the

form of a tree, rather than a linear sequence. However, the majority of the threads

are short, containing 2 or 3 emails, and most messages have at most one child.

Compared to common datasets used in the relational learning literature, such as

IMBd, WebKB or Cora Neville and Jensen [2000], our dataset has a much smaller

amount of linkage. A message is linked only to its children and its parent, and there

are no relationships between two different threads, or among messages belonging

to different threads. However, the relatively small amount of linkage simplified one

technical issue in performing experiments with relational learning techniques: en-

suring that all test set instances are unrelated to the training set instances. In most

of our experiments, we split messages into training and testing sets by teams. Since

each of the teams worked largely in isolation from the others, most of their relational

information is contained in the same subset.

2.6.1 Evidence for Sequential Correlation of Email Acts

The sequential nature of email acts is illustrated by the regularities that exist be-

tween the acts associated with a message, and the acts associated with its children.

The transition diagram in Figure 2.3 was obtained by computing, for the four most

frequent verbs, the probability of the next message’s email act given the current

message’s act over all four datasets. In other words, an arc from A to B wit h label

p indicates that p is the probability over all messages M that some child of M has

label B, given than M has label A. It is important to notice that an email message

may have one or more email acts associated with it. A Request, for instance, may

be followed by a message that contains a Deliver and also a Commit. Therefore, the

transition diagram in Figure 2.3 is not a probabilistic DFA.

Deliver and Request are the most frequent acts, and they are also closely coupled.

Perhaps due to the asynchronous nature of email and the relatively high frequency

of Deliver, there is a tendency for almost anything to be followed by a Deliver

message; however, Deliver is especially common after Request or another Deliver.

In contrast, a Commit is most probable after a Propose or another Commit, which

agrees with intuitive and theoretical ideas of a negotiation sequence. (Recall that an

email thread may involve several people in an activity, all of whom may need to

commit to a joint action.) A Propose is unlikely to follow anything, as they usually

initiate a thread.

Very roughly one can view the graph above as encapsulating three likely types

of verb sequences, which could be described with the regular expressions (Request,

Deliver+),(Propose, Commit+, Deliver+), and (Propose, Deliver+).
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Fig. 2.3 Transition Diagram for the four most common specific verbs.

2.6.2 Predicting Acts from Surrounding Acts

As another test of the degree of sequential correlation in the data, we considered the

problem of predicting email acts using other acts in the same thread as features. We

represented each message with the set of relational features shown in Table 2.5: for

instance, the feature Parent Request is true if the parent of contains a request; the

feature Child Directive is true if the first3 child of a message contains a Directive

speech act.

Table 2.5 Set of Relational Features

Parent Features Child Features

Parent Request Child Request

Parent Deliver Child Deliver

Parent Commit Child Commit

Parent Propose Child Propose

Parent Directive Child Directive

Parent Commissive Child Commissive

Parent Meeting Child Meeting

Parent dData Child dData

We performed the following experiment with these features. We trained eight

different maximum entropy Berger et al. [1996] classifiers4, one for each email act,

3 The majority of the messages having children have only child, so instead of using features

from all children messages, we consider only features from the first child. This restriction

makes no significant difference in the results.
4 One of the reasons to use maximum entropy classifiers is that they output a measure that

can directly translated into probability confidence estimates.
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Fig. 2.4 Kappa Values on 1F3 using Relational (Context) features and Textual (Content)

features.

using only the features from Table 2.5. (The implementation of the Maximum En-

tropy classifier was based on the Minorthird toolkit Cohen [2004b]; it uses limited-

memory quasi-Newton optimization Sha and Pereira [2003] and a Gaussian prior.)

The classifiers were then evaluated on a different dataset. Figure 2.4 illustrates re-

sults using 3F2 as training set and 1F3 as test set, measured in terms of the Kappa

statistic. Recall that a Kappa value of zero indicates random agreement, so the re-

sults of Figure 4 indicate that there is predictive value in these features. For com-

parison, we also show the Kappa value of a maximum-entropy classifier using only

“content” (bag-of-words features).

Notice that in order to compute the features for a message M, and therefore eval-

uate the classifiers that predict the email acts, it is necessary to know what email acts

are contained in the surrounding messages. This circularity means that the experi-

ment above does not suggest a practically useful classification method—although it

does help confirm the intuition that there is useful information in the sequence of

classes observed in a thread. Also, it is still possible that the information derivable

from the relational features is redundant with the information available in the text

of the message; if so, then adding label-sequence information may not improve the

overall email act classification performance. In the next section we consider com-

bining the relational and text features in a practically useful classification scheme.
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2.6.3 Collective Classification Algorithm

In order to construct a practically useful classifier that combines the relational “con-

text” features with the textual “content” features used in traditional bag-of-words

text classification, it is necessary to break the cyclic dependency between the email

acts in a message and the email acts in its parent and children messages. Such a

scheme can not classify each message independently: instead classes must be si-

multaneously assigned to all messages in a thread.

Such collective classification methods, applied to relationally-linked collec-

tions of data, have been an active area of research for several years, and several

schemes have been proposed. For instance, using an iterative procedure on a web

page dataset, Chakrabarti et al. [1998] achieved significant improvements in perfor-

mance compared a non-relational baseline. In a dataset of corporate information,

Neville and Jensen [2000] used an iterative classification algorithm that updates the

test set inferences based on classifier confidence. A nice overview on different algo-

rithms for collective classification along with empirical comparisons can be found

in Sen et al. [2008].

The scheme we use is dictated by the characteristics of the problem. Although

sequential algorithms are known to work well for classification in linear chain struc-

tures Lafferty et al. [2001], McCallum et al. [2000], these are not appropriate here

because they can only assign a single label to each message in the sequence. In

our problem every message has multiple binary labels to assign, all of which are

potentially interrelated. Further, although here we consider only parent-child rela-

tions implied by the reply-To field, the relational connections between messages are

potentially quite rich—for example, it might be plausible to establish connections

between messages based on social network connections between recipients as well.

We thus adopted a fairly powerful model, based on iteratively re-assigning email act

labels through a process of statistical relaxation.

Initially, we train eight maximum entropy classifiers (one for each act) from a

training set. The features used for training are the words on the email body, the

words in the email subject, and the relational features listed in Table 2.5. These

eight classifiers will be referred to as local classifiers.

The inference procedure used to assign email act label with these classifiers is

as follows. We begin by initializing the eight classes of each message randomly (or

according to some other heuristic, as detailed below). We then perform this step it-

eratively: for each message we infer, using the local classifiers, the prediction confi-

dence of each one of the eight email acts, given the current labeling of the messages

in the thread. (Recall that computing the relational features requires knowing the

“context” of the message, represented by the email act labels of its parent and child

messages.) If, for a specific act, the confidence is larger than a confidence thresh-

old θ , we accept (update) the act with the label suggested by the local classifier.

Otherwise, no updates are made, and the message keeps its previous act.

The confidence threshold θ decreases linearly with the iteration number. There-

fore, in the first iteration (j = 0), θ will be 100% and no classes will be updated

at all, but after the 50th iteration, θ will be set to 50%, and all messages will be
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updated. This policy first updates the acts that can be predicted with high confi-

dence, and delays the low confidence classifications to the end of the process.

The algorithm is summarized in Table 2.6. The iterative collective classification

algorithm proposed is in fact an implementation of a Dependency Network (DN)

Heckerman et al. [2000]. Dependency networks are probabilistic graphical models

in which the full joint distribution of the network is approximated with a set of

conditional distributions that can be learned independently. The conditional proba-

bility distributions in a DN are calculated for each node given its parent nodes (its

Markov blanket). In our case, the nodes are the messages in an email thread, and

the Markov blanket is the parent message and the child messages. The confidence

threshold represents a temperature-sensitive, annealing variant of Gibbs sampling

Geman and Geman [1984]; after the first 50 iterations, it reverts to “pure” Gibbs

sampling. In our experiment below, instead of initializing the test set with random

email act classes, we always used a maximum entropy classifier previously trained

only with the bag-of-words from a different dataset, and the number of iterations T

was set to 60, ensuring 10 iterations of pure Gibbs sampling5.

Table 2.6 Collective Classification Algorithm.

1. For each of the 8 email acts, build a local classifier LCact from the training set.

2. Initialize the test set with email act classes based on a content-only classifier.

3. For each iteration j=0 to T:

a. Update Confidence Threshold(%) θ = 100− j;

b. If (θ < 50), make θ = 50;

c. For every email msg in test set:

i. For each email act class:

• obtain con f idence(act,msg) from LCact(msg)
• if (con f idence(act,msg) > θ ), update email act of msg

d. Calculate performance on this iteration.

4. Output final inferences and calculate final performance.

2.6.4 Experiments

2.6.4.1 Initial Experiments

Initial experiments used for development were performed using 3F2 as the training

set and 1F3 as the test set. Results of these experiments can be found in Table 2.7 in

terms of Kappa (κ) and F1 metrics. The leftmost part of Table 2.7 presents the results

for when only the bag-of-words features are used. The second part of Table 2.7

shows the performance when training and testing steps use bag-of-words features

5 Larger values of T did not produce any performance difference in our experiments.
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Table 2.7 Email acts Classification Performance on 1f3 Dataset

train: 3f2 Bag-of-words Bag-of-words + Bag-of-words + Bag-of-words +

test: 1f3 only True Relational Labels Estimated Relational Estimated Relational

(baseline) (Upper Bound) Labels Labels + Iterative

F1 κ F1 κ ∆κ F1 κ ∆κ F1 κ ∆κ
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Request 63.49 43.87 65.00 47.06 7.27 62.29 42.65 -2.78 63.93 45.14 2.89

Deliver 77.08 47.47 74.07 41.67 -12.22 70.65 36.03 -24.10 71.27 35.78 -24.63

Commit 36.66 23.16 44.44 34.37 48.40 41.50 31.25 34.93 44.06 32.42 39.98

Propose 46.87 34.68 46.66 35.25 1.64 40.67 28.26 -18.51 45.61 34.66 -0.06

Directive 73.62 43.63 76.50 49.50 13.45 76.08 48.34 10.80 75.82 48.32 10.75

Commissive 77.47 35.19 81.41 44.58 26.68 80.00 43.47 23.53 82.96 47.83 35.92

Meeting 65.18 42.26 68.57 46.60 10.27 67.64 46.07 9.02 69.11 48.52 14.81

dData 41.66 37.76 41.66 37.76 0.00 41.66 37.76 0.00 43.47 40.04 6.04

as well as the true labels of neighboring messages (yellow bars in Figure 2.4). It

reflects the maximum gain that could be granted by using the relational features;

therefore, it gives as an “upper bound” of what we should expect from the iterative

algorithm. ∆κ indicates relative improvements in Kappa over the baseline bag-of-

words method.

For the Deliver act, this “upper bound” is negative: in other words, the presence

of the relational features degrades the performance of the bag-of-words maximum

entropy classifier, even when one assumes the classes of all other messages in a

thread are known.

The third part of Table 2.7 presents the performance of the system if the test set

used the estimated labels (instead of the true labels). Equivalently, it represents the

performance of the iterative algorithm on its first iteration. The rightmost part of

Table 2.7 shows the performance obtained at the end of the iterative procedure. For

every act, Kappa improves as a result of following the iterative procedure. Relative

to the bag-of-words baseline, Kappa is improved for all but two acts, Deliver (which

is again degraded in performance) and Propose (which is essentially unchanged.)

The highest performance gains are for Commit and Commissive.

Figure 2.5 illustrates the performance of three representative email acts as the

iterative procedure runs. In these curves we can see that two acts (Commissive and

Request) have their performance improved considerably as the number of iteration

increases. Another act, Deliver, has a slight deterioration in performance.

2.6.4.2 Leave-One-Team-Out Experiments

In the initial experiments described in the Section 2.6.4.1, data from team 3F2 was

used as the training set, and 1F3 was used to produce test data. As an additional

test, data was labeled for a fourth team, 4F4, which had 403 total messages and 165

threaded messages. We then performed four additional experiments in which data
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Fig. 2.5 Kappa versus iteration on 1F3, using classifiers trained on 3F2.

from three teams was used in training, and data from the fourth team was used for

testing.

It should be emphasized that the choice to test on email from a team not seen

in training makes the prediction problem more difficult, as the different teams tend

to adopt slightly different styles of negotiation: for instance, proposals are more

frequently used by some groups than others. Higher levels of performance would be

expected if we trained and tested on an equivalent quantity of email generated by a

single team.

Figure 2.6 shows a scatter plot, in which each point represents an email act, plot-

ted so that its Kappa value for the bag-of-words baseline is the x-axis position, and

the Kappa for the iterative procedure is the y-axis position. Thus points above the

line y=x (the dotted line in the figure) represent an improvement over the baseline.

There are four points for each email act: one for each test team in this “leave one

team out” experiment.

As in the preliminary experiments, performance is usually improved. Impor-

tantly, performance is improved for six of the eight email acts for the team 4F4,

the data for which was collected after all algorithm development was complete.

Thus performance on 4F4 is a prospective test of the method.

Further analysis suggests that the variations in performance of the iterative

scheme are determined largely by the specific email act involved. Commissive, Com-

mit, and Meet were improved most in the preliminary experiments, and Proposal and

Deliver were improved least. The graph of Figure 2.7 shows that the Commissive,

Commit, and Meet are consistently improved by collective classification methods

in the prospective tests as well. However, performance on the remaining classes is

sometimes degraded.
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Fig. 2.6 Plot of baseline Kappa (x-axis) versus Kappa (%) after iterative collective classifi-

cation was performed. Points above the dotted line represent an improvement.

Finally, Figure 2.8 shows the same results, with the speech acts broken into two

classes: Deliver and dData, and all other classes. We note that Deliver is a quite

different type of “speech act” from those normally considered in the literature, as

it represents use of email as a data-distribution tool, rather than as a medium for

negotiation and communication. Figure 2.3 also shows that Deliver has a fairly high

probability of occurring after any speech act, unlike the other verbs. Based on these

observations it is reasonable to conjecture that sequential correlations might be dif-

ferent for delivery-related email acts than for other email acts. Figure 2.8 shows

that the collective classification method obtains a more consistent improvement for

non-delivery email acts.

As a final summary of performance, Figure 2.9 shows, for each of the eight email

acts, the Kappa value for each method, averaged across the four separate test sets.

Consistent with the more detailed analysis above, there is an average improvement

in average Kappa values for all the non-delivery related acts, but an average loss for

Deliver and dData.

The improvement in average Kappa is statistically significant for the non-delivery

related email acts (p=0.01 on a two-tailed t-test); however, the improvement across

all email acts is not statistically significant (p=0.18).

The preceding T-test considers significance of the improvement treating the data

of Figure 2.9 as draws from a population of email act classification problems. One

could also take each act separately, and consider the four test values as draws from

a population of working teams. This allows one to test the significance of the im-

provement for a particular email act—but unfortunately, one has only four samples

with which to estimate significance. With this test, the improvement in Commissive

is significant with a two-tailed test (p=0.01), and the improvement in Meeting is
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Fig. 2.7 Plot of baseline Kappa (x-axis) versus Kappa(%) after iterative collective classifica-

tion was performed. Performance improvement by groups of email acts. Groups were selected

based on performance in the preliminary tests.

Fig. 2.8 Plot of baseline Kappa (x-axis) versus Kappa(%) after iterative collective classifica-

tion was performed. Performance improvement for delivery-related and non-delivery related

email acts.
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Fig. 2.9 Kappa values with and without collective classification, averaged over the four test

sets in the leave-one-team-out experiment.

significant with a one-tailed test (p=0.04). The improvement in Commit are not sig-

nificant (p=0.06 on a one-tailed test). In no case is a loss in performance statistically

significant.

2.6.5 Discussion

The experiments above demonstrate that a collectively classifying email messages

in a thread can improve performance. The method showed improvements in perfor-

mance for some, but not all email act classes. On a four-fold cross validation test,

performance was statistically significantly improved for Commissive acts, which in-

clude Commit and Deliver, and performance is very likely improved for Meet and

Commit.

The consistent improvement of Meet is encouraging, since in addition to recog-

nizing intention, it is also important to recognize the specific task to which an email

“verb” is relevant. Meeting arrangement is an easily-recognized task shared by all

the teams in our study, and hence the Meet email “noun” served as a proxy for this

sort of task-classification problem.

Performance is not improved for two of the eight classes, Deliver and dData. It

should be noted that many email Requests could plausibly be followed by a Commit
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(e.g., “I’ll have the budget ready by Friday”) or a Deliver (e.g., “I’m attaching the

budget you asked for”), and context clues do not predict which type of response

will be forthcoming; this may be why context is more useful for predicting Com-

missive acts than the narrower class Deliver. We also note that while the email act

Deliver and its associated object dData do model a frequent use of email, they are

not suggested by prior theoretical models of negotiation of speech acts. The perfor-

mance improvement obtained by collective classification is consistent, and statisti-

cally significant, across all “non-delivery” acts—i.e., across all acts suggested by

prior theory.

2.7 Linguistic Analysis

A more careful analysis of the feature set revealed that very important linguistic

aspects for speech act inference was linked to the sequence or textual context of the

words. For instance, the specific sequence of tokens “Can you give me” can be more

informative to detect a Request act than the words “can”, “you”, “give” and “me”

separately. Similarly, the word sequence “I will call you” may be a much stronger

indication of a Commit act than the four words separately. More generally, because

so many specific sequences of words (or n-grams) are inherently associated with the

intent of an email message, one would expect that exploiting this linguistic aspect

of the messages would improve email act classification.

2.7.1 Preprocessing and N-Gram Features

Before extracting the above mentioned n-gram features, a sequence of preprocessing

steps was applied to all email messages in order to emphasize the linguistic aspects

of the problem. Some types of punctuation marks (“,;:.)(][”) were removed, as were

extra spaces and extra page breaks. We then perform some basic substitutions such

as: from “’m” to “ am”, from “’re” to “ are”, from “’ll” to “ will”, from “won’t” to

“will not”, from “doesn’t” to “does not” and from “’d” to “ would”.

Any sequence of one or more numbers was replaced by the symbol “[number]”.

The pattern “[number]:[number]” was replaced with “[hour]”. The expressions “pm

or am” were replaced by “[pm]”. “[wwhh]” denoted the words “why, where, who,

what or when”. The words “I, we, you, he, she or they” were replaced by “[person]”.

Days of the week (“Monday, Tuesday, ..., Sunday”) and their short versions (i.e.,

“Mon, Tue, Wed, ..., Sun”) were replaced by “[day]”. The words “after, before or

during” were replaced by “[aaafter]”. The pronouns “me, her, him, us or them” were

substituted by “[me]”. The typical filename types “.doc, .xls, .txt, .pdf, .rtf and .ppt”

were replaced by “.[filetype]”. A list with the substitution patterns is illustrated in

Table 2.8.
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Table 2.8 Pre-processing Substitution Patterns

Symbol Pattern

[number] any sequence of numbers

[hour] [number]:[number]
[wwhh] “why, where, who, what, or when”

[day] the strings “Monday, Tuesday, ..., or Sunday”

[day] the strings “Mon, Tue, Wed, ..., or Sun”

[pm] the strings “P.M., PM, A.M. or AM”

[me] the pronouns “me, her, him, us or them”

[person] the pronouns “I, we, you, he, she or they”

[aaafter] the strings “after, before or during”

[filetype] the strings “.doc, .pdf, .ppt, .txt, or .xls”

For the Commit act only, references to the first person were removed from the

symbol [person] — i.e., [person] was used to replace “he, she or they”. The rationale

is that n-grams containing the pronoun “I” are typically among the most meaningful

for this act, as shall be detailed in the next paragraphs.

After preprocessing the 1716 email messages from the CSpace corpus, n-gram

sequence features were extracted. Here n-gram features are all possible sequences

of length 1 (unigrams or 1-gram), 2 (bigram or 2-gram), 3 (trigram or 3-gram), 4

(4-gram) and 5 (5-gram) terms. After extracting all n-grams, the new dataset had

more than 347,500 different features.

It would be interesting to know which of these n-grams are the “most mean-

ingful” for each one of email speech acts. One possible way to accomplish this is

using some feature selection method. By computing the Information Gain scores

Forman [2003], Yang and Pedersen [1997] of all features, we were able to rank the

most “meaningful” n-gram sequence for each speech act. The final rankings are

illustrated in Tables 2.10 and 2.11.

Table 2.10 shows the most meaningful n-grams for the Request act. The top fea-

tures clearly agree with the linguistic intuition behind the idea of a Request email

act. This agreement is present not only in the frequent 1-gram features, but also in

the 2-grams, 3-grams, 4-grams and 5-grams. For instance, sentences such as “What

do you think ?” or “let me know what you ...” can be instantiations of the top two

5-grams, and are typically used indicating a request in email communication.

Table 2.11 illustrates the top fifteen 4-grams for all email speech acts selected by

Information Gain. The Commit act reflects the general idea of agreeing to do some

task, or to participate in some meeting. As we can see, the list with the top 4-grams

reflects the intuition of commitment very well. When accepting or committing to a

task, it is usual to write emails using “Tomorrow is good for me” or “I will put the

document under your door” or “I think I can finish this task by 7” or even “I will try

to bring this tomorrow”. The list even has some other interesting 4-grams that can

be easily associated to very specific commitment situations, such as “I will bring

copies” and “I will be there”.
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Another act in Table 2.11 that visibly agrees with its linguistic intuition is Meet-

ing. The 4-grams listed are usual constructions associated with either negotiating a

meeting time/location (“[day] at [hour] [pm]”) , agreeing to meet (“is good for [me]”)

or describing the goals of the meeting (“to go over the”).

Table 2.9 Request Act:Top eight N-grams Selected by Information Gain.

1-gram 2-gram 3-gram 4-gram 5-gram

? do [person] [person] need to [wwhh] do [person] think [wwhh] do [person] think ?

please ? [person] [wwhh] do [person] do [person] need to let [me] know [wwhh] [person]
[wwhh] could [person] let [me] know and let [me] know a call [number]-[number]
could [person] please would [person] call [number]-[number] give [me] a call [number]
do ? thanks do [person] think would be able to please give give [me] a call

can are [person] are [person] meeting [person] think [person] need [person] would be able to

of can [person] could [person] please let [me] know [wwhh] take a look at it

[me] need to do [person] need do [person] think ? [person] think [person] need to

Table 2.10 Request Act:Top eight N-grams Selected by Information Gain.

1-gram 2-gram 3-gram

? do [person] [person] need to

please ? [person] [wwhh] do [person]
[wwhh] could [person] let [me] know

could [person] please would [person]
do ? thanks do [person] think

can are [person] are [person] meeting

of can [person] could [person] please

[me] need to do [person] need

4-gram 5-gram

[wwhh] do [person] think [wwhh] do [person] think ?

do [person] need to let [me] know [wwhh] [person]
and let [me] know a call [number]-[number]
call [number]-[number] give [me] a call [number]
would be able to please give give [me] a call

[person] think [person] need [person] would be able to

let [me] know [wwhh] take a look at it

do [person] think ? [person] think [person] need to

The top features associated with the dData act in Table 2.11 are also closely

related to its general intuition. Here the idea is delivering or requesting some data:

a table inside the message, an attachment, a document, a report, a link to a file, a

url, etc. And indeed, it seems to be exactly the case in Table 2.11: some of the top

4-grams indicate the presence of an attachment (e.g., “forwarded message begins

here”), some features suggest the address or link where a file can be found (e.g.,

“in my public directory” or “in the etc directory”), some features request an action
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Table 2.11 Top 4-grams features selected by Information Gain for six email acts

Request Commit Meeting

[wwhh] do [person] think is good for [me] [day] at [hour] [pm]
do [person] need to is fine with [me] on [day] at [hour]
and let [me] know i will see [person] [person] can meet at

call [number]-[number] i think i can [person] meet at [hour]
would be able to i will put the will be in the

[person] think [person] need i will try to is good for [me]
let [me] know [wwhh] i will be there to meet at [hour]

do [person] think ? will look for [person] at [hour] in the

[person] need to get $[number] per person [person] will see [person]
? [person] need to am done with the meet at [hour] in

a copy of our at [hour] i will [number] at [hour] [pm]
do [person] have any [day] is fine with to go over the

[person] get a chance each of us will [person] will be in

[me] know [wwhh] i will bring copies let’s plan to meet

that would be great i will do the meet at [hour] [pm]

dData Propose Deliver

– forwarded message begins [person] would like to forwarded message begins here

forwarded message begins here would like to meet [number] [number] [number] [number]
is in my public please let [me] know is good for [me]

in my public directory to meet with [person] if [person] have any

[person] have placed the [person] meet at [hour] if fine with me

please take a look would [person] like to in my public directory

[day] [hour] [number] [number] [person] can meet tomorrow [person] will try to

[number] [day] [number] [hour] an hour or so is in my public

[date] [day] [number] [day] meet at [hour] in will be able to

in our game directory like to get together just wanted to let

in the etc directory [hour] [pm] in the [pm] in the lobby

the file name is [after] [hour] or [after] [person] will be able

is in our game [person] will be available please take a look

fyi – forwarded message think [person] can meet can meet in the

just put the file was hoping [person] could [day] at [hour] is

my public directory under do [person] want to in the commons at

to access/read the data (e.g., “please take a look”) and some features indicate the

presence of data inside the email message, possibly formatted as a table (e.g., “[date]
[hour] [number] [number]” or “[date] [day] [number] [day]”).

From Table 2.11, the Propose act seems closely related to the Meeting act. In

fact, by checking the labeled dataset, most of the Proposals were associated with

Meetings. Some of the features that are not necessarily associated with Meeting are

“ [person] would like to”, “please let me know” and “was hoping [person] could”.

The Deliver email speech act is associated with two large sets of actions: delivery

of data and delivery of information in general. Because of this generality, is not

straightforward to list the most meaningful n-grams associated with this act. Table

2.11 shows a variety of features that can be associated with a Deliver act. As we shall

see in Section 2.7.2, the Deliver act has the highest error rate in the classification

task.
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In summary, selecting the top n-gram features via Information Gain showed a

clear agreement with the linguistic intuition behind the different email speech acts.

2.7.2 Experiments

Here we describe how the classification experiments on the email speech acts dataset

were carried out. Using all n-gram features, we performed 5-fold cross-validation

tests over the 1716 email messages. Linear SVM was used as classifier. The results

are illustrated in Figure 2.10.

Fig. 2.10 Error Rate on a 5-fold Cross-validation Experiment

Table 2.12 Kappa Values for Classifying Six Acts Before and After Using Preprocessing and

N-grams Features.

1g 1g+2g+3g ∆ (Kappa)

+Preprocess %

Request 0.522 0.597 14.37

Commit 0.445 0.528 18.65

Deliver 0.442 0.540 22.17

Propose 0.325 0.325 0.00

Meeting 0.653 0.658 0.77

dData 0.627 0.716 14.19

Figure 2.10 shows the test error rate of four different experiments (bars) for all

email acts. The first bar denotes the error rate obtained in a 5-fold crossvalidation
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experiment with linear SVM as learning algorithm. This dataset had 1354 email

messages, and only 1-gram features were extracted.

The second bar illustrates the error rate obtained using only 1-gram features with

additional data. In this case, we used 1716 email messages. The third bar is the same

as the second bar (1-gram features with 1716 messages), with the difference that the

emails went through the preprocessing procedure previously described.

The fourth bar shows the error rate when all 1-gram, 2-gram and 3-gram features

are used and the 1716 messages go through the preprocessing procedure. The last

bar illustrates the error rate when all n-gram features (i.e., 1g+2g+3g+4g+5g) are

used in addition to preprocessing in all 1716 messages.

In all acts, a consistent improvement in 1-gram performance is observed when

more data is added, i.e., a drop in error rate from the first to the second bar. A com-

parison between the second and third bars reveals the extent to which preprocessing

seems to help classification based on 1-grams only. As we can see, no significant

performance difference can be observed: for most acts the relative difference is very

small, and in one or maybe two acts some small improvement can be noticed.

A much larger performance improvement can be seen between the fourth and

third bars. This reflects the power of the contextual features: using all 1-grams, 2-

grams and 3-grams is considerably more powerful than using only 1-gram features.

This significant difference can be observed in all acts. Compared to the initial values

from Section 2.5, we observed a relative error rate drop of 24.7% in the Request act,

33.3% in the Commit act, 23.7% for the Deliver act, 38.3% for the Propose act,

9.2% for Meeting and 29.1% in the dData act. In average, a relative improvement

of 26.4% in error rate.

We also considered adding the 4-gram and 5-gram features to the best system.

As pictured in the last bar of Figure 2.10, this addition did not seem to improve the

performance and, in some cases, even a small increase in error rate was observed.

We believe this was caused by the insufficient amount of labeled data in these tests;

and the 4-gram and 5-gram features are likely to improve the performance of this

system if more labeled data becomes available.

Similar conclusions can be reached based other metrics. Table 2.12 shows Kappa

values for the same 5-fold crossvalidation experiments. Using all 1716 messages,

Table 2.12 compares performance for two feature sets: the 1g feature set with no

preprocessing and the 1g+2g+3g+Preprocess feature set (i.e., 1g, 2g and 3g fea-

tures and preprocessing step). Results show large improvements in performance for

most acts, with an average gain of 11.69% in Kappa values, although in some cases

there was small or no gains in Kappa associated with n-grams and preprocessing

steps.

Precision versus recall curves of the Request act classification task are illustrated

in Figure 2.11. The curve on the top shows the Request act performance when the

1g+2g+3g+Preprocess feature set is applied. For the bottom curve, only 1g fea-

tures were used. These two curves correspond to the second bar (bottom curve) and

forth bar (top curve) in Figure 2.10. Figure 2.11 clearly shows that both recall and

precision are improved by using the contextual features for this act.
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Fig. 2.11 Precision versus Recall on Request Act Classification

To summarize, these results confirm the intuition that contextual information (n-

grams) can be very effective in the task of email speech act classification. Using this

n-gram based representation in classification experiments, we obtained a relative

average drop of 26.4% in error rate when compared to the unigrams only. Also,

ranking the most “meaningful” n-grams based on Information Gain scores revealed

a noticeable agreement with the linguistic intuition behind the email speech acts.

2.8 Related Work

2.8.1 Speech Act Theory

Interest in Speech Acts originated from the works of the philosopher J. L. Austin,

in particular from his seminal book How To Do Things With Words Austin [1962].

Later other important developments in Speech Act theory were introduced by Searle

[1969, 1975].

The key idea in this theory is that an utterance in a dialog is a kind of action

performed by the utterance’s speaker. The intuition that an utterance is a kind of

action becomes clear with the following example. The utterance “I name this ship

Queen Elizabeth”, uttered by the right person, has the power to perform the action

of naming a ship as Queen Elizabeth — thus changing the state of world. In fact,

verbs like name in the example above are typical examples of performative speech

actions.
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According to Austin [1962], there are three different types of actions (or acts)

that an utterance can perform in a dialog in general: locutionary acts, illocution-

ary acts and perlocutionary acts. Locutionary acts are related to the production and

realization of utterances (or locutions) – which are supposed to be recognized by

someone who has knowledge of grammar, lexicon, semantics and phonology of the

utterance’s language. Illocutionary acts are related to the purpose or intention of

an utterance — for instance, the act of asking for something, the act of answering,

promising, refusing, confirming, etc. Perlocutionary acts are related to the conse-

quence of the hearer recognizing the locution and the illocutionary point of the

utterance.

Different types of acts usually co-exist in the same utterance. For instance, a sin-

gle utterance might have an illocutionary act of apologizing and at the same time

a different perlocutionary act (pleasing the hearer, for instance). In the shallow dis-

course literature, the term speech act is typically used to describe illocutionary acts

or illocutionary intentions rather than either of the other two types of acts.

Another classification taxonomy of speech acts was later advocated by John R.

Searle, who suggested that all speech acts can be classified into one of these five

categories Searle [1975]:

• Commissives: The speaker commits to a future course of action. For instance,

promising, planning, opposing, vowing, betting, etc.

• Assertives: committing the speaker to somethings being the case or expressing

the belief of the speaker in something. For instance, suggesting, putting forward,

swearing, boasting, concluding, etc.

• Directives: the speaker attempts to get the addressee to do something. For in-

stance, requesting, inviting, advising, asking, begging, etc.

• Expressives: expressing the speaker’s attitude or psychological state about a state

of affairs. For instance, apologizing, welcoming, thanking, etc.

• Declarations: the speaker brings about a different state of the world. For instance,

naming a ship, resigning to a position, etc.

The original ideas from Act Theory are still the most important influence on re-

cent work to automate shallow discourse parsing. Recent works have attempted to

improve the definition/understanding of acts or extending the notion of acts to fit

specific applications or to better model other conversational phenomena.

2.8.2 Dialog Act Tagging

Dialogue-based systems have become increasingly popular in recent years. Typ-

ically associated to some speech recognition system, these systems are used in

answering questions on weather or sports, assisting travelers with scheduling and

maps, customer support, tutoring systems, etc.

Dialog act tagging has also been proposed to assist or improve other tasks. For in-

stance, some researchers have attempted to use the prediction of the next utterance’s

act to improve speech recognition performance Paul et al. [1998], Stolcke et al.
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[2000]; other have tried to use dialog act information to improve spoken transla-

tion systems Levin et al. [2003].

In most cases, the design of dialogue act taxonomies (or tagging schemes) is

largely influenced by the application or domain it is supposed to be used. For ex-

ample, the Verbmobil project was a very large research effort that ran over mul-

tiple years involving a large consortium of academic and industrial partners from

different continents. The Verbmobil system supported speech-to-speech translation

among German, English, and Japanese in three limited domains Wahlster [2000].

In one of its applications, for example, Buschbeck-Wolf et al. [1998] uses a rela-

tively small set of approximately 30 tags tailored to a specific application: machine

translation of domain-limited telephone negotiations.

As part of the Clarity project Finke et al. [1998], Levin et al. Levin et al. [1998]

proposed a 3-level taxonomy of discourse analysis to investigate discourse struc-

tures of Spanish spoken language. The three levels were the Speech Act level, the

dialogue game level and the activity level defined within the topic units. The Speech

Act level had eight categories, and approximately 60 subcategories. In another ex-

ample, Levin et al. [2003] attempted to learn domain acts and speech acts from

domain specific dialogues in the NESPOLE project. The proposed approach used

approximately 1000 domain actions and 70 speech acts.

Even though most taxonomies are inspired on the specific application, there has

been a few attempts to construct general-purpose tagging schemes. One of the most

influential one was the DAMSL (Dialog Act Markup in Several Layers) annotation

scheme Core and Allen [1997]. This scheme uses, for a single utterance, multiple

layers to describe the function of an utterance, which is called multidimensional

dialog act tagging. Some of the layers relating to functions are the Forward Com-

municative Function, the Backward Communicative Functions and the Utterance

Features.

DAMSL was developed as an annotation guideline for application-oriented con-

versations in general. DAMSL can also be extended to include application specific

tags. Using the Switchboard SWBD-DAMSL coding scheme, an extension of the

DAMSL scheme, Jurafsky et al. [1997], Stolcke et al. [2000] demonstrated that 42

tags can be automatically recognized with reasonable accuracy.

A common observation in most tagging efforts is that statements are typically

the most common dialog act in a real corpus6. Another important point is that, the

larger the taxonomy, the more likely it is to face sparsity in the tagged data. In other

words, when using very large taxonomies to tag a reasonably small amount of data,

it is expected that some acts will occur only a few times, or perhaps not occur at all.

The sparsity problem is a serious issue and should be taken into consideration when

designing a new dialogue taxonomy. In a more general framework, Traum Traum

[2000] discusses several issues that are important to be addressed when creating a

new taxonomy of dialog acts.

6 Indeed, Deliver was the most frequent act observed in the labeled email act datasets in

Section 2.3.
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2.8.3 Email Acts and Other Applications

Traditionally, the areas of Speech Recognition and Machine Translation have been

responsible for most of the applied research of tagging acts in dialogues. With the

widespread growth of the World Wide Web, dialogues in new types of media such

as email are become increasingly popular and bringing the attention of researchers

into this new domain. The attention is well justified. Email is the most popular

communication application on the internet — widely adopted for both work and

personal communications.

Email exchange can indeed be seen as a dialogue, but there are some differences

with the traditional conversational dialogue. One particular difference is that there

is no interruption in email. A message receiver can never interfere with (or inter-

rupt) the message composed by the sender. Another difference is that, in principle,

email can be used with no words at all — for instance, in messages carrying only

an attached picture or file. Additionally, unless email contents are segmented, the

dialog act unit is not the same here as in conversational dialogs. One single email

message may contain many dialog acts, and each one of these acts may be referring

to different previous messages in the conversation thread.

The use of Speech Acts in email has been proposed mostly for office automation.

Leusky [2004] used an SVM learner to predict 8 different speech acts in a collection

of 500 messages. The goal was to use this information to automatically infer user’s

roles based solely on email patterns. Goldstein and Sabin [2006] attempted to learn

another set of email act categories and, in addition, to identify different genres in

email communication. Still for the domain of email communication, Lampert et al.

[2006] propose a general set of acts based on the VRM (Verbal Response Modes)

taxonomy of speech acts.

Other applications have used ideas related to email acts.

Khoussainov and Kushmerick [2005] proposed an iterative algorithm that uses

email speech act predictions to identify tasks and uses task identification inference

to improve the prediction of email speech acts. In a closely related task, some

researchers attempted to automatically detect action-items from the contents of

email messages Bennett and Carbonell [2005], Corston-Oliver et al. [2004].

By conducting an organizational survey, Dabbish et al. [2005] studied several

factors that can influence the user’s response to a particular incoming email mes-

sage. One of the variables considered was the message type (reminder, action re-

quest, social, etc.), a concept closely related to email speech acts. Dredze et al.

[2006] investigated two different approaches to the problem of email activity clas-

sification, based on the contents of the messages and on the people involved in a

particular ongoing activity.

More recently, researchers have started to apply Dialog Act tagging to explore

new applications in the areas of Instant Messaging, Online Web Discussion Groups

and Question Answering. Feng et al. [2006] proposed a method to learn the “con-

versation focus” of online threaded discussions using manually annotated speech

acts. In this work conversational focus was defined as “the most informative or im-

portant message in a sequence for the purpose of answering the initial question” and
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the authors claim that could potentially be used in Question Answering systems. In

a related paper, Kim et al. [2006] also used speech act analysis in online discussions

to infer participant specific roles that instructors and students play.

Ivanovic [2005b] used Dialog Act tagging techniques on instant messaging di-

alogs. Using 12 tags from the 42 used by Stolcke et al. [2000] and allowing more

than one act per message (i.e., a message may contain more than one utterance), he

used a Naive Bayes classifier to predict dialog acts with relatively good accuracy.

Still using the same data and taxonomy, Ivanovic attempted to automatically find

utterance boundaries in IM (i.e., IM segmentation) for dialog act tagging Ivanovic

[2005a] using two different methods, a Hidden Markov Model and a parse-tree

based method.

2.8.4 Segmentation

The tagging of utterances in terms of acts presupposes utterance segmentation,

i.e., the precise identification of the utterance boundaries. However, the utterance

segmentation task is a challenging task in itself and the solutions to this prob-

lem are not trivial. In fact, a considerable body of work has been devoted to

segmentation of utterances in the speech community Stevenson and Gaizauskas

[2000], Traum and Heeman [1996] as well as in other communities such

as Natural Language Processing Mikheev [2000], Palmer and Hearst [1994],

Reynar and Ratnaparkhi [1997] and Machine Translation Lavie et al. [1996],

Walker et al. [2001].

A common workaround is to use data previously segmented by human anno-

tators. Some researchers argue that it is the best way to isolate the segmentation

problem from the tagging problem, preventing errors from segmentation to propa-

gate to the tagging task Lesch et al. [2005], Stolcke et al. [2000]. This solution is

somewhat unrealistic since perfectly pre-segmented utterances are not available in

real world dialog systems. Some few approaches try to integrate segmentation and

tagging in the same model Finke et al. [1998].

Segmentation is a very important issue for email act tagging. For this domain

there are two major approaches: segment either at the sentence/paragraph level or at

the message level. An example of segmentation in the message level can be found in

the work of Leusky [2004], where the entire message is taken as a dialog unit, and

therefore a single message may contain multiple email acts. In sentence/paragraph

level taggers the segmentation occurs in the sentence/paragraph level, i.e., one act

per sentence/paragraph Bennett and Carbonell [2005], Corston-Oliver et al. [2004],

Lampert et al. [2006]. These taggers typically require a segmentation preprocessing

step to automatic detect sentence/paragraph boundaries.



Chapter 3

Email Information Leaks

3.1 Introduction

On July 6th 2001, the news agency Bloomberg.com published an interesting article

entitled California Power-Buying Data Disclosed in Misdirected E-Mail1. An

excerpt is reproduced below:

“California Governor Gray Davis’s office released data on the state’s purchases

in the spot electricity market — information Davis has been trying to keep secret

— through a misdirected e-mail. The e-mail, containing data on California’s power

purchases yesterday, was intended for members of the governor’s staff, said Davis

spokesman Steve Maviglio. It was accidentally sent to some reporters on the office’s

press list, he said. Davis is fighting disclosure of state power purchases, saying it

would compromise negotiations for future contracts”.

This was a famous case of information leak via email, where a message was

accidentally sent to unintended recipients. This episode, however, was by no means

an isolated case. In fact, most regular email users have received such misdirected

email messages, often due to email clients that are overly aggressive at completing

partial email addresses.

With the widespread use of email, it is reasonable to expect that an increasing

number of email users will experience similar situations — as a sender of an infor-

mation leak or, more frequently, as a recipient.

As the California Power-Buying example above indicates, unintentional email

leaks can be disastrous. They can lead to major negotiation setbacks, losses in mar-

ket share and financial burdens. Furthermore, when related to personal or corporate

privacy policies, an email leak can potentially be the cause of expensive lawsuits

and irreparable brand reputation damage. Even though it is not easy to estimate the

amount of loss caused by information leaks, one thing is for certain: such incidents

should be avoided at all costs. Here we present a new technique to prevent sending

1 In March 2008, the entire article could be found at

http://www.freerepublic.com/forum/a3b4611e82dc0.htm

V.R. Carvalho: Modeling Intention in Email, SCI 349, pp. 35–51, 2011.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

http://www.freerepublic.com/forum/a3b4611e82dc0.htm
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email messages to unintended recipients. To the best of our knowledge, this is the

first attempt to solve this critical problem.

Here we approach this problem by casting it as an outlier detection problem: i.e.,

we model the messages sent to past recipients, and consider a (message,recipient)

pair to be a potential leak if the message is sufficiently different from past messages

sent to that recipient. This approach has the advantage that it can be easily imple-

mented in an email client—it does not use any information that is available to the

server only.

To evaluate different approaches of this type, data is required. Since we do not

have access to a considerable number of real cases of unintentional email leaks,

we created artificial cases of unintended recipients in real-world email data. More

specifically, we simulated email leaks in the Enron Email corpus [Cohen, 2004a]

using different plausible criteria. These criteria imitate realistic types of leaks, such

as misspellings of email addresses, typos, similar first/last names, etc.

On this benchmark data, we evaluated a number of leak-detection methods us-

ing as features both textual and social network information from the messages, and

then used supervised learning techniques to predict email leaks. Evaluations show

that our best techniques can correctly identify the (synthetically-introduced) “leak

recipient” in almost 82% of the messages. We also show that a variation of our

method could successfully handle two independent real cases of email leaks (unin-

tended message recipients) in the Enron corpus. This result shows that the proposed

technique is effective, and has the potential to prevent actual email leaks in realistic

scenarios.

3.2 The Enron Dataset

Although email is ubiquitous, large, public and realistic email corpora are not easy

to find. The limited availability is largely due to privacy issues. For instance, in most

US academic institutions, a email collection can only be distributed to researchers

if all senders of the collection also provided explicit written consent.

In the experiments of this chapter we used the Enron Email Corpus, a large col-

lection of real email messages from managers and employees of the Enron Corpora-

tion. This collection was originally made public by the Federal Energy Regulatory

Commission during the investigation of the Enron accounting fraud. We used the

Enron collection to create a number of simulated user email accounts and address

books, as described below, on which we conducted our experiments.

As expected, real email data have several inconsistencies. To help mitigate some

of these problems, we used the Enron dataset version compiled by Shetty and Adibi

[Shetty and Adibi, 2004], in which a large number of repeated messages were re-

moved. This version contains 252,759 messages from 151 employees distributed in

approximately 3000 folders.

Another particularly important type of inconsistency in the corpus is the fact

that a single user may have multiple email addresses. We addressed part of these

inconsistencies by mapping between 32 original email address and the normalized
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email address for some email users. This mapping (author-normalized-author.txt)

was produced by Andres Corrada-Emmanuel, and is currently available from the

Enron Email webpage [Cohen, 2004a].

For each Enron user, we considered two distinct sets of messages: messages sent

by the user (the sent collection) and messages received by the user (the received

collection). The received collection contains all messages in which the user’s email

address was included in the TO, CC or BCC fields. The sent collection was sorted

chronologically and then split into two parts, sent train and sent test. Sent train

contains 90% of the messages sent by the user, corresponding to the oldest ones.

The most recent messages, 10% of the total sent collection, were placed in sent test.

The message counts for 20 target Enron users is illustrated in Table 3.1.

Table 3.1 Number of Email Messages in the Different Collections. |AB| is the number of

entries in the user’s Address Book.

Enron received sent train sent test

user

rapp 408 146 17

hernandez 792 1326 15

pereira 737 179 20

dickson 1263 198 22

lavorato 1930 361 41

hyatt 1797 566 63

germany 466 729 82

white 922 441 50

whitt 836 414 46

zufferli 324 314 35

campbell 1383 531 60

geaccone 889 396 44

hyvl 1246 650 73

giron 667 999 111

horton 964 426 48

derrick 1283 686 77

kaminski 1042 1097 122

hayslett 1590 706 79

corman 2274 686 77

kitchen 5681 876 98

This 90%/10% split was used to simulate a typical scenario in a user’s desktop

— where the user already has several sent and received messages, and the goal is

to predict if the next sent message will be an information leak. In order to make the

received collection consistent with this, we removed from it all messages that were

more recent than the most recent message in sent train. The general time frames of

the different email collections is pictured in Figure 3.1.

We also simulated each user’s address book: for each Enron user u, we build an

address book set AB(u), which is a list with all email addresses that can be found
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Fig. 3.1 Time frames of different email collections.

in the received and sent train collections of this user. More precisely, the list was

constructed using information from both sent train and received collections, but sent

and received messages are used in different ways. From the sent train collection, we

consider all email addresses that were recipients of at least one message. From the

received collection, only the email address of the message senders is considered

to be part of the address book AB(u). I.e., the message recipients are not added

to AB(u) because a received message is a communication between its sender and

all its recipients, and not among recipients—that is, a particular recipient does not

necessarily know the other recipients.

In all our experiments we represented the content of the messages with a “bag

of words”, where the counts of all tokens in a message were extracted and taken

as feature weights. In this process, a small set of stop words2 was removed from

the email body. In addition, self-addressed messages with no other recipients were

disregarded.

Only the first six Enron users (rapp, hernandez,. . . ,hyatt) were used during the

development of our methods. After all development and tuning were complete, the

remaining 14 Enron users were added to the test collection as an evaluation set. As

we will see, performance is quite similar on the two collections of users.

3.3 Generating Synthetic Leaks

3.3.1 Leak Criteria

Accidental email leaks can happen in various situations. A typical case is when

the message is a reply to a previous message but not all previous recipients should

be included. Another common situation is when one of the intended recipients has

a similar first name (or surname, or email address) to another entry in the user’s

contact list. The latter scenario is particularly frequent when the email client uses

aggressive auto-completion of addresses and/or contact names.

To simulate the latter situation, we developed the following procedure to create

leak-recipients (or outliers)—i.e., the email addresses that are unintentionally in-

cluded as a recipient. We will assume that for the sent test messages, the recorded

2 About, all, am, an, and, are, as, at, be, been, but, by, can, cannot, did, do, does, doing, done,

for, from, had, has, have, having, if, in, is, it, its, of, on, that, the, they, these, this, those,

to, too, want, wants, was, what, which, will, with, would.
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list of recipients were all intended recipients, and that no other recipients were in-

tended; thus leak-recipients can be generated by simply adding some other recipient

to the message. However, we elected to simulate a certain plausible process for gen-

erating email leaks; specifically, we elected to simulate the actions of an email client

that provides the recipient in response to an incompletely-specified email address.

The procedure we used is illustrated in Table 3.2 and we refer to it as 3g-address

henceforth.

For a given message with n recipient addresses (i.e., the set of recipient addresses

A = {a1..an}), we randomly select one of the addresses ai. We then consider the

addresses AB(u) in the address book of the user, discard addresses in A, and search

for other addresses that start with the same three three initial characters as ai. For

instance, if ai=marina.carvalho@enron.com, we would return all email addresses

in [AB(u)−A] starting with the sequence of characters “mar”3. If the returned list is

not empty, we randomly select one of the addresses as the leak-recipient and finish

the procedure; otherwise, we find all addresses in AB(u) that cannot be found in A

and start with the same two initial characters as ai (i.e., the characters “ma”4). If

this list is not empty, we randomly choose one of the entries as the leak-recipient

and end the procedure; otherwise, we find all addresses in AB(u) that and cannot be

found in A and start exactly the same initial character of ai (i.e., the character “m”5).

If this list is not empty, we randomly select one of the entries as leak-recipient and

finish the procedure; otherwise, we randomly select any address from AB(u) (that

cannot be found in A) and return it.

Table 3.2 3g-address, an Information Leak Heuristic

1. Input: User u and set of user’s messages M = {m1..m j}
2. Build user’s address book set AB(u)
3. For each message m j in M:

a. Randomly select ai from set of recipients addresses A in m j .

b. Find set L3 (i.e., all addresses in AB(u)−A with the same three initial characters of ai)

c. If L3 �= /0, randomly select leak-recipient from L3

d. Else

• Find set L2 (same as L3 but using the two first characters instead)

• If L2 �= /0, randomly select leak-recipient from L2

• Else

– Find set L1 (same as L1 but using only the first character only)

– If L1 �= /0, randomly select leak-recipient from L1

– Else, randomly select leak-recipient from AB(u)−A

e. Return the selected leak recipient

3 For instance, mary..., marco..., margaret..., marcia..., etc.
4 For instance, matthew..., may..., manuel..., madaleine..., etc.
5 For instance, melyssa..., michael..., monika..., morgan..., etc.
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Even though the 3g-address is a reasonable criterion to simulate email infor-

mation leaks, several other leak criteria could have been used. For instance, we

could use a similar 3g-address criterion for first names and/or last names; or even

some string distance similarity metric [Cohen et al., 2003]. Unfortunately the En-

ron dataset does not include contact information (or address books) for most users;

thus only a small percentage of the email addresses could have the first and last

names extracted. Because of this limitation, we initially decided to apply only the

3g-address criterion when evaluating leaks in the Enron dataset. Later we will con-

sider a variation of this process as well.

Using a particular leak criterion, we are able to simulate artificial leaks on real

data. The idea is, for each message, to add a single leak-recipient to the list of

recipients already specified in the message. With large quantities of email messages

having simulated email leaks, the problem now becomes finding the most effective

way to predict these unintended (simulated) recipients.

3.4 Methods

3.4.1 Baselines: Using Textual Content

In this section we developed different techniques for the leak prediction problem

based on the textual contents of the messages. The main idea was to model the

“recipient-message” pairs, and then to predict the least likely pair as a leak-recipient.

Predicting exactly one pair to be a leak is a reasonable choice, since in our simulated

data, each message contains exactly one leak-recipient; however, all of the methods

we describe actually produce a ranking of all message recipients. We start by using

only the previously sent messages (sent train collection) as training set.

3.4.1.1 Cosine Similarity

The first method was based on cosine similarity between two vector-based repre-

sentations of email messages. Given a message q from user u to a set of recipients

A =
{

a1,a2...a|A|
}

, we derived the message’s TFIDF (Term Frequency Inverse Doc-

ument Frequency) vector representation
→

tfidf (q) from its textual contents and then

normalized the vector to length 1.0.

We also built a user model
→

M(ai) for each user ai ∈ A. These models are produced

from the concatenation of all previous messages sent from user u to a particular re-

cipient ai. Specifically, we concatenated all previous messages sent from u to ai and

considered it to be one single large document. Then
→

M(ai) is obtained by deriving a

TFIDF vector representation for this concatenated document, and normalizing this

vector to 1.
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We then computed the cosine similarities between the current message vector
→

tfidf (q) and each one of the |A| concatenated user models. The recipient associated

with smallest similarity value is then predicted as leak-recipient, i.e.,

leak(q,A) = argmin ai
cosine(

→

tfidf (q),
→

M(ai)). (3.1)

We refer to this method as Cosine.

3.4.1.2 K Nearest Neighbors

The second baseline method was based on the K-Nearest Neighbors algorithm de-

scribed by Yang and Liu [1999]. Given a message q from user u addressed to a set

of recipients A =
{

a1,a2...a|A|
}

, we find N(q): its K most similar messages (neigh-

bors) in the training set. The notion of similarity here is also defined as the cosine

distance between the text of two normalized TFIDF vectors.

With the top K most similar messages selected from the training set, we then

computed the weight of each recipient ai according to the sum of similarity scores

of the neighboring messages in which ai was one of the recipients. After ranking all

|A| recipients in the given message according to this method, we selected the one

with lowest score as the predicted leak-recipient. I.e.,

leak(q,A) = argmin ai ∑
doc∈N(q)

isRec(doc,ai)cos

(

→

tfidf (q),
→

tfidf (doc)

)

(3.2)

where the isRec function returns 1 if ai is a recipient of message doc, and zero

otherwise.

Preliminary tests revealed that values of K = 30 typically presented better per-

formance values. We refer to this method as Knn-30 (sent).

3.4.1.3 Baseline Results

Both methods above can handle received messages using a very simple modifica-

tion: to treat received messages as sent messages with a single recipient — the

sender. In fact, this is consistent with what we did to extract the address books AB(u)
in Section 3.3.1, where we only added to the address book the message senders from

the received collection. We use the symbols (sent) or (sent+rcvd) to identify, respec-

tively, the smaller (sent train) and the larger(sent train + received) training sets.

The overall results in this section are shown in Table 3.3. This Table shows the

experimental results for each Enron user. The results are expressed in terms of Pre-

cision at rank 1 (or Prec@1), i.e., the average number of times (in N trials) that the

predicted leak-recipient is the actual leak-recipient. We used N = 10 trials. On each

trial, a completely new set of leak-recipients is generated for the training and test
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sets, and the experiment is repeated. The Random column shows the Prec@1 values

when the leak is chosen randomly from the recipient list.

From Table 3.3 we observe that, in average, the Cosine method had approxi-

mately the same level of performance as the Knn-30 method. Another interesting

point is that, compared to the baseline Random, the gain obtained by using textual

information is obvious, but relatively modest. In two-tailed paired t-test, results from

all methods are statistically significant to the Random. The difference between the

Cosine method and Knn-30 is not statistically significant. As we shall see in Section

3.4.2, much larger improvements in performance can be obtained by using social

network features. Also from Table 3.3, it does not seem to make a lot of differ-

ence to add the received messages to the training set, since the average performance

barely changed.

Table 3.3 Email Leak Prediction Results: Prec@1 in 10 trials.

Enron Random Cosine Knn-30

user (sent) (sent) (s+r)

rapp 0.236 0.470 0.547 0.459

hernandez 0.349 0.226 0.247 0.353

pereira 0.459 0.490 0.450 0.465

dickson 0.462 0.627 0.641 0.659

lavorato 0.463 0.697 0.668 0.637

hyatt 0.400 0.488 0.533 0.586

germany 0.352 0.570 0.620 0.588

white 0.389 0.648 0.626 0.616

whitt 0.426 0.478 0.522 0.563

zufferli 0.479 0.628 0.654 0.697

campbell 0.385 0.454 0.422 0.451

geaccone 0.367 0.413 0.423 0.420

hyvl 0.455 0.523 0.467 0.436

giron 0.444 0.551 0.588 0.616

horton 0.460 0.646 0.604 0.615

derrick 0.454 0.784 0.758 0.668

kaminski 0.471 0.711 0.753 0.739

hayslett 0.304 0.547 0.561 0.551

corman 0.466 0.782 0.728 0.695

kitchen 0.300 0.424 0.379 0.415

Average 0.406 0.558 0.560 0.561

3.4.2 Reranking with Social Network Information

So far we have considered only the textual contents of emails in the task of leak

prediction. Yet, it is reasonable to consider social network features for this problem,

such as the number of received messages, number of sent messages, number of times

two recipients were copied in the same message, etc. In this section we describe
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how these network features can be exploited to considerably improve performance

on this problem.

In order to combine textual and social network features, we used a classification-

based scheme. The idea is to perform the leak prediction in two steps. In the first

step we calculate the textual similarity scores using a cross-validation procedure in

the training set. In the second step, we extract the network features and then we

learn a function that combines those with textual scores.

The textual scores are calculated in the following way. We split the training set

(received + sent train collections) into 10 parts. Using a 10-fold cross-validation

procedure, we compute the Knn-30 scores on 10% of the messages using as training

data the remaining 90% of the data. In the end of this process, each training set

examples will have, associated with it, a list of email addresses (from the top 30

messages selected by Knn-30) and their predicted scores. Now we have an “outlier

score” associated with each message recipient in the training set. These scores will

be used as features in the second step of the classification procedure.

In addition to the textual scores, we used three different sets of social network fea-

tures. The first set is based on the relative frequency of a recipient’s email address in

the training set. For each recipient we extracted the normalized sent frequency (i.e.,

the number of messages sent to this recipient divided by the total number of mes-

sages sent by this particular Enron user) and the normalized received frequency (i.e.,

the number of messages received from this recipient divided by the total number of

messages received by this particular Enron user). In addition, we used two binary

features to indicate if no messages were sent to a particular user, and if no mes-

sages were received from a particular user. We refer to these features as Frequency

features.

The second set of social network information is based on co-occurrence of recipi-

ents on other messages in the training set. The intuition behind this feature is that we

expect leak-recipients to co-occur less frequently with the other recipients. Given a

message with three recipients a1,a2 and a3, let the frequency of co-occurrence be-

tween recipients a1 and a2 be F(a1,a2) (i.e., the number of messages in the training

set that had a1 as well as a2 as recipients). Then the relative co-occurrence frequency

of users a1,a2 and a3 will be proportional to, respectively, F(a1,a2)+ F(a1,a3),
F(a2,a3)+F(a2,a1) and F(a3,a1)+F(a3,a2): i.e., the relative co-occurrence fre-

quency of each recipient ai = ∑ j �=i F(ai,a j). These values are then divided by their

sum and normalized to one. In case of two recipients only, the value of this feature

is obviously 0.5 for each. No features will be extracted if the message has only one

recipient. We refer to this feature as Coocurr features.

We will call the third set of network features the Max3g features. To explain this

feature set, we need to refer to Table 3.2 in the Leak Criteria Section. For each recipi-

ent a j in a message, we return the L3 set. And from the L3 set we select the candidate

am with the highest score (score from the cross-validation procedure). We then use

this highest score minus the score of a j as a feature. Since the scores are between

0 and 1, the final value of this feature can be normalized as
score(a j)−score(am)+1

2 .

The intuition behind it is that leak-recipients are likely to have lower values for this
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feature, since their own scores are likely to be lower than their L3 highest score.

Obviously, if L3 is empty, the L2 set is used; and if the latter is empty, L1 is used.

After the three sets of features are extracted, their values were discretized accord-

ing to the following thresholds: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01,

0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005 and 0.000001. The fea-

ture value is then represented by all thresholds that are smaller than it. For example,

if a feature B had a value 0.0003, its representation after being discretized would be

“B-0001, B-00005, B-00001, B-000005, B-000001”. If the value of B were smaller

than 0.000001 then an extra feature would be generated (B-000001L). This dis-

cretization process was used to increase the robustness of the learning algorithm.

We used the Voted Perceptron in averaging mode [Carvalho and Cohen, 2006b,

Freund and Schapire, 1999] as learning algorithm, as an example of a learning

method which is robust and effective, but efficient enough to be plausibly embed-

ded in an email client. It was trained using five passes through the same training

data, and training examples for each user’s leak-detection method were generated

from the entire training collection (sent train + received) for the user. The learning

proceeded in the following way. For each message with J recipients (where one of

them is the leak-recipient), we created J examples: 1 negative example with the fea-

tures associated with the leak-recipient and J−1 positive examples associated with

the true recipients. The leak-recipient detection thus becomes a binary classification

problem.

Experimental results using textual and network features are illustrated in Table

3.4. For comparison, the second column is the best text-only method from Table

3.3, i.e., Knn-30 using both sent and received messages. The third column shows

the Prec@1 values of our method using the cross-validation score in addition to the

Frequency features. As we can see, results are surprisingly good, with very large

performance improvements. On average, more than 80% of the test messages had

their leak-recipients correctly predicted.

The fourth column reveals the performance of the cross-validation score in addi-

tion to the Cooccur features. Again, a general improvement compared to the textual-

only methods can be observed, and for some users results were even better than the

“+Frequency” column. However, in average results were not as good as using only

the first set of network features.

The fifth column shows results associated to the Max3g features. Compared to

the two previous feature sets, this is the least effective one, but still performing better

than the best textual-only baseline.

The sixth column illustrates the performance results when all three feature sets

are used in addition to the cross-validation scores. Again we observe very good

results, better on average than all other feature sets taken in isolation and obviously

considerably better than the best textual-only method. In average, this technique

was able to detect the leak-recipients in almost 82% of the messages — a very good

result in itself. The last column shows the relative gain in performance between the

“All” column and the Knn-30 column. Gains for all users were observed, include

all of the 14 evaluation-set users. (Recall that the method was fully developed and

debugged on the first 6 users.) On average, the relative gain was nearly 49%.
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Compared to Knn-30 results, all variations of reranking presented statistically

significant difference (p < 0.01) on a paired t-test. Additionally, all columns pre-

sented results that are statistically significant (p < 0.01) when compared to the re-

sults in the previous column, as indicated by the symbol ∗ in Table 3.4. Results in

the “+All” column are not statistically significant to the ones in the “+Frequency”

column.

Overall, Table 3.4 is a clear indication that the proposed method is very effective

and robust in detecting email leaks, significantly outperforming all baselines for 20

different Enron users.

Table 3.4 Email Leak Prediction Results: Prec@1 in 10 trials. The symbol ∗ indicates a

statistically significant (p < 0.01) difference when compared to the results in the previous

column.

Enron Knn-30 CV-Scores ∆ (%)

user (s+r) +Frequency +Cooccur +Max3g +All (to Knn-30)

rapp 0.459 0.706 0.747 0.635 0.788 71.796

hernandez 0.353 0.693 0.746 0.653 0.720 103.793

pereira 0.465 0.795 0.780 0.740 0.850 82.796

dickson 0.659 0.814 0.791 0.773 0.786 19.317

lavorato 0.637 0.898 0.773 0.754 0.910 42.922

hyatt 0.586 0.827 0.822 0.763 0.824 40.652

germany 0.588 0.659 0.621 0.594 0.665 13.240

white 0.616 0.832 0.776 0.672 0.812 31.823

whitt 0.563 0.867 0.782 0.741 0.889 57.922

zufferli 0.697 0.806 0.771 0.797 0.809 15.980

campbell 0.451 0.703 0.768 0.746 0.739 63.909

geaccone 0.420 0.782 0.609 0.661 0.789 87.583

hyvl 0.436 0.826 0.820 0.768 0.822 88.682

giron 0.616 0.831 0.744 0.673 0.858 39.176

horton 0.615 0.840 0.752 0.748 0.856 39.333

derrick 0.668 0.942 0.866 0.821 0.934 39.880

kaminski 0.739 0.902 0.921 0.938 0.902 22.068

hayslett 0.551 0.778 0.566 0.556 0.747 35.634

corman 0.695 0.910 0.779 0.788 0.912 31.203

kitchen 0.415 0.680 0.517 0.546 0.662 59.451

Average 0.561 0.804∗ 0.748∗ 0.718∗ 0.814∗ 49.358

3.5 Finding Real Email Leaks

In previous sections we have presented promising results for the task of leak de-

tection, but they were all based on artificially constructed data. It is not clear if the

technique will in fact work for a real case of an email information leak.
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To test this, we needed to find real leak cases and, as expected, this is not a trivial

task. We approached the problem by performing selecting messages containing the

terms sorry, accident or mistake6, and then manually screening the results. Mes-

sages containing these terms tend to occur in the emails following a leak (typically

in the same message thread), after someone realized the mistake.

This strategy allowed us to discover several cases of real email leak in the corpus.

Unfortunately, most of these cases were originated by non-Enron email addresses

or by an Enron email address that is not one of the 151 Enron users whose messages

were collected — two situations in which our technique would not work, since it

requires the collection of sent and received messages of the sending user. Eventually,

we were able to find two distinct email leaks associated with two different users in

the original 151 Enron user set.

The first case happened in message germany-c/sent/930, later confirmed by

message germany-c/all documents/1489. In this case, the email leak contains 20

recipients and the leak corresponds to the address alex.perkins@enron.com. The

second case is located in the message kitchen-l/sent items/497, and message

kitchen-l/sent items/495 can confirm it. Message kitchen-l/sent items/497 contains

44 recipients, and in this case the leak address is rita.wynne@enron.com.

In order to detect these two leaks, we prepared the datasets in the same way as de-

scribed in Section 3.2. We assured that these two email leak messages were placed in

the sent test collection of the two users and then we applied the best classification-

based method on them. For this test, simulated leak-recipients were added to the

training set, but not to the two test messages. In the two test messages, we obviously

considered, respectively, alex.perkins@enron.com and rita.wynne@enron.com as

the leak-recipients. The training method is non-deterministic, since it includes cross-

validation to compute the textual similarity, so we ran 100 trails and report the av-

erage performance.

The results are indicated in second column (Original) of Table 3.5. In addition to

Prec@1, we also report Average Rank (AvgRank) as an evaluation metric. AvgRank

is defined as the average value of the rank in which the true leak-recipient was listed.

The minimum value of AvgRank is 1.0 (when all predictions are correctly ranked in

position 1). Larger values of AvgRank indicate worse predictions.

Table 3.5 Performance when Detecting Real Leak Cases. [Prec@1, Average Rank]

Leak Classification-based Classification-based

case (Original) (Variation α = 0.2)

Germany-c [0.0, 3.7] [0.89, 1.11]

Kitchen-l [0.0, 10.9] [0.25, 2.50]

Performance was rather disappointing. Not only were the average ranks far from

what we would hope for in a practical system, and also the Precisions@1 were 0.0

6 We were looking for sentences similar to “Sorry. Sent this to you by mistake. Please dis-

regard.”, “I accidentally send you this reminder”, etc.
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in both cases. In other words, the algorithm could not predict leaks correctly even

once in 100 attempts.

This disappointing performance, when analyzed in detail, has a very sim-

ple explanation. In both cases, the two real leaks (alex.perkins@enron.com and

rita.wynne@enron.com) were to recipients that had never been encountered in the

previous messages, either in the sent train collection nor in the received collection.

In contrast, recall that the simulated leak-recipients in the training set are selected

from the procedure in Table 3.2, i.e., only email addresses from the Address Book

can be selected as leak-recipients. Since email addresses that were never observed

before will never be selected as leak-recipients, it is not surprising that the learning

method cannot detect them. Clearly these email leaks did not occur as a result of

incorrect selection of an address-book value from an abbreviation, as we assumed

in our synthetic-data experiments.

Therefore, even though we believe the classification-based method proposed in

Section 3.4.2 works well for predicting leaks associated with the plausible leak cri-

teria explained in Section 3.3.1, it is not suited to predict leaks of the sort illustrated

by germany-c and kitchen-l—i.e., leaks to email addresses not in a user’s address

book. However, as we describe below, a variation in the leak criteria can make the

classification-based method considerably robust to these types of leaks.

3.5.1 Sampling from Seen and Unseen Recipients

In order to make the classification-based algorithm handle unseen leak-recipients,

we applied a very simple modification to the process of selecting artificial leak-

recipients.

The idea can be stated in the following way: with probability 1−α , the leak-

recipient will be selected according to the 3g-address leak criteria in Table 3.2;

while with probability α it will be randomly selected from a distribution of ran-

dom email addresses not in the Address Book (i.e., sampling randomly from unseen

email addresses).

With this small change, we created a variation of the original classification-based

algorithm that should be able to learn patterns associated with seen and unseen leak-

recipients. Larger values of α are expected to predict unseen leak-recipients more

frequently, whereas smaller values of α have the opposite effect (when α = 0, we

have the original classification-based algorithm ).

This effect can be observed in Figure 3.2. There, Precision@1 and average rank

curves are illustrated as a function of α for the Germany-c leak case. Values of α
around 10% indicate Precision@1 around 50%. When α = 0, we return to the origi-

nal performance values (first column of Table 3.5). As α increases, the performance

is consistently improved — for instance, Prec@1 is around 90% and Average Rank

is about 1.11 for α close to 20%.
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Fig. 3.2 Performance of Real Leak Case Germany-c For Different Probabilities α .

The Kitchen-l curves in Figure 3.3 present a similar behavior — weaker perfor-

mance numbers for small α values and better performance for larger values of α . It

is interesting to notice that the maximum value of Precision@1 here is 0.25 and the

maximum value of Average Rank is 2.5. This happened because this particular mes-

sage has 4 different unseen email addresses (out of 44 recipients) and only one of

these is the true leak. Therefore, the best possible result for an algorithm which re-

lies only on past email is to choose randomly among the the four unseen addresses,

i.e., to classify them as leaks with the same confidence. This is exactly what hap-

pens case when α ≥ 0.1, where the precision at 1 reaches 25%. For comparison,

performance results of the α = 0.2 variation are also illustrated in Table 3.5.

3.6 Leak Prediction Results

From Table 3.5 and Figures 3.2 and 3.3, it is clear that the proposed variation of

the classification-based method can handle unseen leak-recipients much better than

the original algorithm. However, it is not obvious how this modification affects the

overall performance for the task, i.e., the overall leak prediction performance in all

20 enron users.

We compare the original classification-based method (α = 0.0) to two of its vari-

ations (α = 0.1 and α = 0.2) in Table 3.6. Generally speaking, the original method

presents better overall performance than its variations. As expected, it is easier to

make leak predictions when unseen recipients are never considered leak-recipients.

Also, as α values increases, performance slightly deteriorates. Notice, however, that

even the results of the α = 0.2 variation are still better than all other baselines from

Table 3.3. In Table 3.6, differences in Precision@1 between any of the different

α values is statistically significant in a paired t-test (p < 0.01). For average rank,

the difference between α = 0.0 an α = 0.1 is statistically significant, but it is not

significant for α = 0.1 an α = 0.2.
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Fig. 3.3 Performance of Real Leak Cases Kitchen-l For Different Probabilities α .

The proposed technique showed promising results in various tests so far. In real-

ity, of course, most messages do not contain leaks. Thus in a real email client imple-

mentation, it would be necessary to extend our method to also determine if messages

do or do not contain leaks. For instance, we could use the prediction confidence of

the learning algorithm to decide whether or not the user should be warned of a po-

tential leak, or use a secondary classifier to decide whether or a message contains a

leak. We have not yet explored this issue. We note that user studies will probably be

necessary to determine what level of “false positive” predictions users will tolerate.

Also, from a user’s point of view, the number of false positive predictions might also

be reduced not by machine learning methods, but by applying additional heuristics

to estimate the severity of a possible leak—e.g., in corporate settings, the potential

consequences might be worse for an email sent outside the company than an email

sent within the company.
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Table 3.6 Email Leak Prediction Results for Different α Values

Enron α = 0.0 α = 0.1 α = 0.2
User Prec@1 AvgRank Prec@1 AvgRank Prec@1 AvgRank

rapp 0.788 1.471 0.753 1.458 0.747 1.459

hernandez 0.720 1.900 0.653 2.053 0.613 2.407

Pereira 0.850 1.235 0.790 1.430 0.765 1.360

dickson 0.786 1.214 0.700 1.300 0.718 1.282

lavorato 0.910 1.220 0.861 1.253 0.861 1.202

hyatt 0.824 1.202 0.792 1.244 0.770 1.265

germany 0.665 1.601 0.679 1.598 0.669 1.542

white 0.812 1.274 0.790 1.310 0.758 1.354

whitt 0.889 1.124 0.872 1.145 0.822 1.200

zufferli 0.809 1.194 0.797 1.211 0.769 1.249

campbell 0.739 1.385 0.678 1.549 0.671 1.536

geaccone 0.789 1.411 0.755 1.525 0.755 1.509

hyvl 0.822 1.196 0.795 1.223 0.773 1.245

giron 0.858 1.188 0.806 1.254 0.782 1.313

horton 0.856 1.265 0.785 1.456 0.767 1.565

derrick 0.934 1.074 0.921 1.112 0.896 1.170

kaminski 0.902 1.129 0.880 1.160 0.886 1.152

hayslett 0.747 1.794 0.719 1.832 0.725 1.834

corman 0.912 1.095 0.866 1.146 0.839 1.177

kitchen 0.662 3.156 0.584 3.305 0.621 2.911

Average 0.814 1.406 0.774 1.478 0.760 1.487

3.7 Discussion and Related Work

We introduced the new problem of information leak prediction in email commu-

nication, in which the goal is predicting unintended message recipients. With the

widespread use of email, the accidental inclusion of unintended recipients in emails

has become increasingly common. In many cases these mistakes can reveal sensitive

or private information — which in turn can potentially lead to terrible consequences

such as financial losses, brand damage and expensive law suits. In spite of its crit-

ical importance, this problem has received very limited attention from the research

community.

We addressed this critical problem as an outlier detection task, where the unin-

tended email addresses considered the outliers. Using simulated leak-recipients in

combination with real world email data (the Enron Email corpus), we were able to

create large amounts of labeled data — which in turn was used to learn typical out-

lier patterns. The simulated leak-recipients were created by imitating typical cases of

mistakes such as misspellings of email addresses, typos, similar first/last names, etc.

Using a combination of textual and social network features, the model correctly pre-

dicted leak-recipients in almost 82% of the test messages, a very promissing result.

Additionally, we tested the effectiveness of our approach in real cases of informa-

tion leak — where a variation of the proposed method was successful in predicting

real information leaks from the Enron corpus.
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The literature concerning privacy and email is very limited. Boufaden et al.

[2005a] proposed a privacy enforcement system in which information extraction

techniques and domain knowledge were combined to monitor specific privacy

breaches via email in a university environment. They were particularly concerned

with the following types of entity breaches: student names, student grades and stu-

dent IDs. Using 205 manually labeled emails and tailored ontologies, they were

able to correctly predict leaks with an F-score of 69.3%. Similar techniques could

be used in conjunction with the methods described here to detect email leaks that

are particularly harmful from a privacy point of view.

Lieberman and Miller [2007] introduced Facemail, an extension to a webmail

system that tries to prevent information leaks by automatically displaying pictures

of the selected recipients in a peripheral display while the message is under com-

position. Several alternatives for displaying these pictures were considered, and

preliminary results from a user study suggested that showing faces could “sig-

nificantly improve users’ ability to detect misdirected emails with only a brief

glance”[Lieberman and Miller, 2007].

An attempt to detect email leaks in financial institutions was recently proposed

[Kalyan and Chandrasekaran, 2007]. Using mostly non-textual features such as the

time in which the message was sent, the type of attachment files (i.e., doc, pdf, etc.),

size of the message, presence of company or personal addresses in the CC field, etc.,

the authors claimed to have correctly predicted 92% of the email leaks in a dataset

with 554 messages and 70 leaks. Unfortunately, details on the dataset such as how

the leaks were found, what exactly was considered to be a leak or who labeled it,

were not provided.



Chapter 4

Recommending Email Recipients

4.1 Introduction

The widespread adoption of email in the workplace is responsible for new issues

affecting work management and productivity. One of these problems is that email

senders often forget to address one or more intended recipients in their messages.

This problem is usually more noticeable in large corporations, where workers inter-

act with peers from various divisions and departments.

To address this problem, in this chapter we proposed several methods of recipi-

ent recommendation, i.e., the task of recommending persons who are potential re-

cipients for a message under composition given its current contents, its previously-

specified recipients, or a few initial letters of the intended recipient contact.

This task can be a valuable addition to email clients, particularly in large corpo-

rations, where negotiations are frequently handled via email and the cost of errors in

task management can be high. These intelligent message addressing techniques can

prevent a user from forgetting to add an important collaborator or manager as recip-

ient, thus preventing costly misunderstandings, communication delays and missed

opportunities.

4.2 Evidence of Message Addressing Problems

In order to provide quantitative evidence, using a very large corpus, of how fre-

quently email users are subject to this type of message addressing problem, we

focused on the Enron Email collection [Cohen, 2004a] — a large, public and re-

alistic email corpora with approximately half a million messages from 150 Enron

employees’ inboxes, as previously explained in Section 3.2.

By sampling the Enron collection, one can easily find messages containing sen-

tences such as “Oops, I forgot to send it to Vince. I cc:ed him on this now, though”,

“Sorry....missed your name on the cc: list!!” or “Sorry, I should have copied you

V.R. Carvalho: Modeling Intention in Email, SCI 349, pp. 53–68, 2011.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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on this”. These messages provided strong evidence that, in a previous message, the

sender intended to address someone but forgot to include this person as a recipient.

We conducted a thorough search over the entire Enron corpus, looking for mes-

sages containing the terms sorry, forgot or accident, and then manually filtered the

results in which apologetic messages revealed users forgetting to address intended

recipients. We found that at least 9.27% of the 150 Enron users have forgotten to add

a desired email recipient in at least one sent message, while at least 20.52% of these

users were not included as recipients (even though they were intended recipients) in

at least one received message.

These numbers are certainly a lower bound on the real number of messages not

going to the intended recipients, since not all errors would be noticed by users and

not all apologetic emails would be found by our search. These surprisingly high

numbers clearly suggest that such problems can be very common in large orga-

nizations, and that email users can benefit from an intelligent message addressing

assistant that provides meaningful recipient recommendation.

4.3 Data Preprocessing and Task Definition

We used the Enron Dataset corpus [Cohen, 2004a] to test and validate our methods,

and applied the same preprocessing steps described in Section 3.2.

We then utilized two possible settings for the recipient prediction task. The first

setting is called the TO+CC+BCC or primary prediction, where we attempt to pre-

dict all recipients of an email given its message contents. It relates to a scenario

where the message is composed, but no recipients have been added to the recipient

list. The second setting is called CC+BCC or secondary prediction, in which mes-

sage contents as well as the TO-addresses were previously specified, and the task is

to rank additional addresses for the CC and BCC fields of the message. This setting

relates to the scenario where the message was composed and one or more recipients

were already specified, but other recipients can still be added to the recipient list.

We selected the 36 Enron users with the largest number of sent messages, and for

each user we chronologically sorted their sent collection (i.e., all messages sent by

this particular user) and then split the collection in two parts: the oldest messages

were placed into sent train and most recent ones into sent test. Message counts

statistics for the 36 Enron users are shown in Table 4.1. In addition, sent test collec-

tion was selected to contain at least 20 “valid-CC” messages, i.e., at least 20 mes-

sages with valid email addresses in both TO and CC (or both TO and BCC) fields.

This particular subset of sent test, with approximately 20 “valid-CC” messages, is

called sent test∗. The main idea is that TO+CC+BCC prediction will be tested on

sent test, and the CC+BCC prediction will be tested on the sent test∗ collection (a

subset of sent test in which all messages have a valid CC or BCC address).

This chronological split was necessary to guarantee a minimum number of

test messages for the secondary prediction task and to simulate a typical scenario

in a user’s desktop — where the user already has several sent messages, and the goal
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is to predict the recipients of the next sent messages. We also constructed, for each

user, an address book set AB which is the set of all recipient addresses in the user’s

sent train collection, as described above.

Table 4.1 Number of Email Messages in the Different Collections of the 36 selected En-

ron users. |AB| is the Address Book size, i.e., the number of different recipients that were

addressed in the messages of the sent train collection. Sent test∗ contains only messages

having valid addresses in both TO and CC fields.

|AB| sent train sent test sent test∗

campbell-l 386 505 86 21
derrick-j 179 539 224 21
dickson-s 36 99 121 20
geaccone-t 147 281 159 21
germany-c 520 3585 101 21
giron-d 179 591 519 20
grigsby-m 176 758 157 21
hayslett-r 342 759 26 20
horton-s 242 341 133 20
hyatt-k 218 520 109 21
hyvl-d 241 615 108 21
kaminski-v 311 1066 153 20
kitchen-l 599 1457 47 20
lavorato-j 106 223 179 20
lokay-m 135 568 76 20
rapp-b 58 105 58 21
ward-k 220 803 146 21
bass-e 164 1233 406 21
beck-s 1262 1479 112 20
blair-l 330 1062 37 20
cash-m 407 1138 73 20
clair-c 316 1775 52 20
farmer-d 178 587 390 21
fossum-d 320 1001 35 20
haedicke-m 496 1049 70 20
jones-t 869 4371 66 21
kean-s 546 2203 75 21
love-p 447 1490 83 21
perlingiere-d 509 2405 144 21
presto-k 344 996 83 21
sager-e 343 1434 90 20
sanders-r 663 1825 173 20
scott-s 720 1413 409 20
shackleton-s 742 4730 67 21
taylor-m 752 2345 176 20
tycholiz-b 93 250 259 20

Mean 377.67 1266.69 144.50 20.50
StDev 263.24 1099.05 116.79 0.69
Median 325 1025 109 20
Max 1262 4730 519 23
Min 36 99 26 19

4.4 Models

In this section we described models and baselines for recipient prediction. For all

models, we used the following terminology. The symbol ca refers to candidate email
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address and t refers to terms in documents or queries. The symbol doc refers to doc-

uments in the training set, i.e., email messages previously sent by the same Enron

user. A query q refers to a message in the test set, i.e., the message under compo-

sition. Both documents and queries are modeled as distributions over (lowercased)

terms found in the “body” and subject of the respective email messages.

We also defined other useful functions. The number of times a term t occurs in a

query q or a document doc is, respectively, n(t,q) or n(t,doc). The recipient function

Recip(doc) returns the set of all recipients of message doc. The association function

a(doc,ca) returns 1 if and only if ca is one of the recipients (TO, CC or BCC)

of message doc, otherwise it returns zero. D(ca) is defined as the set of training

documents in which ca is a recipient, i.e, D(ca) = {doc|a(doc,ca) = 1}.

4.4.1 Expert Search Model 1

Predicting recipients (candidates) of an email message under composition (query)

is a very similar task to Expert Search, the task of predicting experts (candidates)

on a particular topic (query) [Balog et al., 2006, Fang and Zhai, 2007, Macdonald,

2006]. The analogy works so well that we can easily adapt many recently proposed

Expert Search formal models to the task of recipient prediction.

The first recipient prediction model considered here is the Model 1 proposed

for Expert Search by Balog et al. [2006]. In this model, the final candidate ranking

for each query q is given by the probability of this query being generated by a

smoothed candidate language model θca. More specifically, each message term from

q is assumed to be independently generated, thus:

p(q|θca) = ∏
t∈q

p(t|θca)
n(t,q) (4.1)

where p(t|θca), the probability of term t being generated by a smoothed candidate

language model θca. The distribution θca can be estimated from the empirical prob-

ability p(t|ca) smoothed by the background term probabilities from the entire col-

lection p(t) (i.e., maximum likelihood estimates of the terms in the sent train col-

lection):

p(t|θca) = (1−λ )p(t|ca)+ λ p(t) (4.2)

where λ is the Jelinek-Mercer smoothing parameter. The probability of a term given

a candidate p(t|ca) can be estimated as:

p(t|ca) = ∑
doc′

p(t|doc′)p(doc′|ca) (4.3)

where p(t|doc) is the maximum likelihood estimate of the term in the document

doc.
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Therefore, the following final model for the probability of a query q given a

candidate ca can be estimated as:

p(q|θca) = ∏
t∈q

{

(1−λ )

(

∑
doc′

p(t|doc′) f (doc′,ca)

)

+ λ p(t)

}n(t,q)

(4.4)

As a variation of the method above, one can use Bayes’ Rule p(doc|ca) =
p(ca|doc)p(doc)

p(ca) ∝ p(ca|doc)p(doc) to estimate Equation 4.3 as p(t|ca) ∝

∑doc′ p(t|doc′)p(ca|doc′). Denoting f (doc,ca) as either p(doc|ca) or p(ca|doc),
we can then express the following final model for the probability of a query q given

a candidate ca:

p(q|θca) ∝ ∏
t∈q

{

(1−λ )

(

∑
doc′

p(t|doc′) f (doc′,ca)

)

+ λ p(t)

}n(t,q)

(4.5)

where factor f (doc,ca) is the document-candidate association function which can

be estimated in two different ways [Balog et al., 2006]:

f (doc,ca) =

⎧

⎨

⎩

p(doc|ca) = a(doc,ca)
∑doc′ a(doc′,ca) , in document centric (DC) mode;

p(ca|doc) =
a(doc,ca)

∑ca′ a(doc,ca′) , in user centric (UC) mode.

(4.6)

This model directly creates a candidate model for each candidate in a user’s ad-

dress book. This model is based on the term information contained on all previ-

ous messages sent to the recipients. After representing each candidate as smoothed

language models, the recipients ca for a message q under composition are recom-

mended based on their p(q|θca) probabilities.

4.4.2 Expert Search Model 2

The second recipient prediction model considered is the Model 2 proposed by

Balog et al. [2006]. The basic difference to Model 1 is that candidates are not di-

rectly modeled. Instead, previous email messages (documents) act as hidden vari-

ables between candidates and queries.

By summing over all document, one can express the probability of the query

given the candidate in two ways:

p(q|ca) = ∑
doc′

p(q|doc′)p(doc′|ca) (4.7)
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in document-centric mode, or in candidate-centric mode as below:

p(q|ca) ∝ ∑
doc′

p(q|doc′)p(ca|doc′) (4.8)

The probability p(q|doc) can be estimated via a smoothed document model

p(q|θdoc). More specifically,

p(q|θd) = ∏
t∈q

p(t|θd)
n(t,q) (4.9)

where the probability of the term t given the document model θdoc can be estimated

as:

p(t|θdoc) = (1−λ )p(t|doc)+ λ p(t) (4.10)

where λ , p(t|doc) and p(t) are defined in the same way as in Section 4.4.1. We can

then express the final candidate ranking for each query q is given by the expression:

p(q|ca) = ∑
doc

{

∏
t∈q

[(1−λ )p(t|doc)+ λ p(t)]n(t,q)

}

f (doc,ca) (4.11)

Similar to Model 1, the two possible views of the document-candidate function

f (doc,ca) are defined according to equation 4.6.

Instead of creating user models, Model 2 directly creates a document model for

each message previously sent by the user. After representing document as smoothed

language models, the recipients ca for a message q under composition are recom-

mended based on their p(q|ca) estimates from equation 4.11.

4.4.3 TFIDF Classifier

The recipient recommendation problem can naturally be framed as a multi-class

classification problem, with each candidate address ca representing a class ranked

by classification confidence. Here we propose using the Rocchio algorithm with

TFIDF [Joachims, 1997, Salton and Buckley, 1988] weights as a baseline. For each

candidate, a centroid vector-based representation is created:

→

centroid(ca)=
α

|D(ca)| ∑
doc∈D(ca)

→

tfidf(doc)+
β

|sent train|− |D(ca)| ∑
doc/∈D(ca)

→

tfidf(doc)

(4.12)

where
→

tfidf(doc) is the TFIDF vector representation of message doc. More specif-

ically, for each term t in message doc, the value tfidf(t) = log(n(t,doc) +

1)log( |sent train|
DF(t)

), where DF(t) is the document frequency of t.
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The final ranking score for each candidate ca is produced by computing the co-

sine similarity between the centroid vector and the TFIDF representation of the

query, i.e., score(ca,q) = cosine

(

→

tfidf(q),
→

centroid(ca)

)

.

4.4.4 K-Nearest Neighbors

We also adapted another multi-class classification algorithm, K-Nearest Neighbors

as described by Yang & Liu [Yang and Liu, 1999], to the recipient prediction prob-

lem. Given a query q, the algorithm finds the set N(q), i.e., the K most similar

messages (or neighbors) in the training set. The notion of similarity here is also

defined as the cosine distance between the TF-IDF query vector
→

t f id f (q) and the

TFIDF document vector
→

t f id f (doc).
The final ranking is computed as the weighted sum of the query-document simi-

larities (in which ca was a recipient):

score(ca,q) = ∑
doc∈N(q)

a(doc,ca)cosine

(

→

tfidf(q),
→

tfidf(doc)

)

(4.13)

4.4.5 Other Baselines: Frequency and Recency

For comparison, we also implemented two even simpler baseline models: one based

on the frequency of the candidates in the training set, and another based on recently

sent messages in the training set. The first method ranks candidates according to

the number of messages in the training set in which they were a recipient: in other

words, for any query q the Frequency model will present the following ranking of

candidates:

f requency(ca) = ∑
doc

a(doc,ca) (4.14)

Compared to Frequency, the Recency model ranks candidates in a similar way, but

attributes more weight to recent messages according to an exponential decay func-

tion. In other words, for any query q the Recency model will present the following

ranking:

recency(ca) = ∑
doc

a(ca,doc)e

(

−timeRank(doc)
τ

)

(4.15)

where timeRank(doc) is the rank of doc in a chronologically sorted list of messages

in sent train1. In the experiments below the parameter τ in Equation 4.15 was set to

100, thus emphasizing the 100 most recent messages.

1 The most recent message has rank 1, the second most recent message has rank 2, and so

on.
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4.4.6 Threading

Threading information is expected to be a very important piece of evidence for

recipient prediction tasks, but unfortunately it cannot be directly exploited here

because the Enron dataset does not provide it explicitly. To approximately recon-

struct message threads, we used a simple heuristic based on the approach adopted

by Klimt and Yang [2004].

For each test message q, we construct a set with all messages on the same thread

as q (henceforth MT S(q), Message Thread Set) by searching for all messages satis-

fying two conditions. First, the message is among the last P messages sent previous

to q. Second, the message must have the same “subject” information2 as q. While

small values of P may not be enough to find all previous messages on the same

thread, larger values are expected to introduce more noise in the thread reconstruc-

tion process. In preliminary experiments, however, we observed that on average

larger values of P did not degrade prediction performance, so only the second con-

dition was imposed on the construction of MT S(q).
In order to exploit thread information in all previously proposed models, we used

the following backoff-driven procedure:

threaded modeli(q) =

{

MT S model(q) if ‖MT S(q)‖ ≥ 1;

modeli(q) otherwise.

where

MT S model(q) =

{

1.0 , if ca ∈
⋃

d∈MT S(q) Recip(d);

0.0 , otherwise.

That is, if q has no previous messages in its thread, predictions from the threaded

version of modeli will be made based on the original model modeli (for instance,

Frequency, Knn, TFIDF, Expert Model 1, etc.). Otherwise, if the thread of q contains

at least one message (‖MTS(q)‖ ≥ 1), predictions are dictated by MT S model(q)
— a model that assigns weight 1.0 to all recipients found in the messages in MT S(q)
and weight 0.0 to all other candidates3.

4.5 Results

4.5.1 Initial Results

In this section we present recipient prediction experiments using the models intro-

duced in Section 4.4. All those models can be naturally applied to both primary and

secondary recipient prediction tasks: the only difference is that, for obvious reasons,

in the secondary prediction task, a post-processing step removes all TO-addresses

from the final rank, and the test set contains only messages having at least one CC

or BCC address.

2 Or subjects differing only in terms of reply-to (RE:) or forward (FWD:) markers.
3 In all models, candidates with the same scores were ranked randomly.
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Similarly to Balog et al. [2006], in our experiments both Expert Model 1 and

2 used a smoothing parameter λ = 0.5. The TFIDF Classifier model had β = 0,

creating a centroid of positive examples for each candidate ca. We set K = 30 in the

Knn Model and τ = 100 in the Recency model, the values that delivered the best

results in preliminary tests for six users.

Table 4.2 shows Mean Average Precision (MAP) [Baeza-Yates and Ribeiro-Neto,

1999] results for all models presented in Section 4.4. T-only refers to Thread Only

— the prediction based only on detecting threads, i.e., if no thread is detected, can-

didates are chosen randomly. Freq refers to the Frequency model, while Rec refers

to the Recency model. The symbol TFIDF refers to the TFIDF Classifier model. Ex-

pert models one and two are referred as M1 and M2, with the candidate-document

association indicated by -uc (user centric) or -dc (document centric). Thread refers

to models with thread processing (Section 4.4.6). Two-tailed paired t-test were used

for statistical significance tests.

Table 4.2 MAP recipient prediction results averaged over 36 users. Statistical significance

relative to the best model results (in bold) is indicated with the symbols ∗∗ (p < 0.01) and ∗

(p < 0.05).

TOCBCC CCBCC TOCCBCC CCBCC

(thread) (thread)

T-only 0.221** 0.261** N/A N/A

Freq 0.203** 0.228** 0.331** 0.379**

Rec 0.260** 0.309 0.363** 0.424*

M1-dc 0.279** 0.262** 0.393** 0.402**

M1-uc 0.275** 0.272** 0.385** 0.407**

M2-dc 0.279** 0.236** 0.384** 0.391**

M2-uc 0.313** 0.278** 0.408** 0.425**

TFIDF 0.365 0.301* 0.44 0.429*

Knn 0.361 0.332 0.441 0.459

Results in Table 4.2 clearly indicate that the best recipient prediction performance

is typically reached by the Knn model, followed by TFIDF. It also reveals that Re-

cency is typically a stronger baseline for this task than the Frequency model. Over-

all, the expert models M1 and M2 presented inferior results when compared to Knn,

and the difference was statistically significant. It is also interesting that the best Ex-

pert Search-based model was consistently M2-uc, the same behavior observed by

Balog et al. [2006] on the TREC-2005 Expert Search task.

The use of thread information clearly provided considerable performance gains

for all models and tasks. These gains are somewhat expected because, in many

cases, email users are simply using the “reply-to” or “reply-all” buttons to select

recipients. These improvements are consequently a strong indication that the thread

reconstruction algorithm is working reasonably well in this dataset and also the fact

that a large proportion of the test messages was found to have a non-empty Message

Thread Set MT S(q). In fact, 29% of the test messages in the primary prediction
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task had non-empty MT S(q), while the same number for secondary predictions

was 35%.

To give a complete picture of the best results, Table 4.3 shows the Knn perfor-

mance metrics in terms of other common ranking metrics, such as Mean Recipro-

cal Rank (MRR), R-Precision (R-Prec), and Precision at Rank 5 and 10 (P@5 and

P@10) [Baeza-Yates and Ribeiro-Neto, 1999]. Overall, the average performance

over the 36 Enron users had MRR of more than 0.5, a very good result for such

a large prediction task (5202 queries from 36 different users). A closer look in

the numbers revealed a much larger variation in performance over different users

than over different models, as attested by Table 4.4. For the primary prediction

(threaded), over the 36 users sample, the maximum MAP was 0.76, the minimum

was 0.186, with a standard deviation of 0.101.

Table 4.3 Recipient prediction results for the best model (Knn) averaged over 36 users.

MAP MRR R-Prec P@5 P@10

TOCCBCC 0.361 0.440 0.294 0.182 0.135

CCBCC 0.332 0.405 0.266 0.177 0.126

TOCCBCC (threaded) 0.441 0.516 0.398 0.225 0.157

CCBCC (threaded) 0.459 0.540 0.425 0.239 0.156

Based on this variability, we measured the Pearson’s correlation coefficient R

(quotient of the covariance of the two variables by the product of their standard de-

viations) between variables that might influence performance. First, the correlation

between training set size (|sent train|) and the number of classes or ranked enti-

ties (address book size) is 0.636 — a clear indication that users who send more

messages tend to have larger address books. More surprising, perhaps, was the fact

that the Pearson’s correlation between performance and training set size, as well as

the one between performance and Address Book size, was smaller than 0.2 in ab-

solute values — suggesting there is no apparent strong correlation between these

variables4. One possible explanation is that these two variables contribute inversely

to the performance (while recipient prediction is certainly easier with smaller Ad-

dress Book sizes, it is certainly harder with less training data) and the overall effect

is hence weak.

4.5.2 Rank Aggregation

Ranking results can be potentially improved by combining the results of two or

more rankings to produce a better one. One set of the techniques commonly applied

to rank combination is Data Fusion [Aslam and Montague, 2001].These methods

have been successfully applied in many areas, including Expert Search [Macdonald,

2006] and Known Item Search [Ogilvie and Callan, 2003].

4 Similar results were observed for different models on both for primary and secondary

predictions.
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Table 4.4 MAP values using the Knn baseline for all 36 Enron users.

Enron user TOCCBCC CCBCC TOCC(threaded) CCBCC(threaded)

campbel 0.263 0.319 0.336 0.444

derrick 0.228 0.515 0.379 0.503

dickson 0.390 0.348 0.463 0.476

geaccone 0.549 0.244 0.533 0.351

germany 0.362 0.587 0.349 0.578

giron 0.403 0.112 0.488 0.254

grigsby 0.377 0.372 0.523 0.728

hayslett 0.291 0.138 0.419 0.307

horton 0.293 0.103 0.334 0.151

hyatt 0.462 0.506 0.508 0.639

hyvl 0.444 0.314 0.459 0.329

kaminski 0.765 0.692 0.759 0.703

kitchen 0.366 0.149 0.523 0.581

lavorato 0.356 0.258 0.347 0.246

lokay 0.450 0.770 0.523 0.812

rapp 0.300 0.140 0.425 0.377

ward 0.356 0.561 0.433 0.695

bass 0.468 0.581 0.507 0.616

beck 0.295 0.196 0.357 0.297

blair 0.457 0.437 0.513 0.499

cash 0.301 0.165 0.357 0.226

clair 0.352 0.325 0.404 0.332

farmer 0.442 0.362 0.512 0.417

fossum 0.063 0.067 0.186 0.198

haedicke 0.273 0.237 0.387 0.433

jones 0.370 0.276 0.419 0.314

kean 0.287 0.383 0.397 0.526

love 0.398 0.431 0.511 0.674

perlingiere 0.335 0.235 0.433 0.552

presto 0.419 0.296 0.574 0.530

sager 0.227 0.16 0.286 0.314

sanders 0.286 0.248 0.332 0.416

scott 0.484 0.483 0.558 0.553

shackleton 0.261 0.290 0.445 0.507

taylor 0.287 0.369 0.418 0.424

tycholiz 0.352 0.298 0.490 0.516

Mean 0.361 0.332 0.441 0.459

Because not all ranking scores of the proposed methods in Section 4.4 are nor-

malized, it is not reasonable to use score-based fusion techniques such as Comb-

SUM and CombMNZ [Macdonald, 2006]. Instead, we utilized Reciprocal Rank

[Macdonald, 2006] (or RR), a rank-based fusion techniques in which the aggregated

score of a document is the sum of inverse ranks of this document in the rankings,

i.e., the sum of one over the rank of the document across all rankings.
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Table 4.5 MAP values for model aggregations with Reciprocal Rank. The ∗ and ∗∗ symbols

indicate statistically significant results over the Knn baseline.

Task Freq Recency TFIDF M2-uc

TOCCBCC Knn ⊙ 0.417** 0.432 0.457** 0.444

Knn ⊙ TFIDF ⊙ 0.455** 0.464** — 0.461**

Baseline: Knn Knn ⊙ TFIDF ⊙ Rec ⊙ 0.451** — — 0.470**

MAP = 0.441 Knn ⊙ TFIDF ⊙ Rec ⊙ M2-uc ⊙ 0.464** — — —

CCBCC Knn ⊙ 0.455 0.470 0.462 0.474*

Knn ⊙ M2-uc ⊙ 0.476** 0.491** 0.482** —

Baseline: Knn Knn ⊙ M2-uc ⊙ Rec ⊙ 0.491** — 0.494** —

MAP = 0.458 Knn ⊙ M2-uc ⊙ Rec⊙ TFIDF ⊙ 0.501** — — —

Table 4.5 shows experimental results on aggregating recipient recommendation

techniques with rank-based Fusion methods. The symbol ⊙ represents the aggrega-

tion operation over different models (all threaded). For instance, in the TOCCBCC

task, the aggregation of Knn and Freq (Knn ⊙ Freq) rankings produced a final rank-

ing with MAP of 0.417. On each line, the best performing model (in bold face) is

selected to be part of the base aggregation in the following line. For instance, the

second line displays aggregation results when Knn is combined with the best model

in the previous line (TFIDF) and all other three remaining methods. The initial base-

line model is threaded Knn.

Results clearly show noticeable performance improvements over the baseline.

MAP gains up to 0.042 in the secondary prediction task, and close to 0.03 on pri-

mary predictions. In most cases, the gains over the Knn baseline are statistically

significant5.

In a second set of experiments, we used a weighted version of RR, where the

weights for each base ranking were determined by the performance obtained by

the respective model in a development set. More specifically, this development set

was constructed using the 20% most recent messages in sent train, and used as test

after training the models in the remaining 80%. Overall, results were statistically

significantly better than the Knn baseline, but not statistically significantly better

than the unweighted results in Table 4.5.

4.5.3 Email Auto-completion

Email address auto-completion is the feature in email clients that provides a list

of email addresses after the user typed a few initial letters of the intended contact

address. Typically email clients allow users the option to turn on or off the auto-

completion feature, but rarely are users allowed pick how the suggested addresses

5 We also experimented with the Borda Fuse [Macdonald, 2006] aggregation method, but it

presented consistently worse results when compared to RR. A similar observation can be

drawn from other rank aggregation tasks [Macdonald, 2006, Ogilvie and Callan, 2003].
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should be ranked. In this section we analyze different strategies for email auto-

completion ranking.

Email auto-completion is essentially an email recipient recommendation task in

which the user provides the initial characters (or some key characters) of the recipi-

ent’s name or address. Therefore, the same ranking models and strategies previously

utilized in Section 4.4 can naturally be adapted to email auto-completion.

In order to test different strategies and models for email auto-completion, we

used the following experimental procedure. For each query message q, we extracted

all its recipient Recip(q), and for each recipient in Recip(q), we extract its V initial

letters6. Then these V initial letters are used to filter out candidates ranked by the

recommendation model.

Table 4.6 presents performance values in terms of MRR* for different values of

V and different recommendation models. Notice that for each query q, |Recip(q)|
different auto-completion rankings are created, one for each member of Recip(q)
(each ranking contains a single relevant recipient and all other recipients in the Ad-

dress Book who share the same initial letters). MRR* is the mean value of MRR

over these rankings.

When V = 0, no initial letter of the email contact is known, and the task is the

same as the original recipient recommendation from Sections 4.5.1 and 4.5.2. As

V increases, more is known about the intended recipient and consequently predic-

tion performance becomes better. In addition to the threaded versions of Knn, Re-

cency (Rec) and Frequency (Freq), Table 4.6 shows results for when recipients are

presented in alphabetical order (Alpha). It also contains a model called All-Fusion

(Fus), displaying results with the aggregated rankings from all models in Table 4.5

(i.e., using rankings produced by the combinations indicated in the 4th and 8th lines

of that Table).

In general, Table 4.6 indicates that Knn performs slightly better than Recency,

which in turn performs better than Frequency. This difference is more noticeable

for small values of V — exactly where most email users will benefit the most from

auto-completion. When V = 2 or V = 3 the different between Knn and Recency is

not statistically significant. The All-Fusion model shows the best auto-completion

results overall, significantly outperforming all other models for all values of V . Table

4.6 also displays the relative performance gains between Knn and Recency, All-

Fusion and Recency as well as All-Fusion and Knn. Auto-completion performance

numbers for larger values of V are illustrated in Figures 4.1 and 4.2.

Compared to any of the other models, auto-completion based only on the al-

phabetical order presents a rather low performance on both primary and secondary

prediction tasks. All other methods provided significant gains in performance when

compared to it.

6 In a general case, initial letters from the contact’s email address, last name, first name and

nickname can be used. We used only email addresses because those were the only contact

information consistently available in the Enron corpus; but results can be extended for the

general case.
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Table 4.6 Auto-completion Experiments. Performance values for different models and V

values. Statistical significance relative to the previous column value is indicated with the

symbols ∗∗ (p < 0.01) and ∗ (p < 0.05).

Primary Prediction (TOCCBCC)

V Alpha Freq Rec Knn Fus ∆ (Knn-Rec) ∆ (Fus-Rec) ∆ (Fus-Knn)

0 0.022 0.274** 0.300** 0.377** 0.394** 25.542% 31.124% 4.447%

1 0.250 0.620** 0.653** 0.690** 0.731** 5.753% 11.893% 5.806%

2 0.557 0.846** 0.857 0.858 0.895** 0.078% 4.412% 4.331%

3 0.737 0.911** 0.923* 0.917 0.942** -0.683% 2.001% 2.702%

Secondary Prediction (CCBCC)

0 0.025 0.329** 0.364** 0.398* 0.436** 9.526% 19.927% 9.496%

1 0.265 0.668** 0.718** 0.717 0.777** -0.125% 8.289% 8.424%

2 0.549 0.858** 0.875 0.865 0.910** -1.189% 3.928% 5.178%

3 0.729 0.915** 0.929 0.915 0.946** -1.558% 1.811% 3.423%
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Fig. 4.1 Auto-completion performance on the TOCCBCC task for different number of initial

letters.

4.6 Discussion and Related Work

We addressed the problem of recommending recipients for messages under com-

position. Evidence from a very large work-related real email corpus revealed that at

least 9% of the users forgot to address an intended recipient at least once, while more

than 20% of the users have been accidentally “forgotten” as intended recipients. We

proposed several possible models for this task, and evaluated their predictive per-

formance on 36 different users from the Enron corpus. Experiments showed that a
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Fig. 4.2 Auto-completion performance on the CCBCC task for different number of initial

letters.

simple model based on the K-Nearest Neighbors algorithm generally outperformed

all other methods, including frequency or recency based models, and more refined

formal models previously proposed for Expert Search.

We also investigated how to combine the rankings of different models using rank-

based data fusion techniques, such as sum of Reciprocal Ranks. Experiments clearly

indicated that aggregated models generally outperform all base models, both on

primary and secondary recipient prediction tasks.

Intelligent message addressing techniques can also be naturally adapted to im-

prove email address auto-completion, i.e., suggesting the most likely addresses

based on a few initial letters of the intended contact. Email auto-completion is an

extremely useful and popular feature, but in spite of it, little is publicly known on

how addresses are ranked in the most popular email clients, and we are not aware

of any study comparing different techniques on this particular message address-

ing problem. We evaluated several ranking baselines for this problem — including

alphabetical, frequency and recency ordering — in a large collection of users. Re-

sults clearly indicate that the proposed intelligent addressing models outperform all

baselines for email auto-completion. Overall we show that intelligent message ad-

dressing techniques are able to visibly improve email auto-completion, as well as to

provide valuable assistance for users when composing messages.

The email recipient prediction problem is related to the expert search task. In the

former, the task is to retrieve the most likely recipients of a message under com-

position, while in the latter the task is to retrieve the most likely experts on a topic
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specified by a textual query. In fact, it is easy to find similarities between recipient

prediction and early expert search work using enterprise email data [Campbell et al.,

2003, Dom et al., 2003, Sihn and Heeren, 2001]. Recently, interesting models for

Expert Search have been motivated by the TREC Enterprise Search, where different

types of documents are taken as evidence in the process of finding experts. Because

of the similarity between these tasks, many of the presented ideas were motivated

by recently proposed expert search models [Balog et al., 2006, Fang and Zhai, 2007,

Macdonald, 2006].

Though relatively similar, expert search and email recipient prediction have some

fundamental differences. First, the latter is focused on a single email user, while the

former is typically focused in an organization or group. The former is explicitly

trying to find expertise in narrow areas of knowledge (queries with a small number

of words), while the latter is not necessarily trying to find expertise — instead, it is

trying to recommend users related to a message “query” that may have up to a few

hundred words.

In a related work, Pal and McCallum [2006] described what they called the CC

Prediction problem. In their short paper, two machine learning models were used to

predict email recipients in the personal collection of a single user. However their

modeling assumptions is substantively different from ours: they assume that all

recipients but one are given and the task is to predict the final missing recipient.

Performance was evaluated in terms of the probability of having “recall at rank 5”

larger than zero, i.e., the probability of having at least one correct guess in the top 5

entries of the rank. They report performance values around 44% for this metric on

a single private email collection. For comparison, our best system achieves 64.8%

and 70.6% on the same metric for primary and secondary predictions, respectively,

averaged over the 36 different Enron users. Only two of the Enron users presented

values smaller than 44% in this metric for primary predictions, and only one Enron

user on secondary predictions.



Chapter 5

User Study

5.1 Introduction

In Chapters 3 and 4.6 we introduced new methods to address very common message

addressing problems, namely email recipient recommendation and email leak pre-

diction. Although the proposed methods showed promising results in batch experi-

ments on very large email collections, many questions were still unanswered. How

can these methods be incorporated in an integrated interface? Can users notice any

difference in quality between rankings provided by different baseline algorithms?

Can these methods really catch email leaks? Can we estimate how often email leaks

occur? Can these techniques be adopted and benefit a large number of email users?

In this Chapter we described a user study designed to address these questions.

In order to run this study, first we had to incorporate some of the aforementioned

prediction models into an email client.

Selecting an email client in which the recipient recommendation and leak de-

tection algorithms could be implemented depended on several factors such as the

popularity of email client, whether or not the client is open source, operating sys-

tem interoperability, the ease with which it could be modified to incorporate new

features, and how easily these modifications can be distributed to users. The op-

tions considered were Mozilla Thunderbird, GMail, or a new standalone email client

which we would have to develop from scratch. Developing a new email client had

the disadvantage that it would take a long time for it to be used widely, if at all.

Moreover, considerable effort would have to be put into engineering efforts which

were peripheral to the issue at hand. GMail has the advantage of being widely used

especially in the academic community, however the API offered by GMail was inad-

equate for our needs. Mozilla Thunderbird, on the other hand, is very popular1, has

a well established mechanism to add extensions, and is open source, which makes

it an excellent platform to incorporate new features.

1 It is estimated that Mozilla Thunderbird has between 5 and 10 million active users.

V.R. Carvalho: Modeling Intention in Email, SCI 349, pp. 69–89, 2011.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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5.2 Cut Once: A Mozilla Thunderbird Extension

Cut Once is a new extension to Mozilla Thunderbird that implements methods from

the previous chapters to perform recipient recommendation (Chapter 4.6) as well as

email leak prediction (Chapter 3). The extension is primarily written in Javascript,

and the user interfaces are specified using a Mozilla specific XML-based file format

called XUL.

Similar to all other Thunderbird extensions, Cut Once is distributed as an .xpi

package, which can be easily installed in any Mozilla Thunderbird client us-

ing Thunderbird’s Extension Manager. A screenshot of Thunderbird’s main win-

dow after installating Cut Once is displayed in Figure 5.1. Currently Cut Once

can be downloaded from its website: http://www.cs.cmu.edu/˜vitor/

cutonce/cutOnce.html.

Fig. 5.1 Thunderbird main window after installing Cut Once

5.2.1 Algorithms

The algorithms chosen for implementation in the Mozilla Thunderbird extension

needed to be computationally inexpensive, since Javascript is a slow interpreted

language. Expensive operations in Javascript tend to bog down the email client and

make it virtually unusable.

TFIDF baseline

The first baseline method implemented in Cut Once was the TFIDF multi-class

classification method (a.k.a. Rocchio algorithm) described in Section 4.4.3. The

centroids for each recipient, represented as a TFIDF vector over terms, are first

computed by iterating through the user’s Sent folder in the email client.

http://www.cs.cmu.edu/~vitor/cutonce/cutOnce.html
http://www.cs.cmu.edu/~vitor/cutonce/cutOnce.html
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Recency and Frequency baselines

As described in Section 4.4.5, frequency and recency information can be used as

baselines for email prediction tasks. The frequency method ranks candidates ac-

cording to the number of messages in the training set in which they were a recipient

(see Equation 4.14).

The recency method ranks candidates in a similar way, but attributes more weight

to recent messages according to an exponential decay function (see Equation 4.15).

As before, the parameter τ in Equation 4.15 was set to 100 in CutOnce, highlighting

the importance of the 100 most recent messages.

Aggregating Baseline Methods with Data Fusion

The ranks obtained by the recency, frequency and TFIDF methods can be com-

bined using data fusion techniques based on the Mean Reciprocal Ranks (MRR)

of the baseline rankings [Aslam and Montague, 2001, Craig Macdonald, 2006,

Ogilvie and Callan, 2003]. Results from Section 4.5.2 showed that using MRR to

combine different baselines can provide better performance than one single base-

line in isolation.

In Cut Once we implemented an MRR-based ranking method combining the

TFIDF, Frequency and Recency baselines described above. The MRR combination

can be expressed as:

MRR(ca) =
α

recency rank(ca)
+

β

f requency rank(ca)
+

γ

t f id f rank(ca)
, (5.1)

i.e., the final aggregated ranking of a recipient candidate ca is a function of the

ranking of the same recipient obtained by the base methods (TFIDF, frequency and

recency). Based on preliminary tests, we set both α and β to 1.0, and γ to 2.0 by

default.

Two baseline methods

One of the main questions we would like to answer is whether the differences in

overall ranking performance observed in Section 4.5.2 are noticeable to email users.

To investigate this, we designed Cut Once with a controlled variable affecting

the ranking method used by a particular user. That is, the extension uses the TFIDF

baseline for roughly half the users (chosen randomly at installation time), and the

MRR baseline (as described by Equation 5.1) for the other half of the users.
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Fig. 5.2 The training dialog window

5.2.2 Training

Since the algorithms are implemented in Javascript, scalability and computation

time are significant factors. The memory available to the extension is also limited

since computation occurs on client machines. Keeping this in mind, steps were taken

to keep the training time in check to limit the impact on user experience. Firstly, all

words with a document frequency lower than a fixed threshold (set at 5) were elim-

inated from the TFIDF representation. Secondly centroids for recipients to whom

the number of messages sent was below a threshold (set at 5), were not calculated.

After the model is trained, the parameter values are stored in a text file on the user’s

computer. When the client is restarted, this model file is read thus preventing the

need to retrain the system each time the client is started.

Cut Once needs to be trained before it is able to make recipient predictions. From

the user’s perspective, training is achieved by clicking on a “Sent” folder and hitting

the “Train” button on Thunderbird’s toolbar. The time taken for training depends on
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the number of messages in the sent folder, the speed of the processor, among other

factors. A rough estimate is 150 messages per minute. Once the training procedure

is completed, a model file called thunderbird infoleak model.dat is created in the

user’s home directory. The model file is then read in by Cut Once each time Thun-

derbird starts up. A weekly reminder encourages users to retrain on a regular basis.

A screenshot with the window displayed to the user during training can be seen in

Figure 5.2.

The model file thunderbird infoleak model.dat created by the training process

stores the following pieces of information about the user’s Sent folder.

• Centroids: A centroid for each email address to which a message was sent to is

computed by calculating a mean vector over all the messages addressed to the

email address. Each email is represented by a TFIDF vector over the words in

the subject and body.

• Document frequencies: A table of words and its corresponding document fre-

quency, which is the number of messages in which the word occurred. This is

necessary to compute TFIDF vectors for messages during runtime.

• Recency and Frequency Ranks: Candidate email addresses in the Sent folder

are ranked by recency and frequency to establish a baseline ranking. The ranks

assigned to each email address are saved in the model file to enable Cut Once to

display a baseline ranking during runtime.

5.2.3 Prediction

After training is completed, Cut Once is ready to make predictions. The runtime

predictions of CutOnce are triggered via two possible mechanisms.

The first one happens when a user hits the “Send” button for a message under

composition. In this case, a dialog box pops up, highlighting possible email leaks,

and also listing other recommended recipients for the particular message just com-

posed. Clicking on any of the predicted leak addresses will remove the address from

the recipient list of the original message. Analogously, clicking on a recommended

address will add this address to the recipient list. This dialog box has a countdown

timer that sends the message after 10 seconds if the user does not take any action —

thus ensuring that no additional action is needed to send a message. A screenshot of

this dialog box can be seen in Figure 5.3.

The second one is triggered by the “Recommend Recipients” button on the tool-

bar in the Compose window. This pops up a window with a list of recommended

recipients for the message being composed. Recipients can be added to the message

by clicking on the suggested recipients. A screenshot of this window can be seen in

Figure 5.4.
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Fig. 5.3 The information leak and recipient recommendation dialog window; displayed when

Send button is pressed.

Fig. 5.4 The recipient recommendation dialog window

5.2.4 Logging

CutOnce logs information about many aspects of the extension usage. This includes

information such as the rank of an address that the user clicks on, the time taken by

the user to click on that address, and the rank and prediction score of the address

clicked by the user. The complete list of attributes logged by Cut Once are shown in

Table 5.1.
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Fig. 5.5 Cut Once logging message

Table 5.1 Set of attributes logged by Cut Once

1 whether the use used the explicit Send button or let the timer expire

2 whether the user deleted a recipient (possibly due to a potential leak)

3 rank of the deleted recipient in the potential leak list

4 confidence score of the recipient deleted

5 time elapsed before the recipient was deleted

6 rank of the added recipient in the recommendation list

7 time elapsed before recipient was added

8 confidence score of recipient added

9 number of messages in the user’s Sent folder

10 number of recipients addressed in the Sent folder messages

11 Cut Once software version

12 baseline ranking method (TFIDF or MRR)

Every week the user is reminded to send the logged information via email to

the user study researchers. If the user acquiesces, a new email compose window

is opened up with the log information prefilled in the content section. The logging

message does not contain any personal or private information from the user (such

as email content or recipients), nor from any of the user’s contacts. Users are also
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encouraged to send in comments in a designated area in this email. A screenshot

with the email containing the logging information is displayed in Figure 5.5.

In addition to the weekly reminders, at any time the user can also send this log-

ging message by clicking on the “Mail Statistics” button (Einstein button) of the

main Thunderbird window (see Figure 5.1).

5.3 Study Description

Several human subjects, mostly from the Pittsburgh area, were recruited using web

forums and newsgroups messages for a four-week long user study. These partici-

pants were told that the goal was to study how to improve the way people address

email messages based on intelligent addressing techniques [Carvalho and Cohen,

2007, 2008].

Participants were required to be Thunderbird users, to write email using Thun-

derbird on a daily basis, and to be at least 18 years-old. The recruitment message

also indicated that the task would be simple, with minimum or no interruptions at

all. The recruiting message can be found in Appendix B.1.

After contacting the study researchers indicating their interest, participants were

instructed on how to install and train Cut Once. After successfully installing and

training the extension using the procedures described at Cut Once’s website2, par-

ticipants received a message explaining exactly what Cut Once could do. They were

also instructed to keep on using Thunderbird as usual, and that in one week Thun-

derbird would request them to send an initial logging message to the user study

researchers.

After this logging message was received and analyzed, qualified participants were

partially compensated (20% of total compensation) and invited to participate in the

second phase of this user study. Qualification was based on frequency of email use

during this first week, number of addresses in the Sent folder, and the number of

message previously sent using Thunderbird. The main purpose of this procedure

was to avoid selecting users who rarely used Thunderbird, or users who used Thun-

derbird to email a few people only — for obvious reasons, these cases would not

add value to our experiments.

In the second phase of the study, participants were compensated with the remain-

ing 80% of the total compensation after three more weeks using Cut Once3. They

also had to complete an initial questionnaire with general questions, as well as a

final questionnaire exclusively about Cut Once.

The final questionnaire was about the general Cut Once experience, quality of

predictions, interface issues, and usability, as well as suggestions for improvement.

The complete set of questions in both questionnaires can be found in Appendix B.2

and B.3.

2 http://www.cs.cmu.edu/˜vitor/cutonce/cutOnce.html
3 Due to scheduling conflicts to arrange the final questionnaire interview, many participants

ended up using Cut Once for more than than 3 weeks.

http://www.cs.cmu.edu/~vitor/cutonce/cutOnce.html
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To summarize, this user study adopted the following procedure:

1. After advertising the user study, subjects contacted the researchers through email,

expressing interest to participate.

2. Subjects received detailed information on the goals, methods, compensation and

conditions of the study.

3. After successfully installing and training the extension in their personal comput-

ers, subjects were asked to use Cut Once for one week.

4. By the end of this first week, subjects had to send logging messages to the re-

searchers. Based on these messages, some qualified subjects were invited to con-

tinue using Cut Once for three more weeks — sending logging messages weekly.

Qualified subjects were immediately eligible to receive 20% of the total compen-

sation.

5. After three extra weeks, subjects were invited to an interview where they would

have to answer two questionnaires.

6. After completing the questionnaires, subjects were thanked and received 80% of

the total compensation.

5.4 Results

5.4.1 Adoption

A total number of 26 subjects completed the user study: 4 female and 22 male. Ages

ranged from 18 to 49 years-old, with an average of 31.7 and median of 28.5 years.

From the 26 subjects, 13 were graduate students, mostly from Carnegie Mellon Uni-

versity or from the University of Pittsburgh. Other reported occupations were soft-

ware engineers, system administrators, undergraduate students, one staff member

and one faculty.

Subjects used Thunderbird on a daily basis, composing messages largely in En-

glish. During the user study, subjects composed 2315 messages using Mozilla Thun-

derbird, with an average of 11 messages sent per week. According to statistics col-

lected from Sent directories, on average, subjects had written 2399 messages to 113

different recipients before the beginning of the user study. An average of 2.4 devices

(computer, cell phone, etc.) per person were used to compose emails.

Another 17 users started but did not finish the study. They installed and success-

fully trained Cut Once, sent out at least one logging message, but stopped sending

these messages not long after that. Either these users did not qualify to the second

phase of the study, or voluntarily stopped sending logging messages.

In addition to these, 11 users showed initial interest and contacted the researchers,

but were never able to send a single logging message. In these cases it is hard to

know exactly the reasons for the discontinuation. Perhaps these users found Cut

Once uninteresting or annoying after installation, or became unmotivated by the

low compensation and lengthy nature of the study. We speculate that one of the

main reasons is the slow training process.
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Installation of Cut Once was smooth for all participants, but training frequently

was not. Many users complained that training took too long or got “stuck” in a few

messages. It was indeed a problem — Javascript is a slow interpreted language, not

suited to large amounts of textual data processing. As expected, this issue affected

more severely users with large number of messages, or users having a few very large

messages.

Mozilla provides a portal for developers and practitioners of their open

source softwares. We submitted Cut Once to Mozilla Thunderbird Sandbox,

and it is currently available at https://addons.mozilla.org/en-US/

thunderbird/statistics/addon/6392. According to their statistics,

there has been 49 downloads of Cut Once from their site so far. Mozilla may

have helped advertise the extension and the associated user study. Three of the 26

user subjects were not from Pittsburgh, and many of the requests for participation

came from all over the world: California, Maryland, Canada, Holand, Spain, among

others.

5.4.2 Usage and Predictions

As previously explained, Cut Once provided an interface in which the predicted

email leaks could be automatically removed from the addressee list with a click.

Eighteen out of the 26 subjects used it at least once. Overall, these 18 subjects used

the leak deletion functionality in approximately 2.75% of their sent messages.

The final interviews revealed two main reasons why subjects utilized the leak

deletion interface. First, some subjects clicked on these suggested leaks to play with

the extension, particularly right after installation and training. Other subjects, as

revealed in their final interviews, utilized the leak deletion button to “clean up” the

addressee list — to remove unwanted people after hitting the reply-all button, or

to remove themselves as recipients (some clients are configured to automatically

include the sender as a CC’ed recipient).

Unfortunately, none of the subjects reported using the delete leak functionality

to actually remove a real case of email leak. However, it does not mean that they

did not occur among the 2315 messages sent throughout the user study. In fact, four

different subjects reported that Cut Once correctly caught real email leaks. After

noticing the mistake, all four subjects rushed to click on the cancel button, imme-

diately closing Cut Once’s dialog window and consequently not reporting the real

leak case in next logging message. Instead of deleting the leaks using Cut Once’s

interface, the reasons why these users canceled the dialog window were because

subjects were uncomfortable or unfamiliar with the interface features, or because

subjects were feeling under pressure due to 10-second timer, or a combination of

both.

The first of these subjects was a network administrator at Carnegie Mellon’s

Computing Services, who addresses several users everyday by their aliases (user

IDs). He reported that he confused two students with very similar alias, and Cut

https://addons.mozilla.org/en-US/thunderbird/statistics/addon/6392
https://addons.mozilla.org/en-US/thunderbird/statistics/addon/6392
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Once alerted him to the mistake. A similar case happened to a systems administra-

tor of the University of Pittsburgh, who frequently uses auto-completion to select

recipients. He reported that in two or three different messages, one of the addresses

selected by auto-completion was wrong, and that Cut Once correctly warned him

of the potential email leak. A Carnegie Mellon undergraduate student reported that

he confused the email addresses of two acquaintances with very similar names, and

Cut Once helped prevent that email leak. A graduate student of this same university

reported that he used the reply-all button when he should not have, and Cut Once

caught one of the unintended addresses as a leak.

Since one of the subjects reported Cut Once catching leaks in “two or three” dif-

ferent messages, henceforth we assume that five leaks were caught by the extension

during the user study. This is a likely lower bound on the real number of leaks for

that population, given that in some cases users do not even realize their addressing

mistakes. Three out of these five real leaks came from subjects using the TFIDF

baseline ranking method, and the remaining two leaks had subjects using the MRR

baseline. Data from these four subjects did not reveal any strong correlation with

the number of sent messages, nor with the number of observed leak deletions using

Cut Once. Likewise, no correlation was observed with the number of entries in the

subject’s address book.

Overall there were five real email leaks in 2315 sent messages. A sample aver-

age of approximately 0.00215982 email leaks per sent message, or one email leak

occurrence per 463 sent messages. Assuming email leak occurrences follow a bino-

mial distribution with probability of success p = 5
2315 , it would be necessary at least

321 messages for having a 50% chance to experience at least one email leak, and

1066 messages for a 90% chance.

Three out of the five leaks caught by Cut Once came from subjects whose oc-

cupations require a lot of email message handling (a systems administrator and a

network administrator), even though only 5 out of the 26 subjects had professions

demanding substantial email handling. A binomial test on this data indicates that,

with approximately 95% confidence, users whose professions require lots of mes-

sage handling have a higher probability of generating leaks than other professions.

Indeed, this agrees with subject’s final questionnaire answers, where it was reported

that the most likely users to benefit from the functionalities provided by Cut Once

are persons who work with many different people, send a lot of messages or manage

several different projects (e.g., secretaries, administrators, executives).

The other functionality provided by Cut Once was recipient recommendation.

With a click on the suggested addresses, users could add recipients to messages

under composition. A total of seventeen of the subjects used the functionality at

least once. Overall, these 17 subjects utilized the email suggestions functionality in

approximately 5.28% of their sent messages.

Considering all subjects in the study, there were 95 accepted suggestions in 2315

sent messages. A sample average of approximately 0.041036 accepted suggestions

per sent message, or one accepted suggestion occurrence per 24.37 sent messages.

There are a few reasons behind these low numbers. Some users did not seem inter-

ested in the functionality, others claimed that they simply “did not need it”, while
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others did not even know that recipients could be added by clicking on the sug-

gested email addresses. Another issue was the fact that the pop-up window with

recommendations was triggered on all sent messages, regardless whether it was a

new composition or a reply, and many subjects claimed that the proposed function-

alities were not necessary in case of replies, particularly to a single recipient only4.

Another consequence of triggering predictions on all sent messages is that the leak

detection false positive rate (or false alarm rate) was high: 2315−5
2315 = 0.99784.

Ideally Cut Once should only provide predictions if models are reasonably con-

fident of a leak or a missing recipient. However, learning a user-based confidence

threshold can be challenging, particularly for users with a small number of mes-

sages. Also, if it adopted a fixed arbitrary threshold, not all real leaks would be

displayed to the user, potentially causing the number of reported leaks (a very rare

event) to be even lower. Because of these issues, we left the implementation of

confidence-based triggered predictions as future work.

Cut Once presented recipient recommendations in a scrollable window that could

fit up to 9 addresses in a ranked list. The distribution of the ranks of the accepted

recommendations (or clicked ranks) can be found in Figure 5.6. Figure Figure 5.6(a)

shows the data in a histogram, Figure 5.6(b) displays the same data in a boxplot. The

median clicked rank was 2, and first and third quartiles were, respectively, 1 and 7.

This plot indicates that users typically clicked on the first 7 recommended addresses,

and only rarely had to scroll down to higher positions of the ranked list.

Figure 5.6 can be seen as an indication of the reasonably good quality of Cut

Once’s suggestions. In fact, one of the questions in the final questionnaire is exactly

about the quality of the suggested rank (see question 5 in Appendix B.3). Results

were reported in a likert scale (5(excellent) 4(good) 3 (neutral) 2(bad) 1(very bad)),

and a boxplot representing the distribution of results can be found in Figure 5.7. The

reported mean of this distribution was 3.46.

Figure 5.7 also shows distributions of likert scores from the answers to the other

questions in the final questionnaire. Question 10 is about the interface of Cut Once,

question 7 is about how annoying the extension was, question 6 measures how help-

ful the extension was, question 5 shows the distribution related to the quality of

suggested rank, question 4 measures how often the user used the suggestions, ques-

tion 2 reflects the overall experience of the user, and question 1 asked the user’s

general impression of Cut Once. All questions were supposed to be answered in a

likert scale, although some subjects insisted in providing non-integer scores. Higher

values reflect better impressions of Cut Once for all questions. The precise descrip-

tion of these questions can be found in Appendix B.3.

Overall, subjects were not annoyed by Cut Once interruptions — mean value was

4.18, between “never” and “rarely” annoying, and all reported scores were positive.

Figure 5.7 also indicates that Cut Once’s interface was also well received, with mean

value of 3.63 and median of 4.

Responses to questions 4, “How often did you use the suggestions”, were largely

negative, with a median of 2 and mean of 1.75 (between “never” and “rarely”). This

4 Unfortunately Cut Once could not distinguish between a reply and a compose action.
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Fig. 5.6 (a) Histogram with ranks of the recommendations clicked by the users. (b) The same

data in a boxplot: median of distribution is 2.00, first quartile is 1.00 and 3rd quartile is 7.00.

Whiskers mark the most extreme data point within a distance of 1.5 of the Interquartile range.

Empty points indicate outliers.

reflects the fact that most of the time users were replying to messages, and not com-

posing new messages. As previously noted, users accepted Cut Once’s suggestions

in approximately 6.17% of their sent messages. This fact is also linked to slightly

negative responses on question 6 (“Were the suggestions helpful?”), with median

of 3 and mean 2.5 (between “kind of” and “marginally” helpful). The overall im-

pression of the extension was positive — with median value of 4 and mean value of

3.6 (between “good” and “neutral”). A slightly positive judgment was seen on the
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overall experience using the extension, or question 2 — with a mean value of 3.36

and median of 3 (between “good” and “neutral”).

●
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Suggestions
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Fig. 5.7 Distributions of likert scores (1 to 5) given as answers to questions 1, 2, 4, 5, 6, 7

and 10 in the final user study questionnaire (higher=better). Complete questionnaire can be

found in Appendix B.3.

Results from the other questions in the final questionnaire are summarized in

Table 5.2. The 15.38% affirmative answers to question 3 are exactly the four cases

of successful leak detection described above.

Three subjects reported changing the way they compose emails, as in question 8

of the questionnaire. They reported sometimes performing a compose-then-address

procedure to send messages (i.e., writing the text of the message first, and then se-

lecting recipients), instead of the traditional address-then-compose. In other words,

these subjects became used to the the extension to a point that they were often re-

lying on Cut Once to suggest the right recipients for the message they just com-

posed. In fact, because clicking is faster than using auto-completion or typing com-

plete addresses, users reported that this procedure was typically faster than the usual

compose-then-address.

Also supporting the overall positive impression of the extension, question 11 re-

vealed that 50% of the subjects would recommend Cut Once to their friends. The

second part of question 11 was “who do you think would consider this extension

helpful?”. The most frequent answers were: people who work with many different

persons, people who send a lot of messages or people who manage several differ-

ent projects. Typical examples were secretaries, managers, executives and lawyers.



5.4 Results 83

Table 5.2 Percentage of the 26 subjects giving affirmative answers on four questions of final

questionnaire.

Question Description Affirmative

Number response

Q. 3 “Did Cut Once catch any leak?” 15.38% (4 users)

Q. 8 “Did Cut Once change the way you compose emails?” 11.53% (3 users)

Q. 9 “Would you keep on using Cut Once after this study?” 42.30% (11 users)

Q. 11 “Would you recommend Cut Once to your friends?” 50.00% (13 users)

Q. 14 “If your suggestions and ideas were implemented, 80.77% (21 users)

would you consider using Cut Once permanently?”

Table 5.3 Frequent issues and complaints about Cut Once reported by the subjects. Most

frequent one are placed on the top.

Slow training procedure

It needs incremental training (instead of batch training)

The reminder to retrain every week was annoying

Cannot use (train) multiple email accounts

Too many interruptions: dialog box pops up even when message is being replied

It should prompt a leak only if highly confident

Place suggestions on the side, not in a separate pop-up

It needs more configuration parameters

Timer countdown made people nervous. Remove it.

Unclear indications of what happens if we click here or there

Confusing confidence scores

Interface is too busy, with too much information, should have 2 or 3 suggestions only

Interface is too big, not intuitive, not fancy, too basic.

Subjects also stressed that Cut Once should be much more helpful in the workplace

than in handling personal messages.

Question 9 of final questionnaire asked if subjects would continue using the ex-

tension after the user study. Approximately 42% of them responded affirmatively.

After this question, subjects were asked about problems, annoyances, software bugs,

and how Cut Once could be improved. A summary with the most frequent limita-

tions reported by the user subjects can be seen in Table 5.3.

After collecting user’s complaints and ideas for improvement, Question 14 then

asked “if your suggestions and ideas were implemented, would you consider using

Cut Once permanently?”. More than 80% of the subjects reported that they would

— a clear indication that recipient prediction and leak detection were considered

welcome additions to the subject’s email clients, in spite of Cut Once’s specific

limitations 5.

5 Please refer to Appendix B.4 for a list with some of the subject’s most interesting com-

ments on Cut Once.
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Table 5.4 Comparison of different metrics for the two baseline methods. None of the ob-

served differences are statistically significant. Unless noted otherwise, higher mean values

are better.

METRIC Mean St.Dev.

TFIDF MRR TFIDF MRR

Num. Clicked Suggestions per Sent Message 0.089 0.037 0.142 0.066

Num. Clicked Leaks per Sent Message 0.033 0.033 0.035 0.044

Average Rank Clicked by User (lower=better) 4.928 4.505 5.289 4.587

Overall Impression (1 to 5) 3.468 3.850 0.531 0.579

Overall Experience (1 to 5) 3.406 3.350 0.612 0.818

How Often Used Suggestions (1 to 5) 1.843 1.600 0.569 0.699

Rank Quality (1 to 5) 3.437 3.510 0.928 0.966

Suggestions Helpful (1 to 5) 2.437 2.600 1.014 1.074

Suggestions Annoying (1 to 5) 4.031 4.430 0.784 0.748

Interface (1 to 5) 3.718 3.500 0.657 1.054

5.4.3 Baseline Comparison

In Section 5.2 we described Cut Once as having a mechanism to randomly assign

a different ranking baseline (either MRR or TFIDF) to different users. From the

26 subjects, sixteen were assigned TFIDF ranking, while the remaining ten used

TFIDF-based ranking.

Table 5.4 compares results from these two populations. Average values and stan-

dard variations of several metrics are compared, and larger values are indicated in

bold. The first three variables were extracted from the logging messages: the user-

averaged number of clicked address suggestion per sent message, the user averaged

number of removed leaks per message, and the average rank clicked by the user.

The other variables in Table 5.4 were extracted from the final questionnaire. A box

plot with illustrating the distribution of these variables is illustrated in Figure 5.9.

A non-paired t-test applied to these populations indicated that none of the metric

differences observed in Table 5.4 are statistically significant. The same observation

was confirmed by a non-parametric Mann-Whitney U Test as well as by a Heckman

Sample Selection test6, indicating that there was no perceived difference between

the two baseline ranking methods.

A closer look in the ranks of clicked suggestions can be seen in Figure 5.8. This

figure shows two boxplots with distributions of the ranks of the suggestions accepted

(clicked) by the study subjects. On the top it shows the distribution of clicked ranks

for subjects having MRR as baseline method, while in the bottom for subjects hav-

ing TFIDF as baseline method. After removing outliers, the average ranks are 3.69

6 A test that takes into consideration the sample bias derived from subject users that started,

but did not finish the user study.
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and 3.147 for, respectively, TFIDF and MRR. Although MRR shows better aver-

age ranking than the TFIDF baseline, the difference is not a statistically significant

(p-value=0.394 in a non-parametric Mann-Whitney U Test). Assuming the same

means, and that the difference between these clicked ranks approximately follows a

normal distribution, then it is possible to differentiate these mean ranks with 95%

confidence when approximately 522 clicks are logged. Given that Cut Once logged

on average 1 suggested click for every 24.37 messages, than 12721 sent messages

would be necessary — a factor of 12721
2315 = 5.495 from the total number of mes-

sages sent in the user study. That is, as a rough estimate, it would be necessary

26 ∗ 5.495 ≈ 143 subjects during the same period of time (or alternatively having

the same 26 users in a 5.495 times longer study) in order to differentiate between

the average ranks of the two baseline methods with 95% confidence.

● ●●

●

TFIDF

MRR

0 10 20 30 40

Fig. 5.8 Distributions of ranks of clicked suggestions for both baseline methods.

The observation that these two baseline ranking methods did not produce

statistically significant differences, although somewhat limited because of the small

number of subjects in the study, was not entirely surprising. There have been a few

studies in the Information Retrieval (IR) literature also suggesting that users often

cannot perceive much difference in the results provided by retrieval systems having

different performance levels. For instance, Turpin and Scholer [2006] described

a web search task in which controlled levels of MAP (from 55% to 95%) were

presented to subjects. They found that different MAP levels had no significant

correlation with a precision-based user performance metric, while there was a
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Fig. 5.9 Distributions of likert scores (1 to 5) given as answers to questions 1, 2, 4, 5, 6, and

7 in the final user study questionnaire (higher=better).
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weak correlation with a recall-based user performance metric. In a small user study

for Japanese web retrieval, Takaku et al. [2007] also found that traditional IR per-

formance evaluation metrics (e.g., MRR, Prec@10, etc.) did not necessarily corre-

late with results from user’s performance and subjective evaluations. More recently,

Scholer et al. [2008] investigated how web search clickthrough data was related to

the quality of search results. Their experiments showed that user click behavior did

not vary significantly for different levels of MAP in displayed results, although there

was a significant variation among different users.

However, email recommendation and web search are fairly different tasks, and

further investigation will be necessary to adequately address to which extent tradi-

tional IR performance metrics correlate with user evaluation on the proposed email-

based tasks. Another interesting question for future research is how to derive new

automated evaluation metrics that can closely approximate user satisfaction.

5.5 Discussion

Ideally this study would have benefited from a larger pool of user subjects, but un-

fortunately recruiting more people was not possible. As explained in Section 5.4.1,

many subjects showed initial interest but discontinued using Cut Once in a short

period of time. Among the reasons for this discontinuation, one can list the slow

training process, the relatively small compensation (25 dollars) for a 4-week long

study and the annoyance of the interruptions.

However, in case Cut Once’s functionalities are implemented in a real large-scale

email server (such as Gmail or Hotmail), adoption would be primarily decided by

two factors: the cost of the interruptions versus the benefit of the provided predic-

tions. In principle, interruption costs can be lowered with carefully designed in-

terfaces and well-tuned confidence-based decisions, and prediction models can be

made more accurate as more data is collected. As long as users perceive the system

as having a good cost/benefit, widespread adoption of these functionalities can be

reached.

To help design these functionalities in large systems, below we present a few

guidelines based on the results of this user study and final questionnaires:

• Ideally, training should not be noticeable by the user. Training should also be

incremental, that is, prediction models should be immediately updated as new

messages are sent.

• Leak detection and recipient recommendation should be independent functional-

ities, potentially with independent models and interfaces.

• Interfaces should be as unobtrusive as possible. If possible, interfaces should pro-

vide leak detection alarms and recipient recommendations in the same window

in which messages are composed.

• Interruptions should be triggered by confidence-based decisions.

• Ideally, predictions should be available anytime during the message composition

process, and not only after the user hits the “send” button. Predictions could be

provided, for instance, at the end of each composed sentence.
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• Prediction models should account for different user “send” actions (reply, reply-

all or compose).

• Users should be allowed to control a few parameters, such as timer period,

number of suggested addresses displayed to the user, interruption confidence

threshold, etc.

5.6 Conclusions and Related Work

In this chapter we introduced CutOnce, a new Mozilla Thunderbird extension that

implements several of the previously proposed algorithms for email recipient rec-

ommendation and leak prediction, including Recency and Frequency baselines, a

Rocchio TFIDF method and a rank-based data fusion technique. Cut Once was

written in Javascript, thus requiring careful design decisions to optimize memory

and processing resources on client machines.

Based on Cut Once, we designed and evaluated a 4-week long user study that

leaded to very encouraging results. Cut Once prevented five real cases of email

leaks, and provided predictions with reasonable rank quality and little user annoy-

ance. It was able to change the way three subjects send email, and left an overall

positive impression in the large majority of the users. More than 80% of the sub-

jects would permanently use Cut Once in their email clients if a few improvements

are implemented.

The most likely users to benefit from these functionalities, according to the sub-

jects, are persons who work with many different people, send a lot of messages or

manage several different projects (e.g., secretaries, managers, executives). In fact,

three out of the five leaks caught by Cut Once came from subjects whose occupa-

tions require a lot of email message handling (a systems administrator and a network

administrator).

Results also indicated no statistically significant difference in any performance

metric between the two baseline ranking methods implemented in Cut Once. This

indicates that the small improvements in MAP predicted in Section 4.5.2 may not

be noticeable to the end user. We believe, however, that other studies are necessary

to further explore these issues. Overall, this study showed that leak prediction and

recipient recommendation can potentially be adopted by a large number of email

users.

The most related reference to this study is Facemail, an extension to a webmail

system developed to prevent misdirected email by showing faces of recipients in a

peripheral display while the message is under composition [Lieberman and Miller,

2007]. Several alternatives for displaying these pictures were considered, and pre-

liminary results from a user study suggested that showing faces could significantly

improve users’ ability to detect misdirected emails with only a brief glance. In prin-

ciple, many of the ideas in Facemail can be combined with the algorithms provided

by Cut Once, potentially leading to a much better leak detection mail system.

Boufaden et al. [2005a,b] proposed a privacy enforcement system in which in-

formation extraction techniques and domain knowledge were combined to monitor
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specific privacy breaches via email. They were particularly concerned with entity

breaches in a university environment, such as student names, student grades or stu-

dent IDs. Using 266 manually labeled emails, they were able to correctly predict

leaks with precision of 77%. Although closely related to what we defined as leak

detection, this system has a different goal and can only be applied to the situations

in which domain knowledge is available. Also, evaluation was based on a semi-

automatic process, and not a user study.

Other interesting email-based user studies have been reported in areas somewhat

related to email leaks. Kumaraguru et al. [2007] described the design and evaluation

of an embedded training email system targeted to teach email users about phishing

(malicious attacks in which ordinary users are deceived by fraudulent emails and

websites), and compared different fishing training systems in a user study with 30

subjects. Other researchers have focused on improving user’s decisions in poten-

tially insecure situations, such as opening a potentially dangerous email attachment

or following links in a fishing message. Brustoloni and Villamarı́n-Salomón [2007],

for instance, modified Mozilla Thunderbird and compared different warning display

techniques in a user study with 20 participants.
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Conclusions

This book proposed new ways to use machine learning techniques to improve email

management. In particular, we focused on two aspects of email communication

related to user intention: intentions expressed in the textual contents of the mes-

sages, and intentions behind to whom a particular message should or should not be

addressed.

We started by introducing a taxonomy of email acts, a shallow semantic layer

summarizing the intentions behind the textual contents of email messages. Inspired

by Speech Act theory, the formulation of this taxonomy was an attempt to categorize

the most common uses of email in the workplace, instead of all possible speech

acts in the English language. A labeling procedure confirmed that the taxonomy

presented relatively good levels of inter-annotator agreement. Several experiments

showed that machine learning techniques were able to learn effective patterns for

email act classification, particularly after careful message preprocessing and feature

generation.

Then we focused on automated methods for message addressing, with the goal

of helping prevent high-cost errors associated with email exchange. We started by

proposing a new task, email leak detection, i.e., detecting when a message is ac-

cidentally addressed to unintended recipients. We provided examples of common

scenarios for this kind of mistake, and proposed several methods to accomplish leak

detection. In order to learn leak detection methods, artificial email leaks were care-

fully simulated in a large real-world email corpus. Results indicated that close to

82% of the simulated leaks could be detected by the proposed techniques. Further-

more, a variation of the proposed method was able to correctly identify two real

email leaks from the Enron corpus.

In a second message addressing task, we focused on recommending recipients

for messages under composition. This is particularly useful to prevent users from

forgetting to address intended recipients in their messages, an issue that may lead to

communication delays, misunderstandings and missed opportunities. We proposed

several ranking models for this task, including Information Retrieval baselines as

well as reranking-based approaches. Overall, tests on a large email collection re-

vealed the combination of base rankings using rank aggregation methods provided

V.R. Carvalho: Modeling Intention in Email, SCI 349, pp. 91–92, 2011.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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the best overall ranking performance. Using the same techniques, we also addressed

the related problem of email auto-completion and showed that the proposed meth-

ods can significantly improve auto-completion ranking on a large collection of email

users.

We then implemented some of these techniques in a popular email client. We

designed and developed Cut Once, a new extension to the Mozilla Thunderbird

email client. Cut Once was written mostly in Javascript, thus demanding careful

memory and processing optimization in order to deliver usable leak detection and

recipient recommendation models. Based on Cut Once, we conducted a 4-week long

user study with 26 email user subjects. Results were rather positive: more than 15%

of the subjects reported that Cut Once prevented real email leaks, and more than

47% of them utilized the provided recipient recommendations. Although there was

no signicant difference reported between different baseline ranking methods, the

study clearly showed that both leak prediction and recipient recommendation are

welcome additions and can be potentially adopted by a large number of email users

— more than 80% of the subjects would permanently use these prediction models

in appropriate interfaces.
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Email Act Labeling Guidelines

The taxonomy of email acts proposed here was initially inspired by ideas from

Speech Act theory [Searle, 1969, 1975] and applications from the Speech Recog-

nition and Dialog Systems communities [Levin et al., 2003, Stolcke et al., 2000].

These ideas were increasingly refined over nine iterations in order to account for

specific characteristics of email exchange.

The email act labeling process was based on the following guidelines. After

reading an email message, the accessors should tag the message with one or more

noun-verb pairs from the list below. Examples of such pairs are “propose-meeting”

and “request deliveredData”. The nouns and verbs allowed to be used are described

below.

A.1 Verbs

• request(Req): ask someone else to an action/task/delivery, ask for info or favor,

to question, to interrogate, to query, an order/command here is interpreted as a

request for action/task, a question or query is a request for information.

• deliver(Dlv): act of sending something/information, express an opinion is deliv-

ering of opinion (see the email Noun dInfo.dOpinion), to inform, “fyi”. It can

have three special subtypes:

– announceProgress(Dlv.AProg): announce status of action/task.

– announceFailure(Dlv.AFail): announce failure to do action/task/delivery

– announceCompletion(Dlv.Cmp):announce completion of action/task/delivery

• commit(Cmt): commit self to an action/task/delivery or meeting. Examples are

“Ill have it ready by noon”, “Ill be there at midnight” or “I can attend this meeting

at 3pm”. Also a confirmation or agreement (“I agree”) on final decision.

• propose(Prop): commit self, request others. Offers are considered proposals. To

volunteer is considered an offer. This act is usually associated with a starting

action/task. Note that counterproposals are under the amend act.

• remind(Rem): reminders of deadline or threats to keep commitment.
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• amend(Amd): modify parameters and/or counter-propose or suggest changes

on already ongoing action/task/meeting/etc. Its never an act that initializes a

task/action/meeting. Negotiate (counterpropose) the schedule of a meeting.

• refuse(Ref): refuse to perform an action/task/delivery, decline, reject a meet-

ing/action/task. It has a special subtype:

– refuseAndReassign(Ref.Rsgn): refuse and forward an action/task/delivery to

someone else. Very subtle difference to the request act.

• greet (Grt): thank someone, congratulate, apologize, greet, welcome, farewell,

“you’re welcome”.

• other(Otr) : flames, jokes, anything not well described by previous verbs.

A.2 Nouns

• deliveredInformation(dInfo): send responses, information, etc. It has three spe-

cial subtypes:

– deliveredData(dInfo.dData): send file, ptr to file, document with file, attach-

ments, etc.

– deliveredOpinion(dinfo.dOpinion): opinions, “I vote for that”, “I believe/

think/suspect/bet/...”, speculation, complaint.

– meetingInfo(dInfo.meet): when its not a Request, a Propose or a Commit to a

meeting. Instead it just adds information about the meeting, as in “the meeting

will be in room A” or “I’ll be late to the meeting”.

• action(actn): something that can be done quickly; atomic task; short timespan.

• meeting(meet): action that happens at a certain time (and place, possibly).

• task(task): something that takes a while, sequence of actions with long timespan.

• no-tag(no-tag): cannot be determined. not sufficient info.

Obs 1: sentences like “please let me know you have questions” or “please let me

know if I can help” in the end of an email message are, most of the times, polite

sentences. Rarely Requests or Proposes.



Appendix B

User Study Supporting Material

This Appendix contains supporting material associated with the Cut Once user

study.

B.1 Recruiting Message

Recruitment for the user study was carried out in two distinct ways. A web site

detailing the study was created, and recruiting posters were placed in many loca-

tions of Carnegie Mellon University and in the University of Pittsburgh. In addition,

broadcast emails were sent to several mailing lists, also with links to the user study

website. The recruiting email message is displayed below:

From: email.research.cmu@gmail.com

Subject: Mozilla Thunderbird users needed for User Study

Student and Staff participants are sought for a research study using a Mozilla Thun-

derbird extension developed in CMU (called Cut Once). The goal is to study how to

improve the way people compose and address email messages.

The task is pretty simple: install the extension and use it for a small period of time. No

appointments or time commitments necessary. Just keep on using Thunderbird, with

minimum or no interruptions at all.

Requirements:

Must send email using Mozilla Thunderbird on a daily basis.

Must be at least 18 years-old.

For download and installation details, please check:

http://www.cs.cmu.edu/˜vitor/cutonce/cutOnce.html

Compensation will be provided ($25) for qualified users upon completion of the study

(when a small questionnaire will be applied). For further details, please contact Vitor

Carvalho and Ramnath Balasubramanyan at email.research.cmu gmail.com
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B.2 Initial Questionnaire

An initial questionnaire was applied to all user subjects. The goal was to collect

general user information and to estimate general email patterns. The questions are

listed below.

- Age?

- Gender?

- Occupation?

- How often do you use Mozilla Thunderbird?

- What other means or other clients do you use for email? (Webmail, Gmail, etc.)

- How many computers or devices do you use to answer emails?

- How many non-spam messages do you receive in a week (approximately)?

- How many non-spam messages do you send in a week (approximately)?

- Approximately, how many people do you have in your address book?

- Whats the percentage of work versus personal email?

- In what other languages do you compose emails?

B.3 Final Questionnaire

After finishing using Cut Once for the necessary number of weeks, subjects were

compensated after filling a final questionnaire. The questionnaire contained ques-

tions about the user’s general experience using the extension, the quality of predic-

tions, usage patterns, interface issues, suggestions for improvement, among other

topics. The final questionnaire is detailed below.

1. What is your general impression of the extension (likert 5(excellent) 4(good) 3

(neutral) 2(bad) 1(very bad))?

2. How would you grade your overall experience (likert 5(excellent) 4(good) 3 (neu-

tral) 2(bad) 1(very bad))?

3. Did the extension catch any email leak? (yes or no) If so, please tell us about it.

4. How often did you use the suggestions? (5(always) 4(frequently) 3(sometimes)

2(rarely) 1(never))?

5. In your opinion, what was the quality of the suggested rank? (likert 5(excellent)

4(good) 3 (neutral) 2(bad) 1(very bad))?

6. Were the suggestions helpful? (likert 5(very helpful) 4(helpful) 3 (”kind of”)

2(marginally) 1(not at all))?

7. Were the suggestions annoying? (1(always) 2(frequently) 3(sometimes) 4(rarely)

5(never))?

8. Did the extension change the way you compose messages? (yes or no) If so, please

tell us about it.

9. Would you keep on using this extension after this study? (yes or no) Why?
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10. What do you think about the interface? Give a score (1(very bad) to 5(excellent) )

to the interface.

11. Who do you think would consider this extension helpful? (what kind of people)

Would you recommend it (to your friends, etc.)? (yes or no)

12. What did you like and dislike about it? What did you like and dislike the most?

(open question)

13. Where could it be improved? (open question)

14. Suggestions or comments? (open question)

15. If your suggestions and ideas were implemented, would you consider using it per-

manently? (yes or no). Why?

B.4 User Comments

The user study subjects had a chance to provide feedback on their experience dur-

ing the final questionnaire. In addition, they could also provide feedback using the

“Einstein” button. This functionality was available not only to the user subjects, but

also to any Cut Once user around the world.

Below we list some of the most interesting comments received about Cut Once.

• “it encouraged me to copy more people (increased visibility)”

• “I really don’t make any mistakes on choosing a recipient.”

• “I love the prediction function! It correctly predicted the missing recipient.”

• “In the ’Suggested recipients’ section, the top one or two matches are often very

good suggestions based on the content of the email.”

• “I think it is working fine”

• “saved me time sometimes”

• “you guys did a good job”

• “when I’m writing an e-mail, it gives me another chance to check that I’m send-

ing to correct people, so it gives me more confidence.”

• “no international support?!?!”

• “I would use it with the right interface”

• “(it should) make suggestions during the email composition, not after”

• “The color scheme is helpful”

• “I would eliminate the timeout on send and just require a button click. I was

reading the email lists and the timer expired.”

• “the countdown makes me nervous. Remove it.”
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