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Preface

Power transformers are among the most expensive and critical units in a power

system. The normal life expectance of a power transformer is around 40 years, and

in many power systems the percentage of transformers operated more than

30 years is increasing due to the investment boom after the 1970s. As a result, the

failure rate of transformers is expected to rise sharply in the coming years.

Transformer failures are sometimes catastrophic and almost always include irre-

versible internal damage. Therefore, all key power transformers equipped in a

power system should be monitored closely and continuously in order to ensure

their maximum uptime. Generally, there are four main aspects of transformer

condition monitoring and assessment, including thermal dynamics, dissolved gas,

partial discharge and winding deformation, which should be monitored closely in

order to determine power transformer conditions.

In recent years, rapid changes and developments have been witnessed in the

field of transformer condition monitoring and assessment. Many research institu-

tions and utility companies have their own condition monitoring and assessment

guidelines for large power transformers. Most of such efforts are dedicated to

developing accurate transformer models and reliable transformer fault diagnosis

systems. These approaches are usually based upon empirical models, which are

sometimes inaccurate and incomplete concerning abnormal operation scenarios.

The major drawbacks are rooted in the inaccuracy of empirical thermal models, the

lack of knowledge and evidence in dissolved gas analysis and intricate issues in

winding deformation diagnosis. Nowadays, owing to the advance in computational

hardware facilities and software data analysis techniques, the in-depth under-

standing of various phenomena affecting transformer operations has become

feasible. With the use of advanced computational intelligence techniques, system

operators are able to interpret correctly various fault phenomena and successfully

detect incipient faults.

This book is dedicated to advanced model-based approaches to accurate

transformer modelling and intelligent data mining techniques for reliable trans-

former fault diagnosis. It introduces three important up-to-date aspects of com-

putational intelligence techniques to handle practical problems of transformer

vii



condition monitoring and assessment. These techniques include the evolutionary

algorithms, the logical approaches and the cybernetic methods, which are

employed for model parameter identification, fault feature extraction and classi-

fication and dealing with uncertainties for undertaking condition assessment of

power transformers, respectively.

We wrote this book in belief that applying computational intelligence tech-

niques to transformer condition monitoring and assessment would open the pos-

sibility of obtaining the maximum practicable operating efficiency and optimum

life of power transformers, minimising risks of premature failures and generating

optimal system maintenance strategies. This book is self-contained with adequate

background introductions underlying analytical solutions of each topic and links to

the publicly available toolboxes for the implementation of the introduced meth-

odologies. It deals with practical transformer operation problems by analysing

real-world measurements with a broad range of computational intelligence tech-

niques. This book has presented many examples of using real-world measurements

and realistic operating scenarios of power transformers, which fully illustrate the

use of computational intelligence techniques to deal with a variety of transformer

modelling and fault diagnosis problems. We hope that this book will be useful for

those postgraduates, academics researchers and engineers working in the area of

advanced condition monitoring and assessment of power transformers.

We would like to thank Dr. Almas Shintemirov for his contribution to chaps. 7

and 11, made during the period of his Ph.D. study undertaken at The University of

Liverpool. We also wish to thank Dr. Kevin Spurgeon and Dr. Shan He for their

contributions, made during the period of their Ph.D. studies undertaken at The

University of Liverpool, to part of the achievements presented in this book. Special

thanks are given to Mr. Zac Richardson and Mr. John Fitch of National Grid for

supporting this work and providing useful discussions.

Special thanks also go to Anthony Doyle (the Senior Editor), Claire Prothe-

rough and Sorina Moosdorf for their professional and efficient editorial work on

this book. Our thanks are also extended to all colleagues in the Intelligence

Engineering and Automation Research Group, The University of Liverpool, for all

assistance provided, and who have not been specially mentioned above.

The University of Liverpool, June 2010 Dr. W.H. Tang

Prof. Dr. Q.H. Wu
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Chapter 1

Introduction

1.1 Background

The electricity supply industry is usually divided into three functional sections,

including generation, transmission and distribution. Power transformers, on-load

tap changers, circuit breakers, current transformers, station batteries and switch

gears are the main devices of a transmission and distribution infrastructure that act

together to transfer power from power stations to homes and business customers.

These devices are critical assets, and if they were to fail that could cause power

outages, personal and environmental hazards and expensive rerouting or purchase

of power from other power suppliers. Therefore, these critical assets should be

monitored closely and continuously in order to assess their operating conditions and

ensure their maximum uptime. Particularly, large oil-immersed power transformers

are among the most expensive assets in power transmission and distribution net-

works. It can raise or lower the voltage or current in an AC circuit, isolate circuits

from each other and increase or decrease the apparent value of a capacitor, an

inductor or a resistor. Consequently, power transformers enable us to transmit

electrical energy over great distance and to distribute it safely to factories and

homes. A transformer can fail due to any combination of electrical, mechanical or

thermal stresses. Such failures are sometimes catastrophic and almost always

include irreversible internal damage. Part of failures may lead to high cost for

replacement or repair and an unplanned outage of a power transformer is highly

uneconomical. As a result, as major equipment in power systems, its correct

functioning is vital to enable efficient and reliable operations of power systems.

There are various causes of transformer failures during operations, such as

electrical disturbances, deterioration of insulation, lightning, inadequate mainte-

nance, loose connections, moisture and overloading. Many of these failure effects,

however, will increase in probability due to the passage of time with age. It is

inevitable that some faults will occur, so it is very necessary to monitor closely on-

line and off-line behaviours of transformers. Typical transformer maintenance
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programs include continuous assessment tests, frequent dissolved gas analysis and

oil quality tests, thermographic scanning of transformers and electrical connec-

tions and on-line monitoring of questionable units. In the last four decades, three

monitoring strategies have been developed for transformer fault detection and

diagnosis:

1. A variety of relays have been developed to respond to a severe power failure

requiring immediate removal of a faulty transformer from service, in which

case, outages are inevitable. This is the so called reliability-centred monitoring,

which cannot detect incipient faults.

2. Various off-line tests can be applied to detect possible incipient faults, and

these tests are usually undertaken with respect to a regular time interval.

However, such a time-based monitoring strategy is labour intensive and not

cost effective, which is also ineffective in identifying problems that develop

between scheduled inspections.

3. There is a trend in the power industry to move from time-based monitoring to

condition-based monitoring, which employs advanced fault diagnosis tech-

niques for detecting on-line and off-line incipient faults. A condition-based

monitoring program can supply information about unit conditions in real-time,

process these information and then determine when maintenance should be

performed.

All the three strategies have been investigated for many years. The condition-

based monitoring strategy is related to a wide range of on-line condition

monitoring applications, which include the detection of partial discharges and

insulation degradation, winding deformation diagnosis, monitoring of dissolved

gas evolution, classification of hazards and assessing thermal conditions [1–3].

On the other hand, off-line tests can only be employed to identify faults after a

transformer outage or after a scheduled time interval. It can be seen that,

condition-based monitoring of power transformers can open the possibility of

obtaining the maximum practicable operating efficiency and optimum life of

power transformers, minimising risks of premature failures and providing the

potential to optimal system maintenance strategies [1–4]. A collection of off-line

routine tests is listed in Appendix A according to the British Standard BS171 [5]

for reference purposes.

In recent years, rapid changes and developments have been witnessed in the

field of transformer condition monitoring and assessment. The performance and

reliability of transformers can be improved greatly by employing advanced on-

line and off-line fault diagnosis systems. Many research institutions and utility

companies have developed their own condition monitoring and assessment sys-

tems for key power transformers. For instance, in 1995, Massachusetts Institute

of Technology (MIT) developed an adaptive intelligent monitoring system for

large power transformers [4]. Four large transformers in the Boston Edison

power network were under continuous surveillance by this system, which could

summon attention to anomalous operations through paging devices. The MIT

model-based monitoring system includes a thermal module and a gas analysis
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module, which has a facility for examining raw and processed data during

transformer operations, and that facility is accessible through a modem connected

to a computer. There are also commercialised products for such purposes, e.g. an

on-line monitoring system MS2000 designed by ALSTOM [6], which gives a

comprehensive survey of power transformers covering various aspects, including

oil temperatures, gas-in-oil contents, tap changers, cooling units, etc. Based upon

the field bus technology, it enables power engineers to increase the lifespan of a

transformer and reduce fault possibilities. Both the two systems provide a basic

structure for conducting unit surveillance and assessment, through which it can

be conceived that a model- and network-based system is one of the most

important focusses in the research field of condition monitoring and assessment

of power transformers.

Nowadays, owing to the advance in computational hardware facilities and

software data mining techniques, the in-depth analysis of various phenomena

affecting transformer operations has become feasible. With the use of advanced

modelling and data mining techniques, researchers are able to understand fault

phenomena and utilise relevant data for accurately detecting transformer faults.

Based upon the authors’ extensive research in the field of condition monitoring and

assessment of power transformers, this book is dedicated to advanced model-based

approaches to transformer modelling and intelligent data mining techniques for

assessing transformer conditions.

1.2 Main Aspects of Transformer Condition Monitoring

and Assessment

There are four main aspects concerning transformer condition monitoring and

assessment, i.e. thermal modelling (TM), dissolved gas analysis (DGA), winding

frequency response analysis (FRA) and partial discharge analysis (PDA).

1.2.1 Thermal Modelling

The normal operation life of a transformer is partially related to the deterioration

of its insulation through thermal ageing, which is determined mainly by its daily

cyclic loadings. Transformer loading guides give guidance for selecting appro-

priate transformer ratings for given loading and cooling conditions and particularly

for conditions with loading ratios above the nameplate rating of a transformer. For

oil-immersed power transformers, the International Electrotechnical Commission

(IEC) loading guide 60354 [7] can be used, while IEC60905 [8] considers dry type

transformers. In the Institute of Electrical and Electronics Engineers (IEEE)

loading guide [9], the same calculation methods as reported in IEC60354 are

adopted, which are also similar to the loading guides reported by the American

1.1 Background 3



National Standards Institute (ANSI) [10] and National Electrical Manufacturers

Association (NEMA) [11].

The development of an accurate thermal model is always regarded as one of the

most essential issues of transformer condition monitoring. The generally accepted

methods, reported by IEC [7] and IEEE [9], can be used to predict the zones of

hot-spot temperature in a transformer as the sum of the ambient temperature, the

mixed top-oil temperature rise above ambient and the hot-spot rise above the

mixed top-oil temperature. The two steady-state temperature rises of top-oil and

bottom-oil above ambient can be estimated separately. Comparisons between the

measured and calculated transformer temperatures, referring to the IEC power

transformer thermal models, were discussed in [1, 4, 12]. There are also a few

improved thermal models rooted on the traditional thermal solutions. For instance,

a real-time mathematical thermal model was presented in [13], which consists of

several differential equations and takes into detailed account the influence of

weather on thermal behaviours of a transformer. Since the model presented in [13]

is more detailed than the ANSI/NEMA method, the results were expected to

predict accurate transformer temperatures by considering the incident solar radi-

ation and correlations for cooling operations. However, the conventional calcu-

lation of internal transformer temperature is not only a complicated task but also

with underestimated temperatures obtained based upon some assumptions of

operation conditions. An accurate and meaningful thermal model is highly desired

in practice in order to deal with transformer thermal ratings.

1.2.2 Dissolved Gas Analysis

Oil-immersed power transformers are filled with a fluid that serves various pur-

poses. The fluid acts as a dielectric media, an insulator and a heat transfer agent.

The most common type of fluid used in transformers is of a mineral oil origin.

During normal operations, there is usually a slow degradation of the mineral oil to

yield certain gases that are dissolved in the oil. However, when there is an elec-

trical fault within a transformer, gases are generated at a much more rapid rate.

DGA is probably the most widely employed preventative maintenance technique

in use today to monitor on-line transformer operations, and a number of DGA

interpretation guidelines have been developed by different organisations, e.g.

IEC60559 [14], IEEE C57.104-1991 [15], CIGRE TF 15.01.01 [16] and GB7252-

87 [17]. By applying a DGA interpretation technique on an oil sample, dissolved

gases can be determined quantitatively. The concentration and the relation of

individual gases allow a prediction of whether a fault has occurred and what type it

is likely to be. For nearly forty years, DGA and its interpretation have been a

useful and reliable tool for monitoring conditions of oil-filled transformers and

other oil-filled electrical equipment.

However, based upon the conventional DGA interpretation methods, it is an

arduous task to determine malfunction types and oil sampling intervals, due to
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various fault conditions and other interfering factors. Moreover, determining the

relationships between gas levels and decline conditions is a perplexing task,

because of complex gas combination patterns. Many attempts have been made to

tackle DGA interpretation problems with a few recent developed computational

intelligence (CI) techniques, among which artificial neural networks (ANNs) are

the most widely used fault classifiers for DGA. In [18, 19], an ANN was utilised to

detect faults based only upon previous diagnostic results. Expert systems (EPS)

combined with other CI techniques have also been developed for DGA, e.g. fuzzy

sets and evolutionary algorithms [20, 21]. These techniques can evaluate ongoing

transformer conditions and also suggest proper maintenance actions.

1.2.3 Frequency Response Analysis

Nowadays, the sweep FRA (SFRA) technique has received worldwide attention

for transformer winding condition assessment gradually replacing the low voltage

impulse (LVI) technique. FRA [22] is a very sensitive technique for detecting

winding movement faults caused by loss of clamping pressure or by short circuit

forces. Variations in frequency responses may reveal a physical change inside a

transformer, e.g. winding movement caused by loosened clamping structures and

winding deformation due to shorted turns. In industrial practice, FRA is one of the

most suitable winding diagnostic tools that can give an indication of displacement

and deformation faults. It can be applied as a non-intrusive technique to avoid

interruptive and expensive operations of opening a transformer tank and con-

ducting oil de-gasification and dehydration, which can minimise the impact on

system operations and loss of supply to customers and consequently save millions

of pounds in timely maintenance. There are several international standards and

recommendations for testing power transformers using SFRA, e.g. DL/T 911-2004

[23], CIGRE WGA2.26-2006 [24] and IEEE PC57.149 (draft) [25].

Most utility companies own databases containing historical FRA data for large

power transformers. For example, in National Grid (NG, UK) large transformers

are tested regularly using SFRA in a frequency range up to 10 MHz. By comparing

a frequency response measured during maintenance with a fingerprint measure-

ment obtained at an earlier stage, FRA is widely employed by utility companies as

a comparative method in the low frequency range of several tens of KHz to

1 MHz. Differences may reveal internal damages of a transformer, therefore

inspections can be scheduled for repairing. However such a comparative method

cannot quantify the change caused by a fault and locate it. It is therefore necessary

to develop an accurate FRA modelling and reliable fault diagnosis approach to

interpreting the physical meaning underneath the variation of FRA data, which is

with considerable industrial interest. A wide range of research activities have been

undertaken to utilise and interpret FRA data for diagnosing winding faults, mainly

including the development of accurate winding models [26–30] and the elabora-

tion of FRA measurement systems [31, 32].
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1.2.4 Partial Discharge Analysis

Electrical insulation plays an important role in any high voltage power apparatus,

especially power transformers. Partial discharge (PD) occurs when a local electric

field exceeds a threshold value, resulting in a partial breakdown of the surrounding

medium as reported by IEC60270 [33]. Its cumulative effect leads to the degra-

dation of insulation. PDs are initiated by the presence of defects during its man-

ufacture, or the choice of higher stress dictated by design considerations.

Measurements can be collected to detect these PDs and monitor the soundness of

insulation during the service life of a power transformer. PDs manifest as sharp

current pulses at transformer terminals, whose nature depends on the types of

insulation, defects and measuring circuits and detectors used. The conventional

electrical measurement of PDs is to detect PD current pulses with a testing circuit.

However, given that the experimental data always consist of PD signals, sinusoidal

waveforms and background noise, the extraction of useful information from PD

signals is a very difficult issue.

The detection of PDs can be performed by a variety of techniques, most

commonly electrical [4], acoustical [34], optical [35] and chemical techniques

[36]. There are three types of PD analysis methods, i.e. the time-resolved partial

discharge analysis [38], the intensity spectra based PD analysis [37] and the phase-

resolved partial discharge analysis [38]. Because of the special characteristics of

PDs, traditional digital signal processing methods are not suitable for analysing PD

signals. Other useful time-frequency tools, e.g. Fourier transform (FT) and

Wavelet transform (WT), can be employed to analyse PDs [39] for de-noising,

characteristic extraction and data classifications. On-line partial discharge cali-

bration and monitoring for power transformers have been introduced by using a

pulse injection through taps of high voltage transformer bushings [40]. In sum-

mary, most of the techniques used for PDA are to denoise PD signals and extract

useful PD pulses, which are in the area of advanced signal processing. As it is out

of the scope of the CI techniques focussed in this book, the PD research is not

presented in this book.

1.3 Drawbacks of Conventional Techniques

1.3.1 Inaccuracy of Empirical Thermal Models

The generally accepted temperature calculation methods, reported in the IEC and

IEEE guides [7, 9], can be employed to predict hot-spot temperatures (HSTs), top-

oil temperatures (TOTs) and bottom-oil temperatures (BOTs). The guides give

mathematical models for determining the consequence of different loading ratios

using a set of equations with empirical thermal parameters. However, the con-

ventional calculation of internal transformer temperatures with exponential
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equations is not only a complicated task but also leads to a conservative estimate,

obtained on the basis of some assumptions of operation conditions [1, 4]. More-

over, these empirical equations are mainly settled on thermal profiles of a specific

transformer, and this detailed information is not likely available or always varies

with time. Its ability to predict transformer temperatures under realistic loading

conditions is somewhat limited (e.g. the traditional model cannot account for the

variations of ambient temperatures and thermal dynamics when a transformer’s

cooler is on or off). Therefore, the development of a more meaningful and accurate

thermal model for transformers is always regarded as a very important issue.

1.3.2 Uncertainty in Dissolved Gas Analysis

As known, not all the combinations of gas ratios presented in a fault can be

mapped to a fault type as described in a diagnostic criterion. Different transformer

DGA diagnosis techniques may give varied analysis results, and it is difficult for

engineers to make a final decision when faced with so much diverse information. It

is also known that some DGA methods, such as the Rogers ratio method, fail to

clearly identify faults in transformers in borderline cases, while other DGA

methods can identify these cases. Therefore, the integration of the available

transformer DGA diagnoses to give a balanced overall condition assessment is

very necessary. Additionally, transformer diagnosis interpretations are carried out

by human experts applying their experience and standard techniques, and many

attempts have been made to refine decision processes used to guide DGA

reviewers for evaluating transformer conditions. Such attempts include EPSs [20]

and the analysis of data using ANNs [41] or fuzzy logic [21, 42], which are limited

in their representation of DGA interpretation as a classification or pattern recog-

nition problem. Moreover, different transformer test methods, i.e. TM, DGA, FRA

and PDA, have different advantages and limitations making it difficult to discard

one and select another. Therefore a more intuitive idea is to combine all the results

derived from major test methods and integrate these information to form an overall

evaluation. As test results are sometimes imprecise and even incomplete, a suitable

information integration method is required to process DGA data for dealing with

such uncertainties.

1.3.3 Intricate Issues in Winding Deformation Diagnosis

Among various techniques applied to power transformer condition monitoring,

FRA is the most suitable one for reliable assessment for detecting winding

displacement and deformation. It is established upon the fact that frequency

responses of a transformer winding in high frequencies depend on changes of its

internal distances and profiles, which are concerned with its deviation or

1.3 Drawbacks of Conventional Techniques 7



geometrical deformation. Thus, the calculation of internal parameters plays an

important part in accurate simulations of transformer winding frequency behav-

iours. Modelling of a real winding in order to obtain frequency responses, being

close to experimental ones, is an extremely intricate task since a detailed trans-

former model must consider each turn or section of a winding separately. How-

ever, in industry practice it is not always possible to conduct additional tests for

precise measurements of transformer geometry or insulation parameter estimation.

Various model-based fault detection techniques have been applied to provide

continuous and unambiguous indications of transformer conditions [4]. Generally

speaking, a model-based system is constructed with well-understood mathematical

descriptions, the parameters of which can be identified by optimisation. There are

a variety of parameter optimisation techniques, e.g. genetic algorithms (GAs),

which have been utilised in a wide range of applications in power systems. It is

desirable to employ a powerful optimisation algorithm to identify winding model

parameters in order to reduce the difference between simulations of a winding

model and corresponding FRA measurements. Therefore, it is feasible to establish

a model-based approach to transformer winding simulations employing a param-

eter optimisation technique using real FRA measurements. Furthermore, at the

present time, the interpretation of measured frequency responses is usually con-

ducted manually by trained experts. It includes a visual cross-comparison of

measured FRA traces with reference ones taken from the same winding during

previous tests and/or from the corresponding winding of a ‘‘sister‘‘ transformer,

and/or from other phases of the same transformer. These comparison techniques

aim to detect newly appeared suspicious deviations of the investigated trace

compared with historical reference responses. The appearance of clear shifts in

resonance frequencies or new resonant points may characterise faulty conditions of

windings. Therefore, it is also necessary to study the effect of various winding

faults on frequency responses in order to establish effective classification criteria

for interpreting FRA results accurately.

1.4 Modelling Transformer and Processing Uncertainty

Using CI

As stated in the preceding sections, it is important to monitor conditions of off-line

and on-line transformers continuously. The main advantages of continuous mon-

itoring are illustrated as follows: prevention of failures and downtime of a trans-

former, transformer life extension leading to the delay of investment for a new

transformer and optimal transformer scheduling by means of condition-based

maintenance instead of time-based maintenance. With the development of recent

technologies in computational intelligence and signal processing, continuous

condition-based monitoring has always been on the research spot devoted to power

transformers, e.g. on-line temperature monitoring, on-site dissolved gas analysis
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and accurate winding deformation identification. For instance, an on-line DGA

surveillance unit can be mounted on a transformer, which can make proactive

decisions based upon sampled DGA data and determine when an observed

transformer should be repaired or replaced. However, there still exist many

challenging problems in this research area, such as how to process and understand

a large quantity of on-line data, how to tackle uncertainty issues arising from fault

diagnoses and how to develop accurate transformer models and further to identify

their parameters?

CI is an offshoot of artificial intelligence, which combines elements of learning,

adaptation, evolution and fuzzy logic to create programs that are, in some sense,

intelligent. There are mainly three branches of CI, i.e. the logical approaches, the

evolutionary algorithms and the cybernetic techniques, which are employed in this

book for modelling transformers, dealing with uncertainties and furthermore

determining optimal maintenance strategies. Moreover, the development of a

condition assessment framework is highly desirable aiming at a balanced condition

assessment system concerning power transformers, which is able to aggregate the

diagnostic information from TM, DGA, PDA and FRA. This book deals exclu-

sively with oil-immersed power transformers, as very little preventative mainte-

nance can be carried out on a dry-type transformer with the exception of keeping it

clean and dry. In summary, this book is devoted to the development of model-

based approach and utilise CI techniques to provide practical solutions for

achieving advanced condition monitoring and assessment of power transformers.

1.5 Contents of this Book

This book is organised as follows.

Chapter 2 introduces fundamentals of three evolutionary algorithms employed in

this book for parameter identification and feature extraction. Firstly the basics

of GAs are presented, including types of GAs, fitness functions and GA

operators followed by a discussion on the main concept of genetic program-

ming (GP) including genetic operators, terminals and functions of GP. Finally,

the foundation of particle swarm optimiser (PSO) is presented along with an

improved PSO algorithm, i.e. a particle swarm optimiser with passive con-

gregation (PSOPC).

Chapter 3 focusses on three mathematical theories dealing with uncertainties, i.e.

the evidential reasoning (ER) theory, the fuzzy logic (FL) theory and Bayesian

networks (BNs). Firstly, an ER algorithm, which can be implemented to deal

with imprecise and incomplete decision knowledge for a multiple-attribute

decision-making (MADM) problem, is presented on the basis of the Dempster-

Shafer theory. Both the original ER algorithm and the revised ER algorithm are

discussed in this chapter. Then, the essential concepts of BNs are introduced,

which are graphical representations of uncertain knowledge for probabilistic

reasoning. Finally the FL theory is briefly explained using a simple example.

1.4 Modelling Transformer and Processing Uncertainty Using CI 9

http://dx.doi.org/10.1007/978-0-85729-052-6_2
http://dx.doi.org/10.1007/978-0-85729-052-6_3


Chapter 4 begins by introducing conventional thermal models of power trans-

formers, which involve calculations of steady-state and transient-state tem-

peratures at different parts of a transformer. Then, this chapter presents an

equivalent heat circuit based thermal model for oil-immersed power trans-

formers and a methodology for model development and simplification. Two

thermal models are developed built upon the thermoelectric analogy (TEA)

theory, i.e. a comprehensive thermoelectric analogy thermal model (CTEATM)

and a simplified thermoelectric analogy thermal model (STEATM), which are

described in detail. The two thermal models are established to calculate real-

time temperatures of main parts of an oil-immersed power transformer.

Chapter 5 employs a simple GA to identify thermal parameters of CTEATM and

STEATM using on-site measurements. A comparison study between the ANN

modelling and the GA modelling is made concerning CTEATM. The simula-

tions of heat run tests and calculations of HSTs using STEATM are discussed

in detail. In order to verify the two thermal models, a number of measurement

sets with different operating scenarios are employed in model simulations and

comparisons.

Chapter 6 gives a brief literature review of DGA, including the theory of faulty gas

evolution and a variety of practical gas interpretation schemes, then several

widely used DGA classifiers are briefly introduced for a reference purpose, e.g.

ANN, FL and EPS.

Chapter 7 is concerned with DGA data preprocessing and fault classification. An

intelligent fault classification approach to transformer DGA, dealing with

highly versatile or noise corrupted data, is proposed. Bootstrap and GP are

employed to improve interpretation accuracies for DGA. Firstly, bootstrap

preprocessing is utilised to approximately equalise sample numbers for dif-

ferent fault classes to overcome the lack of fault samples. Then GP is applied to

extract classification features from DGA gas data for each fault class. Subse-

quently, the features extracted using GP are fed as inputs to three popular

classifiers for fault classification, including ANN, support vector machine

(SVM) and K-nearest neighbour (KNN). Finally, the classification accuracies

of three combined classifiers, i.e. GP-ANN, GP-SVM and GP-KNN, are

compared with the ones derived solely from ANN, SVM and KNN

respectively.

Chapter 8 deals with the uncertainties arising from DGA diagnosis from three

different angles, i.e. evidence congregation, crispy decision boundary and

probabilistic inference. In the first part of this chapter, the original ER algo-

rithm is employed to combine evidence with uncertainties derived from a

diverse range of diagnostic sources. The methodology of how to transfer a

transformer condition assessment problem into an MADM solution under an

ER framework is presented. Several possible solutions to the transformer

condition assessment problem utilising the standard ER algorithm are then

discussed. The second part of this chapter presents a combined ER and FL

approach in order to demonstrate the practicality of using fuzzy membership

functions for generating subjective beliefs. Ideas taken from the FL theory are
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applied to soften fault decision boundaries employed by conventional DGA

methods. This has an effect of replacing traditional ‘‘Fault’’ or ‘‘No Fault’’ crisp

reasoning diagnoses with a set of possible fault types and an associated

probability of fault for each. The final part of this chapter investigates a

probabilistic inference approach to reinforcing the capability of the IEEE and

IEC DGA coding scheme when processing DGA data. A graphical model is

derived using the BN theory to perform probabilistic inference for handling

DGA fault classification problems. The cases, which are unidentifiable by the

IEEE and IEC DGA coding scheme due to missing codes, are processed with

the constructed BN in order to verify the proposed BN approach.

Chapter 9 firstly introduces the technical background of FRA. Then the advantages

and disadvantages of various winding models are briefly discussed. Finally, the

conventional FRA interpretation methods are summarised with a discussion on

fault features related to different winding fault types using FRA.

Chapter 10 proposes a model-based approach to identifying distributed parameters

of a lumped-element model of a power transformer winding. A simplified

circuit of a lumped-element model is developed to calculate frequency

responses of a transformer winding in a wide range of frequency. In order to

seek optimal parameters of the simplified winding circuit, PSOPC is utilised to

identify model parameters. Simulations and discussions are provided to explore

potentials of the developed approach.

Chapter 11 begins by transferring an FRA assessment process into an MADM

problem using the revised ER algorithm. Subsequently, two examples of

transformer winding condition assessment problems are presented using two

ER evaluation analysis models, where the potential of the ER approach to

combining evidence and dealing with uncertainties is demonstrated. In the case

when more experts are involved in an FRA assessment process, the developed

ER framework can be used to aggregate experts’ subjective judgement and

produce an overall evaluation of the condition of a transformer winding in a

formalised form.

Appendix A lists a number of routine tests according to the British Standard

BS171, which are usually conducted for transformer off-line tests.

1.6 Summary

In this chapter, the background of transformer condition monitoring and assess-

ment is introduced firstly. Three transformer monitoring strategies have been

compared with each other, including reliability-centred monitoring, time-based

monitoring and condition-based monitoring. The four main aspects of condition-

based diagnosis techniques are presented, i.e. TM, DGA, FRA and PDA. Then the

drawbacks of conventional transformer diagnosis techniques are discussed, fol-

lowed by the main objectives of the book. Finally the book outline is provided to

give a clear view of the entire contents.

1.5 Contents of this Book 11
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Chapter 2

Evolutionary Computation

Abstract The basic approach to optimisation is to formulate a fitness function,

which evaluates the performance of the fitness function and improves this per-

formance by choosing from available alternatives. Most classical optimisation

methods produce a deterministic sequence of trial solutions using the gradient or

higher-order statics of the fitness function. However, such methods may converge

to local optimal solutions. The evolutionary computation approach is a population-

based optimisation process rooted on the model of organic evolution, which can

outperform the classical optimisation methods for many engineering problems.

The existing approaches to evolutionary computation include genetic algorithms,

evolution strategies, evolutionary programming, genetic programming and so on,

which are considerably different in their practical instantiations. The emphasis of

this chapter is put on the biological background and basic foundations of genetic

algorithm and evolutionary programming. As the principles of particle swarm

optimisation are similar to that of evolutionary algorithms, the standard particle

swarm optimisation algorithm and an improved particle swarm optimisation

algorithm are also presented in this chapter.

2.1 The Evolutionary Algorithms of Computational

Intelligence

2.1.1 Objectives of Optimisation

Before investigating the mechanics and power of evolutionary algorithms, which

belong to the evolutionary approach of CI, it is necessary to outline the objective

of optimising a function or a process, as in this book evolutionary algorithms are

W. H. Tang and Q. H. Wu, Condition Monitoring and Assessment

of Power Transformers Using Computational Intelligence, Power Systems,
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applied to solve engineering optimisation problems. Mathematical optimisation is

the formal title given to the branch of computational science that seeks to answer

the question ‘‘what is the best?’’, for problems in which the quality of any answer

can be expressed as a numerical value. Such problems arise in all areas of

mathematics, the physical, chemical and biological sciences, engineering, archi-

tecture and economics, and the range of techniques available to solve them is very

wide. In simple words, optimisation concerns the minimisation or maximisation of

a function. The conventional view about optimisation is presented well by

Beightler, Philips and Wilde [1]:

Man’s longing for perfection finds expression in the theory of optimisation. It studies how

to describe and attain what is the Best, once one knows how to measure and alter what is

Good or Bad ... An optimisation theory encompasses the quantitative study of optima and

methods for finding them.

The objective of an optimisation problem can be formulated as follows: find a

combination of parameters (independent variables) which optimise a given

quantity, possibly subject to some restrictions on allowed parameter ranges. The

quantity to be optimised (maximised or minimised) is termed the objective

function; the parameters which may be changed in the quest for the optimum are

called control or decision variables; and the restrictions on allowed parameter

values are known as constraints.

Generally speaking, an optimisation technique is mostly used to find a set of

parameters, x ¼ ½x1; x2; . . .; xn�, which can in some way be defined as optimal. In a

simple case this might be the minimisation or maximisation of some system

characteristics that are dependent on x. In a more advanced formulation an

objective function f(x), to be minimised or maximised, might be subject to con-

straints in the form of equality constraints, inequality constraints and/or parameter

bounds. For instance, optimisation of an engineering problem is an improvement

of a proposed design that results in the best properties for minimum cost. In more

elaborate problems encountered in engineering, there is a property to be made best

(optimised) such as the weight or cost of a structure. Then there are constraints,

such as the load to be handled, and the strength of steel that is available. Thus,

optimisation seeks to improve performance towards some optimal points. There is

a clear distinction between the process of improvement and the destination or

optimum itself. However, attainment of the optimum is much less important for

complex systems. It would be nice to be perfect, meanwhile, we can only strive to

improve [1].

Conventionally, the general search and optimisation techniques are classified

into three categories: enumerative, deterministic and stochastic (random). Although

an enumerative search is deterministic, a distinction is made here as it employs no

heuristics [2]. Common examples of each type are shown in Fig. 2.1 [1, 2]:

1. Enumerative schemes are perhaps the simplest search strategy. Within a defined

finite search space, each possible solution is evaluated. However, it is easily

seen this technique is inefficient or even infeasible when search spaces become

large.
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2. Deterministic algorithms attempt to solve the inefficiency by incorporating

problem domain knowledge. As many real-world problems are computationally

intensive, some means of limiting the search space must be implemented to find

acceptable solutions in acceptable time. Many of these are conceived as graph/

tree search algorithms, e.g. the hill-climbing and branch-bound algorithms.

3. Random search algorithms have achieved increasing popularity, as researchers

have recognised the shortcomings of calculus-based and enumerative schemes.

A random search is the simplest stochastic search strategy, as it simply eval-

uates a given number of randomly selected solutions. A random walk is very

similar amongst each other, except that the next solution evaluated is selected

randomly using the last evaluated solution as a starting point.

2.1.2 Overview of Evolutionary Computation

Evolutionary computation techniques or evolutionary algorithms (EAs) work on a

population of potential solutions in a search space. Through cooperation and

competition amongst potential solutions, EAs can find optimal solutions more
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Fig. 2.1 Global search and optimisation techniques
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quickly when applied to complex optimisation problems. In the last forty years, the

growth of interest in heuristic search methods for optimisation has been quite

dramatic. The most commonly used population-based EAs are motivated from the

evolution of nature. The subject now includes GA [1], GP [3], evolutionary pro-

gramming [4], evolution strategies [5], and most recently the concept of evolvable

hardware [6]. These algorithms stemmed from the very basic description of bio-

logical systems and were derived with a simple understanding of genetic evolu-

tion, which have shown the capabilities in solving optimisation problems of

complex systems. EAs are classified as stochastic search algorithms for global

optimisation problems, which have found many engineering and industrial appli-

cations [7, 8].

Different from these evolution-motivated evolutionary computation techniques,

a recently emerged evolutionary computation technique, namely PSO [9, 10], is

motivated from simulations of social behaviours. PSO shares many similarities

with evolutionary computation techniques such as GAs, which is initialised with

a population of random solutions and searches for optima by updating genera-

tions. However, unlike GA, PSO has no evolution operators such as crossover

and mutation. In PSO, potential solutions, called particles, fly through a problem

space by following the current optimum particles. In general, compared with

GAs, the advantages of PSO are that PSO is easy to implement and there are few

parameters to adjust. Recent studies of PSO indicate that although the standard

PSO outperforms other EAs in early iterations, it does not improve the quality of

solutions as the number of generations is increased. In [11], passive congrega-

tion, a concept from biology, was introduced to improve the search performance

of the standard PSO. Simulation results show that this novel hybrid PSO out-

performs the standard PSO on multi-model and high-dimensional optimisation

problems.

All these related fields of research concerning GA, GP and PSO are often

nowadays grouped under the heading of EAs, which is an offshoot of CI. EAs have

been considered as general purpose parameter search techniques inspired by nat-

ural evolution models, which are appealing to many researchers in engineering. In

this book, GA, GP and PSO are employed to identify model parameters and extract

fault features for engineering problems. Detailed discussions on GA, GP and PSO

are introduced in the following sections.

2.2 Genetic Algorithm

The application of GAs is one of the most important developments in the research

field of EAs. GAs are excellent for quickly finding an approximate global maxi-

mum or minimum value, which explore a domain space with mutation and derive

satisfactory results with selection and crossover. The two major problems using

GAs are in converting a problem domain into genes (bit patterns) and creating an

effective objective function.
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2.2.1 Principles of Genetic Algorithms

GAs originated from the studies of cellular automata, conducted by John Holland

and his colleagues at the University of Michigan. Holland’s book, published in

1975 [12], is generally acknowledged as the beginning of the research of GAs.

Briefly, GAs require a natural parameter set of an optimisation problem to be

coded as a finite-length string (analogous to chromosomes in biological systems)

containing characters, features (analogous to genes), taken from some finite-length

alphabets. For a binary GA, the binary alphabet that consists of only 0 and 1 is

taken. Each feature is represented with different values (alleles) and may be

located at different positions (loci). The total package of strings is called a

structure or population (or, genotype in biological systems). A summary of the

similarities between natural and artificial terminologies of GAs is given in

Table 2.1.

A GA is generally recognised as a kind of optimisation method, which is

different from the conventional optimisation techniques, e.g. gradients, Hessians

and simulated annealing. GAs differ from the conventional optimisation algo-

rithms in four aspects:

1. They work using an encoding scheme of control variables, rather than the

variables themselves.

2. They search from one population of solutions to another, rather than from

individual to individual.

3. They use only objective function information, not derivatives.

4. They employ probabilistic, not deterministic, rules, which do not require

accurate initial estimates.

From the early 1980s the community of GA has experienced an abundance of

applications, which spread across a wide range of disciplines. GAs have been

applied to solve difficult problems with objective functions that do not possess nice

properties such as continuity, differentiability, satisfaction of the Lipschitz Con-

dition, etc. In recent years the furious development of GAs in sciences, engi-

neering and business has lead to successful applications to optimisation problems,

e.g. scheduling, data fitting and clustering and trend spotting. Particularly, GAs

have been successfully applied to various areas in power systems such as power

dispatch [13, 14, 15], reactive power planning [16, 17] and electrical machine

design [18, 19].

Table 2.1 Comparison of

natural and GA terminologies
Natural GA

Chromosome String

Gene Feature

Allele Feature value

Locus String position

Genotype Population

Phenotype Alternative solution
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2.2.2 Main Procedures of a Simple Genetic Algorithm

The GA used in this book is known as the simple genetic algorithm (SGA). The

use of SGA requires the determination of five fundamental issues: chromosome

representation, genetic operators making up the reproduction function, the creation

of an initial population, termination criteria and an objective function. An SGA

manipulates strings and reproduces successive populations using three basic

genetic operators: selection, crossover and mutation [12]. The rest of this sub-

section describes each of these issues.

2.2.2.1 Solution Representation

In neo-Darwinism, we have a population of living organisms, i.e. the phenotype—

coded by their deoxyribonucleic acid (DNA) and gene sequence—genotype. The

genotype expresses its phenotype which competes in an environment. The com-

petition drives the genotype to evolve a phenotype that performs best in an

environment. The chromosomes found in living cells can be described as strings of

many thousands of smaller units called alleles. There are only four different kinds

of alleles. In the following example, we reduce the number of different kinds of

alleles to 2 and the number of alleles in a chromosome to 10. Then, a simulated

chromosome in an SGA scheme can be represented by a 10-digit binary number,

e.g. 0010100111. The characteristic of an organism is determined by the particular

sequence of alleles in its chromosomes. In this example, we parallel this concept

by stating that the quality of any proposed binary number as a solution is deter-

mined by comparing it with an arbitrary ideal sequence which we are trying to find

[20].

As mentioned previously, GAs are computer programs that employ the

mechanics of natural selection and natural genetics to evolve solutions for solving

an optimisation problem. In GAs there is a population of solutions encoded by a

string. The representation of a possible solution as a string is essential to GAs as

described in the above paragraph. A set of genes which corresponds to a chro-

mosome in natural genetics is treated as a string in a GA. This algorithm, the most

popular format of which is the binary GA, starts by setting an objective function

based upon the physical model of a problem to calculate fitness values, and

thereafter measures each binary coded string’s strength with its fitness value. The

stronger strings advance and mate with other stronger strings to produce off-

springs. Finally, the best survives.

2.2.2.2 Selection Function

The selection of individuals to produce successive generations plays an extremely

important role in GAs. This selection is based on the string fitness according to the
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‘‘survival of the fittest’’ principle. A reproduction operator copies individual

strings according to their fitness values. The strings with higher fitness values tend

to have a higher probability of contributing one or more offsprings to the next

generation. A selection method is required, which chooses individuals in relation

to their fitness. It can be deterministic or stochastic, and the roulette wheel

selection (RWS) method used in this study is discussed as the following [1, 20].

To reproduce, a simulated weighted roulette wheel is spun as many times as a

population size. The selection for an individual, i, is stochastic and proportional to

its fitness, fi. It requires fitness values to be positive numbers, fi [ 0; 8i, as each
individual occupies a slice of a pie (hence a biased roulette wheel): fi is the ith

element of the total fitness �
PN

i¼1 fi, where N is the population size. The prob-

ability of individual i to be selected is PðiÞ ¼ fi=
PN

i¼1 fi. A uniformly distributed

random number, R, is generated: R2U½0; 1�. If R is between the cumulative

probabilities of the ith and (i ? 1)th individuals, then i is selected. This is repeated

for the required number of replacements (usually N) for the next step.

2.2.2.3 Crossover Function

Nature modifies its code by crossing over sections of chromosomes and mutating

genes, and GAs borrow this idea for this artificial algorithm. Once two parents

have been selected for crossover, a crossover function combines them to create

two new offsprings. The crossover operator operates in two steps following

reproduction. First, each member in the newly reproduced string group is matched

with another at random with a high probability pc. Secondly, each pair of strings

performs crossover with an exchange of each end part of strings at a certain

position to generate a pair of new strings. An example of one point crossover is

given below [20].

If a simulated weighted coin toss rejects crossover for a pair, then both solutions

remain in a population unchanged. However, if it is approved, then two new

solutions are created by exchanging all the bits following a randomly selected

locus on the strings. For example, if crossover after position 5 is proposed between

solutions 1100111010 and 1000110001, the resulting offsprings are 1100110001

and 1000111010, which replace their parents in the population.

2.2.2.4 Mutation Function

The mutation operator flips the code of certain digits of binary coded strings

randomly with a small probability. For instance, if every solution in a population

has 0 as the value of a particular bit, then a number of crossover operations may

produce a solution with a 1 at a particular bit. This process could prevent strings

from loss of useful genetic information, which usually results from frequent

reproduction and crossover operations. In general, every bit of each solution is
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potentially susceptible to mutation. Each bit is subjected to a simulated weighted

coin toss with a probability of mutation pm, which is usually very low (of the order

of 0.01 or less). If mutation is approved, the bit changes its value (in the case of

binary coding from 1 to 0 or from 0 to 1).

2.2.2.5 Initialisation and Termination Criteria

GAs must be provided with an initial population as indicated previously. The

most common method is to randomly generate solutions for the entire popu-

lation. Since GAs can iteratively improve existing solutions, the initial popu-

lation can be seeded with potentially good solutions, with the remainder of the

population being randomly generated solutions. GAs move from generation to

generation selecting and reproducing parents until a termination criterion is

met. The most frequently used termination criterion is a specified maximum

number of generations. Another termination criterion involves population

convergence criteria. In general, GAs force much of an entire population to

converge to a single solution. When the sum of deviations amongst individuals

becomes smaller than a specified threshold, the algorithm can be terminated.

The algorithm can also be terminated due to a lack of improvement in the best

solution over a specified number of generations. Alternatively, a target value

for an evaluation measure can be established based upon some arbitrarily

acceptable thresholds. Moreover, several termination strategies can be

employed in conjunction with each other.

2.2.2.6 Fitness Function

For engineering problems, GAs are usually employed to optimise model

parameters, so that outputs of a model have a good agreement with reference

values, subject to the minimal requirement that a function can map a population

into a partially ordered set. A fitness evaluation function is independent of a GA,

which depends on a particular problem to be optimised. In a simple term, the

fitness function is the driving force behind a GA. A fitness function is called

from a GA to determine the fitness of each solution string generated during a

search. A fitness function is unique to the optimisation of the problem at hand;

therefore, when a GA is used for a different problem, a fitness function must be

formulated to determine the fitness of individuals. For many problems, a fitness

value is normally determined by the absolute error produced by a GA individual

with respect to a given reference value. The closer this error to zero, the better

the individual.

Suppose o denotes the desired signal raw and the output raw of a GA individual

is p. In general, the fitness can be calculated using an error fitness function or an

objective function:
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f ¼
1

n

X

n

j¼1

jpðjÞ � oðjÞj or f ¼
1

n

X

n

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðjÞ � oðjÞð Þ2
q

ð2:1Þ

or a squared error fitness function:

f ¼
1

n

X

n

j¼1

pðjÞ � oðjÞð Þ2; ð2:2Þ

where n is the number of output target samples.

2.2.3 Implementation of a Simple Genetic Algorithm

The SGA used in this book is implemented in binary coding, and its computation

process is listed in Fig. 2.2:
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Fig. 2.2 A basic computation process of SGA
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1. Initialise a population.

2. Evaluate the fitness of every string in the population.

3. Keep the best string in the population.

4. Make a selection from the population at random.

5. Crossover on selected strings with a probability pc.

6. Mutation on selected strings with a probability pm.

7. Evaluate the fitness of every string in a new population.

8. Make elitism.

9. Repeat (4) to (8) until a termination criterion is met.

The crossover probability, pc, and the mutation probability, pm, the size of the

population and the maximum number of generations are usually selected as

‘‘a priori’’.

2.3 Genetic Programming

2.3.1 Background of Genetic Programming

GP, established by Koza in his fundamental book [3] upon the concepts of GAs,

has become one of the most applied techniques in evolutionary computation.

The main difference between GP and GA is the representation of individuals in

a population. Whilst GA encodes solution variants into fixed-length strings

(chromosomes), GP has no such requirements, since a tree-structured (or hierar-

chical) representation of GP individuals holds an ability to evolve individual

structures during a learning process, i.e. dynamically vary its size, shape and

values. GP produces mathematical expressions as solutions. According to Langdon

[21]:

Genetic programming is a technique, which enables computers to solve problems without

being explicitly programmed.

A complete GP process is typically a GA and repeats its operation sequence as

listed in Sect. 2.2.3 [3, 22]. In order to run GP, several preliminary procedures are

required to be undertaken [22]:

1. Determination of terminals and functions.

2. Definition of a fitness function.

3. Choosing GP parameters such as a population size, a maximum individual size,

crossover and other probabilities, a selection method and termination criteria

(e.g. maximum number of generations).

The population of GP individuals, being constructed as tree-structured

expressions, is undergone by a procedure of fitness evaluation, which represents

the individual survivability during a selection procedure. Then the fittest indi-

viduals, being chosen as parents for performing genetic operations, produce
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offsprings constituting new generations of a population. The process continues

until a given termination criterion is met or simply a certain generation number is

reached. The finally survived individual is treated as a variant of a desired solution.

The tree structure of individuals allows GP to vary its size and shape, thereby,

achieving a high efficiency in searching of a solution space with respect to what

GAs are able to do [3, 22].

2.3.2 Implementation Processes of Genetic Programming

2.3.2.1 Terminals and Functions

GP generates an expression as a composition of functions from a function set and

terminals from a terminal set. The choice of functions and terminals, which are

collectively referred as nodes, plays an important role in GP since they are the

building blocks of GP individuals.

Terminals correspond to the inputs of GP expressions, whether they are con-

stants, variables or zero-argument functions that can be executed. Regarding tree-

structured (or hierarchical) representations of individuals, terminals end a branch

of a tree. In order to improve GP performance, an ephemeral random constant can

also be included as a terminal [3].

Functions are chosen to be appropriate to a problem domain, which may be

presented by arithmetic operations, standard mathematical, logical and domain-

specific functions, programming functions and statements. In this book, only the

mathematical functions listed in Table 2.2 are adopted for feature extraction using

GP after numerous GP trials with different sets of functions are utilised.

2.3.2.2 Population Initialisation

The initial generation of a population of GP individuals for later evolution is the

first step of a GP process. In general, the size of a newly initialised or reproduced

Table 2.2 A function set for

feature extraction using GP
Symbolic

name

No. of

arguments

Description

Add, Sub 2 Addition, substraction

Mul, Div 2 Multiplication, division

Power 2 Involution

Sqr, Abs 1 Square, absolute value

SqrtAbs 1 Square root of absolute value

Exp, Ln 1 Exponent, natural logarithm

Sin, Cos 1 Sine, cosine

Arctan, Not 1 Arc tangent, invertor
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GP individual is bounded by the maximum depth of a tree, i.e. by the maximum

total number of nodes in the tree.

The depth of a node is the minimal number of nodes that must be traversed to

reach from the root of the tree to the selected node and, correspondingly, the

maximum depth is the largest depth being permitted between the root node and the

outmost terminals of an individual [22].

In most cases, the initialisation of GP tree structures is implemented using the

full or grow methods [3]. The grow method creates an irregular shape tree

structure due to random selections of its nodes, whether it is a function or a

terminal (except the root node being only a function). Thus, the maximum depth of

a tree could not be reached until the terminal node is appeared, concluding the tree

branch. As an example in Fig. 2.3a a tree-structured GP individual of a maximum

depth of 4, calculating the following expression:

aðb� cÞ þ sin b; ð2:3Þ

is presented being initialised with the grow method. The terminals are variables

a, b and c, whereas arithmetical functions +, - and sin are the functions.

On the other hand, the full method generates tree structures by choosing only

functions to build nodes in a tree branch until it reaches a maximum depth. Then

only terminals are chosen. As a result, each branch of the tree is of the full

maximum depth [22]. For instance, the tree in Fig 2.3b, representing the following

expression:

ab� ðbþ cÞ; ð2:4Þ

is initialised using the full method with a maximum depth of 3.

The ramped half-and-half method has also been devised in order to enhance the

population diversity by combining both the full and grow methods [3]. Given the

maximum depth d, a GP population is divided equally amongst individuals to be

initialised having maximum depths 2; 3; . . .; d � 1; d. For each depth group, half
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Fig. 2.3 Tree-structured GP expressions
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of the individuals are generated using the grow method, and the other half by using

the full method.

2.3.2.3 Genetic Operators

In GP the populations of hundreds and thousands of expressions are generally bred

using the Darwinian principle of survival and reproduction of the fittest. Similar to

GAs, three genetic operators, i.e. crossover, mutation and reproduction, are

employed for this breeding, which are appropriate for generating a new offspring

population of individual expressions from an initial population.

The crossover operation is used to create new offspring individuals from two

parental ones selected by exchanging of the subtrees between parental structures as

shown in Fig. 2.4. These offspring individuals are generally with different sizes

and shapes to their parents [22, 23]. Mutation is operated on only one individual by

replacing a subtree at a randomly selected node of an individual by a randomly

generated subtree as shown in Fig. 2.5. The reproduction operation makes a direct

copy of the best individual from the parental population and places it into the

offspring population [22].
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Fig. 2.4 Crossover of tree-structured GP expression
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2.3.2.4 Fitness Function

Each individual expression in a population is evaluated in order to quantify how

well it performs in a particular problem environment, which is represented by a

fitness value. For a two-category classification problem, the Fisher’s discriminant

ratio (FDR) criterion is usually utilised as a fitness function. FDR is based on the

maximisation of between-class scatter over the within-class scatter [24, 25]. Thus,

each GP individual is evaluated according to its ability to separate particular

classes of data by using the following equation [25]:

fitness ¼
l1 � l2ð Þ2

r21 þ r22
� � � pN; ð2:5Þ

where l1, l2 and r21, r22 denote the mean values and variances of the two

categories to be separated, respectively. p is a small value, e.g. 0.0005, which is

introduced as a penalty to the fitness function depending on the number of nodes

N of each evaluated individual. This allows a GP program to control the increase in

the size of GP individuals and, hence, the production of more simple solutions

[26]. Consequently, a GP individual with a larger fitness value is considered to be

more accurate in two-category discrimination.

2.3.2.5 Selection Procedure

The selection of individuals to produce successive generations plays an extremely

important role in GP. There are various fitness-based selection methods, amongst

which the tournament selection is recognised as the mainstream method for a GP

selection procedure [22]. The tournament selection operates on subsets of indi-

viduals in a population. A randomly chosen number of individuals, defined by the

tournament size, form a subset, where a selection competition is performed. Best

individuals from the subsets are then passed to the next level, where the compe-

tition is repeated. The tournament selection allows to adjust the selection pressure

[27], which is an objective measure to the characterise convergence rate of the

selection, i.e. the smaller the tournament size, the lower the pressure [22].

b 5

- +

-

+ +

sin sin

c c

b b3

*

*

ba
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2.4 Particle Swarm Optimisation

The standard particle swarm optimiser (SPSO) is a population-based algorithm

that was invented by Kennedy and Eberhart [9], which was inspired by the social

behaviour of animals such as fish schooling and bird flocking. Similar to other

population-based algorithms, such as GAs, SPSO can not only solve a variety of

difficult optimisation problems but also has shown a faster convergence rate than

other EAs for some problems [10]. Another advantage of SPSO is that it has very

few parameters to adjust, which makes it particularly easy to implement.

Angeline [28] pointed out that although SPSO may outperform other EAs in

early iterations, its performance may not be competitive as the number of gen-

erations is increased. Recently, investigations have been undertaken to improve the

performance of SPSO. Løvbjerg et al. [29] presented a hybrid PSO model with

breeding and subpopulations. Kennedy and Mendes [30] studied the impacts of

population structures to the search performance of SPSO. Other investigations on

improving SPSO’s performance were undertaken using the cluster analysis [31]

and the fuzzy adaptive inertia weight [32]. SPSO has been used to tackle various

engineering problems as presented in [33].

The foundation of SPSO is stemmed on the hypothesis that social sharing of

information amongst conspecifics offers an evolutionary advantage [9], and the

SPSO model is rooted on the following two factors [9]:

1. The autobiographical memory, which remembers the best previous position of

each individual (Pi) in a swarm.

2. The publicised knowledge, which is the best solution (Pg) found currently by a

population.

Therefore, the sharing of information amongst conspecifics is achieved by

employing the publicly available information Pg, shown in Fig. 2.6. There is no

information sharing amongst individuals except that Pg broadcasts the information

to the other individuals. Therefore, a population may lose diversity and is more

gbest

The ith Particle

Fig. 2.6 Interaction between

particles and the best particle

gbest
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likely to confine the search around local minima if committed too early in the

search to the global best found so far.

To overcome this weakness, ideas from biology science have been borrowed to

avoid early convergence and biologists have proposed four types of biological

mechanisms that allow animals to aggregate into groups: passive aggregation,

active aggregation, passive congregation and social congregation [34]. There are

different information sharing mechanisms inside these forces. It is found that the

passive congregation model is suitable to be incorporated in the SPSO model.

Inspired by this observation, a hybrid model of PSO with passive congregation is

presented in this book [11].

2.4.1 Standard Particle Swarm Optimisation

The population of SPSO is called a swarm and each individual is called a particle.

For the ith particle at iteration k, it has the following two attributes.

1. A current position in an N-dimensional search space Xk
i ¼ ðxki;1; . . .; x

k
i;n; . . .;

xki;NÞ, where xki;n 2 ½ln; un�; 1� n�N; ln and un are the lower and upper bounds

for the nth dimension, respectively.

2. A current velocity Vi
k

Vk
i ¼ ðvki;1; . . .; v

k
i;n; . . .; v

k
i;NÞ

which is clamped to a maximum velocity

Vk
max ¼ ðvkmax;1; . . .; v

k
max;n; . . .; v

k
max;NÞ:

In each iteration, the swarm is updated by the following equations [9]:

Vkþ1
i ¼ xVk

i þ c1r1ðP
k
i � Xk

i Þ þ c2r2ðP
k
g � Xk

i Þ ð2:6Þ

Xkþ1
i ¼ Xk

i þ Vkþ1
i ð2:7Þ

where Pi is the best previous position of the ith particle (also known as pbest) and

Pg is the global best position amongst all the particles in the swarm (also known as

gbest). They are given by the following equations:

Pi ¼
Pi : f ðXiÞ�Pi

Xi : f ðXiÞ\Pi

�

ð2:8Þ

Pg 2 fP0;P1; . . .;Pmgjf ðPgÞ ¼ minðf ðP0Þ; f ðP1Þ; . . .; f ðPmÞÞ ð2:9Þ
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where f is the objective function, m is the number of particles, r1 and r2 are the

elements from two uniform random sequence on the interval ½0; 1� : r1 �Uð0; 1Þ;
r2 �Uð0; 1Þ and x an inertia weight which is typically chosen in the range of [0,1].

A larger inertia weight facilitates the global exploration and a smaller inertia

weight tends to facilitate the local exploration to fine-tune the current search area

[35]. Therefore, the inertia weight x is critical for SPSO’s convergence behaviour.

A suitable value of x usually provides a balance between global and local

exploration abilities and consequently results in a better optimum solution. c1 and

c2 are acceleration constants, which also control how far a particle moves in a

single iteration. The maximum velocity Vmax is set to be half of the length of the

search space.

2.4.2 Particle Swarm Optimisation with Passive Congregation

It is mentioned that SPSO is inspired by social behaviours such as spatial order,

more specially, aggregation such as bird flocking, fish schooling, or swarming of

insects. Each of these cases has stable spatio-temporal integrities of a group of

organisms: the group moves persistently as a whole without losing the shape and

density.

For each of these groups, different biological forces are essential for preserving

the group’s integrity. Parrish and Hamner [34] proposed mathematical models of

the spatial structure of animal groups to show how animals organise themselves. In

these models, aggregation sometimes refers to a grouping of the organisms by non-

social, external and physical forces. There are two types of aggregation: passive

aggregation and active aggregation. Passive aggregation is a passive grouping by

physical processes. One example of passive aggregation is the dense aggregation

of plankton in open water, in which the plankton are not attracted actively to the

aggregation but are transported passively there via physical forces such as water

currents. Active aggregation is a grouping by attractive resources, such as food or

space, with each member of the group recruited to a specific location actively.

Congregation, which is different from aggregation, is a grouping by social forces,

which is the source of attraction, in the group itself. Congregation can be classified

into passive congregation and social congregation. Passive congregation is an

attraction of an individual to other group members but where there is no display of

social behaviour. Social congregations usually happen in a group where the

members are related (sometimes highly related). A variety of inter-individual

behaviours are displayed in social congregations, necessitating active information

transfer [34]. For example, ants use antennal contacts to transfer information about

an individual identity or a location of resources [36].

From the definitions above, the third part of Eq. 2.6: c2r2ðP
k
g � Xk

i Þ can be

classified as either active aggregation or passive congregation. Since Pg is the best

solution a swarm has found so far, which can be regarded as the place with most
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food, we argue that it is better to classify c2r2ðP
k
g � Xk

i Þ as active aggregation.

From a biology point of view, the sharing of information amongst conspecifics is

achieved by employing the publicly available information gbest. There is no

information sharing amongst individuals except that gbest gives out the infor-

mation to the other individuals. Therefore, for the ith particle, the search direction

is only affected by 3 factors as shown in Fig. 2.7: the inertia velocity xVi
k, the best

previous position pbest, and the position of global best particle gbest. The popu-

lation is more likely to lose diversity and confine the search around local minima.

From our experiment results, the performance of SPSO is not sufficiently good

enough for high-dimensional and multi-model optimisation problems.

It has been discovered that in spatially well-defined congregations, such as fish

schools, individuals may have low fidelity to a group because the congregations

may be composed of individuals with little to no genetic relation to each other

[37]. Schooling fish are generally considered as a ‘‘selfish herd’’ [38], in which

each individual attempts to take the sweeping generalisation advantage from group

living, independent of the fates of neighbours [39]. In these congregations,

information may be transferred passively rather than actively [40]. Such asocial

types of congregations can be referred to as passive congregation. As SPSO is

inspired by fish schooling, it is, therefore, natural to ask if a passive congregation

model can be employed to improve the performance of SPSO. Here, we do not

consider other models such as passive aggregation, because SPSO is not aggre-

gated passively via physical processes. Furthermore, social congregation usually

happens when group fidelity is high, i.e. the chance of each individual meeting any

of the others is high [41]. Social congregations frequently display a division of

labour. In a social insect colony, such as an ant colony, large tasks are
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accomplished collectively by groups of specialised individuals, which is more

efficient than performing sequentially by unspecialised individuals [42]. The

concept of labour division can be employed by data clustering, sorting [43] and

data analysis [44].

Group members in an aggregation can react without direct detection of

incoming signals from an environment, because they can get necessary informa-

tion from their neighbours [34]. Individuals need to monitor both environment and

their immediate surroundings, such as the bearing and speed of their neighbours

[34]. Therefore, each individual in an aggregation has a multitude of potential

information from other group members that may minimise the chance of missed

detection and incorrect interpretations [34]. Such information transfer can be

employed in the model of passive congregation. Inspired by this perception, and to

keep the model simple and uniform with SPSO, a hybrid PSO with passive con-

gregation is proposed:

Vkþ1
i ¼ xVk

i þ c1r1ðP
k
i � Xk

i Þ þ c2r2ðP
k
g � Xk

i Þ þ c3r3ðR
k
i � Xk

i Þ ð2:10Þ

Xkþ1
i ¼ Xk

i þ Vkþ1
i ð2:11Þ

where Ri is a particle randomly selected from the swarm, c3 is the passive con-

gregation coefficient and r3 is a uniform random sequence in the range (0,1):

r3 �Uð0; 1Þ. The interactions between individuals of PSOPC are shown in

Fig. 2.8, and the pseudo code for implementing PSOPC is illustrated in Table 2.3.
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2.5 Summary

This chapter presents a brief introduction to evolutionary computation and its

constitutive algorithms in order to provide a necessary background for the work

discussed in later chapters. The basics of three EAs, i.e. GA, GP and PSO, are

described, which are employed for identifying model parameters and evaluating

fault features. First, the principles of GA are described, as well as the imple-

mentation procedures of an SGA. Then, the foundation of GP is presented,

including the definition of terminals and functions, genetic operators, population

initialisation and selection procedures. Finally, the standard PSO algorithm is

introduced, followed by a description of an improved PSO algorithm.
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Chapter 3

Methodologies Dealing with Uncertainty

Abstract Uncertainties may arise in complex human thinking processes, which

can become particularly challenging in the decision-making context for hard

engineering problems with vague, imprecise and incomplete knowledge and

information. As an important branch of computational intelligence, the logical

approach can be employed to deal with such uncertainties. This chapter presents

three mathematical theories, i.e. the Dempster–Shafer theory, the probability theory

and the fuzzy logic (FL) theory, to handle different kinds of uncertainties. The FL

theory can deal with the imprecision (or vagueness) of defined knowledge, whilst

the Dempster–Shafer theory provides two measures (support and plausibility) for

formulating a mechanism to represent ‘‘ignorance’’. As a probabilistic technique,

Bayesian networks (BNs) are introduced as graphical representations of uncertain

knowledge. In later chapters, the three methodologies are employed to tackle

uncertainties arising from complicated condition assessment procedures for

detecting transformer faults.

3.1 The Logical Approach of Computational Intelligence

The logical approach is an important branch of CI, which is initially based upon

the use of the if–then logical constructions to develop a theorem proving programs.

These programs analyse the knowledge about properties and relationships amongst

objects to solve a problem (derive a procedure, conclusion, etc.), which would

normally require a human expert. Such CI programs are called EPSs, which are

able to make choices analysing information acquired from a variety of knowledge

sources, e.g. human experts, databases and so forth [1]. To make expert systems

more efficient in dealing with vague, imprecise and uncertain knowledge and

information, the FL concept was introduced [2], which used fuzzy values

to encode human knowledge in a form that reflected accurately experts’

understanding of difficult, complex problems and, thus, capture human reasoning
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and decision making [3]. Alternatively, a probability theory can also be employed

to express uncertain information, upon which a variety of evidence combination

and decision making methods have been successfully developed, utilising different

concepts of probabilistic reasoning. Amongst the most applied methods are the

Bayesian [4] theory and the Dempster–Shafer theory [5].

There are some subtle differences amongst the previously mentioned three

mathematical theories in handling different kinds of uncertainties, i.e. the

Dempster–Shafer theory, the probability theory and the FL theory. In simple

terms, a probability represents the chance of an instance belonging to a particular

concept class given the current knowledge, whilst the FL is treated as a mechanism

used to deal with the imprecision (or vagueness) of the defined knowledge (i.e. the

defined concept does not have a certain extension in semantics, and the FL can be

used to specify how well an object satisfies such a vague description). The

Dempster–Shafer theory, on the other hand, is a mechanism for handling ‘‘igno-

rance’’, which provides two measures (support and plausibility) for representing

beliefs about propositions and works well in simple rule-based systems due to its

high computational complexity. In this chapter, the three mathematical theories are

introduced briefly, which are employed in later chapters to deal with uncertainties

arising from complicated condition assessment procedures for power transformers.

3.2 Evidential Reasoning

It is always desirable to find an information aggregation method, which could be

used to tackle MADM problems in engineering. In this section, an ER approach is

presented, which deals with uncertain decision knowledge in MADM problems on

the basis of a firm mathematical foundation. The ER approach was first established

in [6] and generalised in [7] to provide a multi-attribute evaluation framework for

overall decision making by aggregating subjective judgement on constitutive

attributes for an MADM problem. Regarding transformer condition assessment,

the ER has been employed to develop a formalised evaluation framework to

integrate various diagnoses obtained with traditional diagnostics methods for

transformer DGA [8, 9]. The kernel of the approach is an ER algorithm, developed

upon the evidence combination rules of the Dempster–Shafer theory, which is used

to aggregate attributes of a multi-level structure [7]. Recently, the algorithm has

been revised in [10] with an updated weight normalisation scheme and a simple

probability assignment strategy. In this section, the basics of the original ER

algorithm and the revised ER algorithm are introduced in detail, as well as the

ranking processes used by an ER approach.

3.2.1 The Original Evidential Reasoning Algorithm

A hybrid MADA problem may be expressed using the following formula

[5, 6, 11].
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maximisea2X yðaÞ ¼ ½y1ðaÞ; . . .; ykðaÞ; . . .; yk1þk2ðaÞ�; ð3:1Þ

where, X is a discrete set of alternatives (X = [a1,…,ar], r =1,…,l), y(a) the

overall evaluation of alternative a, yk(a) the evaluation of the kth attribute of

y(a) and k1 and k2 the numbers of quantitative and qualitative attributes of each

alternative, respectively. For transformer condition assessment, alternatives

represent a group of transformers. An extended decision matrix for qualitative

and quantitative attributes is presented in Table 3.1, where yij is a numerical

value of yj at ai (i=1,…,l; j=1,…,k1) and SJij the subjective judgements with

uncertainties for evaluating the states of yk1þj at ai (i=1,…,l; j=1,…,k2). The

objective is to rank these alternatives or to select the best compromise alterna-

tive, with both quantitative and qualitative attributes being satisfied as much as

possible.

An evaluation analysis model concerning only qualitative judgements is

presented in Fig. 3.1, which defines a typical evaluation structure for an MADA

problem. There are three levels in the evaluation model, i.e. a factor level, an

evaluation grade level and an attribute level. In the attribute level of the evaluation

model, the state of an attribute at each alternative a is required to be evaluated.

In the evaluation grade level, a simple evaluation method is used to define a

few evaluation grades, so that the state of an attribute of an alternative could be

evaluated to one of the predefined grades. These grades may be quantified

using certain scales. In the evaluation grade level, Hn is called an evaluation

grade (n=1,…,N). A set of evaluation grades for evaluating an attribute yk is

denoted as

H ¼ fH1;H2; . . .;Hn; . . .;HNg; ð3:2Þ

where N is the number of evaluation grades. Hn represents a grade to which the

state of yk may be evaluated. H1 and HN are set to be the worst and the best grades,

respectively, and Hn+1 is supposed to be preferred to Hn.

The qualitative evaluation is difficult to give, as it is subjective and sometimes

incomplete. In order to quantify these evaluation grades and eventually to quantify

subjective judgements possessing uncertainties, the concept of preference degree is

introduced. A preference degree takes values from a closed interval [-1, 1]

([worst, best]), which may be called a preference degree space. The set of eval-

uation grades may, thus, be quantified by [6]

Table 3.1 An extended decision matrix including both quantitative and qualitative attributes

Alternative Quantitative attributes (yk) Qualitative attributes (yk)

(ar) y1 y2 … yk1 yk1þ1 yk1þ2 … yk1þk2

a1 y11 y12 … y1k1 SJ11 SJ12 … SJ1k2
a2 y21 y22 … y2k1 SJ21 SJ22 … SJ2k2
… … … … … … … … …

al yl1 yl2 … ylk1 SJl1 SJl2 … SJlk2
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pfHg ¼ ½pðH1Þ; . . .; pðHnÞ; . . .; pðHNÞ�
T; ð3:3Þ

where p{H} is the numerical scale of Hn and satisfies the following basic

conditions:

pðH1Þ ¼ �1; pðHNÞ ¼ 1;

pðHnþ1Þ[ pðHnÞ; n ¼ 1; . . .;N � 1: ð3:4Þ

In the factor level, Ek represents a set of factors, which is associated with the

evaluation of attribute yk(a) and denoted by

Ek ¼ fe1k ; e
2
k ; . . .e

Lk
k g k ¼ k1 þ 1; . . .; k1 þ k2; ð3:5Þ

where ek
i (i = 1,…, Lk) are factors influencing the evaluation of yk(a). The state of

ek
i can be evaluated directly at an alternative a, i.e. ek

i
= ek

i (a). Hence, the pref-

erence degree for the state of an attribute yk(a) through the direct evaluations of the

relevant factors ek
i can be generated using the Dempster–Shafer theory, which is

introduced as below.

3.2.1.1 The Outline of the Dempster–Shafer Theory

The Dempster–Shafer theory was first set forth by Dempster in the 1960s and

subsequently extended by Shafer [5, 11].

The Dempster–Shafer theory defines a frame of discernment, denoted by H. A

basic hypothesis (singleton) in H is defined as Hs, i.e. Hs � H. The hypotheses in

H are assumed mutually exclusive and exhaustive. A subset of the hypotheses inH

gives rise to a new hypothesis, which is equivalent to the disjunction of the

hypotheses in the subset. Each hypothesis in H corresponds to a one-element

subset (called a singleton). By considering all possible subsets of H, denoted as

2H, the set of hypotheses to which belief can be allotted is enlarged. Henceforth,

the term hypothesis is used in this enlarged sense to denote any subset of the

original hypotheses in H. Note that a set of size n has 2n subsets.

y y y

H H H

E E E

Attribute 

Level

Evaluation 

Grade

Factor 

Level1

1

1

k

k

n N

k2

k2
........

....

.... ....

....

Fig. 3.1 An evaluation anal-

ysis model dealing with sub-

jective judgements
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The Dempster–Shafer theory uses a number in the range [0, 1] to indicate belief

in a hypothesis given a piece of evidence. This number is the degree to which the

evidence supports the hypothesis. Recall that evidence against a hypothesis is

regarded as evidence for the negation of the hypothesis. The impact of each

distinct piece of evidence on the subsets of H is represented by a function called a

basic probability assignment (BPA). A BPA is a generalisation of traditional

probability density functions, which assigns a number in the range [0, 1] to every

singleton of H so that the numbers sum to 1. Using 2H, the enlarged domain of all

subsets of H, a BPA, denoted as m, assigns a number in [0, 1] to every subset of H

such that the numbers sum to 1. Thus, m allows an assignment of a quantity of

belief to every element, not just to those elements on the bottom row in Fig. 3.1, as

is the case for a probability density function.

The quantity m(A) is a measure of that portion of the total belief committed

exactly to A, where A is an element of 2H and the total belief is 1. The portion of

belief cannot be further subdivided amongst the subsets of A and does not include

portions of belief committed to subsets of A. The quantity m(H) is a measure of

that portion of the total belief that remains unassigned after commitment of belief

to various proper subsets of H. If m(A) = s and s assigns no belief to other subsets

of H, then m(H) = 1 - s. Thus, the remaining belief is assigned to H and not to

the negation of the hypothesis, as would be required in the traditional Bayesian

model [11].

If there exists two pieces of evidence in H, they provide two BPAs to a subset

W of H, i.e. m1(W) and m2(W). The problem is to obtain a combined probability

assignment m12ðWÞ ¼ m1ðWÞ � m2ðWÞ. The Dempster–Shafer theory provides an

evidence combination rule defined below:

m12ðUÞ ¼ 0; m12ðWÞ ¼
X

A\B¼W

m1ðAÞm2ðBÞ

1� K
;

K ¼
X

A\B¼U

m1ðAÞm2ðBÞ:

In the rule, m12(W) for hypothesis Wð�HÞ is computed from m1 and m2 by adding

all products of the form m1(A)m2(B) where A and B are selected from the subsets of

H in all possible ways such that their intersection is W. K reflects the conflicting

situations where both m1(A) and m1(B) are not zero, but the intersection A \ B is

empty. The commutativity of multiplication in the rule ensures that the rule yields

the same value regardless of the order in which the two pieces of evidence are

combined.

3.2.1.2 An ER Framework for an Evaluation Analysis Model

In the previously presented evaluation analysis model, an evaluation grade Hn may

be considered as a basic hypothesis in the Dempster–Shafer theory and a factor ek
i
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is regarded as a piece of evidence. All the evaluation grades in H are defined as

distinct grades, and also must cover all possible grades. Then, the frame of dis-

cernment may be defined by

H ¼ H ¼ fH1; . . .;Hn; . . .;HNg: ð3:6Þ

Let m(Hn/ek
i (a)) expresses a BPA in which ek

i supports a hypothesis that the state

of yk at an alternative a is confirmed to Hn. In this study, a BPA is derived from a

confidence degree [6]. Let b(ek
i (a)) be a confidence degree to which a decision

maker considers that the state of ek
i at an alternative a is confirmed. If there is only

one factor ek
i in Ek, m(Hn/ek

i (a)) should be equal to b(ek
i (a)). If there are multiple

factors in Ek, the confidence degree b(ek
i (a)) depends upon a weighted confidence

degree kk
i . kk

i is the normalised relative weight of ek
i in Ek and kk ¼ ½k1k ; . . .; k

Lk
k �T .

Then m(Hn/ek
i (a)) is determined by

mðHn=e
i
kðaÞÞ ¼ kikbðe

i
kðaÞÞ: ð3:7Þ

A priority coefficient ak may also be used in the above equation to represent the

importance of the role of the most important factor for evaluating yk. In the factor

level, a set of factors Ek ¼ ½e1k ; e
2
k ; . . .; e

Lk
k � is classified into N - 1 subjects Sn

defined by

Sn ¼ fe1n;nþ1; . . .; e
i
n;nþ1; . . .; e

Rn

n;nþ1g; ðn ¼ 1; . . .;N � 1; i ¼ 1; . . .;RnÞ; ð3:8Þ

where en,n+1
i is a factor in Ek, the state of which is confirmed to Hn and/or

to Hn+1, and Lk = R1 ? R2 ? _ ? RN-1 (Rn is the number of involved fac-

tors). In this way, the BPAs can be generated from uncertain subjective judge-

ments. The overall probability assignment can then be obtained by combining all

the BPAs using the operational algorithms as presented in the following

subsection.

3.2.1.3 Implementation of Dempster–Shafer Combination Rules

In the preceding section, a set of factors has been classified into N - 1 subsets

denoted by Sn (n=1,…,N - 1). In Sn there are Rn factors as defined by Eq. 3.8, the

states of which may be confirmed to Hn and/or Hn+1. In this subsection, an

algorithm is formulated to generate local probability assignments to Hn and Hn+1

by combining these Rn factors using partial combination rules first [6].

Suppose the basic probability assignments mn
n,i and mn+1

n,i (i=1,…,Rn) are

obtained using Eq. 3.8, then m
n;i
H ¼ 1� ðmn;i

n þ m
n;i
nþ1Þ (i=1,…,Rn). All these basic

probability assignments to Hn, Hn+1 and H with respect to en,n+1
i (i=1,…,Rn;

n=1,…,N- 1) may then be expressed by the following basic probability assign-

ment matrix Mn:
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Mn ¼

mn;1
n m

n;1
nþ1 m

n;1
H

mn;2
n m

n;2
nþ1 m

n;2
H

. . . . . . . . .

mn;Rn
n m

n;Rn

nþ1 m
n;Rn

H

2

6

6

4

3

7

7

5

fe1n;nþ1g

fe2n;nþ1g
. . .

feRnn;nþ1g

; ðn ¼ 1; . . .;N � 1Þ:

If Rn = 0, then mn
n,i

= 0, mn+1
n,i

= 0 and mH
n,i

= 1. Let mn
I(1)

= mn
n,1, mn+1

I(1)
= mn+1

n,1

and mH
I(1)

= mH
n,1, then it is logical by combining en,n+1

I(r+1)
= {en,n+1

1 ,…, en,n+1
r+1 } to

obtain the following recursive formulae:

fHng : mIðrþ1Þ
n ¼ KIðrþ1ÞðmIðrÞ

n mn;rþ1
n þ mIðrÞ

n m
n;rþ1
H þ m

IðrÞ
H mn;rþ1

n Þ; ð3:9Þ

fHnþ1g : m
Iðrþ1Þ
nþ1 ¼ KIðrþ1Þðm

IðrÞ
nþ1m

n;rþ1
nþ1 þ m

IðrÞ
nþ1m

n;rþ1
H þ m

IðrÞ
H m

n;rþ1
nþ1 Þ; ð3:10Þ

fHg : m
Iðrþ1Þ
H ¼ KIðrþ1Þm

IðrÞ
H m

n;rþ1
H ; ð3:11Þ

where

KIðrþ1Þ ¼ ½1� ðmIðrÞ
n m

n;rþ1
nþ1 þ m

IðrÞ
nþ1m

n;rþ1
n Þ��1;

r ¼ 1; . . .;Rn � 1; n ¼ 1; . . .;N � 1:
ð3:12Þ

The local probability assignments to Hn, Hn+1 and H with respect to the subset

of factors Sn can be represented as m
IðRnÞ
n ;m

IðRnÞ
nþ1 and m

IðRnÞ
H . To represent the results

of the partial combination of all subsets of factors, the following matrix is defined,

called the local probability assignment matrix M:

M ¼

m
IðR1Þ
1 m

IðR1Þ
2 m

IðR1Þ
H

. . . . . . . . .

m
IðRnÞ
n m

IðRnÞ
nþ1 m

IðRnÞ
H

. . . . . . . . .

m
IðRN�1Þ
N�1 m

IðRN�1Þ
N m

IðRN�1Þ
H

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

fe
IðR1Þ
1;2 g
. . .

fe
IðRnÞ
n;nþ1g
. . .

fe
IðRN�1Þ
N�1;N g

: ð3:13Þ

After the partial combination procedure, the subset of factors Sn may be

regarded as an aggregated factor and m
IðRnÞ
n as a new basic probability assignment

to the hypothesis Hn, confirmed by Sn. The problem is then to combine all these

integrated factors in order to obtain the overall probability assignments to all

subsets W of H, including the singletons Hn (n=1,…,N). Let b
Cð1Þ
1 ¼ m

IðR1Þ
1 ; b

Cð1Þ
2 ¼

m
IðR1Þ
2 and b

Cð1Þ
H ¼ m

IðR1Þ
H , then we can combine e

Cðjþ1Þ
1;jþ2 ¼ fe

IðR1Þ
1;2 ; . . .; e

IðRjþ1Þ
jþ1;jþ2g to

obtain the following recursive algorithm [6]:

fH1g : b
Cðjþ1Þ
1 ¼ KCðjþ1Þb

CðjÞ
1 m

IðRjþ1Þ
H ; ð3:14Þ

. . .

fHjg : b
Cðjþ1Þ
j ¼ KCðjþ1Þb

CðjÞ
j m

IðRjþ1Þ
H ; ð3:15Þ
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fHjþ1g : b
Cðjþ1Þ
jþ1 ¼ KCðjþ1Þ b

CðjÞ
jþ1m

IðRjþ1Þ
jþ1

�

þ b
CðjÞ
jþ1m

IðRjþ1Þ
H þ b

CðjÞ
H m

IðRjþ1Þ
jþ1

�
;

ð3:16Þ

fHjþ2g : b
Cðjþ1Þ
jþ2 ¼ KCðjþ1Þb

CðjÞ
H m

IðRjþ1Þ
jþ2 ; ð3:17Þ

fHg : b
Cðjþ1Þ
H ¼ KCðjþ1Þb

CðjÞ
H m

IðRjþ1Þ
H ; ð3:18Þ

where

KCðjþ1Þ ¼ 1�
Xj

t¼1

b
CðjÞ
t ðm

IðRjþ1Þ
jþ1 þ m

IðRjþ1Þ
jþ2 Þ þ b

CðjÞ
jþ1m

IðRjþ1Þ
jþ2

 !" #�1

j ¼ 1; . . .;N � 2:

ð3:19Þ

When j = N - 2, the overall probability assignments are generated, which can

be expressed by the following vector and called the overall probability assignment

vector:

G ¼ ½b
CðN�1Þ
1 ; . . .; bCðN�1Þ

n ; . . .; b
CðN�1Þ
N ; b

CðN�1Þ
H �T: ð3:20Þ

To sum up, G is obtained by combining e1,N
C(N-1) whilst

e
CðN�1Þ
1;N ¼ fe

IðR1Þ
1;2 ; . . .; e

IðRnÞ
n;nþ1; . . .; e

IðRN�1Þ
N�1;N g

¼ fS1; S2; . . .; Sn; . . .; SN�1g

¼ fe1k ; e
2
k ; . . .; e

Lk
k g ¼ Ek:

ð3:21Þ

It can also be noticed that bn
C(N-1) is the overall probability assignment to which Hn

is confirmed by all factors ek
i (i=1,…,Lk).

3.2.1.4 Construction of an Evaluation Matrix

The ER approach introduced above is actually employed to transform uncertain

subjective judgements about the state of a qualitative attribute yk at an alternative

ar into the preference degree prk ¼ pðykðarÞÞ for all k = k1 ? 1,…, k1 ? k2;

r=1,…,l. In this way, all qualitative attributes are evaluated and quantified using

numerical values in the interval [-1, 1].

The values of quantitative attributes which are generally incommensurate may also

be transformed into the preference degree space using the following formulae [6]:

prk ¼ pðyrkÞ ¼
2ðyrk � ymin

k Þ

ymax
k � ymin

k

� 1; k ¼ 1; . . .; k1; r ¼ 1; . . .; l: ð3:22Þ

For benefit attributes
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prk ¼ pðyrkÞ ¼
2ðymax � yrkÞ

ymax
k � ymin

k

� 1; k ¼ 1; . . .; k1; r ¼ 1; . . .; l: ð3:23Þ

For cost attributes

ymax
k ¼ maxfy1k; . . .; ylkg;

ymin
k ¼ minfy1k; . . .; ylkg:

ð3:24Þ

The transformed attribute yk may be denoted by a preference function p(yk).

Thus, the original extended decision matrix defined in Table 3.1 is transformed

into an ordinary decision matrix as shown in Table 3.2, in which the states of all

attributes, either quantitative or qualitative, are represented in the preference

degree space. The alternative may then be ranked based on the developed eval-

uation matrix.

3.2.2 The Revised Evidential Reasoning Algorithm

The original ER algorithm has been developed upon an ER assessment framework

as discussed in Sect. 3.2.1.2, which is formulated following four synthesis axioms,

i.e. the basic synthesis theorem, the consensus synthesis theorem, the complete

synthesis theorem and the incomplete synthesis theorem [10]. In [10] the original

ER approach has been revised with an updated weight normalisation scheme and a

simple probability assignment strategy that satisfies all the above four axioms as

introduced below.

3.2.2.1 Definition of an Evidential Reasoning Evaluation Framework

Consider a three-level hierarchy of attributes, as shown in Fig. 3.1, with a general

attribute y at the top level and a number of basic attributes at the bottom level.

A set of basic attributes is defined as follows:

E ¼ fe1; e2; . . .; ei; . . .; eLg i ¼ 1; . . .;L: ð3:25Þ

Table 3.2 The evaluation matrix

Preference degrees p(y1) … pðyk1 Þ pðyk1þ1Þ … pðyk1þk2 Þ

a1 p11 … p1k1 p1k1þ1 … p1k1þk2

a2 p21 … p2k1 p2k1þ1 … p2k1þk2

… … … … … … …

al pl1 … plk1 plk1þ1 … plk1þk2
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Each ith attribute ei is assigned with a corresponding normalised weight xi

(0 B xi B 1), representing the relative importance of the attribute in an evaluation

process. Thus, a set of weights is defined as

x ¼ fx1;x2; . . .;xi; . . .;xLg: ð3:26Þ

The weights must satisfy the following condition:

XL

i¼1

xi ¼ 1: ð3:27Þ

The state of an attribute is required to be assessed using a set of predefined

evaluation grades (hypotheses)

H ¼ fH1;H2; . . .;Hn; . . .;HNg n ¼ 1; . . .;N; ð3:28Þ

where N is the number of evaluation grades.

The generated assessment S(ei) for attribute ei may be represented as the fol-

lowing distribution of degree of beliefs with regard to different hypotheses:

SðeiÞ ¼ fðHn; bn;iÞ; n ¼ 1; . . .;Ng i ¼ 1; . . .; L; ð3:29Þ

which means that attribute ei is assessed to grade Hn with the degree of belief of

bn,i (bn,i C 0 and
P

n=1
N bn,i B 1). The assessment S(ei) is complete if

P
n=1
N bn,i = 1

and incomplete if
P

n=1
N bn,i\ 1. The case when

P
n=1
N bn,i = 0 (or bn,i = 0 for all

n=1,…,N) denotes a complete lack of information on ei.

Let bn be a degree of belief to which the general attribute y is assessed to grade

Hn. To calculate bn it is necessary to aggregate the assessments for all the asso-

ciated basic attributes ei given in the form of Eq. 3.29. The revised ER algorithm

discussed as below can be used for this purpose, which is simpler than the original

one introduced previously.

3.2.2.2 The Updated Scheme for Weight Normalisation and Basic

Probability Assignment

In this subsection the revised ER algorithm is summarised briefly. The more

detailed theory and discussion are presented extensively in [7, 10].

At first, degrees of belief are converted into basic probability masses. A basic

probability mass mn,i represents the degree to which the ith basic attribute ei
supports the assessment of the general attribute y with the nth grade (hypothesis)

Hn. It is calculated as follows:

mn;i ¼ xibn;i n ¼ 1; . . .;N: ð3:30Þ

The remaining probability mass mH,i, unassigned to any individual grade, is

decomposed into two parts mH;i and ~mH;i such as
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mH;i ¼ 1� xi and ~mH;i ¼ xi 1�
XN

n¼1

bn;i

 !
ð3:31Þ

with mH;i ¼ mH;i þ ~mH;i.

Suppose mn,I(i), n=1,…,N, is the combined probability mass calculated by

aggregating the first i assessments. mH;IðiÞ and ~mH;IðiÞ are the remaining probability

masses unassigned to any individual grade after the aggregation of the first

i assessments. Assuming

mn;Ið1Þ ¼ mn;1; mH;Ið1Þ ¼ mH;1 and ~mH;Ið1Þ ¼ ~mH;1;

the following recursive expressions are developed to combine the first i assess-

ments with the (i ? 1)th assessment:

fHng :
mn;Iðiþ1Þ ¼ KIðiþ1Þ mn;IðiÞmn;iþ1 þ mH;IðiÞmn;iþ1 þ mn;IðiÞmH;iþ1

� �
;

mH;IðiÞ ¼ ~mH;IðiÞ þ mH;IðiÞ n ¼ 1; . . .;N;
ð3:32Þ

fHg : ~mH;Iðiþ1Þ ¼ KIðiþ1Þ ~mH;IðiÞ ~mH;iþ1 þ mH;IðiÞ ~mH;iþ1 þ ~mH;IðiÞmH;iþ1

� �
; ð3:33Þ

fHg : mH;Iðiþ1Þ ¼ KIðiþ1Þ mH;IðiÞmH;iþ1

� �
; ð3:34Þ

where KI(i+1) is defined as below for i = 1,…, L - 1,

KIðiþ1Þ ¼ 1�
XN

t¼1

XN

j¼1

j 6¼t

mt;IðiÞmj;iþ1

2
664

3
775

�1

: ð3:35Þ

After the aggregation of all the L basic attributes from the set E, bn, corre-

sponding to Hn, n=1,…,N, and the unassigned degree of belief bH, representing the

incompleteness of the overall assessment, are calculated using the following

normalisation formulae:

fHng : bn ¼
mn;IðLÞ

1� mH;IðLÞ
n ¼ 1; . . .;N; ð3:36Þ

fHg : bH ¼
~mH;IðLÞ

1� mH;IðLÞ
: ð3:37Þ

Note that
P

N
n=1bn ? bH = 1.

Thus, the overall assessment for the general attribute y can be represented by

the following distribution of degree of beliefs with regard to different hypotheses

similar to Eq. 3.29:

SðyÞ ¼ Sðe1 � � � � � ei � � � � � eLÞ ¼ fðHn; bnÞ; n ¼ 1; . . .;Ng; ð3:38Þ

where � denotes the aggregation of two attributes.
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3.3 Fuzzy Logic

3.3.1 Foundation of Fuzzy Logic

Fuzzy logic is based upon the fuzzy set theory, which was formalised by Professor

Lofti Zadeh at the University of California in 1965 [2]. So what is a fuzzy set?

A fuzzy set is a set without a crisp and clearly defined boundary. It contains

elements with only a partial degree of membership. FL provides a means of

calculating intermediate values between absolute true and absolute false with

resulting values ranging between 0 and 1. In FL, a membership function is

employed to calculate the degree to which an item is a member. Basically, a

membership function is a curve that defines how each point in an input space is

mapped to a membership value (or degree of membership) between 0 and 1.

Typical membership functions include piece-wise linear functions, the sigmoid

curve, the Gaussian distribution function and the quadratic and cubic polynomial

curves. There are a number of logic operators to enable the fuzzy inference, e.g.

the fuzzy intersection or conjunction (AND), fuzzy union or disjunction (OR) and

fuzzy complement (NOT). If–then rule statements are used to formulate condi-

tional statements that comprise FL. A typical implementation of FL includes:

fuzzify inputs, apply fuzzy operators, apply an implication method, aggregate all

outputs and defuzzify to make a decision.

3.3.2 An Example of a Fuzzy Logic System

Perhaps the best way to explain the concept of a fuzzy set is through an example.

From classical mathematics we are familiar with the notion of a crisp set, e.g. if we

consider a set X of real car speeds from 0 to 100 mph, which we call the universe

of discourse, then a subset S = [71, 100] defines all of the speeds that are classified

as being over the U.K. highway speed limit. This function can be demonstrated

clearly by using a function f(S), where f(S) = 1 when an element of X belongs to S

and 0 at all other times. Figure 3.2 shows the function f(S).

The above definition is fine for a discrete problem such as a speed limit, but

how would we classify a speed as slow, average or fast? If we use the same range

of speeds X and now define 3 subsets as slow = [0, 30], average = [31, 60] and

fast [61, 100], then using similar functions as before we would have a situation

shown in Fig. 3.3. It is obvious that this is not an ideal representation since an

increase of 1 mph cannot reasonably reclassify a car’s speed from slow to average

or from average to fast. In the real world the transition of a car’s speed from slow

to average is a gradual and continuous change with areas of uncertainty as to

which classification should be made. A fuzzy set allows for this uncertainty,

‘‘fuzziness’’, by allocating each element a grade of membership, in the interval

[0, 1], to each possible set (fuzzy set). Figure 3.4 illustrates one possible
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implementation of this idea. From Fig. 3.4, it is seen that now the speed 30 mph

actually has membership to 2 fuzzy sets simultaneously (slow and average);

however, the value of the membership function to both is less than 1. By classi-

fying numerical input data using such linguistic terms (‘‘fuzzyfying’’ data), control

systems can be formulated by using if–then rule-based inference, e.g. if a car’s

speed is fast and an obstruction lies ahead then apply brakes hard. A typical control

system is constructed of tens of such rules, maybe even more. At each iteration

input variables are ‘‘fuzzified’’, each rule is then evaluated, and the output control

signals are calculated as an amalgamation of all rule outputs. Many different ways

exist to amalgamate rule outputs, and the method chosen is the own preference of a

designer.

Fuzzy logic provides a remarkably simple way to draw definite conclusions

from vague, ambiguous or imprecise information. In a sense, FL resembles human

decision making with its ability to work with approximate data and find precise

solutions. FL can be used in several different ways to implement a diagnosis

system, and the most common one is to construct a set of rules from which

conclusions and actions can be drawn. Several examples of how this technique can

be applied to transformer DGA can be found in the following papers: Tomsovic

et al. used fuzzy rules to represent existing DGA methods and then combined the

results to form an overall diagnosis [12]; whereas, Yang [13] and Huang [14]

employed FL to develop new rules for analysing DGA data, which were then

evaluated on test sets and properties of memberships functions they use, tuned to

improve performance.

f(S)

Speed/

mph

1

0

0 30 60 100

Fig. 3.3 Function describing

membership of elements in X

to the 3 subsets slow, average

and fast

f(S)

Speed/

mph

1

0

0 71 100

Fig. 3.2 Function describing

membership of elements in X

to subset S
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3.4 Bayesian Networks

Conventionally, subjective data are handled by traditional probability theories like

the Bayes’ theorem. One drawback of such methods is that they require the values

of a large number of conditional probabilities, which are often practically very

difficult to obtain. Over the past decade, BNs [15, 16] have emerged as an

increasingly active area for research in CI, which have covered a wide range of

applications [17], e.g. medical diagnosis, expert systems, planning and learning.

As a well-studied statistical tool, a Bayes net is a network consisting of a set of

nodes and links between each pair of nodes, which can model joint probability

distributions between the nodes based upon their conditional independence. As an

enhancement to overcome the mentioned drawbacks, BNs provide a tool for

probability learning from data and probabilistic inference, which are a marriage

between the probability theory and the graph theory.

3.4.1 The Bayes’ Theorem

The Bayes’ theorem is the foundation of BN reasoning, which is a simple math-

ematical formula used for calculating conditional probabilities. It is named after

Rev. Thomas Bayes, an eighteenth century mathematician who derived a special

case of this theorem [18]. This leads to a common form of the Bayes’ theory,

Eq. 3.39, which allows us to compute the probability of one event in terms of

observations of another and knowledge of joint distributions.

PðhjeÞ ¼
PðejhÞ�PðhÞ

PðeÞ
; ð3:39Þ

where P(h|e) denotes the posterior probability of a hypothesis h conditioned upon

some evidence e, P(h) the prior probability of h, P(e|h) the likelihood for e given h

and P(e) the prior or marginal probability of e. Therefore, the Bayes’ theorem can

be clearly interpreted as an alternative form in Eq. 3.40 with respect to each item

in Eq. 3.39:

f(S)

Speed/

mph

1

0

0 30 60 100

Fig. 3.4 Fuzzy sets describ-

ing a car’s speed as slow,

average and fast
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Posterior Probability ¼
Likelihood� Prior Probability

Probability of Evidence
: ð3:40Þ

The Bayes’ theorem asserts that the probability of a hypothesis h conditioned

upon some evidence e, i.e. P(h|e), is equal to its likelihood P(e|h) times its

probability prior to any evidence P(h), and divided by P(e) (so that the conditional

probabilities of all hypotheses are summed to 1). In the BN theory, the Bayes’

theorem is utilised to update the probabilities of variables whose state has not been

observed given a set of new observations. Hence, the Bayes’ rule allows unknown

probabilities to be calculated from known cases.

3.4.2 Bayesian Networks

A BN is a graphical structure that allows us to represent and reason about an

uncertain domain [17]. A typical BN is depicted in Fig. 3.5, which comprises a set

of nodes and links between each pair nodes. The nodes in a BN represent a set of

random variables in a particular problem domain. A set of directed arcs (or links)

connects pairs of nodes, representing the direct dependencies between variables.

Considering discrete variables in most cases, the strength of the relationship

between variables is quantified by conditional probability distributions (CPD)

associated with each node.

Most commonly, a BN is considered to be a representation of joint probability

distributions. It is assumed that there is a useful underlying structure to the

problem being modelled that can be captured by a BN. If such a domain structure

exists, a BN gives a more compact representation than simply describing the

probability of every joint instantiation of all variables. Consider a BN with n nodes

as shown in Fig. 3.5, and X1 to Xn are taken in such an order from 1 to 6.

A particular value in the joint distribution is represented by P(X1 = x1,

X2 = x2,…, Xn = xn), or more compactly, P(x1, x2,…, xn). The chain rule of

probability theory allows us to factorise joint probabilities, therefore:

X5 X6

X4
X3

X1 X2

Fig. 3.5 An example graphic

model of Bayesian networks
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Pðx1; x2; . . .; xnÞ ¼ Pðx1Þ� � � � �Pðxnjx1; . . .; xn�1Þ

¼
Yn

i¼1

Pðxijx1; . . .; xn�1Þ:
ð3:41Þ

The structure of a BN implies that the value of a particular node is conditional

only on the values of its parent nodes, then Eq. 3.41 is reduced to:

Pðx1; x2; . . .; xnÞ ¼
Yn

i¼1

PðxijParentsðXiÞÞ: ð3:42Þ

Once the topology of a BN is specified, the conditional probability table (CPT) for

each node should be defined. It is defined that each row of a CPT contains the

conditional probability of each node for each possible combination of values of its

parent nodes. Each row of a CPT must sum to 1, and the values of 0 and 1 mean

that the probability of one hypothesis upon its evidence is 0 or 1. It is noted that, a

node with no parents has only prior probabilities. Then, probabilistic inference

with BNs is achieved by updating beliefs—that is, computing the posterior

probability distributions—given new evidence. The essential idea is that new

evidence has to be propagated to other parts of a BN.

3.4.3 Parameter Learning to Form a Bayesian Network

In order to describe a BN and perform probabilistic inference, the graph structure

and the parameters of each CPT should be specified. As in most cases, structures of

BNs can be determined with help from expert assistance. However, the prior

conditional probabilities in each CPT are difficult to obtain in real-world appli-

cations. An obvious solution is to employ automated machine learning to discover

parameters of each CPT, which is beyond the main scope of this book. Therefore,

only essentials of a parameter learning process for BNs are presented [17] as

below.

Learning parameters from historical data is always regarded as very important.

In the applications with known structure and full observability, the objective of

learning is to find the parameters of each CPT, which maximises the likelihood of

training data. For example, the training data contain N cases, which are assumed to

be independent. The normalised log-likelihood L of the training set D is a sum of

terms for each node:

max L ¼
1

N

Xn

i¼1

X

D

logPðXijParentðXiÞ;DÞ: ð3:43Þ

It is noted that the log-likelihood scoring function decomposes according to the

structure of a graph, and hence, we can maximise the contribution to the log-

likelihood of each node independently. When the model structure and CPT
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parameters are specified, probabilistic inference amongst all variables can be

accomplished using the created BN. More discussions can be found in [17]

addressing parameter and structure learning for various types of BNs.

3.5 Summary

This chapter focusses on the three mathematical theories dealing with uncertainties,

i.e. the ER theory, the FL theory and BNs. First, an ER algorithm, which can be

implemented to deal with uncertain decision knowledge for MADM problems, is

described. The ER approach is regarded as a decision-making method established to

provide an overall decision by aggregating subjective judgements on constitutive

attributes of an MADM problem involving uncertainties. Then, the principle of the

FL theory is discussed alongside with a simple example. The membership functions

in the FL theory are applied to ‘‘soften’’ crisp fault decision boundaries in Chap. 8.

Finally, the foundation of BNs is illustrated, which are represented as directed

acyclic graphs. The nodes and links of the graphs represent variables and encode

conditional independencies between variables, respectively. Generalisations of

BNs, which can represent and solve decision problems involving uncertainties, are

deployed as a classifier for diagnosing transformer faults in Chap. 8.
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Chapter 4

Thermoelectric Analogy Thermal Models

of Power Transformers

Abstract This chapter first presents the conventional thermal models adopted in

the IEC and the IEEE regulations for oil-immersed power transformers, including

steady-state models, transient-state models and hot-spot temperature rise models.

In order to improve the calculation accuracy of transformer thermal models, two

thermoelectric analogy thermal models have been developed, which are rooted on

the principles of heat exchange and electric circuit laws, including a full ther-

moelectric analogy model and a simplified thermoelectric analogy model. Two

sets of differential equations are derived to calculate both the transient-state

temperatures and the stationary-state equilibria of the main parts of a transformer.

Finally, a practical means is derived to calculate hot-spot temperatures based on

the outputs of the two proposed thermoelectric analogy models.

4.1 Introduction

The useful life of a transformer is determined partially by its ability to dissipate the

internally generated heat to its surroundings. All oil-immersed power transformers

are designed to meet certain operating criteria with regard to temperatures. The

thermal capacity of oil and windings permits operations above-rated loads for short

periods. This is usually what is meant by thermal ratings, for instance:

1. Mean winding temperature rise (above ambient)\65�C at a rated load.

2. Top oil temperature rise\60�C at a rated load.

3. Hot-spot temperatures cannot exceed 125�C at ambient temperature of 20�C.

4. Cyclic capability of 1.2 per unit.

Improved knowledge about thermal characteristics of transformers enables

enhanced transformer ratings and reduces risks associated with emergency post-

fault operations. The development of accurate transformer thermal models is

W. H. Tang and Q. H. Wu, Condition Monitoring and Assessment

of Power Transformers Using Computational Intelligence, Power Systems,
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always regarded as one of the most important issues of transformer condition

monitoring [1, 2]. A comparison of real and predicted operation temperatures can

provide a sensitive diagnosis of transformer conditions, which may indicate a

fault. Due to the drawbacks of the traditional thermal solutions stated in Sect. 1.3.1,

many attempts have been made to improve the calculation accuracy of transformer

thermal models.

In [3], a radial basis function neural network (RBFN) was designed and trained

to estimate winding hot-spot temperatures, taking into account the influence of

weather on thermal behaviours of a transformer. The RBFN model provided a

good mapping between model inputs and outputs. However, it does not possess

any physical meaning, noted for direct mapping, and the model can only represent

the relationship between model inputs and outputs accurately within the range

covered by training data. Hence, the extrapolability of the RBFN model is very

limited [4]. Another approach based on exponential responses of oil temperatures

[5], derived several differential equations, which were used to predict transformer

temperatures complying to empirical equations. The thermal parameters in these

equations were optimised with a nonlinear least square optimisation technique [5].

Its capability to predict transformer temperatures during realistic cooler switching

conditions is limited while cooler states are on and off, as the nonlinearity of

thermal dynamics could not be taken into account in the derived differential

equations. To sum up, an accurate thermal model, which can reflect the nonlin-

earity of transformer thermal dynamics, is highly desirable.

4.2 Conventional Thermal Models in IEC and IEEE

Regulations

4.2.1 Steady-State Temperature Models

For un-pumped (or natural) oil cooling of a power transformer (ON), the oil

temperature at the top of a winding is approximately equal to the TOT inside its

tank. However, for forced oil circulation (OF), the TOT is the sum of the oil

temperature at the bottom of the winding, BOT, and the difference between the oil

temperatures at the top and bottom of the winding [2].

The steady-state bottom-oil temperature is described as follows:

h0BO ¼ ha þ hbo
1þ dK2

1þ d

� �x

; ð4:1Þ

and the steady-state top-oil temperature is represented by:

h0TO ¼ ha þ hbo
1þ dK2

1þ d

!x

þ ðhto � hboÞK
y;

 

ð4:2Þ
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where ha is the ambient temperature; K the ratio of the operating load current to the

rated load current, K ¼ IC
IR
; hBO

0

the steady-state oil temperature at the bottom of a

winding with a load ratio K; hbo the oil temperature rise above ambient at the

bottom of a winding (K = 1); d the ratio of load loss (at a rated load) to no-load

loss; hTO
0

the steady-state oil temperature at the top of a winding with a load ratio

K; hto the oil temperature rise above ambient at the top of a winding (K = 1); x the

exponent related to oil temperature rise due to total losses; y the exponent related

to winding temperature rise due to load currents.

The model parameters, e.g. d, x and y, are usually determined through exper-

iments or by experience.

4.2.2 Transient-State Temperature Models

In contrast to winding temperatures, the transient-state BOT and TOT cannot

immediately reach the corresponding steady-state states under changing loads,

since the thermal time constants of BOT and TOT are of the order of hours.

Conventionally, any change in load conditions is treated as a step function. The

rectangular load profile considered in the loading tables of IEC60354 consists of a

single step up followed by a single step down after a predefined time interval [6].

For a continually varying load, a step function is applied over a small time interval.

In this way, the transient-state BOT and TOT at any time instant t during a loading

period i are given by the following two equations. For the transient-state BOT:

h0boðtÞ ¼ h0boði�1Þ þ ðh0boi � h0boði�1ÞÞð1� e
�t
sboÞ; ð4:3Þ

and for the transient-state TOT:

h0toðtÞ ¼ h0toði�1Þ þ ðh0toi � h0toði�1ÞÞð1� e
�t
stoÞ; ð4:4Þ

where sbo and sto are the thermal time constants of BOT and TOT, respectively,

and hbo(i-1)

0

and hboi
0

the BOTs at the beginning and end of section i of a

loading chart respectively derived from Eq. 4.1. Similar definitions are applied

to hto(i-1)

0

and htoi
0

, which are derived from Eq. 4.2.

However, the above calculation of temperatures is dependent upon the esti-

mation of thermal time constants, i.e. sbo and sto, which are normally obtained

from historical experiments and not always accurate. Moreover, the traditional

transient models can only calculate a loading profile with step functions, which

cannot be applied to a loading scenario with continuous changes.

4.2.3 Hot-Spot Temperature Rise in Steady State

Themost critical limitation, when operating a transformer, is the temperature reached

in the hottest area of a winding, and every effort should be made to determine
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accurately this temperature. A directmeasurement (with a fibre-optic probe or similar

devices) is now becoming available. Such devices can directly measure HSTs, which

can be compared with the HST calculations derived from a conventional thermal

model for fault diagnosis purposes. However, most of the on-site transformers are not

equippedwith such a directmeasurement probe, andHSTs are usually estimatedwith

oversimplified thermal characteristics as presented below.

4.2.3.1 Assumed Thermal Characteristics with Simplifications

The maximum temperature occurring in any part of a winding insulation system is

called the hot-spot temperature. Investigations have shown that the top-oil

temperature inside a winding might be 5–15 K higher than that of the mixed top-

oil inside a tank. The actual temperature difference between conductor and oil is

assumed to be higher by a hot-spot factor.

A typical temperature distribution is assumed as shown in Fig. 4.1, on the

understanding that such a diagram is the simplification of a more complex tem-

perature distribution. The assumptions made in this simplification are as follows [6]:

1. The oil temperature inside a winding increases linearly from bottom to top,

whatever the cooling mode be.

2. The temperature rise of the conductor at any vertical position of a winding

increases linearly, parallel to the oil temperature rise, with a constant difference

g between the two straight lines (g being the difference between the average

temperature rise by resistance and the average oil temperature rise).

3. The hot-spot temperature rise is higher than the temperature rise of the con-

ductor at the top of a winding as shown in Fig. 4.1, because allowance has to be

made for the increase in stray losses. To take account of these nonlinearities,

Top of 

Winding

Bottom of 

Winding

Bottom Oil Temperature

Average Oil Temperature

Top Oil Temperature

Hot-spot

Temperature

Average Winding

Temperature

Temperature

Hg

g

Fig. 4.1 Typical temperature distribution of a transformer
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the difference in temperatures between the hot-spot and the oil at the top of the

winding is made equal to Hg. The hot-spot factor H may vary from 1.1 to 1.5

depending on the following factors, e.g. transformer size, short-circuit imped-

ance and winding design.

In order to calculate the HST rise under continuous, cyclic or other duties,

different sources of thermal characteristics are employed:

1. Results of a special temperature-rise test including the direct measurement of

HST or TOT inside a winding (in the absence of direct hot-spot measurement,

H can only be provided by a manufacturer).

2. Results of a normal temperature rise test.

3. Assumed temperature rises at the rated current.

4.2.3.2 ON Cooling

For ON cooling, the ultimate hot-spot temperature, hh, under any load K is equal to

the sum of the ambient temperature, the top-oil temperature rise and the temper-

ature difference between the hot-spot and the top-oil:

hh ¼ ha þ Dhor
1þ RK2

1þ R

� �x

þHgrK
y; ð4:5Þ

where Dhor is the top-of-winding oil temperature rise when K = 1, R the loss ratio

and Hgr the hot-spot to top-oil gradient when K = 1.

4.2.3.3 OF Cooling

For OF cooling, the calculation method is based on the bottom-oil and average oil

temperatures. Thus the ultimate hot-spot temperature, hh, under any load K is equal

to the sum of the ambient temperature, the bottom-oil temperature rise, the dif-

ference between the top-oil in the winding and the bottom-oil and the difference

between the hot-spot and the top-oil in a winding:

hh ¼ ha þ Dhbr
1þ RK2

1þ R

� �x

þ2½Dhimr � Dhbr�K
y þ HgrK

y; ð4:6Þ

where Dhbr is the bottom-oil temperature rise when K = 1 and Dhimr the average

oil temperature rise when K = 1.

4.2.3.4 OD Cooling

For oil-directed (OD) cooling, the calculation method is basically the same as for

OF cooling except that a correction term is added to take into account variations of

the ohmic resistance of conductors with temperatures:
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h0h ¼ hh þ 0:15ðhh � hhrÞ ðK[ 1Þ; ð4:7Þ

where hh
0

is the ultimate hot-spot temperature with a correction term, hh the one

without consideration of the influence of the ohmic resistance variations using

Eq. 4.6 and hhr the hot-spot temperature at rated conditions.

Table 4.1 provides typical values of thermal characteristics reported by

IEC60354 for oil-immersed power transformers.

4.2.4 Hot-Spot Temperature Rise in Transient State

Due to that transformer loading ratios change from time to time, the winding HST

rise over TOT can jump immediately between the corresponding steady-state

values. It is considered that the thermal time constant of HST is very small, just of

the order of minutes (typically between 5 and 6 min). As recommended by IEC,

there are two ways to calculate HSTs as a function of time for varying load

currents and ambient temperatures [2]:

1. The exponential equation solution, suitable for a load variation according to a

step function, is particularly suited for the determination of heat transfer

parameters through tests, especially by manufacturers.

2. The difference equation solution, suitable for arbitrarily time-varying load

current K and time-varying ambient temperature ha, is particularly applicable

for on-line monitoring. Therefore, this method is adopted in Sect. 4.7.2 to

calculate HSTs for on-line condition monitoring purposes.

4.3 The Thermoelectric Analogy Theory

Heat is a form of invisible energy which is always transferred between two

communicating systems, arising solely from a temperature difference. The rate of

Table 4.1 Thermal

characteristic listed in

IEC60354

Distribution

transformer

Medium and large size unit

ONAN ON OF OD

x 0.8 0.9 1.0 1.0

y 1.6 1.6 1.6 2.0

R 5.0 6.0 6.0 6.0

H 1.1 1.3 1.3 1.3

so (h) 3.0 2.5 1.5 1.5

ha (�C) 20 20 20 20

Dhhr (K) 78 78 78 78

Hgr (K) 23 26 22 29

Dhimr (K) 44 43 46 46

Dhbr (K) 33 34 36 43
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heat flow depends mainly upon certain physical properties of an observed body,

e.g. respective temperatures and the magnitude of their difference, as well as

ambient conditions. In simple cases, it can be determined quantitatively by

applying the basic principles of thermodynamics and fluid mechanics. The Fourier

theory, which is one of the most well-known fundamental laws of heat transfer, is

written as the following [7]:

Q ¼
kSDT

d
¼

DT

Rh

; ð4:8Þ

where Q denotes the heat flow (W), DT the temperature difference (K), Rh the heat

resistance (K/W), S the area in contact with heat (m2), k the thermal conductivity

(W/mK) and d the length of heat flow path (m). The heat transfer equation has the

same form as the Ohm’s law used for electrical circuits, which is described as:

I ¼
E

Re

; ð4:9Þ

where I is the electrical current (A), E the electrical potential difference (V) and Re

the electrical resistance (X).

With a comparison of the above two fundamental laws, the basic equations for

heat transfer and electrical charge transport are analogous. As a result, in many

cases, the mathematical description of a heat transfer system is similar to that of an

electrical system. Due to the mathematical similarity between heat transfer and

electric charge transport, an equivalent electrical network model can be used to

solve a complicated heat transfer problem. It can not only handle the nonlinearity

and change of heat transfer network effects, but also offers a useful calculation

method that has been rather neglected by researchers and other specialists [8]. The

analogy between variables of the thermal and electrical fields is listed in Table 4.2,

and that between the thermal and the electrical constants in Table 4.3, where cp is

the specific heat capacity and q and v are the density and volume of a studied

component, respectively.

4.4 A Comprehensive Thermoelectric Analogy Thermal

Model

4.4.1 Heat Transfer Schematics of Transformers

An oil-immersed power transformer normally consists of a pair of windings, pri-

mary and secondary, linked by a magnetic circuit or a core, which are immersed in

transformer oil that both cools and insulates windings. When resistive and other

losses are generated in a transformer winding, heat is produced. This heat is then

transferred into and taken away by the insulation oil. Although winding copper

materials retain mechanical strength up to several hundred degrees Celsius,
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transformer oil degrades significantly with temperatures above 140�C and paper

insulation also deteriorates with greatly increasing severity if its temperature rises

are above 90�C. The cooling oil flow must, therefore, ensure that the temperature of

insulation materials is kept below this figure as far as possible. The schematics of

main parts of an oil-immersed transformer are shown in Fig. 4.2 comprising a core,

windings, the insulation oil, an oil inlet, an oil outlet, a tank and external coolers.

To investigate transformer thermal dynamics, a transformer is expressed in an

abstractive manner in Fig. 4.3 referring to Fig. 4.2, in which the main parts of a

Table 4.2 Analogy between

variables of thermal and

electrical fields

Thermal field Electrical field

H, quantity of heat M, quantity of electricity

Q, rate of heat flow I, electrical current

T, temperature rise E, electrical potential difference

Table 4.3 Analogy between constants of thermal and electrical fields

Thermal field

kS, product of thermal conductivity

and area

cpqv, thermal capacity

k/cpq, thermal diffusivity

Electrical field

1/Re, electrical conductance

Ce, electrical capacitance

1/ReCe, ratio of conductance to capacitance

Fans

External 

Cooler

Windings

Oil 

Outlet

Oil 

Inlet

Core

Oil Flow

TankFig. 4.2 Schematics of

active parts of an oil-

immersed transformer
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transformer and their nomenclature are illustrated. It can be noticed that four types

of temperatures are listed, i.e. the ambient temperature, BOT, TOT and HST. With

respect to Fig. 4.3, the essential heat transfer schematics of a transformer are

explained below.

The heat generated by resistive and other losses in a power transformer is

transferred into and taken away by transformer oil through the surfaces of an oil

tank and a cooler in three ways—convection, conduction and radiation. Part of the

heat exchange schematics of an oil natural air natural and oil force air force

(ONAN/OFAF) power transformer is illustrated in Fig. 4.4, where QCu denotes the

heat generated by copper losses, QFe the heat generated by core losses, Ths the hot-

spot temperature, Ts the tank and cooler surface temperature, Te the environment

temperature, G12

00

the heat conductance due to the heat exchange between the

winding and the core, G1

00

the heat conductance of the winding to the oil, G2

00

the

heat conductance of the core to the oil and G3

00

the heat conductance of the oil to

the tank and the cooling medium.

4.4.2 Derivation of a Comprehensive Heat Equivalent Circuit

Due to the analogy between electric charge transport and one-dimensional heat

flow [7, 8], it is convenient to set up an equivalent heat circuit corresponding to

actual thermo-hydraulic structures, and to adjust thermal parameters for actual

areas, which is detailed in [9]. Generally, an equivalent heat circuit consists of heat

conductors, heat capacitors and heat current sources. In establishing such an

equivalent heat circuit for an ONAN/OFAF power transformer, a thermoelectric

analogy thermal model is developed by regarding the active heat transfer parts of a

TOT

BOT

HST

External 

Cooler

Ambient Temperature

Core

Windings

Temperature Sensors

Tank

Oil Oil

Fans

Fig. 4.3 Abstractive sche-

matics of a transformer and

nomenclature
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transformer as four lumped components, including a coil assembly, the insulation

oil, a transformer tank and an external cooler.

For a global heat flow description, individual parts are denoted by corre-

sponding nodes, representing the complete volume of a part of a transformer. The

paths of heat convection, diffusion and radiation are simulated by heat resistances

to the flow of heat. As a result, distributed heat sources and heat resistances are

represented by several lumped heat sources, equivalent thermal resistors and

overall thermal capacitors [7, 10]. Then, a full heat equivalent circuit of an

oil-immersed power transformer is developed as illustrated in Fig. 4.5, where PCu
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Fig. 4.5 A full equivalent heat circuit of an oil-immersed power transformer
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Fig. 4.4 Part of the transformer heat exchange schematics
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denotes winding copper losses, PFe core losses, PAd stray losses, Gij

00

the thermal

conductance between a pair of nodes, Ci

0

the thermal capacitance of each node and

h the temperature rise of each node.

However the circuit in Fig. 4.5 is too complicated, as the effects of some

components are negligible in a practical sense. After simplification using network

reduction techniques, a comprehensive thermoelectric analogy thermal model

(CTEATM) is shown in Fig. 4.6, where hOil-out is the temperature rise at the

oil outlet, hOil-in the temperature rise at the oil inlet, Gi

0

the concentrated thermal

conductance, Ci

0

the overall thermal capacitance of each node, hCu the average

temperature rise of the winding, hCore the average temperature rise of the core, hOil
the average temperature rise of the oil.

In Fig. 4.6, the circuit operates subject to the Kirchhoff’s law: currents into a

node sum to zero, so do voltages around a mesh. Therefore, the analysis of such a

network leads to the solution of a matrix of n equations with n unknowns, where n

is the number of nodes. These nodal equations correspond exactly to the finite

difference equations derived from the thermodynamic differential equations. As a

result of subdividing a transformer into four lumped components, the calculated

nodal temperatures in Fig. 4.6 are the average temperatures of each main part.

CTEATM can then be employed to predict BOTs and TOTs using a set of

ordinary, first-order differential equations. After comparing the matrix of ther-

modynamics equations with the basic electrical principles, the following differ-

ential equations are derived for calculating BOTs and TOTs.

Pdt ¼ G0Hdt þ c0mdH; ð4:10Þ

or

P ¼ G0Hþ C0dH=dt; ð4:11Þ

where P is the heat power input vector, G0 the heat conductance matrix, C0 the heat

capacitance matrix, H the temperature rise vector (above ambient temperatures),

c0 the specific heat capacity vector and m the object mass vector. In Eq. 4.11, P is
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Fig. 4.6 A comprehensive equivalent heat circuit of an oil-immersed power transformer
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the time-dependent energy source and once a set of G0 and C0 has been deter-

mined, the major unknown is H, which can then be derived by solving the dif-

ferential equation (4.11) with the Runge–Kutta method.

4.5 Parameter Estimation of a Thermoelectric Analogy

Model

4.5.1 Heat Generation Process

Heat is generated in the core and coil assembly in the form of three types of losses:

the copper losses, which result from I2Re, the stray losses in the winding and the

iron losses, which are the sum of hysteresis and eddy-current power. In order to get

the heat power input of the developed thermoelectric analogy model, copper losses

and core losses of a power transformer are to be derived with varying load currents

and temperatures. Generally, the current flow in any electrical system is dependent

upon the magnitude of the current source and the resistance of the system.

Transformer windings are no exception and these give rise to the copper losses of a

transformer. Copper losses are proportional to the square of a load current [2] as:

PCu;C ¼ PCu;N
IC

IN

� �2
235þ hC

235þ hN

� �

; ð4:12Þ

where PCu,C represents the resistive loss at an operating load current, PCu,N the

resistive loss at a rated load, IC the operating load current, IN the rated load current,

hC the current winding temperature and hN the winding temperature at the rated

losses. The magnetising current is required to take a core through the alternating

cycles of flux at a rate determined by system frequencies. This is known as the core

loss. In this study, the core loss is considered as a constant obtained from a factory

test. The stray losses are caused by the stray fluxes in windings and core clamps,

which are readily available from a transformer handbook as a proportion of the

total load loss.

4.5.2 Heat Transfer Parameter

Based upon the density, volume and the specific heat of an observed part of a

transformer, the approximate range of thermal capacitance per unit length is cal-

culated with the following equation

C ¼ cpqv: ð4:13Þ

Each thermal capacitance is only related to one temperature node, as there is

no coupling capacitance between the nodes in a heat equivalent circuit.
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Using Eq. 4.13, the thermal capacitance range of each lumped component can be

estimated. As for the nonlinear thermal conductances, they are related to various

factors of a power transformer, such as geometrical size, temperature and heat

characteristics. It is therefore very important to choose a correct form to represent

their nonlinear nature. In many cases, an exponential form is adopted which

possesses a simple format yet with a satisfactory accuracy:

G ¼ aDTb: ð4:14Þ

In Eq. 4.14, DT denotes the temperature difference or temperature rise, and a and b

are coefficients to be determined for a heat transfer path.

4.5.3 Operation Scheme of Winding Temperature Indicator

Most of large power transformers in transmission networks are designed to be

operated in certain circumstances at loadings in excess of their rating. Because

individual transformers vary, a winding temperature indicator (WTI) is normally

used for loading transformers under different cooling schemes. In practice, forced

cooling of transformers is controlled automatically according to winding

temperatures measured by a fitted WTI. When the winding temperature increases

and exceeds a predefined value, h0
0

, the pumps and fans are switched on to dissipate

the generated heat to its sounding.

The general principle of setting a WTI is described briefly in this paragraph. In

practice, the hottest spot temperature of a winding is simulated by increasing the

indication on the thermometer measuring the top oil temperature by injecting

current into a heater fitted to the instrument operating bellows. The heater current,

and hence the instrument reading, is controlled by varying the value of a resistor

shunting the heater coil. A WTI must be set to read the transformer top oil tem-

perature adding the product of the maximum winding gradient and the hot-spot

factor. For example, suppose that the secondary current of a current transformer

supplying the WTI heater circuit is 2.0 A at a rated current. The maximum winding

difference is 34.6�C and H is 1.1, so that the heater in the WTI could boost the oil

temperature by 38.1�C. The fans and pumps fitted to the cooling system of this

transformer are arranged so that the motors can be switched on automatically in two

groups under the control of WTI, or each motor can be switched on individually by

hand. With the master control switch set to be automatic, the temperature indicator

contacts will start up the motors as soon as a temperature of 75�C is exceeded. The

motor will be switched off again when the temperature falls below 50�C.

4.5.4 Time Constant Variation in a Heat Transfer Process

From field experiences, the oil time constants are quite different in two cooling

conditions, e.g. ONAN or OFAF, which are controller by a WTI. To distinguish
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the different thermal dynamics appropriate to the periods when a cooler is on and

when it is off, a two-piece model is necessary. A qualitative explanation could be

given on the basis of the fact that the volume distributions of temperature in the

two processes are different, e.g. the active mass of the oil involved in the heat

transfer is substantially different when pumps and fans are on and off, which

causes variations of thermal parameters of CTEATM. However, more research is

required to further study this thermal physics in the future.

Consequently, two sets of heat exchange parameters are required for conducting

simulations of CTEATM, which can reflect changes of thermal time constants due

to different loading and cooler operation conditions of an ONAN/OFAF power

transformer. It is crucial to estimate the heat conductance G’ and the heat

capacitance C’ involved in different cooler operation conditions. As the overall

heat capacitance can be estimated using Eq. 4.13, the upper boundary of C’ can be

determined. Regarding the heat conductance G’, as the temperature equilibria

under the two cooler operation conditions can be obtained from an off-line heat

run test, using Eq. 4.14, G’ can also be estimated under the two cooling states.

4.6 Identification of Thermal Model Parameters

After the derivation of the comprehensive thermoelectric thermal model, how to

determine each parameter (i.e. C’ and G’) of the model becomes the main prob-

lem. Normally, to get the values of thermodynamics parameters, a set of off-line

experiments should be conducted. However, it is not practical to shut down a large

on-line power transformer and do a heat run test. Additionally, such an approach

does not provide satisfactory results, as general thermal parameters cannot be

determined precisely enough due to the complexity of transformer thermal phe-

nomena. In the next chapter, an evolutionary computation algorithm, i.e. GA

[4, 11, 12], is employed to identify the model parameters based upon real-world

measurements sampled from on-line power transformers.

4.7 A Simplified Thermoelectric Analogy Thermal Model

4.7.1 Derivation of a Simplified Heat Equivalent Circuit

A 5-node equivalent heat circuit for an oil-immersed power transformer has been

fully discussed in Sect. 4.4.2 [9]. However, in the previously constructed 5-node

model, a relatively large number of thermal parameters need to be optimised as a

result of so many temperature nodes. Also, due to the limited on-line measure-

ments available, not all the temperature nodes are involved as nodal inputs for the

thermal parameter identification. Only the TOT and BOT are provided to derive

the whole set of the thermal parameters, which might cause uncertainty and
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instability of a parameter optimisation process, and therefore a further simplifi-

cation of the 5-node thermal model is necessary and practical. It is also considered

that the model learning and predicting processes can be speeded up if the number

of thermal parameters is reduced.

A further simplified thermoelectric analogy thermal model (STEATM) is shown

in Fig. 4.7 [12]. First, the capacitors of core, windings and part of the surrounding

oil are combined into one lumped capacitor C1. Subsequently, the copper losses

PCu, iron losses PFe and stray losses PAd are combined into a single heat source Pall.

Accordingly the thermal conductances at relevant temperature nodes are united into

one equivalent thermal conductance G1, which is also in a nonlinear form. Then,

leave the temperature nodes of TOT and BOT intact, as the temperature data for the

two nodes can be measured conveniently, which provide a full description of

the thermal behaviours of the two temperature nodes, while C2, C3, G2 and G3 are

the relevant heat capacitances and conductances of the two temperature nodes,

respectively.

The main parameters of STEATM are listed as below.

Pall overall losses, including PCu, PFe and PAd;

G1 overall winding and core to oil thermal conductance;

G2 thermal conductance of coolers from the outlet to the inlet;

G3 coolers to environment thermal conductance;

Ci concentrated thermal capacitance of each part of Gi;

h1 average oil temperature rise hOil-avg;

h2 top-oil temperature rise hOil-out at the outlet;

h3 bottom-oil temperature rise hOil-in at the inlet.

As a result of the further simplification performed upon a transformer illustrated

in Fig. 4.7, the calculated nodal temperatures are the average temperature rise of

each main part, i.e. hOil-avg, hOil-out and hOil-in. STEATM can be employed to

calculate hOil-in and hOil-out, which are expressed by a set of ordinary, first-order

and nonhomogenous differential equations. By comparing the matrix of thermo-

dynamic equations with the basic electrical circuit principles, the computation is

undertaken using the following differential equations:
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Fig. 4.7 A further simplified

equivalent heat circuit of an

oil-immersed power

transformer
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P ¼ CdH=dt þGH; ð4:15Þ

Pall

0

0

2
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3
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C1 0 0

0 C2 0
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G1 �G1 0
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5
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2
4

3
5:

ð4:16Þ

4.7.2 Hot-Spot Temperature Calculation

Hot-spot temperature is the maximum temperature occurring in any part of a

winding insulation system, which is assumed to represent the thermal limitation

for transformer loading. Following IEC60354 [6], for ON cooling, the HST under

any load K is the sum of the ambient temperature, the top-oil temperature rise and

and the hot spot rise above the top-oil temperature; and for OF cooling, the HST

under any load K is equal to the sum of the ambient temperature, the bottom-oil

temperature rise, the difference between the top-oil in the winding and the bottom-

oil and the difference between the HST and the top-oil in the winding. In general,

most of recorded HSTs come from previous heat run tests when the loading ratios

are 0.5 and 1.0 in ONAN and OFAF conditions, respectively. Therefore, it is

reasonable to calculate HSTs as the sum of the top-oil temperature and the hot-spot

rise above the top-oil temperatures DhH by rearranging the IEC HST equations.

Moreover, the recorded HSTs reached equilibria in manufacture heat run tests, so

the use of the top-oil temperatures for the calculation of HSTs is applicable in most

cases. Then, the HST can be calculated as:

hHST ¼ hOil�out þ ha þ DhH ¼ TOTþ hgK
y; ð4:17Þ

where hg is the hot-spot to top-oil gradient at the rated load current and TOT is the

measured or simulated top-oil temperature rise. As for STEATM, the top-oil

temperature rise hOil-out is one of the model outputs, in order to obtain HSTs only

the hot-spot rise is required in the form of hgK
y
= HgrK

y [6].

4.8 Summary

In this chapter, the conventional IEC and IEEE thermal models are reviewed to

provide the fundamental knowledge of transformer thermal modelling and ratings.

Two equivalent heat circuits for modelling oil-immersed power transformers are

developed, which are based on the principles of heat exchange and electrical

circuit laws according to actual heat transfer mechanisms. The two thermoelectric

analogy thermal models are established to calculate real-time temperatures of the
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main parts of ONAN/OFAF power transformers under various ambient and load

conditions. Considering the operating regimes of transformer cooling systems and

the actual measurements available, two temperature measurements, i.e. BOTs and

TOTs, are chosen as model outputs, which can be subsequently used to calculate

HSTs.
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Chapter 5

Thermal Model Parameter Identification

and Verification Using Genetic Algorithm

Abstract In the previous chapter, two thermoelectric analogy thermal models

have been developed to model thermal dynamics of oil-immersed transformers,

i.e. a comprehensive thermoelectrical analogy thermal model and a simplified

thermoelectrical analogy thermal model. For the problem of thermal parameter

identification, a simple genetic algorithm is employed in this chapter to search

global solutions of thermal model parameters using on-site measurements.

Firstly, the parameter identification and verification of the comprehensive ther-

mal model is presented. GA modelling results for the comprehensive model are

compared with the historical heat run tests and the modelling results from an

ANN model. For the simplified thermal model, a number of rapidly changing

load scenarios are employed to verify the derived thermal parameters and finally

an error analysis is given to demonstrate the practicability of the simplified

thermal model.

5.1 Introduction

To verify the two thermoelectric analogy models developed in the preceding

chapter, tests have been carried out using CTEATM and STEATM involv-

ing two large power transformers, i.e. SGT3A and SGT3B. The two equiva-

lent heat circuit models are employed to calculate both the transient-state

temperatures and the stationary equilibria of the two ONAN/OFAF cooled

power transformers. For the problem of thermal parameter identification, an

SGA in ‘‘The genetic algorithm and direct search toolbox of MATLAB’’ is

employed to search global solutions for thermal parameters using on-site

measurements.

W. H. Tang and Q. H. Wu, Condition Monitoring and Assessment

of Power Transformers Using Computational Intelligence, Power Systems,
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The transformer operation data provided by NG cover both the ONAN and

OFAF cooling regimes, which are switched over automatically. During model

calculations, transient-state thermal models actually fall into two groups, which are

expressed by two sets of parameters, respectively. Therefore, the two sets of heat

transfer parameters are used for the model optimisation and simulation, which

reflect changes of thermal time constants due to different cooler operating con-

ditions of a power transformer. The first set reflects the normal state relationship

between the TOTs, BOTs, ambient temperatures and transformer load ratios, and

the second set concerns temperature variations over a period of time as an inertial

response to the function of an external cooler. In this chapter, five datasets are

employed for model parameter identification and verification: dataset 1 is used for

the parameter identification and verification of CTEATM; dataset 2 is involved in

a comparison study between the SGA modelling and ANN modelling concerning

CTEATM; and datasets 3–5 are used for the parameter identification and verifi-

cation of STEATM.

5.2 Unit Conversion for Heat Equivalent Circuit Parameters

A common mathematical formulation of the two thermal models developed in

Chap. 4 is shown below:

P ¼ GHþ C dH=dt;

which is rearranged into the following format:

dH=dt ¼ ðP�GHÞ=C:

Generally, the variable units used in the above equation are the international

units, e.g. the unit related to time t, for the estimated loss P, the heat con-

ductance G and the heat capacitance C, is second. However, the temperature

data used in this research are sampled every minute, which are not in the unit

of second due to a practical reason. As the unit of the input temperature data is

in minutes, the unit of t of the item dH=dt is then in minutes. As all the other

parameters’ base units are defined with respect to second, it is therefore nec-

essary to convert the parameter units in the above two equations to reflect the

unit difference between model inputs and derived model thermal parameters,

i.e. P, G and C.

Suppose the time unit of each parameter described in the equation below is in

minutes:

dH=dt� ¼ ðP� �G�HÞ=C�: ð5:1Þ

Regarding model calculations, the input temperature data are sampled every

minute, which are fixed by an on-site sampling programme. Then, all the units

of the other parameters should be converted into the units using 1 min as a
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sampling time interval. The unit conversion processes are introduced as fol-

lows. Firstly, the unit of t* in Eq. 5.1 is minute as the input of H is sampled in

minutes; therefore, the units of all the other parameters should also be in

minutes. Let us consider the unit for P*. According to the definition of power,

the unit watt (W) is the power that gives rise to the production of energy at the

rate of 1 J/s. As the interval of t* is in minute, the unit of P* in minute should

be 1 W times 60. The unit of C is farad (F), the definition of which is the

capacitance of a capacitor between the plates of which there appears a dif-

ference of potential of 1 V when it is charged by a quantity of electricity equal

to 1 coulomb (1 C = 1 As), and so the unit of C* in minutes should be 1 F

times 60. In the same manner, the international unit of the conductance G in

seconds is 1 S, which is equivalent to 1 A/V (i.e. 1 C/Vs); hence, when the

unit of G is converted from second to minute, the unit of the conductance G*

in minute is 1 S times 60.

5.3 Fitness Function for Genetic Algorithm Optimisation

To implement an SGA for thermal parameter identification, a fitness function and

other relevant parameters of an SGA should be predefined. Usually, the error

between measured variables and model outputs is defined as fitness. As stated

previously, the equivalent heat circuit models are established to calculate both the

transient-state temperatures and the stationary equilibria of an ONAN/OFAF

cooled power transformer. Considering the operation regimes of the cooling sys-

tem and actual measurements available, two temperature measurements, BOT and

TOT, are selected as training targets for GA learning. Thus, the fitness function in

this particular study should contain at least two terms corresponding to the fitness

of BOT and TOT, respectively. For each individual of a GA generation, its total

fitness value, f, is calculated as follows:

f ¼ fbo þ fto

¼
XN

k¼1

Dh0boðkÞ
2 þ

XN

k¼1

Dh0toðkÞ
2

¼
XN

k¼1

ðhboðkÞ � hmboðkÞÞ
2 þ

XN

k¼1

ðhtoðkÞ � hmtoðkÞÞ
2; ð5:2Þ

where fbo and fto are the total errors of the BOT and TOT of the model,

respectively, Dh0boðkÞ and Dh0toðkÞ the errors between real measurements and

model outputs under appropriate operation conditions (e.g. varying ambient

temperatures and loading ratios), respectively, hmbo(k) and hmto(k) on-site

measurements of BOT and TOT, respectively, N the total number of measure-

ment groups, and hbo(k) and hto(k) the outputs of BOTs and TOTs from the two

proposed thermal models.
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5.4 Parameter Identification and Verification for the

Comprehensive Thermal Model

5.4.1 Estimation of Heat Transfer Parameters

Normally, to obtain the values of thermal parameters (i.e. C and G), experiments

should be conducted. As stated previously, for a large online power transformer, it

is not practical to shut it down and do a heat run test. Additionally, such a test does

not provide satisfactory results, as the thermal parameters cannot be determined

precisely enough in one test due to the nonlinearity of transformer thermal

dynamics change over time. To tackle this problem, evolutionary computation

algorithms can be employed as an alternative approach to thermal parameter

identification, which have been practised widely in engineering applications. For

example, GA [1, 2, 3] has been employed by the authors as a search method to

optimise model parameters based on real-world data for transformer modelling and

power dispatch. Before running a GA program, the boundary of each parameter is

to be estimated.

As known, based on the density, volume and specific heat capacity of a heat

transfer path of a transformer, the approximate thermal capacitance per unit length

is expressed by the following equation:

C ¼ cpqv:

Each thermal capacitance is only related to one temperature node, as there is no

coupling capacitance between the nodes in the equivalent heat circuits. Therefore,

the thermal capacitance bound of each major component can be estimated. For

instance, with regard to transformer SGT3A listed in Table 5.1, the mass of the

whole volume of oil is 80.0 tons and cp is approximately 1.8 kJ/kgK, then

COil ¼ 1:8� 80:0� 1;000:0 ¼ 144:0� 103 kJ=K:

Table 5.1 Rating of transformer SGT3A

Name plate rating 180.0 MVA

UHV (kV)/ULV (kV) 275.0/66.0 kV

Iron losses 128.3 kW

Copper losses (rated load) 848.0 kW

Stray losses 113.0 kW

Weight of core and windings 100.0 tons

Weight of oil 80.0 tons

TOT (half rated load) 41.3�C

Type of cooling OFAF

Factory/year Hackbridge/1961

Site St. Johns Wood, London, UK
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Whilst, the mass of the winding and core is 100.0 tons and cp is approximately

0.5 kJ/kgK, then

CFe andCu ¼ 0:5� 100:0� 1;000:0 ¼ 50:0� 103 kJ=K:

Consequently, the overall thermal capacitance of transformer SGT3A is roughly

195.0 9 103 kJ/K = (144.0 9 103 ? 50.0 9 103) kJ/K.

As for the nonlinear thermal conductances, they are related to many physical

properties of a power transformer, such as actual geometrical size, temperature rise

and parameters of thermal characteristics. It is thus very important to choose an

appropriate mathematical form to represent this nonlinear feature. From experi-

ence obtained in this research, they are represented by a set of formulae in an

exponential form:

G ¼ aDhb:

In the above formula, G is an element of the heat conductance matrix G;Dh
represents the temperature difference or temperature rise with regard to a studied

object, and a and b are arguments to be identified by an SGA.

For example, in consideration of heat conductances, if the oil average tem-

perature rise at equilibrium is 40 K under the rated load, the value of G1

0

can be

estimated approximately as

G0
1 ¼

Pall

Dh
¼

848:0þ 128:3þ 113:0

40:0
¼ 27:2 kW/K:

Hence, we are able to further estimate a and b on the basis of the form of

G ¼ aDhb; and so do other heat conductances.

5.4.2 Parameter Identification Using Genetic Algorithm

As stated above, TOT and BOT are selected as model outputs of CTEATM. The

measured inputs (dataset 1) are ambient temperatures ha, loading ratios K, TOTs

hOil-out and BOTs hOil-in, comprising 7,000 groups of measurements with a

sample interval of 1 min. The model parameters are identified using an SGA

based on 3,500 groups of real measurements, and then verified on the remaining

3,500 groups. The comparisons between the model outputs and real measure-

ments are shown in Figs. 5.1 and 5.2, respectively, while real daily cyclic

loading ratios and the cooler switching signals are displayed in Figs. 5.3 and 5.4,

respectively.

For SGT3A with the ratings given in Table 5.1, the thermal model parameters

obtained from the GA search are listed in Table 5.2, where the heat capacitance is

in the unit of 103 kJ/K and the heat conductance in the unit of kW/K. With regard

to GA parameters, the crossover probability pc is 0.95 and the mutation probability

pm is 0.08. The size of GA population is selected as 60 after several trials. During
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Fig. 5.1 Bottom-oil temper-

ature of the CTEATM out-

puts compared with the on-

site measurements (dataset 1)

(maximum error, 1.9�C)

Fig. 5.2 Top-oil temperature

of the CTEATM outputs

compared with the on-site

measurements (dataset 1)

(maximum error, 2.1�C)

Fig. 5.3 Daily load (rated

load, 1 unit) (dataset 1)

Fig. 5.4 Real-time cooler

status (dataset 1)
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the GA training, after 1,000 generations, the best solution indicates a lack of

improvement. Therefore, the maximum number of generations is chosen as 1,000,

which is set as the termination criterion of GA in this study. The block diagram of

the SGA for obtaining the optimal thermal parameters is shown in Fig. 5.5. For

model verification, the identified thermal parameters listed can be substituted into

the differential equation (4.11) for temperature calculations with the online input

data to produce continuous time sequences. During model calculations, the dif-

ferential equation (4.11) is solved using the Runge–Kutta method in the time

domain, by inputting the online data of ambient temperatures, cyclic loading ratios

and cooler switching signals.

Satisfactory agreements between the model outputs and the real-time mea-

surements are illustrated in Figs. 5.1 and 5.2, which suggest that CTEATM can

reflect accurately the thermal dynamics of SGT3A. Notice that the data pre-

sented cover both the trained and untrained datasets and still show an accurate

representation of actual thermal states with the untrained datasets, thereby the

extrapolability of CTEATM is demonstrated to some extent. It can also be seen

that the thermal model still holds a satisfactory performance even during the

switching of coolers, which is of practical importance to determine transient

thermodynamic states. In this regard, the conventional thermal models

reported by IEEE or IEC cannot account for transient variations with different

cooler states, which is a considerable drawback of the traditional thermal

models.

5.4.3 Verification of Identified Thermal Parameters Against

Factory Heat Run Tests

To further verify the identified thermal parameters listed in Table 5.2, which are

obtained from the GA search, simulations are carried out under the same cir-

cumstances as historical factory heat run tests in accordance with IEC60076-2.

Table 5.2 Thermal parameters of CTEATM for transformer SGT3A identified using SGA

Parameters G1

0

(a) G1

0

(b) G2

0

(a) G2

0

(b) G3

0

(a)

Cooler off 60.9 0.48 37.1 0.53 42.2

Cooler on 37.4 0.58 32.6 0.54 42.7

Parameters G3

0

(b) G4

0

(a) G4

0

(b) G5

0

(a) G5

0

(b)

Cooler off 0.21 5.8 0.41 2.8 0.67

Cooler on 0.13 133.3 0.51 4.2 0.55

Parameters C1

0

C2

0

C3

0

C4

0

C5

0

Cooler off 28.8 31.9 102.5 3.1 0.13

Cooler on 27.6 35.7 49.3 3.6 1.7
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Fig. 5.5 Block diagram of SGA for searching optimal thermal parameters

Fig. 5.6 Bottom-oil temper-

ature rise of the CTEATM

outputs compared with the

original heat run test (50%

rated load, cooler off) (maxi-

mum error, 1.8�C)
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The following working conditions have been investigated: 50% rated load, cooler

off, ambient temperature ha = 21.5�C. Based on the thermal parameters identified

from the GA search, the BOT and TOT of the model step responses are shown in

Fig. 5.6, Table 5.3 and Fig. 5.7, Table 5.4, respectively, which are compared with

the recorded historical test data under the same condition provided by the man-

ufacturer of SGT3A [4]. It can be noticed that the data of the measured BOTs and

TOTs recorded in the real heat run tests provided by NG are sparse. The oil

temperature of the real heat run was significantly above the ambient temperature at

the start of the tests and there was no information about any previous tests or loads.

It is thus impossible to apply the same initial conditions to the simulations. To

compare the temperatures from the real heat run tests with the results from model

simulations, time-synchronisation has to been undertaken when drawing the two

graphs together. The measured and simulated results are positioned with respect to

each other along the two axes so as to minimise errors. These comments and

actions also apply to the other heat run simulations in this chapter.

Table 5.3 Bottom-oil temperature rise (�C) at 50% rated load, cooler off of SGT3A

Time series 12:00 13:00 14:00 15:00 16:00

Tested 16.25 18.00 18.75 19.35 20.25

Simulated 15.51 16.56 17.36 17.97 18.44

Time series 17:00 18:00 19:00 20:00 21:00

Tested 20.55 20.55 20.65 20.65 20.65

Simulated 18.79 19.05 19.25 19.40 19.60

Table 5.4 Top-oil temperature rise (�C) at 50% rated load, cooler off of SGT3A

Time series 12:00 13:00 14:00 15:00 16:00

Tested 34.10 36.50 37.80 38.80 39.45

Simulated 31.07 33.28 34.97 36.27 37.25

Time series 17:00 18:00 19:00 20:00 21:00

Tested 39.85 41.05 41.05 41.05 41.05

Simulated 38.00 38.57 39.00 39.35 39.85

Fig. 5.7 Top-oil temperature

rise of the CTEATM outputs

compared with the original

heat run test (50% rated load,

cooler off) (maximum error,

2.8�C)
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By comparing the simulated step responses and the measured responses in

Figs. 5.6 and 5.7, respectively, it is evident that the simulated temperature rise is in

close agreement with the actual measurements. Considering the sum of each

capacitance as listed in Table 5.2 when the cooler is off, the summation value is

166.4 9 103 kJ/K, which is near the derived overall thermal capacitance of

195.0 9 103 kJ/K estimated in Sect. 5.4.1. Moreover, the time constants of the

historical heat run tests, observed from the temperature–time graphs in Figs. 5.6

and 5.7, approach closely those based on the GA search determined by C0 and G0.

As a consequence, the identified thermal conductances are also reliable, while the

thermal capacitances are sufficiently accurate.

Nevertheless, the deviations, among the experiment simulations, the on-site

measurements and the factory tests indicate that the parameters, obtained from the

GA search should be re-evaluated carefully with regard to actual situations. To

improve the thermal model performance, some further information is required,

such as tap position signals, HV and LV winding current ratios, etc. In the

meantime, a further study should be undertaken to discover the interrelationships

between the model parameters and responses with respect to various fault sce-

narios. From the results obtained from CTEATM, it is deduced that:

1. The simulation of CTEATM has a good agreement with the on-site data based

on two sets of parameters identified by the SGA.

2. CTEATM can predict transformer operating temperatures for new load sce-

narios, which does not require real TOT and BOT measurements once the

thermal model parameters are identified. Thus, load ratings can be calculated

continuously in real time.

3. CTEATM also allows simulations of specific and interesting load cases, under

emergency conditions or overload requirements, e.g. to determine how long a

specific load could be permitted, while with the maximum efficiency and the

minimum thermal risk.

4. In addition, as the model has a clear physical meaning, it possesses great

practicability for accurate temperature calculations.

5.4.4 Comparison between Modelling Results of Artificial

Neural Network and Genetic Algorithm

ANN is based on the theory of biological nervous systems and involves the

selection of input, output, network topology and weighted connections of net-

work’s nodes [5]. In general, neural networks can be adjusted or trained, so that

a particular input leads to a specific target output. Batch training of ANNs

proceeds by making weight and bias changes based on an entire batch of input

vectors. ANNs have been employed widely to perform complex functions in

various fields of applications including pattern recognition, classification and

control systems.
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In this study, a recursive mapping ANN in ‘‘The neural network toolbox of

MATLAB’’ is configured to describe transformer thermal behaviours for pre-

dicting the BOTs and TOTs of SGT3A. The network’s input vectors consist of the

load ratio K, the cooler status c and the ambient temperature ha. The network’s

outputs are the BOTs or TOTs of SGT3A, and all the neuron functions are chosen

to be the sigmoid function except the output neuron, which employs a pure linear

function. Two 7 9 9 9 1 recursive form ANNs are used to mimic the inertia and

performance of BOT and TOT, respectively, by selecting the ANN inputs as

current and previous samples:

½Kðt � 1Þ; Kðt � 2Þ; Kðt � 3Þ; haðt � 1Þ; haðt � 2Þ; haðt � 3Þ; cðtÞ�

where t is the current sample time that can be shifted to the nth (n = 1, 2 and 3)

earlier time.

During the ANN modelling, with dataset 2 (7,500 groups of on-site measure-

ments), 70% of the total data are used to train the ANN network and the remaining

30% are reserved for evaluating the performance of the ANN modelling within the

untrained range. The training epochs are 1,500. The actual measurements of

dataset 2 are shown in Figs. 5.8 and 5.9, for loading ratios and cooler signals,

respectively. The results obtained from the ANN recursive models are shown in

Figs. 5.10 and 5.11. In comparison, CTEATM is also used to calculate the BOTs

Fig. 5.8 Daily load (rated

load, 1 unit) (dataset 2)

Fig. 5.9 Real-time cooler

status (dataset 2)
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and TOTs using the thermal parameters in Table 5.2 for dataset 2, and the outputs

of CTEATM are illustrated in Figs. 5.12 and 5.13.

It can be observed that, when the recursive ANN mapping is used, the ANN

model only represents the input and output relationship accurately within the range

covered by the training data. Outside this range, the model response and mea-

surements do not agree with each other satisfactorily, especially under rapid

variations of load. This results only demonstrate the possibility of one step pre-

diction of transformer temperatures using ANNs. Moreover, the ANN modelling

does not possess any physical meaning, so its extrapolability is very limited. It is

also noticed that satisfactory agreements between the CTEATM outputs and the

actual measurements using the GA identified parameters are illustrated in

Figs. 5.12 and 5.13, which suggest that CTEATM is able to reflect accurately the

Fig. 5.10 Bottom-oil tem-

perature rise of the ANN

model outputs compared with

the on-site measurements

(dataset 2) (maximum error,

8.9�C)

Fig. 5.12 Bottom-oil tem-

perature rise of the CTEATM

outputs compared with the

on-site measurements (data-

set 2) (maximum error,

1.4�C)

Fig. 5.11 Top-oil tempera-

ture rise of the ANN model

outputs compared with the

on-site measurements (data-

set 2) (maximum error,

2.5�C)

84 5 Thermal Model Parameter Identification and Verification



thermal dynamics of an oil-immersed power transformer. Moreover, as CTEATM

has a clear physical meaning compared with the black-box technique of the ANN

modelling, it is more useful in practice.

5.5 Parameter Identification and Verification for

the Simplified Thermal Model

Regarding STEATM, the data employed for modelling also cover both the

ONAN and OFAF operation regimes switched over automatically, which are

sampled from a sister transformer of SGT3A as SGT3B. Three datasets are used,

i.e. dataset 3, dataset 4 and dataset 5. Dataset 3 is employed in the parameter

identification for STEATM and model verifications are carried out using datasets

4 and 5.

5.5.1 Identification of Parameters Using Genetic Algorithm

As for STEATM, the TOT and BOT are also selected as the model outputs. The

measured inputs of each dataset consist of ambient temperatures ha, loading ratios

K, TOTs (hOil-out) and BOTs (hOil-in), comprising 7,000 groups of measurements

with a sample interval of 1 min. As the variations of ha do not affect the BOT and

TOT instantly due to the thermal lagging, the model inputs of ha are a moving

average of 5 h from field experience that are then fed into STEATM during

calculations. The STEATM parameters are identified using the SGA based on

3,500 groups of real measurements, and then verified on the remaining 3,500

groups, noting that both the groups are extracted from dataset 3. During model

calculations, the differential equation (4.15) is solved with the Runge–Kutta

method in the time domain, by inputting the real data of ambient temperatures,

cyclic loadings and cooler switching signals. For GA learning, the crossover

probability pc is 0.95 and the mutation probability pm is 0.08. The size of the GA

population is 100 and the maximum number of generations is 1,000.

Fig. 5.13 Top-oil tempera-

ture rise of the CTEATM

outputs compared with the

on-site measurements (data-

set 2) (maximum error,

1.3�C)
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The comparisons between the model outputs and real measurements are shown

in Figs. 5.14 and 5.15, respectively, while the real daily cyclic loading and the

cooler switching signals are sketched in Figs. 5.16 and 5.17, respectively.

Regarding SGT3B, the thermal model parameters obtained with a GA search are

listed in Table 5.5, where the heat capacitance is in the unit of 103 kJ/K and the

heat conductance in the unit of kW/K.

Satisfactory agreements between the model outputs and the on-site measure-

ments are illustrated in Figs. 5.14 and 5.15, which suggest that STEATM can

describe the thermal behaviours of the oil-immersed power transformer accurately

under rapidly changing operation conditions. Notice that the data presented cover

both the trained and untrained groups, which still give an accurate representation

of transformer temperatures regarding the untrained groups.

Fig. 5.14 Bottom-oil tem-

perature rise of the STEATM

outputs compared with the

on-site measurements (data-

set 3) (maximum error,

1.8�C)

Fig. 5.15 Top-oil tempera-

ture rise of the STEATM

outputs compared with the

on-site measurements (data-

set 3) (maximum error,

0.68�C)

Fig. 5.16 Daily load (rated

load, 1 unit) (dataset 3)
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5.5.2 Verification of Derived Parameters with Rapidly

Changing Loads

To verify the derived STEATM parameters under other operation conditions,

another two working scenarios, sampled from the same in-service power trans-

former SGT3B, are employed for a further verification:

1. Dataset 4: loading conditions with intermittent switching off of SGT3B, which

also accompanies with switches of the coolers as shown in Figs. 5.20 and 5.21.

2. Dataset 5: long-time small loading ratios, while coolers are off as shown in

Figs. 5.24 and 5.25.

For simulations using STEATM, the thermal parameters listed in Table 5.5 are

substituted into the differential equation (4.15) for model calculations with dataset

Fig. 5.17 Real-time cooler

status (dataset 3)

Table 5.5 Parameters of STEATM for SGT3B identified with the SGA

Parameters G1(a) G1(b) G2(a) G2(b) G3(a)

Cooler off 49.2 0.34 3.64 0.54 3.59

Cooler on 38.5 0.24 126.3 0.52 4.08

Parameters G3(b) C1 C2 C3

Cooler off 0.56 189.1 3.65 2.04

Cooler on 0.54 123.4 3.07 1.93

Fig. 5.18 Bottom-oil tem-

perature rise of the STEATM

outputs compared with the

on-site measurements (data-

set 4) (maximum error,

2.2�C)
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4 and dataset 5 to produce continuous time sequences under the two rare operation

scenarios. Whereas, the differential equation (4.15) is solved with the Runge–

Kutta method using the same parameters obtained from the GA optimisation based

on dataset 3, involving the recorded data of ambient temperatures, loading ratios

and cooler switching signals.

For dataset 4, Figs. 5.18 and 5.19 illustrate the measured and calculated

temperature rise curves, respectively, while the real daily cyclic loading and

cooler switching signals are displayed in Figs. 5.20 and 5.21, respectively.

Considering dataset 5, the comparisons between the model outputs and real

measurements are shown in Figs. 5.22 and 5.23, respectively, while the real

daily loading ratios and cooler switching signals are displayed in Figs. 5.24 and

5.25, respectively.

Fig. 5.19 Top-oil tempera-

ture rise of the STEATM

outputs compared with the

on-site measurements (data-

set 4) (maximum error,

3.3�C)

Fig. 5.20 Daily load (rated

load, 1 unit) (dataset 4)

Fig. 5.21 Real-time cooler

status (dataset 4)
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It can be noted that STEATM still produces accurate results with the two

selected loading scenarios in a practical sense, which could further demonstrate the

usability of STEATM to some extent with the two sets of thermal parameters

derived using a GA.

Fig. 5.22 Bottom-oil tem-

perature rise of the STEATM

outputs compared with the

on-site measurements (data-

set 5) (maximum error,

2.0�C)

Fig. 5.23 Top-oil tempera-

ture rise of the STEATM

outputs compared with the

on-site measurements (data-

set 5) (maximum error,

3.3�C)

Fig. 5.24 Daily load (rated

load, 1 unit) (dataset 5)

Fig. 5.25 Real-time cooler

status (dataset 5)
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5.5.3 Simulations of Step Responses Compared with Factory

Heat Run

For the purpose of further validating the STEATM parameters in Table 5.5 under

steady states, several simulations using STEATM have been carried out under the

same circumstances as the historical factory heat run tests in accordance with

IEC60076-2. Firstly, the following working conditions have been investigated:

50% rated load, coolers off, ha = 22.0�C. The BOT and TOT of the model step

responses, based on the thermal parameters derived from the GA search, are shown

in Fig. 5.26, Table 5.6 and Fig. 5.27, Table 5.7 respectively, compared with the

recorded historical test data under the same condition provided by the manufac-

turer of SGT3B.

Table 5.6 Bottom-oil temperature rise (�C) at 50% rated load, cooler off of SGT3B

11:00 11:30 12:30 13:30 14:30

Tested 13.3 13.9 16.3 18.0 18.8

Simulated 14.3 15.5 17.4 18.5 18.8

15:30 16:30 17:30 18:30

Tested 19.4 20.3 20.6 20.7

Simulated 19.2 19.3 19.4 19.4

Table 5.7 Top-oil temperature rise (�C) at 50% rated load, cooler off of SGT3B

11:00 11:30 12:30 13:30 14:30

Tested 25.2 29.1 35.1 37.5 38.8

Simulated 26.6 29.9 33.9 36.1 37.2

15:30 16:30 17:30 18:30

Tested 39.8 40.5 40.9 41.1

Simulated 37.7 38.1 38.2 38.3

Fig. 5.26 Bottom-oil tem-

perature rise of the STEATM

outputs compared with the

original heat run test (50%

rated load, cooler off) (maxi-

mum error, 1.6�C)

90 5 Thermal Model Parameter Identification and Verification



Another full load condition has also been investigated: 100% rated load, coolers

on, ha = 21.6�C. The BOT and TOT of model step responses, based on the

thermal parameters derived from the GA search, are presented in Fig. 5.28,

Table 5.8 and Fig. 5.29, Table 5.9 respectively, which are again compared with

the recorded historical test data under the same conditions.

Comparing the simulated step responses with the recorded historical test

responses in Figs. 5.26, 5.27, 5.28 and 5.29, it is evident that the simulated tem-

perature rise curves are in close agreement with the actual factory measurements.

It can also be found in Tables 5.6, 5.7, 5.8 and 5.9 that the simulated final equi-

libria of the two operation scenarios are close to the recorded measurements. The

time constants of the two pairs of curves, which are observed from the tempera-

ture–time graphs in Figs. 5.26, 5.27, 5.28 and 5.29 and determined by C and G, are

around 2.7 and 1.2 h, respectively, extracted using exponential approximations,

which are also close to the historical test measurements. Considering the

Fig. 5.27 Top-oil tempera-

ture rise of the STEATM

outputs compared with the

original heat run test (50%

rated load, cooler off) (maxi-

mum error, 2.8�C)

Table 5.8 Bottom-oil temperature rise (�C) at 100% rated load, cooler on of SGT3B

14:00 15:00 16:00 17:00 18:00

Tested 17.6 24.3 28.8 30.8 32.1

Simulated 19.1 26.9 31.1 33.2 34.3

19:00 19:30 20:00 20:30 21:30

Tested 33.4 33.7 33.8 34.2 34.4

Simulated 34.9 35.0 35.1 35.2 35.3

Table 5.9 Top-oil temperature rise (�C) at 100% rated load, cooler on of SGT3B

13:00 14:00 15:00 16:00 17:00

Tested 3.5 19.7 27.0 31.9 34.3

Simulated 5.5 20.2 29.0 33.7 36.1

18:00 19:00 19:30 20:00 20:30

Tested 35.9 37.2 37.7 38.0 38.2

Simulated 37.3 37.9 38.1 38.2 38.3
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summation of the heat capacitances C1, C2 and C3, regarding Table 5.5 when the

coolers are off, the value is 194.8 9 103 kJ/K, which is near the estimated value

Call of 195.0 9 103 kJ/K in Sect. 5.4.1. As a consequence, the thermal conduc-

tances based on the GA search are also reliable, while the thermal capacitances are

sufficiently accurate. The simulation results of the full load condition are satis-

factory, which can verify the extrapolability of the thermal model. It should be

noticed that the highest training load ratio is under 80%, and during the simulation

under the full load condition the loading ratio is 100%.

5.5.4 Hot-Spot Temperature Calculation

To derive the equilibrium HSTs under the conditions of the two heat run tests in

Sect. 5.5.3, the hot-spot temperatures are calculated with Eq. (4.17) by setting

y, hg (ONAN) and hg (OFAF) to 1.6, 26.0�C and 22.0�C, respectively [6].

Thus, under the ONAN, half load condition, the equilibrium of HST is calcu-

lated based on the model outputs in Table 5.7:

hHST ¼ hOil�out þ ha þ hgK
y

¼ 38:3þ 22:0þ 26:0ð0:5Þ1:6 ¼ 68:9�C;

and under the OFAF, full load condition, the equilibrium of HST is obtained on the

basis of the model outputs in Table 5.9:

Fig. 5.28 Bottom-oil tem-

perature rise of the STEATM

outputs compared with the

original heat run test (100%

rated load, cooler on) (maxi-

mum error, 2.3�C)

Fig. 5.29 Top-oil tempera-

ture rise of the STEATM

outputs compared with the

original heat run test (100%

rated load, cooler on) (maxi-

mum error, 2.0�C)
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hHST ¼ hOil�out þ ha þ hgK
y

¼ 38:3þ 21:6þ 22:0ð1:0Þ1:6 ¼ 81:9�C:

During the two historical heat run tests, the HSTs were recorded by a WTI. The

final recorded equilibria of HSTs were 70.5�C and 82.0�C for the ONAN, half load

condition and the OFAF, rated load condition, respectively. On comparing the

calculated HSTs with the recorded values, they are very close to each other in both

the scenarios.

5.5.5 Error Analysis

By defining the average error of BOT as
ffiffiffiffiffiffiffiffiffiffiffi

fbo=N
p

and the average error of TOT as
ffiffiffiffiffiffiffiffiffiffiffi

fto=N
p

; the errors of the simulations discussed in this section are listed in

Table 5.10. It can be observed from Table 5.10 that the largest average error of all

calculations illustrated is \2�C, which is close to the results derived from

CTEATM in the previous section. This shows that further simplification of the

thermal model still holds good accuracies with a clear physical meaning, yet with

less parameters to be identified.

5.6 Summary

In this chapter, tests have been carried out on two oil-immersed power trans-

formers (SGT3A and SGT3B) using CTEATM and STEATM, respectively,

including a detailed discussion and validation of the two developed thermal

models. The robustness of GAs has been demonstrated through a number of case

studies using the two models. The model parameters can be identified by a GA

search based on the on-site measurements of ambient temperatures and load

currents. A comparison study between the ANN modelling and GA modelling is

also presented concerning CTEATM. From the responses of the two thermo-

electric analogy models, it can be deduced that the thermoelectric analogy models

can represent accurately real thermal dynamics of oil-immersed power

transformers.

Table 5.10 Average errors of simulations using STEATM (�C)

Scenario of

dataset 4

Scenario of

dataset 5

Heat run simulation

ONAN, 50%

Heat run simulation

OFAF, 100%

ffiffiffiffiffiffiffiffiffiffiffi

fbo=N
p

0.85 1.69 1.01 1.78
ffiffiffiffiffiffiffiffiffiffiffi

fto=N
p

1.32 1.74 1.93 1.32
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Chapter 6

Transformer Condition Assessment Using

Dissolved Gas Analysis

Abstract The dissolved gas analysis (DGA) of transformers can provide an

insight view related to thermal and electrical stresses during operations of oil-

immersed power transformers. DGA has been practised widely to detect incipient

transformer faults and can therefore prevent any further damage to transformers.

This chapter focuses on a literature review concerning conventional DGA tech-

niques, as well as the recent advance in DGA diagnostic techniques. Firstly the gas

evolution in a transformer is introduced. Various conventional DGA diagnosis

methods are then presented, which are usually combined to give a comprehensive

view of internal characteristics of transformers, such as the Rogers ratio method,

the key gas method, the gassing ratio method, etc. Finally, a brief introduction to

the diagnostic techniques using CI for DGA are presented.

6.1 Introduction

As known, oil-filled power transformers are subject to electrical and thermal

stresses. The two stresses could break down insulation materials and release

gaseous decomposition products [1], although all oil-filled transformers generate a

small quantity of gas, particularly carbon monoxide (CO) and carbon dioxide

(CO2), to some extent at normal operation conditions. Overheating, corona (partial

discharge) and arcing are the three primary causes of fault related gas generation,

and such internal faults in oil produce gaseous byproducts, including hydrogen

(H2), methane (CH4), acetylene (C2H2), ethylene (C2H4) and ethane (C2H6). When

the cellulose is involved, a fault may produce CH4, H2, CO, CO2, etc. Each of

these types of faults produces certain gases that are generally combustible. The

total of all combustible gases (TCG) with increases of gas generating rates may

indicate the existence of any one or a combination of thermal, electrical or corona

faults. Certain combinations of each of separate gases, called key gases, are unique
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for different fault temperatures and the ratios of certain key gas concentrations are

indicative to fault types.

The dissolved gas analysis (DGA) has been a widely utilised and powerful tool

to detect incipient faults in oil-filled power transformers [2–5]. The traditional

practice of diagnosing transformer conditions through DGA is carried out off-line

by manually extracting a sample of transformer insulation oil (by syringe), sending

it to a laboratory, and waiting for diagnosis results. By applying DGA techniques

on an oil sample, dissolved gases can be quantified. The concentration and the

relation of individual gases can predict whether a fault has occurred and what type

it is likely to be. Over the last four decades, DGA and its interpretation have

become a popular and reliable tool for assessing conditions of oil-filled trans-

formers and other oil-filled electrical equipment.

6.2 Fundamental of Dissolved Gas Analysis

Different patterns of gases are generated due to different intensities of energy

dissipated by various faults in a power transformer. Totally or partially dissolved

into the insulation oil, the gases present in an oil sample make it possible to

determine the nature of a fault by gas types and their concentrations.

The most widely used dissolved gas extraction process is to get an oil sample

through a sampling valve and inject it into an oil–gas extractor for analysis, using

chromatography, mass spectrometry, infrared analytical methods, and so forth.

After extraction and analysis, types of different gases and each concentration are

determined, which can be compared with gas analysis records in a laboratory

gathered over decades, followed by an evaluation of impact of a fault on the

serviceability of a power transformer. Once a suspicious gas presence is detected,

further inspections should be carried out to identify the species and locations of

faults, such as tests of no-load characteristics of winding DC resistance, insulation,

partial discharge or humidity content measurements, etc.

Various diagnostic schemes have been developed for DGA interpretation.

These methods attempt to map the relations between gases and fault conditions,

some of which are obvious and some of which may not be apparent. For instance,

these criteria include the key gas method and the gas ratio method based on

variations in gassing characteristics with temperatures to which materials are

subjected. The comparisons of these DGA interpretation schemes indicate a large

variety of ratios and typical values for individual gas concentrations between

different DGA diagnostic schemes.

6.2.1 Gas Evolution in a Transformer

Faults in a transformer sometimes lead to the degradation of insulation materials

and oil. During this degradation, gaseous products are formed and dissolved in
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the oil, namely H2, CO, CO2, CH4, C2H6, C2H4, C2H2, etc. If a certain level is

exceeded, gas bubbles arise and oil-filled transformers are subject to electrical

and thermal stresses, which may break down insulation materials and release

gaseous decomposition products. Evaluation procedures for DGA have been

implemented widely based upon the guidelines recommended by IEC [2], IEEE

[3] and CIGRE [4].

The immediate effect of the breakdown of hydrocarbon molecules as a result of

the energy of a fault is to create free radicals as indicated in Fig. 6.1[1]. These

subsequently recombine to produce low molecular weight hydrocarbon gases. This

recombination process is largely determined by operation temperatures, but also

influenced by other factors. The result is that the pattern of gases appearing in the

oil has a form as shown in Fig. 6.2. For the lowest temperature faults both CH4 and

H2 are generated, with CH4 being predominant. As the temperature of a fault

increases, C2H6 starts to be evolved and CH4 is reduced, so that the C2H6/CH4

ratio becomes predominant. At still higher temperatures the rate of C2H6 evolution

is reduced and C2H4 production commences and soon outweights the proportion of

C2H6. Finally, at very high temperatures C2H4 puts in an appearance and as the

temperature increases still further it becomes the most predominant gas. It is noted

that no temperature scale is indicated along the temperature axis of Fig. 6.2, and

the graph is subdivided into types of faults. The areas include normal operating

temperatures go up to about 140�C, hot spots extend to around 250�C and high-

temperature thermal faults to about 1000�C. Peak C2H4 evolution occurs at about

700�C [1].

fault temperature Equilibrium at 

H           CH           CH CH etc.

CH C H C H ....
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2 2
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H C H ...

C H

Free molecules of hydrocarbon gases

Primary products - free radicals 

H

Fig. 6.1 Free radicals

resulting from heating of

mineral oil
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6.2.2 Key Gas Method

The key gas method relates key gases to fault types and attempts to detect four

fault types [3], including overheating of oil, overheating of cellulose, corona

(partial discharge) and arcing, based on key gas concentrations (C2H4, CO, H2,

C2H2) expressed in ppm (part per million).

1. Overheating of oil: Decomposition products include C2H4 and CH4, together

with small quantities of H2 and C2H6. Traces of C2H2 may be formed if a fault

is severe or involves electrical contacts. The principal gas is C2H4.

2. Overheating of cellulose: Large quantities of CO2 and CO are evolved from

overheated cellulose. Hydrocarbon gases, such as CH4 and C2H4, are formed if

a fault involves an oil-immersed structure. The principal gas is CO.

3. Corona: Low-energy electrical discharges produce H2 and CH4, with small

quantities of C2H6 and C2H4. Comparable amounts of CO and CO2 may result

from discharges in cellulose. The principal gas is H2.

4. Arcing: Large amounts of H2 and C2H2 are produced, with minor quantities of

CH4 and C2H4. CO2 and CO may also be formed if a fault involves cellulose.

The insulation oil may be carbonised. The principal gas is C2H2.

The suggested relationships between key gases and fault types are summarised

as follows:

1. O2 and N2: non-faults.

2. H2: corona.
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3. CO and CO2: overheating of cellulose insulation.

4. CH4 and C2H6: low temperature overheating of oil.

5. C2H4: high temperature overheating of oil.

6. C2H2: arcing.

Since the key gas method does not give numerical correlations between fault

types and gas types directly, the diagnosis depends greatly on experience.

6.2.3 Determination of Combustible Gassing Rate

A detected gas volume and its distribution may be generated over a long time

period by a relatively insignificant fault or in a very short period of time by a more

severe fault. Hence, one measurement does not indicate the rate of gas generation

and may provide very little information about the severity of a fault. Once a

suspicious gas presence is detected, it is important to sample again and calculate

the gassing rate of a gas, which can indicate whether the fault that generated the

gas is active or not [3]. The equation for computing gassing rate is as below [5]:

Ri ¼
Ci2 � Ci1

Dt
�
G

q
; ð6:1Þ

where Ri is the gassing rate (ml/h or day), Ci1 the first sample concentration (ppm),

Ci2 the second sample concentration (ppm),G the total oil weight (ton), q the density

of oil (ton/m3) and Dt the actual operating time of a sampling interval (hour or day).

6.2.4 Gas Ratio Methods

As a convenient basis for fault diagnosis, the gas ratio methods are coding schemes

that assign certain combinations of codes to specific fault types. The codes are

generated by calculating ratios of gas concentrations and comparing the ratios with

predefined values, which have been derived from experience and are modified

continually. A fault condition is detected when a gas combination fits the code

pattern of a particular fault. The most commonly used gas ratio method is the

Rogers ratio method [6] as listed in Table 6.1, which is able to distinguish more

types of thermal faults than that of the Dörnenberg ratio method [3].

Additional attention should be paid to the following conditions while applying

the gas ratio method according to Table 6.1:

1. Significant values quoted for ratio calculations should be only regarded as

typical.

2. Transformers fitted with an in-tank OLTC may indicate faults of code 202/102,

depending on seepage or transmission of arc decomposition products in the

diverter switch tank into the transformer tank oil.
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3. The ratios for a combination of multiple faults may not fit the predefined codes

in Table 6.1.

4. Combinations of ratios not included in Table 6.1 may occur in practice. A great

amount of consideration is being given to the interpretation of such combinations.

6.2.5 Fault Detectability Using Dissolved Gas Analysis

The majority of faults are slow to develop, which can be detected by DGA

monitoring. Locations of faults detectable using DGA as reported by CIGRE [4]

are listed below:

Table 6.1 Fault diagnosis table reproduced from IEC60559

Code of range of

ratios

C2H2

C2H4

CH4

H2

C2H4

C2H6

Ratios of gases

\0.1 0 1 0

0.1–1 1 0 0

1–3 1 2 1

[3 2 2 2

Cases Characteristic fault Typical examples

0 No fault 0 0 0 Normal aging

1 Partial discharges of low

energy density

0 1 0 Discharges in gas-filled cavities resulting

from incomplete impregnation, or

supersaturation or cavitation or high

humidity

2 Partial discharges of high

energy density

1 1 0 As above, but leading to tracking or

perforation of solid insulation

3 Discharge of low energy 1 ? 2 0 1 ? 2 Continuous sparking in oil between bad

connections of different potential or

to floating potential. Breakdown of

oil between solid materials

4 Discharge of high energy 1 0 2 Discharges with power follow-through.

Arcing - breakdown of oil between

windings or coils or between coils to

earth. Selector breaking current

5 Thermal fault of low

temperature\150�C

0 0 1 General insulated conductor overheating

6 Thermal fault of low

temperature range

150�C–300�C

0 2 0 Local overheating of the core due to

concentrations of flux. Increasing hot

spot temperatures; varying from

small hot spots in core, shorting links

in core, overheating of copper due to

eddy currents, bad contacts/joints

(pyrolytic carbon formation) up to

core and tank circulating currents

7 Thermal fault of medium

temperature range

300�C–700�C

0 2 1

8 Thermal fault of high

temperature[700�C

0 2 2
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1. Within a winding.

2. Cleats and leads.

3. In a tank.

4. A selector switch.

5. A core.

However, instantaneous faults are rapid and sometimes cannot be predicted by

DGA. Instantaneous failures that cannot be prevented by DGA are [4]:

1. Flash over with power follow-through.

2. Serious failures, developing within seconds to minutes and therefore not pos-

sible to be detected using DGA.

6.3 Combined Criteria for Dissolved Gas Analysis

From a practical point of view, it is important to establish the following evaluation

procedures using combined DGA criteria, which are rooted on the guidelines from

IEC [2], IEEE [3] and the new modification recommended by CIGRE Task Force

15.01.01 [4].

1. Detection and comparison:

a. Detect concentrations and gassing rates of any gases dissolved in the oil, and

compare them with ‘‘normal’’ quantities using appropriate guidelines. Then

it is certain whether an abnormality occurs in a transformer or not.

b. A recent investigation on DGA undertaken by CIGRE TF 15.01.01 has set

up a table with typical values for the key gases H2, C2H2, the sum of the

C1- and C2-hydrocarbons and the sum of CO2 and CO for generator and

transmission transformers as shown in Table 6.2 [4]. The key gases and

the gas concentration values shown in Table 6.2 can be understood as a

guideline for DGA interpretation. This is particularly valuable where no

additional information is available from historical data of a transformer.

However, generally the gassing rate of fault-generated gases is more

important than absolute levels, e.g. high levels of key gases can exist with

no faults present.

c. Attention should also be paid to CO and CO2 when it is suspected that

cellulose materials are involved. The high temperature degradation of cel-

lulose, no matter how it is caused (e.g. hot spots or arcing), tends to increase

the relative amount of CO. However, the rates of CO2 and CO production

depend greatly upon the oxygen availability, moisture contents and the

temperature of degradation. The ratio of CO2

CO
primarily indicates the partic-

ipation of cellulose insulation materials in electrical or thermal related faults.

Normally, in case of overheating of cellulose, the ratio is greater than 10 and

in case of degradation of cellulose caused by an electrical fault, the ratio is

less than 3 [4].
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d. Additionally, a new ratio C2H2

H2
is introduced by CIGRE TF 15.01.01 to

determine whether fault gases diffuse into a tank from a leaking OLTC or

not (if a diverter switch tank and a main tank have a common conservator, it

is a similar situation). In this case normally the ratio is 2 and the concen-

tration of C2H2 is 30 ppm [4].

e. When an internal fault is suspected, the gas ratio methods and the key gas

method should be combined to identify the type of faults, referring to

Sects. 6.2.3 and 6.2.4.

2. Assessment: Based upon the combined assessment results using various DGA

guidelines, further inspections should be carried out to identify the type and

location of faults, such as tests of no-load characteristics of winding DC

resistance, insulation, partial discharge and humidity content measurements,

followed by the evaluation of the impact of the fault on the serviceability of the

observed transformer.

3. Action: Recommended actions should be taken, such as increasing surveillance,

shortening sampling intervals, reducing the load on the transformer and finally

removing the unit from service.

6.4 Intelligent Diagnostic Methods for Dissolve Gas Analysis

The aforementioned DGA diagnosis techniques reported by IEC, IEEE and

CIGRE are computationally straightforward and tend to work well on diagnosing

severe faults. They are usually used as a general guideline by experts. However,

much uncertainty exists in gas data due to the complexity of gas generating pro-

cesses in the oil, gas sampling processes and the chromatographic analysis in a

laboratory. Consequently, varied patterns and amounts of gases are generated due

to different intensities of energy dissipated by different faults, which are affected

by oil types, oil temperatures, sampling methods, insulation characteristics and

environmental effects, etc. Moreover, most DGA diagnosis techniques rely on

experts to interpret DGA results correctly, which could be insensitive to slowly

developing and insignificant faults. Sometimes, misjudgement may be made under

normal conditions, due to occasional operations, such as oil-tank welding, the

Table 6.2 Typical values of key gases for generation and transmission transformers

Key gas Key gas concentration (ppm) Suspect of indication

C2H2 [20 Power discharge

H2 [100 Partial dischargeP
CxHy Thermal fault

[1000 if up to
P

C1, C2, C3-Hydrocarbons

[500 if up to
P

C1,C2-Hydrocarbons

COx = 1,2 [10000 Cellulose degradation
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electric charge carried by the oil-flow and so forth. To deal with the uncertainties

arising from fault diagnosis, based on gas contents extracted from transformer oil

samples, various techniques have been attempted by many researchers, including

EPS, FL, ANNs and so on. Firstly, fault types are classified based on on-site

experience, according to the combined criteria of total combustible gases, gas

generation rates, the key gas method and on-site inspections. Subsequently, vari-

ous CI methods are employed to reveal the relationships between fault symptoms

and malfunction types founded on gas-fault mapping schemes.

For instance, ANNs are the most widely used fault classifiers in DGA. In

[7, 8], an ANN was utilised to detect faults based merely on previous diagnostic

results. Theoretically, an ANN can be trained to represent any observable phe-

nomenon if there are sufficient data available. The experience obtained not only

encompasses the existing human diagnostic knowledge, but also explores the

unknown relationship between fault conditions and gas data. However, a disad-

vantage of ANNs in practice is that such relationships are embedded in an ANN

structure. It is not easy for a non-expert user to employ these relationships to

explain the conclusion of an inference. On the other hand, FL was employed to

improve the assessment capability of DGA in [9, 10], which can convert DGA

interpretation standards and other human expertise into ‘‘if-then’’ rules to form a

decision making system. Moreover, EPSs combined with other CI techniques, e.g.

fuzzy models and EAs, have been developed for DGA, which can evaluate

ongoing conditions and also suggest proper maintenance actions [11, 12]. The

fuzzy set concept can be integrated into an EPS to handle uncertain thresholds, gas

ratio boundaries and key gas analysis. EP has also been employed to automatically

modify the fuzzy ‘‘if–then’’ rules and simultaneously adjust the corresponding

membership functions. Other statistical methods like principal component analysis

and correlation analysis were proposed in [13], which are mainly concerned with

identifying the key variables and the key gas interdependence of a transformer

feature. In summary, these CI techniques could provide a firm heuristic basis for

future DGA research.

6.5 Summary

At the beginning of this chapter, a broad literature review of DGA techniques is

given, including the theory of fault gas evolution and a variety of conventional gas

interpretation schemes. Founded on a literature review of DGA, the correlations

between gas types, gas concentrations and fault types are summarised. Then,

conventional DGA evaluation procedures are presented briefly and a combined

DGA criterion is introduced involving the key gas method, the Rogers ratio

method, the gassing rate method and some modifications recommended by CIGRE

Task Force 15.01.01. However, based upon the conventional DGA interpretation

methods, it is an arduous task to determine malfunction types and oil sampling

intervals due to various fault conditions and other interference factors.
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Furthermore, establishing relationships between gases and decline conditions is a

perplexing task, because of complex gas combination patterns. The DGA proce-

dures and criteria introduced in this chapter are employed in Chaps. 7 and 8 to

generate diagnosis inputs for the proposed DGA fault classification systems.
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Chapter 7

Fault Classification for Dissolved Gas

Analysis Using Genetic Programming

Abstract This chapter presents an intelligent fault classification approach to

transformer DGA for dealing with highly versatile or noise-corrupted data. Two

methods, i.e. bootstrap and GP, are employed to preprocess gas data and extract

fault features for DGA, respectively. GP is applied to establish classification

features for each fault type based on dissolved gases. In order to improve GP

performance, bootstrap preprocessing is utilised to equalise the sample numbers

for different fault types. The features extracted using GP are then used as inputs

fed to ANN, SVM and KNN classifiers for fault classifications. The classification

accuracies of integrated GP-ANN, GP-SVM and GP-KNN classifiers are com-

pared with the ones of ANN, SVM and KNN classifiers, respectively. The test

results indicate that the developed classifiers using GP and bootstrap can signifi-

cantly improve diagnosis accuracies for transformer DGA.

7.1 Introduction

As introduced in Chap. 6, DGA has been recognised widely as an effective

diagnostic technique to detect incipient faults of power transformers. The analysis

of ratios of specific dissolved gas concentrations in the insulation oil of a trans-

former can indicate the presence of a fault and therefore necessary preventive

maintenance arrangements can be scheduled. Currently, there are various

DGA interpretation criteria such as the well-known Rogers, modified Rogers,

Döernenburg and key gas methods [1]. Using these methods, transformer

conditions can be evaluated according to a number of preset thresholds of gases or

gas ratios [2]. However, based on empirical studies, these methods are not unbi-

ased and often produce conflicting judgements. In these cases, engineers have to

additionally take into account other relevant information about a transformer in
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effort to assess its condition, e.g. the previous operation history of a transformer,

results of the latest inspection, states of OLTC and so forth [3].

Apart from the above conventional DGA techniques, various CI techniques

have also been investigated extensively for the purpose of developing accurate

diagnostic tools using DGA data. Zhang and Ding [4] proposed a two-step ANN

method for transformer fault detection using gas concentrations as an input vector

to an ANN classifier. Tenfold cross validation [5] of ANN was implemented using

40 sets of samples of gas concentrations. A diagnostic accuracy around 90–95%

was achieved by employing an essentially complex ANN structure. The ANN

efficiency for the detection of incipient faults in power transformers was analysed

by Guardado, et al. [6]. A number of ANN classifiers, trained according to a

variety of commonly used practical DGA criteria were compared using a DGA

data set of 117 samples for ANN training and 33 new samples for testing. This was

reported with a diagnostic accuracy in the range of 87–100% with respect to the

criteria used. Huang [7] proposed a transformer assessment technique using a

GA-based ANN. A set of 630 real gas ratio records representing five classes was

utilised for tenfold cross training and testing [5]. Acquired results showed an

accuracy between 90 and 95%.

Moreover, hybrid fault classification methods have been developed for accurate

transformer fault diagnosis. A multilevel decision-making model for power

transformer fault diagnosis, based on the combination of SVM and KNN, was

proposed in [8]. An average of 87.5% diagnostic accuracy was obtained by the

combined classifier after processing 811 DGA records. In [9] a combination of

immune networks and KNN was used to process 720 gas samples with a 93.2%

diagnostic accuracy. In [10] dissolved gas ratios and its mean, root mean square,

variance and higher order central moment values were inputted as diagnostic

features to ANN and SVM classifiers using a clonal selection algorithm for feature

selections. The analysis of two DGA datasets with 120 and 620 samples showed a

diagnostic accuracy in the range of 96–100%. In [11] a combined evolutionary

fuzzy diagnosis system processed 561 gas records and delivered a 88% accuracy.

A combination of fuzzy logic and ANN was presented in [2] to develop a hybrid

transformer fault diagnosis tool. Using the developed classifier more than 80% out

of 212 gas samples from 20 transformers were classified correctly. An evidential

reasoning approach, based upon the Dempster–Shafer theory and traditional DGA

interpretation standards, was utilised for transformer condition assessment taking

into account the uncertainties arising from transformer fault diagnoses [12,13].

Regarding artificial feature extractions, GP has been recognised as an efficient

technique due to its ability to discover the underlying data relationships and

express them mathematically [14]. The ability of GP to generate solutions for

complex classification problems has been utilised successfully for machine

condition monitoring [15–19] and the combination of GP extracted features with

ANN and SVM was reported in [15, 16]. To improve classification accuracies,

KNN was used as a classifier based on GP extracted features [17]. However, only

a few publications of GP applications in the field of transformer fault detection

and classification have been reported so far. Zhang and Huang [20] employed GP
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to develop a binary tree classification structure for DGA sample processing. As a

result, an N-class problem was transferred to N - 1 two class subproblems,

where a simple zero threshold was used as a discriminant function to separate the

feature space into two regions [20]. The method was trained and tested using 352

gas ratio samples by a tenfold cross validation procedure, which showed a 91.4%

accuracy. In [21] the same research team applied GP for DGA data classification

to produce discriminant functions and division points. A DGA dataset of 378

samples was used for the validation of the diagnostic method in two formats of

input vectors: dissolved gas ratios and actual dissolved gas concentrations being

normalised within [-1, 1]. The diagnosis delivered 85.4% and 87.8% accuracies,

respectively.

Some of the above-reported research were implemented using a large number

of gas samples in order to obtain reliable diagnosis performance. Thus, the

achieved results could be used for monitoring transformers with the same con-

struction or being operated in similar operation conditions. However, in realistic

cases available DGA data contain unequal numbers of samples regarding different

fault classes analysed. This can be explained by the lack of data related to different

fault conditions. It is possible that collected gas records possess essential diversity

even related to the same particular classes due to a large variety of types of

transformers investigated and its technical and geometrical characteristics. Fur-

thermore, the noise corruption possibility during measurement procedures is also

not easy to avoid. This may lead to lowering of diagnosis accuracies shown in the

applications of the above-reported techniques. To overcome the lack of DGA

samples, the bootstrap technique was employed as a data preprocessing method

prior to GP feature extraction [18, 19].

In this chapter, first the lack of fault class samples is overcome by bootstrap

data preprocessing. Then GP is utilised to process gas ratio samples to extract fault

features for each class from the available data. The features extracted using GP are

then used as the inputs to ANN, SVM and KNN classifiers in order to perform

multi-category fault classification. Finally, the comparison between classification

accuracies using the proposed approach and that of the individual classifiers,

including ANN, SVM and KNN, is given and discussed in detail.

7.2 Bootstrap

Bootstrap was first introduced by Efron as a computer-intensive resampling

technique that draws a large number of samples from initial data repeatedly [22].

This data preprocessing technique is designed to obtain reliable standard errors,

confidence intervals and other measures of uncertainty in cases when an initial

sample number is not sufficient to conduct accurate analysis using other statistical

techniques. Because resampling is carried out in a random order, bootstrap

assumes no particular distribution of processed data, which gives more applica-

bility with respect to other classical statistical methods [23].
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Consider X0
= {x1,…, xi,..., xn}, (i = 1,..., n) to be a set of n initial samples

with an unknown distribution F, where xi is the ith independent and identically

distributed random variable. Let 0 denote an unknown characteristic of F, i.e.

mean or variance, which is of the interest to be estimated. Then, bootstrap is

employed to resample the initial set X0 in order to obtain k sets of samples

Xj
= {xj1,..., xji, ..., xjn}, (j = 1, 2,..., k). Each generated sample xji has a

probability n-1 of being equally picked up during resampling. Thus, for each

generated set of samples Xj, it is possible to calculate an estimator b#j in order to

analyse its probability distribution function bFð b#Þ and a confidence interval for the

estimator [5, 18, 23]. In this chapter, DGA data are resampled by bootstrap to

analyse statistically its diversity and equalise approximately the sample number for

each class. These procedures are explained in detail in Sect. 7.4.1. The resampled

data are then used for the fault feature extraction and classification using GP and a

number of fault classifiers, respectively.

7.3 The Cybernetic Techniques of Computational Intelligence

Cybernetics is a broad field of study and the essential goal of cybernetics is to

understand and define functions of various systems. Contemporary cybernetics

began in the 1940s as an interdisciplinary study connecting fields of control sys-

tems, neuroscience, computer science, mathematics, etc. This section describes

briefly the concepts of the ANN, SVM and KNN classifiers used for DGA fault

classifications, which are among the most practised techniques belonging to the

cybernetics techniques of CI.

7.3.1 Artificial Neural Network

Similar to a biological neuron system, ANN is a computational system with a large

number of simultaneously functioning simple processes with many connections

between nodes of an ANN [24]. ANN renders organisational principles peculiar to

a human brain aiming to acquire learning abilities with the purpose of improving

its performance. A learning (or training) process for ANN is considered as an

iterative adjustment of a network architecture and weights in order to obtain

desired outputs for a given set of training samples being passed as ANN inputs.

This self-training property makes ANNs more attractive in comparison with other

systems which strongly conform to predetermined operational rules formulated by

experts.

It has been recognised that one of the most widely used ANN structures for

classification problems is multilayer perception (MLP) with a backpropagation

learning algorithm [24]. In this chapter, a three-layer MLP structure with input,

hidden and output layers is employed as a classifier for transformer fault

108 7 Fault Classification for Dissolved Gas Analysis



classification. Each neuron model of the hidden layer has a hyperbolic tangent

activation function, whereas a logistic activation function is employed for those of

the output layer.

7.3.2 Support Vector Machine

SVM [25] is regarded as one of the standard tools for machine learning and data

mining, which is based on advances in statistical learning theories. Originally

developed to solve binary classification problems, SVM determines a number of

support vectors from training samples and converts them into a feature space using

various kernel functions, among which the most commonly used functions are

Gaussian radial basis function (RBF), polynomial, multilayer perceptron [25],

etc. Thus, for solving a quadratic optimisation problem, the optimal separating

hyperplane with a maximal margin between two classes is defined.

For the purpose of multi-category classification, various binary classification

methods have been developed, such as ‘‘one-against-all’’, ‘‘one-against-one’’,

directed acyclic graph SVM (DAGSVM), etc. [26]. The SVM used in this research

is DAGSVM having been approved as one of the appropriate binary methods for

multi-category classification [26] with a Gaussian RBF kernel employed and

defined by the following equation:

Kðx; yÞ ¼ exp �
ðx� yÞ2

212

 !
; ð7:1Þ

where x and y denote support vectors and 1 is an RBF kernel parameter to be

predetermined. In order to control the SVM generalisation capability a mis-

classification parameter C should also be defined [16].

7.3.3 K-Nearest Neighbour

KNN is a supervised learning algorithm that has been used in many applications in

the field of data classification, statistical pattern recognition, image processing and

many others. It is based upon an assumption of the closest location of observations

being members of the same category. The K closest neighbours are found from

training datasets by calculating the Euclidean distance between the examined point

and training samples. The K closest data points are then analysed to determine

which class label is most common among the set in order to assign it to data points

being analysed [27]. The value K is selected not to be too small in order to

minimise the noise effect in training data. On the other hand, a large value of

K essentially increases the computing time; therefore in practice K is adjusted

through a number of trials.
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7.4 Results and Discussion

In this research, 167 sets of gas samples and matching diagnoses have been extracted

from an NG DGA database as the original DGA data, which contain not only seven

types of key gases but also diagnosis results from on-site inspections. The trans-

formers being investigated for this study have been evaluated using various engi-

neering diagnostic tools and the corresponding diagnoses related to 4 classes have

been generated, i.e. normal unit (NU) (class 1, 26 samples), overheating (OH) (class

2, 69 samples), low-energy discharge (LED) (class 3, 18 samples) and high-energy

discharge (HED) (class 4, 54 samples). Based on the DGA analysis technique

reported in [6], five commonly used gas ratios are chosen and combined as an input

vector for GP feature extractions, which is defined as below:

R ¼
C2H2

C2H4

CH4

H2

C2H4

C2H6

C2H2

H2

C2H6

C2H2

� �

: ð7:2Þ

As a result, each set of individual key gas concentrations is reformatted into a

vector in the form of R, and the original DGA data are rearranged as a data array

with a dimension of 167 9 5. Elements of each column of the array are ratios as

defined in Eq. (7.2). For instance, the first column of the data array corresponds to

the ratio C2H2/C2H4, being the first element of the input vector R. Then the

reformatted DGA data are preprocessed as an initial DGA dataset using bootstrap

to derive an expanded DGA dataset containing the four fault classes with equal

sample numbers. Subsequently, GP is used to process the expanded DGA dataset

for accurate fault feature extractions.

7.4.1 Process DGA Data Using Bootstrap

7.4.1.1 Statistical Analysis for DGA Data

As mentioned above, bootstrap is employed to provide reliable statistical indica-

tors of data in cases where an initial sample number is not sufficient for accurate

statistical analysis. In this regard, the initial DGA data are firstly resampled using

bootstrap to analyse its diversity. Each column of the reformatted DGA data array,

i.e. the initial DGA dataset containing five gas ratios, is considered as a set X0 of

n initial samples (n = 167) to generate the expended DGA dataset {X1,…, Xk}

consisting of k sample sets.

A publicly available bootstrap toolbox in MATLAB [28] has been used in this

research. In Table 7.1 the 95% confidence interval lengths of mean l and standard

deviation r values for each diagnosis class are presented using bootstrap with the

default number of sample sets k = 199 as recommended by the bootstrap toolbox

[28]. The examination of Table 7.1 shows that there is a large distribution in

both l and r for all the input vector elements of each class data. Thus, it is
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assumed that, based on the available DGA data, it would be sufficiently complex to

carry out transformer fault classifications.

7.4.1.2 Sample Number Equalisation for Different Fault Classes

It is logical to expect that more accurate feature extraction with GP can be

obtained using a dataset with an equal number of samples regarding each class. In

order to approximately equalise the sample number for all the fault classes

according to a target sample number, bootstrapping is undertaken for each class by

setting a different set number k, which depends on the initial number of the

available samples for different classes, and as a result the initial sample number of

a class times k equals the target sample number.

Let n1,…, nt, ..., nm be the numbers of the initial samples of the corresponding

m fault classes in the initial dataset X0 with a total number of samples

n (
P

m
t=1nt = n). Set qtr and qtest as the target sample numbers for the tth class

comprising two datasets, which are generated as a training dataset and a test

dataset, respectively. The samples of the tth class are first divided into two dif-

ferent fractions as cnt and (1 - c)nt, where c represents a fraction coefficient.

Then, bootstrapping is performed with the following two set numbers:

ktrt ffi
qtr

cnt
and ktestt ffi

qtest

ð1� cÞnt
; ð7:3Þ

using the corresponding fractions of the tth class to generate two subsets as

training and test datasets. The procedure is repeated for all the m classes. As a

result, a training dataset and a test dataset with equal sample numbers as qtr and

qtest, respectively, for each class are derived from the corresponding subsets of

each class samples.

Given that, in general, k has to be an integer for data bootstrapping, only integer

values, being closest to actual ratios in the right side of the equations in (7.3), are

selected. Therefore, the actual numbers of qtrt and qtestt for each class t may not be

equal to the desired values of qtr and qtest, but are, in fact, very close to them,

respectively.

Table 7.1 Length of 95% confidence intervals of gas ratio data

Class C2H2/C2H4 CH4/H2 C2H4/C2H6 C2H2/H2 C2H6/C2H2

l r l r l r l r l r

Normal unit 0.34 0.23 948.37 1.8e4 2.68 3.52 0.52 1.69 9.4e6 1.1e8

Overheating 0.71 1.06 189.49 1021.09 5.78 38.58 3.58 8.00 4.9e5 1.2e6

Low energy

discharge

1.35 5.3 1.36 1.02 17.13 80.89 3.45 28.44 2.4e4 1.9e4

High energy

discharge

6.06 31.18 0.88 9.55 45.23 1415.37 85.01 3393.07 0.59 8.35
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Following the above procedures, a standard MATLAB function crossvalind is

selected to divide randomly the initially available gas samples of each class into

five data partitions. The four partitions out of five of them are combined to

constitute an initial training data fraction and the remaining partition is used as

an initial test data fraction. As a result, in total, approximately 80% of the

initially available gas data have been used to create a training dataset consisting

of 830 samples of gas ratios using bootstrap. The remaining part, approximately

20%, of the initial data is expanded to generate a testing dataset with 228

samples.

In this study, assuming qtr = 200 and qtest = 50 as the target values for

sample equalisation, the following sample numbers are obtained using bootstrap

for the training and test datasets with regard to different classes: normal unit—

190 and 70 samples, overheating—200 and 76 samples, low-energy discharge—

210 and 42 samples and high-energy discharge—230 and 40 samples, respec-

tively. The slight deviation in the numbers of each class regarding the desired

values can be explained by the approximation of ktrt and ktestt of each class and

the utilisation of the MATLAB function crossvalind to randomly separate the

initial DGA samples into training and testing fractions for different fault classes.

As a result, about 78% out of the expanded 1058 samples are employed to

constitute a training dataset and 22% of the expanded data are used for testing. It

should be noted that the derived training and testing datasets are independent of

each other, which are employed to verify the effectiveness of the proposed fault

classification approach using GP.

7.4.2 Feature Extraction with Genetic Programming

In order to separate accurately the four fault classes based upon DGA, at least

four different fault features are to be extracted by GP. An ECJ software

package, i.e a Java-based evolutionary computation software publicly available

[29], has been employed to implement GP processing with the parameters listed

in Table 7.2. In the following subsections, two GP feature extraction tests are

performed using the initial DGA datasets and the expanded datasets with

bootstrapping, respectively, in order to verify the effectiveness of data boot-

strapping. The extracted features in both the cases are employed to discriminate

a fault class from the others. At the end of this subsection a brief discussion is

given.

Table 7.2 GP parameters

Parameter Value Parameter Value

No. of generations 100 Crossover probability 0.9

Population size 2,000 Mutation probability 0.1

Maximum depth of tree 10 Number of runs 10

Tournament size 7 No. of elite individuals 1
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7.4.2.1 Feature Extraction with the Initial DGA Data

At first, 167 sets of the initial DGA datasets are used for GP feature extractions.

A number of GP runs have been carried out, which have shown approximately the

same performance. Four of the best GP-generated features to separate each class

using the initial DGA data are presented as follows:

f1 ¼ cos ln ln r2
ffiffiffiffiffiffiffi

r3j j
p

�

�

�

�

�

� ln r1 þ r1 þ
ffiffiffiffiffiffiffi

r1j j
p

þ ln r3ð Þ2
� �� �

; ð7:4Þ

f2 ¼ exp cos
sin exp 0:3357 r1ð Þð Þð Þr2þ

þ sin r1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sin r1j j
p

þ r
r2
2ð Þ

1

 !,

0:5559

 !

; ð7:5Þ

f3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffi
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where r1*r5 are the five elements of input vector R given by Eq. (7.2), i.e. the

dissolved gas ratios.

In Fig. 7.1 the four GP extracted features (7.4)–(7.7) are used to process the

initial DGA data in order to discriminate one fault class from the other classes. The

first 129 samples belong to the training dataset and the rest 38 ones are employed

for validation of the features extracted using GP. All the data have been prelim-

inarily sorted according to its class labels, which are shown in the bottom subfigure

of Fig. 7.1. For instance, the DGA data labelled as OH (class 2) are located in the

sample range from 21 to 76 in the training datasets and from 136 to 148 in the test

datasets. As seen in Fig. 7.1, the majority of samples related to classes 2 and 4,

occupying a large portion of the initial DGA data, are well separated from the rest

of samples. On the contrary, poor discrimination of samples belonging to classes 1

and 3 can be explained by the lack of samples available for GP training compared

with the other two classes.

7.4.2.2 Feature Extraction with the Expanded DGA

Data by Bootstrapping

Using the expanded training and testing datasets with approximately equalised

number of samples for each fault class, four of the best GP-generated features are

obtained:

7.4 Results and Discussion 113



f1b ¼ arctan
�ðr4r5Þ

r
ðr4r5Þ

1

arctan arctanðln r2Þð Þ

�

�

�

�

�

�

�

�

�

�

�

�

0

@

1

A

þ
arctanðr4r5Þ

tan tan exp sin rr15
� 
�0:8642 r0:1233

1

� �� �

� tan exp sin cos lnðr4r5Þð Þð Þð Þ� r4r5r
2
1ð Þ

0:1233
� 	

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

; ð7:8Þ

f2b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

arctan r1ð Þr2j j
8

q

� arctan arctan arctan r32
� 
r3� 
� 
4r

r3
2

� 	

; ð7:9Þ

0 20 40 60 80 100 120 140 160 180

−1

0

1

Fault 1 Feature

f1

0 20 40 60 80 100 120 140 160 180

0

3

6

Fault 2 Feature

f2

0 20 40 60 80 100 120 140 160 180

0

0.5

1

Fault 3 Feature

f3

0 20 40 60 80 100 120 140 160 180

0

0.5

1

Fault 4 Feature

f4

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

Samples

L
a

b
e

ls

Class Patterns

Fig. 7.1 Features extracted by GP (7.4)–(7.7) using the initial DGA data
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The four GP features (7.8)–(7.11) extracted from the expanded DGA data are

given in Fig. 7.2. The first 830 samples belong to the training datasets and the rest

228 ones are used for validation of the features extracted using GP. Class labels are

shown in the bottom subfigure of Fig. 7.2. As seen in Fig. 7.2, the majority of

samples related to each particular class under consideration are well separated

from the rest of samples.

7.4.2.3 Discussions on Feature Extractions with Genetic Programming

Sample overlapping can be observed in both Figs. 7.1 and 7.2, where the samples

belonging to one class fall within the numerical region of other classes. This can be

explained by the large diversity of the available data of each class. On the other

hand, it is presumed that GP features extracted with the expanded DGA data using

bootstrap can discriminate the samples belonging to classes 1 and 3 slightly more

accurately by comparing corresponding subfigures in Figs. 7.1 and 7.2. This is

achieved by approximately equalising the numbers of samples for each fault class

for GP training.

In general, the evolvement of GP features largely depends on available training

data and the features may not be as effective when processing new data. Therefore,

the main purpose of this study is to develop a preprocessing technique that can

automatically generate artificial features from DGA samples in order to improve

the performance of different fault classifiers.
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The obtained features (7.4)–(7.7) and (7.8)–(7.11) represent combinations of

different gas ratios, thus providing thresholds for more clear separations of one

class samples from the others as seen in Figs. 7.1 and 7.2. In this study the features

are used to analyse the effectiveness of bootstrap and GP preprocessing for DGA

fault classification, which is discussed in the next subsection.

7.4.3 Fault Classification Results and Comparisons

As hybrid classifiers are usually more effective for fault classifications compared

with using solely GP features for classification, it is decided to combine GP with

the ANN, SVM and KNN classifiers to improve the fault classification perfor-

mance. In this section, the classification results are analysed following the format

of the result presentations introduced in [15].
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Fig. 7.2 Features extracted by GP (7.8)–(7.11) using the expanded DGA data with bootstrapping
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7.4.3.1 Combination of ANN, SVM and KNN with GP without Using

Bootstrap

With the purpose to evaluate the classification performance using bootstrap, the

GP extracted features (7.4)–(7.7) are employed as inputs to the three classifiers to

process the initial DGA data, i.e. an ANN with six neurons in the hidden layer, a

SVM with a Gaussian kernel (1 ¼ 0:0001 and C = 2,500) and a KNN with a

neighbour number K = 4. The confusion matrices providing classification accu-

racies for the four classes are listed in Tables 7.3, 7.4 and 7.5 after processing the

initial DGA data. Each row of the tables shows the accuracy percentage with

regard to the class samples of the initial DGA data.

From Tables 7.3, 7.4 and 7.5, it is clear that the classification performance is

not satisfactory for the NU class with 50.0, 33.3, 50.0% accuracies and the LED

class with only 14.3, 28.6, 28.6% for the ANN, SVM and KNN classifiers,

respectively. In other words, there is a large misclassification rate occurring for the

two classes. This is due to the fact that the above two classes have less samples in

the initial DGA data with respect to the other classes, which affects GP feature

extraction of the corresponding features. Thus, the features (7.4) and (7.6) are not

robust enough for sample discrimination regarding different classes. On the other

hand, SVM and KNN show relatively high classification accuracies for the OH and

HED classes with 92.3, 91.7% and 100, 91.7%, respectively. This can be referred

to a relatively large number of samples in the initial data available for classifier

training. On the whole, unequal numbers of samples for different fault classes for

training lead to relatively low overall classification accuracies of 57.89, 71.05

and 76.32% with respect to the three classifiers, using the GP extracted features

(7.4)–(7.7) as shown in Tables 7.3, 7.4 and 7.5.

Table 7.4 Test classification accuracy (%) of GP-SVM without using bootstrap

NU OH LED HED

Normal unit (NU) 33.3 33.3 16.7 16.7

Overheating (OH) 0 92.3 7.6 0

Low energy discharge (LED) 42.8 0 28.6 28.6

High energy discharge (HED) 0 8.3 0 91.7

Table 7.3 Test classification accuracy (%) of GP-ANN without using bootstrap

NU OH LED HED

Normal unit (NU) 50.0 33.3 0 16.7

Overheating (OH) 0 69.2 30.8 0

Low energy discharge (LED) 14.3 28.5 14.3 42.9

High energy discharge (HED) 8.3 8.3 8.3 75.1
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7.4.3.2 Combination of ANN, SVM and KNN with GP Using Bootstrap

With regard to the expanded DGA data by bootstraping, the GP extracted features

(7.8)–(7.11) are processed with the three classifiers, i.e. the ANN and SVM

classifiers with the same configurations as indicated in the previous subsection and

a KNN with K = 30. Confusion matrices providing classification accuracies for

the four classes are listed in Tables 7.6, 7.7 and 7.8 regarding the expanded DGA

datasets.

From Tables 7.6 and 7.7, it is clear that the classification rates of OH samples

show a high accuracy for all the classifiers applied. This can be explained as the

chemical reactions occurring during an OH fault produce more distinguishable

dissolved gas ratios in comparison with the other fault classes. On the other hand,

relatively low discrimination rates among LED and HED samples are due to the

Table 7.5 Test classification accuracy (%) of GP-KNN without using bootstrap

NU OH LED HED

Normal unit (NU) 50.0 16.6 16.7 16.7

Overheating (OH) 0 100.0 0 0

Low energy discharge (LED) 42.8 0 28.6 28.6

High energy discharge (HED) 0 8.3 0 91.7

Table 7.6 Test classification accuracy (%) of GP-ANN using bootstrap

NU OH LED HED

Normal unit (NU) 71.4 14.3 14.3 0

Overheating (OH) 10.5 86.9 2.6 0

Low energy discharge (LED) 0 0 66.7 33.3

High energy discharge (HED) 0 0 25.0 75.0

Table 7.7 Test classification accuracy (%) of GP-SVM using bootstrap

NU OH LED HED

Normal unit (NU) 77.1 0 14.3 8.6

Overheating (OH) 10.5 89.5 0 0

Low energy discharge (LED) 0 0 66.7 33.3

High energy discharge (HED) 0 0 12.5 87.5

Table 7.8 Test classification accuracy (%) of GP-KNN using bootstrap

NU OH LED HED

Normal unit (NU) 62.9 0 22.8 14.3

Overheating (OH) 10.5 89.5 0 0

Low energy discharge (LED) 0 0 100.0 0

High energy discharge (HED) 0 0 25.0 75.0
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appearance of the same gases generated by the two faults but in slightly different

concentrations [1].

Also shown in Tables 7.6, 7.7 and 7.8, ANN, SVM and KNN achieve 76.32,

81.14 and 80.7% of total classification accuracies, respectively, by processing

bootstrapped DGA datasets with the GP extracted features (7.8)–(7.11). This

justifies the effectiveness of bootstrapping for obtaining the approximate equali-

sation of sample numbers for different classes of the DGA data, which leads to

more accurate fault classification rates using GP features.

Considering GP extracted features, despite the better performance of GP

extracted features (7.8)–(7.11) in comparison with those being extracted using the

initial DGA data, the classification of LED samples shows the lowest accuracy of

66.7% using the ANN and SVM classifiers. In comparison, KNN obtains satis-

factory sample segregation of the LED class samples and relatively low classifi-

cation accuracy for the NU data. Therefore, it is reasonable to introduce more GP

extracted features for class separation in order to analyse the classification accu-

racy with different number of GP extracted features applied. Thus, the study in the

following section is carried out using only the expanded DGA datasets to improve

fault classification accuracies.

7.4.3.3 Effect of Variations in Numbers of GP Extracted Features, ANN

Hidden Layer Neurons, SVM Parameters and KNN Neighbours

In order to improve DGA fault classification performance, different numbers of GP

extracted features have been tried: the four features (7.8)–(7.11), a combination of

the four features with two additional GP extracted features for the LED and HED

classes (6 features in total), and a combination of features (7.8)–(7.11) with four

additional GP extracted features for each class (8 features in total). Furthermore,

experiments have been carried out with different classifier structures and its

parameters in order to analyse the effect of its variation upon classification

performance.

Table 7.9 shows the percentages of fault classification accuracy using the ANN

classifier with different numbers of neurons in the hidden layer varying from 3 to

20. For each number of neurons, several experiments have been conducted and an

average classification accuracy as 76.32% is obtained with only the four GP

extracted features (7.8)–(7.11), whereas the experiment with the eight GP

extracted features shows a slightly improved accuracy of 80.26%. The highest

accuracy of 85.96% is reached using the least neuron number with the additional

two GP extracted features employed. It is clear that too much increase of neuron

numbers reduces the classification performance despite of a high training accuracy

varied in the range of 92–97%. This refers to overfitting of ANN, when an ANN

tends to adapt to the particular details of a specific training dataset [27].

A comparison between Tables 7.9 and 7.10 illustrates that SVM slightly sur-

passes ANN in terms of classification accuracy with regard to the different number

of GP extracted features used. The highest SVM accuracy as 88.16% is also
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observed with the six GP extracted features using various combinations of SVM

parameters.

A KNN classifier in combination with GP extracted features delivers the best

result compared with the other two classifiers, as is clear from Table 7.11, where

the KNN classification results are listed with respect to the variations of neighbour

number K and the number of GP extracted features used. The utilisation of the six

and eight GP extracted features allows KNN to surpass ANN and SVM in terms of

accuracy and achieves the highest classification accuracy of 92.11% at K = 45 and

K = 40 respectively, which indicates that the combination of KNN with GP

extracted features is more applicable for this particular task. This can be explained

by the fact that the involvement of GP extracted features reduces sample variations

within the same classes and increase distances between samples belonging to

different classes. This essentially strengthens the performance of a KNN classifier,

since it classifies data using a similar principle. Consequently, it can be summa-

rised that additional GP extracted features should be applied to discriminate only

Table 7.10 Test classification accuracy (%) of GP-SVM with different SVM parameters

1 C = 250 C = 2500

GP features Vector GP features Vector

4 6 8 5 4 6 8 5

0.0001 75.44 79.39 83.77 62.28 81.14 88.16 83.77 56.14

0.0005 81.14 88.16 83.77 56.14 80.26 81.14 83.33 51.32

0.001 81.14 83.77 83.77 59.21 76.75 81.14 83.33 51.75

0.005 76.75 85.96 83.33 55.26 73.25 78.95 83.77 46.05

0.01 76.75 81.58 83.77 55.70 67.11 81.58 80.70 45.18

0.1 73.25 81.58 75.0 60.96 56.14 77.63 75.0 60.96

1 47.81 57.02 62.72 61.84 43.42 57.02 62.72 61.84

10 49.12 46.05 47.37 44.30 49.12 46.05 47.37 44.30

100 36.84 35.09 35.53 42.11 36.84 35.09 35.53 42.11

Table 7.11 Test classification accuracy (%) of GP-KNN with different neighbour numbers

K 4 GP features 6 GP features 8 GP features Vector (5)

5 64.47 70.61 74.56 44.30

10 70.61 71.93 83.77 40.79

15 69.74 75.00 81.14 50.44

20 68.42 85.53 81.14 48.68

25 80.26 85.09 87.72 45.18

30 80.70 82.89 89.91 42.98

35 76.75 87.28 89.91 46.05

40 73.68 89.91 92.11 47.37

45 73.68 92.11 90.35 46.49

50 73.68 92.11 92.11 46.49

55 73.68 92.11 92.11 42.98

60 73.68 92.11 92.11 42.98
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samples of the classes that cannot be clearly separated using a lower number of GP

extracted features.

7.4.3.4 Fault Classification Results With and Without GP Extracted

Features

Tables 7.9, 7.10 and 7.11 also present the classification results with the three

classifiers processing only gas ratios rather than processing GP extracted features.

Dissolved gas ratios, given by the input vector defined in Eq. (7.2), have also been

processed directly by the ANN, SVM and KNN classifiers. The obtained classi-

fication results vary in a range of 31–62%, which demonstrate that the individual

classifiers are not effective without additional data preprocessing due to essential

versatility of the original DGA data. Table 7.12 summarises the highest accuracies

derived from the classifiers with respect to different input parameters. Apparently,

the KNN displays the lowest classification accuracy using the original DGA data

without GP processing, whereas it achieves the highest performance in conjunction

with six GP extracted features. This is due to the relatively simple KNN principle

when a classification is undertaken on the basis of the closest distance between

examined samples and training dataset with known class labels as explained above

in Sect. 7.3.3. Thus, a KNN performs well only at consistent data processing with

more clear segregation between data categories, which is achieved using the GP

extracted features.

7.5 Summary

In this chapter, data preprocessing using bootstrap is employed to overcome the

lack of samples of particular fault classes. Then GP is utilised to process gas ratio

samples for extracting classification features for each class from the original DGA

data. The features extracted using GP are then employed as the inputs to the ANN,

SVM and KNN classifiers to perform multi-category fault classifications. Com-

parisons of the classification accuracies between the proposed data preprocessing

approach and the ones using individual classifiers without data preprocessing have

been given and discussed in detail. The results of the experiments using different

numbers of GP extracted features and variations of classifiers’ parameters have

been discussed, which indicate that the introduction of GP can improve the

Table 7.12 Best

classification accuracy (%) of

different classifiers

ANN SVM KNN

4 GP features 76.32 81.14 80.70

6 GP features 85.96 88.16 92.11

8 GP features 80.26 83.77 92.11

Vector (3) 56.58 61.84 50.44
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accuracy of DGA fault diagnosis. The highest accuracy is observed as 92.11%

using the GP-KNN classifier, which is much better than the one obtained without

using GP.
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Chapter 8

Dealing with Uncertainty for Dissolved

Gas Analysis

Abstract This chapter presents three approaches to tackling uncertainties

occurring in transformer condition assessment, including the ER approach, the

hybrid FL and ER approach and the BN approach. Firstly, the methodology of

transferring a transformer condition assessment problem into an MADM solution

under an ER framework is presented. Three examples for performing transformer

condition assessment, using the ER approach, are then illustrated highlighting the

potential of the ER approach. The second part of this chapter employs a hybrid

approach to the analysis of DGA data based upon several traditional DGA

methods. Ideas adapted from the FL theory are applied to soften fault decision

boundaries used by the traditional DGA methods. These diagnoses are then con-

sidered as pieces of evidence ascertaining to conditions of transformers, which are

aggregated using an ER algorithm. The third part is concerned with a BN approach

to processing dissolved gases. The methodology of mapping the knowledge in the

DGA domain into a BN is described. Finally, an applicable solution to tackle the

cases which are not identifiable by the IEEE and IEC code scheme is discussed

using the BN approach.

8.1 Introduction

The popularity of DGA stemmed from the fact that DGA tests are conducted

without disrupting transformer operations. In short term, high stresses during

transformer operations may result in chemical reactions of the oil or cellulose

molecules constituting the dielectric insulation, which may be caused by dielectric

breakdown of the oil or hot spots. The main degradation products are gases dis-

solved in the oil which can be detected in the ppm level by on-line or off-line DGA

inspections. Besides the DGA technique, other diagnostic techniques are also

W. H. Tang and Q. H. Wu, Condition Monitoring and Assessment

of Power Transformers Using Computational Intelligence, Power Systems,
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employed for detecting transformer faults, e.g. TM, FRA and PDA, which may

give different or conflicting fault interpretations for a transformer. Subsequently,

how to effectively combine the diagnoses produced from various diagnosis tech-

niques is an interesting issue. It is a similar scenario even for a single DGA task, as

different DGA techniques may be involved, e.g. the key gas method, the Rogers

ratio method, the gas generating rate method and other industry standards. Most of

these diagnostic interpretations are solely done by human experts using experience

and standard techniques. Different organisations and companies have their own

options and criteria for generating diagnosis reports [1]. Determining the rela-

tionships between gas types and faults is a perplexing task, because complex gas

combination patterns may arise due to different faults. In order to tackle these

complex decision making problems, various CI techniques have been investigated

for achieving reliable transformer condition assessment, e.g. ANNs, EPS, EAs, FL

and so forth.

Often when dealing with decision making, a decision maker faces uncertainties.

In the case of DGA, there are uncertainties arising from vague, imprecise and

incomplete diagnoses derived from the traditional DGA methods. As mentioned

above, different transformer diagnosis techniques may give different analysis

results, and it is difficult for engineers to produce an overall assessment when

faced with so much diverse information. Therefore, the combination of available

transformer diagnoses to give a balanced overall condition assessment is a very

complicated problem and a suitable methodology is required to handle such var-

ious diagnostic information. On the other hand, in traditional DGA guidelines crisp

decision boundaries are employed for producing fault diagnoses, i.e. the proba-

bility of a fault can only be zero or one. In such a manner, the severity and trend of

a fault cannot be revealed. Moreover, not all the combinations of gas ratios pre-

sented in a fault can be mapped to a fault type in a conventional diagnostic criteria,

e.g. the Rogers ratio method. Currently, attentions have been paid to the inter-

pretation of such missing combinations of gas ratios, which are not reported in the

relevant IEEE and IEC DGA standards for DGA result interpretations. In this

chapter, ER is employed as a decision making framework for integrating results

from various DGA diagnostic methods. Fuzzy membership functions are imple-

mented to soften decision boundaries used by gas ratio methods. Finally, a BN is

developed for performing probabilistic inference, when dealing with the cases

which cannot be identified due to missing codes in conventional DGA diagnosis

standards.

8.2 Dissolved Gas Analysis Using Evidential Reasoning

Normally, only one DGA method is selected to provide evaluation results, how-

ever, different DGA methods have their own advantages and drawbacks. It is

necessary to combine outputs from various DGA diagnostic methods and aggre-

gate these information to form an overall evaluation. If diagnosis results from
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various DGA criteria are considered as attributes to evaluate transformer

conditions, a fault diagnosis process could be regarded as an MADM problem.

For such a large quantity of information, how to process it is a complex problem.

In addition, as DGA results are sometimes imprecise and even incomplete, a new

methodology is required to tackle these uncertainty issues.

8.2.1 A Decision Tree Model under an Evidential Reasoning

Framework

8.2.1.1 An MADM Condition Assessment Process

There are various DGA criteria for transformer diagnosis that a power engineer

may use to assess transformer conditions by aggregating all available information.

For instance, a typical DGA procedure is as follows:

1. Determine TCG presenting in the oil and use the key gas analysis method to

check key gas volumes. If the volumes exceed predefined values, a fault is

implied.

2. Sometimes neither TCG nor individual gas volumes can indicate the presence

of a fault, as a sudden increase in key gases and rate of gas production is more

important in evaluating a transformer than the amount of gases. Other com-

plementary DGA techniques have been introduced, e.g. the Rogers ratio

method and the gas generating rate method, to detect a transformer fault, which

may be able to determine the severity and released energy of a fault.

3. Finally, check recent historical DGA records and decide whether gases are

increasing significantly in the observed unit.

It can be seen that a DGA procedure is in fact an evidence combination process,

which depends largely on various DGA criteria and engineers’ experience.

Returning to the problem of transformer condition assessment, a decision tree

model can be derived as shown in Fig. 8.1, which is represented graphically in a

block diagram form with the root of the tree at the top and leaves at the bottom.

The output of the decision tree model in Fig. 8.1 is the overall condition of a

transformer. The three elements in the middle level of the tree model represent the

thermal condition, the electrical discharge condition and the OLTC condition

respectively. The model inputs at the bottom of the tree are derived using different

diagnostic techniques, i.e. thermal modelling [2] and various DGA techniques

including DGA1 (the key gas analysis method), DGA2 (the CIGRE DGA regu-

lation) and DGA3 (the Rogers ratio method) [1, 3, 4].

Since the mutual dependencies between the branches of the tree model must be

considered, it is difficult for a system operator to aggregate all the information

shown in the evaluation model of Fig. 8.1. Particularly, it is complex to integrate

the outputs of the different levels of the model to form an overall condition

evaluation in an analytical manner. Therefore, a supportive decision making tool is
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desirable to deal with such a hierarchical evaluation model. Normally, both

quantitative and qualitative information are involved in transformer condition

assessment. It is obviously easy to handle quantitative data, compared with

qualitative judgements possessing subjective beliefs and uncertainties, hence in

this section only qualitative judgements are considered which are the main sources

of the uncertainties arising from DGA.

8.2.1.2 Knowledge Transformation into a Decision Tree Model

In order to integrate qualitative judgments effectively and easily, an ER framework

is adopted, which can handle uncertainty issues with a firm mathematical foun-

dation. Using ER means that all the subjective data can be organised into an

effective and simple decision tree format. For instance, in Fig. 8.1 the root and

leaves represent attributes and factors respectively for an MADM problem. The

output of the decision tree model is defined as an attribute. The three components

in the middle level of the tree model are defined as three composite factors each

representing a different facet of transformer conditions:

E ¼ fe1; e2; e3g: ð8:1Þ

At the bottom of the tree, evaluations from a variety of diagnosis methods are

listed, i.e. thermal modelling and different DGA methods, whose evaluations are

expressed as a set of evaluation grades:

H ¼ fH1;H2;H3;H4g ¼ fSerious, Poor, Normal, Uncertaing: ð8:2Þ

For instance, considering the ‘‘thermal condition’’ and the ‘‘discharge condition’’

factors, H can be set as {High Temperature (above 400�C), Medium Temperature

(above 150�C), Normal (below 150�C), Uncertain} and {High Energy, Low

Energy, Normal, Uncertain}, respectively. Using such definitions, the evaluation

Factors Level

Overall 

Evaluation 

on an Attribute

Model Inputs

Overall 

Condition

Thermal 

Condition

Discharge

Condition

OLTC 

Condition

Thermal 
Model DGA1 DGA2 DGA1 DGA2 Thermal 

Model
DGA3 DGA1 DAG2

Fig. 8.1 A typical decision tree model for transformer fault evaluation
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of each factor of the tree model is expressed in a four-element grade array. Under

the ER framework, different diagnosis outputs are weighted accordingly to rep-

resent their relative importance during the evaluation, thus a factor or an attribute

with the highest weight represents the most important factor or attribute for

condition evaluations. In the factor level, each diagnosis may contribute a certain

grade to each attribute, then the evaluation grades in different scales can be

derived by combining all grade inputs together. Considering the ‘‘thermal condi-

tion’’ factor, each diagnosis method under this branch gives a unique evaluation

grade, as each grade is distinguishable from the others by setting the boundary

values as 400�C and 150�C. For example, if the DGA methods 1, 2 and 3 give

independent evaluations as ‘‘Medium Temperature’’, ‘‘High Temperature’’ and

‘‘Normal’’ respectively, assuming without uncertainties, and equal weights are

distributed to each method as 1/3, then the inputs in the model input level are given

as [0, 0.33, 0, 0], [0.33, 0, 0, 0] and [0, 0, 0.33, 0], respectively, and the overall

output from the factor level in this branch is [0.33, 0.33, 0.33, 0]. If a DGA

method is only referred to a general fault, e.g. ‘‘Thermal Faults’’, equal proba-

bilities are allocated to both grades as 0.5 on ‘‘Medium Temperature’’ and 0.5 on

‘‘High Temperature’’, respectively, in effect sharing the total belief equally.

If these inputs are considered as evidence for evaluating transformer conditions,

then by combining these evidence an overall evaluation or diagnosis of a trans-

former can be made. In this way, a transformer condition assessment problem is

transferred into an MADM solution. An evaluation analysis model based upon ER

for diagnosing transformer faults and how to determine the relative weights of

factors and attributes are presented in the following sections.

8.2.2 An Evaluation Analysis Model based upon Evidential

Reasoning

A hybrid MADM problem for transformer condition assessment may be expressed

using the following formula:

maximisea2X yðaÞ ¼ ½y1ðaÞ; � � � ; yk; ðaÞ; � � � ; yk1þk2ðaÞ�: ð8:3Þ

where X is a discrete set of transformers, (X = [a1,…,ar], r = 1,...,l), y(a) the

overall evaluation of alternative a, yk(a) the evaluation of the kth attribute of y(a),

and k1 and k2 the numbers of quantitative and qualitative attributes of each

alternative respectively. In this study, alternatives represent a group of trans-

formers and only qualitative judgements are discussed. A decision matrix for

qualitative attributes may be presented in Table 8.1 according to Eq. 8.3.

In Table 8.1, yrj are subjective judgements for evaluation of the states of yj at ar
(r = 1,...,l; j = 1,...,k2). The problem is to rank these transformers or to select the

best compromise transformer, with the qualitative attributes being satisfied as

much as possible.

8.2 Dissolved Gas Analysis Using Evidential Reasoning 129



In the attribute level of an MADM model, the state of an attribute of each

transformer a is required to be evaluated as shown in Fig. 3.1. A simple method for

evaluation is to define a few evaluation grades so that the state of an attribute at an

alternative can be evaluated to one of the grades. These grades may be quantified

using certain scales.

In the evaluation grade level, Hn is called an evaluation grade (n = 1,...,N).

A set of evaluation grades specified for an attribute yk is denoted by

H ¼ fH1; . . .;Hn; . . .;HNg; ð8:4Þ

where N is the number of evaluation grades. In this study, Eq. 8.4 is a mapping of

Eq. 8.2.

In the factor level, Ek represents a set of factors which is associated with the

evaluation of the basic attribute yk(a) and denoted by

E ¼ e1k ; e
2
k ; . . .; e

Lk
k

� �

; k ¼ 1; . . .; k2; ð8:5Þ

where ek
i (i = 1,...,Lk) are factors influencing the evaluation of yk(a). The state of

ek
i can be directly evaluated at an alternative a, that is ek

i
= ek

i (a). A larger pref-

erence degree value is interpreted as a higher evaluation grade. So, the preference

degree for the state of an attribute yk(a) through the direct evaluations of the

relevant factors ek
i can then be generated and integrated by using the Dempster-

Shafer theory presented below.

As stated in Sect. 3.2.1.2, under an ER framework the overall probability

assignment can be derived by combining all the basic probability assignments

using the operational algorithms below. Define a factor subset eIkðiÞðaÞ and a

combined probability assignment mW
IkðiÞ

ðaÞ as follows:

eIkðiÞðaÞ ¼ fe1kðaÞ; . . .; e
i
kðaÞg; 1� i� Lk;

mW
IkðiÞ

ðaÞ ¼ mðW=eIkðiÞðaÞÞ ¼ mW
i ðaÞ;

ð8:6Þ

where mðW=eIkðiÞðaÞÞ is the combined probability assignment to W confirmed by

eIkðiÞðaÞ:

To combine eIkð2ÞðaÞ ¼ fe1kðaÞ; e
2
kðaÞg; an intersection tableau is constructed in

Table 8.2 as an example. From the combination rules defined in Chap. 3 , we can

obtain the following recursive formulae:

Table 8.1 An decision

matrix for qualitative

attributes

Transformers Qualitative Attributes(yk)

(ar) y1 y2 _ yk2

a1 y11 y12 _ y1k2
a2 y21 y22 _ y2k2
_ _ _ _ _

al yl1 yl2 _ ylk2
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fHng : mn
Ikðiþ1Þ ¼ KIkðiþ1Þðm

n
IkðiÞ

mn
k;iþ1 þ mn

IkðiÞ
mH

k;iþ1

þ mH
IkðiÞ

mn
k;iþ1Þ; n ¼ 1; . . .;N;

ð8:7Þ

fHg : mH
Ikðiþ1Þ ¼ KIkðiþ1Þm

H
IkðiÞ

mH
k;iþ1; ð8:8Þ

where

KIkðiþ1Þ ¼ 1�
XN

s¼1

XN

j¼1;j 6¼s

ms
IkðiÞ

m
j
k;iþ1

" #�1

; i ¼ 1; . . .; Lk � 1: ð8:9Þ

Obviously, mW
Ikðiþ1Þ ¼ 0 for any W�H other than W = Hn (n = 1,...,N) and H.

It can be proven from the combination procedure that mW
IkðLkÞ

is the overall prob-

ability assignment to Wð�HÞ confirmed by Ek(a) and mW
IkðLkÞ

¼ 0 for any W�H

other than W = Hn (n = 1,...,N) and H. Consequently, the overall preference

degree of alternative ar may be calculated using the following equation:

prk ¼ pðykðarÞÞ ¼
XN

n¼1

mn
IkðLkÞ

pðHnÞ þ mH
IkðLkÞ

pðHÞ; ð8:10Þ

where

pðHÞ ¼
XN

n¼1

pðHnÞ=N:

A larger preference degree maps to a higher evaluation grade according to Eq. 3.6.

8.2.3 Determination of Weights of Attributes and Factors

In order to implement the original ER combination algorithm, a set of weights to

reflect the relative importance of each basic attribute should be defined. In general,

the weights for basic attributes can be assigned directly by experts based on

Table 8.2 Intersection tableau of combining {ek
1(a),ek

2(a)}

eIkð2Þ ek
2

{H1}(mk2
1 ) _ {Hn}(mk2

n ) {H}(mk2
H )

ek
1 {H1}(mk1

1 ) {H1}(mk1
1 mk2

1 ) _ {U}(mk1
1 mk2

n ) {H1}(mk1
1 mk2

H )

_ _ _ _ _

{Hn}(mk1
n ) {U}(mk1

n mk2
1 ) _ {Hn}(mk1

n mk2
n ) {Hn}(mk1

n mk2
H )

_ _ _ _ _

{HN}(mk1
N ) {U}(mk1

N
mk2
1 ) _ {U}(mk1

N
mk2
n ) {HN}(mk1

N
mk2
H )

{H}(mk1
H ) {H1}(mk1

Hmk2
1 ) _ {Hn}(mk1

Hmk2
n ) {H}(mk1

Hmk2
H )
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experience or be derived using a method of pairwise comparison of attributes such

as the eigenvector method [5]. In this study, paired comparison judgements used in

an analytic hierarchy process (AHP) are applied to pairs of homogeneous elements

concerning subjective criteria. According to AHP, attributes are compared in a

pairwise manner using a predefined fundamental scale of values to represent

intensities of judgements, which are presented in Table 8.3 [5]. It is necessary to

ensure that the criteria are all on the same scale, otherwise the weighted impor-

tance of the criteria would be meaningless.

In order to obtain a vector of priorities or relative weights of attributes, a pair-

wise comparison matrix A is defined, where each element ai,j (i, j = 1,...,L)

represents the relative importance of attribute i over attribute j using the scale

defined in Table 8.3. A general comparison matrix is shown as:

A ¼

a1;1 a1;2 � � � a1;L
a2;1 a2;2 � � � a2;L

..

. ..
. . .

. ..
.

aL;1 aL;2 � � � aL;L

2
6664

3
7775 ð8:11Þ

Normalisation of A is performed via dividing each element ai,j of the matrix by the

sum of all the elements in the corresponding column j. As a result, a normalised

matrix �A is derived, and finally the arithmetic mean value of each row i of the

normalised matrix �A represents the relative weight xi of the corresponding attri-

bute ei (i = 1,...,L).

Using the matrix of ratio comparisons, the vector of priorities can then be

derived by the eigenvector method. Subsequently, the weights are the eigenvector

solution of its principal eigenvector value. For example, suppose that in order to

determine the overall condition of a transformer three factors are used involving

the thermal condition, the PD condition and the OLTC condition. On the basis of

Table 8.3, a comparison matrix can be constructed as below:

Amn ¼
1=1 1=2 3=1
2=1 1=1 4=1
1=3 1=4 1=1

2
4

3
5: ð8:12Þ

Table 8.3 Scale of

measurement for AHP
Values Definition

1 Equally important or preferred

3 Slightly more important or preferred

5 Strongly more important or preferred

7 Very strongly more important or preferred

9 Extremely more important or preferred

2, 4, 6, 8 Intermediate values to reflect compromise

Reciprocals Used to reflect dominance of the second

alternative as compared with the first
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Each pair-comparison element in Amn (m, n = 1,...,L) represents the relative

importance of factor m over factor n. Then the principal eigenvector solution of the

above matrix is [0.489, 0.848, 0.203], which is the priority vector kk (k = 1, 2, 3)

of the three factors as illustrated in Fig. 8.1.

8.2.4 Evaluation Examples under an Evidential Reasoning

Framework

In this section, the ER approach is utilised to assess the condition of a power

transformer, as well as to rank conditions of a group of transformers for power

system maintenance purposes. As discussed in Sect. 8.2.1.1, the overall condition

of a transformer can be assessed by considering three aspects, i.e. the thermal

condition, the discharge condition and the OLTC condition. If the fault diagnoses

of the three aspects can be obtained separately, they may then be treated as pieces

of evidence, allowing the overall condition of the transformer to be assessed by

aggregating these evidence. Based upon this, the ER approach is employed to

produce evaluations for power transformers with a decision tree model as shown in

Fig. 8.1. Several practical applications are now illustrated and discussed as the

following.

8.2.4.1 A Simple Example for Assessing Conditions of the Same Unit

at Different Time Stamps

Firstly, a simple example using the ER approach is demonstrated to evaluate

conditions of a power transformer at different time stamps. Several sets of DGA

data were sampled from an on-site transformer, SGT4 (240MVA, 400/132 kV),

in 09/1997 and 10/1997, respectively, which are listed in Table 8.4, where P1

represents the sample point in the main tank and P2 the sample point in

Table 8.4 DGA concentrations of a scrapped transformer (SGT4)

ppm P1(09/1997) P2(09/1997) P1(10/1997) P2(10/1997)

CO 474 469 522 553

CH4 29.0 17.0 78.0 210

CO2 2,761 2,739 3,044 3,069

C2H4 14.0 10.0 47.0 109.0

C2H6 11.0 7.0 21.0 54.0

C2H2 0.2 0.7 49.8 112.9

H2 22.0 28.0 132 329

O2 5,394 3,695 13,980 12,737

N2 51,001 58,947 57,240 58,315

H2O 15.0 25.0 13.0 13.0
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the selector. The tap changer of SGT4 exploded on 07/10/1997 and the tap

winding on the C phase was heavily distorted due to the failure of the tap changer.

The ER process for evaluating the condition of a transformer is presented as

follows. Firstly, subjective judgements are produced using various DGA methods

for all the alternatives involved. The weight for each attribute is determined and

factored using the AHP method or expertise provided by on-site engineers. The

subjective judgements are scaled into weighted outputs under an ER framework,

and the Dempster-Shafer combination rules are applied to derive an overall

evaluation, which is predefined as a set of grades. Finally, the preference degrees

for each transformer are calculated and used to rank these alternatives’ conditions.

The weights of the three factors have been derived in Sect. 8.2.3, noticing that only

qualitative factors are involved in this example. Three types of DGA methods are

chosen, i.e. the key gas method, the CIGRE DGA regulation and the Rogers ratio

method. The outputs of the three DGA methods are fed into the decision-tree

model as evidence for evaluating the thermal condition, the OLTC condition and

the discharge condition. As no temperature sensors were fitted on SGT4, the model

inputs from thermal modelling are set as zero, which means that the diagnostic

information is incomplete in decision making.

For the oil in the main tank sampled in 09/1997, where the inputs from the

thermal model are not available, the CIGRE DGA regulation diagnoses as ‘‘thermal

faults’’ due to ‘‘C2H2/C2H6[ 1’’, while the Rogers ratio method generates a code

[1,2,1] interpreted as ‘‘medium thermal faults’’. Thus, for the ‘‘thermal condition’’

branch, the inputs of three bottom ‘‘leaves’’ are [0, 0, 0], [0.5, 0.5, 0] and [0, 1, 0],

respectively. As each ‘‘leaf’’ is given the same weight 1/3, the overall input of this

branch is [(0 ? 0.5 ? 0)/3, (0 ? 0.5 ? 1)/3, (0 ? 0 ? 0)/3] = [0.167, 0.5, 0].

For the ‘‘discharge condition’’ branch, all the three DGAmethods report as ‘‘normal

condition’’, thus the input of this branch is [0, 0, 1.0]. Similarly, for the oil from the

selector sampled in 09/1997, no inputs from ‘‘thermal model’’ are provided, the

CIGRE DGA regulation diagnoses ‘‘thermal faults’’ due to ‘‘C2H4/C2H6[ 1’’, and

the Rogers ratio method gives a code [0, 1, 1] with no match to its interpretation

table. Therefore, for the ‘‘OLTC condition’’ branch, the inputs of three ‘‘leaves’’ are

[0, 0, 0], [0.5, 0.5, 0] and [0, 0, 0], respectively. As each ‘‘leaf’’ is given the same

weight 1/3, the overall input of this branch is [0.167, 0.167, 0].

For the oil from the main tank sampled in 10/1997, the CIGRE DGA regulation

also diagnoses as ‘‘discharge fault’’ and ‘‘thermal fault’’ due to ‘‘C2H2/C2H6[ 1’’

and ‘‘C2H4/C2H6[ 1’’, and the Rogers ratio method gives a code [1, 0, 1] inter-

preted as ‘‘discharge of low energy’’. The key gas method reports a fault as

‘‘discharge faults’’, because both the concentrations of C2H2 and H2 exceed the

guideline limits. Thus, for the ‘‘thermal condition’’ branch, the inputs of the three

bottom ‘‘leaves’’ are [0, 0, 0], [0, 0, 1.0] and [0.5, 0.5, 0] respectively. As each

‘‘leaf’’ is given the same weight 1/3, the overall input of this branch is

[0.167, 0.167, 0.333]. For the ‘‘discharge condition’’ branch, the inputs of

‘‘leaves’’ are [0.5, 0.5, 0], [0, 1.0, 0] and [0.5, 0.5, 0] respectively, so the overall

input of this branch is [0.333, 0.50, 0]. Similarly, for the ‘‘OLTC condition’’

branch, the same results are derived, and the overall input is [0.333, 0.50, 0].
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The decision matrix under the ER framework is shown in Table 8.5 by reorgan-

ising the derived diagnosis outputs.

In order to interpret these outputs into scaled inputs, the priority vector pro-

duced in Sect. 8.2.3 is assigned to the factors in each branch. After ER calcula-

tions, the overall evaluations of SGT4 at different periods of time are: for the

sample in 09/1997 it is [0.016, 0.041, 0.848, 0.01], whose evidence combination

processes are shown in Fig. 8.2; and for the sample in 10/1997 it is

[0.304, 0.462, 0.048, 0.186]. Comparing these results under the ER framework,

these four elements in the outputs are in accordance with the grade set of [Serious,

Poor, Normal, Uncertain], representing the condition of a transformer. Considering

the grade scales, it is apparent that the condition in 09/1997 is better than the one

in 10/1997, as high fault probabilities are indicated for the sample in 10/1997,

which matches the actual on-site investigation.

8.2.4.2 A Generic Example to Evaluate Conditions for Different

Transformers

A generic evaluation example concerning different transformers, i.e.

X = [a1, a2, a3], is illustrated in this section. In order to simplify the analysis

Table 8.5 The decision matrix of a simple evaluation example

Confidence degrees SGT4 09/1997 SGT4 10/1997

H1 H2 H3 H1 H2 H3

Factors e1 0.17 0.5 0.0 0.17 0.17 0.33

e2 0.0 0.0 1.0 0.33 0.5 0.0

e3 0.17 0.17 0.0 0.33 0.5 0.0

Factors Level

Overall Evaluation 

on an Attribute

Model Inputs

Overall Condition (09/1997)

[0.016,0.041,0.848]

(e (a))

[0.17,0.5,0.0]

(e (a))

[0.0,0.0,1.0]

(e (a))

[0.17,0.17,0.0]

Dempster-Shafter Combination

(0.489)

1

1

1 2

2

3

3

32

(0.848) (0.203)

m(e (a)) m(e (a)) m(e (a))

Fig. 8.2 Evidence combination processes for DGA data in 09/1997
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processes, only the inputs at the bottom of the ER decision tree are given, and the

subjective judgements for assessments are shown in Table 8.6 for an illustration

purpose. It is noticed that the provided information is incomplete and therefore

contains uncertainties, which is derived from different diagnostic methods. After

ER calculations using the same weight scales as derived in Sect. 8.2.3, the overall

evaluations of each transformer are: [0.098, 0.644, 0.123, 0.135] for a1,

[0.0, 0.252, 0.693, 0.055] for a2 and [0.517, 0.425, 0.0, 0.058] for a3. By using

Eq. 8.10, the preference degree for each transformer can be derived, e.g. the

preference degree of a1 is calculated as p(yk(a1)) = 0.098 9 (-1) ?

0.644 9 0 ? 0.123 9 1 ? 0.135 9 0 = 0.025 by setting p[Hn] = [-1, 0, 1].

Finally, the preference degrees of each transformer are [0.025, 0.693, -0.517],

i.e. [p(yk(a2))[p(yk(a1))[p(yk(a3))], which means that transformer a2 is in the best

condition among the three transformers.

This generic evaluation example demonstrates that the ER approach is able to

treat uncertain decision knowledge in a clear and simple manner. The employed

evidence combination algorithms are useful for combining multiple uncertain

subjective judgements.

8.2.4.3 A More Complex Condition Assessment Example

For a real transformer assessment problem, the above two examples are not

applicable, as more factors may be involved in a real situation. If more attributes

and factors are involved, the ER approach is still capable of tackling these

problems in a meaningful and simple manner. In Fig. 8.3, a more complex

example for diagnosing transformer conditions is shown.

There are now three attributes in the decision tree and more factors are

involved. The overall condition of the observed unit may then be determined on

the basis of the following three components, i.e. the oil condition, the winding

condition, the OLTC condition, which are in the attributes level. In the factor level,

the inputs of the tree model are again derived from a variety of transformer

diagnostic methods. The uncertain subjective judgements are presented in

Table 8.7, where yk (k = 1, 2, 3) are the attributes and ek
i (k, i = 1, 2, 3) are the

factors involved. The weights of each factor are chosen as equal for an illustration

purpose, e.g. 1/3. Alternatively, the weights could be determined by engineers

based on their on-site experience using the AHP method.

Table 8.6 The decision matrix of a generic evaluation example

Confidence degrees Transformer a1 Transformer a2 Transformer a3

H1 H2 H3 H1 H2 H3 H1 H2 H3

Factors e1 0.7 0.2 0.1 0.0 0.2 0.8 0.7 0.3 0.0

e2 0.0 0.8 0.1 0.0 0.4 0.6 0.5 0.5 0.0

e3 0.0 0.0 0.8 0.0 0.0 0.7 0.2 0.7 0.0
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After ER calculations using the data in Table 8.7, the overall assessment matrix

of the observed transformer regarding each evaluation attribute is:

H1 H2 H3 H4

y1ðaÞ 0:042 0:954 0:0 0:003
y2ðaÞ 0:072 0:702 0:215 0:012
y3ðaÞ 0:238 0:753 0:0 0:009

2
664

3
775 ð8:13Þ

Evaluation Attributes Factors

Overall 

Evaluations
Windings

OLTC

Oil

Overheating of windings

Partial discharge in oil

Moisture situation in oil

Overheating in oil

Circulate currents 

Winding distortions

Mechanical failure

OLTC overheating

Partial discharge 

Fig. 8.3 A complex evaluation example using an expanded ER decision tree-model

Table 8.7 The subjective

judgments for condition

assessments of a complex

evaluation example

Attributes level Factors level Unit condition

H1 H2 H3

Oil (y1) e1
1 0.2 0.7 0.0

e1
2 0.1 0.9 0.0

e1
3 0.3 0.7 0.0

Winding (y2) e2
1 0.0 0.0 1.0

e2
2 0.3 0.7 0.0

e2
3 0.1 0.8 0.1

OLTC (y3) e3
1 0.0 1.0 0.0

e3
2 0.8 0.1 0.0

e3
3 0.5 0.5 0.0
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Comparing these results with the ER grade definition, the four elements in each

row of the output matrix are mapped to a grade set of [Serious, Poor, Normal,

Uncertain] for each attribute, which represent the condition of each evalua-

tion attribute. The preference degree of each attribute is generated as

[-0.042, 0.143, -0.238], which is quite close to the grade value of the poor

condition definition and indicates the observed unit is very likely to be in a poor

condition. Based on this assessment, cautions should be taken and an outage may

be planned accordingly. With regard to the number of the factors involved,

sometimes even the information in the bottom leave level is not available in

some branches of the decision tree. For such an MADM problem the ER

approach can still handle it properly by adjusting the decision tree structure,

which further demonstrates its capability in the applications of transformer

condition assessment. The results also demonstrate the properties of the Demp-

ster–Shafer theory and its potential to treat uncertainties in MADM problems

through multiple factor analysis using ER.

8.3 A Hybrid Diagnostic Approach Combining Fuzzy Logic

and Evidential Reasoning

As stated previously, when DGA reviewers examine dissolved gases, they com-

pare the values that they have with the decision rules of several traditional analysis

methods. What an engineer then does is to make subjective decisions and allow-

ances, i.e. does the data fit any of the decision criteria and if not how close is the

data to those criteria? The proposed hybrid diagnostic approach detailed in this

section can generate subjective judgements by using fuzzy membership functions

to soften the decision boundaries which are currently utilised by the traditional

DGA methods. More precisely, crisp decision boundaries imply that the proba-

bility of a fault can only be zero or one, i.e. Pr(Fault) [ {0,1}. Softening such

boundaries using appropriate functions means that the probability of a fault can

take on any value in a closed interval [0, 1]. By setting the boundaries in this way,

the belief that an engineer has that a transformer is faulty can be represented by a

single value, Pr(Fault) [ [0,1].

The boundary conversions implemented in this study are largely intuitive

and based on summaries drawn from inspecting the Halstead’s thermal equi-

librium diagram shown in Fig. 8.4 taken from the IEEE American Standard

C57.104-1991 [4]. These fuzzy sets are able to generate a set of possible faults

and associated probabilities, as opposed to an oversimplified set of results

generated by the traditional DGA methods, i.e. {Fault, No Fault, No Decision}.

These new probabilistic results are then treated as pieces of evidence ascer-

taining to transformer conditions and combined using the original ER algorithm

as discussed in Chap. 3 to produce an overall evaluation of transformer

conditions.
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8.3.1 Solution to Crispy Decision Boundaries

The three traditional DGA methods incorporated in this study are the Rogers ratio

method (RRM), the Dörnenburg’s ratio method (DRM) and the key gas method

(KGM). All the three methods have their theory routed in organic chemistry and

base their diagnoses on matching the temperature generated by a fault to a general

fault type. Put simply, each fault type typically generates a fault temperature within

a prescribed range, and the more severe the fault the higher the temperature.

Because the insulation oil used in power transformers is organic (i.e. composed

primarily of hydrocarbons), certain fingerprint gases are generated at specific

temperature ranges, allowing the traditional methods to identify a possible fault

temperature range and a possible fault type. KGM actually employs four charac-

teristic charts which represent typical relative gas concentrations for four general

fault types: overheating of cellulose (OHC), overheating of oil (OHO), partial

discharge (PD) or arcing. The other two methods use ratios of fingerprint gases to

try and pinpoint specific temperature ranges. The fingerprint gases used are CO, H2,

CH4, C2H6, C2H4 and C2H2. Figure 8.4 shows the Halstead’s thermal equilibrium

chart, upon which the theory for the three methods is based. What the diagram

illustrates is the theoretical equilibrium of partial pressures of the fingerprint gases

excluding CO. It must be noted that when dealing with gaseous chemicals, the

relative partial pressures of gases are equivalent to the relative concentrations of the

gases. So, from this chart key ratios have been devised which are used to identify

certain fault types. These ratios are: R1 = CH4/H2, R2 = C2H2/C2H4, R3 = C2H2/

CH4, R4 = C2H6/C2H2 and R5 = C2H4/C2H6. Tables 8.8 and 8.9 show the decision

rules used by RRM and DRM respectively. For the DRM diagnosis to be credible
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the levels of the gases used in the ratios must be greater than some predetermined

levels (in ppm) known as the L1 limits, which are listed in Table 8.10. Figure 8.5

shows the four general fault scenarios used in KGM.

Both of the two ratio methods make decisions based on the crisp values of the

ratios that they use. The problem this creates is best illustrated by the following

simple example. Consider the case when using RRM, R2 and R5 are within the

prescribed limits of a normal operating condition but R1 = 1.1. The decision rules

state that the value of R1 is outside the normal operating condition and therefore

the No Decision result is returned since these values do not match any of the other

fault conditions. However, a further inspection of the values shows that the value

of R1 is in fact very close to the decision boundary and that the transformer is more

likely to be in a normal operating condition. This thought process can be mimicked

by softening the decision boundaries set out in Tables 8.8 and 8.9, by converting

all of the crisp boundaries into fuzzy set equivalents. The result is that the values

of R2 and R5 support the normal condition diagnosis fully (100%), whereas the

value of R1 supports the condition with a certainty of 80% roughly. The percentage

support (or belief) provided by each ratio is then averaged to give an overall

support to that particular condition, in this case (100 ? 100 ? 80)/3 = 93.3%

support to the Normal Condition case. A support for each fault scenario is cal-

culated in this way, normalised using relative weightings and then combined using

the original ER algorithm to produce an output of the following form1:

Table 8.8 Rogers ratio method [6]

Fault R1 R2 R5

No fault 0.1–1.0 \0.1 \1.0

PD \0.1 \0.1 \1.0

Arcing 0.1–1.0 0.1–3.0 [3.0

Low temp. thermal 0.1–1.0 \0.1 1.0–3.0

Thermal\700�C 0.1–1.0 \0.1 1.0–3.0

Thermal[700�C [1.0 \0.1 [3.0

Table 8.9 Dörnenburg’s ratio method [4]

Fault R1 R2 R3 R4

Thermal [1.0 \0.75 \0.3 [0.4

PD \0.1 N/A \0.3 [0.4

Arcing [0.1 and\1.0 [0.75 [0.3 \0.4

Table 8.10 Dörnenburg’s L1 limits [4]

Gas H2 CH4 CO C2H2 C2H4 C2H6

L1 (ppm) 100 120 350 35 50 65

1 This is the diagnoses set of DRM.
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Diagnosis ¼ fPr(Thermal), Pr(PD), Pr(Arcing)g: ð8:14Þ

It must be noted that although there is no value for the possibility of the no fault

condition, it is in fact implied since for all diagnoses:

XFm

i¼1

PrðFaultiÞ þ PrðNo FaultÞ ¼ 1; ð8:15Þ

where Fm is the number of fault scenarios determinable by a particular method,

e.g. for DRM Fm = 3.

KGM does in fact not suffer from the same No Decision diagnosis problems as

the two ratio methods. The reason for making the decision boundaries into fuzzy

sets for this method is merely to provide results in the same format as those

generated by the other methods.

8.3.2 Implementation of the Hybrid Diagnostic Approach

8.3.2.1 Problem Formulation with Evidential Reasoning

Often when dealing with decision making, a decision maker faces uncertainty.

Such uncertainty can come from either a lack of knowledge about the problem,
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or uncertainty in the accuracy of the data used to make the decision. In the case

of DGA, there is uncertainty in the accuracy of the diagnoses provided by the

traditional diagnosis methods. What ER does is to provide a mathematical

framework for combining such uncertain information (and subjective judge-

ments). By considering each piece of information as evidence either supporting

or denying a hypothesis, the validity of all possible hypotheses can be calculated.

In the case of DGA, each hypothesis corresponds to a possible fault condition

and the validity to the chance that this may be the condition of a transformer, e.g.

20% chance the transformer has suffered from or is currently suffering an arcing

fault.

Before the ER algorithm can be used, there must be a formalism of the input

data. ER requires that a set of common hypotheses are used for all sources of

information H,

H ¼ fH1; . . .;Hn; . . .;HNg; n ¼ 1; . . .;N; ð8:16Þ

where N is the number of hypotheses (in this case possible faults). So, a set of

faults common to all the three methods must be devised. There are four general

fault types distinguishable, OHC, OHO, PD and arcing, N.B. Thermal Faults are

the same as OHO. Below are the fault types distinguishable by each method,

FaultsR being the set of faults associated with RRM, FaultsD those associated with

DRM and FaultsK with KGM:

FaultsR 2 Low Temp;Thermal\700�C;f

Thermal[ 700�C; PD;Arcingg;

FaultsD 2 fThermal; PD;Arcingg;

FaultsK 2 fOHC;OHO; PD;Arcingg:

It can be found from the three groups of fault types that by combining the

supports from the subset {Low Temp, Thermal\ 700�C, Thermal[ 700�C} into

the total support to a thermal fault and noticing that OHO is also in fact a thermal

fault, the following minimum hypothesis set has been found to be exhaustive

across all the three methods,2

H ¼ fOHC; Thermal; PD; Arcingg: ð8:17Þ

Under an ER framework, a decision process is represented by a tree structure

consisting of attributes, composite factors and basic factors. In this case the attribute

is the overall evaluation of a transformer, i.e. its condition, which is supported by a

set of composite factors comprising the results of the RRM diagnosis (RD), the

DRM diagnosis (DD) and the KGM diagnosis (KGD). These composite factors are

2 Pr(OHC) = 0 for both RRM and DRM as they cannot distinguish this fault directly.
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in turn supported by three respective sets of basic factors, one for each DGA

method. The role of the soft decision boundaries is to produce subjective judge-

ments in the form of conditional probabilities, e.g. Pr(Fault|Gas), when presented

with DGA data. An ER tree is developed based upon the above configuration as

shown in Fig. 8.6.

Typically, the kth attribute of an ER tree is denoted as yk. As in this

case there is only one attribute as the overall evaluation, k is ignored

throughout the forthcoming declaration. A set of composite factors

f = {f1, f2, f3} represents the diagnoses made by each of the methods, i.e. f =

{RD, DD, KGD}.

The fundamental difference between the tree proposed in this section and a

typical ER tree (that is of the form presented in [7]) is that, the basic factors in this

tree are not to be evaluated and they are in fact tools for generating subjective

judgements. The set of basic factors can be grouped into three subsets

E = {eRRM,eDRM,eKGM} = {e1,e2,e3} where

Overall

Evaluation

1

RRM

f

DRM

f

KGM

f

{H , H , H , H }

e

{H , H , H , H }

e e

2

2 3

3 4

1

1 12i

2 3 4

1

Fig. 8.6 An ER tree repre-

senting a DGA decision

process
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eRRM ¼ Low Temp.;Thermal\700�C;f

Thermal[700�C; PD;Arcingg

¼ fe11; e
2
1; e

3
1; e

4
1; e

5
1g;

eDRM ¼ fThermal; PD;Arcingg

¼ fe12; e
2
2; e

3
2g;

eKGM ¼ fOHC;Thermal; PD;Arcingg

¼ fe13; e
2
3; e

3
3; e

4
3g:

From this we can also define a set L = {L1,L2,L3}, where Lk (k = 1,2,3) is a

positive integer denoting the number of basic factors contributing to the evaluation

of the composite factor fk, so in this case L = {5,3,4}.

Unlike a typical ER basic factor set, these factors cannot be evaluated to all of

the possible evaluation grades in H as each tool only generates the probability of

one fault. Below are the groups of factors that contribute to the evaluation of each

specific grade.

fe13g ! H1;

fe11; e
2
1; e

3
1; e

1
2; e

2
3g ! H2;

fe41; e
2
2; e

3
3g ! H3;

fe51; e
3
2; e

4
3g ! H4:

Since each evaluation tool is deemed as accurate as the next, the relative weights

for all of the basic factors are set to one, i.e. k = {k1
1,...,kj

i,...,k3
4} = {1,1,...,1}. This

in turn means that the set of normalised relative weights �k is also unity. To further

simplify the problem, a, the coefficient representing the significance of the role of

the most important factor (i.e. that with the highest weight), is also set to one. It

should be noticed that the conditional probabilities generated by fuzzy sets repre-

sent the subjective judgements usually used as the inputs to an ER decision tree.

What this means is that the conditional probability generated by factor ek
i is denoted

by bHn
ðeikÞ; i.e. the belief with which factor ek

i supports the evaluation of a trans-

former’s condition to evaluation grade Hn. Before we can use the ER algorithm,

such subjective judgements must be converted into basic probability assignments of

the form mk,i
n , where mk,i

n is the basic probability assignment generated by factor ek
i

that the transformer’s condition is to be evaluated to grade Hn. To carry out this

conversion, Eq. 8.18 must be used:

mn
j;i ¼

�kijabHn
ðeijÞ: ð8:18Þ

Since all �k and a equal 1, Eq. 8.18 is simplified as mn
k;k ¼ bHn

ðeikÞ: With this in

mind Tables 8.11, 8.12 and 8.13 are derived to illustrate the probability assign-

ments of each composite factor.

A factor subset eIjðiÞ is defined as

eIkðiÞ ¼ fe1k � � � e
i
kg; 1� i� Lk: ð8:19Þ
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We can also define a combined probability assignment mW
IkðiÞ

; i.e. the probability

that the transformer’s condition is to be evaluated to WðW � HÞ; supported by the

factor subset eIkðiÞ: The last term to be defined is mk,i
H as the remaining belief not

assigned after commitment to all Hn(n = 1,...,N), i.e. mH
k;i ¼ 1�

PN
n¼1 m

n
k;i:

With this formalism in place and by stating that eIkð1Þ ¼ e1k ; the original ER

algorithm in Eqs. 8.7–8.9 is used to combine the evidence presented by the sim-

ulated subjective judgements at the basic factor level.

Let mn
IkðLkÞ

¼ mn
k ; then an intermediate evaluation Table 8.14 is generated.

By defining a composite factor subset fI(i) = {f 1,...,f i} in the same vein as eIkðiÞ,

then the probabilities in Table 8.14 can be combined using a slightly simpler form

of the ER algorithm stated in Eqs. 8.20–8.22.

For i = 1,2

fHng : mn
Iðiþ1Þ ¼ KIðiþ1Þðm

n
IðiÞm

n
iþ1 þ mn

IðiÞm
H
iþ1

þ mH
IðiÞm

n
iþ1Þ; n ¼ 1; . . .;N; ð8:20Þ

fHg : mH
Iðiþ1Þ ¼ KIðiþ1Þm

H
IðiÞm

H
iþ1; ð8:21Þ

Table 8.11 Probability

assignments for f1
H1 H2 H3 H4

e1
1 0 m1,1

2 0 0

e1
2 0 m1,2

2 0 0

e1
3 0 m1,3

2 0 0

e1
4 0 0 m1,4

3 0

e1
5 0 0 0 m1,5

4

Table 8.12 Probability

assignments for f2
H1 H2 H3 H4

e2
1 0 m2,1

2 0 0

e2
2 0 0 m2,2

3 0

e2
3 0 0 0 m2,3

4

Table 8.13 Probability

assignments for f3
H1 H2 H3 H4

e3
1

m3,1
1 0 0 0

e3
2 0 m3,2

2 0 0

e3
3 0 0 m3,3

3 0

e3
4 0 0 0 m3,4

4

Table 8.14 Intermediate

evaluation table
H1 H2 H3 H4

f1 m1
1

m1
2

m1
3

m1
4

f2 m2
1 m2

2 m2
3 m2

4

f3 m3
1 m3

2 m3
3 m3

4

8.3 A Hybrid Diagnostic Approach Combining Fuzzy Logic and Evidential Reasoning 145



KIðiþ1Þ ¼ 1�
XN

s¼1

XN

j¼1;j 6¼s

ms
IðiÞm

j
iþ1

" #�1

: ð8:22Þ

This final set of equations now presents us with an overall evaluation of trans-

former conditions, in the form shown in Eq. 8.17, based on the evidence provided

by the three traditional DGA methods altered to produce pseudo subjective

judgements. The proof and theory supporting this algorithm are reported exten-

sively in [7] and [8].

8.3.2.2 Fuzzy Membership Functions of the Gas Ratio Methods

The first step in implementing fuzzy sets is to find suitable membership functions

to soften the decision boundaries used by the gas ratio methods. Equation 8.23

shows a sigmoidal function employed in this study to soften crisp decision

boundaries.

f ðxÞ ¼ ð1þ e�aðxþcÞÞ�1: ð8:23Þ

The slope a of the sigmoid function and the value on which the functions are

cantered c have been derived by inspecting the Halstead’s diagram (Fig. 8.4), by

analysing the relationships between the gases involved in each ratio with respect to

temperatures.

Where rules state that the value of a ratio must lie within a specific range, a

Gaussian bell function of the form in Eq. 8.24 is used to soften the boundary.

Again the function parameters a, b and c are derived from the Halstead’s diagram,

c having the same meaning as before whilst a determines the width of the bell and

b the steepness of the bell’s edges.

f ðxÞ ¼ e ðx�cÞ=að Þ2b : ð8:24Þ

With the soft boundaries now in place, the support for each fault type, provided

by the individual gas ratios, is required to be normalised. For simplicity it is

assumed that each ratio is equally important for every fault type diagnosis. What

this means practically is that the overall support for each fault type is simply the

average of the supports provided by each ratio. The overall supports for each fault

are then passed into the ER algorithm described in Sect. 3.2.1 and an evaluation of

all possible transformer faults, as distinguishable by that method, is produced. For

example, considering the DGA data in Table 8.15, these data are processed

Table 8.15 Example DGA data

Gas H2 CH4 CO C2H2 C2H4 C2H6

ppm 270 190 280 37 17 4
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producing the following diagnoses concerning the new DRM. The value of R1

provides 92.7% support for there being a thermal fault, i.e.

PrðThermaljR1ÞDRM ¼ 0:9270;

PrðThermaljR2ÞDRM ¼ 0:0790;

PrðThermaljR3ÞDRM ¼ 0:9988;

PrðThermaljR4ÞDRM ¼ 0:5000:

These values are then averaged as described above to give an overall support of

62.62% to the thermal fault condition. Similarly:

1. Support for a PD fault = 41.31%.

2. Support for an arcing fault = 73.13%.

The final step is to combine these three pieces of evidence using the ER

algorithm detailed in Sect. 3.2.1 to provide us with an overall diagnosis by the new

DRM. It must be noted that the support values for each fault type also imply a

support for all other possible diagnoses including the no fault condition, and this is

why the results from the ER combination are not merely a normalisation of the

three basic supports calculated previously. As a result, the overall evaluation using

ER3,4 is [0, 0.235, 0.434, 0.114].

From these results we can also work out that the remaining belief is

1 - 0.235 - 0.434 - 0.114 = 0.217, i.e. a 21.7% chance of other possible faults

or no fault having occurred. Using the same principles and practices, a similar

version of the new RRM can also be implemented. With both the ratio methods with

fuzzy sets now in place, the next step is to try and apply the same ideas to KGM.

8.3.2.3 Fuzzy Membership Functions of the Key Gas Method

The difference between KGM and the ratio methods is that KGM requires an

engineer to make a subjective decision on the level of correlation between the

DGA data and the four fingerprint charts presented in Sect. 8.1. Such a judgement

would be of the kind: ‘‘I believe that the data I have matche the OHC characteristic

chart, and I can say this with 50% certainty (assurance).’’ Obviously such decision

making is not easily put into mathematics, however if we break down the

judgement into a set of thought processes then it becomes much easier. Consider

the DGA data presented in Table 8.15, and the relative percentages are shown in

Table 8.16.

These values should be compared with those presented in each of the four

diagrams shown in Fig. 8.5. Only the arcing and OHC diagrams are discussed here

to illustrate the ideas behind the derivation of the fuzzy sets.

3 Refer back to Eq. 8.14 for the set of fault types.
4 The zero represents the probability of OHC, since DRM cannot determine this fault.
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The key gas generated by an arcing fault is in fact C2H2, not H2 as the chart

may first suggest. This is because C2H2 is only produced at temperatures in excess

of 1,000�C, which is a temperature only found when arcing occurs. So, an engi-

neer’s first thought should be: ‘‘Is there a significant percentage of C2H2?’’. To

answer this the engineer must first decide what is meant by a significant per-

centage. This choice is one that typically should be made by an experienced DGA

reviewer based on their own experiences, e.g. 20% is deemed the absolute mini-

mum value of C2H2 that would indicate an arcing fault. Hence the probability of

arcing given the percentage of C2H2 is found using a sigmoidal function similar to

those used to soften the decision boundaries of the ratio methods, with a = 0.15

and c = 27.

Similar curves are used for all of the other gases to generate conditional fault

probabilities, e.g. Pr(Arcing|H2%): Probability of Arcing given the relative

percentage of H2. These conditional probabilities are to be combined to generate

the overall probability of an arcing fault given the relative amounts of all the gases.

When combining these probabilities, it should be noted that the key features in the

arcing fault chart are:

1. Significant presence of C2H2.

2. Large quantity of H2 with respect to CO, CH4,C2H6 and C2H4.

To ensure that these features are dominant over the other gas concentrations,

the normalised probabilities of all the gases except H2 and C2H2, are multiplied by

a scaling factor KOHC. The probabilities are first normalised by simply dividing

each one by 6, i.e. the number of gases, therefore the overall arcing probability lies

in the closed interval [0, 1]. The scaling factor used is actually the average of the

conditional probabilities of arcing given H2 and C2H2 levels.

KOHC ¼
PrðArcingjH2Þ þ PrðArcingjC2H2Þ

2
: ð8:25Þ

The choice of this scaling factor ensures that the overall probability of an

arcing fault is only close to 1, when both the levels of H2 and C2H2 are close

to those prescribed in the key gas chart (Fig. 8.5). Using both the scaling factor

and normalised probabilities, the overall probability of an arcing fault given the

relative percentages of all the fault gases is shown in Eq. 8.26. It should be

noticed that the weights allocated to each probability are selected for an

illustration purpose.

PrðArcÞ ¼
PrðArcjeAÞ

6

PrðArcjeBÞ
2

 !
þ
PrðArcjeBÞ

6
; ð8:26Þ

Table 8.16 Example DGA data (relative percentages)

Gas H2 CH4 CO C2H2 C2H4 C2H6

% 34 23 35 5 2 1
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where

PrðArcÞ ¼ PrðArcingÞKGM;

eA ¼ fCO;CH4;C2H6;C2H4g;

eB ¼ fH2;C2H2g;

PrðFaultjGas1; . . .;GasNÞ ¼
XN

i¼1

PrðFaultjGasiÞ:

Similarly, when comparing the relative percentages of DGA gases against the

OHC chart shown in Fig. 8.5, the key feature is identified as the large presence

of CO. This is because the only source of O2 within the air-tight, oil-insulated

part of the transformer is the paper insulation often found around windings and in

contact with the oil. Since the presence of CO in any great abundance is the sign

of cellulose overheating, a similar technique as above is used to scale the con-

ditional probabilities generated by the levels of the other gases. Whereas the

average of the conditional probabilities generated by H2 and C2H2 are used for

arcing faults, simply the normalised conditional probability generated by CO is

used for this case. This means that the overall probability of an OHC fault given

the relative percentages of all the fault gases is calculated using Eq. 8.27, where

the shorthand notation Pr(Fault|Gas1, Gas2,..., GasN) has the same meaning as

before.

PrðOHÞ ¼
PrðOHjCOÞ

4

PrðOHjeAÞ

5

 !

þ
3PrðOHjCOÞ

4
; ð8:27Þ

where

PrðOHjGasÞ ¼ PrðOHCjGasÞKGM;

PrðOHÞ ¼ PrðOHCÞKGM;

eA ¼ fH2;CH4;C2H6;C2H4;C2H2g:

The choice of scaling factors ensures that the overall probability of an OHC

fault is only close to 1, when the level of CO is close to that prescribed in the key

gas chart (Fig. 8.5). Notice that because the relative value of CO is paramount to

there being an OHC fault, the relative weights are set as [0.75, 0.05, 0.05, 0.05,

0.05, 0.05]. If considering the example data shown in Table 8.15, the following

conditional probabilities are generated for an arcing fault:

PrðArcingjCOÞ ¼ 0:0000;

PrðArcingjH2Þ ¼ 0:1634;

PrðArcingjCH4Þ ¼ 0:0000;
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PrðArcingjC2H6Þ ¼ 0:9999;

PrðArcingjC2H4Þ ¼ 0:9996;

PrðArcingjC2H2Þ ¼ 0:0337:

Using Eq. 8.26 it is found the probability of an arcing fault to be Pr(Arc-

ing)KGM = 0.0657, i.e. 6.57%. Similarly, if the OHC method is employed using

the new KGM technique, the following conditional probabilities are generated:

PrðOHCjCOÞ ¼ 0:5044;

PrðOHCjH2Þ ¼ 0:0000;

PrðOHCjCH4Þ ¼ 0:0121;

PrðOHCjC2H6Þ ¼ 0:9993;

PrðOHCjC2H4Þ ¼ 0:9984;

PrðOHCjC2H2Þ ¼ 0:9944:

Using Eq. 8.27 it is found the probability of an OHC fault to be

Pr(OHC)KGM = 0.4541. This process is carried out again for all the other types of

faults that KGM can distinguish between, namely Thermal faults (overheating of

oil) and PD faults. The overall probabilities of these faults are shown as below:

PrðThermalÞKGM ¼ 0:0386;

PrðPDÞKGM ¼ 0:3754:

With all the four faults now having an associated probability, the values can be put

into the original ER algorithm and the following results generated. The overall

evaluation using the original ER algorithm5 is [0.327, 0.0158, 0.2364, 0.0277].

These results also imply a probability of no fault, i.e. Pr(No Fault)KGM = 0.3931.

8.3.3 Tests and Results

Using the data in Table 8.15, the evaluations shown in Tables 8.17, 8.18 and 8.19

are made by the three traditional DGA methods.

Combining these probabilities using the original ER algorithm gives the

intermediate evaluation as shown in Table 8.20.

The ER algorithm in Eqs. 8.20–8.22 is now used to combine the evidence in the

intermediate table and gives an overall evaluation of the transformer’s condition as

listed in Table 8.21.

5 Refer back to Eq. 8.14 for the set of fault types.
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What this illustrates is that there is a 35.67% chance that the transformer is

suffering from or has suffered from an arcing fault, a 27.87% chance that the fault

is a Thermal fault, a 23.08% chance that the fault is a PD fault and a 6.08% chance

that the fault is cellulose degradation. Given these results and the fact that the

chance of no fault having occurred is only very small (7.31%), then it is more than

likely that the transformer in question has suffered from an arcing fault. This

diagnosis does in fact match the official diagnosis taken by NG engineers made

after the failure of the transformer in question, i.e. ‘‘Failed due to arcing between

the insulated OLTC shaft pin and the coupling of drive’’.6

Table 8.18 Conditional

probabilities for the

Dörnenburg’s ratio method

H1 H2 H3 H4

e2
1 0 0.6262 0 0

e2
2 0 0 0.4131 0

e2
3 0 0 0 0.7313

Table 8.17 Conditional

probabilities for the Rogers

ratio method

H1 H2 H3 H4

e1
1 0 0.3287 0 0

e1
2 0 0.1072 0 0

e1
3 0 0.1072 0 0

e1
4 0 0 0.3438 0

e1
5 0 0 0 0.3228

Table 8.19 Conditional

probabilities for the key gas

method

H1 H2 H3 H4

e3
1 0.4541 0 0 0

e3
2 0 0.0386 0 0

e3
3 0 0 0.3754 0

e3
4 0 0 0 0.0657

Table 8.20 Intermediate

evaluation table
H1 H2 H3 H4

f1 0 0.2673 0.1919 0.1746

f2 0 0.2746 0.1154 0.4461

f3 0.3270 0.0158 0.2364 0.0277

Table 8.21 Final overall evaluation table

H1 H2 H3 H4 No fault

0.0608 0.2787 0.2308 0.3567 0.0731

6 Diagnosis taken from the NG DGA database.
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When these results are compared with those produced by the traditional DGA

methods, the advantages of the new system become apparent. The Rogers ratio

method finds an arcing fault, which although correct fails to convey the extra

information concerning the probable overheating of cellulose that has also been

occurring or has previously occurred. The Dörnenburg’s method produces the No

Decision diagnosis and the inspection of the key gas method is inconclusive

without extra information. The key factor in the representation of the results from

the new system is the fact that the probability of the no fault case is very small,

clearly highlighting a danger to the transformer, whilst the presence of a previous

cellulose overheating problem and the correct diagnosis of the arcing fault are also

presented, therefore helping an engineer understand more clearly what has

occurred inside the transformer. This comparison highlights the nature of the

improvement offered by this hybrid diagnostic approach over the three traditional

DGA methods.

8.4 Probabilistic Inference Using Bayesian Networks

As stated previously, when DGA reviewers examine gas ratio data, they evaluate

the gas ratios that they have according to decision rules of several traditional DGA

guidelines. Subjective decisions are then made, and a DGA reviewer can check

whether the data in hand fit any of the decision criteria or not. The diagram of a

typical DGA fault diagnosis process is shown in Fig. 8.7, which includes different

gas ratios, fault types and fault diagnosis actions.

It is known that, not all the combinations of gas ratios presented in a fault can

be mapped to a fault type in a selected criterion, e.g. the Rogers ratio method. In

this case, a DGA reviewer has to decide how close are the data to the chosen

criterion. Considerations have been given to the interpretation of such combi-

nations of gas ratios, as some combinations of gas ratios presented in certain

types of faults are not reported in the IEEE and IEC codes for DGA interpretation

[6]. In other words, it is a puzzling task of how to handle a fault scenario where

gas ratio combinations are missing in the IEEE and IEC DGA codes. Many

attempts have since been made to refine a decision process used to guide DGA

reviewers, such attempts include data analysis using EPS [9] and ANN [10].

However, such attempts are limited in their representation of the problem as a

pattern recognition task, which are defined as black-box models with only inputs

and outputs. The logical reasoning process of a DGA reviewer is not mimicked,

which is essentially a probabilistic inference process. The probabilistic reasoning

approach detailed in this section is to enhance DGA fault diagnosis capabilities

along with traditional fault classification criteria by constituting a BN for DGA

diagnosis problems.

For a DGA reviewer, the core tasks of transformer fault diagnosis are to identify

the relationships between fault gas ratios and fault types. It is essentially a prob-

abilistic reasoning process to compute the unknown (posterior) probabilities of a
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certain type of fault, given new evidence as groups of key gas ratios based upon

known (prior) probabilities. In this sense, if a DGA problem is regarded as a

decision making process under the framework of probability theories, transformer

fault diagnosis can be treated as a probability inference task. If a BN is employed

as a framework for conducting DGA, by creating a BN according to the diagram of

DGA interpretation in Fig. 8.7, a probability inference procedure can be imple-

mented to identify fault types of a transformer based on the evidence of various

combinations of gas ratios.

8.4.1 Knowledge Transformation into a Bayesian Network

In order to create a BN for performing transformer fault diagnosis, the major

modelling issues that arise are:

1. What are the variables/nodes?

2. What is the graph structure?

3. What are the parameters (CPT)?

In this subsection, the procedures of knowledge transformation for eliciting a

BN structure and its parameters are illustrated step by step to obtain accurate DGA

interpretations.

Fig. 8.7 A typical decision diagram of DGA fault diagnosis
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8.4.1.1 Determination of BN Variables Based on the IEEE and IEC Codes

for DGA Interpretation

When attempting to model transformer fault diagnosis problems, it is important to

determine the number of varialbes/nodes before establishing a BN with a concise

and appropriate structure. As known, the main interest of transformer fault diag-

nosis is to identify fault types of a unit based upon gas ratios. Typical faults are

thermal faults, discharge faults and faults involving cellulose degradation as shown

in Fig. 8.7. An initial BN modelling choice is to have two query nodes of fault

types, with the observation nodes being three sets of gas ratios from the IEEE and

IEC DGA coding schemes [3], which are depicted in Fig. 8.8.

When selecting BN variables, we must also decide what states or values the BN

variables can take. As the purpose of this study is to develop an approach to

enhancing the IEEE/IEC fault diagnosis criteria, the values of BN variables are

extracted from the IEEE/IEC codes for interpretation of DGA results, which are

briefly introduced below.

As shown in Table 6.1, the gas ratio methods are coding systems that assign a

certain combination of codes to specific fault types. The codes are generated by

calculating ratios of gas concentrations and comparing the ratios to predefined

limits, which were derived from experiments and industrial experience. A fault

condition is detected when a code combination fits the code pattern of a fault. The

most commonly used ratio method is the Rogers ratio method [6], which is able to

distinguish more types of thermal faults than the Dörnenberg’s ratio method, listed

in Table 6.1 [3]. In this study, the values of nodes exhibiting fault types are chosen

as [Normal, Low temperature overheating (LT-H), High temperature overheating

(HT-H)] and [Normal, Low energy discharge (LE-D), High energy discharge (HE-

D)] for the nodes of ‘‘overheating fault’’ and ‘‘discharge fault’’ respectively. The

types of node values for ‘‘gas ratios’’ are selected as the discrete code patterns

defined in Table 6.1, e.g. [0, 0, 0] illustrate a normal condition.

Fig. 8.8 A DGA reasoning

network based on IEEE/IEC

DGA interpretation codes
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While applying the gas ratio method in accordance with Table 6.1, it should be

noted that:

1. The ratios for a combination of multiple faults may not fit the predefined codes

in Table 6.1.

2. Combinations of ratios, not included in Table 6.1, may occur in practice.

Consideration is being given to the interpretation of such combinations.

The proposed BN approach is developed to overcome the drawbacks of missing

codes in Table 6.1 for accurate transformer fault classifications.

8.4.1.2 Construct a Graphical Model with IEEE and IEC Codes

When deciding on the structure of a BN, the key is to focus on relationships

between variables. By studying the reasoning process of the IEEE and IEC DGA

coding schemes, it is clear that a DGA fault diagnosis problem is actually a belief

reasoning process based upon a set of evidence. The DGA reasoning diagram in

Fig. 8.8 can then be easily transformed into a graphical model shown in Fig. 8.9,

i.e. a BN.

As shown in Fig. 8.9, the root nodes of X1 and X2 represent two fault types

listed in Table 6.1, i.e. overheating fault and discharge fault. In this study, the fault

types in Table 6.1 are reorganised into two groups, i.e. X1 possesses three states

[Normal, LT-H, HT-H] and X2 also represents three states [Normal, LE-D, HE-D].

The leaf nodes of X3, X4 and X5 represent three types of ratios, which are C2H2

C2H4
; CH4

H2

and C2H4

C2H6
; respectively. The possible states of each leaf node are defined in Table

6.1, e.g. [0, 1, 0] and [1, 1, 0], which are determined by fault gas quantities and

types.

8.4.1.3 Further Explanation on Bayesian Network Inference

In Fig. 8.9, a directed arc graph (DAG) is depicted, where all arcs (or arrows) point

downwards. The directions of these arcs represent relationships of causes and

Fig. 8.9 A simple Bayesian

network for DGA analysis
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effects occurring in DGA based fault diagnosis, e.g. a high energy discharge fault

results in a high ratio of
C2H2

C2H4

:

For each node in Fig. 8.9, a CPT quantifies the effects parents have on a

child node. CPT values can be obtained from historical fault pattern data by

automated machine learning. As the CPT of each node is unknown when creating a

BN, random parameters are generated from a uniform distribution. By now, a BN

for analysing dissolved gases is created, in which the data structure represents the

dependance between the variables of all the nodes. When the construction of a BN

is completed, it is ready to deploy the developed model to tackle real-world DGA

fault diagnosis problems.

8.4.1.4 Implementation the Bayesian Network Approach to DGA

Interpretation

The following procedures describe how to build a BN from a practitioner’s

viewpoint, which are implemented in the next subsection.

1. Design a graphical model for representing a DGA fault classification problem,

including both variables and the data structure of a specified BN.

2. Collect a group of DGA data sampled from faulty transformers, which include

both key gas quantities and actual fault types with the same form as these

defined in Table 6.1.

3. Determine the CPT for each node in the established BN, by using an automated

parameter learning programme for BN construction.

4. Probabilistic inference for fault classifications: compute the probability distri-

bution for query variables (X1 and X2) given evidence variables (X3, X4 and X5).

5. Update the CPTs of the constructed BN classifier with new fault cases if

necessary.

8.4.2 Results and Discussions

In this section, the BN approach is utilised to undertake transformer fault diagnosis

tasks based upon DGA data of a group of transformers. The ‘‘Bayes net toolbox for

MATLAB’’ written by Kevin Murphy is employed for this study.7 The test DGA

data and matching diagnoses are taken directly from the NG DGA database. The

procedures of BN construction and inference for a transformer DGA problem are

illustrated as follows:

7 http://www.code.google.com/p/bnt/

156 8 Dealing with Uncertainty for Dissolved Gas Analysis

http://dx.doi.org/10.1007/978-0-85729-052-6_6#Tab1
http://www.code.google.com/p/bnt/


1. Firstly, 50 sets of DGA data are extracted from the NG DGA database, which

contain both the 7 types of key gases and the diagnosis results after on-site

inspections conducted on a group of transformers removed for repair. The

datasets are then divided into two groups, i.e. datasets 1 and 2.

2. Dataset 1 comprises 40 sets of records, which are used for CPT parameter

learning with regard to the created BN depicted in Fig. 8.9. Through a BN

learning programme, the CPT of each node is ascertained based upon dataset 1.

3. The remaining 10 sets of records form dataset 2, which is employed for the

evaluation of the created BN with the derived CPT values. It is noted that the

fault types of five cases in dataset 2 cannot be identified using the IEEE and

IEC DGA coding scheme due to missing codes.

8.4.2.1 Derivation of CPTs from Training Data

For illustration purposes, in this subsection the derivation of CPTs of X3, X4 and X5

are presented for discharge fault analysis. By feeding DGA dataset 1 through a BN

parameter learning programme, the derived CPTs of nodes X3, X4 and X5 regarding

node X2 are listed in Tables 8.22, 8.23 and 8.24 respectively. Each row in the

tables contains the conditional probability of each node for each possible com-

bination of values of its parent node X2, i.e. relationships between two sets of

predefined categories—possible gas ratio codes of 0, 1 or 2 and transformer states

as [Normal, LE-D, HE-D]. When the graph structure and CPTs of all the nodes of

the BN are identified, it is ready to deploy the BN to perform transformer fault

diagnosis tasks.

Table 8.22 Conditional

probability table for X3

regrading X2

Normal LE-D HE-D

0 0.57 0.43 0

1 0.40 0.50 0.10

2 0 0.95 0.05

Table 8.23 Conditional

probability table for X4

regrading X2

Normal LE-D HE-D

0 0.65 0.09 0.26

1 0.15 0.75 0.10

2 0.85 0.05 0.10

Table 8.24 Conditional

probability table for X5

regrading X2

Normal LE-D HE-D

0 0.48 0.43 0.09

1 0.75 0.05 0.20

2 0 0.07 0.83
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8.4.2.2 Validation of the Constructed Bayesian Network

In order to verify the effectiveness of the constructed BN, dataset 2 is employed to

carry out probabilistic inference to identify possible fault types, which are then

compared with actual diagnosis from on-site inspections.

For the first five sets of cases 1 to 5 in Table 8.25, the IEEE and IEC DGA

codes and on-site diagnosis results are listed in Table 8.26.

By feeding the data of the five cases to the constructed BN model, the diagnosis

results using probabilistic inference are shown in Table 8.27.

As illustrated in Table 8.27, for cases 1 to 5 in Table 8.25, the diagnosis results

obtained from the IEEE and IEC DGA coding scheme are the same as the diag-

nosis results derived from the BN inference. For instance, as defined in Sect.

8.4.1.2, the states of nodes X1 and X2 are the probabilities of [Normal, LT-H, HT-

Table 8.25 DGA concentrations of 10 scrapped transformers (in ppm)

Gas H2 CH4 C2H2 C2H4 C2H6

Case 1 33 26 0.2 5.3 6

Case 2 21 124 5 183 45

Case 3 835 76 16 10 29

Case 4 1,570 1,110 1,830 1,780 175

Case 5 3,420 7,870 33 6,990 1,500

Case 6 833 3,167 1,697 5,793 390

Case 7 217 286 884 458 14

Case 8 41 112 4,536 254 0

Case 9 95 10 39 11 0

Case 10 60 5 21 21 2

Table 8.26 IEEE and IEC

codes and on-site inspections

for cases 1–5

IEEE/IEC codes On-site inspections

Case 1 [0, 0, 0] Normal

Case 2 [0, 2, 2] HT-H

Case 3 [1, 1, 0] LE-D

Case 4 [1, 0, 2] HE-D

Case 5 [0, 2, 2] HT-H

Table 8.27 Comparisons between IEEE/IEC and Bayesian network diagnosis for cases 1 to 5

IEEE/IEC Prob. of X1, X2 BNs

case 1 Normal X2 [0.82, 0.18, 0.00] Normal

case 2 HT-H X1 [0.02, 0.04, 0.94] HT-H

case 3 LE-D X2 [0.07, 0.93, 0.00] LE-D

case 4 HE-D X2 [0.02, 0.01, 0.97] HE-D

case 5 HT-H X1 [0.02, 0.04, 0.94] HT-H

BNs Bayesian networks, Prob. probabilities belong to a node (X1 or X2) of the created BN. The

bold values indicate the maximum values among the three elements of the probability vectors of

x1 and x2.
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H] and [Normal, LE-D, HE-D] respectively. With regard to case 1, the IEEE/IEC

interpretation provides a code of [0, 0, 0], which is classified as a normal condi-

tion. By inputting the data of case 1 to the created BN inference engine, the

derived probability of node X2 is [0.82, 0.18, 0.0], which also indicates a high

probability of no fault. As for cases 2 and 5, there are high probabilities of HT-H,

i.e. 0.94 and 0.94, which are the same as the IEEE/IEC DGA interpretations.

Moreover, it is indicated in cases 3 and 4 that high probabilities of LE-D and HE-

D, i.e. 0.93 and 0.97, also coincide with the IEEE/IEC DGA interpretations. The

developed results show that the constructed BN model can successfully map a

group of DGA codes to certain types of faults, which are also identifiable by the

IEEE/IEC DGA coding scheme.

For cases 6–10 in Table 8.25, the IEEE/IEC codes and on-site diagnosis results

are listed in Table 8.28. It should be noted that the IEEE/IEC DGA interpretations

cannot be implemented, as the code combinations of the 5 cases are not mentioned

in Table 6.1.

It is expected that, by feeding the 5 cases to the constructed BN, the fault

classification can be implemented while the codes of cases 6–10 are missing in the

IEEE/IEC DGA coding scheme. The diagnosis results from the BN inference

model are shown in Table 8.29, which coincide with the actual on-site diagnosis.

For example, in case 6, the IEEE/IEC coding scheme provides a code of

[1, 2, 2], which cannot been classified due to missing codes in Table 6.1. By

inputting the DGA data of case 6 to the developed BN, the derived probability of

node X1 is [0.08, 0.01, 0.91], which indicates a high probability of a fault with

HT-T. For case 10, the probabilities delivered by BN diagnosis are 0.47 and 0.50

for fault types of LE-D and HE-D respectively, bearing in mind that the code of

[1, 1, 2] is missing in the IEEE/IEC DGA coding scheme. The results cannot be

Table 8.28 IEEE/IEC codes

and on-site inspections for

cases 6 to 10

IEEE/IEC codes On-site inspections

Case 6 [1, 2, 2] HT-H

Case 7 [1, 2, 2] HT-H

Case 8 [2, 2, 2] HE-D

Case 9 [2, 1, 2] HE-D

Case 10 [1, 1, 2] LE-D

Table 8.29 Comparisons between IEEE/IEC and BN diagnosis results for cases 6–10

IEEE/IEC Prob. of X1, X2 BNs

Case 6 N/A X1 [0.08, 0.01, 0.91] HT-H

Case 7 N/A X1 [0.08, 0.01, 0.91] HT-H

Case 8 N/A X2 [0.00, 0.20, 0.80] HE-D

Case 9 N/A X2 [0.01, 0.11, 0.89] HE-D

Case 10 N/A X2 [0.03, 0.47, 0.50] HE-D

N/AThe diagnosis code of each case is not available in the IEEE/IECDGAcoding scheme. The bold

values indicate themaximumvalues among the three elements of the probability vectors of x1 andx2.
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further classified into the faults types of LE-D or HE-D due to very close prob-

abilities, which can still indicate a trend of discharge fault.

8.4.2.3 Verification of the IEEE and IEC DGA Coding Scheme

In Table 8.30, the marginal probabilities of X2 are calculated providing the codes

extracted from Table 6.1 concerning discharge faults.

It can be noted fromTable 8.30 that the diagnosis from the IEEE/IECDGA codes

can always bemapped correctly to themaximumvalues of themarginal probabilities

of node X2, regarding the same code combinations extracted from Table 6.1. The

comparisons between the BN outputs and the IEEE/IEC diagnosis are consistent to

each other, which can prove the effectiveness of the IEEE/IEC DGA coding scheme

to some extent and further validate the proposed BN approach.

8.4.2.4 Discussion

The main methodology and advantages of the proposed BN approach are sum-

marised as below:

1. The IEEE/IEC DGA coding scheme can be mapped directly into a BN solution.

2. The derived CPTs of each node are the conditional probabilities to its parent

nodes. Compared with weights and biases for ANN modelling regarding DGA

problems, the CPT representation of each node is more meaningful and intui-

tive. The derived probabilities can greatly help a DGA reviewer identify con-

ditions of a transformer in question with a clear meaning under a firm

mathematical foundation. While using an ANN method, only crisp diagnosis

(either fault or no fault) is produced and the weights of a derived neural net-

work have no physical meanings.

3. The validity of the IEEE/IEC DGA interpretation codes has been proven by

calculating the marginal and joint probability distributions of each type of faults

in Table 8.30. Moreover, the cases, which are unidentifiable by the IEEE/IEC

Table 8.30 Comparisons

between IEEE/IEC and BN

diagnosis

Codes IEEE/IEC Prob. of X2 BNs

[0, 0, 0] Normal X2 [0.82, 0.18, 0.00] Normal

[0, 1, 0] LE-D X2 [0.11, 0.89, 0.00] LE-D

[1, 1, 0] LE-D X2 [0.07, 0.93, 0.00] LE-D

[1, 0, 1] HE-D X2 [0.33, 0.01, 0.66] HE-D

[1, 0, 2] HE-D X2 [0.02, 0.01, 0.96] HE-D

[2, 0, 2] HE-D X2 [0.00, 0.04, 0.96] HE-D

The bold values indicate the maximum values among the three

elements of the probability vectors of x1 and x2.
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DGA interpretation scheme due to missing codes, can be successfully identified

as shown in Table 8.29.

4. Finally, the developed BN approach can be expanded easily to a more complex

graph structure, which is applicable for a variety of engineering applications not

limited in this particular DGA problem.

8.5 Summary

In the first part of this chapter, an ER approach has been developed to assess the

condition of a power transformer, as well as to rank conditions of a group of

transformers for power system maintenance purposes. The methodology of

transferring a transformer condition assessment problem into an MADM solution

under an ER framework is presented. Several solutions to the transformer condi-

tion assessment problem, using the ER approach, are then illustrated highlighting

the potential of the ER algorithm. The details of the computational steps of the

application studies are discussed following the original ER algorithm. Based upon

the outputs of the ER approach, system operators can obtain overall evaluations of

observed units, as well as unit rankings. It can be deduced from the results that the

ER approach is a suitable solution for combining multi-attribute information for

transformer diagnosis purposes.

The second part of this chapter presents a hybrid diagnosis approach to the

analysis of DGA data based upon several traditional DGA methods. The results

demonstrate that the pseudo fuzzy representations of the three traditional DGA

methods perform adequately over a wide range of test values taken from actual

failed transformers, and that the hybrid system can effectively combine the evi-

dence to produce a more meaningful and accurate diagnosis. The test and result

section shows clearly the power of the ER algorithm to combine effectively all of

the available evidence from three DGA diagnosis methods and provide an array of

possible faults, mimicking the logical reasoning process of a DGA reviewer. It also

demonstrates the practicality of using fuzzy membership functions for generating

subjective beliefs in a simple manner using only two mathematical functions. The

potential of this system lies in the fact that whereas other systems treat the problem

as one of classification, ER treats the problem as one of reasoning based upon

DGA data. The flexibility of the tree structure used to make decisions and the

algorithm for combining the evidence means that the system can be extended

easily to encompass new diagnosis techniques by simply adding extra branches

parallel to the ones currently used.

The final part of this chapter describes a BN approach to transformer DGA

interpretations, which is easy to construct and able to interpret with formal

probabilistic semantics. The effectiveness of the IEEE and IEC coding schemes

has been validated using the proposed BN approach, which is also able to handle

the missing codes in the traditional DGA coding scheme. A BN has been created
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to diagnose transformer faults based upon the IEEE/IEC DGA ratio method. An

applicable solution to a transformer DGA problem, using the BN approach, is

illustrated to highlight the potential of BNs. It can be seen from the results that

the proposed approach is capable of tackling the DGA problem for power

transformers as a supportive tool along with the IEEE and IEC DGA coding

scheme.
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Chapter 9

Winding Frequency Response Analysis

for Power Transformers

Abstract Nowadays, FRA has received great attention for transformer winding

condition assessment, which has gradually replaced the conventional LVI method.

It provides higher sensitivity to changes occurring in a transformer winding

compared with the LVI method and can be performed relatively easily on-site. In

this chapter, first the origin of FRA and the definition of FRA transfer functions are

introduced. Two FRA methods, i.e. the impulse response method and the SFRA

method, are presented alongside a typical experimental test setup for FRA. Then a

brief literature review of winding models is given, which can be used for analytical

calculations and circuit simulations for windings. The rest of this chapter focusses

on FRA comparison techniques and the interpretation of frequency response

measurements regarding various types of winding faults.

9.1 Introduction

Power transformers are specified to withstand mechanical forces arising from both

shipping and subsequent in-service events, such as faults and lightening. Once a

transformer is damaged, replacement cost of a large transformer may reach up to

several million pounds in the U.K. If an incipient fault of a transformer is detected

before it leads to a catastrophic failure, the transformer may be repaired on-site or

replaced according to a scheduled arrangement. Therefore, conditions of critical

transformers should be closely and continuously monitored in order to ensure

maximum uptime. As a result, the so-called condition-based maintenance

can reduce risks of forced outages and damages to adjacent equipment of a

transformer.

Transformer in-service interruptions and failures usually result from dielectric

breakdown, winding distortion caused by short-circuit withstand, winding and
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magnetic circuit hot spot, failure of accessories such as OLTCs, bushings, etc.

Winding distortion faults may cause catastrophic failures of transformers such as

dielectric breakdown and short-circuits. A winding deformation fault found in a

scrapped transmission transformer is shown in Fig. 9.1. The research into the field

of winding deformation identification has drawn a great deal of attention over the

past two decades.

The FRA test, first proposed by Dick and Erven [1], is a very sensitive tech-

nique for detecting winding movement faults caused by loss of clamping pressure

or by short-circuit forces. In Fig. 9.2, three frequency response curves of a three-

phase transformer are displayed in a wide range of frequency up to 1 MHz, each of

which represents the FRA samples of one phase of the transformer. Due to dif-

ferent flux paths for the middle and side phases of the transformer, the FRA curves

of two phases are very similar, which are different from that of the other phase as

Fig. 9.1 A winding defor-

mation fault found in a

scrapped transmission

transformer

0 2 4 6 8 10

x 10
5

−60

−50

−40

−30

−20

−10

0

10

20

Frequency(Hz)

M
a
g
n
it
u
d
e
(d

B
)

Fig. 9.2 FRA traces of a

three-phase power

transformer

164 9 Winding Frequency Response Analysis for Power Transformers



observed in Fig. 9.2. Variations in winding frequency responses may reveal a

physical change inside a transformer, e.g. winding movement caused by loosened

clamping structures or winding deformation due to shorted turns. In industrial

practice, FRA is one of the most suitable diagnostic tools that can give an indi-

cation of winding displacement and deformation faults. It can be applied as a non-

intrusive technique to avoid interruptive and expensive operations of opening a

transformer tank and performing oil degasification and dehydration, which can

minimise the impact on power system operations and loss of supply to customers

and consequently save millions of pounds in timely maintenance. Most utility

companies own databases containing historical FRA data for large power trans-

formers. For example, NG regularly tests large transformers using SFRA in a

frequency range up to 10 MHz. By comparing a frequency response measured

during maintenance with a fingerprint measurement obtained at an earlier stage,

FRA is widely employed by utility companies as a comparative method in the low

frequency range of several tens of KHz to 1 MHz. Differences may reveal internal

damages of a transformer, hence inspections can be scheduled for repairing.

However, such a comparative method cannot quantify the change caused by a fault

and reveal the location of the fault. It is, therefore, necessary to develop an

accurate FRA modelling and reliable fault diagnosis approach to interpreting the

physical meaning underneath variations of FRA data, which is with considerable

industrial interest. Furthermore, a diagnosis framework dedicated to FRA is

desirable in order to unify decision-making processes, when incomplete and

imprecise data are involved.

9.2 Transformer Transfer Function

FRA is generally applied to a complex network of passive elements. A transformer

is considered to be a complex network of RLC components, which is represented

by three types of elements, i.e. resistors, inductors and capacitors. Such a dis-

tributed network contains an infinite number of small RLC components. The three

elements are used to represent the resistance of copper windings, inductance of

winding coils and capacitance from the insulation layers between coils, between a

winding and a core, between a core and a tank, between a tank and a winding, etc.

The main objective of FRA is to determine how the impedance of a test trans-

former behaves over a range of applied frequencies. The reactive properties of a

test transformer are dependent upon and sensitive to changes in frequency. Most

transformers produce a very distinct resonance in a specified frequency range. In

the case of transformers, transfer functions are used for winding modelling and

transient studies.

The transfer function of an RLC network is the ratio of the output and input

frequency responses, when the initial conditions of such a network are zero. The

phase relationships and magnitude can be extracted from the outputs of the transfer

function. The idea of FRA for transformer winding condition assessment is based
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on the fact that winding displacement or deformation changes the geometrical

properties of a winding, which are related to its internal capacitive and inductive

parameters. The changes of these parameters consequently alter winding frequency

responses, which can be observed by measuring the transfer function of a winding

[2–6]. In an FRA test, this is the ratio k of the output voltage Uout over the input

voltage Uin, represented as the logarithmic magnitude–frequency responses in

dB–Hz as below:

k ¼ 20 lg
Uout

Uin

�

�

�

�

�

�

�

�

; ð9:1Þ

and u is the phase difference between Uin and Uout, which represents the phase–

frequency response in degrees–Hz as the following:

u ¼ \
Uout

Uin

� �

: ð9:2Þ

9.3 Frequency Response Analysis Methods

There are two FRA test techniques, which inject test signals with a wide range of

frequencies into a specimen. The first one is to inject an impulse into a winding

and the second technique makes a frequency sweep using a sinusoidal signal

source. The former is known as the LVI method and the latter as the SFRA

method.

9.3.1 Low Voltage Impulse

When using the LVI method, an impulse voltage signal is injected into one ter-

minal of a winding. The voltage at another terminal or the current passing through

the winding connecting to the terminal or any of the other windings is measured.

The signals are filtered and sampled in the time domain, which are converted into

the frequency domain using the fast Fourier transformation (FFT) to extract

information at individual frequencies. Finally, a transfer function is derived rep-

resenting the FFT outputs at each frequency point of the measured signals. For

example, an impulse can be applied to the HV terminal and the current at the HV

neutral and the voltage transferred to the LV line terminal can be measured. Two

types of transfer functions can be derived. One is between the HV current and the

applied voltage and the other between the transferred voltage and the applied

voltage.

The advantage of the LVI method is that it is possible to measure several

currents and voltages simultaneously, which can reduce the time of each FRA test.
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However, there are some disadvantages of this method, e.g. noise corruption

during a test, poor resolution at low frequencies and limitation of excitation source

in terms of energy.

9.3.2 Sweep Frequency Response Analysis

The SFRA method can obtain a measurement at each frequency point of interest

by injecting a sinusoidal waveform at a constant magnitude. Then, the magnitude

and phase shift measurements are sampled at predefined frequency points, which

means it is a direct method to get frequency responses without using FFT over a

specified frequency range. However, the SFRA method takes longer to produce a

complete set of measurements compared with the impulse response method.

A network analyser is normally used in industry for an FRA test. Such a test

requires a 3-lead approach, with the leads providing signal, reference and test. In

Fig. 9.3, a typical test connection is shown, which is with the 3-lead approach

using a network analyser. The signal put into a winding is measured to provide a

reference, which is then compared with the signal which emerges at the end of the

winding and is measured by the test lead. This configuration can reduce the effect

of test cables on test results. Each test lead comes with a cable shield ground,

which is connected to the transformer at the base of test bushing to provide a

common ground.

To sum up, the SFRAmethod provides a high signal-to-noise ratio using filtering

to remove broadband noise. On the other hand, the time required to produce a

frequency sweep depends on the frequency resolution and is usually longer than

Reference signal

Output signal

Test signal

Shield grounds

Network analyser

Fig. 9.3 Typical FRA test connection
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that of the impulse response method. Currently, the utility industry prefers to use

the SFRA method, which takes place automatically with a network analyser test set.

9.4 Winding Models Used for Frequency Response Analysis

A wide range of research activities have been undertaken to utilise and interpret

FRA data for winding fault diagnosis, mainly including the development of

accurate winding models and elaboration of FRA measuring systems. In [7]

analytical expressions were used to estimate parameters of a lumped-parameter

model based upon the geometry of a transformer. However, such a lumped-

parameter model is limited in accuracy at the high frequencies from 1 to 10 MHz.

Combinations of transfer functions [8] were employed to interpret the evolution of

frequency responses, which are lack of physical representation regarding trans-

former structures. On the other hand, the theories of distributed parameter systems

and travelling wave in transmission lines offer an appropriate mathematical

foundation to model the propagation process of a voltage signal injected into a

transformer winding. Rudenberg [9] elaborated and extended the travelling wave

theory for lossless transformer winding analysis. In [10], each turn of a winding is

represented as a single transmission line, which makes multi-conductor trans-

mission line models complex to operate in case of analysis of a winding with a

large number of turns. A high frequency power transformer model based on the

finite element method (FEM) was applied in [11] for the accurate estimation of

winding parameters for voltage stress calculations, which suggested that there was

useful FRA information in the high frequency range. This FEM-based transformer

model showed a high degree of accuracy compared with experiment FRA mea-

surements and indicated that high frequency tests were capable of detecting small

winding changes. However, the accurate simulation of high frequency behaviour

of winding above 1 MHz can only be achieved with small sectioning of the above

FEM model, which leads to its essential complexity with large computation time

and complex FEM implementations. A recent study in [12] also demonstrated the

potential for FRA result interpretation in an extend range of frequency up to

10 MHz, which involved simulations with a lumped-parameter model and com-

parisons with field experiments. Apart from the above modelling techniques, the

development of elaborating FRA test systems has also attracted many researchers

to obtain more precise measurements in field conditions by selecting an appro-

priate test configuration.

9.5 Transformer Winding Deformation Diagnosis

Amongst various diagnostic techniques applied to power transformer condition

monitoring, only FRA is the most suitable diagnostic tool employed for reliable
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winding displacement and deformation assessment [13]. In practice, transformer

winding condition assessment is conducted manually by experts or trained on-site

engineers. They mainly tend to use a simple interpretation of measured frequency

responses for transformer winding assessment incorporating ‘‘time-based’’,

‘‘construction-based’’ and ‘‘type-based’’ comparisons of FRA traces [14]. Despite

extensive research on FRA result interpretations [13, 15], the decision-making

procedure with FRA has not yet been formalised. The final diagnosis on the

condition of a transformer winding is mainly made in a subjective manner

depending on expert’s experience [2, 6]. Often the diagnosis is not conclusive

since different experts may give inconsistent judgements with regard to the same

transformer. If it is the case, a transformer winding is inspected directly when

removed out of its tank. Therefore, the effective and consistent combination of the

available transformer diagnoses with the purpose to obtain a balanced overall

condition evaluation is much desired based on collective expertise.

An FRA assessment process is mostly intuitive, since experts have to consider

all available measurement data using cross-comparison techniques and then make

a decision. Therefore, a reasonable idea is to integrate all the information derived

from the available interpretation techniques using a formalised and meaningful

assessment framework, which can produce a balanced overall evaluation. In

another word, decisions made on the basis of each FRA result comparison tech-

nique can be considered as a piece of evidence for the overall assessment of

winding conditions. In this respect, a condition assessment process can be regarded

as an MADM problem. Since subjective diagnoses given by experts are sometimes

imprecise and even incomplete, an ER approach based upon the Dempster–Shafer

theory [16, 17] is utilised in this research for evidence aggregation to integrate

expert’s judgements involving uncertainties.

As mentioned above, changes in resonance frequencies or/and magnitudes are

linked to deviations of inductances or capacitances, which are defined by physical

dimensions of a transformer. Thus, changes in resonances are, in fact, the evidence

used for diagnosis of winding mechanical faults, such as displacement and

deformation. The analysis of frequency response traces was, at the first, attempted

by Dick and Erven [1], who explained winding frequency domain behaviours by

introducing the terms of low, medium and high frequency ranges. Below the

10–20 kHz bound a transformer winding response is dominated by inductive

components, whereas in the medium frequencies from 10–20 kHz to 1 MHz the

combinations of inductances and capacitances cause multiple resonances over

the frequency range. Further raise of frequency leads to the case when distributive

capacitances of a winding tend to shunt winding inductances and resistances in the

2–10 MHz frequency range. Another frequency bandwidth division was proposed

on the basis of experimental case studies, where the relations between different

frequency ranges of an FRA trace and RLC elements of a transformer were

analysed [2, 18]. According to [18, 19], FRA traces can be interpreted based upon

separating frequency responses into four frequency bands being more sensitive to

different winding faults as indicated in Table 9.1, which is adopted in this

research.
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9.5.1 Comparison Techniques

Three comparison techniques are usually practiced in industry for FRA result

interpretation and transformer winding condition assessment, which are introduced

as below.

The ‘‘time-based’’ (reference) comparison (RC) is considered as the most

effective technique for detection of changes in a transformer winding [2]. It

includes a comparison of an FRA trace in hand with a reference response of a

transformer winding, being taken when the transformer is known to be in a normal

condition.

The comparison between FRA results and the corresponding data taken from

other legs in separate tests for a multi-legged transformer is called a ‘‘construction-

based’’ (phase) comparison (PC). This procedure can be implemented only for

certain types of transformers having a ‘‘star’’ phase connection. Owing to the

difference of flux paths for the middle and side phases of a transformer, there are

expected differences between low frequency responses during an open-circuit test.

A short-circuit test [5] is used widely to eliminate the core effect, thereby allowing

the direct comparison of the responses between different phases over low

frequencies.

The third procedure, namely the ‘‘type-based’’ (sister unit) comparison (SUC),

utilises FRA measurements taken from identically designed transformers produced

from the same manufacturer [14]. If poor phase comparisons are shown between

an FRA trace and the trace of the same phase winding of the same type transformer

with respect to resonance frequencies and magnitudes in low and medium fre-

quency ranges, it may indicate potential internal changes of the investigated

transformer winding, knowing the sister transformer winding is normal.

9.5.2 Interpretation of Frequency Response Measurements

In general, a visual cross-comparison of frequency responses aims to detect newly

appeared suspicious deviations of an FRA trace compared with various etalon

responses. The appearance of clear shifts in resonance frequencies or new resonant

points may characterise faulty conditions of a winding. Although FRA is able to

Table 9.1 Sub-band division of frequency responses [18]

Frequency Failure sensitivity

\2 kHz Core deformation, open-circuits, shorted turns and residual

magnetisation

2–20 kHz Bulk winding movement between windings and clamping structure

20–400 kHz Deformation within the main or tap windings

400 kHz–about 1 MHz Movement of the main and tap windings, ground impedance

variations
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detect failure presence within a winding, the classification of different winding

failure modes still demands more research in order to establish standardised cri-

teria. Nevertheless, some general criteria regarding FRA interpretations on

winding conditions can still be extracted, which are summarised below. It should

be noted that although these criteria are rooted on experimental case studies,

reported in various FRA research publications, and frequency response simulations

performed by the authors, they are not conclusive to establish unambiguous

decisions in some occasions.

9.5.2.1 Normal Winding (NW)

The normal state of a winding usually corresponds to a consistent response shape

and resemblance between several responses at cross-comparison. However,

observed in most cases small variations, which may appear due to phase differ-

ences at the ‘‘construction-based’’ (phase) comparison, can be disregarded con-

sidering a corresponding response of a sister transformer.

For instance, consider a 90/33 kV 75 MVA transformer, frequency responses of

which are presented in the form of the transfer function in Eq. 9.2 as shown in

Fig. 9.4. The transformer is in a normal condition after a health inspection. As seen

from the figure, there is a clear repeatability of the trends corresponding to dif-

ferent phases of the transformer in the low and medium frequency ranges up to

600–700 kHz and a slight deviation between phases at higher frequencies.
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Particularly, the phase C response shows the clearest deviations at the last several

resonance points with respect to the other two phases. The concern about the

condition of the phase C winding can be eliminated by comparing two responses

taken from the C phases of the investigated and a normal sister transformer of the

same type due to a good resemblance of the responses, as illustrated in Fig. 9.5.

This is discussed in detail in Sect. 11.4.1 where an example describing the con-

dition evaluation of transformer windings is given.

9.5.2.2 Short-Circuited Turns (SCT)

Experience shows that SCT in a winding can be identified clearly due to distin-

guishable disappearances of the first resonance points at low frequencies associ-

ated with a transformer core, which are also seen at short-circuit test FRA

measurements [5]. Therefore, this fault can be detected easily by using only the

‘‘construction-based’’ (phase) comparison without additional expert analysis or a

comparison with reference responses [20].

9.5.2.3 Clamping Failure (CF)

A CF is rare and may be caused by a bulk winding movement. Available case

studies show clear shifts to the right in low frequency resonances below 20 kHz
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whilst there are no significant variations at higher frequencies compared with sister

unit phase responses [21].

9.5.2.4 Axial Displacement (AD)

Right shifts in medium frequency resonances may indicate potential AD, also

known as axial collapse, of a winding with respect to other transformer windings.

In addition, new resonances may appear at higher frequencies [2, 18, 19, 22].

Similar to a hoop buckling (HB), this failure usually attributes no clear indication

at low frequencies.

9.5.2.5 Hoop Buckling

Severe radial deformation of a winding, known as a HB, leads to a bent winding,

being not broken. These deformation faults normally occur in inner (usually LV)

windings and show significant decrease (shift to left) of the medium frequency

resonance points whilst low frequency open-circuit responses usually indicate no

difference [2, 7]. In addition, short-circuit test results may reveal an increased

input impedance of the damaged phase with respect to other phases of a trans-

former [19, 23].

9.5.2.6 Residual Magnetisation (RM)

As stated in Table 9.1, RM changes a response in the very low frequency region of

open-circuit test measurements of a transformer. This is mainly shown in con-

sistent magnitude deviations with possible slight shifts of low frequency reso-

nances. In contrast, the overall response shape remains consistent compared with

the reference ones [2, 24]. RM does not normally affect responses above 20 kHz,

which can be easily eliminated using core demagnetisation techniques.

9.5.2.7 Poor Grounding (PG)

The connection to ground of measurement cables is very important for obtaining

repeatable and reliable FRA measurements due to its considerable effect on high

frequency responses. Poor cable grounding is normally detected via clear unex-

pected magnitude deviations at higher frequencies compared with other phase

measurements [2, 5]. This could be a tremendous source for misinterpretation of

FRA results [25]. Poor tank grounding is easier to spot since it affects frequency

response measurements of all windings of a transformer [2, 3, 26]. Although, the

last two diagnosis cases, i.e. RM and PG, only affect FRA measurements, and do

not indicate any change in a winding, their presence may lead to misinterpretation
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of FRA results. Therefore, these diagnoses need to be taken into account during an

FRA assessment.

9.6 Summary

FRA is one of the most sensitive tests for winding deformation and displacement

faults. The existing FRA tests include the SFRA test and the LVI test. Three trace

comparison techniques are employed widely for FRA result interpretation, which

require trained experts to interpret measured FRA traces in a subjective manner.

Based upon the trace comparison techniques, difference between baseline traces

and newly measured traces may indicate a winding fault. A number of general

criteria regarding FRA interpretations have been summarised in this chapter,

including NW, SCT, CF, AD, HB, RM and PG. These fault types will be used in a

later chapter for evidence-based winding condition assessment. In addition, several

well-known winding models are introduced briefly, which can provide accurate

analytical calculations and circuit simulations to represent transformer windings.
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Chapter 10

Winding Parameter Identification Using

an Improved Particle Swarm Optimiser

Abstract Among various transformer winding models, the lumped-element

model is the most commonly used, as it gives a satisfactory representation of a real

transformer. This chapter is concerned with a model-based approach to identifying

distributed parameters of the lumped-element winding model using an improved

particle swarm optimiser (PSO) technique. A simplified circuit of the lumped-

element model is developed to calculate frequency responses of transformer

windings in a wide range of frequency domain. In order to seek optimal parameters

of the simplified winding circuit, a particle swarm optimiser with passive con-

gregation is employed to identify model parameters based on frequency response

samples. Simulations and discussions are presented to investigate the potential of

the proposed approach.

10.1 Introduction

As discussed in Chap. 9, in practice, FRA (frequency response analysis) is usually

considered as a comparative technique. Using statistical analysis methods, an FRA

trace is compared with an FRA baseline or a selected FRA reference trace, and

poor FRA comparisons may indicate a winding fault. For instance, a root mean

square (RMS) method can be employed to calculate the difference between two

frequency response curves, i.e. a reference trace and a trace of interest. A set of

factors derived from the RMS method can provide indications of winding faults.

However, it is difficult to quantify a fault severity level and further to locate a fault

according to the RMS factors. In this chapter, a model-based approach using an

evolutionary algorithm is developed to tackle the above problems. This approach

treats an FRA interpretation process as a model-based evaluation process, the main

problem of which is to identify accurately winding model parameters to detect a
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fault and predict failure tendencies for a transformer. It is considered in this study

that, if variations of distributed parameters of a transformer can be quantified, a

diagnostic procedure can then be implemented based on the assessment of the

identified parameters for fault diagnosis purposes.

In this chapter, an improved particle swarm optimiser (PSO), namely PSOPC

(particle swarm optimiser with passive congregation), is employed to identify the

parameters of a ladder networkmodel for representing a power transformer winding.

With the use of PSOPC, the distributed parameters of the ladder network model can

be identified based on FRA measurements with a faster convergence rate. The

derived distributed parameters can be further utilised to detect winding deformation

faults. Simulation results and discussions are addressed at the end of this chapter.

10.2 A Ladder Network Model for Frequency

Response Analysis

It is well known that there is a direct relationship between the geometric configu-

ration of a winding and a core in a transformer and the distributed network of

resistances, inductances and capacitances that make it up. In a wide range of

frequency domain (2 kHz\ f\ 2 MHz, where f denotes frequency), a transformer

winding behaves as a complex ladder type network consisting of a series of

inductances, capacitances, resistances and conductances. For a transformer winding

with n sections, a simplified equivalent circuit, which was first proposed in [1], is

shown in Fig. 10.1, where Ln denotes the winding inductance per section, Cn the

ground capacitance per section, Cb the busing capacitance, Kn the series capaci-

tance per section, Ri the input impedance, Ro the output impedance and Vs the input

voltage source. The distributed parameters of a ladder RLC network can be

determined through experiments or based on its frequency-dependent responses.

In industrial practice, an FRA test measures frequency responses of a winding

at each frequency point of interest. An excitation voltage source, i.e. Vs, generates

a sinusoidal waveform at a constant magnitude, which is applied to the test ter-

minals of a winding. Since the source magnitude is constant and can be maintained

for a specified amount of time, designated digitisers have ample time to adjust their

gain settings, resulting in higher dynamic range performance. As mentioned above,

n
L

1L

oR
bC

2L

1C 2C
n

C3C 1+n
C

1K 2K n
K

iR

sV

Fig. 10.1 A ladder network model for representing a transformer winding
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FRA is applied to the complex network of passive elements, which is depicted in

Fig. 10.1. In order to calculate frequency responses of the lumped-element circuit,

the ladder network model is transferred into a circuit nodal graph as shown in

Fig. 10.2. The derived nodal graph contains n ? 1 nodes and m branches

(m = 3n ? 1), which is mapped directly to a winding with n sections with respect

to the RLC circuit illustrated in Fig. 10.1.

By applying circuit nodal analysis principles, the voltage of each node in

Fig. 10.1 is calculated with the following equation:

U ¼ G�1I ð10:1Þ

where U is the node voltage vector, G the node conductance matrix and I the

excitation current vector, i.e. I ¼ ½�Vs=Ri; 0; . . .; 0�
T
. The structure and the number

of winding sections of the RLC circuit model can be varied to mimic a real

transformer through programming. It is obvious that such a model can be used for

transformer FRA simulations, distortion location analysis and other relevant

research regarding transformer windings. On the basis of Eq. 10.1, the established

ladder network model is employed to simulate frequency responses of a trans-

former winding in the next section.

10.3 Model-Based Approach to Parameter Identification

and Its Verification

10.3.1 Derivation of Winding Frequency Responses

The main goal of FRA is to measure the impedance Z(jx) of a test transformer,

where jx denotes the presence of a frequency-dependent function and x equals

2pf. Since a FRA test uses a resistance Ro to match a measuring system, the output

1 2 3 nn-1n-2

n+1

1 2 n-2 n-1

n n 3-21+ n 2 -2n

2 -1n 2n 2 +1n 3 -4n 3 -3n 3 -2n

3 -1n 3n 3 +1n

Fig. 10.2 Circuit nodal graph of a ladder network model
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resistance Ro must be incorporated into the calculation of frequency response

H(jx). The relationship between Z(jx) and H(jx) is shown in Eq. 10.2:

HðjxÞ ¼
Uout

Uin

¼
Ro

ZðjxÞ þ Ro

: ð10:2Þ

The preferred method for illustrating H(jx) graphically is to use a Bode diagram,

which plots the magnitude as 20log10(H(jx)). Therefore, the unit of the derived

frequency responses is decibel (dB), which is the output of the lumped-element

model for model optimisation discussed in the next subsection.

As known, the distortion level of a winding distortion fault should be carefully

assessed before removing a transformer from service to avoid an unnecessary

outage. At present, there is not an effective method to scale and locate a winding

distortion fault in the current industry practice. In the proposed model-based

approach, it is considered that if prior-fault and post-fault parameters of a trans-

former model are known, the position and degree of a distortion fault may then be

determined. Therefore, the proposed technique is employed to search optimal

winding parameters by minimising the difference (i.e. fitness) between original

frequency responses and simulated model outputs using PSOPC.

10.3.2 Fitness Function Used by PSOPC

The PSOPC is employed to identify model parameters to achieve the minimum

fitness; hence, the outputs of the simplified circuit model have satisfactory

agreements with the original frequency responses. Before implementing PSOPC

and searching optimal parameters for the lumped-element model, a fitness function

and other relevant parameters of a PSOPC programme should be defined. In this

particular task, the errors between the original responses and the model outputs are

defined as fitness. Thereby, for each individual (particle) of a population in

PSOPC, its total fitness value is given as follows:

min
X

N

i¼1

kuoi � aðGÞ�1
Ik; ð10:3Þ

where uoi 2 R
1�n is the original frequency response, a 2 R1�n is a vector, i.e.

a = [0,...,0,1] and N is the number of original FRA samples involved for PSOPC

optimisation.

10.4 Simulations and Discussions

In order to implement the proposed approach to determining the parameters of the

lumped-element model with PSOPC learning, simulations and optimisations are
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implemented in MATLAB. Firstly, a simulated FRA test is carried out to generate

frequency responses of the lumped-element model. The distributed parameters of

the lumped-element model are predefined for simulation purposes. Then, the

parameters of the lumped-element model are identified using PSOPC based on the

simulated frequency responses. Results and discussions are addressed at the end of

this section.

10.4.1 Test Simulations of Frequency Response Analysis

When a transformer is subjected to a real FRA test, the leads are configured in such

a manner that four terminals are used. These four terminals can be divided into two

unique pairs, one pair for the input and the other pair for the output. These

terminals can be modelled in a two-terminal pair or a two-port network configu-

ration. The following procedures are used to simulate a real FRA test:

1. According to the construction knowledge of a real transformer, the parameters

of the lumped-element circuit are preset as Ln = 105 mH, Kn = 100 lF and

Cn = 100 lF for each section of a winding. The number of winding sections is

selected as 10 for an illustration purpose.

2. After the pre-definition of model parameters and its structure, a sinusoidal

waveform at a constant magnitude 1.0 is applied to the simplified circuit as an

input source at frequencies varying from 20 Hz to 1 MHz. Then, the magnitude

of the generated frequency responses are recorded as data set a derived from

Eqs. 10.1 and 10.2, which is employed as training targets for PSOPC

optimisation.

10.4.2 Winding Parameter Identification

Based on the simulated data set a, PSOPC is utilised to identify winding param-

eters, which represent a lumped-element winding model with frequency responses

close to data set a. The generation number of PSOPC is set as 50, and its fitness

function is defined as Eq. (10.3). The following steps describe the PSOPC opti-

misation procedures:

1. To produce simulated frequency responses by feeding the frequency data and

voltage source of data set a to the RLC circuit model with 10 sections repre-

senting a winding, the parameters of the circuit model are to be identified using

PSOPC.

2. The optimisation procedures follow the PSOPC algorithm listed in Table 2.3.

3. When the optimisation termination criterion is reached, the model outputs and

data set a are compared to verify the effectiveness of the proposed approach.
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10.4.3 Results and Discussions

In Fig. 10.3, the original frequency response trend and the calculated frequency

response trend using the parameters identified by PSOPC are displayed for a

comparison. During optimisation, the fitness did not decrease after 50 genera-

tions, and there were still deviations between the two trends at the lowest peak

point. The total fitness was 430 with respect to 400 sets of data. It is noted that

the model output frequency response curve using the parameters identified by

PSOPC learning is very close to the original responses of data set a. The

identified parameters using PSOPC are Ln = 0.939 9 105 mH, Kn = 97.5 lF

and Cn = 96.5 lF, which are fairly close to the preset values. The results

demonstrate that the proposed approach can find an accurate solution from a

simulated FRA data set.

In comparison, an SGA is also utilised to identify the distributed parameters of

the simulated winding model with data set a following the GA algorithm listed in

Fig. 5.5. However, the obtained results are not satisfactory regarding the differ-

ence between data set a and the model outputs with GA learning. It is deduced

that, PSOPC has a comparable or an even superior search performance for some

hard optimisation problems with faster convergence rates [2], compared with other

stochastic optimisation methods, such as SGA. In PSOPC, particles fly around in a

multidimensional search space. During a flight, each particle adjusts its position

according to its own experience and the experience of a neighbouring particle. The

actions taken by each particle make use of the best position encountered by itself

and its neighbour. Thus, PSOPC can combine local search methods with global

search methods, which attempts to balance exploration and exploitation. It is

summarised after a comparison study between the PSOPC learning and the SGA

simulation in this research as follows:

1. An advantage of PSOPC is that GAs have at least four parameters, i.e. mutation

probability, crossover probability, selection probability and maximum gener-

ations, to be tuned; in comparison, PSOPC has only two parameters to adjust,

i.e. inertia weight and maximum generations, that makes it particularly

attractive from a practitioner’s point of view.
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2. Simulations have been carried out using both the SGA and the PSOPC for

parameter identification, which employ the same fitness function and the same

data extracted from data set a. With regard to a predefined fitness, PSOPC has

shown a faster convergence rate than that of SGA in this particular task.

10.5 Summary

In summary, a model-based approach has been developed in this chapter to

determine the parameters of a lumped-element winding model using PSOPC. A

circuit nodal analysis technique has been applied to construct a generic model for

transformers with variant winding sections. The PSOPC learning has delivered a

satisfactory performance during optimisation based upon original FRA targets.

Compared with other parameter estimation techniques, the proposed PSOPC has

the advantages of a fewer parameters to adjust, a faster convergence rate and more

local searches. There is a slight difference between the identified parameters and

the preset parameters, which is negligible in a practical sense. It can also be

deduced that the proposed approach is applicable and practical, which can be

utilised for fault identification and trend analysis for detecting winding deforma-

tion faults. In addition, as the proposed approach has a simple form and a clear

physical meaning, it holds significant potential for accurate condition assessment

of transformer windings.
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Chapter 11

Evidence-Based Winding Condition

Assessment

Abstract A winding condition assessment process using FRA can be treated as an

MADM problem by combining subjective and quantitative evidence. In this

chapter, first an FRA assessment process is introduced briefly, which is then

mapped into an MADM problem under an ER framework adopted for winding

condition assessment. Subsequently, several examples of transformer winding

condition assessment problems are presented using two ER evaluation analysis

models, where the potential of the ER approach in combining evidence and dealing

with uncertainties is demonstrated. In the case when more than one expert is

involved in an FRA assessment process, the developed ER framework can be used

to aggregate subjective judgements and produce an overall evaluation of the

condition of a transformer winding in a formalised form.

11.1 Knowledge Transformation with Revised Evidential

Reasoning Algorithm

As mentioned in Sect. 9.5, a winding condition assessment process using FRA

can be considered as an evidence combination process, which depends largely on

experts’ experience. Usually, an expert makes a decision based upon all available

information in hand and analyses it using cross-comparison techniques. However,

there is no formalised framework established for implementing winding condi-

tion assessment, and uncertainties could be arising from a decision-making

process. In addition, reference responses from the same phase of a transformer

are usually unavailable in most cases [1], which increases uncertainties during

assessment.

As discussed in Sect. 3.2, the ER approach provides a mathematical framework

for combining uncertain information such as expert’s subjective judgements.
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By considering each piece of information as a piece of evidence either supporting

or denying a hypothesis, which corresponds to a winding fault type derived with

FRA, the validity of all possible hypotheses can be calculated [2]. Considering a

set of possible winding faults as listed in Sect. 9.5.2, a set of common hypotheses

(evaluation grades) H is defined for an FRA assessment process with the revised

ER as follows:

H ¼ fNW; SCT; RM; CF; HB; AD; PGg: ð11:1Þ

To describe a vague or imprecise information during fault diagnosis, an expert

may use probabilities of a particular condition presence of a winding to make a

decision, e.g. 50% chance that a transformer winding is Normal and 40% that the

winding has suffered from or is currently with a Hoop Buckling failure. These

probabilities are referred as degrees of belief and play an important role in an ER

algorithm. Note that the above assessment example is incomplete as the total

degree of belief is 50% ? 40% = 90%, which is less than 100%. The missing

10% in such an assessment process represents the degree of uncertainty in expert’s

judgements. In this chapter, the revised ER algorithm is employed to deal with

such uncertainties illustrated with two typical winding diagnosis examples.

11.2 A Basic Evaluation Analysis Model

Having defined a set of evaluation grades, a decision process of FRA assessment

can be represented by a basic evaluation analysis model as shown in Fig. 11.1,

which consists of three levels: general attributes Y, evaluation grades H and basic

attributes E. Concerning FRA of transformer windings, only one general attribute y

is considered. This is the overall evaluation of the condition of the investigated

transformer winding (windings), which is supported by a set of basic attributes E

comprising the subjective judgements derive from the diagnoses of RC (e1), PC

(e2) and SUC (e3), i.e. the reference, phase and sister unit comparisons, respec-

tively, as introduced in Sect. 9.5.1.

RC SUCPC
1 2 3e e e

1 53 72 64

Overall
Evaluation

y

Attribute
Level

Evaluation
Grade Level

BasicAttribute
Level

Fig. 11.1 A basic evaluation

analysis model for trans-

former winding assessment

using FRA
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In the basic attribute level, an expert, with regard to available FRA data, for-

mulates a unique evaluation for each of the attributes using the predefined H of

evaluation grades. For instance, suppose that reference responses are unavailable

at the time and on the basis of PC an expert suggests that there is a 50% possibility

that a transformer has Residual Magnetisation of its core and a 50% belief that its

winding is Normal. At the same time, the expert is 80% sure that the winding is

Normal based on SUC. If these evaluations for each basic attribute are considered

as the evidence of diagnostic information then, by combining them, an overall

evaluation or diagnosis on the transformer winding condition can be made. In this

way, a transformer winding condition assessment problem is represented in the

form of a basic evaluation analysis model as shown in Fig. 11.1. The core of the

model is the ER algorithm [3, 4], which is used to aggregate attributes in order to

derive a balanced overall assessment, and the revised ER algorithm is employed in

this chapter as introduced in Sect. 3.2.2.

11.3 A General Evaluation Analysis Model

Since there are no universally recognised quantitative criteria being established for

an FRA assessment, more than one expert could be involved to provide an

RCRC SUC SUCPC
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Fig. 11.2 A general evaluation analysis model for transformer winding assessment using FRA
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independent evaluation using available frequency responses. In that case an overall

evaluation has to be a result of combination of all the experts’ judgements.

Therefore, the assessment process can be regarded as a multilevel hierarchical

analysis model, i.e. a general evaluation analysis model, which is shown in

Fig. 11.2. The FRA assessment, thus, becomes a hierarchical analysis problem,

where a high level attribute is assessed through associated lower level attributes.

For instance, the overall diagnosis y1 from K experts is obtained by combining the

expert’s subjective judgements fk, (k = 1,. . .,K), as in the composite attribute

level. Each subjective judgement fk is calculated via the individual consideration

of the corresponding basic attributes ek1, ek2 and ek3 in the form of the basic

evaluation analysis model.

11.4 Results and Discussions

11.4.1 An Example Using the Basic Evaluation Analysis Model

Consider a simple example for evaluating the HV winding condition of a 90/33 kV

75 MVA power transformer using the revised ER algorithm considering phase and

sister unit comparisons. No reference frequency responses are available in this

example.

According to the basic evaluation analysis model defined in Sect. 11.2, a

winding assessment problem is basically a combination of subjective decisions

derived from three different types of comparisons, i.e. RC, PC and SUC com-

parisons, as introduced in Sect. 9.5.1. All the three techniques have to be assigned

by normalised weights, which reflect their relative importance during an FRA

assessment process.

In general, the reference comparison is considered as the most reliable method

for FRA assessment [5, 6, 7]. However, when reference responses are not avail-

able, the phase response comparison or sister unit response comparison methods

are employed instead. With regard to FRA result interpretations, Ryder [5]

emphasised the slight advantage of PC over SUC. On the other hand, based on the

extensive field experience Doble researchers suggest the sister unit comparison

method [6] is a more beneficial technique. Since the relative importance ranking of

these comparative techniques needs further investigations, both the methods are

assumed to be of almost equal importance with a slightly higher importance of

SUC in this example for illustrative purposes only.

Ranking the above three comparison methods, on the basis of Table 8.3 and the

AHP method for weight determination given in Sect. 8.2.3, a general comparison

matrix, in the form of (8.11), can be formed as below:

A ¼
1=1 4=1 3=1
1=4 1=1 1=2
1=3 2=1 1=1

2

4

3

5; ð11:2Þ
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for attributes e1, e2 and e3 of the basic evaluation analysis model shown in

Fig. 11.1. Consequently, the corresponding relative weights are derived as

x1 = 0.6232, x2 = 0.1373 and x3 = 0.2395.

Consider Figs. 9.4 and 11.3, where the comparisons of phase responses of the

investigated transformer are presented using the log and linear scales for more

detailed analysis of the frequency responses at low and high frequencies,

respectively. Overall, the log scale phase comparison in Fig. 9.4 gives no clear

unexpected deviations between phases in the low and medium frequency diapa-

sons. However, as pointed out in Sect. 9.5.2, one may observe clear variations

between the C phase and the other two phases at high frequencies, appearing to be

different from the others, which is also confirmed by the linear scale comparison in

Fig. 11.3. This, at the first glance, can be assumed to be due to a specific winding

design or, in some cases, poor grounding measurements.

Therefore, the same type and capacity sister unit with a successive serial

number, having been assumed to be in a good condition, was also tested and its

responses are taken into account to determine the overall diagnosis for the suspect

unit. As seen in Fig. 11.4, the sister unit, assumed to be in a good condition,

possesses similar variations at high frequencies between phase responses similar to

the investigated transformer. This is an indication that the variations are likely to

be related to specific design features [8].

In addition, a direct comparison of the two C phase responses of both the

suspect and sister units shows good resemblance without unexpected deviations as

shown in Figs. 9.5 and 11.5 using the log and linear frequency scales, respectively.

The most distinguishable high frequency variations can be attributed to minor

construction differences between the two transformers.
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Under the developed ER framework, the subjective judgements for the phase

and sister unit comparisons can be represented, for instance, by the following

distributions of degree of beliefs as defined in Eq. 3.29 using the evaluation grades

as in Eq. 11.1:
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SðPCÞ ¼ fðNW; 0:75Þ; ðPG; 0:15Þg;

SðSUCÞ ¼ fðNW; 0:95Þg;
ð11:3Þ

where only grades with nonzero degrees of belief are listed in the distributions.

Note that subjective judgements in (11.3) are incomplete as discussed in

Sect. 11.2. The assessment example is summarised in the decision matrix in

Table 11.1, where the belief values for RC are assigned as zeros due to the

unavailability of the reference (time-comparison) responses.

The objective of the evaluation problem is to obtain the overall diagnosis

y using the available subjective judgements of e1, e2 and e3, which constitute the

bottom level of the basic evaluation analysis model for FRA assessment.

Following the revised ER algorithm, presented in Sect. 3.2.2.2, basic probability

masses are calculated using (3.30) and (3.31). Then by employing the recursive

Eqs. 3.32–3.35 the combined probability masses for the three basic attributes are

obtained. Finally, with aid of Eqs. 3.36 and 3.37 combined degrees of belief are

derived and the overall assessment for the transformer winding condition is

derived as the following distribution of degree of beliefs with regard to FRA

diagnoses:

SðOverall ConditionÞ ¼ SðRC� PC� SUCÞ ¼ fðNW; 0:39Þ; ðPG; 0:0216Þg:

ð11:4Þ

In other words, there is a 39% probability that the transformer windings (and the C

phase winding in particular) are in a normal condition and about 2.1% chance that

there is Poor Grounding during the FRA test. However, from these results the

remaining unassigned belief is 1 - (0.39 ? 0.0216) = 0.5884, i.e. a 58.84% of

uncertainty in the final diagnosis. The relatively low probability of 39% for the

Normal Winding condition and the large degree of uncertainty is explained by the

fact that the responses for RC are not available and, therefore, the corresponding

subjective judgements, which equals to zero, are included in the evaluation process

as illustrated in Table 11.1.

Table 11.1 Subjective judgements for winding condition assessment of a 90/33 kV 75 MVA

power transformer using the basic evaluation analysis model

Degree of belief ðbÞ Weights ðxÞ Hypotheses (evaluation grades)

NW (H1) SCT (H2) RM (H3) CF (H4)

Basic attributes RC (e1) 0.6232 0.0 0.0 0.0 0.0

PC (e2) 0.1373 0.75 0.0 0.0 0.0

SUC (e3) 0.2395 0.95 0.0 0.0 0.0

Degree of belief (b) Weights (x) Hypotheses (evaluation grades)

HB (H5) AD (H6) PG (H7)

Basic attributes RC (e1) 0.6232 0.0 0.0 0.0

PC (e2) 0.1373 0.0 0.0 0.15

SUC (e3) 0.2395 0.0 0.0 0.0
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However, if only the two basic attributes, PC and SUC, are considered without

taking into account zero estimates for RC, the relative weight x1 = 0 and,

therefore, the first column and row of matrix (11.2) are eliminated. Thus, the

corresponding relative weights are calculated using the reduced matrix (11.5)

A ¼
1=1 1=2
2=1 1=1

� �

; ð11:5Þ

where x2 = 0.3333 and x3 = 0.6667. The final transformer assessment, using the

reduced comparison matrix, gives the following distribution of degree of beliefs

with regard to FRA diagnoses:

SðOverall ConditionÞ ¼ SðPC� SUCÞ ¼ fðNW; 0:8960Þ; ðPG; 0:0267Þg; ð11:6Þ

illustrating an unassigned degree of belief of 0.0773 due to uncertainty in the

expert’s judgement. Thus, with about 39% and 89.6% probabilities of the Normal

Winding condition in both the cases, it can be assumed that the transformer

windings are most likely to be healthy.

11.4.2 Aggregation of Subjective Judgements Using the General

Evaluation Analysis Model

In order to analyse a more general case when several experts are involved in an

FRA assessment process, a complex diagnosis example is illustrated below.

Suppose a transformer winding assessment task is carried out by three experts and

their subjective judgements are listed in Table 11.2. The information is provided

by the experts using the comparison techniques as discussed in the previous

example and contains uncertainties. The assessment process can be represented

using a general evaluation analysis model in Fig. 11.2 with three experts involved,

i.e. K = 3.

Table 11.2 Generalised decision matrix for winding condition assessment using the general

evaluation analysis model

General Composite Basic Hypotheses (evaluation grades)

Attribute levels NW SCT RM CF HB AD PG

Overall evaluation y1 Expert 1 (f1) x1 RC (e11) x11 0.15 0.0 0.1 0.3 0.4 0.0 0.0

PC (e12) x12 0.2 0.0 0.0 0.2 0.35 0.1 0.0

SUC (e13) x13 0.2 0.0 0.0 0.3 0.3 0.0 0.0

Expert 2 (f2) x2 RC (e21) x21 0.3 0.0 0.0 0.25 0.3 0.1 0.0

PC (e22) x22 0.4 0.0 0.0 0.1 0.2 0.1 0.0

SUC (e23) x23 0.35 0.0 0.0 0.2 0.3 0.05 0.0

Expert 3 (f3) x3 RC (e31) x31 0.2 0.0 0.1 0.3 0.4 0.0 0.0

PC (e32) x32 0.3 0.0 0.05 0.3 0.2 0.1 0.0

SUC (e33) x33 0.3 0.0 0.0 0.3 0.3 0.1 0.0
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The relative importance of the combined experts’ judgements (composite attri-

butes fk, k = 1,2,3) is assumed to be equal, which is represented by weight xk for

the kth expert. Moreover, the weights of the basic attributes xki (i = 1,2,3), being

associated with the corresponding composite attribute fk of the model, are assumed

to be the same as in the previous example in Sect. 11.4.1. Thus,

x1 ¼ x2 ¼ x3 ¼ 0:3333; x11 ¼ x21 ¼ x31 ¼ 0:6232;

x12 ¼ x22 ¼ x32 ¼ 0:1373; x13 ¼ x23 ¼ x33 ¼ 0:2395:
ð11:7Þ

Since the assessment process is a multilevel hierarchical analysis problem, the

first step of the ER analysis is to obtain the combined subjective judgements for

each expert as discussed in the previous example. The calculated experts’ com-

bined assessments f1, f2 and f3 are then aggregated to produce an overall evaluation

y1 as the overall transformer winding condition. The results are summarised in an

evaluation matrix listed in Table 11.3.

As seen from the evaluation matrix, there is a large probability of 37.11% that

the transformer winding is Hoop Buckled and a 27.8% chance of a Clamping

Failure occurred. On the other hand, there is a 23.43% chance that there is no fault

in the winding. In addition, there are small possibilities of Residual Magnetisation

and Axial Displacement occurred. These results also imply a 3.87% of uncertainty

in the diagnosis. As a result, it is more likely that the transformer experienced a

winding deformation or a construction failure. Thus, it can be concluded that the

winding of the investigated unit needs to be inspected.

The above two examples demonstrate that the revised ER algorithm used for

FRA assessment is a simple and meaningful approach compared with the original

ER algorithm in terms of computational complexity. The overall assessment of the

studied transformer windings is presented as probability distributions of the

occurrence of various failure conditions, which unifies and simplifies a decision-

making process.

11.5 Summary

In this chapter an ER-based approach to transformer winding condition assessment

is proposed to formalise winding evaluation processes using FRA. The proposed

Table 11.3 Evaluation matrix for winding condition assessment using the general evaluation

analysis model

Attributes Hypotheses (evaluation grades)

NW SCT RM CF HB AD PG

Expert 1 (f1) 0.1593 0.0 0.0711 0.2965 0.3954 0.0072 0.0

Expert 2 (f2) 0.3298 0.0 0.0 0.2259 0.2962 0.0871 0.0

Expert 3 (f3) 0.2239 0.0 0.0744 0.3047 0.3733 0.0204 0.0

Overall evaluation y1 0.2343 0.0 0.0438 0.2780 0.3711 0.0340 0.0
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ER framework is able to uniformly describe expert’s subjective judgements with

regard to various FRA comparison techniques. This aims to provide a balanced

overall condition evaluation based upon collective expertise when one or more

experts are involved. As the expert’s subjective judgements are often incomplete

and inconclusive, the revised ER algorithm is suitable to aggregate such original

subjective judgements involving nonlinear relationships to determine the impact of

uncertainty on an overall FRA assessment. The two examples have demonstrated

the implementation process of the developed approach to ER-based condition

assessment for transformer windings. Due to its open architecture, the ER eval-

uation analysis models can be flexibly adjusted to include new interpretation

features and techniques. In conclusion, it is deduced that the proposed ER

approach holds a potential for the formalisation of FRA condition assessment

procedures concerning transformer windings, although much research is required

to be carried out to obtain more reliable interpretation features with regard to

different FRA diagnoses. This can lead to more reliable initial subjective judge-

ments of experts.
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Appendix:

A Testing to BS171 for Oil-immersed

Power Transformers

Routine tests

All large oil-immersed power transformers are subjected to the following

tests:

1. Voltage ratio and polarity.

2. Winding resistance.

3. Impedance voltage, short-circuit impedance and load loss.

4. Dielectric tests.

a. Separate source AC voltage.

b. Induced over-voltage.

c. Lightning impulse tests.

5. No-load losses and current.

6. On-load tap changers, where appropriate.

Type tests

Type tests are tests made on a transformer which is representative of other

transformers to demonstrate that they comply with specified requirements not

covered by routine tests.

1. Temperature rise test.

2. Noise level test.
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Special tests

Special tests are tests, other than routine or type tests, agreed between a

manufacturer and a purchaser, for example:

1. Test with lightning impulse chopped on the tail.

2. Zero-sequence impedance on three-phase transformers.

3. Short-circuit test.

4. Harmonics on the no-load current.

5. Power taken by fan and oil-pump motors.
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