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Preface

In the past two decades, scientists across diverse fields have been trying to identify
the underlying mechanisms of networked systems. Biologists use networks to study
the working and wiring of transcriptional regulatory circuits. Sociologists use net-
works to predict the behavior of techno-social systems. Physicists use networks to
model and predict the emergence of behavior norms, and use quantitative methods
to analyze the resulting networked systems. Across different fields, network scien-
tists are making a dramatic progress and pushing network analysis to its limits. In
engineering, researchers study how to assemble and coordinate individual physi-
cal devices into a coherent whole to perform a common task. This gives rise to a
very active and exciting research field—multi-agent systems. With numerous civil-
ian, homeland security, and military applications, multi-agent systems place high
demands on features such as low cost, high adaptivity and scalability, increased
flexibility, great robustness, and easy maintenance. To meet these demands, the cur-
rent trend is to design distributed algorithms that rely on only local interaction to
achieve global group behavior.

This book introduces emergent problems, models, and issues in distributed co-
ordination of multi-agent networks. These problems, models, and issues represent
some emergent research directions in the field of multi-agent systems. Emergent
problems include collective periodic motion coordination, collective tracking with
a dynamic leader, and containment control with multiple leaders. These problems
extend the existing application domains of multi-agent networks. In particular, col-
lective periodic motion coordination is appropriate for applications involving agent
networks with repetitive movements, collective tracking guarantees tracking of a dy-
namic leader by multiple followers in the presence of reduced interaction and partial
measurements, and containment control enables maneuvering of multiple followers
by multiple leaders. Emergent models include networked Lagrangian systems and
networked fractional-order systems. These models result from physical constraints
or complex environments in which multi-agent systems operate. In particular, La-
grangian models represent a class of mechanical systems including autonomous ve-
hicles, robotic manipulators, and walking robots, and fractional-order models are
more realistic representations of systems operating in complex environments than

vii
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integer-order models. Emergent issues include the sampled-data setting, optimality
aspect, and time delay. These issues are realistic and important in real-world appli-
cations. In particular, the sampled-data setting is relevant when agents interact with
their neighbors intermittently rather than continuously, the optimality aspect plays
an important role in designing energy-efficient algorithms, and the time delay effect
is inevitable in networked systems.

This book is divided into four parts. The first part introduces preliminaries
(Chap. 1) and overviews recent research in distributed multi-agent coordination
(Chap. 2). The second part introduces emergent problems in distributed multi-agent
coordination, namely, collective periodic motion coordination (Chap. 3), collec-
tive tracking with a dynamic leader (Chap. 4), and containment control with mul-
tiple leaders (Chap. 5). The third part introduces emergent models in distributed
multi-agent coordination, namely, networked Lagrangian systems (Chap. 6) and
networked fractional-order systems (Chap. 7). The fourth part introduces emer-
gent issues in distributed multi-agent coordination, namely, sampled-data setting
(Chap. 8), optimality aspect (Chap. 9), and time delay (Chap. 10). We maintain a
website http://www.neng.usu.edu/ece/faculty/wren/book/coordination at which can
be found sample simulation and experimental videos and other useful materials as-
sociated with the book.

The results in this book would not have been possible without the efforts and
support of our colleagues and students. In particular, we are indebted to Profes-
sors Randal Beard, Timothy McLain, Ella Atkins, Zongli Lin, Magnus Egerstedt,
Zhihua Qu, Todd Moon, YangQuan Chen, and Yan Li for their constant support
and professional inspirations. We also acknowledge all members of the Coopera-
tive Vehicle Networks (COVEN) Laboratory at Utah State University, especially,
Ziyang Meng, Jie Mei, and Fei Chen for their efforts. In particular, Ziyang Meng
contributed to Chap. 10, Jie Mei contributed to Sect. 6.3, and Fei Chen contributed
to Sect. 5.4. We are thankful to our editor Oliver Jackson for his interest in our
project and his professionalism. In addition, we acknowledge IEEE, Elsevier, John
Wiley & Sons, and Taylor & Francis for granting us the permission to reuse ma-
terials from our publications copyrighted by these publishers in this book. Finally,
we gratefully acknowledge the support of our research on distributed multi-agent
coordination by the National Science Foundation under CAREER Award ECCS–
0748287, Computer Systems Research (CSR) Grant CNS–0834691, and Energy,
Power, and Adaptive Systems (EPAS) Grant ECCS–1002393.

Utah State University, Logan, Utah Wei Ren
Yongcan Cao

http://www.neng.usu.edu/ece/faculty/wren/book/coordination
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Preliminaries and Literature Review



Chapter 1

Preliminaries

This chapter introduces notations used in the book, algebraic graph theory back-
ground, algebra and matrix theory background, linear and nonlinear system theory
background, nonsmooth analysis background, and time-delay system theory back-
ground.

1.1 Notations

≡ identically equal
△
= defined as
∀ for all
∃ if there exists
=⇒ implies
∈ belongs to
/∈ does not belong to

⊂ a strict subset of
⊆ a subset of
	→ maps to⋃

union⋂
intersection

\ excludes
∅ empty set
→ tends to∑

summation∏
left product

⊗ Kronecker product
max maximum
min minimum
sup supremum, the least upper bound
inf infimum, the greatest lower bound

W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-169-1_1, c© Springer-Verlag London Limited 2011

3

http://dx.doi.org/10.1007/978-0-85729-169-1_1


4 1 Preliminaries

∞ infinity
R set of real numbers
R

p set of p × 1 real vectors
R

m×n set of m × n real matrices
C set of complex numbers
C+ set of complex numbers with positive real parts
C

p set of p × 1 complex vectors
B(x, ǫ) open ball centered at x with radius ǫ
B(S) set whose elements are all of the possible subsets of S ⊆ R

d

|z| amplitude of number z
z̄ complex conjugate of number z
arg(z) phase of number z
Re(z) real part of number z
Im(z) imaginary part of number z
xT transpose of a real vector x
‖x‖ 2-norm of a real vector x
‖x‖p p-norm of a real vector x

‖A‖ induced 2-norm of a real matrix A
‖A‖p induced p-norm of a real matrix A
A > 0 a positive matrix A
A ≥ 0 a nonnegative matrix A
ex exponential of a real number x
eA exponential of a real matrix A
ρ(A) spectral radius of matrix A
λi(A) the ith eigenvalue of matrix A
λmax(A) the maximum eigenvalue of a real symmetric matrix A
λmin(A) the minimum eigenvalue of a real symmetric matrix A
det(A) determinant of matrix A
rank(A) rank of matrix A
diag(a1, . . . , ap) a diagonal matrix with diagonal entries a1 to ap

diag(A1, . . . , Ap) a block diagonal matrix with diagonal blocks A1 to Ap

sin sine function
cos cosine function
sgn signum function
tanh tangent hyperbolic function
Γ (·) Gamma function
Co(·) convex hull
d(x, M) distance from a point x to a set M , infy∈M ‖x − y‖
K[·] differential inclusion
D+f upper right-hand derivative of a function f(t)
L{ · } Laplace transform
1p p × 1 column vector of all ones
0p p × 1 column vector of all zeros
ι imaginary unit
Im m × m identity matrix
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0m×n m × n zero matrix
G graph
V node set of a graph
E edge set of a graph
A adjacency matrix
L nonsymmetric Laplacian matrix
Ni neighbor set of agent i

1.2 Algebraic Graph Theory Background

Suppose that a team of agents interacts with each other through a communication

or sensing network or a combination of both. It is natural to model the interaction
among agents by directed or undirected graphs. Suppose that a team consists of p

agents. A directed graph of order p is a pair (V , E ), where V
△
= {1, . . . , p} is a

finite nonempty node set and E ⊆ V × V is an edge set of ordered pairs of nodes,

called edges. We define G
△
= (V , E ). The edge (i, j) in the edge set of a directed

graph denotes that agent j can obtain information from agent i, but not necessarily
vice versa. Self-edges (i, i) are not allowed unless otherwise indicated. For the edge
(i, j), i is the parent node and j is the child node. If an edge (i, j) ∈ E , then node i
is a neighbor of node j. The set of neighbors of node i is denoted as Ni. In contrast
to a directed graph, the pairs of nodes in an undirected graph are unordered, where
the edge (i, j) denotes that agents i and j can obtain information from each other.
Note that an undirected graph can be viewed as a special case of a directed graph,
where an edge (i, j) in the undirected graph corresponds to the edges (i, j) and (j, i)
in the directed graph. A weighted graph associates a weight with every edge in the
graph. In this book, all graphs are weighted. The union of a collection of graphs is
a graph whose node and edge sets are the unions of the node and edge sets of the
graphs in the collection.

A directed path is a sequence of edges in a directed graph of the form (i1, i2),
(i2, i3), . . . . An undirected path in an undirected graph is defined analogously. In
a directed graph, a cycle is a directed path that starts and ends at the same node.
A directed graph is strongly connected if there is a directed path from every node
to every other node. An undirected graph is connected if there is an undirected path
between every pair of distinct nodes. An undirected graph is fully connected if there
is an edge between every pair of distinct nodes. A directed graph is complete if there
is an edge from every node to every other node. A directed tree is a directed graph in
which every node has exactly one parent except for one node, called the root, which
has no parent and which has directed paths to all other nodes. Note that a directed
tree has no cycle because every edge is oriented away from the root. In undirected
graphs, a tree is a graph in which every pair of nodes is connected by exactly one
undirected path.
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Fig. 1.1 Directed graph among six agents. An arrow from node i to node j indicates that agent j

can obtain information from agent i. This directed graph contains two directed spanning trees with
root nodes 1 and 2 but is not strongly connected because nodes 3, 4, 5, and 6 do not have directed
paths to all other nodes

A subgraph (V s, E s) of (V , E ) is a graph such that V s ⊆ V and E s ⊆
E ∩ (V s × V s). A directed spanning tree (V s, E s) of the directed graph (V , E ) is
a subgraph of (V , E ) such that (V s, E s) is a directed tree and V s = V . An undi-

rected spanning tree of an undirected graph is defined analogously. The directed
graph (V , E ) has or contains a directed spanning tree if a directed spanning tree is
a subgraph of (V , E ). Note that the directed graph (V , E ) has a directed spanning
tree if and only if (V , E ) has at least one node with directed paths to all other nodes.
In undirected graphs, the existence of an undirected spanning tree is equivalent to
being connected. However, in directed graphs, the existence of a directed spanning
tree is a weaker condition than being strongly connected. Figure 1.1 shows a di-
rected graph that contains more than one directed spanning tree but is not strongly
connected. Nodes 1 and 2 are both roots of directed spanning trees because both
have directed paths to all other nodes. However, the directed graph is not strongly
connected because nodes 3, 4, 5, and 6 do not have directed paths to all other nodes.

The adjacency matrix A
△
= [aij ] ∈ R

p×p of a directed graph (V , E ) is defined
such that aij is a positive weight if (j, i) ∈ E , and aij = 0 if (j, i) �∈ E . Self-edges
are not allowed (i.e., aii = 0) unless otherwise indicated. The adjacency matrix
of an undirected graph is defined analogously except that aij = aji for all i �= j
because (j, i) ∈ E implies (i, j) ∈ E . Note that aij denotes the weight for the edge
(j, i) ∈ E . If the weight is not relevant, then aij is set equal to 1 if (j, i) ∈ E .
The in-degree and out-degree of node i are defined as, respectively,

∑p
j=1 aij and∑p

j=1 aji. A node i is balanced if
∑p

j=1 aij =
∑p

j=1 aji. A graph is balanced if∑p

j=1 aij =
∑p

j=1 aji, for all i. For an undirected graph, A is symmetric, and thus
every undirected graph is balanced.

Define the matrix L
△
= [ℓij ] ∈ R

p×p as

ℓii =

p∑

j=1,j �=i

aij , ℓij = −aij , i �= j. (1.1)

Note that if (j, i) �∈ E then ℓij = −aij = 0. The matrix L satisfies

ℓij ≤ 0, i �= j,

p∑

j=1

ℓij = 0, i = 1, . . . , p. (1.2)
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For an undirected graph, L is symmetric and is called the Laplacian matrix. How-
ever, for a directed graph, L is not necessarily symmetric and is sometimes called
the nonsymmetric Laplacian matrix [2] or directed Laplacian matrix [160].

Remark 1.1. Note that L in (1.1) can be equivalently defined as L
△
= D − A ,

where D
△
= [dij ] ∈ R

p×p is the in-degree matrix given as dij = 0, i �= j, and
dii =

∑p
j=1 aij , i = 1, . . . , p. Also note that for directed graphs, the definition of

the nonsymmetric Laplacian matrix given by (1.1) is different from the common
definition of a Laplacian matrix for a directed graph in the graph theory literature
(e.g., [109]). However, we adopt the definition given by (1.1) for directed graphs
due to its relevance to coordination algorithms.

In both the undirected and directed cases, because L has zero row sums, 0 is
an eigenvalue of L with an associated eigenvector 1p. Note that L is diagonally
dominant and has nonnegative diagonal entries. According to Gershgorin’s disc the-
orem (see Lemma 1.18), for an undirected graph, all nonzero eigenvalues of L are
positive (L is symmetric positive semidefinite), whereas, for a directed graph, all
nonzero eigenvalues of L have positive real parts.

Lemma 1.1 ([1, 248]). Let L be the nonsymmetric Laplacian matrix (respectively,

Laplacian matrix) associated with the directed graph G (respectively, the undirected

graph G ) of order p. Then for the directed graph G (respectively, the undirected

graph G ), L has at least one zero eigenvalue and all its nonzero eigenvalues have

positive real parts (respectively, are positive). Furthermore, L has a simple zero

eigenvalue and all other eigenvalues have positive real parts (respectively, are pos-

itive) if and only if G has a directed spanning tree (respectively, is connected). In

addition, L 1p = 0p and there exists a nonnegative vector (see Sect. 1.3 for a defi-

nition) p ∈ R
p satisfying pT L = 01×p and pT 1p = 1.1

Remark 1.1 Note that L x, where x
△
= [x1, . . . , xp]

T ∈ Rp, is a column stack
vector of

∑p

j=1 aij(xi − xj), i = 1, . . . , p. If G is undirected (and hence L is sym-
metric), then xT L x = 1

2

∑p
i=1

∑p
j=1 aij(xi − xj)

2. If G is undirected connected,
then Lemma 1.1 implies that L x = 0p or xT L x = 0 if and only if xi = xj , for
all i, j = 1, . . . , p.

For an undirected graph, let λi(L ) be the ith eigenvalue of L with λ1(L ) ≤
λ2(L ) ≤ · · · ≤ λp(L ), so that λ1(L ) = 0. For an undirected graph, λ2(L ) is
the algebraic connectivity, which is positive if and only if the undirected graph is
connected according to Lemma 1.1. The algebraic connectivity quantifies the con-
vergence rate of consensus algorithms [148].

Lemma 1.2 ([214]). Let L be the nonsymmetric Laplacian matrix associated with

the directed graph G . If G is balanced, then xT L x ≥ 0, where x
△
= [x1, . . . , xp]

T ∈
R

p. If G is strongly connected and balanced, then xT L x = 0 if and only xi = xj ,

for all i, j = 1, . . . , p.

1 Here, 1p and p are, respectively, right and left eigenvectors of L associated with the zero
eigenvalue. If G has a directed spanning tree (respectively, is connected), then p is unique.
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Lemma 1.3 ([248, Lemma 2.10]). Suppose that z
△
= [zT

1 , . . . , zT
p ]T with zi ∈ R

m.

Let A ∈ R
p×p and L ∈ Rp×p be, respectively, the adjacency matrix and the

nonsymmetric Laplacian matrix associated with the directed graph G . Then the

following five conditions are equivalent.

(i) L has a simple zero eigenvalue with an associated eigenvector 1p and all other

eigenvalues have positive real parts;
(ii) (L ⊗ Im)z = 0 if and only if z1 = · · · = zp;

(iii) Consensus is reached for the closed-loop system ż = −(L ⊗ Im)z or equiva-

lently żi = −
∑n

j=1 aij(zi − zj), where aij is the (i, j)th entry of A . That is,

for all zi(0) and all i, j = 1, . . . , p, ‖zi(t) − zj(t)‖ → 0 as t → ∞;
(iv) The directed graph G has a directed spanning tree;
(v) The rank of L is p − 1.

Lemma 1.4 ([248, Lemma 2.11]). Suppose that z, A , and L are defined in

Lemma 1.3. Then the following four conditions are equivalent.

(i) The directed graph G has a directed spanning tree and node k has no neigh-

bor;2

(ii) The directed graph G has a directed spanning tree and every entry of the kth

row of L is zero;
(iii) Consensus is reached for the closed-loop system ż = −(L ⊗ Im)z or equiva-

lently żi = −
∑n

j=1 aij(zi −zj). In particular, for all zi(0) and all i = 1, . . . , p,

zi(t) → zk(0) as t → ∞;
(iv) Node k is the only node that has directed paths to all other nodes in G .

Lemma 1.5 ([248, Theorem 2.33]). Let A (t) ∈ R
p×p and L (t) ∈ R

p×p be, re-

spectively, the adjacency matrix and the nonsymmetric Laplacian matrix associated

with the directed graph G (t)
△
= [V (t), E (t)]. Suppose that A (t) is piecewise con-

tinuous and its nonzero and hence positive entries are both uniformly lower and up-

per bounded (i.e., aij(t) ∈ [a, a], where 0 < a < a, if (j, i) ∈ E (t) and aij(t) = 0
otherwise). Let t0, t1, . . . be the time sequence corresponding to the times at which

A (t) switches, where it is assumed that ti − ti−1 ≥ tL, ∀i = 1, 2, . . . with tL a pos-

itive constant. Consensus is reached for the closed-loop system ż = −[L (t) ⊗ Im]z
or equivalently żi = −

∑n
j=1 aij(t)(zi − zj) if there exists an infinite sequence of

contiguous, nonempty, uniformly bounded time-intervals [tij
, tij+1), j = 1, 2, . . . ,

starting at ti1 = t0, with the property that the union of G (t) across each such inter-

val has a directed spanning tree.

Lemma 1.6. Let G be the directed graph (respectively, undirected graph) for p

followers, labeled as agents or followers 1 to p. Let A
△
= [aij ] ∈ R

p×p and

L ∈ R
p×p be, respectively, the adjacency matrix and the nonsymmetric Laplacian

matrix (respectively, Laplacian matrix) associated with G . Suppose that in addition

to the p followers, there exists a leader, labeled as agent 0. Let G be the corre-

sponding directed graph for agents 0 to p (i.e., the leader and all followers). Let

2 At most one such node can exist when the directed graph has a directed spanning tree.
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A ∈ R
(p+1)×(p+1) and L ∈ R

(p+1)×(p+1) be the corresponding adjacency and

nonsymmetric Laplacian matrix associated with G . Here A
△
=
[

0 01×p

a A

]
, where

a
△
= [a10, . . . , ap0]

T and ai0 > 0, i = 1, . . . , p, if agent 0 is a neighbor of agent i

and ai0 = 0 otherwise, and L
△
=
[ 0 01×p

−a H

]
, where H

△
= L +diag (a10, . . . , ap0).

3

When G is directed (respectively, undirected), all eigenvalues of H have positive

real parts (respectively, H is symmetric positive definite) if and only if in the di-

rected graph G the leader has directed paths to all followers.

Proof: Note that in the directed graph G , the leader has no neighbor. Therefore, it
follows from Lemma 1.4 that the condition that in G the leader has directed paths
to all followers is equivalent to the condition that G has a directed spanning tree
and the leader has no neighbor. It follows from Lemma 1.3 that rank(L ) = p if
and only if G has a directed spanning tree. Note that rank(L ) = rank([−a|H]).
Because each row sum of L is zero, it follows that −a+H1p = 0p, which implies
that for the p by p + 1 matrix [−a|H] its first column is dependent on its last p
columns. It thus follows that rank([−a|H]) = rank(H). Therefore, it follows that
rank(H) = p or equivalently H has full rank and hence has no zero eigenvalue if
and only if in G the leader has directed paths to all followers. Note that H is diago-
nally dominant and has nonnegative diagonal entries. It follows from Gershgorin’s
disc theorem (see Lemma 1.18) that all nonzero eigenvalues of H have positive real
parts. Combining the above arguments shows that when G is directed, all eigenval-
ues of H have positive real parts if and only if in G the leader has directed paths
to all followers. When G is undirected, H is symmetric. It thus follows that H is
symmetric positive definite if and only if in G the leader has directed paths to all
followers.

Remark 1.2 Suppose that G is undirected. A special case of Lemma 1.6 is that if
G is connected and at least one ai0 > 0, then H is symmetric positive definite.
Another special case is that if all ai0 > 0, then H is symmetric positive definite.

Given a matrix S
△
= [sij ] ∈ R

p×p, the directed graph of S, denoted by D(S), is

the directed graph with node set V
△
= {1, . . . , p} such that there is an edge in D(S)

from j to i if and only if sij �= 0 (cf. [122, p. 357]). In other words, the entries of
the adjacency matrix satisfy aij > 0 if sij �= 0 and aij = 0 if sij = 0.

1.3 Algebra and Matrix Theory Background

We need the following definitions and lemmas from algebra and matrix theory.
A vector x or a matrix A is nonnegative (respectively, positive), denoted as x ≥ 0

(respectively, x > 0) or A ≥ 0 (respectively, A > 0), if all of its components

3 Note that here for convenience we label the agents from 0 to p rather than from 1 to p + 1 and
hence the entries of A and L are labeled accordingly. Also note that according to A , the leader
has no neighbor.
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or entries are nonnegative (respectively, positive). Given two nonnegative matrices
A, B ∈ R

p×q , A ≥ B (respectively, A > B) denotes that A − B is nonneg-
ative (respectively, positive). Given two nonnegative square matrices A and B, if
A ≥ γB, where γ is a positive scalar, the directed graph of B is a subgraph of the
directed graph of A.

A square nonnegative matrix is row stochastic if all of its row sums are 1 [122,
p. 526]. Every n × n row-stochastic matrix has 1 as an eigenvalue with an associ-
ated eigenvector 1n. The spectral radius of a row-stochastic matrix is 1 because 1
is an eigenvalue and Gershgorin’s disc theorem (see Lemma 1.18) implies that all
of the eigenvalues are contained in a closed unit disc. It is straightforward to ver-
ify that the product of two row-stochastic matrices is still a row-stochastic matrix.
A row-stochastic matrix P ∈ R

n×n is called indecomposable and aperiodic (SIA)
if limk→∞ P k = 1nyT , where y is some n × 1 column vector [304].

Lemma 1.7 ([122, Lemma 8.2.7 part(i), p. 498]). Let A ∈ R
n×n be given, let

λ ∈ C be given, and suppose that x and y are vectors such that (i) Ax = λx,

(ii) AT y = λy, and (iii) xT y = 1. If |λ| = ρ(A) > 0, where λ is the only eigenvalue

of A with modulus ρ(A), then limm→∞(λ−1A)m = xyT .

Lemma 1.8 ([132]). Let m ≥ 2 be a positive integer and let P1, P2, . . . , Pm be

nonnegative n × n matrices with positive diagonal entries, then P1P2 · · · Pm ≥
γ(P1 + P2 + · · · + Pm), where γ is a positive scalar and can be specified from the

matrices Pi, i = 1, . . . , m.

Lemma 1.9 ([248, Corollary 2.18, Lemma 2.19]). Suppose that A ∈ R
n×n is a

row-stochastic matrix with positive diagonal entries. If the directed graph of A has

a directed spanning tree, then A is SIA.

Lemma 1.10 ([248, Lemma 2.16]). Suppose that a nonnegative matrix A ∈ R
n×n

has the same row sums given by μ. Then μ is an eigenvalue of A with an associated

eigenvector 1n and ρ(A) = μ. The matrix A has a simple eigenvalue equal to μ if

and only if the directed graph of A has a directed spanning tree.

Lemma 1.11 ([248, Theorem 2.20]). Suppose that z
△
= [zT

1 , . . . , zT
p ]T with zi ∈ R

m.

Let G
△
= (V , E ) be the directed graph associated with p agents. Given the system

z[k+1] = (D ⊗ Im)z[k], where k is the discrete-time index, and D
△
= [dij ] ∈ R

p×p

is a row-stochastic matrix with positive diagonal entries satisfying that dij > 0,

∀i �= j, if (j, i) ∈ E and dij = 0 otherwise. Then consensus is reached, that is, for

all zi[0] and all i, j = 1, . . . , p, ‖zi[k] − zj [k]‖ → 0 as t → ∞, if and only if G has

a directed spanning tree.

Lemma 1.12 ([304]). Let S1, S2, . . . , Sk ∈ R
n×n be a finite set of SIA matrices with

the property that for each sequence Si1 , Si2 , . . . , Sij
of positive length, the matrix

product Sij
Sij−1 · · · Si1 is SIA. Then, for each infinite sequence Si1 , Si2 , . . . , there

exists a column vector y such that

lim
j→∞

Sij
Sij−1 · · · Si1 = 1nyT .
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Definition 1.1 ([4]). A matrix D ∈ R
n×n is called semiconvergent if limk→∞ Dk

exists.

Lemma 1.13 ([4]). Let there be a nonnegative matrix P
△
= [pij ] ∈ R

n×n, where

ρ(P ) ≤ 1 and pii > 0. Let α ≥ 1. Then the following three statements hold:

(a) There exists a nonnegative matrix B ∈ R
n×n, where ρ(B) ≤ α and In − P =

(αIn − B)2, if and only if the iteration method

Xi+1 =
1

2α

[
P +

(
α2 − 1

)
In + X2

i

]
, X0 = 0n×n, (1.3)

is convergent. In this case, B ≥ X⋆ = limi→∞ Xi, X⋆ ≥ 0, ρ(X⋆) ≤ α,

diagi(X
⋆) > 0, where diagi(·) denotes the ith diagonal entry of a square ma-

trix, i = 1, . . . , n, and (αIn − X⋆)2 = In − P .

(b) If (1.3) is convergent, it follows that P and X⋆

α
are semiconvergent.

(c) If P is semiconvergent, then (1.3) is convergent for all α ≥ 1. Denote in this

case the limit of the iteration method

Yi+1 =
1

2

(
P + Y 2

i

)
, Y0 = 0n×n,

by Y ⋆. The equation αIn − X⋆ = In − Y ⋆ holds.

Definition 1.2 ([4]). Let α ∈ R and C ∈ R
n×n. A matrix B

△
= [bij ] ∈ R

n×n is
called an M-matrix if it can be written as

B = αIn − C,

where α > 0, C ≥ 0, and ρ(C) ≤ α. The matrix B is called a nonsingular M-matrix

if ρ(C) < α.

Lemma 1.14 ([4]). An M-matrix B ∈ R
n×n has exactly one M-matrix as its square

root if the characteristic polynomial of B has at most one simple zero root.

Lemma 1.15. An n × n M-matrix that has a zero eigenvalue with a corresponding

eigenvector 1n is a nonsymmetric Laplacian matrix.

Proof: The proof follows from Definition 1.2 and the definition of a nonsymmetric
Laplacian matrix.

Lemma 1.16 ([4]). Let Zn×n △
= {B = [bij ] ∈ R

n×n|bij ≤ 0, i �= j}. A matrix

B ∈ Zn×n is a nonsingular M-matrix if and only if B has a square root that is a

nonsingular M-matrix.

Lemma 1.17 ([4]). A matrix B ∈ Zn×n, where Zn×n is defined in Lemma 1.16, is

a nonsingular M-matrix if and only if B−1 exists and B−1 is nonnegative.



12 1 Preliminaries

Lemma 1.18 ([122, Theorem 6.1.1 (Gershgorin’s disc theorem), p. 344]). Let

A
△
= [aij ] ∈ R

n×n, and let

R′
i(A)

△
=

n∑

j=1,j �=i

|aij |, i = 1, . . . , n,

denote the deleted absolute row sums of A. Then all eigenvalues of A are located in

the union of n discs
n⋃

i=1

{
z ∈ C : |z − aii| ≤ R′

i(A)
}
.

Furthermore, if a union of k of these n discs forms a connected region that is disjoint

from all of the remaining n − k discs, then there are precisely k eigenvalues of A in

this region.

Lemma 1.19 (Hölder inequality). Let 1 ≤ p, q ≤ ∞ with 1
p

+ 1
q

= 1. Then, for

all vectors f ∈ R
k and g ∈ R

k,

∣∣fT g
∣∣ ≤ ‖f ‖p ‖g‖q .

Lemma 1.20 (See e.g., [125]). Given a rotation matrix R ∈ R
3×3, let a

△
=

[a1, a2, a3]
T and θ denote, respectively, the Euler axis (i.e., the unit vector in the

direction of rotation) and the Euler angle ( i.e., the rotation angle). The eigen-

values of R are 1, eιθ, and e−ιθ with associated right eigenvectors given by,

respectively, ς1 = a, ς2 = [(a2
2 + a2

3) sin2( θ
2 ), −a1a2 sin2( θ

2 ) + ιa3 sin( θ
2 )| sin( θ

2 )|,

−a1a3 sin2( θ
2 )−ιa2 sin( θ

2 )| sin( θ
2 )|]T , and ς3 = ς2 and associated left eigenvectors

given by, respectively, ̟1 = ς1, ̟2 = ς2, and ̟3 = ς3.

Lemma 1.21 ([111, 163]). Suppose that U ∈ R
p×p, V ∈ R

q×q, X ∈ R
p×p, and

Y ∈ R
q×q. The following statements are true.

(i) (U + X) ⊗ V = U ⊗ V + X ⊗ V .

(ii) (U ⊗ V )(X ⊗ Y ) = UX ⊗ V Y .

(iii) (U ⊗ V )T = UT ⊗ V T .

(iv) Suppose that U and V are invertible. Then (U ⊗ V )−1 = U −1 ⊗ V −1.

(v) If U and V are symmetric, so is U ⊗ V .

(vi) If U and V are symmetric positive definite (respectively, positive semidefinite),
so is U ⊗ V .

(vii) Suppose that U has the eigenvalues βi with associated eigenvectors fi ∈ C
p,

i = 1, . . . , p, and V has the eigenvalues ρj with associated eigenvectors gj ∈
C

q, j = 1, . . . , q. Then the pq eigenvalues of U ⊗ V are βiρj with associated

eigenvectors fi ⊗ gj , i = 1, . . . , p, j = 1, . . . , q.

Lemma 1.22 ([155, Schur’s formula]). Let A11, A12, A21, A22 ∈ R
n×n and M =[

A11 A12

A21 A22

]
. Then det(M) = det(A11A22 − A12A21) if A11, A12, A21, and A22

commute pairwise.
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Lemma 1.23 ([228]). For any a, b ∈ R
n and any symmetric positive-definite matrix

Φ ∈ R
n×n, 2aT b ≤ aT Φ−1a + bT Φb.

Lemma 1.24 ([122, Theorem 4.2.2 (Rayleigh-Ritz theorem), p. 176]). Let

A ∈ R
n×n be symmetric. Then λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x for

all x ∈ R
n, λmin(A) = minx �=0n

xT Ax
xT x

= minxT x=1
xT Ax
xT x

, and λmax(A) =

maxx �=0n

xT Ax
xT x

= maxxT x=1
xT Ax
xT x

.

Lemma 1.25 ([122, Theorem 5.6.9]). Let A ∈ R
n×n. If ||| · ||| is any matrix norm,

then ρ(A) ≤ |||A|||.

Lemma 1.26 ([122, Lemma 5.6.10]). Let A ∈ R
n×n and ε > 0. There is a matrix

norm ||| · ||| such that ρ(A) ≤ |||A||| ≤ ρ(A) + ε.

Lemma 1.27 ([122, Theorem 5.6.12]). Let A ∈ R
n×n. Then limk→∞ Ak = 0n×n

if and only if ρ(A) < 1.

Lemma 1.28 ([122, Corollary 5.6.16]). Let A ∈ R
n×n. If ||| · ||| is a matrix norm

and |||A||| < 1. Then In − A is invertible and (In − A)−1 =
∑∞

i=0 Ai.

1.4 Linear and Nonlinear System Theory Background

We need the following definitions and lemmas from linear and nonlinear system
theory.

Consider a linear time-invariant system given by

ẋ = Ax + Bu, (1.4)

where x ∈ R
n is the state vector, u ∈ R

m is the control input, A ∈ R
n×n, and

B ∈ R
n×m. The solution to (1.4) is given by

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ.

Letting t0 = kT and t = (k + 1)T , where k is the discrete-time index and T is the
sampling period, we can obtain the exact discrete-time model as

x(kT + T ) = eAT x(kT ) +

∫ kT+T

kT

eA(kT+T −τ)Bu(τ) dτ.

With zero-order hold, the control input becomes u(t) = u(kT ), kT ≤ t < (k+1)T .
It then follows that

x[k + 1] = eAT x[k] +

(∫ T

0

eAσ dσ

)
Bu[k],

where x[k]
△
= x(kT ) and u[k]

△
= u(kT ).
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Definition 1.3 ([66]). A function f : R
d 	→ R

m is locally Lipschitz at x ∈ R
d if

there exist Lx, ǫ ∈ (0, ∞) such that
∥∥f(y) − f(y′)

∥∥ ≤ Lx‖y − y′ ‖,

for all y, y′ ∈ B(x, ǫ).

Definition 1.4 ([272, Chap. 3]). Consider the autonomous system

ẋ = f(x), (1.5)

where f : D 	→ R
n is a locally Lipschitz map from a domain D ⊆ R

n into R
n. Let

x = 0n be an equilibrium point for (1.5). Then an equilibrium point x = 0n is said
to be stable if, for any ǫ1 > 0, there exists ǫ2 > 0, such that if ‖x(0)‖ < ǫ2, then
‖x(t)‖ < ǫ1 for every t ≥ 0. The equilibrium point x = 0n is asymptotically stable

if it is stable, and if in addition there exists some ǫ3 > 0 such that ‖x(0)‖ < ǫ3
implies that x(t) → 0n as t → ∞. The equilibrium point x = 0n is exponentially

stable if there exist two strictly positive numbers ǫ4 and ǫ5 such that

∀t ≥ 0,
∥∥x(t)

∥∥ ≤ ǫ4
∥∥x(0)

∥∥e−ǫ5t

in some ball around the origin. If the stability of the equilibrium point x = 0n

holds for all initial states, x = 0n is said to be globally stable. The equilibrium
point x = 0n is globally asymptotically stable (respectively, globally exponentially

stable) when x = 0n is asymptotically stable (respectively, exponentially stable) for
all initial states.

Lemma 1.29 ([147, Theorem 4.2]). Let x = 0n be an equilibrium point for (1.5).
Let V : R

n 	→ R be a continuously differentiable function such that

• V (0n) = 0 and V (x) > 0, ∀x �= 0n,

• ‖x‖ → ∞ =⇒ V (x) → ∞,4

• V̇ (x) < 0, ∀x �= 0n.

Then x = 0n is globally asymptotically stable.

Definition 1.5 ([147, p. 127]). A set M is said to be an invariant set with respect
to (1.5) if x(0) ∈ M implies x(t) ∈ M , ∀t ∈ R. A set M is said to be a positively

invariant set if x(0) ∈ M implies x(t) ∈ M , ∀t ≥ 0.

Lemma 1.30 ([272, Theorem 3.4 (Local Invariance Set Theorem)]). Consider

the autonomous system (1.5). Let V : R
n 	→ R be a continuously differentiable

function. Assume that

• For some c > 0, the region Ωc defined by V (x) < c is bounded;
• V̇ (x) ≤ 0, ∀x ∈ Ωc.

4 A function satisfying this condition is said to be radially unbounded.
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Let E be the set of all points in Ωc where V̇ (x) = 0, and let M be the largest

invariant set in E. Then every solution x(t) starting in Ωc approaches M , as

t → ∞.

Lemma 1.31 ([272, Theorem 3.5 (Global Invariance Set Theorem)]). Consider

the autonomous system (1.5). Let V : R
n 	→ R be a continuously differentiable

function. Assume that

• V̇ (x) ≤ 0, ∀x ∈ R
n;

• V (x) → ∞ as ‖x‖ → ∞.

Let E be the set of all points where V̇ (x) = 0, and let M be the largest invariant

set in E. Then all solutions globally asymptotically converge to M , as t → ∞.

Definition 1.6 ([147, Chap. 4]). Consider the nonautonomous system

ẋ = f(t, x), (1.6)

where f : [0, ∞) × D 	→ R
n is piecewise continuous in t and locally Lipschitz in

x on [0, ∞) × D, and D ⊂ R
n is a domain that contains the origin x = 0n. Let

x = 0n be an equilibrium point for (1.6) at t = t0 ≥ 0, i.e., f(t, t0) = 0n, ∀t ≥ t0.
Then the equilibrium point x = 0n is said to be stable if, for any ǫ1 > 0, there exists
ǫ2 = ǫ2(ǫ1, t0) > 0, such that if ‖x(t0)‖ < ǫ2, then ‖x(t)‖ < ǫ1 for every t ≥ t0.
The equilibrium point x = 0n is uniformly stable if it is stable and ǫ2 = ǫ2(ǫ1) > 0
is independent of t0. The equilibrium point x = 0n is asymptotically stable if it is
stable, and if in addition there exists some ǫ3 = ǫ3(t0) > 0 such that ‖x(t0)‖ < ǫ3
implies that x(t) → 0n as t → ∞. The equilibrium point x = 0n is uniformly

asymptotically stable if it is asymptotically stable and ǫ3 > 0 is independent of t0.
The equilibrium point x = 0n is exponentially stable if there exist three strictly
positive numbers ǫ4 = ǫ4(t0), ǫ5 = ǫ5(t0), and ǫ6 = ǫ6(t0) such that for t ≥ t0

‖x(t)‖ ≤ ǫ4 ‖x(t0)‖ e−ǫ5(t−t0), ∀ ‖x(t0)‖ < ǫ6.

The equilibrium point x = 0n is uniformly exponentially stable if it is exponentially
stable, and ǫ4 > 0, ǫ5 > 0, and ǫ6 > 0 are independent of t0. If the (uniform)
stability of the equilibrium point x = 0n holds for all initial states x(t0), x = 0n

is said to be globally (uniformly) stable. The equilibrium point x = 0n is globally

(uniformly) asymptotically stable [respectively, globally (uniformly) exponentially

stable] when x = 0n is (uniformly) asymptotically stable [respectively, (uniformly)
exponentially stable] for all initial states x(t0).

Lemma 1.32 ([147, Theorems 4.8 and 4.9]). Let x = 0n be an equilibrium point

for (1.6) and D ⊂ R
n be a domain that contains x = 0n. Let V : [0, ∞) × D 	→ R

be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x),

∂V

∂t
+

∂V

∂x
f(t, x) ≤ 0

(1.7)
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for any t ≥ 0 and x ∈ D, where W1(x) and W2(x) are continuous positive-definite

functions on D. Then x = 0n is uniformly stable. Suppose that V : [0, ∞)×D 	→ R

is a continuously differentiable function satisfying (1.7) and

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x)

for any t ≥ 0 and x ∈ D, where W3(x) is a continuous positive-definite function

on D. Then x = 0n is uniformly asymptotically stable. Moreover, if D ∈ Rn and

W1(x) is radially unbounded, then x = 0n is globally uniformly asymptotically

stable.

Definition 1.7 ([272, p. 123]). A function g is said to be uniformly continuous on
[0, ∞) if

∀R > 0, ∃η(R) > 0, ∀t1 > 0, t > 0, |t − t1| < η =⇒
∣∣g(t) − g(t1)

∣∣ < R.

Lemma 1.33 ([272, Lemma 4.2 (Barbalat)]). If the differentiable function f(t)
has a finite limit, as t → ∞, and if ḟ(t) is uniformly continuous,5 then ḟ(t) → 0,

as t → ∞.

Lemma 1.34 ([272, Lemma 4.3 (Lyapunov-like Lemma)]). If a scalar function

V (t, x) satisfies the following conditions:

• V (t, x) is lower bounded;
• V̇ (t, x) is negative semidefinite;
• V̇ (t, x) is uniformly continuous in t;

then V̇ (t, x) → 0, as t → ∞.6

Definition 1.8 ([147, Definition 4.2, p. 144]). A continuous function α : [0, a) 	→
[0, ∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is said
to belong to class K∞ if a = ∞ and α(r) → ∞, as r → ∞.

Lemma 1.35 ([146, Lemma 3.5]). Let V (x) : D 	→ R be a continuous positive-

definite function defined on a domain D ⊂ Rn that contains the origin x = 0n.

Let B(0n, r) ⊂ D for some r > 0. Then, there exist class K functions α1 and α2,

defined on [0, r], such that

α1

(
‖x‖
)

≤ V (x) ≤ α2

(
‖x‖
)

for all x ∈ B(0n, r). Moreover, if D = R
n and V (x) is radially unbounded, then

α1 and α2 can be chosen to belong to class K∞ and the foregoing inequality holds

for all x ∈ R
n.

5 A sufficient condition for a differentiable function to be uniformly continuous is that its deriva-
tive is bounded.
6 Lemma 1.34 follows from Lemma 1.33.
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Lemma 1.36 (Matrosov’s theorem restated in [158, 220]). Given the nonau-

tonomous system (1.6), where f(t,0n) ≡ 0n and f is such that solutions exist and

are unique. Let V (t, x) and W (t, x) be continuous functions on domain [0, ∞) × D
and satisfy the following four conditions:

1. V (t, x) is positive definite and decrescent.7

2. V̇ (t, x) ≤ U(x) ≤ 0, where U(x) is continuous.

3. |W (t, x)| is bounded.

4. max[d(x, M), |Ẇ (t, x)|] ≥ γ(‖x‖), where M
△
= {x|U(x) = 0}, d(x, M) de-

notes the distance from x to the set M , and γ(·) is a class K function.

Then the equilibrium of (1.6), x = 0n, is uniformly asymptotically stable on D.

Lemma 1.37 ([220]). Condition 4 in Lemma 1.36 is satisfied if the following two

conditions are satisfied:

1. The function Ẇ (t, x) is continuous in both arguments and Ẇ (t, x) = g[β(t), x],
where g is continuous in both arguments and β(t) is continuous and bounded.

2. There exists a class K function, α, such that |Ẇ (t, x)| ≥ α(‖x‖) for all x ∈ M ,

where M is the set defined in Lemma 1.36.

1.5 Nonsmooth Analysis Background

We need the following definitions and lemmas from nonsmooth analysis.

Definition 1.9 ([92]). Consider a differential equation

ẋ = f(t, x) (1.8)

with a piecewise continuous vector-valued function f(t, x). Let F (t, x) be the
smallest convex closed set containing all the limit values of the vector-valued func-
tion f(t, x⋆) for x⋆ → x and a constant t. A vector function x(t) is called a Filippov

solution of (1.8) if x(t) is absolutely continuous and

ẋ ∈ F (t, x) (1.9)

almost everywhere. Here x(t) is called a solution of the differential inclusion (1.9).
For simplicity, we often use ‘a.e.’ to replace ‘almost everywhere’. Also K[f ](t, x)
is often used to denote F (t, x) [221].

Lemma 1.38 ([92]). Given (1.8), let f(t, x) be measurable and locally essentially

bounded, that is, bounded on a bounded neighborhood of every point excluding sets

of measure zero. Then, for all x0 ∈ R
n, there exists a Filippov solution of (1.8) with

the initial condition x(0) = x0.

7 Here V (t, x) is said to be positive-definite if V (t, x) ≥ W1(x) for some positive-definite func-
tion W1(x). V (t, x) is said to be decrescent if V (t, x) ≤ W2(x) for some positive-definite function
W2(x).
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Definition 1.10 ([266]). For a locally Lipschitz function V : R × R
n 	→ R, de-

fine the generalized gradient of V at (t, x) by ∂V (t, x)
△
= Co{limi→∞[[∂V (t,x)

∂x
]T ,

∂V (t,x)
∂t

]T |(ti, xi) → (t, x), (ti, xi) /∈ ΩV }, where ΩV is the set of measure
zero where the gradient of V with respect to x or t is not defined. The set-

valued Lie derivative of V (t, x) with respect to t is defined as L̃F V (t, x)
△
=⋂

ξ∈∂V (t,x) ξT
[

K[f ](t,x)
1

]
. In particular, if the function V (t, x) has no explicit de-

pendence on t, the generalized gradient of V (x) at x becomes ∂V (x)
△
=

Co{limi→∞
∂V (x)

∂x
|xi → x, xi /∈ ΩV } and the set-valued Lie derivative of V (x)

with respect to t becomes L̃F V (x)
△
=
⋂

ξ∈∂V (x) ξT K[f ](t, x).

Definition 1.11 ([66]). Given f : Rd 	→ R, the right directional derivative of f at x
in the direction v ∈ R

d is defined as

f ′(x; v) = lim
h→0+

f(x + hv) − f(x)

h

when this limit exists. On the other hand, the generalized directional derivative of
f at x in the direction v ∈ R

d is defined as

f ◦(x; v) = lim sup
y→x,h→0+

f(y + hv) − f(y)

h
.

When they are equal, the function is regular.

Definition 1.12 ([147]). Let f : [0, ∞) 	→ R
n be a continuous function. The upper

right-hand derivative of f(t) is given by D+f(t) = lim suph→0+
1
h
[f(t+h)−f(t)].

Lemma 1.39 ([266, Theorem 3.1]). Given (1.8), let f(t, x) be locally essentially

bounded and 0 ∈ K[f ](t, 0) in a region Q ⊃ {t|t0 ≤ t < ∞} × {x ∈ R
n|

‖x‖ < r}, where r > 0. Also, let V : R × R
n 	→ R be a regular function satisfying

V (t,0n) = 0,

and

0 < V1

(
‖x‖
)

≤ V (t, x) ≤ V2

(
‖x‖
)
, ∀x �= 0n

in Q for some class K functions V1 and V2. Then

1. max L̃F V (t, x) ≤ 0 in Q implies that x(t) = 0n is uniformly stable.

2. If in addition, there is a class K function ω(·) in Q such that the set-valued Lie

derivative of V (t, x) satisfies

max L̃F V (t, x) ≤ −ω(x) < 0, ∀x �= 0n,

then x = 0n is uniformly asymptotically stable.

Lemma 1.40 ([266, Theorem 3.2 (Invariance Principle for Differential Inclu-

sions)]). Let Ω be a compact set such that every Filippov solution to the autonomous
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system ẋ = f(x), x(0) = x(t0), starting in Ω is unique and remains in Ω for all

t ≥ t0. Let V : Ω 	→ R be a time independent regular function such that v ≤ 0 for

all v ∈ L̃F V (x) (If L̃F V (x) is the empty set, then this is trivially satisfied). Define

S
△
= {x ∈ Ω|0 ∈ L̃F V (x)}. Then every trajectory in Ω converges to the largest

invariant set in the closure of S.

1.6 Time-delay System Theory Background

We need the following definitions and lemmas from time-delay system theory.
For a given differentiable x(t), according to Leibniz–Newton formula [114], we

have that

x(t − τ) = x(t) −

∫ 0

−τ

ẋ(t + s) ds. (1.10)

Suppose that f : R × Cn,τ 	→ R
n is continuous, where Cn,τ denotes the Ba-

nach space of continuous vector functions mapping the interval [−τ, 0] into R
n with

the topology of uniform convergence. Consider the retarded functional differential

equation (RFDE)

ẋ(t) = f(t, xt). (1.11)

Let φ
△
= xt be defined as xt(θ) = x(t + θ), θ ∈ [−τ, 0]. Suppose that appropri-

ate initial conditions are defined on the delay interval [t0 − τ, t0]: xt0(θ) = φ(θ),
∀θ ∈ [−τ, 0], where t0 ∈ R. Specifically, we assume that the initial condition satis-
fies x(θ) = 0, ∀θ ∈ [t0 − τ, t0], in this book. Suppose that the solution x(t0, φ)(t)
through (t0, φ) is continuous in (t0, φ, t) in the domain of definition of the func-
tion [209].

Definition 1.13 ([114]). The solution x(t0, φ) of the RFDE (1.11) is uniformly ul-

timately bounded if there is a β > 0 such that for any α > 0, there is a constant
T0(α) > 0 such that ‖x(t0, φ)(t)‖ ≤ β for t ≥ t0 +T0(α) for all t0 ∈ R, φ ∈ Cn,τ ,

and ‖φ‖c ≤ α, where ‖φ‖c

△
= sup−τ ≤t≤0 ‖φ(t)‖ stands for the norm of a func-

tion φ.

Suppose that D : R × Cn,τ 	→ R
n is a linear operator on the second variable

such that D(t, φ) = A(t)φ(0) − G(t, φ), A(t) is a continuous nonsingular matrix,
and G(t, φ) =

∫ 0

−h
[dμ(t, θ)]φ(θ) satisfies ‖

∫ 0

−s+ [dμ(t, θ)]φ(θ)‖ ≤ γ(s, t) ‖φ‖ for
0 ≤ s ≤ h, where μ is an n × n matrix function of bounded variation on θ, γ is
continuous, and γ(0, t) = 0 for t ≥ 0. If g : R × Cn,τ 	→ R

n is a continuous
function, then the relation

d

dt
D(t, xt) = g(t, xt) (1.12)

is a neutral functional differential equation (NFDE) [182].
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Definition 1.14 ([182]). Consider the NFDE (1.12). Suppose that the operator D

is stable. It defines a uniform ultimately bounded process if there is a β > 0 such
that for any α > 0, there is a constant T0(α) > 0 such that ‖x(t0, φ)(t)‖ ≤ β for
t ≥ t0 + T0(α) for all t0 ∈ R, φ ∈ Cn,τ , and ‖φ‖c ≤ α.

Lemma 1.41 ([154, 209, Degenerate Lyapunov–Krasovskii Stability Theorem]).

Consider the NFDE (1.12). Suppose that the operator D is stable, g : R ×
Cn,τ 	→ R

n takes R× (bounded sets of Cn,τ ) into bounded sets of R
n, and u(s),

v(s) and w(s) are continuous, nonnegative, and non-decreasing functions with

u(s), v(s) > 0 for s �= 0 and u(0) = v(0) = 0. If there exists a continuous

functional V : R × Cn,τ × Cn,τ 	→ R
n, such that

(i) u(‖D(t, φ)‖) ≤ V [t, D(t, φ), φ] ≤ v(‖φ‖c),
(ii) V̇ [t, D(t, φ), φ] ≤ −w[‖D(t, φ)‖],

then the solution of (1.12) is uniformly asymptotically stable.

Lemma 1.42 ([114, Lyapunov–Razumikhin Uniformly Ultimately Bounded

Theorem]). Consider the RFDE (1.11). Suppose that f : R × Cn,τ 	→ R
n takes

R× (bounded sets of Cn,τ ) into bounded sets of Rn and u, v, w : [0, ∞) 	→ [0, ∞)
are continuous, non-decreasing functions with u(s) → ∞ as s → ∞. If there are

a continuous functional V : R × R
n 	→ R, a continuous non-decreasing function

p : [0, ∞) 	→ [0, ∞), where p(s) > s for s > 0, and a constant scalar H ≥ 0 such

that u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), ∀t ∈ R, ∀x ∈ R
n, and V̇ [t, x(t)] ≤ −w[‖x(t)‖]

if ‖x(t)‖ ≥ H and V [t + θ, x(t + θ)] < p{V [t, x(t)]}, ∀θ ∈ [−τ, 0], then the

solution of (1.11) is uniformly ultimately bounded.

Lemma 1.43 ([114, 182, Lyapunov–Razumikhin Uniformly Ultimately Bound-

ed Theorem For Neutral Type Systems]). Consider the NFDE (1.12). Suppose

that the operator D is stable. Also suppose that g : R × Cn,τ 	→ R
n take R×

(bounded sets of Cn,τ ) into bounded sets of R
n, and u, v, w : [0, ∞) 	→ [0, ∞)

are continuous, non-decreasing functions with u(s) → ∞ as s → ∞. If there

is a continuous functional V : R × R
n 	→ R and a continuous non-decreasing

function p : [0, ∞) 	→ [0, ∞), where p(s) > s for s > 0, and a constant H ≥ 0
such that u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), ∀t ∈ R, ∀x ∈ R

n, and V̇ [t, D(t, φ)] ≤
−w[‖D(t, φ)‖] if ‖D(t, φ)‖ ≥ H and V [t + θ, x(t + θ)] < p{V [t, D(t, φ)]}, ∀θ ∈
[−τ, 0], then the solution of the (1.12) is uniformly ultimately bounded.

Lemma 1.44 ([209]). Given the original system

ẋ(t) = Ax(t − τ1) + Bx(t − τ2) (1.13)

and the system after model transformation

d

dt

[
x(t) + A

∫ 0

−τ1

x(t + θ)dθ + B

∫ 0

−τ2

x(t + θ)dθ

]
= (A + B)x(t), (1.14)
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the stability of (1.14) implies the stability of (1.13) if

1 + λi(A)
1 − e−sτ1

s
+ λi(B)

1 − e−sτ2

s
�= 0,

for all s ∈ C
+.

1.7 Notes

Section 1.2 is based mainly on [248]. Section 1.3 is based mainly on [4, 111, 122,
132, 163, 228, 304]. Section 1.4 is based mainly on [66, 147, 158, 220, 272]. Sec-
tion 1.5 is based mainly on [66, 92, 147, 221, 266]. Section 1.6 is based mainly
on [114, 154, 182, 209].



Chapter 2

Overview of Recent Research in Distributed

Multi-agent Coordination

This chapter overviews recent research results in distributed multi-agent coordina-
tion. Distributed coordination of multiple autonomous agents, including unmanned
aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned under-
water vehicles (UUVs), has been a very active research topic in the systems and
controls society. The recent research results in distributed multi-agent coordination
are roughly categorized as consensus, distributed formation control, distributed op-
timization, distributed task assignment, distributed estimation and control, and in-
telligent coordination. A short discussion is given to propose several future research
directions and problems that deserve further investigation.

2.1 Introduction

Control theory can be dated back to the beginning of last century when the Wright
brothers made their first flight in 1903. Since then, control theory has received more
and more attention, especially during the World War II when control theory has been
developed and applied to fire-control systems, missile navigation and control, and
various electronic devices. Over the past several decades, modern control theory
has been developed due to the booming of spacecraft technology and large-scale
systems.

During the development of the control theory, control of a single system has
relatively matured and many control methodologies have been developed, such as
proportional-integral-derivative (PID) control, adaptive control, intelligent control,
and robust control. In the past two decades, the control of multiple interconnected
systems has drawn more and more attention because many benefits can be obtained
when replacing a solo complicated system with several simple systems. Two ap-
proaches are commonly used for the control of multiple interconnected systems:
a centralized approach and a distributed approach. The centralized approach is based
on the assumption that a powerful central station is available to control a group of
systems. Essentially, the centralized approach is a direct extension of the traditional

W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-169-1_2, c© Springer-Verlag London Limited 2011
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single-system based control methodology. Instead, the distributed approach does
not require the existence of a central station with a tradeoff that this approach is
far more complex than the centralized one. However, the distributed approach is
more promising due to inevitable physical constraints, such as limited communica-
tion/sensing range, low bandwidth, and large number of systems involved.

Recently, the control of a group of autonomous agents including UAVs, UGVs,
and UUVs, has been investigated intensively from different perspectives. The main
control objective is to have the agents work together in a cooperative fashion. Here
cooperative refers to the close relationship among all agents in the team with in-

formation sharing playing an important role. Distributed coordination of multiple
autonomous agents has become an active research topic because many advantages
can be achieved accordingly, such as robustness, adaptivity, flexibility, and scalabil-
ity.

The study of distributed control of multiple autonomous agents was motivated
by the work in distributed computing [183], management science [70, 302], and
physics [295]. In controls society, the pioneer work was given in [292, 293] where
an asynchronous agreement problem was studied for distributed decision making
problems. In what follows, [90, 132, 200, 214, 247] studied consensus algorithms
under various information flow constraints. Several recent special issues on dis-
tributed coordination from 2004 to 2009 include IEEE Transactions on Automatic
Control (Vol. 49, No. 9, 2004), IEEE Transactions on Control Systems Technol-
ogy (Vol. 15, No. 4, 2007), Proceedings of the IEEE (Vol. 94, No. 4, 2007), ASME
Journal of Dynamic Systems, Measurement, and Control (Vol. 129, No. 5, 2007),
International Journal of Robust and Nonlinear Control (Vol. 17, No. 10–11, 2007),
International Journal of Adaptive Control and Signal Processing (Vol. 21, No. 2–
3, 2007), IET Control Theory and Applications (Vol. 1, No. 2, 2007), and SIAM
Journal on Control and Optimization (Vol. 48, No. 1, 2009).

In this chapter, we overview recent research results in distributed multi-agent
coordination from 2006 to 2009.1 For research results before 2006, the readers are
referred to [169, 207, 215, 250]. We roughly categorize the recent research results
based on the following directions:2

1. Consensus/agreement/synchronization/rendezvous. In this direction, various
problems have been investigated towards driving a group of agents to some com-
mon state. In many cases, the four words can be used without discrimination.

2. Distributed formation control.3 Distributed formation control refers to the behav-
ior that the agents form a certain geometrical configuration through local inter-
action with/without a group reference.

1 Here we primarily focus on the results that appeared in major control/robotics journals although
many results might have appeared in other fields or in conferences.
2 Note that the classification is by no means complete, and the overview will by no means cover
all recent research results.
3 In fact, consensus can be considered a special case of formation control. We have explicitly
overviewed consensus because consensus, a fairly basic problem in distributed multi-agent coor-
dination, has received significant research attention, and therefore deserves special attention in the
overview.
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3. Distributed optimization. As is known to us, optimization always plays an impor-
tant role in both theoretical study and practical applications. Significant effort has
been put into this research topic upon the birth of control theory. Optimization in
distributed multi-agent coordination has been studied under both individual and
global objectives.

4. Distributed estimation and control. In order to tackle distributed coordination
problems, it is, sometimes, assumed that some global information is available to
each individual agent. This assumption disobeys the virtue of distributed multi-
agent coordination. As an alternative, distributed estimation and control method-
ologies have been proposed in which some unknown global information can be
estimated locally.

5. Distributed task assignment. An interesting problem involved in sensor/robotic
networks is to achieve task assignment in a distributed fashion. Examples include
task/resource allocation, coverage control, and scheduling.

6. Intelligent coordination. The term intelligent coordination refers to the coordi-
nated behavior of a group of agents with intelligence. In this problem, research
has been conducted towards introducing intelligent mechanisms into traditional
coordination problems or investigating the behavior of a group of intelligent
agents from the perspective of coordination.

2.2 Consensus

Consider a group of n agents with single-integrator dynamics given by

ṙi(t) = ui(t), i = 1, . . . , n (2.1)

where ri(t) ∈ R and ui(t) ∈ R are, respectively, the state and the control input
associated with the ith agent. Here for simplicity of presentation we have assumed
that all agents are in a one-dimensional space. However, all results hereafter are
still valid for the high-dimensional space by introduction of the Kronecker product.
A common consensus algorithm for (2.1) is given by

ui(t) =

n∑

j=1

aij

[
rj(t) − ri(t)

]
, (2.2)

where aij is the (i, j)th entry of the adjacency matrix A associated with the graph G
characterizing the interaction among the n agents. The objective of (2.2) is to reach

or achieve consensus, i.e., for all ri(0) and all i, j = 1, . . . , n, |ri(t) − rj(t)| → 0
as t → ∞. The main idea behind (2.2) is that each agent’s state is driven towards the
states of its neighbors (see Lemmas 1.3–1.5 for some convergence results on con-
sensus). In the following, we will overview the recent research results in consensus
according to different research problems.
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2.2.1 Delay Effect

It can be observed that the consensus algorithm (2.2) assumes that each agent can
obtain the states of its neighbors without time delay. This assumption poses an obvi-
ous limitation because time delay appears in every practical system and, therefore,
deserves consideration in the consensus problem. In particular, two types of time de-
lays, i.e., communication delay and input delay, have been considered in the existing
literature. When there exists communication delay, (2.2) becomes

ui(t) =

n∑

j=1

aij

[
rj(t − Tij) − ri(t)

]
, (2.3)

where Tij represents the communication delay from the jth agent to the ith agent.
When there exists input delay, (2.2) becomes

ui(t) =
n∑

j=1

aij

[
rj(t − Tp) − ri(t − Tp)

]
, (2.4)

where Tp represents the input delay. It is worth mentioning that the communication
and input delays might be time-varying and there might exist both communication
and input delays. In addition to time delay, it is also important to consider packet
dropouts when the agents exchange information. Fortunately, consensus with packet
dropouts can be considered a special case of consensus with time delay because old
information needs to be used in the presence of packet dropouts. The main problem
involved in consensus with time delay is to study the effect of time delay in terms
of whether consensus can be reached ultimately, also called consensusability [186].

In order to study the delay effect on consensus, the authors in [214] present
conditions on the maximum allowed time delay without damaging consensus in
a continuous-time setting. In particular, it is shown that the maximum allowed time
delay is bounded by a threshold determined by the out-degree of the interaction
graph. The authors in [309] study the discrete-time case and present necessary
and/or sufficient conditions under both fixed and switching interaction graphs. Fur-
ther studies are given in [310], which shows that bounded communication delay will
not affect the consensusability. Different from the analysis in [214, 309, 310] where
matrix theory and the properties of row-stochastic matrices are frequently used, the
authors in [290] study the effect of both the communication delay and the input
delay on the consensusability based on the frequency-domain analysis. It is shown
that the communication delay does not affect the consensusability while the input
delay does. In a similar manner, consensus with time delay is studied for systems
with different dynamics, i.e., (2.1) replaced with other complex system dynamics,
under different scenarios [23, 41, 57, 61, 173, 178, 195, 285, 291, 298, 300, 318],
including average consensus where a group of agents reaches the average of their
initial states [23, 285], consensus over complex networks [41, 173, 300], and robust
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consensus [178, 291]. The main tools in the stability analysis include Lyapunov
functions [41, 173], passivity [318], and contraction [298].

2.2.2 Convergence Speed

Convergence speed is another interesting topic in the study of the consensus prob-
lem. Convergence speed is used to characterize how fast consensus is reached. Us-
ing (2.2) for (2.1), if the graph G is undirected, the worst-case convergence speed is
determined by [214] as

min
r �=0n & 1T

n r=0

rT Lr

‖r‖2 = λ2(L), (2.5)

where r
△
= [r1, . . . , rn]T , L is the Laplacian matrix, and λ2(L) represents the sec-

ond smallest eigenvalue of L. In order to increase the convergence speed, the authors
in [148] propose an iterative algorithm to maximize the second smallest eigenvalue
of a state-dependent Laplacian matrix by employing a semidefinite programming
solver. In addition to the second smallest eigenvalue of the Laplacian matrix, a com-
monly used definition of the convergence speed is given by [216, 308]

ρ
△
= lim

t→∞ & r(t) �=r⋆

[ ‖r(t) − r⋆‖
‖r(0) − r⋆‖

] 1
t

, (2.6)

where r⋆ ∈ R
n represents the final consensus equilibrium, which is given by σ1n,

where σ is a constant real number. To achieve the fastest convergence speed, the
corresponding optimization problem becomes maxui(t) ρ. In [308], the authors cast
the problem of finding the fastest convergence speed into a semidefinite program-
ming problem. In [150], the authors study the problem of reaching the fast average

consensus, i.e., r⋆ = rT (0)1n

n
1n in (2.6). In particular, the authors proposed two

numerical solutions: the qth-order spectral norm minimization and gradient sam-
pling. The convergence speed defined in (2.6) is studied in both the deterministic
and stochastic settings. In the deterministic setting, [5, 6, 216] study the conver-
gence speed and present the estimate or the lower bound of the convergence speed.
On the other hand, [3, 115, 331] study the convergence speed in a stochastic setting.
In particular, the authors in [331] study the per-step convergence factor, which can
be considered the measurement of the convergence speed.

2.2.3 Stochastic Setting

Existing research on the consensus problem is mainly conducted under the assump-
tion that the interaction graph is deterministic. However, due to the existence of
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communication failures, packet dropouts, and unstable communication channels, it
is of great importance to study the consensus problem in a stochastic setting where
the interaction graph evolves according to some random distributions, for example,
binomial distribution.

In the deterministic setting, consensus is reached if all agents ultimately reach
an agreement on some common state. In the stochastic setting, consensus is reached
almost surely (respectively, in the mean square sense or with probability one) if all
agents reach an agreement on some common state almost surely (respectively, in the
mean square sense or with probability one). Consensus over a stochastic network
is first studied in [115]. Sufficient conditions on the interaction graph is given to
guarantee consensus with probability one and the rate of convergence is also studied.
The authors in [3, 128, 185, 232, 286, 305, 328] continue the study of the consensus
problem over a stochastic network in different settings. In particular, more general
results on consensus in the stochastic setting are given in [3, 232, 286, 305]. The
authors in [286] present necessary and sufficient conditions to guarantee consensus
almost surely. Note that the condition in [286] is analogous to that in [200, 247] with
the exception that the conditions and results are in the stochastic setting. Note that
the properties of the row-stochastic matrices play a crucial role in the convergence
analysis.

2.2.4 Complex Systems

In addition to the study of the consensus problem for systems with simple dynamics,
for example, single-integrator dynamics, double-integrator dynamics, or general lin-
ear systems [172, 294], consensus for complex systems is also an interesting topic
and has received significant research attention. Here we use the term consensus for

complex systems to refer to the study of the consensus problem when the system
dynamics are nonlinear [15, 55, 60, 64, 66, 71, 76, 77, 123, 177, 208, 258, 267, 277,
320, 321, 329, 330, 333] or the consensus algorithm itself is nonlinear [67, 129,
130]. The main system dynamics studied in the consensus problem include oscilla-
tors [60], complex networks [321, 329], nonholonomic mobile robots [76], passive
systems [333], and rigid bodies [15, 64, 208, 239, 258]. Similar to the consensus
algorithms proposed for systems with simple dynamics, the consensus algorithms
proposed in these papers are also based on the state differences with an exception
that some additional terms are required to ensure consensus. Note that although
the objective is also to guarantee the agreement on the final states, the problem is
more complicated due to the nonlinearity of the closed-loop systems. In addition,
the properties of row-stochastic matrices might not be applied to the convergence
analysis. The main control techniques and approaches used in the stability analy-
sis include adaptive control [329], pinning control [55], dissipativity theory [277],
nonsmooth analysis [66, 76, 129], and Lyapunov functions [15, 60, 64, 76, 208,
258].
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2.2.5 Quantization

Consensus under quantization has been studied recently with the motivation from
digital signal processing. Here quantized consensus refers to consensus when the
measurements are digital rather than analog. Therefore, the information received by
each agent is digital. In [143], a quantized gossip algorithm is proposed and the
convergence analysis is studied. In particular, the bound of the convergence time
for a fully connected undirected graph is shown to be polynomial in the number
of agents. In [48], the authors introduce coding/decoding strategies in quantized
consensus and show that the convergence rate depends on the accuracy of the quan-
tization but not the coding/decoding strategies. In [165, 166], quantized consensus
is studied via gossip algorithms under an undirected connected interaction graph. In
addition, both the lower and upper bounds of the convergence time are investigated.

2.2.6 Sampled-data Setting

Consensus in a sampled-data setting, here called sampled-data consensus, has been
investigated recently with the motivation from the fact that the system dynamics are
normally continuous while the measurements and control inputs might only be made
in a discrete-time setting. Sampled-data consensus is mainly investigated in [33, 36,
99, 101, 116, 312, 313]. Consensus for single-integrator dynamics is studied in a
sampled-data setting under both fixed and switching interaction graphs in [312, 313]
where necessary and/or sufficient conditions are presented to guarantee consensus.
Consensus for double-integrator dynamics is studied in a sampled-data setting un-
der both fixed and switching interaction graphs in [33, 36, 99, 101, 116]. Various
approaches, including Lyapunov theory [116], matrix theory [33], infinite product
of row-stochastic matrices [36], and linear matrix inequalities [99, 101], have been
used to determine necessary and/or sufficient conditions to guarantee consensus.

2.2.7 Finite-time Convergence

Reaching consensus in a finite time, here called finite-time consensus, has been stud-
ied recently. For a group of n agents with dynamics given in (2.1), the objective is
to design ui(t) such that ri(t) = rj(t) for t ≥ T , where T is a constant. Here T is
also called the consensus time. Finite-time consensus for single-integrator dynamics
in a continuous-time setting is solved in [66, 130, 138, 311]. Finite-time consen-
sus for double-integrator dynamics in a continuous-time setting is studied in [297].
It is well known that linear consensus algorithms normally guarantee exponential
or asymptotical convergence but not finite-time convergence. Hence, an important
characteristic in the proposed finite-time consensus algorithms is the introduction of
the signum function.
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2.2.8 Asynchronous Effect

In most existing research of the consensus problem, it is assumed that all agents
update their states synchronously. Note that the synchronized update requires a syn-
chronized clock for a group of agents. However, the synchronized clock might not
exist in real applications. This motivates the study of consensus algorithms with
asynchronous updates. That is, each agent updates its state disregard of the up-
date times of the other agents. In [310], consensus for single-integrator dynam-
ics is studied with asynchronous updates and time delays by using the properties
of row-stochastic matrices. The authors in [43] solve asynchronous consensus for
single-integrator dynamics using matrix theory and graph theory. On the other hand,
paracontracting theory is employed in [89] to solve asynchronous consensus for
single-integrator dynamics.

2.3 Distributed Formation Control

Formation control has been a very interesting research topic in the controls society
where a certain geometric pattern is formed with/without a group reference. The
group reference, sometimes also called a leader or a virtual leader, represents the
objective of interest for the whole group. Formation control without a group refer-
ence, here called formation producing, refers to the behavior that a group of agents
achieves some geometric pattern in the absence of any group reference. Formation
control with a group reference, here called formation tracking, refers to the behav-
ior that a group of agents achieves a desired geometric formation and follows the
group reference. In the following, we will overview recent research results in forma-
tion control, including formation producing, formation tracking, connectivity main-
tenance, and controllability, in the context of distributed multi-agent coordination
with local interaction.

2.3.1 Formation Producing

We overview the existing literature based on different approaches used in the stabil-
ity analysis.

2.3.1.1 Matrix Theory Approach

Due to the nature of multi-agent systems, matrix theory has been used frequently
in the stability analysis of formation producing. In [226], the authors propose a
cyclic-pursuit-based strategy and show that different behaviors for a group of agents,
i.e., converging to a single point, a circle, or a logarithmic spiral pattern, can be
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achieved by changing a common offset angle. The stability analysis relies on char-
acterizing the eigenvalues of a circulant matrix in the closed-loop system. Moti-
vated by [226], Cartesian coordinate coupling is introduced to consensus algorithms
in [244] to achieve three different collective motions: rendezvous, move on circu-
lar orbits, or follow logarithmic spiral curves. In [187], the collective motion for
nonholonomic robots is studied for a cyclic pursuit model. In [153], the authors use
complex polynomials to represent the space of permutation-invariant multi-robot
formations, where the roots of the complex polynomials correspond to the configu-
rations of the robots in the formation. In [273], cooperative multi-agent formation is
studied based on parallel estimation-based decentralized control. In addition, nec-
essary conditions on the interaction graph are presented to guarantee the stability of
simultaneous parallel estimation and control.

2.3.1.2 Lyapunov-based Approach

Another important approach used in formation producing is the Lyapunov-based
approach, where the system stability can be proved by finding a proper Lyapunov
function. In [77], the formation feasibility and velocity alignment problem is inves-
tigated. In [78], the inverse agreement problem is studied, where the team mem-
bers are forced to disperse in the workspace. In particular, the minimum distance
between every pair of agents is larger than a specific lower bound. In [223], the
circular collective motion on a sphere is studied under both fixed and switching
interaction graphs. In [69, 170, 202, 289], flocking of a group of agents is inves-
tigated in different cases under fixed and switching interaction graphs, where a
group of agents moves cohesively and the inter-agent collision is avoided. In [97],
the Queue-formation structure is investigated in the formation producing problem,
where the communication load can be reduced by dividing the information flow
into two subgroups: the fast time scale and the slow time scale. In [82], the au-
thor studies formation producing with bounded control. In [327], the authors pro-
pose control laws to steer particles to an invariant pattern corresponding to a con-
stant orbit value characterizing the curve of the trajectory and constant separa-
tions.

2.3.1.3 Graph Rigidity Approach

Graph rigidity has been an important approach in formation producing. For a given
number of agents, the edges in the interaction graph are closely related to the
shape of the formation. Therefore, distributed controllers can be designed to guar-
antee desired edge distances. In [213], graph rigidity is used to achieve formation
producing for a group of agents under an undirected interaction graph. In [117],
the authors study the construction and transformation of two-dimensional persis-
tent graphs, where persistence is a generalization of rigidity in directed graphs.
Through primitive operations, the minimally persistent formation can be obtained
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from any other one while minimal persistence is preserved throughout the reorga-
nization process. Further study on formation producing using graph rigidity and
persistence can be found in [157, 319] where a nonlinear control law [319] and a
gradient-based control law [157] are designed such that a rigid formation can be
obtained.

2.3.1.4 Receding Horizon Approach

Receding horizon control (RHC), also called model predictive control (MPC), has
been introduced in the formation producing problem. RHC is essentially a finite-
horizon optimization problem. In [86, 87], the authors investigate distributed for-
mation producing via distributed RHC. In [96], a distributed RHC approach is used
to solve formation producing in the presence of time delay.

2.3.2 Formation Tracking

Although formation control without a group reference is interesting, it is some-
times more meaningful to study formation control in the presence of a group
reference that represents the objective of interest for the whole group. We also
overview the existing literature based on the approaches used in the stability analy-
sis.

2.3.2.1 Matrix Theory Approach

In [45, 240], a special case of formation tracking for single-integrator dynamics
in the presence of a time-varying group reference is studied in both continuous-
time and discrete-time settings. In [233], formation tracking is solved through
a two-level consensus approach where agents reach an agreement on the virtual
leader’s state at one level and are guaranteed to converge to the desired forma-
tion about the virtual leader at the other level. In [149], target-capturing formation
control based on a cyclic pursuit strategy is proposed and studied for nonholo-
nomic mobile robots. In particular, collision avoidance is shown to be achieved
as well. In [236], a general framework is presented to design cooperative con-
trol strategies for a group of dynamical systems by studying the properties of the
augmentation of reducible and irreducible nonnegative matrices. In addition, the
approach can be applied to multiple heterogeneous systems. In [255], formation
control with a constant final velocity is studied through ring coupling. In [307],
the authors study synchronization of a group of agents on some desired signal
that has the same dynamics as the agents and is available to only a portion of the
agents.
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2.3.2.2 Potential Function Approach

Potential functions have been used frequently in the formation tracking problem,
where a controller is designed based on the gradient of the corresponding potential
function. By properly choosing the potential function, the desired group behavior
can be guaranteed. Motivated by the results in [212], the authors in [280] extend the
flocking study in [212] to the case when there exists a group reference. That is, a
group of agents moves cohesively with the group reference and inter-agent collision
is avoided. In particular, the state information of the group reference is assumed to
be available to all agents. In [268], flocking is studied under the assumption that the
group reference’s acceleration is known to each agent. In [83], formation control of
a group of nonholonomic mobile robots is solved by using a bump function and a
potential function. In addition, collision avoidance mechanism is introduced without
requiring switching control even if the robots have limited sensing ranges.

2.3.2.3 Lyapunov-based Approach

In [299], the authors study conditions for distributed tracking in dynamic networks
in the presence of different types of leaders, which has potential applications in biol-
ogy, e.g., in evolutionary processes and disease propagation. In [84, 85], formation
control of multiple nonholonomic mobile robots is solved by model transformation
with/without uncertainties. In [104], coordinated path following of a group of agents
is studied in the presence of communication losses and time delays. In particular,
the authors derive conditions such that the path following errors are driven to a small
neighborhood of zero. In [218], three nonlinear leader–follower formation control
algorithms based on, respectively, full state feedback, robust state feedback, and
output feedback, are proposed to solve the formation control problem for a group
of nonholonomic mobile robots. In [180], synchronization of a group of spacecraft
on elliptical orbits is solved by using a nonlinear adaptive controller. In [51], a dis-
tributed control law is designed for nonhonolomic mobile robots to achieve a circu-
lar motion around a stationary or moving beacon. In [224], a distributed coordina-
tion algorithm is proposed to guarantee convergence of agents to a set of trajectories
that moves along closed curves.

2.3.2.4 Other Approaches

In addition to the aforementioned approaches, there are also some other approaches
used to achieve formation tracking. Formation producing and formation tracking are
studied in [91] via partial differential equations. In [113], leader-following forma-
tion control is solved without the measurement of the leader’s velocity. In particular,
an observer is designed to estimate the leader’s velocity. In [75], formation tracking
of nonholonomic mobile robots is solved by using neural networks. The control law
is designed by using a backstepping technique and is based on the integration of
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the signum function. Collision avoidance is considered as well. In [14], formation
tracking is solved when the constant velocity of the leader is available to a portion
of the followers by using an adaptive control design.

2.3.3 Connectivity Maintenance

In both consensus and formation control problems, it is often assumed that the inter-
action graph satisfies certain conditions. For example, the interaction graph is con-
nected or has a directed spanning tree. Note that a communication model is often
distance-based. That is, two agents can communicate with each other only if their
distance is smaller than a certain threshold. In order to guarantee that consensus
or formation control can be achieved ultimately, connectivity maintenance mecha-
nism has also been studied recently. The connectivity maintenance mechanism is
mainly studied in [98, 133, 269, 279, 282, 324, 325]. The main approach used is
to define artificial potentials in a proper way such that if two agents are neighbors
at a certain time instant, they will always be neighbors afterwards. In [133], con-
sensus with connectivity maintenance is solved when the weights for the edges of
the interaction graph are defined properly. In [98], rendezvous of a group of agents
with connectivity maintenance is solved based on a perimeter minimizing algorithm.
In [282], a controller based on a properly designed potential function is proposed
to solve rendezvous of a group of nonholonomic robots with connectivity mainte-
nance. In [279, 324, 326], connectivity maintenance for flocking of a group of agents
is studied based on properly designed potential functions.

2.3.4 Controllability

Controllability in distributed multi-agent coordination has been an interesting re-
search topic recently. A multi-agent system is controllable if each agent in the sys-
tem can be steered to a certain position by controlling one agent in the system,
which is also called the leader. In [288], the author studies the controllability of
multi-agent systems in the present of a leader. Necessary and sufficient conditions
are presented based on the eigenvalues of a submatrix of the Laplacian matrix. In-
terestingly, it is further shown that increasing the algebraic connectivity does not
necessarily increase the controllability. Further results on controllability of multi-
agent systems are presented from a graph-theoretical perspective. In [134, 135],
necessary conditions on the controllability are presented. In particular, equitable
partitions are introduced in [134] to improve the controllability results presented
in [135]. In [237], the authors investigate the relationship between the network sym-
metry structure and the controllability. Note that [134, 135, 237, 288] focus on the
fixed interaction graph case. Different from [134, 135, 237], the authors in [137,
181] study the controllability of multi-agent systems under a switching interaction
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graph. In particular, the authors in [137] take time delays into account and derive
sufficient conditions for controllability.

2.4 Distributed Optimization

Optimization is an important issue in the systems and controls society. The main
objective of optimization is to find the optimal strategy under some given cost func-
tion. Optimization in distributed multi-agent coordination has been studied recently
in two directions, namely, convergence speed and cost functions. One important
problem studied in consensus is the convergence speed, which characterizes how
fast consensus can be achieved. We refer the readers to Sect. 2.2.2 for the problem.
In addition to the fastest convergence speed that is studied as the objective to opti-
mize, various cost functions including both individual cost functions and global cost
functions are also studied as the objectives to optimize.

2.4.1 Individual Cost Functions

In this case, the cost function for one agent is defined based on its own and its
neighbors’ states. In [260, 261], a semi-distributed optimal control problem is stud-
ied in the presence of finite-horizon individual cost functions in both leaderless and
leader-following cases. In [140], finite-time optimal consensus with input and linear
state constraints is solved by using a primal decomposition and subgradient method.
In [19], a nonlinear consensus protocol is proposed such that a group of agents can
reach an agreement on certain functions of all agents’ initial states. Meanwhile, it
is shown that the proposed consensus protocol is optimal with respect to certain in-
dividual cost functions. In [105], the authors study the coordination problem of a
group of robots working under a collision avoidance constraint, where each individ-
ual robot strives to optimize its own objective—the elapsed time. The problem is
solved based on the notion of Pareto optimality.

2.4.2 Global Cost Functions

In this case, the cost function depends on information of the whole group. In [124],
the authors study an optimal control problem with free final time and partially con-
strained final states, which mimics some behaviors in foraging trail optimization.
In [188], the authors study optimal sensor placement and motion coordination. The
main problem is to maximize a particular class of global cost functions. In [107],
mission planning of a group of unhabitated underwater vehicles is solved via a re-
ceding horizon mixed-integer constrained quadratic optimal control problem, which
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is then partitioned into smaller subproblems and solved in a parallel and distributed
manner using a distributed Nash-based game approach. In [257], the authors study
consensus in terms of the extrema of some global cost function. In particular, con-
sensus and anticonsensus (balance) can be achieved via, respectively, maximizing
and minimizing the cost function. In [127], the authors study the optimal coordina-
tion problem with formation pattern and collision avoidance constraints by minimiz-
ing a global cost function. Through a case study, it is shown that the solution is opti-
mal for sufficiently close starting and final positions. In [26], an optimal distributed
control problem is studied via the study of an infinite-horizon linear-quadratic reg-

ulator (LQR) problem. Then a distributed controller is constructed by analyzing the
properties of the local LQR problem. In addition, the relationship among stability,
robustness, and the spectrum of a certain matrix is presented as well. In [203], the
authors also study an infinite-horizon LQR problem. Different from [26], a special
class of operators, called spatially decaying operators, is introduced. In [35], the
authors study an optimal linear consensus problem from an infinite-horizon LQR
perspective. Different from [26, 203], the authors in [35] show that the optimal in-
teraction graph corresponds to a complete directed graph. Different from [26, 35,
203] where an infinite-horizon cost function is used, the authors in [95] propose co-
operative control algorithms to minimize a finite-horizon global cost function that
includes both the regulation and cooperation objectives. In [142], the authors study a
formation controller design so that some desired properties can be optimized. In par-
ticular, through the use of a dynamic protocol, formations of real robots are shown
to move significantly faster and with greater precision. In [74], minimization of the
total travel distance or the minimax distance that the agents must travel is solved
using convex optimization.

2.5 Distributed Task Assignment

Distributed task assignment refers to the study of task assignment of a group of
agents in a distributed manner, which can be roughly categorized as coverage con-
trol, scheduling, and surveillance.

2.5.1 Coverage Control

Recently, coverage control has been an active research direction in mobile sensor
networks. The main objective is to properly assign the mobile sensors’ motion in
order to maximize the detection probability. Let Q be a convex space with φ rep-
resenting the distribution density function, which denotes the probability that some
event takes place over Q [68]. Let there exist a group of n mobile sensors whose
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locations are given by P
△
= [p1, . . . , pn], where pi denotes the location of sensor i.

Note that the sensor performance at a point q degrades with respect to the distance
‖q − pi‖. Then use a nondecreasing differentiable function f can be used to de-
scribe the sensor performance. The coverage control problem is essentially to find a
local controller for each mobile sensor such that the cost function

J
△
=

n∑

i=1

∫
f
(

‖q − pi‖
)
φ(q) dq

is minimized.4 A complete distributed, scalable coverage control strategy is de-
rived in [68]. In addition, the closed-loop system is adaptive and asynchronous.
Several further results about coverage control have also been presented recently.
In [131], precise coverage control with collision avoidance is studied under fully
and partially connected interaction graphs. In [100], the connection between cov-
erage control and consensus under a cyclic interaction graph is studied. Both the
coverage control problem and the average consensus problem can be considered a
special class of the distributed optimization problems. In [167], the coverage control
of a network of robotic agents with limited-range communication and anisotropic
sensing capabilities is studied. By approximating the expected-value objective func-
tion, a gradient-based distributed coverage control algorithm is developed. Differ-
ent from [68, 100, 131, 167], the authors in [204] study the optimal sensor place-
ment problem via minimizing the trace of a weighted covariance matrix. In par-
ticular, the optimization problem can be converted to a convex optimization prob-
lem.

2.5.2 Scheduling

Distributed scheduling refers to the scheduling of a group of agents in a dis-
tributed manner. In [139], the authors study the optimal scheduling sequence to
fuel a group of UAVs via dynamic programming. In [94], a coordination strat-
egy based on task-load balancing is proposed under a fixed interaction graph.
In [197], the distributed adaptive scheduling is solved by choosing the task tim-
ings as the consensus variable. In [22], the authors solve task assignment for
flocking by using a metric routing algorithm. In [9], the authors study the effi-
cient routing problem when a group of autonomous vehicles must visit multiple
targets generated by a random process. Control strategies are presented to mini-
mize the expected time between the time when a target appears and the time when
an agent visits the target. Further results are also presented to understand the ef-
fect of the inter-agent communication and the knowledge of the stochastic pro-
cess.

4 Note that coverage control can be treated as an optimization problem.
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2.5.3 Surveillance

Distributed surveillance means the monitoring of a certain area by using a group of
agents coordinated in a distributed fashion. In [151], a perimeter surveillance prob-
lem is studied and experimental results on multiple UAVs are presented to show
the effectiveness. In [198], the authors propose a distributed cooperative control al-
gorithm to drive a group of autonomous vehicles to patrol some area that exceeds
the communication and sensing capabilities of the vehicles. In addition, a proper
distribution of the vehicles is achieved within a finite time. In [106], a cooperative
surveillance problem for a group of UAVs is studied in the presence of unstable
communications, time delays, uncertainty in target locations, and imperfect vehicle
search sensors. Different from the problems studied in [106, 151, 198], the authors
in [227] study a scenario where a group of robots moves towards their individual
targets without collision. In [314], the authors study a cooperative search problem
where a group of UAVs are used to find the targets in an unknown environment. In
particular, an opportunistic-cooperative-learning based distributed strategy is pro-
posed to solve the problem and the bounds of the search time are presented. In [93],
the authors study the distribution of a group of heterogeneous vehicles over a certain
space that includes several areas in the presence of uncertainty. Scalable allocation
strategies are developed to guarantee a desired vehicle distribution in these areas.
In [226], different behaviors for a group of vehicles, namely, converging to a sin-
gle point, a circle, or a logarithmic spiral pattern, are shown to be achieved for a
cyclic pursuit model by changing a common offset angle. In addition, by changing
the common offset angle based on the locally available information, the paths of the
vehicles can be guaranteed to cover a certain area. In [287], the authors study a co-
operative sensor placement problem in which a group of mobile sensors is deployed
to monitor multiple stationary targets. The cost function used in [287] is nonlinear
and nonsmooth.

2.6 Distributed Estimation and Control

Due to the absence of global information that can be used to achieve group coordi-
nation, distributed estimation and control has received significant attention recently.
Under the distributed estimation and control framework, the first problem is to de-
sign distributed local estimators such that some global information can be estimated
in finite/infinite time. The second problem is to design distributed local controllers
based on the local estimator such that the closed-loop system is stable. It is worth-
while to emphasize that the closed-loop system with both distributed estimators and
controllers is much more complicated than that with only distributed controllers.

In [315], the authors present a unified framework of distributed estimation and
control to solve a distributed coordination problem. Both proportional-like and
proportional-and-integral-like distributed estimation algorithms are proposed and
analyzed. In [184], the unified distributed estimation and control framework in [315]
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is applied to environmental modeling and experimental results are presented as a
proof of concept. In [184, 315], it is assumed that no noisy signal exists in the mea-
surements. In [278], the authors study overlapping distributed estimation by using
a consensus-like approach in the presence of white noise. The proposed approach
is based on a synergy between local Kalman filters and a dynamic consensus strat-
egy for the agents. In [28], the authors consider the distributed estimation problem,
where each sensor has some noisy linear measurement of some unknown parame-
ter. By using a consensus-like diffusion scheme, the local estimate of each node will
finally converge to the true parameter. In [205], the authors study the accuracy of
position estimation for groups of mobile robots performing cooperative localization
in the presence of white noise. In [332], the authors study cooperative tracking of a
type of nonlinear robots. In particular, cooperative sensors are used to estimate the
relative posture. In [234], radar position estimation and configuration optimization
are studied via the minimization of position errors. In addition to the state estima-
tion in the aforementioned papers, the authors in [73] investigate the estimation of
a spatially distributed process via the minimization of expected state estimation er-
rors.

2.7 Intelligent Coordination

In traditional coordination problems, it is often assumed that each agent responds
to local information. This assumption is simple and, therefore, the complexity of
the closed-loop system is low. Recently, distributed coordination in the presence
of intelligence, referred to as intelligent coordination, has been studied from dif-
ferent perspectives, especially from economy, social science, and management sci-
ence. The main feature in intelligent coordination is that each agent is intelligent,
and therefore chooses the best possible response based on its own objective. We
overview existing results in two aspects: pursuer-invader problem and game the-
ory.

2.7.1 Pursuer–invader Problem

In the pursuer–invader problem, there exist a group of pursuers and one invader.
The objective of the pursuers is to find and track the invader while the objective of
the invader is to escape the pursuers. In [40], the authors study the pursuer–invader
problem and presented a five-phase controller to solve this problem. In [25], the au-
thors study the pursuer-invader problem for Dubins-like vehicles when the velocity
of the invader is bounded. Similar to [40], the authors propose a five-phase con-
troller to solve the problem. The discrete-time case of the pursuit-evasion problem
in [25] is studied in [24].
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2.7.2 Game Theory

Recently, game theory is also introduced to distributed multi-agent coordination.
In [112], formation control is studied via a linear-quadratic (LQ) Nash differential

game and a RHC-based approach is used. In [296], the authors study the problem
of learning Markov games using learning automata. In [88], the authors propose
and study multi-agent systems with symbiotic learning and evolution (Masbiole)
based on symbiosis in the ecosystem. It is further shown that Masbiole can escape
from the Nash equilibria. In [301], the authors study the role of cooperation in a
coupling game. By adding cooperation, it is shown that benefits can be increased.
In [21], the authors study consensus with unknown but bounded disturbances. Due
to the existence of unknown but bounded disturbances, the local controller under a
traditional consensus protocol is bounded. The authors propose a lazy rule, where
each agent chooses the minimal control input based on the traditional consensus
algorithm. In [20], a consensus-like protocol is derived in noncooperative games.
Under the proposed protocol, it is shown that the players converge to the unique
Pareto optimal Nash equilibrium.

2.8 Discussion

We have reviewed the recent research in distributed multi-agent coordination. The
main objective of this overview is to briefly summarize the state-of-the-art in dis-
tributed multi-agent coordination. In addition to the aforementioned theoretical re-
sults, many experiments are also conducted to validate the theoretical results, for
example, [7, 16, 118, 159, 211, 251]. Although the theoretical study and experi-
mental validation have solved many problems in distributed multi-agent coordina-
tion, there are still a number of research problems that deserve further investigation.
We summarize these problems as follows:

• Quantization effect in distributed coordination problems. Most existing research
focuses on the study of distributed coordination problems by assuming that both
control inputs and measurements are continuous analog values. However, the use
of digital signal processing technique requires digital inputs and measurements.
Therefore, it is important and meaningful to investigate the quantization effect in
distributed coordination problems. Note that although the quantization effect has
been studied in some coordination problems, the quantization effect still deserves
further consideration in many other distributed coordination problems.

• Optimization with both individual and global cost functions. The optimization
problem in distributed multi-agent coordination has been studied in the presence
of either an individual or a global cost function. In real systems, each individ-
ual agent has both local and global objectives with corresponding individual and
global cost functions. Therefore, optimization of the combined objectives is more
realistic and meaningful. Another interesting problem is to investigate the rela-
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tionship between the individual cost function and the global cost function. One
interesting problem is how to balance the individual cost function and the global
cost function.

• Intelligent coordination. Intelligent coordination has potential applications in not
only engineering but also in economics, social science, etc. Although several
research problems have been studied recently, there are still many open questions,
especially the understanding of group behavior in the presence of intelligence.
One interesting problem is how we can interpret complex networks and stabilize
the complex networks in the presence of intelligence.

• Competition and cooperation. Right now, most research is conducted based on
local cooperation but not competition. This poses an obvious limitation because
competition also plays an important role in group coordination in reality. For
example, due to the lack of competition, the final consensus equilibrium using
the traditional consensus algorithms is limited to a weighted average of the initial
states. One interesting question is how to introduce competition to distributed
coordination to represent more realistic scenarios.

• Centralization and decentralization. Note that decentralization shows obvious
benefits over centralization, such as scalability and robustness. However, decen-
tralization also has its own drawbacks. One drawback is that each agent cannot
effectively predict the group behavior based on only local information. Accord-
ingly, the group behavior cannot be controlled in some sense. As an interesting
example of this drawback, economic crisis can be used to illustrate the disad-
vantages of decentralization. One interesting question is how we can balance
decentralization and centralization to improve the system performance.

2.9 Notes

For further literature review on distributed multi-agent coordination and related
problems, see [8, 17, 27, 49, 53, 58, 63, 84, 102, 132, 169, 193, 207, 215, 222,
235, 248, 250, 265, 270, 274, 306, 315] and references therein.
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Chapter 3

Collective Periodic Motion Coordination

This chapter introduces a collective periodic motion coordination problem. Coordi-
nated periodic motions play an important role in applications involving multi-agent
networks with repetitive movements such as cooperative patrol, mapping, sampling,
or surveillance. We introduce two types of algorithms. For the first type, we intro-
duce Cartesian coordinate coupling to existing distributed consensus algorithms for
respectively, single-integrator dynamics and double-integrator dynamics, to gener-
ate collective motions, namely, rendezvous, circular patterns, and logarithmic spiral
patterns in the three-dimensional space. It is shown that the interaction graph and
the value of the Euler angle in the case of single-integrator dynamics and the in-
teraction graph, the damping gain, and the value of the Euler angle in the case of
double-integrator dynamics affect the resulting collective motions. We show that
when the nonsymmetric Laplacian matrix has certain properties, the damping gain
is above a certain bound in the case of double-integrator dynamics, and the Euler an-
gle is below, equal, or above a critical value, the agents will eventually rendezvous,
move on circular orbits, or follow logarithmic spiral curves lying on a plane normal
to the Euler axis. For the second type, we introduce coupled second-order linear
harmonic oscillators with local interaction to generate synchronized oscillatory mo-
tions. We analyze convergence conditions under, respectively, directed fixed and
switching interaction graphs. It is shown that the coupled harmonic oscillators can
be synchronized under mild network connectivity conditions. The theoretical result
is also applied to synchronized motion coordination in multi-agent systems as a
proof of concept.

3.1 Cartesian Coordinate Coupling

In this section, we introduce Cartesian coordinate coupling to existing distributed
consensus algorithms for respectively, single-integrator dynamics and double-inte-
grator dynamics, through a rotation matrix in the three-dimensional space, analyze
the convergence properties, and quantitatively characterize the resulting collective
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motions, namely, convergence to a point, circular patterns with concentric orbits,
and logarithmic spiral curves lying on a plane normal to the Euler axis, under a
general interaction graph. The resulting collective motions are expected to have ap-
plications in rendezvous, persistent surveillance, and coverage control with teams
of heterogeneous agents. It is shown that the interaction graph and the value of the
Euler angle in the case of single-integrator dynamics and the interaction graph, the
damping gain, and the value of the Euler angle in the case of double-integrator dy-
namics affect the resulting collective motions. The analysis relies on algebraic graph
theory, matrix theory, and properties of the Kronecker product.

3.1.1 Single-integrator Dynamics

Consider n agents with single-integrator dynamics given by

ṙi = ui, i = 1, . . . , n, (3.1)

where ri ∈ R
m is the position and ui ∈ R

m is the control input associated with the
ith agent. We introduce a distributed algorithm with Cartesian coordinate coupling
for (3.1) as

ui = −
n∑

j=1

aijC(ri − rj), i = 1, . . . , n, (3.2)

where aij is the (i, j)th entry of the adjacency matrix A ∈ R
n×n associated with

the directed graph G △
= (V , E ) characterizing the interaction among the n agents,

and C ∈ R
m×m denotes a Cartesian coordinate coupling matrix. In this book,

it is assumed that all agents share a common inertial coordinate frame. This as-
sumption will not be explicitly mentioned in later chapters unless it is necessary
for facilitating analysis. In this section, we focus on the case where C is a rotation
matrix while a similar analysis can be extended to the case where C is a general
matrix.

Remark 3.1 Note that the existing consensus algorithm for (3.1) (see e.g., [248,
Chap. 2]) corresponds to the case where C = Im. That is, using the existing con-
sensus algorithm for (3.1), the components of ri (i.e., the Cartesian coordinates of
agent i) are decoupled while using (3.2) the components of ri are coupled.

Using (3.2), (3.1) can be written in a vector form as

ṙ = −(L ⊗ C)r, (3.3)

where r
△
= [rT

1 , . . . , rT
n ]T and L ∈ R

n×n is the nonsymmetric Laplacian matrix
associated with A and hence G. Before moving on, we need the following definition:

Definition 3.1. Let μi, i = 1, . . . , n, be the ith eigenvalue of −L with an associated
right eigenvector wi and an associated left eigenvector νi. Also let arg(μi) = 0 for
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μi = 0 and arg(μi) ∈ (π
2 , 3π

2 ) for all μi �= 0.1 Without loss of generality, suppose
that μi is labeled such that arg(μ1) ≤ arg(μ2) ≤ · · · ≤ arg(μn).2

Theorem 3.2. Suppose that the directed graph G has a directed spanning tree. Let

the control algorithm for (3.1) be given by (3.2), where ri
△
= [xi, yi, zi]

T and C is

the 3 × 3 rotation matrix R defined in Lemma 1.20. Let μi, wi, νi, and arg(μi) be

defined in Definition 3.1, p ∈ R
n be defined in Lemma 1.1, and a

△
= [a1, a2, a3]

T ,

ςk, and ̟k be defined in Lemma 1.20.

1. If |θ| < θc
s, where θc

s
△
= 3π

2 − arg(μn), the agents will eventually rendezvous at

the position [pT x(0),pT y(0),pT z(0)], where x, y, and z are, respectively, the

column stack vectors of xi, yi, and zi.

2. If |θ| = θc
s and arg(μn) is the unique maximum phase of μi, all agents will

eventually move on circular orbits with the center [pT x(0),pT y(0),pT z(0)] and

the period 2π
|μn | . The radius of the orbit for agent i is given by 2|wn(i)(

νT
n

νT
n wn

⊗
̟T

2

̟T
2 ς2

)r(0)|
√

a2
2 + a2

3 sin2( θ
2 ), where wn(i) is the ith component of wn. The rel-

ative radius of the orbits is equal to the relative magnitude of wn(i). The relative

phase of the agents on their orbits is equal to the relative phase of wn(i). The

circular orbits are on a plane normal to the Euler axis a.

3. If arg(μn) is the unique maximum phase of μi and θc
s < |θ| < 3π

2 − arg(μn−1),
all agents will eventually move along logarithmic spiral curves with the center

[pT x(0),pT y(0),pT z(0)], the growing rate |μn| cos(arg(μn)+ |θ|), and the pe-

riod 2π
|μn sin(arg(μn)+|θ|)| . The radius of the logarithmic spiral curve for agent i is

given by

2

∣∣∣∣wn(i)

(
νT

n

νT
n wn

⊗ ̟T
2

̟T
2 ς2

)
r(0)

∣∣∣∣e
[|μn | cos(arg(μn)+|θ|)]t

√
a2
2 + a2

3 sin2

(
θ

2

)
.

The relative radius of the logarithmic spiral curves is equal to the relative mag-

nitude of wn(i). The relative phase of the agents on their curves is equal to the

relative phase of wn(i). The logarithmic spiral curves are on a plane normal to

the Euler axis a.

Proof: It follows from Lemmas 1.20 and 1.21 and Definition 3.1 that the eigenvalues
of −(L ⊗R) are μi, μie

ιθ, and μie
−ιθ with the associated right eigenvectors wi ⊗ς1,

wi ⊗ ς2, and wi ⊗ ς3, respectively, and the associated left eigenvectors νi ⊗ ̟1,
νi ⊗ ̟2, and νi ⊗ ̟3, respectively. That is, the eigenvalues of −(L ⊗ R) correspond
to the eigenvalues of −L rotated by angles 0, θ, and −θ, respectively. Let λℓ, ℓ =
1, . . . , 3n, denote the ℓth eigenvalue of −(L ⊗ R). Without loss of generality, let
λ3i−2 = μi, λ3i−1 = μie

ιθ, and λ3i = μie
−ιθ, i = 1, . . . , n. Because the directed

graph G has a directed spanning tree, it follows from Lemma 1.1 that −L has a

1 Note that according to Lemma 1.1, − L has at least one zero eigenvalue and all its nonzero
eigenvalues have negative real parts.
2 It follows from Lemma 1.1 that µ1 = 0. Without loss of generality, let w1 = 1n and ν1 = p,
where p ∈ Rn is defined in Lemma 1.1.
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simple zero eigenvalue and all other eigenvalues have negative real parts. According
to Definition 3.1, we let μ1 = 0 and Re(μi) < 0, i = 2, . . . , n. According to
Lemma 1.1, we let w1 = 1n and ν1 = p without loss of generality. Because μ1 = 0
and μi �= 0, i = 2, . . . , n, it follows that −(L ⊗R) has exactly three zero eigenvalues
(i.e., λ1 = λ2 = λ3 = 0).

Note that −(L ⊗ R) can be written in the Jordan canonical form as MJM −1,
where the columns of M , denoted by mk, k = 1, . . . , 3n, can be chosen to be the
right eigenvectors or generalized right eigenvectors of −(L ⊗ R) associated with the
eigenvalue λk, the rows of M −1, denoted by pT

k , k = 1, . . . , 3n, can be chosen to be
the left eigenvectors or generalized left eigenvectors of −(L ⊗ R) associated with
the eigenvalue λk such that pT

k mk = 1 and pT
k mℓ = 0, k �= ℓ, and J is the Jordan

block diagonal matrix with λk being the diagonal entries. Noting that λk = 0,
k = 1, 2, 3, we can choose mk = 1n ⊗ ςk and pk = p ⊗ ̟k

̟T
k ςk

, k = 1, 2, 3. Note

that e−(L ⊗R)t = MeJtM −1. Also note that limt→∞ eJℓt = 0q×q when Jℓ ∈ R
q×q

is a Jordan block corresponding to an eigenvalue with a negative real part.
For the first statement of the theorem, note that μ1 = 0 and Re(μi) < 0,

i = 2, . . . , n. Also note from Definition 3.1 that arg(μi) ∈ [arg(μ2), arg(μn)] ⊂
(π

2 , 3π
2 ), i = 2, . . . , n. Noting that all complex eigenvalues of −L are in conju-

gate pairs, it follows that arg(μ2) = 2π − arg(μn). If |θ| < θc
s, then all arg(μi),

arg(μie
ιθ), and arg(μie

−ιθ) are within (π
2 , 3π

2 ), i = 2, . . . , n, which implies that
Re(λℓ) < 0, ℓ = 4, . . . , 3n. Noting that λk = 0, k = 1, 2, 3, it follows that
limt→∞ r(t) = limt→∞ e−(L ⊗R)tr(0) = (

∑3
k=1 mkpT

k )r(0) = (1npT ⊗ I3)r(0).
It thus follows that xi(t) → pT x(0), yi(t) → pT y(0), and zi(t) → pT z(0) as
t → ∞. That is, all agents will eventually rendezvous at [pT x(0),pT y(0),pT z(0)].

For the second statement of the theorem, if θ = θc
s (respectively, θ = −θc

s),
then μn rotated by an angle θ (respectively, −θ) will locate on the imaginary axis,
that is, λ3n−1 = μneιθ = −|μn|ι (respectively, λ3n = μne−ιθ = −|μn|ι), while
μ2 = μn rotated by an angle −θ (respectively, θ) will also locate on the imag-
inary axis, that is, λ6 = μ2e

−ιθ = |μn|ι (respectively, λ5 = μ2e
ιθ = |μn|ι).

Because arg(μn) is the unique maximum phase of μi, λ3n−1 (respectively, λ3n)
and λ6 (respectively, λ5) are the only two nonzero eigenvalues of −(L ⊗ R) on
the imaginary axis and all other nonzero eigenvalues have negative real parts. In
the following, we focus on θ = θc

s since the analysis for θ = −θc
s is similar ex-

cept that the agents will move in reverse directions. Note that λk = 0, k = 1, 2, 3,
and Re(λℓ) < 0 for all ℓ �= 1, 2, 3, 3n − 1, 6. Noting that λ3n−1 = −|μn|ι and
λ6 = |μn|ι, we can choose m3n−1 = wn ⊗ ς2, p3n−1 = νn

νT
n wn

⊗ ̟2

̟T
2 ς2

, m6 =

m3n−1, and p6 = p3n−1. Note that r(t) = e−(L ⊗R)tr(0). It follows that ‖r(t) −
(
∑3

k=1 mkpT
k +e−ι|μn |tm3n−1p

T
3n−1 +eι|μn |tm6p

T
6 )r(0)‖ → 0 as t → ∞. Define

c(t)
△
= (e−ι|μn |tm3n−1p

T
3n−1 + eι|μn |tm6p

T
6 )r(0). Let ck(t) be the kth component

of c(t), k = 1, . . . , 3n. It follows that c3(i−1)+ℓ(t) = 2Re(e−ι|μn |twn(i)ς2(ℓ)p
T
3n−1

r(0)), where i = 1, . . . , n, ℓ = 1, 2, 3, and ς2(ℓ) denotes the ℓth component of ς2.
After some manipulation, it follows that c3(i−1)+ℓ(t) = 2|ς2(ℓ)wn(i)p

T
3n−1r(0)| ×

cos{|μn|t − arg[wn(i)p
T
3n−1r(0)] − arg[ς2(ℓ)]}, i = 1, . . . , n, ℓ = 1, 2, 3.

Therefore, it follows that ‖xi(t) − [pT x(0) + c3i−2(t)]‖ → 0, ‖yi(t) − [pT y(0) +
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c3i−1(t)]‖ → 0, and ‖zi(t) − [pT z(0) + c3i(t)]‖ → 0 as t → ∞. After some ma-
nipulation, it can be verified that ‖[c3i−2(t), c3i−1(t), c3i(t)]

T ‖ = 2|wn(i)p
T
3n−1 ×

r(0)|
√

a2
2 + a2

3 sin2( θ
2 ), which is a constant. It thus follows that all agents will even-

tually move on circular orbits with the center [pT x(0),pT y(0),pT z(0)] and the
period 2π

|μn | . The radius of the orbit for agent i is given by 2|wn(i)p
T
3n−1r(0)| ×√

a2
2 + a2

3 sin2( θ
2 ). Note that the relative radius of the orbits is equal to the relative

magnitude of wn(i). In addition, it is straightforward to see that the relative phase of
the agents on their orbits is equal to the relative phase of wn(i)p

T
3n−1r(0), which is

equivalent to the relative phase of wn(i). Note from Lemma 1.20 that the Euler axis a

is orthogonal to both Re(ς2) and Im(ς2), where Re(·) and Im(·) are applied compo-
nentwise. It can thus be verified that a is orthogonal to [c3i−2(t), c3i−1(t), c3i(t)]

T ,
which implies that the circular orbits are on a plane normal to a.

For the third statement of the theorem, if arg(μn) is the unique maximum phase
of μi and θc

s < θ < 3π
2 − arg(μn−1) (respectively, arg(μn−1) − 3π

2 < θ <

−θc
s), then μn rotated by an angle θ (respectively, −θ) will have a positive real

part, that is, λ3n−1 = μneιθ = |μn|eι(arg(μn)+θ) (respectively, λ3n = μne−ιθ =
|μn|eι[arg(μn)−θ]), while μ2 = μn rotated by an angle −θ (respectively, θ) will also
have a positive real part, that is, λ6 = μ2e

−ιθ = |μn|e−ι(arg(μn)+θ) (respectively,
λ5 = μ2e

ιθ = |μn|e−ι[arg(μn)−θ]). In addition, λ3n−1 (respectively, λ3n) and λ6

(respectively, λ5) are the only two eigenvalues of −(L ⊗ R) with positive real parts
and all other nonzero eigenvalues have negative real parts. In the following, we focus
on θc

s < θ < 3π
2 − arg(μn−1) since the analysis for arg(μn−1) − 3π

2 < θ < −θc
s

is similar except that all agents will move in reverse directions. Note that λk = 0,
k = 1, 2, 3, Re(λ3n−1) > 0, Re(λ6) > 0, and Re(λk) < 0 otherwise. Similar to

the proof of the second statement, define c(t)
△
= {e|μn |eι(arg(μn)+θ)tm3n−1p

T
3n−1 +

e|μn |e−ι[arg(μn)+θ]tm6p
T
6 }r(0). Let ck(t), k = 1, . . . , 3n, be the kth component of

c(t). Also let ̺i = |wn(i)p
T
3n−1r(0)| and ϕi = arg[wn(i)p

T
3n−1r(0)]. It follows

that ‖xi(t) − [pT x(0) + c3i−2(t)]‖ → 0, ‖yi(t) − [pT y(0) + c3i−1(t)]‖ → 0, and
‖zi(t) − [pT z(0) + c3i(t)]‖ → 0 as t → ∞, where

c3(i−1)+ℓ(t) = 2|ς2(ℓ)|̺ie
{ |μn | cos[arg(μn)+θ]}t

× cos
({

|μn| sin[arg(μn) + θ]
}
t + ϕi + arg[ς2(ℓ)]

)
,

i = 1, . . . , n, ℓ = 1, 2, 3. Similar to the argument for the second statement, it can be
verified that

∥∥[c3i−2(t), c3i−1(t), c3i(t)
]T∥∥ = 2̺ie

{ |μn | cos[arg(μn)+θ]}t
√

a2
2 + a2

3 sin2

(
θ

2

)
,

which is growing with time. It thus follows that all agents will eventually move
along logarithmic spiral curves. The statement then follows directly.

Corollary 3.1. Suppose that the directed graph G has a directed spanning tree. Let

the control algorithm for (3.1) be given by (3.2), where ri
△
= [xi, yi]

T and C is the

2 × 2 rotation matrix given by R(θ)
△
=

[ cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.
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1. If |θ| < θc
s, where θc

s
△
= 3π

2 − arg(μn), the agents will eventually rendezvous at

the position [pT x(0),pT y(0)], where x and y are, respectively, the column stack

vectors of xi and yi, and p ∈ R
n is defined in Lemma 1.1.

2. If |θ| = θc
s and arg(μn) is the unique maximum phase of μi, all agents will

eventually move on circular orbits with the center [pT x(0),pT y(0)] and the

period 2π
|μn | . The radius of the orbit for agent i is given by 2|wn(i)(

νT
n

νT
n wn

⊗
[ 12 , − 1

2ι])r(0)|. The relative radius of the orbits is equal to the relative magni-

tude of wn(i). The relative phase of the agents on their orbits is equal to the

relative phase of wn(i).

3. If arg(μn) is the unique maximum phase of μi and θc
s < |θ| < 3π

2 − arg(μn−1),
all agents will eventually move along logarithmic spiral curves with the center

[pT x,pT y], the growing rate |μn| cos[arg(μn) + |θ|], and the period
2π

|μn sin[arg(μn)+|θ|]| . The radius of the logarithmic spiral curve for agent i is given

by

2

∣∣∣∣wn(i)

(
νT

n

νT
n wn

⊗
[
1

2
, − 1

2
ι

])
r(0)

∣∣∣∣e
{ |μn | cos[arg(μn)+|θ|]}t.

The relative radius of the logarithmic spiral curves is equal to the relative mag-

nitude of wn(i). The relative phase of the agents on their curves is equal to the

relative phase of wn(i).

Proof: The eigenvalues of R(θ) are given by eιθ and e−ιθ, with the associated
right eigenvectors [1, ι]T and [1, −ι]T and left eigenvectors [1, −ι]T and [1, ι]T ,
respectively. The rest of the proof follows from that of Theorem 3.2.

Corollary 3.2. Suppose that the directed graph G is a unidirectional ring (i.e., a

cyclic pursuit graph). Also suppose that aij = 1 if (j, i) ∈ E and aij = 0 otherwise.

Let the control algorithm for (3.1) be given by (3.2), where ri and C are given as in

Corollary 3.1.

1. If |θ| < π
n , the agents will eventually rendezvous at the position [pT x(0),pT y(0)],

where x, y, and p are defined in Corollary 3.1.

2. If |θ| = π
n , all agents will eventually move on the same circular orbit with

the center [pT x(0),pT y(0)], the period π
sin( π

n
) , and the radius 2|wn(i)(

νT
n

νT
n wn

⊗
[ 12 , − 1

2ι])r(0)|.3 In addition, all agents will eventually be evenly distributed on

the orbit.

3. If π
n < |θ| < 2π

n , all agents will eventually move along logarithmic spiral

curves with the center [pT x(0),pT y(0)], the growing rate 2 sin(π
n ) sin(|θ| − π

n ),

the period π
sin(π/n) cos(|θ|−π/n) , and the radius 2|wn(i)(

νT
n

νT
n wn

⊗ [ 12 , − 1
2ι])r(0)| ×

e2[sin( π
n

) sin(|θ|− π
n

)]t. In addition, the phases of all agents will eventually be evenly

distributed.

Proof: Note that if G is a unidirectional ring and aij = 1 if (j, i) ∈ E and aij = 0
otherwise, then L is a circulant matrix. Also note that a circulant matrix can be

3 In this case, all wn(i), i = 1, . . . , n, have the same magnitude.
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Fig. 3.1 Interaction graph for four agents. An arrow from j to i denotes that agent j is a neighbor
of agent i

diagonalized by a Fourier matrix. The proof then follows Corollary 3.1 directly by
use of the properties of the eigenvalues of a circulant matrix and the properties of
the Fourier matrix.

Remark 3.3 Note that when G is a unidirectional ring (i.e., a cyclic pursuit graph)
but different positive weights are chosen for aij , where (j, i) ∈ E , all agents will
move on orbits with different radii and their phases will not be evenly distributed.

Example 3.1. To illustrate, consider four agents with the directed graph G shown by
Fig. 3.1. Let L associated with G be given by

⎡
⎢⎢⎣

1.5 0 −1.1 −0.4
−1.2 1.2 0 0
−0.1 −0.5 0.6 0

−1 0 0 1

⎤
⎥⎥⎦ . (3.4)

It can be computed that θc
s = 3π

2 − arg(μ4) = 1.2975 rad, where μ4 = −1.6737 −
0.4691ι and arg(μ4) ∈ (π, 3π

2 ). Let R be the rotation matrix corresponding to the
Euler axis a = 1

14 [1, 2, 3]T and the Euler angle θ = θc
s. Figures 3.2, 3.3, and 3.4

show, respectively, the eigenvalues of −L and −(L ⊗ R) when θ = θc
s − 0.1,

θ = θc
s, and θ = θc

s + 0.1. Note that the eigenvalues of −(L ⊗ R) correspond to the
eigenvalues of −L rotated by angles 0, θ, and −θ. Note that in Fig. 3.2, all nonzero
eigenvalues of −(L ⊗ R) are in the open left half plane. In Fig. 3.3, the eigenvalues
of −(L ⊗ R) corresponding to μ4 rotated by an angle θ and μ2 = μ4 rotated by
an angle −θ are located on the imaginary axis while all other nonzero eigenvalues
are located in the open left half plane. In Fig. 3.4, the eigenvalues of −(L ⊗ R)
corresponding to μ4 rotated by an angle θ and μ2 = μ4 rotated by an angle −θ are
located in the open right half plane while all other nonzero eigenvalues are located
in the open left half plane.

3.1.2 Double-integrator Dynamics

Consider n agents with double-integrator dynamics given by

ṙi = vi, v̇i = ui, i = 1, . . . , n, (3.5)
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Fig. 3.2 Eigenvalues of − L and −(L ⊗ R) with θ = θc
s − 0.1. Circles denote the eigenvalues of

− L while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond
to the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the dashed

line, and the dashdot line. Because θ < θc
s, all nonzero eigenvalues of −(L ⊗ R) are in the open

left half plane

Fig. 3.3 Eigenvalues of − L and −(L ⊗ R) with θ = θc
s. Circles denote the eigenvalues of − L

while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond to
the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the
dashed line, and the dashdot line. Because θ = θc

s, two nonzero eigenvalues of −(L ⊗ R) are on
the imaginary axis
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Fig. 3.4 Eigenvalues of − L and −(L ⊗ R) with θ = θc
s + 0.1. Circles denote the eigenvalues of

− L while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond
to the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the dashed

line, and the dashdot line. Because θ > θc
s, two nonzero eigenvalues of −(L ⊗ R) are in the open

right half plane

where ri ∈ R
m and vi ∈ R

m are, respectively, the position and velocity of the ith
agent, and ui ∈ R

m is the control input. We introduce a distributed algorithm with
Cartesian coordinate coupling for (3.5) as

ui = −
n∑

j=1

aijC(ri − rj) − αvi, i = 1, . . . , n, (3.6)

where aij is defined as in (3.2), C ∈ Rm×m denotes a Cartesian coordinate coupling
matrix, and α is a positive constant. In this section, we focus on the case where C

is a rotation matrix while a similar analysis can be extended to the case where C is
a general matrix.

Remark 3.4 Note that the existing consensus algorithm for (3.5) (see, e.g., [248,
Chap. 4]) corresponds to the case where C = Im. That is, using the existing con-
sensus algorithm for (3.5), the components of ri (i.e., the Cartesian coordinates of
agent i) are decoupled while using (3.6) the components of ri are coupled.

Before moving on, we need the following lemma.

Lemma 3.1. Let ξi be the ith eigenvalue of A ∈ R
n×n with, respectively, an

associated right eigenvector qi and an associated left eigenvector si. Also let

B
△
=

[ 0n×n In

A −αIn

]
, where α is a positive scalar. Then the eigenvalues of B are
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given by ζ2i−1 =
−α+

√
α2+4ξi

2 with, respectively, the associated right and left

eigenvectors
[ qi

ζ2i−1qi

]
and

[
(ζ2i−1+α)si

si

]
and ζ2i =

−α−
√

α2+4ξi

2 , with, respec-

tively, the associated right and left eigenvectors given by
[ qi

ζ2iqi

]
and

[
(ζ2i+α)si

si

]
.

When Re(ξi) < 0, Re(ζ2i−1) < 0 and Re(ζ2i) < 0 if and only if α >
|Im(ξi)|√
Re(−ξi)

.

Proof: For the first statement, suppose that ζ is an eigenvalue of B with an associ-
ated right eigenvector

[
f
g

]
, where f, g ∈ C

n. It follows that
[ 0n×n In

A −αIn

][
f
g

]
=

ζ
[

f
g

]
, which implies g = ζf and Af − αg = ζg. It thus follows that Af =

(ζ2 + αζ)f . Noting that Aqi = ξiqi, we let f = qi and ζ2 + αζ = ξi. That
is, each eigenvalue of A, ξi, corresponds to two eigenvalues of B, denoted by

ζ2i−1,2i =
−α±

√
α2+4ξi

2 . Because g = ζf , it follows that the right eigenvectors
associated with ζ2i−1 and ζ2i are, respectively,

[ qi

ζ2i−1qi

]
and

[ qi

ζ2iqi

]
. A similar

analysis can be used to find the left eigenvectors of B associated with ζ2i−1 and ζ2i.
For the second statement, note that

√
α2 + 4ξi has a nonnegative real part. Be-

cause ζ2i =
−α−

√
α2+4ξi

2 , it follows that Re(ζ2i) < 0 if α > 0. It is left to show the
conditions under which Re(ζ2i−1) < 0. Suppose that α∗

i is the critical value for α

such that ζ2i−1 is on the imaginary axis. Let ζ2i−1 = ηiι, where ηi ∈ R. After some
manipulation, it follows that α∗

i = |Im(ξi)|√
Re(−ξi)

. Note that Re(ξi) < 0. It is straight-

forward to verify that if α > α∗
i (respectively, α < α∗

i ), then ζ2i−1 has a negative
(respectively, positive) real part. Therefore, when Re(ξi) < 0, Re(ζ2i−1) < 0 and
Re(ζ2i) < 0 if and only if α >

|Im(ξi)|√
Re(−ξi)

.

Theorem 3.5. Suppose that the directed graph G has a directed spanning tree. Let

the control algorithm for (3.5) be given by (3.6), where ri
△
= [xi, yi, zi]

T and vi
△
=

[vxi, vyi, vzi]
T . Let μi, wi, νi, and arg(μi) be defined in Definition 3.1, p ∈ R

n be

defined in Lemma 1.1, and a
△
= [a1, a2, a3]

T , ςk, and ̟k be defined in Lemma 1.20.

1. Suppose that C = I3. Then all agents will eventually rendezvous if and only if

α > αc, where αc △
= maxμi �=0

|Im(μi)|√
Re(−μi)

. The rendezvous position is given by

{
pT

[
x(0) +

vx(0)

α

]
,pT

[
y(0) +

vy(0)

α

]
,pT

[
z(0) +

vz(0)

α

]}
, (3.7)

where x, y, z, vx, vy , and vz are, respectively, column stack vectors of xi, yi, zi,

vxi, vyi, and vzi.

2. Suppose that C = R, where R is the 3 × 3 rotation matrix defined in Lemma 1.20,

and α > αc. Given |μi|, i = 2, . . . , n, let ψl
i ∈ (π

2 , π) (respectively, ψu
i ∈

(π, 3π
2 )) be the solution to |μi| sin2(ψi) + α2 cos(ψi) = 0 if arg(μi) ∈ (π

2 , π]

(respectively, arg(μi) ∈ [π, 3π
2 )). If |θ| < θc

d, where θc
d

△
= minarg(μi)∈[π, 3π

2 )[ψ
u
i −

arg(μi)], then all agents will eventually rendezvous at the position given by (3.7).



3.1 Cartesian Coordinate Coupling 55

3. Under the assumption of part 2, if |θ| = θc
d and there exists a unique arg(μκ) ∈

[π, 3π
2 ) such that ψu

κ − arg(μκ) = θc
d, then all agents will eventually move on cir-

cular orbits with the center given by (3.7) and the period πα
|μκ sin(ψu

κ)| . The radius

of the orbit for agent i is given by 2|wκ(i)p
T
c [r(0)T , v(0)T ]T |

√
a2
2 + a2

3 sin2( θ
2 ),

where wκ(i) is the ith component of wκ and

pc
△
=

1

(2σc + α)νT
κ wκ̟T

2 ς2

[
(σc + α)(νκ ⊗ ̟2)

νκ ⊗ ̟2

]
,

where σc
△
= ι

2|μκ | sin(ψu
κ)

α . The relative radius of the orbits is equal to the relative

magnitude of wκ(i). The relative phase of the agents on their orbits is equal to

the relative phase of wκ(i). The circular orbits are on a plane normal to the Euler

axis a.

4. Under the assumption of part 2, if there exists a unique arg(μκ) ∈ [π, 3π
2 ) such

that ψu
κ − arg(μκ) = θc

d and θc
d < |θ| < minarg(μi)∈[π, 3π

2 ), i �=κ[ψu
i − arg(μi)],

then all agents will eventually move along logarithmic spiral curves with the

center given by (3.7), the growing rate Re(σs), where σs
△
= −α+

√
α2+4λs

2 with

λs
△
= μκeι|θ|, and the period 2π

|Im(σs)| . The radius of the logarithmic spiral curve

for agent i is

2|wκ(i)p
T
s [r(0)T , v(0)T ]T eRe(σs)t

√
a2
2 + a2

3 sin2

(
θ

2

)
,

where ps
△
= 1

(2σs+α)νT
κ wκ̟T

2 ς2

[
(σs+α)(νκ ⊗̟2)

νκ ⊗̟2

]
. The relative radius of the log-

arithmic spiral curves is equal to the relative magnitude of wκ(i). The relative

phase of the agents on their curves is equal to the relative phase of wκ(i). The

curves are on a plane normal to the Euler axis a.

Proof: For the first statement, if C = I3, then (3.5) using (3.6) can be written in a
vector form as

[
ṙ

v̇

]
=

⎛
⎜⎜⎜⎝

[
0n×n In

−L −αIn

]

︸ ︷︷ ︸
Ψ

⊗I3

⎞
⎟⎟⎟⎠

[
r

v

]
, (3.8)

where r
△
= [rT

1 , . . . , rT
n ]T and v

△
= [vT

1 , . . . , vT
n ]T . Note from Lemma 3.1 that

each eigenvalue μi of −L corresponds to two eigenvalues of Ψ given by ζ2i−1 =
−α+

√
α2+4μi

2 with the associated right and left eigenvectors given by, respec-

tively,
[ wi

ζ2i−1wi

]
and

[
(ζ2i−1+α)νi

νi

]
and ζ2i =

−α−
√

α2+4μi

2 , with the associated
right and left eigenvectors given by, respectively,

[ wi

ζ2iwi

]
and

[
(ζ2i+α)νi

νi

]
where

i = 1, . . . , n. Because the directed graph G has a directed spanning tree, it follows
from Lemma 1.1 that −L has a simple zero eigenvalue and all other eigenvalues
have negative real parts. According to Definition 3.1, we let μ1 = 0 and Re(μi) < 0,
i = 2, . . . , n. According to Lemma 1.1, we let w1 = 1n and ν1 = p without loss of
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generality. It thus follows that ζ1 = 04 with the associated right and left eigenvectors
given by, respectively,

[
1n

0n

]
and

[ αp
p

]
and ζ2 = −α.

We first show that the agents will eventually rendezvous at the position given
by (3.7) if and only if Ψ defined in (3.8) has a simple zero eigenvalue and all other
eigenvalues have negative real parts. For the sufficiency part, similar to the proof of
Theorem 3.2, we write Ψ in the Jordan canonical form as Ψ = MJM −1, where
the columns of M , denoted by mk, k = 1, . . . , 2n, can be chosen to be the right
eigenvectors or generalized right eigenvectors of Ψ associated with the eigenvalue
ζk, the rows of M −1, denoted by pT

k , k = 1, . . . , 2n, can be chosen to be the left
eigenvectors or the generalized left eigenvectors of Ψ associated with eigenvalue ζk

such that pT
k mk = 1 and pT

k mℓ = 0, k �= ℓ, and J is the Jordan block diagonal
matrix with ζk being the diagonal entries. Noting that ζ1 = 0, we choose m1 =[
1n

0n

]
and p1 =

[ p
1
α
p

]
. Note that eΨt = MeJtM −1. Also note that limt→∞ eJℓt =

0qℓ ×qℓ
when Jℓ ∈ R

qℓ ×qℓ is a Jordan block corresponding to an eigenvalue with a
negative real part. If Ψ has a simple zero eigenvalue and all other eigenvalues have
negative real parts, then limt→∞ eΨt = M(limt→∞ eJt)M −1 =

[
1n
0n

][
p

T 1
α p

T
]
.

It thus follows that

lim
t→∞

[
r(t)
v(t)

]
= lim

t→∞
(eΨt ⊗ I3)

[
r(0)
v(0)

]
=

[([
1n

0n

] [
pT 1

αpT
])

⊗ I3

] [
r(0)
v(0)

]
,

which implies that xi(t) → pT x(0) + 1
αpT vx(0), yi(t) → pT y(0) + 1

αpT vy(0),
zi(t) → pT z(0) + 1

αpT vz(0), vxi(t) → 0, vyi(t) → 0, and vzi(t) → 0 as t → ∞.
Equivalently, it follows that all agents will eventually rendezvous at the position
given by (3.7). For the necessity part, if the agents eventually rendezvous at the
position given by (3.7), we know that limt→∞ eΨt = M(limt→∞ eJt)M −1 has a
rank one, which implies that limt→∞ eJt has a rank one. Therefore, if the sufficient
condition does not hold, it is easy to see that limt→∞ eJt has a rank larger than one,
which results in a contradiction.

We next show that Ψ has a simple zero eigenvalue and all other eigenvalues
have negative real parts if and only if α > αc. Note that ζ2 < 0 if α > 0 be-
cause ζ2 = −α. Because Re(μi) < 0, i = 2, . . . , n, it follows from Lemma 3.1
that ζ2i−1 and ζ2i, i = 2, . . . , n, have negative real parts if and only if α >

|Im(μi)|√
Re(−μi)

, i = 2, . . . , n. Combining the above arguments shows that Ψ has a sim-

ple zero eigenvalue and all other eigenvalues have negative real parts if and only if
α > αc.

For the second statement, using (3.6), (3.5) can be written in a vector form as

[
ṙ

v̇

]
=

[
03n×3n I3n

−(L ⊗ R) −αI3n

]

︸ ︷︷ ︸
Σ

[
r

v

]
. (3.9)

4 Therefore, Ψ has at least one zero eigenvalue.



3.1 Cartesian Coordinate Coupling 57

As in the proof of Theorem 3.2, let λ3i−2 = μi, λ3i−1 = μie
ιθ, and λ3i = μie

−ιθ,
i = 1, . . . , n, be the eigenvalues of −(L ⊗ R). Note from Lemma 3.1 that each
λk corresponds to two eigenvalues of Σ, defined in (3.9), given by σ2k−1,2k =

−α±
√

α2+4λk

2 , k = 1, . . . , 3n. Because μ1 = 0, it follows that λ1 = λ2 = λ3 =
0, which in turn implies that σ1 = σ3 = σ5 = 0 and σ2 = σ4 = σ6 = −α.
Because all

√
α2 + 4λk have nonnegative real parts, it follows that all σ2k, k =

1, . . . , 3n, have negative real parts if α > 0. Given α > 0 and χi = |μi|eιarg(χi),
i = 2, . . . , n, ψl

i and ψu
i are the critical values for arg(χi) ∈ [0, 2π) such that

−α+
√

α2+4χi

2 is on the imaginary axis. In particular, if arg(χi) = ψl
i (respectively,

ψu
i ), then

−α+
√

α2+4χi

2 = ι
2|μi | sin(arg(ψl

i)
α (respectively, ι

2|μi | sin(arg(ψu
i )

α ), i =
2, . . . , n. If arg(χi) ∈ (ψl

i, ψ
u
i ) (respectively, arg(χi) ∈ [0, ψl

i) ∪ (ψu
i , 2π)), then

−α+
√

α2+4χi

2 has negative (respectively, positive) real parts. Because α > αc, the

first statement implies that all
−α+

√
α2+4μi

2 , i = 2, . . . , n, have negative real parts,
which in turn implies that arg(μi) ∈ (ψl

i, ψ
u
i ), i = 2, . . . , n. If |θ| < θc

d, then
arg(λ3i−2), arg(λ3i−1), and arg(λ3i) are all within (ψl

i, ψ
u
i ), which implies that

σ6i−5, σ6i−3, and σ6i−1, i = 2, . . . , n, all have negative real parts. Therefore, if
|θ| < θc

d, then Σ has exactly three zero eigenvalues and all other eigenvalues have
negative real parts.

Similar to the proof of Theorem 3.2, we write Σ in the Jordan canonical form
as MJM −1, where the columns of M , denoted by mk, k = 1, . . . , 6n, can be
chosen to be the right eigenvectors or generalized right eigenvectors of Σ asso-
ciated with the eigenvalue σk, the rows of M −1, denoted by pT

k , k = 1, . . . , 6n,
can be chosen to be the left eigenvectors or generalized left eigenvectors of Σ as-
sociated with the eigenvalue σk such that pT

k mk = 1 and pT
k mℓ = 0, k �= ℓ,

and J is the Jordan block diagonal matrix with σk being the diagonal entries. As
in the proof of Theorem 3.2, the right and left eigenvectors of −(L ⊗ R) asso-
ciated with the eigenvalue λℓ = 0 are, respectively, 1n ⊗ ςℓ and p ⊗ ̟ℓ, where
ℓ = 1, 2, 3. It in turn follows from Lemma 3.1 that the right and left eigenvec-
tors of Σ associated with σ2ℓ−1 = 0 are, respectively,

[
1n ⊗ςℓ
03n

]
and

[ αp⊗̟ℓ
p⊗̟ℓ

]
,

where ℓ = 1, 2, 3. We can choose m2ℓ−1 =
[
1n ⊗ςℓ
03n

]
and p2ℓ−1 =

[ p⊗ ̟ℓ
̟T

ℓ
ςℓ

p⊗ ̟ℓ
α̟T

ℓ
ςℓ

]
,

where ℓ = 1, 2, 3. Note that pT
2ℓ−1m2ℓ−1 = 1 and pT

2ℓ−1m2k−1 = 0, where
k, ℓ = 1, 2, 3 and k �= ℓ. Noting that σ2ℓ−1 = 0, ℓ = 1, 2, 3, it follows
that limt→∞

[ r(t)
v(t)

]
= (limt→∞ MeJtM −1)

[ r(0)
v(0)

]
= (

∑3
ℓ=1 m2ℓ−1p

T
2ℓ−1)

[ r(0)
v(0)

]
,

which implies that xi(t) → pT x(0) + 1
αpT vx(0), yi(t) → pT y(0) + 1

αpT vy(0),
zi(t) → pT z(0) + 1

αpT vz(0), vxi(t) → 0, vyi(t) → 0, and vzi(t) → 0 as t → ∞.
Equivalently, it follows that all agents will eventually rendezvous at the position
given by (3.7).

For the third statement, if θ = θc
d (respectively, θ = −θc

d) and there exists a
unique arg(μκ) ∈ [π, 3π

2 ) such that ψu
κ − arg(μκ) = θc

d, then λ3κ−1 = μκeιθ =

|μκ|eιψu
κ (respectively, λ3κ = μκe−ιθ = |μκ|eιψu

κ ), which implies that σ6κ−3 =
−α+

√
α2+4λ3κ−1

2 = ι
2|μκ | sin(ψu

κ)
α (respectively, σ6κ−1 = −α+

√
α2+4λ3κ

2 =
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ι
2|μκ | sin(ψu

κ)
α ). Noting that the complex eigenvalues of Σ are in conjugate pairs,

it follows that Σ has an eigenvalue equal to σ6κ−3 = −ι
2|μκ | sin(ψu

κ)
α (respectively,

σ6κ−1 = −ι
2|μκ | sin(ψu

κ)
α ), denoted by σ∗ for simplicity. In this case, Σ has exactly

three zero eigenvalues, two nonzero eigenvalues are on the imaginary axis, and all
other eigenvalues have negative real parts. In the following, we focus on θ = θc

d be-
cause the analysis for θ = −θc

d is similar except that all agents will move in reverse
directions. Note from Lemma 3.1 that the right and left eigenvectors associated with
σ6κ−3 are, respectively,

[ wκ ⊗ς2
σ6κ−3(wκ ⊗ς2)

]
and

[
(σ6κ−3+α)(νκ ⊗̟2)

νκ ⊗̟2

]
. We can choose

m6κ−3 =
[ wκ ⊗ς2

σ6κ−3(wκ ⊗ς2)

]
and p6κ−3 = 1

(2σ6κ−3+α)νT
κ wκ̟T

2 ς2

[
(σ6κ−3+α)(νκ ⊗̟2)

νκ ⊗̟2

]
.

Note that pT
6κ−3m6κ−3 = 1. Similarly, it follows that m∗ and p∗ correspond to

σ∗ are given by m∗ = m6κ−3 and p∗ = p6κ−3. Therefore, by following a sim-
ilar proof to that of the second statement of Theorem 3.2, we can show that all
agents will eventually move on circular orbits with the center given by (3.7) and
the period πα

|μκ sin(ψu
κ)| . The radius of the orbit for agent i is given by 2|wκ(i)p

T
6κ−3 ×

[rT (0), vT (0)]T |
√

a2
2 + a2

3 sin2( θ
2 ). The relative radius of the orbits is equal to the

relative magnitude of wκ(i). In addition, the relative phase of the agents is equal to
the relative phase of wκ(i). By following a similar proof to that of the second state-
ment of Theorem 3.2, it follows that the circular orbits are on a plane normal to the
Euler axis a.

For the fourth statement, if there exists a unique arg(μκ) ∈ [π, 3π
2 ) such that

ψu
κ − arg(μκ) = θc

d and θc
d < θ < minarg(μi)∈[π, 3π

2 ),i �=κ[ψu
i − arg(μi)] (respec-

tively, − minarg(μi)∈[π, 3π
2 ),i �=κ[ψu

i − arg(μi)] < θ < −θc
d), then λ3κ−1 = μκeιθ

= |μκ|eι[arg(μκ)+θ] (respectively, λ3κ = μκe−ιθ = |μκ|eι[arg(μκ)−θ]), where
arg(μκ) + θ > ψu

κ (respectively, arg(μκ) − θ > ψu
κ), which implies that σ6κ−3 =

−α+
√

α2+4λ3κ−1

2 (respectively, σ6κ−1 = −α+
√

α2+4λ3κ

2 ) has a positive real part.
A similar argument as above shows that Σ has exactly three zero eigenvalues and
two eigenvalues with positive real parts and all other eigenvalues have negative real
parts. By following a similar procedure to the proof of the third statement of Theo-
rem 3.2, we can show that all agents will eventually move along logarithmic spiral
curves with the center given by (3.7), the growing rate Re(σ6κ−3), and the period

2π
|Im(σ6κ−3)| .

Remark 3.6 Unlike the single-integrator case, the critical value θc
d for double-

integrator dynamics depends on both α and L. Note that θc
d < θc

s. When α increases
to infinity, θc

d approaches θc
s. Note that besides the interaction graph and the Euler

angle, α plays an important role in (3.6).

Example 3.2. To illustrate, we consider the same G and L as in Example 3.1. It can
be computed that θc

d = 0.3557 rad. Note that θc
d is smaller than θc

s in Example 3.1.
Let R be the rotation matrix corresponding to the Euler axis a = 1

14 [1, 2, 3]T and the
Euler angle θ = θc

d. Figure 3.5 shows the eigenvalues of −L and −(L ⊗R). Note that
the eigenvalues of −(L ⊗ R) correspond to the eigenvalues of −L rotated by angles
0, θ, and −θ. Figure 3.6 shows the eigenvalues of Σ. Note that each eigenvalue of
−(L ⊗ R), λk, correspond to two eigenvalues of Σ, σ2k−1,2k, where σ2k−1,2k =
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Fig. 3.5 Eigenvalues of − L and −(L ⊗ R) with θ = θc
d. Circles denote the eigenvalues of − L

while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond to
the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the dashed

line, and the dashdot line

Fig. 3.6 Eigenvalues of Σ. Squares denote the eigenvalues computed by σ2k−1 =
−α+

√
α2+4λk

2

while diamonds denote the eigenvalues computed by σ2k =
−α−

√
α2+4λk

2
, k = 1, . . . , 12. In

particular, the eigenvalues of Σ correspond to λ10 = µ4, λ11 = µ4eιθ , and λ12 = µ4e−ιθ are
shown by, respectively, the solid line, the dashed line, and the dashdot line. Because θ = θc

d, two
nonzero eigenvalues of Σ are on the imaginary axis
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−α±
√

α2+4λk

2 , k = 1, . . . , 12. Because θ = θc
d, two nonzero eigenvalues of Σ are

located on the imaginary axis as shown in Fig. 3.6.

3.1.3 Simulation

In this subsection, we study collective motions of four agents using, respectively,
(3.2) and (3.6). Suppose that the interaction graph is given by Fig. 3.1 and L is given
by (3.4). Let θc

s, θc
d, and a be given in Examples 3.1 and 3.2. Using (3.6), it can be

computed that αc = 0.3626. We let α = 0.8626. Note that there exists a unique
arg(μ4) ∈ [π, 3π

2 ) such that ψu
4 − arg(μ4) = θc

d (i.e., κ = 4 in Theorem 3.5).
Note that a right eigenvector of −L associated with the eigenvalue μ4 is w4 =
[−0.2847 − 0.2820ι, 0.7213, −0.2501 + 0.1355ι, 0.4809 + 0.0837ι]T . Also note
that p = [0.2502, 0.1911, 0.4587, 0.1001]T .

Figures 3.7, 3.8, and 3.9 show, respectively, the trajectories of the four agents
using (3.2) with θ =

θc
s

2 , θ = θc
s, and θc

s + 0.1. Note that all agents eventually

rendezvous when θ =
θc

s

2 , move on circular orbits when θ = θc
s, and move along

logarithmic spiral curves when θ = θc
s + 0.1. Also note that when θ = θc

s, the
relative radius of the circular orbits (respectively, the relative phase of the agents)
is equal to the relative magnitude (respectively, phase) of the components of w4. In
addition, the trajectories of all agents are normal to the Euler axis a in all cases.

Figures 3.10, 3.11, 3.12, and 3.13 show, respectively, the trajectories of the four
agents using (3.6) with R = I3, θ = θc

d − 0.2, θ = θc
d, and θ = θc

d + 0.2. Note
that all agents eventually rendezvous at the position given by (3.7) when R = I3 or

Fig. 3.7 Trajectories of the four agents using (3.2) with θ =
θc

s
2

. Circles denote the starting posi-
tions of the agents while the squares denote the snapshots of the agents at 10 s
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Fig. 3.8 Trajectories of the four agents using (3.2) with θ = θc
s. Circles denote the starting posi-

tions of the agents while the squares denote the snapshots of the agents at 30 s

Fig. 3.9 Trajectories of the four agents using (3.2) with θ = θc
s + 0.1. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 10 s

θ = θc
d − 0.2, move on circular orbits when θ = θc

d, and move along logarithmic
spiral curves when θ = θc

d + 0.2. While similar motions to those using (3.2) are
observed, the critical value for the Euler angle, the period of the circular motion,
and the period and the growing rate of the logarithmic spiral motion using (3.6) are
different from those using (3.2) even if the interaction graph and L are chosen to be
the same.
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Fig. 3.10 Trajectories of the four agents using (3.6) with R = I3. Circles denote the starting
positions of the agents while the squares denote the snapshots of the agents at 20 s

Fig. 3.11 Trajectories of the four agents using (3.6) with θ = θc
d − 0.2. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 30 s

3.2 Coupled Harmonic Oscillators

In this section, we study coupled second-order linear harmonic oscillators with lo-
cal interaction to achieve synchronized oscillatory motions. We will analyze con-
vergence conditions under, respectively, directed fixed and switching interaction
graphs.
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Fig. 3.12 Trajectories of the four agents using (3.6) with θ = θc
d. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 30 s

Fig. 3.13 Trajectories of the four agents using (3.6) with θ = θc
d + 0.2. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 10 s

3.2.1 Problem Statement

When two objects of mass m are connected by a damper with the coefficient b and
are each attached to fixed supports by identical springs with the spring constant k,
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they can be represented by

mẍ1 + kx1 + b(ẋ1 − ẋ2) = 0, (3.10a)

mẍ2 + kx2 + b(ẋ2 − ẋ1) = 0, (3.10b)

where xi ∈ R denotes the position of the ith object. Motivated by (3.10), we study
n coupled harmonic oscillators with local interaction of the form

ẍi + α(t)xi +

n∑

j=1

aij(t)(ẋi − ẋj) = 0, i = 1, . . . , n, (3.11)

where xi ∈ R is the position of the ith oscillator, α(t) is a positive gain at time t, and
aij(t) is the (i, j)th entry of the adjacency matrix A(t) associated with the directed

graph G(t)
△
= [V , E (t)] characterizing the interaction among the n oscillators at

time t (i.e., aij(t) > 0 if oscillator i can obtain the velocity of oscillator j at time
t and aij(t) = 0 otherwise). While (3.11) conceptually represents a system where
n virtual masses are connected by virtual dampers, the purpose of this section is
to adopt (3.11) as a distributed algorithm for synchronization of the positions and
velocities of n networked point-mass agents.

Let ri
△
= xi and vi

△
= ẋi. Equation (3.11) can be written as

ṙi = vi,

v̇i = −α(t)ri −
n∑

j=1

aij(t)(vi − vj), i = 1, . . . , n. (3.12)

Let r
△
= [r1, . . . , rn]T and v

△
= [v1, . . . , vn]T . Equation (3.12) can be written in a

vector form as [
ṙ

v̇

]
=

[
0n×n In

−α(t)In −L(t)

]

︸ ︷︷ ︸
Q

[
r

v

]
, (3.13)

where L(t) ∈ R
n×n is the nonsymmetric Laplacian matrix associated with A(t)

and hence G(t) at time t. In the following, we focus on the one-dimensional space
for simplicity of presentation. However, all results hereafter are still valid for any
high-dimensional space by use of the properties of the Kronecker product.

3.2.2 Convergence Under Directed Fixed Interaction

In this subsection, we consider convergence of (3.12) under a directed fixed interac-
tion graph. Here we assume that both α and L in (3.13) are constant. Both leaderless
and leader-following cases will be addressed. We need the following lemmas for our
main result.
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Lemma 3.2. Let μi be the ith eigenvalue of −L. Also let χri ∈ C
n and χℓi ∈

C
n be, respectively, the right and left eigenvectors of −L associated with μi. Then

the eigenvalues of Q, defined in (3.13), are given by λi± =
μi ±

√
μ2

i −4α

2 with the

associated right eigenvectors ϕri± = [χT
i , λi±χT

i ]T and left eigenvectors ϕℓi± =

[χT
ℓi, − λi±

α χT
ℓi]

T .

Proof: Let λ be an eigenvalue of Q and ϕr = [xT
r , yT

r ]T ∈ C2n be an associated
right eigenvector. Then we get that

[
0n×n In

−αIn −L

] [
xr

yr

]
= λ

[
xr

yr

]
. (3.14)

It follows from (3.14) that

yr = λxr, (3.15a)

−αxr − Lyr = λyr. (3.15b)

Combining (3.15a) and (3.15b) gives −Lxr = λ2+α
λ xr. Suppose that μ is an eigen-

value of −L with an associated right eigenvector χr. It follows that λ2+α
λ = μ and

xr = χr. Therefore, it follows that λ satisfies

λ2 − μλ + α = 0 (3.16)

and ϕr = [χT
r , λχT

r ]T according to (3.15a). Noting that μi is the ith eigenvalue of
−L with an associated right eigenvector χri, it follows from (3.16) that the eigen-

values of Q are given by λi± =
μi ±

√
μ2

i −4α

2 with the associated right eigenvectors
ϕri± = [χT

ri, λi±χT
ri]

T .
Similarly, let ϕℓ = [xT

ℓ , yT
ℓ ]T ∈ C

2n be a left eigenvector of Q associated with
the eigenvalue λ. Then we get that

[xT
ℓ , yT

ℓ ]

[
0n×n In

−αIn −L

]
= λ[xT

ℓ , yT
ℓ ]. (3.17)

It follows from (3.17) that

yT
ℓ = − λ

α
xT

ℓ , (3.18a)

xT
ℓ − yT

ℓ L = λyT
ℓ . (3.18b)

Combining (3.18a) and (3.18b) gives that −xT
ℓ L = λ2+α

λ xT
ℓ . A similar argument to

that of the right eigenvectors shows that the left eigenvectors of Q associated with
λi± are ϕℓi± = [χT

ℓi, − λi±

α χT
ℓi]

T .
In the leaderless case, we have the following theorem.

Theorem 3.7. Let p ∈ R
n be defined in Lemma 1.1. Let μi, λi±, ϕri±, and ϕℓi± be

defined in Lemma 3.2. Suppose that the directed graph G has a directed spanning
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tree. Using (3.12), |ri(t) − [cos(
√

αt)pT r(0) + 1√
α

sin(
√

αt)pT v(0)]| → 0 and

|vi(t) − [−√
α sin(

√
αt)pT r(0) + cos(

√
αt)pT v(0)]| → 0 as t → ∞.

Proof: Note that the directed graph G has a directed spanning tree. It follows from
Lemma 1.1 that −L has a simple zero eigenvalue with an associated right eigen-
vector 1n and left eigenvector p that satisfies p ≥ 0, pT L = 0, and pT 1n = 1.
In addition, all other eigenvalues of −L have negative real parts. Without loss of
generality, let μ1 = 0 and then we get that Re(μi) < 0, i = 2, . . . , n. Accordingly,
it follows from Lemma 3.2 that λ1± = ±√

αι with the associated right and left
eigenvectors given by

ϕr1± =
[
1T

n , ±√
αι1T

n

]T
, ϕℓ1± =

[
pT , ± 1√

αι

pT

]T

. (3.19)

Because Re(μi) < 0, i = 2, . . . , n, it follows that Re(λi−) = Re(
μi −

√
μ2

i −4α

2 ) <

0, i = 2, . . . , n. Noting that λi+λi− = α, i = 2, . . . , n, it follows that arg(λi+) =
−arg(λi−). Therefore, it follows that Re(λi+) < 0, i = 2, . . . , n.

Note that Q can be written in the Jordan canonical form as

Q = [w1, . . . , w2n]︸ ︷︷ ︸
P

⎡
⎣

√
αι 0 01×(2n−2)

0 −√
αι 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 J

⎤
⎦

⎡
⎢⎣

νT
1
...

νT
2n

⎤
⎥⎦

︸ ︷︷ ︸
P −1

, (3.20)

where wi ∈ R
2n, i = 1, . . . , 2n, can be chosen to be the right eigenvectors or

generalized eigenvectors of Q, νi ∈ R2n, i = 1, . . . , 2n, can be chosen to be the left
eigenvectors or generalized eigenvectors of Q, and J is the Jordan upper diagonal
block matrix corresponding to the eigenvalues λi+ and λi−, i = 2, . . . , n. Because
P −1P = I2n, wi and νi must satisfy that νT

i wi = 1 and νT
i wk = 0, where i �= k.

Accordingly, we let w1 = ϕr1+, w2 = ϕr1−, ν1 = 1
2ϕℓ1+, and ν2 = 1

2ϕℓ1−, where
ϕr1± and ϕℓ± are defined in (3.19).

Let

Φ(t)
△
= e

√
αιt

[
1n√
αι1n

] [
1

2
pT ,

1

2
√

αι

pT

]

+ e− √
αιt

[
1n

−√
αι1n

] [
1

2
pT , − 1

2
√

αι

pT

]

=

[
cos(

√
αt)1npT 1√

α
sin(

√
αt)1npT

−√
α sin(

√
αt)1npT cos(

√
αt)1npT

]
.

Because eQt = PeJtP −1 and limt→∞ eJt = 0(2n−2)×(2n−2), it follows that

limt→∞ ‖eQt − Φ(t)‖ = 0. The solution to (3.13) is given by
[ r(t)

v(t)

]
= eQt

[ r(0)
v(0)

]
.
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Fig. 3.14 Directed fixed graph G. An arrow from j to i denotes that agent j is a neighbor of agent i

Fig. 3.15 Evolution of the oscillator states using (3.12) with α = 1 and G shown in Fig. 3.14

Therefore, it follows that
∣∣∣∣ri(t) −

[
cos

(√
αt

)
pT r(0) +

1√
α

sin
(√

αt
)
pT v(0)

]∣∣∣∣ → 0

and ∣∣vi(t) −
[

−√
α sin

(√
αt

)
pT r(0) + cos

(√
αt

)
pT v(0)

]∣∣ → 0

as t → ∞.

Example 3.3. To illustrate, we show simulation results involving four coupled har-
monic oscillators using (3.12) under the directed fixed graph G as shown in Fig. 3.14.
Note that G in this case has a directed spanning tree, implying that the condition of
Theorem 3.7 is satisfied. We assume that aij = 1 if (j, i) ∈ E and aij = 0 other-
wise. Figures 3.15 and 3.16 show, respectively, the evolution of the oscillator states
with α = 1 and α = 4. Note that the oscillator states are synchronized for both
α = 1 and α = 4. However, the value of α has an effect on the amplitude and
frequency of the synchronized states.

Under the condition of Theorem 3.7, all ri converge to a common oscillatory
trajectory, so do all vi. That is, the n coupled harmonic oscillators are synchronized.
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Fig. 3.16 Evolution of the oscillator states using (3.12) with α = 4 and G shown in Fig. 3.14

We next consider the case where there exist n followers, labeled as oscillators or
followers 1 to n, and a leader, labeled as oscillator 0 with states r0 and v0. Here the

leader can be virtual or physical. Let G △
= (V , E ) be the directed graph characterizing

the interaction among the n followers. Let G △
= (V , E ) be the directed graph char-

acterizing the interaction among the leader and the followers corresponding to G.
Suppose that r0 and v0 satisfy

ṙ0 = v0, v̇0 = −αr0, (3.21)

where α is a positive gain. In this case, we study the system

ṙi = vi, (3.22)

v̇i = −αri −
n∑

j=0

aij(vi − vj), i = 1, . . . , n,

where aij , i, j = 1, . . . , n is the (i, j)th entry of the adjacency matrix A associated
with G, and ai0 is a positive constant if the leader is a neighbor of oscillator i and
ai0 = 0 otherwise.

Corollary 3.3. Suppose that in G the leader has directed paths to all followers 1
to n. Using (3.22), |ri(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 as t → ∞, where

r0(t) = cos
(√

αt
)
r0(0) +

1

α
sin

(√
αt

)
v0(0),

(3.23)
v0(t) = −√

α sin
(√

αt
)
r0(0) + cos

(√
αt

)
v0(0).
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Proof: It is straightforward to show that the solution to (3.21) is given by (3.23).
Consider a team consisting of n + 1 oscillators (oscillators 0 to n). The proof is a
direct application of that of Theorem 3.7.

We also consider the case where there exist deviations between oscillator states.
In this case, we study the system

ṙi = vi, (3.24)

v̇i = −α(ri − δi) −
n∑

j=0

aij(vi − vj), i = 1, . . . , n,

where δi is a constant, and α and aij , i = 1, . . . , n, j = 0, . . . , n are defined as
in (3.22).

Corollary 3.4. Suppose that in G the leader has directed paths to all followers 1
to n. Using (3.24), |ri(t) − [r0(t) + δi]| → 0 and |vi(t) − v0(t)| → 0 as t → ∞,

where r0(t) and v0(t) are defined in Corollary 3.3.

Proof: Let r̃i
△
= ri − δi. Noting that ˙̃ri = vi, it follows from Corollary 3.3 that

|r̃i(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 as t → ∞ with r̃i playing the role of
ri in (3.22).

3.2.3 Convergence Under Directed Switching Interaction

In this subsection, we consider convergence of (3.12) under a directed switching
interaction graph. We consider two cases, namely, (i) the directed graph G(t) is
strongly connected and balanced at each time instant; and (ii) the directed graph
G(t) has a directed spanning tree at each time instant.

Let P denote a set indexing the class of all possible directed graphs Gp, where
p ∈ P , defined on n nodes. The adjacency matrix and the nonsymmetric Laplacian
matrix associated with Gp are denoted by, respectively, Ap and Lp. Note that P is a
finite set by definition. Suppose that (3.12) can be written as

[
ṙ

v̇

]
=

[
0n×n In

−ασ(t)In −Lσ(t)

]

︸ ︷︷ ︸
Qσ(t)

[
r

v

]
, (3.25)

where σ : [0, ∞) 
→ P is a piecewise constant switching signal with switching times
t0, t1, . . . , ασ(t) is a positive gain associated with the directed graph Gσ(t), and Lσ(t)

is the nonsymmetric Laplacian matrix associated with Aσ(t) and hence Gσ(t).

Theorem 3.8. Suppose that σ(t) ∈ Psb, where Psb ⊂ P denotes the set indexing

the class of all possible directed graphs defined on n nodes that are strongly con-

nected and balanced. Also suppose that ασ(t) ≡ αsb, where αsb is a positive scalar.

Using (3.12), |ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞.
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Proof: 5 Consider the Lyapunov function candidate

V =
1

2
αsbr

T r +
1

2
vT v. (3.26)

Noting that v̇ is discontinuous due to switches of interaction graphs, we have v̇ ∈a.e.

K[−Lσ(t)v]−αsbr, where K[·] is a differential inclusion and a.e. stands for “almost

everywhere”. The set-valued Lie derivative of V is given by L̃F V = αsbv
T r +

vT [−αsbr + φv] = vT φv, where φv is an arbitrary element of K[−Lσ(t)v]. Note
that the directed graph Gσ(t) is strongly connected and balanced. It follows from
Lemma 1.2 that −vT Lσ(t)v ≤ 0, which implies that maxφv ∈K[− Lσ(t)v](v

T φv) =

max(K[−vT Lσ(t)v]) = 0. In particular, max(K[−vT Lσ(t)v]) = 0 if and only if
vi = vj , which in turn implies that v̇i = v̇j . Noting that ασ(t) ≡ αsb, it follows
from (3.25) (see also (3.12)) that ri = rj when vi = vj and v̇i = v̇j . It thus follows
from Lemma 1.40 that |ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞.

Let rij
△
= ri − rj and vij

△
= vi − vj . Also let r̃

△
= [r12, r23, . . . , r(n−1)n]T and

ṽ
△
= [v12, v23, . . . , v(n−1)n]T . Equation (3.25) can be rewritten as

[
˙̃r
˙̃v

]
=

[
0n−1 In−1

−ασ(t)In−1 −Dσ(t)

]

︸ ︷︷ ︸
Rσ(t)

[
r̃

ṽ

]
, (3.27)

where Dσ(t) ∈ R
(n−1)×(n−1) can be derived from Lσ(t). Before moving on, we

need the following lemma.

Lemma 3.3 ([201, Lemma 2]). Let {Ap : p ∈ P } be a closed bounded set of real

n × n matrices. Suppose that for each p ∈ P , Ap is stable, and let ap and χp

be any finite nonnegative and positive numbers, respectively, for which ‖eApt‖ ≤
eap −χpt, t ≥ 0. Suppose that τ0 is a number satisfying τ0 > supp∈P { ap

χp
}. For any

admissible switching signal σ : [0, ∞) → P with dwell time no smaller than τ0, the

transition matrix of Aσ satisfies that ‖Φ(t, μ)‖ ≤ ea−χ(t−μ), ∀t ≥ μ ≥ 0, where

a
△
= supp∈P {ap} and χ

△
= infp∈P {χp − ap

τ0
}.

Theorem 3.9. Let Pst ⊂ P denote the set indexing the class of all possible directed

graphs defined on n nodes that have a directed spanning tree. The following two

statements hold:

1. The matrix Rp defined in (3.27) is stable for each p ∈ Pst.

2. Let ap ≥ 0 and χp > 0, for which ‖eRpt‖ ≤ eap −χpt, t ≥ 0. Suppose that

σ(t) ∈ Pst. If tk+1 − tk > supp∈Pst
{ ap

χp
}, ∀k = 0, 1, . . . , then using (3.12),

|ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞.

5 The proof is motivated by that of Theorem 1 in [289], which relies on differential inclusions and
nonsmooth analysis. We only sketch the main steps of the proof.
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Proof: For the first statement, note that Theorem 3.7 implies that for each p ∈ Pst

and all i, j = 1, . . . , n, |ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞,
which implies that ‖r̃(t)‖ → 0 and ‖ṽ(t)‖ → 0 as t → ∞. It thus follows
from (3.27) that Rp is stable for each p ∈ Pst.

For the second statement, under the condition of the theorem, because Rp is sta-
ble for each p ∈ Pst, it follows from Lemma 3.3 that the switched system (3.27)
is globally exponentially stable if tk+1 − tk > supp∈Pst

{ ap

χp
}, ∀k = 0, 1, . . . .

Equivalently, it follows that under the same condition |ri(t) − rj(t)| → 0 and
|vi(t) − vj(t)| → 0 as t → ∞.

Remark 3.10 Note that Theorem 3.9 imposes a bound on how fast the interaction
graph can switch while Theorem 3.8 does not. Also note that the convergence con-
dition in Theorem 3.9 is only a sufficient condition. When there exists a leader, the
analysis can follow a similar line to that of Theorems 3.8 and 3.9.

Example 3.4. To illustrate, we show simulation results involving four coupled har-
monic oscillators using (3.12) under a directed switching interaction graph. We
first let ασ(t) ≡ 1 and G(t) switches randomly from {G(1), G(2), G(3)} as shown
in Fig. 3.17. We assume that aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Here
we let t0 = 0 s and choose tk randomly from (2k − 2, 2k) s, k = 1, 2, . . . . Note
that G(1)–G(3) shown in Fig. 3.17 are all strongly connected and balanced, implying
that the condition of Theorem 3.8 is satisfied. Figure 3.18 shows the evolution of
the oscillator states in this case. Note that all oscillator states are synchronized. We
then let ασ(t) switch randomly from {α(1), α(2), α(3)}, where

α(1) = 1, α(2) = 4, α(3) = 9 (3.28)

and G(t) switches randomly from { G(1), G(2), G(3)} as shown in Fig. 3.19. Here we
again let t0 = 0 s and choose tk randomly from (2k − 2, 2k) s, k = 1, 2, . . . . Note
that G(1)–G(3) shown in Fig. 3.19 all have a directed spanning tree, implying that
the condition of Theorem 3.9 is satisfied. Figure 3.20 shows the evolution of the
oscillator states in this case. In contrast to the previous case, the oscillator states
do not approach a uniform amplitude and frequency due to switching of α values.
However, all oscillator states are still synchronized.

Fig. 3.17 Directed graphs G(1)–G(3). All G(1)–G(3) are strongly connected and balanced. An ar-

row from j to i denotes that agent j is a neighbor of agent i
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Fig. 3.18 Evolution of the oscillator states using (3.12) when ασ(t) ≡ 1 and G(t) switches from
{G(1), G(2), G(3)} as shown in Fig. 3.17

Fig. 3.19 Directed graphs G(1)–G(3). All of them have a directed spanning tree. An arrow from j

to i denotes that agent j is a neighbor of agent i

3.2.4 Application to Motion Coordination in Multi-agent Systems

In this subsection, we apply (3.24) to motion coordination in multi-agent systems.
Suppose that there are four point-mass agents in the team with dynamics give by

ṗi = qi and q̇i = wi, i = 1, . . . , 4, where pi
△
= [xi, yi]

T is the position, qi
△
=

[vxi, vyi]
T is the velocity, and wi

△
= [wxi, wyi]

T is the acceleration input. Also

suppose that there exists a virtual leader, labeled as agent 0, with the position p0
△
=

[x0, y0]
T and the velocity q0

△
= [vx0, vy0]

T , and p0 and q0 satisfy

ṗ0 = q0, q̇0 = −αp0, (3.29)

where α is a positive constant. We apply (3.24) to design wxi and wyi, respectively,
as
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Fig. 3.20 Evolution of the oscillator states using (3.12) when ασ(t) switches from (3.28) and G(t)

switches from {G(1), G(2), G(3)} as shown in Fig. 3.19

Table 3.1 Parameters and initial conditions used in the simulation

α = 1

δx1 = 0, δx2 = 4, δx3 = 0, δx4 = 4

δy1 = 0, δy2 = 0, δy3 = −4, δy4 = −4

x0(0) = 1, x1(0) = 1.2, x2(0) = 0.8, x3(0) = 1.4, x4(0) = 0.5

y0(0) = −1, y1(0) = −1.2, y2(0) = −0.8, y3(0) = −0.7, y4(0) = 1.5

vx0(0) = 1, vx1(0) = 0.2, vx2(0) = 0.3, vx3(0) = 0.4, vx4(0) = 0.5

vy0(0) = 1, vy1(0) = 0.4, vy2(0) = 0.6, vy3(0) = 0.8, vy4(0) = 1

wxi = −α(xi − δxi) −
n∑

j=0

aij(vxi − vxj),

wyi = −α(yi − δyi) −
n∑

j=0

aij(vyi − vyj),

where δxi and δyi are constant.
Parameters and initial conditions used in the simulation are shown in Table 3.1.

By solving (3.29), it is straightforward to show that the trajectory of the virtual
leader follows an elliptic orbit.

Figure 3.21 shows the interaction graph for agents 1 to 4 and the virtual leader
(i.e., agent 0). We let aij = 1, i, j = 0, . . . , 4, if (j, i) ∈ E and aij = 0 other-
wise. Figure 3.22 shows the complete trajectories and snapshots of the four agents.
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Fig. 3.21 Interaction graph for the four agents and the virtual leader. An arrow from j to i denotes
that agent j is a neighbor of agent i

Fig. 3.22 Complete trajectories of the four agents. Circles show the snapshot at t = 0 s while
squares show the snapshots at t = 5, 10, 15, 20 s

Note that the four agents are able to synchronize their motions and move on elliptic
orbits.

3.3 Notes

The results in this chapter are based mainly on [241–244]. For further results on col-
lective periodic motion coordination, see [141, 175, 176, 187, 226, 238, 262, 263,
271, 281]. In particular, a cyclic pursuit strategy, where each agent pursues only one
other agent with the interaction graph forming a unidirectional ring, is studied for
agents with single-integrator dynamics in [176, 271] while for mobile agents sub-
ject to nonholonomic constraints in [187]. The cyclic pursuit strategy is generalized
in [226] by letting each agent pursue one other agent along the line of sight rotated
by a common offset angle. It is shown that depending on the common offset angle,
the agents can achieve different symmetric formations, namely, convergence to a
single point, a circle, or a logarithmic spiral pattern in the two-dimensional space.
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The result is further extended in [238] to deal with single- and double-integrator
models in the three-dimensional space. In particular, it is shown that more robust,
locally stable motions on circular orbits can be achieved by making the rotation an-
gle a function of the relative positions of the agents. Symmetric formations are also
studied by adopting models based on the Frenet–Serret equations of motion [141]
or by exploring the connections between phase models of coupled oscillators and
kinematic models of steered particle groups [262, 263]. In addition, a collective ro-
tating formation control problem, where all agents surround a common point with a
desired formation structure, is investigated in [175] for double-integrator agents in
the two-dimensional space. In [281], synchronization of coupled second-order linear
harmonic oscillators is revisited under a dynamic proximity graph. It is shown that
the coupled second-order linear harmonic oscillators can always be synchronized
without imposing any graph connectivity assumption.



Chapter 4

Collective Tracking with a Dynamic Leader

This chapter introduces a collective tracking problem in the presence of a dynamic
leader. The problem has applications in formation flying, body guard, and target
tracking. We solve the distributed collective tracking problem via a variable struc-
ture approach when there exists a dynamic leader who is a neighbor of only a subset
of a group of followers, all followers have only local interaction, and only par-
tial measurements of the states of the leader and the followers are available. In the
context of collective tracking, we focus on both coordinated tracking and swarm
tracking algorithms. The objective of coordinated tracking is that a group of fol-
lowers intercepts a dynamic leader with local interaction. The objective of swarm
tracking is that a group of followers moves cohesively with a dynamic leader while
avoiding inter-agent collision with local interaction. Both single-integrator dynam-
ics and double-integrator dynamics are considered. Several simulation examples are
presented as a proof of concept.

4.1 Problem Statement

Although leaderless coordination is useful in applications such as cooperative ren-
dezvous of a group of agents, there are many applications that require a dynamic
leader. Here the leader can be virtual or physical. Examples include formation
flying, body guard, and target tracking applications. The objective of coordinated

tracking is that a group of followers intercepts a dynamic leader with local interac-
tion. The objective of swarm tracking is that a group of followers moves cohesively
with a dynamic leader while avoiding inter-agent collision with local interaction.
In the context of this chapter, we use the term collective tracking to refer to both
coordinated tracking and swarm tracking. We focus on solving a distributed collec-
tive tracking problem via a variable structure approach when there exists a dynamic
leader under the following three assumptions: (i) The dynamic leader is a neigh-
bor of only a subset of a group of followers; (ii) There exists only local interaction
among all followers; (iii) The velocity measurements of the dynamic leader and all

W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-169-1_4, c© Springer-Verlag London Limited 2011
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followers in the case of single-integrator dynamics or the acceleration measurements
of the dynamic leader and all followers in the case of double-integrator dynamics
are not required. In contrast to the assumptions that appeared in the literature, the
three assumptions are more general and practical.

The contributions of this chapter are twofold. In the case of single-integrator dy-
namics, we propose a distributed coordinated tracking algorithm without velocity
measurements under both fixed and switching interaction graphs. In particular, we
show that distributed coordinated tracking can be achieved in finite time. We then
extend the result to achieve distributed swarm tracking without velocity measure-
ments. In the case of double-integrator dynamics, we first propose two distributed
coordinated tracking algorithms without acceleration measurements when the ve-
locity of the dynamic leader is varying under, respectively, a fixed and switching
interaction graph. In particular, we show that the proposed algorithms guarantee at
least global exponential tracking. We then propose a distributed coordinated track-
ing algorithm and a distributed swarm tracking algorithm when the velocity of the
dynamic leader is constant. When the velocity of the dynamic leader is varying,
distributed swarm tracking is solved by introducing a distributed estimator. For dis-
tributed coordinated tracking, a mild connectivity requirement is proposed by adopt-
ing an adaptive connectivity maintenance mechanism in which the control weights
are adjusted in a proper way. Similarly, a mild connectivity requirement is proposed
for distributed swarm tracking by adopting a connectivity maintenance mechanism
in which the potential function is defined in a proper way.

Suppose that in addition to n followers, labeled as agents or followers 1 to n,

there exists a dynamic leader, labeled as agent 0. Let G △
= (V , E ) be the undirected

graph characterizing the interaction among the n followers. Let G △
= (V , E ) be the

directed graph characterizing the interaction among the leader and the followers cor-
responding to G. In the following, we assume that all agents are in a one-dimensional
space for the simplicity of presentation. However, all results hereafter are still valid
for the m-dimensional (m > 1) space by the introduction of the Kronecker product.

4.2 Collective Tracking for Single-integrator Dynamics

In this section, we study distributed collective tracking for single-integrator dynam-
ics. Suppose that the leader has a (time-varying) position r0 and velocity ṙ0. We
assume that |ṙ0| ≤ γℓ, where γℓ is a positive constant.

4.2.1 Coordinated Tracking Under Fixed and Switching

Interaction

In this subsection, we design ui for (3.1) such that all followers intercept the dy-
namic leader with local interaction in the absence of velocity measurements. We
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propose the distributed coordinated tracking algorithm for (3.1) as

ui = −α

n∑

j=0

aij(ri − rj) − β sgn

[
n∑

j=0

aij(ri − rj)

]
, (4.1)

where aij , i, j = 1, . . . , n, is the (i, j)th entry of the adjacency matrix A ∈ R
n×n

associated with the undirected graph G, ai0, i = 1, . . . , n, is a positive constant
if the leader is a neighbor of follower i and ai0 = 0 otherwise, α is a nonnegative
constant, and β is a positive constant. We first consider the case of a fixed interaction
graph.

Remark 4.1 Due to the introduction of the signum function, the proposed algo-
rithms in this chapter are discontinuous. Therefore, we study the Filippov solutions
of the closed-loop systems using the proposed discontinuous algorithms via the non-
smooth analysis in Sect. 1.5. It follows from Lemma 1.38 that the Filippov solutions
of the closed-loop systems exist because the signum function is measurable and lo-
cally essentially bounded.

Theorem 4.2. Suppose that the fixed undirected graph G is connected and at least

one ai0 is nonzero (and hence positive). Using (4.1) for (3.1), if β > γℓ, then

|ri(t) − r0(t)| → 0 in finite time. In particular, ri(t) = r0(t) for any t ≥ t̄, where

t̄ =

√
r̃T (0)Mr̃(0)

√
λmax(M)

(β − γℓ)λmin(M)
, (4.2)

where r̃ is the column stack vector of r̃i, i = 1, . . . , n, with r̃i
△
= ri − r0, and

M
△
= L + diag (a10, . . . , an0) with L being the Laplacian matrix associated with

A and hence G.

Proof: Noting that r̃i = ri − r0, we can rewrite the closed-loop system of (3.1)
using (4.1) as

˙̃ri = −α

n∑

j=0

aij(r̃i − r̃j) − β sgn

[
n∑

j=0

aij(r̃i − r̃j)

]
− ṙ0. (4.3)

Equation (4.3) can be written in a vector form as

˙̃r = −αMr̃ − β sgn(Mr̃) − 1nṙ0,

where r̃ and M are defined in (4.2), and sgn(·) is defined componentwise. Because
the fixed undirected graph G is connected and at least one ai0 is nonzero (and hence
positive), it follows from Lemma 1.6 that M is symmetric positive definite.

Consider the Lyapunov function candidate V = 1
2 r̃T Mr̃. According to Defini-

tion 1.10, the set-valued Lie derivative of V is given by
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L̃F V =
⋂

ξ∈∂V (r̃)

ξT K
[

−αMr̃ − β sgn(Mr̃) − 1nṙ0

]
,

where ∂V (r̃) is the generalized gradient of V at r̃. Because V is continuously dif-
ferentiable with respect to r̃, ∂V (r̃) = {Mr̃}, which is a singleton. Therefore, it
follows that

L̃F V = r̃T MK
[

−αMr̃ − βsgn(Mr̃) − 1nṙ0

]

= K
[

−αr̃T M2r̃ − β ‖Mr̃‖1 − ṙ0r̃
T M1n

]

=
{

−αr̃T M2r̃ − β ‖Mr̃‖1 − ṙ0r̃
T M1n

}
, (4.4)

where we have used the fact that r̃T MK[−β sgn(Mr̃)] = K[−βr̃T M sgn(Mr̃)] =

{−β ‖Mr̃‖1}. It follows that L̃F V is a singleton, whose only element is actually V̇ .
Therefore, it follows that

max L̃F V = V̇ ≤ −αr̃T M2r̃ − β ‖Mr̃‖1 − ṙ0 ‖Mr̃‖1

≤ −αr̃T M2r̃ − (β − γℓ) ‖Mr̃‖1 , (4.5)

where we have used Lemma 1.19 to obtain the first inequality and |ṙ0| ≤ γℓ to obtain
the second inequality. Note that M2 is symmetric positive definite, α is nonnegative,
and β > γℓ. Therefore, it follows that max L̃F V is negative definite. It then follows
from Lemma 1.39 that r̃(t) → 0n as t → ∞.

We next show that V will decrease to zero in finite time (i.e., ‖r̃(t)‖ → 0 in finite
time). Note that V ≤ 1

2λmax(M) ‖r̃‖2
2. It then follows from (4.5) that the derivative

of V satisfies

V̇ ≤ −(β − γℓ) ‖Mr̃‖2 = −(β − γℓ)
√

r̃T M2r̃

≤ −(β − γℓ)

√
λ2

min(M) ‖r̃‖2
2 = −(β − γℓ)λmin(M) ‖r̃‖2

≤ −(β − γℓ)

√
2λmin(M)√
λmax(M)

√
V .

After some manipulation, we can get that

2
√

V (t) ≤ 2
√

V (0) − (β − γℓ)

√
2λmin(M)√
λmax(M)

t.

Therefore, we have V (t) = 0 when t ≥ t̄, where t̄ is given by (4.2). This completes
the proof.

Remark 4.3 Letting x(t) ∈ R
p be a continuous function with respect to t, it can be

computed that xT (t)K[sgn[x(t)]] = K[xT (t)sgn[x(t)]]. Because xT (t) sgn[x(t)]
is continuous, we have xT (t)K[sgn[x(t)]] = xT (t) sgn[x(t)]. In the following, we
will repeatedly use this property in our proofs. For simplicity of presentation, we
will not explicitly mention this property in the following proofs. The Lyapunov
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theorem for nonsmooth systems stated in Lemma 1.39 and the invariance principle
for differential inclusions stated in Lemma 1.40 will be used for stability analysis.

Let N i ⊆ {0, 1, . . . , n} denote the neighbor set of follower i in the team con-
sisting of the n followers and the leader. We next consider the case of a switch-
ing interaction graph by assuming that j ∈ N i(t), i = 1, . . . , n, j = 0, . . . , n,
if |ri − rj | < rs at time t and j /∈ N i(t) otherwise, where rs denotes the com-
munication/sensing radius of the agents. In this case, we consider the distributed
coordinated tracking algorithm for (3.1) as

ui = −α
∑

j∈N i(t)

bij(ri − rj) − β sgn

[ ∑

j∈N i(t)

bij(ri − rj)

]
, (4.6)

where α is a nonnegative constant, β is a positive constant, and bij , i = 1, . . . , n,
j = 0, . . . , n, are positive constants.

Theorem 4.4. Suppose that the undirected graph G(t) is connected and the leader

is a neighbor of at least one follower (i.e., 0 ∈ N i(t) for some i) at each time

instant. Using (4.6) for (3.1), if β > γℓ, then |ri(t) − r0(t)| → 0 as t → ∞.

Proof: Let Vij = 1
2bij(ri − rj)

2, i, j = 1, . . . , n, when |ri − rj | < rs and Vij =
1
2bijr

2
s when |ri − rj | ≥ rs. Also let Vi0 = 1

2bi0(ri − r0)
2, i = 1, . . . , n, when

|ri − r0| < rs and Vi0 = 1
2bi0r

2
s when |ri − r0| ≥ rs. Consider the Lyapunov

function candidate V = 1
2

∑n
i=1

∑n
j=1 Vij +

∑n
i=1 Vi0. Note that V is not smooth

but is regular.

Define r
△
= [r0, . . . , rn]T and u

△
= [u0, . . . , un]T , where u0

△
= ṙ0 and ui, i =

1, . . . , n, is defined in (4.6). The set-valued Lie derivative of V is given by

L̃F V =
⋂

ξ∈∂V (r)

ξT K[u]

=
1

2

n∑

i=1

n∑

j=1

( ⋂

ξi
ij ∈∂Vij(ri)

K

[
ξi
ij

{
− α

∑

j∈N i(t)

bij(ri − rj)

− β sgn

[ ∑

j∈N i(t)

bij(ri − rj)

]}]

+
⋂

ξj
ij ∈∂Vij(rj)

K

[
ξ

j
ij

{
− α

∑

i∈N j(t)

bji(rj − ri)

− β sgn

[ ∑

i∈N j(t)

bji(rj − ri)

]}])

+

n∑

i=1

( ⋂

ξi
i0∈∂Vi0(ri)

K

[
ξi
i0

{
− α

∑

0∈ N i(t)

bij(ri − r0)
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− β sgn

[ ∑

0∈ N i(t)

bij(ri − r0)

]}]
+

⋂

ξ0
i0∈∂Vi0(r0)

K
[
ξ0
i0ṙ0

])
,

where ∂V (r) is the generalized gradient of V at r, ∂Vij(ri) is the generalized
gradient of Vij at ri, and we have used the fact that K[x(t)f(t)] = x(t)K[f(t)]
for any continuous function x(t) ∈ R to derive the second equality. Define

Υ
△
= −K[α

∑
j∈N i(t)

bij(ri − rj) + β sgn[
∑

j∈N i(t)
bij(ri − rj)]]. Let a ∈ L̃F V .

It follows from Definition 1.10 that for all ξi
ij ∈ ∂Vij(ri), there exists φi

r ∈ Υ

such that a = 1
2

∑n
i=1

∑n
j=1[ξ

i
ijφ

i
r + ξ

j
ijφ

j
r] +

∑n
i=1[ξ

i
i0φ

i
r + ξ0

i0ṙ0]. Choose

φi
r = −α

∑n
j=0 ξi

ij − β sgn(
∑n

j=0 ξi
ij) ∈ Υ . Note that ξi

ij = −ξ
j
ij . It then fol-

lows that

a =
1

2

n∑

i=1

n∑

j=1

{
ξi
ij

[
−α

n∑

j=1

ξi
ij − β sgn

(
n∑

j=1

ξi
ij

)]

+ ξ
j
ij

[
−α

n∑

j=1

ξi
ij − β sgn

(
n∑

j=1

ξ
j
ij

)]}

+
n∑

i=1

{
ξi
i0

[
−α

n∑

j=1

ξi
ij − βsgn

(
n∑

j=1

ξi
ij

)]
+ ξ0

i0ṙ0

}

= − α

n∑

i=1

[
n∑

j=0

ξi
ij

]2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

ξi
ij

∣∣∣∣∣ +

n∑

i=1

ξi
0iṙ0.

= − α

n∑

i=1

[
n∑

j=0

ξi
ij

]2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

ξi
ij

∣∣∣∣∣ + ṙ0

n∑

i=1

ξi
0i + ṙ0

n∑

i=1

n∑

j=1

ξi
ij (4.7)

= − α

n∑

i=1

[
n∑

j=0

ξi
ij

]2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

ξi
ij

∣∣∣∣∣ + ṙ0

n∑

i=1

n∑

j=0

ξi
ij

≤ − α

n∑

i=1

[
n∑

j=0

ξi
ij

]2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

ξi
ij

∣∣∣∣∣ + ṙ0

n∑

i=1

∣∣∣∣∣

n∑

j=0

ξi
ij

∣∣∣∣∣

≤ − α

n∑

i=1

[
n∑

j=0

ξi
ij

]2

− (β − γℓ)

n∑

i=1

∣∣∣∣∣

n∑

j=0

ξi
ij

∣∣∣∣∣, (4.8)

where we have used the fact that
∑n

i=1

∑n
j=1 ξi

ij = 0 to derive (4.7) and |ṙ0| ≤ γℓ

to derive (4.8). Based on the definition of Vij , it follows that ∂Vij(ri) = {0},
∂Vij(ri) = {bij(ri − rj)}, or ∂Vij(ri) = Co[0, bij(ri − rj)]. After some ma-
nipulation, we have

a ≤ max
(
K

[
−αr̃T

[
M̂(t)

]2
r̃ − (β − γℓ)

∥∥M̂(t)r̃
∥∥

1

])
,
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where r̃ is the column stack vector of r̃i, i = 1, . . . , n, with r̃i
△
= ri − r0, and

M̂(t)
△
= [m̂ij(t)] ∈ R

n×n is defined as

m̂ij(t)
△
=

⎧
⎪⎨
⎪⎩

−bij , j ∈ N i(t), j 
= i,

0, j /∈ N i(t), j 
= i,
∑

k∈N i(t)
bik, j = i.

(4.9)

When the undirected graph G(t) is connected and the leader is a neighbor of at
least one follower (i.e., 0 ∈ N i(t) for some i) at each time instant, it follows
from Lemma 1.6 that M̂(t) is symmetric positive definite at each time instant. Be-
cause β > γℓ, it then follows that the maximum element of the set-valued Lie
derivative of V is negative definite under the condition of the theorem. It then fol-
lows from Lemma 1.39 that ‖r̃(t)‖ → 0 as t → ∞. Therefore, we can get that

|ri(t) − r0(t)| → 0 as t → ∞.

Remark 4.5 Under the condition of Theorem 4.4, distributed coordinated tracking
can be achieved in finite time under a switching interaction graph. However, in con-
trast to the result in Theorem 4.2, it is not easy to explicitly compute the bound
of the time (i.e., t̄ in Theorem 4.2) because the switching pattern of the interaction
graph also plays an important role in determining the bound of the time.

4.2.2 Swarm Tracking Under Switching Interaction

In this subsection, we extend the distributed coordinated tracking algorithm in
Sect. 4.2.1 to achieve distributed swarm tracking. The objective here is to design
ui for (3.1) such that all followers move cohesively with the dynamic leader while
avoiding inter-agent collision with local interaction in the absence of velocity mea-
surements. Before moving on, we need to define potential functions which will be
used in the distributed swarm tracking algorithms.

Definition 4.1. The potential function Vij is a differentiable, nonnegative function
of ‖ri − rj ‖1 satisfying the following conditions:

1. Vij achieves its unique minimum when ‖ri − rj ‖ is equal to its desired value dij .
2. Vij → ∞ if ‖ri − rj ‖ → 0.
3. ∂Vij

∂(‖ri −rj ‖) = 0 if ‖ri − rj ‖ ≥ rs, where rs > maxi,j dij is a positive constant
denoting the communication/sensing radius of the agents.

4. Vii = c, i = 1, . . . , n, where c is a positive constant.

1 In this definition, ri can be m-dimensional.
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Lemma 4.1. Let Vij be defined in Definition 4.1. The following equality holds

1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

)
=

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi.

Proof: Note that

1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

)
=

1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi − 1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙj

=
1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi − 1

2

n∑

j=1

n∑

i=1

∂Vji

∂rj
ṙi

=
1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi +

1

2

n∑

j=1

n∑

i=1

∂Vij

∂ri
ṙi

=

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi,

where we have used the fact that ∂Vij

∂ri
= − ∂Vij

∂rj
from Definition 4.1. Therefore, the

lemma holds.
We propose the distributed swarm tracking algorithm for (3.1) as

ui = −α
∑

j∈N i(t)

∂Vij

∂ri
− β sgn

[ ∑

j∈N i(t)

∂Vij

∂ri

]
, (4.10)

where α is a nonnegative constant, β is a positive constant, and N i(t) is defined in
Sect. 4.2.1, and Vij is defined in Definition 4.1.

Theorem 4.6. Suppose that the undirected graph G(t) is connected and the leader

is a neighbor of at least one follower (i.e., 0 ∈ N i(t) for some i) at each time

instant. Using (4.10) for (3.1), if β > γℓ, the followers will ultimately stay close to

the leader and the inter-agent collision is avoided.

Proof: Consider the Lyapunov function candidate

V =
1

2

n∑

i=1

n∑

j=1

Vij +
n∑

i=1

Vi0.

Note that V is continuously differentiable with respect to ri and rj . It follows that

max L̃F V = V̇ =
1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

)
+

n∑

i=1

(
∂Vi0

∂ri
ṙi +

∂Vi0

∂r0
ṙ0

)

=

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi +

n∑

i=1

(
∂Vi0

∂ri
ṙi +

∂Vi0

∂r0
ṙ0

)
(4.11)
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=

n∑

i=1

n∑

j=1

∂Vij

∂ri

[
−α

n∑

j=0

∂Vij

∂ri
− β sgn

(
n∑

j=0

∂Vij

∂ri

)]

+

n∑

i=1

∂Vi0

∂ri

[
−α

n∑

j=0

∂Vij

∂ri
− β sgn

(
n∑

j=0

∂Vij

∂ri

)]
+

n∑

i=1

∂Vi0

∂r0
ṙ0

= − α

n∑

i=1

(
n∑

j=0

∂Vij

∂ri

)2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣ +

n∑

i=1

∂Vi0

∂r0
ṙ0

= − α

n∑

i=1

(
n∑

j=0

∂Vij

∂ri

)2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣ +
n∑

i=1

∂Vi0

∂r0
ṙ0

+

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙ0 (4.12)

≤ − α

n∑

i=1

(
n∑

j=0

∂Vij

∂ri

)2

− β

n∑

i=1

∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣ + |ṙ0|
n∑

i=1

∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣,

where we have used Lemma 4.1 to derive (4.11) and the fact that∑n
i=1

∑n
j=1

∂Vij

∂ri
= 0 to derive (4.12). Because β > γℓ, we get max L̃F V ≤ 0,

which in turn proves the theorem by applying Lemma 1.39.

4.3 Collective Tracking for Double-integrator Dynamics

In this section, we study distributed collective tracking for double-integrator dynam-
ics. Suppose that the leader has a (time-varying) position r0 and velocity v0.

4.3.1 Coordinated Tracking when the Leader’s Velocity is Varying

In this subsection, we assume that the leader has a varying velocity (i.e., v0 is time-
varying). We assume that |v̇0| ≤ ϕℓ, where ϕℓ is a positive constant. The objective
here is to design ui for (3.5) such that all followers intercepts the dynamic leader
with local interaction in the absence of acceleration measurements. We propose the
distributed coordinated tracking algorithm for (3.5) as

ui = −
n∑

j=0

aij

[
(ri − rj) + α(vi − vj)

]

− β sgn

{
n∑

j=0

aij

[
γ(ri − rj) + (vi − vj)

]
}

, (4.13)
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where aij , i = 1, . . . , n, j = 0, 1, . . . , n, is defined as in (4.1), and α, β, and γ

are positive constants. We first consider the case of a fixed interaction graph. Before
moving on, we need the following lemma.

Lemma 4.2. Suppose that the fixed undirected graph G is connected and at

least one ai0 is nonzero (and hence positive). Let P
△
=

[ 1
2 M2 γ

2 M
γ
2 M 1

2 M

]
and Q

△
=

[ γM2 αγ
2 M2

αγ
2 M2 αM2−γM

]
, where γ and α are positive constants and M

△
= L +

diag(a10, . . . , an0). If γ satisfies

0 < γ < min

{√
λmin(M),

4αλmin(M)

4 + α2λmin(M)

}
, (4.14)

then both P and Q are symmetric positive definite.

Proof: When the fixed undirected graph G is connected and at least one ai0

is nonzero (and hence positive), it follows from Lemma 1.6 that M is symmet-
ric positive definite. Therefore, M can be diagonalized as M = Ψ −1ΛΨ, where
Λ = diag(λ1, . . . , λn) with λi being the ith eigenvalue of M . It then follows that P

can be written as

P =

[
Ψ −1 0n×n

0n×n Ψ −1

] [
1
2Λ2 γ

2 Λ
γ
2 Λ 1

2Λ

]

︸ ︷︷ ︸
F

[
Ψ 0n×n

0n×n Ψ

]
. (4.15)

Let µ be an eigenvalue of F . Because Λ is a diagonal matrix, it follows from (4.15)

that µ satisfies (µ − 1
2λ2

i )(µ − 1
2λi) − γ2

4 λ2
i = 0, which can be simplified as

µ2 − 1

2

(
λ2

i + λi

)
µ +

1

4

(
λ3

i − γ2λ2
i

)
= 0. (4.16)

Because F is symmetric, the roots of (4.16) are real. Therefore, all roots of (4.16)
are positive if and only if 1

2 (λ2
i + λi) > 0 and 1

4 (λ3
i − γ2λ2

i ) > 0. Because λi > 0,
it follows that 1

2 (λ2
i + λi) > 0. When γ2 < λi, it follows that 1

4 (λ3
i − γ2λ2

i ) > 0.
It thus follows that when γ2 < λi, the roots of (4.16) are positive. Noting that P

has the same eigenvalues as F , we can get that P is positive definite if 0 < γ <√
λmin(M).
By following a similar analysis, we can get that Q is positive definite if 0 < γ <

4αλmin(M)
4+α2λmin(M) . Combining the above arguments proves the lemma.

Theorem 4.7. Suppose that the fixed undirected graph G is connected and at least

one ai0 is nonzero (and hence positive). Using (4.13) for (3.5), if β > ϕℓ and γ

satisfies (4.14), then |ri(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 globally exponen-

tially as t → ∞. In particular, it follows that

∥∥[
r̃T (t), ṽT (t)

]T ∥∥ ≤ κ1e
−κ2t, (4.17)
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where r̃ and ṽ are, respectively, the column stack vectors of r̃i and ṽi, i = 1, . . . , n,

with r̃i
△
= ri − r0 and ṽi

△
= vi − v0, P and Q are defined in Lemma 4.2, κ1

△
=√

[r̃T (0), ṽT (0)]P [r̃T (0), ṽT (0)]T

λmin(P ) , and κ2
△
= λmin(Q)

2λmax(P ) .

Proof: Noting that r̃i = ri − r0 and ṽi = vi − v0, we rewrite the closed-loop system
of (3.5) using (4.13) as

˙̃ri = ṽi,

˙̃vi = −
n∑

j=0

aij

[
(r̃i − r̃j) + α(ṽi − ṽj)

]

− β sgn

{
n∑

j=0

aij

[
γ(r̃i − r̃j) + (ṽi − ṽj)

]
}

− v̇0.

(4.18)

Equation (4.18) can be written in a vector form as

˙̃r = ṽ,

˙̃v = −Mr̃ − αMṽ − β sgn[M(γr̃ + ṽ)] − 1nv̇0,

where r̃ and ṽ are defined in (4.17) and M
△
= L + diag(a10, . . . , an0).

Consider the Lyapunov function candidate

V =
[
r̃T , ṽT

]
P

[
r̃

ṽ

]
=

1

2
r̃T M2r̃ +

1

2
ṽT Mṽ + γr̃T Mṽ. (4.19)

Note that according to Lemma 4.2, P is symmetric positive definite when γ satis-
fies (4.14). It follows that

max L̃F V = V̇ = r̃T M2ṽ + ṽT M ˙̃v + γṽT Mṽ + γr̃T M ˙̃v

= −
[
r̃T , ṽT

]
Q

[
r̃

ṽ

]
−

(
γr̃T + ṽT

)
M

{
β sgn

[
M(γr̃ + ṽ)

]
+ 1nv̇0

}

≤ −
[
r̃T , ṽT

]
Q

[
r̃

ṽ

]
− (β − ϕℓ)

∥∥M(γr̃ + ṽ)
∥∥

1
, (4.20)

where the last inequality follows from the fact that |v̇0| ≤ ϕℓ. Note that according to
Lemma 4.2, Q is symmetric positive definite when γ satisfies (4.14). Also note that
β > ϕℓ. It follows that max L̃F V is negative definite. Therefore, it follows from
Lemma 1.39 that ‖r̃(t)‖ → 0 and ‖ṽ(t)‖ → 0 as t → ∞. Equivalently, it follows
that |ri(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 as t → ∞.

We next show that distributed coordinated tracking is achieved at least globally
exponentially. Note that V ≤ λmax(P )‖[r̃T , ṽT ]T ‖2. It then follows from (4.20)
that
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V̇ ≤ −
[
r̃T , ṽT

]
Q

[
r̃
ṽ

]
≤ −λmin(Q)

∥∥∥∥
[

r̃

ṽ

]T ∥∥∥∥
2

≤ − λmin(Q)

λmax(P )
V.

Therefore, we can get V (t) ≤ V (0)e− λmin(Q)

λmax(P ) t. Note also that V ≥ λmin(P ) ×
‖[r̃T , ṽT ]T ‖2. After some manipulation, we can get (4.17).

Remark 4.8 In the proof of Theorem 4.7, the Lyapunov function is chosen as (4.19).

Here P can also be chosen as P
△
=

[ 1
2 M γ

2 M
γ
2 M 1

2 M

]
and the derivative of V also satis-

fies (4.20) with Q
△
=

[ γM2 αγ
2 M2+ M2−γM

2

αγ
2 M2+ M2−γM

2 αM2−γM

]
. By following a similar anal-

ysis to that of Lemma 4.2, we can show that there always exist positive α and γ such
that both P and Q are symmetric positive definite and derive proper conditions for α

and γ. In particular, one special choice for α and γ is αγ = 1 and γ <
4λmin(M)

4λmin(M)+1 .

We next consider the case of a switching interaction graph. We propose the dis-
tributed coordinated tracking algorithm for (3.5) as

ui = −
∑

j∈N i(t)

bij

[
(ri − rj) + α(vi − vj)

]

− β
∑

j∈N i(t)

bij

(
sgn

{ ∑

k∈N i(t)

bik

[
γ(ri − rk) + (vi − vk)

]}

− sgn

{ ∑

k∈N j(t)

bjk

[
γ(rj − rk) + (vj − vk)

]})
, (4.21)

where N i(t) is defined in Sect. 4.2.1, bij , i = 1, . . . , n, j = 0, . . . , n, are positive
constants, and α, β, and γ are positive constants.2 Before moving on, we need the
following lemma.

Lemma 4.3. Suppose that the undirected graph G(t) is connected and the leader

is a neighbor of at least one follower (i.e., 0 ∈ N i(t) for some i) at each time

instant. Let M̂(t) be defined as in (4.9). Let P̂ (t)
△
=

[ 1
2 M̂(t) γ

2 In
γ
2 In

1
2 In

]
and Q̂(t)

△
=

[ γM̂(t) αγ
2 M̂(t)

αγ
2 M̂(t) αM̂(t)−γIn

]
, where α and γ are positive constants. If γ satisfies

0 < γ < min
t

{√
λmin

(
M̂(t)

)
,

4αλmin(M̂(t))

4 + α2λmin(M̂(t))

}
, (4.22)

then both P̂ (t) and Q̂(t) are symmetric positive definite at each time instant.

Proof: The proof is similar to that of Lemma 4.2 and is hence omitted here.

2 Because the leader has no neighbor, we let sgn{
∑

k∈ N 0(t) b0k[γ(r0 − rk) + (v0 − vk)]} = 0.
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Theorem 4.9. Suppose that the undirected graph G(t) is connected and the leader is

a neighbor of at least one follower (i.e., 0 ∈ N i(t) for some i) at each time instant.

Using (4.21) for (3.5), if β > ϕℓ and (4.22) is satisfied, then |ri(t) − r0(t)| → 0
and |vi(t) − v0(t)| → 0 as t → ∞.

Proof: Let Vij and Vi0 be defined as in the proof of Theorem 4.4. Consider the
Lyapunov function candidate V = 1

2

∑n
i=1

∑n
j=1 Vij +

∑n
i=1 Vi0 + 1

2 ṽT ṽ + γr̃T ṽ,
where r̃ and ṽ are, respectively, the column stack vectors of r̃i and ṽi, i = 1, . . . , n,

with r̃i
△
= ri − r0 and ṽi

△
= vi − v0. Note that V can be written as

V =
[
r̃T , ṽT

]
P̂ (t)

[
r̃

ṽ

]
+

1

4

n∑

i=1

∑

j /∈N i(t),j �=0

bijr
2
s +

1

2

∑

0∈ N i(t)

bi0r
2
s , (4.23)

where P̂ (t) is defined in Lemma 4.3. Note also that according to Lemma 4.3, P̂ (t)
is symmetric positive definite when (4.22) is satisfied. By following a similar line
to the proof of Theorem 4.7 and using nonsmooth analysis, we can obtain that
the maximum element of the set-valued Lie derivative of V is negative definite
under the condition of the theorem. Therefore, it follows from Lemma 1.39 that
|ri(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 as t → ∞.

Remark 4.10 It can be noted that (4.21) requires the availability of the information
from both the neighbors (i.e., one-hop neighbors) and the neighbors’ neighbors (i.e.,
two-hop neighbors). However, accurate measurements of the two-hop neighbors’
information are not necessary because only the signs (i.e., ‘+’ or ‘−’) are required
in (4.21). In fact, (4.21) can be easily implemented in real systems in the sense that
follower i, i = 1, . . . , n, shares both its own state (i.e., position and velocity) and
the sign of

∑
j∈N i(t)

bij [γ(ri −rj)+(vi −vj)] with its neighbors. Note that follower
i also has to compute

∑
j∈N i(t)

bij(ri − rj) and
∑

j∈N i(t)
bij(vi − vj) in (4.21)

[correspondingly,
∑n

j=0 aij(ri − rj) and
∑n

j=0 aij(vi − vj) in (4.13)] in order to
derive the corresponding control input for itself.

Remark 4.11 Under the condition of Theorem 4.9, the distributed coordinated
tracking algorithm (4.21) guarantees at least global exponential tracking under a
switching interaction graph. However, in contrast to the result in Theorem 4.7, it
might not be easy to explicitly compute the decay rate (i.e., κ2 in Theorem 4.9) be-
cause the switching pattern of the interaction graph will play an important role in
determining the decay rate.

Remark 4.12 Similar to the analysis in Remark 4.8, in the Lyapunov

function (4.23), we can choose P̂
△
=

[ 1
2 In

γ
2 In

γ
2 In

1
2 In

]
. It then follows that Q̂(t)

△
=

[ γM̂(t) αγ
2 M̂(t)+ M̂(t)−γIn

2

αγ
2 M̂(t)+ M̂(t)−γIn

2 αM̂(t)−γIn

]
. We can show that there always exist posi-

tive α and γ such that both P̂ and Q̂(t) are symmetric positive definite and derive
proper conditions for α and γ. In particular, one special choice for α and γ is αγ = 1

and γ < mint
4λmin[M̂(t)]

4λmin[M̂(t)]+1
.
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Remark 4.13 In Theorems 4.4 and 4.9, it is assumed that the undirected graph
G(t) is connected and the leader is a neighbor of at least one follower at each time
instant. However, this poses an obvious constraint in real applications because the
connectivity requirement is not necessarily always satisfied. Next, we propose an
adaptive connectivity maintenance mechanism in which the control weights bij , i =
1, . . . , n, j = 0, . . . , n, in (4.6) and (4.21) is redefined as follows:

1. bij is a function of ‖ri − rj ‖.
2. When ‖ri(0) − rj(0)‖ ≥ rs, bij(t) = 1 if ‖ri(t) − rj(t)‖ < rs and bij(t) = 0

otherwise.
3. When ‖ri(0) − rj(0)‖ < rs, bij(t) is defined such that:

(i) bij(0) > 0;
(ii) bij(t) is nondecreasing;

(iii) bij(t) is differentiable (or differentiable almost everywhere);
(iv) bij(t) goes to infinity if ‖ri(t) − rj(t)‖ goes to rs.

The motivation here is to maintain the initially existing connectivity patterns. That
is, if two followers are neighbors of each other (respectively, the leader is a neighbor
of a follower) at t = 0,3 the two followers are guaranteed to be neighbors of each
other (respectively, the leader is guaranteed to be a neighbor of this follower) at
t > 0. However, if two followers are not neighbors of each other (respectively, the
leader is not a neighbor of a follower) at t = 0, the two followers are not necessarily
guaranteed to be neighbors of each other (respectively, the leader is not necessarily
guaranteed to be a neighbor of this follower) at t > 0.

Using the proposed adaptive connectivity maintenance mechanism, the coordi-
nated tracking algorithm for (3.1) can be chosen as

ui = − α
∑

j∈N i(t)

bij(t)(ri − rj) − β
∑

j∈N i(t)

bij(t)

×
{

sgn

[ ∑

k∈N i(t)

bik(t)(ri − rk)

]
− sgn

[ ∑

k∈N j(t)

bjk(t)(rj − rk)

]}
(4.24)

with the Lyapunov function chosen as V = 1
2 r̃T r̃ while the coordinated tracking

algorithm for (3.5) can be chosen as (4.21) with the Lyapunov function chosen as
V = [r̃T , ṽT ]P̂

[
r̃
ṽ

]
with P̂ chosen as in Remark 4.12. According to the defini-

tion of M̂(t) in (4.9), for 0 ≤ t1 < t2, xT [M̂(t1) − M̂(t2)]x ≤ 0 for all vectors
x ∈ R

n under the connectivity maintenance mechanism. Let y ∈ R
n be a right

eigenvector of M̂(t2) associated with the eigenvalue λmin[M̂(t2)], i.e., M̂(t2)y =

λmin[M̂(t2)]y. It follows that yT λmin[M̂(t2)]y = yT M̂(t2)y ≥ yT M̂(t1)y ≥
yT λmin[M̂(t1)]y, where we have used Lemma 1.24. Because yT y 
= 0, it follows
that λmin[M̂(t2)] ≥ λmin[M̂(t1)]. This implies that λmin[M̂(t)] is non-decreasing

3 Equivalently, a pair of followers are within the communication/sensing range of each other (re-
spectively, the leader is within the communication/sensing range of a follower).
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with respect to time. Therefore, there always exist α and γ satisfying the condi-
tions in Remark 4.12. When the control gains are chosen properly (i.e., α ≥ 0
and β > γℓ for single-integrator dynamics and α and γ satisfies Remark 4.12 and
β > ϕℓ for double-integrator dynamics), it can be shown that distributed coordi-
nated tracking can be guaranteed for both single-integrator dynamics and double-
integrator dynamics if the undirected graph G(t) is initially connected and the
leader is initially a neighbor of at least one follower (i.e., at t = 0). The proof
follows a similar analysis to that of the corresponding algorithm in the absence
of the connectivity maintenance mechanism except that the initially existing con-
nectivity patterns can be maintained because otherwise max L̃F V = V̇ → −∞ as
|ri(t)−rj(t)| → rs by noting that bij(t)|ri(t) − rj(t)| → ∞ as |ri(t)−rj(t)| → rs,

max L̃F V = V̇ ≤ −αr̃T M̂(t)r̃ − (β − γℓ)‖M̂(t)r̃‖1 for single-integrator dynam-
ics, and max L̃F V = V̇ ≤ −[r̃T , ṽT ]Q̂(t)

[
r̃
ṽ

]
for double-integrator dynamics,

where Q̂(t) is defined in Remark 4.12.

4.3.2 Coordinated Tracking when the Leader’s Velocity is Constant

In this subsection, we assume that the leader has a constant velocity (i.e., v0 is
constant). We propose the distributed coordinated tracking algorithm for (3.5) as

ui = −
n∑

j=0

aij(ri − rj) − β sgn

[
n∑

j=0

aij(vi − vj)

]
, (4.25)

where aij is defined as in (4.1) and β is a positive constant. We first consider a fixed
interaction graph.

Theorem 4.14. Suppose that the fixed undirected graph G is connected and at least

one ai0 is nonzero (and hence positive). Using (4.25) for (3.5), |ri(t) − r0(t)| → 0
and vi(t) → v0 as t → ∞.

Proof: Letting r̃i
△
= ri − r0 and ṽi

△
= vi − v0, we can rewrite the closed-loop system

of (3.5) using (4.25) as

˙̃ri = ṽi, (4.26)

˙̃vi = −
n∑

j=0

aij(r̃i − r̃j) − β sgn

[
n∑

j=0

aij(ṽi − ṽj)

]
.

Equation (4.26) can be written in a vector form as

˙̃r = ṽ, ˙̃v = −Mr̃ − β sgn(Mṽ), (4.27)

where r̃ and ṽ are, respectively, the column stack vectors of r̃i and ṽi, i = 1, . . . , n,

and M
△
= L + diag(a10, . . . , an0).
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Consider the Lyapunov function candidate V = 1
2 r̃T M2r̃ + 1

2 ṽT Mṽ. It follows
that

max L̃F V = V̇ = r̃T M2ṽ + ṽT M ˙̃v

= r̃T M2ṽ + ṽT M
[

−Mr̃ − β sgn(Mṽ)
]

= −β ‖Mṽ‖1.

Because M is symmetric positive definite under the condition of the theorem, it
follows that V̇ is negative semidefinite. Note that V̇ ≡ 0 implies that ṽ ≡ 0n and
hence ˙̃v = 0n, which in turn implies that r̃ ≡ 0n from (4.27). By using Lemma 1.40,
it follows that r̃(t) → 0n and ṽ(t) → 0n as t → ∞. Equivalently, it follows that
|ri(t) − r0(t)| → 0 and vi(t) → v0 as t → ∞.

Remark 4.15 In contrast to (4.13) and (4.21), which require both accurate posi-
tion and velocity measurements, (4.25) does not necessarily require accurate ve-
locity measurements because the velocity measurements are only used to calculate
the sign (i.e., ‘+’ or ‘-’). Therefore, (4.25) is more robust to measurement inaccu-
racy.

4.3.3 Swarm Tracking when the Leader’s Velocity is Constant

In this subsection, we study distributed swarm tracking under a switching interaction
graph when the leader’s velocity, v0, is constant. We propose the distributed swarm
tracking algorithm for (3.5) as

ui = −
∑

j∈N i(t)

∂Vij

∂ri
− β

∑

j∈N i(t)

bij

×
{

sgn

[ ∑

k∈N i(t)

bik(vi − vk)

]
− sgn

[ ∑

k∈N j(t)

bjk(vj − vk)

]}
, (4.28)

where Vij is the potential function defined in Definition 4.1, N i(t) is defined as in
Sect. 4.2.1, β is a positive constant, and bij , i = 1, . . . , n, j = 0, . . . , n, are pos-
itive constants. Note that (4.28) requires both the one-hop and two-hop neighbors’
information.

Theorem 4.16. Suppose that the undirected graph G(t) is connected and the leader

is a neighbor of at least one follower (i.e., 0 ∈ N i(t) for some i) at each time

instant. Using (4.28) for (3.5), the velocity differences of all followers and the leader

will ultimately converge to zero (i.e., the inter-agent distance will be maintained

ultimately), limt→∞
∑

j∈N i(t)
∂Vij

∂ri
= 0, i = 1, . . . , n, and the inter-agent collision

is avoided.

Proof: Letting r̃i
△
= ri − r0 and ṽi

△
= vi − v0, we can rewrite the closed-loop system

of (3.5) using (4.28) as
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˙̃ri = ṽi,

˙̃vi = −
∑

j∈N i(t)

∂Vij

∂r̃i
− β

∑

j∈N i(t)

bij

×
{

sgn

[ ∑

k∈N i(t)

bik(ṽi − ṽk)

]
− sgn

[ ∑

k∈N j(t)

bjk(ṽj − ṽk)

]}
.

Consider the Lyapunov function candidate

V =
1

2

n∑

i=1

n∑

j=1

Vij +

n∑

i=1

Vi0 +
1

2
ṽT ṽ, (4.29)

where ṽ is a column stack vector of ṽi. It follows that

max L̃F V = V̇

=
1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂r̃i

˙̃ri +
∂Vij

∂r̃j

˙̃rj

)
+

n∑

i=1

(
∂Vi0

∂r̃i

˙̃ri +
∂Vi0

∂r̃0

˙̃r0

)
+ ṽT ˙̃v

=

n∑

i=1

n∑

j=1

∂Vij

∂r̃i

˙̃ri +

n∑

i=1

∂Vi0

∂r̃i

˙̃ri −
n∑

i=1

ṽi

n∑

j=0

∂Vij

∂r̃i

− βṽT M̂(t) sgn
[
M̂(t)ṽ

]
(4.30)

= −β
∥∥M̂(t)ṽ

∥∥
1
, (4.31)

where M̂(t) is defined in (4.9), (4.30) is derived by using Lemma 4.1 and the fact
that ˙̃r0 = 0, and (4.31) is derived by using the fact that M̂(t) is symmetric. By
following a similar analysis to that in the proof of Theorem 4.14, it follows from
Lemma 1.40 that vi(t) → v0 and

∑
j∈N i(t)

∂Vij

∂ri
→ 0 as t → ∞, which in turn

proves the theorem.

4.3.4 Swarm Tracking when the Leader’s Velocity is Varying

In this subsection, we assume that the leader’s velocity, v0, is varying (i.e., the
leader’s acceleration is, in general, nonzero.). We assume that |v̇0| ≤ ϕℓ, where
ϕℓ is a positive constant. We propose the following distributed swarm tracking al-
gorithm with a distributed estimator for (3.5) as

ui = −γ sgn

[ ∑

j∈N i(t)

bij(v̂i0 − v̂j0)

]
−

∑

j∈N i(t)

∂Vij

∂ri
− β

∑

j∈N i(t)

bij

×
{

sgn

[ ∑

k∈N i(t)

bik(vi − vk)

]
− sgn

[ ∑

k∈N j(t)

bjk(vj − vk)

]}
, (4.32)
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where γ and β are positive constants, bij , i = 1, . . . , n, j = 0, . . . , n, are positive
constants, Vij is the potential function defined in Definition 4.1, N i(t) is defined in
Sect. 4.2.1, and

˙̂vi0 = −γ sgn

[ ∑

j∈N i(t)

bij(v̂i0 − v̂j0)

]
, i = 1, . . . , n, (4.33)

with v̂i0 being the ith agent’s estimate of the leader’s velocity and v̂00
△
= v0.

Here (4.33) is a distributed estimator motivated by the results in Sect. 4.2.1.

Theorem 4.17. Suppose that the undirected graph G(t) is connected and the leader

is a neighbor of at least one follower (i.e., 0 ∈ N i(t) for some i) at each time

instant. Using (4.32) for (3.5), if γ > ϕℓ, the velocity differences of all followers

and the leader will ultimately converge to zero (i.e., the inter-agent distance will be

maintained ultimately), limt→∞
∑

j∈N i(t)
∂Vij

∂ri
= 0, i = 1, . . . , n, and the inter-

agent collision is avoided.

Proof: Letting r̃i
△
= ri − r0 and ṽi

△
= vi − v0, we can rewrite the closed-loop system

of (3.5) using (4.32) as

˙̃ri = ṽi,

˙̃vi = −γ sgn

[ ∑

j∈N i(t)

bij(v̂i0 − v̂j0)

]
−

∑

j∈N i(t)

∂Vij

∂r̃i
− β

∑

j∈N i(t)

bij

×
{

sgn

[ ∑

k∈N i(t)

bik(ṽi − ṽk)

]
− sgn

[ ∑

k∈N j(t)

bjk(ṽj − ṽk)

]}
− v̇0.

(4.34)

For (4.33), it follows from Theorem 4.4 that there exists positive t̄ such that
v̂i0(t) ≡ v0(t) for any t ≥ t̄. Note that ˙̂vi0 in (4.33) is a switching signal, which is
different from v̇0(t) at each time instant. However, for t̄ ≤ t1 ≤ t2, we have that∫ t2

t1
˙̂vi0(t) dt =

∫ t2
t1

v̇0(t) dt by noting that v̂i0(t) ≡ v0(t) for any t ≥ t̄. Therefore,
ri and vi will remain unchanged when −γ sgn[

∑
j∈N i(t)

bij(v̂i0 − v̂j0)] (equiva-

lently, ˙̂vi0) in (4.34) is replaced with v̇0 for t ≥ t̄. For 0 ≤ t ≤ t̄, by choosing the
Lyapunov function candidate as (4.29), we can get

max L̃F V = V̇ ≤ −β
∥∥M̂(t)ṽ

∥∥
1

+ (γ + ϕℓ)‖ṽ‖1

≤ (γ + ϕℓ)
√

n ‖ṽ‖2 ≤ (γ + ϕℓ)
√

n
√

2V ,

which implies that V (t) ≤ (
√

V (0) + (γ+ϕℓ)
√

n√
2

t̄)2 for 0 ≤ t ≤ t̄. That is, V (t) is

bounded for 0 ≤ t ≤ t̄. For t > t̄, by replacing −γ sgn[
∑

j∈N i(t)
bij(v̂i0 − v̂j0)]

(equivalently, ˙̂vi0) in (4.34) with v̇0 and choosing the Lyapunov function candi-
date as (4.29), we can get max L̃F V = V̇ ≤ −β‖M̂(t)ṽ‖1. It follows from
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a similar analysis to that in the proof of Theorem 4.16 and Lemma 1.40 that
|vi(t) − v0(t)| → 0 and

∑
j∈N i(t)

∂Vij

∂ri
→ 0 as t → ∞. This completes the

proof.

Remark 4.18 Note that (4.28) and (4.32) require the availability of both the one-
hop and two-hop neighbors’ information. The availability of the leader’s informa-
tion (i.e., the position, velocity, and acceleration) to all followers is not required
in (4.28) due to the fact that v0 is constant and in (4.32) due to the introduction of
the distributed estimator. In addition, (4.28) does not require accurate velocity mea-
surements of the leader and the followers while (4.32) does not require accurate

velocity measurements of the followers because the velocity measurements are only
used to calculate the signs (i.e., ‘+’ or ‘−’). Therefore, (4.28) and (4.32) are robust
to velocity measurement inaccuracy.

Remark 4.19 In Theorems 4.6, 4.16, and 4.17, it is assumed that the undirected
graph G(t) is connected and the leader is a neighbor of at least one follower at
each time instant. However, this poses an obvious constraint in real applications
because the connectivity requirement is not necessarily always satisfied. In the fol-
lowing, a mild connectivity requirement is proposed for distributed swarm tracking
by adopting a connectivity maintenance mechanism in which the potential function
in Definition 4.1 is redefined as follows:

1. When ‖ri(0) − rj(0)‖ ≥ rs, Vij is defined as in Definition 4.1.
2. When ‖ri(0) − rj(0)‖ < rs, Vij is defined such that Conditions 1, 2, and 4 in

Definition 4.1 are satisfied and Condition 3 in Definition 4.1 is replaced with
the condition that Vij → ∞ as ‖ri − rj ‖ → rs. The motivation here is also to
maintain the initially existing connectivity patterns as in Remark 4.13.

Using the potential function defined above, distributed swarm tracking can be
guaranteed for both single-integrator dynamics (cf. Theorem 4.6) and double-
integrator dynamics (cf. Theorems 4.16 and 4.17) if the undirected graph G(t) is
initially connected (i.e., t = 0), the leader is initially a neighbor of at least one
follower, and the other conditions for the control gains are satisfied. The proof
follows directly from those of Theorems 4.6, 4.16, and 4.17 except that a pair
of followers who are neighbors of each other initially will always be the neigh-
bors of each other (correspondingly, if the leader is initially a neighbor of a fol-
lower, the leader will always be a neighbor of this follower) because otherwise
the potential function will go to infinity. This contradicts the fact that V̇ ≤ 0
as shown in the proofs of Theorems 4.6 and 4.16 and the facts that V (t) is
bounded for 0 ≤ t < t̄ and V̇ ≤ 0 for t ≥ t̄ as shown in the proof of Theo-
rem 4.17.

To illustrate the connectivity maintenance mechanism as proposed in Re-
mark 4.19, we compare two different potential functions V 1

ij and V 2
ij whose deriva-

tives satisfy, respectively,
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Fig. 4.1 Potential functions V 1
ij and V 2

ij with rs = 2.5 and dij = 2

∂V 1
ij

∂ri
=

⎧
⎪⎪⎨
⎪⎪⎩

0, ‖ri − rj ‖ > rs,

2π(ri −rj) sin[2π(‖ri −rj ‖ −dij)]
‖ri −rj ‖ , dij < ‖ri − rj ‖ ≤ rs,

20(ri −rj)
‖ri −rj ‖

‖ri −rj ‖ −dij

‖ri −rj ‖ , ‖ri − rj ‖ ≤ dij ,

(4.35)

and
∂V 2

ij

∂ri
=

⎧
⎨
⎩

ri −rj

‖ri −rj ‖
‖ri −rj ‖ −dij

(‖ri −rj ‖ −rs)2 , dij < ‖ri − rj ‖ < rs,

20
ri −rj

‖ri −rj ‖
‖ri −rj ‖ −dij

‖ri −rj ‖ , ‖ri − rj ‖ ≤ dij ,
(4.36)

where rs = 2.5 and dij = 2. Figure 4.1 shows the plot of the potential functions V 1
ij

and V 2
ij .4 It can be seen from Fig. 4.1(b) that V 2

ij approaches infinity as the distance
‖ri − rj ‖ approaches rs. However, V 1

ij does not have the property (cf. Fig. 4.1(a)).
In particular, V 1

ij satisfies Condition 3 in Definition 4.1 as shown in Fig. 4.1(a). In
addition, both V 1

ij and V 2
ij satisfy Conditions 1, 2, and 4 in Definition 4.1. According

to Remark 4.19, we can choose the potential function as V 2
ij when ‖ri(0)−rj(0)‖ <

rs and V 1
ij otherwise.

Remark 4.20 From the proofs of all theorems, it can be seen that the condition
that G is undirected connected and the leader is a neighbor of at least one follower
in each theorem can be relaxed to be that G is undirected and in G the leader has
directed paths to all followers (see Lemma 1.6).

4.4 Simulation

In this section, we present several simulation examples to validate some theoretical
results in the previous sections. We consider a team consisting of six followers and

4 Note that neither V 1
ij nor V 2

ij is unique because for any positive constant c, V 1
ij + c and V 2

ij + c

are also potential functions satisfying, respectively, (4.35) and (4.36). We only plot one possible
choice for them.
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Fig. 4.2 Interaction graphs for the six followers and the leader. An edge between node i and node
j means that followers i and j are neighbors of each other while an arrow from node 0 to node i

means that the leader is a neighbor of follower i

Fig. 4.3 Trajectories of the followers and the leader using (4.1). The circle denotes the starting
position of the leader while the squares denote the starting positions of the followers

a leader in the two-dimensional space. We let ri
△
= [rix, riy]T and vi

△
= [vix, viy]T ,

where rix and riy denote, respectively, the x and y positions of agent i while vix

and viy denote, respectively, the x and y velocities of agent i. We also let aij = 1 if
(j, i) ∈ E and aij = 0 otherwise.

In the case of single-integrator dynamics, the interaction graph is chosen as in
Fig. 4.2(a). It can be noted that the undirected graph G for all followers 1 to 6
is connected and the leader is a neighbor of follower 4. Using (4.1), we choose
r0(t) = [t − 5, −5 + 10 sin(πt

25 )]T , α = 1, and β = 1.5. The trajectories of the
followers and the leader are shown in Fig. 4.3. The tracking errors of the x and y

positions are shown in, respectively, Figs. 4.4(a) and 4.4(b). It can be seen from
Fig. 4.4 that the tracking errors converge to zero in finite time. That is, all followers
intercept the dynamic leader accurately after a finite period of time as also shown in
Fig. 4.3.

For distributed swarm tracking in the case of single-integrator dynamics, we
choose rs = 2.5, dij = 2, α = 1, and β = 3. The partial derivative of the potential
function is chosen as in (4.35). Using (4.10) for (3.1), Fig. 4.5 shows the consecutive
snapshots of distributed swarm tracking with 48 followers and a leader. The initial
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Fig. 4.4 Position tracking errors using (4.1)

states of the followers are randomly chosen from the square box [−5, 15]2 and r0(t)
is chosen as [t, 5 + 10 sin(πt

25 )]T . It can be seen that the followers ultimately stay
close to the leader and the inter-agent collision is avoided.

In the case of double-integrator dynamics, the interaction graph is chosen as in
Fig. 4.2(b). It can be noted that the undirected graph G for all followers 1 to 6
is connected as well and the leader is a neighbor of follower 1. Using (4.13), we
choose r0(t) = [t, t + sin(t)]T , α = 1, β = 5, and γ = 0.1. The trajectories of
the followers and the leader are shown in Fig. 4.6. The tracking errors of the x and
y positions are shown in Figs. 4.7(a) and 4.7(b). The tracking errors of the x and y

velocities are shown in Figs. 4.7(c) and 4.7(d). It can be seen from Fig. 4.7 that the
tracking errors ultimately converge to zero. That is, all followers ultimately intercept
the dynamic leader as also shown in Fig. 4.6.

For distributed swarm tracking in the case of double-integrator dynamics, we
choose rs = 2.5, dij = 2, β = 5, and bij = 1 if (j, i) ∈ N i and bij = 0 otherwise.
The partial derivative of the potential function is chosen as in (4.35). When the
leader’s velocity is constant, the initial states of the followers are randomly chosen
from the square box [−5, 10]2 and r0(t) is chosen as [t, 2t + 5]T . Using (4.28)
for (3.5), Fig. 4.8 shows the consecutive snapshots of distributed swarm tracking
with 49 followers and a leader. When the leader’s velocity is varying, the initial
states of the followers are randomly chosen from the square box [−5, 15]2 and r0(t)
is chosen as [t, 5 + t + 2 sin(t)]T . We choose γ = 3. Using (4.32) for (3.5), Fig. 4.9
shows the consecutive snapshots of distributed swarm tracking with 50 followers
and a leader. Due to the random choice of the initial states, the agents form separated
subgroups initially. As a result, fragmentation appears in this case. However, for
each subgroup, the relative distances of the followers and the leader if the leader is
in the subgroup remain unchanged ultimately.

For distributed coordinated tracking with the connectivity maintenance mecha-
nism in Remark 4.13, we choose rs = 3 and bij(t) according to Remark 4.13 with
d
dtbij(t) =

100‖ri(t)−rj(t)‖
r2

s − ‖ri(t)−rj(t)‖2 and bij(0) = 1. Using (4.24) for (3.1) with the con-
nectivity maintenance mechanism in Remark 4.13, we choose α = 1 and β = 3.
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Fig. 4.5 Distributed swarm tracking with 48 followers and a leader using (4.10). The circles de-
note the positions of the followers while the square denotes the position of the leader. An edge
connecting two followers means that the two followers are neighbors of each other while an arrow

from the leader to a follower means that the leader is a neighbor of the follower

Fig. 4.6 Trajectories of the followers and the leader using (4.13). The circle denotes the starting
position of the leader while the squares denote the starting positions of the followers
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Fig. 4.7 Position and velocity tracking errors using (4.13)

Figure 4.10 shows the trajectories of the followers and the leader. The initial posi-
tions of the followers are randomly chosen from the square box [−2, 2]2 and r0(t) is
chosen as [t, 3 sin(πt

10 )]T . The tracking errors of the x and y positions are shown in
Figs. 4.11(a) and 4.11(b). It can be seen that the tracking errors ultimately converge
to zero. That is, all followers ultimately intercept the dynamic leader as also shown
in Fig. 4.10. Using (4.21) for (3.5) with the connectivity maintenance mechanism
in Remark 4.13, we choose α = 1, β = 3, and γ = 0.1. Figure 4.12 shows the
trajectories of the followers and the leader. The initial positions of the followers are
randomly chosen from the square box [−2, 2]2 and r0(t) is chosen as [t, t+sin(t)]T .
The tracking errors of the x and y positions are shown in Figs. 4.13(a) and 4.13(b). It
can be seen from Fig. 4.13 that the tracking errors ultimately converge to zero. That
is, all followers ultimately intercept the dynamic leader as also shown in Fig. 4.12.

For distributed swarm tracking with the connectivity maintenance mechanism as
in Remark 4.19, all parameters are chosen the same as those for distributed swarm
tracking without connectivity maintenance. When two followers are initially neigh-
bors of each other or the leader is initially a neighbor of some follower(s), the partial
derivative of the corresponding potential function is chosen as (4.36). Otherwise, the
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Fig. 4.8 Distributed swarm tracking with 49 followers and a leader using (4.28). The circles de-
note the positions of the followers while the square denotes the position of the leader. An edge

connecting two followers means that the two followers are neighbors of each other while an arrow

from the leader to a follower means that the leader is a neighbor of the follower

partial derivative of the potential function is chosen as (4.35). The initial positions of
the followers are randomly chosen from the square box [−6, 4]2 and r0(t) is chosen
as [t, 5 + 10 sin(πt

25 )]T . In the case of single-integrator dynamics, Fig. 4.14 shows
the consecutive snapshots of distributed swarm tracking with 50 followers and a
leader with the connectivity maintenance mechanism in Remark 4.19. In the case of
double-integrator dynamics when the leader’s velocity is constant, Fig. 4.15 shows
the consecutive snapshots of distributed swarm tracking with 50 followers and a
leader with the connectivity maintenance mechanism in Remark 4.19. In the case of
double-integrator dynamics when the leader’s velocity is varying, Fig. 4.16 shows
the consecutive snapshots of distributed swarm tracking with 50 followers and a
leader with the connectivity maintenance mechanism in Remark 4.19. It can be seen
that at each snapshot the interaction graph for the 50 followers is connected and the
leader is a neighbor of at least one follower because of the initial connectivity and
the existence of the connectivity maintenance mechanism. Meanwhile, the relative
distances of the followers and the leader remain unchanged ultimately. In contrast
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Fig. 4.9 Distributed swarm tracking with 50 followers and a leader using (4.32). The circles de-
note the positions of the followers while the square denotes the position of the leader. An edge

connecting two followers means that the two followers are neighbors of each other while arrow

from the leader to a follower means that the leader is a neighbor of the follower

Fig. 4.10 Trajectories of the followers and the leader using (4.24) in the presence of the connectiv-
ity maintenance mechanism in Remark 4.13. The circle denotes the starting position of the leader
while the squares denote the starting positions of the followers
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Fig. 4.11 Position tracking errors using (4.24) in the presence of the connectivity maintenance
mechanism in Remark 4.13

Fig. 4.12 Trajectories of the followers and the leader using (4.21) in the presence of the connectiv-
ity maintenance mechanism in Remark 4.13. The circle denotes the starting position of the leader
while the squares denote the starting positions of the followers

Fig. 4.13 Position tracking errors using (4.21) in the presence of the connectivity maintenance
mechanism in Remark 4.13
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Fig. 4.14 Distributed swarm tracking with 50 followers and a leader using (4.10) in the presence
of the connectivity maintenance mechanism in Remark 4.19. The circles denote the positions of the
followers while the square denotes the position of the leader. An edge connecting two followers
means that the two followers are neighbors of each other while an arrow from the leader to a
follower means that the leader is a neighbor of the follower

to Figs. 4.5, 4.8, and 4.9 where the initially existing connectivity patterns might not
always exist, the initially existing connectivity patterns in Figs. 4.14, 4.15, and 4.16
always exist due to the existence of the connectivity maintenance mechanism.

4.5 Notes

The results in this chapter are based mainly on [37–39]. For other results related to
coordinated tracking, see [120, 121, 228, 246]. In particular, [120, 121] propose and
analyze a coordinated tracking algorithm under an undirected switching interaction
graph. However, [120, 121] require the availability of the leader’s acceleration input
to all followers and/or the design of distributed observers. Reference [246] proposes
a proportional-and-derivative-like coordinated tracking algorithm under a directed



4.5 Notes 105

Fig. 4.15 Distributed swarm tracking with 50 followers and a leader using (4.28) in the presence
of the connectivity maintenance mechanism in Remark 4.19. The circles denote the positions of the
followers while the square denotes the position of the leader. An edge connecting two followers
means that the two followers are neighbors of each other while an arrow from the leader to a
follower means that the leader is a neighbor of the follower

interaction graph. However, [246] requires the estimates of the leader’s velocity and
the followers’ velocities. Reference [228] studies a coordinated tracking algorithm
with time-varying delays. However, [228] requires the velocity measurements of the
followers and an estimator to estimate the leader’s velocity. For other results related
to swarm tracking, see [212, 268, 280, 317]. In particular, [212] studies a flocking
algorithm in the presence of a leader under the assumption that the leader’s veloc-
ity is constant and is available to all followers. Reference [280] extends the results
in [212] in two aspects. When the leader has a constant velocity, [280] requires
accurate position and velocity measurements of the leader. When the leader has a
varying velocity, [280] requires that the leader’s position, velocity, and acceleration
be available to all followers. In [268], flocking of a group of autonomous agents with
a dynamic leader is solved by using a set of switching control laws. However, [268]
requires the availability of the acceleration of the leader to all followers. Refer-
ence [317] studies a swarm tracking algorithm via a variable structure approach
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Fig. 4.16 Distributed swarm tracking with 50 followers and a leader using (4.32) in the presence
of the connectivity maintenance mechanism in Remark 4.19. The circles denote the positions of the
followers while the square denotes the position of the leader. An edge connecting two followers
means that the two followers are neighbors of each other while an arrow from the leader to a
follower means that the leader is a neighbor of the follower

using artificial potentials and the sliding mode control technique. However, [317]
requires the availability of the leader’s position to all followers and all-to-all inter-
action among all followers. For other results related to connectivity maintenance,
see [98, 133, 282, 326]. In [98], rendezvous of a group of agents with connectivity
maintenance is solved by using a perimeter minimizing algorithm. In [133], con-
sensus in the presence of connectivity maintenance is solved by properly defining
the weights for the edges of the interaction graph. In [282], a controller based on a
properly designed potential function is proposed to solve rendezvous of a group of
nonholonomic robots with connectivity maintenance. In [326], connectivity mainte-
nance for flocking of a group of agents is studied, where proper potential functions
are proposed. However, the connectivity maintenance strategy in [326] requires that
the number of edges in the interaction graph be always nondecreasing. That is, if a
pair of followers are neighbors of each other (respectively, the leader is a neighbor
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of a follower) at some time instant T ,5 then the pair of followers are always neigh-
bors of each other (respectively, the leader is always a neighbor of this follower)
at any time t > T . This requirement might not be applicable in reality, especially
in large-scale systems where the number of the agents is large, because the size of
the team of agents will become very compact with the increasing number of edges.
Meanwhile, the computation burden will increase significantly as well. In contrast,
the connectivity maintenance mechanism with the corresponding potential function
proposed in Remark 4.19 takes into consideration these practical issues. In addition,
hysteresis is introduced to the connectivity maintenance strategy in [326] to avoid
the singularity of the Lyapunov function. However, the hysteresis is not required in
the potential function proposed in Remark 4.19.

5 Equivalently, a pair of followers are within the communication/sensing range of each other (re-
spectively, the leader is within the communication/sensing range of a follower).



Chapter 5

Containment Control with Multiple Leaders

This chapter introduces a containment control problem, where a group of followers
is driven by a group of leaders to be in the convex hull spanned by the leaders. The
problem has applications in hazardous material handling, search and rescue, and
cooperative transport. We consider three cases, namely, containment control with
multiple stationary leaders, containment control with multiple dynamic leaders, and
containment control with swarming behavior. Simulation results are presented to
illustrate the theoretical results.

5.1 Problem Statement

In a containment control problem, there exist multiple leaders and multiple follow-
ers and the objective is to drive the followers to be in the convex hull spanned by
the leaders. The study of containment control is motivated by numerous potential
applications. For example, a team of heterogeneous agents moves from one location
to another when only a portion of the agents is equipped with necessary sensors to
detect the hazardous obstacles. Those agents equipped with the necessary sensors
are normally designated as leaders while the other agents are designated as follow-

ers. By detecting the locations of the hazardous obstacles, the leaders can form a
moving safety area. Then the team can arrive at the destination safely given that the
followers always stay within the moving safety area spanned by the leaders.

This chapter studies distributed containment control in three aspects, namely,
containment control with multiple stationary leaders, containment control with mul-
tiple dynamic leaders, containment control with swarming behavior. In the case of
multiple stationary leaders, necessary and sufficient conditions on the directed fixed
or switching interaction graph are derived such that all followers will ultimately
be driven to be in the stationary convex hull spanned by the stationary leaders for
arbitrary initial conditions in any dimensional space. When the directed interac-
tion graph is fixed, we partition the nonsymmetric Laplacian matrix and explore
its properties to derive the convergence result. When the directed interaction graph
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is switching, the commonly adopted decoupling technique based on the Kronecker
product in a high-dimensional space can no longer be applied and we hence present
a coordinate transformation technique to derive the convergence result. In the case
of multiple dynamic leaders, we propose a distributed tracking control algorithm
without velocity measurements. When the directed interaction graph is fixed, we
derive conditions on the interaction graph and the control gain to guarantee that all
followers will ultimately be driven to be in the dynamic convex hull spanned by the
dynamic leaders for arbitrary initial conditions in any dimensional space. When the
directed interaction graph is switching, we derive conditions on the interaction graph
and the control gain such that all followers will ultimately be driven to be in the min-

imal hyperrectangle that contains the dynamic leaders and each of its hyperplanes
is normal to one axis of the inertial coordinate frame in any dimensional space.
We also show via some examples that it might be very difficult to find distributed
containment control algorithms without velocity measurements to guarantee that all
followers will ultimately be driven to be in the dynamic convex hull spanned by
the dynamic leaders under a mild connectivity condition on switching interaction
graphs in a high-dimensional space. In the case of swarming behavior, we propose
distributed algorithms by introducing potential functions to define the interaction
forces between neighboring agents. The algorithms guarantee that all followers are
driven toward the convex hull spanned by the leaders with bounded containment
control error while achieving group cohesion (and hence connectivity maintenance)
and group dispersion (and hence collision avoidance) among the leaders and the
followers.

Definition 5.1. A point x(t) ∈ D ⊆ R
m is said to converge to a set S(t) ⊆

D ⊆ R
m if limt→∞ d[x(t), S(t)] = 0. A follower is said to converge to a set

formed by the leaders if the position of the follower converges to the set formed by
the positions of the leaders.

Definition 5.2. For the n-agent system, according to the role assignment mecha-
nism, the agents are divided into two subgroups, namely, the leaders and the follow-
ers. Unless otherwise mentioned, it is assumed that the leaders have no neighbors
while the followers have. Suppose that there are nℓ leaders and nf followers, where
nℓ + nf = n. We use VL and VF to denote, respectively, the leader set and the
follower set. The directed graph G has a united directed spanning tree if for each
of the nf followers, there exists at least one leader that has a directed path to the
follower.

Definition 5.3. Let C be a set in a real vector space D ⊆ R
m. The set C is convex if,

for any x and y in C, the point (1 − z)x + zy is in C for any z ∈ [0, 1]. The convex
hull spanned by a set of points X = {x1, . . . , xq } in D is the minimal convex
set containing all points in X . We use Co(X) to denote the convex hull spanned
by X . In particular, Co(X) = {

∑q
i=1 αixi|xi ∈ X, αi ≥ 0,

∑q
i=1 αi = 1}. When

D ⊆ R, Co(X) = {x|x ∈ [mini xi, maxi xi]}.
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5.2 Stability Analysis for Multiple Stationary Leaders

In this section, we study the conditions on, respectively, the directed fixed and
switching interaction graphs such that all followers will ultimately converge to the
stationary convex hull spanned by the stationary leaders.

Consider the n agents with single-integrator dynamics given by (3.1). Suppose
that the leaders are stationary. We let

ui = 0, i ∈ VL,

ui = −
∑

j∈VL

⋃
VF

aij(t)[ri − rj ], i ∈ VF ,
(5.1)

where aij(t) is the (i, j)th entry of the adjacency matrix A (t) associated with the

directed graph G (t)
△
= [V , E (t)] characterizing the interaction among the n agents

at time t. Note that all rj , j ∈ VL, are constant because the leaders are stationary.
Also note that aij = 0, ∀i ∈ VL, ∀j ∈ VL ∪ VF , because the leaders have no
neighbors.

As mentioned in Chap. 3, all agents share a common inertial coordinate frame. To
facilitate later analysis in this section, we let C0 be the common inertial coordinate
frame and rewrite (3.1) by explicitly emphasizing the coordinate representations in
C0 as

ṙ0
i = u0

i , i = 1, . . . , n, (5.2)

where r0
i ∈ R

m and u0
i ∈ R

m are, respectively, the position and the control input of
the ith agent represented in C0, and ṙ0

i is the velocity of the ith agent relative to C0

represented in C0. We also rewrite (5.1) as

u0
i = 0, i ∈ VL,

u0
i = −

∑

j∈VL

⋃
VF

aij(t)[r
0
i − r0

j ], i ∈ VF . (5.3)

5.2.1 Directed Fixed Interaction

In this subsection, we study the case where the directed interaction graph is fixed.
We assume that the adjacency matrix A is constant. Let r0 denote the column stack
vector of all r0

i . Then the closed-loop system of (5.2) using (5.3) can be written in a
vector form as

ṙ0 = −(L ⊗ Im)r0, (5.4)

where L is the nonsymmetric Laplacian matrix associated with A and hence G .
Without loss of generality, we assume that agents 1 to nf are followers and agents
nf + 1 to n are leaders in the remainder of this chapter. Accordingly, L can be
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partitioned as [
L1 L2

0nℓ ×nf
0nℓ ×nℓ

]
, (5.5)

where L1 ∈ R
nf ×nf and L2 ∈ R

nf ×nℓ . Note that the last nℓ rows of L are all
equal to zero because the last nℓ agents are the leaders who have no neighbors.

Lemma 5.1. The matrix L1 is a nonsingular M-matrix if and only if the directed

graph G has a united directed spanning tree. If G has a united directed spanning

tree, then −L
−1
1 L2 is nonnegative and each row of −L

−1
1 L2 has a sum equal to

one.

Proof: Consider the following nonsymmetric Laplacian matrix given by

L̃ =

[
L1 L21nℓ

01×nf
0

]
. (5.6)

According to the definition of the directed spanning tree in Sect. 1.2 and the def-
inition of the united directed spanning tree in Definition 5.2, the directed graph
associated with L̃ , denoted as G̃ , has a directed spanning tree if and only if the
directed graph associated with L (i.e., G ) has a united directed spanning tree. From
Lemma 1.1, L̃ has one simple zero eigenvalue if and only if G̃ has a directed span-
ning tree. Note from (5.6) that L1 is nonsingular if and only if L̃ has one simple
zero eigenvalue. Therefore, L1 is nonsingular if and only if G has a united directed
spanning tree. Because L1 is diagonally dominant and has nonnegative diagonal
entries, it follows from Lemma 1.18 that all eigenvalues of L1 are either on the
open right half plane or at the origin. If L1 is nonsingular, all eigenvalues of L1

are on the open right half plane. It thus follows from Definition 1.2 that L1 is a
nonsingular M-matrix if and only if G has a united directed spanning tree.

We next study the property of −L
−1
1 L2. Because L1 is a nonsingular M-matrix,

it follows from Lemma 1.17 that L
−1
1 is nonnegative. Note also that L11nf

+

L21nℓ
= 0nf

. That is, −L
−1
1 L21nℓ

= 1nf
. Combining with the fact that both

L
−1
1 and −L2 are nonnegative shows that −L

−1
1 L2 is nonnegative and each row

of −L
−1
1 L2 has a sum equal to one.

We next state the result in the case of a directed fixed interaction graph. We
use r0

F and r0
L to denote the column stack vectors of, respectively, the followers’

positions and the leaders’ positions. Note that r0
L is constant.

Theorem 5.1. Suppose that the adjacency matrix A is constant. Using (5.3)
for (5.2), all followers will ultimately converge to the stationary convex hull spanned

by the stationary leaders for arbitrary initial conditions if and only if the directed

graph G has a united directed spanning tree. In particular, r0
F (t) → −(L −1

1 L2 ⊗
Im)r0

L as t → ∞.

Proof: (Necessity) When G does not have a united directed spanning tree, there
exists at least one follower, labeled as k, such that all leaders do not have directed
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paths to follower k for t ≥ 0. It follows that the position of follower k is indepen-
dent of the positions of the leaders for t ≥ 0. Therefore, follower k cannot always
converge to the stationary convex hull spanned by the stationary leaders for arbitrary
initial conditions.

(Sufficiency) It follows from (5.4) that

ṙ0
F = −(L1 ⊗ Im)r0

F − (L2 ⊗ Im)r0
L. (5.7)

Taking the Laplace transform on both sides of (5.7) gives

sr0
F (s) − r0

F (0) = −(L1 ⊗ Im)r0
F (s) −

1

s
(L2 ⊗ Im)r0

L, (5.8)

where r0
F (s) is the Laplace transform of r0

F (t). After some simplification, (5.8) can
be written as

r0
F (s) = (sImnf

+ L1 ⊗ Im)−1

[
r0
F (0) −

1

s
(L2 ⊗ Im)r0

L

]
.

Because G has a united directed spanning tree, it follows from Lemma 5.1 that L1

is a nonsingular M-matrix, which implies that −(L1 ⊗ Im) is Hurwitz.1 Based on
the final value theorem, we have

lim
t→∞

r0
F (t) = lim

s→0
sr0

F (s)

= lim
s→0

s(sImnf
+ L1 ⊗ Im)−1

[
r0
F (0) −

1

s
(L2 ⊗ Im)r0

L

]

= −(L1 ⊗ Im)−1(L2 ⊗ Im)r0
L = −(L −1

1 L2 ⊗ Im)r0
L.

According to Lemma 5.1 and Definition 5.3, the ultimate positions of the followers,
given by −(L −1

1 L2 ⊗ Im)r0
L, are in the stationary convex hull spanned by the

stationary leaders.

Remark 5.2 Existing consensus algorithms primarily study the case where the non-
symmetric Laplacian matrix has a simple zero eigenvalue. When there exist multiple
leaders, the nonsymmetric Laplacian matrix L in (5.4) has multiple zero eigenval-
ues. Theorem 5.1 studies this case.

5.2.2 Directed Switching Interaction

In this subsection, we assume that the adjacency matrix A (t) is constant for
t ∈ [ti, ti+1) and switches at time ti+1, i = 0, 1, . . . . Without loss of general-
ity, let t0 = 0. Let Gi and Ai denote, respectively, the directed graph and the
adjacency matrix associated with the n agents for t ∈ [ti, ti+1). We assume that

1 A matrix is Hurwitz if all its eigenvalues are on the open left half plane.
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ti+1 − ti ≥ tL, where tL is a positive constant. We also assume that each nonzero
and hence positive entry of Ai has a lower bound a and an upper bound a, where a

and a are positive constants. In the following, given two vectors x
△
= [x1, . . . , xp]

T

and y
△
= [y1, . . . , yp]

T , we use x ≤ y to denote that xi ≤ yi, i = 1, . . . , p. Before
moving on, we need the following lemmas.

Lemma 5.2 ([147, Comparison Lemma]). Consider the scalar differential equa-

tion

ż = f(t, z), z(t0) = μ0, (5.9)

where f(t, z) is continuous in t and locally Lipschitz in z for all t ≥ t0 and all

z ∈ J ⊂ R. Let [t0, T ) (T could be infinity) be the maximal interval of existence

of the solution z, and suppose that z ∈ J for all t ∈ [t0, T ). Let ω be a continuous

function whose upper right-hand derivative D+ω satisfies the differential inequality

D+ω ≤ f(t, ω), ω(t0) ≤ μ0, (5.10)

where ω ∈ J for all t ∈ [t0, T ). Then ω(t) ≤ z(t) for all t ∈ [t0, T ).

Lemma 5.3 ([147, Theorem 3.5]). Let f(t, x, λ) be continuous in (t, x, λ) and lo-

cally Lipschitz in x (uniformly in t and λ) on [t0, t1] × D × { ‖λ − λ0‖ ≤ c}, where

D ⊂ R
n is an open connected set. Let y(t, λ0) be a solution of ẋ = f(t, x, λ0)

with y(t0, λ0) = y0 ∈ D. Suppose that y(t, λ0) is defined and belongs to D for

all t ∈ [t0, t1]. Then, given ǫ > 0, there is δ > 0 such that if ‖z0 − y0‖ < δ and

‖λ − λ0‖ < δ, then there is a unique solution z(t, λ) of ẋ = f(t, x, λ) defined on

[t0, t1], with z(t0, λ) = z0, and z(t, λ) satisfies ‖z(t, λ) − y(t, λ0)‖ < ǫ for all

t ∈ [t0, t1].

Lemma 5.4. Consider the following vector differential equation

ż = f(t, z), z(t0) = μ0, (5.11)

where z
△
= [z1, . . . , zp]

T ∈ R
p, and f(t, z)

△
= [f1(t, z), . . . , fp(t, z)]T is defined

such that fi(t, z), i = 1, . . . , p, is continuous in t and locally Lipschitz in zi, i =
1, . . . , p, for all t > t0 and all z ∈ J ⊂ R

p. Let [t0, T ) (T could be infinity) be

the maximal interval of existence of the solution z, and suppose that z ∈ J for all

t ∈ [t0, T ). Let ω
△
= [ω1, . . . , ωp]

T ∈ R
p be a continuous function whose upper

right-hand derivative D+ω satisfies the differential inequality

D+ω ≤ f(t, ω), ω(t0) ≤ μ0, (5.12)

where ω ∈ J for all t ∈ [t0, T ). Then ω(t) ≤ z(t) for all t ∈ [t0, T ).

Proof: 2 Consider the following vector differential equation

ẋ = f(t, x) + λ, x(t0) = z(t0) (5.13)

2 The proof is motivated by that of the Comparison Lemma in [147].
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for i = 1, . . . , p, where x ∈ R
p and λ ∈ R

p is a positive constant vector. For
t ∈ [t0, t1], where t1 > t0, it follows from Lemma 5.3 that for any ǫ > 0, there is
δ > 0 such that if ‖λ‖ < δ, (5.13) has a unique solution ξ(t, λ) defined on [t0, t1]
and ∥∥ξ(t, λ) − z(t)

∥∥ < ǫ, ∀t ∈ [t0, t1].

Therefore, we have
∥∥ξi(t, λ) − zi(t)

∥∥ < ǫ, ∀t ∈ [t0, t1], (5.14)

where ξi(t, λ) is the ith component of ξ(t, λ).

Claim 1: ωi(t) ≤ ξi(t, λ) for all t ∈ [t0, t1]. We prove this by contradiction.
Assume that there exist times a, b ∈ (t0, t1] such that ωi(a) = ξi(a, λ) and
ωi(t) > ξi(t, λ) for a < t ≤ b. Accordingly, we have

ωi(t) − ωi(a) >ξi(t, λ) − ξi(a, λ), ∀t ∈ (a, b],

which implies that D+ωi(a) ≥ D+ξi(a, λ) = ξ̇i(a, ξ) = fi(a, ξ)+λ > fi(a, ξ).
This contradicts the inequality D+ω ≤ f(t, ω).

Claim 2: ωi(t) ≤ zi(t) for all t ∈ [t0, t1]. Again, we prove this by contradiction.

Assume that there exists a ∈ (t0, t1] such that ωi(a) > zi(a). Letting ǫ
△
=

ωi(a)−zi(a)
2 and using (5.14), we obtain that

ωi(a) − ξi(a, λ) = ωi(a) − zi(a) + zi(a) − ξi(a, λ)

= 2ǫ + zi(a) − ξi(a, λ) ≥ ǫ,

which contradicts the statement of Claim 1.
In Lemma 5.4, it is assumed that z is continuously differentiable. We next present

a general comparison lemma for vector systems where z is continuous with the
upper right-hand derivative of z, D+z, well defined for all t ∈ [0, T ) while ż might
not be well defined for all t ∈ [0, T ).

Lemma 5.5. Suppose that F (t, z) : [t0, T )×J ⊂ R
p 
→ R

p is a continuous function

satisfying that

D+F = f(t, z),

where z ∈ Rp, and f(t, z) is piecewise continuous in t and is locally Lipschitz in

z when f(t, z) is continuous at t. Let G(t, ω) : [t0, T ) × J ⊂ R
p 
→ R

p be a con-

tinuous function whose upper right-hand derivative D+G satisfies the differential

inequality

D+G ≤ f(t, ω), G
[
t0, z(t0)

]
≤ F

[
t0, ω(t0)

]
.

Then G(t) ≤ F (t) for all t ∈ [t0, T ).

Proof: Without loss of generality, assume that f(t, z) is continuous in t for t ∈
[ti, ti+1), i = 0, . . . . For t ∈ [t0, t1), consider a new vector differential equation
given by
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ẋ = f(t, x), x(t0) = F
[
t0, z(t0)

]
. (5.15)

Because D+F = f(t, z) ≤ f(t, z) and F (t0) = x(t0) ≤ x(t0) are trivially satis-
fied, it follows from Lemma 5.4 that F (t) ≤ x(t) for all t ∈ [t0, t1). Noting also
that D+(−F ) = −f(t, z) ≤ −f(t, z) and −F (t0) = −x(t0) ≤ −x(t0) are triv-
ially satisfied, it follows from Lemma 5.4 that −F (t) ≤ −x(t) for all t ∈ [t0, t1).
Combining the two arguments shows that F (t) = x(t) for all t ∈ [t0, t1). Note
that D+G ≤ f(t, ω) and G[t0, z(t0)] ≤ F [t0, ω(t0)] = x(t0). It thus follows from
Lemma 5.4 that G(t) ≤ x(t) for all t ∈ [t0, t1). Because F (t) ≡ x(t), it follows
that G(t) ≤ F (t) for all t ∈ [t0, t1). Because F (t) is a continuous function, by
employing a similar analysis for t ∈ [ti, ti+1), i = 1, . . . , it can be shown that
G(t) ≤ F (t) for all t ∈ [ti, ti+1), i = 1, . . . . Therefore G(t) ≤ F (t) for all
t ∈ [t0, T ).

Lemma 5.6. Using (5.3) for (5.2), all followers will ultimately converge to the min-

imal hyperrectangle that contains the stationary leaders and each of whose hyper-

planes is normal to one axis of C0, for arbitrary initial conditions if and only if there

exists N2 such that the union of Gi, i = N1, . . . , N1 + N2, has a united directed

spanning tree for any finite N1.

Proof: (Necessity) When there does not exist N2 such that the union of Gi, i =
N1, . . . , N1 + N2, has a united directed spanning tree for some N1, there exists at
least one follower, labeled as k, such that all leaders do not have directed paths to
follower k for t ∈ [tN1 , ∞). It follows that the position of follower k is independent
of the positions of the leaders for t ≥ tN1 . Therefore, follower k cannot converge to
the minimal hyperrectangle that contains the stationary leaders and each of whose
hyperplanes is normal to one axis of C0 for arbitrary initial conditions.

(Sufficiency) Let r0
i(k) denote the kth, k = 1, . . . , m, component of r0

i (i.e., the
projection of the position of agent i to the kth axis of the inertial coordinate frame

C0). Define r+
L(k)

△
= maxj∈VL

r0
j(k) and r−

L(k)

△
= minj∈VL

r0
j(k). Note that r+

L(k) and

r−
L(k) are constant because the leaders are stationary. To prove the sufficiency part,

it is equivalent to show that limt→∞ d[r0
i(k)(t), Sk] = 0, ∀i ∈ VF , ∀k = 1, . . . , m,

where Sk
△
= [r−

L(k), r
+
L(k)].

Let ωi
△
= r0

i(k) − r+
L(k), i = 1, . . . , n. Consider the function ω

△
= [ω1, . . . , ωnf

]T .
Note that

D+ωi = lim sup
h→0+

1

h

[
ωi(t + h) − ωi(t)

]
= lim sup

h→0+

1

h

[
r0
i(k)(t + h) − r0

i(k)(t)
]

= ṙ0
i(k) =

n∑

j=1

aij(t)(ωj − ωi), i = 1, . . . , nf .

Because A (t) is constant for t ∈ [t0, t1), it follows that for t ∈ [t0, t1)

D+ωi =

n∑

j=1

aij(t0)(ωj − ωi), i = 1, . . . , nf .
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For t ∈ [t0, t1), consider the closed-loop system given by

żi =

n∑

j=1

aij(t0)(zj − zi)
△
= fi(t, z), i = 1, . . . , nf , (5.16)

where zi(t0) = r0
i(k)(t0) − r+

L(k), i = 1, . . . , nf , zj(t) ≡ 0, j = nf + 1, . . . , n, for

all t ≥ t0, and z
△
= [z1, . . . , znf

]T . Note that fi(t, z) is continuous in t and locally
Lipschitz in z for t ∈ [t0, t1). Because of r0

j(k) ≤ r+
L(k), ∀j ∈ VL, by definition, it

follows that
D+ω ≤ f(t, ω)

for t ∈ [t0, t1), where f
△
= [f1, . . . , fnf

]T . Because ω(t0) = z(t0), it then follows
from Lemma 5.4 that ω(t) ≤ z(t) for [t0, t1). By following a similar analysis, we
have that ω(t) ≤ z(t) for [ti, ti+1), i = 1, 2, . . . , which implies that ω(t) ≤ z(t)
for all t ≥ t0.

Because zi(t) = 0, i = nf + 1, . . . , n and ∀t ≥ t0, we can view agents nf +
1 to n as a single agent, labeled as agent 0, whose state is 0. For simplicity, we
use G̃i, i = 1, 2, . . . , to denote the directed graphs associated with agents 0 to nf .
From Sect. 1.2 and Definition 5.2, if the union of Gi, i = N1, . . . , N1 + N2, has
a united directed spanning tree, then the union of G̃i, i = N1, . . . , N1 + N2, has
a directed spanning tree (accordingly, agent 0 has directed paths to all followers
1 to nf ). It then follows from Lemma 1.5 that consensus is reached for (5.16) if
there exists N2 such that the union of G̃i, i = N1, . . . , N1 + N2, has a directed
spanning tree for any finite N1. That is, zi(t) → 0 as t → ∞ under the condition
of the lemma. Combining with the fact that ω(t) ≤ z(t) for all t ≥ t0 shows that
lim supt→∞ ω(t) ≤ 0nf

, i.e., lim supt→∞ r0
i(k)(t) ≤ r+

L(k). Similarly, it can be

shown that lim inft→∞ r0
i(k)(t) ≥ r−

L(k).
Combining the previous arguments completes the proof.

Lemma 5.7. Given n fixed points ri ∈ Rm, i = 1, . . . , n, relative to the inertial co-

ordinate frame C0. The stationary convex hull spanned by the n points is equivalent

to the intersection of all minimal hyperrectangles that contains the n points.

Based on the results in Lemmas 5.6 and 5.7, we are ready to present the following
result.

Theorem 5.3. Using (5.3) for (5.2), all followers will ultimately converge to the sta-

tionary convex hull spanned by the stationary leaders for arbitrary initial conditions

if and only if there exists N2 such that the union of Gi, i = N1, . . . , N1 + N2, has a

united directed spanning tree for any finite N1.

Proof: (Necessity) The necessity part follows the same arguments as in Lemma 5.6.
(Sufficiency) Note that both (5.2) and (5.3) are represented in the inertial coor-

dinate frame C0. For the purpose of analysis, we intentionally introduce another
arbitrary (nonexisting) inertial coordinate frame C1. Note that there is a unique and
reversible map from C1 to C0. That is, given any point q, we have that
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q0 = R0
1q

1 + ν0, (5.17)

where q0 and q1 are, respectively, the coordinates of the point q with respect to C0

and C1, R0
1 is the rotational matrix from C1 to C0, and ν0 is the translational vector

from the origin of C0 to the origin of C1 represented in C0. Using (5.3) for (5.2), we
have

ṙ0
i = −

∑

j∈VL

⋃
VF

aij(t)
(
r0
i − r0

j

)
, i ∈ VF . (5.18)

Note that according to (5.17) r0
i = R0

1r
1
i + ν0. It then follows from (5.18) that

R0
1ṙ

1
i = −

∑

j∈VL

⋃
VF

aij(t)
[(

R0
1r

1
i + ν0

)
−

(
R0

1r
1
j + ν0

)]

= −R0
1

∑

j∈VL

⋃
VF

aij(t)
(
r1
i − r1

j

)
, i ∈ VF , (5.19)

where we have used the fact that R0
1 and ν0 are constant to obtain the left hand side

of (5.19). It thus follows that

ṙ1
i = −

∑

j∈VL

⋃
VF

aij(t)
(
r1
i − r1

j

)
, i ∈ VF . (5.20)

From (5.18) and (5.20), it can be noted that the closed-loop system of (5.2) us-
ing (5.3) where the positions of all agents are represented with respect to one in-
ertial coordinate frame can be equivalently transformed to the same form when the
positions of all agents are represented with respect to any other arbitrarily chosen
inertial coordinate frame.

According to Lemma 5.6, if follows that the followers will ultimately converge to
the minimal hyperrectangle that contains the stationary leaders and each of whose
hyperplanes is normal to one axis of the inertial coordinate frame C1 under the
condition of the theorem.3 Because the inertial coordinate frame C1 can be arbitrary,
it follows that the followers will ultimately converge to all minimal hyperrectangles
that contain the stationary leaders under the condition of the theorem. That is, the
followers will ultimately converge to the intersection of all minimal hyperrectangles
that contain the stationary leaders under the condition of the theorem. It then follows
from Lemma 5.7 that all followers will ultimately converge to the stationary convex
hull spanned by the stationary leaders under the condition of the theorem.

Example 5.1. To illustrate the proof of Theorem 5.3, we simply consider an exam-
ple in the two-dimensional space (see Fig. 5.1). Here all agents share the common
inertial coordinate frame C0. We also arbitrarily choose three other inertial coordi-
nate frames C1, C2, and C3. The four squares denote the four stationary leaders.

3 We emphasize that C1 does not exist. We introduce C1 only for analysis. Although the coordi-
nates of a point with respect to C0 and C1 are different, the physical location of the point is unique
in the space.
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Fig. 5.1 Illustration of the proof of Theorem 5.3 in a two-dimensional space. The squares denote
the positions of the four stationary leaders. The physical locations of the leaders are unique in the
space. The blue, red, and purple rectangles represent the minimal rectangles that contain the four
stationary leaders and each of whose edges is normal to one axis of, respectively, C1, C2, and C3.
The intersection of the three minimal rectangles is the stationary convex hull spanned by the four
stationary leaders

The blue rectangle (respectively, the red rectangle and the purple rectangle) is the
minimal rectangle that contains the stationary leaders and each of whose edges is
normal to one axis of C1 (respectively, C2 and C3). Apparently, the intersection of
the three minimal rectangles4 is equivalent to the stationary convex hull spanned by
the four stationary leaders.

4 Note that in general we should get the intersection of all minimal rectangles that contain the
stationary leaders but here the three minimal rectangles happen to be sufficient.
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Fig. 5.2 An interaction graph where a subgroup of agents can be viewed as one leader. An arrow

from i to j denote that agent i is a neighbor of agent j

Remark 5.4 The coordinate transformation technique used in the proof of Theo-
rem 5.3 is an effective tool in analyzing the group coordination behavior of a linear
system with a linear algorithm in a high-dimensional space when the decoupling
technique based on the Kronecker product cannot be applied. Essentially, (5.18)
and (5.20) imply that the followers do not need to share a common inertial coor-
dinate frame in the containment control problem in the case of stationary leaders.
Each follower can have its own inertial coordinate frame and implement the al-
gorithm according to its own inertial coordinate frame. Similarly, when using the
traditional consensus algorithm (2.2) for (2.1), the same coordinate transformation
technique as in the proof of Theorem 5.3 can be used without changing the property
of the closed-loop system such as whether consensus will be reached. That is, even
if each agent has its own inertial coordinate frame, consensus is still reached if the
interaction graph has a directed spanning tree jointly.

Remark 5.5 In the previous part of this section, we assume that each leader has no
neighbor. However, for some interaction graphs, it is possible to view a subgroup
of agents as one leader. For example, in the interaction graph given by Fig. 5.2,
agents 1 and 2 (respectively, agents 5 and 6) can reach consensus on a constant
value independent of the states of the other agents. The results in this section can
also be applied to this case by viewing agents 1 and 2 (respectively, agents 5 and 6)
as one leader with the state being the constant consensus equilibrium of agents 1
and 2 (respectively, agents 5 and 6).

Remark 5.6 For the discrete-time consensus algorithm (i.e., the distributed weight-
ed averaging algorithm) (see, e.g., [248, Chap. 2]) with multiple stationary leaders,
the convergence result is the same as that in Theorems 5.3 by following a similar
analysis.

5.2.3 Simulation

In this section, we present simulation results to validate the theoretical results in
Sects. 5.2.1 and 5.2.2. We consider a team consisting of four leaders and six follow-
ers in a two-dimensional space.

Under directed fixed interaction, the directed fixed graph G is shown as in
Fig. 5.3. It can be noted that G has a united directed spanning tree. We choose
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Fig. 5.3 Directed fixed graph G for a team consisting of four leaders and six followers. Here
Li, i = 1, . . . , 4, denote the leaders while Fi, i = 1, . . . , 6, denote the followers. An arrow from
Lj or Fj to Fi denote that Lj or Fj is a neighbor of Fi

Fig. 5.4 Trajectories of the agents using (5.3) with G shown in Fig. 5.3. Circles denote the posi-
tions of the stationary leaders while the black and red squares denote, respectively, the starting and
ending positions of the followers

aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The simulation result using (5.3)
for (5.2) is shown in Fig. 5.4. It can be seen that all followers ultimately converge to
the stationary convex hull spanned by the stationary leaders and the final positions
of the followers are constant.

Under directed switching interaction, we let G (t) switches from {G(1), G(2)} as
shown in Fig. 5.5. Note that neither G(1) nor G(2) has a united directed spanning tree.
However, the union of G(1) and G(2) is shown in Fig. 5.3, which has a united directed
spanning tree. We choose aij(t) = 1 if (j, i) ∈ E (t) and aij(t) = 0 otherwise. The
simulation result using (5.3) for (5.2) is shown in Fig. 5.5 when G switches between
G(1) and G(2) every 1 second. Figures 5.5(a) and 5.5(b) show the trajectories of the
agents, respectively, from t = 0 s to 20 s and from t = 5 s to 20 s. From these two
figures, it can be seen that the follows ultimately converge to the stationary convex
hull spanned by the stationary leaders despite the fact that the directed interaction
graph is switching. In particular, the followers do not have constant final positions
because the directed interaction graph is switching.
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Fig. 5.5 Directed switching graphs G(1) and G(2) for a team consisting of four leaders and six
followers. Here Li, i = 1, 4, denote the leaders while Fi, i = 1, . . . , 6, denote the followers

Fig. 5.6 Trajectories of the agents using (5.3) with G (t) switching from {G(1), G(2)} as shown
in Fig. 5.5. Circles denote the positions of the stationary leaders while the black and red squares

denote, respectively, the starting and ending positions of the followers

5.3 Stability Analysis for Multiple Dynamic Leaders

In this section, we propose a distributed tracking control algorithm without velocity
measurements and then analyze the stability condition under both directed fixed and
switching interaction graphs. Again all agents share the common inertial coordinate
frame C0. In this section, we omit the superscript 0 in the coordinate representations
for the simplicity of notation.

For agents with single-integrator dynamics given by (3.1), we propose the fol-
lowing distributed tracking control algorithm without velocity measurements as
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ui = vi, i ∈ VL,

ui = −α
∑

j∈VL ∪VF
aij(t)(ri − rj)

− β sgn

[ ∑

j∈VL

⋃
VF

aij(t)(ri − rj)

]
, i ∈ VF ,

(5.21)

where vi ∈ R
m denotes the time-varying velocity of leader i, aij(t) is defined

as in (5.1), α is a nonnegative constant scalar, β is a positive constant scalar, and
sgn(·) is defined componentwise. We assume that ‖vi‖ ≤ γℓ, ∀i ∈ VL, where γℓ is
a positive constant.

5.3.1 Directed Fixed Interaction

In this subsection, we consider the case where the directed interaction graph is fixed.
We assume that the adjacency matrix A is constant. Before moving on, we need the
following lemma.

Lemma 5.8. Suppose that a team consists of n followers, labeled as agents 1 to n,

and a stationary leader, labeled as agent 0. Let G (t) be the directed graph charac-

terizing the interaction among the leader and the followers at time t. Suppose that

in G (t) the leader has directed paths to all followers 1 to n at each time. Let ǫ, ς , ǫ1,

and ǫ2 be positive constants. Consider the following closed-loop dynamics given by

ṙi = −α

n∑

j=0

aij(t)fi,j(t, ri, rj), i = 1, . . . , n, (5.22)

where rj
△
= [rj(1), . . . , rj(m)]

T ∈ R
m is the position of agent j,5 α is a positive con-

stant, aij(t) is the (i, j)th entry of the adjacency matrix A (t) associated with G (t),

fi,j(t, ri, rj)
△
= [fi,j [t, ri(1), rj(1)], . . . , fi,j [t, ri(m), rj(m)]]

T , each component of

fij(t, ri, rj) is defined such that for x, y ∈ R, fi,j(t, x, y) satisfies that

fi,j(t, x, y) =

⎧
⎪⎨
⎪⎩

> ǫ, x > y

< −ǫ, x < y

0, x = y

(5.23)

or

fi,j(t, x, y) = fi,j(x, y)

⎧
⎪⎨
⎪⎩

≥ ς(x − y), x > y

≤ ς(x − y), x < y

= 0, x = y,

(5.24)

5 Note that r0 is constant because the leader is stationary.
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i = 1, . . . , n, j = 1, . . . , n, fi,0(t, ri, r0)
△
= [fi,0[t, ri(1), r0(1)], . . . , fi,0[t, ri(m),

r0(m)]]
T , and each component of fi,0(t, ri, r0) is defined such that for x, y ∈ R,

fi,0(t, x, y) satisfies (5.23), (5.24), or

fi,0(t, x, y)

⎧
⎪⎨
⎪⎩

> ǫ, x > y,

< −ǫ, x < y,

∈ [−ǫ1, ǫ2], x = y.

(5.25)

Suppose that the Fillipov solution for (5.22) exists. For (5.22), ri(t) → r0 as

t → ∞.

Proof: Define r̃i
△
= ri − r0, i = 1, . . . , n. Note that r0 is constant. To show that

r̃i(t) → 0m as t → ∞, it is equivalent to show that maxi

∣∣r̃i(k)(t)
∣∣ → 0 as t → ∞

for all k = 1, . . . , m. Consider the nonnegative function F [t, r̃(k)]
△
= maxi

∣∣r̃i(k)

∣∣,
where r̃(k)

△
= [r̃1(k), . . . , r̃n(k)]

T . Suppose that F [t⋆, r̃(k)(t
⋆)] = 0. It follows that

r̃i(k)(t
⋆) = 0, i = 1, . . . , n. It can be shown that r̃i(k)(t) = 0 for all t ≥ t⋆

if r̃i(k)(t
⋆) = 0, i = 1, . . . , n. We next focus on studying the case where

F [t, r̃(k)] �= 0.
When F [t, r̃(k)] �= 0, the upper right-hand derivative of F [t, r̃(k)] is given by

D+F [t, r̃(k)] = lim sup
h→0+

1

h

[
max

i

∣∣r̃i(k)(t + h)
∣∣ − max

i

∣∣r̃i(k)(t)
∣∣
]
.

We next study D+F [t, r̃(k)] in the following three cases:

Case 1: maxi |r̃i(k)| = maxi r̃i(k). That is, there exists at least one follower, la-
beled as agent j, such that r̃j(k) > 0 and maxi

∣∣r̃i(k)

∣∣ = r̃j(k). In this case, it
can be computed that D+F [t, r̃(k)] = maxi∈arg maxi r̃i(k)

D+r̃i(k). Note that for

any agent j satisfying that r̃j(k) = maxi r̃i(k), ˙̃rj(k) becomes negative if r̃j(k) in-
creases to be greater than maxi r̃i(k). Therefore, maxi |r̃i(k)| is a nonincreasing
function.

Case 2: maxi |r̃i(k)| = − mini r̃i(k). That is, there exists at least one follower, la-
beled as agent h, such that r̃h(k) < 0 and maxi |r̃i(k)| = −r̃h(k). In this case, it
can be computed that D+F [t, r̃(k)] = maxi∈arg mini r̃i(k)

[−D+r̃i(k)]. Note that

for any agent h satisfying that r̃h(k) = mini r̃i(k), ˙̃rh(k) becomes positive if r̃h(k)

decreases to be smaller than maxi |r̃i(k)|. Therefore, maxi |r̃i(k)| is a nonincreas-
ing function.

Case 3: maxi |r̃i(k)| = maxi r̃i(k) = − mini r̃i(k). That is, there exist at least
one follower, labeled as agent j, such that r̃j(k) > 0 and
maxi |r̃i(k)| = r̃j(k) and at least one follower, labeled as agent h, such that
r̃h(k) < 0 and maxi |r̃i(k)| = −r̃h(k). In this case, it can be computed that
D+F [t, r̃(k)] = maxi∈arg maxi r̃i(k),j∈arg minj r̃j(k)

{D+r̃i(k), −D+r̃j(k)}. By fol-
lowing the analysis in Cases 1 and 2, it follows that maxi

∣∣r̃i(k)

∣∣ is a nonincreas-
ing function.
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Define η
△
= min{ς, ǫ

maxi |r̃i(k)(0)| }, where ǫ and ς are defined in, respectively,

(5.23) and (5.24). Because r0 is constant, it follows that D+r0(k) = 0. For Case 1,
it can be computed that

D+F [t, r̃(k)] = max
i∈arg maxi r̃i(k)

D+r̃i(k)

≤ max
i∈arg maxi r̃i(k)

{
−α

n∑

j=0

aij(t)η[r̃i(k) − r̃j(k)]

}
, (5.26)

where we have used the properties of fi,j(t, x, y) in (5.23) and (5.24) and the fact
that maxi ri(k) is a nonincreasing function, maxi |r̃i(k)| is a nonincreasing function,
maxi r̃i(k) ≥ r̃j(k) for all j = 1, . . . , n, and r̃0(k) = 0. For Case 2, it can also be
computed that

D+F [t, r̃(k)] = max
i∈arg mini r̃i(k)

[−D+r̃i(k)]

≤ max
i∈arg mini r̃i(k)

{
α

n∑

j=0

aij(t)η[r̃i(k) − r̃j(k)]

}
. (5.27)

For Case 3, it can be computed that D+F [t, r̃(k)] satisfies both (5.26) and (5.27).
Consider the closed-loop dynamics given by

˙̃
ξi = −α

n∑

j=0

aij(t)η(ξ̃i − ξ̃j), i = 1, . . . , n, (5.28)

where ξ̃j ∈ R and ξ̃0 = 0. Define G(t, ξ̃)
△
= maxi |ξ̃i|, where ξ̃

△
= [ξ̃1, . . . , ξ̃n]T .

We also study D+G(t, ξ̃) in three cases:

Case 1: maxi |ξ̃i| = maxi ξ̃i. That is, there exists at least one follower, labeled as
agent j, such that ξ̃j > 0 and maxi |ξ̃i| = ξ̃j . In this case, it can be computed
that

D+G(t, ξ̃) = max
i∈arg maxi ξ̃i

[
−α

n∑

j=0

aij(t)η(ξ̃i − ξ̃j)

]
.

Case 2: maxi |ξ̃i| = − mini ξ̃i. That is, there exists at least one follower, labeled
as agent h, such that ξ̃h < 0 and maxi |ξ̃i| = −ξ̃h. In this case, it can be com-
puted that

D+G(t, ξ̃) = max
i∈arg mini ξ̃i

[
α

n∑

j=0

aij(t)η(ξ̃i − ξ̃j)

]
.
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Case 3: maxi |ξ̃i| = maxi ξ̃i = − mini ξ̃i. That is, there exist at least one fol-
lower, labeled as agent j, such that ξ̃j > 0 and maxi |ξ̃i| = ξ̃j and at least one
follower, labeled as agent h, such that ξ̃h < 0 and maxi |ξ̃i| = −ξ̃h. In this case,
it can be computed that

D+G(t, ξ̃) = max
i∈arg maxi ξ̃i,j∈arg mini ξ̃i

{D+ξ̃i, −D+ξ̃j }.

Note that r̃0(k) ≡ 0 and ξ̃0 ≡ 0. It follows that D+F [t, r̃(k)] ≤ D+G[t, r̃(k)].

Because r̃(k)(0) = ξ̃(0) (i.e., F [0, r̃(k)(0)] = G[0, r̃(k)(0)]), it then follows from
Lemma 5.5 that F (t) ≤ G(t) for all t ≥ 0. Given (5.28), if in G (t) the leader
has directed paths to all followers 1 to n, then it follows from Lemma 1.5 that
ξ̃i(t) → ξ̃0 ≡ 0, i = 1, . . . , n, as t → ∞, which implies that G(t) → 0 as
t → ∞. Note from the definition of F (t) that F (t) ≥ 0 for all t ≥ 0. It then
follows from the fact F (t) ≤ G(t) that F (t) → 0 as t → ∞. Therefore, we have
that r̃i(k)(t) → 0 as t → ∞. This completes the proof.

Theorem 5.7. Suppose that the adjacency matrix A is constant, α > 0, and β > γl.

Using (5.21) for (3.1), all followers will ultimately converge to the dynamic con-

vex hull spanned by the dynamic leaders for arbitrary initial conditions if and

only if the directed graph G has a united directed spanning tree. In particular,∥∥rF (t) + (L −1
1 L2 ⊗ Im)rL(t)

∥∥ → 0 as t → ∞, where rF and rL are the col-

umn stack vectors of, respectively, the followers’ and leaders’ positions, and L1

and L2 are given in (5.5).

Proof: (Necessity) The necessity proof is similar to that in Theorem 5.1 and hence
omitted here.

(Sufficiency) Define r
△
= [rT

1 , . . . , rT
n ]T . Using (5.21), (3.1) can be written in a

vector form as

ṙ = −α(L ⊗ Im)r − β sgn[(L ⊗ Im)r] + V, (5.29)

where L is given by (5.5) and V = [0T
m, . . . ,0T

m, vT
nf +1, . . . , v

T
n ]T . Let Z

△
=

[zT
1 , . . . , zT

n ]T
△
= (L ⊗ Im)r. It follows that

Ż = (L ⊗ Im)ṙ = −α(L ⊗ Im)Z − β(L ⊗ Im) sgn(Z) + (L ⊗ Im)V.

(5.30)

Because the last nℓ rows of L are equal to zero, we get zi ≡ 0m, i = nf +1, . . . , n.
We can thus view agents nf + 1 to n as a single agent, labeled as agent 0, whose
state is 0m. When G has a united directed spanning tree, it follows that agent 0 has
directed paths to the nf followers.

Considering the team consisting of agents 0 to nf , we know that
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z0 ≡ 0m, (5.31)

żi = −
nf∑

j=1

aij

{
α(zi − zj) + β

[
sgn(zi) − sgn(zj)

]}

−
n∑

j=nf +1

aij

[
αzi + β sgn(zi) − vj

]
, i = 1, . . . , nf , (5.32)

where we have used (5.30) by noting that zi(t) ≡ 0m, i = nf + 1, . . . , n. Denote
zi(k) and vi(k), k = 1, . . . , m, as the kth component of, respectively, zi and vi.

Define gij
△
= α[zi(k) −zj(k)]+β{sgn[zi(k)]−sgn[zj(k)]}. Because α > 0 and β > 0,

when zi(k) > zj(k) (respectively, zi(k) < zj(k)), it follows that gij ≥ α[zi(k) −zj(k)]
(respectively, gij ≤ α[zi(k) −zj(k)]), i = 1, . . . , nf . In addition, when zi(k) = zj(k),

gij = 0. Therefore, gij satisfies (5.24). Define hij
△
= αzi(k) + β sgn[zi(k)] − vj(k).

Because β > γl, when zi(k) > z0(k) ≡ 0 (respectively, zi(k) < z0(k) ≡ 0), it
follows that hij > β − γl > 0 (respectively, hij < −(β − γl) < 0). In addition,
when zi(k) = z0(k) ≡ 0, it follows that hij = −vj(k) ∈ [−β −γl, β+γl]. Therefore,
hij satisfies (5.23). Because agent 0 has directed paths to agents 1 to nf , it follows
from Lemma 5.8 that zi(k)(t) → z0(k) ≡ 0, i = 1, . . . , nf , as t → ∞. Therefore,
it follows that zi(t) → 0m as t → ∞. Note that Z(t) = (L ⊗ Im)r(t). We
have (L ⊗ Im)r(t) → 0n×m as t → ∞. It follows from Lemma 5.5 that ‖rF (t) +
(L −1

1 L2 ⊗Ip)rL(t)‖ → 0 as t → ∞. That is, all followers will ultimately converge
to the dynamic convex hull spanned by the dynamic leaders under the condition of
the theorem.

Remark 5.8 Unlike the case of stationary leaders, the case of dynamic leaders re-
quires more stringent conditions on the interaction graphs to guarantee dynamic
containment control. This is due to the fact that the leaders move with time-varying
velocities rather than remain still.

5.3.2 Directed Switching Interaction

In this subsection, we assume that the adjacency matrix A (t) is constant for t ∈
[ti, ti+1) and switches at time ti+1 as in Sect. 5.2.2. Before moving on, we need the
following lemma.

Lemma 5.9 ([47]). For a team consisting of n followers with the dynamics given

by (3.1) and a leader whose position r0 satisfies ‖ṙ0‖ ≤ γl. Using (4.1) for (3.1),
‖ri(t) − r0(t)‖ → 0 in finite time if α ≥ 0, β > γl, and the leader has directed

paths to all followers 1 to n at each time instant.

Theorem 5.9. Suppose that β > γl. Using (5.21) for (3.1), all followers will ulti-

mately converge to the dynamic minimal hyperrectangle that contains the dynamic

leaders and each of whose hyperplanes is normal to one axis of the initial coordi-

nate frame C0 for arbitrary initial conditions if the directed graph G (t) has a united

directed spanning tree at each time interval [ti, ti+1), i = 0, 1, . . . .
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Proof: Let ri(k) denote the kth, k = 1, . . . , m, component of ri (i.e., the pro-
jection of the position of agent i to the kth axis of the inertial coordinate frame
C0), and vi(k) denote the kth, k = 1, . . . , m, component of vi, i ∈ VL (i.e.,

the projection of the velocity of agent i to the kth axis of C0). Define r+
L(k)

△
=

maxj∈VL
rj(k) and r−

L(k)

△
= minj∈VL

rj(k).6 To prove the theorem, it is equiva-
lent to show that limt→∞ d[ri(k)(t), Sk(t)] = 0, ∀i ∈ VF , ∀k = 1, . . . , m, where

Sk(t)
△
= [r−

L (t), r+
L (t)].

Define r(k)
△
= [r1(k), . . . , rnf (k)]

T . Consider the function F [t, r(k)]
△
=

maxi∈VF
ri(k) − r+

L(k). It can be computed that

D+F [t, r(k)] = lim sup
h→0+

1

h

[
F (t + h) − F (t)

]

= lim sup
h→0+

1

h

[
max

i
ri(k)(t + h) − max

i
ri(k)(t)

]

− lim sup
h→0+

1

h

[
r+
L(k)(t + h) − r+

L(k)(t)
]

= max
i∈arg maxi∈VF

ri(k)

D+ri(k) − max
i∈arg maxi∈VL

D+ri(k).

Because A (t) is constant for t ∈ [t0, t1), it follows that for t ∈ [t0, t1)

D+F [t, r(k)] = max
i∈arg maxi∈VF

ri(k)

(
− α

∑

j∈VL

⋃
VF

aij(t0)[ri(k) − rj(k)]

− β sgn

{ ∑

j∈VL

⋃
VF

aij(t0)[ri(k) − rj(k)]

})

− max
i∈arg maxi∈VL

D+ri(k).

Consider the closed-loop system given by

ξ̇i = − α
∑

j∈VL

⋃
VF

aij(t0)(ξi − ξj)

− β sgn

[ ∑

j∈VL

⋃
VF

aij(t0)(ξi − ξj)

]
− max

i∈arg maxi∈VL

D+ri(k), i ∈ VF ,

(5.33)

for t ∈ [t0, t1), where ξi(t0) = r0
i(k)(t0), ∀i ∈ VF , and ξj(t) ≡ r+

L(k)(t), ∀j ∈ VL.

Define ξ
△
= [ξ1, . . . , ξnf

]T . Consider the function G(t, ξ)
△
= maxi∈VF

ξi − r+
L(k).

6 Different from the proof of Lemma 5.6, where rj(k), j ∈ VL, and hence r+
L(k)

and r−
L(k)

are

constant, rj(k), j ∈ VL, and hence r+
L(k)

and r−
L(k)

here are varying.
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For t ∈ [t0, t1), it can be computed that

D+G(t, ξ) = max
i∈arg maxi∈VF

ξi

{
− α

∑

j∈VL

⋃
VF

aij(t0)(ξi − ξj)

− β sgn

[ ∑

j∈VL

⋃
VF

aij(t0)(ξi − ξj)

]}
− max

i∈arg maxi∈VL

D+ri(k).

Because rj(k)(t) ≤ r+
L(k)(t), ∀j ∈ VL, by definition, it follows that

D+F [t, r(k)] ≤ D+G[t, r(k)]

for t ∈ [t0, t1). Because F (t0) = G(t0), it then follows from Lemma 5.5 that
F (t) ≤ G(t) for [t0, t1). By following a similar analysis, we can further show that
F (t) ≤ G(t) for [ti, ti+1), i = 1, 2, . . . , which implies that F (t) ≤ G(t) for all
t ≥ t0.

Because in (5.33) all agents nf +1 to n have the same state r+
L(k), those agents

can be viewed as a single agent, labeled as agent 0, whose state is r+
L(k). For simplic-

ity, we also use G̃i, i = 1, . . . , to denote the directed graphs associated with agents 0
to nf . From Sect. 1.2 and Definition 5.2, if G (t) has a united directed spanning tree,
then G̃i(t) has a directed spanning tree (accordingly, agent 0 has directed paths to all
followers 1 to nf ). It then follows from Lemma 5.9 that |ξi(t) − r+

L(k)(t)| → 0 as
t → ∞ under the condition of the theorem. That is, G(t) → 0 as t → ∞. Combin-
ing with the fact that F (t) ≤ G(t) shows that lim supt→∞ F (t) ≤ 0, which implies
that lim supt→∞[maxi∈VF

ri(k)(t) − r+
L(k)(t)] ≤ 0.

Similarly, it can be shown that lim inft→∞[mini∈VF
ri(k)(t) − r−

L(k)(t)] ≥ 0.
Combining the previous arguments completes the proof.

Remark 5.10 In the case of dynamic leaders under a switching interaction graph,
all followers might not converge to the dynamic convex hull spanned by the dynamic
leaders ultimately except for the one-dimensional case because the closed-loop sys-
tem depends on the choice of the inertial coordinate frame, which is different from
Sect. 5.2.2. To illustrate, we present the following example. Consider a team consist-
ing of four leaders and one follower where the leaders have the same velocity. The
interaction graph switches from G(1) to G(2) as shown in Fig. 5.7 every 0.4 seconds
and the process repeats. The simulation result using (5.21) in the two-dimensional
space is given in Fig. 5.8. It can be seen that even if the follower is originally within
the dynamic convex hull spanned by the dynamic leaders, it cannot always stay in
the dynamic convex hull although the interaction graph has a united directed span-
ning tree at each time interval. Instead, the follower will ultimately converge to the
minimal rectangle that contains the dynamic leaders and each of whose edges is
normal to one axis of C0.
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Fig. 5.7 Directed switching graphs G(1) and G(2) for a team consisting of four leaders and one
follower. Here Li, i = 1, . . . , 4, denote the leaders while F denotes the follower

Fig. 5.8 The trajectories of the agents using (5.21) with G (t) switching from {G(1), G(2)} as
shown in Fig. 5.7. The red square represents the position of the follower and the blue circles

represent the positions of the four leaders at some snapshopts

Remark 5.11 Given ν ∈ R
m, sgn(ν) in (5.21) is the signum function defined com-

ponentwise. The function sgn(ν) in (5.21) can also be redefined as7

sgn(ν) =

{
0m, ν = 0m,

ν
‖ν‖ , otherwise.

(5.34)

Under this definition, the closed-loop system of (3.1) using (5.21) is independent
of the choice of the inertial coordinate frame. However, all followers might still not

7 In a one-dimensional space, sgn(ν) becomes the standard signum function.
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Fig. 5.9 The trajectories of the agents using (5.21) with sgn(·) defined in (5.34) and G (t) switch-
ing from {G(1), G(2)} as shown in Fig. 5.7. The red square represents the position of the follower
and the blue circles represent the positions of the four leaders at some snapshots

converge to the dynamic convex hull spanned by the dynamic leaders ultimately.
Similar to the example in Remark 5.10, we consider the team consisting of four
leaders and one follower where the leaders have the same velocity and let the inter-
action graph switch according to the same pattern as in Remark 5.10. The simulation
result is given in Fig. 5.9. It can be noted that the follower cannot always stay in the
dynamic convex hull spanned by the dynamic leaders even if the follower is initially
within the dynamic convex hull.8

Remark 5.12 For distributed containment control with multiple dynamic leaders
under a switching interaction graph, it might be very difficult to find distributed
tracking control algorithms without velocity measurements to guarantee that all fol-
lowers will ultimately converge to the dynamic convex hull spanned by the dy-
namic leaders in a high-dimensional space under such a mild connectivity condition
that the interaction graph has a united directed spanning tree at each time inter-
val. In a one-dimensional space, the degree of freedom of the dynamic leaders is
1 and only the minimum and maximum states of the dynamic leaders are required
to determine the dynamic convex hull spanned by the dynamic leaders. Therefore,
the signum function can be used to drive all followers to the dynamic convex hull
spanned by the dynamic leaders under the mild connectivity condition. However, in
a high-dimensional space, the degree of freedom of the dynamic leaders is larger
than 1. The dynamic convex hull spanned by the dynamic leaders might depend on
a number of leaders’ states in each dimension (instead of only the minimum and
maximum states of the dynamic leaders in a one-dimensional space). Therefore,

8 In this case, the followers might not even converge to the minimal hyperrectangle that contains
the dynamic leaders and each of whose hyperplanes is normal to one axis of C0.
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the signum function, in general, does not have the capability to drive all followers
to the dynamic convex hull spanned by the dynamic leaders in a high-dimensional
space under the mild connectivity condition. Similarly, without velocity measure-
ments, the basic linear distributed control algorithms do not have such capability
either. Therefore, more information (e.g., velocity measurements, graph switching
sequence, etc.) might be needed in order to guarantee distributed containment con-
trol in the presence of multiple dynamic leaders under the mild connectivity con-
dition in a high-dimensional space or a stronger connectivity condition might be
required.

5.3.3 Simulation

In this section, we present a simulation result to validate the theoretical result in
Sect. 5.3.1. We consider a team with four leaders and six followers in the two-
dimensional space. The directed fixed graph G is chosen as Fig. 5.5(a). Figure 5.10
shows the trajectories of the agents using (5.21) for (3.1). It can be noted that all
followers ultimately converge to the dynamic convex hull spanned by the dynamic
leaders.

5.4 Containment Control with Swarming Behavior

In this section, we study containment control with swarming behavior, namely, co-
hesion (and hence connectivity maintenance) and dispersion (and hence collision
avoidance).

Fig. 5.10 Trajectories of the agents using (5.21) with G shown in Fig. 5.5(a). Circles denote the
positions of the dynamic leaders while the squares denote the positions of the followers at some
snapshots
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We assume that all leaders and followers are equipped with transceivers. Let rL

be the transmitting radius of the leaders. Then the transmitting range of leader i is
denoted by

Si
△
=
{
y ∈ R

m| ‖y − ri‖ < rL

}
, i ∈ VL.

Let rF ≤ rL be the transmitting radius of the followers. Then the transmitting range
of follower i is denoted by

Si
△
=

{
y ∈ R

m| ‖y − ri‖ < rF

}
, i ∈ VF .

If agent j is in the transmitting range of agent i, it is denoted by rj ∈ Si. Then,

a directed graph G
△
= (VL ∪ VF , E ) is used to characterize the interaction among

all agents, where E
△
= {(i, j)|j �= i, rj ∈ Si}. Define the set of neighbors of agent

i in the graph G as Ni
△
= {j ∈ VL ∪ VF |(j, i) ∈ E }. Define N L

i
△
= Ni ∩ VL, that

is, the set of all leaders who are neighbors of agent i, and N F
i

△
= Ni ∩ VF , that

is, the set of all followers who are neighbors of agent i. Analogously, a subgraph

GF
△
= (VF , EF ) is used to characterize the interaction among the followers. Note

that here GF is undirected. Let 0 < d1 ≤ rF be the cohesive distance. Define

a subgraph GFC
△
= (VF , EFC ), where EFC

△
= {(i, j)|j �= i, ‖ri − rj ‖ < d1,

i, j ∈ VF }. Note that GFC ⊆ GF . Also define NFC i

△
= {j ∈ VF |(j, i) ∈ EFC }.

The main purpose of this section is to design control inputs for the followers such
that

• All followers are driven toward the convex hull spanned by the leaders. That is,

lim supt→∞ d[ri(t), Ω(t)], ∀i ∈ VF , is bounded, where Ω
△
= Co(rj , j ∈ VL) is

the convex hull spanned by the leaders.
• If initially follower i is within the transmitting range of leader j, then it will be

within the transmitting range of the leader for all t ≥ 0. That is, if ‖ri(0) −
rj(0)‖ < rL for some i ∈ VF and j ∈ VL, then ‖ri(t) − rj(t)‖ < rL for all
t ≥ 0.

• The followers move cohesively like a swarm while preserving connectivity. That
is, if ‖ri(0) − rj(0)‖ < d1 for some i, j ∈ VF , then ‖ri(t) − rj(t)‖ < d1 for all
t ≥ 0.

• Group dispersion (and hence collision avoidance) is maintained. That is, if
‖ri(0) − rj(0)‖ > d2, where 0 < d2 < d1, for all i, j ∈ VL ∪ VF and i �= j,
then ‖ri(t) − rj(t)‖ > d2 for all t ≥ 0.

5.4.1 Algorithm Design

To drive all followers towards the convex hull spanned by the leaders, define a po-
tential function
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Vi1
△
=

1

2

{ ∑

k∈N L
i (t)

bik ‖ri − rk ‖2 +
∑

k∈[VL \Ni(t)]

bikr2
L

}
, i ∈ VF ,

where bik > 0. Note that Vi1 is not differentiable at ‖ri − rk ‖ = rL for i ∈ VF

and k ∈ VL, but it is regular. In the remainder of this chapter, the stability analysis
is conducted for the Filippov solutions of the closed-loop systems using the pro-
posed algorithms via the nonsmooth analysis in Sect. 1.5. Accordingly, Remarks 4.1
and 4.3 also apply here.

To keep group cohesion and hence connectivity between the followers, define a
potential function

Vi2
△
=

∑

j∈NFCi
(0)

hijsij(dij), i ∈ VF ,

where sij(dij)
△
= 1

1
2 d2

1−dij
, dij

△
= 1

2 ‖ri − rj ‖2, and hij = hji > 0 for all i, j ∈ VF .

It is straightforward to verify that sij > 0 when ‖ri − rj ‖ < d1 and sij = ∞

when ‖ri − rj ‖ = d1. It can be shown that ∂sij

∂dij
= ( 1

2d2
1 − dij)

−2 > 0 when

‖ri − rj ‖ < d1. Therefore, the decrease of dij will lead to the decrease of sij . That
is, Vi2 is an attractive function.9

In addition, to preserve the connectivity between the leaders and the followers,
define a potential function

Vi3
△
=

∑

k∈N L
i (0)

hikqik(dik), i ∈ VF ,

where qik(dik)
△
= 1

1
2 r2

L −dik
, dik

△
= 1

2 ‖ri − rk ‖2, and hik > 0 for i ∈ VF and

k ∈ VL. The function qik is of a similar form to that of sij except that d1 is replaced
with rL.

Remark 5.13 Later, it will be shown that using the proposed algorithms NFCi(0) ⊆
NFCi(t) and N L

i (0) ⊆ N L
i (t), for all t ≥ 0.

To achieve group dispersion and hence collision avoidance, define a potential
function

Vi4
△
=

∑

j �=i

cij

rij(dij)
, i ∈ VF ,

where cij = cji > 0, and

rij(dij)
△
=

{
a1(dij − 1

2d2
2) + a2(dij − 1

2d2
2)

2, dij < 1
2r2

F ,

a1(
1
2r2

F − 1
2d2

2) + a2(
1
2r2

F − 1
2d2

2)
2, dij ≥ 1

2r2
F ,

(5.35)

9 Similar functions have been used in [279].
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for all i, j ∈ VL ∪ VF and i �= j. Here a2 < 0 and a1
△
= a2(d

2
2 − r2

F ). It is
straightforward to verify that rij(dij) > 0 when ‖ri − rj ‖ > d2, rij(dij) = 0
when ‖ri − rj ‖ = d2, and

∂rij

∂dij
=

{
a1 + 2a2(dij − 1

2d2
2), ‖ri − rj ‖ < rF ,

0, ‖ri − rj ‖ ≥ rF .

Therefore, Vi4 is a repulsive potential function and the partial derivative of Vi4 is
spatially distributed. Define

V
△
= V1 + V2, (5.36)

where V1
△
=

∑
i∈VF

Vi1 and V2
△
= 1

2

∑
i∈VF

Vi2 +
∑

i∈VF
Vi3 + 1

2

∑n
i=1 Vi4.

5.4.2 Analysis for Multiple Stationary Leaders

In this subsection, it is assumed that the leaders are stationary. For the n agents with
single-integrator dynamics given by (3.1), we let

ui = 0, i ∈ VL, (5.37a)

ui = −
∑

k∈N L
i (t)

bik(ri − rk) −
∂V2

∂ri
, i ∈ VF . (5.37b)

Then (5.36) and (5.37b) yield

ui = −
∑

k∈N L
i (t)

bik(ri − rk) −
∑

j∈NF Ci
(0)

hij
∂sij

∂dij
(ri − rj)

−
∑

k∈N L
i (0)

hik
∂qik

∂dik
(ri − rk) +

∑

j �=i

cijr
−2
ij

∂rij

∂dij
(ri − rj), i ∈ VF .

Because ∂rij

∂dij
= 0, ∀‖ri − rj ‖ ≥ rF , it follows that

ui = −
∑

k∈N L
i (t)

bik(ri − rk) −
∑

j∈NF Ci
(0)

hij

∂sij

∂dij

(ri − rj)

−
∑

k∈N L
i (0)

hik

∂qik

∂dik

(ri − rk)

+
∑

j∈Ni(t)

cijr
−2
ij

∂rij

∂dij

(ri − rj), i ∈ VF . (5.38)

Therefore, the algorithm defined by (5.37b) and equivalently (5.38) is spatially dis-
tributed.
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Theorem 5.14. Using (5.37) for (3.1), suppose that ‖ri(0) − rj(0)‖ > d2 for all

i, j ∈ VL ∪ VF and i �= j. Then

1. For all t ≥ 0, ‖ri(t)−rj(t)‖ < d1 for all i ∈ VF and j ∈ NFCi(0) [equivalently,

NFCi(0) ⊆ NFCi(t) for all i ∈ VF ], ‖ri(t) − rj(t)‖ < rL for all i ∈ VF and

j ∈ N L
i (0) [equivalently, N L

i (0) ⊆ N L
i (t) for all i ∈ VF ], and ‖ri(t) −

rj(t)‖ > d2 for all i, j ∈ VL ∪ VF and i �= j.

2. For all i ∈ VF , the control input ui is bounded.

3. If in the graph GI(0)
△
= [VL ∪VF , EI(0)], where EI(0)

△
= [E (0)\EF (0)]∪EFC(0),

for each follower, there exists at least one leader that has a directed path to the

follower, then lim supt→∞ d[ri(t), Ω(t)], ∀i ∈ VF , is bounded.

Proof: Consider the Lyapunov function candidate V defined by (5.36). Because
‖ri(0) − rj(0)‖ > d2 for all i, j ∈ VF ∪ VL and i �= j, it follows from the definition

of V in (5.36) that V (0) < ∞. Define r
△
= [r1, . . . , rn]T and u

△
= [u1, . . . , un]T .

Using (5.37) for (3.1), it follows that

L̃F V =
⋂

ξ∈∂V (r)

ξT K[u]

=
∑

i∈VL

⋂

ξi ∈∂V (ri)

K[ξT
i ṙi] +

∑

i∈VF

⋂

ξi ∈∂V (ri)

K

[
ξT
i

[
−

∑

k∈N L
i (t)

bik(ri − rk)

−
∑

j∈NF Ci
(0)

hij

∂sij

∂dij

(ri − rj)

−
∑

k∈N L
i (0)

hik

∂qik

∂dik

(ri − rk) +
∑

j∈Ni(t)

cijr
−2
ij

∂rij

∂dij

(ri − rj)

]]

=
∑

i∈VF

⋂

ξi ∈∂V (ri)

K

[
ξT
i

[
−

∑

k∈N L
i (t)

bik(ri − rk)

−
∑

j∈NF Ci
(0)

hij

∂sij

∂dij

(ri − rj)

−
∑

k∈N L
i (0)

hik

∂qik

∂dik

(ri − rk) +
∑

j∈Ni(t)

cijr
−2
ij

∂rij

∂dij

(ri − rj)

]]
,

where ∂V (r) is the generalized gradient of V at r, ∂V (ri) is the generalized
gradient of V at ri, and we have used the fact that K[x(t)f(t)] = x(t)K[f(t)]
for any continuous function x(t) to derive the second equality and the fact that
ṙi = 0, ∀i ∈ VL, to derive the last equality. By following a similar analysis to
that in the proof of Theorem 4.4, we have max L̃F V ≤ 0. It thus follows from
Lemma 1.39 that

V (t) ≤ V (0) < ∞, ∀t ≥ 0. (5.39)
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Suppose that at time t1, ‖ri(t1) − rj(t1)‖ ≤ d2 for some i, j ∈ VL ∪ VF and i �= j.
Because the agents move continuously, there must exist a time t2 ≤ t1 such that
‖ri(t2) − rj(t2)‖ = d2, which implies that Vi4(t2) = ∞. Therefore, it follows that
V (t2) = ∞, which contradicts (5.39). Similarly, we can prove the other parts of the
first statement.

Note from (5.38) that

‖ui‖ ≤
∑

k∈N L
i (t)

bik ‖ri − rk ‖ +
∑

j∈NF Ci
(0)

hij

(
1

2
d2
1 − dij

)−2

‖ri − rj ‖

+
∑

k∈N L
i (0)

hik

(
1

2
r2
L − dik

)−2

‖ri − rk ‖

+
∑

j∈Ni(t)

cijr
−2
ij

∣∣∣∣a1 + 2a2

(
dij −

1

2
d2
2

)∣∣∣∣‖ri − rj ‖.

Therefore, the second statement follows from the first statement.
Because NFCi(0) ⊆ NFCi(t) and N L

i (0) ⊆ N L
i (t) for all i ∈ VF and

t ≥ 0, and in GI(0), for each follower, there exists at least one leader that has a
directed path to the follower, it follows that in GI(t), for each follower, there ex-
ists at least one leader that has a directed path to the follower. The third statement
follows directly.

5.4.3 Analysis for Multiple Dynamic Leaders

In this subsection, it is assumed that the leaders are dynamic. For the n agents with
single-integrator dynamics given by (3.1), we let

ui = vi, i ∈ VL, (5.40a)

ui = −
∑

k∈N L
i (t)

bik(ri − rk) −
∂V2

∂ri
, i ∈ VF , (5.40b)

where vi, i ∈ VL, denotes the velocity of leader i. It is assumed that ‖vi‖ ≤ γℓ,
∀i ∈ VL, where γℓ is a positive constant. The first result in this subsection is stated
below.

Theorem 5.15. Using (5.40) for (3.1), if the conditions of Theorem 5.14 hold and

‖vk ‖ ≤

∑
i∈N F

k (t)
1

|N L
i (t)|

‖
∑

k∈N L
i (t) bik(ri − rk) + ∂V2

∂ri
‖2

‖ −
∑

k∈N L
i (t) bik(ri − rk) + ∂V2

∂rk
‖

, (5.41)

for all k ∈ VL, then all statements of Theorem 5.14 hold.
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Proof: Consider the Lyapunov function candidate V defined by (5.36). Note from
(5.41) that

∥∥∥∥−
∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂rk

∥∥∥∥‖ṙk ‖

≤
∑

i∈N F
k (t)

1

|N L
i (t)|

∥∥∥∥
∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

∥∥∥∥
2

, k ∈ VL.

Define r
△
= [r1, . . . , rn]T and u

△
= [u1, . . . , un]T . Using (5.40) for (3.1), it follows

that

L̃F V =
⋂

ξ∈∂V (r)

ξT K[u]

=
∑

i∈VL

⋂

ξi ∈∂V (ri)

K[ξT
i ṙi]

+
∑

i∈VF

⋂

ξi ∈∂V (ri)

K

[
ξT
i

[
−

∑

k∈N L
i (t)

bik(ri − rk) −
∂V2

∂ri

]]
,

where ∂V (r) is the generalized gradient of V at r, ∂V (ri) is the generalized
gradient of V at ri, and we have used the fact that K[x(t)f(t)] = x(t)K[f(t)]
for any continuous function x(t) to derive the second equality. By following a
similar analysis to that in the proof of Theorem 4.4, we have max L̃F V ≤ 0.
The rest of the proof is similar to that of Theorem 5.14 and is hence omitted
here.

Next, it will be shown that Condition (5.41) can be relaxed by using a control
law given as

ui = vi, i ∈ VL, (5.42a)

ui = −

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]

− β sgn

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]
, i ∈ VF , (5.42b)

where sgn(·) is the signum function defined componentwise.

Theorem 5.16. Using (5.42) for (3.1), if the conditions of Theorem 5.14 hold and

β ≥ γℓ, then all statements of Theorem 5.14 hold.

Proof: Consider the Lyapunov function candidate V defined by (5.36). Let Vij

be the sum of the coupling terms between ri and rj in V2. Then it follows
that
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∑

i∈VF

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]

=
∑

i∈VF

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∑

j∈VL ∪VF

∂Vij

∂ri

]

=
∑

i∈VF

∑

k∈N L
i (t)

bik(ri − rk) +
∑

i∈VF

∑

j∈VF

∂Vij

∂ri
+

∑

i∈VF

∑

j∈VL

∂Vij

∂ri
.

It is straightforward to verify that
∑

i∈VF

∑
j∈VF

∂Vij

∂ri
= 0, which yields

∑

i∈VF

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]

=
∑

i∈VF

∑

k∈N L
i (t)

bik(ri − rk) +
∑

i∈VF

∑

j∈VL

∂Vij

∂ri

=
∑

i∈VF

∑

k∈N L
i (t)

bik(ri − rk) −
∑

i∈VF

∑

j∈VL

∂Vij

∂rj

=
∑

i∈VF

∑

k∈N L
i (t)

bik(ri − rk) −
∑

j∈VL

∂V2

∂rj

. (5.43)

Define r
△
= [r1, . . . , rn]T and u

△
= [u1, . . . , un]T . Using (5.43), it follows that

L̃F V =
⋂

ξ∈∂V (r)

ξT K[u]

=
∑

i∈VL

⋂

ξi ∈∂V (ri)

K
[
ξT
i ṙi

]

+
∑

i∈VF

⋂

ξi ∈∂V (ri)

K

[
ξT
i

{
−

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]

− β sgn

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]}]
,

where ∂V (r) and ∂V (ri) are defined as in the proof of Theorem 5.15 and we have
used the fact that K[x(t)f(t)] = x(t)K[f(t)] for any continuous function x(t) to
derive the second equality. By following a similar analysis to that in the proof of
Theorem 4.4 and using (5.43), we have
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Fig. 5.11 Containment control with swarming behavior in the case of stationary leaders in the
two-dimensional space. The leaders are denoted by “⋄”, while the followers are represented by
“*”. The parameters are specified as follows: rL = 5, rF = 1, d1 = 0.8, d2 = 0.4, a2 = −1, and
a1 = a2(d2

2 − r2
F )

max L̃F V ≤ max K

[
γℓ

∥∥∥∥
∑

i∈VF

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]∥∥∥∥

−
∑

i∈VF

∥∥∥∥
∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

∥∥∥∥
2

− β

∥∥∥∥
∑

i∈VF

[ ∑

k∈N L
i (t)

bik(ri − rk) +
∂V2

∂ri

]∥∥∥∥
]
.

If β ≥ γℓ, then max L̃F V ≤ 0. The rest of the proof is similar to that of Theo-
rem 5.14 and is hence omitted here.
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Fig. 5.12 The trajectories of ‖ri − rj ‖ for i ∈ VF and j ∈ NFC i
(0) and the dashed line ‖ri −

rj ‖ = d1 in the case of stationary leaders

Fig. 5.13 The trajectories of ‖ri − rj ‖ for all i ∈ VF and j ∈ N L
i (0) and the dashed line

‖ri − rj ‖ = rL in the case of stationary leaders

5.4.4 Simulation

For illustration purposes, a simulation example with stationary leaders in the two-
dimensional space is first presented to verify Theorem 5.14. The example in-
cludes 4 leaders and 6 followers. Figure 5.11 shows the snapshots of the agents’
positions. Initially, the positions of the agents are generated in such a way that
‖ri(0) − rj(0)‖ < d1 for all i ∈ VF and j ∈ NFCi(0), and ‖ri(0) − rj(0)‖ > d2
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Fig. 5.14 The trajectories of ‖ri − rj ‖ for all i, j ∈ VL ∪ VF and i �= j and the dashed line

‖ri − rj ‖ = d2 in the case of stationary leaders

Fig. 5.15 Containment control with swarming behavior in the case of dynamic leaders in the
two-dimensional space
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Fig. 5.16 The trajectories of ‖ri − rj ‖ for i ∈ VF and j ∈ NFC i
(0) and the dashed line ‖ri −

rj ‖ = d1 in the case of dynamic leaders

Fig. 5.17 The trajectories of ‖ri − rj ‖ for all i ∈ VF and j ∈ N L
i (0) and the dashed line

‖ri − rj ‖ = rL in the case of dynamic leaders

for all i, j ∈ VL ∪ VF and i �= j. The graph GFC(0) is connected. As can be seen
from Fig. 5.11, all followers move toward the convex hull spanned by the leaders
while preserving group cohesion and dispersion. Figure 5.12 shows the trajectory
of ‖ri − rj ‖ for i ∈ VF and j ∈ NFCi(0). It is clear from Fig. 5.12 that for t ≥ 0
‖ri − rj ‖ < d1 for all i ∈ VF and j ∈ NFCi(0). Figure 5.13 shows the trajectory
of ‖ri − rj ‖ for i ∈ VF and j ∈ N L

i (0). It is clear from Fig. 5.13 that for t ≥ 0
‖ri − rj ‖ < rL for all i ∈ VF and j ∈ N L

i (0). Figure 5.14 shows the trajectory
of ‖ri − rj ‖ for all i, j ∈ VL ∪ VF and i �= j. It can be observed that for t ≥ 0
‖ri − rj ‖ > d2 for all i, j ∈ VL ∪ VF and i �= j.
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Fig. 5.18 The trajectories of ‖ri − rj ‖ for all i, j ∈ VL ∪ VF and i �= j and the dashed line

‖ri − rj ‖ = d2 in the case of dynamic leaders

A simulation example with dynamic leaders in the two dimensional space is then
presented to verify Theorem 5.15. The parameters are the same as the ones speci-
fied in the case of stationary leaders except that rL = 8. The reason for enlarging
rL is to ensure that every leader has a neighboring follower initially. The leaders
move with the same speed. In particular, we let vk = [1, 1]T , k ∈ VL. As can be
seen from Figs. 5.15, 5.16, 5.17, and 5.18, the followers move toward the dynamic
convex hull spanned by the dynamic leaders while preserving group cohesion and
dispersion.

5.5 Notes

The results in this chapter are based mainly on [29, 56]. For other results related to
containment control with stationary or dynamic leaders, see [79, 80, 136]. In partic-
ular, [136] exploits the theory of partial difference equations and proposes a hybrid
control scheme based on stop-and-go rules for the leaders to drive a collection of
mobile agents to the convex hull spanned by multiple leaders under an undirected
fixed interaction graph. The result is extended in [79] to multiple unicycle agents.
A distributed attitude containment control problem is studied in [80] for multiple
rigid bodies with multiple stationary leaders under an undirected fixed interaction
graph. For other results related to distributed multi-agent coordination using poten-
tial functions, see [78, 103, 133, 161, 168, 279], to name a few. In these references,
potential functions are constructed to achieve inter-agent collision avoidance, con-
nectivity maintenance, group cohesion, or group dispersion.
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Chapter 6

Networked Lagrangian Systems

This chapter moves from point models primarily adopted in distributed multi-agent
coordination to more realistic Lagrangian models. A class of mechanical systems
including autonomous vehicles, robotic manipulators, and walking robots are La-
grangian systems. We focus on fully-actuated Lagrangian systems. We first study
distributed leaderless coordination algorithms for networked Lagrangian systems.
The objective is to drive a team of agents modeled by Euler–Lagrange equations
to achieve desired relative deviations on their vectors of generalized coordinates
with local interaction. We then study distributed coordinated regulation and dis-
tributed coordinated tracking algorithms in the presence of a leader for networked
Lagrangian systems under the constraints that the leader is a neighbor of only a
subset of the followers and the followers have only local interaction. In the case of
coordinated regulation, the leader has a constant vector of generalized coordinates.
In the case of coordinated tracking, the leader has a varying vector of generalized
coordinates. In both cases, the objective is to drive the vectors of generalized coordi-
nates of a team of followers modeled by Euler–Lagrange equations to approach that
of a leader. Simulation results show the effectiveness of the proposed algorithms.

6.1 Problem Statement

In distributed multi-agent coordination problems, point models are primarily adopted
due to their simplicity. However, the point models are often not realistic. Euler–
Lagrange equations can be used to model a class of mechanical systems including
autonomous vehicles, robotic manipulators, and walking robots. The objective of
the current chapter is to study distributed leaderless and leader-following coordina-

tion problems for networked Lagrangian systems. Here we focus on fully-actuated
Lagrangian systems. In the leaderless case, there does not exist a leader in the
team. The objective is that a team of agents modeled by Euler–Lagrange equations
achieves desired relative deviations on their vectors of generalized coordinates with
local interaction. In the leader-following case, there exists a leader that specifies the
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objective for the whole team. Here the leader can be virtual or physical. In particu-
lar, we use the term coordinated regulation to refer to the case where the vectors of
generalized coordinates of a group of followers modeled by Euler–Lagrange equa-
tions approach a constant vector of generalized coordinates of a leader with local
interaction. Similar to Chap. 4, we use the term coordinated tracking to refer to the
case where the vectors of generalized coordinates of a group of followers modeled
by Euler–Lagrange equations approach a varying vector of generalized coordinates
of a leader with local interaction. A coordinated regulation problem can be viewed
as a special case of a coordinated tracking problem. It is worthwhile to mention
that the coordinated tracking case becomes much more complex if the leader is a
neighbor of only a subset of the followers.

In the leaderless case, we are motivated to derive distributed coordination algo-
rithms when the agents have only local interaction with their neighbors and none of
them has the knowledge of the group reference trajectory. The distributed feature of
the algorithms makes them scalable to a large number of agents. The leaderless fea-
ture of the algorithms makes them suitable for applications where the absolute states
of the agents are not what is important but rather all agents achieve relative state de-
viations. While there are many applications where there exists a group reference
trajectory, there are also many applications where leaderless algorithms are impor-
tant. Examples include rendezvous, flocking, and attitude synchronization. For ex-
ample, the proposed leaderless algorithms have potential applications in automated
rendezvous and docking. In addition, rigid body attitude dynamics can be written in
the form of Euler–Lagrange equations. The proposed leaderless algorithms can be
used for attitude synchronization of multiple rigid bodies with local interaction. Fur-
thermore, when there is a team of networked mobile vehicles equipped with robotic
arms that hold sensors (e.g., iRobot PackBot Explorer), the robotic arms on each
mobile vehicle can be modeled by Euler–Lagrange equations. The proposed leader-
less algorithms can be used to coordinate the robotic arms and sensors equipped on
different mobile vehicles so that a team of mobile vehicles can scan an area cooper-
atively. We will propose and analyze three algorithms: (i) a fundamental algorithm;
(ii) a nonlinear algorithm; and (iii) an algorithm that accounts for unavailability of
measurements of generalized coordinate derivatives.

In the leader-following case, we are motivated to derive distributed coordinated
regulation and tracking algorithms when the leader is a neighbor of only a subset
of the followers and the followers have only local interaction. The presence of a
leader can broaden the applications as a group objective can be encapsulated by the
leader. We will consider three cases: (i) The leader has a constant vector of gener-
alized coordinates; (ii) The leader has a constant vector of generalized coordinate
derivatives; (iii) The leader has a varying vector of generalized coordinate deriva-
tives. In the first case, we propose and analyze distributed algorithms by extending
the distributed leaderless coordination algorithms. In the second case, with the aid
of a distributed continuous estimator, we propose and analyze, respectively, a dis-
tributed model-dependent algorithm and a distributed model-independent algorithm
accounting for parametric uncertainties. In the third case, we propose and analyze a
distributed model-independent sliding-mode algorithm.
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Consider a team of n agents with Euler–Lagrange equations given by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, . . . , n, (6.1)

where qi ∈ R
p is the vector of generalized coordinates, Mi(qi) ∈ R

p×p is the
symmetric positive-definite inertia matrix, Ci(qi, q̇i)q̇i ∈ R

p is the vector of Coriolis
and centrifugal torques, gi(qi) is the vector of gravitational torques, and τi ∈ R

p is
the vector of torques produced by the actuators associated with the ith agent.

Throughout the subsequent analysis, we assume that the following assumptions
hold [144, 276]:

(A1) (Boundedness) For any i, there exist positive constants km, km̄, kC , kC1 , kC2 ,
and kg such that Mi(qi) − kmIp is positive semidefinite, Mi(qi) − km̄Ip is
negative semidefinite, ‖gi(qi)‖ ≤ kg, ‖Ci(x, y)‖ ≤ kC ‖y‖, and ‖Ci(x, z)w−
Ci(y, v)w‖ ≤ kC1 ‖z − v‖ ‖w‖ + kC2 ‖x − y‖ ‖w‖ ‖z‖ for all vectors
x, y, z, v, w ∈ R

p.
(A2) (Skew-symmetric property) Ṁi(qi) − 2Ci(qi, q̇i) is skew-symmetric (i.e.,

yT [Ṁi(qi) − 2Ci(qi, q̇i)]y = 0 for all y ∈ R
p).

(A3) (Linearity in the parameters) Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) =
Yi(qi, q̇i, q̈i)Θi, where Yi(qi, q̇i, q̈i) is the regressor and Θi is the constant
parameter vector for the ith agent.

Define q
△
= [qT

1 , . . . , qT
n ]T and q̇

△
= [q̇T

1 , . . . , q̇T
n ]T . Also define M(q)

△
=

diag[M1(q1), . . . , Mn(qn)], C(q, q̇)
△
= diag[C1(q1, q̇1), . . . , Cn(qn, q̇n)], and

g(q)
△
= [gT

1 (q1), . . . , g
T
n (qn)]T .

6.2 Distributed Leaderless Coordination for Networked

Lagrangian Systems

We consider three distributed leaderless coordination algorithms for networked La-
grangian systems, namely, a fundamental algorithm, a nonlinear algorithm, and an
algorithm accounting for unavailability of measurements of generalized coordinate

derivatives. Define q̆ij
△
= δi − δj , where δi ∈ R

p is constant. Here q̆ij denotes the
constant desired relative deviation on vectors of generalized coordinates between
agents i and j. The objective here is to design distributed leaderless coordination
algorithms for (6.1) such that qi(t) − qj(t) → q̆ij and q̇i(t) → 0p as t → ∞. Before
moving on, we need the following lemma:

Lemma 6.1. Let ψ : R → R be a continuous odd function satisfying that ψ(x) > 0

if x > 0.1 Suppose that ςi ∈ R
p, ϕi ∈ R

p, K ∈ R
p×p, and D

△
= [dij ] ∈ R

n×n. If D
is symmetric, then

1 For a vector, ψ(·) is defined componentwise.
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1

2

n∑

i=1

n∑

j=1

dij(ςi − ςj)
T ψ

[
K(ϕi − ϕj)

]
=

n∑

i=1

ςT
i

{
n∑

j=1

dijψ
[
K(ϕi − ϕj)

]
}

.

Proof: The proof is similar to that of [248, Lemma 4.18] and is hence omitted here.

6.2.1 Fundamental Algorithm

In this section, we consider a fundamental coordination algorithm as

τi = gi(qi) −
n∑

j=1

aij(qi − qj − q̆ij) −
n∑

j=1

bij(q̇i − q̇j) − Kiq̇i, (6.2)

where i = 1, . . . , n, aij is the (i, j)th entry of the adjacency matrix A ∈ R
n×n

associated with the undirected graph GA
△
= (V , EA) characterizing the interaction

among the n agents for qi, bij is the (i, j)th entry of the adjacency matrix B ∈ R
n×n

associated with the undirected graph GB
△
= (V , EB) characterizing the interaction

among the n agents for q̇i, and Ki ∈ Rp×p is symmetric positive definite. Note that
here GA and GB are allowed to be different.

Theorem 6.1. Using (6.2) for (6.1), qi(t) − qj(t) → q̆ij and q̇i(t) → 0p, i, j =
1, . . . , n, as t → ∞ if the graph GA is undirected connected and the graph GB is

undirected.

Proof: Using (6.2), (6.1) can be written as

d

dt
(qi − qj − q̆ij) = q̇i − q̇j ,

d

dt
q̇i = −M −1

i (qi)

[
Ci(qi, q̇i)q̇i +

n∑

j=1

aij(qi − qj − q̆ij) (6.3)

+

n∑

j=1

bij(q̇i − q̇j) + Kiq̇i

]
.

Note that the system (6.3) with states qi − qj − q̆ij and q̇i is nonautonomous due to
the dependence of Mi and Ci on qi. As a result, Lemma 1.31 is no long applicable
for (6.3). Instead, we apply Lemma 1.36 to prove the theorem.

Let q̆
△
= [q̆T

1 , . . . , q̆T
n ]T with q̆i

△
= qi − δi, and K

△
= diag(K1, . . . , Kn). Let LA

and LB be, respectively, the Laplacian matrix associated with A and hence GA, and
B and hence GB . Note that both LA and LB are symmetric positive semidefinite
because both GA and GB are undirected. Let q̃ be a column stack vector of all qi −
qj − q̆ij , where i < j and aij > 0 (i.e., agents i and j are neighbors). Define
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x
△
= [q̃T , q̇T ]T . Consider the Lyapunov function candidate for (6.3) as

V (t, x) =
1

2
q̆T (LA ⊗ Ip)q̆ +

1

2
q̇T M(q)q̇.

Because the graph GA is undirected, it follows from Remark 1.1 and Lemma 1.21
that q̆T (LA ⊗ Ip)q̆ = 1

2

∑n
i=1

∑n
j=1 aij ‖qi − qj − q̆ij ‖2. It thus follows that V

is positive definite and decrescent with respect to x. Note that Condition 1 in
Lemma 1.36 is satisfied.

The derivative of V is given by

V̇ (t, x) = q̇T (LA ⊗ Ip)q̆ +
1

2
q̈T M(q)q̇ +

1

2
q̇T Ṁ(q)q̇ +

1

2
q̇T M(q)q̈

= q̇T (LA ⊗ Ip)q̆ + q̇T M(q)q̈ +
1

2
q̇T Ṁ(q)q̇,

where we have used the fact that M(q) is symmetric. Using (6.2), (6.1) can be
written in a vector form as

M(q)q̈ = −C(q, q̇)q̇ − (LA ⊗ Ip)q̆ − (LB ⊗ Ip)q̇ − Kq̇. (6.4)

Note that Ṁ(q) − 2C(q, q̇) is skew symmetric. By applying (6.4), the derivative of
V can be written as

V̇ (t, x) = −q̇T (LB ⊗ Ip)q̇ − q̇T Kq̇ ≤ 0. (6.5)

Therefore, Condition 2 in Lemma 1.36 is satisfied.

Let W (t, x)
△
= q̇T (LA ⊗ Ip)q̆. It follows that |W (t, x)| ≤ ‖q̇‖ ‖(LA ⊗ Ip)q̆‖.

Note that (6.5) implies V [t, x(t)] ≤ V [0, x(0)], ∀t ≥ 0, which in turn implies that
‖q̃‖ and ‖q̇‖ are bounded. Noting that (LA ⊗ Ip)q̆ is a column stack vector of all∑n

j=1 aij(qi − qj − q̆ij), i = 1, . . . , n, it follows that ‖(LA ⊗ Ip)q̆‖ is bounded. It
thus follows that |W (t, x)| is bounded along the solution trajectory, implying that
Condition 3 in Lemma 1.36 is satisfied.

The derivative of W along the solution trajectory of (6.4) is

Ẇ (t, x) = q̈T (LA ⊗ Ip)q̆ + q̇T (LA ⊗ Ip)q̇

= − q̇T CT (q, q̇)M −1(q)(LA ⊗ Ip)q̆

− q̆T (LA ⊗ Ip)M
−1(q)(LA ⊗ Ip)q̆

− q̇T (LB ⊗ Ip)M
−1(q)(LA ⊗ Ip)q̆ − q̇T KM −1(q)(LA ⊗ Ip)q̆

+ q̇T (LA ⊗ Ip)q̇.

Note that ‖q̇‖ is bounded. It follows from Assumption (A1) that ‖M −1(q)‖ and
C(q, q̇)q̇ are bounded. Therefore, Ẇ (t, x) can be written as Ẇ (t, x) = g[β(t), x],
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where g is continuous in both arguments and β(t) is continuous and bounded. On

the set Ω
△
= {(q̃, q̇)|V̇ = 0}, q̇ = 0np and Ẇ (t, x) becomes

Ẇ (t, x) = −q̆T (LA ⊗ Ip)M
−1(q)(LA ⊗ Ip)q̆.

Note that M −1(q) is symmetric positive definite. It follows from Assumption (A1)
that

q̆T (LA ⊗ Ip)M
−1(q)(LA ⊗ Ip) ≥ 1

km̄

∥∥(LA ⊗ Ip)q̆
∥∥2

.

Also note that ‖(LA ⊗ Ip)q̆‖2 is positive definite with respect to q̃. It follows
from Lemma 1.35 that on the set Ω, there exist a class K function, α, such that

‖(LA ⊗ Ip)q̆‖2 ≥ α(‖q̃‖). Therefore, for all x ∈ Ω, |Ẇ (t, x)| ≥ 1/km̄α(‖q̃‖).
It follows from Lemma 1.37 that Condition 4 in Lemma 1.36 is satisfied. We con-
clude from Lemma 1.36 that the equilibrium of the system (6.3) (i.e., ‖q̃‖ = 0 and
‖q̇‖ = 0) is uniformly asymptotically stable, which implies that qi(t) − qj(t) → q̆ij

and q̇i(t) → 0p as t → ∞ because GA is undirected connected.

6.2.2 Nonlinear Algorithm

In this section, we consider a nonlinear coordination algorithm as

τi = gi(qi) −
n∑

j=1

aijψ
[
Kq(qi − qj − q̆ij)

]

−
n∑

j=1

bijψ
[
Kq̇(q̇i − q̇j)

]
− Kiψ(Kdiq̇i), (6.6)

where i = 1, . . . , n, aij and bij are defined as in (6.2), Kq, Kq̇, Ki, and Kdi are p
by p positive-definite diagonal matrices, and ψ(·) is defined in Lemma 6.1 with an
additional assumption that ψ(·) is continuously differentiable. In the remainder of
the chapter, we use a subscript (j) to denote the jth component of a vector or the
jth diagonal entry of a diagonal matrix.

Theorem 6.2. Using (6.6) for (6.1), qi(t) − qj(t) → q̆ij and q̇i(t) → 0p, i, j =
1, . . . , n, as t → ∞ if the graph GA is undirected connected and the graph GB is

undirected.

Proof: Similar to the proof of Theorem 6.1, using (6.6), (6.1) can be written as a
nonautonomous system with states qi − qj − q̆ij and q̇i. We apply Lemma 1.36 to
prove the theorem. Let q̃ and x be defined as in the proof of Theorem 6.1. Consider
the Lyapunov function candidate
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V (t, x) =
1

2

n∑

i=1

n∑

j=1

aij

p∑

ℓ=1

∫ qi(ℓ)(t)−qj(ℓ)(t)−q̆ij(ℓ)

0

ψ[Kq(ℓ)τ ] dτ

+
1

2

n∑

i=1

q̇T
i Mi(qi)q̇i.

Note that V is positive definite and decrescent with respect to x. Therefore, Condi-
tion 1 in Lemma 1.36 is satisfied.

The derivative of V is given by

V̇ (t, x) =
1

2

n∑

i=1

n∑

j=1

aij(q̇i − q̇j)
T ψ
[
Kq(qi − qj − q̆ij)

]

+
1

2

n∑

i=1

[
q̈T
i Mi(qi)q̇i + q̇T

i Ṁi(qi)q̇i + q̇T
i Mi(qi)q̈i

]
.

Using (6.6), (6.1) can be written as

Mi(qi)q̈i = − Ci(qi, q̇i)q̇i −
n∑

j=1

aijψ
[
Kq(qi − qj − q̆ij)

]

−
n∑

j=1

bijψ
[
Kq̇(q̇i − q̇j)

]
− Kiψ(Kdiq̇i). (6.7)

Note that A is symmetric because the graph GA is undirected. It follows from
Lemma 6.1 that

1

2

n∑

i=1

n∑

j=1

aij(q̇i − q̇j)
T ψ
[
Kq(qi − qj − q̆ij)

]

=

n∑

i=1

q̇T
i

{
n∑

j=1

aijψ
[
Kq(qi − qj − q̆ij)

]
}

.

Also note that Mi(qi) is symmetric and that Ṁi(qi)−2Ci(qi, q̇i) is skew symmetric.
By applying (6.7), it follows that

V̇ (t, x) = −
n∑

i=1

q̇T
i

{
n∑

j=1

bijψ
[
Kq̇(q̇i − q̇j)

]
+ Kiψ(Kdiq̇i)

}
.

Note that B is symmetric because the graph GB is undirected. By applying
Lemma 6.1 again, it follows that the derivative of V becomes

V̇ (t, x) = − 1

2

n∑

i=1

n∑

j=1

bij(q̇i − q̇j)
T ψ
[
Kq̇(q̇i − q̇j)

]
−

n∑

i=1

q̇T
i Kiψ(Kdiq̇i).
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Given a vector z and two positive-definite diagonal matrices K1 and K2, z and
K1ψ(K2z) have the same signs for each component. Therefore, it follows that
V̇ (t, x) ≤ 0, which implies that Condition 2 in Lemma 1.36 is satisfied.

Let W (t, x)
△
=
∑n

i=1 q̇T
i χi, where

χi
△
=

n∑

j=1

aijψ
[
Kq(qi − qj − q̆ij)

]
.

Note that V̇ (t, x) ≤ 0 implies V [t, x(t)] ≤ V [0, x(0)], ∀t ≥ 0, which in turn
implies that q̃ and q̇ are bounded. It thus follows that ‖χi‖ is also bounded. Similar
to the proof of Theorem 6.1, it follows that |W (t, x)| is bounded along the solution
trajectory, implying that Condition 3 in Lemma 1.36 is satisfied.

The derivative of W (t, x) along the solution trajectory of (6.7) is

Ẇ (t, x) = −
n∑

i=1

q̇T
i CT

i (qi, q̇i)M
−1
i (qi)χi

−
n∑

i=1

{
n∑

j=1

bijψ
[
Kq̇(q̇i − q̇j)

]
}T

M −1
i (qi)χi

−
n∑

i=1

χT
i M −1

i (qi)χi −
n∑

i=1

[
Kiψ(Kdiq̇i)

]T
M −1

i (qi)χi +

n∑

i=1

q̇T
i χ̇i.

A similar argument to that in the proof of Theorem 6.1 shows that Ẇ (t, x) can be
written as Ẇ (t, x) = g[β(t), x], where g is continuous in both arguments and β(t) is
continuous and bounded. On the set {(q̃, q̇)|V̇ = 0}, q̇ = 0np and Ẇ (t, x) becomes

Ẇ (t, x) = −
n∑

i=1

χT
i M −1

i (qi)χi.

If
∑n

i=1 χT
i χi is positive definite with respect to q̃, then a similar argument to that in

the proof of Theorem 6.1 implies that Condition 4 in Lemma 1.36 is satisfied. Be-
cause

∑n
i=1 χT

i χi ≥ 0, equivalently we only need to show that
∑n

i=1 χT
i χi = 0

implies qi − qj − q̆ij = 0p for all aij > 0. Suppose that
∑n

i=1 χT
i χi = 0,

which implies χi =
∑n

j=1 aijψ[Kq(qi − qj − q̆ij)] = 0p. It thus follows that∑n
i=1 qT

i {∑n
j=1 aijψ[Kq(qi − qj − q̆ij)]} = 0, which implies from Lemma 6.1

that 1
2

∑n
i=1

∑n
j=1 aij(qi − qj − q̆ij)

T ψ[Kq(qi − qj − q̆ij)] = 0. Note that GA is
undirected and qi − qj − q̆ij and ψ[Kq(qi − qj − q̆ij)] have the same signs for each
component. It follows that qi − qj − q̆ij = 0p for all aij > 0 when

∑n
i=1 χT

i χi = 0.
Combining the above arguments, we conclude from Lemma 1.36 that the equilib-
rium ‖q̃‖ = 0 and ‖q̇‖ = 0 is uniformly asymptotically stable, which implies that
qi(t) − qj(t) → q̆ij and q̇i(t) → 0p as t → ∞ because GA is undirected connected.
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6.2.3 Algorithm Accounting for Unavailability of Measurements

of Generalized Coordinate Derivatives

Note that (6.2) and (6.6) require measurements of q̇i and q̇i − q̇j , where bij > 0. In
this section, we consider a coordination algorithm that removes the requirement for
the measurements of q̇i and q̇i − q̇j as

˙̂xi = F x̂i +

n∑

j=1

bij(qi − qj − q̆ij) + κq̆i, (6.8a)

yi = P

[
F x̂i +

n∑

j=1

bij(qi − qj − q̆ij) + κq̆i

]
, (6.8b)

τi = gi(qi) −
n∑

j=1

aijψ
[
Kq(qi − qj − q̆ij)

]
− yi, (6.8c)

where i = 1, . . . , n, F ∈ R
p×p is Hurwitz, κ is a positive scalar, aij is the (i, j)th

entry of the adjacency matrix A ∈ R
n×n associated with the undirected graph

GA
△
= (V , EA) characterizing the interaction among the n agents for qi in (6.8c),

bij is the (i, j)th entry of the adjacency matrix B ∈ R
n×n associated with the

undirected graph GB
△
= (V , EB) characterizing the interaction among the n agents

for qi in (6.8a), ψ is defined in (6.6), and P ∈ R
p×p is the symmetric positive-

definite solution to the Lyapunov equation FT P + PF = −Q with Q ∈ Rp×p

being symmetric positive definite.

Theorem 6.3. Using (6.8) for (6.1), qi(t) − qj(t) → q̆ij and q̇i(t) → 0p, i, j =
1, . . . , n, as t → ∞ if the graph GA is undirected connected and the graph GB is

undirected.

Proof: Similar to the proofs of Theorems 6.1 and 6.2, we apply Lemma 1.36 to

prove the theorem. Let x̂
△
= [x̂T

1 , . . . , x̂T
n ]T . Let q̃ be defined as in the proof of

Theorem 6.2. Let x
△
= [q̃T , q̇T , ˙̂xT ]T . Consider the Lyapunov function candidate

V (t, x) =
1

2

n∑

i=1

n∑

j=1

aij

p∑

ℓ=1

∫ qi(ℓ)(t)−qj(ℓ)(t)−q̆ij(ℓ)

0

ψ[Kq(ℓ)τ ] dτ

+
1

2

n∑

i=1

q̇T
i Mi(qi)q̇i +

1

2
˙̂xT (S ⊗ Ip)

−1(In ⊗ P ) ˙̂x,

where S
△
= LB + κIn with LB being the Laplacian matrix associated with B and

hence GB . Note that LB is symmetric positive semidefinite because the graph GB

is undirected. It thus follows that S is symmetric positive definite, so is S−1. From
Lemma 1.21, note that (S ⊗ Ip)

−1 = (S−1 ⊗ Ip). Also note from Lemma 1.21 that
(S−1 ⊗ Ip)(In ⊗ P ) = S−1In ⊗ IpP = InS−1 ⊗ PIp = (In ⊗ P )(S−1 ⊗ Ip).
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That is, (S ⊗ Ip)
−1 and In ⊗ P commute. Similarly, it is straightforward to show

that (S ⊗ Ip)
−1 and In ⊗ FT also commute. Note that S−1In ⊗ IpP is symmetric

positive definite, so is (S−1 ⊗ Ip)(In ⊗ P ). It follows that V is positive definite and
decrescent with respect to x. Therefore, Condition 1 in Lemma 1.36 is satisfied.

Following the proof of Theorem 6.2, we derive the derivative of V as

V̇ (t, x) = −
n∑

i=1

q̇T
i yi +

1

2
˙̂xT
(
In ⊗ FT

)
(S ⊗ Ip)

−1(In ⊗ P ) ˙̂x

+
1

2
q̇T (S ⊗ Ip)

T (S ⊗ Ip)
−1(In ⊗ P ) ˙̂x

+
1

2
˙̂xT (S ⊗ Ip)

−1(In ⊗ P )(In ⊗ F ) ˙̂x

+
1

2
˙̂xT (S ⊗ Ip)

−1(In ⊗ P )(S ⊗ Ip)q̇

= −
n∑

i=1

q̇T
i yi +

1

2
˙̂xT (S ⊗ Ip)

−1
[
In ⊗

(
FT P + PF

)]
˙̂x + q̇T (In ⊗ P ) ˙̂x

= − 1

2
˙̂xT (S ⊗ Ip)

−1(In ⊗ Q) ˙̂x ≤ 0,

where we have used the fact that

¨̂x = (In ⊗ F ) ˙̂x + (S ⊗ Ip)q̇, (6.9)

(S ⊗ Ip)
−1 and In ⊗ FT commute, (S ⊗ Ip)

−1 and In ⊗ P commute, S ⊗ Ip =

(S ⊗ Ip)
T , y = (In ⊗ P ) ˙̂x with y = [yT

1 , . . . , yT
n ]T , and (S ⊗ Ip)

−1(In ⊗ Q) =
S−1In ⊗ QIp is symmetric positive definite. Therefore, Condition 2 in Lemma 1.36
is satisfied.

Let W (t, x) and χi be defined as in the proof of Theorem 6.2. Similar to the proof
of Theorem 6.2, it follows that |W (t, x)| is bounded along the solution trajectory,
implying that Condition 3 in Lemma 1.36 is satisfied.

The derivative of W (t, x) along the solution trajectory of closed-loop sys-
tem (6.1) using (6.8) is

Ẇ (t, x) = −
n∑

i=1

q̇T
i CT

i (qi, q̇i)M
−1
i (qi)χi −

n∑

i=1

χT
i M −1

i (qi)χi

−
n∑

i=1

yT
i M −1

i (qi)χi +

n∑

i=1

q̇T
i χ̇i.

Note that V̇ = 0 implies ˙̂x = 0np, which in turn implies that (S ⊗ Ip)q̇ = 0np

according to (6.9) and yi = 0p by noting that yi = P ˙̂xi according to (6.8b). Be-
cause S ⊗ Ip is symmetric positive definite, it follows that q̇ = 0np. On the set
{(q̃, q̇, ˙̂x)|V̇ = 0}, q̇ = 0np, ˙̂x = 0np, and Ẇ (t, x) becomes
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Ẇ (t, x) = −
n∑

i=1

χT
i M −1

i (qi)χi.

Therefore, the rest of the proof is similar to that of Theorem 6.2. We conclude that
qi(t) − qj(t) → q̆ij and q̇i(t) → 0p as t → ∞.

Remark 6.4 Note that without the terms −∑n
j=1 bij(q̇i − q̇j) in (6.2),

−∑n
j=1 bijψ[Kq̇(q̇i − q̇j)] in (6.6), and

∑n
j=1 bij(qi − qj − q̆ij) in (6.8a), or equiv-

alently bij ≡ 0, Theorems 6.1, 6.2, and 6.3 are still valid as long as the graph GA

is undirected connected. However, these terms introduce relative damping between
neighboring agents.

6.2.4 Simulation

In this section, we simulate a scenario where six two-link revolute joint arms are
coordinated through local interaction using, respectively, the algorithms (6.2), (6.6),
and (6.8). For simplicity, we assume that each arm is identical. The Euler–Lagrange
equation of each two-link revolute joint arm is given in [276, pp. 259–262]. In par-
ticular, the inertia matrix, the vector of Coriolis and centrifugal torques, and the
vector of gravitational torques are given as

Mi(qi) =

[
Θi(1) + 2Θi(2) cos[qi(2)] Θi(3) + Θi(2) cos[qi(2)]

Θi(3) + Θi(2) cos[qi(2)] Θi(3)

]
,

Ci(qi, q̇i) =

[
−Θi(2) sin[qi(2)]q̇i(2) −Θi(2) sin[qi(2)][q̇i(1) + q̇i(2)]

Θi(2) sin[qi(2)]q̇i(1) 0

]
,

gi(qi) =

[
Θi(4)g cos[qi(1)] + Θi(5)g cos[qi(1) + qi(2)]

Θi(5)g cos[qi(1) + qi(2)]

]
,

where qi
△
= [qi(1), qi(2)]

T , g = 9.8 m/s2 is the acceleration due to gravity, Θi
△
=

[Θi(1), Θi(2), Θi(3), Θi(4), Θi(5)] = [m1l
2
c1+m2(l

2
1+l2c2)+J1+J2, m2l1lc2, m2l

2
c2+

J2, m1lc1 + m2l1, m2lc2]. Here the masses of links 1 and 2 are, respectively,
m1 = 1 kg and m2 = 0.8 kg, the lengths of links 1 and 2 are, respectively,
l1 = 0.8 m and l2 = 0.6 m, the distances from the previous joint to the center
of mass of links 1 and 2 are, respectively, lc1 = 0.4 m and lc2 = 0.3 m, and
the moments of inertia of links 1 and 2 are, respectively, J1 = 0.0533 kg m2 and
J2 = 0.024 kg m2.

For simplicity, we assume that the graphs GA and GB are identical. Figure 6.1
shows GA (equivalently, GB) for the six two-link revolute joint arms. Table 6.1
shows the control parameters for each algorithm. In simulation, we let qi(0) =
[π
7 i, π

8 i]T rad and q̇(0) = [0.1i − 0.4, −0.1i + 0.5]T rad/s, where i = 1, . . . , 6.
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Fig. 6.1 Graph GA (equivalently, GB) for the six two-link revolute joint arms. An edge between i

and j denotes that agents i and j are neighbors. The graph is undirected connected

Table 6.1 Control parameters for each algorithm

Algorithm (6.2):
Ki = I2, aij = bij = 1 if (i, j) ∈ EA (or EB), q̆ij = 02

Algorithm (6.6):
Kq = Kq̇ = Ki = Kdi = I2, aij = bij = 1 if (i, j) ∈ EA(or EB), q̆ij = 02

Algorithm (6.8):
Γ = −4I2, κ = 0.2, P = I2, Kq = 0.6I2, aij = bij = 2 if (i, j) ∈ EA (or EB), q̆ij = 02

Fig. 6.2 Joint angles of arms 1, 3, and 5 using (6.2)

Figures 6.2, 6.3, and 6.4 show, respectively, the joint angles, their derivatives, and
the control torques of arms 1, 3, and 5 using (6.2). Note that the joint angles of all
arms achieve coordination while their derivatives converge to zero. Figures 6.5, 6.6,
and 6.7 show, respectively, the joint angles, their derivatives, and the control torques
of arms 1, 3, and 5 using (6.6), where ψ(·) is chosen as tanh(·). Note that the joint
angles of all arms achieve coordination while their derivatives converge to zero.
Figures 6.8, 6.9, and 6.10 show, respectively, the joint angles, their derivatives, and
the control torques of arms 1, 3, and 5 using (6.8). The initial conditions x̂i(0)
are chosen randomly. Note that the joint angles of all arms achieve coordination
while their derivatives converge to zero even without measurements of absolute and
relative joint angle derivatives.
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Fig. 6.3 Joint angle derivatives of arms 1, 3, and 5 using (6.2)

Fig. 6.4 Control torques of arms 1, 3, and 5 using (6.2)

Fig. 6.5 Joint angles of arms 1, 3, and 5 using (6.6)
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Fig. 6.6 Joint angle derivatives of arms 1, 3, and 5 using (6.6)

Fig. 6.7 Control torques of arms 1, 3, and 5 using (6.6)

Fig. 6.8 Joint angles of arms 1, 3, and 5 using (6.8)
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Fig. 6.9 Joint angle derivatives of arms 1, 3, and 5 using (6.8)

Fig. 6.10 Control torques of arms 1, 3, and 5 using (6.8)

6.3 Distributed Coordinated Regulation and Tracking

for Networked Lagrangian Systems

Suppose that there exist n followers, labeled as agents 1 to n, and a leader, la-
beled as agent 0, in the team. Let q0 ∈ R

p and q̇0 ∈ R
p denote, respectively,

the leader’s vector of generalized coordinates and vector of generalized coordinate
derivatives.

Suppose that in addition to n followers, labeled as agents or followers 1 to n,
there exists a leader, labeled as agent 0, in the team. Let q0 ∈ R

p and q̇0 ∈ R
p

denote, respectively, the leader’s vector of generalized coordinates and vector of
generalized coordinate derivatives.
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6.3.1 Coordinated Regulation when the Leader’s Vector

of Generalized Coordinates is Constant

In this subsection, we assume that q0 is constant (and hence q̇0 = 0p). The objective
here is to design distributed coordinated regulation algorithms for (6.1) such that
qi(t) → q0 and q̇i(t) → 0p as t → ∞.

We first consider a fundamental coordinated regulation algorithm as

τi = gi(qi) −
n∑

j=0

aij(qi − qj) −
n∑

j=0

bij(q̇i − q̇j), (6.10)

where i = 1, . . . , n, aij , i, j = 1, . . . , n, is the (i, j)th entry of the adjacency matrix

A ∈ R
n×n associated with the graph GA

△
= (V , EA) characterizing the interac-

tion among the n followers for qi, bij , i, j = 1, . . . , n, is the (i, j)th entry of the

adjacency matrix B ∈ R
n×n associated with the graph GB

△
= (V , EB) character-

izing the interaction among the n followers for q̇i, ai0 > 0 (respectively, bi0 > 0),
i = 1, . . . , n, if follower i has access to the vector of generalized coordinates of the
leader (respectively, the vector of generalized coordinate derivatives of the leader)
and ai0 = 0 (respectively, bi0 = 0) otherwise. Note that here q̇0 = 0p. Also note
that GA and GB are allowed to be different.

Theorem 6.5. Using (6.10) for (6.1), qi(t) → q0 and q̇i(t) → 0p, i = 1, . . . , n,

as t → ∞ if both GA and GB are undirected connected, at least one follower has

access to q0 (i.e., at least one ai0 > 0), and at least one follower has access to q̇0

(i.e., at least one bi0 > 0).

Proof: Let q̃ be a column stack vector of qi − q0, i = 1, . . . , n. Let LA and LB

be, respectively, the Laplacian matrix associated with A and hence GA and B and

hence GB . Let HA
△
= LA+diag(a10, . . . , an0) and HB

△
= LB+diag(b10, . . . , bn0).

Using (6.10), (6.1) can be written as

d

dt
q̃ = q̇,

(6.11)
d

dt
q̇ = − M −1(q)

[
C(q, q̇)q̇ + (HA ⊗ Ip)q̃ + (HB ⊗ Ip)q̇

]
.

Note that the system (6.11) with states q̃ and q̇ is autonomous because q = q̃ +
1n ⊗ q0, where q0 is constant. As a result, Lemma 1.31 can be applied to prove the
theorem.

Consider the Lyapunov function candidate

V =
1

2
q̃T (HA ⊗ Ip)q̃ +

1

2
q̇T M(q)q̇.

Because both GA and GB are undirected connected, at least one ai0 > 0, and at
least one bi0 > 0, it follows from Lemma 1.6 that both HA and HB are symmetric



6.3 Distributed Coordinated Regulation and Tracking for Networked Lagrangian Systems 163

positive definite. Therefore, V is positive definite and radially bounded with respect
to q̃ and q̇. The derivative of V is given by

V̇ = ˙̃qT (HA ⊗ Ip)q̃ +
1

2
q̈T M(q)q̇ +

1

2
q̇T Ṁ(q)q̇ +

1

2
q̇T M(q)q̈

= q̇T (HA ⊗ Ip)q̃ + q̇T M(q)q̈ +
1

2
q̇T Ṁ(q)q̇,

where we have used the fact that M(q) is symmetric and ˙̃q = q̇. Using (6.10), (6.1)
can be written in a vector form as

M(q)q̈ = −C(q, q̇)q̇ − (HA ⊗ Ip)q̃ − (HB ⊗ Ip)q̇. (6.12)

Note that Ṁ(q) − 2C(q, q̇) is skew symmetric. By applying (6.12), the derivative of
V can be written as

V̇ = −q̇T (HB ⊗ Ip)q̇ ≤ 0.

On the set {(q̃, q̇)|V̇ = 0}, note that V̇ ≡ 0 implies q̇ ≡ 0np, which in turn implies
(HA ⊗ Ip)q̃ ≡ 0np according to (6.12). Because HA is symmetric positive definite,
it follows that q̃ ≡ 0np. By Lemma 1.31, it follows that q̃(t) → 0np and q̇(t) → 0np

as t → ∞, which in turn implies that qi(t) → q0 and q̇i(t) → 0p as t → ∞.
We next consider a nonlinear coordinated regulation algorithm as

τi = gi(qi) −
n∑

j=0

aijψ
[
Kq(qi − qj)

]
−

n∑

j=0

bijψ
[
Kq̇(q̇i − q̇j)

]
, (6.13)

where i = 1, . . . , n, aij and bij , i = 1, . . . , n, j = 0, . . . , n, are defined as in (6.10),
Kq ∈ R

p×p and Kq̇ ∈ R
p×p are positive-definite diagonal matrices, and ψ(·) is

defined in Lemma 6.1.

Theorem 6.6. Using (6.13) for (6.1), qi(t) → q0 and q̇i(t) → 0p, i = 1, . . . , n,

as t → ∞ if both GA and GB are undirected connected, at least one follower has

access to q0 (i.e., at least one ai0 > 0), and at least one follower has access to q̇0

(i.e., at least one bi0 > 0).

Proof: Similar to the proof of Theorem 6.5, using (6.13), (6.1) can be written as an
autonomous system with states qi − q0 and q̇i, i = 1, . . . , n. Consider the Lyapunov
function candidate

V =
1

2

n∑

i=1

q̇T
i Mi(qi)q̇i +

1

2

n∑

i=1

n∑

j=1

aij

p∑

ℓ=1

∫ qi(ℓ)(t)−qj(ℓ)(t)

0

ψ[Kq(ℓ)τ ] dτ

+

n∑

i=1

ai0

p∑

ℓ=1

∫ qi(ℓ)(t)−q0(ℓ)

0

ψ[Kq(ℓ)τ ] dτ.

Note that V is positive definite and radially unbounded with respect to qi − q0 and
q̇i, i = 1, . . . , n, under the condition of the theorem. The rest of the proof is similar
to that of Theorem 6.2 by applying Lemma 1.31.
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We finally consider a coordinated regulation algorithm that removes the require-
ment for the measurements of generalized coordinate derivatives as

˙̂xi = Γ x̂i +

n∑

j=0

bij(qi − qj), (6.14a)

yi = P

[
Γ x̂i +

n∑

j=0

bij(qi − qj)

]
, (6.14b)

τi = gi(qi) −
n∑

j=0

aijψ
[
Kq(qi − qj)

]
− yi, (6.14c)

where i = 1, . . . , n, Γ ∈ R
p×p is Hurwitz, aij and bij , i = 1, . . . , n, j = 0, . . . , n,

are defined analogously to those in (6.10), and P ∈ R
p×p is the symmetric positive-

definite solution to the Lyapunov equation ΓT P +PΓ = −Q with Q ∈ R
p×p being

symmetric positive definite.

Theorem 6.7. Using (6.14) for (6.1), qi(t) → q0 and q̇i(t) → 0p, i = 1, . . . , n,

as t → ∞ if both GA and GB are undirected connected, at least one follower has

access to q0 (i.e., at least one ai0 > 0), and at least one follower has access to q̇0

(i.e., at least one bi0 > 0).

Proof: Similar to the proof of Theorem 6.5, using (6.14), (6.1) can be written as
an autonomous system with states qi − q0, q̇i, and ˙̂xi, i = 1, . . . , n. Consider the
Lyapunov function candidate

V =
1

2

n∑

i=1

q̇T
i Mi(qi)q̇i +

1

2

n∑

i=1

n∑

j=1

aij

p∑

ℓ=1

∫ qi(ℓ)(t)−qj(ℓ)(t)

0

ψ[Kq(ℓ)τ ] dτ

+

n∑

i=1

ai0

p∑

ℓ=1

∫ qi(ℓ)(t)−q0(ℓ)

0

ψ[Kq(ℓ)τ ] dτ +
1

2
˙̂xT (HB ⊗ Ip)

−1(In ⊗ P ) ˙̂x,

where x̂
△
= [x̂T

1 , . . . , x̂T
n ]T and HB

△
= LB + diag(b10, . . . , bn0). Note that V is

positive definite and radially unbounded with respect to qi − q0, q̇i, i = 1, . . . , n,
and ˙̂x under the condition of the theorem. The rest of the proof is similar to that of
Theorem 6.3 by applying Lemma 1.31.

Remark 6.8 Let G A
△
= (V , E A) and G B

△
= (V , E B) be, respectively, the directed

graph characterizing the interaction among the leader and the followers correspond-
ing to, respectively, GA and GB . From the proofs of Theorems 6.5, 6.6, and 6.7, it
can be seen that all conclusions of the theorems still hold as long as GA and GB

are undirected and in G A and G B the leader has directed paths to all followers or
equivalently HA and HB are symmetric positive definite (see Lemma 1.6).
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6.3.2 Coordinated Tracking when the Leader’s Vector

of Generalized Coordinate Derivatives is Constant

In this subsection, we assume that q̇0 is constant. The objective here is to design
distributed coordinated tracking algorithms for (6.1) such that qi(t) − q0(t) → 0p

and q̇i(t) → q̇0 as t → ∞. Before moving on, we need the following lemma.

Lemma 6.2. For differentiable vectors x, y, and z ∈ R
p, under Assumption (A1),

Ċi(x, y)z is bounded if all vectors ẋ, ẏ, y, and z are bounded.

Proof: Let ej ∈ R
p denote the vector with 1 as its jth component and 0 elsewhere.

Let Ci(k,m)(x, y) be the (k, m)th entry of Ci(x, y). For x
△
= [x1, . . . , xp]

T ∈ R
p,

y
△
= [y1, . . . , yp]

T ∈ R
p, and z ∈ R

p, we have

Ċi(k,m)(x, y) =

p∑

j=1

[
∂Ci(k,m)(x, y)

∂xj
ẋj +

∂Ci(k,m)(x, y)

∂yj
ẏj

]

= lim
ε→0

p∑

j=1

[
Ci(k,m)(x + εej , y) − Ci(k,m)(x, y)

ε
ẋj

+
Ci(k,m)(x, y + εej) − Ci(k,m)(x, y)

ε
ẏj

]
.

It thus follows that

∥∥Ċi(x, y)z
∥∥ =

∥∥∥∥∥∥∥

⎡
⎢⎣

Ċi(1,1)(x, y) · · · Ċi(1,p)(x, y)
...

. . .
...

Ċi(p,1)(x, y) · · · Ċi(p,p)(x, y)

⎤
⎥⎦ z

∥∥∥∥∥∥∥

=

∥∥∥∥∥ lim
ε→0

p∑

j=1

[
Ci(x + εej , y) − Ci(x, y)

ε
ẋjz

+
Ci(x, y + εej) − Ci(x, y)

ε
ẏjz

]∥∥∥∥∥

≤ lim
ε→0

p∑

j=1

[‖Ci(x + εej , y)z − Ci(x, y)z‖|ẋj |
|ε|

+
‖Ci(x, y + εej)z − Ci(x, y)z‖|ẏj |

|ε|

]

≤
p∑

j=1

(
kC2 ‖y‖ ‖z‖ |ẋj | + kC1 ‖z‖|ẏj |

)

= kC2 ‖y‖ ‖z‖ ‖ẋ‖1 + kC1 ‖z‖‖ẏ‖1, (6.15)
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where we have used Assumption (A1) to obtain the second inequality. From (6.15),
if all vectors ẋ, ẏ, y, and z are bounded, it follows that Ċi(x, y)z is bounded.

6.3.2.1 Model-dependent Coordinated Tracking Algorithm

In this subsection, we propose a distributed model-dependent coordinated tracking
algorithm for (6.1) as

τi = τi1 + τi2 + τi3, (6.16a)

τi1 = −
n∑

j=0

aij(qi − qj), (6.16b)

τi2 = −
n∑

j=1

cij

[
(q̇i − v̂i) − (q̇j − v̂j)

]
− ci0(q̇i − v̂i), (6.16c)

τi3 = Mi(qi) ˙̂vi + Ci(qi, q̇i)v̂i + gi(qi), (6.16d)

˙̂vi = −
n∑

j=1

bij(v̂i − v̂j) − bi0(v̂i − q̇0), (6.16e)

where i = 1, . . . , n, aij (respectively, bij and cij), i, j = 1, . . . , n, is the (i, j)th
entry of the adjacency matrix A ∈ R

n×n (respectively, B ∈ R
n×n and C ∈ R

n×n)

associated with the graph GA
△
= (V , EA) [respectively, GB

△
= (V , EB) and GC

△
=

(V , EC)] characterizing the interaction among the n followers for qi (respectively,
v̂i and q̇i − v̂i), ai0 > 0 (respectively, bi0 > 0 and ci0 > 0) if in G A (respectively,
G B and G C ) the leader is a neighbor of the follower and ai0 = 0 (respectively,
bi0 = 0 and ci0 = 0) otherwise, and v̂i is the ith follower’s estimate of the leader’s
vector of generalized coordinate derivatives. Here G A (respectively, G B and G C ) is
the directed graph characterizing the interaction among the leader and the followers
corresponding to GA (respectively, GB and GC ). Here (6.16b) is used to drive the
vector of generalized coordinates of follower i to track those of the followers and
the leader who are its neighbors, (6.16c) is used to drive the vector of generalized
coordinate derivatives of follower i to track v̂i, (6.16d) is the compute-torque control
with compensation, and (6.16e) is used to estimate the leader’s vector of generalized
coordinate derivatives.

Before presenting our main results, we need the following lemmas.

Lemma 6.3. If GB is undirected connected, and at least one follower has access to

the constant q̇0 (i.e., at least one bi0 > 0), using (6.16e), v̂i(t) → q̇0 exponentially

as t → ∞.

Proof: Let v̄i
△
= v̂i − q̇0 and v̄

△
= [v̄T

1 , . . . , v̄T
n ]T . Note that q̈0 = 0 because q̇0 is

constant. Then (6.16e) can be written as ˙̄vi = −∑n
j=0 bij(v̄i − v̄j), which can be

written in a vector form as

˙̄v = −(LB ⊗ Ip)v̄ −
[
diag(b10, . . . , bn0) ⊗ Ip

]
v̄ = −(HB ⊗ Ip)v̄, (6.17)
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where LB is the Laplacian matrix associated with B and hence GB , HB
△
= LB +

diag(b10, . . . , bn0), and we have used Lemma 1.21 to obtain the last equality.
Because GB is undirected connected and at least one bi0 > 0, we conclude from

Lemma 1.6 that HB is symmetric positive definite, which means that λmin(HB) >
0. Consider the Lyapunov function candidate V0 = 1

2 v̄T v̄. The derivative of V0 is
given by

V̇0 = −v̄T (HB ⊗ Ip)v̄ ≤ −λmin(HB)v̄T v̄ = −2λmin(HB)V0,

After some manipulation, we can get

V0(t) ≤ V0(0)e−2λmin(HB)t. (6.18)

Therefore, v̄ = 0np is globally exponentially stable, which implies that v̂i(t) → q̇0

exponentially as t → ∞.

Lemma 6.4 ([225]). Consider the following cascade system

ẋ = f(t, x) + h(x, ξ), f(t, 0) = 0, h(x, 0) = 0, (6.19)

ξ̇ = Aξ, (x, ξ) ∈ R
n × R

m, (6.20)

where f(t, x) is continuously differentiable in (t, x), and h(x, ξ) is locally Lipschitz

in (x, ξ). When ξ = 0, (6.19) can be written as

ẋ = f(t, x). (6.21)

If (6.21) has the origin as a globally asymptotically stable equilibrium, A is Hur-

witz, and all solutions of (6.19) and (6.20) are bounded, then the cascade system is

globally asymptotically stable at the origin.

We have the following theorem in the case of a constant q̇0.

Theorem 6.9. Using (6.16) for (6.1), if GA, GB , and GC are all undirected con-

nected, at least one ai0 > 0, at least one bi0 > 0, and at least one ci0 > 0,

qi(t) − q0(t) → 0p, and q̇i(t) → q̇0, i = 1, . . . , n, as t → ∞.

Proof: Let q̃ and v̂ be, respectively, a column stack vector of qi − q0 and v̂i, i =

1, . . . , n. Define ṽ
△
= q̇ − v̂. Let v̄ be defined in the proof of Lemma 6.3. Note that

v̄ = v̂ − 1n ⊗ q̇0. Using (6.16), (6.1) can be written in a vector form as

M(q) ˙̃v = −C(q, q̇)ṽ − (HA ⊗ Ip)q̃ − (Hc ⊗ Ip)ṽ, (6.22)

where HA
△
= LA + diag(a10, . . . , an0) and HC

△
= LC + diag(c10, . . . , cn0) with

LA and LC being, respectively, the Laplacian matrix associated with A and hence

GA and C hence GC . Let x1
△
= q̃, x2

△
= ṽ, x

△
= [xT

1 , xT
2 ]T , and ξ

△
= v̄. Equations

(6.22) and (6.17) can be written as
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ẋ =

[
x2

−M −1(q)[(HA ⊗ Ip)x1 + Qx2]

]

︸ ︷︷ ︸
f(t,x)

+

[
ξ

0np

]

︸ ︷︷ ︸
h(x,ξ)

, (6.23)

ξ̇ = −(HB ⊗ Ip)︸ ︷︷ ︸
A

ξ, (6.24)

where Q
△
= C(q, q̇) + HC ⊗ Ip, HB is defined in (6.17), and we have used the fact

that ẋ1 = q̇ − 1n ⊗ q̇0 = ṽ + v̂ − 1n ⊗ q̇0 = x2 + ξ. Note that q = x1 + 1n ⊗ q0

and that q̇ in C(q, q̇) and hence in Q is not treated as a state but as a function of t.
Hence, (6.23) and (6.24) takes in the form of the cascade system (6.19) and (6.20),
and

ẋ =

[
x2

−M −1(q)[(HA ⊗ Ip)x1 + Qx2]

]

︸ ︷︷ ︸
f(t,x)

(6.25)

takes in the form of (6.21).
First, we show that all solutions of (6.23) and (6.24) are bounded. Note that GB

is undirected connected and at least one bi0 > 0. From Lemma 6.3, noting that
ξ ≡ v̄, we get that the solution of (6.24) (i.e., ξ) is bounded. Consider the Lyapunov
function candidate as

V (t, x) =
1

2
xT

1 (HA ⊗ Ip)x1 +
1

2
xT

2 M(q)x2. (6.26)

Because GA is undirected connected and at least one ai0 > 0, it follows from
Lemma 1.6 that HA is symmetric positive definite. Also note that M(q) in sym-
metric positive definite. It follows from Assumption (A1) that V (t, x) is positive
definite. Therefore, we have

V ≥ 1

2
λmin(HA)‖x1‖2 +

1

2
km‖x2‖2

≥ 1

2
min

[
λmin(HA), km

]
‖x‖2, (6.27)

and
∥∥∥∥

∂V

∂x

∥∥∥∥ =
∥∥{[(HA ⊗ Ip)x1

]T
,
[
M(q)x2

]T}T

∥∥∥∥

≤ max
[
λmax(HA), km̄

]
‖x̄‖ ≤ γ

√
V , (6.28)

where γ
△
=

√
2 max[λmax(HA),km̄]√
min[λmin(HA),km]

, and we have used Assumption (A1) to obtain

(6.27) and have used (6.27) and Assumption (A1) again to obtain (6.28).
The derivative of V along (6.25) is
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V̇(6.25) =
∂V

∂t
+

∂V

∂x
f(t, x) = ẋT

1 (HA ⊗ Ip)x1 +
1

2
xT

2 Ṁ(q)x2 + xT
2 M(q)ẋ2

= xT
2 (HA ⊗ Ip)x1 + xT

2

[
1

2
Ṁ(q) − C(q, q̇)

]
x2

− xT
2

[
(HA ⊗ Ip)x1 + (HC ⊗ Ip)x2

]
= −xT

2 (HC ⊗ Ip)x2, (6.29)

where we have used Assumption (A2) to obtain the last equality. Because GC is
undirected connected and at least one ci0 > 0, it follows from Lemma 1.6 that HC

is symmetric positive definite. Therefore, it follows that V̇(6.25) ≤ 0. Note that

∥∥h(x, ξ)
∥∥ =

∥∥∥∥
[

ξ
0np

]∥∥∥∥ = ‖ξ‖. (6.30)

Then, the derivative of V along (6.23) can be written as

V̇(6.23) =
∂V

∂t
+

∂V

∂x
f(t, x) +

∂V

∂x
h(x, ξ) = V̇(6.25) +

∂V

∂x
h(x, ξ)

≤
∥∥∥∥

∂V

∂x

∥∥∥∥
∥∥h(x, ξ)

∥∥ ≤ γ‖ξ‖
√

V , (6.31)

where we have used (6.28) and (6.30) to obtain the last inequality. From (6.18),
noting that ξ ≡ v̄, we can get

∫ t

0

∥∥ξ(τ)
∥∥ dτ ≤

∥∥ξ(0)
∥∥
∫ t

0

e−λmin(HB)τ dτ

=
‖ξ(0)‖

λmin(HB)

[
1 − e−λmin(HB)t

]
. (6.32)

Note that (6.31) is equivalent to the following inequality

V̇√
V

≤ γ‖ξ‖. (6.33)

Integrating both sides of (6.33) from 0 to t > 0 and after some manipulation, we
obtain

√
V
(
t, x(t)

)
≤
√

V
(
0, x(0)

)
+

γ

2

∫ t

0

∥∥ξ(τ)
∥∥ dτ

≤
√

V
(
0, x(0)

)
+

γ‖ξ(0)‖
2λmin(HB)

, (6.34)

where we have used (6.32) to get the last inequality. From (6.34), we can conclude
that V (t, x) is uniformly bounded along the solution of (6.23). It thus follows that
the solution of (6.23) (i.e., x1 and x2) is bounded.

Second, we show that the system (6.25) is globally asymptotically stable at the
origin. Note that from the fact that V (t, x) is positive definite and the fact that
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V̇(6.25) ≤ 0 that x1 and x2 are bounded in the system (6.25). It thus follows that ẋ1

is bounded because ẋ1 = x2 in (6.25). Also note that v̄ is bounded from (6.18), v̂ is
bounded from v̂ = v̄+1n ⊗ q̇0 and the fact that q̇0 is constant, and q̇ is bounded from
q̇ = x2 + v̂. Because M −1(q) is bounded and C(q, q̇)x2 is bounded if q̇ and x2 are
bounded from Assumption (A1), we can conclude that ẋ2 is bounded from (6.25).
Thus, we have explicitly shown that all vectors x1, x2, ẋ1, ẋ2, and q̇ are bounded.
By differentiating V̇(6.25), we can see that V̈(6.25) is bounded. Therefore, V̇(6.25) is
uniformly continuous in time. From Lemma 1.33, we get that V̇(6.25)(t) → 0 as
t → ∞. Then from (6.29), we get that x2(t) → 0np as t → ∞ because HC is
symmetric positive definite. The second equation in (6.25) can be written as

M(q)ẋ2 = −(HA ⊗ Ip)x1 − Qx2. (6.35)

Differentiating (6.35), we get

M(q)ẍ2 + Ṁ(q)ẋ2 = −(HA ⊗ Ip)ẋ1 − Qẋ2 − Ċ(q, q̇)x2, (6.36)

where we have used the fact that Q̇ = Ċ(q, q̇). From Assumption (A2), we can
obtain that Ṁ(q) = C(q, q̇) + CT (q, q̇). From the proceeding boundedness state-
ments, we can conclude that Ṁ(q)ẋ2 is bounded because C(q, q̇)ẋ2 is bounded
and Ċ(q, q̇)x2 is bounded from Lemma 6.2. Then from (6.36), it follows that ẍ2

is bounded, which means that ẋ2 is uniformly continuous. From Lemma 1.33, we
get that ẋ2(t) → 0np as t → ∞. Because both x2(t) → 0np and ẋ2(t) → 0np as
t → ∞, according to (6.35), we can obtain that (HA ⊗ Ip)x1(t) → 0np as t → ∞.
Note that HA is symmetric positive definite. It thus follows that x1(t) → 0np as
t → ∞. Also because V given by (6.26) is radially unbounded with respect to x, it
follows that (6.25) is globally asymptotically stable at the origin.

Third, it follows from Lemma 1.6 that A in (6.24) is Hurwitz. We conclude from
Lemma 6.4 that the cascade system (6.23) and (6.24) is globally asymptotically
stable at the origin, i.e., x1(t) → 0np, x2(t) → 0np and ξ(t) → 0np as t → ∞.
Note that x1 = q − 1n ⊗ q0. We can get qi(t) − q0(t) → 0np, i = 1, . . . , n, as
t → ∞. Also note that x2 = q̇ − 1n ⊗ q̇0 − ξ. We can conclude that q̇i(t) → q̇0,
i = 1, . . . , n, as t → ∞ because x2(t) → 0np and ξ(t) → 0np as t → ∞.

Remark 6.10 We here show that the conditions in Theorem 6.9 can be relaxed. In
fact, the conclusion of Theorem 6.9 holds as long as HA is symmetric positive defi-
nite, −HB is Hurwitz,2 and HC is symmetric positive definite. Lemma 1.6 implies
that if GA (respectively, GC ) is undirected and in G A (respectively, G C) the leader
has directed paths to all followers, then HA (respectively, HC) is symmetric positive
definite. Also, in G B , if the leader has directed paths to all followers, then −HB is
Hurwitz. Note that here GB can be directed. Therefore, the connectivity conditions
in Theorem 6.9 can be relaxed.

2 If −HB is Hurwitz, so is −HB ⊗ Ip. It thus follows that in (6.17) v̄ = 0np is globally exponen-
tially stable even if HB might not be symmetric.
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6.3.2.2 Coordinated Tracking Algorithm Accounting for Parametric

Uncertainties

In this subsection, we present a distributed coordinated tracking algorithm that ac-
counts for unknown parametric uncertainties of the Euler–Lagrange dynamics. Be-
fore moving on, we introduce the following auxiliary variables

q̇ri
△
= v̂i − α

[
n∑

j=0

aij(qi − qj)

]
, (6.37)

si
△
= q̇i − q̇ri = q̇i − v̂i + α

[
n∑

j=0

aij(qi − qj)

]
, (6.38)

where i = 1, . . . , n, α is a positive constant, v̂i is the ith follower’s estimate of the
leader’s vector of generalized coordination derivatives, aij , i, j = 1, . . . , n, is the

(i, j)th entry of the adjacency matrix A associated with the graph GA
△
= (V , EA)

characterizing the interaction among the n followers for qi (and q̇i as shown later
on), and ai0 > 0 if the leader has access to q0 (and q̇0 as shown later on) and ai0 = 0
otherwise. From Assumption (A3), we get

Mi(qi)q̈ri + Ci(qi, q̇i)q̇ri + gi(qi) = Yi(qi, q̇i, q̇ri, q̈ri)Θi,

where i = 1, . . . , n, and Θi is the unknown constant parameter vector for the ith
follower defined in Assumption (A3).

We propose the following coordinated tracking algorithm for (6.1) in the pres-
ence of parametric uncertainties

τi = −Kisi − η(q̇i − v̂i) + YiΘ̂i, (6.39a)

˙̂vi = −
n∑

j=1

bij(v̂i − v̂j) − bi0(v̂i − q̇0), (6.39b)

where Ki is a symmetric positive-definite matrix, η is a positive constant, Yi
△
=

Yi(qi, q̇i, q̇ri, q̈ri), Θ̂i is the estimate of Θi, and bij , i = 1, . . . , n, j = 0, . . . , n, is
defined in (6.16e). Here Θ̂i is updated by the following adaptation law

˙̂
Θi = −ΛiY

T
i si, (6.40)

where Λi is a symmetric positive-definite matrix. Let Θ̃i
△
= Θi − Θ̂i, and Θ̃, Θ, Θ̂,

s, q̃, and v̂ be, respectively, the column stack vector of Θ̃i, Θi, Θ̂i, si, q̃i
△
= qi − q0,

and v̂i, i = 1, . . . , n. Note from (6.38) that q̇i − v̂i = si − α
∑n

j=0 aij(qi − qj).
Hence, the closed-loop system (6.1) using (6.39a) can be written in a vector form
as
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M(q)ṡ = −C(q, q̇)s − Ks − η
[
s − α(HA ⊗ Ip)q̃

]
− Y Θ̃, (6.41)

where HA is defined as in (6.22), Y
△
= diag(Y1, . . . , Yn), and K

△
=

diag(K1, . . . , Kn).

Theorem 6.11. Using (6.39) and (6.40) for (6.1), if both GA and GB are undirected

connected, at least one ai0 > 0, and at least one bi0 > 0, qi(t) − q0(t) → 0p and

q̇i(t) → q̇0, i = 1, . . . , n, as t → ∞ in the presence of parametric uncertainties.

Proof: Let x1
△
= q̃, x2

△
= s, x

△
= [xT

1 , xT
2 ]T , and ξ

△
= v̂ − 1n ⊗ q̇0. Equations (6.41)

and (6.39b) can be written as

ẋ =

[
x2 − α(HA ⊗ Ip)x1

−M −1(q)
[

− ηα(HA ⊗ Ip)x1 + Qx2 + Y Θ̃
]
]

︸ ︷︷ ︸
f(t,x)

+

[
ξ

0np

]

︸ ︷︷ ︸
h(x,ξ)

, (6.42)

ξ̇ = −(HB ⊗ Ip)︸ ︷︷ ︸
A

ξ, (6.43)

where Q
△
= C(q, q̇) + K + ηIn ⊗ Ip and HB is defined as in (6.17). Note that

q = x1 + 1n ⊗ q0 and that q̇ and Θ̃ in (6.42) are not treated as states, but as
functions of t. Hence, (6.42) and (6.43) take in the form of the cascade system
(6.19) and (6.20), and

ẋ =

[
x2 − α(HA ⊗ Ip)x1

−M −1(q)
[

− ηα(HA ⊗ Ip)x1 + Qx2 + Y Θ̃
]

]
(6.44)

takes in the form of (6.21).
First, we will show that all solutions of (6.42) and (6.43) are bounded. Because

GA (respectively, GB) is undirected connected and at least one ai0 > 0 (respectively,
bi0 > 0), it follows from Lemma 1.6 that HA (respectively, HB) is symmetric
positive definite. We get that the solution of (6.43) (i.e., ξ) is bounded. Consider a
nonnegative scalar function as

V (t, x) =
ηα

2
xT

1 (HA ⊗ Ip)x1 +
1

2
xT

2 M(q)x2 +
1

2
Θ̃T ΞΘ̃, (6.45)

where Ξ
△
= diag(Λ−1

1 , . . . , Λ−1
n ) is symmetric positive definite. We have

V ≥ ηα

2
λmin(HA)‖x1‖2 +

1

2
km‖x2‖2

≥ 1

2
min

[
ηαλmin(HA), km

]
‖x‖2,

and



6.3 Distributed Coordinated Regulation and Tracking for Networked Lagrangian Systems 173

∥∥∥∥
∂V

∂x

∥∥∥∥ =
∥∥{ηα

[
(HA ⊗ Ip)x1

]T
,
[
M(q)x2

]T}T∥∥,

≤ max
[
ηαλmax(HA), km̄

]
‖x‖ ≤ γ

√
V ,

where γ
△
=

√
2 max[ηαλmax(HA),km̄]√
min[ηαλmin(HA),km]

.

The derivative of V along (6.44) is

V̇(6.44) =
∂V

∂t
+

∂V

∂x
f(t, x)

= ηαxT
1 (HA ⊗ Ip)

[
x2 − α(HA ⊗ Ip)x1

]

+
1

2
xT

2 Ṁ(q)x2 + xT
2 M(q)ẋ2 + Θ̃T Ξ

˙̃
Θ

= −η
[
x2 − α(HA ⊗ Ip)x1

]T [
x2 − α(HA ⊗ Ip)x1

]

− xT
2 Kx2, (6.46)

where we have used Assumption (A2) and the fact that ˙̃
Θ = Ξ−1Y T s according to

(6.40) and s ≡ x2 to obtain the last equality. Note that V̇(6.44) ≤ 0 because η > 0
and K is symmetric positive definite. Then the derivative of V along (6.42) can be
written as

V̇(6.42) =
∂V

∂t
+

∂V

∂x
f(t, x) +

∂V

∂x
h(x, ξ) = V̇(6.44) +

∂V

∂x
h(x, ξ)

≤
∥∥∥∥

∂V

∂x

∥∥∥∥
∥∥h(x, ξ)

∥∥ ≤ γ‖ξ‖
√

V . (6.47)

Following the same steps as in the proof of Theorem 6.9, we can easily get that
V (t, x) is uniformly bounded along the solution of (6.42), which means that x1, x2

and Θ̃ are all bounded.
Second, we show that the system (6.44) is globally asymptotically stable at the

origin. By following similar boundedness statements in the proof of Theorem 6.9
and applying Lemma 1.33, we conclude that V̇(6.44)(t) → 0 as t → ∞. Then from
(6.46) we can get that x2(t) − α(HA ⊗ Ip)x1(t) → 0 and x2(t) → 0 as t → ∞,
which means that (HA ⊗ Ip)x1(t) → 0 as t → ∞. Because HA is symmetric
positive definite, it follows that x1(t) → 0 as t → ∞. Note that V defined by (6.45)
is radially unbounded with respect to x, it follows that the system (6.44) is globally
asymptotically stable at the origin.

Third, note that HB is symmetric positive definite, which implies that A in (6.43)
is Hurwitz. We conclude from Lemma 6.4 that the cascade system (6.42) and (6.43)
is globally asymptotically stable at the origin, which in turn proves the theorem.

Remark 6.12 In the adaptive case, we need to introduce the auxiliary variables. If
we just introduce the adaptation law without the auxiliary variables, and choose the
Lyapunov function as (6.26) with an addition of 1

2 Θ̃T Ξ Θ̃, then V̇(6.44) is negative
semidefinite as in (6.29). However, in this case, we cannot get that x1(t) → 0 from
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x2(t) → 0 as t → 0. By introducing the auxiliary variables defined in (6.37) and
(6.38), we need both

∑n
j=0 aij(qi − qj) and its derivative in the control algorithm

(6.39) because they are needed to derive q̇ri and q̈ri (and hence Yi). It is therefore
required that the interaction graphs associated with the followers for both qi and q̇i

be the same. In addition, the connectivity condition in Theorem 6.11 can be relaxed
similar to that in Remark 6.10.

6.3.3 Coordinated Tracking when the Leader’s Vector

of Generalized Coordinate Derivatives is Varying

In this subsection, q̇0(t) is allowed to be varying. The objective here is to design
a distributed model-independent sliding-mode algorithm for (6.1) such that qi(t) −
q0(t) → 0p and q̇i(t) − q̇0(t) → 0p as t → ∞. Define the following auxiliary
variables

si
△
= q̇i + λqi, i = 0, 1, . . . , n, (6.48)

where λ is a positive constant. Also define the error variable between si and s0 as

s̃i
△
= si − s0 = q̇i − q̇0 + λ(qi − q0), i = 1, . . . , n. (6.49)

Then (6.1) can be written as

Mi(qi)ṡi+Ci(qi, q̇i)si =τi+λMi(qi)q̇i+λCi(qi, q̇i)qi −gi(qi). (6.50)

We propose the distributed coordinated tracking algorithm for (6.50) [and hence
(6.1)] as

τi = −α

[
n∑

j=0

aij(si − sj)

]
− β

(
n∑

j=1

aij

{
sgn

[
n∑

k=0

aik(si − sk)

]

− sgn

[
n∑

k=0

ajk(sj − sk)

]}
+ ai0sgn

[
n∑

j=0

aij(si − sj)

])
, (6.51)

where α is a nonnegative constant, β is a positive constant, aij , i, j = 1, . . . , n is
the (i, j)th entry of the adjacency matrix A associated with the undirected graph

GA
△
= (V , EA) characterizing the interaction among the followers, ai0 > 0 if the

leader is a neighbor of follower i and ai0 = 0 otherwise, and sgn(·) is defined
componentwise. Let s and s̃ be, respectively, the column stack vector of si and s̃i,
i = 1, . . . , n. We can rewrite the closed-loop system (6.50) [and hence (6.1)] using
(6.51) in a vector form as
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M(q) ˙̃s + C(q, q̇)s̃ = −α(HA ⊗ Ip)s̃ − β(HA ⊗ Ip) sgn
[
(HA ⊗ Ip)s̃

]
+ ∆,

(6.52)

where HA
△
= LA + diag(a10, . . . , an0) with LA being the Laplacian matrix asso-

ciated with A and hence GA and ∆
△
= −M(q)(1n ⊗ ṡ0) − C(q, q̇)(1p ⊗ s0) +

λM(q)q̇ + λC(q, q̇)q − g(q). Note that HA is symmetric positive semidefinite be-
cause GA is undirected.

Remark 6.13 Note that the algorithm (6.51) is discontinuous. Therefore, the stabil-
ity analysis of the closed-loop system (6.1) using (6.51) is conducted for the Filippov
solutions via the nonsmooth analysis in Sect. 1.5. Accordingly, Remarks 4.1 and 4.3
also apply here.

Before moving on, we need the following assumption on the boundedness of q̇0

and q̈0:

(A4) Both q̇0 and q̈0 are bounded, and in particular, ‖1n ⊗ q̇0‖ ≤ kv and
‖1n ⊗ q̈0‖ ≤ ka.

Remark 6.14 We do not restrict q0 to be bounded in (A4). Most desired trajecto-
ries have the properties of (A4), so (A4) is a reasonable assumption. In the control
algorithm (6.51), there is no need to know the value of q̈0.

Next, we show the boundedness of ∆ in (6.52). From Assumption (A1), it follows
that ‖g(q)‖ ≤ √

nkg . Following Assumptions (A1) and (A4), we have

‖∆‖ =
∥∥−M(q)(1n ⊗ q̈0) − C(q, q̇)(1n ⊗ q̇0) + λM(q) ˙̃q + λC(q, q̇)q̃ − g(q)

∥∥

≤ km̄ka + kCkv ‖q̇‖ + λkm̄‖ ˙̃q‖ + λkC ‖q̇‖ ‖q̃‖ +
√

nkg, (6.53)

where q̃
△
= q−1n ⊗q0. Note that (6.49) can be written in a vector form as s̃ = ˙̃q+λq̃.

Multiplying eλτ on both sides and integrating from 0 to t, we have

q̃(t) = e−λt

[
q̃(0) +

∫ t

0

eλτ s̃(τ) dτ

]
. (6.54)

Lemma 6.5. Define a norm-like function ‖x‖M
△
=
√

xT M(q)x, where x ∈ R
np.

Then
√

km ‖x‖ ≤ ‖x‖M ≤
√

km̄ ‖x‖ for all t ≥ 0.

Proof: Note that from Assumption (A1), kmzT z ≤ zT Mi(qi)z ≤ km̄zT z for
z ∈ R

p, i = 1, . . . , n. It thus follows that kmxT x ≤ xT M(q)x ≤ km̄xT x, which
means that

√
km‖x‖ ≤ ‖x‖M ≤

√
km̄‖x‖.

From (6.54), we have

∥∥q̃(t)
∥∥ ≤ e−λt

∥∥q̃(0)
∥∥+

sup0≤τ ≤t ‖s̃(τ)‖
λ

(
1 − e−λt

)
. (6.55)

From Lemma 6.5, we can get ‖s̃(t)‖ ≤ ‖s̃(t)‖M/
√

km for all t ≥ 0. It thus follows
that sup0≤τ ≤t ‖s̃(τ)‖ ≤ sup0≤τ ≤t ‖s̃(τ)‖M/

√
km. Define
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φ(t)
△
= sup

0≤τ ≤t

‖s̃(τ)‖M . (6.56)

It follows from (6.55) and (6.56) that

∥∥q̃(t)
∥∥ ≤

∥∥q̃(0)
∥∥+

sup0≤τ ≤t ‖s̃(τ)‖
λ

≤
∥∥q̃(0)

∥∥+
φ(t)

λ
√

km

△
= ke. (6.57)

Note from the definition of s̃ that s̃ = ˙̃q + λq̃. It thus follows that

∥∥ ˙̃q(t)
∥∥ =

∥∥s̃(t) − λqe(t)
∥∥ ≤ φ(t)√

km

+ λke
△
= kė (6.58)

and
∥∥q̇(t)

∥∥ =
∥∥ ˙̃q(t) + 1n ⊗ q̇0(t)

∥∥ ≤ kė + kv. (6.59)

Substituting (6.57)–(6.59) into (6.53), it follows that

‖∆‖ ≤ km̄(ka + λkė) + kC(kv + λke)(kė + kv) +
√

nkg

= aφ2(t) + bφ(t) + c
△
= γ(t), (6.60)

where

a
△
= 2kC/km,

b
△
=
(
3kCkv + 2λkm̄ + 3λkC ‖q̃(0)‖

)
/
√

km,

c
△
= km̄ka +

√
nkg + kCk2

v +
(
2λkCkv + λ2km̄

)∥∥q̃(0)
∥∥+ λ2kC

∥∥q̃(0)
∥∥2

.

Noting that a, b, c are positive constants, and φ(t) ≥ 0, we get that γ(t) is monoton-
ically increasing on [0, ∞) because φ(t) is monotonically increasing on [0, ∞). If
there exists some bounded disturbance in (6.1), with an addition of a constant in c,
the following results still hold. Thus, the coordinated tracking algorithm (6.51) is
robust to bounded disturbance.

Consider the following Lyapunov function candidate for (6.52) as

V =
1

2
s̃T M(q)s̃. (6.61)

It follows that

max L̃F V = V̇ = s̃T M(q) ˙̃s +
1

2
s̃T Ṁ(q)s̃

= s̃T
{

− α(HA ⊗ Ip)s̃ − β(HA ⊗ Ip)sgn
[
(HA ⊗ Ip)s̃

]
+ ∆

}

(6.62)

= −αs̃T (HA ⊗ Ip)s̃ − β
∥∥(HA ⊗ Ip)s̃

∥∥
1

+ ∆T s̃
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≤ −αs̃T (HA ⊗ Ip)s̃ − β
∥∥(HA ⊗ Ip)s̃

∥∥+ ‖∆‖‖s̃‖
≤ −αs̃T (HA ⊗ Ip)s̃ −

[
βλmin(HA) − γ(t)

]
‖s̃‖, (6.63)

where we have used Assumption (A2) to obtain the second equality, the fact that
‖x‖ ≤ ‖x‖1 to obtain the first inequality, and the fact that ‖HAx‖ ≥ λmin(HA)x,
∀x ∈ Rn, and ‖∆‖ ≤ γ(t) from (6.60) to obtain the last inequality.

If we can choose β such that βλmin(HA) − γ(t) > 0,3 then we can show that V̇
is negative definite. However, γ(t) is a time-varying function involving s̃(t), which
implies that we need to know all s̃i(t), i = 1, . . . , n, at each time to find a proper β.
Unfortunately, it is not possible to do so because the leader is the neighbor of only
a subset of the followers. So we need the following lemmas.

Lemma 6.6. If βλmin(HA) − γ(t1) > 0 and ‖s̃(t1)‖ = 0 at some time t1 ≥ 0, then

‖s̃(t)‖ ≡ 0 for all t ≥ t1.

Proof: Treat t1 as the initial time. Let φ(t) be defined as in (6.56) with 0 ≤ τ ≤ t
replaced with t1 ≤ τ ≤ t, and let γ(t) be defined as in (6.60) with q̃(0) in the
variables b and c replaced with q̃(t1). Note that ‖s̃(t)‖ is continuous, which implies
that φ(t) and γ(t) are also continuous. Because βλmin(HA)−γ(t1) > 0, there exists

a neighborhood Ω of t1 such that βλmin(HA) − γ(t) > 0 when t ∈ Ω1
△
= Ω ∩ {t >

t1}. For t ∈ Ω1, from (6.63), we can get that V̇ (t) ≤ −[βλmin(HA)−γ(t)]‖s̃‖ ≤ 0.
Also note that ‖s̃(t1)‖ = 0, which means that V (t1) = 0 and V̇ (t1) = 0 from
(6.62). Because V (t) ≥ 0 for all t ≥ 0, we can conclude that V (t) = 0, i.e.,
‖s̃(t)‖ = 0, for t ∈ Ω1.

We then prove the lemma by contradiction. Suppose that there exists t2 > t1
such that ‖s̃(t2)‖ 
= 0 (and hence ‖s̃(t2)‖ > 0). From the continuity of ‖s̃(t)‖,
there exists t3 ∈ (t1, t2) and a neighborhood Ω2 of t3 such that ‖s̃(t)‖ = 0 for

t ∈ [t1, t3] and ‖s̃(t)‖ > 0 for t ∈ Ω3
△
= Ω2 ∩ (t3, t2). From the definition of γ(t),

we can get that βλmin(HA)−γ(t3) = βλmin(HA)−γ(t1) > 0. From the continuity
of γ(t), there exists a neighborhood Ω4 of t3 such that βλmin(HA) − γ(t) > 0 for

t ∈ Ω5
△
= Ω4 ∩ (t3, t2), which means that V̇ ≤ −[βλmin(HA) − γ(t)]‖s̃‖ ≤ 0

for t ∈ Ω5. Also note that V (t3) = 0, V̇ (t3) = 0, and V (t) ≥ 0 for all t ≥ 0,
we can get that V (t) = 0, i.e., ‖s̃(t)‖ = 0, for t ∈ Ω5. Note that both Ω2 and
Ω4 are neighborhoods of t3. We can get that Ω3 ∩ Ω5 
= ∅. Thus, we have that
‖s̃(t)‖ > 0 for t ∈ Ω3 and ‖s̃(t)‖ = 0 for t ∈ Ω5, which results in a contradiction
for t ∈ Ω3 ∩ Ω5.

Lemma 6.7. If β is chosen such that βλmin(HA) − γ(0) > 0, then βλmin(HA) −
γ(t) = βλmin(HA) − γ(0) > 0 for all t ≥ 0, or there exists t̄ ≥ 0 such that

‖s̃(t)‖ ≡ 0 for all t ≥ t̄.

Proof: From the definition of φ(t) in (6.56) and γ(t) in (6.60), for all t ≥ 0, we
have that φ(t) ≥ φ(0) and γ(t) ≥ γ(0). Thus, if γ(t) = γ(0) for all t ≥ 0, we can

3 Of course, in this case, λmin(HA) must be positive, implying that HA must be symmetric posi-
tive definite rather than just symmetric positive semidefinite.



178 6 Networked Lagrangian Systems

conclude our proof. If β is chosen such that βλmin(HA) − γ(0) > 0, from (6.63),

V̇ (0) ≤ 0. If V̇ (0) = 0, i.e., ‖s̃(0)‖ = 0, we have that ‖s̃(t)‖ = 0 for all t ≥ t̄
△
= 0

from Lemma 6.6. This conclude our proof.
Because s̃(t) is continuous, so is V defined in (6.61). If V̇ (0) < 0, there must

exist a neighborhood Ω of 0 such that V (t) < V (0) when t ∈ Ω1
△
= Ω ∩ {t > 0}. If

there exits t1 > 0 such that γ(t1) > γ(0), from (6.60) and the monotonic property
of γ(t), we have that φ(t1) > φ(0). From the definition of φ(t) in (6.56), there
must exist t2 ∈ (0, t1) such that ‖s̃(t2)‖M > ‖s̃(0)‖M . Without loss of generality,
suppose that t2 is in the interval where ‖s̃(t)‖M becomes larger than ‖s̃(0)‖M for
the first time. Note that V (t) = 1

2 s̃T (t)M(q)s̃(t) = 1
2 ‖s̃(t)‖2

M . Because V (t) <
V (0) for all t ∈ Ω1, which implies that ‖s̃(t)‖M < ‖s̃(0)‖M for all t ∈ Ω1.
Also note that ‖s̃(t)‖M is continuous and ‖s̃(t2)‖M > ‖s̃(0)‖M . There must exist
t3 ∈ (0, t2) such that ‖s̃(t3)‖M = ‖s̃(0)‖M and ‖s̃(t)‖M < ‖s̃(0)‖M for all
t ∈ (0, t3), which means that V (t3) = V (0) and V (t) < V (0) for all t ∈ (0, t3).
From the mean value theorem, there is a point t4 ∈ (0, t3) at which V̇ (t4) = 0.
But on the other hand, ‖s̃(t4)‖M < ‖s̃(0)‖M because t4 ∈ (0, t3). Because for
all t ∈ (0, t3), ‖s̃(t)‖M < ‖s̃(0)‖M , it follows that φ(t4) = φ(0), which means
that γ(t4) = γ(0). We can conclude that βλmin(HA) − γ(t4) = βλmin(HA) −
γ(0) > 0. From (6.63), we have that V̇ (t4) ≤ 0. On the one hand, if V̇ (t4) < 0,
there is a contradiction because we have already shown that V̇ (t4) = 0, which
implies that there does not exist t1 > 0 such that γ(t1) > γ(0). Note further that
γ(t) ≥ γ(0) for all t ≥ 0, which means that γ(t) = γ(0) for all t ≥ 0, i.e.,
βλmin(HA) − γ(t) = βλmin(HA) − γ(0) > 0. This conclude our proof. On the
other hand, if V̇ (t4) = 0, noting that V̇ (t4) ≤ −[βλmin(HA) − γ(t4)]‖s̃‖ ≤ 0
because βλmin(HA) − γ(t4) > 0, we can get that ‖s̃(t4)‖ = 0. Thus, it follows

from Lemma 6.6 that ‖s̃(t)‖ ≡ 0 for any t > t̄
△
= t4. This also conclude our proof.

Theorem 6.15. Suppose that GA is undirected connected and the leader is a neigh-

bor of at least one follower (i.e., at least one ai0 > 0). Using (6.51) for (6.1),
qi(t) − q0(t) → 0p and q̇i(t) − q̇0(t) → 0p, i = 1, . . . , n, exponentially as t → ∞
if β is chosen such that β > γ(0)/λmin(HA).

Proof: Because GA is undirected connected and at least one ai0 > 0, it follows from
Lemma 1.6 that HA is symmetric positive definite. Because β > γ(0)/λmin(HA),
it follows from Lemma 6.7 that either βλmin(HA)−γ(t) = βλmin(HA)−γ(0) > 0
or there exists t̄ ≥ 0 such that ‖s̃(t)‖ ≡ 0 for all t ≥ t̄. In the first case, consider the
Lyapunov function candidate given by (6.61). Noting that V = 1

2 ‖s̃‖2
M , it follows

from (6.63) that

V̇ ≤ −
[
βλmin(HA) − γ(t)

]
‖s̃‖ ≤ −

[
βλmin(HA) − γ(0)

]‖s̃‖M√
km̄

= −η
√

V ,

where η
△
=
√

2/km̄[βλmin(HA) − γ(0)], and we have used the fact that ‖s‖ ≥
‖s‖M/

√
km̄ from Lemma 6.5 to obtain the second inequality. After some manipu-
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lation, we get

2
√

V (t) ≤ 2
√

V (0) − ηt.

Therefore, we have V (t) ≡ 0 and equivalently ‖s̃(t)‖ ≡ 0 when t ≥ 2
√

V (0)

η
. In

the second case, there exists t̄ ≥ 0 such that s̃(t) ≡ 0 when t ≥ t̄. Combining

both cases, we can get that ‖s̃(t)‖ ≡ 0 when t ≥ t̄1
△
= max{ 2

√
V (0)

η
, t̄}, which

implies ˙̃q(t) + λq̃(t) ≡ 0np, i = 1, . . . , n, when t ≥ t̄1. Noting that the solution
of ˙̃q(t) + λq̃(t) ≡ 0np is q̃(t) = e−λ(t−t̄1)q̃(t̄1) and ˙̃q(t) = −λe−λ(t−t̄1)q̃(t̄1),
we can conclude that qi(t) − q0(t) → 0p and q̇i(t) − q̇0(t) → 0p exponentially as
t → ∞.

Remark 6.16 From Lemma 6.7, β can be chosen according to γ(0), which means
that the initial values ‖q̃(0)‖ and ‖s̃(0)‖ should be known by each follower to com-
pute β even if the leader is a neighbor of only a subset of the followers. How-
ever, because only the initial value is needed, it is reasonable. Also note that the
lower bound of β might be conservative. In reality, a smaller value might be cho-
sen. Moreover, β can be tuned according to the performance of the whole sys-
tem in practice, so the accurate knowledge of ‖q̃(0)‖ and ‖s̃(0)‖ might not be
needed.

Remark 6.17 Note that the algorithm (6.51) is model-independent. The bound of
‖∆‖ in (6.53) is dependent on the bound of ‖g(q)‖. In practice, one might know the
nominal dynamics of gi(qi), denoted as g0

i (qi). Assume that ‖gi(qi)−g0
i (qi)‖ ≤ kg̃,

where kg̃ is a known positive constant generally smaller than kg . If we choose the
control algorithm as τ̌i = τi + g0

i (qi), then kg in (6.53) can be replaced with a
smaller parameter kg̃ . In addition, by doing so, it is no longer required that ‖gi(qi)‖
is bounded. That is, Assumption (A1) can be relaxed.

Remark 6.18 From the proof in Theorem 6.15, the error vector s̃ will first decrease
to zero in finite time. Then, qi − q0 and q̇i − q̇0 converge zero exponentially fast
with an exponential convergence rate λ. In addition, similar to that Remark 6.10,
the condition GA is undirected connected and at least one ai0 > 0 in Theorem 6.15
can be relaxed to be the condition that HA is symmetric positive definite, which in
turn implies a weaker connectivity condition.

Remark 6.19 Note that from the algorithm (6.51), only a subset of the followers
needs to have access to q0 and q̇0, and q̈0 is not needed. It should be noted that
(6.51) requires the availability of information (vectors of generalized coordinates
and their derivatives) from both the one-hop and two-hop neighbors due to the chal-
lenge involved in distributed coordinated tracking of a leader with a varying vector
of generalized coordinated derivatives with local interaction. However, only the sign
of the information of the two-hop neighbors is required.
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Fig. 6.11 The interaction graph associated with the leader and the six followers. An edge between
i and j means that followers i and j are neighbors of each other while an arrow from 0 to i means
that the leader is a neighbor of follower i

6.3.4 Simulation

In this subsection, we simulate a scenario where six two-link revolute joint arms
(followers) track a leader with local interaction using, respectively, (6.16),
(6.39) and (6.51). The models and the parameters of the followers are given as
in Sect. 6.2.4. From the model parameter values in Sect. 6.2.4, we obtain that
km = 0.0256, km̄ = 1.2757, and kC = 0.09. We also assume that the nominal dy-
namics g0

i (qi) is set off from the real dynamics gi(qi) by 10%.
We assume that GA, GB , and GC associated with the followers (also A , B

and C ) are identical for simplicity. Figure 6.11 shows the interaction graph asso-
ciated with the leader and the six followers. In our simulations, we choose aij = 1,
i = 1, . . . , 6, j = 0, . . . , 6, if agent j is a neighbor of agent i, and aij = 0 other-
wise. We let qi(0) = [π

7 i, π
8 i]T rad and q̇i(0) = [0.05i − 0.2, −0.05i + 0.2]T rad/s,

where i = 1, . . . , 6. For the algorithms (6.16) and (6.39), the vector of joint an-
gles of the leader are chosen as q0(t) = [0.04t, 0.05t]T rad, and the vector of joint
angle derivatives of the leader is hence q̇0 = [0.04, 0.05]T rad/s. The control pa-
rameters in (6.39) are chosen as Ki = I2, α = 0.5, η = 0.5, and Λi = 0.2I2.
For the algorithm (6.51), the vector of joint angles of the leader is chosen as
q0(t) = [cos( 2π

60 t), sin(2π
60 t)]T rad, the vector of joint angle derivatives of the leader

is hence q̇0(t) = 2π
60 [− sin(2π

60 t), cos( 2π
60 t)]T rad/s, and the control parameters are

chosen as α = 2, λ = 0.5, and β = 7.5.
Figure 6.12 shows the differences between the joint angles of arms 1, 3 and 5 and

the leader using (6.16). Figure 6.13 shows the differences between the joint angle
derivatives of arms 1, 3 and 5 and the leader using (6.16). Note that all followers’
joint angles approach those of the leader and all followers’ joint angle derivatives
also approach those of the leader.

Figure 6.14 shows the differences between the joint angles of arms 1, 3 and 5
and the leader using (6.39). Figure 6.15 shows the differences between the joint
angle derivatives of arms 1, 3 and 5 and the leader using (6.39). Again, note that all
followers’ joint angles approach those of the leader and all followers’ joint angle
derivatives also approach those of the leader.

Figure 6.16 shows the differences between the joint angles of arms 1, 3, and 5
and the leader. Figure 6.17 shows the differences between the joint angle derivatives
of arms 1, 3, and 5 and the leader using (6.51) by introducing the nominal dynamics
g0

i (qi) as a compensation term in (6.51). Note that all followers’ joint angles ap-
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Fig. 6.12 Differences between the joint angles of arms 1, 3, and 5 and the leader using (6.16)

Fig. 6.13 Differences between the joint angle derivatives of arms 1, 3, and 5 and the leader using
(6.16)

proach those of the leader and all followers’ joint angle derivatives also approach
those of the leader.

6.4 Notes

The results in Sect. 6.2 are based mainly on [245]. The results in Sect. 6.3 are mainly
based on [189]. For further results on coordination of networked Lagrangian sys-
tems, see [52, 59, 62, 64, 119, 254, 275, 284]. In particular, [254] studies posi-
tion synchronization of robotic manipulators when only position measurements are
available under a fully connected interaction graph. In [59], output synchronization
is studied for general passive systems under a passivity-based framework, which
unifies several existing results on consensus or synchronization in the literature.
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Fig. 6.14 Differences between the joint angles of arms 1, 3, and 5 and the leader using (6.39)

Fig. 6.15 Differences between the joint angle derivatives of arms 1, 3, and 5 and the leader using
(6.39)

To use the passivity property, the control law on synchronization of networked La-
grangian systems derived in [59] requires the knowledge of the inertial matrix and
the Coriolis and centrifugal torques. In [62], a controller based on potential func-
tions is proposed for networked Lagrangian systems to achieve leaderless flocking
(i.e., velocity synchronization and collision avoidance). Communication delays and
switching interaction graphs are also considered. In [284], position synchronization
of multi-axis motions is addressed via a cross-coupling technique. In [275], output
synchronization of networked Lagrangian systems is studied under both fixed and
switching interaction graphs in the presence of communication delays. The con-
traction analysis is used in [64] to study coordinated tracking for multiple robotic
manipulators. Utilizing potential functions, [52] designs a control scheme that can
force multiple robots modeled by Euler–Lagrange equations to move as a group
inside a desired region while maintaining a minimum distance among themselves.
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Fig. 6.16 Differences between the joint angles of arms 1, 3, and 5 and the leader using (6.51) with
a compensation term g0

i (qi)

Fig. 6.17 Differences between the joint angle derivatives of arms 1, 3, and 5 and the leader using
(6.51) with a compensation term g0

i (qi)

The robots can achieve velocity synchronization finally. Despite the fact that track-
ing of a leader or a reference is considered in [52, 64, 275, 284], it is assumed that
the leader is a neighbor of all followers or all followers have access to the refer-
ence. Unfortunately, this assumption is rather restrictive and not realistic. In [119],
the problem of position synchronization of networked Lagrangian systems is stud-
ied with communication constraints caused by delays and limited data rates, where
the leader modeled by Euler–Lagrange equations is a neighbor of only a subset
of the followers and the close-loop system is shown to be input-to-state stable. In
the absence of network effects, while the result in [119] can guarantee distributed
coordinated regulation where the leader has a constant vector of generalized coor-
dinates, the result is not applicable to ensure distributed coordinated tracking where
the leader has a varying vector of generalized coordinates and the leader is a neigh-
bor of only a subset of the followers.



Chapter 7

Networked Fractional-order Systems

This chapter moves from integer-order dynamics to fractional-order dynamics mo-
tivated by real-world phenomena. We first study distributed coordination of net-
worked fractional-order systems under a directed fixed interaction graph. We show
sufficient conditions on the interaction graph and the fractional order such that coor-
dination is achieved. The coordination equilibrium is also given explicitly. We then
study distributed coordination of networked fractional-order systems under a di-
rected switching interaction graph. The convergence conditions on both the interac-
tion graph and the fractional order are presented. We finally propose fractional-order
coordination algorithms with absolute/relative damping and study the conditions on
the interaction graph and the control gains such that coordination is achieved under
a directed fixed interaction graph. Simulation examples are presented as a proof of
concept.

7.1 Problem Statement

Many phenomena in nature cannot be explained in the framework of integer-order
dynamics, for example, the synchronized motion of agents in fractional circum-
stances such as macromolecule fluids and porous media. Under these circumstances,
the stress–strain relationship demonstrates non-integer-order (i.e., fractional-order)
dynamics rather than integer-order dynamics as shown in [11–13]. Also, many
other phenomena can be explained naturally by coordinated behavior of agents with
fractional-order dynamics. Examples include chemotaxis behavior and food seek-
ing of microbes and collective motion of bacteria in lubrications perspired by them-
selves [65, 156]. Similarly, engineered systems often demonstrate fractional-order
dynamics either because the environments in which they are operated are complex
or because the system dynamics can be modeled more accurately by fractional-
order differential equations than integer-order differential equations. Examples in-
clude underwater vehicles operating in lentic lakes composed of microbes and vis-
coelastic materials, flying vehicles operating in an environment where the influence
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of particles in air cannot be ignored (e.g., high-speed flight in duststorm, rain, or
snow), and ground vehicles moving on top of carpet, sand, muddy road, or grass. In
addition, friction in many real-world applications takes in the form of a fractional-
order model instead of an integer-order model. Motivated by the broad application
of coordination algorithms in multi-agent systems and the fact that many practical
systems demonstrate fractional-order dynamics, we study coordination algorithms
for networked fractional-order systems in this chapter.

Fractional calculus can be dated back to the seventeenth century [256]. Fractional
calculus studies fractional derivatives, fractional integrals, and their properties. Dif-
ferent from the integer orders of derivatives and integrals in conventional calculus,
the orders of derivatives and integrals in fractional calculus are real numbers. The
foundations of fractional calculus are laid on [164, 179, 253]. With the develop-
ment of fractional calculus, its applications are also studied by researchers from
different disciplines [217, 229]. Examples include study of formation of particulate
aggregates [303] and study of motion of objects in viscoelastic materials [11–13].
In particular, fractional calculus is also introduced into the engineering community
to design CRONE controller [219] and synthesize control systems [10], to name a
few.

Fractional-order dynamics are also studied from different perspectives. The au-
thors in [108] model the dynamics of self-similar protein in a fractional-order sense
because the relaxation processes and the reaction dynamics of the proteins deviate
from exponential behavior. In [18], fractional-order dynamics of international com-
modity prices are demonstrated from the commodity price series. In [229, 231], the
authors study fractional-order PID controllers that show better performance than the
classical PID controllers when used for control of fractional-order systems. The au-
thors in [194] demonstrate that fractional equations have become a complementary
tool in the description of anomalous transport processes in complex systems.

There are mainly two widely used fractional operators: Caputo and Riemann–
Liouville (R–L) fractional operators [229]. In physical systems, Caputo fractional
operator is more practical than R–L fractional operator because R–L fractional op-
erator has initial value problems. Therefore, in this chapter we will use Caputo
fractional operator to model the system dynamics and analyze the stability of the
proposed coordination algorithms. Generally, Caputo fractional operator includes
Caputo integral and Caputo derivative. Caputo derivative is defined based on the
following Caputo integral

C
aD−p

t f(t) =
1

Γ (p)

∫ t

a

f(τ)

(t − τ)1−p
dτ,

where C
aD

−p
t denotes the Caputo integral of order p ∈ (0, 1], Γ (·) is the Gamma

function, and a is an arbitrary real number. For any real number α, Caputo derivative
is defined as

C
aDα

t f(t) = C
aD

−p
t

[
d[α]+1

dt[α]+1
f(t)

]

, (7.1)
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where p
△
= [α]+1−α ∈ (0, 1] and [α] is the integer part of α. If α is an integer, then

p = 1 and (7.1) is equivalent to the integer-order derivative. Because only Caputo
fractional operator is used in the following of this chapter, a simple notation f (α)(t)
is used to replace C

aDα
t f(t).

In the following, we will introduce the Laplace transform of Caputo derivative
and the Mittag-Leffler function [110] that will be used to analyze the algorithms
proposed in this chapter. We first introduce the Laplace transform of Caputo deriva-
tive. Let L{ · } denote the Laplace transform of a function. It follows from the formal

definition of the Laplace transform F (s)
△
= L{f(t)} =

∫ ∞

0− e−stf(t) dt that

L
{
f (α)(t)

}
=

{

sαF (s) − sα−1f(0−), α ∈ (0, 1]

sαF (s) − sα−1f(0−) − sα−2ḟ(0−), α ∈ (1, 2],
(7.2)

where f(0−) = limǫ→0− f(ǫ) and ḟ(0−) = limǫ→0− ḟ(ǫ). We then introduce the
Mittag-Leffler function, a function frequently used in the solutions of fractional-
order systems. For α, β ∈ C, the Mittag-Leffler function in two parameters is de-
fined as

Eα,β(z) =

∞∑

k=0

zk

Γ (kα + β)
. (7.3)

When β = 1 and α > 0, (7.3) can be written in a special case as

Eα(z) =

∞∑

k=0

zk

Γ (kα + 1)
. (7.4)

Assume that the agent dynamics are

x
(α)
i (t) = ui(t), i = 1, . . . , n, (7.5)

where xi(t) ∈ R
m and ui(t) ∈ R

m represent, respectively, the state and the control

input associated with the ith agent, and x
(α)
i (t) is the αth derivative of xi(t) with

α being a positive constant. Define Δij
△
= δi − δj , where δi ∈ R

m is constant.
Here Δij denotes the desired relative state deviation between agents i and j. The
objective of this chapter is to design distributed coordination algorithms for (7.5)
such that coordination is achieved. That is, for all xi(0) and all i, j = 1, . . . , n,
xi(t) − xj(t) → Δij as t → ∞. In the remainder of this chapter, we assume that
m = 1. However, all results hereafter are still valid for m > 1 by the introduction
of the Kronecker product.

Remark 7.1 Note that the integer-order dynamics [i.e., α is an integer in (7.5)] is a
special case of the fractional-order dynamics.
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7.2 Stability Analysis of a Coordination Algorithm

for Networked Fractional-order Systems

In this section, we first propose a distributed coordination algorithm for networked
fractional-order systems. We then derive the conditions on the interaction graph and
the fractional order such that coordination is achieved under, respectively, a directed
fixed and switching interaction graph. A coordination algorithm for (7.5) is given
by

ui(t) = −
n∑

j=1

aij(t)
[
xi(t) − xj(t) − Δij

]
, (7.6)

where aij(t) is the (i, j)th entry of the adjacency matrix A (t) associated with the di-

rected graph G (t)
△
= [V (t), E (t)] characterizing the interaction among the n agents

at time t.

7.2.1 Directed Fixed Interaction

In this subsection, we study the case where the directed interaction graph is fixed.
We assume that the adjacency matrix A is constant.

Consider a system

x̃(α)(t) = −Ax̃(t), (7.7)

where x̃(t)
△
= [x̃1(t), . . . , x̃n(t)]T ∈ R

n with x̃i(t)
△
= xi(t) − δi and A ∈ R

n×n.
Note that A can be written in the Jordan canonical form as

A = P

⎡

⎢
⎢
⎢
⎣

Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

0 0 · · · Λk

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Λ

P −1,

where Λi, i = 1, . . . , k, are standard Jordan blocks. Without loss of generality, let

the initial time a = 0 in (7.1). By defining Y (t)
△
= P −1x̃(t), (7.7) can be written as

Y (α)(t) = −ΛY (t). (7.8)

Note that each diagonal entry of Λ is an eigenvalue of A. Let λi be the ith eigenvalue
of A. Let yi(t) be the ith component of Y (t). The standard Jordan block Λℓ is
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⎡

⎢
⎢
⎢
⎣

λjℓ
1 · · · 0

0 λjℓ+1 · · · 0
...

...
. . .

0 0 · · · λjℓ+1−1

⎤

⎥
⎥
⎥
⎦

,

where λjℓ
= · · · = λjℓ+1−1. It follows that (7.8) can be decoupled into n one-

dimensional equations represented by either

y
(α)
i (t) = −λiyi(t) (7.9)

for the equation corresponding to the Jordan block that has a dimension equal to one
or the last equation corresponding to the Jordan block that has a dimension larger
than one, or

y
(α)
i (t) = −λiyi(t) − yi+1(t) (7.10)

otherwise.
Before deriving the main result, we need the following two lemmas regarding the

solutions of (7.9) and (7.10).

Lemma 7.1. The solution of (7.9) has the following properties:

1. When λi �= 0 and α ∈ (0, χi), lim
t→∞

yi(t) = 0, where χi
△
= 2[π− | arg(λi)|]

π .1

2. When λi = 0 and α ∈ (0, 1], yi(t) ≡ yi(0), ∀t ≥ 0.

3. When λi = 0 and α ∈ (1, 2), yi(t) = yi(0) + ẏi(0)t.
4. When α ∈ [2, ∞), the system is not stable.

Proof: (Part 1) By taking the Laplace transform of (7.9), it follows from (7.2) that

Yi(s)
△
= L

{
yi(t)

}
=

yi(0
−)sα−1

sα + λi
, α ∈ (0, 1] (7.11)

and

Yi(s)
△
= L

{
yi(t)

}
=

yi(0
−)sα−1 + ẏi(0

−)sα−2

sα + λi
, α ∈ (1, 2). (7.12)

From (7.11) and (7.12), it can be seen that the denominator of Yi(s) is sα +λi when
α ∈ (0, 2). It follows from the discussion in [54] that when λi �= 0 and α ∈ (0, χi),
all poles of Yi(s) are in the open left half plane. Applying the final value theorem,
it follows that limt→∞ yi(t) = lims→0 sYi(s) = 0.

(Parts 2 and 3) The proofs of Properties 2 and 3 follow from [229].
(Part 4) See [110].

Lemma 7.2. Assume that the continuous function yi+1(t) in (7.10) satisfies

limt→∞ yi+1(t) = 0. When λi �= 0 and α ∈ (0, χi), where χi is defined in

Lemma 7.1, the solution of (7.10) satisfies that limt→∞ yi(t) = 0.

1 Here we follow the convention that arg(x) ∈ (−π, π] for x ∈ C and arg(0) = 0. Note that
0 ≤ χi ≤ 2 by definition. Therefore, (0, χi) ⊆ (0, 2).
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Proof: When α ∈ (0, 1] ∩ (0, χi) �= ∅, by taking the Laplace transform of (7.10),
it follows from (7.2) that

Yi(s) =
sα−1yi(0

−) − Yi+1(s)

sα + λi
. (7.13)

It follows from the proof of Property 1 in Lemma 7.1 that the poles of (7.13) are in
the open left half plane when λi �= 0 and α ∈ (0, 1] ∩ (0, χi). By applying the final
value theorem, it follows that

lim
t→∞

yi(t) = lim
s→0

sYi(s) = lim
s→0

sαyi(0
−) − sYi+1(s)

sα + λi
= 0,

where we have used the fact lims→0 sYi+1(s) = limt→∞ yi+1(t) = 0.
When α ∈ (1, 2) ∩ (0, χi) �= ∅, by taking the Laplace transform of (7.10), it

follows from (7.2) that

Yi(s) =
sα−1yi(0

−) + sα−2ẏi(0
−) − Yi+1(s)

sα + λi
. (7.14)

Following a similar discussion for α ∈ (0, 1] ∩ (0, χi) gives that limt→∞ yi(t) = 0.
Combining the above arguments proves the lemma.
For the n-agent system, using (7.6), (7.5) can be written in a vector form as

x̃(α)(t) = −L x̃(t), (7.15)

where x̃(t) is defined in (7.7) and L is the nonsymmetric Laplacian matrix asso-
ciated with A and hence G . We next study the conditions on the graph G and the
fractional order α such that coordination is achieved.

Theorem 7.2. Let λi be the ith eigenvalue of L and χ
△
= minλi �=0

2[π− | arg(λi)|]
π .2

Using (7.6) for (7.5), coordination is achieved (i.e., xi(t) − xj(t) → Δij as

t → ∞) if the directed fixed graph G has a directed spanning tree and α ∈ (0, χ).
In particular, when α ∈ (0, 1], xi(t) → δi + pT x̃(0) as t → ∞, where

p ∈ R
n is defined in Lemma 1.1 and x̃ is defined in (7.7). When α ∈ (1, χ),

|xi(t) − δi − [pT x̃(0) + pT ˙̃x(0)t]| → 0 as t → ∞.

Proof: We let L play the role of A in (7.7) and write L in the Jordan canonical

form as L = PΛP −1. Also let Y (t)
△
= P −1x̃(t) and yi(t) be the ith component

of Y (t). Noting that G has a directed spanning tree, it follows from Lemma 1.1 that
L has a simple zero eigenvalue and all other eigenvalues have positive real parts.
Without loss of generality, let λ1 = 0 and Re(λi) > 0, i �= 1.

We first consider the case where α ∈ (0, 1]. Note that (0, 1] ⊂ (0, χ). Because
λ1 = 0 is a simple zero eigenvalue, λ1 satisfies (7.9). It follows from Property 2
in Lemma 7.1 that y1(t) ≡ y1(0). When λi, i �= 1, satisfies (7.9), it follows

2 Note from the property of nonsymmetric Laplacian matrices, Re(λi) > 0 when λi �= 0. It
follows that 1 < χ ≤ 2.
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from Property 1 in Lemma 7.1 that limt→∞ yi(t) = 0. When λi, i �= 1, satis-
fies (7.10), suppose that λi belongs to the Jordan block Λℓ. Then the last equation
corresponding to Λℓ, labeled as jℓ+1 − 1, satisfies (7.9). It follows from Property 1
in Lemma 7.1 that limt→∞ yjℓ+1−1 = 0. By applying Lemma 7.2 recursively to
yjℓ+1−2, . . . , yjℓ

, it follows that limt→∞ yi(t) = 0. Combining the above argu-
ments gives that limt→∞ Y (t) = [y1(0), 0, . . . , 0]T , which implies limt→∞ x̃(t) =
limt→∞ PY (t) = PSY (0) = PSP −1x̃(0), where S = [sij ] ∈ R

n×n has only one
nonzero entry s11 = 1. Note that the first column of P can be chosen as 1n while
the first row of P −1 can be chosen as p by noting that 1n and p are, respectively, a
right and a left eigenvector of L associated with λ1 = 0 and pT 1n = 1. Therefore,
limt→∞ x̃(t) = PSP −1x̃(0) = 1npT x̃(0), that is, limt→∞ x̃i(t) = pT x̃(0), which
also implies that xi(t) − xj(t) → Δij as t → ∞.

We next study the case where α ∈ (1, χ). Note that (1, χ) ⊆ (1, 2). Similar
to the previous discussion for α ∈ (0, 1], λ1 satisfies (7.9). It follows from Prop-
erty 3 in Lemma 7.1 that y1(t) = y1(0) + ẏ1(0)t. Because Re(λi) > 0, i �= 1,
similar to the previous discussion for α ∈ (0, 1], it follows from Property 1 in
Lemma 7.1 and Lemma 7.2 that limt→∞ yi(t) = 0, i �= 1. Therefore, it follows
that limt→∞ ‖Y (t) − [y1(0) + ẏ1(0)t, 0, . . . , 0]T ‖ = 0. Similar to the proof for
α ∈ (0, 1], it follows that limt→∞ |x̃i(t) − [pT x̃(0) + pT ˙̃x(0)t]| = 0, which also
implies that xi(t) − xj(t) → Δij as t → ∞.

Combining the previous arguments for α ∈ (0, 1] and α ∈ (1, χ) proves the
theorem.

As a special case, when the fixed graph G is undirected, we can obtain the fol-
lowing result.

Corollary 7.1. Assume that the fixed graph G is undirected. Using (7.6) for (7.5),
coordination is achieved if G is connected and α ∈ (0, 2). The coordination equi-

libria when α ∈ (0, 1] and α ∈ (1, 2) are given as in Theorem 7.2.

Proof: When the fixed undirected graph G is connected, it follows from Lemma 1.1
that L has a simple zero eigenvalue and all other eigenvalues are positive, which
implies that χ = 2. The statements then follow from the proof of Theorem 7.2.

Remark 7.3 From Theorem 7.2, it can be seen that the final coordination equilib-
rium of (7.15) for α ∈ (0, 1] is the same as that of ˙̃x(t) = −L x̃(t) under the same
L and x̃(0).

From Theorem 7.2, it can be seen that the range of the fractional order α is deter-
mined by χ. Note that χ is closely related to the eigenvalues of L , which are also
related to the number of agents. In the following, we characterize the relationship
between α and the number of agents to ensure coordination.

Theorem 7.4. Assume that there are n agents in the team, where n ≥ 2. Using (7.6)
for (7.5), coordination is achieved if the directed fixed graph G has a directed span-

ning tree and α ∈ (0, 1 + 2
n ).
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Proof: Letting λi be the ith eigenvalue of L , it follows from [81] that arg(λi) ∈
[− π

2 + π
n , π

2 − π
n ] for all λi �= 0, which implies that χ ≥ 1+ 2

n . Therefore, it follows
from Theorem 7.2 that the statement holds.

Remark 7.5 Theorem 7.4 implies that in a team consisting of a large number of
agents, coordination is ensured when α is small enough. As n → ∞, it follows
that α ∈ (0, 1]. This also implies that for fractional-order systems with the order
α ∈ (0, 1], the number of agents in the team, n, does not play a role in determining
whether coordination is achieved.

7.2.2 Directed Switching Interaction

In this subsection, we assume that the adjacency matrix A (t) is constant for t ∈
[tk, tk+1) and switches at time tk+1, k = 0, 1, . . . . Here we let t0 = 0. Let Gk

and Ak denote, respectively, the directed graph and the adjacency matrix associated
with the n agents for t ∈ [tk, tk+1). We assume that tk+1 − tk ≥ tL, where tL is a
positive constant. We also assume that each nonzero and hence positive entry of Ak

has a lower bound a and an upper bound a, where a and a are positive constants.
Then (7.15) becomes

x̃(α)(t) = −Lkx̃(t), t ∈ [tk, tk+1), (7.16)

where Lk ∈ R
n×n represents the nonsymmetric Laplacian matrix associated with

Ak and hence Gk. Before moving on, we need the following lemma.

Lemma 7.3. Suppose that L in (7.15) is constant. When α ∈ (1, 2), the solution

of (7.15) is

x̃(t) = Eα

(
−L tα

)
x̃(0) + tEα,2

(
−L tα

)
˙̃x(0). (7.17)

Proof: Note that α ∈ (1, 2). By applying the Laplace transform to both sides
of (7.15), it follows from (7.2) that

sαX̃(s) − sα−1x̃(0−) − sα−2 ˙̃x(0−) = −L X̃(s), (7.18)

where X̃(s)
△
= L{x̃(t)}. After some manipulation, (7.18) can be written as

X̃(s) =
(
sαIn + L

)−1
sα−1x̃(0−) +

(
sαIn + L

)−1
sα−2 ˙̃x(0−). (7.19)

By applying the inverse Laplace transform to (7.19), it follows from Theorem 3.2
in [171] that (7.17) is a solution of (7.15). Noting also that L is a constant matrix, it
follows from the uniqueness and existence theorem of fractional equations in [229]
that (7.17) is the unique solution of (7.15).

Theorem 7.6. Assume that α ∈ (0, 1 + 2
n ), where n ≥ 2. Using (7.6) for (7.5), a

necessary condition to guarantee coordination is that there exists a finite constant
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N2 such that the union of Gk, k = N1, . . . , N1+N2, has a directed spanning tree for

any finite N1. Furthermore, if Gk, k = 0, 1, . . . , has a directed spanning tree, there

exists positive Δk+1 such that coordination is achieved when tk+1 − tk ≥ Δk+1.3

Proof: For the first statement, when there does not exist a finite constant N2 such
that the union of Gk, k = N1, . . . , N1 + N2, has a directed spanning tree for some
N1, at least one agent, labeled as i, is separated from the other agents for t ≥ tN1 .
It follows that the state of agent i is independent of the states of the other agents
for t ≥ tN1 , which implies that all agents cannot achieve coordination for arbitrary
initial conditions.

For the second statement, we first consider the case where α ∈ (0, 1]. It follows
from Theorem 3.9 in [171] that for α ∈ (0, 1] the solution to (7.15) is given by

x̃(t) = Eα

(
−L tα

)
x̃(0).

Therefore, the solution to (7.16) is given by

x̃(tj) =

j∏

i=1

{
Eα

(
−Li−1t

α
i

)[
Eα

(
−Li−1t

α
i−1

)]−1}
x̃(0). (7.20)

Define V (t)
△
= maxi x̃i(t) − mini x̃i(t). Note from Theorem 7.2 that for α ∈ (0, 1],

using (7.6) for (7.5), x̃i(t) − x̃j(t) → 0 as t → ∞ if the fixed interaction graph
has a directed spanning tree. That is, if G0 has a directed spanning tree, then there
exists a positive Δ1 such that V (t1) < V (0) when t1 ≥ Δ1. Similarly, according
to (7.20), by considering [Eα(−L0t

α
1 )]−1Eα(−L0t

α
0 )x̃(0) as the new initial state,

it follows that if G1 has a directed spanning tree, then there exists a positive Δ2

such that V (t2) < V (t1) when t2 − t1 ≥ Δ2. By following a similar analysis, we
know that there exists Δk+1 such that V (tk+1) < V (tk) when tk+1 − tk ≥ Δk+1.
It thus follows that V (tk+1) → 0 as k → ∞. Therefore, x̃i(t) − x̃j(t) → 0, i.e.,
xi(t) − xj(t) → Δij as t → ∞ under the condition of the theorem.

We then consider the case when α ∈ (1, 1 + 2
n ). Note that α ∈ (1 + 2

n ) ⊆ (1, 2),
taking the derivative of (7.17) with respect to t gives that

˙̃x(t) =
1

t
Eα,0

(
−L tα

)
x̃(0) + Eα

(
−L tα

)
˙̃x(0). (7.21)

Combining (7.17) and (7.21) leads to the following vector form
[

x̃(t)

˙̃x(t)

]

=

[

Eα(−L tα) tEα,2(−L tα)
1
t Eα,0(−L tα) Eα(−L tα)

] [

x̃(0)

˙̃x(0)

]

. (7.22)

Therefore, we can get that

3 Here the values of ∆k+1, k = 0, 1, . . . , depend on x̃(tk), the fractional-order α, and Gk.
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[

x̃(t1)

˙̃x(t1)

]

=

[

Eα(−L0t
α
1 ) t1Eα,2(−L0t

α
1 )

1
t1

Eα,0(−L0t
α
1 ) Eα(−L0t

α
1 )

] [

x̃(0)

˙̃x(0)

]

.

Similarly, we can also get that

[

x̃(tk)

˙̃x(tk)

]

=

(
k−1∏

i=0

Ci

)

B0,0

[

x̃(0)

˙̃x(0)

]

, (7.23)

where C0
△
= I2n and Ck

△
= Bk+1,k+1B

−1
k+1,k, k = 1, 2, . . . , with

Bm,n
△
=

⎡

⎣

Eα(−Lmtαn+1) tn+1Eα,2(−Lmtαn+1)

Eα,0(−Lmtα
n+1)

tn+1
Eα(−Lmtαn+1)

⎤

⎦.

Note from Theorem 7.2, if G0 has a directed spanning tree, then it follows that
there exists a positive Δ1 such that V (t1) < V (0) when t1 ≥ Δ1. Similarly, by
considering B−1

1,0B0,0

[ x(0)
ẋ(0)

]
the new initial state, if G1 has a directed spanning tree,

then there exists a positive Δ2 such that V (t2) < V (t1) when t2 − t1 ≥ Δ2.
Similarly, if Gk, k = 2, 3, . . . , has a directed spanning tree, we can also show the
existence of Δk+1. Because V (tk+1) < V (tk), it follows that V (tk+1) → 0 as
k → ∞. Therefore, we can get that x̃i(t) − x̃j(t) → 0, i.e., xi(t) − xj(t) → Δij as
t → ∞ under the condition of the theorem.

Remark 7.7 For the system (7.5) with α = 1, xi(t) will decrease if ui(t) < 0
and xi(t) will increase if ui(t) > 0. However, for the system (7.5) with α ∈
(0, 1) ∪ (1, 1 + 2

n ), due to the long memory process of fractional calculus, the
aforementioned property does not necessarily hold. Therefore, even if the switching
interaction graph has a directed spanning tree at each time interval, coordination
might not be achieved ultimately because how fast the graph switches also plays an
important role.

Remark 7.8 It can be seen from (7.20) and (7.23) that unlike the integer-order sys-
tems, there does not exist a transition matrix for fractional-order systems. Therefore,
the analysis for fractional-order systems is more challenging than that for integer-
order systems.

7.2.3 Simulation

In this subsection, several simulation results are presented. To illustrate the results
in Sect. 7.2.1, we consider a team of twelve agents with a directed fixed graph G

shown by Fig. 7.1. Note that G has a directed spanning tree with node 1 being the
root. We let aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Here for simplicity we

choose δi = 0, which implies that Δij = 0. That is, x̃(t) = x(t), where x(t)
△
=
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Fig. 7.1 Directed graph G for twelve agents. An arrow from j to i denotes that agent j is a
neighbor of agent i

Fig. 7.2 States of the twelve agents using (7.6) with different fractional orders

[x1(t), . . . , x12(t)]
T and x̃(t)

△
= [x̃1(t), . . . , x̃12(t)]

T with x̃i(t)
△
= xi(t) − δi. It can

be computed that p = [ 1
11 , 1

11 , 1
11 , 1

11 , 0, 1
11 , 1

11 , 1
11 , 1

11 , 1
11 , 1

11 , 1
11 ]T .

For α ∈ (0, 1], let the initial states be x(0) = [6, 3, 1, −3, 4, 2, 0, −5, −2, −5,

2, 7]T . When the fractional order is α = 0.8, the states of the agents using (7.6)
are shown in Fig. 7.2. It can be seen that coordination is achieved with the fi-
nal coordination equilibrium for xi(t) being 0.5455, which is equal to pT x(0).
When α = 1 (i.e., the system takes in the form of single-integrator dynamics),
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the states of the agents using (7.6) are shown in Fig. 7.2(b). From these two fig-
ures, it can be seen that the coordination equilibria for both cases are the same
given identical initial conditions. For α ∈ (1, χ), we let the initial states be x(0) =
[6, 3, 1, −3, 4, 2, 0, −5, −2, −5, 2, 7]T and ẋ(0) = [1, 2, 3, 4, 0, 0, 0, 0, 1, 1, 1, 1]T .
It follows from the definition of χ in Theorem 7.2 that χ = 1.182. Figures 7.2(c)
and 7.2(d) show the states using (7.6) when α = 1.15 and α = 1.5, respectively.
From Fig. 7.2(c), it can be observed that coordination is achieved. From Fig. 7.2(d),
it can be observed that coordination is not achieved due to the fact that α > χ. The
four subfigures in Fig. 7.2 validate Theorem 7.2.

To illustrate the results in Sect. 7.2.2, we consider a team of four agents. We let
G (t) switch from {G(1), G(2)} as shown in Fig. 7.3. Note that both G(1) and G(2)

have a directed spanning tree. We let aij(t) = 1 if (j, i) ∈ E (t) and aij(t) = 0
otherwise. Here for simplicity we choose δi = 0, which implies that Δij = 0. Fig-
ure 7.4 shows the states of the four agents using (7.6) when G (t) switches between
G(1) and G(2) every 3 seconds with α = 0.8. It can be seen that coordination is
achieved in this case.

Fig. 7.3 Directed switching graphs G(1) and G(2). An arrow from j to i denotes that agent j is a
neighbor of agent i

Fig. 7.4 States of the four agents using (7.6) when G (t) switches between G(1) and G(2) as shown
in Fig. 7.3 every 3 seconds with α = 0.8
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7.3 Stability Analysis of Fractional-order Coordination

Algorithms with Absolute/Relative Damping for Networked

Fractional-order Systems

In this section, we first propose fractional-order coordination algorithms with, re-
spectively, absolute and relative damping for networked fractional-order systems.
We then study the conditions on the interaction graph and the fractional order such
that coordination is achieved when using these two algorithms under a directed fixed
interaction graph.

7.3.1 Absolute Damping

In this subsection, we propose the following fractional-order coordination algorithm
with absolute damping for (7.5) as

ui(t) = −
n∑

j=1

aij

[
xi(t) − xj(t) − Δij

]
− βx

(α/2)
i (t), (7.24)

where aij is defined as in (7.6), and β is a positive scalar. Using (7.24), (7.5) can be
written in a vector form as

x̃(α)(t) + βx̃(α/2)(t) + L x̃(t) = 0, (7.25)

where x̃(t) is defined in (7.7) and L is defined in (7.15). It then follows that (7.25)
can be written as

[

x̃(t)

x̃(α/2)(t)

](α/2)

=

[

0n×n In

−L −βIn

]

︸ ︷︷ ︸

F

[

x̃(t)

x̃(α/2)(t)

]

. (7.26)

Note that according to Lemma 3.1, each eigenvalue of L , λi, corresponds to two
eigenvalues of F , denoted by

μ2i−1 =
−β +

√

β2 − 4λi

2
, μ2i =

−β −
√

β2 − 4λi

2
. (7.27)

Note that F can be written in the Jordan canonical form as

F = P

⎡

⎢
⎢
⎢
⎣

Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

0 0 · · · Λk

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Λ

P −1,
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where Λi, i = 1, . . . , k, are the standard Jordan blocks. Note that each diagonal

entry of Λ is an eigenvalue of F . By defining Z(t)
△
= P −1

[ x̃(t)

x̃(α/2)(t)

]
, (7.26) can be

written as
Z(α/2)(t) = ΛZ(t). (7.28)

Let zi(t), i = 1, . . . , 2n, be the ith component of Z(t). Similar to the analysis in
Sect. 7.2.1, (7.28) can be decoupled into 2n one-dimensional equations represented
by either

z
(α/2)
i (t) = μizi(t) (7.29)

or
z
(α/2)
i (t) = μizi(t) + zi+1(t). (7.30)

Theorem 7.9. Let λi be the ith eigenvalue of L , and μ2i−1 and μ2i be the two eigen-

values of F corresponding to λi. Define ψ
△
= minμi �=0,i=1,2,...,2n

4[π− | arg(−μi)|]
π .

Using (7.24) for (7.5), coordination is achieved (i.e., xi(t) − xj(t) → Δij as

t → ∞) if the directed fixed graph G has a directed spanning tree and α ∈ (0, ψ).
In particular, the following properties hold:

Case 1. β > maxλi �=0
|Im(λi)|√

Re(λi)
. When α ∈ (0, 2], xi(t) → δi + pT x̃(0) +

1
β pT x̃(α/2)(0) as t → ∞, where p ∈ R

n is defined in Lemma 1.1 and x̃ is

defined in (7.7). When α ∈ (2, ψ), |xi(t) − δi − {pT x̃(0) + 1
β pT x̃(α/2)(0) +

[pT ˙̃x(0) + 1
β pT x̃(1+α/2)(0)]t} | → 0 as t → ∞.

Case 2. 0 < β ≤ maxλi �=0
|Im(λi)|√

Re(λi)
. Then we have that xi(t) → δi + pT x̃(0) +

1
β pT x̃(α/2)(0) as t → ∞.

Proof: (Case 1) When the directed fixed graph G has a directed spanning tree,
if follows from Lemma 1.1 that L has a simple zero eigenvalue and all other
eigenvalues have positive real parts. Without loss of generality, let λ1 = 0 and
Re(λi) > 0, i �= 1. For λ1 = 0, note from (7.27) that μ1 = 0 and μ2 = −β.
Because the eigenvalue λ1 = 0 of L is simple, it follows from (7.27) that the
corresponding eigenvalues μ1 = 0 and μ2 = −β of F are also simple. There-
fore, both μ1 and μ2 satisfy (7.29). Because β > maxλi �=0

|Im(λi)|√
Re(λi)

, it follows

from Lemma 3.1 that Re(μ2i−1) < 0 and Re(μ2i) < 0, i �= 1. Note that
2 < ψ ≤ 4. We first consider the case where α ∈ (0, 2]. Note from Property 2
in Lemma 7.1 that z1(t) ≡ z1(0) and from Property 1 in Lemma 7.1 that z2(t) → 0
as t → ∞. When μ2i−1 and μ2i satisfy (7.29), it then follows from Property 1
of Lemma 7.1 that z2i−1(t) → 0 and z2i(t) → 0 as t → ∞. When μ2i−1 and
μ2i satisfy (7.30), it then follows from Lemma 7.2 and a similar argument to that
in Theorem 7.2 that z2i−1(t) → 0 and z2i(t) → 0 as t → ∞ as well. Com-
bining the above arguments gives that limt→∞ Z(t) = [z1(0), 0, . . . , 0]T , which

implies limt→∞

[ x̃(t)

x̃(α/2)(t)

]
= limt→∞ PZ (t) = PSZ (0) = PSP −1

[ x̃(0)

x̃(α/2)(0)

]
,

where S = [sij ] ∈ R
2n×2n has only one nonzero entry s11 = 1. Note from Lem-

mas 1.1 and 3.1 that [1T
n ,0T

n ]T and [pT , 1
β pT ]T are, respectively, a right and a
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left eigenvector of F associated with μ1 = 0, where [pT , 1
β pT ][1T

n ,0T
n ]T = 1.

It thus follows that the first column of P can be chosen as [1T
n ,0T

n ]T while the

first row of P −1 can be chosen as [pT , 1
β pT ]T . Therefore, limt→∞

[ x̃(t)

x̃(α/2)(t)

]
=

PSP −1
[ x̃(0)

x̃(α/2)(0)

]
= [1T

n ,0T
n ][pT , 1

β pT ]T
[ x̃(0)

x̃(α/2)(0)

]
, that is, limt→∞ x̃i(t) =

pT x̃(0) + 1
β pT x̃(α/2)(0). We next consider the case where α ∈ (2, ψ). Note from

Property 3 of Lemma 7.1 that z1(t) = z1(0) + ż1(0)t. A similar discussion to that
for α ∈ (0, 2] shows that zi(t) → 0, i = 2, . . . , 2n, as t → ∞. Therefore, it follows
that limt→∞ ‖Z(t) − [z1(0) + ż1(0)t, 0, . . . , 0]T ‖ = 0. Similar to the proof for

α ∈ (0, 2], we can get that limt→∞ |x̃i(t) − {pT x̃(0) + 1
β pT x̃(α/2)(0) +

[pT ˙̃x(0) + 1
β pT x̃(1+α/2)(0)]t} | = 0.

(Case 2) When 0 < β ≤ maxλi �=0
|Im(λi)|√

Re(λi)
, it follows from Lemma 3.1 that

Re(μ2i−1) ≥ 0 for some λi �= 0, which implies that ψ ≤ 2. Therefore, we can get
that α ∈ (0, 2). The proof then follows a similar analysis to that of Case 1 when
α ∈ (0, 2].

Remark 7.10 From Theorem 7.9, it can be noted that the control gain β can be
chosen as any positive number. Of course, the possible range of α to ensure coor-
dination will be different depending on β. The existing coordination algorithms for
double-integrator dynamics with absolute damping studied in [248, Chap. 4] can
be viewed as a special case of Theorem 7.9 when α = 2. In addition, even when
there exists absolute damping, depending on the value of α, the final state deriva-
tives might not be zero as shown in Theorem 7.6, which is different from the results
in [248, Chap. 4].

7.3.2 Relative Damping

In this subsection, we propose the following fractional-order coordination algorithm
with relative damping for (7.5) as

ui(t) = −
n∑

j=1

aij

{[
xi(t) − xj(t) − Δij

]
+ γ

[
x

(α/2)
i (t) − x

(α/2)
j (t)

]}
, (7.31)

where aij is defined as in (7.6), and γ is a positive scalar. Using (7.31), (7.5) can be
written in a vector form as

x̃(α)(t) + γL x̃(α/2)(t) + L x̃(t) = 0, (7.32)

where x̃(t) is defined in (7.7) and L is defined in (7.15). It follows that (7.32) can
be written as
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[

x̃(t)

x̃(α/2)(t)

](α/2)

=

[
0n×n In

−L −γL

]

︸ ︷︷ ︸

G

[
x̃(t)

x̃(α/2)(t)

]

. (7.33)

Before moving on, we need the following lemma.

Lemma 7.4. Let ξi be the ith eigenvalue of A ∈ R
n×n with, respectively, an

associated right eigenvector qi and an associated left eigenvector si. Also let

B =
[ 0n×n In

−A −γA

]
, where γ is a positive scalar. Then the eigenvalues of B are

given by ζ2i−1 =
−γξi+

√
γ2ξ2

i −4ξi

2 with the associated right and left eigenvectors

given by, respectively,
[ qi

ζ2i−1qi

]
and

[
(ζ2i−1+γξi)si

si

]
, and ζ2i =

−γξi −
√

γ2ξ2
i −4ξi

2 ,

with the associated right and left eigenvectors given by, respectively,
[ qi

ζ2iqi

]
and

[
(ζ2i+γξi)si

si

]
. When Re(ξi) > 0, Re(ζ2i−1) < 0 and Re(ζ2i) < 0 if and only if

γ >
|Im(ξi)|√
Re(ξi)|ξi |

.

Proof: For the first statement, suppose that ζ is an eigenvalue of B with an associ-
ated right eigenvector

[
f
g

]
, where f, g ∈ C

n. It follows that
[ 0n×n In

−A −γA

][
f
g

]
=

ζ
[

f
g

]
, which implies g = ζf and −Af − γAg = ζg. It thus follows that

−(1 + γζ)Af = ζ2f . Noting that Aqi = ξiqi, we let f = qi. It thus follows that
ζ2 = −ξi − γζξi. That is, each eigenvalue of A, ξi, corresponds to two eigenval-

ues of B, denoted by ζ2i−1,2i =
−γξi ±

√
γ2ξ2

i −4ξi

2 . Because g = ζf , it follows that
the right eigenvectors associated with ζ2i−1 and ζ2i are, respectively,

[ qi

ζ2i−1qi

]
and

[ qi

ζ2iqi

]
. A similar analysis can be used to find the left eigenvectors of B associated

with ζ2i−1 and ζ2i.
For the second statement, note that

√

γ2ξ2
i − 4ξi has a nonnegative real part.

Because ζ2i =
−γξi −

√
γ2ξ2

i −4ξi

2 , it follows that Re(ζ2i) < 0 if γ > 0. It is left
to show the conditions under which Re(ζ2i−1) < 0. Suppose that γ∗

i is the critical
value for γ such that ζ2i−1 is on the imaginary axis. Let ζ2i−1 = ηiι, where ηi ∈ R.
After some manipulation, it follows that γ∗

i = |Im(ξi)|√
Re(ξi)|ξi |

. Note that Re(ξi) > 0. It

is straightforward to verify that if γi > γ∗
i (respectively, γi < γ∗

i ), Re(ζ2i−1) < 0
(respectively, Re(ζ2i−1) > 0). Therefore, when Re(ξi) > 0, Re(ζ2i−1) < 0 and
Re(ζ2i) < 0 if and only if γ >

|Im(ξi)|√
Re(ξi)|ξi |

.

According to Lemma 7.4, each eigenvalue of L , λi, also corresponds to two
eigenvalues of G, denoted by

μ2i−1 =
−γλi +

√

γ2λ2
i − 4λi

2
, μ2i =

−γλi −
√

γ2λ2
i − 4λi

2
. (7.34)

Note that G can also be written in the Jordan canonical form as
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G = Q

⎡

⎢
⎢
⎢
⎣

Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

0 0 · · · Σk

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Σ

Q−1,

where Σi, i = 1, . . . , k, are the standard Jordan blocks. Note that each entry of Σ

is an eigenvalue of G. By defining Z(t)
△
= Q−1

[ x̃(t)

x̃(α/2)(t)

]
, (7.33) can be written as

Z(α/2)(t) = ΣZ(t). (7.35)

Let zi(t), i = 1, . . . , 2n, be the ith component of Z(t). Similar to the analysis
of (7.28), (7.35) can be decoupled into 2n one-dimensional equations represented
by either (7.29) or (7.30).

Theorem 7.11. Let λi be the ith eigenvalue of L , and μ2i−1 and μ2i be the two

eigenvalues of G corresponding to λi. Define ψ
△
= minμi �=0,i=1,...,2n

4[π− |arg(−μi)|]
π .

Using (7.32) for (7.5), coordination is achieved (i.e., xi(t) − xj(t) → Δij as

t → ∞) if the directed fixed graph G has a directed spanning tree and α ∈ (0, ψ).
In addition, the following properties hold:

Case 1. γ > maxλi �=0
|Im(λi)|√
Re(λi)|λi |

. When α ∈ (0, 2], |xi(t) − δi − [pT x̃(0) +

tα/2

Γ (1+α/2)p
T x̃(α/2)(0)]| → 0 as t → ∞, where p ∈ R

n is defined in Lemma 1.1

and x̃ is defined in (7.7). When α ∈ (2, ψ), |xi(t) − δi − [pT x̃(0) +
tα/2

Γ (1+α/2)p
T x̃(α/2)(0) + t1+α/2

Γ (2+α/2) x̃
(1+α/2)(0)]| → 0 as t → ∞.

Case 2. 0 < γ ≤ maxλi �=0
|Im(λi)|√
Re(λi)|λi |

. Then we have that |xi(t)−δi −[pT x̃(0)+

tα/2

Γ (1+α/2)p
T x̃(α/2)(0)]| → 0 as t → ∞.

Proof: (Case 1) When the directed fixed graph G has a directed spanning tree, it fol-
lows from Lemma 1.1 that L has a simple zero eigenvalue and all other eigenvalues
have positive real parts. Without loss of generality, let λ1 = 0 and Re(λi) > 0,
i �= 1. For λ1 = 0, note from (7.34) that μ1 = 0 and μ2 = 0. It also follows
from Lemma 7.4 that the zero eigenvalue of G has algebraic multiplicity equal to
two but geometric multiplicity equal to one. Therefore, it follows that μ2 = 0 sat-
isfies (7.29) and μ1 = 0 satisfies (7.30). Because γ > maxλi �=0

|Im(λi)|√
Re(λi)|λi |

, it

follows from Lemma 7.4 that Re(μ2i−1) < 0 and Re(μ2i) < 0, i �= 1. Note that
2 < ψ ≤ 4. We first consider the case where α ∈ (0, 2]. Note from Property 2
in Lemma 7.1 that z2(t) ≡ z2(0). By substituting z2(t) = z2(0) into (7.30), it

follows that z1(t) = z2(0) tα/2

Γ (1+α/2) + z1(0). When μ2i−1 and μ2i satisfy (7.29),
it then follows from Property 1 of Lemma 7.1 that z2i−1(t) → 0 and z2i(t) → 0
as t → ∞. When μ2i−1 and μ2i satisfy (7.30), it then follows from Lemma 7.2
and a similar argument to that in Theorem 7.2 that z2i−1(t) → 0 and z2i(t) → 0
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as t → ∞ as well. Similar to the analysis in the proof of Theorem 7.9, note
from Lemmas 1.1 and 7.4 that w1 = [1T

n ,0T
n ]T and v1 = [0T

n ,pT ]T are, re-
spectively, a right and a left eigenvector associated with μ1 = 0. Meanwhile,
w2 = [0T

n ,1T
n ]T and v2 = [pT ,0T

n ]T are, respectively, a generalized right and
a generalized left eigenvector associated with μ2 = 0, where vT

2 w1 = 1 and
vT
1 w2 = 1. It thus follows that the first and second columns of Q can be chosen as

w1 and w2 while the first and second rows of Q−1 can be chosen as v2 and v1. Be-

cause
[ x̃(t)

x̃(α/2)(t)

]
= QZ (t) and Z(0) = Q−1

[ x̃(0)

x̃(α/2)(0)

]
, after some manipulation,

we can get that limt→∞

∥
∥
[ x̃(t)

x̃(α/2)(t)

]
−

[
1np

T x̃(0)+ tα/2

Γ (1+α/2)1np
T x̃(α/2)(0)

1np
T x̃(α/2)(0)

]∥
∥ = 0,

that is, limt→∞ |x̃i(t) − [pT x̃(0) + tα/2

Γ (1+α/2)p
T x̃(α/2)(0)]| = 0. We next con-

sider the case where α ∈ (2, ψ). Note from Property 3 of Lemma 7.1 that
z2(t) = z2(0) + ż2(0)t. Because z1(t) satisfies (7.30), we can get that z1(t) =

z1(0) + z2(0) tα/2

Γ (1+α/2) + ż2(0) t1+α/2

Γ (2+α/2) . A similar discussion to that for α ∈
(0, 2] shows that zi(t) → 0, i = 3, . . . , 2n, as t → ∞. Therefore, it fol-

lows that limt→∞ ‖Z(t) − [z1(0) + z2(0) tα/2

Γ (1+α/2) + ż2(0) t1+α/2

Γ (2+α/2) , z2(0) +

ż2(0)t, 0, . . . , 0]T ‖ = 0. Similar to the proof for α ∈ (0, 2], we can get that

limt→∞ |x̃i(t) − [pT x̃(0) + tα/2

Γ (1+α/2)p
T x̃(α/2)(0) + t1+α/2

Γ (2+α/2) x̃
(1+α/2)(0)]| = 0.

(Case 2) When 0 < γ ≤ maxλi �=0
|Im(λi)|√
Re(λi)|λi |

, it follows from Lemma 7.4

that Re(μ2i−1) ≥ 0 for some i, which implies that ψ ≤ 2. Therefore, we can get
that α ∈ (0, 2). The proof then follows a similar analysis to that of Case 1 when
α ∈ (0, 2].

Remark 7.12 From Theorem 7.11, it can be noted that the control gain γ can also
be chosen as any positive number. Of course, the range of α to ensure coordina-
tion will be different depending on γ. The existing coordination algorithms for
double-integrator dynamics with relative damping studied in [248, Chap. 4] can
be viewed as a special case of Theorem 7.11 when α = 2. In addition, when
there exists relative damping, the final state derivatives generally do not approach
a constant as shown in Theorem 7.11, which is different from the results in [248,
Chap. 4].

7.3.3 Simulation

To illustrate the results in Sects. 7.3.1 and 7.3.2, we consider four agents with a
directed fixed graph G shown by Fig. 7.5. Note that G has a directed spanning tree.
We let aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Here for simplicity, we choose
δi = 0, which implies that Δij = 0.

The states of the four agents using (7.24) are shown in Fig. 7.6 with α = 1.6 and
β = 1. The states of the four agents using (7.31) are shown in Fig. 7.7 with α = 1.2
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Fig. 7.5 Directed graph G for four agents. An arrow from j to i denotes that agent j is a neighbor
of agent i

Fig. 7.6 States of the four agents using (7.24) with α = 1.6 and β = 1

Fig. 7.7 States of the four agents using (7.31) with α = 1.2 and γ = 1

and γ = 1. It can be noted from Figs. 7.6 and 7.7 that coordination is achieved. In
particular, it can be seen from Fig. 7.7(b) that using (7.31) the final state derivatives
do not approach a constant when α = 1.2 and γ = 1.
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7.4 Notes

The results in this chapter are based mainly on [30, 34, 42, 46]. For results on frac-
tional calculus, see [164, 179, 217, 229, 253, 256]. For results on fractional-order
control, see [10, 219, 230, 231].



Part IV

Emergent Issues in Distributed
Multi-agent Coordination



Chapter 8

Sampled-data Setting

This chapter considers distributed multi-agent coordination in a sampled-data set-
ting. We first study a distributed sampled-data coordinated tracking algorithm where
a group of followers with single-integrator dynamics interacting with their neigh-
bors at discrete-time instants intercepts a dynamic leader who is a neighbor of only
a subset of the followers. We propose a PD-like discrete-time algorithm and study
the condition on the interaction graph, the sampling period, and the control gain to
ensure stability under directed fixed interaction and give the quantitative bound of
the tracking errors. We then study convergence of two distributed sampled-data co-
ordination algorithms with respectively, absolute damping and relative damping for
double-integrator dynamics under undirected/directed fixed interaction. We show
necessary and sufficient conditions on the interaction graph, the sampling period,
and the control gain such that coordination is achieved using these two algorithms
by using matrix theory, bilinear transformation, and Cauchy theorem. We finally
study convergence of the two distributed sampled-data coordination algorithms with
respectively, absolute damping and relative damping for double-integrator dynamics
under directed switching interaction. We derive sufficient conditions on the interac-
tion graph, the sampling period, and the control gain to guarantee coordination by
using the property of infinity products of row-stochastic matrices. Simulation results
are presented to show the effectiveness of the theoretical results.

8.1 Sampled-data Coordinated Tracking for Single-integrator

Dynamics

In multi-agent coordination, agents might only be able to interact with their neigh-
bors intermittently rather than continuously due to low bandwidth, unreliable com-
munication channels, limited sensing capabilities, or power and cost constraints.
A multi-agent system with intermittent interaction, where agents with continuous-
time dynamics are controlled based on information from their neighbors updated at
discrete-time instants, can be treated as a sampled-data system consisting of multi-

W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-169-1_8, c© Springer-Verlag London Limited 2011
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http://dx.doi.org/10.1007/978-0-85729-169-1_8
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ple networked subsystems. We are hence motivated to study distributed multi-agent
coordination in a sampled-data setting. We explicitly consider the effect of sampled-
data control on stability of the agents. In this section, we focus on sampled-data
coordinated tracking for single-integrator dynamics.

8.1.1 Algorithm Design

Suppose that in addition to n followers, labeled as agents or followers 1 to n, with
single-integrator dynamics given by (3.1), there exists a dynamic leader, labeled as
agent 0, whose position is r0(t) ∈ Rm. Here the leader can be physical or virtual.

Let G
△
= (V , E ) be the directed graph characterizing the interaction among the

n followers. Let G
△
= (V , E ) be the directed graph characterizing the interaction

among the leader and the followers corresponding to G .
A proportional-derivative-like (PD-like) continuous-time coordinated tracking

algorithm is proposed for (3.1) in [248, Chap. 3] as

ui(t) =
1∑n

j=0 aij

n∑

j=1

aij

{
ṙj(t) − γ

[
ri(t) − rj(t)

]}

+
ai0∑n

j=0 aij

{
ṙ0(t) − γ

[
ri(t) − r0(t)

]}
, (8.1)

where aij , i, j = 1, . . . , n, is the (i, j)th entry of the adjacency matrix A ∈ R
n×n

associated with the directed graph G , ai0 > 0, i = 1, . . . , n, if the leader is a
neighbor of follower i and ai0 = 0 otherwise, and γ is a positive gain. The objec-
tive of (8.1) is to guarantee that ri(t) − r0(t) → 0m, i = 1, . . . , n, as t → ∞.
Note that (8.1) requires each follower to obtain instantaneous measurements of its
neighbors’ velocities and the leader’s velocity if the leader is a neighbor of the fol-
lower. This requirement might not be realistic in real applications. We next propose
a PD-like discrete-time coordinated tracking algorithm.

Consider a sampled-data setting where the agents have continuous-time dynam-
ics while the measurements are made at discrete sampling times and the control
inputs are based on zero-order hold as

ui(t) = ui[k], kT ≤ t < (k + 1)T, (8.2)

where k denotes the discrete-time index, T denotes the sampling period, and ui[k]
is the control input at t = kT . By using direct discretization (see Sect. 1.4), the
continuous-time system (3.1) can be discretized as

ri[k + 1] = ri[k] + Tui[k], i = 1, . . . , n, (8.3)

where ri[k] is the position of follower i at t = kT . We propose a PD-like discrete-
time coordinated tracking algorithm as
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ui[k] =
1∑n

j=0 aij

n∑

j=1

aij

[
rj [k] − rj [k − 1]

T
− γ
(
ri[k] − rj [k]

)]

+
ai0∑n

j=0 aij

[
r0[k] − r0[k − 1]

T
− γ
(
ri[k] − r0[k]

)]
, (8.4)

where r0[k] denotes the leader’s position at t = kT , and rj [k]−rj [k−1]
T and

r0[k]−r0[k−1]
T are used to approximate, respectively, ṙj(t) and ṙ0(t) in (8.1) by noting

that rj [k+1] and r0[k+1] cannot be accessed at t = kT . Note that using (8.4), each
follower’s position is updated based on its current position and its neighbors’ cur-
rent and previous positions as well as the leader’s current and previous positions if
the leader is a neighbor of the follower. As a result, (8.4) can be easily implemented
in practice. In the following, we assume that all agents are in a one-dimensional
space (i.e., m = 1) for the simplicity of presentation. However, all results hereafter
are still valid for any high-dimensional space by the introduction of the Kronecker
product.

8.1.2 Convergence Analysis of the Proportional-derivative-like

Discrete-time Coordinated Tracking Algorithm

In this subsection, we analyze the algorithm (8.4). Define the tracking error for

follower i as εi[k]
△
= ri[k] − r0[k]. It follows that the closed-loop system of (8.3)

using (8.4) can be written as

εi[k + 1] = εi[k] +
T∑n

j=0 aij

n∑

j=1

aij

[
εj [k] − εj [k − 1]

T
− γ
(
εi[k] − εj [k]

)]

+
Tai0∑n
j=0 aij

(
r0[k] − r0[k − 1]

T
− γεi[k]

)

−
(
r0[k + 1] − r0[k]

)
+

∑n
j=1 aij∑n
j=0 aij

(
r0[k] − r0[k − 1]

)
,

which can then be written in a vector form as

ε[k + 1] =
[
(1 − Tγ)In + (1 + Tγ)D−1

A
]
ε[k] − D−1

A ε[k − 1] + Xr[k],
(8.5)

where D
△
= diag{∑n

j=0 a1j , . . . ,
∑n

j=0 anj }, ε[k]
△
= [ε1[k], . . . , εn[k]]T , A is the

adjacency matrix associated with G , and Xr[k]
△
= (2r0[k]−r0[k −1]−r0[k+1])1n.

By defining Y [k + 1]
△
=
[ ε[k+1]

ε[k]

]
, it follows from (8.5) that
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Y [k + 1] = ÃY [k] + B̃Xr[k], (8.6)

where

Ã
△
=

[
(1 − Tγ)In + (1 + Tγ)D−1A −D−1A

In 0n×n

]

and B̃
△
=
[

In
0n×n

]
. It follows that the solution of (8.6) is

Y [k] = ÃkY [0] +

k∑

i=1

Ãk−iB̃Xr[i − 1]. (8.7)

Note that the eigenvalues of Ã play an important role in determining the value of
Y [k] as k → ∞. In the following, we study the eigenvalues of Ã. Before moving
on, we first study the eigenvalues of D−1A .

Lemma 8.1. Suppose that in G the leader has directed paths to all followers 1 to n.

Then D−1A satisfies ‖(D−1A )n‖ ∞ < 1 and D−1A has all eigenvalues within

the unit circle.1

Proof: For the first statement, note that D−1A is nonnegative and each row sum of
D−1A is less than or equal to one. Therefore, it follows that ‖D−1A‖∞ ≤ 1. Denote
ī1 as the set of followers that are the children of the leader, and īj , j = 2, . . . , κ,
as the set of followers that are the children of the followers in īj−1 but are not in
īr, r = 1, . . . , j − 2. Because the leader has directed paths to all followers 1 to
n, there are at most n edges from the leader to all followers 1 to n, which implies
that κ ≤ n. Let pi and qT

i denote, respectively, the ith column and row of D−1A .
When the leader has directed paths to all followers 1 to n, without loss of generality,
assume that the kth follower is a child of the leader, i.e., ak0 > 0. It follows that
qT
k 1n = 1 − ak0∑n

j=0 akj
< 1. The same property also applies to the other elements

in the set ī1. Similarly, assume that the lth follower (one follower in the set ī2) is a
child of the kth follower (one follower in the set ī1), which implies that alk > 0. It
follows that the sum of the lth row of (D−1A )2 can be written as qT

l

∑n
i=1 pi ≤

qT
l 1n = 1 − alk∑n

j=0 alj
< 1. Meanwhile, the sum of the kth row of (D−1A )2 is

also less than one. A similar analysis shows that each row sum of (D−1A )κ is
less than one when the leader has directed paths to all followers 1 to n. That is,
‖(D−1A)κ‖ ∞ < 1. Because κ ≤ n and ‖D−1A ‖∞ ≤ 1, ‖(D−1A )n‖ ∞ < 1
holds.

For the second statement, note from Lemma 1.25 that ρ[(D−1A)n] ≤
‖(D−1A)n‖ ∞. Because ‖(D−1A)n‖ ∞ < 1, it follows that ρ[(D−1A)n] < 1,
which implies that ρ(D−1A) < 1.

We next study the conditions under which all eigenvalues of Ã are within the unit
circle.

1 Note that in G if the leader has directed paths to all followers, then each follower has at least one
neighbor, that is,

∑n
j=0 aij > 0, i = 1, . . . , n. Therefore, D−1 exists and (8.4) is well defined.



8.1 Sampled-data Coordinated Tracking for Single-integrator Dynamics 211

Lemma 8.2. Suppose that in G the leader has directed paths to all followers 1

to n. Let λi be the ith eigenvalue of D−1A . Then τi > 0 holds, where τi
△
=

2|1−λi |2(2[1−Re(λi)]− |1−λi |2)
|1−λi |4+4[Im(λi)]2

. If the positive scalars T and γ satisfy

Tγ < min
{

1, min
i=1,...,n

τi

}
, (8.8)

then Ã, defined by (8.1.2), has all eigenvalues within the unit circle.

Proof: For the first statement, when the leader has directed paths to all followers
1 to n, it follows from the second statement in Lemma 8.1 that |λi| < 1. It then
follows that |1 − λi|2 > 0 and |1 − λi|2 = 1 − 2Re(λi) + [Re(λi)]

2 + [Im(λi)]
2 <

2[1 − Re(λi)], which implies that τi > 0.
For the second statement, note that the characteristic polynomial of Ã is given by

det(zI2n − Ã)

= det

([
zIn − [(1 − Tγ)In + (1 + Tγ)D−1A ] D−1A

−In zIn

])

= det
([

zIn − (1 − Tγ)In − (1 + Tγ)D−1
A
]
zIn + D−1

A
)

= det
([

z2 + (Tγ − 1)z
]
In +
[
1 − (1 + Tγ)z

]
D−1

A
)
,

where we have used Lemma 1.22 to obtain the second equality because zIn − [(1 −
Tγ)In +(1+Tγ)D−1A ], D−1A , −In and zIn commute pairwise. Noting that λi

is the ith eigenvalue of D−1A , we can get that det(zIn+D−1A ) =
∏n

i=1(z+λi).
It thus follows that det(zI2n − Ã) =

∏n

i=1{z2 + (Tγ − 1)z + [1 − (1 + Tγ)z]λi}.
Therefore, the roots of det(zI2n − Ã) = 0 satisfy that

z2 +
[
Tγ − 1 − (1 + Tγ)λi

]
z + λi = 0. (8.9)

It can be noted that each eigenvalue of D−1A , λi, corresponds to two eigenvalues
of Ã. Instead of computing the roots of (8.9) directly, we apply the bilinear trans-
formation z = s+1

s−1 to (8.9) to get

Tγ(1 − λi)s
2 + 2(1 − λi)s + (2 + Tγ)λi + 2 − Tγ = 0. (8.10)

Because the bilinear transformation is an exact one-to-one mapping from the interior
of the unit circle in the complex z-plane to the open left half of the complex s-plane,
it follows that (8.9) has all roots within the unit circle if and only if (8.10) has all
roots in the open left half plane.

In the following, we study the condition on T and γ under which (8.10) has all
roots in the open left half plane. Letting s1 and s2 denote the roots of (8.10), it
follows from (8.10) that
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s1 + s2 = − 2

Tγ
, (8.11)

s1s2 =
(2 + Tγ)λi + 2 − Tγ

Tγ(1 − λi)
. (8.12)

Noting that (8.11) implies that Im(s1) + Im(s2) = 0, we define s1 = a1 + ιb and
s2 = a2 − ιb. It can be noted that s1 and s2 have negative real parts if and only if
a1a2 > 0 and a1 + a2 < 0. Note that (8.11) implies a1 + a2 = − 2

Tγ < 0 because
Tγ > 0. We next show a sufficient condition on T and γ such that a1a2 > 0 holds.
By substituting the definitions of s1 and s2 into (8.12), we have a1a2 + b2 + ι(a2 −
a1)b = (2+Tγ)λi+2−Tγ

Tγ(1−λi)
, which implies

a1a2 + b2 = − 2 + Tγ

Tγ
+

4[1 − Re(λi)]

Tγ|1 − λi|2 , (8.13)

(a2 − a1)b =
4Im(λi)

Tγ|1 − λi|2 . (8.14)

It follows from (8.14) that b = 4Im(λi)
Tγ(a2−a1)|1−λi |2 . Note that (a2 − a1)

2 = (a1 +

a2)
2 − 4a1a2 = 4

T 2γ2 − 4a1a2. After some manipulation, (8.13) can be written as

K1(a1a2)
2 + K2a1a2 + K3 = 0, (8.15)

where K1
△
= T 2γ2|1−λi|4, K2

△
= −|1−λi|4+(2+Tγ)Tγ|1−λi|4 −4[1−Re(λi)]

Tγ|1−λi|2, and K3
△
= 1

Tγ
{4[1−Re(λi)]|1−λi|2 −(2+Tγ)|1−λi|4} −4[Im(λi)]

2.

It can be computed that K2
2 − 4K1K3 = { |1 − λi|4 +(2+Tγ)Tγ|1 − λi|4 − 4[1 −

Re(λi)]Tγ|1 − λi|2}2 + 16T 2γ2|1 − λi|4[Im(λi)]
2 ≥ 0, which implies that (8.15)

has two real roots. Because |λi| < 1, it is straightforward to show that K1 > 0.
Therefore, a sufficient condition for a1a2 > 0 is that K2 < 0 and K3 > 0. When
0 < Tγ < 1, because |1 − λi|2 < 2[1 − Re(λi)] as shown in the proof of the first
statement, it follows that K2 < −|1 − λi|4 +(2+Tγ)Tγ|1 − λi|4 − 2Tγ|1 − λi|4 =
|1 − λi|4[−1 + (Tγ)2] ≤ 0. Similarly, when 0 < Tγ < τi, it follows that K3 > 0.
Therefore, if the positive scalars γ and T satisfy (8.8), all eigenvalues of Ã are
within the unit circle.

In the following, we apply Lemma 8.2 to derive our main result.

Theorem 8.1. Suppose that the leader’s position r0[k] satisfies that

| r0[k]−r0[k−1]
T

| ≤ r̄ (i.e., the changing rate of r0[k] is bounded), and in G the leader

has directed paths to all followers 1 to n. When the positive scalars γ and T sat-

isfy (8.8), using (8.4) for (8.3), the maximum tracking error of the n followers is

ultimately bounded by 2T r̄‖(I2n − Ã)−1‖ ∞.

Proof: It follows from (8.7) that
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∥∥Y [k]
∥∥

∞
≤
∥∥ÃkY [0]

∥∥
∞

+

∥∥∥∥∥

k∑

i=1

Ãk−iB̃Xr[i − 1]

∥∥∥∥∥
∞

≤ ‖Ãk ‖ ∞

∥∥Y [0]
∥∥

∞
+ 2T r̄

∥∥∥∥∥

k−1∑

i=0

Ãi

∥∥∥∥∥
∞

‖B̃‖ ∞,

where we have used the fact that
∥∥Xr[i]

∥∥
∞

=
∥∥(2r0[i] − r0[i − 1] − r0[i + 1]

)
1n

∥∥
∞

≤ 2T r̄

for all i because | r0[k]−r0[k−1]
T | ≤ r̄. When the leader has directed paths to all fol-

lowers 1 to n, it follows from Lemma 8.2 that Ã has all eigenvalues within the
unit circle if the positive scalars T and γ satisfy (8.8). Therefore, limk→∞ Ãk =
02n×2n. Also, it follows from Lemma 1.26 that there exists a matrix norm ||| · |||
such that |||Ã||| < 1. It then follows from Lemma 1.28 that (I2n − Ã) is invert-
ible and (I2n − Ã)−1 =

∑∞
i=0 Ãi, which implies that limk→∞ ‖

∑k−1
i=0 Ãi‖ ∞ =

‖(I2n − Ã)−1‖ ∞. Also note that ‖B̃‖ ∞ = 1. Therefore, we have that ‖Y [k]‖ ∞ is
ultimately bounded by 2T r̄‖(I2n − Ã)−1‖ ∞. The theorem then follows directly by
noting that ‖Y [k]‖ ∞ denotes the maximum tracking error of the n followers.

Remark 8.2 From Theorem 8.1, it can be noted that the ultimate bound of the track-
ing errors using the PD-like discrete-time coordinated tracking algorithm (8.4) is
proportional to the sampling period T . As T approaches zero, the tracking errors
will go to zero ultimately when the changing rate of the leader’s position is bounded
and the leader has directed paths to all followers 1 to n.

8.1.3 Comparison Between the Proportional-like and

Proportional-derivative-like Discrete-time Coordinated

Tracking Algorithms

A proportional-like (P-like) continuous-time coordinated tracking algorithm for (3.1)
is given as2

ui(t) = −
n∑

j=1

aij

[
ri(t) − rj(t)

]
− ai0

[
ri(t) − r0(t)

]
, (8.16)

where aij , i = 1, . . . , n, j = 0, . . . , n, are defined as in (8.1). Similar to that in
Sect. 8.1.1, the P-like discrete-time coordinated tracking algorithm for (8.3) is given
as

2 The algorithm is a natural extension of the consensus algorithm (2.2).
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ui[k] = −
n∑

j=1

aij

(
ri[k] − rj [k]

)
− ai0

(
ri[k] − r0[k]

)
. (8.17)

Letting εi and ε be defined as in Sect. 8.1.2, we rewrite the closed-loop system
of (8.3) using (8.17) as

εi[k + 1] = εi[k] − T

n∑

j=1

aij

(
εi[k] − εj [k]

)
− Tai0εi[k] −

(
r0[k + 1] − r0[k]

)
,

which can then be written in a vector form as

ε[k + 1] = Qε[k] −
(
r0[k + 1] − r0[k]

)
1n, (8.18)

where Q
△
= In − TL − Tdiag(a10, . . . , an0) with L being the nonsymmetric

Laplacian matrix associated with A and hence G . Note that Q is nonnegative when
0 < T < mini=1,...,n

1∑n
j=0 aij

.

Lemma 8.3. Suppose that in G the leader has directed paths to all followers 1 to n.

When 0 < T < mini=1,...,n
1∑n

j=0 aij
, Q has all eigenvalues within the unit circle.

Proof: The proof is a direct application of Lemmas 1.18 and 1.6 and is omitted
here.

Theorem 8.3. Suppose that the leader’s position r0[k] satisfies | r0[k]−r0[k−1]
T | ≤ r̄,

and in G the leader has directed paths to all followers 1 to n. When T <
mini=1,...,n

1∑n
j=0 aij

, using (8.17) for (8.3), the maximum tracking error of the n

followers is ultimately bounded by r̄‖[L + diag{a10, . . . , an0}]−1‖ ∞.

Proof: The solution of (8.18) is

ε[k] = Qkε[0] −
k∑

i=1

Qk−i
(
r0[k] − r0[k − 1]

)
1n.

The proof then follows a similar line to that of Theorem 8.1 by noting that ‖ε[k]‖ ∞

denotes the maximum tracking error of the n followers.

Remark 8.4 In contrast to the results in Theorem 8.1, the ultimate bound of the
tracking errors using the P-like discrete-time coordinated tracking algorithm (8.17)
with a dynamic leader is not proportional to the sampling period T . In fact, as shown
in [248, Chap. 3], even when T approaches zero, the tracking errors using (8.17) are
not guaranteed to go to zero ultimately. The comparison between Theorems 8.1
and 8.3 shows the benefit of the PD-like discrete-time coordinated tracking algo-
rithm over the P-like discrete-time consensus algorithm when there exists a dynamic
leader who is a neighbor of only a subset of the followers. As a special case, when
the leader’s position is constant (i.e., r̄ = 0), it follows from Theorems 8.1 and 8.3
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Fig. 8.1 Directed graph G associated with four followers and one leader. An arrow from j to i

denotes that agent j is a neighbor of agent i

that the tracking errors will go to zero ultimately using both the P-like and PD-like
discrete-time coordinated tracking algorithms.3

8.1.4 Simulation

In this subsection, a simulation example is presented to illustrate the PD-like
discrete-time coordinated tracking algorithm (8.4). To show the benefit of the PD-
like discrete-time coordinated tracking algorithm, the related simulation result ob-
tained by applying the P-like discrete-time coordinated tracking algorithm (8.17) is
also presented.

We consider a team consisting of four followers and a leader with the directed
graph G given by Fig. 8.1. It can be noted that the leader has directed paths to all four
followers. We let aij = 1 if agent j is a neighbor of agent i and aij = 0 otherwise.
For both (8.4) and (8.17), we let r1[0] = 3, r2[0] = 1, r3[0] = −1, and r4[0] = −2.
For (8.4), we also let ri[−1] = 0, i = 1, . . . , 4. The dynamic leader’s position is
chosen as r0[k] = sin(kT ) + kT .

Figures 8.2(a) and 8.2(b) show, respectively, the positions ri and the tracking
errors ri − r0 by using (8.4) when T = 0.3 s and γ = 1. From Fig. 8.2(b), it
can be seen that the tracking errors are relatively large. Figures 8.2(c) and 8.2(d)
show, respectively, ri and ri − r0 by using (8.4) when T = 0.1 s and γ = 3. From
Fig. 8.2(d), it can be seen that the tracking errors are very small ultimately. We can
see that the tracking errors will become smaller if the sampling period becomes
smaller. Figures 8.2(e) and 8.2(f) show, respectively, ri and ri − r0 by using (8.4)
when T = 0.25 s and γ = 3. Note that the product Tγ is larger than the positive
upper bound derived in Theorem 8.1. It can be noted that the tracking errors be-
come unbounded in this case. Figures 8.3(a) and 8.3(b) show, respectively, ri and
ri − r0 by using (8.17) when T = 0.1 s and γ = 3. By comparing Figs. 8.3(b)
and 8.2(d), it can be seen that the tracking errors using (8.17) are much larger than
those using (8.4) under the same condition. This shows the benefit of the PD-like
discrete-time coordinated tracking algorithm over the P-like discrete-time coordi-
nated tracking algorithm when there exists a dynamic leader who is a neighbor of
only a subset of the followers.

3 In this case, the coordinated tracking problem boils down to a coordinated regulation problem
because the leader’s position is constant.
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Fig. 8.2 Distributed discrete-time coordinated tracking using the PD-like discrete-time coordi-
nated tracking algorithm (8.4) with different T and γ
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Fig. 8.3 Distributed discrete-time coordinated tracking using the P-like discrete-time coordinated
tracking algorithm (8.17)

8.2 Sampled-data Coordination for Double-integrator Dynamics

Under Fixed Interaction

In this section, we study sampled-data coordination algorithms for double-integrator
dynamics under fixed interaction with, respectively, absolute and relative damping.

8.2.1 Coordination Algorithms with Absolute and Relative

Damping

Given n agents with dynamics given by (3.5), consider a sampled-data setting
with zero-order hold as (8.2). By using direct discretization (see Sect. 1.4), the
continuous-time system (3.5) can be discretized as

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k],

vi[k + 1] = vi[k] + Tui[k], i = 1, . . . , n, (8.19)

where ri[k] ∈ R
m and vi[k] ∈ R

m denote, respectively, the position and velocity
of the ith agent at t = kT . Note that (8.19) is the exact discrete-time dynamics
for (3.5) based on zero-order hold in a sampled-data setting.

Define Δij
△
= δi − δj , where δi ∈ R

m is constant. Here Δij denotes the desired
relative position deviation between agent i and agent j. We study the following two
coordination algorithms

ui[k] = −
n∑

j=1

aij [k]
[(

ri[k] − rj [k]
)

− Δij

]
− αvi[k], i = 1, . . . , n, (8.20)
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and

ui[k] = −
n∑

j=1

aij [k]
[(

ri[k] − rj [k] − Δij

)
+ α
(
vi[k] − vj [k]

)]
, i = 1, . . . , n,

(8.21)
where aij [k] is the (i, j)th entry of the adjacency matrix A [k] associated with the

graph G [k]
△
= (V [k], E [k]) characterizing the interaction among the n agents at

t = kT , and α is a position gain. Coordination is achieved for (8.20) if for all ri[0]
and vi[0] and all i, j = 1, . . . , n, ri[k] − rj [k] → Δij and vi[k] → 0m as k → ∞.
Coordination is achieved for (8.21) if for all ri[0] and vi[0] and all i, j = 1, . . . , n,
ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0m as k → ∞.

In the remainder of the chapter, we assume that all agents are in a one-dimensional
space (i.e., m = 1) for simplicity. However, all results hereafter still valid for any
high-dimensional space by use of the properties of the Kronecker product.

8.2.2 Convergence Analysis of the Sampled-data Coordination

Algorithm with Absolute Damping

In this subsection, we analyze the algorithm (8.20) under, respectively, an undirected
fixed interaction graph and a directed fixed interaction graph. We assume that A is
constant. In this case, using (8.20), (8.19) can be written in a vector form as

[
r̃[k + 1]

v[k + 1]

]
=

[
In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In

]

︸ ︷︷ ︸
F

[
r̃[k]

v[k]

]
, (8.22)

where r̃
△
= [r̃1, . . . , r̃n]T with r̃i

△
= ri −δi, v

△
= [v1, . . . , vn]T , and L is the nonsym-

metric Laplacian matrix associated with A and hence G . To analyze (8.22), we first
study the property of F , defined in (8.22). Note that the characteristic polynomial
of F is given by

det(zI2n − F )

= det

([
zIn − (In − T 2

2 L ) −(T − αT 2

2 )In

TL zIn − (1 − αT )In

])

= det

([
zIn −

(
In − T 2

2
L

)][
zIn − (1 − αT )In

]

−
{

TL

[
−
(

T − αT 2

2

)
In

]})

= det

[(
z2 − 2z + αTz + 1 − αT

)
In +

T 2

2
(1 + z)L

]
,

where we have used Lemma 1.22 to obtain the second equality.
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Let μi be the ith eigenvalue of −L , we get that det(zIn +L ) =
∏n

i=1(z − μi).

It thus follows that det(zI2n − F ) =
∏n

i=1(z
2 − 2z + αTz + 1 − αT − T 2

2 (1 +
z)µi). Therefore, the roots of det(zI2n − F ) = 0 (i.e., the eigenvalues of F ) satisfy
that

z2 +

(
αT − 2 − T 2

2
µi

)
z + 1 − αT − T 2

2
µi = 0. (8.23)

Note that each eigenvalue of −L , µi, corresponds to two eigenvalues of F , de-
noted by λ2i−1 and λ2i. Note that L has at least one zero eigenvalue, without
loss of generality, let μ1 = 0. It follows from (8.23) that λ1 = 1 and λ2 =
1 − αT . Therefore, F has at least one eigenvalue equal to one. Let [pT , qT ]T , where
p, q ∈ R

n, be a right eigenvector of F associated with the eigenvalue λ1 = 1. It
follows that [

In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In

] [
p
q

]
=

[
p
q

]
.

After some manipulation, it follows from Lemma 1.1 that we can choose p = 1n

and q = 0n. Similarly, it can be shown that [pT , ( 1
α − T

2 )pT ]T , where p ∈ R
n

is defined in Lemma 1.1, is a left eigenvector of F associated with the eigenvalue
λ1 = 1.

Lemma 8.4. Using (8.20) for (8.19), ri[k] − rj [k] → Δij and vi[k] → 0 if and only

if one is the unique eigenvalue of F , where F is defined in (8.22), with the maximum

modulus. In particular, ri[k] → δi + pT r̃[0] + ( 1
α − T

2 )pT v[0] and vi[k] → 0 as

k → ∞, where p ∈ R
n is defined in Lemma 1.1.

Proof: (Sufficiency) Note that p = [1T
n ,0T

n ]T and q = [pT , ( 1
α − T

2 )pT ]T are, re-
spectively, a right and left eigenvector of F associated with the eigenvalue one. Also
note that pT q = 1. If one is the unique eigenvalue with the maximum modulus, then
it follows from Lemma 1.7 that limk→∞ F k =

[
1n
0n

]
[pT , ( 1

α − T
2 )pT ]. Therefore,

it follows that limk→∞

[ r̃[k]
v[k]

]
= limk→∞ F k

[ r̃[0]
v[0]

]
=
[

r̃[0]+( 1
α

− T

2 )pT v[0]
0n

]
.

(Necessity) Note that F can be written in the Jordan canonical form as F =
PJP −1, where J is the Jordan block matrix. If r̃i[k] → pT r̃[0] + ( 1

α − T
2 )pT v[0]

and vi[k] → 0 as k → ∞, it follows that limk→∞ F k =
[1n

0n

]
[pT , ( 1

α − T
2 )pT ],

which has rank one. It thus follows that limk→∞ Jk has rank one, which implies
that all but one eigenvalue of F are within the unit circle. Noting that F has at least
one eigenvalue equal to one, it follows that one is the unique eigenvalue of F with
the maximum modulus.

We first show necessary and sufficient conditions on α and T such that coordi-
nation is achieved using (8.20) under an undirected interaction graph. Note that all
eigenvalues of L are real for undirected graphs because L is symmetric in this
case. Before moving on, we need the following lemma.

Lemma 8.5. The polynomial

z2 + az + b = 0, (8.24)
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where a, b ∈ C, has all roots within the unit circle if and only if all roots of

(1 + a + b)s2 + 2(1 − b)s + b − a + 1 = 0 (8.25)

are in the open left half plane.

Proof: By applying bilinear transformation z = s+1
s−1 , (8.24) can be rewritten as

(s + 1)2 + a(s + 1)(s − 1) + b(s − 1)2 = 0,

which implies (8.25). Note that the bilinear transformation maps the open left half
plane one-to-one onto the interior of the unit circle. The lemma follows directly.

Lemma 8.6. Suppose that the undirected graph G is connected. All eigenvalues

of F , where F is defined in (8.22), are within the unit circle except one eigenvalue

equal to one if and only if the positive α and T are chosen from the set

Sr
△
=

{
(α, T )

∣∣∣∣− T 2

2
min

i
µi < αT < 2

}
.4 (8.26)

Proof: When the undirected graph G is connected, it follows from Lemma 1.1 that
µi < 0, i = 2, . . . , n, by noting that µ1 = 0. Also note that λ1 = 1 and λ2 = 1−αT .

To ensure |λ2| < 1, it is required that 0 < αT < 2. Let a
△
= αT − 2 − T 2

2 μi and

b
△
= 1 − αT − T 2

2 μi. It follows from Lemma 8.5 that for μi < 0, i = 2, . . . , n, the
roots of (8.23) are within the unit circle if and only if all roots of

−T 2μis
2 +
(
T 2μi + 2αT

)
s + 4 − 2αT = 0 (8.27)

are in the open left half plane. Because −T 2μi > 0, i = 2, . . . , n, the roots
of (8.27) are always in the open left half plane if and only if T 2μi + 2αT > 0

and 4 − 2αT > 0, which implies that − T 2

2 μi < αT < 2. Combining the above
arguments proves the lemma.

Theorem 8.5. Suppose that the undirected graph G is connected. Let p ∈ R
n be

defined in Lemma 1.1. Using (8.20) for (8.19), ri[k] − rj [k] → Δij and vi[k] → 0 if

and only if α and T are chosen from Sr, where Sr is defined by (8.26). In particular,

ri[k] → δi + pT r̃[0] + ( 1
α − T

2 )pT v[0] and vi[k] → 0 as k → ∞.

Proof: The statement follows directly from Lemmas 8.4 and 8.6.

Remark 8.6 From Lemma 8.6, we can get that T < 2√ −μi
. From Lemma 1.18, it

follows that |μi| ≤ 2 maxi ℓii, where ℓii is the ith diagonal entry of L . There-

fore, if T <
√

2
maxi ℓii

, then we have that T < 2√ −μi
. Note that maxi ℓii =

maxi

∑n
j=1,j �=i aij represents the maximal in-degree of the nodes in the graph G

under the assumption that aii = 0. Therefore, the sufficient bound of the sampling
period is related to the maximal in-degree of the nodes in G .

4 Note that Sr is nonempty.
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We next show necessary and sufficient conditions on α and T such that coordi-
nation is achieved using (8.20) under a directed interaction graph. Because it is not
easy to find the explicit bounds for α and T such that the necessary and sufficient
conditions are satisfied, we also present sufficient conditions that can be used to
compute the explicit bounds for α and T . Note that the eigenvalues of L might be
complex for directed graphs, which makes the analysis more challenging.

Lemma 8.7. Suppose that the directed graph G has a directed spanning tree. There

exist positive α and T such that the following three conditions are satisfied:

1. 0 < αT < 2;
2. When µi < 0, (α, T ) ∈ Sr, where Sr is defined by (8.26);
3. When Re(µi) < 0 and Im(µi) �= 0, α and T satisfy that

(i) If α > |μi |√
−Re(μi)

, then 0 < T < −2αRe(μi)
|μi |2 .

(ii) If
|Im(μi)|√

−Re(μi)
≤ α ≤ |μi |√

−Re(μi)
, then 0 < T < min{T i1,

−2αRe(μi)
|μi |2 }, where

T i1
△
=

−2α[Re(µi)]
2 − 2 |Im(µi)|

√
[−Re(µi)][α2Re(µi) + |µi|2]

Re(µi)|µi|2 .

(8.28)

(iii) If 0 < α < |Im(μi)|√
−Re(μi)

, then 0 < T < min{T i2,
−2αRe(μi)

|μi |2 }, where

T i2
△
=

−2α[Re(µi)]
2 + 2 |Im(µi)|

√
[−Re(µi)][α2Re(µi) + |µi|2]

Re(µi)|µi|2 .

(8.29)

In addition, all eigenvalues of F , where F is defined in (8.22), are within the unit

circle except for one eigenvalue equal to one if and only if the previous three condi-

tions are satisfied.

Proof: For the first statement, when T is sufficiently small, there always exists a
positive α such that Conditions 1, 2, and 3 are satisfied.

For the second statement, because µ1 = 0, it follows that λ1 = 1 and λ2 =
1 − αT . Therefore, λ2 is within the unit circle if and only if Condition 1 is satisfied.
When μi < 0, i �= 1, it follows from a similar line to that in Lemma 8.6 that all
roots of F corresponding to μi are within the unit circle if and only if Condition 2
is satisfied. We next consider the case when Re(μi) < 0 and Im(μi) �= 0, i �= 1.
Letting s1 and s2 be the two roots of (8.27), it follows that Re(s1) + Re(s2) =

1 + 2 α
T

Re(μi)
|μi |2 . Therefore, a necessary condition to guarantee that both s1 and s2

are in the open left half plane is that 1 + 2 α
T

Re(μi)
|μi |2 < 0, i.e., α

T > − |μi |2
2Re(μi)

. To
find the exact bound on T , we assume that one root of (8.27) is on the imaginary
axis. Without loss of generality, let s1 = χι, where χ ∈ R. Substituting s1 = χι

into (8.27) and separating the corresponding real and imaginary parts give that
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T 2Re(μi)χ
2 − T 2Im(μi)χ + 4 − 2αT = 0, (8.30)

T 2Im(μi)χ
2 +
[
T 2Re(μi) + 2αT

]
χ = 0. (8.31)

It follows from (8.31) that

χ = − TRe(μi) + 2α

T Im(μi)
. (8.32)

Substituting (8.32) into (8.30) gives

Re(μi)[TRe(μi) + 2α]2

[Im(μi)]2
+ T
[
TRe(μi) + 2α

]
+ 4 − 2αT = 0.

After some simplification, we get

Re(μi)|μi|2T 2 + 4α
[
Re(μi)

]2
T + 4α2Re(μi) + 4

[
Im(μi)

]2
= 0. (8.33)

When α > |μi |√
−Re(μi)

, it can be computed that

{
4α
[
Re(μi)

]2}2 − 4Re(μi)|μi|2
(
4α2Re(μi) + 4

[
Im(μi)

]2)

= −16
{
α2
[
Re(μi)

]2[
Im(μi)

]2
+ Re(μi)|μi|2

[
Im(μi)

]2}

= −16Re(μi)
[
Im(μi)

]2[
α2Re(μi) + |μi|2

]
< 0.

Therefore, there does not exist a positive T such that one root of (8.27) is on the
imaginary axis, which implies that s1 (respectively, s2) is always on the open left
or right half plane. Because Re(s1) + Re(s2) = 1 + 2 α

T
Re(μi)

|μi |2 , when α is suf-
ficiently large, it follows that Re(s1) + Re(s2) < 0. This implies that s1 (re-
spectively, s2) is always on the open left half plane when α > |μi |√

−Re(μi)
. When

|Im(μi)|√
−Re(μi)

≤ α ≤ |μi |√
−Re(μi)

, it follows that 4α2Re(μi) + 4[Im(μi)]
2 ≥ 0. Not-

ing that Re(μi)|μi|2 < 0, it follows that there exists a unique positive T i1 such
that (8.33) holds when T = T i1, where T i1 is given by (8.28). Similarly, when
0 < α < |Im(μi)|√

−Re(μi)
, it follows that 4α2Re(μi) + 4[Im(μi)]

2 < 0. Noting also that

Re(μi)|μi|2 < 0, it follows that there are two positive solutions with the smaller
one given by T i2 defined by (8.29).

Combining the previous arguments completes the proof.

Theorem 8.7. Suppose that the directed graph G has a directed spanning tree. Let

p ∈ R
n be defined in Lemma 1.1. Using (8.20) for (8.19), ri[k] − rj [k] → Δij and

vi[k] → 0 if and only if α and T are chosen satisfying the conditions in Lemma 8.7.

In particular, ri[k] → δi + pT r̃[0] + ( 1
α − T

2 )pT v[0] and vi[k] → 0 as k → ∞.

Proof: The statement follows directly from Lemmas 8.4 and 8.7.
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From Lemma 8.7, it is not easy to find α and T explicitly such that the conditions
in Lemma 8.7 are satisfied. We next present a sufficient condition that can be used
to determine the bounds for α and T explicitly. Before moving on, we need the
following lemmas and corollary.

Lemma 8.8 ([50, 252]). All zeros of the complex polynomial

P (z) = zn + α1z
n−1 + · · · + αn−1z + αn

satisfy |z| ≤ z0, where z0 is the unique nonnegative solution of the equation

zn − |α1|zn−1 − · · · − |αn−1|z − |αn| = 0.

The bound z0 is attained if αi = −|αi|.
Corollary 8.1. The roots of (8.24) are within the unit circle if |a| + |b| < 1. More-

over, if |a + b| + |a − b| < 1, the roots of (8.24) are still within the unit circle.

Proof: According to Lemma 8.8, the roots of (8.24) are within the unit circle if
the unique nonnegative solution z0 of z2 − |a|z − |b| = 0 satisfies z0 < 1. It is

straightforward to show that z0 =
|a|+

√
|a|2+4|b|
2 . Therefore, the roots of (8.24) are

within the unit circle if
|a| +

√
|a|2 + 4|b| < 2. (8.34)

We next discuss the condition under which (8.34) holds. If b = 0, then the statements
of the corollary hold trivially. If |b| �= 0, we have that

(|a| +
√

|a|2 + 4|b|)(−|a| +
√

|a|2 + 4|b|)
−|a| +

√
|a|2 + 4|b|

< 2.

After some computation, it follows that (8.34) is equivalent to |a| + |b| < 1. There-
fore, the first statement of the corollary holds. For the second statement, because
|a| + |b| ≤ |a + b| + |a − b|, if |a + b| + |a − b| < 1, then |a| + |b| < 1, which
implies that the second statement of the corollary also holds.

The following lemma presents a sufficient condition that can be used to find α
and T explicitly.

Lemma 8.9. Suppose that the directed graph G has a directed spanning tree. There

exist positive α and T such that Sc ∩ Sr is nonempty, where

Sc
△
=

⋂

∀Re(μi)<0 and Im(μi) �=0

{(
α, T
)∣∣∣∣1 + T 2µi

∣∣+ |3 − 2αT | < 1
}
, (8.35)

and

Sr
△
=
⋂

∀μi ≤0

{
(α, T )| − T 2

2
µi < αT < 2

}
. (8.36)

If α and T are chosen from Sc ∩ Sr, then all eigenvalues of F are within the unit

circle except one eigenvalue equal to one.
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Proof: For the first statement, we let αT = 3
2 . When Re(µi) < 0 and Im(µi) �= 0,

|1+T 2µi|+|3−2αT | < 1 implies that |1+T 2µi| < 1 because αT = 3
2 . It thus fol-

lows that 0 < T <

√
−2Re(μi)

|μi | for all Re(µi) < 0 and Im(µi) �= 0. When µi ≤ 0,

− T 2

2 µi < αT < 2 can be simplified as −T 2µi < 3
2 because αT = 3

2 . It thus fol-

lows that 0 < T <
√

3
−μi

for all µi ≤ 0. Let Tc
△
=
⋂

∀Re(μi)<0 and Im(μi) �=0{T |0 <

T <

√
−2Re(μi)

|μi | } and Tr
△
=
⋂

∀μi ≤0{T |0 < T <
√

3
−μi

}.5 It is straightforward

to see that Tc ∩ Tr is nonempty. Recalling that αT = 3
2 , it follows that Sc ∩ Sr is

nonempty as well.
For the second statement, note that if the directed graph G has a directed spanning

tree, then it follows from Lemma 1.1 that Re(µi) < 0, i = 2, . . . , n, by noting that
µ1 = 0. Also note that λ1 = 1 and λ2 = 1 − αT . To ensure that |λ2| < 1, it
is required that 0 < αT < 2. When Re(μi) < 0 and Im(μi) �= 0, it follows
from Corollary 8.1 that the roots of (8.23) are within the unit circle if |1 + T 2μi| +
|3 − 2αT | < 1, where we have used the second statement of Corollary 8.1 by letting
a = αT −2− T 2

2 μi and b = 1− T 2

2 μi −αT . When μi < 0, it follows from the proof

of Lemma 8.6 that the roots of (8.23) are within the unit circle if − T 2

2 μi < αT < 2.
Combining the above arguments proves the second statement.

Remark 8.8 According to Lemmas 8.4 and 8.9, if α and T are chosen from Sc ∩Sr,
where Sc is defined by (8.35) and Sr is defined by (8.36), and the directed graph
G has a directed spanning tree, coordination is achieved ultimately. An easy way to
choose α and T is to let αT = 3

2 . It then follows that T can be chosen from Tc ∩ Tr,
where Tc and Tr are defined in the proof of Lemma 8.9.

8.2.3 Convergence Analysis of the Sampled-data Coordination

Algorithm with Relative Damping

In this subsection, we analyze the algorithm (8.21) under, respectively, an undirected
fixed interaction graph and a directed fixed interaction graph. We assume that A is
constant. In this case, using (8.21), (8.19) can be written in a vector form as

[
r̃[k + 1]

v[k + 1]

]
=

[
In − T 2

2 L TIn − T 2

2 L

−TL In − αTL

]

︸ ︷︷ ︸
G

[
r̃[k]

v[k]

]
, (8.37)

where r̃, v, and L are defined as in (8.22). A similar analysis to that for (8.22)
shows that the roots of det(zI2n − G) = 0 (i.e., the eigenvalues of G) satisfy

5 When µi = 0, T > 0 can be chosen arbitrarily.
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z2 −
(

2 + αTµi +
1

2
T 2µi

)
z + 1 + αTµi − 1

2
T 2µi = 0. (8.38)

Similarly, each eigenvalue of −L , µi, corresponds to two eigenvalues of G, denoted
by ρ2i−1 and ρ2i. Note that L has at least one zero eigenvalue. Without loss of
generality, let μ1 = 0, which implies that ρ1 = ρ2 = 1. Therefore, G has at least
two eigenvalues equal to one.

Lemma 8.10. Using (8.21) for (8.19), ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0 as

k → ∞ if and only if G, where G is defined in (8.37), has exactly two eigenvalues

equal to one and all other eigenvalues have modulus smaller than one. In particular,

ri[k] − δi − (pT r̃[0] + kTpT v[0]) → 0 and vi[k] → pT v[0] as k → ∞, where

p ∈ R
n is defined in Lemma 1.1.

Proof: (Sufficiency) Note from (8.38) that if G has exactly two eigenvalues equal
to one (i.e., ρ1 = ρ2 = 1), then −L has exactly one eigenvalue equal to zero. Let
[pT , qT ]T , where p, q ∈ R

n, be a right eigenvector of G associated with the eigen-
value one. It follows that

[
In − T 2

2 L TIn − T 2

2 L

−TL In − αTL

] [
p
q

]
=

[
p
q

]
.

After some computation, it follows that the eigenvalue one has geometric multi-
plicity equal to one even if it has algebraic multiplicity equal to two. It also fol-
lows from Lemma 1.1 that we can choose p = 1n and q = 0n. In addition,
a generalized right eigenvector associated with the eigenvalue one can be chosen
as [0T

n , 1
T 1T

n ]T . Similarly, it can be shown that [0T
n , TpT

n ]T and [pT ,0T
n ]T are,

respectively, a left eigenvector and generalized left eigenvector associated with
the eigenvalue one. Note that G can be written in the Jordan canonical form as
G = PJP −1, where the columns of P , denoted by pk, k = 1, . . . , 2n, can be
chosen to be the right eigenvectors or generalized right eigenvectors of G, the rows
of P −1, denoted by qT

k , k = 1, . . . , 2n, can be chosen to be the left eigenvectors
or generalized left eigenvectors of G such that pT

k qk = 1 and pT
k qℓ = 0, k �= ℓ,

and J is the Jordan block diagonal matrix with the eigenvalues of G being the
diagonal entries. Note that ρ1 = ρ2 = 1 and |ρk | < 1, k = 3, . . . , 2n. Also
note that we can choose p1 = [1T

n ,0T
n ]T , p2 = [0T

n , 1
T 1T

n ]T , q1 = [pT ,0T
n ]T ,

and q2 = [0T
n , TpT

n ]T . Because
[ r̃[k]

v[k]

]
= Gk

[ r̃[0]
v[0]

]
= PJkP −1

[ r̃[0]
v[0]

]
and

limk→∞
∥∥PJkP −1 −

[ 1n 0n

0n
1
T 1n

][
1 k
0 1

][ pT
0

T
n

0
T
n Tp

T

]∥∥ = limk→∞ ‖PJkP −1 −
[
1np

T kT1np
T

0n×n 1np
T

]
‖ = 0, it follows that |r̃i[k] − pT r̃[0] − kTpT v[0]| → 0 and

vi[k] → pT v[0] as k → ∞.
(Necessity) Note that G has at least two eigenvalues equal to one. If r̃i[k] −

pT r̃[0] − kTpT v[0] → 0 and vi[k] → pT v[0] as k → ∞, it follows that F k has
rank two as k → ∞, which in turn implies that Jk has rank two as k → ∞. It
follows that G has exactly two eigenvalues equal to one and all other eigenvalues
have modulus smaller than one.
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We first show necessary and sufficient conditions on α and T such that coordi-
nation is achieved using (8.21) under an undirected interaction graph.

Lemma 8.11. Suppose that the undirected graph G is connected. All eigenvalues of

G, where G is defined in (8.37), are within the unit circle except two eigenvalues

equal to one if and only if α and T are chosen from the set

Qr
△
=

{
(α, T )

∣∣∣∣
T 2

2
< αT < − 2

mini µi

}
.6 (8.39)

Proof: Because the undirected graph G is connected, it follows from Lemma 1.1
that µi < 0, i = 2, . . . , n, by noting that µ1 = 0. Also note that ρ1 = ρ2 = 1. Let
a = −(2+αTμi +

1
2T 2μi) and b = 1+αTμi − 1

2T 2μi. It follows from Lemma 8.5
that for μi < 0, i = 2, . . . , n, the roots of (8.38) are within the unit circle if and
only if all roots of

−T 2μis
2 +
(
T 2μi − 2αTμi

)
s + 4 + 2αTμi = 0, (8.40)

are in the open left half plane. Because −T 2μi > 0, the roots of (8.40) are always
in the open left half plane if and only if 4 + 2αTμi > 0 and T 2μi − 2αTμi > 0,
which implies that T 2

2 < αT < − 2
μi

, i = 2, . . . , n. Combining the above arguments
proves the lemma.

Theorem 8.9. Suppose that the undirected graph G is connected. Let p ∈ R
n be

defined in Lemma 1.1. Using (8.21), ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0 as

k → ∞ if and only if α and T are chosen from Qr, where Qr is defined by (8.39). In

particular, ri[k] − δi − (pT r̃[0] + kTpT v[0]) → 0 and vi[k] → pT v[0] as k → ∞.

Proof: The statement follows directly from Lemmas 8.10 and 8.11.
We next show necessary and sufficient conditions on α and T such that coordina-

tion is achieved using (8.21) under a directed interaction graph. Note again that the
eigenvalues of L might be complex for directed graphs, which makes the analysis
more challenging.

Lemma 8.12. Suppose that Re(μi) < 0. The roots of (8.38) are within the unit

circle if and only if α
T > 1

2 and Bi < 0, where

Bi
△
=

(
4Re(μi)

|μi|2T 2
+

2α

T

)(
1 − 2α

T

)2

+
16Im(μi)

2

|μi|4T 4
. (8.41)

Proof: As in the proof of Lemma 8.11, the roots of (8.38) are within the unit circle
if and only if the roots of (8.40) are in the open left half plane. Letting s1 and s2

denote the roots of (8.40), it follows that

s1 + s2 = 1 − 2
α

T
(8.42)

6 Note that Qr is nonempty.
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and

s1s2 = − 4

μiT 2
− 2

α

T
. (8.43)

Noting that (8.42) implies that Im(s1) + Im(s2) = 0, we define s1 = a1 + ιb and
s2 = a2 − ιb. Note that s1 and s2 have negative real parts if and only if a1 +a2 < 0
and a1a2 > 0. Note from (8.42) that a1 + a2 < 0 is equivalent to α

T > 1
2 . We next

show conditions on α and T such that a1a2 > 0 holds. Substituting the definitions
of s1 and s2 into (8.43) gives a1a2+b2+ι(a2 −a1)b = − 4

μiT 2 −2 α
T , which implies

(a2 − a1)b =
4Im(µi)

|µi|2T 2
, (8.44)

a1a2 + b2 =
−4Re(µi)

|µi|2T 2
− 2

α

T
. (8.45)

It follows from (8.44) that b = 4Im(μi)
|μi |2T 2(a2−a1)

. Consider also the fact that (a2 −
a1)

2 = (a2 +a1)
2 − 4a1a2 = (1 − 2 α

T )2 − 4a1a2. After some manipulation, (8.45)
can be written as

4(a1a2)
2 + Aia1a2 − Bi = 0, (8.46)

where Ai
△
= 4( 4Re(μi)

|μi |2T 2 + 2 α
T ) − (1 − 2 α

T )2 and Bi is defined by (8.41). It follows

that A2
i +16Bi = [4( 4Re(μi)

|μi |2T 2 +2 α
T )+ (1 − 2 α

T )2]2 + 16Im(μi)
2

|μi |4T 4 ≥ 0, which implies
that (8.46) has two real roots. Therefore, the necessary and sufficient conditions

for a1a2 > 0 are Bi < 0 and Ai < 0. Because 16Im(μi)
2

|μi |4T 4 > 0, if Bi < 0 then

4( 4Re(μi)
|μi |2T 2 + 2 α

T ) < 0, which implies Ai < 0 as well. Combining the previous
arguments proves the lemma.

Lemma 8.13. Suppose that the directed graph G has a directed spanning tree. There

exist positive α and T such that Qc is nonempty, where

Qc
△
=

⋂

∀Re(μi)<0

{
(α, T )

∣∣∣∣
1

2
<

α

T
, Bi < 0

}
, (8.47)

where Bi is defined by (8.41). All eigenvalues of G, where G is defined in (8.37),
are within the unit circle except two eigenvalues equal to one if and only if α and T
are chosen from Qc.

Proof: For the first statement, we let α > T > 0, which implies that α
T > 1

2 holds
apparently. Note that α > T implies that (T − 2α)2 > α2. Therefore, a sufficient
condition for Bi < 0 is

αT < − 8Im(µi)
2

|µi|4α2
− 2Re(µi)

|µi|2 . (8.48)
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To ensure that there are feasible α > 0 and T > 0 satisfying (8.48), we first need to
ensure that the right side of (8.48) is positive, which requires that α > 2|Im(μi)|

|μi |
√

−Re(μi)

for all Re(µi) < 0. It also follows from (8.48) that T < − 8Im(μi)
2

|μi |4α3 − 2Re(μi)
|μi |2α for

all Re(µi) < 0. Therefore, (8.47) is ensured to be nonempty if α and T are chosen

from, respectively, αc
△
=
⋂

∀Re(μi)<0{α|α > 2|Im(μi)|
|μi |

√
−Re(μi)

} and

Tc
△
=

⋂

∀Re(μi)<0

{
T

∣∣∣∣T < − 8Im(µi)
2

|µi|4α3
− 2Re(µi)

|µi|2α and 0 < T < α

}
.

It is straightforward to see that both αc and Tc are nonempty. Combining the above
arguments shows that Qc is nonempty.

For the second statement, note that if the directed graph G has a directed spanning
tree, it follows from Lemma 1.1 that Re(µi) < 0, i = 2, . . . , n, by noting that
µ1 = 0. Also note that ρ1 = 1 and ρ2 = 1. When Re(μi) < 0, it follows from
Lemma 8.12 that the roots of (8.38) are within the unit circle if and only if α

T > 1
2

and Bi < 0. It thus follows that all eigenvalues of G are within the unit circle except
two eigenvalues equal to one if and only if α and T are chosen from Qc.

Remark 8.10 From the proof of the first statement of Lemma 8.13, an easy way to
choose α and T is to let α > T . Then α is chosen from αc and T is chosen from Tc,
where αc and Tc are defined in the proof of Lemma 8.13.

Theorem 8.11. Suppose that the directed graph G has a directed spanning tree.

Using (8.21) for (8.19), ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0 as k → ∞ if

and only if α and T are chosen from Qc, where Qc is defined by (8.47). In particular,

ri[k] − δi − (pT r̃[0] + kTpT v[0]) → 0 and vi[k] → pT v[0] as k → ∞.

Proof: The proof follows directly from Lemmas 8.11 and 8.13.

8.2.4 Simulation

In this section, we present simulation results to validate the theoretical results de-
rived in Sects. 8.2.2 and 8.2.3. We consider a team of four agents with the directed
graph G shown by Fig. 8.4. Note that G has a directed spanning tree. The nonsym-
metric Laplacian matrix associated with G is chosen as

L =

⎡
⎢⎢⎣

1 −1 0 0
0 1.5 −1.5 0

−2 0 2 0
−2.5 0 0 2.5

⎤
⎥⎥⎦ .

It can be computed that for L , p = [0.4615, 0.3077, 0.2308, 0]T . Here for simplic-
ity, we have chosen δi = 0, i = 1, . . . , 4, which implies that Δij = 0.
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Fig. 8.4 Directed graph G for four agents. An arrow from j to i denotes that agent j is a neighbor
of agent i

Fig. 8.5 Convergence results using (8.20) with α = 4 and T = 0.4 s

Fig. 8.6 Convergence results using (8.20) with α = 1.2 and T = 0.5 s

For the coordination algorithm (8.20), let ri[0] = 0.5i, i = 1, . . . , 4, v1[0] =
−0.1, v2[0] = 0, v3[0] = 0.1, and v4[0] = 0. Figure 8.5 shows the convergence re-
sult using (8.20) with α = 4 and T = 0.4 s. Note that the conditions in Theorem 8.7
are satisfied. It can be seen that coordination is achieved with the final equilibrium
for ri[k] being 0.8835, which is equal to δi + pT r̃[0] + ( 1

α − T
2 )pT v[0] as stated

in Theorem 8.7. Figure 8.6 shows the convergence result using (8.20) with α = 1.2
and T = 0.5 s. Note that coordination is not achieved in this case.
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Fig. 8.7 Convergence results using (8.21) with α = 0.6 and T = 0.02 s

Fig. 8.8 Convergence results using (8.21) with α = 0.6 and T = 0.5 s

For the coordination algorithm (8.21), let ri[0] = i − 1 and vi[0] = 0.2(i − 1),
i = 1, . . . , 4. Figure 8.7 shows the convergence result using (8.21) with α = 0.6 and
T = 0.02 s. Note that the conditions in Theorem 8.13 are satisfied. It can be seen that
coordination is achieved with the final equilibrium for vi[k] being 0.1538, which is
equal to pT v[0] as stated in Theorem 8.13. Figure 8.8 shows the convergence result
using (8.21) with α = 0.6 and T = 0.5 s. Note that coordination is not achieved in
this case.

8.3 Sampled-data Coordination for Double-integrator Dynamics

Under Switching Interaction

In this section, we study (8.20) and (8.21) under directed switching interaction. Note
that there are a finite number of possible directed graphs for n agents. We assume
that for each possible directed graph, there are a finite number of adjacency matrices
associated with the directed graph. Therefore, all nonzero aij [k] in (8.20) and (8.21)
are chosen from a finite set.
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8.3.1 Convergence Analysis of the Sampled-data Coordination

Algorithm with Absolute Damping

In this subsection, we analyze (8.20) under a directed switching interaction graph.
Here A [k] is switching. In this case, using (8.20), (8.19) can be written in a vector
form as [

r̃[k + 1]
v[k + 1]

]
=

[
In − T 2

2 L [k] (T − αT 2

2 )In

−TL [k] (1 − αT )In

]

︸ ︷︷ ︸
Fk

[
r̃[k]
v[k]

]
, (8.49)

where r̃ and v are defined as in (8.22), and L [k] is the nonsymmetric Laplacian
matrix associated with A [k] and hence G [k]. Note that the solution of (8.49) can be
written as [

r̃[k + 1]
v[k + 1]

]
=

[
Bk Ck

Dk Ek

] [
r̃[0]
v[0]

]
, (8.50)

where
[

Bk Ck

Dk Ek

] △
=
∏k

i=0 Fi. Therefore, Bk, Ck, Dk, and Ek satisfy

[
Bk

Dk

]
= Fk

[
Bk−1

Dk−1

]
(8.51)

and [
Ck

Ek

]
= Fk

[
Ck−1

Ek−1

]
. (8.52)

Lemma 8.14. Assume that αT �= 2. Using (8.20) for (8.19), ri[k] − rj [k] → Δij

and vi[k] → 0 as k → ∞ if limk→∞ Bk exists and all rows of limk→∞ Bk are the

same for arbitrary initial conditions.

Proof: When limk→∞ Bk exists and all rows of limk→∞ Bk are the same for arbi-
trary initial conditions, it follows that limk→∞ Ck exists and all rows of limk→∞ Ck

are the same for arbitrary initial conditions as well because (8.51) and (8.52) have
the same structure. It then follows from (8.51) that

Bk =

(
In − T 2

2
L [k]

)
Bk−1 +

(
T − αT 2

2

)
Dk−1. (8.53)

Because L [k]1n = 0n and all rows of limk→∞ Bk−1 are the same, it follows that
limk→∞ L [k]Bk−1 = 0n×n. It thus follows that

lim
k→∞

(
T − αT 2

2

)
Dk−1 = lim

k→∞
(Bk − Bk−1) = 0n×n.

Because αT �= 2, i.e., T − αT 2

2 �= 0, it follows that limk→∞ Dk = 0n×n for arbi-
trary initial conditions. Similarly, it follows that limk→∞ Ek = 0n×n for arbitrary
initial conditions because (8.51) and (8.52) have the same structure. Combining the
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previous arguments with (8.50) shows that r̃i[k] − r̃j [k] → 0 and vi[k] → 0 as
k → ∞, which implies that ri[k] − rj [k] → Δij and vi[k] → 0 as k → ∞.

Note from (8.53) that

Bk−1 =

(
In − T 2

2
L [k − 1]

)
Bk−2 +

(
T − αT 2

2

)
Dk−2. (8.54)

It follows from (8.51) that

Dk−1 = −TL [k − 1]Bk−2 + (1 − αT )Dk−2. (8.55)

Therefore, it follows from (8.53) and (8.54) that

Bk − (1 − αT )Bk−1 =

(
In − T 2

2
L [k]

)
Bk−1

− (1 − αT )

(
In − T 2

2
L [k − 1]

)
Bk−2

+

(
T − αT 2

2

)[
Dk−1 − (1 − αT )Dk−2

]
. (8.56)

By substituting (8.55) into (8.56), (8.56) can be simplified as

Bk = Φk1Bk−1 + Φk2Bk−2, (8.57)

where

Φk1
△
= (2 − αT )In − T 2

2
L [k] (8.58)

and

Φk2
△
= (αT − 1)In − T 2

2
L [k − 1]. (8.59)

We next study the conditions on G [k], T , and α such that limk→∞ Bk exists and all
rows of limk→∞ Bk are the same for arbitrary initial conditions. Before moving on,
we need the following lemma.

Lemma 8.15. Suppose that a nonnegative matrix A ∈ Rn×n has the same row sum.

Let A
△
=
[

1 1
1 1

]
⊗ A. If the directed graph of A has a directed spanning tree, the

directed graph of A also has a directed spanning tree.

Proof: Note that the eigenvalues of
[

1 1
1 1

]
are λ1 = 0 and λ2 = 2. Let μj be

the jth eigenvalue of A. Because A =
[

1 1
1 1

]
⊗ A, it follows from Lemma 1.21

that the eigenvalues of A are λiμj , i = 1, 2, j = 1, . . . , n. It thus follows that
ρ(A) = 2ρ(A). If the directed graph of A has a directed spanning tree, it follows
from Lemma 1.10 that A has a simple eigenvalue equal to ρ(A), which implies
that A also has a simple eigenvalue equal to ρ(A). Therefore, it follows again from
Lemma 1.10 that the directed graph of A has a directed spanning tree.
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Lemma 8.16. Let Φk1 and Φk2 be defined by, respectively, (8.58) and (8.59). There

exist positive α and T such that both Φk1 and Φk2 are nonnegative matrices with

positive diagonal entries. If the positive α and T are chosen such that both Φk1

and Φk2 are nonnegative with positive diagonal entries, and there exists a positive

integer κ such that for any nonnegative integer k0, the union of G [k] across k ∈
[k0, k0 + κ] has a directed spanning tree, the iteration (8.57) is stable for arbitrary

initial conditions (i.e., limk→∞ Bk exists) and all rows of limk→∞ Bk are the same.

Proof: For the first statement, consider αT = 3
2 . It follows that if T 2 < mini

1
ℓii[k] ,

k = 0, 1, . . . , where ℓii[k] is the ith diagonal entry of L [k], then both Φk1 and Φk2

are nonnegative matrices with positive diagonal entries.
For the second statement, rewrite (8.57) as

[
Bk

Bk−1

]
=

[
Φk1 Φk2

In 0n×n

]

︸ ︷︷ ︸
Hk

[
Bk−1

Bk−2

]
. (8.60)

Note that Φk11n = 2 − αT , Φk21n = αT − 1, and (Φk1 + Φk2)1n = 1. When the
positive α and T are chosen such that both Φk1 and Φk2 are nonnegative matrices
with positive diagonal entries, it follows that Hk is a row-stochastic matrix. It then
follows that Hk+1Hk =

[ Φ(k+1)1Φk1+Φ(k+1)2 Φ(k+1)1Φk2

Φk1 Φk2

]
is also a row-stochastic

matrix because the product of row-stochastic matrices is also a row-stochastic ma-
trix. In addition, the diagonal entries of Hk+1Hk are positive because both Φk1 and
Φk2 are nonnegative matrices with positive diagonal entries. Similarly, for any pos-
itive integer m and nonnegative integer ℓ0, the matrix product

∏m

i=0 Hℓ0+i is also
a row-stochastic matrix with positive diagonal entries. From Lemma 1.8, we have
that

Hk+1Hk ≥
[

γ1(Φ(k+1)1 + Φk1) + Φ(k+1)2 γ2(Φ(k+1)1 + Φk2)

Φk1 Φk2

]

≥ γ

[
Φ(k+1)1 + Φk1 + Φ(k+1)2 Φ(k+1)1 + Φk2

Φk1 Φk2

]

for some positive γ that is determined by γ1, γ2, Φk1, Φk2, Φ(k+1)1, and Φ(k+1)2,
where γ1 is determined by Φ(k+1)1 and Φk1, and γ2 is determined by Φ(k+1)1 and
Φk2. Note also that the directed graph of Φ(k−1)1 is the same as that of Φk2. We can
thus replace Φk2 with Φ(k−1)1 without changing the directed graph of Hk and vice
versa. Therefore, it follows from the definitions of Φk1 and Φk2 that Hk+1Hk ≥
γ̂
[ Φ(k+1)1+Φk1 Φ(k+1)1+Φ(k−1)1

Φk1 Φ(k−1)1

]
for some positive γ̂ that is determined by Φk1, Φk2,

Φ(k+1)1, Φ(k+1)2, and γ. Similarly,
∏m

i=0 Hℓ0+i satisfies

m∏

i=0

Hℓ0+i ≥ γ̃

[ ∑ℓ0+m

i=ℓ0
Φi1

∑ℓ0+m

i=ℓ0+1 Φi1 + Φ(ℓ0−1)1
∑ℓ0+m−1

i=ℓ0
Φi1

∑ℓ0+m−1
i=ℓ0+1 Φi1 + Φ(ℓ0−1)1

]
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≥ γ̃

[
1 1
1 1

]
⊗

ℓ0+m−1∑

i=ℓ0+1

Φi1 (8.61)

for some positive γ̃.
Because there exists a positive integer κ such that for any nonnegative integer

k0, the union of G [k] across k ∈ [k0, k0 + κ] has a directed spanning tree, it
follows that the directed graph of

∑k0+κ
i=k0

Φi1 also has a directed spanning tree.

Note from (8.61) that
∏κ+2

i=0 Hk0−1+i ≥ γ̃
[

1 1
1 1

]
⊗ ∑k0+κ

i=k0
Φi1. It follows from

Lemma 8.15 that
[

1 1
1 1

]
⊗
∑k0+κ

i=k0
Φi1 has a directed spanning tree, which implies that

the directed graph of
∏κ+2

i=0 Hk0−1+i also has a directed spanning tree. Also note
that
∏κ+2

i=0 Hk0−1+i is a row-stochastic matrix with positive diagonal entries. It fol-
lows from Lemma 1.9 that

∏κ+2
i=0 Hk0−1+i is SIA. It then follows from Lemma 1.12

that limk→∞
∏k

i=2 Hi = 12nyT for some column vector y ∈ R
2n. Therefore, it

follows from (8.60) that limk→∞ Bk exists and all rows of limk→∞ Bk are the
same.

Theorem 8.12. Suppose that there exists a positive integer κ such that for any non-

negative integer k0, the union of G [k] across k ∈ [k0, k0 + κ] has a directed span-

ning tree. Let Φk1 and Φk2 be defined by, respectively, (8.58) and (8.59). If the pos-

itive α and T are chosen such that both Φk1 and Φk2 are nonnegative with positive

diagonal entries, ri[k] − rj [k] → Δij and vi[k] → 0 as k → ∞.

Proof: It follows from Lemma 8.16 that limk→∞ Bk exists and all rows of
limk→∞ Bk are the same under the condition of the theorem. Because Φk1 is non-
negative with positive diagonal entries, it follows that αT < 2 (and hence αT �= 2).
It then follows from Lemma 8.14 that ri[k] − rj [k] → Δij and vi[k] → 0 as k → ∞
under the condition of the theorem.

8.3.2 Convergence Analysis of the Sampled-data Coordination

Algorithm with Relative Damping

In this subsection, we analyze (8.21) under a directed switching interaction graph.
Here A [k] is switching. In this case, using (8.21), (8.19) can be written in a vector
form as [

r̃[k + 1]
v[k + 1]

]
=

[
In − T2

2 L [k] TIn − T2

2 L [k]

−TL [k] In −αTL [k]

]

︸ ︷︷ ︸
Gk

[
r̃[k]
v[k]

]
, (8.62)

where r̃ and v are defined as in (8.22), and L [k] is defined as in (8.49). Note that
Gk can be written as
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Gk =

[
(1 − T )In − T 2

2 L [k] TIn − T 2

2 L [k]√
TIn − TL [k] (1 −

√
T )In − αTL [k]

]

︸ ︷︷ ︸
Rk

+

[
TIn 0n×n

−
√

TIn

√
TIn

]

︸ ︷︷ ︸
S

. (8.63)

In the following, we study the property of the matrix product
∏k

i=0 Gi defined as

k∏

i=0

Gi
△
=

[
G̃k1 G̃k2

G̃k3 G̃k4

]
, (8.64)

where G̃ki ∈ R
n×n, i = 1, . . . , 4.

Lemma 8.17. Suppose that the directed graph G [k], k = 0, 1, . . . , has a directed

spanning tree. There exist positive α and T such that the following two conditions

are satisfied:

1. (1 − T )In − T 2

2 L [k] and (1 −
√

T )In − αTL [k], k = 0, 1, . . . , are nonnegative

matrices with positive diagonal entries, and TIn − T 2

2 L [k] and
√

TIn − TL [k],
k = 0, 1, . . . , are nonnegative matrices.

2. ‖S‖∞ < 1, where S is defined in (8.63).

In addition, if the positive α and T are chosen such that Conditions 1 and 2 are

satisfied, the matrix product
∏k

i=0 Gi has the property that all rows of each G̃ki,

i = 1, . . . , 4, become the same as k → ∞.

Proof: For the first statement, it can be noted that when T is sufficiently small,
Condition 1 is satisfied. Similarly, when 0 < T < 1

4 , it follows that ‖S‖∞ < 1.
Therefore, there exist positive α and T such that Conditions 1 and 2 are satisfied.

For the second statement, it is assumed that α and T are chosen such that Con-
ditions 1 and 2 are satisfied. It can be computed that Rk, k = 0, 1, . . . , are row-
stochastic matrices with positive diagonal entries when Condition 1 is satisfied. Note
that

k∏

i=0

Gi =

k∏

i=0

(Ri + S). (8.65)

It follows from the binomial expansion that
∏k

i=0 Gi =
∑2k+1

j=1 Ĝj , where Ĝj is the
product of k + 1 matrices by choosing either Ri or S in (Ri + S) for i = 0, . . . , k.
As k → ∞, Ĝj takes the following three forms:

Case I. Ĝj is constructed from an infinite number of S and a finite number of Ri.
In this case, it follows that as k → ∞, ‖Ĝj ‖ ∞ ≤ (

∏m
i=0 ‖Rℓi ‖ ∞)‖S‖∞

∞ =
‖S‖∞

∞ = 0, where we have used the fact that ‖Rℓi ‖ ∞ = 1 because Rℓi is a
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row-stochastic matrix and ‖S‖∞ < 1 as shown in Condition 2. Therefore, Ĝj

approaches 02n×2n as k → ∞.
Case II. Ĝj is constructed from an infinite number of S and an infinite number

of Ri. A similar analysis to that in Case I shows that Ĝj approaches 02n×2n as
k → ∞.

Case III. Ĝj is constructed from a finite number of S and an infinite number of Ri.
In this case, as k → ∞, Ĝj can be written as

Ĝj = M
∏

j

Rℓj

︸ ︷︷ ︸
J

N,

where J is the product of an infinite number of Rℓj , j = 0, 1, . . . , and both M
and N are products of a finite number of matrices by choosing either Ri, i �= ℓj ,
or S from (Ri + S).7 It follows from Lemma 8.15 that

[
1 1
1 1

]
⊗ {(1 − T )In −

T 2

2 L [k]} has a directed spanning tree if the directed graph of (1 − T )In −
T 2

2 L [k] has a directed spanning tree. Note that the directed graph of Rk is the

same as that of
[

1 1
1 1

]
⊗ (1 − T )In − T 2

2 L [k] because the directed graphs of all
four matrices in Condition 1 of Lemma 8.17 are the same. Because G [k] has a
directed spanning tree, so does (1 − T )In − T 2

2 L [k], which further implies that
the directed graph of Rk also has a directed spanning tree. Also note that Rk,
k = 0, 1, . . . , are row-stochastic matrices with positive diagonal entries. It then
follows from Lemma 1.9 that Rℓj is SIA. Therefore, it follows from Lemma 1.12
that all rows of J become the same as k → ∞. By writing

J =

[
J1 J2

J3 J4

]
, (8.66)

where Ji ∈ R
n×n, i = 1, . . . , 4, it follows from the fact that all rows of J be-

come the same as k → ∞ that all rows of Ji, i = 1, . . . , 4, also become the same

as k → ∞. It then follows that RiJ =
[ (1−T )In − T2

2 L [i] TIn − T2

2 L [i]√
TIn −TL [i] (1−

√
T )In −αTL [i]

]
J

approaches
[ (1−T )In TIn√

TIn (1−
√

T )In

]
J as k → ∞, where we have used the fact that

L [i]Jℓ approaches 0n×n, ℓ = 1, . . . , 4, as k → ∞. By separating RiJ into four
n × n submatrices as that of J in (8.66), all rows of each of the four n × n subma-
trices become the same as k → ∞. The same property also applies to the matrix
products JRi, SJ , and JS. A similar analysis shows that the same property also
holds for the matrix product formed by pre-multiplying or post-multiplying J by
a finite number of Ri and/or S. Therefore, by separating Ĝj into four n × n sub-
matrices as those of J in (8.66), it follows that all rows of each of the four n × n
submatrices become the same as k → ∞. Combining the previous arguments
shows that as k → ∞, all rows of G̃ki, i = 1, . . . , 4, become the same.

7 Here M and N are I2n if neither Ri nor S is chosen.
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Theorem 8.13. Suppose that the directed graph G [k], k = 0, 1, . . . , has a directed

spanning tree. Using (8.21) for (8.19), ri[k] − rj [k] → Δij [k] and vi[k] − vj [k] → 0
as k → ∞ when the positive α and T are chosen such that Conditions 1 and 2 in

Lemma 8.17 are satisfied.

Proof: Note that the solution of (8.62) can be written as

[
r̃[k + 1]

v[k + 1]

]
=

k∏

i=0

Gi

[
r̃[0]

v[0]

]
. (8.67)

When the directed graph G [k], k = 0, 1, . . . , has a directed spanning tree, and
Conditions 1 and 2 in Lemma 8.17 are satisfied, it follows that all rows of G̃ki, i =
1, . . . , 4, become the same as k → ∞. It thus follows from (8.64) and (8.67) that
r̃i[k] − r̃j [k] → 0 and vi[k] − vj [k] → 0 as k → ∞, which implies that ri[k] −
rj [k] → Δij and vi[k] − vj [k] → 0 as k → ∞.

Remark 8.14 Note that Theorem 8.12 requires that the interaction graph have a
directed spanning tree jointly to guarantee coordination while Theorem 8.13 re-
quires that the interaction graph have a directed spanning tree at each time interval to
guarantee coordination. The different connectivity requirement for Theorems 8.12
and 8.13 is caused by different damping terms. For the coordination algorithm with
an absolute damping term, when the sampling period and the damping gain are
chosen properly, all agents always have a zero final velocity irrespective of the in-
teraction graph. However, for the coordination algorithm with a relative damping
term, the agents in general do not have a zero final velocity. From this point of view,
it is not surprising to see that the connectivity requirement in Theorem 8.13 corre-
sponding to the relative damping case is more stringent than that in Theorem 8.12
corresponding to the absolute damping case.

Remark 8.15 In Theorem 8.12 (respectively, Theorem 8.13), it is assumed that the
sampling period is uniform. When the sampling periods are non-uniform, we can
always find corresponding damping gains such that the conditions in Theorem 8.12
(respectively, Theorem 8.13) are satisfied. Therefore, similar results can be obtained
in the presence of non-uniform sampling periods if the conditions in Theorem 8.12
(respectively, Theorem 8.13) are satisfied.

8.3.3 Simulation

In this subsection, we present simulation results to illustrate the theoretical results
derived in Sects. 8.3.1 and 8.3.2. For both coordination algorithms (8.20) and (8.21),
we consider a team of four agents. Here for simplicity, we have chosen δi = 0, i =
1, . . . , 4, which implies that Δij = 0.

For (8.20), let ri[0] = 0.5i, i = 1, . . . , 4, v1[0] = −1, v2[0] = 0, v3[0] = 1, and
v4[0] = 0. The directed graph G [k] switches from a set {G(1), G(2), G(3)} as shown
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Fig. 8.9 Directed graphs G(1), G(2), and G(3) and their union. An arrow from j to i denotes that
agent j is a neighbor of agent i

Fig. 8.10 Convergence result using (8.20) when G [k] switches from a set {G(1), G(2), G(3)},
T = 0.2 s, and α = 6

in Fig. 8.9(a)–(c). While G(i), i = 1, 2, 3, does not have a directed spanning tree,
their union as shown in Fig. 8.9(d) has a directed spanning tree. We let aij [k] = 1 if
(j, i) ∈ E [k] and aij [k] = 0 otherwise. We choose T = 0.2 s and α = 6. It can be
computed that the condition in Theorem 8.12 is satisfied. Figures 8.10(a) and 8.10(b)
show, respectively, the positions and velocities of the four agents using (8.20) when
G [k] switches from G(1) to G(2) and then to G(3) every sampling period and the same
process then repeats. It can be seen that coordination is achieved on positions with
a zero final velocity as stated in Theorem 8.12. Note that the velocities of the four
agents demonstrate large oscillations as shown in Fig. 8.10(b) because G [k] does
not have a directed spanning tree at each time sampling period and switches very
fast.

For (8.21), ri[0] and vi[0] are chosen the same as for (8.20). The directed graph
G [k] switches from a set {G(4), G(5), G(6)} as shown in Fig. 8.11. Note that each
directed graph G(i), i = 4, 5, 6, has a directed spanning tree. Here again we let
aij [k] = 1 if (j, i) ∈ E [k] and aij [k] = 0 otherwise. We choose T = 0.1 s and
α = 1. It can be computed that the condition in Theorem 8.13 is satisfied. Fig-
ures 8.12(a) and 8.12(b) show, respectively, the positions and velocities of the four
agents using (8.21) when G [k] switches from G(4) to G(5) and then to G(6) every
sampling period and the same process then repeats. It can be seen that coordination
is achieved on positions with a constant final velocity as stated in Theorem 8.13.
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Fig. 8.11 Directed graphs G(4), G(5), and G(6). An arrow from j to i denotes that agent j is a
neighbor of agent i

Fig. 8.12 Convergence result using (8.21) when G [k] switches from a set {G(4), G(5), G(6)},
T = 0.1 s, and α = 1

Fig. 8.13 Convergence result using (8.21) when G [k] switches from a set {G(1), G(2), G(3)},
T = 0.1 s, and α = 1

We also show an example to illustrate that using (8.21) for (8.19), coordination
is not necessarily achieved even if the interaction graph has a directed spanning tree
jointly, and α and T satisfy Conditions 1 and 2 in Lemma 8.17. The initial posi-
tions and velocities, α, and T are chosen to be the same as those for Figs. 8.12(a)
and 8.12(b). Figures 8.13(a) and 8.13(b) show, respectively, the positions and veloc-
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ities of the four agents using (8.21) when G [k] switches from G(1) to G(2) then to
G(3) every sampling period and the same process then repeats. It can be seen that co-
ordination is not achieved even when the interaction graph has a directed spanning
tree jointly and α and T satisfy Conditions 1 and 2 in Lemma 8.17.

8.4 Notes

The results in this chapter are based mainly on [32, 33, 36, 44, 45, 249]. For further
results on distributed multi-agent coordination in a sampled-data setting, see [99,
101, 116, 196, 328]. In particular, [116] shows conditions on sampled-data coordi-
nation under an undirected interaction graph through average-energy-like Lyapunov
functions. Considering the fact that communication among agents might be unsta-
ble, the authors in [196] further study the case of stochastic undirected interaction.
However, the stability condition derived in [196] is stringent and difficult to deter-
mine. In [99, 101], sampled-data coordination is studied for agents with double-
integrator dynamics in both synchronous and asynchronous cases. In particular, the
conditions are derived by using linear matrix inequalities. In [328], the mean-square
consentability problem is studied for agents with double-integrator dynamics in a
sampled-data setting with a stochastically switching interaction graph.



Chapter 9

Optimality Aspect

This chapter considers the optimality aspect in distributed multi-agent coordina-
tion. We study optimal linear coordination algorithms for multi-agent systems
with single-integrator dynamics in both continuous-time and discrete-time set-
tings from a linear quadratic regulator perspective. We propose two global cost
functions, namely, interaction-free and interaction-related cost functions. With the
interaction-free cost function, we derive the optimal state feedback gain matrix in
both continuous-time and discrete-time settings. It is shown that the optimal gain
matrix is a nonsymmetric Laplacian matrix corresponding to a complete directed
graph. In addition, we show that any symmetric Laplacian matrix is inverse optimal
with respect to a properly chosen cost function. With the interaction-related cost
function, we derive the optimal scaling factor for a prespecified symmetric Lapla-
cian matrix associated with an undirected interaction graph in both continuous-time
and discrete-time settings. Illustrative examples are given as a proof of concept.

9.1 Problem Statement

Among various studies of distributed linear coordination algorithms, it is natural to
ask these questions: Is there an optimal linear coordination algorithm under a given
cost function? How to find the optimal linear coordination algorithm? The purpose
of this chapter is to study the optimal linear coordination algorithms for agents with
single-integrator dynamics from a linear quadratic regulator (LQR) perspective. In-
stead of studying locally optimal algorithms, we focus on globally optimal algo-
rithms.

The contributions of this chapter are threefold. First, we mathematically prove
the conditions under which the square root of a nonsymmetric Laplacian matrix
is still a nonsymmetric Laplacian matrix. Second, we explicitly derive the optimal
state feedback gain matrix under a given global cost function from an LQR per-
spective and show that the optimal state feedback gain matrix is a nonsymmetric
Laplacian matrix corresponding to a complete directed graph. Third, we derive the
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optimal scaling factor for a prespecified symmetric Laplacian matrix associated with
an undirected interaction graph. Although it might be intuitively true that a global
optimization problem in the context of multi-agent coordination normally requires
that each agent have full knowledge of all other agents, it is nontrivial to verify this
fact from a theoretical perspective. In particular, for the linear coordination algo-
rithms, it is not clear why the optimal state feedback gain matrix derived from the
standard LQR solution is a nonsymmetric Laplacian matrix and why the nonsym-
metric Laplacian matrix corresponds to a complete directed graph. In other words,
our focus here is not to repeat the standard LQR procedure but to provide a theoreti-
cal explanation. We first propose two global cost functions, namely, interaction-free
and interaction-related cost functions, in both continuous-time and discrete-time set-
tings. With the interaction-free cost function, we derive the optimal state feedback
gain matrix in both continuous-time and discrete-time settings. It is shown that the
optimal state feedback gain matrix is a nonsymmetric Laplacian matrix correspond-
ing to a complete directed graph. In addition, we show that any symmetric Laplacian
matrix is inverse optimal with respect to a properly chosen cost function. With the
interaction-related cost function, we derive the optimal scaling factor for a prespec-
ified symmetric Laplacian matrix associated with an undirected interaction graph in
both continuous-time and discrete-time settings.

In the continuous-time setting, consider n agents with single-integrator dynam-
ics given by (3.1). In the discrete-time setting, consider n agents with discretized
dynamics of (3.1) given by (8.3). Define Δij = δi − δj , where δi ∈ R

m is constant.
Here Δij denotes the desired relative position deviation between agents i and j.
In the continuous-time setting, coordination is achieved for the n agents if for all
ri(0) and i, j = 1, . . . , n, ri(t) − rj(t) → Δij as t → ∞. In the discrete-time
setting, coordination is achieved for the n agents if for all ri[0] and i, j = 1, . . . , n,
ri[k] − rj [k] → Δij as k → ∞. In the remainder of the chapter, we assume that
the agents are in a one-dimensional space for simplicity. However, all results here-
after are still valid for any high-dimensional space by use of the properties of the
Kronecker product.

In the continuous-time setting, similar to the cost function used in optimal control
problems for systems with linear differential equations, we propose the following
two coordination cost functions for (3.1) as

Jfc =

∫ ∞

0

{
n∑

i=1

i−1∑

j=1

cij

[
ri(t) − rj(t) − Δij

]2
+

n∑

i=1

ϑi

[
ui(t)

]2
}

dt, (9.1)

where cij ≥ 0 and ϑi > 0, and

Jrc =

∫ ∞

0

{
n∑

i=1

i−1∑

j=1

aij

[
ri(t) − rj(t) − Δij

]2
+

n∑

i=1

[
ui(t)

]2
}

dt, (9.2)

where aij is the (i, j)th entry of the adjacency matrix A associated with the graph

G
△
= (V , E ) characterizing the interaction among the n agents. In (9.1), both
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cij ≥ 0 and ϑi > 0 can be chosen freely. Therefore, Jfc is called the interaction-free

cost function. In contrast, (9.2) depends on the adjacency matrix A and hence the
graph G . Therefore, Jrc is called the interaction-related cost function. The motiva-
tion behind (9.1) and (9.2) is to weigh both the coordination errors ri(t)−rj(t)−Δij

and the control effort ui. The corresponding optimization problems can be written
as

min
ui(t)

Jfc, subject to (3.1) (9.3)

min
β

Jrc, subject to (3.1) and ui(t) = −
n∑

j=1

βaij

[
ri(t) − rj(t) − Δij

]
. (9.4)

In the discrete-time setting, we propose the following interaction-free and inte-
raction-related cost functions for (8.3) as

Jfd =

∞∑

k=0

n∑

i=1

i−1∑

j=1

cij

{
ri[k] − rj [k] − Δij

}2
+

∞∑

k=0

n∑

i=1

ϑi

(
ui[k]

)2
, (9.5)

where cij ≥ 0 and ϑi > 0, and

Jrd =
∞∑

k=0

n∑

i=1

i−1∑

j=1

aij

{
ri[k] − rj [k] − Δij

}2
+

∞∑

k=0

n∑

i=1

(
ui[k]

)2
, (9.6)

where aij is defined as in (9.4). The corresponding optimization problems can be
written as

min
ui[k]

Jfd subject to (8.3) (9.7)

min
β

Jrd subject to (8.3) and ui[k] = −
n∑

j=1

βaij

(
ri[k] − rj [k] − Δij

)
. (9.8)

9.2 Optimal Linear Coordination Algorithms in a Continuous-

time Setting from a Linear Quadratic Regulator

Perspective

In this section, we derive the optimal linear coordination algorithms in a continuous-
time setting from an LQR perspective. We first derive the optimal state feedback
gain matrix using the continuous-time interaction-free cost function (9.1). The opti-
mal gain matrix is later shown to be a nonsymmetric Laplacian matrix correspond-
ing to a complete directed graph. We then find the optimal scaling factor for a
prespecified symmetric Laplacian matrix associated with an undirected interaction
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graph using the continuous-time interaction-related cost function (9.2). Finally, il-
lustrative examples are provided.

9.2.1 Optimal State Feedback Gain Matrix Using

the Interaction-free Cost Function

Note that (9.3) can be written as

min
u(t)

∫ ∞

0

[
r̃T (t)Qr̃(t) + uT (t)Θu(t)

]
dt

︸ ︷︷ ︸
Jfc

(9.9)

subject to: ṙ(t) = u(t), (9.10)

where r̃(t)
△
= [r̃1(t), . . . , r̃n(t)]T with r̃i(t)

△
= ri(t)−δi, r(t)

△
= [r1(t), . . . , rn(t)]T ,

u(t)
△
= [u1(t), . . . , un(t)]T , Q ∈ R

n×n is symmetric with the (i, j)th entry and
hence the (j, i)th entry given by −cij for i > j and the (i, i)th entry given by∑i−1

j=1 cij +
∑n

j=i+1 cji, and Θ ∈ R
n×n is the positive-definite diagonal matrix

with ϑi being the ith diagonal entry. It can be noted that Q is a symmetric Laplacian
matrix. Therefore, Q is symmetric positive semidefinite. Before moving on, we need
the following notations and lemmas.

According to Lemma 1.14, if the characteristic polynomial of an M-matrix B ∈
R

n×n has at most a simple zero root, then B has exactly one M-matrix as its square
root. In this case, we use

√
B hereafter to represent the unique M-matrix that is the

square root of B.

Lemma 9.1. Let Q and Θ be defined in (9.9). Suppose that Q has a simple zero

eigenvalue. Then Θ−1Q is a nonsymmetric Laplacian matrix (and hence an M-

matrix) with a simple zero eigenvalue and
√

Θ−1Q is a nonsymmetric Laplacian

matrix with a simple zero eigenvalue.

Proof: We first note that Θ−1Q is a nonsymmetric Laplacian matrix because
Q is a symmetric Laplacian matrix, Θ is a positive-definite diagonal matrix, and
Θ−1Q1n = Θ−10n = 0n. It thus follows from Lemma 1.15 that Θ−1Q is also
an M-matrix. Because Q is a symmetric Laplacian matrix with a simple zero eigen-
value, it follows from Lemma 1.1 that the undirected graph associated with Q is
connected, which implies that the directed graph associated with Θ−1Q is strongly
connected. It thus follows from Lemma 1.1 that the nonsymmetric Laplacian ma-
trix Θ−1Q also has a simple zero eigenvalue. Therefore,

√
Θ−1Q is the unique

M-matrix that is the square root of Θ−1Q. We next show that
√

Θ−1Q has a sim-
ple zero eigenvalue with an associated eigenvector 1n. Let the ith eigenvalue of√

Θ−1Q be λi with an associated eigenvector νi. It follows that the ith eigenvalue
of Θ−1Q is λ2

i with an associated eigenvector νi. Because Θ−1Q has a simple zero
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eigenvalue with an associated eigenvector 1n, it follows that
√

Θ−1Q has a sim-
ple zero eigenvalue with an associated eigenvector 1n. Therefore, it follows from
Lemma 1.15 that

√
Θ−1Q is a nonsymmetric Laplacian matrix. Combining the

above arguments completes the proof.
We next show that the nonsymmetric Laplacian matrix

√
Θ−1Q corresponds to

a complete directed graph.

Lemma 9.2. Let Q and Θ be defined in (9.9). Suppose that Q has a simple zero

eigenvalue. Then the nonsymmetric Laplacian matrix
√

Θ−1Q corresponds to a

complete directed graph.

Proof: Note from Lemma 9.1 that
√

Θ−1Q is a nonsymmetric Laplacian matrix
with a simple zero eigenvalue. We show that each entry of

√
Θ−1Q is nonzero,

which implies that
√

Θ−1Q corresponds to a complete directed graph. Before mov-

ing on, we let qij denote the (i, j)th entry of Q. We also define W
△
=

√
Θ−1Q and

denote wij , wi,:, and w:,i as, respectively, the (i, j)th entry, the ith row, and the ith
column of W .

First, we will show that wij �= 0 if qij �= 0. We show this statement by contradic-
tion. Assume that wij = 0. Because Θ−1Q = W 2, it follows that qij

ϑi
= wi,:w:,j .

When i = j, it follows from wii = 0 that wi,: = 0T
n because W is a nonsymmetric

Laplacian matrix, which then implies that qij

ϑi
= wi,:w:,j = 0. This contradicts the

assumption that qij �= 0. Because W is a nonsymmetric Laplacian matrix, it follows
that wik ≤ 0, ∀i �= k. When i �= j, because it is assumed that wij = 0, it follows
that qij

ϑi
= wi,:w:,j =

∑n
k=1,k �=i,k �=j wikwkj ≥ 0. Because Q is a symmetric Lapla-

cian matrix, it follows that qij ≤ 0, ∀i �= j. Therefore, qij

ϑi
≥ 0, ∀i �= j, implies that

qij = 0, which also contradicts the assumption that qij �= 0.
Second, we will show that wij �= 0 even if qij = 0. We also show this statement

by contradiction. Assume that wij = 0. To ensure that qij = 0, it follows from
qij

ϑi
= wi,:w:,j =

∑n
k=1,k �=i,k �=j wikwkj that wikwkj = 0, ∀k �= i, ∀k �= j, k =

1, . . . , n. Denote k̂1 as the node set such that wim �= 0 for each m ∈ k̂1. Then we
have wmj = 0 for each m ∈ k̂1 because wikwkj = 0. Similarly, denote k̄1 as the
node set such that wmj �= 0 for each m ∈ k̄1. Then we have wim = 0 for each
m ∈ k̄1 because wikwkj = 0. From the discussion in the previous paragraph, when
wmj = 0, we have qmj = 0, which implies that wmpwpj = 0, ∀p �= m, ∀p �=
j, p = 1, . . . , n. By following a similar analysis, we can consequently define k̂i and
k̄i, i = 2, . . . , κ, where k̂i ∩ k̂j = ∅, k̄i ∩ k̄j = ∅, ∀j < i. Because both Q and
W have a simple zero eigenvalue, it follows from Lemma 1.1 that the undirected
graph associated with Q is connected and the directed graph associated with W
has a directed spanning tree. It thus follows that κ ≤ n. Therefore, each entry of
w:,j is equal to zero by following the previous analysis for at most n times. This
implies that qij = 0, ∀i �= j, because qij

ϑi
= wi,:w:,j . Considering the fact that Q

is a symmetric Laplacian matrix, it follows that qii = 0, which also contradicts the
fact that the undirected graph associated with Q is connected.

The main result for the optimal control problem (9.9) is given in the following
theorem.
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Theorem 9.1. In the optimal control problem (9.9), suppose that Q has a simple

zero eigenvalue. The optimal coordination algorithm is

u(t) = −
√

Θ−1Qr̃(t). (9.11)

The matrix
√

Θ−1Q is a nonsymmetric Laplacian matrix with a simple zero eigen-

value corresponding to a complete directed graph. Using (9.11) for (9.10), coordi-

nation is achieved.

Proof: Note that ṙ = u(t) is equivalent to ˙̃r = u(t). Consider the following standard
LQR problem

min
u(t)

Jfc subject to: ˙̃r(t) = Ar̃(t) + Bu(t), (9.12)

where Jfc is given in (9.9), A = 0n×n, and B = In. It can be noted that (A, B)
is controllable, which implies that there exists a unique positive-semidefinite matrix
P ∈ R

n×n satisfying the continuous-time algebraic Riccati equation

AT P + PA − PBΘ−1BT P + Q = 0n×n. (9.13)

It follows from (9.13) that PΘ−1P = Q by noting that A = 0n×n and B = In,
which implies that Θ−1PΘ−1P = Θ−1Q. It then follows from Lemma 9.1 that
Θ−1P =

√
Θ−1Q is also a nonsymmetric Laplacian matrix with a simple zero

eigenvalue when Q has a simple zero eigenvalue. Therefore, the optimal control
is u(t) = −Θ−1BT P r̃(t) = −

√
Θ−1Qr̃(t). It also follows from Lemma 9.2 that√

Θ−1Q corresponds to a complete directed graph. Note that using (9.11) for (9.10),
the closed-loop system becomes ˙̃r(t) = ṙ(t) = −

√
Θ−1Qr̃(t). Because

√
Θ−1Q

is a nonsymmetric Laplacian matrix with a simple zero eigenvalue, it follows from
Lemma 1.3 that r̃i(t)−r̃j(t) → 0 as t → ∞, which implies that ri(t)−rj(t) → Δij

as t → ∞.

Remark 9.2 Note that Q is a symmetric Laplacian matrix. It follows from Lem-
ma 1.1 that the assumption that Q has a simple zero eigenvalue is equivalent to the
assumption that the undirected graph corresponding to Q is connected.

Remark 9.3 In fact, the assumption that the symmetric Laplacian matrix Q has
a simple zero eigenvalue is also necessary to ensure coordination. If otherwise,
the undirected graph corresponding to Q is not connected. It thus follows that∑n

i=1

∑i−1
j=1 cij [ri(t) − rj(t) − Δij ]

2 in (9.1) can be written as a sum of at least two
independent terms, where each term involves an independent subset of the agents.
As a result, the optimal control problem (9.3) and hence (9.9) can be decoupled into
at least two independent optimal control problems. By solving the independent opti-
mal control problems, coordination is only guaranteed for each independent subset
of the agents but not for all agents.

Remark 9.4 From Theorem 9.1, it can be noted that the graph corresponding to√
Θ−1Q is in general different from that corresponding to Q. Note that

√
Θ−1Q
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is not necessarily symmetric in general. When Θ is a diagonal matrix with identical
diagonal entries (i.e., Θ = cIn, where c > 0),

√
Θ−1Q is symmetric.

We next show that any symmetric Laplacian matrix L with a simple zero eigen-
value is inverse optimal with respect to some given cost function.

Theorem 9.5. Any symmetric Laplacian matrix L ∈ R
n×n with a simple zero

eigenvalue is the optimal state feedback gain matrix under the cost function J =∫ ∞
0

[r̃T (t)L 2r̃(t) + uT (t)u(t)] dt.

Proof: By letting Q = L 2 and Θ = In, it follows directly from the proof of
Theorem 9.1 that L is the optimal state feedback gain matrix.

9.2.2 Optimal Scaling Factor Using the Interaction-related Cost

Function

Suppose that the graph G is undirected. With the interaction-related cost func-
tion (9.2), the optimal control problem (9.4) can be written as

min
β

∫ ∞

0

[
r̃T (t)L r̃(t) + uT (t)u(t)

]
dt

︸ ︷︷ ︸
Jrc

subject to: ṙ(t) = u(t), u(t) = −βL r̃(t),

(9.14)

where L is the prespecified symmetric Laplacian matrix associated with the adja-
cency matrix A and hence the undirected graph G , and β is the scaling factor.

Theorem 9.6. In the optimal control problem (9.14), suppose that L has

a simple zero eigenvalue. Then the optimal β, denoted by βopt, is√
r̃T (0)r̃(0)− 1

n [1T
n r̃(0)]T [1T

n r̃(0)]

r̃T (0)L r̃(0)
.1

Proof: Note that u(t) = −βL r̃(t). It follows that ˙̃r(t) = ṙ(t) = −βL r̃(t). It
thus follows that r̃(t) = e−βL tr̃(0) and hence u(t) = −βL e−βL tr̃(0). The cost
function Jrc can then be written as

Jrc =

∫ ∞

0

r̃T (0)
[
e−βL t

L e−βL t + β2e−βL t
L

2e−βL t
]
r̃(0) dt.

Taking the derivative of Jrc with respect to β gives

dJrc

dβ
=

∫ ∞

0

r̃T (0)
[

− 2L te−βL t
L e−βL t + 2βe−βL t

L
2e−βL t

− 2β2
L te−βL t

L
2e−βL t

]
r̃(0) dt.

1 Note that coordination is obviously achieved when β = βopt.



248 9 Optimality Aspect

Setting dJrc

dβ = 0 gives

β2r̃T (0)

[∫ ∞

0

L te−βL t
L

2e−βL t dt

]
r̃(0)

− βr̃T (0)

[∫ ∞

0

e−βL t
L

2e−βL t dt

]
r̃(0)

+ r̃T (0)

[∫ ∞

0

L te−βL t
L e−βL t dt

]
r̃(0) = 0, (9.15)

where we have used the fact that L and e−βL t commute. Because L is symmetric,
L can be diagonalized as

L = M

⎡

⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 · · · λn

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
Λ

MT , (9.16)

where M is an orthogonal matrix, and λi is the ith eigenvalue of L . Note that L

has a simple zero eigenvalue. Without loss of generality, we let λ1 = 0 and hence
λi > 0, i = 2, . . . , n (see Lemma 1.1). Note that the columns of M can be chosen
as the normalized right eigenvectors of L . Also note that 1n is a right eigenvector
of L associated with the zero eigenvalue. Therefore, we let the first column of M
be 1n√

n
. Note that

∫ ∞

0

L te−βL t
L

2e−βL t dt

=

∫ ∞

0

M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2tλ3

2t · · · 0
...

...
. . .

0 0 · · · e−2βλntλ3
nt

⎤

⎥⎥⎥⎦
MT dt

=
1

4β2
M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 · · · λn

⎤

⎥⎥⎥⎦
MT (9.17)

=
1

4β2
L . (9.18)

Similarly, it follows that
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∫ ∞

0

e−βL t
L

2e−βL t dt (9.19)

=

∫ ∞

0

M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2tλ2

2 · · · 0
...

...
. . .

0 0 · · · e−2βλntλ2
n

⎤

⎥⎥⎥⎦
MT dt (9.20)

= − 1

2β
M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 λ2e

−2βλ2t| ∞
0 · · · 0

...
...

. . .
0 0 · · · λne−2βλnt| ∞

0

⎤

⎥⎥⎥⎦
MT

=
1

2β
M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 · · · λn

⎤

⎥⎥⎥⎦
MT =

1

2β
L (9.21)

and
∫ ∞

0

L te−βL t
L e−βL t dt

=

∫ ∞

0

M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2tλ2

2t · · · 0
...

...
. . .

0 0 · · · e−2βλntλ2
nt

⎤

⎥⎥⎥⎦
MT dt

= − 1

2β
M

×

⎡

⎢⎣

0 0 · · · 0
0 λ2te

−2βλ2t | ∞
0 −

∫
∞

0
e−2βλ2tλ2dt · · · 0

...
...

. . .
0 0 · · · λnte−2βλnt | ∞

0 −
∫

∞

0
e−2βλntλndt

⎤

⎥⎦ MT

= − 1

4β2
M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2t| ∞

0 · · · 0
...

...
. . .

0 0 · · · e−2βλnt| ∞
0

⎤

⎥⎥⎥⎦
MT

= − 1

4β2
M

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 1 · · · 0
...

...
. . .

0 0 · · · 1

⎤

⎥⎥⎥⎦
MT =

In − 1
n1n1T

n

4β2
, (9.22)
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where we have used the fact that the first column of M is 1n√
n

. By substitut-
ing (9.18), (9.21), and (9.22) into (9.15), it follows that the optimal β is βopt.

Remark 9.7 In Theorem 9.6, we consider a simple case when all agents have the
same coupling gain and find the optimal coupling gain explicitly. It is also possible
to consider the case when the coupling gains for each agent are different. However,
it is, in general, hard to find the optimal coupling gains explicitly. Instead, numerical
solutions can be obtained accordingly.

9.2.3 Illustrative Examples

In this subsection, we provide two illustrative examples about the optimal state feed-
back gain matrix and the optimal scaling factor derived in, respectively, Sect. 9.2.1
and Sect. 9.2.2.

In (9.9), we simply choose

Q =

⎡

⎢⎢⎣

2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

⎤

⎥⎥⎦ and Θ =

⎡

⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤

⎥⎥⎦ .

It then follows from Theorem 9.1 that the optimal state feedback gain matrix is given
by

√
Θ−1Q =

⎡

⎢⎢⎣

1.3134 −0.5459 −0.5964 −0.1711
−0.2730 0.8491 −0.4206 −0.1556
−0.1988 −0.2804 0.8218 −0.3426
−0.0428 −0.0778 −0.2570 0.3775

⎤

⎥⎥⎦ .

Note that the optimal gain matrix is a nonsymmetric Laplacian matrix corresponding
to a complete directed graph. Also note that the graph associated with Q is different
from that associated with

√
Θ−1Q.

In (9.14), we simply choose

L =

⎡

⎢⎢⎣

2 −1 −1 0
−1 2 1 0
−1 −1 3 −1
0 0 −1 1

⎤

⎥⎥⎦

and the initial state r̃(0) = [1, 2, 3, 4]T . Figure 9.1 shows how the cost function Jrc

evolves as the scaling factor β increases. From Theorem 9.6, it can be computed
that the optimal scaling factor is βopt = 0.845, which is consistent with the result
shown in Fig. 9.1.
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Fig. 9.1 Evolution of the cost function Jrc as a function of β

9.3 Optimal Linear Coordination Algorithms in a Discrete-time

Setting from a Linear Quadratic Regulator Perspective

In this section, we study the optimal linear coordination algorithms in a discrete-
time setting from an LQR perspective. As shown later, the analysis in the discrete-
time case is more challenging than that in the continuous-time case. We will first
derive the optimal state feedback gain matrix using the discrete-time interaction-
free cost function (9.5). The optimal gain matrix is later shown to be a nonsym-
metric Laplacian matrix corresponding to a completed directed graph. We then find
the optimal scaling factor for a prespecified symmetric Laplacian matrix associated
with an undirected interaction graph using the discrete-time interaction-related cost
function (9.6). Finally, illustrative examples are provided.

9.3.1 Optimal State Feedback Gain Matrix Using

the Interaction-free Cost Function

Note that (9.7) can be written as

min
u[k]

∞∑

k=0

(
r̃T [k]Qr̃[k] + uT [k]Θu[k]

)

︸ ︷︷ ︸
Jfd

(9.23)

subject to: r[k + 1] = r[k] + Tu[k], (9.24)
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where r̃[k]
△
= [r̃1[k], . . . , r̃n[k]]T with r̃i[k]

△
= ri[k] − δi, r[k]

△
= [r1[k], . . . , rn[k]]T ,

u[k]
△
= [u1[k], . . . , un[k]]T , and Q and Θ are defined as in (9.9). Before moving on,

we need the following lemmas.

Lemma 9.3. Let P1 ∈ R
n×n be a row-stochastic matrix with positive diagonal

entries satisfying that P1 has a simple eigenvalue equal to one and all other eigen-

values are within the unit circle. Let P2 ∈ R
n×n be a nonnegative matrix satisfying

that ρ(P2) < 1. Denote

Xi+1,j =
1

2

[
Pj + (Xi,j)

2
]
, X0,j = 0n×n, (9.25)

for j = 1, 2. Then limi→∞ Xi,j , j = 1, 2, exists. Denote X⋆
j

△
= limi→∞ Xi,j , j =

1, 2. If P1 and P2 commute, the following statements hold:

1. X⋆
j and Pk commute for j, k = 1, 2;

2. X⋆
1 and X⋆

2 commute.

Proof: It follows from Lemma 1.7 and Definition 1.1 that P1 is semiconvergent.
Also it follows from Lemma 1.27 and Definition 1.1 that P2 is also semiconvergent.
It then follows from Property (c) in Lemma 1.13 that (9.25) is convergent. That
is, limi→∞ Xi,j , j = 1, 2, exists. We next show that Statements 1 and 2 hold by
induction. It can be computed from (9.25) that X1,1 = 1

2P1 and X1,2 = 1
2P2.

Therefore, it is easy to verify that Pk and X1,j commute for j, k = 1, 2. Similarly,
X1,1 and X1,2 also commute. Assume that Pk and Xℓ,j commute for j, k = 1, 2
and Xℓ,1 and Xℓ,2 commute. It can be computed from (9.25) that Xℓ+1,j = 1

2 [Pj +
(Xℓ,j)

2] for j = 1, 2. It can also be easily verified that Xℓ+1,j and Pk commute for
j, k = 1, 2. In addition, we also have that

Xℓ+1,1Xℓ+1,2 =
1

4

[
P1 + (Xℓ,1)

2
][

P2 + (Xℓ,2)
2
]

=
1

4

[
P1P2 + (Xℓ,1)

2P2 + P1(Xℓ,2)
2 + (Xℓ,1)

2(Xℓ,2)
2
]

=
1

4

[
P2P1 + P2(Xℓ,1)

2 + (Xℓ,2)
2P1 + (Xℓ,2)

2(Xℓ,1)
2
]

= Xℓ+1,2Xℓ+1,1,

where we have used the assumption that Pk and Xℓ,j commute for j, k = 1, 2 and
Xℓ,1 and Xℓ,2 commute to derive the final result. Therefore, Xℓ+1,1 and Xℓ+1,2

also commute. By induction, Pk and limi→∞ Xi,j commute for j, k = 1, 2 and
limi→∞ Xi,1 and limi→∞ Xi,2 commute. Because X⋆

j = limi→∞ Xi,j , j = 1, 2,
the lemma holds clearly.

Lemma 9.4 ([152]). Let A ∈ R
n×n and B ∈ R

n×n. If AB = BA, then ρ(A+B) ≤
ρ(A) + ρ(B).
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Lemma 9.5. Let G ∈ R
n×n be a nonsymmetric Laplacian matrix with a simple zero

eigenvalue. Suppose that γ ≥ 0. Then
√

G + γIn

√
G is a nonsymmetric Laplacian

matrix with a simple zero eigenvalue.2

Proof: When γ = 0, the proof is trivial. When γ > 0, the proof follows tow steps:

Step 1. The off-diagonal entries of
√

G + γIn

√
G are nonpositive. Because G =

[gij ] is a nonsymmetric Laplacian matrix, G can be written as G = s(In − P ),
where s > 2 maxi gii, and P is a row-stochastic matrix with positive diagonal
entries. Because G has a simple zero eigenvalue, it follows that P has a sim-
ple eigenvalue equal to one and all other eigenvalues are within the unit circle.
Therefore, it follows from Lemma 1.7 and Definition 1.1 that P is semicon-
vergent. It follows from Property (c) in Lemma 1.13 that the iteration (1.3) is
convergent. According to part (a) in Lemma 1.13,

√
G =

√
s(In − X⋆), where

X⋆ = limi→∞ Xi with α = 1 in (1.3). Similarly, G + γIn can be written as
G + γIn = (s + γ)(In − s

s+γ P ), where s > 2 maxi gii. By following a similar

analysis to that of G, it follows that
√

G + γIn =
√

s + γ(In − X̂⋆), where
X̂⋆ = limi→∞ Xi with P replaced with s

s+γ P and α = 1 in (1.3). With P
and s

s+γ P playing the role of, respectively, P1 and P2 in Lemma 9.3, it follows

from parts (a) and (c) in Lemma 1.13 and Lemma 9.3 that X⋆ and X̂⋆ commute
because P and s

s+γ P commute. Then we have

1√
s(s + γ)

√
G + γIn

√
G

= (In − X⋆ − X̂⋆ + X⋆X̂⋆)

= In − 1

2

[
P + (X⋆)2

]
− 1

2

[
s

s + γ
P + (X̂⋆)2

]
+ X⋆X̂⋆ (9.26)

= In − 1

2

[
P +

s

s + γ
P + (X⋆ − X̂⋆)2

]
, (9.27)

where we have used the fact that X⋆ = 1
2 [P + (X⋆)2] and X̂⋆ = 1

2 [ s
s+γ P +

(X̂⋆)2] as shown in part (c) of Lemma 1.13 to derive (9.26) and the fact that X⋆

and X̂⋆ commute to derive (9.27).
From (9.27), a sufficient condition to show that the off-diagonal entries of√

G + γIn

√
G are nonpositive is to show that X⋆ − X̂⋆ is nonnegative be-

cause P is a row-stochastic matrix. We next show that this condition can be
satisfied. It follows from part (a) of Lemma 1.13 that I − P = (In − X⋆)2 and
I − s

s+γ P = (In − X̂⋆)2 when α = 1. Therefore, we have

2 Note that G + γIn, γ ≥ 0, is an M-matrix with at most one zero eigenvalue. Note also that G is
an M-matrix with a simple zero eigenvalue. Therefore,

√

G + γIn and
√

G are well defined.
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γ

s + γ
P = (In − X̂⋆)2 − (In − X⋆)2

= 2(X⋆ − X̂⋆) − (X⋆ − X̂⋆)(X⋆ + X̂⋆)

= (X⋆ − X̂⋆)(2In − X⋆ − X̂⋆). (9.28)

We next show that 2In − X⋆ − X̂⋆ is a nonsingular M-matrix and then use
Lemma 1.17 to show that X⋆ − X̂⋆ is nonnegative. Because G+γIn is a nonsin-
gular M-matrix from Definition 1.2, it follows from Lemma 1.16 that

√
G + γIn

is also a nonsingular M-matrix. Because
√

G + γIn =
√

s + γ(In − X̂⋆), it
follows that ρ(X̂⋆) < 1 according to Definition 1.2. Similarly, it follows from
Lemma 1.14 that

√
G is an M-matrix. Because

√
G =

√
s(In − X⋆), it follows

that ρ(X⋆) ≤ 1 according to Definition 1.2. Because X̂⋆ and X⋆ commute, it
then follows from Lemma 9.4 that ρ(X̂⋆ + X⋆) ≤ ρ(X̂⋆) + ρ(X⋆) < 2. There-
fore, 2In − X⋆ − X̂⋆ is a nonsingular M-matrix according to Definition 1.2. Be-
cause 2In −X⋆ −X̂⋆ is a nonsingular M-matrix, it follows from Lemma 1.17 that
(2In − X⋆ − X̂⋆)−1 is nonnegative, which implies that X⋆ − X̂⋆ is nonnegative
because X⋆ −X̂⋆ = γ

s+γ P (2In −X⋆ −X̂⋆)−1 and P is a row-stochastic matrix.

Therefore, it follows from (9.27) that the off-diagonal entries of
√

G + γIn

√
G

are nonpositive.
Step 2.

√
G + γIn

√
G is a nonsymmetric Laplacian matrix with a simple zero

eigenvalue. Similar to the analysis in Lemma 9.1, it follows that
√

G has a sim-
ple zero eigenvalue with a corresponding eigenvector 1n. Then

√
G + γIn

√
G

also has a simple zero eigenvalue with a corresponding eigenvector 1n because√
G + γIn is a nonsingular M-matrix as shown in Step 1. Combining with Step 1

indicates that
√

G + γIn

√
G is a nonsymmetric Laplacian matrix with a simple

zero eigenvalue.

Lemma 9.6. Let G ∈ R
n×n be a nonsymmetric Laplacian matrix with a simple zero

eigenvalue. Suppose that γ > 0. Then
√

G + γIn

√
G − G is also a nonsymmetric

Laplacian matrix with a simple zero eigenvalue.

Proof: It follows from Step 1 in the proof of Lemma 9.5 that
√

G =
√

s(In − X⋆),√
G + γIn =

√
s + γ(In − X̂⋆), and X⋆ and X̂⋆ commute. It follows that

√
G and

√
G + γIn also commute. It can be computed that P

△
=

√
G + γIn

√
G + G is the

solution of the following matrix equation

P 2 − 2PG − γG = 0n×n, (9.29)

where we have used the fact that
√

G + γIn

√
G and G commute because

√
G + γIn

and
√

G commute and G=
√

G
√

G. From Lemma 9.5, we know that
√

G + γIn

√
G

is a nonsymmetric Laplacian matrix, which implies that P is also a nonsymmetric
Laplacian matrix. Therefore, γIn +2P is a nonsingular M-matrix according to Def-
inition 1.2. From (9.29), we can get that
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G = (γIn + 2P )−1P
2

=
1

2
(γIn + 2P )−1(γIn + 2P − γIn)P

=
1

2

[
In − γ(γIn + 2P )−1

]
P ,

which implies that

1

2
γ(γIn + 2P )−1P =

1

2
P − G =

1

2

(√
G + γIn

√
G − G

)
. (9.30)

Note also that

γ(γIn + 2P )−1P =
1

2
γ
[
In − γ(γIn + 2P )−1

]
. (9.31)

Combining (9.30) and (9.31) gives that
√

G + γIn

√
G − G = γ

[
In − γ(γIn + 2P )−1

]
. (9.32)

Because γIn + 2P is a nonsingular M-matrix, it follows from Lemma 1.17 that
(γIn+2P )−1 is nonnegative. It then follows from (9.32) that the off-diagonal entries
of

√
G + γIn

√
G − G are nonpositive.

Because the off-diagonal entries of
√

G + γIn

√
G − G are nonpositive, to

show that
√

G + γIn

√
G − G is a nonsymmetric Laplacian matrix with a sim-

ple zero eigenvalue, it is sufficient to show that
√

G + γIn

√
G − G has a sim-

ple zero eigenvalue with an associated eigenvector 1n. Letting μ be an eigenvalue
of G with an associated eigenvector ν, it can be computed that (G + γIn)ν =
(μ+γ)ν, which implies that the corresponding eigenvalue of

√
G + γIn is given by√

μ + γ with an associated eigenvector ν. Therefore, the corresponding eigenvalue
of

√
G + γIn

√
G − G is given by

√
μ + γ

√
μ − μ with an associated eigenvec-

tor ν. Noting that the nonsymmetric Laplacian matrix G has a simple zero eigen-
value, it follows that

√
G + γIn

√
G − G also has a simple zero eigenvalue because√

μ + γ
√

μ − μ �= 0 if μ �= 0. Note also that (
√

G + γIn

√
G − G)1n = 0n because√

G1n = 0n and G1n = 0n. Therefore,
√

G + γIn

√
G − G is a nonsymmetric

Laplacian matrix with a simple zero eigenvalue.

Lemma 9.7. Let B = [bij ] ∈ R
n×n be a nonsingular M-matrix. If each off-diagonal

entry of B is not equal to zero (and hence negative), B−1 is positive.

Proof: From Definition 1.2, B = αIn − C. By choosing α > maxi bii, it follows
that C is positive. Because B is a nonsingular M-matrix, it follows from Defini-
tion 1.2 that ρ(C) < α and hence ρ(C

α ) < 1. Note that B−1 = α−1(In − C
α )−1. It

follows from Lemmas 1.28 and 1.26 that (In − C
α )−1 =

∑∞
i=0(

C
α )i. Because C is

positive, it follows directly that B−1 is positive.

Lemma 9.8. Let Q and Θ be defined in (9.23). Suppose that Q has a simple zero

eigenvalue. Suppose that γ > 0. Then W
△
=

√
Θ−1Q + γIn

√
Θ−1Q − Θ−1Q is

a nonsymmetric Laplacian matrix with a simple zero eigenvalue corresponding to a

complete directed graph.
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Proof: Note that Q has a simple zero eigenvalue. It follows from Lemmas 9.1
and 9.6 that W is a nonsymmetric Laplacian matrix with a simple zero eigenvalue.
We study how W evolves when γ increases. Taking the derivative of Θ−1Q + γIn

with respect to γ gives

d(Θ−1Q + γIn)

dγ
= In. (9.33)

Note that Θ−1Q + γIn, where γ > 0, is a nonsingular M-matrix. It follows from
Lemma 1.16 that

√
Θ−1Q + γIn is also a nonsingular M-matrix. We also have

d(
√

Θ−1Q + γIn)2

dγ
= 2

√
Θ−1Q + γIn

d
√

Θ−1Q + γIn

dγ
. (9.34)

Therefore, it follows from (9.33) and (9.34) that
d

√
Θ−1Q+γIn

dγ = 1
2 ×

(
√

Θ−1Q + γIn)−1. It then follows that

d
√

Θ−1Q + γIn

√
Θ−1Q

dγ

=
d
√

Θ−1Q + γIn

dγ

√
Θ−1Q

=
1

2

(√
Θ−1Q + γIn

)−1√
Θ−1Q

=
1

2
In − 1

2

(√
Θ−1Q + γIn

)−1(√
Θ−1Q + γIn −

√
Θ−1Q

)

=
1

2
In − γ

2

(√
Θ−1Q + γIn

)−1(√
Θ−1Q + γIn +

√
Θ−1Q

)−1
. (9.35)

By following a similar analysis to that of Lemma 9.2, we can show that each entry
of

√
Θ−1Q + γIn is not equal to zero. It follows from Lemma 9.7 that each en-

try of (
√

Θ−1Q + γIn)−1 is positive. Similarly, each entry of (
√

Θ−1Q + γIn +√
Θ−1Q)−1 is also positive. It then follows from (9.35) that each off-diagonal entry

of
d

√
Θ−1Q+γIn

√
Θ−1Q

dγ is negative, which implies that the off-diagonal entries of
W will decrease when γ increases. Noting that W = 0n×n when γ = 0, it follows
that all off-diagonal entries of W are less than zero for all γ > 0. W corresponds to
a complete directed graph.

The main result for the optimal control problem (9.23) is given in the following
theorem.

Theorem 9.8. In the optimal control problem (9.23), suppose that Q has a simple

zero eigenvalue. The optimal coordination algorithm is

u[k] = −Kr̃[k], (9.36)
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where K
△
=

T [
√

Θ−1Q+4In/T 2
√

Θ−1Q−Θ−1Q]

2 . The matrix K is a nonsymmetric

Laplacian matrix with a simple zero eigenvalue corresponding to a complete di-

rected graph. Using (9.36) for (9.24), coordination is achieved.

Proof: Note that r[k + 1] = r[k] + Tu[k] is equivalent to r̃[k + 1] = r̃[k] + Tu[k].
Consider the following LQR problem

min
u[k]

Jfd subject to: r̃[k + 1] = Ar̃[k] + Bu[k],

where Jfd is defined in (9.23), A = In, and B = TIn. It can be noted that (A, B)
is controllable, which implies that there exists a unique positive-semidefinite matrix
P ∈ R

n×n satisfying the discrete-time algebraic Riccati equation

P = Q + AT
[
P − PB

(
Θ + BT PB

)−1
BT P

]
A. (9.37)

Noting that A = In and B = TIn, we can simplify (9.37) as

Q = T 2P
(
Θ + T 2P

)−1
P. (9.38)

By multiplying Θ−1 on both sides of (9.38), after some manipulation, we can get
that

Θ−1Q = T 2Θ−1P
(
In + T 2Θ−1P

)−1
Θ−1P. (9.39)

Note that

(
In + T 2Θ−1P

)−1
T 2Θ−1P = In −

(
In + T 2Θ−1P

)−1
. (9.40)

By substituting (9.40) into (9.39), after some manipulation, we can get that

Θ−1Q = Θ−1P
[
In −

(
In + T 2Θ−1P

)−1]
, (9.41)

which can be simplified as

(
Θ−1P

)2 − Θ−1Q
(
Θ−1P

)
− 1

T 2
Θ−1Q = 0n×n. (9.42)

It can be computed that (9.42) holds when Θ−1P =
Θ−1Q+

√
Θ−1Q+4In/T 2

√
Θ−1Q

2 .
The optimal control strategy is given by u[k] = −F r̃[k], where

F =
(
In + T 2Θ−1P

)−1
TΘ−1P = T

(
Θ−1P − Θ−1Q

)
= K,

where we have used (9.41) to derive the third equality. It follows from Lemma 9.8
that K is a nonsymmetric Laplacian matrix that corresponds to a complete directed
graph.

We next show that coordination is achieved using (9.36) for (9.24) (i.e., ri[k] −
rj [k] → Δij or equivalently r̃i[k] − r̃j [k] → 0 as k → ∞). Note that K is a
nonsymmetric Laplacian matrix with a simple zero eigenvalue and In − TK has
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nonnegative off-diagonal entries and all row sums equal to one. According to Lem-
mas 1.1 and 1.11, coordination is achieved if In − TK has positive diagonal entries.
With T 2

4 Θ−1Q playing the role of G and γ = 1, it follows from a similar argu-

ment to that in the beginning of the proof of Lemma 9.6 that
√

T 2

4 Θ−1Q + In and
√

T 2

4 Θ−1Q commute. After some manipulation, we have

In − TK =

(√
T 2

4
Θ−1Q + In −

√
T 2

4
Θ−1Q

)2

.

By following a similar proof to that of Lemma 9.8, we have that
√

T 2

4 Θ−1Q + In −
√

T 2

4 Θ−1Q is an M-matrix with each entry not equal to zero. Combining with Def-
inition 1.2 shows that all diagonal entries of In − TK are positive. Therefore, coor-
dination is achieved when using (9.36) for (9.24).

Remark 9.9 From Theorem 9.8, it is easy to verify that when T approaches zero,
the optimal state feedback gain matrix is the same as that in the continuous-time
case in Theorem 9.1. In addition, the matrix K is not necessarily symmetric. When
Θ is a diagonal matrix with identical diagonal entries (i.e., Θ = cIn, where c > 0),
K is symmetric.

Remark 9.10 In Theorem 9.1 (correspondingly, Theorem 9.8), a standard LQR
problem is solved. The solution can be solved using the standard Matlab com-
mand. However, it is not clear why the optimal state feedback gain matrix derived
from the standard LQR perspective is a nonsymmetric Laplacian matrix correspond-
ing to a complete directed graph. The contribution of Sect. 9.2.1 (correspondingly,
Sect. 9.3.1) is that we mathematically prove the conditions under which the square
root of a nonsymmetric Laplacian matrix is still a nonsymmetric Laplacian matrix,
explicitly derive the optimal state feedback gain matrix under a given global cost
function, and show that the gain matrix is a nonsymmetric Laplacian matrix cor-
responding to a complete directed graph. Although it might be intuitively true that
a global optimization problem in the context of multi-agent coordination normally
requires that each agent have full knowledge of all other agents, it is nontrivial to
theoretically prove this fact. We have provided a theoretical explanation.

Similar to the discussion in Sect. 9.2, we next show that any symmetric Laplacian
matrix L with a simple zero eigenvalue is inverse optimal with respect to some
given cost function.

Theorem 9.11. Any symmetric Laplacian matrix L = [ℓij ] ∈ R
n×n with a simple

zero eigenvalue is the optimal state feedback gain matrix under the cost function

J =
∑∞

k=0(r̃[k]Qr̃[k] + u[k]u[k]), where Q
△
= (In − TL )−1L 2 and 0 < T <

1
2 mini

1
ℓii

.

Proof: When 0 < T < 1
2 mini

1
ℓii

, it follows from Lemma 1.18 that ρ(TL ) < 1.
It then follows from Lemmas 1.26 and 1.28 that In − TL is invertible and (In −
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TL )−1 =
∑∞

i=0(TL )i. Because L is symmetric positive semidefinite with a
simple zero eigenvalue, it then follows that Q is symmetric positive semidefinite
with a simple zero eigenvalue by noting that Q = (In − TL )−1L 2. Also note that
(In − TL )Q = L 2, i.e., Q = TL Q + L 2, which implies that

(2L + TQ)2 = 4L
2 + 4TL Q + (TQ)2 = 4

(
L

2 + TL Q
)

+ (TQ)2

= 4Q + (TQ)2. (9.43)

By taking the square root of both sides of (9.43) and some simplification, we can

get
T (

√
Q+4In/T 2

√
Q−Q)

2 = L . Applying Theorem 9.8 finishes the proof.

9.3.2 Optimal Scaling Factor Using the Interaction-related Cost

Function

Suppose that the graph G is undirected. With the interaction-related cost func-
tion (9.6), the optimal control problem (9.8) can be written as:

min
β

∞∑

k=0

(
r̃T [k]L r̃[k] + uT [k]u[k]

)

︸ ︷︷ ︸
Jrd

subject to: r[k + 1] = r[k] + Tu[k], u[k] = −βL r̃[k],

(9.44)

where L is the prespecified symmetric Laplacian matrix associated with the adja-
cency matrix A and hence the undirected graph G , and β is the scaling factor.

Theorem 9.12. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L . In the

optimal control problem (9.44), suppose that L has a simple zero eigenvalue. Then

the optimal β, denoted by βopt, satisfies
−T+

√
T 2+ 4

λn

2 ≤ βopt ≤
−T+

√
T 2+ 4

λ2

2 .3

Proof: Note that u[k] = βL r̃[k]. It follows that r̃[k +1] = r̃[k] − βTL r̃[k]. It fol-
lows that r̃[k] = (In − βTL )k r̃[0] and hence u[k] = −βL (In − βTL )kr̃[0].
Therefore, Jfd can be written as Jfd =

∑∞
k=0 r̃T [0][(In − βTL )kL (In −

βTL )k + β2(In − βTL )kL 2(In − βTL )k]r̃[0]. By rewriting L in a diagonal
form as shown in (9.16), Jrd can be further written as

Jrd =

∞∑

k=0

r̃T [0]M
[
(In − βTΛ)kΛ(In − βTΛ)k

+ β2(In − βTΛ)kΛ2(In − βTΛ)k
]
MT r̃[0].

3 Note that there always exists a positive β such that coordination is achieved. In this case, Jr is
finite. Therefore, when β = βopt coordination is always guaranteed because otherwise Jr will go
to infinity, which will then result in a contradiction.
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Because L has a simple zero eigenvalue, it follows that λi > 0, i = 2, . . . , n. After
some manipulation, we have that

Jrd = r̃T [0]M

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0
1
T

2β+T

1+β2λ2
−T

· · · 0

...
...

. . .
...

0 0 · · ·
1
T

2β+T

1+β2λn
−T

⎤

⎥⎥⎥⎥⎥⎥⎦
MT r̃[0]

=

n∑

i=2

1
T

2β+T
1+β2λi

− T
y2

i ,

where yi is the ith component of MT r̃[0]. For i = 2, . . . , n, taking the derivative of
2β+T

1+β2λi
− T with respect to β and setting the derivative to zero gives

2(1 + β2λi) − 2βλi(2β + T )

(1 + β2λi)2
= 0.

It can be computed that β =
−T+

√
T 2+ 4

λi

2 . Note that for β <
−T+

√
T 2+ 4

λn

2 ,

Jrd will decrease when β increases because
1
T

2β+T

1+β2λi
−T

increases when β increases,

i = 2, . . . , n. Similarly, for β >
−T+

√
T 2+ 4

λ2

2 , Jrd will increase when β increases

because
1
T

2β+T

1+β2λi
−T

decreases when β increases, i = 2, . . . , n. Combining the previ-

ous arguments shows that
−T+

√
T 2+ 4

λn

2 ≤ βopt ≤
−T+

√
T 2+ 4

λ2

2 .

Remark 9.13 The problem stated in Theorem 9.12 is essentially a polynomial opti-
mization problem. Numerical optimization methods [162] can be used to solve this
problem.

9.3.3 Illustrative Examples

In this subsection, we provide two illustrative examples about the optimal state feed-
back gain matrix and the optimal scaling factor derived in, respectively, Sect. 9.3.1
and Sect. 9.3.2.

In (9.23), let Q and Θ be chosen as in Sect. 9.2.3 and the sampling period T =
0.1 s. It then follows from Theorem 9.8 that the optimal state feedback gain matrix
is ⎡

⎢⎢⎣

1.2173 −0.498 −0.5484 −0.1709
−0.249 0.8007 −0.3963 −0.1554

−0.1828 −0.2642 0.7734 −0.3264
−0.0427 −0.0777 −0.2448 0.3653

⎤

⎥⎥⎦ .
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Fig. 9.2 Evolution of the cost function Jrd as a function of β

Note that the optimal gain matrix is a nonsymmetric Laplacian matrix corresponding
to a complete directed graph.

In (9.44), let L and the initial state r̃[0] be chosen as in Sect. 9.2.3. Figure 9.2
shows how the cost function Jrd evolves as the scaling factor β increases. From
Theorem 9.12, it can be computed that the optimal scaling factor satisfies 0.45 ≤
βopt ≤ 0.95, which is consistent with the result shown in Fig. 9.2.

9.4 Notes

The results in this chapter are based mainly on [31, 35]. For further results on the op-
timality aspect in distributed multi-agent coordination, see [19, 72, 148, 259, 308].
In particular, in [19], a locally optimal nonlinear consensus algorithm is proposed by
imposing individual objectives. In [72], an optimal interaction graph, a de Bruijn’s
graph, is proposed in the average consensus problem. In [259], a semi-decentralized
optimal control strategy is designed by minimizing the individual cost functions. In
addition, cooperative game theory is employed to ensure cooperation in the presence
of a team cost function. In [148], an iterative algorithm is proposed to maximize the
second smallest eigenvalue of a symmetric Laplacian matrix to optimize the control
system performance. In [308], the fastest converging linear iteration is studied by
using semidefinite programming.



Chapter 10

Time Delay

This chapter considers time delays in distributed multi-agent coordination. The time
delays are inevitable in networked systems. Time-domain and frequency-domain ap-
proaches are used to study leaderless and leader-following coordination algorithms
with communication and input delays under a directed interaction graph. We con-
sider both the single-integrator and double-integrator dynamics and present stabil-
ity or boundedness conditions. Several interesting phenomena are analyzed and ex-
plained. Simulation results are presented to support the theoretical results.

10.1 Problem Statement

Time delays are inevitable in networked systems due to the finite speed of infor-
mation transmission and processing. The time delays are usually classified as input
delays and communication delays. The input delays can be caused by information
processing while the communication delays can be caused by information propa-
gation from one agent to another. In multi-agent coordination, it is meaningful to
study leaderless and leader-following coordination problems where there exist time
delays. In the leaderless case, the objective is that a team of agents achieves de-
sired relative positions with local interaction. Similar to Chap. 6, we use the term
coordinated regulation to refer to the case where a group of followers intercepts a
stationary leader with a constant position with local interaction. Similar to Chap. 4,
we use the term coordinated tracking to refer to the case where a group of followers
intercepts a dynamic leader with a varying position. Note that coordinated regula-
tion can be viewed as a special case of coordinated tracking. In both coordinated
regulation and coordinated tracking, the leader can be physical or virtual.

This chapter studies both leaderless and leader-following coordination algo-
rithms with communication and input delays for, respectively, single-integrator dy-
namics and double-integrator dynamics under a directed interaction graph. We an-
alyze stability or boundedness conditions by using time-domain and frequency-
domain approaches. The contributions of the current chapter are fourfold. First, we

W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-169-1_10, c© Springer-Verlag London Limited 2011
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assume that the interaction graph is directed and has a directed spanning tree, which
is more general than the assumption that the interaction graph is undirected and con-
nected or the interaction graph is directed and is strongly connected and balanced.
Second, both communication and input delays are considered in the cases of leader-
less coordination, coordinated regulation when the leader’s position is constant, and
coordinated tracking with full access to the leader’s velocity for single-integrator dy-
namics while in the cases of leaderless coordination, coordinated tracking when the
leader’s velocity is constant, and coordinated tracking with full access to the leader’s
acceleration for double-integrator dynamics, which guarantees the completeness of
the algorithms. Third, we show that for single-integrator dynamics the communica-
tion delay will not influence the stability of the system in the case of coordinated
tracking with partial access to the leader’s velocity. Fourth, as a byproduct, we find
that when there exists the communication delay, the final group velocity is always
dampened to zero using the leaderless coordination algorithm for double-integrator
dynamics rather than a possibly nonzero constant as in the standard leaderless coor-
dination algorithm for double-integrator dynamics in the absence of delays.

10.2 Coordination for Single-integrator Dynamics with

Communication and Input Delays Under Directed Fixed

Interaction

In this section, we consider the case where the agents are modeled by single-
integrator dynamics given by (3.1). We assume that the agents are in a one-dimen-
sional space for simplicity. However, all results hereafter all still valid for any high-
dimensional space by use of the properties of the Kronecker product.

10.2.1 Leaderless Coordination

Define Δij
△
= δi − δj , where δi is constant. Here Δij denotes the desired relative

position deviation between agents i and j. Consider the following leaderless coor-
dination algorithm with both communication and input delays for (3.1) as

ui(t) = − 1∑n
j=1 aij

n∑

j=1

aij

[
ri(t − τ1) − rj(t − τ1 − τ2) − Δij

]
, i = 1, . . . , n,

(10.1)

where τ1 and τ2 are, respectively, the input and communication delays, and aij ,
i, j = 1, . . . , n, is the (i, j)th entry of the adjacency matrix A associated with the

directed graph G
△
= (V , E ) characterizing the interaction among the n agents. Let

L be the nonsymmetric Laplacian matrix associated with A and hence G . Here
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we assume that every agent has a neighbor, which implies that
∑n

j=1 aij > 0, i =
1, . . . , n. The objective of (10.1) is to achieve coordination, that is, ri(t) − rj(t) →
Δij as t → ∞ when there exist both communication and input delays.

Using (10.1), (3.1) can be written in a vector form as

˙̆r(t) = −r̆(t − τ1) + Ar̆(t − τ1 − τ2), (10.2)

where r̆
△
= [r̆1, . . . , r̆n]T with r̆i

△
= ri − δi and A

△
= [âij ] ∈ R

n×n is defined

as âij
△
= aij/

∑n
j=1 aij , i, j = 1, . . . , n. Let L

△
= [ℓ̂ij ] ∈ R

n×n be defined as

L
△
= In − A. Compared with A (respectively, L ), A (respectively, L) can be

viewed as another adjacency matrix (respectively, nonsymmetric Laplacian matrix)
associated with G by choosing a different weight for each edge (j, i) ∈ E . That is,
the original weight aij for the edge (j, i) is replaced with a new weight aij∑

n
j=1 aij

.

When G has a directed spanning tree and each agent has a neighbor, it follows
from Lemma 1.1 that L has a simple zero eigenvalue and all other eigenvalues have
positive real parts. We have the following singular vector decomposition given as

W −1LW =

[
L̃ 0n−1

0T
n−1 0

]
. (10.3)

Here without loss of generality, we choose the last column of W to be 1n by noting
that 1n is a right eigenvector of L associated with the zero eigenvalue. Therefore,
the last row of W −1 is pT , where p ∈ R

n is defined in Lemma 1.1 with L playing
the role of L . It follows that when G has a directed spanning tree and each agent
has a neighbor, all eigenvalues of L̃ have positive real parts.

Define r̃
△
= W −1r̆. Denote r̃1:n−1,: as the first n − 1 rows of r̃ and r̃n,: as the

last row of r̃. Note that A = In − L. It follows from (10.3) that W −1AW =[ In−1−L̃ 0n−1

0
T
n−1 1

]
. Define

Ã
△
= In−1 − L̃. (10.4)

By multiplying W −1 on both sides of (10.2), it follows that (10.2) can be rewritten
as

[
˙̃r1:n−1,:(t)

˙̃rn,:(t)

]
= −

[
r̃1:n−1,:(t − τ1)

r̃n,:(t − τ1)

]

+

[
Ã 0n−1

0T
n−1 1

] [
r̃1:n−1,:(t − τ1 − τ2)

r̃n,:(t − τ1 − τ2)

]
. (10.5)

Equation (10.5) can be decoupled into the following two equations:

˙̃r1:n−1,:(t) = −r̃1:n−1,:(t − τ1) + Ãr̃1:n−1,:(t − τ1 − τ2), (10.6a)
˙̃rn,:(t) = −r̃n,:(t − τ1) + r̃n,:(t − τ1 − τ2). (10.6b)



266 10 Time Delay

Theorem 10.1. Suppose that the directed fixed graph G has a directed spanning

tree and every agent has a neighbor. There exist positive τ1 and τ2 such that for

τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the following three conditions1 are satisfied:

(i) 2τ1 + τ2 < 1.

(ii) 1 − 1−e−sτ1

s + λi(Ã) 1−e−s(τ1+τ2)

s �= 0, for all s ∈ C
+.

(iii) The matrix

Qfc
△
= − L̃T Pfc − PfcL̃ + τ1Sfc + (τ1 + τ2)Hfc + τ1L̃

T PfcS
−1
fc PfcL̃

+ (τ1 + τ2)L̃
T PfcÃH−1

fc ÃT PfcL̃ (10.7)

is symmetric negative definite, where Pfc ∈ R
(n−1)×(n−1) is a symmetric

positive-definite matrix chosen properly such that −L̃T Pfc − PfcL̃ is symmet-

ric negative definite, and Sfc ∈ R
(n−1)×(n−1) and Hfc ∈ R

(n−1)×(n−1) are

arbitrary symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.1) for (3.1), for all ri(0)
and all i, j = 1, . . . , n, ri(t) − rj(t) → Δij as t → ∞. In particular, ri(t) →
p

T r̆(0)
1+τ2

+ δi, i = 1, . . . , n, as t → ∞, where p ∈ Rn is defined after (10.3).

Proof: For the first statement, it is straightforward to see that there exist positive τ1

and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2] Conditions (i) and (ii) are satisfied.
For Condition (iii), because G has a directed spanning tree and each agent has a
neighbor, all eigenvalues of L̃ have positive real parts. Therefore, there always exists

a symmetric positive-definite matrix Pfc ∈ R(n−1)×(n−1) such that −L̃T Pfc −
PfcL̃ is symmetric negative definite. It follows from (10.7) that when τ1 = τ2 = 0,
Qfc = −L̃T Pfc − PfcL̃. Due to the continuity of Qfc with respect to τ1 and τ2,
there must exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Qfc is
symmetric negative definite.

For the second statement, we show that if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], (10.6a)
is asymptotically stable at the origin while (10.6b) is stable. It follows from Lem-
ma 1.44 that the stability of the following system

d

dt

[
r̃1:n−1,:(t) −

∫ 0

−τ1

r̃1:n−1,:(t + θ) dθ + Ã

∫ 0

−τ1−τ2

r̃1:n−1,:(t + θ) dθ

]

= −L̃r̃1:n−1,:(t) (10.8)

implies the stability of (10.6a) under Condition (ii) of the theorem. Consider the
Lyapunov function candidate

1 Note that here the three conditions are used to obtain the upper bounds τ1 and τ2 for allowable
delays.
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V
[
(r̃1:n−1,:)t

]
=χT Pfcχ +

∫ 0

−τ1

∫ t

t+θ

r̃T
1:n−1,:(ξ)Sfcr̃1:n−1,:(ξ) dξ dθ

+

∫ 0

−τ1−τ2

∫ t

t+θ

r̃T
1:n−1,:(ξ)Hfcr̃1:n−1,:(ξ) dξ dθ,

where χ
△
= r̃1:n−1,:(t) −

∫ 0

−τ1
r̃1:n−1,:(t + θ) dθ + Ã

∫ 0

−τ1−τ2
r̃1:n−1,:(t + θ) dθ.

Taking the derivative of V along (10.8) gives

V̇
[
(r̃1:n−1,:)t

]
≤ r̃T

1:n−1,:(t)Qfcr̃1:n−1,:(t),

where we have used Lemma 1.23 to derive the inequality. Note that
α1‖D [(r̃1:n−1,:)t]‖ ≤ V [(r̃1:n−1,:)t] ≤ α2‖(r̃1:n−1,:)t‖c, where

D
[
(r̃1:n−1,:)t

] △
= r̃1:n−1,:(t)−

∫ 0

−τ1

r̃1:n−1,:(t+θ) dθ+Ã

∫ 0

−τ1−τ2

r̃1:n−1,:(t+θ) dθ,

‖(r̃1:n−1,:)t‖c
△
= supθ∈[−τ1−τ2,0] ‖r̃1:n−1,:(t + θ)‖, α1 = λmin(Pfc), and α2 =

λmax(Pfc)+ τ1λmax(Sfc)+(τ1 + τ2)λmax(Hfc). Also note that Qfc is symmetric
negative definite under Condition (iii) of the theorem. It follows from Lemma 1.41
that (10.8) is asymptotically stable at the origin. Therefore, if Conditions (ii)
and (iii) of the theorem are satisfied, (10.6a) is asymptotically stable at the ori-
gin.

For (10.6b), we apply the Nyquist stability criterion to find its stability condition.
After Laplace transformation, (10.6b) can be written as

sr̃n,:(s) − r̃n,:(0) = −e−τ1sr̃n,:(s) + e−(τ1+τ2)sr̃n,:(s),

which implies that r̃n,:(s) =
r̃n,:(0)

s+e−τ1s −e−(τ1+τ2)s . Therefore, the stability of (10.3b)
is determined by the distribution of the roots of

s = −e−τ1s + e−(τ1+τ2)s. (10.9)

Note that s = 0 is a root of (10.9). To study the other roots, define f(s)
△
=

[e−τ1s − e−(τ1+τ2)s]/s. According to the Nyquist stability criterion, if the trajectory
of f(ιω), ∀ω ∈ (−∞, ∞), does not enclose the point (−1, 0), then the other roots of
(10.9) are stable. One sufficient condition is that Re[f(ιω)] > −1, ∀ω ∈ (−∞, ∞).
Note that Re[f(ιω)] = sin[(τ1+τ2)ω]

ω
− sin(τ1ω)

ω
≥ −(τ1 + τ2) − τ1 = −(2τ1 + τ2).

Therefore, it follows that (10.6b) is marginally stable at the origin under Condi-
tion (i) of the theorem.

Note that limt→∞ r̃1:n−1,:(t) = 0n−1. Also note that

lim
t→∞

r̃n,:(t) = lim
s→0

sr̃n,:(s) =
sr̃n,:(0)

s + e−τ1s − e−(τ1+τ2)s
=

r̃n,:(0)

1 + τ2
.
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Because r̆ = Wr̃ and the last column of W is 1n, it follows that limt→∞ r̆(t) =

limt→∞ Wr̃(t) = limt→∞ 1nr̃n,:(t) =
1nr̃n,:(0)

1+τ2
, which implies that r̆i(t) −

r̆j(t) → 0 as t → ∞, that is, ri(t) − rj(t) → Δij as t → ∞. Because the
last row of W −1 is p, it follows that r̃n,:(0) = pT r̆(0). Therefore, it follows that

ri(t) → p
T r̆(0)
1+τ2

+ δi as t → ∞.

Remark 10.2 Note that the additional dynamics caused by the model transforma-
tion from (10.6a) to (10.8) can be characterized by the solutions of the following
complex equation [210]

det

[
In−1 − In−1

1 − e−sτ1

s
+ Ã

1 − e−s(τ1+τ2)

s

]
= 0, s ∈ C.

Thus, if τ1 + (τ1 + τ2)‖Ã‖ < 1, there are no additional eigenvalues induced by
the model transformation from (10.6a) to (10.8), which implies that the condition
τ1 + (τ1 + τ2)‖Ã‖ < 1 can be used to replace Condition (ii) in Theorem 10.1.

Remark 10.3 If we let Sfc = Hfc = In−1 in (10.7), Condition (iii) in Theo-
rem 10.1 can be written as

τ1 + τ2 <
λmin(L̃T Pfc + PfcL̃)

2 + ‖L̃T Pfc‖2 + ‖L̃T PfcÃ‖2
.

10.2.2 Coordinated Regulation when the Leader’s Position is

Constant

In this subsection, we assume that in addition to n followers, labeled as agents or
followers 1 to n, there exists a leader, labeled as agent 0, with position r0. We as-

sume that r0 is constant. Let G
△
= (V , E ) be the directed graph characterizing the

interaction among the n followers. Let G
△
= (V , E ) be the directed graph character-

izing the interaction among the leader and the followers corresponding to G .
Consider the following coordinated regulation algorithm with both communi-

cation and input delays for the n followers with single-integrator dynamics given
by (3.1) as

ui(t) = − 1∑n
j=0 aij

n∑

j=0

aij

[
ri(t − τ1) − rj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.10)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i, j =
1, . . . , n, is the (i, j)th entry of the adjacency matrix A associated with G , and
ai0 > 0 if the leader is a neighbor of agent i and ai0 = 0 otherwise. Note that in G

if the leader has directed paths to all followers 1 to n, it follows that
∑n

j=0 aij > 0,
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i = 1, . . . , n. The objective of (10.10) is to guarantee coordinated regulation, i.e.,
ri(t) → r0 as t → ∞.

Define r̄i
△
= ri − r0 and r̄

△
= [r̄1, . . . , r̄n]T . Define A

△
= [āij ] ∈ R

n×n as

āij
△
= aij/

∑n
j=0 aij . Using (10.10), (3.1) can be written in a vector form as

˙̄r(t) = −r̄(t − τ1) + Ar̄(t − τ1 − τ2), (10.11)

where we have used the fact that r0 is constant. Before moving on, we need the
following lemma regarding (In − A).

Lemma 10.1. All eigenvalues of In − A have positive real parts if in G the leader

has directed paths to all followers 1 to n.

Proof: The lemma follows from Lemma 8.1 by noting that all eigenvalues of A are
within the unit circle if the leader has directed paths to all followers.

Theorem 10.4. Suppose that in G the leader has directed paths to all followers 1
to n. There exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the

following two conditions are satisfied:

(i) 1 − 1−e−sτ1

s + λi(A)1−e−s(τ1+τ2)

s �= 0, ∀s ∈ C
+.

(ii) The matrix

Qfr
△
=(A − In)T Pfr + Pfr(A − In) + τ1Sfr + (τ1 + τ2)Hfr

+ τ1

[
(A − In)T PfrS

−1
fr Pfr(A − In)

]

+ (τ1 + τ2)
[
(A − In)T PfrAH−1

fr A
T
Pfr(A − In)

]

is symmetric negative definite, where Pfr ∈ R
n×n is a symmetric positive-

definite matrix chosen properly such that (A − In)T Pfr + Pfr(A − In) is

symmetric negative definite, and Sfr ∈ Rn×n and Hfr ∈ Rn×n are arbitrary

symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.10) for (3.1), for all ri(0), i =
1, . . . , n, ri(t) → r0 as t → ∞.

Proof: For the first statement, it is straightforward to see that there exist positive τ1

and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Condition (i) is satisfied. Because
in G the leader has directed paths to all followers, it follows from Lemma 10.1
that all eigenvalues of In − A have positive real parts. A similar analysis to that in
Theorem 10.1 shows that there exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and
τ2 ∈ [0, τ2], Condition (ii) is satisfied.

For the second statement, it follows from Lemma 1.44 that the stability of the
following system

d

dt

[
r̄(t) −

∫ 0

−τ1

r̄(t + θ) dθ + A

∫ 0

−τ1−τ2

r̄(t + θ) dθ

]
= (A − In)r̄(t) (10.12)
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implies the stability of (10.11) under Condition (i) of the theorem. Consider the
Lyapunov function candidate

V (r̄t) = χT Pfrχ +

∫ 0

−τ1

∫ t

t+θ

r̄T (ξ)Sfr r̄(ξ) dξ dθ

+

∫ 0

−τ1−τ2

∫ t

t+θ

r̄T (ξ)Hfr r̄(ξ) dξ dθ,

where χ
△
= r̄(t) −

∫ 0

−τ1
r̄(t + θ) dθ + A

∫ 0

−τ1−τ2
r̄(t + θ) dθ. Taking the derivative

of V along (10.12) gives

V̇ (r̄t) ≤ r̄T (t)Qfr r̄(t),

where we have used Lemma 1.23 to derive the inequality. Thus, a similar analysis
to that in the proof of Theorem 10.1 shows that if the two conditions of the theorem
are satisfied, (10.11) is asymptotically stable at the origin.

Remark 10.5 Although the approaches used in the leaderless coordination case and
the coordinated regulation case are similar, the control objectives are different. In
the leaderless coordination case, the final positions of each agent are determined by
the interaction graph and the time delays rather than being prespecified. However,
in the coordinated regulation case, there exists a leader that prespecifies the final
position, and the control objective is to guarantee that the final positions of all fol-
lowers approach the position of the leader. Also the result in the case of coordinated
regulation can be generalized to general weights while in the case of leaderless co-
ordination special weights are required (i.e.,

∑n
j=1 âij = 1). In addition, note that

Remarks 10.2 and 10.3 are still valid in the coordinated regulation case.

10.2.3 Coordinated Tracking with Full Access to the Leader’s

Velocity

In this subsection, we consider the case where the leader’s position r0 is varying.
We assume that |ṙ0| < δv and |r̈0| < δa, where δv and δa are positive constants. We
also assume that all followers have access to ṙ0.

Consider the coordinated tracking algorithm with both communication and input
delays for the n followers with single-integrator dynamics given by (3.1) as

ui(t) = ṙ0(t − τ1 − τ2)

− 1∑n
j=0 aij

n∑

j=0

aij

[
ri(t − τ1) − rj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.13)

where τ1 and τ2 are, respectively, the input and communication delays, and aij ,
i = 1, . . . , n, j = 0, . . . , n, is defined as in (10.10). Using (10.13), (3.1) can be
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written in a vector form as

˙̄r = −r̄(t − τ1) + Ar̄(t − τ1 − τ2) + Rft, (10.14)

where r̄ and A are defined as in Sect. 10.2.2, and Rft
△
= 1n[ṙ0(t − τ1 − τ2) −

ṙ0(t) + r0(t − τ1 − τ2) − r0(t − τ1)]. By using (1.10), it follows that Rft =

−1n

∫ 0

−τ1−τ2
r̈0(t + θ) dθ − 1n

∫ −τ1

−τ1−τ2
ṙ0(t + θ) dθ.

Theorem 10.6. Suppose that in G the leader has directed paths to all followers 1
to n. There exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2],

Qft
△
=(A − In)T Pfr + Pfr(A − In) + τ1

(
Pfr + PfrAP −1

fr A
T
Pfr + 2qfPfr

)

+ (τ1 + τ2)
(
PfrAP −1

fr A
T
Pfr + PfrA

2
P −1

fr

(
A

T )2
Pfr + 2qfPfr

)

is symmetric negative definite, where Pfr is defined in Theorem 10.4 and qf is an

arbitrary real number satisfying qf > 1. In addition, if τ1 ∈ [0, τ1] and τ2 ∈
[0, τ2], using (10.13) for (3.1), for all ri(0) and all i = 1, . . . , n, |ri(t) − r0(t)| is

uniformly ultimately bounded. In particular, the ultimate bound for ‖r̄(t)‖ is given

by
λmax(Pfr)af

λmin(Pfr)κf λmin(−Qft)
, where af

△
= 2[(τ1 + τ2)δa + τ2δv][‖Pfr ‖ + τ1‖Pfr ‖ +

(τ1 + τ2)‖PfrA‖], and κf is an arbitrary real number satisfying 0 < κf < 1.

Proof: The proof of the first statement is similar to that in Theorem 10.4 and is
hence omitted here. For the second statement, using (1.10), we transform (10.14) to
the following system

d

dt
r̄(t) = (A − In)r̄(t) +

∫ 0

−τ1

˙̄r(t + θ) dθ − A

∫ 0

−τ1−τ2

˙̄r(t + θ) dθ + Rft

= (A − In)r̄(t) +

∫ 0

−τ1

[
Ar̄(t − τ1 − τ2 + θ) − r̄(t − τ1 + θ)

]
dθ

+

∫ 0

−τ1

Rft(t + θ) dθ

+ A

∫ 0

−τ1−τ2

[
r̄(t − τ1 + θ) − Ar̄(t − τ1 − τ2 + θ)

]
dθ

− A

∫ 0

−τ1−τ2

Rft(t + θ) dθ + Rft

= (A − In)r̄(t) −
∫ −τ1

−2τ1

r̄(t + θ) dθ + A

∫ −τ1−τ2

−2τ1−τ2

r̄(t + θ) dθ

+

∫ 0

−τ1

Rft(t + θ) dθ + A

∫ −τ1

−2τ1−τ2

r̄(t + θ) dθ

− A
2
∫ −τ1−τ2

−2τ1−2τ2

r̄(t + θ) dθ − A

∫ 0

−τ1−τ2

Rft(t + θ) dθ + Rft.

(10.15)
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Consider the Lyapunov function candidate V (r̄) = r̄T (t)Pfr r̄(t). Taking the
derivative of V (r̄) along (10.15) gives

V̇ (r̄) ≤ r̄T (t)
[
(A − In)T Pfr + Pfr(A − In)

]
r̄(t) + τ1r̄

T (t)PfrP
−1
fr Pfr r̄(t)

+

∫ −τ1

−2τ1

r̄T (t + θ)Pfr r̄(t + θ) dθ + τ1r̄
T (t)PfrAP −1

fr A
T
Pfr r̄(t)

+

∫ −τ1−τ2

−2τ1−τ2

r̄T (t + θ)Pfr r̄(t + θ) dθ

+ 2 ‖r̄‖ ‖Pfr ‖
[
τ1(τ1 + τ2)δa + τ1τ2δv

]

+ (τ1 + τ2)r̄
T PfrAP −1

fr A
T
Pfr r̄ +

∫ −τ1

−2τ1−τ2

r̄T (t + θ)Pfr r̄(t + θ) dθ

+ (τ1 + τ2)r̄
T Pfr(A)2P −1

fr

(
A

T )2
Pfr r̄

+

∫ −τ1−τ2

−2τ1−2τ2

r̄T (t + θ)Pfr r̄(t + θ) dθ

+ 2‖r̄‖‖PfrA‖
[
(τ1 + τ2)(τ1 + τ2)δa + (τ1 + τ2)τ2δv

]

+ 2‖r̄‖‖Pfr ‖
[
(τ1 + τ2)δa + τ2δv

]
,

where we have used Lemma 1.23 and the facts that |ṙ0| < δv and |r̈0| < δa to
derive the inequality. Take p(s) = qfs. If V [r̄(t + θ)] < p{V [r̄(t)]} = qfV [r̄(t)]
for −2τ1 − 2τ2 ≤ θ ≤ 0, we have

V̇ (r̄) ≤ r̄T (t)
[
(A − In)T Pfr + Pfr(A − In)

]
r̄(t) + τ1r̄

T (t)(Pfr + qfPfr)r̄(t)

+ τ1r̄
T (t)

(
PfrAP −1

fr A
T
Pfr + qfPfr

)
r̄(t)

+ (τ1 + τ2)r̄
T (t)

(
PfrAP −1

fr A
T
Pfr + qfPfr

)
r̄(t)

+ (τ1 + τ2)r̄
T (t)

(
PfrA

2
P −1

fr

(
A

T )2
Pfr + qfPfr

)
r̄(t)

+ 2
∥∥r̄(t)

∥∥‖Pfr ‖
[
τ1(τ1 + τ2)δa + τ1τ2δv

]

+ 2
∥∥r̄(t)

∥∥‖PfrA‖
[
(τ1 + τ2)(τ1 + τ2)δa + (τ1 + τ2)τ2δv

]

+ 2
∥∥r̄(t)

∥∥‖Pfr ‖
[
(τ1 + τ2)δa + τ2δv

]

≤ r̄(t)T (t)Qftr̄(t)(t) + af

∥∥r̄(t)
∥∥.

If τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], we have that λmin(−Qft) > 0. Given 0 < κf < 1,
if ‖r̄(t)‖ ≥ af

κf λmin(−Qft)
, we can obtain that

V̇ (r̄) ≤ −(1 − κf )λmin(−Qft)
∥∥r̄(t)

∥∥2 − κfλmin(−Qft)
∥∥r̄(t)

∥∥2
+ af

∥∥r̄(t)
∥∥

≤ −(1 − κf )λmin(−Qft)
∥∥r̄(t)

∥∥2
.

Therefore, it follows from Lemma 1.42 that ‖r̄(t)‖ is uniformly ultimately bounded,
which implies that |ri(t) − r0(t)| is uniformly ultimately bounded. Moreover, it can
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be computed that the ultimate bound for ‖r̄(t)‖ is given by λmax(Pfr)af

λmin(Pfr)κf λmin(−Qft)

by following a similar analysis to that in [145, pp. 172–174].

Remark 10.7 Note that if τ1 = τ2 = 0, then limt→∞ ‖r̄(t)‖ = 0. Also note when
τ1 and τ2 are larger, the ultimate bound will also be larger. ⊓⊔

10.2.4 Coordinated Tracking with Partial Access to the Leader’s

Velocity

In this subsection, we assume that the leader’s varying position r0 and velocity ṙ0

are available to only a subset of all followers. We assume that |r0| and |ṙ0| are
bounded. We also assume that there exists only the communication delay.

Consider the following coordinated tracking algorithm with the communication
delay for the n followers with single-integrator dynamics given by (3.1) as

ui(t) =
1∑n

j=0 aij

n∑

j=0

aij

{
ṙj(t − τ2) −

[
ri(t) − rj(t − τ2)

]}
, i = 1, . . . , n,

(10.16)

where τ2 is the communication delay and aij , i = 1, . . . , n, j = 0, . . . , n, is defined
as in (10.10). Using (10.16), (3.1) can be written in a vector form as

˙̄r(t) = A ˙̄r(t − τ2) − r̄(t) + Ar̄(t − τ2) + Rfft, (10.17)

where r̄ and A are defined as in Sect. 10.2.2, and Rfft
△
= [ṙ0(t − τ2) − ṙ0(t)]1n −

[r0(t) − r0(t − τ2)]1n.

Theorem 10.8. Suppose that in G the leader has directed paths to all followers 1
to n. Using (10.16) for (3.1), for all ri(0) and all i = 1, . . . , n, |ri(t) − r0(t)| is

uniformly ultimately bounded no matter how large the communication delay is.

Proof: First, it follows from Lemma 8.1 that ρ(A) < 1, which means that the
neutral operator D r̄t = r̄(t) − Ar̄(t − τ2) is stable. Consider a Lyapunov function
candidate V (r̄) = r̄T (t)r̄(t). Taking the derivative of V (r̄) along (10.17) gives

V̇ (D r̄t) = (D r̄t)
T
[

−r̄(t) + Ar̄(t − τ2) + Rfft

]

= −(D r̄t)
T (D r̄t) + (D r̄t)Rfft .

In then follows that

V̇ (D r̄t) ≤ − ‖D r̄t‖
(

‖D r̄t‖ − ‖Rfft ‖
)
.

If ‖D r̄t‖ > ‖Rfft ‖, we have V̇ (D r̄t) < 0. Therefore, it follows from Lemma 1.43
that ‖r̄(t)‖ is uniformly ultimately bounded, which implies that |ri(t) − r0(t)| is
ultimately bounded.
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Remark 10.9 From Theorem 10.8, it can be noted that the communication delay
does not jeopardize the stability of the closed-loop tracking error system (10.17)
in the case of coordinated tracking with partial access to the leader’s velocity for
single-integrator dynamics. However, with the increase of the communication delay,
the tracking errors will increase as well.

Remark 10.10 In real applications, the derivatives of the neighbors’ positions
ṙj(t − τ2) can be calculated by using numerical differentiation. For example,
ṙj(t − τ2) can be approximated by [rj(kT − τ2) − rj(kT − T − τ2)]/T, where
k is the discrete-time index and T is the sampling period.

10.3 Coordination for Double-integrator Dynamics with

Communication and Input Delays Under Directed Fixed

Interaction

In this section, we consider the case where the agents are modeled by double-
integrator dynamics given by (3.5). We again assume that the agents are in a one-
dimensional space for simplicity. However, all results hereafter are still valid for any
high-dimensional space by use of the properties of the Kronecker product.

10.3.1 Leaderless Coordination

Consider the following leaderless coordination algorithm with both communication
and input delays for (3.5) as

ui(t) = − 1∑n
j=1 aij

n∑

j=1

aij

[
ri(t − τ1) − rj(t − τ1 − τ2) − Δij

]

− γc∑n
j=1 aij

n∑

j=1

aij

[
vi(t − τ1) − vj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.18)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i, j =
1, . . . , n, is defined as in (10.1), Δij is defined as in Sect. 10.2.1, and γc is a posi-
tive gain. Here we also assume that every agent has a neighbor, which implies that∑n

j=1 aij > 0, i = 1, . . . , n. The objective of (10.18) is to achieve coordination,
that is, ri(t) − rj(t) → Δij and vi(t) − vj(t) → 0 as t → ∞ when there exist both
communication and input delays.

Using (10.18), (3.5) can be written in a vector form as
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˙̆r(t) = v(t), (10.19a)

v̇(t) = −r̆(t − τ1) + Ar̆(t − τ1 − τ2) − γcv(t − τ1)

+ γcAv(t − τ1 − τ2), (10.19b)

where r̆
△
= [r̆1, . . . , r̆n]T with r̆i

△
= ri − δi, v

△
= [v1, . . . , vn]T , and A is defined as

in (10.2). Define r̃
△
= W −1r̆ and ṽ

△
= W −1v, where W is defined as in (10.3). De-

note r̃1:n−1,: and ṽ1:n−1,: as the first n − 1 rows of, respectively, r̃ and ṽ. Denote r̃n,:

and ṽn,: as the last row of, respectively, r̃ and ṽ. By multiplying W −1 on both sides
of (10.19) and after some manipulation, we obtain the following three equations

˙̃z(t) = A0z̃(t) + A1z̃(t − τ1) + A2z̃(t − τ1 − τ2), (10.20a)
˙̃rn,:(t) = ṽn,:(t), (10.20b)
˙̃vn,:(t) = −r̃n,:(t − τ1) + r̃n,:(t − τ1 − τ2) − γcṽn,:(t − τ1)

+ γcṽn,:(t − τ1 − τ2), (10.20c)

where

z̃
△
=

[
r̃T
1:n−1,:, ṽ

T
1:n−1,:

]T
, A0

△
=

[
0(n−1)×(n−1) In−1

0(n−1)×(n−1) 0(n−1)×(n−1)

]
,

A1
△
=

[
0(n−1)×(n−1) 0(n−1)×(n−1)

−In−1 −γcIn−1

]
,

A2
△
=

[
0(n−1)×(n−1) 0(n−1)×(n−1)

Ã γcÃ

]
,

and Ã is defined as in (10.4).

Theorem 10.11. Suppose that the directed fixed graph G has a directed spanning

tree, every agent has a neighbor, and γc > γc
△
= maxμi �=0

|Im(μi)|√
Re(μi)|μi |

, where μi is

the ith eigenvalue of L defined after (10.2). There exist positive τ1 and τ2 such that

for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the following three conditions are satisfied:

(i) γc(2τ1 + τ2) + (2τ1+τ2)τ2

2 < 1.

(ii) 1 + λi(A1)
1−e−sτ1

s
+ λi(A2)

1−e−s(τ1+τ2)

s
�= 0, for all s ∈ C

+.

(iii) The matrix

Qsc
△
= (A0 + A1 + A2)

T Psc + Psc(A0 + A1 + A2) + τ1Ssc + (τ1 + τ2)Hsc

+ τ1

[
(A0 + A1 + A2)

T PscA1S
−1
sc AT

1 Psc(A0 + A1 + A2)
]

+ (τ1 + τ2)
[
(A0 + A1 + A2)

T PscA2H
−1
sc AT

2 Psc(A0 + A1 + A2)
]

is symmetric negative definite, where Psc ∈ R
(2n−2)×(2n−2) is a symmetric

positive-definite matrix chosen properly such that (A0 + A1 + A2)
T Psc +
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Psc(A0 + A1 + A2) is symmetric negative definite, and Ssc ∈ R
(2n−2)×(2n−2)

and Hsc ∈ R
(2n−2)×(2n−2) are arbitrary symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.18) for (3.5), for all ri(0)
and vi(0) and all i, j = 1, . . . , n, ri(t) − rj(t) → Δij and vi(t) − vj(t) → 0 as

t → ∞. In particular, ri(t) → p
T v(0)
τ2

+ δi and vi(t) → 0, i = 1, . . . , n, as t → ∞,

where p ∈ R
n is defined after (10.3).

Proof: For the first statement, it is straightforward to see that there exist positive τ1

and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Conditions (i) and (ii) are satisfied.
For Condition (iii), because G has a directed spanning tree and each agent has a
neighbor, all eigenvalues of L̃ have positive real parts. Also note that L̃ = In−1 − Ã.
It follows that

A0 + A1 + A2 =

[
0(n−1)×(n−1) In−1

−L̃ −γcL̃

]
.

Because all eigenvalues of L̃ are also the n − 1 nonzero eigenvalues of L and
γc > γc, it follows from Lemma 7.4 that all eigenvalues of A0 + A1 + A2 have
negative real parts. Thus there always exists a symmetric positive-definite matrix
Psc to guarantee that (A0 + A1 + A2)

T Psc + Psc(A0 + A1 + A2) is symmetric
negative definite. A similar analysis to that in Theorem 10.1 shows that there ex-
ist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Condition (iii) is
satisfied.

For the second statement, we show that if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], (10.20a)
is asymptotically stable while (10.20b) is stable. It follows from Lemma 1.44 that
the stability of the following system

d

dt

[
z̃(t) + A1

∫ 0

−τ1

z̃(t + θ) dθ + A2

∫ 0

−τ1−τ2

z̃(t + θ) dθ

]

= (A0 + A1 + A2)z̃(t) (10.21)

implies the stability of (10.20a) if Condition (ii) in the theorem is satisfied. Then,
consider the Lyapunov function candidate

V (z̃t) =χT Pscχ

+

∫ 0

−τ1

∫ t

t+θ

z̃(ξ)T Sscz̃(ξ) dξ dθ +

∫ 0

−τ1−τ2

∫ t

t+θ

z̃(ξ)T Hscz̃(ξ) dξ dθ,

where χ
△
= z̃(t)+A1

∫ 0

−τ1
z̃(t+θ) dθ+A2

∫ 0

−τ1−τ2
z̃(t+θ) dθ. Taking the derivative

of V (z̃t) along (10.21) gives

V̇ (z̃t) ≤ z̃(t)T Qscz̃(t).

A similar analysis to that in the proof of Theorem 10.1 shows that if Condi-
tions (ii) and (iii) are satisfied, (10.20a) is asymptotically stable at the origin. For
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(10.20b) and (10.20c), we apply the Nyquist stability criterion to find the stabil-
ity condition. Applying Laplace transform to (10.20b) and (10.20c), we obtain
that r̃n,:(s) =

sr̃n,:(0)+ṽn,:(0)

s2+(γcs+1)[e−τ1s−e−(τ1+τ2)s
]
. Therefore, the stability of (10.20b)

and (10.20c) is determined by the distribution of the roots

s2 + (γcs + 1)
[
e−τ1s−e−(τ1+τ2)s]

= 0. (10.22)

Note that (10.22) has two zero roots. To study the other roots, define g(s)
△
=

(γcs + 1) × [e−τ1s − e−(τ1+τ2)s]/s2. By using the Nyquist stability criterion, it fol-
lows that the roots of (10.22) are stable if Re[g(ιω)] > −1, ∀ω ∈ (−∞, ∞). Be-
cause

Re
[
g(ιω)

]
=

−γc sin(τ1ω) + γc sin[(τ1 + τ2)ω]

ω
+

− cos(τ1ω) + cos[(τ1 + τ2)ω]

ω2

=
−γc sin(τ1ω) + γc sin[(τ1 + τ2)ω]

ω
− 2 sin[ (2τ1+τ2)

2 ω] sin( τ2

2 ω)

ω2

≥ − γcτ1 − γc(τ1 + τ2) − (2τ1 + τ2)τ2

2
,

it follows that (10.20b) and (10.20c) are marginally stable under Condition (i) of the
theorem. Note that the asymptotical stability of (10.20a) implies that limt→∞ z̃(t) =
02n−2. Also by using the final value theorem, it follows that limt→∞ r̃n,:(t) =
ṽn,:(0)

τ2
. After similar manipulation to that in Theorem 10.1, it follows that ri(t) →

p
T v(0)
τ2

+ δi and vi(t) → 0 (and hence ri(t) − rj(t) → Δij and vi(t) − vj(t) → 0)
as t → ∞.

Remark 10.12 Due to the existence of the communication delay, using (10.18) for
(3.5), the final velocity is dampened to zero instead of a possible nonzero constant
as compared with the standard consensus algorithm for double-integrator dynam-
ics [248, Chap. 4]. Also note that if there exists only the input delay, the final ve-
locity is a possibly nonzero constant, which is consistent with the results using the
standard consensus algorithm for double-integrator dynamics in [248, Chap. 4].

Remark 10.13 Note that compared with the case for single-integrator dynamics in
Sect. 10.2.1, the case for double-integrator dynamics requires more stringent condi-
tions to guarantee coordination.

10.3.2 Coordinated Tracking when the Leader’s Velocity is

Constant

In this subsection, we assume that in addition to n followers, labeled as agents or
followers 1 to n, there exists a leader, labeled as agent 0, with position r0 and ve-
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locity v0. Here we assume that v0 is constant. Let G
△
= (V , E ) and G

△
= (V , E ) be

defined as in Sect. 10.2.2.
Consider the following coordinated tracking algorithm with both communication

and input delays for the n followers with double-integrator dynamics given by (3.5)
as

ui(t) = − 1∑n
j=0 aij

n∑

j=0

aij

[
ri(t − τ1) − rj(t − τ1 − τ2)

]

− γr∑n
j=0 aij

n∑

j=0

aij

[
vi(t − τ1) − vj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.23)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i =
1, . . . , n, j = 0, . . . , n, is defined as in (10.10), and γr is a positive gain. Note
that in G if the leader has directed paths to all followers 1 to n, it follows that∑n

j=0 aij > 0, i = 1, . . . , n.
Using (10.23), (3.5) can be written in a vector form as

χ̇(t) = A0χ(t) + A1χ(t − τ1) + A2χ(t − τ1 − τ2) + Rsr, (10.24)

where r̄
△
= [r1−r0, . . . , rn −r0]

T , v̄
△
= [v1−v0, . . . , vn −v0]

T , χ
△
= [r̄T , v̄T ]T , A0

△
=

[ 0n×n In

0n×n 0n×n

]
, A1

△
=

[ 0n×n 0n×n

−In −γrIn

]
, A2

△
=

[ 0n×n 0n×n

A γrA

]
, and Rsr

△
=

[
0n

−τ2v01n

]
.

Note that here A is defined before (10.11) and we have used the fact that v0 is

constant. By letting ζ
△
= (A0 + A1 + A2)

−1Rsr and χ̂
△
= χ − ζ, we can transform

(10.24) as

˙̂χ = A0χ̂(t) + A1χ̂(t − τ1) + A2χ̂(t − τ1 − τ2). (10.25)

Theorem 10.14. Suppose that in G the leader has directed paths to all followers 1 to

n and γr > γr

△
= maxi

|Im(µi)|√
Re(µi)|µi |

, where μi is the ith eigenvalue of In − A. There

exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the following two

conditions are satisfied:

(i) 1 + λi(A1)
1−e−sτ1

s
+ λi(A2)

1−e−s(τ1+τ2)

s
�= 0, for all s ∈ C

+.

(ii) The matrix

Qsr
△
= (A0 + A1 + A2)

T Psr + Psr(A0 + A1 + A2) + τ1Ssr + (τ1 + τ2)Hsr

+ τ1

[
(A0 + A1 + A2)

T PsrA1S
−1
sr A

T

1 Psr(A0 + A1 + A2)
]

+ (τ1 + τ2)
[
(A0 + A1 + A2)

T PsrA2H
−1
sr A

T

2 Psr(A0 + A1 + A2)
]

is symmetric negative definite, where Psr ∈ R
2n×2n is a symmetric positive-

definite matrix chosen properly such that (A0 + A1 + A2)
T Psr + Psr(A0 +
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A1 + A2) is symmetric negative definite, and Ssr ∈ R
2n×2n and Hsr ∈ R

2n×2n

are arbitrary symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.23) for (3.5), r̄(t) → τ2v0(In −
A)−11n and v̄(t) → 0n as t → ∞.

Proof: For the first statement, it is straightforward to show that Condition (i) is sat-
isfied. For Condition (ii), note that A0+A1+A2 =

[ 0n×n In

−(In −A) −γr(In −A)

]
. Because

in G the leader has directed paths to all followers, it follows from Lemma 10.1 that
all eigenvalues of In − A have positive real parts. Because γr > γr, it thus follows
from Lemma 7.4 that all eigenvalues of A0 +A1 +A2 have negative real parts. The
rest of the proof is similar to that in Theorem 10.1.

For the second statement, it follows from Lemma 1.44 that the stability of the
following system

d

dt

[
χ̂(t) + A1

∫ 0

−τ1

χ̂(t + θ) dθ + A2

∫ 0

−τ1−τ2

χ̂(t + θ) dθ

]

= (A0 + A1 + A2)χ̂(t) (10.26)

implies the stability of (10.25) under Condition (i) of the theorem. Then, consider a
Lyapunov function candidate

V (χ̂t) =ϕT Psrϕ +

∫ 0

−τ1

∫ t

t+θ

χ̂T (ξ)Ssrχ̂(ξ) dξ dθ

+

∫ 0

−τ1−τ2

∫ t

t+θ

χ̂T (ξ)Hsrχ̂(ξ) dξ dθ,

where ϕ
△
= χ̂(t)+A1

∫ 0

−τ1
χ̂(t+θ) dθ+A2

∫ 0

−τ1−τ2
χ̂(t+θ) dθ. Taking the deriva-

tive of V (χ̂t) along (10.26) gives

V̇ (χ̂t) ≤ χ̂T (t)Qsrχ̂(t),

where we have used Lemma 1.23 to derive the inequality. A similar analysis to
that in the proof of Theorem 10.1 shows that (10.25) is asymptotically stable at the
origin, which implies that χ̂(t) → 02n as t → ∞. Note that ζ = [τ2v0[(In −
A)−11n]T ,0T

n ]T by computation and χ = χ̂ + ζ. It follows that r̄(t) → τ2v0(In −
A)−11n and v̄(t) → 0n as t → ∞.

Corollary 10.1. Suppose that the conditions in Theorem 10.14 hold. If v0 = 0, then

ri(t) → r0 and vi(t) → 0 as t → ∞.

Remark 10.15 Note that different from the results in the case for single-integrator
dynamics in Sect. 10.2.2, the tracking errors of the followers ri(t) − r0(t) might
not approach zero but approach possibly different constants in the case of double-
integrator dynamics.
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10.3.3 Coordinated Tracking with Full Access to the Leader’s

Acceleration

In this subsection, we consider the case where the leader’s position r0 and velocity
v0 are varying. We assume that all followers have access to v̇0. We also assume that
|v0| < δv , |v̇0| < δa, and |v̈0| < δȧ, where δv, δa and δȧ are positive constants.

Consider the following coordinated tracking algorithm with both communication
and input delays for the n followers with double-integrator dynamics given by (3.5)
as

ui(t) = v̇0(t − τ1 − τ2) − 1∑n
j=0 aij

n∑

j=0

aij

{[
ri(t − τ1) − rj(t − τ1 − τ2)

]

+ γt

[
vi(t − τ1) − vj(t − τ1 − τ2)

]}
, i = 1, . . . , n, (10.27)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i =
1, . . . , n, j = 0, . . . , n, is defined as in (10.10), and γt is a positive gain. Using
(10.27), (3.5) can be written in a vector form as

χ̇(t) = A0χ(t) + A1χ(t − τ1) + A2χ(t − τ1 − τ2) + Rst, (10.28)

where χ is defined as in (10.24), A0, A1, and A2 are defined as in (10.24) with γr

replaced with γt, Rst
△
=

[
0n

R1

]
, and R1

△
= 1n[v̇0(t − τ1 − τ2) − v̇0(t) + r0(t − τ1 −

τ2)−r0(t−τ1)+γtv0(t−τ1 −τ2)−v0(t−τ1)]. By using (1.10), it follows that R1 =

−1n

∫ 0

−τ1−τ2
v̈0(t + θ) dθ − 1n

∫ −τ1

−τ1−τ2
v0(t + θ) dθ − γt1n

∫ −τ1

−τ1−τ2
v̇0(t + θ) dθ.

Theorem 10.16. Suppose that in G the leader has directed paths to all followers 1
to n and γt > γr, where γr is defined in Theorem 10.14. There exist positive τ1 and

τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2],

Qst
△
= (A0 + A1 + A2)

T Psr + Psr(A0 + A1 + A2)

+ τ1

(
PsrA1A0P

−1
sr A

T

0 A
T

1 Psr + Psr(A1)
2P −1

sr

(
A

T

1

)2
Psr

+ PsrA1A2P
−1
sr A

T

2 A
T

1 Psr + 3qsPsr

)

+ (τ1 + τ2)
(
PsrA2A0P

−1
sr A

T

0 A
T

2 Psr + PsrA2A1P
−1
sr A

T

1 A
T

2 Psr

+ Psr

(
A2

)2
P −1

sr

(
A

T

2

)2
Psr + 3qsPsr

)

is symmetric negative definite, where Psr is defined in Theorem 10.14 and qs is

an arbitrary real number satisfying qs > 1. In addition, if τ1 ∈ [0, τ1] and

τ2 ∈ [0, τ2], using (10.27) for (3.5), for all ri(0) and vi(0) and all i = 1, . . . , n,
|ri(t) − r0(t)| and |vi(t) − v0(t)| are uniformly ultimately bounded. In particu-

lar, the ultimate bound for ‖χ(t)‖ is given by
λmax(Psr)as

λmin(Psr)κsλmin(−Qst)
, where as

△
=

2[‖Psr‖ + ‖PsrA1‖τ1 + ‖PsrA2‖(τ1 + τ2)][(τ1 + τ2)δȧ + τ2δv + γtτ2δa], and κs is

an arbitrary real number satisfying 0 < κs < 1.
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Proof: The proof for the first statement is similar to that in Theorem 10.14 and is
hence omitted here. For the second statement, using (1.10), we transform (10.28) to
the following system

d

dt
χ(t) = (A0 + A1 + A2)χ(t) − A1

∫ 0

−τ1

χ̇(t + θ) dθ

− A2

∫ 0

−τ1−τ2

χ̇(t + θ) dθ + Rst

= (A0 + A1 + A2)χ(t)

− A1

∫ 0

−τ1

[
A0χ(t + θ)

+ A1χ(t − τ1 + θ) + A2χ(t − τ1 − τ2 + θ)
]
dθ

− A2

∫ 0

−τ1−τ2

[
A0χ(t + θ) + A1χ(t − τ1 + θ)

+ A2χ(t − τ1 − τ2 + θ)
]
dθ

− A1

∫ 0

−τ1

Rst(t + θ) dθ − A2

∫ 0

−τ1−τ2

Rst(t + θ) dθ + Rst

= (A0 + A1 + A2)χ(t) − A1A0

∫ 0

−τ1

χ(t + θ) dθ − A
2

1

∫ −τ1

−2τ1

χ(t + θ) dθ

− A1A2

∫ −τ1−τ2

−2τ1−τ2

χ(t + θ) dθ − A2A0

∫ 0

−τ1−τ2

χ(t + θ) dθ

− A2A1

∫ −τ1

−2τ1−τ2

χ(t + θ) dθ − A
2

2

∫ −τ1−τ2

−2τ1−2τ2

χ(t + θ) dθ

− A1

∫ 0

−τ1

Rst(t + θ) dθ − A2

∫ 0

−τ1−τ2

Rst(t + θ) dθ + Rst.

Consider the Lyapunov function candidate V (χ) = χT (t)Psrχ(t). Taking the
derivative of V (χ) along (10.28) gives

V̇ (χ) ≤ χT
[
(A0 + A1 + A2)

T Psr + Psr(A0 + A1 + A2)
]
χ

+ τ1χ
T PsrA1A0P

−1
sr A

T

0 A
T

1 Psrχ

+

∫ 0

−τ1

χT (t + θ)Psrχ(t + θ) dθ + τ1χ
T Psr(A1)

2P −1
sr

(
A

T

1

)2
Psrχ

+

∫ −τ1

−2τ1

χT (t + θ)Psrχ(t + θ) dθ + τ1χ
T PsrA1A2P

−1
sr A

T

2 A
T

1 Psrχ

+

∫ −τ1−τ2

−2τ1−τ2

χT (t + θ)Psrχ(t + θ) dθ

+ (τ1 + τ2)χ
T PsrA2A0P

−1
sr A

T

0 A
T

2 Psrχ
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+

∫ 0

−τ1−τ2

χT (t + θ)Psrχ(t + θ) dθ

+ (τ1 + τ2)χ
T PsrA2A1P

−1
sr A

T

1 A
T

2 Psrχ

+

∫ −τ1

−2τ1−τ2

χT (t + θ)Psrχ(t + θ) dθ

+ (τ1 + τ2)χ
T P (A2)

2P −1
sr

(
A

T

2

)2
Psrχ

+

∫ −τ1−τ2

−2τ1−2τ2

χT (t + θ)Psrχ(t + θ) dθ

+ 2‖χ‖ ‖Psr‖
[
(τ1 + τ2)δȧ + τ2δv + γtτ2δa

]

+ 2‖χ‖ ‖PsrA1‖τ1

[
(τ1 + τ2)δȧ + τ2δv + γtτ2δa

]

+ 2‖χ‖ ‖PsrA2‖(τ1 + τ2)
[
(τ1 + τ2)δȧ + τ2δv + γtτ2δa

]
,

where we have used Lemma 1.23 and the facts that |v0| < δv , |v̇0| < δa, and
|v̈0| < δȧ to derive the inequality. Take p(s) = qss. If V [χ(t + θ)] < p{V [χ(t)]} =
qsV [χ(t)] for −2τ1 − 2τ2 ≤ θ ≤ 0, by following a similar analysis to that in the
proof of Theorem 10.6, we have

V̇ (χ) ≤ χT (t)Qstχ(t) + as

∥∥χ(t)
∥∥.

If τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], we have that λmin(−Qst) > 0. Given 0 < κs < 1, if
‖χ(t)‖ ≥ as

κsλmin(−Qst)
, we can obtain

V̇ (χ) ≤ −(1 − κs)λmin(−Qst)
∥∥χ(t)

∥∥2 − κsλmin(−Qst)
∥∥χ(t)

∥∥2
+ as

∥∥χ(t)
∥∥

≤ −(1 − κs)λmin(−Qst)
∥∥χ(t)

∥∥2
.

Therefore, it follows from Lemma 1.42 that ‖χ(t)‖ is uniformly ultimately boun-
ded, which implies that |ri(t) − r0(t)| and |vi(t) − v0(t)| are uniformly ultimately
bounded. Moreover, it can be computed that the ultimate bound for ‖χ(t)‖ is given
by λmax(Psr)as

λmin(Psr)κsλmin(−Qst)
by following a similar analysis to that in [145, pp. 172–

174].

10.3.4 Coordinated Tracking with Partial Access to the Leader’s

Acceleration

In this subsection, we assume the leader’s varying position r0, velocity v0, and ac-
celeration v̇0 are available to only a subset of all followers. We assume that |r0|,
|v0|, and |v̇0| are bounded. We also assume that there exists only the communica-
tion delay.
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Consider the following coordinated tracking algorithm for the n followers with
double-integrator dynamics given by (3.5) as

ui(t) =
1∑n

j=0 aij

n∑

j=0

aij

{
v̇j(t − τ2) −

[
ri(t) − rj(t − τ2)

]

− γft

[
vi(t) − vj(t − τ2)

]}
, i = 1, . . . , n, (10.29)

where τ2 is the communication delay, aij , i = 1, . . . , n, j = 0, . . . , n, is defined as
in (10.10), and γft is a positive gain. Using (10.29), (3.5) can be written in a vector
form as

χ̇(t) = Df χ̇(t − τ2) + Af0χ + Af1χ(t − τ2) + Rsft, (10.30)

where χ is defined as in (10.24), Df
△
=

[ 0n×n 0n×n

0n×n A

]
, Af0

△
=

[ 0n×n In

−In −γftIn

]
,

Af1
△
=

[ 0n×n 0n×n

A γftA

]
, Rsft

△
=

[
0n

R2

]
, and R2

△
= [v̇0(t − τ2) − v̇0(t)]1n − [r0(t) −

r0(t−τ2)]1n −γft[v0(t)−v0(t−τ2)]1n. Note that here A is defined before (10.11).

Theorem 10.17. Suppose that in G the leader has directed paths to all followers 1
to n, and γft > γr, where γr is defined in Theorem 10.14. Using (10.29) for (3.5),
for all ri(0) and vi(0) and all i = 1, . . . , n, |ri(t) − r0(t)| and |vi(t) − v0(t)| are

uniformly ultimately bounded if

λ > 2qsf

√
λmax(Psr)

λmin(Psr)

∥∥Psr(Af0Df + Af1)
∥∥ + 2‖PsrAf1‖, (10.31)

where λ
△
= λmin[−(Af0 + Af1)

T Psr − Psr(Af0 + Af1)],
2 Psr ∈ R

2n×2n is a

symmetric positive-definite matrix chosen properly such that (Af0 + Af1)
T Psr +

Psr(Af0 + Af1) is symmetric negative definite, and qsf is an arbitrary real number

satisfying qsf > 1.

Proof: First, it follows from Lemma 8.1 that ρ(A) < 1, which implies that
ρ(Df ) < 1. Therefore, the neutral operator Dχt = χ − Dfχ(t − τ2) is stable. Con-
sider a Lyapunov function candidate V (χ) = χT (t)Psrχ(t). Taking the derivative
of V (χ) along (10.30) gives

V̇ (Dχt) = 2(Dχt)
T Psr

[
Af0χ + Af1χ(t − τ2) + Rsft

]

= 2(Dχt)
T Psr

[
Af0(Dχt) + Af0Dfχ(t − τ2) + Af1χ(t − τ2) + Rsft

]

2 Note that Af0 + Af1 =
[ 0n×n In

−(In −A) −γft(In −A)

]
. Similar to the proof of the first statement

in Theorem 10.14, it follows that all eigenvalues of Af0 + Af1 have negative real parts under the
condition of the theorem.
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= (Dχt)
T
[
(Af0 + Af1)

T Psr + Psr(Af0 + Af1)
]
(Dχt)

+ 2(Dχt)
T Psr(Af0Df + Af1)χ(t − τ2)

− 2(Dχt)
T PsrAf1(Dχt) + 2(Dχt)

T PsrRsft.

Let p(s) = q2
sfs. If V [χ(θ)] < p[V (Dχt)] for t − τ2 ≤ ξ ≤ t, it is equivalent

that χT (θ)Psrχ(θ) < q2
sf(Dχt)

T Psr(Dχt) for t − τ2 ≤ θ ≤ t. Therefore, we have

‖χ(t − τ2)‖ < qsf

√
λmax(Psr)
λmin(Psr)

‖Dχt‖. Thus, it follows that

V̇ (Dχt) ≤ − λ ‖Dχt‖2
+ 2qsf

√
λmax(Psr)

λmin(Psr)

∥∥Psr(Af0Df + Af1)
∥∥‖Dχt‖2

+ 2‖PsrAf1‖ ‖Dχt‖2 + 2‖PsrRsft‖‖Dχt‖.

Therefore, if (10.31) holds, it follows from Lemma 1.43 that ‖χ(t)‖ is uniformly
ultimately bounded, which implies that |ri(t) − r0(t)| and |vi(t) − v0(t)| are uni-
formly ultimately bounded.

Remark 10.18 Note that different from the case for single-integrator dynamics
where the tracking errors are bounded no matter how large the communication de-
lay is, a certain delay independent condition (10.31) has to be satisfied beforehand
to ensure the tracking errors are uniformly ultimate bounded in the case of double-
integrator dynamics.

10.4 Simulation

In this section, we present simulation results to validate the theoretical results in
Sects. 10.2 and 10.3. For the leaderless coordination problem, we consider a team
of six agents with the adjacency matrix A chosen as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 0 2.5 0 2.5

8 0 1 0 1 0

0 2 0 2 3 3

1 0 1 0 8 0

0 1.2 0 1.8 0 7

5 1 0 2 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the leader-following coordination problem, we consider a team consisting of six
followers and one leader. The adjacency matrix A associated with the six followers
is defined as
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Fig. 10.1 Agents’ positions using (10.1)

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
8 0 1 0 1 0
0 3 0 0 0 3
1 0 0 0 1 0
0 1.2 0 1.8 0 7
5 1 0 0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We also let a10 = 1, a30 = 4, a40 = 8, and ai0 = 0 otherwise.
For single-integrator dynamics, we choose r(0) = [−1, 5, 7, 4, 6, 3]T , where r

is a column stack vector of all ri, i = 1, . . . , 6. For (10.1), we let Δij = 0 for
simplicity. For (10.10), we let r0 = 3.5. For (10.13), we let r0(t) = 3.5 − 4 cos( t

4 ).
For all (10.1), (10.10), and (10.13), the input delay and the communication delay
are chosen as, respectively, τ1 = 0.1 s and τ2 = 0.2 s. For (10.16), we let r0(t) =
3.5 − 4 cos( t

4 ) and the communication delay be τ2 = 0.2 s.
Figures 10.1, 10.2, 10.3, and 10.4 show the positions of the agents using, respec-

tively, (10.1), (10.10), (10.13), and (10.16). It can be seen from Figs. 10.1 and 10.2
that the agents achieve, respectively, leaderless coordination and coordinated regu-
lation. In the case of coordinated tracking, Figs. 10.3 and 10.4 show that the tracking
errors are uniformly ultimately bounded due to the existence of the delays and the
fact that the leader is dynamic.

For double-integrator dynamics, we choose r(0) = [−0.4, 0.5, 0.7, 0.4, 1.2, 0.3]T

and v(0) = [−0.1, 0.2, 0.7, 0.4, −0.1, 0.3]T . For (10.18), we let Δij = 0 for sim-
plicity. For (10.23), we consider two subcases. In one subcase, we let r0 = −0.2
and v0 = 0. In the other subcase, we let r0(t) = −0.2 + 0.1t and v0 = 0.1. For
(10.27), we let r0(t) = −0.2 + 0.3t − 1.6 sin( t

4 ) and v0(t) = 0.3 − 0.4 cos( t
4 ). For

all (10.18), (10.23), and (10.27), we choose τ1 = 0.3 s and τ2 = 0.1 s. For (10.29),
we let r0(t) = −0.2 + 0.3t − 1.6 sin( t

4 ), v0(t) = 0.3 − 0.4 cos( t
4 ), and τ2 = 0.1 s.
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Fig. 10.2 Agents’ positions using (10.10)

Fig. 10.3 Agents’ positions using (10.13)

Figure 10.5 the positions and velocities of the agents using (10.18). It is inter-
esting to notice that unlike the result using the standard consensus algorithm with
relative damping for double-integrator dynamics [248, Chap. 4], the final velocities
of the agents are always dampened to zero rather than a possibly nonzero constant.
Figures 10.6 and 10.7 show the positions and velocities using (10.23) with, respec-
tively, v0 = 0 and v0 = 0.1. It is worth noticing that when v0 is a nonzero con-
stant (respectively, zero), the tracking errors ri(t) − r0(t) approach constant values
(respectively, zero). Figures 10.8 and 10.9 show the positions and velocities us-
ing, respectively, (10.27) and (10.29). The tracking errors are uniformly ultimately
bounded due to the existence of the delays and the fact that the leader is dynamic.
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Fig. 10.4 Agents’ positions using (10.16)

Fig. 10.5 Agents’ positions using (10.18)

10.5 Notes

The results in this chapter are based mainly on [190, 191]. For further results on
distributed multi-agent coordination with time delays, see [126, 174, 192, 199, 206,
214, 228, 264, 283, 285, 290, 291, 316, 322, 323]. A frequency-domain approach
is used in [214] to find the stability conditions for a leaderless coordination algo-
rithm with input delays. A time-domain approach based on Lyapunov–Krasovaskii
theorem is adopted in [174] to obtain the stability conditions for a similar leader-
less coordination algorithm with uniform input delays under a strongly connected
and balanced interaction graph. Besides leaderless coordination algorithms, leader-
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Fig. 10.6 Agents’ positions using (10.23) with v0 = 0

Fig. 10.7 Agents’ positions using (10.23) with v0 = 0.1

following coordination algorithms with input delays are also studied. By combining
the results in [174] and [120], the authors in [228] propose a first-order coordinated
tracking algorithm with input delays, where an estimator is used to estimate the
leader’s velocity. In [174, 214, 228], the interaction graph is assumed to be either
undirected or strongly connected and balanced. The extension to the case where
the interaction graph has a directed spanning tree and the input delays are non-
uniform is provided in [291], where a frequency-domain approach is adopted to
find conditions to achieve leaderless coordination. Except for input delays, the in-
fluence of communication delays on coordination algorithms is also studied. It is
shown in [199] shows that communication delays will not jeopardize the stability
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Fig. 10.8 Agents’ positions using (10.27)

Fig. 10.9 Agents’ positions using (10.29)

of a first-order leaderless coordination algorithm under a directed interaction graph.
A similar algorithm is discussed in [264], where the effect of the initial conditions
is highlighted. A second-order coordinated regulation algorithm with non-uniform
communication delays is studied in [206], where a damping term is used to regu-
late the velocities of all agents to zero and the interaction graph is assumed to be
undirected. The case with both communication and input delays is studied in [290],
where a first-order leaderless coordination algorithm is studied in a discrete-time
setting by a frequency-domain approach.
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Double-integrator dynamics, 51, 85, 217, 274
Dynamic leaders, 110, 137

E

Edge, 5
Edge set, 5
Euler angle, 45
Euler axis, 45
Euler–Lagrange equation, 147
Exponentially stable, 14, 15

F

Final value theorem, 113
Finite time, 79
Finite-time consensus, 29
Follower, 77, 78, 109, 110, 161, 268
Formation control, 24
Formation producing, 30
Formation tracking, 30
Fourier matrix, 51
Fractional calculus, 186
Fractional-order, 185
Fractional-order dynamics, 186, 187
Full access, 270

G

Game theory, 40
Generalized coordinates, 149
Generalized gradient, 18
Gershgorin’s disc theorem, 12
Global cost function, 35
Global Invariance Set Theorem, 15
Globally asymptotically stable, 14, 15
Globally exponentially stable, 14, 15, 86
Globally stable, 14, 15
Graph rigidity, 31

H

Harmonic oscillator, 62
Has a directed spanning tree, 6
Hölder inequality, 12
Hurwitz, 113

I

In-degree, 6
In-degree matrix, 7
Individual cost function, 35
Inertial coordinate frame, 111

Input delay, 26, 264
Intelligent coordination, 25
Interaction-free cost function, 243
Interaction-related cost function, 243
Intermittent interaction, 207
Invariance Principle for Differential

Inclusions, 18
Invariant set, 14
Inverse Laplace transform, 192

J

Jordan canonical form, 48, 66, 188, 219

L

Lagrangian systems, 147
Laplace transform, 113, 187
Laplacian matrix, 7
Leader, 34, 77, 109, 110, 208, 268
Leader-following coordination, 147
Leaderless, 147
Leaderless coordination, 264, 274
Leibniz–Newton formula, 19
Local interaction, 77, 147
Local Invariance Set Theorem, 14
Locally Lipschitz, 14
Logarithmic spiral patterns, 45
LQR, 241
Lyapunov-like lemma, 16

M

M-matrix, 11, 244
Marginally stable, 267
Matrosov’s theorem, 17
Minimal hyperrectangle, 110
Mittag-Leffler function, 187
Model predictive control, 32
MPC, 32

N

Nash differential game, 40
Neighbor, 5
Neutral functional differential equation, 19
Node, 5
Node set, 5
Nonautonomous system, 152
Nonnegative matrix, 9
Nonnegative vector, 7
Nonsingular M-matrix, 11
Nonsmooth analysis, 17
Nonsymmetric Laplacian matrix, 7
Nyquist stability, 267

O

Optimal scaling factor, 247, 259
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Optimal state feedback gain matrix, 244, 251
Optimality, 241
Out-degree, 6

P

P-like, 213
Parent node, 5
Partial access, 273
PD-like, 208
Positively invariant set, 14
Potential function, 33, 83
Pursuer–invader problem, 39

Q

Quantization, 29
Quantized consensus, 29

R

Radially unbounded, 14
Receding horizon control, 32
Regular function, 18
Relative damping, 199, 224, 234
Rendezvous, 24, 45
Retarded functional differential equation, 19
RHC, 32
Right directional derivative, 18
Root, 5
Rotation matrix, 46, 53
Row-stochastic matrix, 10

S

Sampled-data consensus, 29
Schur’s formula, 12
Semiconvergent, 11
Semidefinite programming, 27
Set-valued Lie derivative, 18
SIA, 10
Single-integrator dynamics, 46, 78, 208, 242,

264
Singular vector decomposition, 265
Stable, 14, 15

Stationary leaders, 109, 135
Stochastic interaction, 28
Strongly connected, 5
Subgraph, 6
Swarm tracking, 77, 84, 92, 93
Swarming behavior, 132
Synchronization, 24

T

Transmitting radius, 133
Transmitting range, 133
Tree, 5

U

UAV, 23
UGV, 23
Uncertainty, 171
Undirected graph, 5
Undirected path, 5
Undirected spanning tree, 6
Uniformly asymptotically stable, 15, 152
Uniformly continuous, 16, 170
Uniformly exponentially stable, 15
Uniformly stable, 15
Uniformly ultimately bounded, 19, 20, 271,

273, 280, 283
Union, 5
United directed spanning tree, 110
Unmanned aerial vehicle, 23
Unmanned ground vehicle, 23
Unmanned underwater vehicle, 23
UUV, 23

V

Variable structure approach, 77

W

Weighted graph, 5

Z

Zero-order hold, 13
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