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Preface 

Information granulation has emerged as one of the fundamental concepts of in-

formation processing giving rise to the discipline of Granular Computing. The 

concept itself permeates through a large variety of information systems. The un-

derlying idea is intuitive and appeals to our commonsense reasoning. We perceive 

the world by structuring our knowledge, perceptions, and acquired evidence in 

terms of information granules-entities, which are abstractions of the complex word 

and phenomena. By being abstract constructs, information granules and their ensu-

ing processing done under the umbrella of Granular Computing, provides a  

conceptual and algorithmic framework to deal with an array of decision-making, 

control, and prediction problems. Granular Computing supports human-centric 

processing, which becomes an inherent feature of intelligent systems. The required 

level of detail becomes conveniently controlled by making suitable adjustments to 

the size of information granules and their distribution in the space in which the 

problem at hand is being positioned and handled. In this sense, an inherent flexi-

bility, which comes hand in hand with Granular Computing can be effectively ex-

ploited in various ways. It is not surprising at all that there have been a number of 

formal frameworks in which information granules are described and processed to 

meet the specification of the problem. Interestingly, we are witnessing here a 

growing diversity of formalisms stemming from the realm of fuzzy sets, interval 

analysis, probability, rough sets, and shadowed sets.  

Three general tendencies encountered in Granular Computing can be identified: 

(a) a design of information granules of higher order, (b) a development of infor-

mation granules of higher type, and (c) a formation of hybrid information granules 

bringing together various formalisms of information granulation.  

The essence of these three directions is quite distinct and there are quite differ-

ent agendas behind each of them. The higher order information granularity is con-

cerned with an effective formation of information granules over the space already 

constructed by information granules of lower order and a design of models utiliz-

ing such information granules. This construct is directly tied with the concept of 

hierarchy of systems where we form successive layers characterized by the in-

creasing levels of abstraction. This idea of layered, hierarchical realization of 

models of complex systems has gained a significant level of visibility in fuzzy 

modeling with the well-established concept of hierarchical fuzzy models. In  

particular, there has been an interesting realization of this concept in rule-based 

systems where by forming successive nested layers of the model, especially the 

associated rule bases, one strives to achieve a sound tradeoff between accuracy 

and a level of detail captured by the model and its level of interpretability. 
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Higher type information granules arise in situations where the information 

granules themselves cannot be fully characterized in a purely numerical fashion. 

Instead in their realization (definition) it becomes necessary or at least convenient 

to confine to their realization in the form of other types of information granules. 

For instance, we could envision membership grades of fuzzy sets being character-

ized (described) by fuzzy sets defined in the unit interval (in which case we refer 

to such constructs as type-2 fuzzy sets) or intervals (interval-valued fuzzy sets), 

probability density functions expressed in [0,1] (where we allude to probabilistic 

fuzzy sets).  

The hybridization of information granules brings forward concepts that harmo-

niously capture various facets of information granules acknowledging that various 

formalisms are orthogonal. For instance, we can envision an interesting hybrid 

structure of information granules in which probability is of non-numeric nature 

but emerges in the form of interval probabilities or linguistically quantified prob-

abilities.  

The ultimate objective of this volume is to offer a comprehensive, fully updated 

and systematic exposure to the subject matter, carefully addressing concepts, 

methodology, algorithms, and case studies/applications. All the three general di-

rections of Granular Computing are authoritatively covered in the chapters of the 

volume. The individual contributions of the volume are reflective of the diversity 

of the conceptual developments, underlying methodologies, algorithms and a 

wealth of applications.  

We would like to take this opportunity to express our sincere thanks to the au-

thors for reporting on their innovative research and sharing insights into the area. 

The reviewers deserve our thanks for their constructive input. We highly appreci-

ate a continuous support and encouragement from the Editor-in-Chief, Professor 

Janusz Kacprzyk whose leadership and vision makes this book series a unique ve-

hicle to disseminate the most significant accomplishments in Computational Intel-

ligence and Granular Computing. 

We hope that the readers will find this publication of genuine interest and help 

in research, educational, and practical endeavors. 
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From Interval (Set) and Probabilistic Granules

to Set-and-Probabilistic Granules of Higher
Order

Vladik Kreinovich

Abstract. In this chapter, we provide a natural motivation for granules of higher

order, and we show that these granules provide a unified description of different

uncertainty formalisms such as random sets, Dempster-Shafer approach, fuzzy sets,

imprecise probabilities, and Bayesian statistics. We also prove that for fuzzy uncer-

tainty, granules of second order are sufficient.

Keywords: Granules of Higher Order, Random Sets, Dempster-Shafer Approach,

Fuzzy Sets, Imprecise Probabilities, Bayesian Statistics.

1 Introduction

Techniques for representing uncertainty: current situation. Many techniques

have been proposed (and successfully used) to describe and process uncertainty:

• sets, in particular, intervals (Rabinovich 2005);

• probability distributions (Jaynes 2003), (Rabinovich 2005);

• imprecise probabilities (Walley 1989), (Ferson 2002), (Ferson et al. 2003);

• Dempster-Shafer approach;

• fuzzy sets;

• interval-valued (and, more generally, type-2) fuzzy sets (Mendel 2001), (Mendel

and Wu 2010);

• Bayesian statistical techniques (Jaynes 2003), (Gelman et al. 2004);

• and many other different approaches.

Natural questions. From this variety, come natural questions:

• Which of the techniques should we apply in different practical situations?

• Are there yet-to-be-discovered better techniques for processing uncertainty?
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2 V. Kreinovich

• How can we combine uncertainty described by different formalisms?

How to answer these questions: a need for classification. To answer all these

questions, it is necessary to come up with a reasonable classification of different

uncertainty techniques. Such classification would enable us:

• to meaningfully compare different techniques, for the purpose of deciding which

is better in different situations,

• to check whether all possible techniques in this classification have been invented,

or new (possible better) techniques are still possible, and

• to meaningfully combine these techniques – since they appear as particular cases

of a general approach to uncertainty.

What we do in this paper. In this paper, we start with the question of where our data

comes from, what are the corresponding uncertainties. Based on the corresponding

from-scratch analysis, we explain how different uncertainty techniques appear, and

thus, come up with a natural classification.

In the process of this classification, we provide a natural motivation for granules

of higher order. We also show that these granules provide a unified description of

different uncertainty formalisms.

2 From an Ideal Exact Description to Interval (Set) and

Probabilistic Granules

Idealized objects. To describe the physical world, we identify objects: elementary

particles, atoms, molecules, solid bodied, stars, etc.

An ideal object should be well-defined. For example, in a geographic description,

when we define forests, lakes, rivers, etc., we should be able to determine the exact

boundary between a lake and a river that flows into this lake, the exact boundary

between a forest and a nearby grassy area, etc.

An ideal object should also be reasonably stable with time. From this viewpoint,

• a river is a reasonable geographic object, because its path does not change much

for a long time, while

• a puddle – which is often easily visible too – is not a reasonable geographic

object, because it can disappear in the course of hours.

Group objects. The above description applied to individual objects: we can talk

about the height of an individual man, the speed with which the individual river

flows, etc.

In physics, we are also interested in “group” objects: the mass of an electron,

the magnetic moment of an ion of a specific type. Similarly, in manufacturing, we

are interested in the speed and/or fuel efficiency of a certain type of a car, in the

frequency of a certain type of a laser, etc. In all these cases, instead of dealing with

an individual object, we have a collection of similar objects.
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In the ideal case, we assume that all these objects are identical, so whatever we

can observe based on one of these objects can be applied to others as well. For

example, if we apply safety tests to several cars of the same make and model, and

these tests are successful, we conclude that all the cars of this make and model are

safe.

Idealized description of idealized objects. Ideally, we should have a full descrip-

tion of each (idealized) object. In other words, for each possible quantity (such as

location, mass, height, etc.), we should know the exact value of this quantity for the

given object.

For many physical quantities, there are several different ways to measure the

value of this quantity; ideally, all these ways should lead to the same numerical

result. For example, a GPS location of the car can be measured based on different

parts of this car; all these measurements should lead to the same result. Similarly, a

width of a wooden plank should be the same no matter where we measure it.

In mathematical terms, an (idealized) exact description of an (idealized) object

means that we know, for this object, the exact values s1, . . . ,sn of all possible quan-

tities of interest.

All such tuples s = (s1, . . . ,sn) of real numbers form an n-dimensional space R
n.

Usually, not all tuples are physically possible. For example, mass is always non-

negative, velocity is always limited by the speed of light, etc. The actual state must

therefore belong to the set S ⊆ R
n of all physically possible tuples.

Comment. In this paper, for simplicity, we assume that this set S is known. To get

a more realistic description, we must take into account that this set is not exactly

known – e.g., the speed of light is only approximately known.

Objects are not ideal: aleatoric uncertainty. As we have mentioned, ideally,

objects should be well-defined and stable (not changing with time).

In practice, objects are often not well defined. For example, when a river flows

into the lake, it is often not clear where is the boundary between the river and the

lake.

Objects are also not perfectly stable: they change, slightly but change. For exam-

ple, the weight of a person slightly changes – when she breathes in and breathes out,

when she sweats, etc.

As a result, for the same object, even an ideally accurate measuring instrument

can measure different values:

• the measurement results differ with time because the object changes,

• these results differ because we may select different boundaries for the object, etc.

This “objective” difference is known as aleatoric uncertainty.

Objects are not perfectly identical: another case of aleatoric uncertainty. In

the ideal case, we assumed that all the “instance” of a group object are identical.

In reality, different objects are slightly different. For example, different cars of the

same make and model may have slightly different fuel economy characteristics.
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Different measuring procedures can lead to different values: yet another case

of objective (aleatoric) uncertainty. In the ideal case, all possible procedures for

measuring a given quantity should lead to the exact same result. In practice, different

procedure may lead to slightly different results.

For example, for a non-ideal wooden plank, its width may differ slightly from

one location to another.

Measurements are not 100% accurate: epistemic uncertainty. In the ideal case,

we assumed that all the measurements lead to the exact values of the measured

quantity. In practice, measurements are never 100% accurate; the result x̃ of each

measurement is, in general, slightly different form the actual (unknown) value x of

the desired quantity: Δx
def
= x̃− x �= 0; see, e.g., (Rabinovich 2005).

Thus, even in the ideal case, when the object is well-defined and stable – i.e.,

where there is no aleatoric (“objective”) uncertainty, measurement results can be

different. This uncertainty is “subjective” in the sense that it characterizes not the

object itself, but rather our knowledge about this object. Such uncertainty is called

epistemic.

How to describe aleatoric uncertainty: set (interval) granules. In the ideal case,

each object is characterized by a single state s ∈ S.

Due to aleatoric uncertainty, for the same object, we may get different states s∈ S,

depending on:

• at what time we measure the corresponding quantities;

• how we define the boundaries of the object;

• which object from the group of (almost) identical objects we take; and

• which of the possible measuring procedures we use to measure the corresponding

quantities.

Thus, to fully characterize the situation, we must know which states s are possible

for this object and which are not. In other words, in view of the aleatoric uncertainty,

to describe an object, we need to know the set s ⊆ S of all possible states charac-

terizing this object. Different states s ∈ s are “equally” possible, so this set forms a

single set granule characterizing the object.

This set s is usually connected – in the sense that there is a continuous transition

between every two possible states s,s′ ∈ s, In the 1-D case, this connectivity implies

that with every two possible states s and s′, all intermediate states are also possible

– i.e., that the set s of all possible states is an interval.

How to describe aleatoric uncertainty: probabilistic granules. In addition to

knowing which states are possible and which are not, it is also desirable to know

how frequent are different possible states.

For example, within a population of cars of the same make and model, it is de-

sirable not only to know that the fuel efficiency of an individual car may be lower

than on average, it is also desirable to know how frequent are such low-efficiency

situation:
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• if they are rare, it is acceptable, but

• if such situations are frequent, this is a strong argument against buying this par-

ticular model.

Thus, it is desirable to know, for each possible value s ∈ s, a frequency (= probabil-

ity) that this value occurs when measuring this object. If we know this information,

then, instead of a set granule, we have a probabilistic granule.

Description of epistemic uncertainty: set (interval) and probabilistic granules.

Similarly, we can describe epistemic uncertainty.

Indeed, once we know the results s̃ = (s̃1, . . . , s̃n) of measuring the desired quan-

tities, we would like to know which states s are compatible with these measurement

results. In other words, we need to know the set s of all such states – i.e., a set

(interval) granule.

In addition to knowing which states s ∈ S are possible and which are not possible,

it is also desirable to know which values s ∈ s are more frequent and which are less

frequent – i.e., it is desirable to know the frequency (probability) of different value

s. Thus, we also arrive at the need to consider a probability distribution on the set s

of possible states – i.e., a probabilistic granule.

Yet another reason for granulation: need to speed up decision making. Even

when we know the actual element s from S with a good accuracy, it is still often

reasonable, when making a decision, to ignore this difficult-to-process accurate in-

formation and to base our decision on the type of an object – i.e., on the granule to

which this object belongs.

For example, when an animal attacks a person, it makes sense to ignore the an-

imal’s eye color and other details of the animal and concentrate of the type of the

animal: e.g., is it a small (mostly harmless) dog or a dangerous tiger.

3 Need for Granules of Granules – i.e., for Granules of Higher

Order

Need for granules of higher order. Ideally, to characterize the uncertainty,

we describe

• either the set of possible values

• or the probability distribution on the set of possible values.

This description assumes that we know exactly which values are possible and which

values are not possible – and we know the exact values of the corresponding proba-

bilities.

In practice, we are not always sure which values are possible and which are not,

and do not know the exact values of the corresponding probabilities. In other words,

our knowledge of the corresponding uncertainty is also uncertain.

Thus, instead of a single set-valued granule, we have a granule of possible set-

valued granules – a construction which can be naturally described as a granule of
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higher order. Similarly, instead of a single probabilistic granule, we have a gran-

ule of possible probabilistic granules – a construction which can also be naturally

described as a granule of higher order.

Motivation for restricting ourselves to granules of second order. For example,

instead of a single set of possible states, we can have a class of possible sets – a

second order construction. This class may also not be exactly known – so we should

consider class of possible classes, a third order construction.

However, from the computational viewpoint, a set is already difficult to process,

a class of sets is even more complex, and a class of classes is practically impossible

to analyze.

Comment. For fuzzy uncertainty, a deeper argument in favor of second-order gran-

ules is given in the Appendix; this argument was first outlined in (Nguyen and

Kreinovich 1998) and (Kreinovich and Nguyen 2001).

4 Second-Order Granules: Natural Classification

Classification: general idea. An ideal description of uncertainty is to describe as a

granule – i.e.,

• either a set of possible values

• or a probability distribution on the set of possible values.

In reality, we do not have the exact knowledge of the corresponding granule (i.e., of

the set or of the probability distribution).

When we did not know the exact state, we considered either the set of all possible

states or a probability distribution on the set of possible states. Similarly, when we

do not know the exact granule, we have to consider:

• either a set of possible granules,

• or a probability distribution on the set of possible granules.

In each of these two cases, we have two subcases, depending on whether we consider

set-valued (interval) or probabilistic granules. Thus, we arrive at the four possible

situations:

1. a set of possible sets;

2. a set of possible probability distributions;

3. a probability distribution on the class of possible sets; and

4. a probability distribution on the class of possible probability distributions.

What we plan to show. At first glance, we have a very mathematical classification.

However, as we will show, these four types of second order granules correspond to

well-known and well-used types of uncertainty – such as random sets, Dempster-

Shafer approach, fuzzy sets, imprecise probabilities, and Bayesian statistics.

Thus, the idea of second order granules provides a natural unified description of

different formalisms for describing uncertainty.
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First case: set of possible sets. In the first case, instead of selecting a single set

of possible values, we select a class of possible sets. This idea is actively used in

representation of uncertainty. For example, in the rough set approach, each set S is

represented by a set S that is contained in S and a set S that contains S. In this case,

the only information that we have about the actual (unknown) set S is that S ⊆ S ⊆ S,

i.e., that S belongs to the set interval [S,S]
def
= {S : S ⊆ S ⊆ S}. General set intervals –

not necessarily generated by rough sets – are also actively used; see, e.g., (Yao and

Li 1996), (Yao et al. 2008).

Second case: a set of probability distributions. In this case, instead of selecting a

single probability distribution, we select a set of possible probability distributions.

This description of uncertainty is known as imprecise probability; see, e.g., (Walley

1991).

An important particular case of imprecise probability is the case of p-boxes (prob-

ability boxes), i.e., interval bounds on the values of the cumulative distribution func-

tion F(x)
def
= Prob(ξ ≤ x); see, e.g., (Ferson 2002), (Ferson et al. 2003).

Third case: a probability distribution on the class of possible sets. In this case,

instead of selecting a single set, we select a probability distribution on the class of

all possible sets. In other words, we assign, to each set, a probability that this is

indeed the right set.

When we assign a probability to each number, we get a random number. When

we assign a probability to each vector, we get a random vector. Similarly, when we

assign a probability to each set, we get a random set. Random sets have indeed been

actively applied in description and processing of uncertainty; see, e.g., (Nguyen

2008) and references therein.

In the discrete case, a random set means that we assign, to different sets A, values

m(A) ≥ 0 such that ∑
A

m(A) = 1. This is exactly the widely used Dempster-Shafer

approach to describing uncertainty.

Relation to fuzzy. One of the reason why random sets are important in describ-

ing uncertainty is that they provide a reasonable alternative description of fuzzy

sets. Specifically, one way to assign a membership degree to a statement like “25 is

young” is to take N experts, ask these experts whether a person who is 25 years old

is young, and take the portion N(25)/N of experts who agree with this statement as

the desired degree µyoung(25). This procedure assumes

• that the experts are equally important – because we give equal weight to opinions

of different experts, and

• that each expert is capable of giving a precise (crisp) answer to each such

question.

For each of N experts i (1 ≤ i ≤ N), there us denote, by Si, the set of all ages which

for which, for this expert, the person is young. In general, different experts have

different sets Si, but it is possible that two or more different experts have the same

set.
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As we have mentioned, we assume that the experts are equally important, i.e.,

that each expert gets assigned the same probability 1/N. So, if a set Si occurs as

an opinion of only one expert, we assign it the probability 1/N; if it occurs as the

common opinion of several (k) experts, we assign it the probability k/N. Thus, we

have probabilities assigned to different sets, i.e., we have a random set. In terms of

this random set, the degree to which, say, 25 is young, is simply equal to the sum

of the probabilities of all the sets Si that include 25, i.e., to the probability that 25

belongs to the random set.

In general, for the corresponding random set S, for every value x, the membership

degree µ(x) is equal to the probability that x ∈ S: µ(x) = Prob(x ∈ S).

Fourth case: a probability distribution on the class of probability distributions.

In this case, instead of selecting a single probability distribution, we select a proba-

bility distribution on the set of these distributions.

Theoretically, we can have an infinite-dimensional class of probability distribu-

tions, i.e., a class in which we need to know the values of infinitely many parameters

to uniquely determine the distribution. In practice, in a computer, we can only store

finitely many values of the parameters. Thus, from the practical viewpoint, each

class of probability distributions is characterized by the values of finitely many pa-

rameters. There may be only two parameters – like in 1-D Gaussian distributions,

there can be many more parameters as in more sophisticated classes, but there are

always finitely many parameters.

In this case, selecting a probability distribution from the class means selecting the

values of these parameters. Thus, the above situation can be described as follows:

• instead of selecting a unique set of parameters characterizing a probability dis-

tribution,

• we select a probability distribution on the set of these parameters.

This idea describes the Bayesian statistical approach, whose main idea is indeed to

select a (prior) distribution on the set of all possible values of different parameters;

see, e.g., (Jaynes 2003), (Gelman et al. 2004).

Summary. Second order granules approach covers many known uncertainty for-

malisms as particular cases:

set of . . . probability distributions on . . .

. . . sets set intervals; random sets;

rough sets Dempster-Shafer approach;

fuzzy approach

. . . probability imprecise probability; Bayesian statistics

distributions p-box

What if we also consider fuzzy. In the above text, we only consider set-valued

(interval) and probabilistic granules. These granules correspond to “objective”

(aleatoric) and measurement uncertainty. Expert estimates lead to fuzzy uncertainty,

where we have fuzzy granules – i.e., fuzzy sets. If we add the possibility of fuzzy

granules, then we get new possibilities of second-order granules:
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• a set of fuzzy granules, i.e., a set of fuzzy sets – e.g., an interval-valued fuzzy set;

• a probability distribution on the set of fuzzy granules, i.e., a random fuzzy set;

see, e.g., (Li et al. 2002);

• a fuzzy set of fuzzy sets – i.e., a general type-2 fuzzy set;

• a fuzzy class of sets or probability distributions – something which was tried in

imprecise probability research.

Third order granules? In contrast to the second order granules which have many

practical applications, third order ones are rarely used. A few practical examples in-

clude interval-valued fuzzy sets; see, e.g., (Nguyen and Kreinovich 1995), (Nguyen

et al. 1997), (Mendel 2001), (Mendel and Wu 2010):

• since a fuzzy set can be interpreted as a random set,

• an interval-valued fuzzy set – i.e., a set of possible fuzzy sets – can be interpreted

as a set of possible random sets, i.e., as a third order granule.

5 Conclusion

In this paper, we provided a natural motivation for granules of higher order, and

showed that these granules provide a unified description of different uncertainty

formalisms such as random sets, Dempster-Shafer approach, fuzzy sets, imprecise

probabilities, and Bayesian statistics.

We also prove that within this general description, most reasonable uncertainty

formalisms have already been discovered: for example, we prove that for fuzzy

uncertainty, granules of second order are sufficient.
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Appendix: 2nd Order Is Sufficient for Fuzzy Uncertainty

Second order descriptions: the main idea. Experts are often not 100% certain

in the statements they make; therefore, in the design of knowledge-based systems,

it is desirable to take this uncertainty into consideration. Usually, this uncertainty

is described by a number from the interval [0,1]; this number is called subjective

probability, degree of certainty, etc.

One of the main problems with this approach is that we must use exact numbers

from the interval [0,1] to represent experts’ degrees of certainty; an expert may be

able to tell whether his degree of certainty is closer to 0.9 or to 0.5, but it is hardly

possible that an expert would be able to meaningfully distinguish between degrees

of certainty, say, 0.7 and 0.701. If you ask the expert whether his degree of certainty

about a certain statement A can be described by a certain number d (e.g., d = 0.701),

the expert will, sometimes, not be able to give a definite answer, she will be uncertain

about it. This uncertainty can be, in its turn, described by a number from the interval

[0,1]. It is, therefore, natural to represent our degree of certainty in a statement A

not by a single (crisp) number d(A) ∈ [0,1] (as in the [0,1]-based description), but

rather by a function µd(A) which assigns, to each possible real number d ∈ [0,1], a

degree µd(A)(d) with which this number d can be the (desired) degree of certainty

of A. This is called a second-order description of uncertainty.

Third and higher order descriptions. In second-order description, to describe a

degree with which a given number d ∈ [0,1] can be a degree of certainty of a state-

ment A, we use a real number µd(A)(d). As we have already mentioned, it is difficult

to describe our degree of certainty by a single number. Therefore, to make this de-

scription even more realistic, we can represent each degree of certainty d(P(x)) not

by a (more traditional) [0,1]-based description, but by a second order description.

As a result, we get the third order description.

Similarly, to make our description even more realistic, we can use the third order

descriptions to describe degrees of certainty; then, we get fourth order uncertainty,

etc.

Third order descriptions are not used: why? Theoretically, we can define third,

fourth order, etc., descriptions, but in practical applications, only second order de-

scriptions were used so far; see, e.g., (Nguyen and Kreinovich 1995), (Nguyen et

al. 1997), (Mendel 2001), (Mendel and Wu 2010). Based on this empirical fact, it is

natural to conclude that third and higher order descriptions are not really necessary.

We will show that this conclusion can be theoretically justified.

First step in describing uncertainty: set of uncertainty-describing words. Let us

first describe the problem formally. An expert uses words from a natural language

to describe his degrees of certainty. In every language, there are only finitely many

words, so we have a finite set of words that needs to be interpreted. We will denote

this set of words by W .

Second step: a fuzzy property described by a word-valued “membership func-

tion”. If we have any property P on a universe of discourse U , an expert can
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describe, for each element x ∈ U , his degree of certainty d(x) ∈W that the element

x has the property P.

Traditional fuzzy logic as a first approximation: numbers assigned to words

describing uncertainty. Our ultimate goal is to provide a computer representation

for each word w ∈W . In the traditional [0,1]-based description, this computer rep-

resentation assigns, to every word, a real number from the interval [0,1]; in general,

we may have some other computer representations (examples will be given later).

Let us denote the set of all possible computer representations by S.

In the first approximation, i.e., in the first order description, we represent each

word w ∈ W , which describes a degree of uncertainty, by an element s ∈ S (e.g.,

by a real number from the interval [0,1]). In this section, we will denote this first-

approximation computer representation of a word w by s = ‖w‖.

If the set S is too small, then it may not contain enough elements to distinguish

between different expert’s degree of belief: this was exactly the problem with clas-

sical {0,1}-based description, in which we only have two possible computer rep-

resentations – “true” and “false” – that are not enough to adequately describe the

different degrees of certainty. We will therefore assume that the set S is rich enough

to represent different degrees of certainty.

In particular, the set [0,1] contains infinitely many points, so it should be suf-

ficient; even if we only consider computer-representable real numbers, there are

still much more of them (millions and billions) than words in a language (which is

usually in hundreds of thousands at most), so we can safely make this “richness”

assumption. In mathematical terms, it means that two different degrees of belief are

represented by different computer terms, i.e., that if w1 �= w2, then ‖w1‖ �= ‖w2‖.

First approximation is not absolutely adequate. The problem with the first-order

representation is that the relation between words w ∈ W and computer representa-

tion s ∈ S is, in reality, also imprecise. Typically, when we have a word w ∈ W ,

we cannot pick a single corresponding representative s ∈ S; instead, we may have

several possible representatives, with different degrees of adequacy.

Actual description of expert uncertainty: word-valued degree to which a word

describes uncertainty. In other words, instead of a single value s = ‖w‖ assigned

to a word w, we have several values s ∈ S, each with its own degree of adequacy;

this degree of adequacy can also be described by an expert, who uses an appropriate

word w ∈W from the natural language.

In other words, for every word w ∈W and for ever representation s ∈ S, we have

a degree w′ ∈ W describing to what extent s is adequate in representing w. Let us

represent this degree of adequacy by a(w,s); the symbol a represents a function

a : W ×S →W , i.e., a function that maps every pair (w,s) into a new word a(w,s).

Second-order description of uncertainty as a second approximation to actual un-

certainty. So, the meaning of a word w ∈ W is represented by a function a which

assigns, to every element s ∈ S, a degree of adequacy a(w,s) ∈ W . We want to rep-

resent this degree of adequacy in a computer; therefore, instead of using the word

a(w,s) itself, we will use the computer representation ‖a(w,s)‖ of this word. Hence,
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we get a second-order representation, in which a degree of certainty corresponding

to a word w ∈ W is represented not by a single element ‖w‖ ∈ S, but by a function

µw : S → S, a function which is defined as µw(s) = ‖a(w,s)‖.

Second-order description is not 100% adequate either; third-, fourth-order de-

scriptions, etc. The second-order representation is also not absolutely adequate, be-

cause, to represent the degree a(w,s), we used a single number ‖a(w,s)‖. To get

a more adequate representation, instead of this single value, we can use, for each

element s′ ∈ S, a degree of adequacy with which the element s′ represents the word

a(w,s). This degree of adequacy is also a word a(a(w,s),s′), so we can represent it

by an appropriate element ‖a(a(w,s),s′)‖. Thus, we get a third-order representation,

in which to every element s, we assign a second-order representation. To get an even

more adequate representation, we can use fourth- and higher order representations.

Let us express this scheme formally.

Definition 1

• Let W be a finite set; element of this set will be called words.

• Let U be set called a universe of discourse. By a fuzzy property P, we mean a

mapping which maps each element x ∈U into a word P(x) ∈W; we say that this

word described the degree of certainty that x satisfies the property P.

• By a first-approximation uncertainty representation, we mean a pair 〈S,‖.‖〉,
where:

• S is a set; elements of this set will be called computer representations; and

• ‖.‖ is a function from W to S; we say that an element ‖w‖ ∈ S represents the

word w.

• We say that an uncertainty representation is sufficiently rich if for every two

words w1,w2 ∈W, w1 �= w2 implies ‖w1‖ �= ‖w2‖.

Definition 2. Let W be a set of words, and let S be a set of computer representations.

By an adequacy function, we mean a function a : W ×S →W; for each word w ∈W,

and for each representation s ∈ S, we say that a(w,s) describes the degree to which

the element s adequately describes the word w.

Definition 3. Let U be a universe of discourse, and let S be a set of computer rep-

resentations. For each n = 1,2, . . ., we define the notions of n-th order degree of

certainty and of a n-th order fuzzy set, by the following induction over n:

• By a first-order degree of certainty, we mean an element s ∈ S (i.e., the set S1 of

all first-order degrees of certainty is exactly S).

• For every n, by a n-th order fuzzy set, we mean a function µ : U → Sn from the

universe of discourse U to the set Sn of all n-th order degrees of certainty.

• For every n > 1, by a n-th order degree of certainty, we mean a function sn which

maps every value s∈ S into an (n−1)-th order degree of certainty (i.e., a function

sn : S → Sn−1).

Definition 4. Let W be a set of words, let 〈S,‖.‖〉 be an uncertainty representation,

and let a be an adequacy function. For every n > 1, and for every word w ∈W, we



14 V. Kreinovich

define the n-th order degree of uncertainty ‖w‖a,n ∈ Sn corresponding to the word w

as follows:

• As a first order degree of uncertainty ‖w‖a,1 corresponding to the word w, we

simply take ‖w‖a,1 = ‖w‖.

• If we have already defined degrees of orders 1, . . . ,n− 1, then, as an n-th order

degree of uncertainty ‖w‖a,n ∈ Sn corresponding to the word w, we take a func-

tion sn which maps every value s ∈ S into a (n−1)-th order degree ‖a(w,s)‖a,n−1.

Definition 5. Let W be a set of words, let 〈S,‖.‖〉 be an uncertainty representation,

let a be an adequacy function, and let P be a fuzzy property on a universe of dis-

course P. Then, by a n-th order fuzzy set (or a n-th order membership function)

µ
(n)
P,a (x) corresponding to P, we mean a function which maps every value x ∈U into

an n-th order degree of certainty ‖P(x)‖a,n which corresponds to the word P(x)∈W.

We will prove that for properties which are non-degenerate in some reasonable

sense, it is sufficient to know the first and second order membership functions, and

then the others can be uniquely reconstructed. Moreover, if we know the member-

ship functions of first two orders for a non-degenerate class of fuzzy properties, then

we will be able to reconstruct the higher order membership functions for all fuzzy

properties from this class.

Definition 6

• We say that a fuzzy property P on a universe of discourse U is non-degenerate if

for every w ∈W, there exists an element x ∈U for which P(x) = w.

• We say that a class P of fuzzy properties P on a universe of discourse U is non-

degenerate if for every w ∈ W, there exists a property P ∈ P and an element

x ∈U for which P(x) = w.

Comment. For example, if W �= {0,1}, then every crisp property, i.e., every property

for which P(x) ∈ {0,1} for all x, is not non-degenerate (i.e., degenerate).

Proposition 1. Let W be a set of words, let 〈S,‖.‖〉 be a sufficiently rich uncertainty

representation, let U be a universe of discourse. Let P and P′ be fuzzy properties,

so that P is non-degenerate, and let a and a′ be adequacy functions. Then, from

µ
(1)
P,a = µ

(1)
P′,a′ and µ

(2)
P,a = µ

(2)
P′,a′ , we can conclude that µ

(n)
P,a = µ

(n)
P′,a′ for all n.

Comments

• In other words, under reasonable assumptions, for each property, the informa-

tion contained in the first and second order fuzzy sets is sufficient to reconstruct

all higher order fuzzy sets as well; therefore, in a computer representation, it is

sufficient to keep only first and second order fuzzy sets.

• This result is somewhat similar to the well-known result that a Gaussian distribu-

tion can be uniquely determined by its moments of first and second orders, and

all higher order moments can be uniquely reconstructed from the moments of the

first two orders.
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• It is possible to show that the non-degeneracy condition is needed, because if a

property P is not non-degenerate, then there exist adequacy functions a �= a′ for

which µ
(1)
P,a = µ

(1)
P,a′ and µ

(2)
P,a = µ

(2)
P,a′ , but µ

(3)
P,a �= µ

(3)
P,a′ already for n = 3.

Proposition 2. Let W be a set of words, let 〈S,‖.‖〉 be a sufficiently rich uncertainty

representation, let U be a universe of discourse. Let P and P ′ be classes of fuzzy

properties, so that the class P is non-degenerate, and let ϕ : P → P ′ be a 1-1-

transformation, and let a and a′ be adequacy functions. Then, if for every P ∈ P ,

we have µ
(1)
P,a = µ

(1)
ϕ(P),a′

and µ
(2)
P,a = µ

(2)
ϕ(P),a′

, we can conclude that µ
(n)
P,a = µ

(n)
ϕ(P),a′

for

all n.

Comment. So, even if we do not know the adequacy function (and we do not know

the corresponding fuzzy properties P ∈ P), we can still uniquely reconstruct fuzzy

sets of all orders which correspond to all fuzzy properties P.

Proof of Propositions 1 and 2. Proposition 1 can be viewed as a particular case of

Proposition 2, when P = {P}, P ′ = {P′}, and ϕ maps P onto P′. Therefore, to

prove both Propositions 1 and 2, it is sufficient to prove Proposition 2.

We will show that under the conditions of Proposition 2, from µ
(1)
P,a = µ

(1)
ϕ(P),a′

and

µ
(2)
P,a = µ

(2)
ϕ(P),a′ , we will be able to conclude that ϕ(P) = P for all P ∈ P , and that

a = a′; therefore, we will easily conclude that µ
(n)
P,a = µ

(n)
ϕ(P),a′

for all n.

Indeed, by definition of the first membership function, for every x ∈ U , we have

µ
(1)
P,a (x) = ‖P(x)‖. Thus, from the equality µ

(1)
P,a = µ

(1)
ϕ(P),a′

, we conclude that for

every P ∈ P , we have ‖P(x)‖ = ‖ϕ(P)(x)‖ for all x ∈ U . Since the uncertainty

representation is assumed to be sufficiently rich, we can conclude that ϕ(P)(x) =
P(x) for all x ∈U , i.e., that ϕ(P) = P for every P ∈ P .

Let us now show that a = a′, i.e., that for every w ∈ W and for every s ∈ S, we

have a(w,s) = a′(w,s). Indeed, since P is a non-degenerate class, there exists a

value x ∈U and a property P ∈ P for which P(x) = w. Let us consider the equality

of the second order membership functions for this very P. Since ϕ(P) = P, the given

equality µ
(2)
P,a = µ

(2)
ϕ(P),a′

can be simplified into the following form: µ
(2)
P,a = µ

(2)
P,a′ . Let

us consider this equality for the above-chosen value x (for which P(x) = w). For this

x, by definition of the second-order membership function, µ
(2)
P,a (x) = ‖P(x)‖a,2 =

‖w‖a,2; and similarly, µ
(2)
P,a′(x) = ‖P(x)‖a,2 = ‖w‖a′,2; thus, ‖w‖a,2 = ‖w‖a′,2.

By definition, ‖w‖a,2 is a function which maps every value s ∈ S into a 1-st or-

der degree ‖a(w,s)‖a,1 = ‖a(w,s)‖. Thus, from the equality of the functions ‖w‖a,2

and ‖w‖a′,2, we can conclude that their values at a given s are also equal, i.e., that

‖a(w,s)‖ = ‖a′(w,s)‖. Since the uncertainty structure is sufficiently rich, we con-

clude that a(w,s) = a′(w,s). The proposition is proven.

Proof of a comment after Proposition 1. Since P is not non-degenerate, there

exists a value w0 ∈ W which cannot be represented as P(x) for any x ∈ U . Let us

pick arbitrary elements x0 ∈U and s0 ∈ S, and define a(w,s) and a′(w,s) as follows:



16 V. Kreinovich

• first, we define a(w,s) = a′(w,s) for all words w of the type w = P(x): namely, we

take a(P(x0),s0) = a′(P(x0),s0) = w0 and take arbitrary other values for different

pairs (w,s) with w = P(x);
• then, we define a(w,s) and a′(w,s) for the remaining pairs (w,s): namely, we take

a(w0,s0) = w0, a′(w0,s0) = P(x0) �= w0, and we define a and a′ arbitrarily for all

other pairs (w,s).

Let us show that for thus chosen adequacy functions, the membership functions of

first and second order coincide, but the membership functions of the third order

differ. Indeed:

For the first order, we have, for every x, µ
(1)
P,a (x) = ‖P(x)‖ and similarly, µ

(1)
P,a′(x) =

‖P(x)‖; therefore, µ
(1)
P,a (x) = µ

(1)
P,a′(x) for all x. Hence, µ

(1)
P,a = µ

(1)
P,a′ .

For the second order, for every x, µ
(2)
P,a (x) is a function which maps s ∈ S into

a value ‖a(P(x),s)‖a,1 = ‖a(P(x),s)‖. Similarly, µ
(2)
P,a′(x) is a function which maps

s ∈ S into a value ‖a′(P(x),s)‖a′,1 = ‖a′(P(x),s)‖. For words w of the type P(x), we

have defined a and a′ in such a way that a(w,s) = a′(w,s); therefore, ‖a(P(x),s)‖ =

‖a′(P(x),s)‖ for all x and s. Thus, µ
(2)
P,a = µ

(2)
P,a′ .

Finally, let us show that the third order membership functions differ. We will

show that the values of the functions µ
(3)
P,a and µ

(3)
P,a′ differ for x = x0. Indeed, by

definition of the third order membership function,

• µ
(3)
P,a (x0) is a function which maps every s into the value ‖a(P(x0),s)‖a,2, and

• µ
(3)
P,a′(x0) is a function which maps every s into the value ‖a′(P(x0),s)‖a′,2.

To prove that these function are different, it is sufficient to show that their val-

ues differ for some values s; we will show that they differ for s = s0, i.e., that

‖a(P(x0),s0)‖a,2 �= ‖a′(P(x0),s0)‖a′,2. By our construction of a, we have

a(P(x0),s0) = a′(P(x0),s0) = w0, so the inequality that we need to prove takes the

form ‖w0‖a,2 �= ‖w0‖a′,2.

By definition, ‖w0‖a,2 is a function which maps every value s ∈ S into

‖a(w0,s)‖a,1 = ‖a(w0,s)‖. Similarly, ‖w0‖a′,2 is a function which maps every value

s ∈ S into ‖a′(w0,s)‖a,1 = ‖a′(w0,s)‖. For s0, according to our construction of a

and a′, we have a(w0,s0) = w0 �= P(x0) = a′(w0,s0). Thus, since the uncertainty

representation is sufficiently rich, we conclude that ‖a(w0,s0)‖ �= ‖a′(w0,s0)‖, and

therefore, that ‖w0‖a,2 �= ‖w0‖a′,2 and µ
(3)
P,a = µ

(3)
P,a′ .

The statement is proven.
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Abstract. Granular computing concerns a particular human-centric paradigm of 

problem solving by means of multiple levels of granularity and its applications in 

machines. It is closely related to Artificial Intelligence (AI) that aims at under-

standing human intelligence and its implementations in machines. Basic ideas of 

granular computing have appeared in AI under various names, including abstrac-

tion and reformulation, granularity, rough set theory, quotient space theory of 

problem solving, hierarchical problem solving, hierarchical planning, learning, 

etc. However, artificial intelligence perspectives on granular computing have not 

been fully explored. This chapter will serve the purpose of filling in such a gap. 

The results will have bidirectional benefits. A synthesis of results from artificial 

intelligence will enrich granular computing; granular computing philosophy, 

methodology, and tools may help in facing the grand challenge of reverse-

engineering the brain, which has significant implications to artificial machine  

intelligence. 

1   Introduction 

There are many views, interpretations and models of granular computing, encom-

passing various theories and techniques used in, for example, Artificial Intelli-

gence (AI), computer programming, human and machine problem solving,  

information granulation, temporal granulation, spatial granulation, discretization, 

rough sets, quotient space theory, interval computing, fuzzy sets, qualitative rea-

soning, computing with words, and many others (Bargiela and Pedrycz 2009; 

Inuiguchi et al. 2003; Keet 2008; Lin et al. 2002; Pedrycz 2001; Pedrycz et al. 

2008; Yao JT 2007, 2010; Yao 2000; Zadeh 1979, 1997). On the other hand, there 

does not exist a precise and satisfactory definition of “granular computing” that is 

general enough to cover a wide range of theories and techniques and, at the same 
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time, specific enough to differentiate it from other paradigms of computing. Nev-

ertheless, it is generally agreed that granular computing is a new paradigm of 

computation inspired by human problem solving (Bargiela and Pedrycz 2002; 

Hobbs 1985; Yao 2010; Zadeh 1997; Zhang and Zhang 1992). Although the basic 

ideas of granular computing are not entirely new and have been implicitly used 

under different names in many disciplines, the explicit formulation of granular 

computing, as a separate field of study, by re-interpreting and integrating existing 

ideas, is instrumental to human and machine problem solving (Yao 2007a). 

An understanding of the intuitive powerful notion of granular computing is given 

as follows (Yao 2000, 2007a, 2008b). Roughly speaking, granular computing ex-

plores multiple levels of granularity in problem solving. The levels of granularity may 

be interpreted as the levels of abstraction, detail, complexity, and control in specific 

contexts (Yao 2009b). The objects of granular computing are families of granules that 

represent a problem at multiple levels. Studies on granular computing attempt to pro-

vide a new framework and a new discipline-independent and domain-independent 

language for describing ideas, principles, strategies, methodologies, techniques that 

make use of granules and have been studied in isolation across many disciplines. By 

examining and synthesizing results from existing studies in the light of the unified 

framework of granular computing and extracting their commonalities, it may be pos-

sible to develop a general theory for problem solving (Yao 2000, 2007a, 2008a, 

2008b). The triarchic theory of granular computing (Yao 2005, 2006, 2008a, 2008b) 

offers a conceptual framework, in which granular computing is approached from the 

philosophical, methodological and computational perspectives based on granular 

structures.  

Continuing this line of study, the present chapter examines artificial intelli-

gence perspectives on granular computing. There are bidirectional benefits from 

such a study. On the one hand, results from artificial intelligence, such as concept 

formation, categorization, and learning, abstraction and reformulation, hierarchical 

planning and hierarchical problem solving, etc., are reviewed and woven together 

to enrich granular computing. On the other hand, human-inspired granular com-

puting offers suggestions for future development of artificial intelligence.  

Instead of covering exhaustively topics from artificial intelligence, we restrict 

ourselves to the information processing aspects. The information-processing the-

ory, framework or metaphor, has been widely used for modeling the human mind, 

cognition, the human brain, computers, human and machine problem solving, and 

many more (Lindsay and Norman 1977; Nakashima 1999; Newell and Simon 

1972; Pinker 1997; Simon 1978, 1979). Results from psychological analysis of 

human problem and artificial intelligence based machine problem solving suggest 

that problem solving may be viewed as a form of information processing (Gil-

hooly 1989; Lindsay and Norman 1977; Newell et al. 1958; Newell and Simon 

1972), involving, for example, manipulation of symbols or change in representa-

tions. In the context of granular computing, Bargiela and Pedrycz (2002, 2008, 

2009; Pedrycz 2008), through their book and several recent publications, promote 

granular computing as a paradigm of, and computational methods of, human-

centric information processing. This view is shared by many other authors 

(Jankowski and Skowron 2009; Pedrycz et al. 2008; Yao JT 2007, 2008a, 2008b, 
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2010; Yao 2008a). Granular computing contributes in its unique way to the infor-

mation-processing framework by focusing on granularity, an essential notion of 

problem solving that has been used in many studies (Cermak and Craik 1979; 

Hobbs 1985; Wiederhold 1992) but has not received its due attention.  

In this chapter, we only briefly cover various notions and topics in artificial in-

telligence that are pertinent to granular computing, by focusing on the essence of 

ideas rather than their mathematical formulations. A reader can consult the exten-

sive list of references for more detailed discussions. 

2   A Triarchic Theory of Granular Computing 

The triarchic theory of granular computing has three components: the philosophy 

of structured thinking, the methodology of structured problem solving, and the 

computation of structured information processing. Fig. 1 illustrates the triarchic 

theory by the granular computing triangle, in which each node represents a par-

ticular perspective and each edge represents the mutual support of any two per-

spectives. The complementary three perspectives focus on a central notion known 

as granular structures characterized by multilevel and multiview. While a multi-

level hierarchy represents a particular view, a collection of many hierarchies 

represents a multiview description.  

 

Fig. 1 Granular Computing Triangle 

The theory is developed in series of papers (Yao 2000, 2005, 2006, 2007a, 

2008a, 2008b, 2010). The main ingredients of the triarchic theory are granular 

structures and three perspectives. They are summarized as follows. 

 

Granular Structures: Multilevel and Multiview. A granular structure consists 

of inter-connected and inter-acting granules. A granule represents a focal point of 

our observation or a unit of our discussion in the process of problem solving. In 

the information-processing framework, a granule may be interpreted as a particu-

lar representation or summarization of some information. A family of granules of 
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similar size or nature provides one level of representation. Many families of gran-

ules provides hierarchically ordered many levels of representation. A structure of 

partially ordered multiple levels is known as a hierarchy. It is the results of a struc-

tured understanding, interpretation, representation, and description of a real-world 

problem or system. A hierarchy represents a problem from one particular angle or 

point-of-view with multiple levels of granularity. It is inevitable that a particular 

view given by one hierarchy is of limited power. A complete understanding of the 

problem requires the use and comparison of multiple hierarchies, and hence a mul-

tiview approach. Granular structures should reflect multiview and multilevel in 

each view. 

 

Fig. 2 A multilevel, hierarchical granular structure 

Fig. 2 is an illustration of a multilevel, hierarchical granular structure.  A few 

features of a granular structure may be commented.  First, a granule at a higher 

level may be related to, or expressed by, several smaller granules at a lower level.  

We typically have more granules at a lower level. Second, granules at the same 

level may be of the same nature.  At the different levels, one may use different 

representation schemes to describe granules, and use different languages to  

explain the granules involved and consider different strategies of granular comput-

ing.  In other words, at a higher level we may have higher order and higher type of 
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information granules.  Consider an example of granular data analysis.  At the very 

lower level, granules may be raw, unprocessed data.  At the next level, granules 

may be coded and processed data that provide useful information.  At yet another 

higher level, granules may be represented as rules that summary knowledge de-

rived from data.  Moving up the hierarchy, granules may be further interpreted as 

some models built based on the data.   Third, granules at the same level may be 

connected to each other.  In the figure, we only illustrate a simple connection in 

terms of overlapping and non-overlapping granules.  In general, one may consider 

more complex relationships between granules.  The inter-connection of granules at 

a particular provides useful structural information.  Fourth, the multilevel, hierar-

chical structure may be interpreted as an information-processing pyramid pro-

posed by Bargiela and Pedrycz (2002), in which more semantics information is 

processed when moving bottom up in the pyramid.  Alternatively, the hierarchy 

may be interpreted as sequential transformations of different types of information, 

for example, from quantitative information to qualitative information.  The com-

monly used data-information-knowledge-wisdom hierarchy is a good example to 

demonstrate such sequential transformations.  Thus, a multilevel granular structure 

provides a paradigm of level-wise information processing (Yao 2009b). 
 

Philosophy: Structured Thinking. As a way of structured thinking, granular 

computing draws results from two complementary philosophical views about the 

complexity of real-world problems, i.e., the traditional reductionist thinking and 

the more recent systems thinking. It combines analytical thinking for decomposing 

a whole into parts and synthetic thinking for integrating parts into a whole. Granu-

lar computing stresses the importance of the conscious effects in thinking with hi-

erarchical structures that model a complex system or problem in terms of the 

whole and parts. 
 

Methodology: Structured Problem Solving. As a general method of structured 

problem solving, granular computing promotes systematic approaches, effective 

principles, and practical heuristics and strategies that have been used effectively 

by humans for solving real-world problems. A central issue is the exploration of 

granular structures. This involves three basic tasks: constructing granular struc-

tures, working within a particular level of the structure, and switching between 

levels. The methodology of granular computing is inspired by human problem 

solving. 
 

Computation: Structured Information Processing. As a paradigm of structured 

information processing, granular computing focuses on implementing knowledge-

intensive systems based on granular structures. Two related basic issues are repre-

sentations and processes. Representation covers the formal and precise description 

of granules and granular structures. Processes may be broadly divided into two 

classes: granulation and computation with granules. Granulation processes involve 

the construction of the building blocks and structures, namely, granules, levels, 

and hierarchies. Computation processes explore the granular structures. This in-

volves two-way communications up and down in a hierarchy, as well as switching 

between levels and between hierarchies. 
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Granular computing emphasizes on structured approaches suggested by  

granular structures. The three perspectives of granular computing are interwoven 

together and mutually support each other; there may not exist dividing lines that 

separate them. Our simplest division only serves the purpose to emphasize that 

granular computing needs to be investigated from many perspectives. 

3   Granular Computing for Artificial Intelligence 

Granular computing is a particular way of human and machine problem solving. 

The study of granular computing serves two purposes, one for humans and the 

other for machines. 

3.1   Scope and Goals of Granular Computing 

Humans tend to organize, and categorization is essential to mental life (Pinker 

1997). Results of such organizations are some types of structures. Humans tend to 

form multiple versions of the same world and to have several kinds of data presen-

tations in the brain (Minsky 2007; Pinker 1997). For a particular problem, we 

normally have several versions of descriptions and understanding. Humans con-

sider a problem at multiple levels of granularity. This allows us to focus on solv-

ing a problem at the most appropriate level of granularity by ignoring unimportant 

and irrelevant details (Hobbs 1985). We can readily switch between levels of 

granularity at different stages of problem solving (Hobbs 1985). We can also eas-

ily switch from one description to another. Granular computing research aims to 

formalize some or all of them. 

It becomes evident that granular computing focuses on a special class of ap-

proaches to problem solving. The class is characterized by multiple levels of 

granularity. Regarding human intelligence, Minsky (2007) points out that humans 

have many “Ways to Think.” We can easily switch among them and create new 

“Ways to Think,” if none of existing ones works. The use of multiple levels of 

granularity is a fundamental one in the repository of ways of human problem solv-

ing. It may be more realistic for the study of granular computing not to cover the 

whole spectrum of ways of human problem solving. Therefore, we restrict the 

study of granular computing to human-inspired and multiple-granularity-based 

ways of problem solving. 

The study of granular computing has two goals (Yao 2010). One is to under-

stand the nature, the underlying principles and mechanisms of a particular way of 

human problem solving; the other is to apply them in the design and implementa-

tion of human-inspired machines and systems. They in turn lead to two classes of 

research on granular computing, namely, human-oriented studies and machine-

oriented studies. For human-oriented studies, granular computing can be viewed 

as the fourth R, in addition to the classical three Rs (reading, writing and arithme-

tic). Once we articulate and master the principles of granular computing, we be-

come a better problem solver. Granular computing is for everyone and can be used 

to solve a wide spectrum of problems. For machine-oriented studies, an  
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understanding of human problem solving is a prerequisite for building machines 

having the similar power. Results from human-oriented studies may serve as a 

solid basis for machine-oriented studies. If we have a full understanding of human 

problem solving, we can design machines and systems based on the same princi-

ples. The two types of studies are relatively independent and mutually support 

each other. The former focuses on human problem solving and the latter on ma-

chine problem solving.  

Accordingly, the study of granular computing serves two purposes. One pur-

pose aims at an understanding of the underlying principles of human problem 

solving so that more people can consciously apply these principles. We use the 

phrase “granular computing for humans” to denote this aspect. The other purpose 

is to design machines and systems based on the same principles. We use the 

phrase “granular computing for machines” to denote the second aspect. In sum-

mary, granular computing is for both humans and machines. 

3.2   Implications of Granular Computing to AI 

Artificial Intelligence (AI), to a large extent, studies the principles of human prob-

lem solving and the construction of intelligent systems for problem solving based 

on the same principles, but (maybe) with different implementations. Holte and 

Choueiry (2003) state two reasons for paying attention to human reasoning and 

problem solving in early AI research. One is to develop computational models of 

human cognition, and the other is to obtain suggestions about how to program a 

computer to perform a particular cognitive task. Thus, as pointed out by Simon 

(Stewart 1994), “AI can have two purposes. One is to use the power of computers 

to augment human thinking, just as we use motors to augment human or horse 

power. ... The other is to use a computer’s artificial intelligence to understand how 

humans think.” These two purposes are closely related to the goals of granular 

computing in terms of machine-oriented and human-oriented approaches (Yao 

2010). We study granular computing in order to understand a particular way of 

human problem solving and to create intelligent systems. 

A major challenge faced by artificial intelligence researchers may be described 

by the Moravec’s paradox (Moravec 1988) observed more than 20 years ago and 

is still applicable today. An insightful finding by artificial intelligence researchers 

is the dichotomy between machines and humans regarding the complexity or easi-

ness in solving different problems. Contrary to what researchers first assumed and 

believed, machines can do well things that humans find hard (i.e., theorem prov-

ing, playing chess, etc.), and perform poorly on what is seemingly effortless for 

humans (i.e., perception, image processing, natural language understanding, etc.). 

A plausible explanation for the Moravec’s paradox is based on the theory of evo-

lution (Moravec 1988). The human brain and all human skills are results of Dar-

winian evolution. This natural selection process gradually and continually  

improves and optimizes the biological designs and implementations of the brain. 

Older skills, such as recognizing faces, recognizing voices, moving around in 

space, etc., are fully evolved and mastered by humans. We can perform these per-

ception-based tasks almost unconsciously and they therefore appear to us to be  
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effortless. In contrast, abstract thought is a new trick developed more recently in 

human evolutionary history and we have not fully mastered it yet. It therefore 

seems intrinsically difficult when we do it, as we must follow some precisely de-

fined and constructed procedures.  

Newer skills are not difficult to reengineer and thus machines may easily dupli-

cate them. On the other hand, reengineering the working principles underlying the 

human brain and older human skills are much more difficult. Consequently, we do 

not have satisfactory success in duplicating them in computers yet. The human 

brain is perhaps the only device that represents the highest level of intelligence for 

problem solving. Unlocking the mechanisms of human brain and human problem 

solving may provide the necessary hints on designing intelligent machines. 

The National Academy of Engineering (2008) points out the same difficulty 

with artificial intelligence research and lists “reverse-engineer the brain” as one of 

the fourteen grand challenges for engineering in the 21st century. More specifi-

cally, it states,  
 

While some of thinking machines have mastered specific narrow 

skills -playing chess, for instance - general-purpose artificial intelli-

gence (AI) has remained elusive. 
 

Part of the problem, some experts now believe, is that artificial 

brains have been designed without much attention to real ones. Pio-

neers of artificial intelligence approached thinking the way that 

aeronautical engineers approached flying without much learning 

from birds. It has turned out, though, that the secrets about how liv-

ing brains work may offer the best guide to engineering the artificial 

variety. Discovering those secrets by reverse-engineering the brain 

promises enormous opportunities for reproducing intelligence the 

way assembly lines spit out cars or computers. 
 

Figuring out how the brain works will offer rewards beyond build-

ing smarter computers. Advances gained from studying the brain 

may in return pay dividends for the brain itself. Understanding its 

methods will enable engineers to simulate its activities, leading to 

deeper insights about how and why the brain works and fails. 
 

In fact, several research initiatives have been proposed along the same line. A 

brief summary of some of these initiatives is given in another paper (Yao 2008c). 

Granular computing is relevant to the task of reverse-engineering the mecha-

nisms of human problem solving and, hence, may have a significant impact on ar-

tificial intelligence. One reason for believing this is that granular computing fo-

cuses on a particular way of problem solving, instead of the whole spectrum of 

ways. At the same time, the granular way of problem solving is general and flexi-

ble enough to cover an important class of methods in problem solving. There is, 

therefore, a better chance to produce fruitful results. The second reason is that 

granular computing introduces a new view, and new associated vocabulary, to un-

derstand and study problems of artificial intelligence. The insights obtained from 
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multiple levels of granularity may lead to new findings in understanding human 

intelligence and human problem solving, and the results can be eventually applied 

to artificial intelligence. 

4   Ideas of Granular Computing in Artificial Intelligence 

The basic ideas and strategies of granular computing, namely, the use of granules 

and multiple levels of granularity, have appeared in many places in artificial intel-

ligence. A few key notions and issues of artificial intelligence are reviewed and  

re-interpreted in the light of granular computing.  

4.1   Categorization, Concept Formation and Learning 

Concepts are the basic units of thought that underlie human intelligence and  

communication. Concept formation and learning play an essential role in making 

sense of our perception of the world, understanding our experiences, and organiz-

ing our knowledge. Categorization, concept formation and learning are some of 

the fundamental human cognitive activities. Using the terminology of granular 

computing, a concept may be interpreted as a granule, categorization, concept 

formation and learning as granule construction (i.e., granulation) and granule 

characterization (Yao 2009a). These connections can be made explicit by consid-

ering, for example, the classical view of concepts.  

In the classical view, a concept is understood as a unit of thought that consists 

of two parts, the intension and the extension of the concept (Smith 1989; Sowa 

1984; Van Mechelen et al. 1993). The intension of a concept consists of all prop-

erties or attributes that are valid for all those objects to which the concept applies. 

The extension of a concept is the set of objects or entities which are instances of 

the concept. While the intension of a concept is an abstract description of the ele-

ments in the extension, the extension is a set of concrete examples of the concept. 

Typically, one associates a natural language word with a concept and calls it the 

name of the concept. The triplet of the intension, extension, and name of a concept 

forms the so-called the meaning triangle, in which one corner represents the con-

cept, intension, thought, idea, or sense, another corner represents symbol or word, 

and the third corner represents the referent, object, or extension (Ogden and Rich-

ards 1946; Sowa 1984). Extensional objects are mapped into intensional concepts 

through perception, and concepts are coded by words in speech. The two map-

pings of perception and speech define an indirect mapping between words and  

objects (Ogden and Richards 1946; Sowa 1984).  

The classical view of concepts can be immediately applied to construct a par-

ticular model of granular computing. Specifically, the extension of a concept is 

viewed as the set of objects forming a granule, the intension of a concept as a de-

scription or representation of the granule, and the name of the concept as the name 

of the granule. In this way, we obtain a meaning triangle to interpret a particular 

type of concept-based granules, as shown in Fig. 3. We can study granular com-

puting in a logic setting in terms of intensions of concepts and in a set-theoretic 
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setting in terms of extensions of concepts. Reasoning about intensions is based on 

logic. Inductive inference and learning attempt to derive relationships between the 

intensions of concepts based on the relations between the extensions of concepts.  

 

Fig. 3 Meaning triangle of a granule 

There are broadly two classes of approaches for categorization, concept forma-

tion and learning, namely, unsupervised and supervised methods. In unsupervised 

categorization and learning, say cluster analysis (Anderberg 1973), one starts with 

a set of unlabeled objects. The goal is to first group similar objects together to 

form clusters and then to find a meaningful description or to give a name for each 

cluster. Clustering algorithms can be divided into non-hierarchical or hierarchical 

methods (Anderberg 1973). Typically, a clustering algorithm uses a distance func-

tion or a similarity function that represents a certain semantics relationship be-

tween objects. The results of a clustering algorithm may be interpreted as follows: 

a cluster represents the extension of a concept and its description represents the in-

tension of the concept. They are meaningful if objects within the same cluster are 

closer to each other and, at the same time, objects in different clusters are further 

away from each other. For hierarchical clustering, objects within a cluster at a 

lower level in the hierarchy show a much stronger similarity than objects within a 

cluster at a higher level. In addition, it is possible to find a meaningful description 

of each cluster. To some extent, finding a meaningful description of a cluster can 

be interpreted as supervised concept learning, where instances and non-instances 

of a concept are given and the goal is to finding a description of the concept or 

rules defining the concept. 

According to the correspondence between concepts and granules, theories, 

methodologies, strategies, algorithms and tools of unsupervised and supervised 

categorization, concept formation and learning can be easily adapted for granular 

computing. In fact, the former may be treated as concrete approaches to granular 

computing.  

The theory of rough sets proposed by Pawlak (1982, 1991, 1998) can be used as 

an example to illustrate the ideas of granular computing with respect to categoriza-

tion, concept formation and learning. A key notion of the rough set theory is an 

indiscernibility relation defined by a set of attributes. Assume that a finite universe 

of objects is described by a finite set of attributes. Given a subset of attributes, one 

can define an indiscernibility relation based on their values. More specifically, two 
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objects are indiscernible if and only if they have the same values on the given sub-

set of attributes. The indiscernibility relation is an equivalence relation and in-

duces a partition of the set of objects, namely, a family of nonempty subsets of the 

universe whose union is the universe. Each equivalence class can be precisely de-

fined by the conjunction of attribute values of an element in the class and is re-

ferred to as an elementary definable category or granule (Pawlak 1991; Yao 

2007b). The union of a family of elementary granules produces another definable 

granule whose intension is given by a disjunction of the conjunctions of compo-

nent elementary granules. A key problem of the rough set theory is the approxima-

tion of a subset of the universe, representing the extension of a concept, by using 

definable granules. This can be viewed as supervised concept learning. Thus, 

rough set theory not only provides a method to construct definable granules but 

also gives a method for supervised concept learning by using definable granules.  

4.2   Abstraction and Granulation 

Abstraction is a central concept in computer science and artificial intelligence 

(Colburn and Shute 2007; Frorer et al. 1997; Giunchglia and Walsh 1992; Holte 

and Choueiry 2003; Kramer 2007; Wing 2006; Zucker 2003). Abstraction and 

granulation share many common features. Results from studies of abstraction are 

equally applicable to granulation. Granulation may be viewed as a particular way 

of abstraction, in which granularity is specifically emphasized.  

Although abstractions are pervasive in human reasoning and problem solving 

and have been used extensively in many subareas of artificial intelligence (Holte 

and Choueiry 2003; Nayak and Levy 1995; Zucker 2003), there still does not exist 

a precise, satisfactory, universal definition of abstraction (Holte and Choueiry 

2003). This is not surprising as the notion of abstraction has many meanings and is 

interpreted differently by different people, in different disciplines and in different 

contexts (Frorer et al. 1997; Saitta 2003). Instead of giving a precise definition of 

what is abstraction, it might be more constructive to examine the main features of 

abstraction or the act of abstracting. 

In the context of cognitive science, Barsalou (2003) considers six senses of ab-

straction, namely, abstraction can be interpreted in terms of categorical knowl-

edge, the behavioral ability to generalize across category members, summary rep-

resentation, schematic representation, flexible representation, and abstract 

concepts. In the context of artificial intelligence, Hotle and Choueiry (2003) treat 

abstraction as a kind of reformulation. Reformulation refers to the general idea of 

changing a statement or a representation of a given problem. Reformulations en-

able us to look at a given problem from many different points of view and are  

essential to creative human problem solving. Abstractions serve the same purpose.  

Human problem solving depends crucially on multiple levels of abstraction. 

With respect to levels, Giunchglia and Walsh (1992) propose a theory of abstrac-

tion by considering an abstraction as a mapping between two formal systems at 

different levels; the mapping must preserve certain properties. Nayak and Levy 

(1995) suggest a semantic theory of abstractions by viewing abstractions as model 

level mappings. Zucker (2003) points out that in AI abstraction is related to the 
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use of various levels of details and the change between levels while preserving 

certain useful properties. From an information quantity point of view, Zucker pro-

poses a grounded theory of abstraction, where abstraction is represented by using 

abstraction operators. 

Kramer (2007) considers two essential aspects of abstraction. Abstraction is a 

process of removing detail that allows us to simplify and to focus attention. Ab-

straction is a process of generalization that allows us to identify the common core 

or essence. Colburn and Shute (2007) compare two objectives of abstractions in 

mathematics and computer science, namely, information neglect and information 

hiding. They argue that abstraction in mathematics is information neglect, i.e., ab-

straction abstracts away from the details, and abstraction in computer science is 

information hiding, i.e., abstraction hides the underlying details. 

Parnas (2007) emphasizes the meaningfulness and usefulness of abstraction, 

and quotes Dijkstra’s definition, “An abstraction is one thing that represents sev-

eral real things equally well.”  Parnas also identifies two distinct human skills re-

lated to abstractions: one is the ability to work with a given abstraction and the 

other is ability to develop a useful abstraction. In artificial intelligence, finding a 

useful abstraction or an adequate representation is a difficult problem when de-

signing intelligent systems (Zucker 2003). 

Based on the review of these examples of studies, although a non-exhaustive one, 

a few essential aspects of abstractions can be identified for granular computing:  

• ignoring/eliminating detail,  

• hiding detail,  

• simplifying and reducing complexity,  

• preserving certain properties,  

• extracting core and essence,  

• generalizing and summarizing,  

• focusing on specific aspects,  

• abstracting in multiple levels,  

• truthfully representing the real thing.  

They reflect the task, the process, the functionality and the meaningfulness of  

abstractions. 

Granulation as an abstraction has been considered by some authors in artificial 

intelligence (Euzenat 2001; Hobbs 1985; Ye and Tsotsos 1998; Zhang and Zhang 

1992), and in particular in temporal granulation (Allen 1983; Bettini and Mon-

tanari 2000; Euzenat 2001; Hornsby 2001) and spatial granulation (Bettini and 

Montanari 2000; Stell and Worboys 1998). Compared with abstraction, granula-

tion focuses on the notion of granularity in the process. Hobbs (1985) outlines the 

general idea of granularity. A theory of granularity is motivated by the fact that 

humans view the world under various grain sizes and abstract only those things 

relevant to the present interests (Hobbs 1985). Human intelligence and flexibility, 

to a large degree, depend on the ability to conceptualize the world at different 

granularity and to switch granularity. With the theory of granularity, we can map  

 



Artificial Intelligence Perspectives on Granular Computing 29

 

the complexities of the real world around us into simpler theories that are compu-

tationally tractable to reason in.  

The notion of granularity can be applied in many ways. For example, Poria and 

Garigliano (1997) consider granularity in natural language and show that granular-

ity plays an important role in constructing explanations. Ye and Tsotsos (1998) 

use the notion of knowledge granularity to study an agent’s action selection proc-

ess. Mani (1998) applies granularity to solve the problem of underspecification of 

meaning in natural languages. McCalla et al. (1992) introduce the concept of 

granularity hierarchies and apply it in intelligent tutoring systems. 

By interpreting granulation as abstraction, it is possible to adopt many features 

of abstraction to granular computing. At the same time, granulation offers a new 

view of abstraction, which has been less considered in the study of abstraction. 

More specifically, in some abstraction tasks, we must consider granularity intro-

duced by abstraction. 

4.3   Hierarchical Problem Solving 

Abstraction or granulation usually produces multiple representations of the same 

problem. At different levels, different vocabularies may be used.  In addition, 

these representations can be partially ordered to produce a hierarchical structure, 

namely, a granular structure. This immediately suggests a way of problem solving 

known as hierarchical problem solving (Knoblock 1993; Zhang and Zhang 1992). 

 

Fig. 4 Hierarchical abstractions of problem space 
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An effective problem solving method used in artificial intelligence is graph-

based state (problem) space search, where each node of a graph represents a par-

tial problem solution state and each arc represents a step in the problem-solving 

process.  A solution is obtained by finding a path from a start state to a goal state 

in the graph.  Hierarchical problem solving explores multiple levels of state 

spaces.  Fig. 4 is an example of multilevel state space, in which each state may be 

viewed as a granule. A set of states at a lower level is combined into a macro state 

at a higher level, and thus the number of states is reduced.  It is crucial that macro 

states are properly constructed and the macro and micro states at the different 

level are meaningfully linked together, so that hierarchical problem solving is pos-

sible and meaningful (Bacchus and Yang 1994; Holte et al. 1996; Knoblock 1993; 

Zhang and Zhang 1992). 

A main reason for hierarchical problem solving is that it leads to an efficient 

solution under certain conditions (Bacchus and Yang 1994; Holte et al. 1996; 

Knoblock 1993; Zhang and Zhang 1992). Another important reason, although less 

considered, is the effectiveness of abstraction. A lower level with a large number 

of states may contain too much detail that would interfere with a right understand-

ing of the problem.  A higher level may in fact bring out more insight without the 

distraction from less-relevant details. The use of the right level of abstraction or 

granulation may produce easier to interpret and simpler results. As pointed by 

Kluger (2008), the trick for studying complexity and simplicity is a question of fo-

cal point. In other words, it is a question of finding a useful abstraction and know-

ing when to look at details and when not. 

There are basically three modes of hierarchical problem solving. They are top-

dwon, bottom-up and middle-out approaches (Allen and Fulton 2010; Bacchus 

and Yang 1994; Ginat 2001; Kintsch 2005; Knuth 1984; Lindsay and Norman 

1977; Shiu and Sin 2006; Sun and Zhang 2004; Wolfe et al. 2003). As their names 

suggest, top-down approaches move from more abstract (i.e., coarser granulation) 

to more concrete (i.e., finer granulation) and in the process more detailed informa-

tion is added, bottom-up approaches work the other direction and in the process 

some information is ignored, and middle-out approaches start from a particular 

level and move either up or down, depending which way is more fruitful. In gen-

eral, one may use a mixture of the three modes, which is particularly useful at the 

exploration stage of problem solving. 

Hierarchical problem solving reveals some important aspects of granular com-

puting, for example, communicating up and down the different levels of granular-

ity and switching between differing granularity. Methodology of hierarchical 

problem solving in artificial intelligence and other fields can be adapted for granu-

lar computing. 

5   Conclusion 

Granular computing is inspired by humans and aims at serving both humans and 

machines. A grand challenge for granular computing is to revere-engineer a par-

ticular way of human problem solving based on multiple levels of granularity. 

Once we understand the underlying principles, we can empower everyone to be a 
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better problem solver on one hand and implement machine problem solving on the 

other. Studies of granular computing and artificial intelligence support each other. 

Existing results from artificial intelligence enrich granular computing and granular 

computing research sheds new lights on methods in artificial intelligences. 
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1 Introduction

Rough sets, due to Zdzisław Pawlak, can be represented by pairs of sets which give

the lower and the upper approximation of the original sets. In the standard ver-

sion of rough set theory, an approximation space is based on the indiscernibility

equivalence relation. Approximation spaces belong to the broad spectrum of basic

issues investigated in rough set theory (see, e.g., (Bazan et al. 2006, Greco et al.

2008, Jankowski and Skowron 2008, Skowron and Stepaniuk 1994, Skowron and

Stepaniuk 1996, Słowiński and Vanderpooten 2000, Skowron et al. 2006, Stepa-

niuk 2008, Zhu 2009). Over the years different aspects of approximation spaces

were investigated and many generalizations of the approach based on indiscernibil-

ity equivalence relation (Pawlak and Skowron 2007) were proposed. In this chapter,

we discuss some aspects of generalizations of approximation spaces investigated in

(Skowron and Stepaniuk 1994, Skowron and Stepaniuk 1996, Stepaniuk 2008) that

are important for real-life applications, e.g., in searching for approximation of com-

plex concepts (see, e.g., (Bazan et al. 2006, Bazan 2008). Rough set based strategies

for extension of such approximation spaces from samples of objects onto their ex-

tensions are discussed. The extensions of approximation spaces can be treated as

operations for inductive reasoning. The investigated approach enables us to present

the uniform foundations for inducing approximations of different kinds of higher

order granules such as concepts, classifications, or functions. In particular, we em-

phasize the fundamental role of approximation spaces for inducing diverse kinds of

classifiers used in machine learning or data mining. The searching problem for rele-

vant approximation spaces and their extensions is of high computational complexity.

Hence, efficient heuristics should be used in searching for approximate solutions of

this problem. Moreover, in hierarchical learning of complex concepts many different

approximation spaces should be discovered. Learning of such concepts can be sup-

ported by domain knowledge and ontology approximation (see, e.g., (Bazan 2008,

Bazan et al. 2006)).

The chapter is organized as follows. In Section 2 we discuss basic notions for

our approach. In Section 3 we present a generalization of the approximation space

definition from (Skowron and Stepaniuk 1994, Skowron and Stepaniuk 1996, Stepa-

niuk 2008). In particular, in Subsection 3.2 we present new rough set approach to

function approximation.

2 Basic Notions

2.1 Attributes, Signatures of Objects and Two Semantics

In (Pawlak and Skowron 2007) any attribute a is defined as a function from the

universe of objects U into the set of attribute values Va. However, in applications we

expect that the value of attribute should be also defined for objects from extensions

of U , i.e., for new objects which can be perceived in the future1. The universe U

1 Objects from U are treated as labels of real perceived objects.
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is only a sample of possible objects. This requires some modification of the basic

definitions of attribute and signature of objects (Pawlak 1991, Pawlak and Skowron

2007).

One can give interpretation of attributes using a concept of interaction. In this

case, we treat attributes as granules and we consider their interactions with environ-

ments. If a is a given attribute and e denotes a state of environment then the result

of interaction between a and e is equal to a pair (le,v), where le is a label of e and

v ∈ Va. Analogously, if IS = (U,A) is a given information system and e denotes a

state of environment then by interaction of IS and e we obtain the information sys-

tem IS′ = (U ∪{le},A
∗), where A∗ = {a∗ : a ∈ A} and a∗(u) = a(u) for u ∈ U and

a∗(le) = v for some v ∈ Va. Hence, information systems are dynamic objects cre-

ated through interaction of already existing information systems with environments.

Note that the initial information system can be empty, i.e. the set of objects of this

information system is empty. Moreover, let us observe that elements of U are labels

of the environment states rather than states.

One can represent any attribute by a family of formulas and interpret the attribute

as the result of interaction of this set with the environment. In this case, we assume

that for any attribute a under consideration there is given a relational structure Ra.

Together with the simple structure (Va,=) (Pawlak and Skowron 2007), some other

relational structures Ra with the carrier Va for a∈ A and a signature τ are considered.

We also assume that with any attribute a is identified a set of some generic formulas

{αi}i∈J (where J is a set of indexes) interpreted over Ra as a subsets of Va, i.e.,

‖αi‖Ra = {v ∈ Va : Ra,v |= αi}. Moreover, it is assumed that the set {‖αi‖Ra}i∈J

is a partition of Va. Perception of an object u by a given attribute a is represented

by selection of a formula αi and a value v ∈ Va such that v ∈ ‖αi‖Ra . Using an

intuitive interpretation one can say that such a pair (αi,v) is selected from {αi}i∈J

and Va, respectively, as the result of sensory measurement. We assume that for a

given set of attributes A and any object u the signature of u relative to A is given by

In fA(u) = {(a,αa
u ,v) : a ∈ A}, where (αa

u ,v) is the result of sensory measurement

by a on u.

Let us observe that a triple (a,αa
u ,v) can be encoded by the atomic formula a = v

with interpretation

‖a = v‖U∗ = {u ∈U∗ : (a,αa
u ,v) ∈ In fa(u) for some αa

u}. (1)

We also write (a,v) instead of (a,αa
u ,v) if this not lead to confusion.

One can also consider a soft version of the attribute definition. In this case, we

assume that the semantics of the family {αi}i∈J is given by fuzzy membership func-

tions for αi and the set of these functions define a fuzzy partition (Klir 2007).

We construct granular formulas from atomic formulas corresponding to the con-

sidered attributes. In the consequence, the satisfiability of such formulas is defined

if the satisfiability of atomic formulas is given as the result of sensor measurement.

Hence, one can consider for any constructed formula α over atomic formulas its

semantics ‖α‖U ⊆U over U as well as the semantics ‖α‖∗U ⊆ U∗ over U∗, where

U ⊆U∗ (see Figure 1). The difference between these two cases is the following. In
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the case of U , one can compute ‖α‖U ⊆U but in the case ‖α‖U∗ ⊆U∗, for objects

from U∗\U , there is no information about their membership relative to ‖α‖U∗\‖α‖U
.

One can estimate the satisfiability of α for objects u ∈U∗ \U only after the relevant

sensory measurements on u are performed. In particular, one can use some methods

for estimation of relationships among semantics of formulas over U∗ using the re-

lationships among semantics of these formulas over U . For example, one can apply

statistical methods. This step is crucial in investigation of extensions of approxima-

tion spaces relevant for inducing classifiers from data (see, e.g., (Bazan et al 2006,

Skowron et al. 2006, Pedrycz et al. 2008).
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U
α

*U

U

*U
α

U
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Fig. 1 Two semantics of α over U and U∗, respectively

2.2 Uncertainty Function

In (Skowron and Stepaniuk 1994, Skowron and Stepaniuk 1996, Stepaniuk 2008)

the uncertainty function I defines for every object x from a given sample U of ob-

jects, a set of objects described similarly to x. The set I(x) is called the neighborhood

of x.

Let Pω(U∗) =
⋃

i≥1 Pi(U∗), where P1(U∗) = P(U∗) and Pi+1(U∗) = P(Pi(U∗)))
for i≥ 1. For example, if card(U∗) = 2 and U∗ = {x1,x2}, then we obtain P1(U∗) =
{ /0,{x1},{x2},{x1,x2}}, P2(U∗) = { /0,{ /0},{{x1}},{{x2}},{{x1,x2}},{ /0,{x1}},
{ /0,{x2}},{ /0,{x1,x2}}, . . .}, . . . . If card(U∗) = n, where n is a positive natural num-

ber, then card(P1(U∗)) = 2n and card(Pn+1(U∗)) = 2card(Pn(U∗)), for n ≥ 1. For

example, card(P3(U∗)) = 222n

.

In this chapter, we consider uncertainty functions of the form I : U∗ −→ Pω(U∗).
The values of uncertainty functions are called granular neighborhoods. These gran-

ular neighborhoods are defined by the so called granular formulas. The values of
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such uncertainty functions are not necessarily from P(U∗) but from Pω(U∗). In the

following sections, we will present more details on granular neighborhoods and

granular formulas. Figure 2 presents an illustrative example of the uncertainty func-

tion with values in P2(U∗) rather than in P(U∗). The discussed here generaliza-

tion of neighborhoods are also motivated by the necessity of modeling or discovery

of complex structural objects in solving problems of pattern recognition, machine

learning, or data mining. These structural objects (granules) can be defined as sets

on higher levels of the powerset hierarchy. Among examples of such granules are

indiscernibility or similarity classes of patterns or relational structures discovered in

images, clusters of time widows, indiscernibility or similarity classes of sequences

of time windows representing processes, behavioral graphs (for more details see,

e.g., (Skowron and Szczuka 2010, Bazan 2008)).
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Fig. 2 Uncertainty function I : U∗ → P2(U∗). The neighborhood of x ∈ U∗ \U , where

In fA(x) = {(a,1),(b,0),(c,2)}, does not contain training cases from U . The generalizations

of this neighborhood described by formulas ‖a = 1∧ c = 2‖U∗ and ‖a = 1∧b = 2‖U∗ have

non empty intersections with U .

If X ∈ Pω(U∗) and U ⊆U∗ then by X ↾ U we denote the set defined as follows (i)

if X ∈ P(U∗) then X ↾ U = X ∩U and (ii) for any i ≥ 1 if X ∈ Pi+1(U∗) then X ↾U =
{Y ↾ U : Y ∈ X}. For example, if U = {x1}, U∗ = {x1,x2} and X = {{x2},{x1,x2}}
(X ∈ P2(U∗)), then X ↾ U = {Y ↾ U : Y ∈ X} = {Y ∩U : Y ∈ X} = { /0,{x1}}.

2.3 Rough Inclusion Function

The second component of any approximation space is the rough inclusion function

(Skowron and Stepaniuk 1996, Stepaniuk 2008).
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One can consider general constraints which the rough inclusion functions should

satisfy. In this section, we present only some examples of rough inclusion functions.

The rough inclusion function ν : P(U)× P(U) → [0,1] defines the degree of

inclusion of X in Y , where X ,Y ⊆U.2

In the simplest case the standard rough inclusion function can be defined by (see,

e.g., (Skowron and Stepaniuk 1996, Pawlak and Skowron 2007)):

νSRI (X ,Y ) =

{
card(X∩Y )

card(X) if X �= /0

1 if X = /0.
(2)

Some illustrative example is given in Table 1.

Table 1 Illustration of Standard Rough Inclusion Function

X Y νSRI (X ,Y )

{x1,x3,x7,x8} {x2,x4,x5,x6,x9} 0

{x1,x3,x7,x8} {x1,x2,x4,x5,x6,x9} 0.25

{x1,x3,x7,x8} {x1,x2,x3,x7,x8} 1

It is important to note that an inclusion measure expressed in terms of the

confidence measure, widely used in data mining, was considered by Łukasiewicz

(Łukasiewicz 1913) long time ago in studies on assigning fractional truth values to

logical formulas.

The rough inclusion function was generalized in rough mereology (Polkowski

and Skowron 1996). For definition of inclusion function for more general granules,

e.g., partitions of objects one can use measure based on positive region (Pawlak

and Skowron 2007), entropy (Hastie et al. 2008) or rough entropy (Pal et al. 2005,

Małyszko and Stepaniuk 2010). Inclusion measures for more general granules were

also investigated (Skowron 2001, Bianucci and Cattaneo 2009). However, more

work in this direction should be done, especially on inclusion of granules with com-

plex structures, in particular for granular neighborhoods.

3 Approximation Spaces

In this section, we present a generalization of the approximation space defini-

tion from (Skowron and Stepaniuk 1994, Skowron and Stepaniuk 1996, Stepaniuk

2008).

In applications, approximation spaces are constructed for a given concept or a

family of concepts creating a partition (in the case of classification) rather than for

the class of all concepts. Then the searching for components of approximation space

relevant for the concept approximation becomes feasible. The concept is given only

2 We assume that U is a finite sample of objects.
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an a sample U of objects. We often restrict the definition of components of approxi-

mation space to objects from U∗ and/or some patterns from Pω(U∗) or from Pω(U•),
where U∗ ⊆ U• necessary for approximation of a given concept X only. The def-

initions of the uncertainty function and the inclusion function can be restricted to

some subsets of U∗ and Pω(U∗) (or U∗ ⊆ U•), respectively, which are relevant for

approximated concept(s).

Moreover, the optimization requirements for the lower approximation and upper

approximation are then also restricted to the given concept X . These requirements

are expressing closeness of the induced concept approximations to the approxima-

tion of the concept(s) on the given sample of objects and are combined with the

description length of constructed approximations for obtaining the relevant quality

measures. Usually, the uncertainty functions and the rough inclusion functions are

parameterized. Then searching (in the family of the these functions defined by pos-

sible values of parameters) for the (semi)optimal uncertainty function and the rough

inclusion function relative to the selected quality measure becomes feasible.

Definition 1. An approximation space over a set of attributes A for a concept X ⊆U∗

given on a sample U ⊆U∗ of objects is a system

AS = (U,U∗, I,ν,L) (3)

where

• U is a sample of objects with known signatures relative to a given set of attributes

A,

• L is a language of granular formulas defined over atomic formulas corresponding

to generic formulas from signatures (see Section 2.2),

• the set U∗ is such that for any object u ∈ U∗ the signature In fA(u) of u relative

to A can be obtained as the result of sensory measurements on u,

• I : U∗ → Pω (U•) is an uncertainty function, where U∗ ⊆U•; we assume that the

granular neighborhood I(u) is computable from In fA(u), i.e., from In fA(u) it is

possible to compute a formula αIn fA(u) ∈ L such that I(x) = ‖αIn fA(u)‖U∗ ,
• ν : Pω (U•)× Pω (U•) → [0,1] is a partial rough inclusion function, such that

form any x ∈U∗ the value ν(I(x),X) is defined for the considered concept X .

In Section 3.2, we consider an uncertainty function with values in P(P(U∗) ×
P(R+)), where R+ is the set of reals. Hence, we assume that the values of the uncer-

tainty function I may belong to the space of possible patterns from Pω(U•), where

U∗ ⊆U• = U∗∪R+.

The partiality of the rough inclusion makes it possible to define the values of this

functions on relevant patterns for approximation only.

We assume that the lower approximation operation LOW (AS,X) and the upper

approximation operation UPP(AS,X) of the concept X in the approximation space

AS satisfy the following condition:

ν(LOW (AS,X),UPP(AS,X)) = 1. (4)
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Usually the uncertainty function and the rough inclusion function are parameterized.

In this parameterized family of approximation spaces, one can search for an approx-

imation space enabling us to approximate the concept X restricted to a given sample

U with the satisfactory quality. The quality of approximation can be expressed by

some quality measures. For example, one can use the following criterion:

1. LOW (AS,X) ↾ U is included in X ↾ U to a degree at least deg,

i.e., ν(LOW (AS,X) ↾ U,X ↾ U)) ≥ deg,

2. X ↾ U is included in UPP(AS,X) ↾ U to a degree at least deg, this means that,

ν(UPP(AS,X ↾ U),X ↾ U) ≥ deg,

where deg is a given threshold from the interval [0,1].
The above condition expresses the degree to which at least the induced approxi-

mations in AS are close to the concept X on the sample U . One can also introduce

the description length of the induced approximations. A combination of these two

measures can be used as the quality measure for the induced approximation space.

Then the searching problem for the relevant approximation space can be considered

as the optimization problem relative to this quality measure. This approach may be

interpreted as a form of the minimal description length principle (Rissanen 1985).

The result of optimization can be checked against a testing sample. This enables

us to estimate the quality of approximation. Note that further optimization can be

performed relative to parameters of the selected quality measure.

3.1 Approximations and Decision Rules

In this section, we discuss generation of approximations on extensions of samples

of objects.

In the example we illustrate how the approximations of sets (concepts) can be

estimated using only partial information about these sets. Moreover, the example

introduces uncertainty functions with values in P2(U) and rough inclusion functions

defined for sets from P2(U).
Let us assume that DT = (U,A∪{d}) is a decision table, where U = {x1, . . . ,x9}

is a set of objects and A = {a,b,c} is a set of condition attributes (see Table 2).

In DT we compute two decision reducts: {a,b} and {b,c}. We obtain the set

Rule_set = {r1, . . . ,r12} of minimal (reduct based) decision rules (Pawlak and

Skowron 2007).

From x1 we obtain two rules:

r1 : if a = 1 and b = 1 then d = 1, r2 : if b = 1 and c = 0 then d = 1.
From x2 and x4 we obtain two rules:

r3 : if a = 0 and b = 2 then d = 1, r4 : if b = 2 and c = 0 then d = 1.
From x5 we obtain one new rule:

r5 : if a = 0 and b = 1 then d = 1.
From x3 we obtain two rules:

r6 : if a = 1 and b = 0 then d = 0, r7 : if b = 0 and c = 1 then d = 0.
From x6 we obtain two rules:

r8 : if a = 0 and b = 0 then d = 0, r9 : if b = 0 and c = 0 then d = 0.
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Table 2 Decision table over the set of objects U

a b c d

x1 1 1 0 1

x2 0 2 0 1

x3 1 0 1 0

x4 0 2 0 1

x5 0 1 0 1

x6 0 0 0 0

x7 1 0 2 0

x8 1 2 1 0

x9 0 0 1 0

From x7 we obtain one new rule:

r10 : if b = 0 and c = 2 then d = 0.
From x6 we obtain two rules:

r11 : if a = 1 and b = 2 then d = 0, r12 : if b = 2 and c = 1 then d = 0.
Let U∗ = U ∪{x10,x11,x12,x13,x14} (see Table 3).

Table 3 Decision table over the set of objects U∗−U

a b c d dclass

x10 0 2 1 1 1 from r3 or 0 from r12

x11 1 2 0 0 1 from r4 or 0 from r11

x12 1 2 0 0 1 from r4 or 0 from r11

x13 0 1 2 1 1 from r5

x14 1 1 2 1 1 from r1

Let h : [0,1] →{0,1/2,1} be a function defined by

h(t) =

⎧
⎨

⎩

1 if t > 1/2

1/2 if t = 1/2

0 if t < 1/2.
(5)

Below we present an example of the uncertainty and rough inclusion functions:

I(x) = {‖lh(r)‖U∗ : x ∈ ‖lh(r)‖U∗ and r ∈ Rule_set}, (6)

where x ∈U∗ and lh(r) denotes the formula on the left hand side of the rule r,

and

νU (X ,Z) =

{
h( card({Y∈X :Y∩U⊆Z})

card({Y∈X :Y∩U⊆Z})+card({Y∈X :Y∩U⊆U∗\Z})) if X �= /0

0 if X = /0,
(7)

where X ⊆ P(U∗) and Z ⊆U∗.
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The uncertainty and rough inclusion functions can now be used to define the

lower approximation LOW (AS∗,Z), the upper approximation UPP(AS∗,Z), and the

boundary region BN(AS∗,Z) of Z ⊆ P(U∗) by:

LOW (AS∗,Z) = {x ∈U∗ : νU (I(x),Z) = 1}, (8)

and

UPP(AS∗,Z) = {x ∈U∗ : νU(I(x),Z) > 0}, (9)

BN(AS∗,Z) = UPP(AS∗,Z)\LOW(AS∗,Z). (10)

In the example, we classify objects from U∗ to the lower approximation of Z if ma-

jority of rules matching this object are voting for Z and to the upper approximation

of Z if at least half of the rules matching x are voting for Z. Certainly, one can fol-

low many other voting schemes developed in machine learning or by introducing

less crisp conditions in the boundary region definition. The defined approximations

can be treated as estimations of the exact approximations of subsets of U∗ because

they are induced on the basis of samples of such sets restricted to U only. One can

use some standard quality measures developed in machine learning to calculate the

quality of such approximations assuming that after estimation of approximations

on U∗ full information about membership for objects relative to the approximated

subsets of U∗ is uncovered analogously to the testing sets in machine learning.

Let C∗
1 = {x∈U∗ : d(x) = 1}= {x1,x2,x4,x5,x10,x13,x14}. We obtain the set U∗\

C∗
1 = C∗

0 = {x3,x6,x7,x8,x9,x11,x12}. The uncertainty function and rough inclusion

are presented in Table 4.

Table 4 Uncertainty function and rough inclusion over the set of objects U∗

I(·) νU (I(·),C∗
1)

x1 {{x1,x14},{x1,x5}} h(2/2) = 1

x2 {{x2,x4,x10},{x2,x4,x11,x12}} h(2/2) = 1

x3 {{x3,x7},{x3,x9}} h(0/2) = 0

x4 {{x2,x4,x10},{x2,x4,x11,x12}} h(2/2) = 1

x5 {{x5,x13},{x1,x5}} h(2/2) = 1

x6 {{x6,x9},{x6}} h(0/2) = 0

x7 {{x3,x7},{x7}} h(0/2) = 0

x8 {{x8,x11,x12},{x8,x10}} h(0/2) = 0

x9 {{x6,x9},{x3,x9}} h(0/2) = 0

x10 {{x2,x4,x10},{x8,x10}} h(1/2) = 1/2

x11 {{x8,x11,x12},{x2,x4,x11,x12}} h(1/2) = 1/2

x12 {{x8,x11,x12},{x2,x4,x11,x12}} h(1/2) = 1/2

x13 {{x5,x13}} h(1/1) = 1

x14 {{x1,x14}} h(1/1) = 1
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Thus, in our example from Table 4 we obtain

LOW (AS∗,C∗
1) = {x ∈U∗ : νU (I(x),C∗

1) = 1} = {x1,x2,x4,x5,x13,x14}, (11)

UPP(AS∗,C∗
1) = {x ∈U∗ : νU(I(x),C∗

1) > 0} =

{x1,x2,x4,x5,x10,x11,x12,x13,x14}, (12)

BN(AS∗,C∗
1) = UPP(AS∗,C∗

1)\LOW(AS∗,C∗
1) = {x10,x11,x12}. (13)

3.2 Function Approximations

In this subsection, we discuss the rough set approach to function approximation

from available incomplete data. Our approach can be treated as a kind of rough

clustering of functional data (Ramsay 2002).

Let us consider an example of function approximation. We assume that a partial

information is only available about a function. This means that, some points from

the graph of the function are known.

Before presenting a more formal description of function approximation we intro-

duce some notation.

A function f : U −→ R+ will be called a sample of a function f ∗ : U∗ → R+,

where R+ is the set of non-negative reals and U ⊆U∗ is a finite subset of U∗, if f ∗

is an extension of f .

By G f (G f ∗) we denote the graph of f ( f ∗), respectively, i.e., the set {(x, f (x)) :

x ∈U} ({(x, f ∗(x)) : x ∈U∗}). For any Z ⊆U∗×R+ by π1(Z) and π2(Z) we denote

the set {x∈U∗ : ∃y∈ R+ (x,y)∈ Z} and {y∈R+ : ∃x∈U∗ (x,y)∈ Z}, respectively.

First we define approximations of G f given on a sample U of objects and next

we show how to induce approximations of G f ∗ over U∗, i.e., on extension of U .

Let Δ will be a partition of f (U) into sets of reals of diameter less than δ > 0, where

δ is a given threshold. We also assume that IS = (U,A) is a given information system.

Let us also assume that for any object signature In fA(x) = {(a,a(x)) : a∈A} (Pawlak

and Skowron 2007) there is assigned an interval of non-negative reals with diameter

less than δ . We denote this interval by ΔIn fA(x). Hence, Δ = {ΔIn fA(x) : x ∈U}.

We consider an approximation space ASIS,Δ = (U, I,ν∗) (relative to given IS and

Δ ), where

I(x) = [x]IND(A) ×ΔIn fA(x), (14)

and

ν∗ (X ,Y ) =

{
card(π1(X∩Y ))

card(π1(X)) if X �= /0

1 if X = /0,
(15)

for X ,Y ⊆U ×R+.

The lower approximation and upper approximation of G f in AS are defined by

LOW (ASIS,Δ ,G f ) =
⋃
{I(x) : ν∗(I(x),G f ) = 1}, (16)
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and

UPP(ASIS,Δ ,G f ) =
⋃
{I(x) : ν∗(I(x),G f ) > 0}, (17)

respectively.

Observe that this definition is different from the standard definition of the lower

approximation (Pawlak and Skowron 2007). The defined approximation space is

a bit more general than in (Skowron and Stepaniuk 1996), e.g., the values of the

uncertainty functions are subsets of U ×R+ instead of U . Moreover, one can easily

see that by applying the standard definition of relation approximation to f (Pawlak

and Skowron 2007) (this is a special case of relation) the lower approximation of

function is almost always equal to the empty set. The new definition is making it

possible to express better the fact that a given neighborhood is “well" matching the

graph of f (Skowron et al. 2006, Stepaniuk 2008). For expressing this a classical set

theoretical inclusion of neighborhood into the graph of f is not satisfactory.

Example 1. We present the first illustrative example of a function approximation.

Let f : U → R+ where U = {1,2,3,4,5,6}. Let f (1) = 3, f (2) = 2, f (3) = 2,
f (4) = 5, f (5) = 5, f (6) = 2.

Let IS = (U,A) be an information system where A = {a} and

a(x) =

⎧
⎨

⎩

0 if 0 ≤ x ≤ 2,
1 if 2 < x ≤ 4,
2 if 4 < x ≤ 6.

(18)

Thus the partition U/IND(A) = {{1,2},{3,4},{5,6}}. The graph of f is defined

by G f = {(x, f (x)) : x ∈U} = {(1,3),(2,2),(3,2),(4,5),(5,5),(6,2)}.
We define approximations of G f given on the sample U of objects.

We obtain f (U) = {2,3,5} and let Δ = {{2,3},{5}}will be a partition of f (U).
We consider an approximation space ASIS,Δ = (U, I,ν∗) (relative to given IS and

Δ ), where

I(x) = [x]IND(A) ×ΔIn fA(x), (19)

is defined by

I (x) =

⎧
⎨

⎩

{1,2}× [1.5,4] if x ∈ {1,2},
{3,4}× [1.7,4.5] if x ∈ {3,4},
{5,6}× [3,4] if x ∈ {5,6}.

(20)

We obtain the lower approximation and upper approximation of G f in the approxi-

mation space ASIS,Δ :

LOW (ASIS,Δ ,G f ) =
⋃
{I(x) : ν∗(I(x),G f ) = 1} =

I(1)∪ I(2) = {1,2}× [1.5, 4),
(21)

and

UPP(ASIS,Δ ,G f ) =
⋃
{I(x) : ν∗(I(x),G f ) > 0} =

= I(1)∪ I(2)∪ I(3)∪ I(4) = {1,2}× [1.5, 4)∪{4,5}× [1.7, 4.5),
(22)

respectively.
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Example 2. We present the second illustrative example of a function approximation.

First, let us recall that an interval is a set of real numbers with the property that any

number that lies between two numbers in the set is also included in the set. The

closed interval of numbers between v and w (v,w ∈ R+), including v and w, will be

denoted by [v,w].
Let us consider a function f : R+ → R+. We have only a partial information about

this function given by Gi = δ (xi)× ε( f (xi)), where δ (xi) denotes a closed interval

of reals to which belongs xi, ε( f (xi)) denotes a closed interval of reals to which

belongs f (xi) and i = 1, . . . ,n. A family {G1, . . . ,Gn} is called a partial information

about graph G f = {(x, f (x)) : x ∈ R+}.
Let Nh denotes a family of elements of P(R+)×P(R+) called neighborhoods.

In our example, we consider Nh = {X1,X2,X3}, where X1 = [1,6]× [0.1,0.4],
X2 = [7,12]× [1.1,1.4] and X3 = [13,18]× [2.1,2.4].

Let us recall the inclusion definition between closed intervals:

[v1,w1] ⊆ [v2,w2] iff v2 ≤ v1 & w1 ≤ w2 (23)

We define the new rough inclusion function by

ν (X ,{G1, . . . ,Gn}) =⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ∀i∈{1,...,n}(π1(Gi)∩π1(X) �= /0 → Gi ⊆ X)

1/2 if ∃i∈{1,...,n}(π1(Gi)∩π1(X) �= /0 & Gi ∩X �= /0).

0 if ∀i∈{1,...,n}(π1(Gi)∩π1(X) �= /0 → Gi ∩X = /0)

(24)

Let sample values of a function f : R+ → R+ are given in Table 5.

Let an approximation space AS = (R+,Nh,ν) be given. We define the lower and

upper approximation as follows:

LOW (AS,{G1, . . . ,Gn}) =
⋃
{X ∈ Nh : ν (X ,{G1, . . . ,Gn}) = 1}, (25)

Table 5 Sample values of a function f , δ (xi), ε( f (xi)) and Gi

i xi f (xi) δ (xi) ε( f (xi)) Gi π1(Gi)

1 1.5 0.55 [1,2] [0.5,0.6] [1,2]× [0.5,0.6] [1,2]

2 3.5 0.65 [3,4] [0.6,0.6] [3,4]× [0.6,0.6] [3,4]

3 5.5 0.025 [5,6] [0,0.5] [5,6]× [0,0.5] [5,6]

4 7.5 1.35 [7,8] [1.3,1.4] [7,8]× [1.3,1.4] [7,8]

5 9.5 1.15 [9,10] [1.1,1.2] [9,10]× [1.1,1.2] [9,10]

6 11.5 1.35 [11,12] [1.3,1.4] [11,12]× [1.3,1.4] [11,12]

7 13.5 2.25 [13,14] [2.2,2.3] [13,14]× [2.2,2.3] [13,14]

8 15.5 2.025 [15,16] [2,2.05] [15,16]× [2,2.05] [15,16]

9 17.5 2.475 [17,18] [2.45,2.5] [17,18]× [2.45,2.5] [17,18]
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UPP(AS,{G1, . . . ,Gn}) =
⋃
{X ∈ Nh : ν (X ,{G1, . . . ,Gn}) > 0}. (26)

In our example, we obtain

LOW (AS,{G1, . . . ,G9}) = X2 = [7,12]× [1.1,1.4], (27)

UPP(AS,{G1, . . . ,G9}) = X2 ∪X3 = [7,12]× [1.1,1.4]∪ [13,18]× [2.1,2.4]. (28)

The above defined approximations are approximations over the set of objects from

sample U ⊆ U∗. Now, we present an approach for inducing of approximations of

the graph G f ∗ of function f ∗ on U∗, i.e., on extension of U . We use an illustrative

example to present the approach.

It is worthwhile mentioning that by using boolean reasoning (Pawlak and Skowron

2007) one can generate patterns described by conjunctions of descriptors over IS

such that the deviation of f on such patterns in U is less than a given threshold δ .

This means that for any such a formula α the set f (‖α‖U) has diameter less than

a given threshold δ , i.e., the image of ‖α‖U , i.e., the set f (‖α‖U), is included into

[y−δ/2,y+δ/2) for some y∈U . Moreover, one can generate such minimal patterns,

i.e., formulas α having the above property but no formula obtained by drooping some

descriptors from α has that property (Pawlak and Skowron 2007, Bazan et al. 2002).

By PATT ERN(A, f ,δ ) we denote a set of induced patterns with the above properties.

One can also assume3 that PATT ERN(A, f ,δ ) is extended by adding some shorten-

ings of minimal patterns. For any pattern from PATTERN(A, f ,δ ) it is assigned an

interval of reals ∆α such that the deviation of f on ‖α‖U is in ∆α , i.e., f (‖α‖U)⊆∆α .

Note that, for any boolean combination α of descriptors over A, it is also well

defined its semantics ‖α‖U∗ over U∗. However, there is only available information

about a part of ‖α‖U∗ equal to ‖α‖U = ‖α‖U∗ ∩U . Assuming that the patterns

from PATT ERN(A, f ,δ ) are strong (i.e., their support is sufficiently large) one may

induce that the following inclusion holds:

f ∗(‖α‖U∗) ⊆ [y− δ/2,y + δ/2). (29)

We can now define a generalized approximation space making it possible to extend

the approximation of G f = {(x, f (x) : x ∈U} over the defined previously approxi-

mation space AS to approximation of G f ∗ = {(x, f (x) : x ∈U∗}, where U ⊆U∗.
Let us consider a generalized approximation space

AS∗ = (U,U∗, I∗,ν∗
tr ,L

∗), (30)

where

• tr is a given threshold from the interval [0, 0.5),

• L∗ is a language of boolean combinations of descriptors over the information

system IS (Pawlak and Skowron 2007) used for construction of patterns from the

set PATT ERN(A, f ,δ ),

3 Analogously to shortening of decision rules (Pawlak and Skowron 2007).
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• I∗(x) = {‖α‖U∗×∆α : α ∈PATTERN(A, f ,δ ) & x∈ ‖α‖)U∗} for x∈U∗, where

U∗ is an extension of the sample U , i.e., U ⊆U∗,

• for any finite family X ⊆ P(U∗)×I , where P(U∗) is the powerset of U∗, I is

a family of intervals of reals of diameter less than δ and for any Y from U∗×R+

representing the graph of a function from U∗ into R+

ν∗
tr (X ,Y ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if Max < tr

1/2 if tr ≤ Max < 1− tr

0 if Max ≥ 1− tr,

(31)

where

1. Max = max{ |y∗−mid(π2(Z)|
max{y∗,mid(π2(Z)} : Z ∈ X & ν∗

U (Z,Y ) > 0},

2. ν∗
U (Z,Y ) = ν∗ ((π1(Z)∩U)×π2(Z),Y ∩ (U ×R+)) , where ν∗ is defined by

the equation (15),

3. mid(∆) = a+b
2

, where ∆ = [a,b),
4.

y∗ =
1

c
∑

Z∈X : ν∗
U (Z,Y )>0

mid(π2(Z)) · card(π1(Z ∩Y )∩U), (32)

where

c = card

⎛

⎝ ⋃

Z∈X : ν∗
U (Z,Y )>0

π1(Z)∩U

⎞

⎠ . (33)

The lower approximation of G f ∗ is defined by

LOW ∗(AS∗,G f ∗) =
{(x,y) : ν∗

tr(I
∗(x),G f ∗) = 1 & x ∈U∗ & y ∈ [y∗− δ/2,y∗+ δ/2)},

(34)

where y∗ is obtained from equation (32) in which X is substituted by I(x) and Y by

G f ∗, respectively.

The upper approximation of G f ∗ is defined by

UPP∗(AS∗,G f ∗) =
{(x,y) : ν∗

tr(I
∗(x),G f ∗) > 0 & x ∈U∗ & y ∈ [y∗− δ/2,y∗+ δ/2)},

(35)

where y∗ is obtained from equation (32) in which X is substituted by I(x) and Y by

G f ∗, respectively.

Let us observe that for x ∈U∗ the condition (x,y) /∈UPP∗(AS∗,G f ∗) means that

ν∗
tr(I

∗(x),G f ∗) = 0 & y ∈ [y∗−δ/2,y∗+δ/2) or y /∈ [y∗−δ/2,y∗+δ/2). The first

condition describes the set of all pairs (x,y), where the deviation of y from y∗ is

small (relative to δ ) but the prediction of y∗ on the set of patterns I∗(x) is very risky.
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The values of f ∗ can be induced by

f̂ ∗ (x) =

{
[y∗− δ/2,y∗+ δ/2) if ν∗

tr(I
∗(x),G f ∗) > 0

unde f ined otherwise,
(36)

where x ∈ U∗ \U and y∗ is obtained from equation (32) in which X is substituted

by I(x) and Y by G f ∗, respectively.

Let us now explain the formal definitions presented above. The value of uncer-

tainty function I∗(x) for a given object x consists all patterns of the form ‖α‖U∗×∆α

such that ‖α‖U∗ is matched by the object x. The condition x ∈ ‖α‖U∗ can be veri-

fied by checking if the A-signature of x, i.e., In fA(x) is matching α (to a satisfactory

degree). The deviation on ‖α‖U∗ is bounded by the interval ∆α of reals. The degree

to which Z is included to Y is estimated by ν∗
U(Z,Y ), i.e., by degree to which the

restricted to U projection of the pattern Z is included into Y projected on U . The

estimated value for f ∗(x) belongs to the interval [y∗− δ/2,y∗ + δ/2) obtained by

fusion of centers of intervals assigned to patterns from X . In this fusion, the weights

of these centers are reflecting the strength on U of patterns matching Y to a positive

degree. The result of fusion is normalized by c. The degree to which a family of pat-

terns X is included into Y is measured by the deviation of the value y∗ from centers

of intervals of patterns Z matching Y to a positive degree (i.e., ν∗
U(Z,Y ) > 0). In

Figure 3 we illustrate the idea of the presented definition of y∗, where

• Zi = ‖αi‖U∗ ×∆αi
for i = 1,2,3,

• I∗(x) = {Z1,Z2,Z3},

• the horizontal bold lines illustrate projections of sets Zi (i = 1,2,3) on U∗,

• the vertical bold lines illustrate projections of sets Zi (i = 1,2,3) on R+,

• y∗ = 1
c ∑3

t=1 mid(∆αt )card(‖αt‖U) and c is defined by equation (33),

• ν∗
U(Zi,G f ∗) > 0 for i = 1,2,3 because (x1, f (x1)) ∈ Z1 and (x2, f (x2)) ∈ Z2 ∩Z3

for x1,x2 ∈U ,

• ν∗
tr(I

∗(x),G f ∗) = 1 means that deviations |y∗−mid(∆αi
)| are sufficiently small

(the exact formula is given by (34)).

The quality of approximations of G f ∗ can be estimated using some selected measure

defined by a combination of

• closeness between projections on U of approximations of G f ∗ and approxima-

tions of G f on sample U (see formulas (21-22)),

• the description lengths of approximations.

The considered approximation space is parameterized by the set of patterns

PATTERN(A, f ,δ ). The optimization problem for function approximation is defined

as the searching problem for a set of patterns optimizing the mentioned above measure

based on aversion of theminimal lengthprinciple (Rissanen1985).Next, thecloseness

between the result of optimization and a testing sample of G f ∗ can be used for estima-

tion of the approximation quality. Note that one can also tune some parameters of the

selected measure for improving the approximation quality.A moredetailed discussion

on optimization of function approximation will be presented in our next paper.

The presented illustrative method for function approximation based on the rough

set approach can be treated as one of many possible ways for inducing function
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Fig. 3 Inducing the value y∗

approximations from data. For example, some of these methods may use distance

functions between objects from U∗ or more advanced rules for fusion of votes of

matched by objects patterns voting for different approximations of function values.

Example 3. We present a method based on Boolean reasoning for extraction of pat-

terns from data on which the deviation of values of the approximated function is

bounded by a given threshold. These patterns are used as left hand sides of decision

rules of the following form

if pattern then the decision deviation is bounded by a given threshold.

We consider a decision table DT = (U,A∪{d}) such that U = {x1, . . . ,x5}, A =
{a,b,c} and Va = Vb = Vc = {0,1} see Table 6 (the last column of the table (labeled

by support) means the number of objects described exactly in the same way).

We define the square matrix [mε
xi,x j

]xi,x j∈U (which is an analogy to discernibility

matrix in the standard rough set model) by

mε
xi,x j

= {e ∈ A : e(xi) �= e(x j)& | d(xi)−d(x j) |> ε}. (37)

Table 6 Decision Table with Real Valued Decision

U a b c d support

x1 0 0 0 160 10

x2 1 0 0 165 20

x3 1 0 1 170 30

x4 0 1 0 175 20

x5 0 1 1 180 20
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Let us observe that for any xi,x j ∈U mε
xi,x j

⊆ P(A).

Table 7 Square Matrix [m5
xi,x j

]xi,x j∈U

x1 x2 x3 x4 x5

x1 /0 /0 {a,c} {b} {b,c}

x2 /0 /0 /0 {a,b} {a,b,c}

x3 {a,c} /0 /0 /0 {a,b}

x4 {b} {a,b} /0 /0 /0

x5 {b,c} {a,b,c} {a,b} /0 /0

We assume that ε = 5 and the square matrix [m5
xi,x j

]xi,x j∈U is presented in Table 7.

From Table 7 we obtain the boolean function g(a,b,c) with three boolean vari-

ables a,b,c corresponding to attributes:

g(a,b,c) = (a∨ c)∧b∧ (b∨ c)∧ (a∨b)∧ (a∨b∨ c)∧ (a∨b). (38)

This function is an analogy to discernibility function in the standard rough set

model. There are two prime implicants of this boolean function g: a∧ b and b∧ c.
Hence we obtain two reducts: {a,b} and {b,c}. Using reducts and values of an

object x ∈U we construct decision rules of the form

if . . . then d ∈ (d(x)− ε,d(x)+ ε). (39)

The set of decision rules based on reducts {a,b} and {b,c} is presented in Table 8.

Let us consider new object xnew /∈ U described by a(xnew) = 0,b(xnew) = 0 and

c(xnew) = 1. In classification of xnew there are applied two decision rules r1
1 and

r2
3. Using the quality of the rules Quality(r1

1) = 10, Quality(r2
3) = 30 and that

mid(155,165) = 160, mid(165,175) = 170 we obtain that

d(xnew) =
Quality(r1

1)mid(155,165)+ Quality(r2
3)mid(165,175)

Quality(r1
1)+ Quality(r2

3)
= 167.5. (40)

Table 8 Decision rules generated from reducts {a,b} and {b,c}

Object Decision rule Quality of the rule

x1 r1
1 : if a = 0 and b = 0 then d ∈ (155,165) 10

x1 r2
1 : if b = 0 and c = 0 then d ∈ (155,165) 10

x2 r1
2 : if a = 1 and b = 0 then d ∈ (160,170) 20

x2 r2
2 : if b = 0 and c = 0 then d ∈ (160,170) 20

x3 r1
3 : if a = 1 and b = 0 then d ∈ (165,175) 30

x3 r2
3 : if b = 0 and c = 1 then d ∈ (165,175) 30

x4 r1
4 : if a = 0 and b = 1 then d ∈ (170,180) 20

x4 r2
4 : if b = 1 and c = 0 then d ∈ (170,180) 20

x5 r1
5 : if a = 0 and b = 1 then d ∈ (175,185) 20

x5 r2
5 : if b = 1 and c = 1 then d ∈ (175,185) 20
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4 Conclusions

We discussed a generalization of approximation spaces based on granular formulas

and neighborhoods. We emphasized the fundamental role of approximation spaces

in inducing classifiers such as rule based classifiers or function approximations. The

approach can be extended for other kinds of classifiers, e.g., knn classifiers, neu-

ral networks, or ensembles of classifiers. Efficient strategies searching for relevant

approximation spaces for approximation of higher order granules are crucial for ap-

plication (e.g., in searching for approximation of complex concepts). In our current

projects, we are developing such strategies based on some versions of the mini-

mal length principle (Rissanen 1985). The presented approach provides the uniform

foundations for implementing diverse strategies searching for (semi)optimal classi-

fiers of different kinds. All of these strategies are based on searching for relevant

approximation spaces. In particular, searching for relevant neighborhoods can be

supported by feature construction methods based on Boolean reasoning. Search-

ing for relevant approximation spaces can be realized in a network of cooperating

strategies searching for classifiers for a given data set. The uniform foundations of

our approach can facilitate the cooperation among strategies in such network. We

also plan to compare the proposed method for function approximation with the tra-

ditional ones such as regression based methods (Hastie et al. 2008) or methods based

on the functional data analysis approach (Ramsay 2002).
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Feature Discovery through
Hierarchies of Rough Fuzzy Sets

Alfredo Petrosino and Alessio Ferone

Abstract. Rough set theory and fuzzy log ic a re mathematica l frameworks
fo r g ranular computing fo rming a theoretica l basis fo r the treatment o f uncer-
ta inty in many rea l–world problems, including image and video ana lysis. The
fo cus o f rough set theory is on the ambiguity caused by limited discernibility
o f objects in the domain o f discourse; g ranules are fo rmed as objects and are
drawn together by the limited discernibility among them. On the other hand,
membership functions o f fuzzy sets enables efficient handling o f overlapping
cla sses. The hybrid notion o f rough fuzzy sets comes from the combination
o f these two models o f uncerta inty and helps to explo it, a t the same time,
properties like coarseness, by invoking rough sets, and vagueness, by consid-
ering fuzzy sets. We describe a model o f the hybridization o f rough and fuzzy
sets, that a llows fo r further refinements o f rough fuzzy sets. This model offers
viable and effective so lutions to some problems in image ana lysis, e.g . image
compression.

Keywords: Rough Fuzzy Sets, Modelling Hierarchies, Feature Discovery,
Image Ana lysis.

1 Introduction

Granular computing is based on the concept o f information granule, that is
a co llection o f simila r objects which can be considered as indistinguishable.
Partition o f an universe into granules offers a coarse view of the universe
where concepts, represented as subsets, can be approximated by means o f
g ranules. In this framework, rough set theory can be regarded to as a family
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of methodologies and techniques that make use of granules [9, 10]. The focus
of rough set theory is on the ambiguity caused by limited discernibility of
objects in the domain of discourse. Granules are formed as objects and are
drawn together by the limited discernibility among them. Granulation is of
particular interest when a problem involves incomplete, uncertain or vague
information. In such cases, precise solutions can be difficult to obtain and
hence the use of techniques based on granules can lead to a simplification of
the problem at hand.

At the same time, multivalued logic can be applied to handle uncertainty
and vagueness present in information systems, the most visible of which is
the theory of fuzzy sets [13]. In this framework, uncertainty is modelled by
means of functions that define the degree of belonginess of an object to a given
concept. Hence membership functions of fuzzy sets enable efficient handling
of overlapping classes.

The hybrid notion of rough fuzzy sets comes from the combination of these
two models of uncertainty to exploit, at the same time, properties like coarse-
ness, by handling rough sets [9], and vagueness, by handling fuzzy sets [13].
In this combined framework, rough sets embody the idea of indiscernibil-
ity between objects in a set, while fuzzy sets model the ill-definition of the
boundary of a subclass of this set. Combining both notions leads to consider,
as instance, approximation of sets by means of similarity relations or fuzzy
partitions. The rough fuzzy synergy is hence adopted to better represent the
uncertainty in granular computation.

Nevertheless, some considerations are in order. Classical rough set the-
ory is defined over a given partition, although several equivalence relations,
and hence partitions, can be defined over the universe of discourse. Different
partitions correspond to a coarser or finer view of the universe, because of dif-
ferent information granules, thus leading to coarser or finer definition of the
concept to be provided. Then a substantial interest arises about the possibil-
ity of exploiting different partitions and, possibly, rough sets of higher order.
Some approaches have been presented to exploit hierarchical granulation [5]
where various approximations are obtained with respect to different levels
of granulation. Considered as a nested sequence of granulations by a nested
sequence of equivalence relations, this procedure leads to a nested sequence
of rough set approximations and to a more general approximation structure.
Hierarchical representation of the knowledge is also used in [7] to build a se-
quence of finer reducts so to obtain multiple granularities at multiple layers.
The hierarchical reduction can handle problem with coarser granularity at
lower level so to avoid incompleteness of data present in finer granularity at
deeper layer. A different approach is presented in [8] where authors report a
Multi-Granulation model of Rough-Set (MGRS) as an extension of Pawlak’s
rough set model. Moreover, this new model is used to define the concept of ap-
proximation reduct as the smallest attribute subset that preserves the lower
approximation and upper approximation of all decision classes in MGRS.
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The hybridization of rough and fuzzy sets reported here has been observed
to possess a viable and effective solution to some of the most difficult problems
in image analysis. The model exhibits a certain advantage of having a new
operator to compose rough fuzzy sets, called RF -product, able to produce a
sequence of composition of rough fuzzy sets in a hierarchical manner. Theo-
retical foundations and properties, together with an example of application
for image compression are described in the following sections.

2 Rough Fuzzy Sets: A Background

Let us start from the definition of a rough fuzzy set given by Dubois and
Prade [6]. Let U be the universe of discourse, X a fuzzy subset of U , such
that µ X(u ) represents the fuzzy membership function of X over U , and R
an equivalence relation that induces the partition U /R = {Y 1, . . . , Yp} ( from
now on denoted as Y ) over U in p disjoint sets, i.e. Yi

⋂

Yj = ∅ ∀i, j = 1, . . . , p
and

⋃p
i=1 Yi = U . The lower and upper approximation of X by R, i.e. R(X)

and R(X) respectively, are fuzzy sets defined as

µR(X)(Yi) = inf{µX(u)|Yi = [u]R} (1)

µR(X)(Yi) = sup{µX(u)|Yi = [u]R} (2)

i.e. [u]R is a set such that (1) and (2) represent the degrees of membership
of Yi in R(X) and R(X), respectively. The couple of sets < R(X), R(X) >
is called rough-fuzzy set denoting a fuzzy concept (X) defined in a crisp
approximation space (U/R) by means of two fuzzy sets (R(X) and R(X)).
Specifically, identifying πi(u) as the function that returns 1 if u ∈ Yi and 0 if
u �∈ Yi, and considering Yi = [u]R and πi(u) = 1, the following relationships
hold:

µR(X)(Yi) = inf
u

max{1 − πi(u), µX(u)} (3)

µR(X)(Yi) = sup
u

min{πi(u), µX(u)} (4)

To emphasize that the lower and upper approximations of the fuzzy subset X
are, respectively, the infimum and the supremum of the membership functions
of the elements of a class Yi to the fuzzy set X , we can define a rough-fuzzy
set as a triple

RFX = (Y, I,S) (5)

where Y = {Y1, . . . , Yp} is a partition of U in p disjoint subsets Y1, . . . , Yp,
and I,S are mappings of kind U → [0, 1] such that ∀u ∈ U ,
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I(u) =

p
∑

i=1

νi × µYi
(u) (6)

S(u) =

p
∑

i=1

νi × µYi
(u) (7)

where

νi = inf{µX(u)|u ∈ Yi} (8)

νi = sup{µX(u)|u ∈ Yi} (9)

for the given subsets Y = {Y1, . . . , Yp} and for every choice of function µ :
U → [0, 1]. Y and µ uniquely define a rough-fuzzy set as stated below

Definition 1. Given a subset X ⊆ U , if µ is the membership function µX

defined on X and the partition Y is made with respect to an equivalence
relationR, i.e. Y = U/R, then X is a fuzzy set with two approximations R(X)
and R(X), which are again fuzzy sets with membership functions defined as
(8) and (9), i.e. νi = µR(X) and νi = µR(X). The pair of sets < R(X), R(X) >
is then a rough fuzzy set.

Let us recall the generalized definition of rough set given in [1]. Expressions
for the lower and upper approximations of a given set X are

R(X) = {(u, I(u))|u ∈ U} (10)

R(X) = {(u,S(u))|u ∈ U} (11)

I and S are defined as:

I(u) =

p
∑

i=1

µYi
(u) × inf

ϕ∈U
max(1 − µYi

(ϕ), µX(ϕ)) (12)

S(u) =

p
∑

i=1

µYi
(u) × sup

ϕ∈U
min(µYi

(ϕ), µX(ϕ)) (13)

where µYi
is the membership degree of each element u ∈ U to a granule

Yi ∈ U/R and µX is the membership function associated with X .
If we rewrite (8) and (9) as

νi = µR(X)(Yi) = inf
ϕ∈U

max(1 − µYi
(ϕ), µX(ϕ)) (14)

νi = µR(X)(Yi) = sup
ϕ∈U

min(µYi
(ϕ), µX(ϕ)) (15)

and considering a Boolean equivalence relation R, we arrive at the same
definition of rough fuzzy set as given in (3) and (4). Indeed, considering
(14) and the equivalence relation R, µY (ϕ) takes values in {0, 1} hence the
expression 1 − µY (ϕ) equals 0 if ϕ ∈ Y or 1 if ϕ �∈ Y . Furthermore the max
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operation returns 1 or µX(ϕ) depending on the fact that ϕ ∈ Y or ϕ �∈ Y . The
operation inf then returns the infimum of such values, that is the minimum
value of µX(ϕ). The same applies to (15).

3 Hierarchical Refinement of Rough-Fuzzy Sets

Rough set theory allows to partition the given data into equivalence classes.
Nevertheless, given a set U , it is possible to employ different equivalence
relations and hence produce different data partitions. This leads to a choice
of the partition that represents the data in the best manner. For example,
let us consider N -dimensional patterns, with N = 4 as in Table 1.

Table 1 Example of data

A1 A2 A3 A4

u1 a a b c

u2 b c c c

u3 a b c a

u4 c b a b

Let Yi be the partition obtained applying the equivalence relation RAi
on

the attribute Ai. We may get from Table 1 the following four partitions

Y1 = {{u1, u3}, {u2}, {u4}}

Y2 = {{u1}, {u2}, {u3, u4}}

Y3 = {{u1}, {u2, u3}, {u4}}

Y4 = {{u1, u2}, {u3}, {u4}}

(16)

that, without any apriori knowledge, have potentially the same data rep-
resentation power. To exploit all the possible partitions by means of sim-
ple operations, we propose to refine them in a hierarchical manner, so that
partitions at each level of the hierarchy retain all the important informa-
tions contained into the partitions of the lower levels. The operation em-
ployed to perform the hierarchical refinement is called Rough–Fuzzy product
(RF -product) and is defined by:

Definition 2. Let RF i = (Yi, Ii,Si) and RF j = (Yj , Ij ,Sj) be two rough
fuzzy sets defined, respectively, over partitions Yi = (Y i

1 , . . . , Y i
p ) and Yj =

(Y j
1 , . . . , Y j

p ) with Ii ( resp. Ij) and Si (resp. Sj) indicating the measures
expressed in Eqs. (6) and (7). The RF–product between two rough-fuzzy
sets, denoted by ⊗, is defined as a new rough fuzzy set

RF i,j = RF i ⊗ RF j = (Yi,j , Ii,j ,Si,j)
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where Yi,j = (Y i,j
1 , . . . , Y i,j

2p−1) is a new partition whose equivalence classes
are

Y ij
k =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s=h
q=1
⋃

s=1
q=h

Y i
q ∩ Y j

s h = k, k ≤ p

s=p
q=h
⋃

s=h
q=p

Y i
q ∩ Y j

s h = k − p + 1, k > p

(17)

and Ii,j and Si,j are

Ii,j(u) =

2p−1
∑

k=1

νi,j
k × µi,j

k (u) (18)

Si,j(u) =

2p−1
∑

k=1

νi,j
k × µi,j

k (u) (19)

and

νij
k =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

sup
s=1,...,h
q=h,...,1

{νi
q, ν

j
s} h = k, k ≤ p

sup
s=h,...,p
q=p,...,h

{νi
q, ν

j
s} h = k − p + 1, k > p

(20)

νij
k =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

inf
s=1,...,h
q=h,...,1

{νi
q, ν

j
s} h = k, k ≤ p

inf
s=h,...,p
q=p,...,h

{νi
q, ν

j
s} h = k − p + 1, k > p

(21)

Let us pick up the example shown in Table 1, and consider partitions Y1

and Y2 obtained from equivalence relations RA1 and RA2 defined on U by
attributes A1 and A2, respectively. In terms of rough–fuzzy sets they are
RF 1 = (Y1, I1,S1) and RF 2 = (Y2, I2,S2). Partitions Y1 and Y2 are defined
as follows
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{u4} = Y 1
1 {u3, u4} = Y 2

1

{u2} = Y 1
2 {u2} = Y 2

2

{u1, u3} = Y 1
3 {u1} = Y 2

3

The refined partition Y1,2 defined on U by both attributes, corresponds to
the partition obtained by RF-producting RF 1 and RF 2.

The new partition Y1,2 is obtained by (in matrix notation)

– – (Y 1

3 ∩ Y 2

1 ) (Y 1

2 ∩ Y 2

1 ) (Y 1

1 ∩ Y 2

1 )

– (Y 1

3 ∩ Y 2

2 ) (Y 1

2 ∩ Y 2

2 ) (Y 1

1 ∩ Y 2

2 ) –

(Y 1

3 ∩ Y 2

3 ) (Y 1

2 ∩ Y 2

3 ) (Y 1

1 ∩ Y 2

3 ) – –

The final partition is obtained by joining sets by column as explained in
Eq. 17

Y 1,2
1 = {(Y 1

1 ∩ Y 2
1 )}

Y 1,2
2 = {(Y 1

2 ∩ Y 2
1 ) ∪ (Y 1

1 ∩ Y 2
2 )}

Y 1,2
3 = {(Y 1

3 ∩ Y 2
1 ) ∪ (Y 1

2 ∩ Y 2
2 ) ∪ (Y 1

1 ∩ Y 2
3 )}

Y 1,2
4 = {(Y 1

3 ∩ Y 2
2 ) ∪ (Y 1

2 ∩ Y 2
3 )}

Y 1,2
5 = {(Y 1

3 ∩ Y 2
3 )}

Hence

Y1,2 = {Y 1,2
1 , Y 1,2

2 , Y 1,2
3 , Y 1,2

4 , Y 1,2
5 }

and I and S of the new rough–fuzzy set, computed as in (18) and (19), are

ν1,2
1 = sup{inf{ν1

1, ν
2
1}}

ν1,2
1 = inf{sup{ν1

1, ν
2
1}}

ν1,2
2 = sup{inf{ν1

2, ν
2
1}, inf{ν1

1, ν
2
2}}

ν1,2
2 = inf{sup{ν1

2, ν
2
1}, sup{ν1

1, ν
2
2}}

ν1,2
3 = sup{inf{ν1

3, ν
2
1}, inf{ν1

2, ν
2
2}, inf{ν1

1, ν
2
3}}

ν1,2
3 = inf{sup{ν1

3, ν
2
1}, sup{ν1

2, ν
2
2}, sup{ν1

1, ν
2
3}}

ν1,2
4 = sup{inf{ν1

3, ν
2
2}, inf{ν1

2, ν
2
3}}

ν1,2
4 = inf{sup{ν1

3, ν
2
2}, sup{ν1

2, ν
2
3}}

ν1,2
5 = sup{inf{ν1

3, ν
2
3}}

ν1,2
5 = inf{sup{ν1

3, ν
2
3}}

(22)



64 A. Petrosino and A. Ferone

The rough–fuzzy set obtained by RF 1 ⊗ RF 2 is thus defined by

RF 1,2 = (Y1,2, I1,2,S1,2)

where

I1,2(u) =

5
∑

i=1

ν1,2
i × µY 1,2

i
(u)

S1,2(u) =

5
∑

i=1

ν1,2
i × µY 1,2

i
(u)

(23)

In case of partitions of different sizes, it is sufficient to add empty sets to
have partitions of the same size.

4 Characterization of RF–product

Let us recall that a partition Y of a finite set U is a collection {Y1, Y2, . . . , Yp}
of nonempty subsets (equivalence classes) such that

Yi ∩ Yj = ∅ ∀i, j = 1, . . . , p (24)
⋃

i

Yi = U (25)

Hence, each partition defines an equivalence relation and, conversely, an
equivalence relation defines a partition, such that the classes of the parti-
tion correspond to the equivalence classes of the relation.

Partitions are partially ordered by reverse refinement Yi ⊆ Yj . We say
that Yi is finer than Yj if every equivalence class of Yi is contained in some
equivalence class of Yj , that is, for each equivalence class Y j

h of Yj , there

are equivalence classes Y i
1 , . . . , Y i

p of Yi such that Y j
h = Y i

1 , . . . , Y i
p . If E(Yi)

is the equivalence relation defined by the partition Yi, then Yi ⊆ Yj iff
∀u, u′ ∈ U, (u, u′) ∈ E(Yi) =⇒ (u, u′) ∈ E(Yj), that is, E(Yi) ⊆ E(Yj).
The set Π(U) of partitions of a set U forms a lattice under the partial order
of reverse refinement. The minimum is the partition where an equivalence
relation is a singleton, while the maximum is the partition composed by one
single equivalence relation. The meet Yi ∧ Yj ∈ Π(U) is the partition whose
equivalence classes are given by Y i

k ∩Y j
h �= ∅, where Y i

k and Y j
h are equivalence

classes of Yi and Yj , respectively. In terms of equivalence relations

RYi∧Yj = RYi ∩ RYj (26)

is the largest equivalence relation contained in both RYi and RYj . The join
Yi ∨ Yj is a partition composed by the equivalence classes of the transitive
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closure of the union of the equivalence relations defined by Yi and Yj . In
terms of equivalence relations

RYi∨Yj =RYi ∪ RYi ◦ RYj ∪ RYi ◦ RYj ◦ RYi ∪ . . . (27)

∪ RYj ∪ RYj ◦ RYi ∪ RYj ◦ RYi ◦ RYj ∪ . . .

where Rx ◦ Ry denotes the composition of the equivalence relations Rx and
Ry and is the smallest equivalence relation containing both RYi and RYj .
I and S are defined in (6) and (7). Firstly, we prove that the RF-product
yields an equivalence relation

Theorem 1. Let RYi and RYj be equivalence relations on a set U . Then
E = RYi ⊗ RYj is an equivalence relation on U .
Proof. E is an equivalence relation iff (1) ∀Ei, Ej ∈ E, Ei ∩Ej = ∅ and (2)
∪E = U .

1. Given that RYi and RYj are equivalence relations, Yi and Yj ∈ Π(U).
∀u ∈ U, ∃R ∈ Yi and ∃T ∈ Yj such that u ∈ R and u ∈ T . Then u ∈
R∩T . If u ∈ R∩T then u �∈ P∩Q,∀P ∈ Yi(P �= R) and ∀Q ∈ Yi(Q �= T ).
The union of the intersections in the RF-product ensure that u belongs
to a single equivalence class Ei ∈ E and hence ∀EiEj ∈ E, Ei ∩ Ej = ∅.

2. Given that ∀u ∈ U, ∃Ei ∈ E such that u ∈ Ei. Then ∪Ei = U .

The operation RF-product is commutative:

Theorem 2. Let RYi and RYj be equivalence relations on a set U . Then
RYi ⊗ RYj = RYj ⊗ RYi .

Proof. The property can be easly proven by first noting that intersection is
a commutative operation. The matrix representing the RF–product is built
row-wise in RYi ⊗ RYj (that is each row is the refinement of an equivalence
class of RYj by all equivalence classes of RYi), while it is built column-wise
in RYj ⊗RYi (that is each column is the refinement of an equivalence class of
RYj by all equivalence classes of RYi). In both cases the positions considered
at the union step are the same, thus yielding the same result.

Next we prove two theorems which bound the level of refinement of the
partitions induced by the RF-product.

Theorem 3. Let RYi and RYj be equivalence relations on a set U . It holds
that RYi ∩ RYj ⊆ RYi ⊗ RYj .

Proof. From Eq. 17 it can be easily seen that each equivalence class of
RYi ⊗ RYj is the union of some equivalence classes of RYi ∩ RYj . Then
each equivalence class of RYi ∩ RYj is contained in an equivalence class of
RYi ⊗ RYj . Hence RYi ∩ RYj ⊆ RYi ⊗ RYj .
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Theorem 4. Let RYi and RYj be equivalence relations on a set U . It holds
that (RYi ⊗ RYj ) ⊗ (RYi ⊗ RYj ) = RYi ⊗ RYj .

Proof. From Theorem 1 RYi ⊗RYj is an equivalence relation. Then (RYi ⊗
RYj ) ∩ (RYi ⊗ RYj ) = RYi ⊗ RYj and from Eq. 17 it derives that each
equivalence relation of RYi ⊗RYj is equal to only one equivalence relation of
(RYi ⊗ RYj ) ∩ (RYi ⊗ RYj ).

Another interesting property of the RF -product is that partition E = RYi ⊗
RYj can be seen as the coarsest partition with respect to the sequence of
operations

E = RYi ⊗ RYj

E′ = E ⊗ RYj = (RYi ⊗ RYj ) ⊗ RYj ⊆ E

E′′ = E ⊗ RYi = (RYi ⊗ RYj ) ⊗ RYi ⊆ E

In other words, at each iteration, the RF-product produces a finer partition
with respect to the initial partition. It is worth noting that, at each iteration

E = E′ ⊗ E′′

(28)

Viewed from another perspective, the RF-product can be seen as a rule
generation mechanism. Suppose that it is possible to assign a label to each
equivalence class of a partition. Then RYi ⊗RYj represents a partition whose
equivalence classes are consistent with the labels of the operands. Consider
the following partitions on a set U

Y1 = {Y 1
low, Y 1

medium, Y 1
high}

Y2 = {Y 2
low, Y 2

medium, Y 2
high}

(29)

where low = 1 medium = 2 high = 3 and

{u4} = Y 1
low {u3, u4} = Y 2

low

{u2} = Y 1
medium {u2} = Y 2

medium

{u1, u3} = Y 1
high {u1} = Y 2

high

Applying RF-product we get

Y1,2 = {Y 1,2
low, Y 1,2

medium/low, Y 1,2
medium, Y 1,2

medium/high, Y 1,2
high} (30)
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where

Y 1,2
low = {(Y 1

low ∩ Y 2
low)}

Y 1,2
medium/low = {(Y 1

medium ∩ Y 2
low) ∪ (Y 1

low ∩ Y 2
medium)}

Y 1,2
medium = {(Y 1

high ∩ Y 2
low) ∪ (Y 1

medium ∩ Y 2
medium) ∪ (Y 1

low ∩ Y 2
high)}

Y 1,2
medium/high = {(Y 1

high ∩ Y 2
medium) ∪ (Y 1

medium ∩ Y 2
high)}

Y 1,2
high = {(Y 1

high ∩ Y 2
high)}

(31)

Analyzing the new partition we note how the equivalence classes are consis-
tent with the composition of the original ones, i.e.:

a) u ∈ U belongs to “low” class in Y 1,2 if it belongs to “low” class in Y 1 and
“low” class in Y 2;

b) u ∈ U belongs to “medium/low” class in Y 1,2 if it belongs to “low” class
in Y 1 and “medium” class in Y 2 or to “medium” class in Y 1 and “low”
class in Y 2;

c) u ∈ U belongs to “medium” class in Y1,2 if it belongs to “medium” class
in Y 1 and Y 2 or to “high” class in Y 1 and to “low” class in Y 2 or to
“high” class in Y 2 and to “low” class in Y 1;

d) u ∈ U belongs to “medium/high” class in Y 1,2 if it belongs to “high” class
in Y 1 and “medium” class in Y 2 or to “medium” class in Y 1 and “high”
class in Y 2;

e) u ∈ U belongs to “high” class in Y 1,2 if it belongs to “high” class in Y 1

and Y 2.

5 Feature Discovery

The basic ideas about how to construct the feature vectors upon the definitions
introduced in the previous section are outlined for the case of image analysis.

Let us consider an image I defined over a set U = [0, ..., H−1]×[0, ...W−1]
of picture elements, i.e. I : u ∈ U → [0, 1]. Let us also consider a grid,
superimposed on the image, whose cells Yi are of dimension w×w, such that
all Yi constitute a partition over I, i.e. eqs (24) and (25) hold and each Y 1

i ,
for i = 1 . . . p, has dimension w×w and p = H/w +W/w. The size w of each
equivalence class will be referred to as scale.

Each cell of the grid can be seen as an equivalence class induced by an
equivalence relation R that assigns each pixel of the image to a single cell.
Given a pixel u, whose coordinates are ux and uy, and a cell Yi of the grid,
whose coordinates of its upper left point are x(Yi) and y(Yi), u belongs to Yi if
x(Yi) ≤ ux ≤ x(Yi)+w−1 and y(Yi) ≤ uy ≤ y(Yi)+w−1. In other words, we
are defining a partition U/R of the image induced by the relation R, in which
each cell represents an equivalence class [u]R. Also suppose that equivalence
classes can be ordered in some way, for instance, from left to right.
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Moreover, given a subset X of the image, not necessarily included or equal
to any [u]R, we define the membership degree µX(u) of a pixel u to X as the
normalized gray level value of the pixel.

If we consider different scales, the partitioning scheme yields many parti-
tions of the same image and hence various approximations R(X) and R(X)
of the subset X . For instance, other partitions can be obtained by a rigid
translation of Y1 in the directions of 0o, 45o and 90o of w − 1 pixels, so that
for each partition a pixel belongs to a shifted version of the same equivalence
class Y i

j .

If we consider four equivalence classes, Y 1
j Y 2

j Y 3
j Y 4

j as belonging to these
four different partitions, then there exists a pixel u with coordinates ux, uy

such that u belongs to the intersection of Y 1
j Y 2

j Y 3
j Y 4

j . Hence each pixel
can be seen as belonging to the equivalence class

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j (32)

of the partition obtained by RF-producting the four rough fuzzy sets to
which Y i

j , with i = 1, . . . , 4, belongs, i.e.

RF 1,2,3,4
X = RF 1

X ⊗ RF 2
X ⊗ RF 3

X ⊗ RF 4
X (33)

The RF-product behaves as a filtering process according to which the image
is filtered by a minimum operator over a window w × w producing I and
by a maximum operator producing S. Iterative application of this procedure
consists in applying the same operator to both results I and S obtained at
the previous iteration.

As instance, X defines the contour or uniform regions in the image. On
the contrary, regions appear rather like fuzzy sets of grey levels and their
comparison or combination generates more or less uniform partitions of the
image. Rough fuzzy sets, as defined in (5), seem to capture these aspects
together, trying to extract different kinds of knowledge in data.

This procedure can be efficiently applied to image coding/decoding, getting
rise to the method rough fuzzy vector quantization (RFVQ)[12]. The image
is firstly partitioned in non–overlapping k blocks Xh of dimension m × m,
such that m ≥ w, that is X = {X1, . . . , Xk} and k = H/m + K/m.

Considering each image block Xh, a pixel in the block can be character-
ized by two values that are the membership degrees to the lower and upper
approximation of the set Xh. Hence, the feature extraction process provides
two approximations R(Xh) and R(Xh) characterized by I and S as defined
in (6) and (7) where

νi = µR(Xh)(Yi) = inf{µXh
(u)|Yi = [u]R}

(34)

νi = µR(Xh)(Yi) = sup{µXh
(u)|Yi = [u]R}
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and [u]R is the granule that defines the resolution at which we are observing
the block Xh. For a generic pixel u = (ux, uy) we can compute the coordinates
of the upper left pixel of the four equivalence classes containing u, as shown
in Fig. 1:

ux = x1 + w − 1 ⇒ x1 = ux − w + 1

uy = y1 + w − 1 ⇒ y1 = uy − w + 1

ux = x2 ⇒ x2 = ux

uy = y2 + w − 1 ⇒ y2 = uy − w + 1

ux = x3 + w − 1 ⇒ x3 = ux − w + 1

uy = y3 ⇒ y3 = uy

ux = x4 ⇒ x4 = ux

uy = y4 ⇒ y4 = uy

where the four equivalence classes for pixel u are

Y 1
j = (x1, y1, ν

1
j , ν

1
j)

Y 2
j = (x2, y2, ν

2
j , ν

2
j)

Y 3
j = (x3, y3, ν

3
j , ν

3
j)

Y 4
j = (x4, y4, ν

4
j , ν

4
j)

For instance, if we choose a granule of dimension w = 2 for a generic j − th
granule of the i − th partition, equations in (34) become:

νi
j = inf{(ux + a, uy + b)|a, b = 0, 1}

νi
j = sup{(ux + a, uy + b)|a, b = 0, 1}

The compression method performed on each block Xh is composed of three
phases: codebook design, coding and decoding. A vector is constructed by re-
taining the values νi

j and νi
j at positions u and u + (w − 1, w − 1) in a generic

block Xh, or equivalently ν1
j , ν

1
j , ν

3
j , ν

3
j . The vector has hence dimension m2

consisting of m2/2 inf values and m2/2 sup values. The vectors so constructed
and extracted from a training image set are then fed to a quantizer in order to
construct the codebook. The aim of vector quantization is the representation
of a set of vectors u ∈ X ⊆ Rm2

by a set of C prototypes (or codevectors)

V = {v1, v2, ..., vC} ⊆ Rm2

. Thus, vector quantization can also be seen as a

mapping from an m2-dimensional Euclidean space into the finite set V ⊆ Rm2

,
also referred to as the codebook. Codebook design can be performed by cluster-
ing algorithms, but it is worth noting that the proposed method relies on the
representation capabilities of the vector to be quantized and not on the quanti-
zation algorithm, to determine optimal codevectors, i.e. Fuzzy C-Means, Gen-
eralized Fuzzy C-Means or any analogous clustering algorithm can be adopted.
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The process of coding a new image proceeds as follows. For each block Xh

the features extracted are arranged in a vector, following the same scheme
used for designing the codebook, and compared with the codewords in the
codebook to find the best match, i.e. the closest codeword to the block.

In particular, for each block, inf and sup values are extracted from a win-
dow of size 2× 2 shifted by one pixel into the block. All the extracted values
are arranged in a one-dimensional array, i.e. for block dimension m×m and
a window dimension 2×2 the array is represented by m2 elements consisting
of m2/2 inf values and m2/2 sup values. Doing so, the identificative number
(out of C) of the winning codeword, i.e. the best match to the coded block,
is saved in place of the generic block Xh.

Given a coded image, the decoding step firstly consists in the substitution
of the identificative codeword number with the codeword itself, as reported
in the codebook. The codeword consists of m2/2 inf and m2/2 sup values,
instead of the original m2 values of the block. To reconstruct the original
block, we apply the theory as follows. As stated above, each pixel can be
seen as belonging to the block of the partition obtained by RF-producting
the four equivalence classes (32) and (33). Specifically, the blocks contained
into the codeword are not the original ones, but those chosen to represent
the block, i.e.

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j (35)

where Y i
j is a set of the partition of the rough-fuzzy set intersecting the generic

block of the image Xh. The result of the RF-product operation, with respect
to a single block, is represented by another rough fuzzy set, characterized by
lower and upper approximations. These values are used to fill the missing
values into the decoded block.

In detail, being qr the codeword corresponding to a generic block, the de-
coded block Xdecoded is constructed by filling the missing values, i.e. the orig-
inal ν2

j , ν
2
j , ν

4
j , ν

4
j as combination of them, like average, median, etc., yielding

ν̃2
j , ν̃

2
j , ν̃

4
j , ν̃

4
j .

The reconstructed block Xdecoded, again a rough fuzzy set, is obtained
by RF-producting the four equivalnce classes Y 1

j Y 2
j Y 3

j Y 4
j , yielding the

following

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j

Ĩ1,2,3,4(u) =
∑

j

ν̃1,2,3,4
j × µ1,2,3,4

Yj
(u)

S̃1,2,3,4(u) =
∑

j

ν̃
1,2,3,4
j × µ1,2,3,4

Yj
(u)
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Fig. 1 Equivalence classes coordinates.

where

ν̃1,2,3,4
j = sup{ν1

j , ν̃
2
j , ν

3
j , ν̃

4
j} ν̃

1,2,3,4
j = inf{ν1

j , ν̃
2
j , ν

3
j , ν̃

4
j} (36)

Lastly, under the assumption of local smoothness an estimate of the original
grey values at the generic position u can be computed composing ν̃1,2,3,4

j and

ν̃
1,2,3,4
j , as instance averaging or simply using only one of them.
An example of compression of image Baboon is depicted in Figure 2(a)

using RFVQ. The codebook has been built by using ISODATA quatizer, a
training image set of size 256× 256 with 8 bits/pixel: Bird, Bridge, Building,
Camera, City, Hat, House, Lena, Mona, Salesman, using the average as com-
bination. Different compression rates are obtained as explained in Table 2.

Table 2 RFVQ parameters at different compression rates.

Compression rate Number of clusters (C) Block dimension (m)

0.03 16 4
0.06 256 4
0.14 32 2
0.25 256 2
0.44 16384 2

Analyzing the results shown in Fig.s 2 (b)–(f), we can observe that the
proposed method performs well for higher compression rates while it looses
efficiency for lower compression rates, reasonably due to the quantization
algorithm. Indeed, in order to obtain a compression rate of 0.44 a large num-
ber of clusters has to be computed (precisely 16,384), but in this situation
the large number of codewords does not ensure that the optimal choice will
be performed when selecting the most approximating codeword.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Image “Baboon” (a) at different compression rates, b) 0.03 (PSNR: 19.10),
c) 0.06 (PSNR: 19.89), d) 0.14 (PSNR: 20.61), e) 0.25 (PSNR: 21.08), f) 0.44
(PSNR: 21.36).
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6 Concluding Remarks

A model for the hybridization of rough and fuzzy sets has been presented. It
is endowed with a new operator, called RF -product, which allows to combine
different partitions yielding a refined partition in a hierarchical manner. The
model and the RF-operator have been proved to possess peculiar properties
effective for feature discovery, useful in applications like image analysis. Here
we reported an image compression scheme that exploits the peculiarities of
RF-product. Results are quite remarkable, considering that RFVQ does not
suffer of the blocking effect, while loosing only a small amount of details.
Ongoing work is devoted to exploit the proposed model in other data mining
applications and also image processing tasks, like color image segmentation.
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Comparative Study of Fuzzy Information 
Processing in Type-2 Fuzzy Systems 
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Abstract. Fuzzy information processing in type-2 fuzzy systems has been imple-

mented in most cases based on the Karnik and Mendel (KM) and Wu-Mendel 

(WM) approaches. However, both of these approaches are time consuming for 

most real-world applications, in particular for control problems. For this reason, a 

more efficient method based on evolutionary algorithms has been proposed by 

Castillo and Melin (CM). This method is based on directly obtaining the type  

reduced results by using an evolutionnary algorithm (EA). The basic idea is that 

with an EA the upper and lower membership functions in the output can be  

obtained directly based on experimental data available for a particular problem. A 

comparative study (in control applications) of the three methods, based on accu-

racy and efficiency is presented, and the CM method is shown to outperform both 

the KM and WM methods in efficiency while accuracy produced by this method is 

comparable. 

Keywords: Intelligent Control, Type-2 Fuzzy Logic, Interval Fuzzy Logic,  

Hybrid Intelligent Systems, Evolutionary Algorithm, Hardware Implementation, 

Fuzzy Controllers, Type Reduction. 

1   Introduction 

Uncertainty affects decision-making and appears in a number of different forms. 

The concept of information is fully connected with the concept of uncertainty. The 

most fundamental aspect of this connection is that the uncertainty involved in any 

problem-solving situation is a result of some information deficiency, which may 

be incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or 

deficient in some other way.  Uncertainty is an attribute of information (Zadeh 

2005). The general framework of fuzzy reasoning allows handling much of this 

uncertainty and fuzzy systems that employ type-1 fuzzy sets represent uncertainty 

by numbers in the range [0, 1]. When a phenomenon is uncertain, like a measure-

ment, it is difficult to determine its exact value, and of course type-1 fuzzy sets 
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make more sense than using sets (Zadeh 1975).  However, it is not reasonable to 

use an accurate membership function for something uncertain, so in this case what 

we need is higher order fuzzy sets, those which are able to handle these uncertain-

ties, like the so called type-2 fuzzy sets (Mendel 2004) (Mizumoto and Tanaka 

1976). So, the amount of uncertainty can be managed by using type-2 fuzzy logic 

because it offers better capabilities to handle linguistic uncertainties by modeling 

vagueness and unreliability of information (Wagenknecht and Hartmann 1988). 

Recently, we have seen the use of type-2 fuzzy sets in Fuzzy Logic Systems 

(FLS) in different areas of application (Castillo and Melin 2008). A novel  

approach for realizing the vision of ambient intelligence in ubiquitous computing 

environments (UCEs), is based on intelligent agents that use type-2 fuzzy systems 

which are able to handle the different sources of uncertainty in UCEs to give a 

good response (Doctor et al. 2005).  There are also papers with emphasis on the 

implementation of type-2 FLS (Karnik et al. 1999) and in others, it is explained 

how type-2 fuzzy sets let us model the effects of uncertainties in rule-base FLS 

(Mendel and John 2002). In industry, type-2 fuzzy logic and neural networks was 

used in the control of non-linear dynamic plants (Melin and Castillo 2004); also 

we can find studies in the field of mobile robots (Astudillo et al. 2006) (Hagras 

2004).  In this paper we deal with the application of interval type-2 fuzzy control 

to non-linear dynamic systems.  It is a well known fact, that in the control of real 

systems, the instrumentation elements (instrumentation amplifier, sensors, digital 

to analog, analog to digital converters, etc.) introduce some sort of unpredictable 

values in the information that has been collected (Castillo and Melin 2001). The 

controllers designed under idealized conditions tend to behave in an inappropriate 

manner (Castillo and Melin 2003). For this reason, type-2 fuzzy controllers, which 

can cope better with uncertainty, may have better performance under non-ideal 

conditions (Castillo and Melin 2004).  

Fuzzy information processing in interval type-2 fuzzy systems has been imple-

mented in most cases based on the Karnik and Mendel (KM) and Wu-Mendel 

(WM) approaches (Karnik and Mendel 2001). However, both of these approaches 

are time consuming for most real-world applications, in particular for control 

problems (Coupland and John 2008) (Starzewski 2009) (Martinez et al. 2009). For 

this reason, a more efficient method based on evolutionary algorithms (Sepulveda 

et al. 2007) has been proposed by Castillo and Melin (CM). This method is based 

on directly obtaining the type reduced results by searching the space of possible 

results using an evolutionary algorithm (Montiel et al. 2007). The basic idea is that 

with an EA the upper and lower membership functions in the output can be ob-

tained directly based on experimental data for a particular problem. In this paper, a 

comparative study (in control applications) of the three methods, based on accu-

racy and efficiency is presented. The CM method is shown to outperform both the 

KM and WM methods in efficiency while accuracy is comparable. This fact 

makes the CM method a good choice for real-world control applications in which 

efficiency is of fundamental importance. 
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2   Fuzzy Logic Systems 

In this section, a brief overview of type-1 and type-2 fuzzy systems is presented. 

This overview is considered to be necessary to understand the basic concepts 

needed to develop the methods and algorithms presented later in the paper. 

2.1   Type-1 Fuzzy Logic Systems  

Soft computing techniques have become an important research topic, which can be 

applied in the design of intelligent controllers, which utilize the human experience 

in a more natural form than the conventional mathematical approach (Zadeh 1971) 

(Zadeh 1973). A FLS, described completely in terms of type-1 fuzzy sets is called 

a type-1 fuzzy logic system (type-1 FLS). In this paper, the fuzzy controller has 

two input variables, which are the error e(t) and the change of error Δe(t), 

)()()( tytrte −=
                                                             (1) 

)1()()( −−=Δ tetete
                                                             (2) 

The control system can be represented as in Figure 1. 

 

Fig. 1 System used for obtaining the experimental results. 

2.2   Type-2 Fuzzy Logic Systems 

If for a type-1 membership function, as in Figure 2, we blur its values to the left 

and to the right, as illustrated in Figure 3, then a type-2 membership function is 

obtained. In this case, for a specific value 'x , the membership function ( 'u ), takes 

on different values, which are not all weighted the same, so we can characterize 

them by a distribution of membership values.  
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Fig. 2 Type-1 membership function. 

 

Fig. 3 Blurred type-1 membership function. 

A type-2 fuzzy set A
~

, is characterized by the membership function (Mendel 

2001) (Mendel and Mouzouris 1999): 

( ){ }]1,0[,|),(),,(
~

~ ⊆∈∀∈∀= xA JuXxuxuxA µ
                        

(3) 

in which 1),(0 ~ ≤≤ ux
A

µ . Another expression for A
~

 reads as,  

),/(),(
~

~ uxuxA
Xx Ju

A
x

∫ ∫∈ ∈
= µ

       

]1,0[⊆xJ
                           (4) 

Where ∫ ∫ denotes the union over all admissible input variables x and u.  For 

discrete universes of discourse, the symbol ∫ is replaced by ∑ (Mendel and 
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John 2002).  In fact ]1,0[⊆xJ  represents the primary membership of x, and 

),(~ ux
A

µ is a type-1 fuzzy set known as the secondary set.  Hence, a type-2 

membership grade can be any subset in [0,1], the primary membership, and corre-

sponding to each primary membership, there is a secondary membership (which 

can also be in [0,1]) that defines the possibilities for the primary membership. Un-

certainty is represented by a region, which is called the footprint of uncertainty 

(FOU). When ]1,0[,1),(~ ⊆∈∀= xA
Juuxµ  we have an interval type-2 

membership function, as shown in Figure 4.  The uniform shading for the FOU 

represents the entire interval type-2 fuzzy set and it can be described in terms of 

an upper membership function )(~ x
A

µ and a lower membership function )(~ x
A

µ .  

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  

Type-1 FLSs are unable to directly handle rule uncertainties, because they use 

type-1 fuzzy sets that are certain (Castro et al. 2009).  On the other hand, type-2 

FLSs, are very useful in circumstances where it is difficult to determine an exact 

membership function, and there are measurement uncertainties (Mendel 2001) (Li 

and Zhang 2006). 

 

Fig. 4 Interval type-2 membership function. 

A type-2 FLS is again characterized by IF-THEN rules, but its antecedent or 

consequent sets are now of type-2.  Similar to a type-1 FLS, a type-2 FLS includes 

a fuzzifier, a rule base, fuzzy inference engine, and an output processor, as we can 

see in Figure 5.  The output processor includes type-reducer and defuzzifier; it 

generates a type-1 fuzzy set output (type-reducer) or a crisp number (defuzzifier) 

(Karnik and Mendel 2001).  
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Fig. 5 Type-2 Fuzzy Logic System 

2.2.1   Fuzzifier 

The fuzzifier maps a point x=(x1,…,xp)
T
 ∈X1xX2x…xXp ≡ X  into a type-2 fuzzy 

set xA
~

in X, interval type-2 fuzzy sets in this case.  We will use type-2 singleton 

fuzzifier, in a singleton fuzzification, the input fuzzy set has only a single point 

with nonzero membership (Mendel 2001).  xA
~

is a type-2 fuzzy singleton if 

1/1)x(
xA

~ =µ  for x=x' and 0/1)x(
xA

~ =µ  for all other x≠x'. 

2.2.2   Rules 

The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the lat-

ter the antecedents and the consequents will be represented by type-2 fuzzy sets.  

So for a type-2 FLS with p inputs x1∈X1,…,xp ∈Xp  and one output y∈Y, Multi-

ple Input Single Output (MISO), if we assume there are M rules, the lth rule in the 

type-2 FLS can be written as follows (Mendel 2001): 

R
l
: IF x1 is 

l
F1
~

and ···and xp is 
l

pF
~

 , THEN y is lG
~

      l=1,…,M             (5) 

2.2.3   Inference 

In the type-2 FLS, the inference engine combines rules and gives a mapping from 

input type-2 fuzzy sets to output type-2 fuzzy sets.  It is necessary to compute the 

join ⊔, (unions) and the meet Π (intersections), as well as use the extended  

sup-star compositions (sup star compositions) of type-2 relations. If 
l

p
ll AFF

~~~
1 =××A , expression (5) can be re-written as 

lll
p

lll GAGFFR
~~~~~

: 1 →=→××A
          

l=1,…,M                      (6) 

R
l
 is described by the membership function ),,...,(),( 1 yxxy pRR ll µµ =x ,  
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where 

),(),( ~~ yy lll GAR
xx

→
= µµ

                                                   (7) 

can be written as (Mendel 2001): 

         
)(),(),( 1~~~

1

xyy llll
FGAR

µµµ ==
→

xx
  
Π···Π )(~ pF

xl
p

µ Π )(~ ylG
µ

 

= [Π p
i 1=

)(~ iF
x

i
lµ ]Π )(~ ylG

µ
                                

(8) 

In general, the p-dimensional input to R
l
 is given by the type-2 fuzzy set xA

~
whose 

membership function is 

)()( 1~~
1

xxAx
µµ =x

  
Π···Π )(~ ppx xµ =Π p

i 1= )(~ iix xµ
                                 

(9) 

where ),...,1(
~

piX i = are the labels of the fuzzy sets describing the inputs.  Each 

rule R
l
 determines a type-2 fuzzy set l

x
l

RAB c~~
= such that: 

== l
x

l
RAB

y c~~ )( µµ ⊔ [ )(~ xX xAx µ∈ Π ]),( yl
R

xµ       y∈Y  l=1,…,M                 (10) 

This equation is the input/output relation in Figure 5 between the type-2 fuzzy set 

that activates one rule in the inference engine and the type-2 fuzzy set at the out-

put of that engine. In the FLS we used interval type-2 fuzzy sets and meet under 

product t-norm, so the result of the input and antecedent operations, which are 

contained in the firing set Π )'(( '
~

1 xl
iF

p
i Fx

ii
≡= µ , is an interval type-1 set (Mendel 

2001), 

⎥⎥⎦
⎤

⎢⎢⎣
⎡

≡⎥⎥⎦
⎤

⎢⎢⎣
⎡

=
−

−

−

−

l
l

l
ll

ffffF ,)'(),'()'( xxx

                                           (11) 

where 

)(**)()'(
'

~

'
1

~
1

p
FF

l
xxf

l
p

l −−−

= µµ Ax

                                             (12) 

)(**)()'(
'

~
'

1~
1 pFF

l

xxf l
p

l

−−−

= µµ Ax
                                              (13) 

where * is the product operation. 

2.2.4   Type Reducer 

The type-reducer generates a type-1 fuzzy set output, which is then converted in a 

crisp output through the defuzzifier.  This type-1 fuzzy set is also an interval set, 

for the case of our FLS we used center of sets (cos) type reduction, Ycos which is 

expressed as (Mendel 2001):  
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this interval set is determined by its two end points, yl and yr, which corresponds 

to the centroid of the type-2 interval consequent set 
iG

~
,  

],[/1
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                                (15) 

before the computation of  Ycos (x), we must evaluate equation (15), and its two 

end points, yl and yr.  If the values of fi and yi that are associated with yl are  

denoted fl
i
 and yl

i
, respectively, and the values of fi and yi that are associated with 

yr are denoted fr
i
 and yr

i
, respectively, from 14, we have  
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2.2.5   Defuzzifier 

From the type-reducer we obtain an interval set Ycos, to defuzzify it we use the av-

erage of yl and yr, so the defuzzified output of an interval singleton type-2 FLS is 

(Mendel 2001)  

2
)( rl yy

y
+

=x
                                                              (18) 

3   Average Type-2 FIS (CM Method) 

In cases where the performance of an IT2FIS is important, especially in real time 

applications, an option to avoid the computational delay of type-reduction, is the 

Wu-Mendel method (Mendel 2001), which is based on the computation of inner 

and outer bound sets. Another option to improve computing speed in an IT2FIS, is 

to use the average of two type-1 FIS method (CM method), which was proposed 

for systems where the type-2 MFs of the inputs and output, have no uncertainty in 

the mean or center; it is achieved by substituting the IT2FIS with two type-1 FIS, 

located adequately at the upper and lower footprint of uncertainty (FOU) of the 

type-2 MFs (Sepulveda et al. 2007). 
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For the average (CM) method the fuzzification, the inference and the defuzzifi-

cation stages for each FIS remain identical, the difference is at the output because 

the crisp value is calculated by taking the arithmetic average of the crisp output of 

each type-1 FIS, as it is shown in Figure 6, using the height method to calculate 

the defuzzified crisp output. In the average (CM) method, to achieve the defuzzifi-

cation, one type-1 FIS is used for the upper bound of uncertainty, and the second 

FIS for the lower bound of uncertainty. So, as it was explained in Section 2, the 

defuzzification of a type-1 FIS is used in the average (CM) method and it is illus-

trated in Figure 6. 

 

Fig. 6 The fuzzification, the inference and the defuzzification stages in the average (CM) 
method uses two type-1 FIS. 

4   Experimental Results for Intelligent Control 

The experimental results are presented here to show a comparison in the system’s 

response in a feedback controller when using a type-1 FLC or a type-2 FLC. A set 

of five experiments is described in this section. The first two experiments were 

performed in ideal conditions, i.e., without any kind of disturbance.  In the last 

three experiments, Gaussian noise was added to the feedback loop with the pur-

pose of simulating, in a global way, the effects of uncertainty from several 

sources. Figure 1 shows the feedback control system that was used for obtaining 

the simulation results.  The complete system was simulated, and the controller was 

designed to follow the input as closely as possible. The plant is a nonlinear system 

modeled with equation: 
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To illustrate the dynamics of the system, two different inputs are applied, first the 

input of equation is given by: 
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Now, for a slightly different input given by equation: 
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Going back to the control problem, this system given by equation (19) was used in 

Figure 1, under the name of plant or process, in this figure we can see that the con-

troller’s output is applied directly to the plant’s input.  Since we are interested in 

comparing the performance between type-1 and type-2 FLC systems, the control-

ler was tested in two ways:  

1. Considering the system as ideal. We have not introduced in the modules 

of the control system any source of uncertainty (experiments 1 and 2). 

2. Simulation of the effects of uncertain modules (subsystems) response  

introducing some uncertainty (experiments 3, 4 and 5). 

For both cases, as it is shown in Figure 1, the system’s output is directly connected 

to the summing junction, but in the second case, the uncertainty was simulated in-

troducing random noise with normal distribution (the dashed square in Figure 1).  

We added noise to the system’s output y(i) using a function “randn”, which gener-

ates random numbers with a Gaussian distribution. The signal and the added noise 

in turn, were obtained by using the expression (22), the result y(i) was introduced 

to the summing junction of the controller system. Note that in expression (22) we  
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are using the value 0.05, for experiments 3 and 4, but in the set of tests for  

experiment 5, we varied this value to obtain different SNR values. 

randniyiy ⋅+= 05.0)()(
                                                  (22) 

The system was tested using as input, a unit step sequence free of noise, )(ir . For 

evaluating the system’s response and comparing between type 1 and type 2 fuzzy 

controllers, the performance criteria of Integral of Squared Error (ISE),  

Integral of Absolute Value of Error (IAE), and Integral of Time per Absolute 

Value of Error (ITAE) were used. In Table 3, we summarize the values obtained 

in an ideal system for each criterion considering 400 units of time.  For calculating 

ITAE a sampling time of 1.0=sT sec. was considered. In Experiment 5, we 

tested the systems, type-1 and type-2 FLCs, introducing different values of noise 

η . This was done by modifying the signal to noise ratio SNR (Proakis and 

Manolakis 1996), 

noise

signal

P

Ps
SNR == ∑∑ 2

2

η
                                                   (23) 

Because many signals have a very wide dynamic range, SNRs are usually  

expressed in the logarithmic decibel scale in SNR(db), 

⎟⎟⎠
⎞⎜⎜⎝

⎛
=

noise

signal

P

P
dbSNR 10log10)(

                                             (24) 

In Table 4, we show, for different values of SNR(db), the behavior of the errors 

ISE, IAE, ITAE for type-1 and type-2 FLCs.  In all the cases the results for type-2 

FLC are better than type-1 FLC. In the type-1 FLC, Gaussian membership func-

tions (Gaussian MFs) for the inputs and for the output were used.  A Gaussian MF 

is specified by two parameters {c,σ}: 

2

2

1

)(
⎟⎠
⎞⎜⎝

⎛ −
−

= σµ

cx

A ex
                                                      (25) 

c  represents the MFs center and σ determines the spread of the MFs.  

For each of the inputs of the type-1 FLC, three Gaussian MFs were defined as: 

negative, zero, positive. The universe of discourse for these membership functions 

is in the range [-10 10]. For the output of the type-1 FLC, we have five Gaussian 

MFs denoted by NG, N, Z, P and PG. Table 1 illustrates the characteristics of the 

MFs of the inputs and output of the type-1 FLC. 
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Table 1 Characteristics of the Inputs and Output of the Type-1 FLC. 

Variable Term Center c  Standard deviation 
σ  

negative -10 4.2466 

zero 0 4.2466 

 

Input e  

positive 10 4.2466 

Negative -10 4.2466 

Zero 0 4.2466 

 

Input eΔ
positive 10 4.2466 

NG -10 2.1233 

N -5 2.1233 

Z 0 2.1233 

P 5 2.1233 

 

Output 

cde  

 

PG 10 2.1233 

 
In experiments 2, 4, and 5, for the type-2 FLC, as in type-1 FLC, we also  

selected Gaussian MFs for the inputs and for the output, but in this case we have 

interval type-2 Gaussian MFs with a fixed center, c, and some spreadσ , i.e.,  

2

2

1

)(
⎟⎠
⎞⎜⎝

⎛ −
−

= σµ

cx

A ex
                                                  (26) 

In terms of the upper and lower membership functions, we have for )(~ x
A

µ , 

)x;,c(N)x( 2A
~ σµ =

                                        (27) 

and for the lower membership function )(~ x
A

µ , 

)x;,c(N)x( 1A
~ σµ =

                                              (28) 

where ( ) ≡x,,cN 2σ

2

2
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2

1

e
⎟⎟⎠
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⎛ −
−

σ
, and ( ) ≡x,,cN 1σ

2

1

cx

2

1

e
⎟⎟⎠
⎞⎜⎜⎝

⎛ −
−

σ
, (Mendel 2001). 

Hence, in the type-2 FLC, for each input we defined three-interval type-2 fuzzy 

Gaussian MFs: negative, zero, positive in the interval [-10 10], as illustrated in 

Figures 7 and 8. For computing the output we have five interval type-2 fuzzy 

Gaussian MFs, which are NG, N, Z, P and PG, in the interval [-10 10], as can be 

seen in Figure 9. Table 2 shows the characteristics of the inputs and output of the 

type-2 FLC. 
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Fig. 7 Input e membership functions for the type-2 FLC. 

 

Fig. 8 Input eΔ membership functions for the type-2 FLC. 

In all experiments, we have a dash-dot line for illustrating the system’s  

response and behavior of type-1 FLC, in the same sense, a continuous line for 

type-2 FLC. The reference r is shown with a dot line. 

 

Fig. 9 Output cde membership functions for the type-2 FLC. 
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Table 2 Input and Output Parameters of the Type-2 FLC. 

Variable Term Center c  Standard deviation 

1σ  

Standard deviation 

2σ  

negative -10 5.2466 3.2466 

zero 0 5.2466 3.2466 

 

Input e  

positive 10 5.2466 3.2466 

Negative -10 5.2466 3.2466 

Zero 0 5.2466 3.2466 

 

Input eΔ  

positive 10 5.2466 3.2466 

NG -10 2.6233 1.6233 

N -5 2.6233 1.6233 

Z 0 2.6233 1.6233 

P 5 2.6233 1.6233 

 

Output 

cde  

 

PG 10 2.6233 1.6233 

 
Experiment 1: Simulation of an ideal system with a type-1 FLC.  

In this experiment, uncertainty data was not added to the system, and the sys-

tem response produced a settling time of about 140 units of time; i.e., the system 

tends to stabilize with time and the output will follow accurately the input.  In Ta-

ble 3, we listed the values of ISE, IAE, and ITAE for this experiment.  

 
Table 3 Performance Criteria for Type-1 and Type-2 Fuzzy Controllers for 20 dB Signal to 

Noise Ratio (After 200 Samples). 

Type-1 FLC Type-2 FLC Performance 

Criteria Ideal 

System 

Syst. with 

uncertainty 

Ideal 

System 

Syst. with uncertainty 

ISE 7.65 19.4 6.8 18.3 

IAE 17.68 49.5 16.4 44.8 

ITAE 62.46 444.2 56.39 402.9 

 
Experiment 2: Simulation of an ideal system using the type-2 FLC.   

Here, the same test conditions of Experiment 1 were used, but in this case, we 

implemented the controller with type-2 fuzzy logic. The corresponding perform-

ance criteria are listed in Table 3. We can observe that when using a type-2 FLC 

we obtained the lower errors. 

Experiment 3: System with uncertainty using a type-1 FLC.  

In this case, expression (25) was used to simulate the effects of uncertainty in-

troduced to the system by transducers, amplifiers, and any other element that in 

real world applications affects expected values.  In this experiment the noise level 

was assumed to be in the range of 20 dB of SNR ratio.   
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Experiment 4: System with uncertainty using a type-2 FLC. 

In this experiment, uncertainty was introduced in the system, in the same way 

as in Experiment 3.  In this case, a type-2 FLC was used and the results obtained 

with a type-1 FLC (Experiment 3) were improved. 

Experiment 5. Varying the Signal to Noise Ratio (SNR) in type-1 and type-2 

FLCs.  

To test the robustness of the type-1 and type-2 FLCs, we repeated experiments 

3 and 4 giving different noise levels, going from 30 db to 8 db of SNR ratio in 

each experiment.  In Table 4, we summarized the values for ISE, IAE, and ITAE 

considering 200 units of time with a Psignal of 22.98 dB in all cases.  As it can be 

seen in Table 4, in presence of different noise levels, the behavior of type-2 FLC 

is in general better than type-1 FLC. 

 
Table 4 Behavior of theType-1 and Type-2 Fuzzy Logic Controllers after Variation of Sig-

nal to Noise Ratio (Values Obtained for 200 Samples). 

Noise variation Type-1  FLC Type-2 FLC 

SNR 

(dB) 

SNR Sum-

Noise 

Sum-

Noise 

(dB) 

ISE IAE ITAE ISE IAE ITAE 

  8    6.4 187.42 22.72 321.1 198.1 2234.1 299.4 194.1 2023.1 

10  10.05 119.2 20.762 178.1 148.4 1599.4 168.7 142.2 1413.5 

12  15.86 75.56 18.783 104.7 114.5 1193.8 102.1 108.8 1057.7 

14  25.13 47.702 16.785 64.1 90.5 915.5 63.7 84.8 814.6 

16  39.88 30.062 14.78 40.9 72.8 710.9 40.6 67.3 637.8 

18  63.21 18.967 12.78 27.4 59.6 559.1 26.6 54.2 504.4 

20 100.04 11.984 10.78 19.4 49.5 444.2 18.3 44.8 402.9 

22 158.54  7.56  8.78 14.7 42 356.9 13.2 37.8 324.6 

24 251.3  4.77  6.78 11.9 36.2 289 10.3 32.5 264.2 

26 398.2  3.01  4.78 10.1 31.9 236.7 8.5 28.6 217.3 

28 631.5  1.89  2.78  9.1 28.5 196.3 7.5 25.5 180.7 

30 1008  1.19  0.78 8.5 25.9 164.9 7 23.3 152.6 

 
From Table 4, considering two examples, the extreme cases; we have for an 

SNR ratio of 8 dB, in type-1 FLC the following performance values ISE=321.1, 

IAE=198.1, ITAE=2234.1; and for the same case, in type-2 FLC, we have 

ISE=299.4, IAE=194.1, ITAE=2023.1. For 30 db of SNR ratio, we have for the 

type-1 FLC, ISE=8.5, IAE=25.9, ITAE=164.9, and for the type-2 FLC, ISE=7, 

IAE=23.3, ITAE=152.6. These values indicate a better performance of the type-2 

FLC than type-1 FLC, because they are a representation of the errors, and as the 

error increases the performance of the system goes down.  

Finally in Table 5 we show the values obtained in the optimization process of 

the optimal parameters for the MFs  after 30 tests of: the variance, the Standard 

deviation, best ISE value, average ISE obtained with the optimized interval type-2 

FLC, and with the average of two optimized type-1 FLCs (CM method). 
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Table 5 Comparison of the Variance, Standard Deviation, Best ISE value, ISE average, ob-

tained with the Optimized Interval Type-2 FLC and the optimized Average of two Type-1 

FLCs 

Parameters Type-2 FLC 

(WM Method) 

Average of two 

Type-1 FLCs (CM) 

Search Interval 2.74 to 5.75 2.74 to 5.75 

Best ISE value 4.3014 4.1950 

ISE Average  4.4005 4.3460 

Standard deviation 0.1653 0.1424 

Variance 0.0273 0.0203 

   

 
In order to know which system behaves in a better way in the experiments, 

where uncertainty was simulated through different noise levels, first we compare 

the values of the ISE, IAE and ITAE errors obtained with the optimized parame-

ters of the MFs of the interval type-2 FLC and the average of the two type-1 

FLCs.  The second comparison is made with the values of standard deviation and 

the variance obtained in each optimization process to get the optimal parameters 

of the MFs for the minimal ISE, IAE and ITAE errors. Figure 10 shows a com-

parison between the ISE values of the type-2 FLC based on the WM method (ISE 

T2) and the ISE of the type-2 FLC based on CM method (ISE PROM), which uses 

the average of two type-1 fuzzy systems. In this case, the ISE values are consis-

tently lower for the CM method. 

 

Fig. 10 Comparison of the ISE errors of optimized interval type-2 FLC and the optimized 
average of two type-1 FLCs, for different noise levels. 
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Fig. 11 Comparison of the IA errors of optimized interval type-2 FLC and the optimized 
average of two type-1 FLC, for different noise levels. 

We can see in Tables 4 and 5 that with the average of two type-1 FLC opti-

mized under certain FOU, it was obtained a minimum advantage in the values of 

ISE, IAE and ITAE errors than with the interval type-2 FLC optimized under the 

same conditions than the average of two type-1 FLC.  In Figures 10, 11 and 12 it 

is shown that this advantage is notorious for low noise level. 

 

Fig. 12 Comparison of the ITAE errors of optimized interval type-2 FLC and the optimized 
average of two type-1 FLC, for different noise levels. Practically they behave in the same 
manner. 
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In this paper, an improved type-2 inference engine with the CM method was 

proposed and implemented into an FPGA. The type-2 engine process all the rules 

in parallel providing high speed computations, the processing time of the whole 

inference engine is just one clock cycle, approximately 0.02 microseconds for the 

Spartan 3 FPGA (Montiel et al. 2008). The processing time of a type-2 system im-

plemented with the type-1 inference engine will not grow up since both inference 

engines (of the two type-1 fuzzy systems) are connected in parallel, hence the 

processing time remains almost the same for this stage. On the other hand, using 

KM or WM the times required for type-2 processing would be at least 1000 times 

more than with the CM method. This makes the proposed CM method of funda-

mental importance for real-world type-2 fuzzy logic applications, in particular for 

intelligent control. 

5   Conclusions 

We have presented the study of the controllers’ design for nonlinear control sys-

tems using type-1 and type-2 fuzzy logic. We presented five experiments where 

we simulated the systems’ responses with and without uncertainty presence. In the 

experiments, a quantification of errors was achieved and documented in detail for 

different criteria such as ISE, IAE, and ITAE. It was also shown that the lower 

overshoot and the best settling times were obtained using a type-2 FLC. Based on 

the experimental results, we can say that the best results are obtained using type-2 

fuzzy systems. A comparative study of the three methods, based on accuracy and 

efficiency is presented, and the CM is shown to outperform both the KM and WM 

methods in efficiency while accuracy is comparable. In our opinion, this is be-

cause the lower and upper membership functions’ estimations, of the outputs, are 

more easily found by directly obtaining them using an optimization method, like 

an evolutionary algorithm. This fact makes the CM method a good choice for real-

world control applications in which efficiency is of fundamental importance. 
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Type-2 Fuzzy Similarity in Partial Truth and 
Intuitionistic Reasoning 

Chung-Ming Own
*
 

Abstract. Representing and manipulating the vague concepts of partially true 

knowledge pose a major challenge to the development of machine intelligence. In 

particular, the issue of how to extract approximate facts from vague and partially 

true statements has received considerable attention in the field of fuzzy 

information processing. However, vagueness is often due to a lack of available 

information, making it impossible to satisfactorily evaluate membership. 

Atanassov (1996) demonstrated the feasibility of mapping intuitionistic fuzzy sets 

to historical fuzzy sets. Intuitionistic fuzzy sets are isomorphic to interval valued 

fuzzy sets, while interval valued fuzzy sets have been regarded as unique value 

among type-2 fuzzy sets. This study presents a theoretical method to represent and 

manipulate partially true knowledge. The proposed method is based on the 

measurement of similarity among type-2 fuzzy sets, which are used directly to 

handle rule uncertainty that type-1 fuzzy sets are unable to deal with. Moreover, 

the switching relationship between type-2 fuzzy sets and intuitionist fuzzy sets is 

defined axiomatically. Results of this study demonstrate the effectiveness of the 

proposed theoretical method in pattern recognition and reasoning with regard to 

medical diagnosis. 

Keywords: Type-2 fuzzy sets, Intuitionistic fuzzy sets, Fuzzy similarity, Partial 

truth. 

1   Introduction 

In order to distinguish between similar entities or groups of entities in daily life, 

one must determine the degree of similarity between them. Fuzzy set theory was 

developed by Zadeh, and ushered in an era of research into the measurement of 

similarity between fuzzy sets. These fuzzy set-based developments are applicable 

in data preprocessing, data mining for identifying dependency relationships 

between concepts, inference reasoning (Li et al. 2002, Tianjiang et al. 2002, Li  

et al. 2005, Song 2008, Fu X and Shen 2010, Petry and Yager 2010), and pattern 
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recognition (Dengfeg and Chuntian 2002, Mitchell 2003, Zhizhen and Pengfei 

2003, Hung and Yang 2004, Tang 2008, Sledge et al. 2010). Among other recently 

developed ways of measuring similarity, intuitionistic fuzzy sets are regarded as a 

distinct category. For examples of intuitionistic fuzzy sets, please refer to Chen 

(1995, 1997), Hong and Kim (1999) and Fan and Zhangyan (2001), Xu (2007), 

Mushrif and Ray (2009), and Chaira (2010). 

In this chapter, we analyze existing measures of similarity among type-2 fuzzy 

sets based on counter-intuitive examples of partially true knowledge. We 

axiomatically define how type-2 fuzzy sets and intuitionistic fuzzy sets are related. 

Finally, we illustrate the usefulness of our proposed conversion in the application 

to reasoning in medical diagnosis. 

1.1   Partially Truth 

Reasoning systems are altered to handle incomplete or partially true knowledge by 

splitting each partially true statement into two components: a proposition 

component; and an associated truth-value component (Dubois and Prade 1980). 

The truth-value component provides an effective means of modifying the 

significance of the original proposition. A proposition such as “x is F” is 

expressed as “x is F is ”, where  denotes a linguistic value of partial truth 

qualification, defined as the degree of compatibility of the situation with the 

proposition “x is F”. Therefore, “x is F” denotes a proposition component, and a 

linguistic truth value, , denotes an associated truth-value component. Equivalent 

statements in natural language include: 

“ ‘David is healthy’ is quite true.” 

“ ‘The speed is moderate’ is absolutely true.” 

The unit interval [0, 1] is taken as a set of partially true values. Any vague 

definition related to truth can be represented by a fuzzy set on [0, 1]. 

A simple vague proposition about the truth-value, such as “This truth value 

represents ‘mostly true’”, can be translated into a rule in the form of a general 

fuzzy set: 

"Truth value is mostly true" ൌ  א௦௧௬ ௧௨௫ߤ ሺݔሻ/ݔ 

ൌ Ͳ.ͶͲ.ͷ  Ͳ.ͷͲ.  Ͳ.ͷͲ.ͷ  ͳͲ.ͺ  Ͳ.ͷͲ.ͻ  Ͳ.ʹͲ.ͻͷ. 
The value of ߤ௦௧௬ ௧௨ሺݔሻ does not change the meaning of the proposition, but 

represents a subjective opinion concerning the meaning of the proposition. That is, 

when ߤ௦௧௬ ௧௨ሺݔሻ ൌ Ͳ , the truth value certainly differs from x, and when ߤ௦௧௬ ௧௨ሺݔሻ ൌ ͳ, the truth value equals x. Notably, ߤ௦௧௬ ௧௨ሺݔሻ reveals the 

uncertainty of the original knowledge. 

τ τ

τ
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Assuming that this partial truth qualification is local rather than absolute, Bellman 

and Zadeh obtained a true statement based on a partially true statement, and derived 

the corresponding fuzzy set as a representation of such a statement (Zadeh 1979, 

Bellman and Zadeh 1977). Baldwin proposed implied statements, consisting of a 

fuzzy truth value restricted to a Lukasiewicz logical implication related to a fuzzy 

truth space (Baldwin 1979). Based on set-theoretical considerations, that study also 

obtained constraints to fuzzy truth values on truth value restrictions from conditional 

fuzzy linguistic statements, by applying an inverse procedure to modify the truth 

functions. 

Accordingly, Raha and Ray proposed a theoretical method for reasoning with a 

partial truth value associated with a vague sentence (Raha and Ray 1999, 1997, 

2000). The partial truth values were defined by fuzzy sets on the universe of 

discourse [0,1], which is a unit interval. This vague proposition is presented as a 

possibility distribution, in which each possibility distribution is assigned to and 

manipulated by a fuzzy set/relation. 

In contrast with the above approaches, the theoretical method developed in this 

study attempts to eliminate the deficiencies involved in the representation of 

partially true knowledge. Despite associating and manipulating the partial truth 

value according to the proposition, previous methods have denoted and estimated 

the corresponding fuzzy set and qualification of partial truth, separately. In other 

words, set-theoretical considerations cannot be used to derive partially true 

knowledge, as long as partially true statements are not associated with the existing 

proposition. The proposed theoretical method used to represent and manipulate 

such partially true knowledge is therefore based on the type-2 fuzzy set theory. 

1.2   Type-2 Fuzzy Sets 

Type-2 fuzzy sets were initially defined by Zadeh (1979), and characterized by a 

fuzzy membership. The membership value for each element of this set is a fuzzy 

set in [0,1], whereas the membership grade of a type-1 fuzzy set is a numeric 

value in [0,1]. To clarify the above statement, the fuzzy set ‘tall’ is represented as: ݈݈ܽݐ ൌ Ͳ.ͻͷ݈݄݁ܽܿ݅ܯ  Ͳ.Ͷݕ݊݊ܽܦ  Ͳ.ܴݐݎܾ݁. 
Conversely, the interpretation of type-2 fuzzy sets is ݈݈ܽݐ ൌ ݈݄݁ܽܿ݅ܯ݄݃݅ܪ  ݕ݊݊ܽܦݓܮ  ݐݎܾܴ݁݉ݑ݅݀݁ܯ , 
where membership functions of High, Low, and Medium, themselves are fuzzy 

sets. The former set is measured by one condition for one element, while the latter 

set is evaluated by several conditions for one element. Type-2 fuzzy sets are useful 

when the exact membership function for a type-1 fuzzy set cannot be easily 

determined. For this reason, Ttype-2 fuzzy sets are advantageous for the 

incorporation of uncertainty. 
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According to Mendel (2000, 2006), type-2 fuzzy sets are defined as follows. 

For simplicity, the universe of discourse is assumed to be a finite set, although the 

definition is also applicable for infinite universes of discourse. 

Definition 1 (Mendel 2000, 2006). Type-2 fuzzy set, ܣሚ, is characterized by a type-

2 membership function, ߤ෨,ሺݔሻ, where X is the universal set, ݔ א ܺ and ݑ א ௫ܬ ሾͲ,ͳሿك ௫ܬ ,  is the possible membership collection for every x. Meanwhile, the 

amplitude of the secondary membership function is called a secondary grade, and ௫݂ሺݑሻ is a secondary grade. That is, ܣሚ ൌ ቄቀݔ, ሻቁݔ෨,ሺߤ ቚݔ א ܺቅ, 
or, as ܣሚ ൌ  א௫ݔ/ሻݔ෨ሺߤ ൌ  ሾ ௫݂ሺݑሻ/ݑሿ/ݔ௫אೣ௫א . 
1.3   Intuitionistic Fuzzy Sets 

Assume that X denotes the universe of discourse, ܺ ൌ ሼݔଵ, ,ଶݔ ڮ ,  ሽ. Ordinaryݔ

fuzzy set theory lacks an effective means of incorporating that hesitation into the 

degree of membership. Atanassov (1986) developed intuitionistic fuzzy sets, along 

with the ability to model hesitation and uncertainty by using an additional degree. 

Each intuitionistic fuzzy set ܣሙ  allots a membership degree ߤෘሺݔሻ  and a non-

membership degree ݒෘሺݔሻ to each element x of the universe ܺ, note that ߤෘሺݔሻ ሾͲ,ͳሿא ሻݔෘሺݒ , א ሾͲ,ͳሿ and ߤෘሺݔሻ  ሻݔෘሺݒ  ͳ . The value ߨሺݔሻ ൌ ͳ െ ሺߤෘሺݔሻ ݒෘሺݔሻሻ is called the hesitation part, which is the hesitancy degree of whether x 

belongs to ܣሙ . The set of all the intuitionistic fuzzy sets in ܺ is representing as ܵܨܫሺܺሻ. 

Definition 2 (Atanassov 1986). When the universe of discourse X is discrete, an 

intuitionistic fuzzy set ܣሙ is denoted as follows: ܣሙ ൌ ∑ ሾݔ,ୀଵ ,ሻݔෘሺߤ ,ሻሿݔෘሺݒ ݔ א ܺ. 

For the sake of simplicity, the universe of discourse is assumed to be a finite set, 

although the definition can be applied for infinite sets. 

The following properties are expressed for all ܣሙ  and ܤෘ  belonging to IFSs(X) in 

(Pappis and Karacpailidis 1993), 

(a). ܣሙ  ෘܤ  if and only if ߤෘሺݔሻ  ෘߤ ሺݔሻ and ݒෘሺݔሻ  ෘݒ ሺݔሻ for all ݔ א ܺ. 

(b). ܣሙ ൌ ෘܤ  if and only if ܣሙ  ෘܤ  and ܣሙ  ෘܤ . 

(c). ܣሙ ൌ ∑ ሾݔ,ୀଵ ,ሻݔෘሺݒ ,ሻሿݔෘሺߤ ݔ א ܺ. 
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1.4   Type-2 Fuzzy Similarity 

In our study, the universe of discourse denotes a finite set, the type-2 fuzzy set ܣሚ 
is expressed as: ܣሚ ൌ  ሾ ௫݂ሺݑሻ/ݑሿ/ݔ௫אೣ௫א ൌ  ሾ ௫݂ሺݑሻ/ݑሿ/ݔ௫אೣ

ேୀଵ  

ൌ ሾ ௫݂భሺݑଵሻ/ݑଵெభୀଵ ሿ/ݔଵ  ڮ  ሾ ௫݂ಿሺݑேሻ/ݑேெಿୀଵ ሿ/ݔே . 
Assume that x has been incorporated into N values, with each value u discretized 

into ܯ  values. Many choices are possible for these secondary membership 

functions. The secondary membership function can be treated as a type-1 

membership function along each x. Hence, the similarity between type-2 fuzzy 

sets is ሚܵ൫ܣሚ, ෨൯ܤ ൌ ͳ/ܰ  ܵሺߤ෨ሺݔሻ,ேୀଵ ෨ߤ ሺݔሻሻ, 
where ሚܵሺ·ሻ can be any traditional similarity index for the general fuzzy sets. Note 

that, ߤ෨ሺݔሻ and ߤ෨ ሺݔሻ are two secondary membership functions. For instance, 

the proposed similarity methods of Rahaet al. (2002) and Pappiset al. (1993) are:  ܵሺܣ, ሻܤ ൌ ∑ ሼߤሺݔሻ · אሻ௫ݔሺߤ ሽ/ ∑ ,ሻݔሺߤሼݔܽ݉ אሻ௫ݔሺߤ ሽଶ,         (1) 

or ܵሺܣ, ሻܤ ൌ ,ଶ|ܣ|ሻ/ሺmaxሺߠcosሺ|ܤ||ܣ|   ,ଶሻሻ|ܤ|

where A and B are two type-1 fuzzy sets; |A| is the length of the vector A, and cos ሺߠሻ  is the cosine of the angle between the two vectors. An important 

consideration is to select the similarity index of type-2 fuzzy sets such that the 

index exhibits the properties of similarity. Expression(1) is adopted in this study, 

and the similarity index of type-2 fuzzy sets is formulated as follows: ሚܵ൫ܣሚ, ෨൯ܤ ൌ ͳ/ܰ  ܵሺߤ෨ሺݔሻ,ேୀଵ ෨ߤ ሺݔሻሻ
ൌ ͳ/ܰ  ∑ ൛ ௫݂ሺݑሻ, ݃௫ሺݑሻൟ௨∑ ሾmax ሼ௨ ௫݂ሺݑሻ, ݃௫ሺݑሻሽଶሿேୀଵ , (2) 
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where ݔ א ܺ and ݑ א ௫ܬ . In addition, when we defined ∑ ሾmax ሼ௨ ௫݂ሺݑሻ, ݃௫ሺݑሻሽଶ=0, then ܵ൫ߤ෨ሺݔሻ, ෨ߤ ሺݔሻ൯ ൌ ͳ, that is, ሚܵ൫ܣሚ, ෨൯ܤ ൌ ͳ. 

Notably, because the primary membership values may not be the same for a 

specific value of x, that is ܬ௫ on ܣሚ and ܬ௫ on ܤ෨  cannot be exactly computed in some 

cases. Because the notion of a zero membership value generalizes in fuzzy set 

theory to the situation in which a non-zero membership is not clearly stated, this 

concept has also been executed in this study. The value ‘0’ in the secondary grade 

denotes this item as useless in the deterministic process. The value ‘0’ is applied 

as the appended secondary grade to those missing items in the minus between ܬ௫ 

on ܣሚ and ܬ௫ on ܤ෨  for the computation of similarity. 

2   Reasoning with Type-2 Similarity 

A type-1 fuzzy inference engine normally combines rules and provides a mapping 

from input type-1 fuzzy sets to output type-1 fuzzy sets. Additionally, the 

inference process is very similar in the case of type-2 inference. The inference 

engine combines rules and provides a mapping from input type-2 fuzzy sets to 

output type-2 fuzzy sets. Another difference is in the defuzzification. In the type-2 

cases, the output sets are type-2; the extended defuzzification operation in the 

type-2 case gives the type-1 fuzzy sets as the output. This operation is called a 

“type reducer”, and the type-1 fuzzy set is obtained as a “type reduced set”, which 

may then be defuzzified to obtain a single crisp number. 

This study presents a new reasoning method, involving the measure of 

similarity between type-2 fuzzy sets as an inference methodology. Consider two 

type-2 fuzzy sets ܣሚ and ܣሚԢ defined in the same universe of discourse X. Another 

two type-2 fuzzy sets ܤ෨ and ܤ෨Ԣ are defined over the same universe of discourse Y. 

Two corresponding linguistic variables x and y are also defined, and the typical 

propositions is presented as: Rule: IF ݔ is ܣሚ then ݕ is  ܤ෨  Fact: ݔ is ܣሚᇱ ฺ Conclusion: ݕ is ܤ෨ ᇱ 
Let ሚܵ൫ܣሚ, ሚԢ൯ܣ  denote the measure of similarity between two type-2 fuzzy sets ܣሚ and ܣሚԢ. Existing methods use the measure of similarity to directly compute the 

inference without considering the induced relationship. In the proposed method, 

the authors translate the conditional statement into a fuzzy relationship. The 

similarity between the fact and the antecedent of the rule is used to modify the 

derived relationship. That is, every change in the conditional premise and in  

the fact is incorporated into the induced fuzzy relationship. Accordingly, a 

conclusion can be derived using the sub-projection operation. Thus, the conclusion 

is influenced by the modification of the fact and the antecedent of the rule fired.  
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Two modification procedures are proposed to modify the derived relationship. 

They are listed as follows: expansion form: ߤொ෨ᇱሺݔ, ሻݕ ൌ ݉ଵሺߤொ෨ ሺݔ, ,ሻݕ ሚܵ൫ܣሚ, ሚᇱ൯ሻ ൌܣ  ሺ ௫݂,௬ሺݑሻሚܵ൫ܣሚ, ሚᇱ൯ሻ/ሺܣ ,ሚܣሚܵ൫ݑ ೣ,אሚᇱ൯ሻ௨ܣ , 
and reduction form: ߤொ෨ᇱሺݔ, ሻݕ ൌ ݉ଶሺߤொ෨ ሺݔ, ,ሻݕ ሚܵ൫ܣሚ, ሚᇱ൯ሻ ൌܣ  ሺ ௫݂,௬ሺݑሻ · ሚܵ൫ܣሚ, ݑሚᇱ൯ሻ/ሺܣ · ሚܵ൫ܣሚ, ೣ,אሚᇱ൯ሻ,௨ܣ  

where ෨ܳ  is a fuzzy relation in the Cartesian product space ܺ ൈ ܻ , ݉ଵሺ·ሻ and ݉ଶሺ·ሻare two modification functions for the expansion and reduction 

forms; and ௫݂,௬ሺݑሻ is the secondary grade of the fuzzy relationship. In this study, 

the proposed method focused on the significant difference between ܣሚ and ܣ෩ Ԣ to 

make the conclusion ܤ෨Ԣ  less specific, and then choosing the expansion form. 

Hence, with a decrease in similarity, occurring at a significant difference between ܣ ෩ and ܣሚԢ, the inferred conclusion would be close to Y. Conversely, when ܣሚ ൌ  ሚԢܣ
the inferred conclusion is obtained as ܤ෨ ൌ ෨Ԣܤ . Notably, when ሚܵ൫ܣሚ, ሚԢ൯ܣ ൌ Ͳ , 

nothing can be concluded when ܣሚ and ܣሚ are dissimilar, and ܤ෨ ൌ ෨ܤ  is obtained. 

Subsequently, assume that k linguistic variables ݔଵ, … , ݔ  defined on the 

universes of discourses ଵܺ, … , ܺ. These typical propositions are listed: Rule: IF ݔ is ܣሚଵ and … and ݔ is ܣሚ then ݕ is  ܤ෨  Fact: IF ݔ is ܣሚଵᇱ  and … and ݔ is ܣሚᇱ  ฺ Conclusion: ݕ is ܤ෨ ᇱ 
3   Truth-Qualified Proposition 

Accordingly, the partially truth-qualified statements of the form illustrated as 

follows: 

 “ ‘ David is healthy’ is quite true,” or 

“ ‘The temperature is moderate’ is mostly true.” 

Simple statements are of the general propositional form, 

 “x is F; t is Q” 

where x and t are two linguistic variables, and t denotes the truth value. F represents 

the vague descriptions of the object x, and Q denotes the truth of proposition “x is F”. 

Restated, F and Q are type-1 fuzzy sets. Consequently, the previous general 

propositional form can be translated into a type-2 fuzzy statement, 

“x is F” 
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where ܨ෨ ൌ  ݔ/ሻݔி෨ሺߤ ൌ ሾܳ௫ሺݑሻ/ݑሿ/ܬ߳ݑ    ,ݔ௫ ك ܷ ൌ ሾͲ,ͳሿ. 
Notably, a secondary grade, ܳ௫ሺݑሻ, is applied to state the truth value. 

The partially truth-qualified statement is represented as the type-2 fuzzy set. 

Consequently, the truth value of a composite proposition is computed as follows: ሺݔ is ܨ; is ܳሻ ݐ ר   ሺݔ is ܩ; is ܴሻ ൌ ݐ ሺݔ is ܨሻ ר   ሺݔ is ܩሻ  ฺ ሻݔி෨ሺߤ  ת ߤ ෨ீሺݔሻ, ሺݔ is ܨ; ;ܩ is ݔሺ ڀ is ܳሻ ݐ is ܴሻ ൌ ݐ ሺݔ is ܨሻ ڀ ሺݔ is ܩሻ  ฺ ሻݔி෨ሺߤ   ߤ ෨ீሺݔሻ, 
and ሺݔ is ܨ; is ܳሻ ݐ ൌ ሺݔ is ܨሻ ฺ  .ሻݔி෨ሺߤ
Accordingly, the deductive processes are introduced on the similarity measure 

among type-2 fuzzy sets. In the following, k linguistic variables ݔଵ, … , ݔ  are 

defined on the universe of discourses ଵܺ, … , ܺ . t denotes as the truth of the 

proposition. These typical propositions listed as: ݈݁ݑݎ: if ݔଵ is ܣଵ and …  and ݔ  is ܣ  then  ݕ is ܤ; ଵᇱܣ ଵ isݔ if :ݐ݂ܿܽ ௧௨ܥ is ݐ  and …  and ݔ  is ܣᇱ   ; ௧௨ᇱܥ is ݐ  ฺ ;ᇱܤ is ݕ :݊݅ݏݑ݈ܿ݊ܿ ௧௨ᇱᇱܥ is ݐ  . 
The partially true proposition is represented by the statement of type-2 fuzzy sets, ݈݁ݑݎ: if ݔଵ is ܣሚଵ and …  and ݔ  is ܣሚ   then  ܤ ݏ݅ ݕ෨ ሚଵᇱܣ ଵ isݔ if :ݐ݂ܿܽ   and …  and ݔ  is ܣሚᇱ   ฺ ෨ܤ is ݕ :݊݅ݏݑ݈ܿ݊ܿ ᇱ, 
where ݅ ൌ ͳ, … , ݇.  Secondary grades represent as ݂ೝೠሺݑሻ , ݂ೝೠᇲ ሺݑሻ  and ݂ೝೠᇲᇲ ሺݑሻ, respectively. That is, these type-2 fuzzy sets are ܣሚ ൌ  ሾ ݂ೝೠሺݑሻ/ݑ௨ఢೣ ሿ/ݔ ,௫ఢ  

ሚᇱܣ ൌ  ሾ ݂ೝೠᇲ ሺݑሻ/ݑ௨ఢೣ ሿ/ݔ ,௫ఢ  
෨ܤ ൌ  ሾ ݂ೝೠሺݓሻ/ݓ௪ఢ ሿ/ݕ,௬ఢ  

Ԣ෩ܤ ൌ  ሾ ݂ೝೠᇲᇲ ሺݓሻ/ݓ௪ఢ ሿ/ݕ.௬ఢ  
The case of truth qualification proposition is shown in the following example. 

Example 1: Herein, an example of the proposition from (Raha and Ray 1999), “It 

is almost fairly_true that people will feel not so uncomfortable, when it is true that 

humidity is moderate,” is referenced from the general knowledge that “It is 
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fairly_true when humidity is high and people feel uncomfortable”. Accordingly, 

the conclusion of the form is derived with the proposed method. Here, the 

following is assumed. ܣሚ=(humidity is) high, ܤ෨=(human’s tolerance is) uncomfortable, ܥ௧௨=farily_true, ܣԢ෩ =(humidity is) moderate, ܥ௧௨ᇱ =true.

 

 

Consequently, the propositions are listed as follows. 

rule: if humidity is high then tolerance is uncomfortable, the truth is fairly_true. 

fact: if humidity is moderate, the truth is true. 

Then, the purpose is to represent the inexact concepts in the propositions as type-2 

fuzzy sets based on an appropriate universe of discourses. Let the universes of 

discourse be denoted as follows, Percentile humidity א ሾͲ,ͳሿ, Percentile tolerance index א ሾͲ,ͳሿ, Truth value א ሾͲ,ͳሿ. 
Thus, at any particular time, the humidity of air is normalized in the choice of 

universe. Similarity, tolerance index ‘1.0’ means “feeling comfortable”; anything 

less than ‘1.0’ means “partially comfortable”, and ‘0.0’ means “absolutely 

uncomfortable”. Hence, the definitions of type-2 fuzzy sets are listed as follows, 

݄݄݅݃ ൌ Ͳ.͵/Ͳ.ʹͷͲ.ʹͷ  Ͳ./Ͳ.ͷͲ.ʹͷ  Ͳ.ͺ/Ͳ.ͷͲ.ͷ  ͳ/ͳͳ , 
݈ܾ݁ܽݐݎ݂݉ܿ݊ݑ ൌ Ͳ.ͻ/Ͳ.ͺͲ.Ͳ  Ͳ./Ͳ.ͷͲ.ͳʹͷ  Ͳ./Ͳ.ͷͷͲ.ʹͷ  Ͳ.Ͷ/Ͳ.͵ͷͲ.ͷ  Ͳ.͵/Ͳ.ʹͲ.ͷ Ͳ.ʹ/Ͳ.ͳͳ.Ͳ , 

݁ݐܽݎ݁݀݉ ൌ Ͳ.ͷ/Ͳ.ͷͲ.ʹͷ  Ͳ.ͻ/Ͳ.ͷͲ.ͷ  ͳ/ͳͲ.ͷ  Ͳ.ͻ/Ͳ.ͷͳ . 
Accordingly, the similarity is given by ሚܵሺ݄݄݅݃, ሻ݁ݐܽݎ݁݀݉ ൌ ͳͶ ሺͲ.͵ · Ͳ.ͷ  Ͳ.ͷ · Ͳ.ͷͲ.ͷଶ  Ͳ.ͷଶ  Ͳ. · Ͳ.ͷ  Ͳ.ͷ · Ͳ.ͻͲ.ଶ  Ͳ.ͻଶ                                             Ͳ.ͺ · Ͳ.ͷ  Ͳ.ͷ · Ͳ.ͳͲ.ͺଶ  ͳଶ  ͳ · Ͳ.ͷ  Ͳ.ͻ · Ͳ.ͷͳଶ  Ͳ.ͻଶ ሻ ൌ Ͳ.ͳ,  
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and, the fuzzy relation ෨ܳ
 
computed as follows: 

෨ܳ ൌ Ͳ.͵Ͳ.ͷሺͲ.ʹͷ,Ͳ.Ͳሻ  Ͳ.͵Ͳ.ͷሺͲ.ʹͷ,Ͳ.ͳʹͷሻ  Ͳ.͵Ͳ.ͷሺͲ.ʹͷ,Ͳ.ʹͷሻ  Ͳ.͵Ͳ.ͷሺͲ.ʹͷ,Ͳ.ͷሻ  Ͳ.͵Ͳ.ͷሺͲ.ʹͷ,Ͳ.ͷሻ  

     Ͳ.ʹͲ.ͳሺͲ.ʹͷ,ͳ.Ͳሻ  Ͳ.Ͳ.ͷሺͲ.ͷ,Ͳ.Ͳሻ  Ͳ.Ͳ.ͷሺͲ.ͷ,Ͳ.ͳʹͷሻ  Ͳ.Ͳ.ͷሺͲ.ͷ,Ͳ.ʹͷሻ  Ͳ.ͶͲ.͵ͷሺͲ.ͷ,Ͳ.ͷሻ  Ͳ.͵Ͳ.ʹሺͲ.ͷ,Ͳ.ͷሻ    
 Ͳ.ʹͲ.ͳሺͲ.ͷ,ͳ.Ͳሻ  Ͳ.ͺͲ.ͷሺͲ.ͷ,Ͳ.Ͳሻ  Ͳ.Ͳ.ͷሺͲ.ͷ,Ͳ.ͳʹͷሻ  Ͳ.Ͳ.ͷͷሺͲ.ͷ,Ͳ.ʹͷሻ  Ͳ.ͶͲ.͵ͷሺͲ.ͷ,Ͳ.ͷሻ  
       Ͳ.͵Ͳ.ʹሺͲ.ͷ,Ͳ.ͷሻ  Ͳ.ʹͲ.ͳሺͲ.ͷ,ͳ.Ͳሻ  Ͳ.ͻͲ.ͺሺͳ.Ͳ,Ͳ.Ͳሻ  Ͳ.Ͳ.ͷሺͳ.Ͳ,Ͳ.ͳʹͷሻ  Ͳ.Ͳ.ͷͷሺͳ.Ͳ,Ͳ.ʹͷሻ  
       Ͳ.ͶͲ.͵ͷሺͳ.Ͳ,Ͳ.ͷሻ  Ͳ.͵Ͳ.ʹሺͳ.Ͳ,Ͳ.ͷሻ  Ͳ.ʹͲ.ͳሺͳ.Ͳ,ͳ.Ͳሻ . 

Furthermore, the relation ෨ܳ Ԣ is adjusted by 

ܳԢ෩ ൌ Ͳ.ͶͻͲ.ͺʹሺͲ.ʹͷ,Ͳ.Ͳሻ  Ͳ.ͶͻͲ.ͺʹሺͲ.ʹͷ,Ͳ.ͳʹͷሻ  Ͳ.ͶͻͲ.ͺʹሺͲ.ʹͷ,Ͳ.ʹͷሻ  Ͳ.ͶͻͲ.ͷሺͲ.ʹͷ,Ͳ.ͷሻ  Ͳ.ͶͻͲ.͵͵ሺͲ.ʹͷ,Ͳ.ͷሻ  
          Ͳ.͵͵Ͳ.ͳሺͲ.ʹͷ,ͳ.Ͳሻ  Ͳ.ͻͺͲ.ͺʹሺͲ.ͷ,Ͳ.Ͳሻ  Ͳ.ͻͺͲ.ͺʹሺͲ.ͷ,Ͳ.ͳʹͷሻ  Ͳ.ͻͺͲ.ͺʹሺͲ.ͷ,Ͳ.ʹͷሻ  Ͳ.Ͳ.ͷሺͲ.ͷ,Ͳ.ͷሻ  Ͳ.ͶͻͲ.͵͵ሺͲ.ͷ,Ͳ.ͷሻ  
        Ͳ.͵͵Ͳ.ͳሺͲ.ͷ,ͳ.Ͳሻ  ͳͳሺͲ.ͷ,Ͳ.Ͳሻ  ͳͳሺͲ.ͷ,Ͳ.ͳʹͷሻ  Ͳ.ͻͺͲ.ͻሺͲ.ͷ,Ͳ.ʹͷሻ  Ͳ.Ͳ.ͷሺͲ.ͷ,Ͳ.ͷሻ  
       Ͳ.ͶͻͲ.͵͵ሺͲ.ͷ,Ͳ.ͷሻ  Ͳ.͵͵Ͳ.ͳሺͲ.ͷ,ͳ.Ͳሻ  ͳͳሺͳ.Ͳ,Ͳ.Ͳሻ  ͳͳሺͳ.Ͳ,Ͳ.ͳʹͷሻ  Ͳ.ͻͺͲ.ͻሺͳ.Ͳ,Ͳ.ʹͷሻ  
       Ͳ.Ͳ.ͷሺͳ.Ͳ,Ͳ.ͷሻ  Ͳ.ͶͻͲ.͵͵ሺͳ.Ͳ,Ͳ.ͷሻ  Ͳ.͵͵Ͳ.ͳሺͳ.Ͳ,ͳ.Ͳሻ . 

 

Consequently, QԢ෩  is projected to obtain the conclusion according to 
 

෨ܤ ᇱ ൌ ቀͲ.ͶͻͲ.ͺʹቁ ഥ ቀͲ.ͻͺͲ.ͺʹቁ ഥ ቀͳͳቁ ഥ ቀͳͳቁͲ.Ͳ  ቀͲ.ͶͻͲ.ͺʹቁ ഥ ቀͲ.ͻͺͲ.ͺʹቁ ഥ ቀͳͳቁ ഥ ቀͳͳቁͲ.ͳʹͷ  
     ቀͲ.ͶͻͲ.ͺʹቁ ഥ ቀͲ.ͻͺͲ.ͺʹቁ ഥ ቀͲ.ͻͺͲ.ͻ ቁ ഥ ቀͲ.ͻͺͲ.ͻ ቁͲ.ʹͷ  ቀͲ.ͶͻͲ.ͷቁ ഥ ቀͲ.Ͳ.ͷቁ ഥ ቀͲ.Ͳ.ͷቁ ഥ ቀͲ.Ͳ.ͷቁͲ.ͷ  
     ቀͲ.ͶͻͲ.͵͵ቁ ഥ ቀͲ.ͶͻͲ.͵͵ቁ ഥ ቀͲ.ͶͻͲ.͵͵ቁ ഥ ቀͲ.ͶͻͲ.͵͵ቁͲ.ͷ  ቀͲ.͵͵Ͳ.ͳቁ ഥ ቀͲ.͵͵Ͳ.ͳቁ ഥ ቀͲ.͵͵Ͳ.ͳቁ ഥ ቀͲ.͵͵Ͳ.ͳቁͳ.Ͳ  

     ൌ ሺͳͳሻͲ.Ͳ  ሺͳͳሻͲ.ͳʹͷ  ሺͲ.ͻͺͲ.ͻ ሻͲ.ʹͷ  ሺͲ.Ͳ.ͷሻͲ.ͷ  ሺͲ.ͶͻͲ.͵͵ሻͲ.ͷ  ሺͲ.͵͵Ͳ.ͳሻͲ.ͳʹͷ . 
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Hence, the conclusion describes the tolerance when the humidity is moderate and 

the truth condition is true. According to the derivation, when the humidity is 

moderate, the people will feel less uncomfortable due to the secondary grades 

rising after the tolerance index “0.25”. Moreover, this case was also applied by the 

ordinary fuzzy implication in Pappis and Karacapilidis (1993), wherein the results 

were obtained as ܤᇱ ൌ ͳͲ.Ͳ  ͳͲ.ͳʹͷ  Ͳ.ͷͲ.ʹͷ  Ͳ.ͷͶ͵Ͳ.ͷ  Ͳ.͵ͳͲ.ͷ  Ͳ.Ͳͳ.Ͳ , 
and the truth function was given as ݄ݐݑݎݐ ൌ Ͳ.ʹͷͲ.ͷ  Ͳ.ͷͲ.ͺ  Ͳ.ͷͲ.ͺͷ  ͳͲ.ͻ  Ͳ.ͻͷͲ.ͻͷ  Ͳ.ͻͳ.Ͳ. 
The corresponding results show that the general fuzzy implication is not sufficient to 

handle the fuzzy proposition with the truth function, because the truth function is 

independent of the fuzzy processing, and the results of the truth function are hard  

to associate to the original proposition. Conversely, the partial truth statements are 

associated with the proposition in our proposed method; the set-theoretic 

considerations can be used to derive partial true knowledge. 

4   The Relationship between Intuitionistic Fuzzy Sets and  

Type-2 Fuzzy Sets 

Atanassov (1996) associated a mapping from ݏܵܨܫሺܺሻ to ܵܨଶሺܺሻ, where the set of 

all intuitionistic fuzzy sets and type-2 fuzzy sets in ܺ are representing as ܵܨܫሺܺሻ 

and ܵܨଶሺܺሻ. That study also defined the following operator:  ܣሙ ൌ ሼ൏ ,ݔ ,ሻݔሺߤ ሻݔሺݒ  ݔ| א ܺሽ ՜  ఈ݂൫ܣሙ൯ ൌ ሼ൏ ,ݔ ሻݔሺߤ  ,ሻݔሺߨߙ ͳ െ ሻݔሺߤ െ ሻݔሺߨߙ  ݔ| א ܺሽ, 
where ఈ݂: ሺܺሻݏܵܨܫ ՜ ሺܺሻ (Atanassov 1986). The operator ఈ݂ݏܵܨ  coincides with 

the operator ܦఈ  given in Atanassov. However, the limitations of above the 

equation are listed as follows, 

(a). The equation considers only the membership degree and omits the imperfect 

information (non-membership degree). 

(b). The operator cannot handle the reverse switching. i.e. from fuzzy sets to 

intuitionistic fuzzy sets. 

(c). Considering the complementation of FSs such as that of Sugeno (1977) or 

Yager (1979), the sum of membership and non-membership from one, the result is 

a negative number. Therefore, the elementary intuitionism condition given by 

Atanassov is not satisfied. 

In addition for each element ݔ א ܺ, the type-2 fuzzy set can model hesitation and 

additional uncertainties by using additional degrees. For instance, the polarizing 

concepts, i.e., more/less, optimistic/pessimistic, membership/non-membership, can  
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be inferred by the secondary grades. Restated, the secondary grades are defined to 

determine the magnitudes, allowing us to weight the degree of intuitionism of an 

intuitionistic fuzzy set. Thus, to eliminate the above limitations, the relationship is 

introduced as follows. 
 

Definition 3. Let ܣሙ א ሙܣ ,ሺܺሻ define as followsݏܵܨܫ ൌ ሾݔ ,
ୀଵ ,ሻݔሺߤ  ,ሻሿݔሺݒ

where ݔ א ܺ. Then, the association from ݏܵܨܫሺܺሻ to ܵܨଶሺܺሻ is defined as ܣሚ ൌ ∑ ሾͳ/ሺߤሺݔሻ  ሻሻݔሺߨ  Ͳ/ሺͳ െ ሻݔሺݒ  ሻሻሿୀଵݔሺߨ ݔ/ ,    (3) 

The secondary grade in (3) represents the indeterminacy index of 

membership/non-membership degree, which models the un-hesitancy of 

determining the extent to which an object satisfies a specific property. Restated, 

1/0 in secondary grades implies the total certain/uncertain with respect to 

membership/non-membership herein. Additionally, according to P1 (properties of 

IFSs), the definition of non-membership degree of an element x is ݒෘሺݔሻ ݒෘ ሺݔሻ ֞ ሙܣ  ෘܤ . This notion contradicts a natural generalization of a standard 

fuzzy set of the containment statement of Zadeh, ݒෘሺݔሻ  ෘݒ ሺݔሻ ֞ ሙܣ  ෘܤ . 

Thus, the non-membership value in (3) is obtained by subtracting the ݒෘ ሺݔሻ from 

one. 

Accordingly, the following proposition is proven to validate the relationship 

between T2FS and IFS. To simply the proof, intuitionistic fuzzy set refers to the 

extension of the fuzzy sets. Namely, the membership and non-membership 

degrees are added an equal to one. 

Proposition 1. Let ܣሙ, ෘܤ א ሺܺሻݏܵܨܫ , denote that the switch from ݏܵܨܫሺܺሻ  to ܵܨଶሺܺሻ are validated, then ܣሙ  ෘܤ  if and only if ܣሚ  ෨ܤ . 

Proof. Assume that two IFSs ܣሙ and ܤෘ  are defined as follows: ܣሙ ൌ ∑ ሾݔ ,ୀଵ ,ሻݔෘሺߤ  ,ሻሿݔෘሺݒ
and ܤෘ ൌ ∑ ሾݔ ,ୀଵ ෘߤ ሺݔሻ, ෘݒ ሺݔሻሿ, 
where ݔ א ܺ. 

Thus, two corresponding type-2 fuzzy sets are defined as: ܣሚ ൌ ∑ ሾͳ/ሺߤෘሺݔሻ  ሻሻݔෘሺߨ  Ͳ/ሺͳ െ ሻݔෘሺݒ  ሻሻሿୀଵݔෘሺߨ ݔ/  , 
and ܤ෨ ൌ ∑ ሾͳ/ሺߤෘ ሺݔሻ  ෘߨ ሺݔሻሻ  Ͳ/ሺͳ െ ෘݒ ሺݔሻ  ෘߨ ሺݔሻሻሿୀଵ ݔ/ . 
Hence, assume that ܣሙ  ሻݔሺߤ ෘ , thenܤ  ሻݔሺݒ ሻ andݔሺߤ  ֜ ሻݔሺݒ ሻݔሺߤ െ ሻݔሺݒ  ሻݔሺߤ െ  .ሻݔሺݒ
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On the contrary, assume that ܣሚ  ෨ܤ , that is ߤෘሺݔሻ  ሻݔෘሺߨ  ෘߤ ሺݔሻ  ෘߨ ሺݔሻ,  
and ͳ െ ሻݔෘሺݒ  ሻݔෘሺߨ  ͳ െ ෘݒ ሺݔሻ  ෘߨ ሺݔሻ, ֜ ሻݔෘሺߤ െ ሻݔෘሺݒ  ෘߤ ሺݔሻെݒෘ ሺݔሻ. 

Hence, the proposition is proven.                                                                             □ 

Furthermore, it is known that if ܣ is a fuzzy set on a referential ܺ and ܿ: ሾͲ,ͳሿ ՜ሾͲ,ͳሿ is a fuzzy complement, the set ܣ ൌ ∑ ሾݔ ,ୀଵ ,ሻݔሺߤ ܿሺߤሺݔሻሻሿ ,                                       ሺͶሻ 

defined as an intuitionistic fuzzy set (De et al. 2001). However, according to our 

previous statement, non-membership value is not a natural generalization of a 

standard FS. Besides, if we take Sugeno’s negation (Sugeno and Terano 1977) 

ఒܿሺݔሻ ൌ ͳ െ ͳݔ  ݔߣ , with െ ͳ ൏ ߣ ൏ Ͳ, 
or Yager’s negation (1979) 

ఒܿሺݔሻ ൌ ሺͳ െ ,ఠሻଵ/ఠݔ with ͳ ൏ ߱,  
as a fuzzy complement, (3) is not an intuitionistic fuzzy set, because ߤሺݔሻ  ܿሺߤሺݔሻሻ  ͳ and therefore, ߨሺݔሻ ൏ Ͳ. Hence, for the purpose to clear state the 

relation of type-2 fuzzy sets and intuitionistic fuzzy sets, the reverse relationship is 

defined as follows: 

Definition 4. Let ܣሚ א ሚܣ ,ଶሺܺሻ define as followsܵܨ ൌ ∑ ሾͳ/ߤଵሺݔሻ  Ͳ/ߤଶሺݔሻሿୀଵ ݔ/ ,   
where ݔ א ܺ. Then, the one way transforms from type-2 fuzzy set to intuitionistic 

fuzzy set is defined as: ܣሙ ൌ ∑ ሾݔ ,ୀଵ ሻݔଵሺߤ െ ,ሻݔෘሺߨ ͳ െ ሻݔଶሺߤ െ  ሻሿ,          ሺͷሻݔෘሺߨ
where 

ሻݔෘሺߨ ൌ ۔ۖەۖ
ሻݔଵሺߤۓ െ ʹሻݔଶሺߤ െ ͳ , ሻݔଵሺߤ ݂݅  ሻݔଶሺߤ,ሻݔଶሺߤ െ ሻͳݔଵሺߤ െ ʹ , ሻݔଵሺߤ ݂݅   ,ሻݔଶሺߤ

and  א ሾͲ,ͳሿ. 
 

Proposition 2. According to (5), then membership degree, non-membership 

degree and hesitation part are summed to one. 

Proof. We intend to obtain 
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ሻݔଵሺߤ  െ ሻݔෘሺߨ   ͳ െ ሻݔଶሺߤ െ ሻݔෘሺߨ  ሻݔෘሺߨ ൌ ͳ. Thus,  – ሻݔଵሺߤ ሻݔଶሺߤ  ͳ  ሺͳ െ ሻ ൌݔෘሺߨሻʹ – ሻݔଵሺߤ ሻݔଶሺߤ  ͳ  ሺͳ െ ሻʹ ሺߤଵሺݔሻ െ ʹሻሻݔଶሺߤ െ ͳ . 
Accordingly, if ߤଵሺݔሻ  – ሻݔଵሺߤ ሻ, and then the above equation is summarized asݔଶሺߤ ሻݔଶሺߤ  ͳ  ሺͳ െ ሻʹ ሻݔଵሺߤ െ ʹሻݔଶሺߤ െ ͳ  ฺ – ሻݔଵሺߤ ሻݔଶሺߤ  ͳ െ ൫ߤଵሺݔሻ െ ሻ൯ݔଶሺߤ ൌ ͳ. µଵሺx୧ሻ  µଶሺx୧ሻ denotes the same. Thus, the proposition has been proved.            □ 

Proposition 3. Let ܣሚ is defined as follows: 

ሚܣ ൌ ሾͳ/ߤ෨ሺݔሻ  Ͳ/ܿሺߤ෨ሺݔሻሻሿ
ୀଵ ݔ/ , 

and the fuzzy complement is Sugeno’s negation. Assume that the conversion from ܵܨଶሺܺሻ to ݏܵܨܫሺܺሻ are validated, then ߤሺݔሻ െ ሻݔෘሺߨ  ሺͳ െ  ܿሺߤሺݔሻሻሻ െ ሻݔෘሺߨ  ͳ,         (6) 

when െͳ ൏ ߣ ൏ Ͳ. 
Proof. Accordingly, to the above equation, it means that we need to approve. ߤሺݔሻ െ ሻݔෘሺߨ െ  ܿሺߤሺݔሻሻ െ ሻݔෘሺߨ  Ͳ.    א ሾͲ,ͳሿ, and െ  ሻ is always negativeݔෘሺߨ we only need to approve ߤሺݔሻ െ  ܿሺߤሺݔሻሻ  Ͳ, 
According to Sugeno and Terano (1977), െͳ ൏ ߣ ൏ Ͳ is derived to obtain  the 

bigger output then input values in Sugeno’s class. Thus, the above equation is 

always true when െͳ ൏ ߣ ൏ Ͳ. 
Conversely, assume that ߤሺݔሻ  ሺͳ െ  ܿሺߤሺݔሻሻሻ  ͳ, then we intend to apply 

the Sugeno’s negation, ߤሺݔሻ  ሺͳ െ ଵିఓಲሺ௫ሻଵାఒఓಲሺ௫ሻሻ  ͳ. 

֜ ሻݔሺߤ  ሻሻଶݔሺߤሺߣ െ ͳ  ሻͳݔሺߤ  ሻݔሺߤߣ  Ͳ.  ͳ  ሻݔሺߤߣ  Ͳ, then  ሻݔሺߤʹ   ሻሻଶݔሺߤሺߣ െ ͳ  Ͳ.                                         (7) 

If we can limit ߣ in െͳ ൏ ߣ ൏ Ͳ, then we can approve the Expression(7). Thus, the proposition is proven.                                                                               □ 
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5   Application to Medical Diagnosis 

A medical knowledge base focuses on how to properly diagnose D for a patient T 

with given values of symptoms S. Therefore, this section introduces a method for 

handling medical diagnostic problems based on the type-2 similarity. In a given 

pathology, assume that S denotes a set of symptoms, D denotes a set of diagnoses, 

and T denotes a set of patients. Analogous to De et al. notation of “Intuitionistic 

Medical Knowledge” (De et al. 2001), the authors defined “Type-2 Similarity 

Medical Knowledge” as a reasoning process from the set of symptoms S to the set 

of diagnoses D. 

Consider four patients Al, Bob, Joe and Ted, i.e. T={Al, Bob, Joe, Ted}. Their 

symptoms are high temperature, headache, stomach pain, cough and chest pain, i.e. 

S={Temperature, Headache, Stomach pain, Cough, Chest pain}. The set of diagnosis 

is defined, i.e. D={Viral Fever, Malaria, Typhoid, Stomach problem, Heart problem}. 

Tables 2 and 3 summarize the intuitionistic fuzzy relations ܶ ՜ ܵ and ܵ ՜  .ܦ

Hence, attempts to calculate for each patient ݐ of his symptoms from a set of 

symptoms ݏ  characteristic of each diagnosis ݀ . The reasoning process is as 

follows. (I) switch the acquired medical knowledge base from ܵܨܫሺܺሻ to ܵܨଶሺܺሻ, 

(II) to calculate the similarity of symptoms ݏ  between each patient ݐ  and each 

diagnosis ݀, where ݅ ൌ ͳ, ڮ ,ͷ, ݆ ൌ ͳ, ڮ ,Ͷ and ݇ ൌ ͳ, ڮ ,ͷ , (III) to determine 

higher similarities, implying a proper diagnosis. The relationships of ܶ ՜ ܵ ܦ , ՜ ܵ , that is, the mapping from ܵܨܫሺXሻ  to ܵܨଶሺXሻ  is switched and listed as 

follows (for the sake of simplicity, take Al and Temperature for example): 

݈ܣ ൌ ͳͲ.ͺ   · Ͳ.ͳ  ͲͲ.ͻ   · Ͳ.ͳܶ݁݉݁ݎݑݐܽݎ݁  ͳͲ.   · Ͳ.͵  ͲͲ.ͻ   · Ͳ.͵݄݁ܿܽ݀ܽ݁ܪ  ͳͲ.ʹ  ͲͲ.ʹܵ݊݅ܽ ݄ܿܽ݉ݐ         
 ͳͲ.   · Ͳ.͵  ͲͲ.ͻ   · Ͳ.͵݄݃ݑܥ  ͳͲ.ͳ   · Ͳ.͵  ͲͲ.Ͷ   · Ͳ.͵݊݅ܽ ݐݏ݄݁ܥ  

and 

ݎ݁ݒ݂݁ ݈ܽݎܸ݅ ൌ ͳͲ.Ͷ   · Ͳ.  Ͳͳ   · Ͳ.ܶ݁݉݁ݎݑݐܽݎ݁  ͳͲ.͵   · Ͳ.ʹ  ͲͲ.ͷ   · Ͳ.ʹ݄݁ܿܽ݀ܽ݁ܪ
 ͳͲ.ͳ   · Ͳ.ʹ  ͲͲ.͵   · Ͳ.ʹܵ݊݅ܽ ݄ܿܽ݉ݐ  ͳͲ.Ͷ   · Ͳ.͵  ͲͲ.   · Ͳ.͵݄݃ݑܥ ͳͲ.ͳ   · Ͳ.ʹ  ͲͲ.͵   · Ͳ.ʹ݈ܾ݉݁ݎ ݐݏ݄݁ܥ . 
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Notably,  א ሾͲ,ͳሿ. Tables 4 and 5 list the similarity measure (2) for each patient 

from the considered set of possible diagnoses for  ൌ Ͳ, ͳ, respectively. In Table 

6, Szmidt and Kacprzyk diagnosed by estimating the distances of three 

parameters: membership function, non-membership and the hesitation margin for 

all patient symptoms. That study also developed a geometrical interpretation to 

evaluate the similarity between IFSs, as well as properly diagnose in Table 7. De 

et al. defined the “Intuitionistic Medical Knowledge” to discuss how symptoms 

and diagnosis are related. Table 8 summarizes those results. The formal fuzzy 

similarity  ܵሺܣ, ሻܤ ൌ ∑ ሼͳ െ ሻݔሺߤ| െ ሻ|ሽݔሺߤ ݊  

is applied in the medical diagnosis shown in Table 9 (Raha et al. 2002). 

Table 10 displays all of the results from the above-mentioned methods. Medical 

software or computer systems assist physicians in patient care and facilitate the 

diagnosis of complex medical conditions. Determining which method can 

facilitate an exact diagnosis is extremely difficult. According to Table 10, Bob 

obviously suffers from stomach problems (all methods agree) and Joe is inflicted 

with typhoid (five out of the six methods agree). Above results demonstrate that 

the proposed theoretical method can facilitate the diagnosis. As for diagnoses of 

viral fever and malaria, our results indicate that these two diagnoses have 

difficulty in accuracy (nearly half of the methods approve one or the other 

diagnosis); in addition, these two symptoms are involved with each other. The 

proposed method differs from other methods in this respect. Moreover, the 

proposed method can be used as a facilitator. Distinct diagnosis results can be 

obtained by type-2 fuzzy sets, including a high effectiveness in handling imprecise 

and imperfect information than intuitionistic fuzzy sets can. 

 

Table 1 Symmetric discrimination measures (‘*’ marks as the recognizing result) 

 ଵܲ ଶܲ ଷܲ 

Dengfeng’s Method [26] 0.78 0.8 0.85* 

Mitchell’s Method [27] 0.54 0.54 0.61* 

Vlachos’s Method [28] 
0.4492 0.3487 0.2480* 

Proposed Method 
2.0169 2.0585 2.1253* 
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Table 2 Symptoms characteristic for the patients considered 
 

 Temperature Headache Stomach 

Pain 

Cough Chest pain 

Al (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) (0.1,0.6) 

Bob (0.0,0.8) (0.4,0.4) (0.6,0.1) (0.1,0.7) (0.1,0.8) 

Joe (0.8,0.1) (0.8,0.1) (0.0,0.6) (0.2,0.7) (0.0,0.5) 

Ted (0.6,0.1) (0.5,0.4) (0.3,0.4) (0.7,0.2) (0.3,0.4) 

 

Table 3 Symptoms characteristic for the diagnoses considered 

 Viral fever Malaria Typhoid Stomach 

problem 

Chest 

problem 

Temperature (0.4,0.0) (0.7,0.0) (0.3,0.3) (0.1,0.7) (0.1,0.8) 

Headache (0.3,0.5) (0.2,0.6) (0.6,0.1) (0.2,0.4) (0.0,0.8) 

Stomach pain (0.1,0.7) (0.0,0.9) (0.2,0.7) (0.8,0.0) (0.2,0.8) 

Cough (0.4,0.3) (0.7,0.0) (0.2,0.6) (0.2,0.7) (0.2,0.8) 

Chest pain (0.1,0.7) (0.1,0.8) (0.1,0.9) (0.2,0.7) (0.8,0.1) 

 
Table 4 Result is measured by type-2 similarity of p ൌ Ͳ (‘*’ marks as the diagnosis result) 

 Viral 

fever 

Malaria Typhoid Stomach 

problem 

Chest 

problem 

Al 0.68* 0.59 0.47 0.41 0.38 

Bob 0.47 0.41 0.51 0.75* 0.42 

Joe 0.59 0.44 0.62* 0.50 0.36 

Ted 0.65* 0.56 0.51 0.48 0.32 

 

Table 5 Result is measured by type-2 similarity of p ൌ ͳ (‘*’ marks as the diagnosis result) 

 Viral 

fever 

Malaria Typhoid Stomach 

problem 

Chest 

problem 

Al 0.71* 0.69 0.46 0.47 0.46 

Bob 0.54 0.51 0.53 0.83* 0.44 

Joe 0.63 0.48 0.65 0.66* 0.45 

Ted 0.77* 0.62 0.55 0.56 0.4 
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Table 6 Result is measured by Szmidt et al. in (Szmidt et al., 2001) (‘*’ marks as the 

diagnosis result) 
 

 Viral 

fever 

Malaria Typhoid Stomach 

problem 

Chest 

problem 

Al 0.29 0.25* 0.32 0.53 0.58 

Bob 0.43 0.56 0.33 0.14* 0.46 

Joe 0.36 0.41 0.32* 0.52 0.57 

Ted 0.25* 0.29 0.35 0.43 0.5 

 

Table 7 Result is measured by Szmidt et al. in (Szmidt et al., 2004). (‘*’ marks as the diagnosis 

result) 
 

 Viral 

fever 

Malaria Typhoid Stomach 

problem 

Chest 

problem 

Al 0.75* 1.19 1.31 3.27 ∞ 

Bob 2.1 3.73 1.1 0.35* ∞ 

Joe 0.87 1.52 0.46* 2.61 ∞ 

Ted 0.95 0.77* 1.67 ∞ 2.56 

 

Table 8 Results measured by De et al in (De et al., 2001). (‘*’ marks as the diagnosis result) 

 Viral 

fever 

Malaria Typhoid Stomach 

problem 

Chest 

problem 

Al 0.35 0.68* 0.57 0.04 0.08 

Bob 0.2 0.08 0.32 0.57* 0.04 

Joe 0.35 0.68* 0.57 0.04 0.05 

Ted 0.32 0.68* 0.44 0.18 0.18 

 
Table 9 Results measured by the formal fuzzy similarity. (‘*’ marks as the diagnosis result) 

 Viral 

fever 

Malaria Typhoid Stomach 

problem 

Chest 

problem 

Al 0.8 0.84* 0.82 0.56 0.52 

Bob 0.74 0.58 0.8 0.86* 0.66 

Joe 0.74 0.74 0.8* 0.54 0.5 

Ted 0.78 0.82* 0.76 0.62 0.58 
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Table 10 All the considered results 

  ൌ Ͳ  ൌ ͳ 
Szmidt 

in (2001) 

Szmidt 

in (2004) 

De in 

(2001) 

Fuzzy 

similarity 

Al 
Viral 

fever 

Viral 

fever 
Malaria 

Viral 

fever 
Malaria Malaria 

Bob 
Stomach 

problem 

Stomach 

problem 

Stomach 

problem 

Stomach 

problem 

Stomach 

problem 

Stomach 

problem 

Joe Typhoid Typhoid Malaria Typhoid Typhoid Typhoid 

Ted 
Viral 

fever 

Viral 

fever 
Malaria Malaria Malaria Malaria 

6   Conclusions 

This study represents a new direction in approximate reasoning based on vague 

knowledge, which is associated with partial or incomplete truth values. The 

proposed theoretical method can handle vague quantities by converting this partial 

truth-value into a precisely quantified statement based on the type-2 fuzzy 

inference system. The membership functions of type-2 fuzzy sets have more 

parameters than those of type-1 fuzzy sets, providing a greater degree of design 

freedom. Therefore, type-2 fuzzy sets may outperform type-1 fuzzy sets, 

particularly in uncertain environments. Moreover, the proposed method can 

perform reasoning with incomplete knowledge; helping to yield meaningful 

resolutions using fuzzy sentential logic, and systematically compute uncertainty. 

Furthermore, a mutual switch between type-2 fuzzy sets and intuitionistic fuzzy 

sets was defined, and a medical diagnosis was generalized through switching and 

reasoning according to type-2 similarity. Consequently, easy comprehension and 

axiomatic definitions are provided during the switching process. Importantly, the 

proposed method makes it possible to extend the usage of type-2 fuzzy sets and 

renews the relationship between type-2 fuzzy sets and intuitionistic fuzzy sets. 
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Decision Making with Second Order 
Information Granules 

R.A. Aliev, W. Pedrycz, O.H. Huseynov, and L.M. Zeinalova
*
 

Abstract. Decision-making under uncertainty has evolved into a mature field. 

However, in most parts of the existing decision theory, one assumes decision mak-

ers have complete decision-relevant information. The standard framework is not 

capable to deal with partial or fuzzy information, whereas, in reality, decision-

relevant information about outcomes, probabilities, preferences etc is inherently 

imprecise and as such described in natural language (NL). Nowadays, there is no 

decision theory with second-order uncertainty in existence albeit real-world uncer-

tainties fall into this category. This applies, in particular, to imprecise probabilities 

expressed by terms such as likely, unlikely, probable, usually etc. We call such 

imprecise evaluations second-order information granules. 

In this study, we develop a decision theory with second-order information 

granules. The first direction we consider is decision making with fuzzy probabili-

ties. The proposed theory differs from the existing ones as one that accumulates 

non-expected utility paradigm with NL-described decision-relevant information. 

Linguistic preference relations and fuzzy utility functions are used instead of their 

classical counterparts as forming a more adequate description of human prefer-

ences expressed under fuzzy probabilities. Fuzzy probability distribution is incor-

porated into the suggested fuzzy utility model by means of a fuzzy number-valued 

fuzzy measure instead of a real-valued non-additive probability. We provide  

representation theorems for a fuzzy utility function described by a fuzzy number-

valued Choquet integral with a fuzzy number-valued integrand and a fuzzy  

number-valued fuzzy measure. The proposed theory is intended to solve decision 

problems when the environment of fuzzy states and fuzzy outcomes are  
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characterized by fuzzy probabilities. As the second direction in this realm we  

consider hierarchical imprecise probability models. Such models allow us to take 

into account imprecision and imperfection of our knowledge, expressed by inter-

val values of probabilities of states of nature and degrees of confidence associated 

with such values. A decision-making process analysis and a choice of the most 

preferable alternative subject to variation of intervals at the lower and upper levels 

of models and the types of distribution on the sets of random values of probabili-

ties of states of nature is also of significant interest.  

We apply the developed theories and methodologies to solving real-world eco-

nomic decision-making problems. The obtained results show validity of the  

proposed approaches. 

Keywords: Decision Making, Imprecise Probabilities, Fuzzy Utility, Fuzzy Func-

tion, Fuzzy Measure, Linguistic Preference, Second-Order Uncertainty, Choquet 

Integral. 

1   Introduction 

Decision theory is composed of a large variety of mathematical methods for mod-

eling human behavior in presence of uncertainty (Gilboa 2009). Two main parts of 

the classical theory of choice are the theory of expected utility (EU) of von Neu-

mann and Morgenstern (von Neumann and Morgenstern 1944) and the theory of 

subjective expected utility (SEU) of Savage (Savage 1954, Wakker and Zank 

1999) in which it is assumed that individuals are motivated by material incentives 

(Akerlof and Shiller 2009) and can assign objective or consistent subjective prob-

abilities to all outcomes. These theories are well-composed and have strong ana-

lytical power. However, they define human behavior as “ideal”, i.e., inanimate, 

and do not correspond to the computational abilities of humans. Works of Allais 

(Allais and Hagen 1979, Allais 1953), Markowitz (Markowitz 1952),  Ellsberg 

(Ellsberg 1961) and the ensuing works of psychologists and economists collected 

a substantial evidence that individuals systematically violate the basic assumptions 

of the EU such as independency, probabilistic beliefs, descriptive and procedural 

invariance etc.  

Prospect theory (PT) and Cumulative Prospect theory (CPT) (Kahneman and 

Tversky 1979, Tversky and Kahneman 1992) are of the most famous theories on 

the new view at utility concept. These theories exhibit a significant success as they 

include psychological aspects that form human behavior. The Maximin expected 

utility model (MMEU) developed to resolve Allais and Ellsberg paradoxes as-

sumes that individuals derive probabilities based on their experience and consider 

them varying within intervals. Fuzzy integrals (Grabish 1995, Yoneda et al. 1993, 

Grabish et al. 2000, Grabish 1996, Gajdos et al. 2004, Sims and Zhenyuan 1990, 

Zhang 1992, Zhong 1990) and Choquet expected utility (CEU) (Chateauneuf et al. 

2000, Chateauneuf and Eichberger 2003, Modave et al. 1997, Modave and 

Grabish 1998, Gilbert et al. 2004, Jeleva 2000, Mangelsdorff and Weber 1994, 

Narukawa and Murofushi 2004)  are other well known and effective non-expected 

utility models based on the use of non-additive measures that are more suitable to 
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model human behavior than additive measures. CEU reflects ambiguity aversion 

and various risk preferences. The Choquet integral (Choquet 1953, Grabish et al. 

2008, Pedrycz and Gomide 2007) is also a very useful tool for solving multicrite-

ria decision-making (Grabish and Labreuche 2008) problems, because there exists 

a formal parallelism between the latter and decision making under uncertainty 

(Modave et al. 1997).  

Non-expected utility models such as the PT, CPT, rank-dependent expected 

utility, MMEU, CEU etc. are more suitable for modeling choice principles mainly 

because of the use of a non-linear transformation of probabilities and non-additive 

measures (Billot 1992, Jamison and Lodwick 2002, Scmeidler 1989, Chateauneuf 

2000, Machina 2004, Kobberling and Wakker 2003, Wang and Li 1999, Denne-

berg 1994). Each of them comes with advantages and shortcomings and there is no 

general approach to realistic modeling of the utility function. 

Most of the existing utility models assume the utility function and probability 

distribution are accurately known. But in reality, human preferences, events, prob-

abilities are not exactly known – they are imprecise being described in natural 

language (NL), and therefore, should be considered as information granules. In 

real world decision-making problems, we also often encounter uncertainty about 

uncertainty, or uncertainty
2
 (Zadeh 2008a). Instances of uncertainty

2
 are fuzzy sets 

of type 2, imprecise probabilities (Gajdos et al. 2004, Giraud 2005, Pedrycz and 

Peters 1998, Grabish and Roubens 2000, Yager 1999, Chen et al. 2000, Hable 

2009a, Hable 2009b, Cooman and Walley 2002, Troffaes 2007) etc. There exist a 

huge number of methods able to handle first-order uncertainty, but there is no 

general theory of decision analysis under uncertainty
2
.
 
Most parts of the existing 

decision theory assume a decision maker (DM) has complete knowledge about the 

distribution on states of nature and does not offer methodology to deal with partial 

or fuzzy information. The standard probability theory is more than an adequate 

tool to deal with physical, inanimate systems where human judgment, perceptions, 

and emotions do not play a role, but is not designed to deal with perceptions which 

play a prominent role for humanistic systems. Perceptions are intrinsically impre-

cise (Zadeh 2008a, Zadeh 1997) or, more specifically, perceptions are intrinsically 

fuzzy. In a perceptions-based approach, probabilities, events, utilities etc are im-

precise and are described in the NL. 

Natural and useful interpretations of imprecise probabilities as second-order in-

formation granules are interval probabilities, fuzzy (linguistic) probabilities (Au-

gustin et al. 2009, Pedrycz and Gomide 2007, Yager 1999) etc. The reason to use 

fuzzy probabilities is that in most applications the objective probabilities are not 

exactly known, and we are not able to compute unique prior subjective probabili-

ties. We have only a fuzzy constraint on probability distribution instead of  

appropriate probability distribution. We only know linguistic estimates of our 

probabilities such as “this is likely” or “that is unlikely”. Handling imprecise 

probabilities include such problems as describing imprecise priors and sampling 

distributions; proceeding from approximate priors and sampling distributions to 

approximate posteriors and posterior related quantities; making decisions with  

imprecise probabilities etc. Today, computation with imprecise probabilities 

(Yager 1999, Augustin et al. 2009, Eichberger et al. 2007, Jaffray 1999, Ekenberg 
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and Thorbiornson 2001, Utkin and Augustin 2003, Utkin 2005, Zadeh 2008a, Alo 

et al. 2002, Walley 1991, Walley 1997, Gil and Jain 1992) is an active field of re-

search. However, much of the literature is concerned with elicitation rather than 

computation and imprecise probabilities are considered in isolation (Zadeh 

2008a), whereas in reality, they generally occur in an environment of fuzzy 

events, fuzzy relations and fuzzy constraints. An important aspect of human be-

havior that does not have its strong general theoretical reflection in the existing 

utility models is that in reality utilities very often are evaluated by humans using 

NL. So, utility functions are not accurately known and it is necessary to create 

strong theoretical basis for this. Fuzzy utility functions, fuzzy alternatives, impre-

cise probabilities, fuzzy preferences, linguistic preferences relations (LPR) are 

considered in (Alo et al. 2002, Gil and Jain 1992, Mathieu-Nicot 1986, Billot 

1995, Borisov et al. 1989, Zadeh 1975, Wilde 2004, Cantarella and Fedele 2003, 

Aliev and Fazlollahi 2008). LPR defined on the base of fuzzy preference relation 

and the extension principle is considered in (Zadeh 1975). In (Borisov et al. 1989) 

axioms for LPR in terms of linguistic lotteries over fuzzy outcomes are given on 

the base of which fuzzy expected utility is defined. Paper (Billot 1995) presents 

conditions on representation of fuzzy preorder by a non-fuzzy (numerical) func-

tion. In the (Mathieu-Nicot 1986) existence and continuity of fuzzy EU under  

traditional conditions (reflexivity, transitivity, continuity etc) for the case fuzzy 

preference is given. The author proves theorems on existence of a fuzzy EU for 

the cases of probabilistic and possibilistic information on states of nature. How-

ever, information is considered as numerical (non-fuzzy). Of course, the possi-

bilistic case, as the author mentions, is more adequate for real-world problems. 

Fuzzy preference relations, fuzzy random variables and expected fuzzy number-

valued utility are considered in (Gil and Jain, 1992). In (Alo et al. 2002) fuzzy 

utility defined as a Choquet integral with respect to a numerical fuzzy measure  

obtained on the basis of  the set of possible probability distributions and with a 

fuzzy integrand are considered. Various approaches to describing imprecision of 

utility function and probabilities are done in (Alo et al. 2002). But, unfortunately, 

an overall model for decision making under uncertainty
2
 has not been suggested 

yet. 

Adequate and intuitively meaningful models for describing information  

structures of decision-making problem which are the second-order imprecise hier-

archical models. First a hierarchical model where probabilities were normally  

imprecise was proposed in (Good 1962). It is argued in (Ferson et al. 2002, de 

Cooman and Walley 2002) that more general hierarchical models are Bayesian 

models. Unfortunately, probabilities in these models are supposed to be exact that 

significantly limits the use of this type of models. Further the hierarchical models 

were modified and developed in (Walley 1997, de Cooman 1998, Nau 1992). In 

(de Cooman 1998) a hierarchical uncertainty model that presents vague probabil-

ity assessment and inference on its base is considered. This model is based on 

Walley’s theory of imprecise probabilities.  In (de Cooman and Walley 2002, Ut-

kin 2007) the various decision making criteria with imprecise probabilities are 

discussed. In (Augustin 2002, Aven 2003) the unified behavioral theory of lower 

prevision and some open problems in the theory are discussed. In (Aven 2003, 
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Baudrit and Dubois 2006) the problem of combination of experts` beliefs repre-

sented by imprecise probabilities is considered. The possibilistic imprecise sec-

ond-order probability model is considered in (Berger 1985, Bernard 2001, Walley 

1997). Modeling linguistic uncertainty in terms of upper probabilities which are 

given in behavioral interpretation is considered (Walley and de Cooman 2001). A 

quasi-Bayesian model of subjective uncertainty where beliefs are represented by 

lower and upper probability is investigated in (Bernard 2002).    

Shortcomings of the mentioned models are that they require the usage of exact 

probability distribution at the second level of a hierarchical model. It limits a practical 

use of these models. Further development of a hierarchical model is related to the 

formation of hierarchical models that have interval probabilities at the second level. 

More comprehensive review and some new results are shown in (Utkin 2007). More 

universal and popular model for interval probabilities processing is Walley’s theory 

of imprecise probabilities and a principle of natural extension. Main drawback of this 

approach is impossibility to use it when experts’ beliefs are contradictory. Other 

drawback is related to a huge number of optimization problems.  

Use of the mentioned above hierarchical imprecise models is analyzed in  

(Utkin 2007). We have to mention that the decision procedures in (Utkin 2007) are 

applied to simple classical decision making problems. The models in (Levi 1974, 

Walley 1991) and others which use such type of up-to-date decision making  

problems are open problems.  

So, we need a new utility theory which would take into account impreciseness 

of utility functions and probability distribution and would be based on the use of 

non-additive measures. What can be used here is fuzzy logic (Zadeh 2008b, Aliev 

2008, Aliev et al. 2004, Aliev R.A. and Aliev R.R. 2001) and fuzzy mathematics 

(Aliev R.A. and Aliev R.R. 2001, Mordeson and Nair 2001) that are capable to in-

terpret impreciseness of utility evaluations adequately and mathematically-strictly. 

The same concerns empirical probability evaluations under conditions of absence 

of experimental data.  

Taking into account the above mentioned facts, we propose fundamentals of 

Theory of Decision Making with Second Order Information Granules. The first di-

rection of the proposed theory is a theory of decision making with fuzzy probabili-

ties. This theory differs from the existing methods as one that accumulates  

non-expected utility paradigm with NL-described decision-relevant information. 

Fuzzy probabilities, LPR and fuzzy utility functions are used instead of their clas-

sical analogs as more adequate description of decision-relevant information. We 

present representation theorems for a fuzzy utility function described by a fuzzy 

number-valued Choquet integral with a fuzzy number-valued integrand and a 

fuzzy number-valued fuzzy measure. The proposed theory is intended to solve  

decision problems when environment of fuzzy states and fuzzy outcomes are 

characterized by fuzzy probabilities.  

The second avenue of the proposed theory is devoted to hierarchical imprecise 

probability models. Such models take into account an imprecision and imperfec-

tion of our knowledge, expressed by interval values of probabilities of states of na-

ture and degrees of trust to such values. By completing a review of state-of- the art 

of decision making problems with hierarchical probability models, we consider 
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the decision making problem with the second-order uncertainty where beliefs at 

the first and the second levels of hierarchical probability models are represented 

by interval probabilities. Imprecise hierarchical models of Walley may be viewed 

as a special case of the considered model. A decision-making process analysis and 

a choice of the most preferable alternative subject to variation of intervals at the 

lower and upper levels of models and the types of distribution of probabilities of 

states of nature is of most interest.  

We apply the introduced theories and methodologies to solving real-world de-

cision making problems. The obtained results demonstrate the validity of the  

proposed approaches. 

2   Decision Making with Fuzzy Probabilities 

2.1   Preliminaries 

Let 
nE  be the space of fuzzy subsets of 

nR  which are normal, convex, and upper 

semicontinuous with compact support. Denote by 
1

[ , ]a b
E  the corresponding space 

of fuzzy sets of[ , ]a b R⊂ . 

Definition 1 Fuzzy Haussdorf distance(Aliev and Pedrycz 2009, Aliev 2008). 

Let A�  and B�  are fuzzy sets, namely , nA B E∈� � . Then the fuzzy Hausdorff dis-

tance 
f

d
Η

 between A�  and B�  is defined as 

1 1

1[0,1]

( , ) ( , ), sup ( , )r r r r

f H H
r rr

d A B r d A B d A B
= =

Η

≤ ≤∈

⎡ ⎤= ⎢ ⎥⎣ ⎦� � � ∪  

Fuzzy functions. By a fuzzy function we mean a function, whose values are fuzzy 

numbers (for more details see (Bede and Gal 2005, Diamond and Kloeden 1994, 

Lakshmikantham and Mohapatra 2003). Let f�  be a fuzzy function, 
( )

 
f x�µ

 

denotes the membership function of the fuzzy number ( )f x� , and for 0 1r< ≤ , 

2
( )rf x�   stands for sup

( ) ( )
{ ( ) ( ) }

f x f x
z dom z r∈ ≥� �µ µ  and 

1
( )rf x�  denotes 

inf
( )

{ ( )
f x

z dom∈ �µ
( )

( ) }
f x

z r≥�µ . Functions 
1

( )rf x�  and 
2

( )rf x�  are level 

functions of f� . 

Definition 2 (Zhang 1992). Let a�  be a fuzzy number. For every positive real 

number M, there exists a 
0

(0,1]r ∈  such that 0

2

r
M a<  or 0

1

r
a M< − . Then a�  is 

called fuzzy infinity, written as ∞� . 
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Definition 3 (Zhang 1992, Zhong 1990). A subclass F�  of ( )Ω�F  is called a 

fuzzy σ -algebra if it has the following properties: 

(1) , F∅ Ω∈ �  

(2) if B F∈� � , then 
cB F∈� �  

(3) if{ }n
B F⊂� � , then 

1 nn
B F

∞

=
∈� �∪  

Definition 4 (Zhang 1992). A fuzzy number-valued fuzzy measure ((z) fuzzy 

measure) on F�  is a fuzzy number-valued fuzzy set function 
1: E→��η F  with the 

properties: 

(1) ( ) 0∅ =�η ; 

(2) if B C⊂ ��  then ( ) ( )B C≤ ��� �η η ; 

(3) if
1 2

..., ...
n

B B B F⊂ ⊂ ⊂ ∈� � � � , then
1

( ) lim ( )
n nn n

B B
∞

= →∞
=� �� �∪η η ; 

(4) if
1 2

...,
n

B B B F⊃ ⊃ ∈� � � � , and there exists 
0

n  such that 
0

( )
n

B ≠ ∞�� �η  

then  
1

( ) lim ( )
n nn n

B B
∞

= →∞
=� �� �∩η η . 

Here limits are taken in terms of the 
fH

d�  distance. 

Definition 5 (Yang et al. 2005). Let : nf EΩ →�  be a fuzzy measurable fuzzy-

valued function on Ω  and �η  be a fuzzy-number-valued fuzzy measure on F� . 

The Choquet integral of f�  with respect to �η  is defined by 

[0,1]
r

r

fd r f d
∈

=∫ ∫� � �∪η η  

Definition 6 (Borisov et al. 1989). Let { }1
,...,

n
x x x=  be a discrete random 

variable. The linguistic probability assessment over x  is the assignment of a  

collection of n  linguistic constraints ( )
i

P x  is
i

A� ,
1

[0,1]i
A E∈� .  

Definition 7 (Borisov et al. 1989). Fuzzy set-valued random variable. Let the 

discrete variable x�  takes a value from the set { }1
,...,

n
x x� �  of possible linguistic 

values, each of which is a fuzzy variable , ,
i x i

x U x�  described by a fuzzy 

set ( ) /
i

x

i x
U

x x x= ∫ �� µ . Let a probability that x�  will take a linguistic value 
i

x�  be 

characterized by linguistic probability
l

i
P P∈� � , { }1

[0,1]

l
P P P E= ∈� � � . The variable 

x�  is then called fuzzy set-valued random variable.  
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Definition 8 Linguistic lottery (Borisov et al. 1989). Linguistic lottery is a fuzzy 

set-valued random variable with known linguistic probability distribution and is 

represented by a vector ( )1 1
, ;...; , ;...; ,

i i n n
L P x P x P x=� � � �� � �  

Definition 9. Lower prevision (Walley, 1991, Aliev R.A. and Aliev R.R 2001, 

Aliev et al. 2004, Aliev et al. 1999). Let S  be a set of states of nature. Lower 

prevision of X S⊂  is the lower envelope of a closed convex set P  of linear 

previsions ( )P ⋅  

( ) inf{ ( ) : P, }P X P X P X S= ∈ ⊂  

Definition 10. Second-order hierarchical model (Cooman and Walley 2002, 
Pedrycz and Gomide 2007, Walley 1991, Utkin 2007). The second-order hierar-

chical uncertainty models describe uncertainty of a random quantity by means of 

two levels. Suppose that there is a set of expert judgments related to some meas-

ures of states of nature 
i

s ( 1,i n= ). There are intervals of probabilities on state 

i
s  [

i
a , ia ] at the first level. Let the creditability of interval probabilities at the 

first level be characterized by interval of probabilities [
i

b , ib ].The second-order 

uncertainty [
i

b , ib ] forms an imprecise probability,  described  by  a  set  N  of  

distributions  on the set  M  of  all  distributions  on S .  

Generally, imprecise information in the hierarchical model can be expressed as 

follows: 

{ } [ , ]i ii ii
P a f a b b≤ ≤ ∈  

2.2   Problem Statement 

The axiomatization of decision making problem we adopt in our investigation is 

based on those used by Anscombe and Aumann (Anscombe and Aumann, 1963) 

and by Schmeidler (Schmeidler 1986, 1989). But the model we suggest is based 

on imperfect information framework, where as the Schmeidler’s model 

(Schmeidler 1989), which is a more developed than the model in (Anscombe and 

Aumann, 1963), is constructed for perfect information framework. The essential 

aspects of our model are as follows: 1) Spaces of fuzzy sets (Diamond and Kloe-

den 1994, Lakshmikantham and Mohapatra 2003) instead of the classical frame-

work are used for modelling states of nature, outcomes, and actions 2) Fuzzy 

probabilities (Walley 1991, Zadeh 2008a) are considered instead of numerical 

probabilities 3) LPR (Zadeh 1975, Borisov et al. 1989) is used instead of classical 

preference relation 4) Fuzzy functions (Diamond and Kloeden 1994, Lakshmikan-

tham and Mohapatra 2003, Borisov et al. 1989, Bede and Gal 2005, Aliev and 

Pedrycz 2009) instead of real-valued functions are used to model utility function 

5) Fuzzy number-valued fuzzy measure (Zhang 1992) is used instead of a  
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real-valued nonadditive probability. These aspects form fundamentally a new 

statement of the problem - the problem of decision making with second-order in-

formation granules.  

It is obvious that under uncertainty humans evaluate alternatives or choices lin-

guistically using such evaluations as “much worse”, “a little better”, “much bet-

ter”, “almost equivalent” etc. In contrast to the classical preference relation, LPR 

consistently expresses “degree of preference” allowing the analysis of preferences 

under uncertainty. In our approach, a utility function is described as fuzzy-

number-valued (fuzzy, for short) Choquet integral (Yang et al. 2005) with respect 

to fuzzy number-valued fuzzy measure generated by fuzzy probabilities to better 

reflect uncertainty we mostly encounter in real world.  

In what follows, we formulate in general a problem of decision making with 

fuzzy probabilities. 

Let 
n

S E⊂  be a set of fuzzy states of the nature, 
nX E⊂ be a set of fuzzy 

outcomes, Y be a set of fuzzy probability distributions (Borisov et al. 1989, Yager 

1999) over X  with finite supports, i.e. Y is a set of fuzzy number-valued func-

tions (Diamond and Kloeden 1994, Lakshmikantham and Mohapatra 2003,  Bede 

and Gal 2005): [ ]{ }1

0,1
:Y y y X E= →� � . For notational simplicity, we can iden-

tify X  with the subset { }( ) 1y Y y x for some x X∈ = ∈� � � �  ofY . Denote by 

S
F�  a σ -algebra of subsets of S . Denote by 

0
A  the set of all 

S
F� -measurable 

fuzzy finite valued step functions (Mordeson and Nair 2001) from S  to Y and 

denote by 
c

A  the constant fuzzy functions in
0

A . Let A  be a convex subset 

(Nanda 1991) of 
SY  which includes

c
A . Y  can be considered as a subset of some 

linear space, and 
SY  can then be considered as a subspace of the linear space of 

all fuzzy functions from S  to the first linear space. Let us now pointwise define 

convex combinations (Nanda 1991)  in Y : for y�  and z�  in
1

[0,1]
Y E⊂ , 

and [ ]0,1∈λ , (1 )y z r+ − =� ��λ λ , where ( ) ( ) (1 ) ( )r x y x z x= + −� � � ��λ λ . Con-

vex combinations in A  are also defined pointwise, i.e., for f�  and g�  in A  

(1 )f g h+ − =� ��λ λ  where ( ) (1 ) ( ) ( )f s g s h s+ − =� �� � � �λ λ  on S. 

To model LPR it is adequate to introduce a linguistic variable “degree of pref-

erence” (Zadeh 1975, Borisov et al. 1989) with term-set
1

( ,..., )
n

T TΤ = . Terms 

can be labeled as “equivalence”, “little preference”, “high preference”, and each 

can be described by a fuzzy number defined over some scale, for example [0,1] or 

[0,10] etc. The fact that preference of f�  against g�  is described by some 
i

T ∈Τ  

is written as
i

f T g� � . Let us denote LPR as 
l

{  and for simplicity below we write 

l
f g� �{  or 

l
f g� �;  instead of

i
f T g� � . 
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Definition 11. Two acts f�  and g�  in 
SY  are said to be comonotonic if for no s�  

and t�  in S , ( ) ( )
l

f s f t� � �� ;  and ( ) ( )
l

g t g s�� � �;  hold.  

Two real-valued functions a  and b  are comonotonic iff 

( ( ) ( ))( ( ) ( )) 0a s a t b s b t− − ≥� �� �  for all ,s t S∈�� . For a fuzzy function 

1:a S E→�  denote by [ ], 0,1r
a r ∈  its r-cut and note that

1 2
,r r r

a a a= ⎡ ⎤⎣ ⎦ , 

where
1 2
, :r r

a a S R→ . 

Two fuzzy functions 
1, :a b S E→��  are said to be comonotonic iff real-valued 

functions 
1 1
, :r r

a b S R→  are comonotonic (Schmeidler 1989) and 

2 2
, :r r

a b S R→  are comonotonic (Schmeidler 1989). A constant act f�  i.e., 

Sf y=� � , y Y∈� , and any act g�  are comonotonic. An act f�  whose statewise 

lotteries { ( )}f s� �  are mutually indifferent, i.e., ( )  
l

f s y� � �∼ for all s S∈� , and any 

act g�  are comonotonic. 

In the suggested framework we extend classical neo-Bayesian nomenclature. 

More specifically X is a set of fuzzy outcomes; Y is a set of linguistic lotteries; 

A is a set of fuzzy acts; S is a set of fuzzy states of nature; 
S

F� is a set of fuzzy 

events. 

A problem of decision-making with fuzzy probabilities can be formalized as a 

4-tuple ( ), , ,
l

S Y A { . Below we give a series of axioms of the LPR 
l

{  over A  

underlying the proposed utility model. 

(i). Weak-order: (a) Completeness of LPR. Any two alternatives are compa-

rable with respect to LPR: for all f�  and g�  in A : 
l

f g� �{  or
l

g f�� { . This 

means that for all f�  and g�  there exists such 
i

T ∈Τ  that 
i

f T g� �  or 
i

g T f��  (b) 

Transitivity. For all ,f g� �  and h�  in A : If 
l

f g� �{  and 
l

g h�� {  then
l

f h� �{ . 

This means that if there exist such 
i

T ∈Τ  and 
j

T ∈Τ  that 
i

f T g� �  and
j

g T h�� , 

then there exists such 
k

T ∈Τ  that
k

f T h� � . Transitivity of LPR is defined on the 

base of extension principle and fuzzy preference relation (Zadeh 1975, Borisov et 

al. 1989). This axiom states that any two alternatives are comparable and assumes 

one of the fundamental properties of preferences (transitivity) for the case of im-

perfect information framework. 

(ii). Comonotonic Independence: For all pairwise comonotonic acts ,f g� �  

and h�  in A  if
l

f g� �{ , then (1 ) (1 )
l

f h g h+ − + −� � ��α α α α{  for 
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all (0,1)∈α . This means that if there exists such 
i

T ∈Τ  that 
i

f T g� �  then there 

exists such 
k

T ∈Τ  that (1 ) (1 )
k

f hT g h+ − + −� � ��α α α α , with ,f g� �  and h�  

pairwise comonotonic. The axiom extends the property of comonotonic independ-

ence in case of imperfect information. 

(iii). Continuity: For all ,f g� �  and h�  in A : if 
l

f g� �;  and 
l

g h�� ;  then there 

are α  and β  in ( )0,1  such that (1 ) (1 )
l l

f h g f h+ − + −� � � ��; ;α α β β . This 

means that if there exist such 
i

T ∈Τ  and 
j

T ∈Τ  that 
i

f T g� �  and 
j

g T h��  then 

there exist such 
k

T ∈Τ  and 
m

T ∈Τ  that define preference 

of (1 ) (1 )
k m

f hT g T g h+ − + −� � �� �α α β β . The axiom is an extension of the classi-

cal continuity axiom for imperfect information framework. 

(iv). Monotonicity. For all f�  and g�  in A : If ( ) ( )
l

f s g s� � � �{  on S  

then
l

f g� �{ . This means that if for any s S∈�  there exists such T ∈Τ  that 

( ) ( )f s T g s� � � �  then there exists 
i

T ∈Τ  such that
i

f T g� � . The axiom is an exten-

sion of the classical monotonicity axiom to imperfect information framework. 

(v). Nondegeneracy: Not for all ,f g A∈� � ,
l

f g� �{ .  

LPR 
l

{  on A  induces LPR denoted also by 
l

{  onY : 
l

y z� �{  iff 
S S

l
y z� �{  

where 
S

y�  denotes the constant function y�  on S . The presented axioms are for-

mulated in accordance with imperfect information framework and the essence of 

human preferences. This formulation mandates a fuzzy representation of utility 

function. To determine the best action one could use a fuzzy utility function U�  

such that  

, , ( ) ( )
l

f g A f g U f U g∀ ∈ ⇔ ≥� � �� �� � �{  

We assume the existence of a fuzzy measure on S  that better reflect human behavior 

because of non-additivity property. A fuzzy measure �η  is to be obtained from linguis-

tic probability distribution over S  expressed as 
1 1 2 2 3 3
/ / /l

P P s P s P s= + +� � � �� � � = 

small/small + high/medium + small/large, with the understanding that a term such as 

high/medium means that the probability that 
2

s S∈�  is medium is high. In our ap-

proach, computation with fuzzy probabilities plays a pivotal role. 
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2.3   Fuzzy Valued Utility Function  

Analyzing the existing literature on decision analysis, we have arrived at the con-

clusion that among various non-expected approaches the models based Choquet 

integral, are more universal and effective (Hey et al. 2007). An extensive experi-

mental investigation conducted in (Hey et al. 2007) shows that CEU takes the first 

place among SEU, CPT, MMEU, Maximax and Minimum Regret models as the 

model that better reflects human choices. However, most of the existing works are 

devoted to decision analysis under first-order uncertainty and they use real-valued 

utility functions and real-valued fuzzy measures that are not sufficiently adequate 

to modeling human evaluations. In view of this, in the present work we consider 

decision problems characterized by fuzzy probabilities and fuzzy events. Now let 

us introduce the definition of fuzzy utility function defined over an arbitrary set 

Z  of fuzzy alternatives. 

Definition 12. Fuzzy-number-valued function
1( ) : ZU E⋅ →� , is a utility function 

if it represents linguistic preferences 
l

{  such that for any pair of alternatives 

z,z Z′∈� �  z z
l

′� �{  holds if and only if (z) (z )U U ′≥� �� � . The degree of preference 

is defined by the distance between (z)U� �  and (z )U ′� � . 

Here we consider a set Z  of alternatives as a set A  of actions :f S Y→�  

and a value of utility function U�  for action f�  is determined as a fuzzy Choquet 

integral over S : 

( ) ( ( )) lPS
U f u f s d= ∫ �

� �� �� � η  (1) 

If A  is a finite set { }1
,...,

m
A f f= � �  then after determining utility values  for 

every alternative, the best alternative can be found using some fuzzy ranking 

method. 

Below we present theorems on existence of a fuzzy Choquet-integral-based 

utility function representing weak order relation defined over the set A  of fuzzy 

alternatives under conditions of linguistic probability distribution 
lP�  over a 

set S . 

THEOREM 1. Assume that LPR 
l

{  on 
0

A A=  satisfies (i) weak order, (ii) 

continuity, (iii) comonotonic independence, (iv) monotonicity, and (v) nondegen-

eracy. Then, there exists a unique fuzzy number-valued fuzzy measure �η  on 
S

F�  

and an affine fuzzy number-valued function u�  on Y  such that for all f�  and g�  

in A : 
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l
f g� �{   iff  ( ( )) ( ( ))

S S
u f s d u g s d≥∫ ∫� � �� � � � �η η , 

where u� is unique up to positive linear transformations. 

The proof is given in (Zadeh et al. 2009). 

THEOREM 2. For a nonconstant affine fuzzy number-valued function u�  on Y  

and a fuzzy number-valued fuzzy measure �η  on 
S

F�  a fuzzy Choquet integral 

( ) ( ( ))
S

U f u f s d= ∫ �� �� � η  induces such LPR on 
0

A  that satisfies (i)-(v) shown 

above. Additionally, u� is unique up to positive linear transformations. 

The proof is given in (Zadeh et al. 2009). 

If S  is a finite set { }1,..., nS s s= � � , (1) can be written down as follows: 

( )( ) ( 1) ( )

1

( ) ( ( ) ( ( ) ( ( ))l

n

i h i iP
i

U f u f s u f s Bη+
=

= −∑ �
� � �� ��� � � �  (2)

Subscript ( )⋅  shows that the indices are permuted in order to have 

(1) ( )( ( )) ... ( ( ))nu f s u f s≥ ≥� �� � � �  using some fuzzy ranking method, 

( 1)( ( ) 0nu f s + =�� � , and { }( ) (1) ( ),...,i iB s s=� � � . The optimal action 
*f�  is found as 

an action with utility value { }*( ) max ( ( )) l
PSf A

U f u f s d
∈

= ∫ ��
� �� �� � η .  

To calculate a value of a fuzzy Choquet integral for a given action f�  one has 

to solve a problem of construction of a fuzzy measure over the set 

{ }1
,...,

n
S s s= � �  of the fuzzy states of nature. In this research, it is assumed that 

only NL-described reasonable knowledge about probability distribution over S  is 

available. It means that a state 
i

s�  is assigned a linguistic probability 
i

P�  that can 

be described by a fuzzy number defined over [0,1]. Initial data in the problem are 

represented by given linguistic probabilities for 1n −  fuzzy states of nature 

whereas for one of the given fuzzy states the probability is unknown. First it is  

required to obtain unknown linguistic probability ( )
j j

P s P=� ��  After that we con-

struct the desired fuzzy measure. In the framework of Computing with Words 

(Zadeh et al. 2009, Kacprzyk and Zadeh 1999a, 1999b, Mendel 2007, Zadeh 2001, 

Zadeh 1999, Zadeh 1996, Zadeh 2006, Zadeh 2008b) the problem of obtaining the 

unknown linguistic probability for state 
j

s�  given linguistic probabilities of all 

other states is a problem of propagation of generalized constraints (Zadeh 1996, 

Zadeh 2006). Formally this problem is formulated as follows (Borisov et al. 1989, 

Zadeh 2006): 

Given ( ) { }1

[0,1]
; , , 1,..., 1, 1,...,n

i i i i
P s P s E P E i j j n= ∈ ∈ ∈ − +� � �� �  (3) 
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find unknown ( ) 1

[0,1]
,

j j j
P s P P E= ∈� � ��  

(4) 

This problem reduces to a variational problem of constructing the membership 

function ( )
jP

⋅�µ  of an unknown fuzzy probability
j

P� : 

{ }1,..., 1, 1,...,
( ) sup min ( ( ( ) ( ) ))

ij i
j sP Pi j j n S

p s s ds
= − +

= ∫� � �ρµ µ µ ρ  (5) 

subject to                 ( ) ( )
js j

S

s s ds p∫ =�µ ρ , ( ) 1
S

s ds∫ =ρ  (6) 

This problem is of high computational complexity for solving of which we sug-

gested a novel neuro-fuzzy-evolutionary approach utilizing effective Soft Comput-

ing methodologies (Pedrycz 1995, Aliev and Aliev 2001, Aliev et al. 2004) such 

as Differential Evolution Optimization (DEO), artificial neural networks, fuzzy 

computations and their combinations. The suggested neuro-fuzzy-evolutionary 

approach is described in (Zadeh et al. 2009). 

When 
j

P�  is found, we have linguistic probability distribution 
lP�  over all 

states
i

s� : 

1 1 2 2
/ / ... /l

n n
P P s P s P s= + + +� � � �� � �  

This linguistic probability distribution contains a fuzzy set P� ρ
 of possible nu-

meric probability distributions ( )⋅ρ  over S . If we have linguistic probability dis-

tribution the important problem that arises is the verification of its consistency, 

completeness and redundancy. Given consistent, complete and not redundant lin-

guistic probability distribution 
lP�  we can obtain from it a fuzzy set P� ρ

 of possi-

ble probability distributions ( )sρ . We will construct a fuzzy measure from P� ρ
 as 

its lower prevision (Nguyen and Walker 2000) by taking into account a degree of 

correspondence of  to
lP� . We denote this fuzzy-number-valued fuzzy measure 

with lP�
�η  because it is derived from the given linguistic probability distribu-

tion
lP� . A degree of membership of an arbitrary probability distribution ( )sρ  to 

P�  (a degree of correspondence of ( )sρ  to
lP� ) can be as  

1,
( ( )) min( ( ))

i
iP Pi n

s p
=

=� �π ρ π , 

where 
i

p  is numeric probability of fuzzy state 
i

s�  defined by ( )sρ . So, 

( ) ( ) ( )
ii i

i sP P

S

p s s ds
⎛ ⎞

= ⎜ ⎟⎝ ⎠∫� � �π µ ρ µ is the membership degree of 
i

p  to
i

P� . To de-

rive a fuzzy-number-valued fuzzy measure lP�
�η  we use the formulas: 

1 2
(0,1]

( ) ( ), ( )l l l

r r

P P P
r

B r B B
∈

⎡ ⎤= ⎣ ⎦� � �
� � �� � �∪η η η  (7) 
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{ }

1

1

2

1,

( ) inf ( ) ( ) ( ) ,

( ) inf ( ) ( ) ( ) ,

( ) min( ( )) ,

r

l

r

l

r

i

r

BP

S

r

BP

S

iPi n

B s s ds s P

B s s ds s P

P s p r B S

ρ

ρ

ρ

η ρ µ ρ

η ρ µ ρ

ρ π

=

=

⎧ ⎫
= ∈⎨ ⎬⎩ ⎭

⎧ ⎫
= ∈⎨ ⎬⎩ ⎭

= ≥ ⊂

∫
∫

��

��

�

� ��

� ��

� �

 (8) 

For 0r = , 
0

l

r

P

=

��η  is considered as the support of lP�
�η  and is defined 

as
0

(0,1]

l l

r r

P P
r

cl
=

∈

⎛ ⎞
= ⎜ ⎟⎝ ⎠� �� �∪η η .  

The problem of decision analysis with fuzzy probabilities consists in determi-

nation of an optimal action 
*f A∈�  with { }*( ) max ( ( ))

Sf A
U f u f s d

∈
= ∫�

� �� �� � η . For 

this purpose first it is needed to assign linguistic utility values ( ( ))
j i

u f s�� �  to every 

action 
j

f A∈�  taken at a state
i

s S∈� . Then it is required to construct a fuzzy 

measure over S  based on partial knowledge available. Here given known prob-

abilities one has to find an unknown probability ( ) 1

[0,1]
,

j j j
P s P P E= ∈� ��  by solv-

ing the problem (5)-(6). As a result one would obtain a linguistic probability  

distribution 
lP�  expressed over all the states of nature. If some additional informa-

tion about the probability over S  is received (e.g. from indicator events), it is re-

quired to update 
lP�  on the base of this information using a fuzzy Bayes’ formula. 

Then based on the latest 
lP�  it is needed to construct fuzzy measure lP�

�η  by solv-

ing the problem expressed by (7)-(8). Next the problem of calculation of a fuzzy 

Choquet integral (Yang et al. 2005) for every action 
j

f�  is solved. Here first it is 

required for an action 
j

f�  to rearrange indices of states 
i

s�  using fuzzy ranking and 

find such new indices ( )i  that 
(1) ( )

( ( )) ... ( ( ))
j j n

u f s u f s≥ ≥� �� � � �  and calculate 

fuzzy values ( )
j

U f��  of a fuzzy Choquet integral for every action
j

f�  by using (2). 

Finally, by using a suitable fuzzy ranking method, an optimal
*f A∈� , that is 

*f A∈�  for which { }*( ) max ( ( )) l
PSf A

U f u f s d
∈

= ∫ ��
� �� �� � η , is determined.  
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3   Decision Making with Second-Order Imprecise Probability 

The assessed intervals of probabilities are reflective of expert’s or DM’s experi-

ence. His/her assessment is also imprecise and can be described as an interval. A 

decision making problem with the second-order information granules, where the 

probabilities at the first and at the second levels are given as intervals is consid-

ered in this section. 

Denote by
i

a , ia the lower and upper bounds, respectively, of interval probabil-

ity of a state of nature at the first level, i.e. a state 
i

s  is assigned a probability 
i

P  

that can be described by a interval [
i

a , ia ]. Denote by
i

b , ib  the lower and upper 

bounds respectively of interval probability describing expert’s confidence at the 

second level, i.e. an expert’s confidence can be described by interval [
i

b , ib ]. 

Then we can express the imprecise hierarchical probability model as  

Pr{ [ ; ]} [ ; ]i ii ii
P a a b b= = , 1,i n= .                                         (9) 

Probability distributions of the second level of hierarchical model are defined on a 

set of probability distributions of the first level. The suggested decision making 

methodology based on a given information structure (9) uses utility function for 

description of preferences. To represent the utility function we use the Choquet  

integral with non-additive measure: 

( ) ( ( ))
S

U h u h s d= ∫ η
                                                

(10) 

where η  is a nonadditive measure. 

Then the decision making problem consists in determination of an optimal  

action 
*

h A∈  such that  

*( ) max{ ( ( )) }
Sh A

U h u h s d
∈

= ∫ η                                       (11) 

Here η  - non-additive measure represented by lower prevision which is con-

structed from (9). 

The suggested decision making method includes the following stages. At first 

stage it is needed to assign utility values for actions 
i

h A∈  taken at a 

state
i

s S∈ . The second stage consists in construction of lower prevision to calcu-

late value of utility function for
i

h A∈ . In this study, the lower prevision is  

determined as  

( ) inf{ ( ) : , }B P B P M B S= ∈ ⊂η
                                

(12) 

where M is defined taking into account the following constraints: 
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( )
a

a

b f p dp b≤ ≤∫                                                  (13) 

1

0

( ) 1f p dp =∫                                                          (14) 

Here ( )f p  is a density function. Relevant decision information on imprecise 

probability is represented by interval probabilities for n-1 states of nature. It is  

required to obtain unknown imprecise probability ( )
j j

P s P=   

given ( )
i i

P s P= , {1,..., 1, 1,..., }i j j n∈ − + . The lower and upper bounds of 

the j interval [ ; ]jjj
P a a=  are determined as follows: 

1,
( ) min(1 ( ))

n

j ii i j
a s p s

= ≠
= −∑                                          (15) 

1,
( ) max(1 ( ))

n

j ii i j
a s p s

= ≠
= −∑

                                         
(16) 

Here ( ) [ , ]iii
p s a a∈  is a basic value of the probability at the first level of the 

hierarchical model. 

Next the problem of calculation of a value of utility function for each 
i

h A∈  

as a Choquet integral in accordance with (10) is performed. Finally, an optimal  

action 
*

h A∈  is obtained in accordance with (11). 
For calculations in accordance with the presented methodology the next tools 

have been developed: 
 

1) The solver for unknown probability calculation. 
 

2) The module for lower prevision calculation in accordance with (12)-(14) on 

the base of non-linear programming approach.  
 

3) The module for Choquet integral calculation.  
 

4) The module for ranking values of utility function to determine preferences 

among alternatives.   
 

We will consider application of the suggested approach to economic real-life 

problem. 

4   Experiments 

4.1   Decision Making on Oil Extraction at a Potentially  

Oil-Bearing Region 

We consider problem of determination of an optimal decision when a DM is not 

credibly informed on an actual state of nature. The information on probability of 
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states of the nature is available only for some of the states, and moreover, is  

imprecise being described in NL. This is conditioned by the fact that there are no 

statistical data in existence and information available is conveyed as experts’ opin-

ion commonly represented by linguistic statements. Utilities of various outcomes a 

DM will meet taking various actions at various states of nature are also evaluated 

in NL. The problem is a determination of an optimal action. 

Assume that a manager of an oil-extracting company needs to make a decision 

on oil extraction at a potentially oil-bearing region. The manager’s knowledge is 

described in NL and comes in the following form: 

 “probability of “occurrence of commercial oil deposits” is lower than medium” 

The manager can make a decision based on this information, or at first having 

conducted seismic investigation. Concerning the seismic investigation used, its 

accuracy is such that it with the probability “very high” confirms occurrence of 

commercial oil deposits and with the probability “high” confirms their absence.  

Let us now develop a formal description of the problem. The set of the fuzzy 

states of the nature is { }1 2
,S s s= � � , where 

1
s�  – “occurrence of commercial oil  

deposits” and 
2

s�  – “absence of commercial oil deposits”. 
1

s� and 
2

s�  are repre-

sented by triangular fuzzy numbers (TFN)
1

(1;1;0)s =� ,
2

(0;1;1)s =� . The  

linguistic probability distribution 
lP�  over the states of nature that corresponds the 

manager’s knowledge is
1 1 2 2
/ /lP P s P s= +� � �� � . 

1
(0.3;0.4;0.5)P =�  represents  

linguistic term “lower than medium” and 
2

P�  is unknown.  

Taking into account the opportunities of the manager, we consider the follow-

ing set of possible actions: { }1 2 3 4 5 6
, , , , ,A f f f f f f= � � � � � � . The NL-based description 

of the actions
i

f� , 1,6i =  is given in Table 1. 

Table 1 Possible actions of the manager 

Notation NL-based description 

1
f�  

Conduct seismic investigation and extract oil if seismic investiga-

tion shows occurrence of commercial oil deposits 

2
f�  

Conduct seismic investigation and do not extract oil if seismic 

investigation shows occurrence of commercial oil deposits 

3
f�  

Conduct seismic investigation and extract oil if seismic investiga-

tion shows absence of commercial oil deposits 

4
f�  

Conduct seismic investigation and do not extract oil if seismic 

investigation shows absence of commercial oil deposits 

5
f�  

Extract oil without seismic investigation 

6
f�  

Abandon seismic investigation and oil extraction 
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We have two types of events: geological events (states of nature) - “occurrence 

of commercial oil deposits” (
1

s� ) and “absence of commercial oil deposits” (
2

s� ) 

and two seismic events (results of seismic investigation) - “seismic investigation 

shows occurrence of commercial oil deposits” (
1

b ) and “seismic investigation 

shows absence of commercial oil deposits” (
2

b ). Possible combinations of geo-

logical and seismic events with their fuzzy probabilities are the following: 

1 1
/b s� - there is oil and seismic investigation confirms their occurrence, 

1 1
( / ) (0.7;0.8;0.9)P b s =� �  

2 1
/b s� - there is oil but seismic investigation shows their absence, 

2 1
( / )P b s� � is 

unknown; 

1 2
/b s� - there is almost no oil but seismic investigation shows their occurrence, 

1 2
( / )P b s� � is unknown; 

2 2
/b s� - there is almost no oil and seismic investigation confirms their  

absence, 
2 2

( / ) (0.6;0.7;0.8)P b s =� �  

According to (5)-(6) we have obtained unknown conditional probabilities 

2 1
( / ) (0.1;0.2;0.3)P b s =� �  and

1 2
( / ) (0.2;0.3;0.4)P b s =� � .  

Seismic investigation allows updating the prior knowledge about actual state of 

nature to obtain more credible information. Given a result of seismic investigation, 

the manager can revise prior probabilities of the states of nature on the base of 

fuzzy probabilities ( / ), 1,2, 1,2
j k

P b s k j= =� �  of possible combinations 

/
k j

s b� of geological and seismic events. The combinations are shown in Table 2. 

Table 2 Possible combinations of seismic and geological events 

Seismic events Geological events Notation  

Seismic investigation 

shows occurrence of oil  

occurrence of commercial oil deposits 
1 1
/s b�  

Seismic investigation 

shows absence of oil 

occurrence of commercial oil deposits 
1 2
/s b�  

Seismic investigation 

shows occurrence of oil 

absence of commercial oil deposits 
2 1
/s b�  

Seismic investigation 

shows absence of oil 

absence of commercial oil deposits 
2 2
/s b�  

To revise probability of 
k

s�  given seismic investigation result 
j

b   we obtain a fuzzy 

posterior probability ( / )
k j

P s b� �  based on the fuzzy Bayes’ formula (Buckley, 2006).  

1
( / )

j
P s b� � , 1, 2j =  are shown in Fig.1 and 2.  
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Fig. 1 Posterior probability 
1 1

( / )P s b� �  
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Fig. 2 Posterior probability 
1 2

( / )P s b� �  

Now we have revised (posterior) fuzzy probabilities 
1 1

( / )P s b� �  and 
1 2

( / )P s b� �  for 

the state 
1

s�  obtained given possible seismic investigation results 
1 2
,b b , respectively. 

We denote 
1 1

( / )P s b� �  and 
1 2

( / )P s b� �  by 
1

1

b

r
P�  and

2

1

b

r
P� , respectively. For this case 

we have obtained unknown probabilities 
1

2

b

r
P�  and 

2

2

b

r
P� of absence of oil by using the 

neuro-fuzzy-evolutionary approach presented in (Musayev et al. 2009, Zadeh et al. 

2009). Fuzzy probabilities
1

1

b

r
P�  ,

1

2

b

r
P�  and

2

1

b

r
P� , 

2

2

b

r
P� are shown in the Fig. 3 and 4  

respectively. 
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Fig. 3 Posterior probability 
1

1

b

r
P�  (solid curve) and 

1

2

b

r
P� (dotted curve) 
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Fig. 4 Posterior probability 
2

1

b

r
P� ( solid curve) and 

2

2

b

r
P�  (dotted curve) 

For actions 
1 2 3 4
, , ,f f f f� � � �  depending on seismic investigations, the manager will use 

1

1

b

r
P�  and 

1

2

b

r
P�  or 

2

1

b

r
P�  and 

2

2

b

r
P�  instead of prior

1
P� . For action 

5
f�  the unknown 

2
P�  is 

obtained from the 
1

P�   as triangular fuzzy number (0.5;0.6;0.7) using neuro-

fuzzy-evolutionary approach described in (Musayev et al. 2009, Zadeh et al. 2009). 

In this way, we have all required probabilities of the states 
1

s�  and
2

s� . Assume 

that because of incomplete and uncertain information about possible values of 

profit from oil sale and possible costs for seismic investigation and drilling of a 
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well, the manager linguistically evaluates utilities for various actions taken at 

various states of the nature. Assume that the manager’s linguistic utility evalua-

tions are as shown in the Table 3.  

Table 3 Linguistic utility evaluations 

 
    1

f�  
        2

f�
3

f�  
       4

f�  
      5

f�  
6

f�  

1
s�  Positive  

significant 

Negative 

very high 

High  Negative 

very high 

Positive  

high  

2
s�  Negative 

low  

Negative 

very low 

Negative 

low  

Negative 

very low 

Negative  

insignificant  

0  

Let us give the representation of linguistic utilities by TFN  

( ( ))
i k ik

u f s u=�� � �  defined on the scale[ 1,1]− :
11

(0.65;0.75;0.85)u =� , 

12
( 0.11; 0.1; 0.09)u = − − −� ,

21
( 0.88; 0.85; 0.82)u = − − −� , 

22
( 0.07; 0.04; 0.01)u = − − −� ,

31
(0.65;0.75;0.85)u =� , 

32
( 0.11; 0.1; 0.09)u = − − −� ,

41
( 0.88; 0.85; 0.82)u = − − −� , 

42
( 0.07; 0.04; 0.01)u = − − −� ,

51
(0.7;0.8;0.9)u =� , 

52
( 0.08; 0.07; 0.06)u = − − −� ,

6
0u =� . In other words, we have fuzzy utility func-

tion ( ( ))U f s�� �  defined over the set of combinations ( ), , 1,6; 1, 2
i k

f s i k= =� � . To 

find the optimal action we first calculate for each 
i

f�  its utility as a Choquet integral 

( ) ( ( )) li i PS
U f u f s d= ∫ �

� �� �� � η , 

where lP�
�η  is a fuzzy measure obtained from the linguistic probability distribution 

as a solution to the problem (7)-(8) based on the neuro-fuzzy-evolutionary tech-

nique covered in (Musayev et al. 2009, Zadeh 2009). Depending upon actions, a 

fuzzy measure will be constructed by considering either prior or posterior prob-

ability distributions. For
1 2
,f f� � , a fuzzy measure is constructed on the basis of 

1b

r
P�  and for 

3 4
,f f� �  a fuzzy measure is constructed based on 2b

r
P�  (seismic investi-

gation is used). For 
5

f�  a fuzzy measure will be constructed on the basis of prior  

distribution. Utility of 
6

f�  is obviously equal to zero. Fuzzy measures 
1
�η  and 

2
�η  

(approximated to TFN) defined on the base of 1b

r
P�  and 2b

r
P�  respectively are shown 

in Table 4. 
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Table 4 Fuzzy number-valued measures obtained from the posterior probabilities 

B S⊂�  { }1
s�  { }2

s�  { }1 2
,s s� �  

1
( )B��η  (0.43, 0.64, 0.64) (0.18, 0.36, 0.36) 1 

2
( )B��η  (0.05, 0.16, 0.16) (0.67, 0.84, 0.84) 1 

The fuzzy measure �η  (approximated to TFN) defined on the set of all subsets of 

S  obtained on the base of prior probability is shown in Table 5. 

Table 5 Fuzzy measure obtained from the prior probabilities 

B S⊂�  { }1
s�  { }2

s�  { }1 2
,s s� �

( )B��η  (0.3, 0.4, 0.4) (0.5, 0.6, 0.6) 1 

As utilities for 
ik

u�  are fuzzy numbers, the corresponding values of Choquet  

integrals will also be fuzzy. We calculate a fuzzy utility for every action 
i

f�  as a 

fuzzy value of a Choquet integral. For 
1

f�  we have  

( ) ( )

( ) { }( ) { }( )

2

1 1 ( ) 1 ( 1) ( )

1

1 (1) 1 (2) 1 (1) 1 (2) 1 (1) ( 2)

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

U f u f s u f s B

u f s u f s s u f s s s

η

η η

+
=

= − =

= − +

∑ �
� � �� ��� � � �

� � �� �� � � � � � � � �
 

As

1 (1) 11 1 2 12
( ( )) (0.65;0.75;0.85), ( ( )) ( 0.11; 0.1; 0.09)u f s u u f s u= = = = − − −� �� � � � � � , 

we find
11 12

u u≥� � . Then
1 (1) 11

( ( ))u f s u=�� � � , 
1 ( 2) 12

( ( ))u f s u=�� � �  

and
(1) 1 ( 2) 2

,s s s s= =� � � � . The Choquet integral for 
1

f  is equal to 

( ) { }( ) { }( )

( ) { }( ) { }( )
1 1 1 1 2 1 1 1 2 1 1 2

11 12 1 1 12 1 1 2

( ) ( ( )) ( ( )) ( ( )) ,

,

h

h

U f u f s u f s s u f s s s

u u s u s s

η η

η η

= − + =

= − + =

� � � �� � �� � � � � � � � �

� �� � � � � �
 

( ) { }( )
( )

11 12 1 1 12

(0.65;0.75;0.85) ( 0.11; 0.1; 0.09) (0.43, 0.64, 0.64)+

( 0.11; 0.1; 0.09)

h

h

u u s uη= − + =

= − − − − ⋅

+ − − −

�� � � �
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The obtained result approximated by TFN is
1

( ) (0.2168,0.444,0.5116)U f =�� . 

Based on this procedure, we have computed ( )
i

U f��  the other actions , 1,5
i

f i =  

obtaining the following results: 

( ) ( )

( ) { }( ) { }( )

2

2 2 ( ) 2 ( 1) ( )

1

2 (1) 2 (2) 1 (1) 2 ( 2) 1 (1) (2)

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

U f u f s u f s B

u f s u f s s u f s s s

η

η η

+

=

= − =

= − +

∑ �
� � �� ��� � � �

� � �� �� � � � � � � � �

( ) { }( ) { }( )

( ) { }( ) { }( )
2 2 2 1 1 2 2 1 1 1 2

22 21 1 2 21 1 1 2

( ( )) ( ( )) ( ( )) ,

,

h

h

u f s u f s s u f s s s

u u s u s s

η η

η η

= − + =

= − + =

� � �� �� � � � � � � � �

� �� � � � � �
 

( )( 0.07; 0.04; 0.01) ( 0.88; 0.85; 0.82) (0.67, 0.84, 0.84)+

( 0.88; 0.85; 0.82)

h
− − − − − − − ⋅

+ − − −
 

( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )

( ) { }( )

2

3 3 ( ) 3 ( 1) ( )

1

3 (1) 3 (2) 2 (1) 3 ( 2) 2 (1) (2)

3 1 3 2 2 1 3 2 2 1 2

31 32 2 1

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

h

U f u f s u f s B

u f s u f s s u f s s s

u f s u f s s u f s s s

u u s

η

η η

η η

η

+

=

= − =

= − + =

= − + =

= − +

∑ �
� � �� ��� � � �

� � �� �� � � � � � � � �

� � �� �� � � � � � � � �

�� � � { }( )
( )

32 2 1 2
,

(0.65;0.75;0.85) ( 0.11; 0.1; 0.09) (0.43, 0.64, 0.64)

( 0.11; 0.1; 0.09)

h

u s sη =

= − − − − ⋅ +

+ − − −

�� � �

 

( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )

( ) { }( )

2

4 4 ( ) 4 ( 1) ( )

1

4 (1) 4 (2) 2 (1) 4 ( 2) 2 (1) (2)

4 2 4 1 2 2 4 1 2 1 2

42 41 2 2

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

h

U f u f s u f s B

u f s u f s s u f s s s

u f s u f s s u f s s s

u u s

η

η η

η η

η

+

=

= − =

= − + =

= − + =

= − +

∑ �
� � �� ��� � � �

� � �� �� � � � � � � � �

� � �� �� � � � � � � � �

�� � � { }( )
( )

21 2 1 2
,

( 0.07; 0.04; 0.01) ( 0.88; 0.85; 0.82) (0.67, 0.84, 0.84)+

+( 0.88; 0.85; 0.82)

h

u s sη =

− − − − − − − ⋅

− − −

�� � �

 



Decision Making with Second Order Information Granules 141

 

( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )

( ) { }( )

2

5 5 ( ) 5 ( 1) ( )

1

5 (1) 5 (2) (1) 5 (2) (1) (2)

5 1 5 2 1 5 2 1 2

51 52 1 52

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

h

U f u f s u f s B

u f s u f s s u f s s s

u f s u f s s u f s s s

u u s u

η

η η

η η

η

+

=

= − =

= − + =

= − + =

= − +

∑ �
� � �� ��� � � �

� � �� �� � � � � � � � �

� � �� �� � � � � � � � �

� �� � � � { }( )1 2
,s sη =� �

 

( )(0.7;0.8;0.9) ( 0.08; 0.07; 0.06) (0.3, 0.4, 0.4)

( 0.08; 0.07; 0.06)

h
= − − − − ⋅ +

+ − − −
 

The obtained results approximated by TFNs are the following: 

2
( ) (-0.53,-0.33,-0.3)U f =�� ;  

3
( ) ( 0.072,0.036,0.0604)U f = −�� ;  

4
( ) (-0.8395,-0.7204,-0.6904)U f =�� ;  

5
( ) (0.154,0.278,0.324)U f =�� .  

These fuzzy numbers are also shown in Fig. 5 
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Fig. 5 Fuzzy values of Choquet integral for possible actions (for 
1

f�  - thin solid line, for
2

f�  - 

thick dotted line, for 
3

f�  - thick dashed line, for 
4

f�  - thin dashed line, for 
5

f�  - thick solid line) 

As it can be seen that the highest fuzzy utilities are those of alternatives 
1

f�  and
5

f� . 

Applying the fuzzy Jaccard compatibility-based ranking method (Setnes 1997) to 

compare 
1

( )U f��  and 
5

( )U f��  we arrive at the following results: 
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1 5
( ) ( )U f U f≥� �� � is satisfied with the degree 0.8748; 

5 1
( ) ( )U f U f≥� �� � is satisfied with the degree 0.1635; 

The best action is 
1

f�  “Conduct seismic investigation and extract oil if seismic  

investigation shows occurrence of commercial oil deposits” with the highest fuzzy 

utility value  
1

( ) (0.1953,0.412,0.4796)U f =�� . 

4.2   Investment Problem 

We consider the problem of investment under imprecise information about states 

of economy over a year. Suppose that we have three states of nature representing 

three possible states of economy during a year: economic growth (
1

s ), static eco-

nomic situation (
2

s ), economic recession (
3

s ). The possible alternatives are the 

following: to buy bonds (
1

h ), to buy stocks of enterprise (h
2

), to deposit money 

in a bank (h
3

). The result of the each act depends on a state of economy that will 

actually take place. The utilities of the each act taken at various states of economy 

are given in Table 6. 

Table 6 The utility values of actions under various states 

 
1

s  
2

s  
3

s  

1
h 8 7 5 

2
h 7 4 -1 

3
h 7 8 5 

Let the interval probabilities (first level-probabilities) for 
1

s  (economic growth) 

and 
2

s (static economic situation) are 
1

( )  [0.3;0.4] P s =  

and
2

( )  [0.2;0.4] P s = , respectively. The corresponding interval assessments of 

experts’ confidence degree (second-level probabilities) are equal to [0.7; 0.9].  

The problem is to determine an optimal action for investment. We need to find  

interval probability for 
3

s (economic recession). For this we use (15), (16) and  

obtain the interval probability [0.2; 0.5]. So, an information structure for the given de-

cision making problem may be described as: 
1

Pr{ ( ) [0.3;0.4]} [0.7;0.9]P s = = , 

2
Pr{ ( ) [0.2;0.4]} [0.7;0.9]P s = = , 

2
Pr{ ( ) [0.2;0.5]} [0.7;0.9]P s = = . 
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Given these data and following the proposed decision making method we have 

to calculate lower prevision measure.  The results of these calculations are shown 

in Table 7.  

Table 7 Lower prevision  

Events Lower 

prevision 

Events Lower 

prevision 

1
B = }{ 1s  

1
0.31=η  

12
B =

1 2
{ , }s s  

12
0.51=η  

2
B = }{ 2s  

2
0.21=η  

23
B =

2 3
{ , }s s  

23
0.41=η  

3
B = }{ 3s  

3
0.21=η  

13
B =

1 3
{ , }s s  

13
0.51=η  

Now we calculate the values of utility function described as Choquet  

integral for the each considered act in accordance with (10). The values of utility 

function for alternatives are the following: 33.6)( 1 =hU , 13.6)( 2 =hU ,  

23.6)( 3 =hU . So, we have 231 hhh ;; . 

We have also investigated influence of interval probabilities at the first and 

second levels of hierarchical model to values of utility function for each act. The 

results are given in Tables 8, 9, respectively. 

Table 8 Values of the utility function for the acts under variation of interval probabilities at 

the first level 

CASES )( 1h )( 3h )( 2h

1
( ) [0.6;0.7]P s

2
( ) [0.1;0.2]P s

3
( ) [0.1;0.3]P s

U )( 1h =7.03 U )( 3h =6.53 U )( 2h =6.13 

1
( ) [0.2;0.3]P s

2
( ) [0.3;0.5]P s

3
( ) [0.2;0.5]P s

U )( 1h =6.23 U )( 3h =6.33 U )( 2h =5.23 

1
( ) [0.1;0.2]P s

2
( ) [0.8;0.9]P s

3
( ) [0.0;0.1]P s

U )( 1h =6.93 U )( 3h =7.63 U )( 2h =4.33 

1
( ) [0.1;0.3]P s

2
( ) [0.5;0.6]P s

3
( ) [0.1;0.4]P s

U )( 1h  =6.33 U )( 3h =6.73 U )( 2h =4.63 

1
( ) [0.9;0.95]P s

2
( ) [0.0;0.02]P s

3
( ) [0.03;0.1]P s

U )( 1h  =7.73 U )( 3h =6.83 U )( 2h =6.73 
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As we can see from the Table 8, variations of interval probabilities at the first 

level of the hierarchical model change preferences between actions 1h  and 3h . 

Table 9 Values of the utility function for the acts under variation of interval probabilities at 

the second level 

CASES )( 1h )( 3h )( 2h

Pr [0.1;0.3] )( 1hU  =6.3 )( 3hU =6.356 )( 2hU  =5.5 

Pr [0.2;0.5] )( 1hU  =6.3 )( 3hU  =6.2 )( 2hU  =5.5 

Pr [0.4;0.6] )( 1hU  =6.3 )( 3hU =6.81 )( 2hU  =5.5 

Pr [0.6;0.8] )( 1hU =6.31 )( 3hU  =6.22 )( 2hU =5.51 

Pr [0.9;0.95] )( 1hU =6.36 )( 3hU =6.352 )( 2hU =5.57 
 

 

As can be seen, the variations of interval probabilities at the second level of the 

hierarchical model also change preferences between actions 1h  and 3h . 

The graphical representation of influence of changes of interval probabilities to 

values of utility function for acts is given in Fig. 6, 7 respectively. 

 

 

Fig. 6 The plot of surface for experiment 1 
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Fig. 7 The plot of surface for experiment 2 
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3 -
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This graphical visualization offers us an ability to observe how actual economic 

situation may change the decisions made on investment. 

To check robustness of the suggested approach, we applied small changes to in-

terval probabilities of states
1

s , 
2

s , 
3

s  and calculated for these changes the values 

of the utility function. The results are summarized in Tables 10, 11.  

Let the interval assessments for states “Growth”, “Static economic situation” 

are equal to: 1)[0.6; 0.7], [0.1; 0.2]; 2)[0.1; 0.3], [0.5; 0.6]; 3)[0.9; 0.95],[0.0; 

0.02]. Then the results of preferences are shown in Table 10 (see the results of  

experiment 1). 

Table 10 The table of preferences for checking of robustness 

CASES )( 1h )( 3h )( 2h

1
( ) [0.6;0.7]P s

2
( ) [0.1;0.2]P s

3
( ) [0.1;0.3]P s

)( 1hU =7.03 )( 3hU =6.53 )( 2hU =6.13 

1
( ) [0.1;0.3]P s

2
( ) [0.5;0.6]P s

3
( ) [0.1;0.4]P s

)( 1hU =6.33 )( 3hU =6.73 )( 2hU =4.63 

1
( ) [0.9;0.95]P s

2
( ) [0.0;0.02]P s

3
( ) [0.03;0.1]P s

)( 1hU =7.73 )( 3hU =6.83 )( 2hU =6.73 

 

 
We change these interval assessments slightly. Let the interval assessments for 

events “Growth”, “Static economic situation” are equal to:  

1)[0.59; 0.69], [0.09; 0.19];2)[0.09; 0.29], [0.49; 0.59];3)[0.89; 0.94], [0;0.01].  
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Then the table of preferences will be as shown in the Table 11 

Table 11 The table of preferences for checking of robustness 

CASES )( 1h )( 3h )( 2h

1
( ) [0.59;0.69]P s

2
( ) [0.09;0.19]P s

3
( ) [0.12;0.32]P s

)( 1hU =6.98 )( 3hU =6.48 )( 2hU =5.86 

1
( ) [0.09;0.29]P s

2
( ) [0.49;0.59]P s

3
( ) [0.12;0.42]P s

)( 1hU =6.28 )( 3hU =6.68 )( 2hU =4.66 

1
( ) [0.89;0.94]P s

2
( ) [0.0;0.01]P s

3
( ) [0.05;0.11]P s

)( 1hU  =7.7 )( 3hU =6.85 )( 2hU =6.826

 

 
As we can see from the tables 10 and 11 the preferences are stable. 

5   Conclusions 

The widely used principle of maximization of expected utility exhibits serious 

shortcomings. Experimental evidence has repeatedly shown that people violate the 

axioms of von Neumann-Morgenstern-Savage preferences in a systematic manner. 

It resulted in emergence of numerous non-expected theories to alleviate this dis-

crepancy, from weighted utility to rank-dependent utility. Utility functions and 

non-additive measures used in non-expected utility models to model human pref-

erences are mainly considered as real-valued functions despite of the fact that in 

reality, human preferences are imprecise and therefore are commonly described in 

NL. On the other hand, what is not available is a methodology for dealing with 

second-order uncertainty, that is, uncertainty about uncertainty, or uncertainty
2
. 

In this paper, we have developed the theory and methodology of decision mak-

ing with second-order information granules. First, the part of our theory is devoted 

to decision making with fuzzy probabilities. We presented the characterization 

theorems about existence of fuzzy utility function representing weak order relation 

defined over the set of fuzzy alternatives. The proposed methodology based on 

these theorems is intended to help in solving problems when the environment of 

fuzzy events and fuzzy states are characterized by fuzzy probabilities.  The pro-

posed theory of decision analysis with fuzzy probabilities includes non-expected 

fuzzy-number-valued utility function represented by a fuzzy Choquet integral with 

a fuzzy-number-valued fuzzy measure generated by fuzzy probabilities.  

The other direction of our theory is based on the use of the second-order impre-

cise hierarchical model. We have considered decision making method that is based 

on a two-level hierarchical probability model where probabilities both on the first 
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and the second levels are interval probabilities. The proposed methodology based 

on this model is intended to solve a decision making problem when environment 

of states is characterized by second-order uncertainty, namely, by interval impre-

cise probabilities. The proposed theory of decision analysis with imprecise prob-

abilities includes non-expected utility function represented by Choquet integral 

with lower prevision measure generated by imprecise probabilities both at the first 

and second levels. This approach to decision making forms a general framework 

that coincides with human-oriented assessment of imperfect information. 

The developed theory and the methodology of decision making with fuzzy 

probabilities is applied to solve a problem of decision making in oil extraction 

from a potentially oil-bearing region. The suggested second-order imprecise prob-

ability model is also applied to solving investment problem. We have investigated 

robustness of the second-order hierarchical imprecise probability model and an 

impact of imprecise probabilities to decisions obtained. The obtained results 

showed the validity of the proposed theory. 
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Summary. In the recent years, a high number of fuzzy rule learning algorithms 

have been developed with the aim of building the Knowledge Base of Linguistic 

Fuzzy Rule Based Systems. In this context, it emerges the necessity of managing a 

flexible structure of the Knowledge Base with the aim of modeling the problems 

with a higher precision. In this work, we present a short overview on the Hierar-

chical Fuzzy Rule Based Systems, which consists in a hierarchical extension of 

the Knowledge Base, preserving its structure and descriptive power and reinforc-

ing the modeling of those problem subspaces with more difficulties by means of a 

hierarchical treatment (higher granularity) of the rules generated in these areas. 

Finally, this methodology includes a summarisation step by means of a genetic 

rule selection process in order to obtain a compact and accurate model. We will 

show the goodness of this methodology by means of a case of study in the frame-

work of imbalanced data-sets in which we compare this learning scheme with 

some basic Fuzzy Rule Based Classification Systems and with the well-known 

C4.5 decision tree, using the proper statistical analysis as suggested in the special-

ised literature. Finally, we will develop a discussion on the usefulness of this 

methodology, analysing its advantages and proposing some new trends for future 

work on the topic in order to extract the highest potential of this technique for 

Fuzzy Rule Based Systems.  
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1   Introduction 

Linguistic Fuzzy Rule Based Systems (FRBSs) (Yager and Filev, 1994) have 

demonstrated their ability for control problems (Palm et al, 1997), modeling  

(Pedrycz, 1996), classification or data mining (Kuncheva, 2000; Ishibuchi et al, 

2004) in a huge number of applications. They provide an accurate model which is 

also easily interpretable by the end-user or expert by means of the use of linguistic 

labels. The main handicap in the application of linguistic systems is the hard re-

strictions on the fuzzy rule structure (Bastian, 1994), which may suppose a loss in 

accuracy when dealing with some complex systems, i.e. high dimensional prob-

lems, in the presence of noise or when the classes are overlapped (in classification 

tasks). 

It is possible to make some considerations to face this drawback. Many differ-

ent possibilities to improve the linguistic fuzzy modeling have been considered in 

the specialised literature. All of these approaches share the common idea of im-

proving the way in which the linguistic fuzzy model performs the interpolative 

reasoning by inducing a better cooperation among the rules in the Knowledge 

Base (KB). This rule cooperation may be induced acting on three different model 

components:  

• Approaches acting on the Data Base (DB). For example a priori granularity 

learning (Cordón et al, 2001b) or membership function tuning (Alcalá et al, 

2007). 

• Approaches acting on the Rule Base (RB). The most common approach is rule 

selection (Ishibuchi et al, 1995; Gacto et al, 2009) but also multiple rule con-

sequent learning (Cordón and Herrera, 2000) could be considered. 

• Approaches acting on the whole KB. This includes the KB derivation (Magda-

lena and Monasterio-Huelin, 1997) and a hierarchical linguistic rule learning 

(Ishibuchi et al, 1993; Cordón et al, 2002). 

In this work we will focus on this last issue, studying the use of a hierarchical en-

vironment in order to improve the behaviour of linguistic FRBSs. This approach 

has been first proposed by Herrera and Martínez (Herrera and Martínez, 2001) in 

the field of Decision Making and later by Cordón et al. (Cordón et al, 2002) in the 

scenario of regression problems. The hierarchical model preserves the original de-

scriptive power of FRBS and increases its accuracy by reinforcing those problem 

subspaces that are especially difficult by means of a hierarchical treatment of the 

rules generated in these areas producing a more general and well defined structure, 

the Hierarchical Knowledge Base (HKB). 

Our aim is to provide a wide overview on the hierarchical methodology for lin-

guistic fuzzy systems, describing the different approaches that have been devel-

oped on the topic including the basic hierarchical systems of linguistic rules learn-

ing methodology (HSLR-LM) (Cordón et al, 2002), the hybridization of weighted 

rule learning with the hierarchical approach (Alcalá et al, 2003) and the iterative 

scheme through different granularity levels of the HSLR-LM (Cordón et al, 2003). 

In order to show their usefulness, we will present a case of study on classification 

with imbalanced data-sets (He and Garcia, 2009; Sun et al, 2009), in which we 
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have made use of the adaption of Hierarchical Fuzzy Rule Based Systems 

(HFRBSs) to this scenario (Fernández et al, 2009). 

According to all these points, this work is organised as follows. First, Section 2 

introduces the concept of hierarchal fuzzy partitions and the definition of the 

HKB. Next, Section 3 describes the learning methodology for HFRBSs and some 

extensions that have been developed this approach. In Section 4 we present the 

framework of imbalanced data-sets and the specific hierarchical fuzzy methodol-

ogy that was designed for this scenario. Then, we provide a case of study for im-

balanced data-sets in Section 5, showing some experimental results on this new 

topic. Finally, in Section 6 we will point out some concluding remarks about the 

study carried out and we will discuss some new challenges on the topic that can 

support further work from the basis previously presented.  

2   Hierarchical Linguistic Fuzzy Partitions 

As we have stated in the introduction of this work, the KB structure usually  

employed in the field of linguistic modeling has the drawback of its lack of accu-

racy when working with very complex systems. This fact is due to some problems 

related to the linguistic rule structure considered, which are a consequence of the 

inflexibility of the concept of linguistic variable (Zadeh, 1975). A summary of 

these problems may be found in (Bastian, 1994; Carse et al, 1996), and it is briefly 

enumerated as follows. 

• There is a lack of flexibility in the FRBSs because of the rigid partitioning of 

the input and output spaces. 

• When the system input variables are dependent themselves, it is very hard to 

fuzzy partition the input spaces. 

• The homogenous partitioning of the input and output spaces when the input-

output mapping varies in complexity within the space is inefficient and does 

not scale to high-dimensional spaces. 

• The size of the RB directly depends on the number of variables and linguistic 

terms in the system. Obtaining an accurate FRBS requires a significant granu-

larity amount, i.e., it needs of the creation of new linguistic terms. This granu-

larity increase causes the number of rules to rise significantly, which may take 

the system to lose the capability of being interpretable for human beings. 

At least two things could be done to solve many of these problems and to improve 

the model accuracy. On the one hand, we can use approximative fuzzy modeling, 

with the consequence of losing the model interpretability. On the other hand, we 

can refine a linguistic model trying not to change too much the meaning of the 

linguistic variables neither the descriptive power of the final FRBS generated. 

Related to the previous issue, a crucial task for dealing with linguistic information 

is to determine the granularity of uncertainty, i.e., the cardinality of the fuzzy linguis-

tic term set used to assess the linguistic variables. Depending on the uncertainty  

degree held by a source of information qualifying a phenomenon, the linguistic term 

set will have more or less terms (Bonissone and Decker, 1985; Herrera et al, 2000). 



158 A. Fernández et al.

 

In order to overcome this drawback, Herrera and Martínez proposed in (Herrera 

and Martínez, 2001) the use of a set of multigranular linguistic contexts that they 

denoted as linguistic hierarchies term sets. A linguistic hierarchy is a set of levels, 

where each level is a linguistic term set with different granularity to the rest of le-

vels of the hierarchy. The purpose of this extension is the flexibilisation of the KB 

to become an HKB. This is possible by the development of a new KB structure, 

where the linguistic variables of the linguistic rules could take values from fuzzy 

partitions with different granularity levels. An HKB is said to be composed of a 

set of layers (“levels” in the notation of Herrera and Martínez), and each layer is 

defined by its components in the following way: 

)),(,())(,())(,( tntRBtntDBtntlayer +=
                           

(1) 

with 
)(tn

 being the number of linguistic terms in the fuzzy partitions of layer t , 

))(,( tntDB
 being the DB which contains the linguistic partitions with granular-

ity level 
)(tn

 of layer t  (t-linguistic partitions), and 
))(,( tntRB

 being the RB 

formed by those linguistic rules whose linguistic variables take values in 

))(,( tntDB
 (t-linguistic rules). For the sake of simplicity in the descriptions, the 

following notation equivalences are established: 

tDBtntDB ≡))(,(  and 
tRBtntRB ≡))(,(                               (2) 

At this point, we should note that, At this point, we should note that, in this work, 

we are considering linguistic partitions with the same number of linguistic terms 

for all input variables, composed of symmetrical triangular-shaped and uniformly 

distributed membership functions (see Fig. 1). This type of membership functions 

is the most suitable for this environment easing the mapping between the different 

layers of the HKB. Furthermore, this environment can be extended to interval-

valued fuzzy sets adding a degree of uncertainty in the definition of the support of 

each fuzzy term (Sanz et al, 2010). 

Specifically, the number of linguistic terms in the t-linguistic partitions is  

defined in the following way: 

12)1)1(()( 1 +⋅−= −tntn ,                                                (3) 

with )1(n  being the granularity of the initial fuzzy partitions, linguistic hierarchy 

basic rules. This structure must satisfy the following rules: 

1. To preserve all former modal points of the membership functions of each  

linguistic term from one level to the following one. 

2. To make smooth transitions between successive levels. The aim is to build a 

new linguistic term set, new linguistic term will be added between each pair 

of terms belonging to the term set of the previous level. To carry out this  

insertion, we shall reduce the support of the linguistic labels in order to keep 

place for the new one located in the middle of them. 
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Fig.1 (left) graphically depicts the way in which a linguistic partition in 
1DB   

becomes a linguistic partition in 
2DB . Each term of order k  from 

tDB , 
)(tn

kS  

(
)1(n

kS  in the figure), is mapped into the fuzzy set 
1)(2

12

−⋅
−⋅

tn

kS , preserving the former 

modal points, and a set of 1)( −tn  new terms is created, each one between 
)(tn

kS  

and 
)(

1

tn

kS +  ( )1)(,,1 −= tnk …  (see Figure 1 right). 
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Fig. 1 Two layers of linguistic partitions which compose the HDB and mapping between 

terms from successive DBs. 

The main purpose of developing a Hierarchical Rule Base (HRB) is to divide 

the problem space in a more accurate way. To do so, those linguistic rules from 

))(,( tntRB  – 
tRB  – that classify a subspace with bad performance are  

expanded into a set of more specific linguistic rules, which become their image in 

)1)(2,1( −⋅+ tntRB  – 
1+tRB  –. This set of rules classify the same subspace 

that the former one and replaces it. As a consequence of the previous definitions, 

we could now define the HKB as the union of every layer t : 

∪t
tntlayerHKB ))(,(=

                                                
(4) 
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3   Hierarchical Fuzzy Rule Based Systems 

In the previous section we have introduced the concept of hierarchical fuzzy parti-

tions. As explained, this approach presents a more flexible KB structure that  

allows improving the accuracy of the FRBCSs without losing their interpretability: 

the HKB, which is composed of a Hierarchical Data Base (HDB) and an HRB. 

In this section, we will first introduce the basic two-level HSLR-LM to gener-

ate an HFRBS (Cordón et al, 2002). Next, we describe the hybridization of 

weighted rule learning with the hierarchical approach which was developed with 

the aim of improving the system accuracy (Alcalá et al, 2003). Finally, an exten-

sion of the two-level learning method is presented as an iterative scheme through 

different granularity levels (Cordón et al, 2003). We must point out that in all 

these three cases, the scenario in which these approaches have been proposed is 

devoted to regression problems. 

3.1   A Two-Level HSLR Learning Methodology 

The first methodology to build an HFRBS was proposed by Cordón et al. (Cordón et 

al, 2001a) as a strategy to improve simple linguistic models preserving their structure 

and descriptive power, reinforcing only the modeling of those problem subspaces 

with more difficulties. For the sake of maintaining the interpretability of the final 

model, this basic HSLR was only based on two hierarchical levels, i.e., two layers. 

In the following, the structure of the learning methodology and its most impor-

tant components are described in detail. Specifically, the algorithm to obtain an 

HFRBS is based on two processes: 

1. HKB Generation Process: An HRB is created from a simple RB obtained by 

an LRG-method. 

2. HRB Genetic Selection Process: The best cooperative rules are selected by 

means of a Genetic Algorithm (GA). 

To do so, it is needed to use an existing inductive LRG-method based on the  

existence of a set of input-output training data },,,,{ 1 mp xxxX ……=  with 

),,,( 1 ppnpp yxxx …= , mp ,,2,1 …=  where pix  is the i th attribute value 

( ni ,,2,1 …= ) of the p -th training pattern py  is the output value, and a previ-

ously defined 
1DB . Usually, the LRG-method selected is aimed to obtain simple 

linguistic fuzzy models, such as the Wang and Mendel's algorithm (Wang and 

Mendel, 1992), or the Thrift's algorithm (Thrift, 1991). Two measures of error are 

used in the algorithm: 

1. Global measure (used to evaluate the complete RB): The Mean Square Error 

(MSE) for a whole RB, calculated over X , is defined as: 

X

xsy

RBXMSE
Xx

pp

p

⋅

−

=

∑
∈

2

))((

),(

2
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with )( pxs  being the output value obtained from the HLSR using the current RB 

when the input variable values are ),,,( 1 ppnpp yxxx …= , and py  is the known 

desired value. 

2. Local measure (used to determine if an individual rule is expanded): The 

MSE for a simple rule
1
, 

)1(n

iR , calculated over iX , is showed as follows: 

i

Xx

pip

n

ii
X

xsy

RBXMSE
ip

⋅

−

=

∑
∈

2

))((

),(

2

)1(
 

with iX  being a set of the examples matching the i -th rule antecedents to degree 

]1,0(∈τ  and )( pi xs  being the output value from this rule. 

Table 1 Two-level learning method 

HIERARCHICAL KNOWLEDGE BASE 

Step 0. ))1(,1( nRB  Generation Process 

Step 1. )1)1(2,2( −⋅ nRB  Generation Process 

Step 2. Summarization Process 

HIERARCHICAL RULE BASE GENETIC SELECTION PROCESS 

Step 3. HRB Genetic Selection Process 

 
Now we will describe the HKB generation process (summarised in Table 1), 

which basically consists of the following steps: 

Step 0. 
1RB  Generation. Generate the rules from 

1RB  by means of an existing 

LRG-method: ),( 11 XDBmethodLRGRB −= . 

Step 1. 
2RB  Generation. Generate 

2RB  from 
1RB , 

1DB  and 
2DB . 

a) Calculate the error of 
1RB : ),( 1RBXMSE . 

b) Calculate the error of each 1-linguistic rule: ),( )1(n

ii RBXMSE . 

c) Select the 1-linguistic rules with bad performance which will be ex-

panded (the expansion factor α  may be adapted in order to have more 

or less expanded rules): 

If  
),(),( 1)1(

RBXMSERXMSE
n

ii ⋅≥ α
 Then 

1)1(

bad

n

i RBR ∈  

Else 
1)1(

good

n

i RBR ∈ . 

                                                           
1 Notice that other local error measures, such as the one showed in (Yen et al, 1998) could 

also be considered. 
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d) Create 
2DB . 

e) For each bad performance 1-linguistic rule to be expanded, 
1)1(

bad

n

j RBR ∈
: 

i. Select the 2-linguistic partitions terms from 
2DB  for each rule. 

For all linguistic terms considered in 
)1(n

jR , i.e., 
)1(n

jkS  defined 

in 
1DB , select those terms 

1)1(2 −⋅n
hS  in 

2DB  that significantly 

intersect them. We consider that two linguistic terms have a 

“significant intersection” between each other, if the maximum 

cross level between their fuzzy sets in a linguistic partition over-

comes a predefined threshold δ : 

})}(),(min{max/{)( 1)1(2)1(

21)1(2)1( δµµ ≥∈= −⋅∈
−⋅ uuDBSSI n

h
n
jk

k SSUu

n

h

n

jk

            (5) 

where ]1,0[∈δ . 

ii. Combine the previously selected s sets 
)( )1(n

jkSI
 by the follow-

ing expression: 

)()()( )1()1(

1

)1( n

js

n

j

n

j SISIRI ××= …
                                 (6) 

iii. Extract 2-linguistic rules, which are the expansion of the bad 1-

linguistic rule 
)1(n

jR . This task is performed by the LRG-

method, which takes )( )1(n

jRI  and the set of examples 

)( )1(n

jRX  as its parameters: 

},,{

))(),(()(

1)1(21)1(2

)1()1()1(

1

−⋅−⋅=

=−=

n

j

n

j

n

j

n

j

n

j

L
RR

RXRImethodLRGRCLR

…
              (7) 

with )( )1(n

jRCLR  being the image of the expanded linguistic 

rule 
)1(n

jR , i.e., the candidates to be in the HRB from rule 

)1(n

jR . 

Step 2. Summarization. Obtain a Joined set of Candidate Linguistic Rules 

(JCLR), performing the union of the group of the new generated 2-linguistic rules 

and the former good performance 1-linguistic rules: 

1)1()1(1 )),(( bad

n

j

n

jjgood RBRRCLRRBJCLR ∈= ∪∪ . 

Example: In the following, we show an example of the whole expansion process. 

Let us consider 3)1( =n and the following linguistic partitions: 
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},,{)3,1()3,1()3,1( 333

21
LMSDBDBDB yxx === , 

},,,,{)5,2()5,2()5,2( 55555

21
VLLMSVSDBDBDB yxx === , 

where S  stands for Small, M  for Medium, L  for large, and V  for Very. Let us 

consider the following bad performance 1-linguistic rule to be expanded (see Fig. 2): 

3

iR : IF 1x  is 
3

1iS  and 2x  is 
3

2iS  THEN y  is 
3

iB  

where the linguistic terms are, 
33

1 SSi = , 
33

2 SSi = , 
33

SBi = , and the resulting 

sets I  with 5.0=δ  are: 

)5,2()()(},,{)(},,{)( 3553

2

553

1 yiii DFBISVSSISVSSI ⊆⋅===  

)()()()( 33

2

3

1

3

iiii BISISIRI ××= . 

"  
Fig. 2 Example of the HRB Generation Process. 
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Therefore, it is possible to obtain at most four 2-linguistic rules generated by 

the LRG-method from the expanded 
3

iR : 

},,,{)),(( 5

4

5

3

5

2

5

1

3

iiiiii RRRRERILRG =  

This example is graphically showed in Fig. 2. In the same way, other bad  

performance neighbor rules could be expanded simultaneously. 
 

Step 3. HRB Selection. Simplify the set JCLR by removing the unnecessary rules 

from it and generating an HRB with good cooperation. In JCLR –where rules of 

different hierarchical layers coexist–, it may happen that a complete set of 2-

linguistic rules which replaces an expanded 1-linguistic rule does not produce 

good results. However, a subset of this set of 2-linguistic rules may work properly. 

A genetic process is considered to put this task into effect, which is explained on 

detail in the next subsection. 

)(Pr JCLRocessSelectionHRB =  

After applying this algorithm, the HKB is obtained as: 

HRBHDBHKB +=  

3.2   Linguistic Modeling with Hierarchical Systems of Weighted 

Linguistic Rules 

In (Alcalá et al, 2003), Alcalá et al. proposed the hybridization of the hierarchical 

scheme with the use of rule weights by extending the two-level HSLR-LM pro-

posed in (Cordón et al, 2002). The resulting Hierarchical System of Weighted 

Linguistic Rules (HSWLR), presents a model structure which is extended by per-

mitting the use of weighted hierarchical linguistic rules. Besides, the summariza-

tion component –which has the aim of selecting the subset of rules best cooperat-

ing among the rules generated to obtain the final HKB– was modified by allowing 

it to jointly perform the rule selection and the rule weight derivation. A GA  

(Michalewicz, 1996) performing the rule selection together with the derivation of 

rule weights was developed for this task.  

Hence, this extended methodology was intended as a meta-method over any 

other LRG-method, developed to improve simple linguistic fuzzy models by only 

reinforcing the modeling of those problem subspaces with more difficulties  

whereas the use of rule weights improved the way in which they interact. This ex-

tension of the learning methodology was named two-level HSWLR Learning 

Methodology (HSWLR-LM) and consists of two modifications: 

• Modification of the HRB structure and Inference System, in order to consider 

the use of weights, obtaining Weighted HKB s (WHKB s). 

• Modification of the rule selection process (Step 3 of the two-level HSLR-LM 

algorithm), to consider the derivation of rule weights. 
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Weighted Hierarchical Knowledge Base 

In this case, only the rule structure in the HRB has to be modified. The same struc-

ture of the weighted linguistic rules will be used to form the Weighted HRB 

(WHRB) and then the WHKB: 

WHRBHDBWHKB +=  

Therefore, the fuzzy reasoning process must be extended as in the case of 

weighted linguistic rules, considering the matching degree of the rules fired. 

In this way, we can define the WHRB as a whole HRB together with their cor-

responding rule weights: 

t

t

t

t WRBWHKB ∪∪ += . 

with 
t

W  being the set of weights associated to the rules from layer t . We should 

notice that these weights are obtained over the whole HRB (and not over the iso-

lated layers) since they must consider the way in which all the rules interact, i.e., 

the weights considered in the different layers, 
t

W , are interdependent. Therefore, 

they must be jointly derived once the whole HRB is available. 

Algorithm 

The same operation mode of the two-level HSLR-LM algorithm will be followed 

to generate linguistic fuzzy models with this new structure, but including the 

weight learning. Again, the Wang and Mendel's algorithm (Wang and Mendel, 

1992) was considered as LRG-method to obtain simple linguistic fuzzy models, 

although any other technique could be used. Therefore, the main steps of the ex-

tended algorithm are the following ones: 

 
HIERARCHICAL KNOWLEDGE BASE GENERATION PROCESS 

Step 0. ))1(,1( nRB  Generation Process 

Step 1. )1)1(2,2( −⋅ nRB  Generation Process 

Step 2. Summarization Process → (Extract Repeated (JCLR) + Weights). 

 

HIERARCHICAL RULE BASE GENETIC SELECTION PROCESS 

Step 3. Genetic Weight Derivation and Rule Selection Process 

• Genetic selection of a subset of rules presenting good cooperation. 

• Genetic derivation of the weights associated to these rules. 

 
Fig. 3 presents the flowchart of this algorithm. Specifically, at Step 3 of the 

two-level HSWLR-LM, a GA with double coding scheme ( 21 CCC += ) was 

employed for both rule selection and weight derivation. 
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Fig. 3 HSWLR Learning Methodology. 

3.3   An Iterative Methodology for Hierarchical Linguistic 

Modeling 

In the beginning of this section we have introduced a basic approach to develop 

hierarchical models from a limited HKB focused on interpretability: the HSLRs of 

two levels (Cordón et al, 2002). In (Cordón et al, 2003), Cordón et al. extended the 

former model structure, i.e., the HKB, and proposed an iterative HSLR learning 

methodology to learn it from examples. As the name suggests, this methodology 

iteratively selects bad performance linguistic rules, which need more specificity, 

and expands them locally through different granularity levels. This fact produces a 

wide spectrum of solutions—from high interpretable to high accurate, and tradeoff 

solutions—and avoids typical drawbacks of prototype-based linguistic rule gen-

eration methods (LRG-methods). 

The iterative HSLR-LM was developed as a parametrised methodology. The 

factor of expansion controls the level of bad performance that a rule should have 

to be expanded into more specific ones. Thus, a low factor implies a small expan-

sion, a smaller number of rules, and a more interpretable model. In this sense, the 

basic approach (Cordón et al, 2002) is a special case which makes use of this pa-

rameter to obtain interpretable hierarchical models. Another parameter to be con-

sidered is the iteration of the algorithm. It is used to control the granularity level 

that more specific hierarchical rules, which replace those ones with bad perform-

ance, should have (see Fig. 4). 
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" 
Fig. 4 Algorithm of the iterative HSLR-LM design process. 

As the reader may have already noticed, the main change in the structure of the 

algorithm presented in the beginning of this section is the enabling of having sev-

eral granularity levels and therefore to iterate steps 1 to 3 several times depending 

on a parameter k . According to this, it performs gradual and local-oriented  

refinements on problem subspaces that are badly modeled by previous models 

rather than in the whole problem domain. Furthermore, it integrates the improved 

local behavior with the whole model by summarization processes which ensure a 

good global performance. 

4   On the Use of Hierarchical Fuzzy Rule Based Classification 

Systems on Imbalanced Data-Sets 

In this section we will address a new and interesting problem, named as classifica-

tion with imbalanced data-sets (He and Garcia, 2009; Sun et al, 2009) which  
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consists in learning from highly skewed data, in general terms. Indeed, this prob-

lem has been recently identified as one of the hot topics in data mining (Yang and 

Wu, 2006) and therefore we must emphasise its significance and guide our efforts 

in dealing with this type of applications. 

Regarding linguistic fuzzy systems, in a previous study of some of the authors 

we have shown the goodness of this type of models to deal with imbalanced data-

sets (Fernández et al, 2008). In this section we will introduce a solution we have 

provided to improve the accuracy of Fuzzy Rule Based Classification Systems 

(FRBCS) in this framework (Fernández et al, 2009). Specifically we proposed a 

hierarchical environment, by means of the HSLR-LM described in the previous 

section, by increasing the granularity of the fuzzy partitions on the boundary areas 

between the classes, in order to obtain a better separability. 

In order to do so, we will first introduce in this section the scenario of classifi-

cation with imbalanced data-sets, that is, its main features and how to deal with 

this problem. Then, we will describe how to adapt the HSLR-LM to this specific 

framework. 

4.1   An Introduction to Classification with Imbalance Data-Sets 

Learning from imbalanced data is an important topic that has recently appeared in 

the Machine Learning community (Chawla et al, 2004; He and Garcia, 2009; Sun 

et al, 2009). This problem is very representative since it appears in a variety of 

real-world applications including, but not limited to, medical applications, finance, 

telecommunications, biology and so on. 

In this framework, the class distribution is not uniform, resulting on a high 

number of examples belonging to one or more classes and a few from the rest. The 

minority classes are usually associated to the most interesting concepts from the 

point of view of learning and, due to that fact, the cost derived from a misclassifi-

cation of one of the examples of these classes is higher than that of the majority 

classes. In this work we will focus on binary problems where there is just one pos-

itive and negative class. 

Standard classifier algorithms usually have a bias towards the majority class, 

since the rules which predict the higher numbers of examples are positively 

weighted during the learning process in favour of the standard accuracy rate met-

ric, which does not take into account the class distribution of the data. Conse-

quently, the instances belonging to the minority class are misclassified more often 

than those belonging to the majority class. 

Another important issue of this problem are the small disjuncts that can be 

found in the data set (Weiss and Provost, 2003) and the difficulty of most learning 

algorithms in detecting these areas (Orriols-Puig et al, 2009; Orriols-Puig and 

Bernadó-Mansilla, 2009). In fact, learning algorithms try to benefit those models 

with a higher degree of coverage and these small disjuncts imply the application 

of very specific models which are discarded in favour or more general ones. 

Furthermore, another handicap of imbalanced data sets, which is related to the 

apparition of small disjuncts, is the overlapping between the examples of the posi-

tive and the negative class (García et al, 2008), in which the minority class  
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examples can be simply treated as noise and ignored by the learning algorithm. 

These phenomena are depicted in Figure 5.a and 5.b respectively.  

 

Fig. 5 Example of the imbalance between classes: a) small disjuncts b) overlapping  

between classes 

A large number of approaches have previously been proposed for dealing with 

the class-imbalance problem. These approaches can be categorised into two 

groups: the internal approaches which create new algorithms or modify existing 

ones to take the class-imbalance problem into consideration (Barandela et al, 

2003; Wu and Chang, 2005; Xu et al, 2007) and the external approaches which 

pre-process the data in order to diminish the effects of their class imbalance (Ba-

tista et al, 2004; Estabrooks et al, 2004). Furthermore, cost-sensitive learning solu-

tions incorporating both the data and algorithmic level approaches assume higher 

misclassification costs with samples in the minority class and seek to minimise the 

high cost errors (Domingos, 1999; Zhou and Liu, 2006; Sun et al, 2007). 

The great advantage of the external approaches is that they are more versatile, 

since their use is independent of the classifier selected. Furthermore, we may pre-

process all data sets beforehand in order to use them to train different classifiers. 

In this manner, the computation time needed to prepare the data is lower. 

Specifically, in the framework of fuzzy classification we analyzed the coopera-

tion of some preprocessing methods with FRBCSs (Fernández et al, 2008), show-

ing a good behaviour for the oversampling methods, especially in the case of the 

SMOTE methodology (Chawla et al, 2002). 

4.2   Adaptation of the Hierarchical Learning Process for 

Imbalanced Data 

As we stated previously, the framework of imbalanced data-sets requires some 

specific adaptations for the algorithms in order to obtain a good performance for 

both classes. In the remaining of this section we will first introduce the type of 

rules, rule weights and inference model used for standard classification tasks. 

Next, we will highlight the main changes carried out in the hierarchical learning 

process for its application to imbalanced problems.  
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Fuzzy Rule Based Classification Systems 

Any classification problem consists of m  training patterns ),,( 1 pnpp xxx …= , 

mp ,,2,1 …=  from M  classes where pix  is the i th attribute value 

( ni ,,2,1 …= ) of the p -th training pattern.  

In this work we use fuzzy rules of the following form for our FRBCSs: 

Rule jR : If 1x  is 1jA  and …  and nx  is jnA  then Class = jC  with jRW (8) 

where jR  is the label of the j th rule, ),,( 1 nxxx …=  is an n-dimensional  

pattern vector, jiA  is an antecedent fuzzy set (we use triangular membership 

functions), jC  is a class label, and jRW  is the rule weight. 

In the specialised literature rule weights have been used in order to improve the 

performance of FRBCSs (Ishibuchi and Nakashima, 2001). For the framework of 

imbalanced data-sets and following the conclusions extracted in (Fernández et al, 

2008), as heuristic method for the rule weight the Penalised Certainty Factor 

(Ishibuchi and Yamamoto, 2006) was employed: 
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The Fuzzy Reasoning Method of the winning rule (classical approach) (Cordón et 

al, 1999) was used for classifying new patterns by the RB. The single winner rule 

wR  is determined for a new pattern ),,( 1 pnpp xxx …=  as  

LjXxRWxRWx pjpjwpw …1,};)(max{)( =∈⋅=⋅ µµ
           (10) 

The new pattern px  is classified as Class wC  , which is the consequent class of 

the winner rule wR  . If multiple fuzzy rules have the same maximum value but 

different consequent classes for the new pattern px  in the previous equation, the 

classification of px  is rejected. The classification is also rejected if no fuzzy rule 

is compatible with the new pattern px . 

Two-Level Learning Method for Building HFRBCSs in Imbalanced Domains 

The main scheme of the two-level HSLR-LM was maintained in this case, follow-

ing exactly the same steps. In this case, as LRG-method the Chi et al. (Chi et al, 

1996) approach must be considered for building a FRBCS.  
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The main change refers to the measures of error are used in the algorithm used 

both to evaluate the complete RB and to determine if an individual rule is ex-

panded. Their expressions are defined below: 

1. Global measure. We will employ the accuracy per class, computed as: 

||

|)}(),(/{|
),(

i

ppip

ii
X

xClassRBxFRMXx
RBXAcc

=∈
=

            (11) 

where || ⋅  is the number of patterns, with iX  being the subset of examples of the 

i -th class ( Mi …1∈ ), ),( RBxFRM p  is the output class computed following 

the fuzzy reasoning process using the current RB  and )( pxClass  is the class 

label for example px . 

2. Local measure. The accuracy for a simple rule, 
)1(n

jR , calculated over X , is 

showed as follows: 
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where )(⋅Class  is a function that provides the class label for a pattern, or for a 

rule. We must note that )( )1(n

jRX
+

 and )( )1(n

jRX  only include those examples 

that the rule actually classifies, because we are using as Fuzzy Reasoning Method 

the winning rule approach. 

Additionally, another significant modification must be developed in the HRB 

genetic selection. Specifically, during the chromosome evaluation the fitness func-

tion must be in accordance with the framework of imbalanced data-sets and there-

fore the geometric mean of the true rates (Barandela et al, 2003) was used. This 

metric defined as: 

TNFP

TN

FNTP

TP
GM

+
⋅

+
=

                                        

(15) 

where TP  and TN  are the true rate for the positive and negative instances and 

FP  and FN  the rate for the false positives and negatives respectively. This met-

ric attempts to maximise the accuracy of each one of the two classes with a good 

balance, being a performance metric that links both objectives. 
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5   Case of Study: Hierarchical Fuzzy Rule Based Classification 

Systems for Imbalanced Data-Sets 

In the previous part of this work we have introduced the problem of imbalanced 

data-sets and the solution proposed to increase the performance of linguistic 

FRBCSs by means of the use of the HSLR-LM adapted for imbalanced problems 

(Fernández et al, 2009). Now, this section has the aim of presenting a case of 

study in which we show the goodness of the proposed methodology in contrast 

with other well-known fuzzy approaches and with C4.5 (Quinlan, 1993).  

According to this, we will first introduce the configuration of the two-level 

learning method, determining all the parameters used in this experimental study 

and the selected benchmark data-sets. Next, we will present the statistical tests 

used in all our analysis. Finally, we will analyze the results of the HFRBCS when 

applied to imbalanced data-sets globally, and considering two different degrees of 

imbalance. This last part of the study is divided into two sections: 

• A comparative study is carried out between the HFRBCS model and other 

fuzzy learning methodologies, including Chi et al.'s (Chi et al, 1996) and Ishi-

buchi et al.'s (Ishibuchi and Yamamoto, 2005) rule learning algorithms, and 

an approach proposed by Xu et al. for imbalanced data-sets, called  

E-Algorithm (Xu et al, 2007). 

• The performance of the HFRBCSs is compared against the well-known C4.5 

algorithm (Quinlan, 1993) as a well-known classifier that has been widely 

used for this type of problems (Batista et al, 2004; Estabrooks et al, 2004; Or-

riols-Puig et al, 2009; Su et al, 2006; Su and Hsiao, 2007; Sun et al, 2007). 

5.1   Experimental Set-Up: Parameters and Data-Sets 

In our former studies (Fernández et al, 2008) we selected as a good FRBCS model 

the use of the product T-norm as conjunction operator, together with the Penalised 

Certainty Factor (Ishibuchi and Yamamoto, 2005) approach for the rule weight 

and Fuzzy Reasoning Method of the winning rule. This configuration will be  

employed for all the FRBCSs used in this work, including Chi et al.'s method, 

Ishibuchi et al.'s approach and E-Algorithm. 

After several trials, we selected the following values for the parameters in the 

learning method for building HFRBCSs: 

• Rule Generation: 

o )1(, +tnδ -linguistic partition} terms selector: 0.1 

o α , used to decide the expansion of the rule: 0.2 

• GA Selection: 

o Number of evaluations: 10,000 

o Population length: 61 

In order to reduce the effect of imbalance, we will employ the SMOTE preproc-

essing method (Chawla et al, 2002) for our experiments, consider only the  
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1-nearest neighbour to generate the synthetic samples (using the euclidean dis-

tance), and we balance the training data to the 50% class distribution. The  

E-Algorithm is always applied without preprocessing. 

For Ishibuchi et al.'s rule generation method and E-Algorithm, only rules with 

three or less antecedent attributes are generated. Furthermore we have restricted 

the number of fuzzy rules in the RB to 30 for each class, using as selection meas-

ure the product of support and confidence. This configuration is the one indicated 

by the authors in (Ishibuchi and Yamamoto, 2005; Xu et al, 2007). 

Table 2 Summary Description for imbalanced data-sets. 

Data-set #Ex. #Atts. Class(min.,maj.) %Class(min.; 

maj.) 

IR 

Data-sets with Low Imbalance (IR 1.5 to 9) 

Glass1 214 9 

(build-win-non\_float-

proc;remainder) (35.51, 64.49) 1.82 

Ecoli0vs1 220 7 (im;cp) (35.00, 65.00) 1.86 

Wisconsin 683 9 (malignant;benign) (35.00, 65.00) 1.86 

Pima 768 8 

(tested-positive;tested-

negative) (34.84, 66.16) 1.90 

Iris0 150 4 (Iris-Setosa;remainder) (33.33, 66.67) 2.00 

Glass0 214 9 

(build-win-float-

proc;remainder) (32.71, 67.29) 2.06 

Yeast1 1484 8 (nuc;remainder) (28.91, 71.09) 2.46 

Vehicle1 846 18 (Saab;remainder) (28.37, 71.63) 2.52 

Vehicle2 846 18 (Bus;remainder) (28.37, 71.63) 2.52 

Vehicle3 846 18 (Opel;remainder) (28.37, 71.63) 2.52 

Haberman 306 3 (Die;Survive) (27.42, 73.58) 2.68 

Glass0123vs456 214 9 

(non-

windowglass;remainder) (23.83, 76.17) 3.19 

Vehicle0 846 18 (Van;remainder) (23.64, 76.36) 3.23 

Ecoli1 336 7 (im;remainder) (22.92, 77.08) 3.36 

New-thyroid2 215 5 (hypo;remainder) (16.89, 83.11) 4.92 

New-thyroid1 215 5 (hyper;remainder) (16.28, 83.72) 5.14 

Ecoli2 336 7 (pp;remainder) (15.48, 84.52) 5.46 

Segment0 2308 19 (brickface;remainder) (14.26, 85.74) 6.01 

Glass6 214 9 (headlamps;remainder) (13.55, 86.45) 6.38 

Yeast3 1484 8 (me3;remainder) (10.98, 89.02) 8.11 

Ecoli3 336 7 (imU;remainder) (10.88, 89.12) 8.19 

Page-blocks0 5472 10 (remainder;text) (10.23, 89.77) 8.77 

Data-sets with High Imbalance (IR higher than 9) 

Yeast2vs4 514 8 (cyt;me2) (9.92, 90.08) 9.08 

Yeast05679vs4 528 8 (me2;mit,me3,exc,vac,erl) (9.66, 90.34) 9.35 
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Table 2 (Continued) 

Vowel0 988 13 (hid;remainder) (9.01, 90.99) 10.10 

Glass016vs2 192 9 

(ve-win-float-proc;build-

win-float-proc,build-win-

non_float-proc,headlamps) (8.89, 91.11) 10.29 

Glass2 214 9 

(Ve-win-float-

proc;remainder) (8.78, 91.22) 10.39 

Ecoli4 336 7 (om;remainder) (6.74, 93.26) 13.84 

Yeast1vs7 459 8 (vac;nuc) (6.72, 93.28) 13.87 

Shuttle0vs4 1829 9 (RadFlow;Bypass) (6.72, 93.28) 13.87 

Glass4 214 9 (containers;remainder) (6.07, 93.93) 15.47 

Page-

blocks13vs2 472 10 (graphic;horiz.line,picture) (5.93, 94.07) 15.85 

Abalone9vs18 731 8 (18;9) (5.65, 94.25) 16.68 

Glass016vs5 184 9 

(tableware;build-win-

float-proc,build-win-

non_float-proc,headlamps) (4.89, 95.11) 19.44 

Shuttle2vs4 129 9 (FpvOpen;Bypass) (4.65, 95.35) 20.5 

Yeast1458vs7 693 8 (vac;nuc,me2,me3,pox) (4.33, 95.67) 22.10 

Glass5 214 9 (tableware;remainder) (4.20, 95.80) 22.81 

Yeast2vs8 482 8 (pox;cyt) (4.15, 95.85) 23.10 

Yeast4 1484 8 (me2;remainder) (3.43, 96.57) 28.41 

Yeast1289vs7 947 8 (vac;nuc,cyt,pox,erl) (3.17, 96.83) 30.56 

Yeast5 1484 8 (me1;remainder) (2.96, 97.04) 32.78 

Ecoli0137vs26 281 7 (pp,imL;cp,im,imU,imS) (2.49, 97.51) 39.15 

Yeast6 1484 8 (exc;remainder) (2.49, 97.51) 39.15 

Abalone19 4174 8 (19;remainder) (0.77, 99.23) 128.87 

 
The Imbalance Ratio (IR) (Orriols-Puig et al, 2009), defined as the ratio of the 

number of instances of the majority class and the minority class, is used as a thre-

shold to categorise the different imbalanced scenarios: data-sets with a low imbal-

ance when the instances of the positive class are between 10 and 40% of the total 

instances (IR between 1.5 and 9) and data-sets with a high imbalance where there 

are no more than 10% of positive instances in the whole data-set compared to the 

negative ones (IR higher than 9). 

Specifically, we have considered forty-four data sets from UCI repository 

(Asuncion and Newman, 2007) with different IR. Table 2 summarises the data 

employed in this study and shows, for each data set, the number of examples 

(#Ex.), number of attributes (#Atts.), class name of each class (minority and ma-

jority), class attribute distribution and IR. This table is ordered by the IR, from 

low to highly imbalanced data-sets. 
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In order to develop the study, we use a five fold cross validation approach, that 

is, five partitions for training and test sets, 80% for training and 20% for test, 

where the five test data-sets form the whole set. For each data-set we consider the 

average results of the five partitions. 

5.2   Statistical Tests for Evaluation 

In this paper, we use the hypothesis testing techniques to provide statistical  

support to the analysis of the results (García et al, 2009; Sheskin, 2006). Specifi-

cally, we will use non-parametric tests due to the fact that the initial conditions 

that guarantee the reliability of the parametric tests may not be satisfied, causing 

the statistical analysis to lose credibility with these parametric tests (Demšar, 

2006).  

We will use the Wilcoxon signed-rank test (Wilcoxon, 1945) as a non-

parametric statistical procedure for performing pairwise comparisons between two 

algorithms. For multiple comparisons we use the Iman-Davenport test (Sheskin, 

2006) to detect statistical differences among a group of results, and the Holm post-

hoc test (Holm, 1979) in order to find which algorithms are distinctive among a 

n×1  comparison. 

The post-hoc procedure allows us to know whether a hypothesis of comparison 

of means could be rejected at a specified level of significance α . However, it is 

very interesting to compute the p -value associated to each comparison, which 

represents the lowest level of significance of a hypothesis that results in a rejec-

tion. In this manner, we can know whether two algorithms are significantly differ-

ent and how different they are. 

Furthermore, we consider the average ranking of the algorithms in order to 

show graphically how good a method is with respect to its partners. This ranking 

is obtained by assigning a position to each algorithm depending on its perform-

ance for each data set. The algorithm which achieves the best accuracy on a spe-

cific data set will have the first ranking (value 1); then, the algorithm with the  

second best accuracy is assigned rank 2, and so forth. This task is carried out for 

all data sets and finally an average ranking is computed as the mean value of all 

rankings. 

These tests are suggested in the studies presented in (Demšar, 2006; García and 

Herrera, 2008; García et al, 2009, 2010), where their use in the field of Machine 

Learning is highly recommended. For a wider description of the use of these tests, 

any interested reader can find additional information on the Website 

http://sci2s.ugr.es/sicidm/, together with the software for their application. 

5.3   Experimental Study 

In this part of the study we will focus on determining whether the HFRBCS is  

robust in the framework of imbalanced data-sets and if it improves the perform-

ance of other FRBCSs approaches and the well known C4.5 algorithm. Following  
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this idea, Table 3 shows the results for the test partitions for each FRBCS method 

with its associated standard deviation. Specifically, by columns we include the Chi 

et al.'s method with 3 and 5 labels (Chi-3 and Chi-5), the Ishibuchi et al.'s method 

(Ishibuchi05), the E-Algorithm and the HFRBCS. Additionally, we include the re-

sults for the C4.5 decision tree. This table is divided by the IR, on the one hand 

data-sets with low imbalance and, on the other hand, data-sets with high imbal-

ance. The best global result for test is stressed in boldface in each case. 

Table 3 Detailed table of results for FRBCSs in imbalanced data-sets. Only test results are 

shown. 

Fcvc/ugv" Ejk/5" Ejk/7" Kujkdwejk27" G/Cniqtkvjo" JHTDEU" E607"
Fcvc/Ugvu"ykvj"Nqy"Kodcncpeg"
Incuu3" 860;2"±"80;3" 860;3"±"80:9" 7;04;"±"32055" 2022"±"2022" 95088"±"6088" 97033"±"5096"

Geqnk2xu3" ;4049"±"70;5" ;7078"±"7037" ;8092"±"4062" ;7047"±"6097" ;5085"±"8067" ;90;7"±"4042"
Ykueqpukp" ::0;3"±"4035" 6507:"±"70:8" ;709:"±"305:" ;8023"±"3077" ::046"±"3085" ;7066"±"4023"
Rkoc" 880:2"±"70;5" 8809:"±"404:" 93032"±"6067" 77023"±"6086" 8:094"±"7048" 93048"±"6027"
Ktku2" 32202"±"2022" ;:0;9"±"404;" 32202"±"2022" 32202"±"2022" 32202"±"2022" ;:0;9"±"404;"
Incuu2" 86028"±"5073" 8508;"±"30:2" 8;05;"±"9092" 2022"±"2022" 98079"±":027" 9:036"±"4043"
[gcuv3" 8908;"±"30;3" 8;088"±"3074" 73063"±"3403:" 2022"±"2022" 93093"±"405;" 920:8"±"40;7"
Xgjkeng3" 920;4"±"6056" 930::"±"3047" 860:;"±"6059" 502;"±"80;2" 93098"±"4086" 8;04:"±"5063"
Xgjkeng4" :7076"±"5058" :903;"±"5026" 890:4"±"60;7" 650:5"±"35039" ;2083"±"4039" ;60:7"±"308:"
Xgjkeng5" 8;044"±"60:;" 85035"±"30;7" 85034"±"6028" 2022"±"2022" 880:2"±"5056" 96056"±"302:"
Jcdgtocp" 7:0;3"±"8025" 82062"±"4062" 84087"±"40:6" 60;6"±"33028" 7902:"±"602;" 83054"±"50:7"
Incuu2345xu678" :70:5"±"5026" :70;6"±"3088" ::078"±"703:" :402;"±"80;8" ::059"±"50;9" ;2035"±"5039"

Xgjkeng2" :8063"±"5028" :60;5"±"3083" 970;6"±"3064" 5;029"±"3806;" ::0;4"±"30;8" ;3032"±"4092"

Geqnk3" :704:"±";099" :8027"±":079" :7093"±"40:8" 990:3"±"90;2" :603:"±"3408;" 98032"±";07:"

Pgy/Vj{tqkf4" :;0:3"±"32099" ;8056"±"8087" ;6043"±"6045" ::079"±"50:4" ;;094"±"2085" ;8073"±"60:9"

Pgy/Vj{tqkf3" :9066"±":033" ;705:"±":0:2" :;024"±"35074" ::074"±":09;" ;:07:"±"406:" ;90;:"±"509;"

Geqnk4" ::023"±"7067" :9086"±"60;8" :9022"±"6065" 92057"±"37058" :9084"±":046" ;3082"±"60:8"

Ugiogpv2" ;60;;"±"2067" ;70::"±"3043" 64069"±"409;" ;7055"±"3036" ;9073"±"3033" ;;048"±"2083"
Incuu8" :50:9"±";0:4" 9:035"±"909:" :8049"±":03;" ;2045"±"5099" :80;7"±"320:6" :5022"±";027"
[gcuv5" ;2035"±"602;" :;055"±"5052" 99028"±"39095" :30;;"±"404:" ;2063"±"4056" ::072"±"5088"
Geqnk5" :907:"±"602:" ;3083"±"60;7" :705;"±"5092" 9:076"±":08:" ;20:3"±"6065" ::099"±"9087"
Rcig/Dnqemu2" 9;0;3"±"604;" :9047"±"30;6" 54038"±";083" 86073"±"409;" ;3062"±"2089" ;60:6"±"3074"
Ogcp" :304;"±"60;2" :203;"±"50;2" 960:3"±"70:5" 79027"±"7068" :608;"±"602;" :7092"±±±±"508:"
Fcvc/Ugvu"ykvj"Jkij"Kodcncpeg"
[gcuv4xu6" :80:2"±"7075" :805;"±"9057" 920:7"±"45067" :20;4"±";02;" :;054"±"603:" :702;"±"32037"

[gcuv2789;xu6" 9:0;3"±"70;;" 970;;"±"805;" 9;06;"±";076" 7;0;;"±"38066" 9503:"±"9069" 960::"±"320::"

Xqygn2" ;:059"±"2083" ;90:9"±"30:6" :;025"±"8085" :;085"±"802;" ;:0:4"±"3084" ;6096"±"7044"

Incuu238xu4" 620:6"±"9084" 78039"±"7038" 6303:"±"37062" 2022"±"2022" 7:059"±"42026" 6:0;3"±"4;066"
Incuu4" 69089"±"32038" 6;046"±":03;" 65077"±"37092" ;0:9"±"44029" 760:6"±"42079" 550:8"±"5404;"
Geqnk6" ;3049"±"9065" ;4033"±":057" :80;4"±":087" ;4065"±":046" ;5024"±":039" :304:"±"33089"  
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Table 3 (Continued) 

[gcuv3xu9" :2027"±"8065" 85024"±"34084" 75037"±"32057" 49077"±"48028" 92096"±"34062" 89095"±"404:"

Ujwvvng2xu6" ;;034"±"3037" ;:093"±"303:" ;;038"±"3037" ;:062"±"3048" ;;034"±"3037" ;;0;9"±"2029"

Incuu6" :60;8"±"350:2" :3097"±"33046" 9:049"±"39092" :505:"±"3;0:;" 9205;"±"6206;" :5093"±"3209:"

Rcig/Dnqemu35xu6" ;30;4"±"6098" ;40;5"±";06:" ;6075"±"60::" ;6034"±"32055" ;:086"±"2087" ;;077"±"2069"

Cdcnqpg;/3:" 850;5"±"33022" 88069"±"32089" 8709:"±";045" 5404;"±"42083" 89078"±"36023" 7503;"±":047"

Incuu238xu7" 9306:"±"62039" 9707;"±"64049" ::099"±"406:" 87036"±"5;063" 990;8"±"65083" 9402:"±"64055"

Ujwvvng4xu6" :;0;;"±":083" 9:056"±"650:9" ;;039"±"3035" 32202"±"2022" ;906;"±"4093" ;;037"±"30;2"

[gcuv367:xu9" 84062"±"6077" 7:098"±":079" 620:2"±"3807:" 2022"±"2022" 8406;"±"8048" 6303;"±"8028"
Incuu7" :3078"±"34087" 86055"±"5:062" :;0;8"±"4065" 72083"±"69039" 8:095"±"5;078" :8092"±"37066"
[gcuv4xu:" 94097"±"360;;" 9:098"±":082" 940:5"±"360;9" 940:5"±"360;9" 94069"±"37032" 9:045"±"35027"
[gcuv6" :40;;"±"5032" :5029"±"407:" 93058"±"4504;" 54038"±"4207;" :4086"±"404;" 87022"±":0;6"
[gcuv34:;xu9" 98034"±"9046" 8;048"±"6079" 6:077"±"380:8" 72022"±"35084" 8;059"±"6059" 86035"±";022"
[gcuv7" ;5063"±"7057" ;5086"±"4092" ;60;6"±"205:" ::039"±"9026" ;6042"±"407;" ;4026"±"60;;"
Geqnk2359xu48" 93026"±"6305:" 6;079"±"68063" 93053"±"63087" 95087"±"6502;" 9306:"±"630:2" 93043"±"63053"
[gcuv8" :9072"±"32077" :9095"±";054" ::064"±"8028" 73094"±"35098" :60;4"±"340::" :205:"±"37069"
Cdcnqpg3;" 840;8"±":049" 88093"±"32043" 8802;"±";062" 2022"±"2022" 9203;"±":078" 3707:"±"43058"
Ogcp" 9:022"±"32073" 97097"±"35085" 9604:"±"33094" 780;7"±"37066" 9:067"±±±±"36033" 94043"±"35092"
Cnn"Fcvc/Ugvu"
Ogcp" 9;087"±"9093" 990;9"±":099" 96077"±":09:" 79022"±"32067" :3089"±±±±";032" 9:0;7"±":08;"  

This study is divided into two parts. First, we will analyze the results globally 

for all imbalanced data-sets and then, we will study the two imbalance scenarios 

defined in this paper. Furthermore, our aim is to test the HFRBCS against the 

FRBCSs approaches and C4.5 separately. 

Global Analysis of the Hierarchical Fuzzy Rule Based Classification System 

First of all, we will study the performance of the HFRBCS with the remaining 

FRBCSs approaches. In order to compare the results, we will use a multiple com-

parison test to find the best approach in this case, considering the results in the test 

partitions ( TstGM ). The results of Iman-Davenport tests informs us of the rejec-

tion of the null hypothesis of equality of means (p-value near to zero), telling us of 

the existence of significant differences among the observed results in all data-sets. 

Next, Table 4 shows the rankings of the 5 algorithms considered. 

Now, we apply a Holm test to compare the best ranking method (HFRBCS) 

with the remaining fuzzy methods. The result of this test is shown in Table 5, in 

which the algorithms are ordered with respect to the z  value obtained. Thus, by 

using the normal distribution, we can obtain the corresponding p -value associ-

ated with each comparison and this can be compared with the associated iα  in 

the same row of the table to show whether the associated hypothesis of equal  

behaviour is rejected in favour of the best ranking algorithm or not. 
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Table 4 Rankings obtained through a Friedman test for FRBCSs in all imbalance data-sets. 

Algorithm Ranking 

HFRBCS 2.09091 

Chi-5 2.77273 

Chi-3 3.00000 

Ishibuchi05 3.02273 

E-Algorithm 4.11364 

Table 5 Holm test Table for FRBCSs in all imbalanced data-sets. HFRBCS is the control 

method. 

i  algorithm z  p  iα  
Hypothesis 

4 E-Algorithm 6.00038 1.96858E-9 0.01250 Rejected for HFRBCS 

3 Ishibuchi05 2.76422 0.00576 0.01667 Rejected for HFRBCS 

2 Chi-3 2.69680 0.00700 0.02500 Rejected for HFRBCS 

1 Chi-5 2.02260 0.04311 0.05000 Rejected for HFRBCS 

 

Therefore, analyzing the results presented in Table 3 and the statistical study 

shown in Tables 4 and 5 we conclude that our model is a solid FRBCS approach 

to deal with imbalanced data-sets, as it has shown to be the best performing algo-

rithm when comparing with the remaining fuzzy rule learning methods applied in 

this study. 

Finally, we use a Wilcoxon test for the comparison with the C4.5 algorithm, 

which is shown in Table 6. We can observe that our proposal achieves a higher 

ranking, but this is not enough to reject the null hypothesis. We may conclude that 

both approaches have a similar performance when treating all imbalanced data-

sets as a whole, without taking into account the IR. 

Table 6 Wilcoxon test to compare the HFRBCS against C4.5 in all imbalanced data-sets. 

R+ corresponds to HFRBCS and R- to C4.5. 

Comparison R
+ 

R
- 

Hypothesis (α =0.05) p-value 

HFRBCS vs. C4.5 589 401 Not Rejected 0.273 

Analysis of the Hierarchical Fuzzy Rule Based Classification System 

According to the Imbalance Ratio 

In the final part of our study, we will analyze the behaviour of our hierarchical  

approach in each imbalanced scenario. Table 7 shows, by columns, the geometric 

mean in training and test of the different algorithms considered, for the two types 

of data-sets, that is, low and high imbalance (IR lower than 9 and higher than 9 re-

spectively). The last column corresponds to the global results. Reader can refer to 

Table 3, presented in the previous part of this study, where we show the detailed 

results in each data-set. 
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Table 7 Results table for FRBCSs for the different degrees of imbalance 

Cniqtkvjo" Nqy"Kodcncpeg" Jkij"Kodcncpeg" Cnn"Fcvc/Ugvu"

VtIO " VuvIO " VtIO " VuvIO " VtIO " VuvIO "

Ejk/5" :7072"±"304:" :304;"±"60;2" :5086"±"4065" 9:022"±"32073" :6079"±"30:8" 9;087"±"9093"
Ejk/7" ;3053"±"208;" :203;"±"50;2" :;026"±"3054" 97097"±"35085" ;2039"±"3023" 990;9"±":099"
Kujkdwejk27" 97067"±"5026" 960:3"±"70:5" 980;2"±"8057" 9604:"±"33094" 98039"±"6092" 96077"±":09:"
G/Cniqtkvjo" 7:055"±"602;" 79027"±"7068" 87094"±"7028" 780;7"±"37066" 84024"±"6079" 79022"±"32067"
JHTDEU" ;6052"±"20:2" :608;"±"602;" ;5057"±"3052" 9:067"±±±±"36033" ;50:4"±"3027" :3079"±±±±";032"
E607" ;60;7"±"20:9" :7092"±±±±"508:" ;70:3"±"3099" 94043"±"35092" ;705:"±"3054" 9:0;7"±":08;"  

The main conclusion extracted from this table is that our HFRBCS is very  

robust in both imbalanced scenarios considered, as it obtains very competitive  

results independently of the IR. Next, we will analyze the results in each case, for 

data-sets with low and high imbalance. As we did in the previous section, we will 

compare the HFRBCS with the FRBCSs and with the C4.5 decision tree  

separately. 

• Data-sets with low imbalance: This study is shown in Tables 9 and 10. First, 

we check for statistical differences an Iman-Davenport tests obtaining a p-

value of 2.98974E-5. Table 9 shows the ranking for the algorithms and Table 

8 contains a Holm test, which shows that the HFRBCS is better in perform-

ance than the remaining FRBCS unless the Chi et al.'s method with 5 labels. 

Table 8 Rankings obtained through a Friedman test for FRBCSs in data-sets with low  

imbalance. 

Algorithm Ranking 

HFRBCS 1.97727 

Chi-5 2.63636 

Chi-3 3.06818 

Ishibuchi05 3.11364 

E-Algorithm 4.20454 

Table 9 Holm test table for FRBCSs in data-sets with low imbalance. HFRBCS is the con-

trol method. 

i  algorithm z  p  iα  
Hypothesis 

4 E-Algorithm 4.67197 2.98329E-6 0.01250 Rejected for HFRBCS 

3 Ishibuchi05 2.38366 0.01714 0.01667 Rejected for HFRBCS 

2 Chi-3 2.28831 0.02212 0.02500 Rejected for HFRBCS 

1 Chi-5 1.38252 0.16681 0.05000 Not Rejected 
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Now, we will compare the performance achieved by our proposal with 

C4.5 in low imbalanced data-sets by means of a Wilcoxon test, which is 

shown in Table 10. Furthermore, we compare the HFRBCS with the Chi 

et al.'s approach with 5 labels in order to check if we find differences  

between both algorithms. 

Table 10 Wilcoxon test to compare the HFRBCS against Chi-5 and C4.5 in data-set with 

low imbalance. R+ corresponds to HFRBCS and R- to Chi-5 and C4.5 in each case. 

Comparison R
+ 

R
- 

Hypothesis (α =0.05) p-value 

HFRBCS vs. Chi-5 219 34 Rejected for HFRBCS 0.003 

HFRBCS vs. C4.5 84 169 Not Rejected 0.168 

The main conclusion after this study is that the HFRBCS is better than the 

rest of the FRBCS methods. It outperforms the base Chi LRG-method, the 

Ishibuchi et al.'s approach and the E-Algorithm. When compared with C4.5, 

there are no statistical differences in this imbalance scenario. 

• Data-sets with high imbalance: This part of the study is very important, 

since it includes the data-sets with a higher degree of imbalance. In this 

manner, we can analyze how the imbalance actually affects the different 

methods employed in this study. For this purpose, we use a Iman-Daverport 

test in order to find statistical differences obtaining a p-value of 0.00330. 

Next, Table 11 shows the ranking for the FRBCS algorithms, in which our 

HFRBCS proposal is the first one. Finally, we perform a Holm test, which is 

shown in Table 12, where we can only conclude that the HFRBCS is better 

than the E-Algorithm in data-sets with high imbalance. 

Table 11 Rankings obtained through a Friedman test for FRBCSs in data-sets with high 

imbalance. 

Algorithm Ranking 

HFRBCS 2.20454 

Chi-5 2.90909 

Chi-3 2.93182 

Ishibuchi05 2.93182 

E-Algorithm 4.02273 

Table 12 Holm test table for FRBCSs in data-sets with high imbalance. HFRBCS is the 

control method. 

i  algorithm z  p  iα  
Hypothesis 

4 E-Algorithm 3.81385 1.36818E-4 0.01250 Rejected for HFRBCS 

3 Ishibuchi05 1.52554 0.12712 0.01667 Not Rejected 

2 Chi-3 1.52554 0.12712 0.02500 Not Rejected 

1 Chi-5 1.47787 0.13944 0.05000 Not Rejected 
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A Wilcoxon test (Table 13) will help us to make a pairwise comparison 

between our proposal and the remaining algorithms, including C4.5 in 

this case. Now, we detect differences between the HFRBCS and the Chi 

et al.'s method with 5 labels per variable, but it remains statistically simi-

lar to the Ishibuchi et al.'s algorithm and the Chi et al.'s method with 3  

labels. Nevertheless, watching the results for the comparison with C4.5 

we see that the null hypothesis is rejected in favour of our HFRBCS  

proposal. 

Table 13 Wilcoxon test to compare the HFRBCS against the remaining FRBCS approaches 

and C4.5 in data-set with high imbalance. R+ corresponds to HFRBCS and R- to the  

remaining algorithms in each case. 

Comparison R
+ 

R
- 

Hypothesis (α =0.05) p-value 

HFRBCS vs. C4.5 192 61 Rejected for HFRBCS 0.033 
 

According to these results, we must emphasise the good behaviour 

achieved in highly imbalanced data-sets by the all fuzzy models studied 

here, particularly for our proposal. Furthermore, we can determine that it 

is very competitive, since it outperforms C4.5 algorithm in this type of 

data-sets, with a p-value of 0.033. 

6   Concluding Remarks 

In this work, we have presented a wide overview on hierarchical linguistic fuzzy 

systems, describing the main features of this type of systems, the learning meth-

odology proposed to build such a model and the extensions developed in the  

literature.  

The main aim of this hierarchical approach is to obtain a good balance among 

different granularity levels, applying a higher granularity in the areas where the 

RB has a bad performance in order to obtain a better coverage of that area of the 

space of solutions, and a lower granularity that provides a good generalization. 

Regarding the interpretability-accuracy tradeoff of this methodology, we have 

stated that it is not always true that a set of rules with a higher granularity level 

performs a more accurate modeling of a problem than another with a lower one. 

The relationship between accuracy and interpretability does not only depend on 

granularity and specificity, but also on other factors, for example, rule weights, 

flexible rule consequents, and moreover, compasity of and cooperation policies 

between the rules. 

As a case of study, we have shown the improvement obtained by applying this 

methodology in the framework of imbalanced data-sets. Specifically, the classifi-

cation accuracy of the base FRBCS is enhanced in the overlapping areas between 

the minority and majority classes by combining both the fine and thick granular-

ity. In the experimental study, we have shown statistically that our proposal  
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performs better than well known FRBCSs approaches and that clearly outperforms 

the C4.5 decision tree, generally for all data-sets and particularly in data-sets with 

high imbalance. 
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Fuzzy Information Granulation with Multiple 
Levels of Granularity 

Giovanna Castellano, Anna Maria Fanelli, and Corrado Mencar 

Abstract. Granular computing is a problem solving paradigm based on information 

granules, which are conceptual entities derived through a granulation process. 

Solving a complex problem, via a granular computing approach, means splitting the 

problem into information granules and handling each granule as a whole. This leads 

to a multi-level view of information granulation, which permeates human reasoning 

and has a significant impact in any field involving both human-oriented and machine-

oriented problem solving. In this chapter we examine a view of granular computing 

as a paradigm of human-inspired problem solving and information processing with 

multiple levels of granularity, with special focus on fuzzy information granulation. To 

support the importance of granulation with multiple levels, we present a multi-level 

approach for extracting well-defined and semantically sound fuzzy information 

granules from numerical data. 

Keywords: Fuzzy Information Granulation, Information Granules, Interpretability, 

Multi-level Granulation, Conditional Fuzzy C-Means, Double Clustering. 

1   Introduction 

In the last decade, information granulation has emerged as a powerful tool for data 

analysis and information processing, which is in line with the way humans adopt 

to process information. We perceive the world by structuring our knowledge, 

perceptions, and acquired evidence in terms of information granules that offer 

abstractions of the complex world and phenomena. Being abstract constructs, 

information granules and the processing of them, referred to as Granular 

Computing (GrC), provide problem solvers with a conceptual and algorithmic 

framework to deal with several real-world problems.  

The term GrC spans a variety of disciplines, thus it is often loosely defined as 

an umbrella term covering any theories, methodologies, techniques, and tools that 

                                                           
Giovanna Castellano · Anna Maria Fanelli · Corrado Mencar 

Department of Informatics, University of Bari “Aldo Moro” 

Via Orabona, 4 – 70125 Bari, Italy 



186 G. Castellano, A.M. Fanelli, and C. Mencar

 

make use of granules in complex problem solving (Yao 2005). Various 

frameworks for information granulation have been proposed so far, with a 

growing diversity of formalisms. One of the main formalism proposed for GrC is 

the theory of fuzzy sets (Zadeh 1997) introduced by Zadeh, who considers 

granular computing as basis for computing with words, i.e., computation with 

information described in natural language (Zadeh 1997; Zadeh 2006). Besides, 

many other formalisms can be considered fundamental for GrC, stemming from 

rough sets (Pawlak 1998; Yao 2001; Peters et al. 2003),  interval analysis 

(Bargiela and Pedrycz 2003), shadowed sets (Pedrycz 2005), etc. 

Beyond the theory underlying a GrC framework, two main features are 

desirable for any information granulation approach: 

1. the ability to determine the granularity level that better represents the 

nature of data; 

2. the ability to provide users with information granules that both represent 

the data accurately and carry a clear semantic meaning, i.e. granules that 

are interpretable for human users. 

These features bring a shift in GrC, from a paradigm of machine-centric 

information processing to a paradigm of human-inspired problem solving. This 

shift is considered one of the recent trends in GrC research (Yao 2008). In this 

endeavor, it is well accepted that the theory of fuzzy sets has largely contributed to 

the emergence of granular computing as a paradigm of human-inspired problem 

solving and information processing (Bortolan and Perdrycz 2002). Actually, 

human-centered information processing was initiated with the introduction of 

fuzzy sets, which successively led to the development of the GrC paradigm 

(Bargiela and Pedrycz 2008; Zadeh 1997). The object of fuzzy information 

granulation is to build models by means of information granules that are 

quantified in terms of fuzzy sets, i.e. conceptual entities with well-defined 

semantics that are interpretable by humans.  

To stress the shift from machine-centric computing toward human-inspired 

computing, a common theme is converging to a view of GrC as a paradigm of 

information processing with an underlying notion of multiple levels of granularity. 

The introduction of multiple levels of granularity corresponds to consider multiple 

levels of abstractions for a given problem, with each level capturing particular 

aspects of the problem. To some extent, this may avoid limitations of a single 

level of representation.  

Along with these ideas, in this chapter we examine the current research 

directions on multi-level granular computing, with special focus on fuzzy 

information granulation. To give evidence of the advantage of multi-level 

granulation, we present an approach to perform fuzzy granulation with multiple 

levels of granularity in a hierarchical fashion. In particular, a framework of 

representation with two levels of granularity is described. At the first level, the 

whole dataset is granulated. At the second level, data embraced in each first-level 

granule are further granulated taking into account the context generated by that 

granule. The derived hierarchical collection of granules can be used to construct a 

committee of fuzzy models providing a good balance between interpretable 

representation and precise approximation. 
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2   Multi-level Granular Computing 

The basic components of GrC are information granules, intended as chunks of 

knowledge made of different objects “drawn together by indistinguishability, 

similarity, proximity or functionality” (Zadeh 1997). Information granules yield 

an abstraction of the reality in form of concepts depending on the context. For 

such reason, a granulation process, i.e. the process of constructing granules, serves 

not only to design a model, but also to simplify our understanding of it. As 

computing units, granules can decompose a complex problem into some simpler 

or smaller problems, so that the computing costs are reduced and the problem can 

be better understood.  

Based on complexity, abstraction grade and size, granules can be evaluated at 

different levels. The problem domain, i.e., the universe of discourse, represents the 

coarsest granule at the highest level. Granules at the lowest level are composed of 

elements or basic particles of the particular model that is used (Yao,  2007). 

According to the level of granularity taken into account, i.e. to the point of view, a 

granule “may be an element of another granule and is considered to be a part 

forming the other granule. It may also consist of a family of granules and is 

considered to be a whole” (Yao 2008). This leads to the notion of levels. While 

each granule provides a local view, a level provides a global view.  

An important property of granules and levels is their granularity, i.e. the size of 

information granules and their distribution. By changing the granularity, we can 

control the amount of details so as to hide or reveal more or less details about the 

problem at hand (Bargiela and Pedrycz 2003). The lower level of granularity can 

yield the most detailed information, but some useful knowledge may be buried 

into unnecessary details. On the other hand, the higher level of granularity might 

reduce some information, but it can provide users with a better insight into the 

essence of data. From one level we can pass to a lower level of granularity by 

means of a granulation process that decomposes a whole into parts; this 

corresponds to “analytical thinking” whereas, going to an upper level merging 

parts into wholes, corresponds to “synthetic thinking” (Yao 2007).  

Granularity enables us to properly arrange granules and levels, so as to derive a 

hierarchical view of the problem at hand. In building a hierarchical structure, we 

discover a vertical separation of levels and a horizontal separation of granules at 

the same hierarchical level (Yao 2009). Usually, the two separations must ignore 

information that is irrelevant to the current interest or does not greatly affect our 

solution. Furthermore, a single hierarchy only represents one view. As illustrated 

by Yao, granular structures enable both a multi-level view (given by a single 

hierarchy) and a multi-view understanding (given by many hierarchies) (Yao 

2009). The latter stresses the consideration of diversity in modelling, for which we 

look at the same problem from many perspectives. This is useful when, in order to 

understand a problem, we need to explore multiple representations of it, in terms 

of multiple views and multiple levels of abstraction.  

Summarizing, a fundamental key to GrC is representing and working with 

different levels of granularity in every stage of problem solving. We may view a 

problem through many different facets, and associate a representation with a 
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particular view capturing specific aspects of the problem. For each view, we may 

consider multiple levels of abstractions, each representing the problem at a 

particular level of details. This particular issue of granulating information by using 

high-order properties, i.e. properties of collections of granules formed at higher 

levels, lies behind every - not necessarily computational - task involving problem 

solving: it describes a way of thinking, named “granular reasoning” (Zhong at al. 

2008), that relies on the human ability to perceive the real world under various 

levels of granularity. In (Yao 2006), some fundamental issues related to the notion 

of multiple levels of granularity are addressed and analyzed from three different 

perspectives, namely philosophical, methodological and computational 

perspective leading to the so-called triarchic theory of GrC (Yao 2005; Yao 

2007). 

The philosophical facet of GrC offers a worldview in terms of structures as 

represented by multiple levels. This leads to a way of structured thinking, made of 

levels of abstraction, which is applicable to many branches of natural and social 

sciences. We may consider, for example, levels of understanding in education, 

levels of interpretation in history and language understanding, levels of 

organization in ecology and social sciences, levels of processing in modeling 

human memory, and many others. For example, Jeffries and Ransford proposed a 

multiple hierarchy model to integrate class, ethnicity, gender, and age for the 

study of social stratification (Jeffries and Ransford 1980). They show how the 

traditional single hierarchy approach based on social classes limits one’s 

understanding of the complexities of modern societies, while a multiple hierarchy 

approach could increase one’s understanding and be more comprehensive and 

valid for studying social inequality. 

The methodological perspective of GrC raises quite natural. As a general 

method of structured problem solving, GrC provides practical strategies and 

effective principles that are used by humans for solving real-world problems. 

Those principles of granular computing have, in fact, been extensively used in 

different disciplines under different names and notations. For example, many 

principles of structured programming or software design can be readily adopted 

for granular computing (Han and Dong 2007). As another example, in 

(Belkhouche and Lemus-Olalde 2000) an abstract interpretation of multiple views 

in software design is formalized. In the process of modeling a system, the designer 

always generates a set of designs, such as functional, behavioral, structural and 

data designs. Each design focuses on a view that describes a subset of relevant 

features of a system and is expressed by one or more notations. The authors 

argued that a multiple view analysis framework can be used to systematically 

compare, identify and analyze the discrepancies among different views, enhance 

design quality and provide a multi-angled understanding of a problem or a project. 

The computational perspective of GrC underlies the other two if we consider 

the term “computing” in its broad meaning to include information processing in 

the abstract, in the brain and in machines. As a paradigm of structured information 

processing, granular computing focuses on computing methods based on granular 

structures. In particular, when computation is intended as information processing 

by machines, i.e. data analysis, the use of hierarchical granular structures leads to 
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multi-view intelligent data analysis, which  explores data from different 

perspectives to reveal various types of structures and knowledge embedded in the 

data. Each view may capture a specific aspect of the data and hence satisfy the 

needs of a particular group of users. Collectively, multiple views provide a 

comprehensive description and understanding of the data. According to this idea, 

Chen and Yao proposed a multi-view approach that provides a unified framework 

for integrating multiple views of intelligent data analysis (Chen and Yao 2008). 

Managing multiple representations of the same data at different levels of 

granularity is widely recognized as a relevant one also in the community of spatial 

database. In (De Fent et al. 2005) spatial data are modeled through conceptual 

models with two distinct, but related, granularity dimensions: a spatial one and a 

semantic one. In this case, a multi-level granulation enables to capture scale as 

well as semantic changes and to constrain the relationships between them. 

From a different viewpoint, we may say that a multi-level information 

granulation approach turns out to be beneficial as soon as we need to represent and 

solve the problem through a set of linguistic concepts. Actually, multi-level 

granulation has been widely investigated in the realm of linguistic approaches, i.e. 

approaches using linguistic terms to represent information in a qualitative way 

(Glöckner and Knöll 2001). Linguistic representations, such as those based on 

fuzzy sets, are especially suitable when information is unquantifiable due to its 

imprecise nature (e.g., when evaluating the “comfort" of a car, only terms like 

“good", “fair", “poor" can be used), but they can be used as well when a 

quantitative representation of information cannot be stated because either it is 

unavailable or the cost for its computation is too high, thus an approximate value 

can be tolerated (e.g., when evaluating the speed of a car, linguistic terms like 

“fast", “very fast", “slow" can be used instead of numeric values). When using a 

linguistic representation of information, an important parameter to determine is 

the semantic granularity, i.e. the cardinality of the linguistic term set used to 

express the information. According to the uncertainty degree of a domain expert, 

the linguistic term set used to represent her knowledge may have more or less 

terms. When different experts have different uncertainty degrees in their 

knowledge, then several linguistic term sets with different granularities are 

necessary. To cope with this multiple source of uncertain information, multi-

granularity linguistic term sets based on fuzzy set theory have been proposed and 

applied in several fields, such as decision making (Herrera et al. 2000; Mata et al. 

2009) and information retrieval (Herrera-Viedma et al. 2003).  

Multi-level GrC has been also applied to represent taxonomies of concepts. In 

(Qiu et al. 2007) a hierarchy of granules corresponding to ontological concepts is 

built by an information table using rough-set techniques. A granular space model 

for ontology learning is explored, to describe domain ontologies at different 

granularities and hierarchies. In (Gu et al. 2006) an approach for constructing 

hierarchy of granules based on fuzzy concept lattices is proposed. The knowledge 

granularity is discussed, and an algorithm for constructing a hierarchical structure 

of coarser granules is also illustrated. 

The potential applications and implications of multi-level granulation can be 

also recognized in the area of Web intelligence. As shown in (Yao 2007), GrC 



190 G. Castellano, A.M. Fanelli, and C. Mencar

 

may provide the necessary theory for designing and implementing new types of 

web-based information processing systems based on a conceptual model of the 

human brain. Yao and Yao discuss how Web information retrieval can benefit 

from grouped and personalized views provided by a GrC process (Yao and Yao 

2003). The use of both single-level and multi-level granulations of web documents 

is investigated. In (Li et al. 2001) a technique for automatically constructing multi-

granular and topic-focused site maps using trained rules on Web page URLs, 

contents, and link structure is presented. This type of multi-granular site maps can 

support better interaction for users to scale up and scale down the details. The 

system provides more detail on the regions relevant to the focused topic while 

keeping the rest of the map compact so that the users can visualize their current 

navigation positions relative to other landmark nodes in the Web site.  

To conclude, we emphasize the crucial role of interpretability in the realm of GrC. 

As a paradigm for human-centric information processing, GrC should provide a 

common interface for communicating information between humans and machines. 

This human-oriented communication is partially achieved by representing perceptual 

information in a computer manageable form, i.e. by means of information granules. 

To make more effective this communication, information granules should be 

interpretable, i.e. semantically co-intensive with human knowledge. Interpretability of 

information granules is a complex requirement that needs a comprehensive analysis 

of all facets of the problem for which granules are developed and used. Therefore 

interpretable information granulation opens several methodological issues, regarding 

the representation and manipulation of information granules, the interpretability 

constraints and the granulation processes (Mencar and Fanelli 2008; Mencar 2009). 

We believe that addressing all such issues at multiple levels of granularity leads to a 

sight of GrC as an effective tool to design information processing systems 

characterized by a strong human-centric imprint. To support this idea, in the next 

section we present a multi-level GrC strategy to derive interpretable information 

granules from data.  

3   A Multi-level Approach for Information Granulation 

As an example of multi-level granulation strategy, in this section we describe a 

multi-level approach for fuzzy information granulation. The approach is based on 

DCf (Double Clustering framework), a framework to create interpretable granules 

from data by taking into account a number of interpretability constraints 

(Castellano et al. 2005). DCf extracts fuzzy information granules that can be easily 

labeled with semantically sound linguistic labels. Moreover, the number of 

information granules to be extracted can be kept small, so as to provide a compact 

(and hence readable) description of data. Nevertheless, DCf provides for a flat 

representation of information granules, and the user is committed to define the 

granularity level. This is due to the fact that DCf can extract a fixed number of 

information granules. A high number of information granules leads to an accurate 

yet unreadable description of data, while a small number of information granules  
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provides a highly interpretable description of data, but the employment of such 

granules in fuzzy predictive models may not result satisfactory because of a 

possibly coarse accuracy.  

In order to obtain a more accurate description of data while keeping 

interpretability, we have developed an extension of DCf, called ML-DC (Multi-

Level Double Clustering), which is intended to provide a multi-level granulation 

of available data, i.e. a granulation of data at different levels, in a hierarchical 

fashion (Castellano et al. 2007). ML-DC exploits the DCf structure to provide for 

multiple view of data: a coarse qualitative view where main relationships are 

described by large granules, and a more refined, quantitative granulation that 

could be used for defining the predictive model. At the first level, the whole 

dataset is granulated, while, at the second level, data embraced in each first-level 

granule are further granulated taking into account the context generated by that 

granule. Based on the extracted multi-level granules, a hierarchical committee of 

Fuzzy Inference Systems (FISs) is constructed that can approximate a mapping 

with a good balance between accuracy and interpretability. 

Roughly speaking, ML-DC operates information granulation at two levels:  

• at first level, granulation of data is carried out according to a specific 

granularity, as in DCf; 

• at second level, for each discovered information granule, data are  

re-aggregated for a further granulation process. 

The process can be reiterated for a number of levels. However a two-level 

granulation is adequate to obtain two views of the problem (a qualitative one and a 

quantitative one), so as to achieve a balanced trade-off between accuracy and 

interpretability of data. Hence, through the application of ML-DC, two levels of 

fuzzy information granules are built from data: granules of the first level are used 

to roughly describe data through qualitative linguistic labels; granules of the 

second level are used to describe each information granule of the first level. This 

is aimed at finding a more accurate description of the hidden relationships lying 

among data and – a the same time – preserve interpretability of the extracted 

knowledge since interpretability constraints are satisfied for both levels of 

granulation. 

The first-level granulation in ML-DC is made according to the double-

clustering framework DCf, which involves two main steps: 

1. multi-dimensional clustering on the whole dataset, providing a collection of 

multidimensional prototypes; 

2. one-dimensional clustering of the projection of the derived prototypes along 

each dimension, yielding to one-dimensional prototypes. 

In ML-DC we perform step 1 by means of fuzzy clustering and step 2 by means of 

hierarchical clustering. Fuzzification of the information granules is achieved by 

first fuzzifying the one-dimensional granules defined by the one-dimensional 

prototypes and then by aggregating one-dimensional fuzzy sets to form multi-

dimensional fuzzy information granules. For each dimension, the extracted 

clusters are transformed into as many interpretable fuzzy sets. Fuzzy sets with 
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Gaussian membership function are considered, whose centers and widths are defined 

so as to take into account the information provided by the clustering stages and, at 

the same time, to meet the following interpretability constraints: 

• Normality, convexity and continuity: these constraints are verified as soon as 

Gaussian membership functions are chosen for fuzzy sets; 

• Proper ordering: this is verified by defining the order relation of fuzzy sets 

reflecting the order of the prototypes. 

• Justifiable number of elements: this constraint is verified by an appropriate 

choice of the number of prototypes; 

• Distinguishability and completeness: these constraints are verified by the 

construction of the fuzzy sets, which is made so as to not exceed an overlap 

threshold ε and to guarantee the ε-coverage. 

The second-level granulation is carried out according to the same double-

clustering schema, but taking into account the context generated from each first-

level information granule. Indeed, if this context is ignored, the second-level 

granulation would be identical to first-level granulation and no additional 

information would be derived from data. To keep into account contextual 

information in the second-level granulation, multi-dimensional clustering is 

performed by the Conditional Fuzzy C-Means (CFCM)  proposed by Pedrycz, 

which is an extension of the well-known FCM clustering algorithm (Pedrycz 

1996). The CFCM clustering algorithm minimizes the following objective 

function: 
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Constraint (3) differentiates CFCM from the standard FCM clustering algorithm. 

Such constraint requires that the sum of memberships of a point to each cluster is 
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equal to a constant [ ]0,1
i

f ∈  that defines the context of the clustering process. For 

the first-level granulation process, no context is defined for ML-DC. Hence, 

CFCM is reduced to standard FCM by setting: 
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For the second-level granulation process, a context is defined by each first-level 

fuzzy information granule: 
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where ( )I

k i
µ x  is the membership degree of the i-th observation to the k-th fuzzy 

information granule discovered in the first-level granulation process. The 

quantities fi establish the connection between first-level and second-level 

information granules. Information granules at the second level are indeed forced to 

focus their location in the fuzzy sub-region of the domain where each first-level 

information granule is placed. 

The CFCM clustering algorithm follows the Alternating Optimization strategy 

for the minimization of the objective function (1). This strategy is iterative. At 

each iteration the prototypes and the partition matrix are updated according to the 

following formulas: 
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and: 
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(7) 

Summarizing, ML-DC is a double-clustering approach where CFCM is used in the 

multi-dimensional clustering and hierarchical clustering is used in the one-

dimensional clustering. For first-level granulation, ML-DC is applied to data with 

constant context. The result of first-level granulation is a set of IK  fuzzy 

information granules I

k
G  with membership functions [ ]I

: 0,1
n

k
µ →\ , 

I
1,2, ,k K= … .  

ML-DC exploits the advantages of multi-level information granulation to reach 

a tradeoff between accuracy and interpretability. Here we describe a granulation 

methodology based on ML-DC, which is specifically designed for classification 

problems, even though the extension to function approximation problems is 

straightforward. Let 
n⊆X \  be the Universe of Discourse of data (assumed as 

hyper-box) and { }1,2, ,C=C …  a set of class labels. Let 
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{ }, , 1,2, ,i iD c i N= ∈ × =x X C …  a set of pre-classified observational data. The 

first-level granulation of data provides for IK  fuzzy information granules with 

membership functions I , 1,2, , I

k
k Kµ = … . The value IK  can be fixed as small 

as desired (e.g. less than 7±2 according to (Valente de Oliveira 1999)). As shown 

above, each information granule I

k
G  satisfies a number of interpretability 

constraints so that it can be labeled linguistically.  

For each I

k
G  and each class label c ∈C , we compute the relative frequency of 

observations of class c belonging to the fuzzy granule I

k
G , as follows: 
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(8) 

These values can be used to build a set of 
IK  fuzzy rules with the following 

schema: 
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(9) 

Given an input x , the outputs of the classifier are computed according to the 

following formula: 
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for 1,2, ,c C= … . If one class only must be assigned to x , then the class with 

highest ( )I

c
π x  is chosen (tiers are selected arbitrarily).  

The FIS classifier designed through first-level information granulation is very 

compact (and hence highly interpretable) but expectedly not very accurate. 

Second-level information granules can be exploited to improve accuracy of the 

estimated mapping as follows. For each first-level information granule, ML-DC 

provides a set of second-level information granules that can be used to generate a 

corresponding FIS with the same rule schema of the first-level FIS. As a result, a 

set of IK  FISs are generated. All such FISs are connected to form a hierarchical 

committee of FISs from which the input/output mapping is inferred. The outputs 

of the hierarchical FIS are defined as the weighted sum of the outputs of each FIS 

belonging to the committee. Formally, given an input n∈x \ , the output of the 

FIS committee is: 



Fuzzy Information Granulation with Multiple Levels of Granularity 195

 

( )
( )

I

I

,

1

1

K
II

k c k
II k

c K

k

k

w

w

π

π =

=

=
∑
∑

x

x

                                            

(11) 

where ( ),

II

k c
π x  is the output of the k-th FIS belonging to the committee relatively 

to class c, while 
k

w  is the weight assigned to the k-th FIS, corresponding to the 

degree of membership of the input x  to the antecedent part of the first-level 

information granule: 

( )I

,k X k
w µ= x

                                                
(12) 

In this way, the weight of a FIS in the committee is high (and hence the 

corresponding output is very relevant in determining the final output) when the input 

falls within the associated first-level information granule. On the contrary, the weight 

becomes as small as far the input is from the first-level granule prototype.  

In summary, two models are derived from the application of ML-DC (Fig. 2). 

A simple FIS generated from first-level granulation that can be used mostly for 

representation purposes, and a hierarchical committee of different FISs that can be 

used to model the input/output mapping. In this way, the trade-off between 

accuracy and interpretability can be well balanced. 
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Fig. 1 The multi-level granulation obtained by ML-DC. 

A   Illustrative Example 

In this section we report some simulation results from the application of ML-DC 

to solve the benchmark classification problem provided by the Cone-Torus (CT) 

dataset
1
. The CT dataset is available as a collection of a training set and a test set, 

                                                           
1 http://www.bangor.ac.uk/~kuncheva/Z.txt 
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both consisting of 400 examples. Each example is two-dimensional and labeled 

with one out of three class labels. Data are generated synthetically so as to provide 

the distribution depicted in Fig. 2. This classification problem is inherently 

difficult, because of the nonlinear class boundaries and high overlapping of data 

belonging to different classes. According to the literature, simple classifiers are 

unable to provide an acceptable classification accuracy (classification error about 

20-30%), while more complex models (such as FISs with more than 100 rules) 

provide a classification error not below 10% about (Kuncheva 2000). As a 

consequence, it is very hard to provide both a linguistically interpretable and 

accurate description of the Cone-Torus dataset. 

ML-DC was applied to the data to perform a two-level granulation. At both 

levels of granulation, the number of information granules to be generated is not 

greater than five. Starting from the first-level granules, a FIS classifier was 

derived, while a committee of FIS classifiers was derived from the second-level 

granules. The rule base obtained for the first-level FIS is reported in Table 1, 

while the fuzzy sets generated by the granulation procedure are depicted in Fig. 3. 

At this level, information granules are quite rough, hence qualitative linguistic 

terms are more appropriate to represent knowledge. Fuzzy inference with this FIS 

provides a classification error of 28.25% on the training set and 26.75% on the test 

set. While the fuzzy model is highly interpretable, its classification ability is quite 

rough, especially in comparison with other black-box models known in literature. 
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Fig. 2 The Cone-Torus dataset. Class labels are represented as diamonds, squares and crosses. 
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Fig. 3 First-level fuzzy information granulation. Stars represent multi-dimensional prototypes 

Table 1 The fuzzy rule base of the first-level FIS 

IF x is LOW AND y is LOW THEN P(class=1)=0.53, P(class=2)=0.38, P(class=3)=0.09 

IF x is MEDIUM AND y is LOW THEN P(class=1)=0.6, P(class=2)=0.11, P(class=3)=0.29 

IF x is MEDIUM AND y is MEDIUM THEN P(class=1)=0.01, P(class=2)=0.45, P(class=3)=0.54 

IF x is HIGH AND y is LOW THEN P(class=1)=0.21, P(class=2)=0.27, P(class=3)=0.52 

IF x is HIGH AND y is HIGH THEN P(class=1)=0.02, P(class=2)=0.11, P(class=3)=0.87  

The committee of FISs derived from the second-level granulation process 

provides a classification error of 17.25% on the training set and 13.34% on the test 

set. These results are comparable with other models known in literature, as 

reported in Table 2. Each FIS in the committee describes a context, i.e. an 

information granule derived in the first-level granulation process. Because of their 

finer granularity, second-level information granules are labeled as fuzzy 

quantities. In Table 3, the rule-base of the second-level FIS derived for the context 

“x is LOW and y is LOW” is reported, while the fuzzy sets derived by the 

granulation procedure are depicted in Fig. 4. It should be noted that for each 

dimension, leftmost and rightmost fuzzy sets have constant membership value one 

for elements outside the context. This is in coherence with the semantics of the 

linguistic terms associated to these fuzzy sets. 
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Table 2 Classification results for the Cone-Torus dataset of different models known in 

literature 

Model Class. error on 

the training set 

Class. error on 

the       test set 

Nearest mean 29.50% 26.25% 

Linear Discriminant 25.50% 23.00% 

Quadratic Discriminant 19.50% 16.75% 

Parzen 8.75% 12.25% 

Nearest Neighbor 17.25% 15.25% 

Multi-Layer Perceptron (2-15-3) 13.50% 12.00% 

LVQ1 (20 prototypes) 15.50% 14.50% 

Wang-Mendel (10 fuzzy sets per input 100 rules) 13.50% 13.00% 

ML-DC 17,25% 13,34% 

Table 3 The rule base of a second-level FIS 

 

Context: x is LOW and y is LOW 

IF x is about 1.1 or less AND y is about 2.6 THEN P(class=1)=0.31, P(class=2)=0.38, P(class=3)=0.01 

IF x is about 1.1 or less AND y is about 4.5 or more THEN P(class=1)=0.12, P(class=2)=0.88, 
P(class=3)=0.00 

IF x is about 3.7 or more AND y is about 1.0 or less THEN P(class=1)=0.96, P(class=2)=0.02, 
P(class=3)=0.02 

IF x is about 3.7 or more AND y is about 2.6 THEN P(class=1)=0.88, P(class=2)=0.06, P(class=3)=0.05
 

Based on the respective features of the two systems, the first-level FIS and the 

committee of second-level FISs can be used synergistically for tackling complex 

problems: the first-level FIS can be used to provide a rough description of data, 

with the primary focus of providing a first understanding of the hidden 

relationships laying among data. The committee of second-level FISs can be 

effectively used to accurately classify patterns. Each FIS in the committee locally 

describes a piece of the Universe of Discourse in an interpretable fashion, so as to 

provide a more detailed representation of the acquired knowledge. The locality of 

the description is determined by the contexts obtained by the first-level 

granulation process. As a result, the interpretability of the overall system is 

preserved.  
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Fig. 4 Second-level information granules for the context "x is low and y is low". Diamonds 
represent multidimensional prototypes 

4   Conclusions 

The necessity and the benefits of using GrC in solving real-world problems have 

been widely pointed out in the recent literature, with an increasing proposal of 

concrete models and innovative methodologies. As a philosophy and a general 

methodology, GrC empowers problem solving in many fields; as a paradigm of 

structured information processing, it supports the development of human-inspired 

information processing systems. The chance of dealing with different levels of 

granularity in every stage of problem solving, makes GrC a powerful paradigm for 

representing and solving problems by means of multi-level strategies. A multi-

level granulation process provides several granulated views of the same problem, 

enabling the focus on useful information structures without looking into too much 

details. 

In this chapter we have emphasized the new perspective of multi-level GrC, as 

a way to better represent and understand knowledge. As an example of multi-level 

granulation strategy that improves understanding of data, we have presented ML-

DC, a framework to  perform a multi-level granulation of data with a balance 

between accuracy and interpretability. A complex problem is sliced into contexts, 

which can be used to provide a high-level –yet highly interpretable–  description 
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of available data. The contexts are used to locally acquire more accurate fuzzy 

models, which still preserve interpretability constraints for a readable 

representation of knowledge. The resulting structure of granules can provide a 

comprehensible as well as accurate knowledge base. In principle, MD-DC can 

derive more than two levels of granulation. However, the deeper the granulation 

level is, the more difficult the comprehensibility of the acquired knowledge. Two 

levels are deemed enough for a good balance between interpretability and 

accuracy, since the first level describes the data from a qualitative view, while the 

second level provides a more quantitative description of the data. Anyway three or 

more levels might be considered according to the specific application domain. 
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A Rough Set Approach to Building
Association Rules and Its Applications

Junzo Watada⋆, Takayuki Kawaura, and Hao Li

Abstract. Data mining is a process or method of finding information,
evidence, insight, knowledge and hypotheses in a huge database, such as
marketing data.

Recently, the association rule presented by R. Agrawal in 1983 has been
used to rapidly expand a data mining method. This method is general and
flexible and can be applied to both general data analysis and very wide sur-
veys. In addition, the rules for this method are complicated. On the other
hand, when the support value is minimal and the confidence value is high,
the obtained value is already known and trivial. A breakthrough method is
needed.

The objective of this paper is to present a rough set model to overcome such
issues. Employing the rough set model, we analyzed three different scales of
databases and compared the results of simulation experiments using proposed
and conventional models. The rough set model obtained an efficient number
of association rules and usually took less computation time.

Keywords: Rough set, data mining, association rule.

1 Introduction

Data mining is a process or method of mining information, evidence,
insight, knowledge, hypotheses, issues and so on by mining in a huge database,
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such as marketing data . Research in this field has begun to employ various
techniques developed in machine learning and pattern recognition as well as
methods based on conventional statistics. Data-mining systems were recog-
nized as central to strategic information systems in marketing, management,
and bioinformatics when R. Agrawal built the association rule method in the
early 1990s. The present standard in data mining allows the acquisition of
information from more complex data structures, such as texts, multimedia,
time-series data, or geographic information.

Recently, the association rule presented by R. Agrawal in 1983 (Agrawal,
1994) has been rapidly expanding a data mining method. It is a general and
flexible method that can be applied to general data analysis and very wide
surveys. In addition, the rules for this method are complicated. On the other
hand, when the support value is minimal and the confidence value is high,
the obtained value is already known and trivial. The objective of this paper
is to present a rough set method to overcome such issues.

On the other hand, Rough set is proposed by Pawlak (Pawlak 1982). This
approach is fit to build the association rule. Rough set theory was developed
by Pawlak (Pawlak 1982, 1984, 2004). It has been applied to many issues, in-
cluding: medical diagnosis, engineering reliability, expert systems, empirical
study of materials data (Leclair and Zairko 1996), machine diagnosis (Zhai
et al. 2002), travel demand analysis (Goh and Law 2003), business failure
prediction (Beynon and Peel 2001), solving linear programs (Azibi and Van-
derpooten 2002), data mining (Li, Wang, 2004) and a-RST (Quafafou 2000).
Imai et al. apply rough sets analysis to abstract rules in IT corporation la-
bor management (Imai et al. 2008a, 2008b). Matsumoto and Watada analyze
stock price movements based on rough sets analysis (Matsmoto, Watada,
2009, 2010). Tai and Watada analyze management problems of technology
and engineering among corporate collaborations (Tai, Watada 2010). Watada
and Li evaluate the rough sets efficiency comparing Apriori (Watada, Li
2006). Futhermore, Watada et al. employ fuzzy random variables in rough
sets (Watada et al. 2010). Previous research has discussed the preference or-
der of attribute criteria needed to extend the original rough set theory, such
as sorting, choice and ranking (Greco et al. 2001), insurance markets (Shyng
et al. 2007), and rough set theory combined with fuzzy theory (Polkowski
2003). Rough set theory is a useful method for analyzing data and reducing
information simply. Rough set theory provides a new mathematical approach
to analyze uncertainty and easily classify imperfect data or information with
results presented in the form of decision rules. Therefore, in this research, we
use rough set theory to analyze the human resource problem.

2 Association Rule

The association rule is a technique to discover rules to express the strength of
connections among phenomena. For instance, if the rule obtained is, ”when
a customer has bought item A, he/she also will buy item B with high
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probability” from the accumulated data, then this rule clarifies how much
item A contributes to sales of item B. In addition, it leads to forecasting
the sales volume to a certain degree that a customer will buy item B when
he/she has bought item A.

Moreover, in an association rule, a support value denotes the frequency
with which all elements included in the association rule appear in the
database, and a confidence value denotes the accuracy of the association
rule in the database.

The objective of association rule analysis is to retrieve, as rules, the rela-
tionships among items that co-occur in many transactions. Association rule
analysis is employed for basket analysis, marketing analysis, catalogue design
and clustering.

2 .1 D e fi n i t ion of Associate Rule

Let us denote a set of transactions by D = {t1, t2, · · · , tk, · · · , tn} and the
jth transaction tk consists of items tk = {i1, i2, · · · , ij, · · · , jp}, where each ti
indicates some items ij and k = 1, 2, 3, · · · , n.

The association rule is defined as follows:

B ⇒ H. (1)

where B denotes the body of an association rule, that is, the condition part
and H denotes the head of an association rule, that is, the conclusion part.
”Body” and ”Head” are a set of items. Equation 1 demonstrates that if
a transaction has all the items included in the body, then the transaction
should also have the items in the head. The association rule expresses the
co-occurrence pattern of a group of items.

In searching for association rules, support values and confidence values are
used to evaluate each association rule.

Out of all the transactions considered, the degree of support denotes the
ratio of the number of transactions that fulfill the association rule. The degree
of support indicates the co-occurrence ratio of the transactions that satisfy
the association rule. Therefore, the higher the support becomes, the more
frequently the pattern included in the body of the association rule is found
in all the transactions.

The degree of support sup(R) for the association rule R is defined by the
following:

sup(R : B ⇒ H) =
n(B ∪ H)

N
. (2)

The confidence value of an association rule shows the occurrence rate of
the conclusion (H) when the body (B) of the association rule is satisfied.
In other words, the confidence value indicates the concurrency of the body
and the head in all the transactions considered. Therefore, the higher the
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confidence value becomes, the more reliable the expression of the conclusion
of the association rule.

conf(R : B⇒ H) =
n(B ∪ H)

sup(B)
(3)

where n(B ∪ H) denotes the number of all the transactions that include all
the items of B and H , and sup(B) denotes the number of all the transactions
that include all the items.

In evaluating an association rule, it is important not only for the rule to
have a high confidence value but also for the support to be greater than some
value . If the support is low, the rule will not occur often. In other words,
such a combination of items will not often be bought.

If we search for association rules with low support values, we have to
search a huge number of patterns; it reaches combinatorial explosion. Thus,
it is better to use a cut-off support value to search for association rules.

2.2 Evaluation of Rules

The above-described support and confidence values are an index with a con-
tinuous value to evaluate the rule. The support and confidence values are
formulated as follows:

Let us assume that the set of all items is, that the subset is called an item
set and that D is a set of all transactions. Each transaction T is a subset
of I. If Φ �= X , Y ∈ I and X ∩ Y = φ, it calls association rule X ⇒ Y . In
D the support for an association rule is defined by the ratio that contains
both transactions. The confidence of association rule X ⇒ Y is defined by
the ratio to contain transaction Y .

Mathematically, it is denoted as follows:

Support= {number of transactions containing both itemsets X , Y }/
{number of all transactions}
Confidence= {number of transactions containing both itemsets X , Y }/
{number of transactions containing itemset X}

where xi and xj denote the value of i-th and j-th attribute. Then association
rule is denoted xi ∈ Iik ⇒ xj ∈ Ijk. Moreover, confidence c and support s

are denoted as follows.

c(Iik) ⇒ Ijk =
|D(Iik) ∩ D(Ijk)|

|D(Ijk)|
(4)

s(Iik) ⇒ Ijk =
|D(Iik) ∩ D(Ijk)|

|D|
(5)
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2.3 Apriori Algorithm

Apriori algorithm is proposed by R. Agrawal (Agrawal, 1994) may generate
an association rule at high speed. It is a high-speed algorithm for discovering
association rules with support and confidence by setting thresholds for the
minimal support value and minimal confidence value. The apriori algorithm
is explained as follow.

Supposed that a database is denoted as D, a large item set is as Tand the
candidate item set is as Ci. Then, the database is scanned and the support
in each candidate item set is examined. Assumed that is fulfilled minimum
support in Li. Finally, it generates L1 from C1. This process is continued
until the candidate item set becomes empty.

Fig. 1 Example of Associate Rules

In the example shown in Figure 1, let us consider rule A ⇒ C. The support
value for the rule has 50% for {A, C}, and the confidence value of the rule is
66.6% for {A, C}.

The set of frequent items means the set of items with support values greater
than the minimum support value. The extraction of association rules is the
process of finding all the rules that satisfy the minimum support value and
the minimum confidence value chosen.

The following are types of association rules:

boolean associateion rules
quantitative association rule
single-dimensional association rule
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multi-dimensional association rule
multi-level association rule
single-level association rule.

Figure 2 illustrates the example of an apriori algorithm.

Fig. 2 Example of Apriori Algorithm

3 Rough Set Theory

A rough set expresses a set of subsets classified by equivalent relation us-
ing lower and upper approximations. It was proposed by Z. Pawlak in 1982
(Pawlak, 1982). In other words, the rough sets deal with vagueness included
in the fact that classification cannot be done well. The rough set theory is
closely related to data mining. For example, some targets expressed with a
subset of known data can be approximated. That is, that indicates the fea-
tures of the data that can identify customers who bought some goods. The
rough set theory provides a method to approximately reduce the required
feature (called reduction). Furthermore, a vague phenomenon is expressed
using upper and lower approximations. This concept is called rough.
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3.1 Information System

Let us consider a database defined using the set, U , of objects and the set,
N , of features. This is called an information table.

Equivalent Relation. A relation is an equivalent relation if and only if the
following relations hold:

Reflectivity : aRa= 1
Symetricity : aRb=bRa

Transitivity : aRb and bRc ⇒a Rc

(6)

Lower and Upper Approximations. The lower approximation apr∗(X)
is defined as follows:

apr∗(X) = {x ∈ U |R(x) ∈ X} (7)

The upper approximation apr∗(X) is defined as follows:

apr∗(X) = {x ∈ U |R(x) ∩ X �= Φ} (8)

3.2 Reduction by a Rough Set

An important concept of a rough set is the rough approximation. From a data-
mining viewpoint, the reduction of features is useful in mining. Reduction is
a method to obtain the minimal number of features that can express the
equivalent knowledge of experts. If few features can express the equivalent
knowledge of experts, it is possible to recognize such a knowledge using few
features. For example, in the case where the features that define preferable
goods among various generations are color and shape, we can distinguish
such knowledge using only the two features color and shape. We can design
products that have such features.

In rough set theory, reduction is defined as a subset of the minimal features
that can equivalently distinguish the objects that the set of all features can
discriminate on a given information table. In other words, when an informa-
tion table is given, a subset of features in the information table can obtain
equivalent basic sets to the original basic sets. This subset of features is called
the reduction.

Table 1 shows the names of goods as A, B, C, D and E on the top row. This
is called a feature. Each entry shows whether a person buys a good with 1
and not with 0. The universal set is denoted as U = {L1, L2, L3, L4, L5, L6},
the set of all features is denoted as AT = {A, B, C, D, E}.

Let us simplify the explanation. We take the subset, N of the universe AT

as N = {A, B}, as shown in Table 2. Then, we can understand that samples
L2 and L6 take the same value for each feature. Samples L3 and L5 behave
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Table 1 Example 1 of an information table

TID A B C D E

L1 1 1 0 0 1
L2 1 0 0 1 0
L3 0 0 1 1 0
L4 0 1 1 0 1
L5 0 0 1 0 0
L6 1 0 0 1 1

Table 2 Information table 1 with two features

TID A B

L1 1 1
L2 1 0
L3 0 0
L4 0 1
L5 0 0
L6 1 0

Table 3 Information table 2 with three features

TID A B C

L1 1 1 0
L2 1 0 0
L3 0 0 1
L4 0 1 1
L5 0 0 1
L6 1 0 0

the same as well. On the other hand, samples L1 and L4 behave differently.
Therefore, the equivalent classes are as follows: {L1}, {L2, L6}, {L3, L5} and
{L4}.

This example shows the granulated samples in terms of features A and B.
This equivalent class is called a basic set for the set of features N = {A, B}.
Therefore, the subset of features N = {A, B} cannot distinguish individual
samples. When we employ three features, N = {A, B, C}, then we obtain the
equivalent classes as {L1}, {L2}, {L3}, {L4}, {L5}, {L6}. All samples can be
discriminated using three features A, B and C.

From this discussion, if we employ all features, we can distinguish individ-
ual samples, but we can also express all samples behaviors using only three
features. Therefore, Tables 1 and 3 are equivalent.

In the rough set theory, the minimal subset of features is called the reduc-
tion of the set of the whole features AT when it can distinguish as equivalently
all samples as AT .
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3.3 Approximation by a Rough Set

In the rough set theory, sets or classes induced by equivalent relation or
similarity relation are taken as knowledge, and two approximation methods
are employed as lower and upper approximations. From the fuzzy-set view-
point, the upper approximation gives an understanding of necessity and the
lower approximation gives an understanding of possibility. The pair of these
expressions is called a rough set. Uncertain and vague phenomena should
be expressed using the lower and upper approximations. The pair of both
expressions is called a rough approximation.

When we deal with incomplete information, an interval value is used in-
stead of a rigid value. For example, we can define the age of a person [20,40]
as shown in Table 4.

Table 4 Incomplete Information

Name Age

a1 X1 = [23, 26]
a2 X1 = [20, 22]
a3 X1 = [30, 36]
a4 X1 = [20, 23]
a5 X1 = [27, 31]

Considering an example given in Table 4, let us retrieve Table 4. The age
is given with incomplete information. Let us retrieve all people whose age is
in S= [20, 25]. The upper approximation R∗(S) is defined as follows:

R∗(S) = {ai|S ∩ Xi �= Φ} = {a1, a2, a4} (9)

where Φ is an empty set, ∩ denotes an intersection among sets. Set R∗(S) is
defined using S ∩ Xi �= Φ. The result obtained is {a1, a2, a4}.

The lower approximation R∗(S) is defined as follows:

R∗(S) = {ai|S ⊆ Xi} = {a2, a4} (10)

where ⊆ denotes an inclusion relation. In this definition, only persons whose
ages are within the given interval S = [20, 25] are retrieved, an example of a
necessity relation

As understood in the example {a2, a4} ⊆ {a1, a2, a4}, the upper and lower
approximations hold the following relationship:

R∗(S) ⊆ R∗(S) (11)

As mentioned above, incomplete information in a database can be treated
with pairs of upper and lower approximations. These pairs are called a rough
set {R∗(S), R∗(S)}, as mentioned above.
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4 Analysis by a Rough Set Approach to Associate Rule

Analysis

The objective of this paper is to mine a database using a rough set approach
for association rule analysis.

4.1 Experimental Environment

We employed the following system:

• CPU: Pentium(R) 4 CPU 2.80GHz
• Main memory: 512 Mbyte
• Operation System: Microsoft Windows XP Professional Version 2002
• Program language: C

4.2 Experimental Data

We analyzed four datasets.

Simulation Data A. is the United States Congressional Voting records for
1984, a dataset that is widely employed in research on machine learning and
knowledge acquisition. This data consists of 17 features, and the number of
samples is 435.

Simulation Data B. is a randomly generated consumer behavior. The
number of samples is 2000, and the number of features (goods) is 50, denoted
by A,B,C and so on. The value 1 denotes buying, and 0 denotes not buying
by 0.

Simulation Data C. is the Census-Incom Database from 1994 to 1995 from
the UCI repository. This database includes 40 features, such as demography,
employment and income. The number of samples is 199,523.

Table 5 Features defined in Data A

N o F e at u r e V al u e s

1 C l as s N am e : 2 ( d e m oc r at , r e p u b l i c an )
2 h an d i c ap p e d - i n f an t s : 2 ( y , n )
3 w at e r - p r oj e c t - c os t - s h ar i n g: 2 ( y , n )
4 ad op t i on - of - t h e - b u d ge t - r e s ol u t i on : 2 ( y , n )
5 p h y s i c i an - f e e - f r e e z e : 2 ( y , n )
6 e l - s al v ad or - ai d : 2 ( y , n )
7 r e l i gi ou s - gr ou p s - i n - s c h ool s : 2 ( y , n )
8 an t i - s at e l l i t e - t e s t - b an : 2 ( y , n )
9 ai d - t o- n i c ar agu an - c on t r as t : 2 ( y , n )

10 m x - m i s s i l e : 2 ( y , n )
11 i m m i gr at i on : 2 ( y , n )
12 s y n f u e l s - c or p or at i on - c u t b ac k : 2 ( y , n )
13 e d u c at i on - s p e n d i n g: 2 ( y , n )
14 s u p e r f u n d - r i gh t - t o- s u e : 2 ( y , n )
15 c r i m e : 2 ( y , n )
16 d u t y - f r e e - e x p or t s : 2 ( y , n )
17 E x p or t - ad m i n i s t r at i on - ac t - s ou t h - af r i c a: 2 ( y , n )
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Fig. 3 Randomly generated consumers behaviors

Table 6 Features defined in Data A

O ld Variable New Variable Old Variable New Variable Old Variable New Variable

1 Age dAge 24 Income8 dIncome8 47 Rlabor iRlabor

2 Ancstry1 dAncstry1 25 Industry dIndustry 48 Rownchld iRownchld

3 Ancstry2 dAncstry2 26 Korean iKorean 49 Rpincome dRpincome

4 Avail iAvail 27 Lang1 iLang1 50 RPOB iRPOB

5 Citizen iCitizen 28 Looking iLooking 51 Rrelchld iRrelchld

6 Class iClass 29 Marital iMarital 52 Rspouse iRspouse

7 Depart dDepart 30 May75880 iMay75880 53 Rvetserv iRvetserv

8 Disabl1 iDisabl1 31 Means iMeans 54 School iSchool

9 Disabl2 iDisabl2 32 Military iMilitary 55 Sept80 iSept80

10 English iEnglish 33 Mobility iMobility 56 Sex iSex

11 Feb55 iFeb55 34 Mobillim iMobillim 57 Subfam1 iSubfam1

12 Fertil iFertil 35 Occup dOccup 58 Subfam2 iSubfam2

13 Hispanic dHispanic 36 Othrserv iOthrserv 59 Tmpabsnt iTmpabsnt

14 Hour89 dHour89 37 Perscare iPerscare 60 Travtime dTravtime

15 Hours dHours 38 POB dPOB 61 Vietnam iVietnam

16 Immigr iImmigr 39 Poverty dPoverty 62 Week89 dWeek89

17 Income1 dIncome1 40 Pwgt1 dPwgt1 63 Work89 iWork89

18 Income2 dIncome2 41 Ragechld iRagechld 64 Worklwk iWorklwk

19 Income3 dIncome3 42 Rearning dRearning 65 WWII iWWII

20 Income4 dIncome4 43 Relat1 iRelat1 66 Yearsch iYearsch

21 Income5 dIncome5 44 Relat2 iRelat2 67 Yearwrk iYearwrk

22 Income6 dIncome6 45 Remplpar iRemplpar 68 Yrsserv dYrsserv

23 Income7 dIncome7 46 Riders iRiders

4.3 Simulation Result

In this experiment, we employed four databases A, B and C mentioned above.
Minimal support values employed were 1%, 5% and 10%; the minimal confi-
dence values employed were 30%, 50% and 70%.

Table 8 shows the computational time for the mining of Database A. The
rough set approach required a little bit more time than the conventional one.

Regarding Database A, the number of association rules obtained is shown in
Table 9. The number obtained by the rough set approach is smaller than by the
conventional model.



214 J. Watada, T. Kawaura, and H. Li

The comparison of computation time relating to Database B is shown in
Table 10, and the number of associate rules obtained is illustrated in Table 11.
The computation time is not much different, but the number of rules obtained
is drastically lower.

Table 7 Features defined in Data C

Old Variable NewVariable Old Variable NewVariable

1 age AAGE 24 state of previous residence GRINST

2 class of worker ACLSWKR 25 detailed household and family stat HHDFMX

3 industry code ADTIND 26 detailed household summary in household HHDREL

4 occupation code ADTOCC 27 instance weight MARSUPWT

5 adjusted gross income AGI 28 migration code-change in msa MIGMTR1

6 education AHGA 29 migration code-change in reg MIGMTR3

7 wage per hour AHRSPAY 30 migration code-move within reg MIGMTR4

8 enrolled in edu inst last wk AHSCOL 31 live in this house 1 year ago MIGSAME

9 marital status AMARITL 32 migration prev res in sunbelt MIGSUN

10 major industry code AMJIND 33 num persons worked for employer NOEMP

11 major occupation code AMJOCC 34 family members under 18 PARENT

12 mace ARACE 35 total person earnings PEARNVAL

13 hispanic Origin AREORGN 36 country of birth father PEFNTVTY

14 sex ASEX 37 country of birth mother PEMNTVTY

15 member of a labor union AUNMEM 38 country of birth self PENATVTY

16 reason for unemployment AUNTYPE 39 citizenship PRCITSHP

17 full or part time employment stat AWKSTAT 40 total person income PTOTVAL

18 capital gains CAPGAIN 41 own business or self employed SEOTR

19 capital losses CAPLOSS 42 taxable income amount TAXINC

20 divdends from stocks DIVVAL 43 fill inc questionnaire for veteran’s admin VETQVA

21 federal income tax liability FEDTAX 44 veterans benefits VETYN

22 tax filer status FILESTAT 45 weeks worked in year WKSWORK

23 region of previous residence GRINREG

Table 8 Comparison of computation time for Database A

No Suport Condence Conventional Rough Set
Value Value Model Model

1 1% 30% 1.12 1.26
2 1% 50% 1.02 1.34
3 1% 70% 1.06 1.58
4 5% 30% 0.98 1.32
5 5% 50% 1.14 1.03
6 5% 70% 0.94 1.13
7 10% 30% 0.97 1.25
8 10% 50% 0.91 0.96
9 10% 70% 0.92 0.96

The results for database C are shown in Tables 12 and 13, respectively.
The number of rules obtained by the rough set approach was smaller than
that obtained by the conventional model.
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Table 9 Comparison of the number of obtained associate rules for Database A

No Suport Condence Conventional Rough Set
Value Value Model Model

1 1% 30% 59,153 37,471
2 1% 50% 28,458 18,432
3 1% 70% 11,997 9,234
4 5% 30% 28,712 16,236
5 5% 50% 15,594 10,235
6 5% 70% 7,742 4,876
7 10% 30% 15,048 9,151
8 10% 50% 9,290 5,697
9 10% 70% 5,134 3,651

Table 10 Comparison of computation time for Database B

No Suport Condence Conventional Rough Set
Value Value Model Model

1 1% 30% 1.97 1.98
2 1% 50% 1.78 2.01
3 1% 70% 1.65 1.88
4 5% 30% 1.85 1.93
5 5% 50% 1.66 1.71
6 5% 70% 1.54 1.62
7 10% 30% 1.68 1.66
8 10% 50% 1.25 1.46
9 10% 70% 1.11 1.35

Table 11 Comparison of the number of obtained associate rules for Database B

No Suport Condence Conventional Rough Set
Value Value Model Model

1 1% 30% 135,879 81,523
2 1% 50% 85,469 52,995
3 1% 70% 44,825 29,584
4 5% 30% 95,642 51,648
5 5% 50% 48,120 27,583
6 5% 70% 24,056 16,117
7 10% 30% 44,235 23,549
8 10% 50% 21,457 12,874
9 10% 70% 13,547 9,347
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Table 12 Comparison of computation time for Database C

No Suport Condence Conventional Rough Set
Value Value Model Model

1 1% 30% 3,212.75 2,184.67
2 1% 50% 3,109.75 1,987.25
3 1% 70% 3,001.30 1,521.24
4 5% 30% 1,047.39 624.52
5 5% 50% 981.85 587.41
6 5% 70% 966.23 513.29
7 10% 30% 601.39 341.75
8 10% 50% 528.24 283.21
9 10% 70% 531.55 228.76

Table 13 Comparison of the number of obtained associate rules for Database C

No Suport Condence Conventional Rough Set
Value Value Model Model

1 1% 30% 99,191,484 63,488,497
2 1% 50% 86,407,089 55,300,539
3 1% 70% 71,613,085 4,3696,891
4 5% 30% 15,959,402 9,728,612
5 5% 50% 13,928,786 7,956,458
6 5% 70% 11831416 6,713,462
7 10% 30% 8,305,791 4,423,415
8 10% 50% 7,405,234 3,874,562
9 10% 70% 6,443,111 2,945,813

5 Conclusions

In this paper, we proposed the rough set model for association rule anal-
ysis. Employing the model, we analyzed three different scales of databases
and compared the results of simulation experiments with the proposed and
conventional models. The rough set model obtained an efficient number of
association rules and usually took less computation time.

For the smaller scale database, the proposed model took a little bit more
computation time than the conventional model. Regardless, the proposed
model obtained an effective and efficient number of association rules.
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Fuzzy Modeling with Grey Prediction for 
Designing Power System Stabilizers 

Y.T. Hsiao, T.L. Huang, and S.Y. Chang
* 

Abstract. This work presents a novel method for designing power system stabiliz-

ers (PSS) by using a fuzzy PID controller tuned with grey prediction. The PSS de-

sign can be formulated as an optimal linear regulator control problem; however, 

implementing the PSS requires designing estimators, increasing implementation 

complexity and reducing control system reliability. Therefore, this work seeks a 

control scheme that adopts only the desired state variable, for example speed. The 

grey fuzzy PID control is integrated with grey prediction to determine the control 

signal of each generator thus simplifying the design and increasing system per-

formance. The grey prediction uses forecast information regarding the output state 

variables of the generators to the fuzzy tuning PID controller to control power sys-

tem behavior and thus achieve good performance, enabling the presented method 

to reduce power system oscillation and increase dynamic stability. Finally, the ad-

vantages of the proposed method are highlighted by simulating the detailed behav-

ior of a multimachine power system. 

Keywords: Power systems stability, fuzzy, PID control, grey prediction. 

1   Introduction 

Power systems are complex nonlinear systems and frequently exhibit low-

frequency power oscillations because of insufficient damping. The use of supple-

mentary excitation control signals to improve the dynamic stability of power  

systems has attracted much interest over the last two decades. Power system stabi-

lizers (PSSs) provide this supplementary stabilizing signal and are used exten-

sively to effectively suppress the electromechanical oscillations of the generator 
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and improve power system stability (Moucod and Yu 1972, Hung and Yang 1991, 

Chung et al. 2002, Chow et al. 2004). 

The conventional design of PSSs is based on a linearlized model of a power 

system near a nominal operating point, and aims to provide optimal performance 

at that point. Restated, the problem of designing the PSSs is formulated as an op-

timal linear regulator control problem with a complete state control scheme (Mou-

cod 1972). Therefore, the implementation of “conventional” design methods  

depends including state estimators in control scheme. However, this inclusion 

complicates implementation and reduces control system’s reliability. A simple 

control scheme must use only the desired state variable, such as speed, to control 

the generators and simplify the design of the PSSs. The design of conventional 

PSS considers previous system states to determine the control signal, and thus 

cannot easily be used to control the power system before the system state changes. 

Many attempts have been made to eliminate the need to estimate the system states 

using adaptive or observer controllers (Hosseinzadeh and Kalam 1999, You et al. 

2003). However, such systems involve complex mathematical models or/and  

expensive computation. This work employs a mathematically simple and compu-

tationally efficient grey predictor to evaluate the output status of the generators 

and thus tune the controllers. It also presents fuzzy PID control to replace com-

plete state control, thus reducing the computational complexity and improving the 

performance of the PSS. 

The grey theory presented by Deng has been successfully applied to control 

systems and to control motors (Deng 1982, Deng 1989, Wong and Liang 1997). 

The grey prediction method requires relatively few system output data to construct 

a grey model, and forecasts a future value without complex calculations. The 

fuzzy method was developed to design adaptive PSS, and exhibits excellent poten-

tial to increase the damping of generator oscillations (Hosseinzadeh and Kalam 

1999, You et al. 2003). This work integrates the grey predictor with the fuzzy PID 

controller to develop a predictive PSS. Simulations reveal that the proposed 

method reduces oscillation and increases dynamic stability in power systems. The 

following sections detail the proposed method. This work presents the results of 

the simulation of a two-machine system to demonstrate the effectiveness of the 

proposed method. 

2   Grey Prediction 

The black system illustrates that system internal structure, parameters and charac-

teristics are unknown and can only be obtained from external behaviors. Restated, 

a black system is one about which information is lacking, while a white system is 

one whose internal properties are fully known. Meanwhile, a system whose prop-

erties are only partially known is termed a grey system. Grey theory attempts to 

use white system performance to predict grey system performance. Grey predic-

tion establishes a grey model that makes predictions based on information about 

the past. The grey model can be used to predict trends in system output. 

Grey theory is based on grey exponential law. Elucidating the trend in a non-

negative sequence with an arbitrary distribution is difficult. However, such a  
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sequence becomes monotonically nondecreasing when accumulated. Grey expo-

nential law is then used to derive an optimal exponential curve to fit this sequence, 

and predictions are made using inverse transform. Prediction accuracy depends on 

the system characteristics. Grey systems generally perform well if they follow an 

exponential law (Su 2000). In the prediction, the accumulated generating opera-

tion (AGO) and inverse accumulated generating operation (IAGO) are the basic 

tools for building a grey model. If { )()0( ky }, )()0( ky ≥  0, k = 0, 1, …, n are 

time-sequence data, then the ACO is 

∑ ==•=
=

k

m

nkmyyAGOky
1

)0()0()1( ,...,2,1),()(        (1) 

where )()1( ky  denote the accumulated generating sequence data, and are mono-

tonically increasing. Since )()0( ky  is not always positive, exponential or linear 

mapping should be used to alter the sequence behavior before performing the next 

generation operation.  

The data sequence 
)1(z  is defined by applying the following MEAN generating 

operation to 
)1(y  

nkkykyyMEANkz ,...,3,2)],1()([
2

1
)( )1()1()1()1( =−+=•=    (2) 

From )()1( kz , a grey model GM(1,1) was obtained using a first-order single-

variable whitening differential equation: 

ukaz
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dy
=+ )()1(

)1(

                                          
(3) 

The parameters a and u can be determined using the least-square method: 
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and 

)),(),...,3(),2(( )0()0()0(
nyyyyN =

                             
(6) 

Based on the whitening equation (3), the predicted value of the GM(1,1) model is: 
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where ^ denotes the predicted values. The forecasted value of )1(ˆ )1( +ty  can be 

expressed in general form as, 

a

u
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u
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where p denotes the predicted step size. The operation of IAGO for )()1( ky  is  

)0()0( )1()0( yy =                                                  (9) 

)1()()( )1()1()0( −== kykyky                                     (10) 

Therefore, the predicted output at step (n + p) is obtained by differentiating the 

following equation: 
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The grey model prediction is a local curve-fitting extrapolation schema, so at least 

four data sets are required for the first-order single-variable grey prediction model 

to obtain an approximate grey prediction. This work uses the four most recent out-

put data to predict the subsequent output )1(ˆ +ky  by applying the grey model. 

The data sets are substituted into Eq. (4) to recursively determine the grey parame-

ters a and u,. Subsequent system output can then be predicted by substituting the 

grey parameters into (11). 

3   Fuzzy PID Controller 

Proportional-integral-derivative (PID) control is a well-known technique for con-

trolling industrial processes. PID control is simple and performs robustly under a 

broad range of operating conditions. The design of PID control depends on speci-

fying three parameters - proportional gain (Kp), integral time constant (Ki) and de-

rivative time constant (Kd). A problem has traditionally been solved by trial and 

error development. Design engineers must tune PID controllers manually, which is 

a time-consuming task. The transfer function of a PID controller is expressed as 

( ) SK
S

K
KsG d

i
pC ++=

                                       
(12) 

where Kp, Ki and Kd represent the proportional, integral and derivative gains,  

respectively. The output u(t) of the PID controller reads as  

)()()()(
.

0
teKdeKteKtu d

t
ip

•

+∫+= ττ
                                      

(13) 

where e(t) is the error between the reference input and the output at time t.  
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From a practical point of view, the Kp and Kd  can be set in the 

ranges RKK pp ⊂],[ maxmin
 and RKK dd ⊂],[ maxmin

 such that ],[ maxmin ppp KKK ∈  

and ],[ maxmin ddd KKK ∈ . For convenience, 
pK and 

dK  are normalized as follows. 

minmax

min
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pp
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The integral time constant Ti of the PID controller is assumed to be obtained from 

the derivative time constant Td of the PID controller as 

di TT α=
                                                                       

(16) 

Therefore, 
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In other words, the parameters of the PID controller to be tuned using the fuzzy  

inference rules are
pK ′ , 

dK ′  and α . Figure 1 illustrates the proposed structure of 

the fuzzy PID with a two-input-three-output schema. The inputs of the fuzzy  

system are the error )(te  and the derivative of the error )(te$ , while the outputs are 

pK ′ , 
dK ′  and α . The fuzzy inference rules are constructed as a set of fuzzy IF-

THEN rules. 

Fuzzy

system

Fuzzy

system

Fuzzy

system

)(te

)(te$

(13)

(14)

(16)

p
K ′

dK ′

α

pK

iK

dK

 

Fig. 1 The structure of the proposed fuzzy PID controller. 

The overall block diagram of the fuzzy PID controller reveals that the error (e) 

and derivative of the error )(te$  are inputted to the fuzzy systems to derive the con-

trol parameters of the PID controller, 
pK ′ , 

dK ′  and α . The control rule base com-

prises a group of if-then control rules; that is, 

IF )(te  is lA  and )(te$  is lB , THEN 
pK ′  is lC ; 

dK ′  is lD , and α  is lE . 
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Where )(te  and )(te$  are the input fuzzy variables, and 
pK ′ , 

dK ′  and α  are the 

output fuzzy variables. The fuzzy subsets of the input linguistic variables and the 

output linguistic variable are )(te : {NB, NM, NS, ZO, PS, PM, PB}, )(te$ : {NB, 

NM, NS, ZO, PS, PM, PB}, 
pK ′ : {Small, Big}, 

dK ′ : {Small, Big}, α : {S, MS, M, 

B}. Figures 2, 3 and 4 plot the membership functions of the input and output fuzzy 

variables. In these figures, N denotes negative, P positive, ZO - approximately 

zero, S-small, M medium and B - big.  Furthermore, NM denotes negative-

medium, and so on. lA , lB , lC , lD  and lE  are the fuzzy subsets of the corre-

sponding supporting sets. Tables 1 to 3 list the rules for tuning 
pK ′ ,

dK ′  and α . 

For example, rule R(4, 2) is 

R(4, 2): IF )(te  is ZO and )(te$  is NM, THEN 
pK ′  is S; 

dK ′  is B, and α  is M.  

)(/)( tte e
•

 

Fig. 2 Membership functions for 
)(te

 and 
)(te$

. 

dp KK ′′ /1

1

0

BigSmall

 

Fig. 3 Membership functions for pK ′
and dK ′

. 
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Fig. 4 Membership functions for α . 

Table 1 fuzzy turning rules for
pK ′  

)(te$  

 

NB NM NS ZO PS PM PB

NB B B B B B B B 

NM S B B B B B S 

NS S S B B B S S 

ZO S S S B S S S 

PS S S B B B S S 

PM S B B B B B S 

)(te  

PB B B B B B B B 
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Table 2 fuzzy turning rules for
dK ′  

)(te$  

 

NB NM NS ZO PS PM PB

NB S S S S S S S 

NM B B S S S B B 

NS B B B S B B B 

ZO B B B B B B B 

PS B B B S B B B 

PM B B S S S B B 

)(te  

PB S S S S S S S 

Table 3 fuzzy turning rules for α  

)(te$  

 

NB NM NS ZO PS PM PB

NB S S S S S S S 

NM MS MS S S S MS MS

NS M MS MS S MS MS M 

ZO B M MS MS MS M B 

PS M MS MS S MS MS M 

PM MS MS S S S MS MS

)(te  

PB S S S S S S S 
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4   The Proposed System Structure 

The proposed power system stabilizer structure shown in Fig. 5 comprises two subsys-
tems - the grey predictor and the fuzzy tuning PID controller. The grey  

predictor adapts the last four data sets of the generator deviation speed ωΔ , to predict 

the subsequent value of the derivative of the angular speed of the generator 
∧

Δω . The 

fuzzy tuning PID controller generates the control signal of the control system based on 
the forecast values of the generator deviation speed. 

From the experiments, the small forecasting step always causes a short rise time and 
a large overshoot of the system response. On the other way, the large forecasting step 
always produces the response of the system with a small overshoot and long rise time. 
This work utilizes the switch mechanism to get a suitable forecasting step for the grey 
predictor according to the response of the system. The control strategy of the switch 

mechanism is based on the forecasting error 
∧

e  of the generator deviation speed to  

decide a control signal. If the forecasting error is large, the forecasting step is set as 
small for outputting a larger control signal to speed up the response of the system. By 
the same way, while the forecasting error is small, the forecasting step is set a large 
value to prevent the overshoot of the system. The switching mechanism is defined by  

1yF

2yF

1u

2u

2

®Fy

1

®Fy

 
 

 

 

Machine 1 subsystem 
 

 

 

 

 

 

Machine 2 subsystem 

 

Fig. 5 The structure of the grey fuzzy tuning PID control power system stabilizer. 
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where p1 denotes the forecasting step size for large forecasting error, p2 is the fore-

casting step size for small forecasting error, and sE  is the switching time of the switch 

mechanism. 
In order to avoid time-consuming, we apply the genetic algorithms to decide the 

appropriate forecasting step size and the switching time sE . The switching grey pre-

diction controller not only can reduce the overshoot of the system, but also can pro-
duce a shorter rise time than that of the traditional controller design methods. 

5   Simulation Results 

This study considered the two-machine-infinite-bus power system shown in Fig. 6 

to demonstrate the capability of the proposed method to enhance the system stabil-

ity. In the grey process, AGO is first performed to establish a grey model GM(1,1) 

(Feliachi et al. 1988, Hung and Yang 1991). Figure 7 shows the original sequence 

of data for the derivative of the angular speed of generator 1. Figure 8 illustrates 

the first and second-order AGO of the derivative of the angular speed of generator 

1. Forecasting step size influences the performance of the grey predictor. Figures 9 

and 10 illustrate the simulation results obtained using different sized forecasting 

steps in the grey predictor, for Kp=5, Ki=0.1 and Kd=2. This work selects forecast-

ing step size p = 2 for the grey predictor.  

For comparison, simulations of the two-machine power system were run, based 

on full-order optimal control, reduced-order optimal control (Feliachi et al. 1988) 

and the proposed method. Figures 11 and 12 plot the transient responses of the an-

gular frequencies with a 5% change in the mechanical torque of both machines. 

Meanwhile, Figs. 13 and 14 plot the torque angle responses. The simulation re-

sults indicate that the proposed PSS offers better damping characteristics and tran-

sient responses than the conventional PSS. 

 

Fig. 6 The two machine-infinite-bus power system 
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Fig. 7 The original data sequence of the derivative of the angular speed of the generator 1. 
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Fig. 8 The first and second order AGO of the derivative of the angular speed of the generator 1 
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Fig. 9 The angular frequency responses of the machine 1 under various forecasting step size 
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Fig. 10 The angular frequency responses of the machine 2 under various forecasting step size. 
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Fig. 11 The angular frequency response of machine 1 for the test system. 
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Fig. 12 The angular frequency response of machine 2 for the test system. 
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Fig. 13 The torque angle response of machine 1 for the test system 
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Fig. 14 The torque angle response of machine 2 for the test system 

6   Conclusions 

This work presented a novel method of designing power system stabilizer. The 

proposed approach integrates the grey prediction technique, fuzzy inference and 

PID controller to replace the traditional full-order optimal control method. This 

study considered and tested a two-machine-infinite-bus power system. The pro-

posed method was then compared with traditional optimal control and optimal re-

duced methods, demonstrating the effectiveness of the grey fuzzy turning PID 

control power system stabilizer in improving dynamic performance stability, as 

confirmed by simulation. The results of this study demonstrate that in addition to 

its ability to be easily implemented, the proposed solution algorithm can reduce 

the oscillation and improve the dynamic stability of the considered power system. 
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A Weighted Fuzzy Time Series Based Neural 
Network Approach to Option Price Forecasting 

Yungho Leu, Chien-Pang Lee, and Chen-Chia Hung
*
 

Abstract. Option price forecasting has become an important financial issue in  

recent years. However, it remains a challenging problem due to the fact that the 

option price is determined by many factors. This paper proposes a new method to 

forecast the option price. The proposed approach, a weighted fuzzy time series 

based neural network (WFTSNN) model, is a hybrid method composed of a fuzzy 

time series model and a neural network model. In the WFTSNN, a fuzzy time  

series model is used to select the training data set from the historical data set to 

train a neural network for option price forecasting. The experimental results show 

that the WFTSNN outperforms several existing hybrid methods in terms of the 

mean absolute error and the root mean squared error. 

Keywords: Option price forecasting, Hybrid method, Fuzzy sets, Fuzzy time  

series, Neural networks.  

1   Introduction 

Recently, the option has become an important tool for risk management in financial 

markets (Ko 2009). For example, a producer may buy a put option to prevent a 

loss due the possible price decline on his products in the future. Similarly, a cus-

tomer may buy a call option to buy his desired products for an expected price in 

the future. However, an option is like an insurance policy in that one has to pay 

premium for an option. The premium, also called the price, of an option is deter-

mined by many factors such as the current price of the underlying asset, the strike 

price, the time to expiration, the volatility of the price of the underlying asset and 

the risk-free interest rate (Black and Scholes 1973). Being affected by so many 

factors, option price forecasting remains a challenging problem. The well-known 

Black-Scholes model (B-S model) (Black and Scholes 1973) offers a deterministic 

equation for option pricing and is a standard for activity of financial practitioners 

(Morelli et al. 2004).  Though it gives an exact solution for the European option, it 
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is not well-suited for pricing options in other markets such as the American and 

the Asian option markets (Morelli et al. 2004; Labjcygier 2004). As a result, many 

new methods have been proposed for option price forecasting in the recent years. 

Artificial neural networks (ANNs) are popular for financial forecasting. For  

example, Grudnitski and Osburn (Grudnitski and Osburn 1993) used the ANN to 

forecast futures prices. Shin and Han (Shin and Han 2000) and Panda and Nara-

simhan (Panda and Narasimhan 2007) used the ANN to forecast the exchange 

rates. The ANN is also widely used in option price forecasting. For example, Mo-

relli et al. (Morelli et al. 2004) used both the multi-layer perceptron and the radial 

basis function neural networks to predict the prices of options. Recently, the fuzzy 

time series models have gained its popularity for financial forecasting such as the 

stock price indices forecasting (Yu 2005; Cheng et al. 2008), the foreign exchange 

rates forecasting (Leu et al. 2009) and the forecasting of the indices of the Taiwan 

Futures Exchange market (Lee et al. 2006). 

Recently, Tseng et al. (Tseng et al. 2008) and Wang (Wang 2009) proposed sev-

eral hybrid models for option price forecasting. According to the B-S option-pricing 

model (Black and Scholes 1973), the underlying asset price (the spot price) S, the 

strike price X, the time-to-expiration t, the risk-free interest rate r, and the volatility of 

the underlying asset σ are parameters to determine the price of the option of an under-

lying asset. Among these parameters, the asset volatility σ is difficult to estimate. 

Traditionally, the AutoRegressive Conditional Heteroskedasticity (ARCH) model 

and its variants, the generalized ARCH (GARCH), the Glosten-Jagannathan-Runkle 

GARCH (GJR-GARCH) and the Exponential General Autoregressive Conditional 

Heteroskedastic (EGARCH) (Robert 2001) are used for calculating the volatility of a 

financial time series. In the work of Tseng et al., they applied the grey model 

GM(1,1) to calculate the error terms in the GJR-GARCH model to come up with the 

Grey-GJR-GARCH model. Similarly, they applied the GM(1,1) grey model to 

calculate the error term in the EGARCH to come up with the Grey-EGARCH model.  

Having estimated the volatiltiy of the underlying asset, they used a neural network 

trained with backpropagation to calculate the option price of the underlying  asset 

using S, X, t, r and σ as the inputs to the neural network. 

In this paper, we proposed a hybrid model to predict the option price of “Tai-

wan Stock Exchange Stock Price Index Options (TXO)”. The weighted fuzzy time 

series based neural network (WFTSNN) model is composed of a fuzzy time series 

model and a neural network model. In the WFTSNN, a fuzzy time series model is 

used to select the training data set from the historical option prices for the neural 

network model to build an option price forecasting model.  

The remainder of this paper is organized as follows. Section 2 reviews the defi-

nitions of the fuzzy time series. Section 3 introduces the procedure of the 

WFTSNN. Section 4 describes the application of the WFTSNN on option price 

forecasting. Section 5 compares the performance of the WFTSNN with many  

existing hybrid methods. Section 6 concludes this paper. 
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2   Fuzzy Time Series 

Since the proposed method is based on the fuzzy time series model, we will 

briefly review the definitions pertaining to the fuzzy time series model.  

(Chen 2002; Song and Chissom 1993; Song and Chissom 1994),  

Definition 1  
Let Y(t) (t =…,0,1,2,…), a subset of R

1
, be the universe of discourse in which 

fuzzy sets fi(t) (i = 1,2...) are defined. If F(t) is a collection of fi(t), F(t) is called a 

fuzzy time series defined on Y(t). 

Definition 2  

If for any fj(t)∈F(t), there exists an fi(t-1)∈F(t-1), such that there exists a fuzzy  

relation Rij(t, t-1) and fj(t)=fi(t-1)。Rij(t, t-l) where ‘。’ is the max-min composi-

tion, F(t) is said to be caused by F(t-1) only, and is represented by F(t-1)→F(t). 

Definition 3  
If F(t) is caused by F(t-1), F(t-2),…,and F(t-n), F(t) is called a 1-factor n-order 

fuzzy time series, and it can be represented by 

F(t-n),…, F(t-2), F(t-1)→F(t). 

Definition 4  
If F1(t) is caused by (F1(t-1), F2(t-1)), (F1(t-2), F2(t-2)),…, (F1(t-n), F2(t-n)), F1(t) 

is called a 2-factor n-order fuzzy time series, which is represented by 

(F1(t-n), F2(t-n)),…, (F1(t-2), F2(t-2)), (F1(t-1), F2(t-1))→F1(t). 

Let F1(t)=Xt and F2(t)= Yt, where Xt and Yt are fuzzy variables whose values are 

possible fuzzy sets of the first factor and the second factor of day t, respectively.  

Then, a 2-factor n-order fuzzy logic relationship (FLR) (Chen 2002) can be repre-

sented as follows, 

(Xt-n, Yt-n), …, (Xt-2, Yt-2), (Xt-1, Yt-1)→Xt, 

where (Xt-n, Yt-n), …, (Xt-2, Yt-2) and (Xt-1, Yt-1), are referred to as the left-hand side 

(LHS) of the fuzzy logic relationship, and Xt is referred to as the right-hand side 

(RHS) of the fuzzy logic relationship. 

3   The WFTSNN Method 

In this paper, we adopt a 2-factor fuzzy time series model as the time series model of 

the hybrid method. Each of the two factors of the fuzzy time series model plays a dif-

ferent role in the prediction. Since the first factor is the main factor for the prediction 

and the second factor assists the first factor in the prediction, we give the first factor a 

higher weight than that of the second one. Fig. 1 shows the flowchart of the 

WFTSNN and the details of the procedure are described in the following. 
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Fig. 1 The flowchart of the WFTSNN 

Step 1: Divide the universe of discourse 
The universe of discourse of the first factor is defined as U= [Dmin-D1, Dmax+D2], 

where Dmin and Dmax are the minimum and maximum values, respectively, of the 

first factor; D1 and D2 are two positive numbers which help to divide the universe 

of discourse into n equal length intervals. Similarly, the universe of discourse of 

the second factor is defined as V= [Vmin-V1, Vmax+V2], where Vmin and Vmax are 

the minimum and maximum values, respectively, of the second factor; V1 and V2 

are two positive numbers used to divide the universe of discourse of the second 

factor into m equal length intervals. Note that the length of the intervals of each 

factor is determined by its maximum value of the factor in the historical data set. 

Step 2: Define fuzzy sets 

Linguistic terms Ai, 1≤ i ≤ n, are defined as fuzzy sets on the intervals of the first 

factor. They are defined as follows: 
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where ui denotes the i
th

 interval of the first factor.  

Similarly, linguistic terms Bj, 1≤ j ≤ m, are defined as fuzzy sets on the intervals of 

the second factor. They are defined as follows: 

1 1 2 3 2 1

2 1 2 3 2 1

1 1 2 3 2 1

1 2 3 2 1

1 0.5 0 0 0 0 ,

0.5 1 0.5 0 0 0 ,
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m m m m

B v v v v v v
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B v v v v v v
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− −

− −
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− −

= + + + ⋅⋅⋅ + + +

= + + + ⋅⋅⋅ + + +

= + + + ⋅⋅ ⋅ + + +

= + + + ⋅⋅⋅ + + +

B  

where vi is the i
th

 interval of the second factor. 

Step 3: Determine the order of WFTSNN 
The WFTSNN method uses a 2-factor n-order fuzzy time series model to select 

similar FLRs from the historical data set for training a neural network. Similar 

FLRs imply similar trends in the historical data set. The order of the WFTSNN 

can be regarded as the length of the trends. Different application favors different 

length of trends. To determine the length of trends, we choose to vary the order of 

the WFTSNN from 1 to 5 to build five different prediction models. Then, we 

choose the one with the best prediction accuracy as the final prediction model. 

Note that since the order n ranges from  1 to 5, Step 3(a) to Step 3(d) in the fol-

lowing will be performed for five times to build five different models.  

(a) Construct the FLRs database 

For the historical data of day i, let Xi-n, Yi-n denote the fuzzy set of F1(i-n) and F2(i-

n) of the fuzzy time series, respectively. Let Xi denotes the fuzzy set of F1(i). The 

FLR of day i can be represented as follows: 

(Xi-n, Yi-n), …, (Xi-2, Yi-2), (Xi-1, Yi-1)→Xi. 

(b) Construct the LHS of the  FLR of the predicting day (assume that day t is the 

predicting day) 

The LHS of the FLR of day t can be represented as follows: 

(Xt-n, Yt-n), …, (Xt-2, Yt-2), (Xt-1, Yt-1). 

(c) Select similar FLRs from the historical FLR database 

Calculate the Euclidean distance (ED) of the LHS of the FLR of day t against the 

LHS of each candidate FLR in the historical FLR database. Then, we select the 

top five FLRs with the smallest Euclidean distance from the historical FLR  
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database as the training data set. As mentioned above, a certain weight is given to 

different factors in prediction. For option price forecasting, we choose to give the 

first factor twice the weight as that of the second factor. The Euclidean distance 

between the FLR of day t and the FLR of day i can be calculated according to 

Formula 1 2, and 3. 

2 2 2

2 2 1 1
( ) ( ) ( ) ,

Ai t n i n t i t i
ED IX RX IX RX IX RX− − − − − −= − + + − + −A

            
 (1) 

2 2 2

2 2 1 1
( ) ( ) ( ) ,

Bi t n i n t i t i
ED IY RY IY RY IY RY− − − − − −= − + + − + −A

         
 (2) 

2
.

3

Ai Bi

i

ED ED
ED

× +
=                                                   (3) 

In the above formulae, IXt-n and IYt-n are the subscripts of the fuzzy sets of the first 

factor and the second factor, respectively, of the LHS of day t’s FLR. Similarly, 

RXi-n and RYi-n are the subscripts of the first factor and the second factor, respec-

tively, of the LHS of day i’s FLR. 

(d) Construct  the neural network model 

With the top five similar FLRs, we can train a radial basis function neural network 

(RBFNN) model for forecasting. The training framework of the neural network 

model is shown in Fig. 2. 

 

Fig. 2 The training framework of the RBF neural network model 

(e)  Model selection 

Having constructed the candidate models, we can choose the best model for pre-

diction. To do that, we use a test sample to test the prediction accuracy of the  

candidate models. The test sample, denoted by FLRs, is the FLR with its LHS 

most similar to the LHS of the FLR of day t. To select the forecasting model, we 

use the LHS of FLRs as the input to a trained model and calculate the error accord-

ing to the following formula:  
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Error function＝｜Forecasted RHS－Testing RHS｜.                   (4) 

We then choose the model with the smallest error as the forecasting model. Note 

that in Formula 4, the forecasted RHS denotes the subscript of the forecasted 

fuzzy set of FLRs, and the testing RHS denotes the actual subscript of the fuzzy 

set of the RHS of FLRs. 

Step 4: Forecasting  
Having determined the forecasting model, we use the LHS of the FLR of the pre-

dicting day as the input to the neural network to get the forecasted subscript of the 

RHS of the prediction day. Then, we defuzzify the subscript into its corresponding 

forecasted value. We use the weighted average method as the defuzzification 

method described by the following expression: 
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1,

1 0.5

0.5 [ 1] [ ] 0.5 [ 1]
_ 1 1,

0.5 1 0.5

0.5 [ 1] [ ]
,

0.5 1

M M
k

M k M k M k
forecast value k n

M n M n
k n

+ ×⎧
=⎪ +⎪

× − + + × +⎪
= < ≤ −⎨

+ +⎪
× − +⎪

=⎪
+⎩

                (5) 

where M[k] denotes the midpoint value of fuzzy set k. Note that an iteration of the 

above procedure (Step 1 through Step 4) predicts only one forecasted value. 

4   Option Price Forecasting 

To forecast the option price of TXO, we choose the closing price of TXO as the 

first factor and the “Taiwan Stock Exchange Capitalization Weighted Stock Index 

(TAIEX)” as the second factor. Parts of the historical data set are shown in Table 

1. With this historical data set, U is set to [0, 1000] and is divided into 100 inter-

vals. Accordingly, u1=[0, 10], u2=[10, 20],…, and u100=[990, 1000]. For the sec-

ond factor, V is set to [3000, 13000] and is divided into 240 intervals. Similarly, 

v1=[3000, 3050], v2=[3050, 3100], …,and v240=[12950, 13000]. Having defined 

the intervals, we fuzzify the historical data set into fuzzy sets. Table 2 shows parts 

of the fuzzified historical data set. Then, we construct the historical FLR database 

from the fuzzified historical data set. A 2-order FLR database for this historical 

data set is shown in Table 3. 

Having constructed the FLR database, we can forecast the option price by the 

WFTSNN. For example, if we want to forecast the option price of day 11, we first 

construct the LHS of the FLR of day 11 as follows: 

(A37B118), (A36B118). 

Then, we calculate the Euclidean distance between LHS of the FLR of day 11 and 

the LHS of each candidate FLR in the FLR database. Table 4 shows the calculated 

Euclidean distances. Then, we select the top five similar FLRs from the FLR data-

base. In this example, FLR4, FLR5, FLR8, FLR3, FLR6 are selected. Finally, we 

use these selected FLRs as the training data set to build a neural network model. 
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Table 1 Segments of the historical data set 

Date Day 1 Day 2 Day 3 Day 4 Day 5 

Option Prices 615 500 455 408 413 

Stock indices 6143.12 6060.46 5988.37 5935.99 5975.66 

Date Day 6 Day 7 Day 8 Day 9 Day 10 

Option Price 310 267 309 376 365 

Stock indices 5879.08 5853.94 5889.52 5945.27 5933.57 

Table 2 Segments of the fuzzified data set 

Day 1 Day 2 Day 3 Day 4 Day 5 

(A61, B122) (A50, B121) (A45, B119) (A40, B118) (A41, B119) 

Day 6 Day 7 Day 8 Day 9 Day 10 

(A31, B117) (A26, B117) (A30, B117) (A37, B118) (A36, B118) 

Table 3 The FLRs database 

FLR1 (A61, B122) (A50, B121) → A45 

FLR2 (A50, B121) (A45, B119) → A40 

… … … … … 

FLR8 (A30, B117) (A37, B118) → A36 

Table 4 Obtained Euclidean distances 

 EDA EDB ED 

FLR1 
2 2(37 61) (36 50)− + −  

2 2(118 122) (118 121)− + −  20.19 

FLR2 
2 2(37 50) (36 45)− + −  

2 2(118 121) (118 119)− + −  11.60 

...   ... 

FLR8 
2 2(37 30) (36 37)− + −  

2 2(118 117) (118 118)− + −  5.05 

To select a model for forecasting, we use FLR4, which is the most similar FLR to 

the FLR of day 11, as the testing sample. To perform the testing, we use the LHS 

of FLR4 as the input to the neural network to get the predicted subscript. Then, we 

calculate the error between the predicted subscript and the actual subscript. For 

this example, the predicted subscript is 31 and the actual subscript is also 31. 

Hence, the error is equal to 0. Note that the procedure above will be performed 

once for each of the 1-order, 2-order, 3-order, 4-order and 5-order fuzzy time  

series models. The one with the smallest error is selected for forecasting. 

For the above example, assume that a 2-order neural network model is selected, 

and the forecasted subscript is 32 for day 11. Substituting 315, 325 and 335 for 
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M[31], M[32], and M[33], respectively in Formula 5, we get 325 as the forecasted 

option price for day 11. Note that the actual option price of day 11 is 326 in this 

example. 

5   Results and Performance 

5.1   The Data Set 

The data set used in this paper comprises the daily transaction data of TXO and 

TAIEX from January 3, 2005 to December 29, 2006. This paper investigates a 

sample of 23,819 call option prices. Call options can be divided into three catego-

ries according to their S/K ratios. The distribution of the data set is shown in Table 

5. We refer to (Tseng et al. 2008) and (Wang 2009) for the definition of the cate-

gories. The data set comprises 30 different strike prices from 5,200 to 8,200 and 

12 different expiration dates from January 2005 to December 2006. 

Table 5 Data distribution according to moneyness 

Categories Moneyness Number 

In-the-money S/K > 1.02 8938 

At-the-money 0.95 < S/K ≦ 1.02 7508 

Out-of-the-money S/K ≦ 0.95 7373 

Note: S denotes the spot price; K denotes the strike price. 

Note that the option prices of the beginning 10 transaction dates of each option 

are not predicted due to lack of the required training data. In predicting the option 

price of a specific date, the option prices of the previous transaction dates become 

the training data set. 

5.2   Performance Measures 

Two different performance measures, mean absolute error (MAE) and root mean 

squared error (RMSE), are used to measure the forecasting accuracy of the 

WFTSNN. The formulae are shown in the following: 
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where At and Pt denote the actual option price and the forecasted option price of 

day t, respectively. 

5.3   Performance 

The performance of the WFTSNN is compared with other proposed methods pub-

lished in the literatures (Leu et al. 2010; Tseng et al. 2008; Wang 2009). Table 6 

shows parts of the results of the option prices forecasted by the WFTSNN. It is 

noted that the forecasted prices are very close to the actual option prices in Table 

6, except those on the dates when the option prices change abruptly. The perform-

ance of the WFTSNN and the other methods are shown in Table 7. In Table 7, the 

difference between WFTSNN and FTSNN (Leu et al. 2010) is in that the 

WFTSNN gives different weight to the two factors, while the FTSNN give equal 

weight to both factors. Table 7 shows that the performance of the WFTSNN is 

better than that of the FTSNN in all cases except the case of in-the-money with the 

MAE measure, in which the difference is insignificant.  Table 7 shows that, in 

terms of both RMSE and MAE, the forecasting accuracy of the WFTSNN is better 

than those of the other methods in all the three option categories. Fig. 3 shows the 

forecasted prices of an option with strike price equal to 7,400 and expiration date 

in December 2006. 

Table 6 Parts of forecasted prices of an option with strike price equal to 6,300 and expira-

tion date of November 2005 

Transaction dates Actual option prices Forecasted option prices  

2005/09/02 80 77.5 

2005/09/05 77 72.5 

2005/09/06 93 72.5 

2005/09/07 96 82.5 

2005/09/08 93 87.5 

2005/09/09 84 82.5 

2005/09/12 90 87.5 

2005/09/13 91 92.5 

Table 7 The performance in RMSE and MAE 

 RMSE MAE 

Moneyness In At Out In At Out 

WFTSNN 67.94* 29.72* 8.96* 52.13 19.99* 6.05* 

FTSNN 72.79 36.99 16.19 52.11* 23.98 9.78 

GARCH 85.49 44.02 25.73 69.54 34.73 18.78 

GJR 76.19 41.06 25.53 59.28 31.67 17.41 

Gery-GJR 73.76 40.11 25.89 56.13 30.21 17.26 

EGARCH 73.90 41.35 26.34 57.02 32.17 18.30 

Gery-EGARCH 72.11 40.26 26.13 57.26 32.51 18.26 

Notes: 1. * denotes the smallest value. 2. GJR denotes the GJR–GARCH model. 3. 

Grey-GJR denotes the Grey-GJR–GARCH model. 
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Fig. 3 Time series of the actual and the forecasted option prices of an option with strike 

price equal to 7,400 and expiration date in December 2006 

6   Conclusions 

Option price forecasting is difficult due to the fact that it is influenced by many 

factors in a complex manner. Hybrid methods have been shown successful in pre-

dicting the option price.   In this paper, we propose the WFTSNN method for op-

tion price forecasting. In the WFTSNN, we use a weighted fuzzy time series 

model to select the training examples from the historical data set for a neural net-

work to build a prediction model for option prices. According to the experimental 

results, the WFTSNN outperforms other existing hybrid models in terms of RMSE 

and MAE. Finally, since a real-life financial time series always exhibits non-

deterministic fluctuation, the higher order fuzzy sets which can handle uncertainty 

may be useful for financial time series forecasting. 
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A Rough Sets Approach to Human Resource 
Development in IT Corporations 

Shinya Imai and Junzo Watada
*
 

Abstract. In IT corporations, it is essential to increase competitive advantages and or-

ganizational performance. Employees are critical to a company’s success. A new re-

search method is needed to quantify employees’ influence on building relationships 

with customers and to facilitate human resource and customer relationship manage-

ment. Rough sets theory is a mathematical approach to dealing with vagueness and 

uncertainty. It can change a qualitative problem into a quantitative one and produce a 

possible solution by providing useful and valuable information and guidelines for de-

cision making. The objective of this study is to determine through the use of analysis 

analyzed with rough employee characteristics and behaviors that yield positive or 

negative relationships with customers. The rough set approach distinguishes between 

these two groups and leads us to suggest policies to improve human resource and cus-

tomer relationship management and development. The proper management of em-

ployees and customers will ensure project success and good corporate performance. 

Quality is an attribute that is important for products as well as for management and 

the company itself. The development and promotion of personnel resources is indis-

pensable for improving the quality of a company’s management. Management quality 

is closely related to corporate culture and a sense of social responsibility. Therefore, 

personnel resource development and personnel training for employees should be em-

phasized. In the main discussion of this paper, information was gathered from engi-

neers at a regional IT company through questionnaires and their observable talents 

were analyzed. The research addressed questions such as what kinds of values should 

be promoted. An attempt was made to clarify the relation between QWL (Quality of 

Working Life) and personnel training. This paper suggests that the management qual-

ity and CSR (Corporate Social Responsibility) of regional companies is closely related 

with the quality and improvement of their growth. 

Keywords: human resource development, rough set theory, customer relationship 

management. 
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1   Introduction 

Numerous studies have provided important methods for human resource manage-

ment (HRM). In the 1980s, many companies were product-oriented. It was  

believed that employees just needed certain skills to be productive, and human re-

source management was approached from a job-based perspective. In 1973, Har-

vard University psychology professor McClelland challenged the idea of a “work 

as the center” evaluation. He pointed out that using competence instead of intelli-

gence as an assessment criterion emphasized the concept of “work as the center” 

(Mirabile 1997). The concept of competency-based evaluation has led to a revolu-

tionary change in the modern evaluation system that views an organization as a 

paragon of competence. This focus on competence and growth is especially suited 

to the dynamic and people-oriented features of the knowledge-economy era (Yan 

et al. 1997). Therefore, employees are now required not only to perform their jobs 

but also to maintain good relationships with customers.  

When a company retains good relationship with its customers, it can increase 

its revenue and market share, respond quickly to market opportunities, increase 

customer loyalty and easily collect information to ensure that corporate resources 

are used in a suitable way. To achieve this goal, a manager will ensure that em-

ployees are in the right place at the right time to satisfy the company’s customers. 

However, this can become a problem if the company cannot satisfy both its em-

ployees and its customers. When there is a conflict between employees and cus-

tomers, managers often sacrifice employees’ rights and satisfaction. This is no 

longer appropriate. The objective of this research is to identify a compromise be-

tween customers and employees and to determine what employee characteristics 

and behaviors of employees produce a good relationship with customers. The re-

sults of this research may guide organizations to adapt good strategies and policies 

for human resource and customer relationship management.  

1.1   Human Resource Management 

Storey (1995) defines human resource management as a distinctive approach to 

employment management that seeks to achieve a competitive advantage through 

the strategic deployment of a highly committed and capable workforce using an 

array of cultural, structural and personnel techniques. 

In recent years, studies have connected human resource management (HRM) 

with strategic management and corporate performance to emphasize the positive 

link between HR practices and organizational performance (Truss 2001, Pfeffer 

and Veiga 1999). If a company has an effective HRM team, it will also have better 

organizational performance. Therefore, increasing employees’ motivation and 

passion is the key to businesses’ survival in the IT industry. Research by Pfeffer 

(Pfeffer 1994) showed that high motivation and strong commitment among em-

ployees leads to a long-term increase in business performance. HRM must be im-

plemented for an extended period of time to have an effect on the success of its  
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organization. It can be a part of the strategy of a company to facilitate important 

decision making among the staff, thereby improving organizational achievement 

and attaining the company’s objectives.  

Cascio (Cascio 1992)] suggests that organizations must gain a competitive  

advantage through the effective utilization of their human resources. The IT indus-

try workforce is complex because employees strive to balance their personal de-

velopment and their loyalty to a company. People change jobs frequently for 

higher salaries or more benefits. This is often very costly to the company in terms 

of training costs and the loss of time, knowledge, customer relationships and con-

tact data, all of which are potentially transferred to a competitor when experienced 

workers are hired by another company. Therefore, human resource management 

should identify the employee characteristics that increase or reduce this risk. 

Human resources, like a well-informed, capable citizenry, can improve an  

organization, a society, a government agency, a country or a nation (Khan 2003). 

For example, planning and needs-based recruitment keeps staff costs down, while 

merit-based selection procedures can improve the quality of staff (World Bank 

1997). Companies can simultaneously have qualified, effective and low-cost em-

ployees though effective HRM. 

In IT corporations, human resources are an important issue, but the best way to 

manage employees and customer relationships is often uncertain. Fuzzy set theory 

and rough set theory have shown to be particularly useful for the analysis of inex-

act, uncertain or vague data (Walczak and Massart 1999). Both theories deal with 

this indescribable knowledge.  

1.2   IT Industry 

Remarkable innovations based on communications and information technology 

(IT) are changing the way we live, the nature of economic activity and the policies 

of every country in the world. In recognition of this phenomenon, the G8 (the G7 

countries plus Russia) recently adopted the Okinawa Charter on the Global Infor-

mation Society. The idea that “IT is one of the most important forces shaping the 

twenty-first century” has thrust IT into the very center of this development. 

The last thirty years have been characterized by rapid developments in the IT  

industry. Mainframe computers have been used since the early 1950s, and several 

manufacturers produced mainframe computers from the late 1950s through the 

1970s. These manufacturers were known as “IBM and the Seven Dwarfs”: 

Burroughs, Control Data, General Electric, Honeywell, NCR, RCA, and UNIVAC. 

A greater use of computer applications may be traced to the introduction of the 

personal computer (PC) in the 1970s. A personal computer (PC) is a computer 

whose price, size, and capabilities make it useful for individuals. During the 

1990s, the power of personal computers increased radically, blurring the formerly 

sharp distinction between personal computers and multiuser computers, such as 

mainframes. Today, higher-end computers are often distinguished from personal 

computers by greater reliability or a greater ability to multitask, rather than by 

CPU ability alone. 
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The 1980s were characterized by significant structural changes in the IT indus-

try. These included the emergence of software as an independent and dynamic 

component segment of the IT industry and the growth of global production  

networks. Software generally falls into three different categories: 

Table 1 Internet history 

year event 

1958 US Government forms the Advanced Research Projects 

Agency (ARPA) to establish the United States’ lead in science 

and technology for military purposes. 

1970 The Internet is born—ARPANET commissioned by the US 

Department of Defense. 

1971 Electronic mail (e-mail) is invented. 

1973 First international connection to the ARPANET, with UK and 

Norway, occurs. File transfer protocol is specified. The 

ethernet is outlined. Internet ideas start. 

1976 Networking becomes popular. Unix to Unix Copy is 

developed. E-mail and Internet become operational. 

1981 Minitel deployed across France. 

1986 The power of Internet is recognized: 5,000 hosts, 241 

newsgroups. 

1987 The commercialization of the Internet begins: 28,000 hosts. 

1990 ARPANET ceases to exist. 

1991 The world wide web (WWW) is established at the European 

Centre for Nuclear Research (CERN)—the most important 

development to date. 

1992 Multimedia changes the use of Internet. The number of hosts 

exceeds 1 million mark. 

1993 The WWW revolution truly begins. The White House and 

United Nations go online. 

1994 Shopping malls and banks arrive on the Internet. 

1995 Traditional dial-up systems begin to provide Internet access in 

the US. Internet-related companies go public, and commercial 

use begins. Domain registration is no longer free. Search en-

gines emerge. Mobile code JAVA emerges. 

1996 WWW browser war begins. 

2000 Number of internet hosts exceeds 70 million. G8 adopts the 

Charter on the Global Information Society at Okinawa. 
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(1) Platform software includes firmware, device drivers, operating systems and 

(typically) graphical user interfaces. 

(2) Application software is what most people think of when they think of soft-

ware. Typical examples include office suites and video games. Application soft-

ware is often purchased separately from the computer hardware.  

(3) User-written software tailors systems to meet the user’s specific needs. User 

software includes spreadsheet templates, word processor macros, scientific simu-

lations, and scripts for graphics and animations.  

During the 1990s, the Asia-Pacific region became one of the major players in 

world IT production in all of the core segments of the industry. Developing the la-

bor force in Asia also became an important topic in every company and every 

country. 

The principal components of IT include the following components:  

(1) hardware, which is designed around the “microchip” (semiconductor inte-

grated circuit) and its associated peripherals  

(2) software, which includes programming languages and their applications 

(3) communications devices, which comprises both terrestrial and wireless units 

and related equipment  

(4) the Internet, which is based on a generation of new computer languages and 

protocols that link individual computers into a vast network through which in-

formation can flow unimpeded  

The history of the Internet in terms of the growth of the Internet is presented in 

Table 1. 

 

Fig. 1 Growth of World Wide Web Sites 
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In Figure 1, we can withness the rapid growth of World Wide Web sites from 

1998 to 2000, demonstrating the importance of rapid developments for the IT  

industry.  

The G8 Charter was a call to both public and private sectors to bridge the  

information and knowledge divide—the “digital divide.” It underscores the fact 

that an effective partnership among stakeholders, through policy cooperation, is 

the key to the sound development of a truly global information society. The Char-

ter emphasizes the importance of building on the following foundations: 

(1) Economic and structural reforms to foster an environment of openness, effi-

ciency, competition, and innovation 

(2) Sound macroeconomic management to help economic agents plan confidently 

and exploit the advantages of new technology 

(3) Information networks offering fast, reliable, secure, and affordable access 

through competitive market conditions 

(4) Human resources capable of responding to the demands of the information age 

(5) Active utilization of IT by the public sector 

Human resources are present in all these facets outlined above, and human  

resources become necessary in the future to develop the IT industry. 

1.3   Soft Computing 

Because computer hardware and software allows for the management of large 

amount of data, that have been collected and stored in databases. Traditional ad 

hoc mixtures of statistical techniques and data management tools are no longer 

adequate to analyze this vast collection of data (Mitra 2002). Many businesses 

need to collect huge databases for financial investment, human resource manage-

ment, customer relationship management, production and inventory management, 

and other purposes. However, a major problem is how to analyze such large 

amounts of data. Many studies use data mining and soft computing to identify 

meaningful information from a large-scale database (Mitra 2002). Current ways 

that data mining is used in practice include the following: 

(1) Classification—classifies a data item into one of several predefined categorical 

classes 

(2) Regression—maps a data item to a real valued prediction variable 

(3) Clustering—maps a data item into one of several clusters, where clusters are 

natural groupings of data items based on similarity metrics or probability den-

sity models 

(4) Rule generation—extracts classification rules from the data 

(5) Discovering association rules—describes an association relationship among 

different attributes 

(6) Summarization—provides a compact description for a subset of data 

(7) Dependency modeling—describes significant dependencies among variables 

(8) Sequence analysis—models sequential patterns, like time-series analysis 

The goal is to model the states of the process generating the sequence or to extract 

and report deviation and trends over time. 
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Data mining has been very popular in many types of research. Recently, vari-

ous soft computing methodologies, such as fuzzy logic, neural networks, genetic 

algorithms, and rough sets, have been used to handle the different challenges 

posed by data mining  (Mitra 2002). Each of these methods can be used to analyze 

a problem. These methodologies are not homogeneous techniques, but they can be 

used together to solve complex questions. Studies increasingly combine these re-

search methods to produce results that are more adapted to the current world than 

traditional techniques. 

Current studies that use data mining have some limitations. These methods of-

ten focus on algorithms and visualization techniques. Data mining can identify a 

huge number of patterns in a database, but most of these patterns are useless or un-

interesting to the user  (Mitra 2002). Rough set theory is suitable for analyzing dif-

ferent types of uncertainty and can reduce superfluous information in large 

amounts of data.  

In the IT industry, important business strategies include strengthening the skills 

of employees and promoting business collaboration. The objective of this collabo-

ration is to balance the weaknesses and strengths of companies and to create a mu-

tually beneficial situation. These companies enhance their value through “win-win 

business collaborations” or “chains of business collaborations.”  

IT companies are changing their focus from computer hardware to service. Im-

portant issues in the IT industry include producing IT technical experts, providing 

high quality, improving business relations, and strengthening maintenance ser-

vices. The most important issue is improving business ability to strengthen com-

petitiveness and increase customer satisfaction. 

A company’s executives enhance organizational ability and cultivate human re-

sources to increase sales volume and profits and expand their achievements in  

service.  

Marketing staff (sales and marketing, systems engineering) play a central role 

in business planning. Marketing staff are required to understand sales products and 

to apply market strategies. Therefore, when considering personnel resources, it is 

important to understand how marketing staff evaluate their own IT skills, career 

achievement and advancement and expectations. 

In this paper, questionnaires were used to quantify employee satisfaction. We 

asked 167 randomly selected employees involved in front-end marketing in five 

regional partner companies of foreign IT Company A to complete questionnaires.  

This information was used to clarify issues faced by IT companies, to analyze 

how employees can improve and meet expectations, and to illustrate a latent struc-

ture to improve both corporate and individual quality. 

2   Rough Set Theory 

Rough set theory comes with many advantages. It provides efficient algorithms for 

finding hidden patterns in data, determines minimal sets of data (data reduction),  
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evaluates the significance of data, and generates minimal sets of decision rules 

from the data. It is easy to understand and as such it offers a straightforward inter-

pretation of the produced results (Pawlak 1996). These advantages can facilitate 

analysis. For these reasons, a rough set approach is a frequently used research 

method. It is important in Artificial Intelligence (AI) and cognitive science, espe-

cially in the areas of machine learning, knowledge acquisition, decision analysis, 

knowledge discovery from databases, expert systems, decision support systems, 

inductive reasoning, and pattern recognition. 

Rough set theory was developed by Pawlak (Pawlak 1982, 1984, 2004). It has 

been applied to many areas, including: medical diagnosis, engineering reliability, 

expert systems, empirical study of materials data (Leclair and Zairko 1996), ma-

chine diagnosis (Zhai et al. 2002), travel demand analysis (Goh and Law 2003), 

business failure prediction (Beynon and Peel 2001), solving linear programs 

(Azibi and Vanderpooten 2002), data mining (Li & Wang, 2004) and a-RST 

(Quafafou 2000). Previous research has discussed the preference order of attribute 

criteria needed to extend the original rough set theory, such as sorting, choice and 

ranking (Greco et al. 2001), insurance markets (Shyng et al. 2007), and rough set 

theory combined with fuzzy theory (Polkowski 2003). Rough set theory is a useful 

vehicle for analyzing data and reducing information. 

The theory provides a new mathematical setting to analyze uncertainty and 

classify imperfect data or information with results presented in the form of  

decision rules. 

2.1   Information Systems 

Generally, an information system, IS for brief, is defined as ( ,  )IS U A= , where 

U consists of finite objects and is a universe and A is a finite set of attributes 

1 2 n{ , ,..., }a a a . Each attribute a  belongs to set A , that is, a A∈ . af : 
a

U V→  

af means all 
a

V  are in theU , where 
a

V is a set of values of attributes. It is a  

domain of attribute a. 

2.2   Lower and Upper Approximations 

The essence of rough sets relies on the two basic concepts of the lower and upper 

approximations of a set, as shown in Figure 2.  

In Figure 2, some squares are included in the circle, but the others are not. The 

set of the squares included completely in the circle is called a lower approxima-

tion. The set of the squares partly and completely included in the circle is called an 

upper approximation. 
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Fig. 2 Upper and Lower Approximations of Set X. 

Let X  be a subset of elements in universeU , that is, UX ⊂ . Let us consider 

a subset in
a

V ,
a

VP ⊆ . The low approximation of P  , denoted as PX  , can be 

defined by the union of all elementary sets 
i

X  contained in X as follows: 

[ ] }{ ind pPX
i i ( )

x U x Χ= ∈ ⊂
                                   (1)

 

where
i

X  is an elementary set contained in X, ni ,,2,1 A= .  

The upper approximation of P , denoted as PX , can be denoted by a non-

empty intersection of all elementary sets 
i

X  contained in X as follows: 

[ ] }{ ind pPX 0
i i ( )

x U x Χ= ∈ ∩ ≠
                                 (2)

 

The boundary of X in U is defined in the following: PNX=PX-PX  

Figure 2 illustrates a lower approximation and an upper approximation. 

2.3   Core and Reduct of Attributes 

Core and reduct attribute sets are two fundamental concepts of rough sets. The re-

duct is a minimal subset that makes the object classification the full set of attrib-

utes. The core is common to all reducts (Shyng et al. 2007). Reduct attributes can 

remove the superfluous attributes and give the decision maker simple information. 

There may be more than one reduct attribute. If the set of attributes is dependent, 

we are interested in finding all possible minimal subsets of attributes that have the 

same number of elementary sets, called the reducts (Walczak Massart 1999).  

The reduct attribute set affects the process of decision making, and the core at-

tribute is the most important attribute in decision making. If the set of attributes is 

indispensable, the set is called the core (Walczak Massart 1999). 

 



258 S. Imai and J. Watada

 

RED(P) A⊆                                                         (3) 

COR(B)= RED(P)∩
                                               (4)

 

2.4   Decision Rules 

Decision rules can be regarded as a set of decision (classification) rules of the 

form 
ik ja = d ,where

ika means that attribute 
ka  has value I, 

jd means the deci-

sion attributes and the symbol ‘⇒ ’ denotes propositional implication. In the  

decision rule θ φ⇒ , formulas θ  and φ  are called the condition and decision,  

respectively (Walczak Massart 1999). 

Through the decision rules, we can minimize the set of attributes, reduct the su-

perfluous attributes and group elements. In this way, we can have many decision 

rules, each with meaningful features. Stronger rules will cover more objects, and 

the strength of each decision rule can be calculated to determine the appropriate 

rules. 

3   Business Quality in the IT Industry 

3.1   State of the Art of Business Activities 

IT companies activate technologies for new businesses to expand the hardware busi-

ness. They try to establish new business collaborations using their own technology 

to develop software packages. Computer makers restructure and organize special di-

visions and reallocate responsible personnel to promote this change in emphasis 

from hardware to software. Furthermore, computer makers provide seminars for 

each IT company and for each product brand. Nevertheless, there seems to be a dif-

ference in the intentions of IT companies and computer makers, even if the objective 

of both is to promote and sustain the business of IT companies.  

It should be emphasized that the current IT industry needs to provide total solu-

tions and businesses are changing by applying various skills from systems devel-

opment. These skills are classified into three groups: (1) technical skills, (2)  

human skills and (3) management skills. Computer makers have a responsibility to 

promote this business direction toward a proposing type business and cultivate 

these three skills. 

3.2   Issues at the Level of Companies  

If manufacturers do not consider consumers’ preferences and needs, it is not pos-

sible to use their products to increase customer satisfaction. Therefore, decision 

making about products has changed from a model in which manufacturers  
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determine the functions, design, performance, and quality of products based on 

their own judgment or standards. It is important to understand customers’ needs, 

to commercialize products and services faster than competitors, and to identify 

target markets and customers appropriately. For example, when a manufacturer 

announces a new product, it should arrange its advertisements and promotions si-

multaneously. A corporation increases overall customer satisfaction by improving 

its products, providing clear instructions, creating effective customer channels for 

managing inquiries and complaints, improving the response rate and providing 

better customer service after purchase.  

An integrated power evaluation of a company requires “corporate quality” to 

realize customer satisfaction. One of the important issues for companies is how to 

cultivate and educate employees to become leaders. Companies have to increase 

the number of training days for employees in a year, and all employees should be 

encouraged to be leaders. Therefore, every company has a responsibility to pro-

mote and develop these talents from each employee. Companies must emphasize 

not only job sites and factory floors; they must also provide a sufficient education 

system for employees and a strategy for personnel training and education. This re-

search on the behavioral features of managers illustrates important issues about 

corporate quality, as identified in the survey of employees.  

3.3   Issues of Individual Employees 

“A corporation cannot develop without the development of individuals.” These are 

the words of T.J. Watson, Sr., the founder of IBM. Watson believed that the ag-

gregation of individual abilities could support a company. When individual em-

ployees can improve their abilities, the company can develop at the same time. 

Likewise, the company’s development leads to the growth of individuals. That is, 

the goal of individual employees should be realized as well as that of the com-

pany.  

The qualities necessary to each individual employee’s working life can be 

summarized as follows: 

(1) Job satisfaction 

(2) The successful application of the employee’s ability and development 

(3) Taking responsibility and authority for himself or herself 

(4) Appraisal of the employee’s job by other people 

(5) Appraisal equivalent to achievement (Labart et al. 1984) 

Therefore, each employee expects to be properly compensated for the achieve-

ment of his or her own targets, job functions and responsibilities. It is said that job 

experience and responsibility help people mature. On the other hand, an  

employee’s own spirit and enthusiasm toward the job may be the most important 

factors. It is necessary to develop employees’ abilities within the framework of 

personnel management strategies and to improve employees’ skills according to 

their own career plans. There have been many cases where employees have devel-

oped their own skills through on-the-job training (OJT) either inside or outside of 

their company. In the competitive technology environment of the IT industry, OJT 
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is one of the easiest methods to help an individual employee understand flexible 

approaches and problem-solving methods. After obtaining on-the-job training ex-

periences, education hours must be provided for employees to learn theories. It is 

the responsibility of individual employees themselves to ensure steady knowledge 

acquisition and to direct their passion and enthusiasm in the education process. 

4   Corporate Quality and Individual Employees in the IT 

Industry 

4.1   Corporate Quality  

Quality control starts with the detection of problems and deficits. Effective quality 

control requires employees to be eager and enthusiastic in trouble-shooting. The 

most important way to find defects in a system is to start from the facts. Therefore, 

quality control is a method that depends on facts. All quality control activities  

begin by recording and interpreting facts.  

“The remedy to cure the illness of Nissan should be found within the com-

pany.” These are the words of Mr. Carlos Ghosn, who led Nissan to recovery. He 

committed himself to talking with his employees thoughtfully and thoroughly after 

being appointed as the CEO (Terano et al. 1992). We can relate this to our own 

organization with the following questions: Did your company change from the 

past? Did your company successfully respond to changes in markets, competitive 

structures and customers’ needs? 

Companies survive by changing and innovating in accordance with the chang-

ing environment. The V-curve of recovery for Nissan came primarily from 

Ghosn’s leadership, but we should not forget the role of experts from the middle 

lines and the general employees who embodied the rebuilding of Nissan (Terano 

et al. 1992). 

Employees are classified into line specialists and staff specialists. The most  

important goal of an organization is to obtain maximum interests. It is not possible 

for the sales staff to increase profits for the entire company, and it is not possible 

to build the competitive power of a company unless employees in each division 

master their job skills. The responsibility of an organizational sales division is to 

realize that employees and staff specialists eagerly and sincerely consider the 

needs of their customers. Staff specialists support line employees. Sales divisions 

have to collaborate with other related divisions in sales activities and approach 

problems and opportunities flexibly to achieve the goals that will satisfy all em-

ployees in the company, including those in sales divisions. Corporate quality 

should be enhanced. A company distinguishes itself from its competition if it can 

produce at least one employee who can imagine the satisfaction of the customer 

when doing their job. To realize organizational sales, the required behavioral ele-

ments for all employees include skill and knowledge. A well-organized sales de-

partment should respond to customers’ requests as a team and take final  

responsibility for the customer’s needs. It is of primary importance to increase 

employees’ loyalty toward the company.  
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Figure 3 shows marketing employees’ satisfaction with their work stations. Af-

firmative answers including “yes” and “partly satisfied” represented 57.5% of all 

the answers obtained from the five companies for Question 41, “Are you satisfied 

with the work environment of your company?” An individual employee expects 

the company’s support to increase the quality of his or her work life and to enrich 

his or her individual ability. It is important to increase employee satisfaction. Em-

ployees cannot sufficiently demonstrate their own abilities without a satisfying 

work environment, even if educational menus are provided for employees to flexi-

bly and rapidly address customer requests. This is because employees want a safe 

and stable work environment. A stable work environment is essential to nurture 

employees’ abilities sufficiently in an environment in which they spend the entire 

day. 

Question 41

12.0%

45.5%

37.7%

4.8%

Yes

Yes, being satisfied a little

No

uncertin

 

Fig. 3 Question 41: “Are you satisfied with the work environment of your company?” 

How do employees view their compensation and their promotion opportunities? 

Are they satisfied with morale and motivation as well as education and career  

development potential? The results of Question 37 and 38 are similar, as shown in 

the following figures:  

Q uestion 37

7.2%

21.6%

52.1%

19.2%

Yes

Yes, partly being satisfied

No

uncertin

 

Fig. 4 Question 37: Satisfaction rating of in-house programs to improve morale/motivation 
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Question 38

6.0%

27.5%

52.1%

14.4%

Yes

Yes, partly being satisfied

No

uncertin

 

Fig. 5 Question 38: Satisfaction rating for systems and programs of in-house promotion and 

recognition 

Figures 4 and 5 show that employee satisfaction is strongly correlated with cus-

tomer satisfaction. If employees are dissatisfied with a work environment or a 

company, they will not take sufficient responsibility, leading to an increase in er-

rors and a decrease in efficiency. Accordingly, the quality of products and services 

will worsen, leading to customer dissatisfaction. Therefore, improving employee 

satisfaction enhances quality and productivity (JPC=SED 2003) 

4.2   Individual Quality 

Figure 6 shows the responses to the question about the understanding of sales ter-

ritories and customers in Question 6. The total number of affirmative responses in 

Figure 6 is 62.8%. This figure is not sufficient for marketing staff on the front line. 

The response “out of duty” was disappointingly high, at 34.7%. The question-

naires were primarily geared toward marketing staff, but application system engi-

neers and maintenance staff chose this response as well. Of the respondents, 

27.1% were system engineers and maintenance staff, and 10.2% were operational 

staff.  

Question 6

31.1%

31.7%

2.4%

34.7%

Yes

Partly grasp

No

Outside the duty

 

Fig. 6 Question 6: “Do you understand your own targeted sales territory and customers?” 
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Question 7 asks, “Do you understand the annual target figure/annual action target?” 

Figure 7 shows that 23.4% of employees responded “out of duty.” This number is too 

high in comparison with the total of “yes” or “partly grasped” responses, at 73.7%. 

About one-fourth of all employees selected “out of duty” or “no.” This fact conflicts 

with employee satisfaction. Marketing staff have to work hard to realize the target fig-

ure. Otherwise, the company cannot realize the target set.  

Question 7

51.5%

22.2%

3.0%

23.4%

Yes

Partly grasp

No

Outside the duty

 

Fig. 7 Question 7: “Do you understand the setting of the action target and the target sales 

amount for a year?” 

Question 26

50.3%

21.0%

7.8%

4.8%

4.8%

11.4%

Teaches from customer

Teaches from senior，

manager

Studied by journal，manual

Don't know by SE，

outsourcing

The other

Outside the duty

 

Fig. 8 Question 26: “How can employees obtain the application knowledge of operations?” 

Next, we discuss how employees can obtain the applied knowledge of opera-

tions, as shown in Figure 8. This is the most important answer in this research and 

includes the skills and qualities required for a quality marketing staff. What cus-

tomers buy from manufacturers and agents depends on marketing ability and busi-

ness applications, and 50.3% of marketing staff learned this knowledge from their 

customers. This is important for individual growth and career development. Mar-

keting staff can understand and improve customer loyalty by acquiring new 

knowledge through lectures and seminars and implementing this knowledge to 

improve overall quality.  

“Think” is a motto frequently used at IBM. It is a word that Watson, the foun-

der of IBM, used. Watson used to tell his employees to read books, listen to other 
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people’s opinions, discuss with everyone, and then think. IBM’s corporate engine 

is based on education and training, and they invest 3% of their entire sales volume 

in employee education and training. 

5   Analysis of Quality by Pattern Classification 

5.1   Application of Pattern Classification 

The objective of this paper is to clarify the issues in improving individual quality 

in personnel development and employees’ career development by understanding 

the present state of employees in the IT industry. The policies involving these  

issues should be linked to the company’s management quality. The questionnaires 

were analyzed using a pattern classification model.  

5.2   Scatter Graphs of Attributes 

(1) Axis 1 in Figure 9 

In a scatter graph, positive values of the fifth item are plotted in the positive region 

of Axis 1 (+). In particular, all of Evaluation A is included in the first quadrant. 

Regarding the skill evaluation of four products, both evaluations A and B are in the 

positive region of Axis 1 (+). In particular, the skill of Product X has high value. 
 

(2) Axis 2 in Figure 9 

In the scatter graph, five items have a strong correlated movement with “the 

evaluation of increasing skills.” On Axis 2 of the scatter graph, evaluations A and 

B of five item attributes are positive. The positive values are E-mo and E-pro.  

  

Organization

Line 

profession 

Individual 

Staff  

profession 

 

Fig. 9 Scatter graphs of attributes 
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The skill evaluation of four products has a negative correlation with evaluations 

in contrast to Axis 1 (+), and the evaluation of four products is negative but E-sw. 

The employees’ satisfaction in a company is proportional to the sufficiency of 

skills. Even though the scatter graph of variables is negative, changing the man-

agement quality of a company strengthens its competitive power. 

5.3   Scatter Graph of Employees 

(1) Axis 1 in Figure 10 

(1.1) Satisfied employees: 

Nine out of ten employees who are satisfied or partly satisfied are within the posi-

tive region of Axis 1. 

(1,2) Unsatisfied employees: 

Eighteen out of fifty employees who are unsatisfied are within the positive region 

of Axis 1. 

(1,3) Undecided employees: 

Five out of twenty-eight employees are on the positive region of Axis 1. 

(2) Axis 2 in Figure 10 

(2.1) Satisfied employees: 

Ten out of ten employees who are satisfied are within the positive region of Axis 2. 

 

organization 

【Relationship】 

Line profession 

【Leadership power】

Individual 

【Professional conscious】 

Staff profession 

【Service power】 

 

Fig. 10 Scatter graph of total evaluation 
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(2.2) Partly satisfied employees: 

Twenty-two out of twenty-eight employees who are partly satisfied are within the 

positive region of Axis 2. 

(2.3) Unsatisfied employees: 

Eleven out of fifty employees who are unsatisfied are within the positive region of 

Axis 2. 

(2.4) Undecided employees: 

Twenty-three out of twenty-eight employees are on the positive region of Axis 2. 

The quality of working life, everyday life, future prospects and abilities are areas 

that employees seek to improve.  

In the scatter graph, even though many employee responses pull Axes 1 and 2 

in a positive direction, there are still many employees in the negative region. This 

suggests that many employees are disgruntled. 

5.4   Scatter Graph of Corporation Awards/Reward System 

(1)  Axis 1 in Figure 11 
(1.1) Satisfied employees: 

Six out of nine employees who are satisfied or partly satisfied are within the posi-

tive region of Axis 1. 

(1.2) Unsatisfied employees: 

Twenty out of thirty-nine employees who are unsatisfied are within the positive 

region of Axis 1. (Totally 29 samples) 

(1.3) Undecided employees: 

Three out of twenty employees are on the positive region of Axis 1.  
 

(2)  Axis 2 in Figure 11 

(2.1) Satisfied employees: 

Eight out of nine employees who are satisfied are within the positive region of 

Axis 2. 

(2.2) Partly Unsatisfied employees: 

Twenty-nine out of thirty-nine employees who are partly satisfied are within the 

positive region of Axis 2. 

(2.3)Unsatisfied employees: 

Twenty out of forty-six employees who are unsatisfied are within the positive  

region of Axis 2. 

(2.4) Undecided employees: 

Eleven out of twenty employees are on the positive region of Axis 2. The factors 

that completely satisfy employees are located on Axis 1 and partly on Axis 2. In 

contrast, employees who are not satisfied are located on the negative regions of 

Axes 1 and 2.  

Thirty-eight employees who are dissatisfied are scattered over the positive region.   
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Organization
【Teamwork】 

Line profession 
   【Competition mind】 

Staff profession 
【Service mind】 

Individual 
【Pride and improvement】

 

Fig. 11 Scatter graph of corporation awards/reward system 

This is an important issue for many companies. Managers must treat and evalu-

ate employees fairly and impartially according to their fiscal plan. Even employ-

ees who are in the negative region can be changed into contributing marketing 

staff if they are treated properly and nurtured. The education and training system 

in a company should be positioned as one of its business strategies. 

6   An Empirical Study on Human Resource Development 

In this research, we obtained responses to 47 questions from 167 employees of IT 

companies. These questions described attributes that characterize employees. Em-

ployees with good customer relations help companies earn larger profits and pro-

duce brand loyalty. However, it is not easy to determine which employees will 

have good customer relations. Therefore, we focus on the answer to the question, 

“Within and outside of the company, do you have good human relations with your 

customers?”  

Let us denote the answer of employee i  )167,,2,1( A=i  to the above ques-

tion as
i

A . The objective of this research is to clarify what pattern of the other an-

swers on the questionnaire results in some value of
i

A , that is, “yes, I have a good 

relationship with customers” or “no, I do not have a good relationship with them.” 

We investigated the answers from 167 employees of IT companies and identified 
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the latent structure of the answers as suggesting that managers and companies can 

provide effective functions to motivate their staff.  

We used ROSE (Predki et al. 1998, Predki et al. 1999), developed by the Labora-

tory of Intelligent Decision Support Systems, to handle rough set analysis problems.  

Table 2 Lower and upper approximations 

Class 

number 

Number 

of 

objects 

Lower 

approxim

ation 

Upper 

approxim

ation 

accuracy 

1 

2 

146 

21 

146 

21 

146 

21 

1.000 

1.000 

 
Table 2 shows the lower and upper approximations obtained by a rough set 

analysis. This obtained accuracy is 1.000. We can say the target set is definable on 

an attribute set (Pawlak et al. 1988). Attribute
i

A )167,,2,1( A=i , “within and 

outside of a company, do you have good human relations with your customers?” is 

considered to be a decision attribute. The values that
i

A )167,,2,1( A=i  takes the 

values of 1 (yes) or 2 (no). There were 146 yes responses and 21 no responses. 

Table 2 shows that the upper and lower approximations are equivalent. There-

fore, there is no uncertainty in the classification between classes 1D = and 2D = . 

When decision rules are obtained, the decision rules will help the DM (decision 

maker) obtain more information about human resources.  

6.1   Decision Rules 

Decision tables show the covering rate and the elements of rules. This helps to 

identify these features more clearly. Each rule has its own elements, and these 

elements are the features of these rules. We want to determine the typical rules for 

most of employees to help decision makers identify the ideal employee behavior. 

In this way, a manager can differentiate these features into multiple groups, each 

with its own policy. 

We found 16 such rules, as shown in Appendix A. There are nine decision-

related rules that indicate a good relationship with customers and seven deci-

sion-related rules that indicate a bad relationship with customers. The total 

coverage rate is 98.8%. This decision table represents the IT corporation  

employees’ behaviors. 

Appendix A indicates that Rule 1 covers 59.59% of the employees. More than 

half of the people in these IT companies demonstrate these features when they 

have good relationships with customers. Rule 10 covers 28.57% of the employees. 

The behavior of these employees towards their customers may not be satisfactory. 

Rule 10 only covers 28.57% people because out of 167 employees, only 21 em-

ployees do not have not good interactions with consumers, but this 28.57% is still 

meaningful for our results. 
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7   Results and Discussion 

Considering rules 1 and 4 we can see that when employees in IT corporations have 

good relationships with customers they also demonstrate positive thinking and  

behavior. They understand the entire system, organization and contacts of their 

customers and company, they also understand the financial statements. They think 

it is useful to attended business protocol trainings, they understand the board 

members and internal operating rules of the company, and they have good rela-

tionships with coworkers. These features show that they are very active in their 

company, so managers must focus on encouraging them to continue to contribute 

and increase their motivation to benefit the company  

Alluding to rules 10 and 12, we see that employees with poor relationships with 

their customers do not understand the relevant contracts or the system and organi-

zation of their company. They do not participate in scheduled trainings, lectures or 

seminars for business behaviors and career development, they have no contact 

with board members and no knowledge of customer databases, and they have no 

solutions for problems with manufacturers. These negative features mean that  

employees do not care about their jobs or achievements. The managers of these 

employees must identify the reasons for these negative features and motivate them 

to work.  

These positive and negative decision rules help identify what features and  

behaviors can bridge the customers and the company.  

Maslow’s hierarchy of needs is often depicted as a pyramid consisting of five 

levels: psychological needs, safety, love/belonging, esteem, and self-actualization. 

Employees who have good relationships with customers are at the level of 

love/belonging, so they will want to seek the next level, esteem. People need to be 

engaged to gain recognition with an activity that provides a sense of contribution. 

People try to improve, so they work hard to prove their ability. These people  

always want to learn new things and want more information about the company 

because they see themselves as part of a team and want to perform correctly at 

their jobs.  

Employees who have poor relationships with customers are still at the safety 

level. They only care about their own employment and their own safety. They 

only think about themselves, so they do not want to work hard because it does not 

affect their personal safety. They do not see themselves as part of the company, so 

they have no interest in doing anything outside of their duties. Managers have to 

assure the security of their employment; the employees must know that their jobs 

are protected and that the manager does not fire people easily. They should be 

moved into the love/belonging level so that the manager can have an effective 

staff.  

Managers must ensure that employees have good relationships with customers, 

help them perform their work correctly, and occasionally give them challenges 

and rewards to increase their motivation to improve. This will result in many 

benefits for the corporation. Whether employees have good or bad relationships 

with customers is part of the human resources of the corporation. Therefore, man-

agers can give these two groups different functions. 
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8   Concluding Remarks 

This research demonstrates that human resource management and customer  

relationship management are important for every corporation and suggests ways to 

deal with this trade-off. Using rough set theory, we reduced superfluous factors to 

reveal important elements in our decision table. We successfully used rough set 

theory to address human resources and customer relationship management, and we 

determined logical ways to manage employees and customers. This information 

can be adopted in IT corporations to help these companies provide the right ser-

vice at the right time to satisfy their customers without sacrificing employees’ 

rights. In other words, corporations can increase the satisfaction of employees and 

customers at the same time. 

In this paper, the questionnaire responses were obtained from 167 employees of 

IT companies. These data were analyzed using a pattern classification model. The 

following conclusion can be highlihted: to improve the quality of a company, it is 

most important to ensure employee satisfaction.  
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APPENDIX A 

Rule 

number 

Decision 

attribute 

The minimal covering rule 

 

Covering 

rate 

Rule(1)  

59.59% 

1 Q29 Do you recognize and understand the whole system and organization of your 

customer’s company? Yes  

Q30 Do you understand the board members? Yes  

Q33 Do you like attending training or seminars to acquire knowledge of financial 

statements? Yes  

Q36 Do you have good human relations with your bosses, senior members, and 

colleagues within the company? Yes  

Q40 Do you understand the internal operating rules of the company? Yes 

0.520 

Rule(2)  

45.21% 

1 Q29 Do you recognize and understand the whole system and organization of your 

customer’s company? Yes  

Q39 Do you understand the contract with the company where you work? Yes  

Q2 Is it useful to your business that you attended business protocol training? Yes 

0.640 

Rule(3)  

23.97% 

1 Q36 Do you have good human relations with your bosses, senior members, and 

colleagues within the company? Yes  

Q4 Did you attend scheduled training, lectures or seminars for business protocol 

and career development after joining this company? None  

Q46 With whom do you consult when you experience trouble with collaboration? 

The boss  

Q48 Are you male or female? Male  

Q52 How many books do you read in a month? About 5 books 

0.700 

Rule(4)  

10.27% 

1 

 

Q18 Regarding the method for learning skills for software products, what is your 

general product knowledge level of software products? Low 

Q38 Are you satisfied with the promotion and reward programs within the 

company? Yes 

Q42 Regarding the contracted rules and collaboration with computer 

manufacturers, do you understand the yearly measures and policies of the 

manufacturer? No  

0.724 

Rule(10)  

28.57% 

2 Q39 Do you understand the contract with the company where you work? No  

Q4 Did you attend scheduled training, lectures or seminars for business protocol 

and career development after joining this company? None  

Q31 Can you contact the board members of your company? No  

Q50 What is your job title? General level 

0.880 

Rule(11) 

23.81% 

2 Q29 Regarding the knowledge of the company system and organization, do you 

recognize and understand the whole system and organization of your 

customer’s company? No  

Q33 Do you like to attend training or seminars to acquire knowledge of financial 

statements if you have the chance? Yes  

Q9 Do you have a database of your customers? Outside of my duty  

Q45 Did you find any solutions for troubles in collaboration with a manufacturer? 

No 

0.910 

Rule(12) 

19.05% 

2 Q45 Did you find any solutions to problems in collaboration with a manufacturer? 

No  

Q5. How do you find the business manners of other employees around you? Bad  

Q28 Do you follow and backup your proposals with specifications and estimations 

after giving them to customers? I propose an estimation.  

Q43 Do you understand dealing rules (price rate of products) with a manufacturer 

and the sales promotion program? No  

Q53 Do you prefer to play a sport? Yes 

0.934 

Rule(13)  

14.29% 

2 Q30 Do you understand the board members? No  

Q33 Do you like to attend any training or seminars to acquire knowledge of 

financial statements if you have the chance? Yes  

Q43 Do you understand dealing rules (price rate of products) with a manufacturer 

and the sales promotion program? No  

Q12 What is your general product knowledge level of the I series? Low  

Q32 Regarding knowledge of financial statements, did you learn how to read and 

analyze financial statements? Yes 

0.976 

 

   Total 

0.988 
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Environmental Applications of Granular 
Computing and Intelligent Systems 

Wang-Kun Chen* 

Abstract. This paper presents the environmental applications of granular comput-
ing. First, the relevance of information granulation in the description of  environ-
mental phenomena is discussed. A granular prediction model of time series of a 
dust storm concentration is described. This example is used to explain the tech-
nique of information granulation of an environmental phenomenon. Then the  
issue of environmental management is discussed. Granular computing helps us  
establish the pattern recognition technique which is also very helpful in environ-
mental management. In addition, this study presents an approach to extract inter-
pretable rules of natural hazards from available data. Finally, the multi-objective 
design of a granular hierarchy model is presented to determine the optimal man-
agement strategy of air quality. The environmental application experiments show 
that granular computing comes as a promising vehicle for solving social problems 
related to protection of the environment. 

Keywords: Fuzzy theory, Granular computing, Time series, Forecasting, Decision 
making, Environmental management, Economic evaluation. 

1   Introduction 

The last two decades have seen a dramatic increase in the research of natural phe-
nomena simulated by granular computing and intelligent systems. This has mainly 
been due to the introduction of the fuzzy theory which allows complicated envi-
ronmental features to be characterized. Granular computing is an efficient para-
digm for simulating environmental phenomena and for solving the interaction 
problem between the natural and the social systems. This paper discusses some 
environmental applications of this new field.  

Fuzzy logic was introduced in 1965 by Lotfi A. Zadeh, professor of computer 
science at the University of California in Berkeley. The main feature of the fuzzy 
set theory is associated with the concept of membership function (Zadeh 1965), 
(Zadeh 1975), (Pedrycz and Gomide 2007), (Klir and Yuan 2005). In the present 
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paper, the environmental phenomenon is first discussed in a granular model for 
the prediction of the time series of a dust storm concentration. In the sequel, 
granular computing and pattern recognition are proposed for environmental man-
agement. The main focus here is on two important topics, pattern recognition in 
the environment, and an environmental design of higher order. 

The variable granulation of environmental impact assessment is then explained, 
including the methodology of fuzzy filtering and image processing in the emission 
inventory. Next we discuss the system granulation of an environmental economic 
evaluation, which is divided into two main parts. The first part is concerned with 
the fuzzy set in risk evaluation of an environmental disaster, and the second part is 
the multi-objective design of a granular hierarchy model for the management 
strategy of the air quality. 

2   Value Granulation of an Environmental Phenomenon 

The environment plays an important role in our daily life. The air we breathe, the 
water we drink, and the soils we use for growing the plant we eat are all in the 
natural environment. Thus any phenomenon in the environment will affect our 
quality of living. For example, earthquakes, the tsunami, and typhoons are all 
natural events that cause damage to society. Having a better understanding of such 
phenomena will make it easier to protect ourselves against the consequences of 
these natural hazards. 

To clearly describe events that occur in the environment, we use “time series” 
to record and describe the event. For example, a typhoon can be described by the 
position of its center and the wind speed along its trajectory; the seriousness of an 
earthquake is indicated by the intensity of its shockwaves; and the concentration 
variation in time domain tells us the variations inside a dust storm. If we are able 
to predict the value of this time series, then it will also be easier to avoid the loss 
of human life as well as economic losses. 

In the present study we used an example to explain the technique of value 
granulation of an environmental phenomenon. The example used here is a granu-
lar model for predicting the time series of a dust storm concentration. Because the 
dynamic behavior of a dust storm is too complicated it is almost impossible for the 
classical solution by diffusion equation to have a precise solution on a global 
scale. Therefore, it is appropriate to consider the use of granular computing to  
realize this task. 

2.1   A Granular Model for Predicting the Time Series of a Dust 

Storm Concentration  

The granular model for predicting the time series of a dust storm concentration is 
described as follows. A dust storm is a major environmental phenomenon causing  
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much human suffering and financial losses. A dust storm can be represented by its 
particle concentration. For example, PM10 or PM2.5, refer to the concentration of 
particles with a diameter smaller than 10 ȝm or 2.5 ȝm, respectively. Predicting 
the particle concentration of a dust storm is important, but it is very difficult be-
cause there are many factors that can affect the concentration of PM10 or PM2.5. 
These factors include wind speed, wind direction, temperature and topography, 
etc. It is very hard to predict the concentration of a dust storm using a physical 
model. Therefore, the application of a fuzzy time series is a suitable choice for the 
prediction of a dust storm concentration.  

We used the definition of a fuzzy time series as proposed by Chen based on 
Song and Chisson’s research on the fuzzy set theory. (Song and Chisson 1993), 
(Song and Chisson 1994), (Chen 1996), (Chen 2002), (Chen and Hwang 2000), 
(Chen and Hsu 2004). If we let  U be the universe of discourse, U = {u1, u2, u3, 
…,un}, then a fuzzy set A in the universe of discourse U is defined as Ai = 
fA1(u1)/u1 + fA2(u2)/u2 +…+ fAn(un)/un, where fA is the membership function of 
the fuzzy set A, fA: U → [0, 1], fA(ui) denotes the grade of membership of ui in the 
fuzzy set A, fA(ui) ∈  [0, 1], and 1≦i≦n.  

Let X (t) (t = 0, 1, 2…) be the universe of discourse in X (t), and let F (t) be the 
collection of fi (t) (i = 1, 2…), then F (t) is a fuzzy time series of X (t)  
(t = …, 0, 1, 2 …) 

If we assume that there is a fuzzy relationship R(t, t-1) such that F(t) = F(t-1)。
R (t, t-1), where R (t, t-1) denotes the fuzzy relationship of the first order fuzzy 
time series between F (t-1) and F (t), and if F (t-1) =Ai, and F (t) =Aj are fuzzy 
sets, and then the fuzzy relationship can be represented as Ai→Aj. 

If F(t) is caused by F(t-1), F(t-2), F(t-3),…and F(t-n), then the fuzzy relation-
ship is represented by F(t-n),…F(t-2),F(t-1) →F(t). This is the high-order model as 
proposed by Chen. 

In this section, we use the multi-step fuzzy time series presented by Chen as the 
high-order fuzzy time series for forecasting the PM10 concentration (Chen et al. 
1998), (Hsu and Chen 2003), (Chen 2010). This method determines the trend of 
the data by adjusting the length of each interval in the universe of discourse. The 
proposed method is explained as follows: 

Defining the Fuzzy Interval Set for a Dust Storm  

Let U be the universe of discourse, U = [Dmin - D1, Dmax + D2], where Dmin and 
Dmax denote the minimum and maximum PM10 concentration, as shown in Table 1, 
respectively, where D1 and D2 are two suitable values, so that U can be divided 
into several intervals of equal length u1, u2, u3,……un. From Table 1, we can see 
that Dmin = 34.44 and that Dmax = 62.20. Then, if we let D1 = 4.44 and D2 = 0.3, 
such that U = [u1, u2, u3, u4, u5, u6, u7], and let the length of each interval be 5, then 
the universe of discourse U can be divided into u1, u2, u3, u4, u5, u6, u7, where u1 
=[30,35], u2 =[35,40], u3 =[40,45], u4 =[45,50], u5 =[50,55], u6 =[55,60], and u7 = 
[60,65]. 
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Table 1 The monthly averaged PM10 concentration. [2007.1~2008~12](From the monitor-
ing result of Taiwan EPA)  

time PM10 concentration  time PM10 concentration  
2007.1 46.63 2008.1 38.76 
2007.2 58.65 2008.2 42.88 
2007.3 62.20  Dmax 2008.3 55.54 
2007.4 61.57 2008.4 48.57 
2007.5 59.72 2008.5 42.06 
2007.6 37.78 2008.6 38.67 
2007.7 43.99 2008.7 40.86 
2007.8 37.17 2008.8 44.27 
2007.9 44.18 2008.9 47.54 
2007.10 34.44  Dmin 2008.10 44.84 
2007.11 35.28 2008.11 42.89 
2007.12 5.0.00 2008.12 47.40 

Calculation of the Statistical Distribution of the PM10 Concentration in Each 
Interval 

We sort the intervals based on the number of PM10 concentration data falling into 
each interval in descending order. The number of data, N(un), in each interval is 
N(u1) = 1, N(u2) = 5, N(u3) = 8, N(u4) = 4, N(u5) = 1, N(u6) = 3, N(u7) = 2. 

The intervals with no distributed data were discarded, and those with a large 
amount of data were re-divided into additional sub-intervals. The idea being that 
intervals containing a high number of historical PM10 concentration data get  
divided into more sub-intervals to improve the accuracy of the prediction. Finally, 
the universe of discourse [u1, u2, u3, u4, u5, u6, u7] is re-divided into intervals u1, u2, 
u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17, as shown in the following 
example. 

We define the following fuzzy intervals: u1 = [32.5,35]; u2 = [35, 36]; u3 = 
[37,38]; u4 = [38,39]; u5 = [40,41]; u6 = [42,42.5]; u7 = [42.5,43]; u8 = [43,44]; u9 
= [44,44.5]; u10 = [44.5,45]; u11 = [46,47]; u12 = [47,48]; u13 = [48,49]; u14 = 
[50,55]; u15 = [55,57.5]; u16 = [57.5,60]; u17 = [60,62.5].  

Defining Each Fuzzy Set Ai Based on the Re-Divided Interval ui  

We define each fuzzy set Ai based on the re-divided interval ui as Ai = fA1(u1)/u1 + 
fA2(u2)/u2 +…+ fA17(u17)/u17, and fuzzify the historical PM10 concentration in  
Table 3, where fuzzy set Ai denotes a linguistic value of the PM10 concentration 
represented by fuzzy set. 1≦i.  
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Table 2 Fuzzy set expressing PM10 concentration 

Ai Fuzzy relationship 

A1 A1 = 1/u1+0.5/u2+…+0/u15+0/u16+0/u17 

A2 A2=0.5/u1+1/u2+0.5/u3+…+0/u15+0/u16+0/u17 

A3 A3=0/u1+0.5/u2+1/u3+0.5/u4…+0/u15+0/u16+0/u17 

A4 A4=0/u1+…+0.5/u3+1/u4+0.5/u5+…+0/u15+0/u16+0/u17 

A5 A5=0/u1+…+0.5/u4+1/u5+0.5/u6 +…+0/u15+0/u16+0/u17 

A6 A6=0/u1+…+0.5/u5+1/u6+0.5/u7 +…+0/u15+0/u16+0/u17 

A7 A7=0/u1+…+0.5/u6+1/u7+0.5/u8 +…+0/u15+0/u16+0/u17 

A8 A8=0/u1+…+0.5/u7+1/u8+0.5/u9 +…+0/u15+0/u16+0/u17 

A9 A9=0/u1+…+0.5/u8+1/u9+0.5/u10 +…+0/u15+0/u16+0/u17 

A10 A0=0/u1+…+0.5/u9+1/u10+0.5/u11 +…+0/u15+0/u16+0/u17 

A11 A11=0/u1+…+0.5/u10+1/u11+0.5/u12 +…+0/u15+0/u16+0/u17 

A12 A12=0/u1+…+0.5/u11+1/u12+0.5/u13 +…+0/u15+0/u16+0/u17 

A13 A13=0/u1+…+0.5/u12+1/u13+0.5/u14 +0/u15+0/u16+0/u17 

A14 A14=0/u1+…+0.5/u13+1/u14+0.5/u15 +0/u16+0/u17 

A15 A15=0/u1+…+0.5/u14+1/u15 +0.5/u16+0/u17 

A16 A16=0/u1+…+0.5/u15 +1/u16+0.5/u17 

A17 A17=0/u1+…+0/u15 +0.5/u16+1/u17 

 
The fuzzified historical PM10 concentration is shown in Table 3, which is based 

on the re-divided intervals derived from the above. 
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Table 3 PM10 Concentration and fuzzy PM10 concentration 

time PM10 
conce
ntrati
on  

concentra
tion 
intervals 

Fuzzy 
PM10 
Concen
tration 

time PM10 
conce
ntrati
on  

concentr
ation 
intervals 

Fuzzy 
PM10 

Conc
entrat
ion 

2007.1 46.63 u11 = 
[46,47] 

47.00 2008.1 38.76 u4 = 
[38,39] 

39.00 

2007.2 58.65 u16= 
[57.5, 60]. 

57.50 2008.2 42.88 u7 = 
[42.5,43] 

43.00 

2007.3 62.20 u17= 
[60,62.5] 

62.50 2008.3 55.54 u15 = 
[55,57.5] 

55.00 

2007.4 61.57 u17= 
[60,62.5] 

62.50 2008.4 48.57 u13 = 
[48,49] 

49.00 

2007.5 59.72 u16= 
[57.5,60] 

60.00 2008.5 42.06 u7 = 
[42,42.5] 

42.00 

2007.6 37.78 u3 = 
[37,38] 

38.00 2008.6 38.67 u4 = 
[38,39] 

39.00 

2007.7 43.99 u8 = 
[43,44] 

44.00 2008.7 40.86 u5 = 
[40,41] 

41.00 

2007.8 37.17 u3 = 
[37,38] 

37.00 2008.8 44.27 u9 = 
[44,44.5] 

44.50 

2007.9 44.18 u9 = 
[44,44.5] 

44.00 2008.9 47.54 u12 = 
[47,48] 

48.00 

2007.10 34.44 u1 = 
[32.5,35] 

35.00 2008.10 44.84 U10 = 
[44.5,45] 

45.00 

2007.11 35.28 u2 = 
[35.36] 

35.00 2008.11 42.89 u7 = 
[42.5,43] 

43.00 

2007.12 50.00 u14 = 
[50,55] 

50.00 2008.12 47.40 u12 = 
[47,48] 

47.00 

Establishing Fuzzy Logical Relationships Based on the Fuzzified PM10 
Concentration. 

If the fuzzified PM10 concentration for months i and i+1 are given as Aj and Ak, 
respectively, then we can construct the relationship “Aj → Ak”, where Aj and Ak 
are called the current state and the next state, respectively, of the PM10 concentra-
tion. For example, let’s consider the fifth-order “A11, A16, A17, A17, A16 → A3

”, 
where the relationship denotes the fuzzified PM10 concentration, as shown in  
Table 3.  

If the fuzzified PM10 concentration of month i is Aj and the fuzzy representation 
is shown as “Aj→Ak1(x1), Ak2(x2)… Akp(xp)”, then the estimated PM10 concentration 
of month i is determined as 
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where Xi denotes the number of fuzzy logical relationships “Aj → Ak” in the fuzzy 
logical relationship group, 1≦i≦p, mk1, mk2,……where mkp is the mid point of 
the interval uk1,uk2,……and ukp respectively, and where the maximum membership 
values of Ak1, Ak2,……and Akp occur at intervals uk1,uk2,…… and ukp, respec-
tively. 

Use of the High-Order Difference to Determine the Upward or Downward 
Trend 

Chen derived a rule to determine the upward and downward trend of the time  
series. The second order difference between any two neighboring months of the 
historical PM10 concentration can be used for forecasting the trend (Chen, 2008). 

Table 4 Fuzzy logical relationship 

Two-step fuzzy logical relationship  
reported in different groups 

Five steps fuzzy logical relationship 

Group 1 A1→A2 

Group 2 A2→A14  
Group 3 A3 →A8 ,A9 

Group 4 A4→A5,A7 

Group 5 A5→A9 

Group 6 A6→A4 

Group 7 A7→A12 , A15 

Group 8 A8 →A3 

Group 9 A9→A1 , A7 , A12 

Group 10 A11→A16 

Group 11 A12→A9 

Group 12 A13→A6 

Group 13 A14→A4 
Group 14 A15→A13 

Group 15 A16→A3, A17 

Group 16 A17→A16 , A17 

A11,A16,A17,A17,A16→A3 
A16,A17,A17,A16,A3→A8 
A17,A17,A16,A3,A8→A3 
A17,A16,A3,A8,A3→A9 
A16,A3,A8,A3,A9→A1 
A3,A8,A3,A9,A1→A2 
A 8,A3,A9,A1,A2→A14 
A3,A9,A1,A2,A14→A4 
A9,A1,A2,A14,A4→A7 
A1,A2,A14,A4,A7→A15 

A2,A14,A4,A7,A15→A13 
A14,A4,A7,A15,A13→A7 
A4,A7,A15,A13,A7→A4 
A7,A15,A13,A7,A4→A5 
A15,A13,A7,A4,A5→A9 
A13,A7,A4,A5,A9→A12 
A7,A4,A5,A9,A12→A10 
A4,A5,A9,A12,A10→A7 
A5,A9,A12,A10,A7→A12 
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The second order difference is calculated as follows Yn = Yn-1-Yn-2 ,  
We also subdivided each interval into four intervals of equal length, with the 

0.25 point and 0.75 point of each interval being used as the upward and downward 
forecasting points. From the fuzzy logical relationship described above, we are 
then able to determine the PM10 concentration. 

Determine the Value of the α-Cut and the High-Order Difference  

The α-cut value determines the fuzzified PM10 concentration of the interval. It is 
common to use the triangle function and choose the value of the α-cut equal to 0.5 
for estimation. Another important factor is the value of the high-order difference 
since it dominates the trend of the variation in PM10 concentration. Considering 
that the effect of these factors may improve the accuracy of the forecasting sub-
stantially, it is better to include them in the more advanced multi-step fuzzy time 
series (MFT) model in the next stage. 

Since the characteristics of PM10 are influenced by many factors, another suit-
able function, α-cut value, could be used for PM10 forecasting. Chen compared the 
results of the estimated particulate concentration by  MFT and the neural network 
fuzzy time series (NFT) which provided a good result. The PM10 concentration 
predicted by the above method is shown in Chen’s work. (Chen 2010)  

The mean square error of the results using the neural network fuzzy model with 
the minimum value indicates the NFT model with the best predicting capability 
for PM10 concentration. The second best model is the multi-step fuzzy model 
compared with the mean square error value. The proposed method is better than 
the traditional fuzzy model with 8 and 16 equal intervals. The results predicted by 
the traditional auto-regressive model, and the linear regression model were all  
inferior to the MFT and NFT models. This is because that the traditional method 
of statistics and pattern recognition are parametric or non-parametric models. 
However, the high-order fuzzy time series and the neural network fuzzy time  
series recognize the pattern by another method. Pattern recognition of concentra-
tion is important for forecasting the particulate concentration, and therefore it is 
necessary to use a more advanced tool in predicting the PM10 concentration.  

The “patterned” and “un-patterned” data were taken as examples in this study. 
Both the MFT and NFT method can identify the pattern in the concentration varia-
tion in the atmosphere. The mean square error of the forecasted results of these 
two models is better than the linear regression model and the autoregressive 
model. Since the prediction of PM10 also includes the hourly and the daily concen-
trations, it is suggested that both methods are applied for a more detailed analysis 
of PM10 concentration for both space and time under different resolutions. 

By comparing the results, it becomes evident that the proposed NFT method 
has the smallest mean square error among the seven forecasting methods. The 
MFT model has the second smallest mean square error. In other words these two 
methods have the highest accuracy among the traditional fuzzy time series, linear 
regressive model, and the auto-regressive model. It is therefore recommended to 
apply both these methods in the prediction. 
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3   Granular Computing for Environmental Management 

The environmental phenomena are very complex and not easy to realize. The first 
step is to determine the pattern of its variation. Granular computing helps us to  
establish the pattern recognition technique which is important in environmental 
management. (Duda et al. 2001), (Schuermann 1996) 

In this section, we present an example for in-depth understanding of granular 
computing. 

3.1   Pattern Recognition of Environmental Risks 

Chen et al. investigated environmental risk management by multivariable analysis 
of pattern structure. Their study introduced a new framework for the management 
methodology of environmental risk by using the concept of pattern recognition 
with multivariable analysis (PRMA). They then developed an ideal pattern struc-
ture relationship for environmental risk management by multivariable analysis. 
The PRMA uses the pattern structure with the characteristic matrix and estimates 
the relationship by the multivariable analysis method. The candidate indexes of 
each pattern can be selected based on previous research. (Chen et al. 2010) 

Based on the proposed approach, the link between the events in the environ-
ment, the change in the ecosystem, the economic losses, and the response of the 
measurement system can be evaluated. This system will improve the management 
of risk response and upgrade the quality of the management system. In addition, 
the methodology can also be used in the future as a basis for the development of 
an environmental risk response system. 

3.2    Environmental Risk Pattern Structures and How to Manage 

Them  

Environmental disasters also interact with the economic system. For example, an 
earthquake may result in loss of human life and major economic losses by destroy-
ing homes, personal property and the infrastructure in a community. Predicting the 
environmental damage is a challenge for scientists. As shown in Figure 1, at least 
four aspects must be considered to precisely describe the risk management of a 
natural hazard. The first is the characteristic of the natural hazard itself.  The sec-
ond is the change that will occur in the ecosystem as a result of the hazard.  The 
third is the economic loss as a result of the hazard, and finally, the response meas-
ures for the natural hazard. 

Fig. 1 shows the ideal structure of PRMA. In this figure, we consider the sub-
ject under the following categories: (1) the natural disaster itself; (2) the change in 
the ecosystem; (3) the economic loss, (4) the response for risk management. Using 
this framework, the engineers can better the risks of their project under various 
levels of risk. The arrows in the figure represent the direction of influence. For ex-
ample, the pattern of ecological change influences the pattern of economic loss. 
Also, the pattern of the characteristics of the environmental event will influence 
the pattern of the economic losses. 



284 W.-K. Chen
 

 
Fig. 1 Pattern structures of environmental risk and its management 

Pattern of Characteristic in an Environmental Event 

An environmental event is any observable occurrence or extraordinary occurrence 
of environmental phenomena, including air pollution, water pollution, typhoons, 
earthquakes, floods, etc. There are many variables in environmental events. For 
example, the nature of an earthquake could be described by the following factors: 
strength, location, frequency, time, duration, etc.  

Pattern of Change in the Ecosystem  

An environmental event may cause a change in the ecosystem. In turn, this change 
may result in an environmental risk. There are a variety of risk types due to 
changes in the environment. Other researchers listed the following factors: the use 
of land and property, social and economic factors, noise and vibration, visual 
amenities, urban design, traffic, soil and geology, surface water and ground water, 
flora and fauna, air quality, aboriginal heritage, non-indigenous heritage, hazards, 
natural resources and waste, etc. 

Pattern of Economic Losses 

Both the environmental event itself and the resulting change of the ecosystem may 
cause economic losses. This loss pattern in the economic system includes the fol-
lowing factors: property damage, personal injury and death, agricultural loss, 
damage to the infra-structure, indirect economic losses, post-disaster reconstruc-
tion costs, etc. (Patrick et al. 2007)   
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Pattern of Response for Risk Management 

Response measures are the steps we take in the event of an environmental event. 
In this study, a proper response pattern for risk management is formed by combin-
ing the response measures. In a risk management system the response pattern  
includes the following factors: reinsurance compensation, super fund, major disas-
ter securities market, social public disclosure, education and training, emergency  
response, human resources, etc.   

3.3   Variable Granulation of the Environmental Impact 

Assessment 

Variable granulation describes a technique for reducing dimensionality, wordi-
ness, and redundancy. It is often used to abstract the data and derive the knowl-
edge from the information. An environmental event may have certain impacts on 
society. These impacts can be assessed in different ways, using different variables. 
This procedure is called an" environmental impact assessment”. The impact of an 
environmental event can be represented by X = {xi}, where, xi is a different  
variable that represents the impact of this event. X is the total impact of this event. 

Variable granulation processes the complex information from these variables. 
In other words, it derives knowledge from the original information. Variable 
granulation collects entities which originated from environmental factors. We will 
use the example of fuzzy filtering and image processing for an emission inventory 
to explain the environmental application of granular computing. 

A Fuzzy Representation of Environmental Quality 

Let’s assume that the environmental quality set is U = { u1, u2,…, um}, where, the 
terms,

 
u1,u2,…, um

 

are the value of the environmental factors. The standards for 
environmental quality assessment are set as V = {v1, v2… vm }, where the 

terms, v1,v2… vm
 
are the corresponding set of ui.

 In research on environmental quality, U is a fuzzy vector, and V is a two-
dimensional matrix. Given U and V,  the fuzzy relationship between the factor 
domain (pollution factor) and the assessment domain (assessment criteria) can be 
expressed by the fuzzy relationship matrix  R： 
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By definition of the fuzzy relationship, rij represents the environmental quality of 
the ith pollutant, and it is also the membership equation of the jth environmental  
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quality. Therefore, the fuzzy relationship matrix R in the first row is Ri = (ri1, ri2… 
rin), i = 1, 2… n. This equation is the membership on the subordinate level of the 
environmental quality standards. 

The jth column of the fuzzy relationships represents the membership of each 
pollutant to the environmental quality standard. It can be written as Rj = (rj1, rj2… 
rjn), j= 1, 2… n. 

If the fuzzy set on the factors domain U is： 
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where, ai  represents the measured influence scale of a single factor ui, and it can 
be regarded as the weight coefficient of the ith pollutant to the environmental  
quality, then the fuzzy subset in the assessment domain can be expressed as： 
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where the term bj represents the membership degree of vj to the fuzzy subset of the 
comprehensive assessment. This indicates the degree of membership of the jth 
grade index of the environmental quality standards in the integrated environmental 
classification index.  

If the fuzzy vector A and the fuzzy relation matrix R are known, then the fuzzy 
sets of the comprehensive assessment can be expressed as B =A．R.  

Typical Model for the Calculation of the Environmental Impact 

Based on the computational methods of the fuzzy sets, there are four models 
which can be used to calculate the value of bj.  

Model 1 is expressed as M1(∩, ∪). as along with an underlying detailed  
formula 
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In the above formula, ∪and ∩ are the intersection and the union of the fuzzy set, 
respectively.  The M1 (∩, ∪) model is calculated according to max-min rule.  

Model 2 is M2(•, ∪). as along with a detailed description 
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In the above formula, “‧” represents an algebraic product. Models M
1
 and M2 

highlight the two main types of factors. Therefore, in the present study we chose 
the maximum membership value of the jth environmental standard among all the 
factors.  

Model 3 is M3 (•, ⊕). and comes with the formula 
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This is the weighted model, where ai can be sought as the weighting factor of cer-
tain parameter, its maximum membership value is 1. 

Model 4 of the form M4 (∩, ⊕). is governed by the expression 
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Since model 4 follows the min-min principle, it seldom applies to environmental 
quality assessment. 

3.4   Fuzzy Filtering and Image Processing of the Pollution 

Inventory 

The classification of natural hazards is important in managing disaster risks. How-
ever, the complexity of natural phenomena makes it hard to identify the pattern of 
the hazard. This section presents an approach to extract the interpretable rules of a 
natural hazard from the information obtained. First, we generate the rule for data 
clustering according to Bayes’ theorem. Then the pattern was determined. Then 
we calculated the optimized category for the fuzzy system and transferred it into 
the neural network for refining the knowledge obtained. The optimized fuzzy sys-
tem then extracted the understandable knowledge from the measured results of a 
natural disaster in for example the ocean, such as a typhoon or a tsunami, etc.  
Different neural network methods can be used in the algorithm. 

The data clustering can be classified using the Bayes’ classifier. This classifier 
is based on Bayes’ theorem to determine which pattern should be identified to ob-
tain the desired experimental results. Any error can be minimized through statisti-
cal probability analysis.  
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Pattern C has a characteristic value x, with P(x) is being the probability of this 
value. P(c) is the prior probability value of pattern C calculated by the random 
number generator. Thus, based on the conditional probability theory, Bayes’ theo-
rem can be written as  
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where P(c/x) denotes the probability of the characteristic value x falling into  
pattern C. P(x/c) denotes the probability of x among the data set from pattern C. 

If we assume that there are k patterns in the experimental results {c1,c2…c
k
}, 

and that all these data are independent, then we get the following equation. 
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Figure 2 shows the relation of x and c in the experimental results. 

 

Fig. 2 The data clustering and pattern recognition by Bayes’ theorem. 

The above equation can be written as  
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The following equation can be used for k patterns: 
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In determining which pattern the characteristic value x belong to, we simply cal-
culate the likelihood ratio R between Ci and Cj 
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If R＞1, the x values tends to classify to ci, otherwise, if R＜1, c represents the 
value x is in cj. 

In the real data calculated from the experimental results, P (ci) is the probability 
for the ith pattern, and P(x/ci) is the probability density function obtained from the 
ith pattern. 

If there is more than one characteristic value, say (x1,x2…xk), then the condi-
tional probability can be represented by  
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Bayes’ theorem with pattern k and characteristic value reads as follows  
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3.5   Choosing the Best Pattern by Fuzzy Optimization 

Experimental data within the pattern are categorized using the optimization theory 
for the fuzzy category model. A fuzzy set is a set containing the element that has 
various degrees of membership in the set. The notation for a fuzzy set when the 
universe of discourse, X, is finite and can be written as: 
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Where ȝ
A
 denotes the membership function of fuzzy set A, ȝA: X → [0, 1].  ȝA (xi) 

denotes the grade of membership of xi belonging to fuzzy set A, and ȝA (xi) ∈[0, 1].  
The standard fuzzy set operations include union, intersection, and complement, 

and are defined as ȝ
AUB

 , ȝ
A∩B

 and ȝĀ (x) on X, respectively. The simplified fuzzy 

number arithmetic operation between the triangular fuzzy number A1 and A2 are: 
addition, subtraction, multiplication, and division. 

We will track the knowledge of the natural phenomenon, such as typhoon,  
tsunami, or earthquakes, etc. The characteristic of this phenomenon can be ex-
tracted by the best fit pattern and can be determined by the following optimization 
theory.  

If there are n observed values in the observed domain {Ci}, with i = 1, 2, 3…n, 
and a calculated value, { βi }, i = 1, 2, 3… n, then there is an error △E which can 
be defined as 

( )
2

1
∑

=

−=Δ
n

i

iiCE β                                                  (17) 

Where, Ci is the measured value in ith point, and βi is the calculated value in the ith  
point. The optimum solution for the pattern matrix is obtained when the value of 
△E is a minimum, that is, △E = 0. The above procedure will ensure that the “best 
fit pattern” has the minimum error for the real environment.  

The procedure to determine the best fit pattern is as follows. 

” Define the domain area. 
” Define each pattern as pattern (i, j…, z). 
” Assign each pattern a value. from the lowest to the highest. 
” Calculate the value at each point caused by each assumption. 
” Calculate the value of △E for different pattern sets. 
” Compare the value of △E and choose the pattern value.  
” The pattern with the minimum △E value is the best solution. 

4   System Granulation of an Environmental and Economic 
Evaluation 

A system refers to a group of related parts that work together. The economy is a 
system. The environment is too. Determining the relationship between an envi-
ronmental event and the economic system is called an “environmental and eco-
nomic evaluation”. 

In this paper we used two examples to explain the system granulation of an en-
vironmental and economic evaluation. The first is a fuzzy set for the risk evalua-
tion in case of an environmental disaster. The second is the multi-objective design 
of a granular hierarchy model for developing a strategy of air quality management. 
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4.1   Fuzzy Set for the Risk Evaluation in Case of an 

Environmental Disaster 

Owing to the present climate change and global warming, managing environ-
mental risk has become a matter of concern. The environmental risk as a result of 
a natural hazard is very complex, making it hard to express in a simple formula. 
The other issue is that the vagueness and the lack of precise data regarding the 
disaster makes evaluating these hazards very difficult. This makes it difficult for 
the manager to make a decisive judgment. (Coppendale 1995), (Cooper 2003), 
(Choi et al. 2010) 

The development of granular computing helps us to solve this problem. In the 
present study we use an example to investigate natural hazard risk management 
using the fuzzy multi-criteria evaluation method for pattern recognition.  The 
fuzzy representation for the evaluation of the risk due to natural hazards in differ-
ent areas was used to convert the observed data into a fuzzy number. (Carr and 
Tah 2001), (Chapman and Ward 2004), (Ahmad et al. 2010) 

Fuzzy Representation of a Natural Hazard 

The damage caused by a natural hazard can be represented by a fuzzy set as X = 
{x1,x2…xn}, where, xi represents the domain area for the evaluation. xi = 
x1,x2…xn, and there are j (j = 1, 2… n) areas to be evaluated. The damage of natu-
ral hazards includes many different kinds of loss including injury and loss of life, 
damaged homes and damaged infra-structure, etc. Thus, we defined a subset to 
represent all the different kinds of losses.  

The value of the loss is a characteristic value that represents the risk level of the 
natural hazard. Let’s assume that there is 1th item of loss to be calculated in the jth 
area, and that the subset can be written as follows. 

}{ T

njjj xxx ,,,X 21j "=                                          (18) 

The above equation gives us the matrix, Xln, which represents the loss in the jth 
area. 
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Where, xij (i = 1, 2…l ; j = 1, 2…n) represents the ith item of loss in the jth area for 

evaluation. 
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Triangular Fuzzy Set for Environmental Risk Items 

A natural hazard is a very complicated phenomenon. Owing to the limit of the 
present measurement technology, the lack of information and the subjective judg-
ment by the observer, there are many uncertainties in the observed data. There-
fore, we have to use fuzzy numbers to describe the real phenomenon.  

For the ith damage of the jth area, the fuzzy equation can be written as  
Fij = (LFij, 

MFij, 
RFij), where Fij is the characteristic value of Xij, 

LFij is the lowest 
value of Fij, 

RFij is the maximum value of Fij, 
MFij is the most probable value of  

Fij, and LFij< MFij<
RFij .  

The value of LFij, 
MFij, 

RFij is explained by Figure 3.  

 

Fig. 3 Membership function of the triangular fuzzy numbers (TFN) 

If X is the set of all the objects x, and if there is a fuzzy subset A for X repre-
sented by (x, A(x)), x ∈X, and the range of X is within [0, 1], then set A can be 

written as: ( )( ){ }Xxxx A ∈= µ,A , where A(x) is the membership function of 

A, and its value is in the range of [0, 1]. When the value approaches 1, it means 
that the membership is higher, and when the value is near to zero, it means the 
membership is low. 

We used a triangular fuzzy number (TFN) to represent the membership func-
tion ȝ

A(x) represented by (a1, a2, a3). Thus the characteristic number of the ith dam-

age of the  jth area is a1 = LFij, a2 = MFij, a3 = RFij. The membership function of TFN 
then becomes 
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There are many different kinds of observed data for a natural hazard. This data can 
be a definite value from an instrument, or it may be a vague and imprecise  
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linguistic description. In this study we used different methods to calculate the  
observed data, as described below. 

If the original results are data within an interval( or regarded as an interval), 
then we can define the right hand side of this interval as RFij, and the left hand side 
of this interval as LFij. The MFij value is calculated by the following equation,  
MFij = (LFij +

RFij )/2. 

Linguistic Variable in Description of the Degree of Damage from a Natural 
Hazard 

In Table 5, type A is the linguistic variable describing the degree of damage from 
a natural hazard, for example a typhoon or an earthquake. Type B is the qualitative 
description measured by remote sensing. In this paper we defined its degree of 
into five different grades.  

Table 5 Linguistic and qualitative description of the observations of the natural hazard  

- Type A , Linguistic variable  Type B , Qualitative description 
1 very safe very clear 
2 safe clear 
3 medium medium 
4 serious unclear 
5 very serious very unclear 
note Damage by a typhoon The results of remote sensors 

For the data shown in Table 5, we defined the linguistic fuzzy number as:  
linguisticFij = (q-2, q-1, q), where the linguistic Fij is the fuzzy number with r grades 
of degree. q-2 is the lowest value of the observation, q-1 is the most probable 
value of the observation, and q is the highest value of the observation.  

Method for Validating the Results of an Environmental Disaster 

For different kinds of damage we must normalize the value into the interval of  
[0, 1]. The process for normalization is realized in the form 
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Where RFimax and LFimin represent the maximum value of the right hand side and 
the minimum value of the left hand side for all ith items. This can be represented 
by the following two relationships.  
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i, }FMAX{  F ij
R

imax
R ∀=                                               (22) 

i, }FMIN{  F ij
L

imax
L ∀=                                                 (23) 

 

Fig. 4 Converting the original results into a normalized fuzzy number 

The weighting factor of each item can be evaluated by the expert opinion method. 
Thus, we have weighting factor Wi for different items. The overall fuzzy number 
for the natural hazard is estimated as follows. 

( ) jX ijij ∀⊗=∑ ,WFij
aggregate

                           (24) 

Where ij
aggregate F  is the summation of the fuzzy number, and ⊗ denotes the op-

eration of the fuzzy number. The operation on the two fuzzy numbers A
1
 = 

(a11,a12,a13) and A
2
= (a

21
, a22, a23) is defined as: 

( ) ( ) ( )[ ]231322122111211 ,A A B aaaaaa +++=⊕=                              (25) 

( ) ( ) ( )[ ]231322122111212 ,A A B aaaaaa ×××=⊗=                             (26) 

In determining the membership function, the tendency of the decision maker must 
be considered. There are two kinds of decision makers, one is the optimist and the  
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other one is the pessimist. The decision Fij can be regarded as decisionFij = (LFij, 
MFij, 

RFij), where, LFSj is the left hand limit of FSj, 
RFSj is the right hand side limit of 

FSj, and MFSj is the most probable value of FSj. 
FSj can be represented by a fuzzy set T with membership function ȝ

T(xj), where 

ȝ
T(x) is represented by the following fuzzy set, ȝT(xj) =ȜȝT(xj) +( 1-Ȝ)ȝT(xj), and 

where Ȝ is the weighting factor for the decision maker. The value of Ȝ ranges from 
0 to 1. The decision maker with Ȝ = 1 is the most optimistic, and Ȝ = 0 is the most 
pessimistic. 

The fuzzy set for the most optimistic and the most pessimistic decision maker 
can be defined as  

( ){ } jxxF jTjij

optimic ∀= ,µ                                              (27) 

( ) { }minHFhighestx ij

decision

jT ∩=µ                                    (28) 

Where, ȝ
T(xj) represents the membership of the maximum damage for the most 

optimistic decision maker.  
For the most pessimistic decision maker, we have the fuzzy set 

( ){ } jxxF jTjij

perssimic ∀= ,µ                                              (29) 

( ) { }min1 HFhighestx ij

decision

jT ∩−=µ                          (30) 

The relationships between each pattern are described by the fuzzy membership 
function. The aggregate risks of a natural hazard, such as a typhoon or earthquake 
is then calculated by the fuzzy multiple or additional operation. In this framework, 
the degree of risk of a natural hazard can be estimated more comprehensively, and 
the response measures can be chosen more appropriately.  

4.2   A Multi-objective Design for a Granular Hierarchy Model for 

an Air Quality Management Strategy 

Air quality management is important in modern society. Previous management 
strategy focused on achieving air quality standards. However, the phenomenon of 
air pollution is extremely complicated, and is affected by many external factors at 
the same time. To achieve the required air quality standards, these external factors 
must be taken into account. Therefore, there is a need to develop a tool that can 
consider the various external factors influencing air quality. (Li et al. 2008), (Byun 
et al. 2003) Therefore this study presents a knowledge-based air quality manage-
ment system based on the fuzzy logic principle. (Cai and Chen 2009) 

The external environmental costs caused by air pollution were studied using the 
fuzzy theory. The so-called “fuzzy decision index (FDI)” was derived and applied.  
An integrated score of multiple assessments was derived by fuzzy logic. The knowl-
edge database established in this method include: emission sources, meteorological 
data, topographical data, and population density distribution. The external costs of the 
air pollutants calculated by this method can provide the government with a good  
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reference on the air pollution decision making, such as determining the air pollution 
control fee. 

The first step is setting up the Fuzzy set. The so-called factors set are a collec-

tion of various factors for evaluation. This can be represented as =U [u1, u2…un], 
which represents the set of the factors to be considered in the external costs esti-
mation of air pollution. 

The second step is to establish the factor’s weighting set. Because various  
factors possess a different degree of importance, it is essential that each factor ui is 
given a different weight ai according to its degree of importance. 

Determine the Weighting Factor of the Fuzzy Strategy Sets  

The first step in determining the weighting factors of the fuzzy strategy sets is to 
identify the aim for assessing the factors for set U. The second step is to determine 
the matrix. 

Let A represents the target, and ui represents assessment factors, ui ∈  Ui , i = 1, 

2, 3…n, where uij expresses the relative importance of the numerical ui to uj, and j 
= 1, 2, 3 ... n. The value of uij is according to the rules as follows. 

According to the description above, we obtain matrix P, which is known as the 
determinant matrix of A ~ U. 
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From matrix A~U we calculate the maximum corresponding characteristic vector. 
This vector is the sequence of importance of each assessment factor, or the distri-
bution of the weighting factors.  

The determinant matrix A ~ U can be calculated by the square root method. 
Product Wi of each element in the determinant matrix is calculated by the follow-
ing equation.  

Mi = ∏
=

⋅⋅⋅=
n

j

ij njiu
1

)),,2,1,(,                                         (32) 

Then we calculate Mi’s nth power root, Wi  

Wi = n
iM                                                       (33) 
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For vector W, W = [ w1,w2…wn]
T. After normalization, its weighting become 

Wi = Wi / )(
1
∑

=

n

j

iW                                                     (34) 

Then, W = [ w1,w2…wn]
T , where W is the characteristic vector. The maximum 

characteristic root of the matrix is then calculated by the following equation 
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where (pw)i represents the ith component of vector pw. 

Parameter Optimization and Validation of Results 

The characteristic vector is the weighting factor. In order to minimize any errors 
when selecting the appropriate parameters it is necessary to reexamine the consis-
tency of the judge matrix. The equation for the consistency test is CR = CI /RI, 
where CR is the random consistency ratio of the determinant matrix. CI is the con-
sistency index of the determinant matrix, and can be obtained by the following 
equation. 

CR = )(
1

1
max n

n
−

−
λ ,                                                (37) 

When CR has good consistency, and the weighting factor is reasonable, then the 
results are acceptable. The weighting factor set Ã is a subset of set U, which can 
be represented as Ã = {a1, a2, a3…ai…an}, and  

∑
=

n

i

ia
1

= 1                                                           (38) 

The Membership Function and the Triangular Fuzzy Number 
Representation 

The formula of the S-function can be used to represent the relationship of the  
variables.   
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URi(xi,yi)    1≦ I ≦ n                                               (39) 

URi(Xj, Yk) represents the membership degree of (xi,yi), and  

Ri = [ ]),/(),(XxY iiiiR yxyxU∫                                    (40) 

The relationship matrix of X to Y reads as follows. 
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In the above equations, Ri represents the parameters for the different time inter-
vals. Based on the above formula Yk = ∑k=(1~9)∑j=(1~5)UR(Xj, Yk) ,  1≤ k ≤ 9. 

Processing the α-cut is important in the fuzzy operation. Let R = (rij)m x n ,  

Rα = { }YyandXxyxyx kjkj ∈∈∀≥ ....,),(),( α                       (42) 
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We take the α-cut as {0.2, 0.4} and {0.6, 0.8}, and make the divided point accord-
ing to the original membership degree. We then substitute the original formula. 
From the Ri fuzzy related matrix, we take the four values to calculate the (α-cut) 
calculation. 

According to the above equation, this then becomes Rα = {0.2 R0.2 ∪0.4R0.4 ∪ 
0.6R0.6 ∪ 0.8R0.8}, and, Uα(Xj, Yk) the related matrix is represented as follows.  

  Rα = ∫ XxY [Uα(Xj, Yk)/(Xj, Yk)]                                               (44) 
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URi(Xj,Yk) represents the membership degree of (Xj,Yk). The X to Y relationship 
matrix is as follows. 
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If we calculate Ykα =∑k=(1~9)∑j=(1~5)URα(Xj, Yk) , 1≤ kα ≤ 9 , using the above for-
mula, then the values(Y1α~Y9α)  can be obtained under the constant Riα.  

5   Conclusions  

This paper reported a comprehensive approach based on granular computing to 
describe the soft computing technique applied in the environmental field. In par-
ticular, three main areas were described, value granulation of the environmental 
phenomenon, granular computing for environmental management, and system 
granulation for environmental economic evaluation. These descriptions bring a 
rough estimation, but provide very useful information for environmental manage-
ment. For example, to establish an emergency response system in case of an envi-
ronmental disaster, to select the best strategy for environmental quality manage-
ment, and to predict the concentration of a dust storm, among many others. 

The results obtained by granular computing are useful in situations where lim-
ited information is available to the decision maker. Therefore, the computing 
technique can provide the decision makers with a systematic thinking and precise 
solutions for their strategy analysis. Of course the environmental applications of 
granular computing are not limited to the fields mentioned above. Additional  
research on this topic will be forthcoming soon. 
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