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Preface

Computer simulation as well as numerical modelling and optimization are be-
coming a commonplace in contemporary engineering and science. The com-
plexity of the systems considered in various fields has been constantly growing
over the years and the theoretical models offer more and more accurate de-
scription of the physical phenomena, structures and devices. However, most
of these models are far too complicated to be handled through analytical
solutions; computer simulation is required for a majority of real-world appli-
cations not only to evaluate the model but also to exploit it in the design
process. Advanced state-of-the-art commercial simulation software packages
are available and used in everyday design work in mechanical engineering,
civil engineering, aerospace industry, electrical engineering, and many others.

Computational optimization has become an essential and, in many cases,
critical component of the design process. In almost all applications in engi-
neering and industry it is necessary to maximize performance and efficiency
while minimizing the cost, size, weight, or energy consumption at the same
time. This is usually a complex task that involves manipulation of available
design parameters in order to find satisfactory values of one or more objec-
tives that are evaluated through often computationally expensive computer
simulation. In many cases, complex constraints have to be satisfied in the
optimization process.

There are several factors due to which the search for optimal design can be
complicated even further. One of them is the presence of uncertainties that is
common for most real-world systems. In particular, material properties and
geometry of the manufactured device may differ from their nominal values as a
result of fabrication tolerances. Therefore, the optimization process may seek
for the robust design which ensures the highest probability of satisfying the
performance requirements under the presence of uncertainties rather than just
for the optimal design. Many optimization problems are nonlinear and NP-
hard, that is, the solution time for finding optimal design grows exponentially
with the problem size. In some cases the designer may face multiple local
optima and the global search procedures are necessary. On the other hand,
many practical problems have multiple and competing objectives where the
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best design is obtained through a decision-making process based on a set of
Pareto-optimal solutions.

The dependence of contemporary engineering design on computer simula-
tions introduces additional difficulties to optimization. Growing demand for
accuracy and ever-increasing complexity of structures and systems result in
the simulation process being more and more time consuming. In many engi-
neering fields, the evaluation of a single design can take as long as several days
or even weeks so that straightforward approaches by employing high-fidelity
simulator directly in the optimization loop are prohibitive. Interestingly, the
increasing computational power of today’s computers does not alleviate this
problem because the availability of faster computers is compromised by the
tendency of simulating more and more complex structures and systems with
higher and higher accuracy. On the other hand, simulation-based objective
functions are inherently noisy, which makes the optimization process even
more difficult. Still, simulation-driven design becomes a must for growing
number of areas, which creates a need for robust and efficient optimization
methodologies that can yield satisfactory designs even at the presence of an-
alytically intractable objectives and limited computational resources. In par-
ticular, any technique that improves the efficiency of simulators or reduces
the function evaluation count is crucially important. Surrogate-based and
knowledge-based optimization uses certain approximations to the objective
so as to reduce the cost of objective evaluations. The approximations are often
local, while the quality of approximations is evolving as the iterations proceed.

Extensive research conducted in the area of computational optimization
and modeling resulted in many techniques that alleviate the difficulties of
traditional design optimization methodologies. Many of these techniques ad-
dress particular issues, such as multiple local optima, multiple objectives or
handling computationally expensive cost functions. Substantial progress has
been observed in the development of derivative-free optimization techniques,
the use of adjoint sensitivities, as well as methods exploiting surrogate mod-
els, both function-approximation- and physically-based.

This book is contributed from worldwide experts who are working in these
exciting areas, and each chapter is practically self-contained. This book strives
to review and discuss the latest developments concerning optimization and
modelling with a focus on applications for solving real-world problems in var-
ious disciplines of engineering and science, including aerodynamics, oil indus-
try, gas and water transport, microwave engineering, structural engineering,
navigation, civil engineering, and others.

We would like to thank our editors, Drs Thomas Ditzinger and Holger
Schaepe, and staff at Springer for their help and professionalism. Last but
not least, we thank our families for their help and support.

Xin-She Yang
Slawomir Koziel

2011
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Chapter 1

Adjoint-Based Control of Model and
Discretization Errors for Gas and Water

Supply Networks

Pia Domschke, Oliver Kolb, and Jens Lang

Abstract. We are interested in the simulation and optimization of gas and water

transport in networks. Those networks consist of pipes and various other compo-

nents like compressor/pumping stations and valves. The flow through the pipes can

be described by different models based on the Euler equations, including hyper-

bolic systems of partial differential equations. For the other components, algebraic

or ordinary differential equations are used. Depending on the data, different models

can be used in different regions of the network. We present a strategy that adap-

tively applies the models and discretizations, using adjoint-based error estimators to

maintain the accuracy of the solution. Finally, we give numerical examples for both

types of networks.
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1.1 Introduction

Nowadays, water coming out of the tap is taken for granted in industrialized coun-

tries. Typically, one does not consider the efforts necessary to ensure its delivery.

Huge amounts of water have to be routed through miles of networked pipelines.

Such complex systems are difficult to operate and cost-intensive. The same holds

for gas supply networks. Both are supposed to work reliably and efficiently for eco-

nomical as well as ecological reasons and play an important role in the public utility

infrastructure. Therefore, the support of gas and water suppliers with software tools

is of great common interest. While monitoring systems are already quite advanced,

efficient simulation and optimization tools are only available to some extent. Of

course, before optimization tasks can be considered, reliable simulation algorithms

are essential. In this context, reliability implies robustness as well as trustworthy

error estimates.

In the field of simulation and optimization of gas and water supply networks, a lot

of research has been done in the last years, see for example [5,8,9,10,12,13]. Usu-

ally, especially for optimization problems, fixed models and also fixed discretiza-

tions are considered. Existing software packages like SIMONE [16] allow station-

ary as well as transient models for the simulation of gas networks. However, for

the simulation process, one model has to be chosen in advance. SIMONE is also

able to solve optimal control problems, but only steady state models are used here.

In [8,5], where nonlinear programming techniques are used to solve optimal control

problems for gas and water supply networks, full a priori discretizations in time and

space are applied to the underlying equations. Similarly, in [12, 13], where mixed-

integer linear programming is proposed for gas network optimization, fixed models

and fixed discretizations are used. Moreover, the applied discretizations are typically

quite coarse to keep the complexity of the resulting problems treatable.

While the application of coarse discretizations or simplified models is often ade-

quate in many parts of the considered networks to resolve the dynamics in the daily

operation of gas and water supply networks, no information about the quality of the

computed solutions is provided in all mentioned approaches. In [3, 4], a posteriori

estimates for the modelling and discretization errors are introduced for finite ele-

ment approximations. There, adjoint calculus is applied to measure the influence of

both errors separately on a given quantity of interest. Recently, we have published

an algorithm to adaptively control model and discretization errors in simulations for

gas supply networks [6,7]. This is considered to be the first step towards an efficient

optimization framework with reliable error estimates. Due to various similarities,

the applied concept of adjoint-based error estimators on a network can as well be

used for water supply networks, which are also considered here.

This chapter is organized as follows. We begin with a description of the underly-

ing model equations of gas and water supply networks in Section 1.2. Afterwards,

we derive error estimators for the model and discretization error with respect to

a given quantity of interest (Section 1.3). In Section 1.4, we present an algorithm

where these estimators are used to adaptively control the model and discretization
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errors. Finally, numerical results are presented for a gas and a water supply network

in Section 1.5.

1.2 Modelling

In this section, we give a brief introduction into the modelling of gas and water

supply networks. We begin with some general aspects concerning the models of

both types of networks before we describe the particular components of each.

1.2.1 General Aspects

The flow of gas or water through pipelines is a directed quantity, which can be ad-

equately described in one space dimension. Since we need to give the pipes an ori-

entation, we model gas and water supply networks as a directed graph G = (J ,V )
with arcs J and vertices V (nodes, branching points).

Typically, the set of arcs J mainly consists of pipes Jp ⊆ J , where we have

a hierarchy of models to describe the underlying gas/water dynamics. For the com-

putations, one of these models is chosen for each pipe in each time step. From top

to bottom, each model in the hierarchy results from the previous one by making

simplifying assumptions. In the case of gas networks, we have a hierarchy of three

models, while we consider only two models to describe the flow of water. In both

cases, the most complex model consists of a hyperbolic system of partial differen-

tial equations (PDEs). Due to the spatial dimension, we define an interval [xa
j ,x

b
j ]

with xa
j < xb

j for each pipe j ∈ Jp. In the case of gas transport, the considered net-

works also consist of compressor stations, valves and control valves, while we have

pumping stations, valves and tanks in water supply networks. These components are

described by algebraic equations or ordinary differential equations. Although there

is no continuous spatial dimension for these components, we also use the spatial co-

ordinates xa
j and xb

j to describe states at the beginning and end of an arc j ∈J \Jp.

Alternatively, we denote ingoing and outgoing states with a subscript.

In addition to the equations on the arcs of the network, it is necessary to specify

adequate initial, coupling and boundary conditions, which is not trivial in the case

of hyperbolic equations (see for instance [2]). Let v ∈ V be an arbitrary node with

ingoing arcs δ−
v and outgoing arcs δ+

v . Then, Kirchhoff’s first rule states that the

sum of currents flowing into that node is equal to the sum of currents flowing out of

that node (conservation of mass):

∑
j∈δ+

v

q(xa
j ,t)− ∑

j∈δ−
v

q(xb
j ,t) = q(v,t) ∀t > 0 (1.1)

with an auxiliary variable q(v,t), which can be used to model feed-in or demand

(see below).
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For a unique solution, it does not suffice to only claim (1.1). A further condition

which is commonly used in practice is the equality of pressure at the node v ∈ V ,

that is,

p(xa
j ,t) = p(v,t) ∀ j ∈ δ+

v ,

p(xb
i ,t) = p(v,t) ∀i ∈ δ−

v

(1.2)

with an auxiliary variable p(v, t) for the pressure at the node. In water supply net-

works, the pressure p is typically replaced by the pressure head h.

In this work, we use equality of pressure (1.2) together with the conservation

of mass (1.1). Due to the hyperbolic nature of the underlying partial differential

equations, there is one degree of freedom for either boundary of each arc. This

means, at a node v ∈ V with m ingoing and n outgoing arcs, we have m + n + 2

degrees of freedom (including p(v,t) and q(v,t)) but only m+n+1 equations. Thus,

we need one further equation at the node v:

e(p(v,t),q(v, t)) = 0 .

At branching points in the network, we typically have q(v,t) = 0 , and at boundary

nodes, we use p(v, t) = pv(t) or q(v,t) = qv(t) with given profiles pv(t) or qv(t).
According to (1.1), q(v,t) > 0 corresponds to a feed-in of gas/water into the network

and q(v, t) < 0 to a demand.

1.2.2 Gas Supply Networks

In this section, we want to have a closer look on how the flow through gas networks

is modelled. As mentioned in Sect. 1.2.1, the network consists of pipes, compressor

stations, valves and control valves.

1.2.2.1 Pipes

The models describing gas flow in pipelines are based on the Euler equations, a

hyperbolic system of nonlinear partial differential equations. The system consists

of the conservation of mass, momentum and energy together with the equation of

state for real gases. The transient flow of gas may be described appropriately by

equations in one space dimension, pressure losses due to friction are modelled via

a source term. A common simplification, the restriction to isothermal flows, that is,

flows with constant temperature, makes the energy equation become redundant. The

resulting equations are called isothermal Euler equations. If we assume a constant

speed of sound and let the pipes be horizontal, the equations result in the nonlinear

model [2]
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pt +
ρ0c2

A
qx = 0 , (1.3a)

qt +
A

ρ0
px +

ρ0c2

A

(
q2

p

)

x

= −
λ ρ0c2|q|q

2dAp
. (1.3b)

Here, q denotes the flow rate under standard conditions (1 atm air pressure, temper-

ature of 0 ◦C), p the pressure, c the speed of sound, λ the friction coefficient, d the

diameter, A the cross-sectional area of the pipe and ρ0 the density under standard

conditions.

Neglecting the nonlinear term in the spatial derivative of the momentum equation

(1.3b) yields the semilinear model. This simplification is motivated by the slow

velocity of gas in real networks. We get

pt +
ρ0c2

A
qx = 0 , (1.4a)

qt +
A

ρ0
px = −

λ ρ0c2|q|q

2dAp
. (1.4b)

A further simplification leads to a (quasi-)stationary model: Setting the time deriva-

tives in (1.4) to zero results in an ordinary differential equation, which can be solved

analytically:

q = const. , (1.5a)

p(x) =

√

p(x0)2 +
λ ρ2

0 c2|q|q

dA2
(x0 − x) . (1.5b)

Here, p(x0) denotes the pressure at an arbitrary point x0 ∈ [xa
j ,x

b
j ]. Setting x0 = xa

j ,

that is the inbound of the pipe, and x = xb
j , that is the end of the pipe, yields the

so-called algebraic model [15].

1.2.2.2 Compressor Stations

A compressor station is a facility that increases the pressure of the gas. Running a

compressor generates costs, since the compressor station consumes some of the gas,

that means,

qout = qin −Fc(pin, pout,qin) . (1.6)

The equation for the fuel consumption of the compressor c ∈ Jc ⊆ J is given by

Fc(pin, pout,qin) = dF,c qin

⎛

⎝

(
pout

pin

) γ−1
γ

−1

⎞

⎠ , (1.7)

with pin = p(xa
c ,t), pout = p(xb

c,t), qin = q(xa
c ,t) and qout = q(xb

c ,t) [10]. Here, γ
is the isentropic coefficient of the gas. The coefficient dF,c is a compressor specific
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constant. The increase in pressure, performed by the compressor station c, is denoted

by

Δ pc(t) = pout − pin (1.8)

and depends on the compressor power

Pc(pin, pout,qin) = dP,c qin

⎛

⎝

(
pout

pin

) γ−1
γ

−1

⎞

⎠ , (1.9)

with a compressor specific constant dP,c. Either (1.8) or (1.9) is typically used as

control variable.

1.2.2.3 Valves

Valves are used to regulate the flow of the gas by opening or closing. In the case of

an open valve, the equations

qin = qout ,

pin = pout

hold. If the valve is closed, then qin = qout = 0 .

1.2.2.4 Control Valves

Control valves, sometimes also referred to as regulators [8], are valves that reduce

the gas pressure by a controlled amount. The behaviour of a control valve is mod-

elled via

pin − pout
!
= u

with control variable u = u(t). The ingoing and outgoing flow rates are identical:

qin = qout .

1.2.3 Water Supply Networks

Water supply networks feature similar structures as gas supply networks. Here, the

main components are pipes, pumps, valves and tanks.

1.2.3.1 Pipes

To describe the dynamics inside the pipes of a water supply network, we con-

sider two different models, which can for instance be found in [1]. The most com-

plex model, considering the elastic effects, is given by the so-called water hammer

equations,
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ht +
a2

gA
qx = 0 , (1.10a)

qt + gAhx = −λ
q|q|

2DA
, (1.10b)

a semilinear hyperbolic system of partial differential equations, where the piezo-

metric head h and the flow rate q are the space and time-dependent state variables.

The gravitational constant is denoted by g, a is the speed of sound in the pipe, A

and D are the cross-sectional area and the diameter of the pipe, respectively. The

right hand side of (1.10b) models the influence of friction, where λ is the friction

coefficient.

A simplified model for the water dynamics inside the pipes can be derived by ne-

glecting the time derivatives in (1.10). The resulting (quasi-)stationary or algebraic

model reads

qx = 0 , (1.11a)

hx = −λ
q|q|

2gDA2
. (1.11b)

Thus, the flow rate is constant in the pipe,

qin = qout , (1.12)

and the entire pressure head loss is given by

hin −hout = λ
L

2gDA2
q|q| , (1.13)

where L denotes the length of the pipe, and hin and hout the ingoing and outgoing

pressure head, respectively.

1.2.3.2 Pumps

Pumps are installed in water supply networks to generate or maintain a certain pres-

sure. Typically, the relation between the flow rate through a pump and the resulting

pressure increase is described by a set of characteristic curves. A commonly used

form for a single curve (see e.g. [5]) is

H(q) = hout −hin = α0 −αrq
r

with

q = qin = qout

and r ∈ R+. If multiple curves are given, the parameters α0 and αr depend on the

current speed ω of the pump.
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The running costs of a pump result from the power consumption of its motor.

Applying an efficiency curve ηc(q) as in [14, pp. 36–37] or [9, p. 46], the costs of

each pump c ∈ Jc ⊆ J are proportional to

Pc(hin,hout,q) =
(hout −hin)q

ηc(q)
.

Again, if multiple curves are given to characterize the pump, the efficiency η addi-

tionally depends on the speed of the pump.

1.2.3.3 Valves

There are various kinds of valves installed in water supply networks to control the

flow rate and pressure. Here, we consider gate valves, where the opening can be

externally controlled.

With u ∈ [0,1] being the control variable for the fraction of the opening, we apply

u2(hin −hout) = ζq|q|

with the friction loss coefficient ζ and

q = qin = qout .

1.2.3.4 Tanks

Water tanks are used to store water at certain positions in the network. The ingoing

flow at the bottom of a tank is given by

q = C sign(houter −hinner)
√

|houter −hinner| (1.14)

with the discharge coefficient C. Here, houter denotes the outer pressure head in front

of the inlet of the tank and hinner is the inner pressure head at the bottom of the tank,

which is the sum of the elevation of the tank and the current stage:

hinner = elevation + stage .

Note that formally

q = q(xa
j ,t) , houter = h(xa

j ,t) , hinner = h(xb
j , t)

for each tank j ∈ J .

The change of the stage and therewith the change of hinner is modelled by an

ordinary differential equation:

d

dt
hinner =

1

A
q , (1.15)

where A is the cross-sectional area of the tank.
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Additionally to the ingoing flow at the bottom of the tank (given by (1.14)), there

can be further inflow or outflow openings, e.g. for refilling the tank or overflow.

Concerning the model equations, those terms can be simply added to q in (1.15) and

formally refer to q(xb
j , t).

1.3 Error Estimators

For given initial and boundary conditions as well as control states for the control-

lable elements, the described model equations on the whole network can be solved

applying appropriate discretization schemes. For the discretization of the (hyper-

bolic) PDEs in the pipes, we apply an implicit box scheme [11], which perfectly

matches the properties of the underlying equations. The time steps of this scheme

are also used to discretize the ordinary differential equations as occurring in the

model of water tanks. So far, one step methods are implemented for this purpose

and delivered satisfying results.

Now, we are searching for a compromise between the accuracy of the numerical

solution and the computational costs. We want to use the more complex models in

the pipes only when necessary and to refine the discretizations only where needed.

Using the solution of adjoint equations as done in [3, 4, 2, 6, 7], one may deduce

model and discretization error estimators to measure the influence of the model

and the discretization on a user-defined target functional M. With u being the exact

solution of the (most complex) model equations and uh being the approximate (nu-

merical) solution for some choice of models, the error in the target functional can

be approximated by

M(u)−M(uh) ≈ ηm + ηh , (1.16)

where ηm estimates the model error and ηh the error resulting from the discretiza-

tion. Concerning the underlying adjoint equations, these error estimators are cur-

rently implemented in a first-discretize manner, which will be briefly described in

the following. A more detailed description with some hints on the implementation

can be found in [7].

Let t j ( j = 0, . . . ,N) be the times of the discretization. Accordingly, we split up

the solution of the discretized model equations

(uh)T =
(
(uh

0)
T , . . . ,(uh

N)T
)
.

Starting with the given initial state uh
0, we have to solve a system of the form

Fj(u
h
j−1

︸︷︷︸

uold

, uh
j

︸︷︷︸

unew

) = 0 (1.17)

in each time step. In the adaptive algorithm described in the next section, we will

partition the entire simulation horizon in several blocks. Accordingly, we define

(Uh
k )T =

(
(uh

j(k−1)+1)
T , . . . ,(uh

j(k))
T
)



10 P. Domschke, O. Kolb, and J. Lang

for k = 1, . . . ,NB, where j(k) is given via t j(k) = Tk for k = 0, . . . ,NB. For later use,

we also define

(Ek)
T =

(
(Fj(k−1)+1)

T , . . . ,(Fj(k))
T
)
, (1.18)

which summarizes the state-defining equations of the block [Tk−1,Tk].
Now, we can estimate the model error of the kth block with respect to the func-

tional M via

ηm,k =
∂

∂Uk

M(uh)ΔUh
k , (1.19)

where ΔUh
k = Uk −Uh

k . Here, Uk formally denotes a reference solution in the kth

block which solves a different system of equations Ẽk based on more complex or

simpler models. Thus, the difference ΔUh
k results from the differences in the models

and can be estimated by

ΔUh
k ≈−

( ∂

∂Uk

Ẽk(u
h)

)−1
Δ Ẽk (1.20)

with

Δ Ẽk = Ẽk(U
h
k )− Ẽk(Uk)

︸ ︷︷ ︸

=0

= Ẽk(U
h
k ) . (1.21)

Inserting (1.20) and (1.21) in (1.19) finally gives

ηm,k = −
∂

∂Uk

M(uh)
( ∂

∂Uk

Ẽk(u
h)

)−1
Ẽk(U

h
k ) = −ξ T

k Ẽk(U
h
k )

with ξk being the solution of the adjoint equation

( ∂

∂Uk

Ẽk(u
h)

)T
ξk =

( ∂

∂Uk

M(uh)
)T

. (1.22)

Instead of ∂
∂Uk

Ẽk(u
h) one may also apply ∂

∂Uk
Ek(u

h) in (1.22) to get an error esti-

mation. This way, it suffices to solve one system of adjoint equations (per block) for

the estimators with respect to higher and lower models and also with respect to the

discretization. Moreover, note that (1.22) can be solved very efficiently due to the

special structure of Ẽk and Ek (see [7]).

Regarding the derivation of the model error estimator ηm,k above, one may ob-

serve that an error estimator for discretization errors can be deduced in exactly the

same way. Here, the reference solution Uk resulting from solving a modified sys-

tem of equations Ẽk must refer to another discretization. In our implementation, the

residual Ẽk(U
h
k ) is estimated by comparing the single terms in the applied discretiza-

tion scheme with reconstruction formulas of higher order. This way, separate error

estimators for the temporal and the spatial error (for each element in each block)

can be evaluated:

ηh,k = ηx,k + ηt,k , (1.23)
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where ηx,k denotes the estimator for the spatial error and ηt,k for the temporal error

in the kth block [6, 7].

1.4 Adaptive Error Control

In the last section, we have developed error estimators for model and discretization

errors. With these estimators, we can now control the computational errors inside the

network. Since in practice the dynamic behaviour in the network varies, we want to

control the relative error resulting from the choice of the models and the discretiza-

tion in blocks of several time steps. Thus, we divide the time interval [0,T ] into

blocks of equal size [Tk−1,Tk], k = 1, . . . ,NB. Regarding one subinterval [Tk−1,Tk],
we can compute the forward as well as the backward/adjoint solution and evaluate

the error estimators locally, which yields

Mk(u)−Mk(u
h) ≈ ηm,k + ηt,k + ηx,k .

Given a tolerance TOL for the relative error, we can approximate the exact error by

the estimators, giving

∣
∣Mk(u)−Mk(u

h)
∣
∣

|Mk(u)|
≈

∣
∣ηm,k + ηt,k + ηx,k

∣
∣

|Mk(uh)|

!
≤ TOL . (1.24)

We first examine the discretization error to ensure the discretization to be adequate.

Then we consider the model error.

Check Discretization Error. First, the discretization is checked. Given the toler-

ance TOL as above, we ensure the discretization error to be small enough by decreas-

ing TOL by a user-defined factor 0 < κ < 1 giving TOLh := κ ·TOL. We demand the

discretization error estimator to satisfy

∣
∣ηt,k + ηx,k

∣
∣ ≤ TOLh ·

∣
∣
∣Mk(u

h)
∣
∣
∣ .

If the error estimator exceeds the given upper bound, the temporal and spatial dis-

cretization errors are treated individually, that is,

∣
∣ηt,k

∣
∣ ≤

1

2
TOLh ·

∣
∣
∣Mk(u

h)
∣
∣
∣ and

∣
∣ηx,k

∣
∣ ≤

1

2
TOLh ·

∣
∣
∣Mk(u

h)
∣
∣
∣ .

Check Temporal Discretization Error. If the temporal error estimator exceeds the

given tolerance, the time step size is marked for refinement. After checking the

spatial discretization error, the time interval [Tk−1,Tk] has to be computed again. If,

in contrast, the error estimator
∣
∣ηt,k

∣
∣ is much smaller than the upper bound, the time

step size is marked for coarsening. If the current time interval has to be recomputed

due to spatial or model errors, the temporal coarsening is not applied.
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Check Spatial Discretization Error. Now, the spatial discretization error is esti-

mated locally for each pipe,

ηx,k = ∑
j∈Jp

ηx,k, j .

Thus, we want to satisfy

∣
∣
∣
∣
∣

∑
j∈Jp

ηx,k, j

∣
∣
∣
∣
∣
≤

1

2
TOLh ·

∣
∣
∣Mk(u

h)
∣
∣
∣ .

For this inequality to hold, it suffices to claim

∑
j∈Jp

∣
∣ηx,k, j

∣
∣ ≤

1

2
TOLh ·

∣
∣
∣Mk(u

h)
∣
∣
∣ .

In order to get an upper bound for each pipe itself, we uniformly distribute the target

functional, i.e., we divide it by the number of pipes
∣
∣Jp

∣
∣, giving

∣
∣ηx,k, j

∣
∣ ≤

1

2
TOLh ·

∣
∣Mk(u

h)
∣
∣

∣
∣Jp

∣
∣

∀ j ∈ Jp .

If
∣
∣ηx,k, j

∣
∣ exceeds the given tolerance, the pipe is marked for refinement. If, instead,

the error estimator is much smaller than the right hand side, the pipe is marked for

coarsening. The time interval [Tk−1,Tk] is computed again with a finer discretization

where needed.

Check Total Error. If the discretization error is small enough, the total error esti-

mator ηm,k + ηt,k + ηx,k is evaluated. If

∣
∣ηm,k + ηt,k + ηx,k

∣
∣ > TOL ·

∣
∣
∣Mk(u

h)
∣
∣
∣ ,

that is, the total error does not fulfill the desired tolerance while the discretization

error did, the model error is checked.

Check Model Error. If the discretization error is small enough, but the total error

is not, the model errors of all pipes are checked. Again, we uniformly distribute the

target functional over all pipes. If the error estimator exceeds the given tolerance,

that is,

∣
∣ηm,k, j

∣
∣ > TOLm ·

∣
∣Mk(u

h)
∣
∣

∣
∣Jp

∣
∣

,

with TOLm := (1− κ) ·TOL, the pipe is supposed to use the model above subject

to the hierarchy. The time interval [Tk−1,Tk] is computed again with the adjusted

models.
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Coarsen Temporal and/or Spatial Discretization and Switch Down Models. If the

total error fulfills the desired tolerance, the time interval [Tk−1,Tk] is accepted and

k is increased. If the time step size or any pipes were marked for coarsening, the

coarsening is applied. Then, the estimators with respect to the lower models are

computed. If the error estimator is much less than the given tolerance, that is,

∣
∣ηm,k, j

∣
∣ ≤ s ·TOLm ·

∣
∣Mk(u

h)
∣
∣

∣
∣Jp

∣
∣

,

with a “shift down factor” s ≪ 1 (e.g. 10−1 or 10−2), the pipe can use the lower

model for the next calculations and we go on to the next interval.

1.5 Numerical Examples

In this section, we give numerical results for a medium sized real life gas network

and a water supply network. All presented computations were done on an AMD

AthlonTM 64 X2 Dual Core 6000+.

1.5.1 Gas Supply Network

We begin with a gas supply network, which is shown in Fig. 1.1. The considered net-

work consists of twelve pipes (P01 – P12, with lengths between 30km and 100km),

two sources (S01 – S02), four consumers (C01 – C04), three compressor stations

(Comp01 - Comp03) and one control valve (CV01).

S01

S02

C01

C02

C03

C04

P01 P02 P03

P
0
4

P05

P06
P07

P08 P09

P10

P11

P12

C
V

0
1

Comp01 Comp02 Comp03

Fig. 1.1 Gas supply network with compressor stations and control valve
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The simulation starts with stationary initial data. The boundary conditions and

the control for the compressor stations and the control valve are time-dependent.

Plots of the control functions are given in Fig. 1.1. The target functional is given by

the total fuel gas consumption of the compressors, i.e.

M(u) = ∑
c∈Jc

∫ T

0
Fc(t)dt .

The simulation time is 86,400 seconds (24 hours) with an initial time step size Δ t =
3,600 seconds. The subintervals are 7,200 seconds (2 hours) each. The initial spatial

step size is Δx = 10,000m. The factor κ is set to 10−1 and the shift down factor

s = 10−1. The tolerance TOL is set to values between 10−1 and 10−4.

Table 1.1 shows the maximal relative error in the target functional

rel.err. = max
k

∣
∣Mk(u)−Mk(u

h)
∣
∣

|Mk(u)|
, (1.25)

the total target functional, the maximal and the minimal time and spatial step size

used subject to the tolerance TOL and the running time. As an approximation of

the exact solution we computed a solution with the nonlinear model and a finer

discretization than used in the adaptive algorithm, which is shown in the last row.

Table 1.1 Results using different values for TOL

TOL rel.err. M(uh) max/min Δ t max/min Δx time [s]

1e-01 1.690905e-01 5.0480603810e+01 3600/900 33,333.3/10,000 2.7e-01

1e-02 1.756343e-02 4.8408860265e+01 900/450 33,333.3/10,000 1.0e+00

1e-03 1.288994e-03 4.8487439184e+01 225/28.125 16666.7/1,250 3.5e+01

1e-04 4.010694e-05 4.8486374440e+01 14.0625/1.7578 16666.7/312.5 1.0e+03

reference solution 4.8485402013e+01 1 312.5 4.2e+03

Generally, we observe that the maximal relative error decreases with the tolerance

TOL. We can also see that the error estimators do not provide a sharp upper bound

for the error.

Besides the discretization, it is also interesting how the model switching part

works depending on TOL. Table 1.2 shows how often which model is used during

the simulation. The trend is the same as for the discretization. For smaller tolerances,

the share of the more complex models is higher.

1.5.2 Water Supply Network

As a second example, we consider the water supply network shown in Fig. 1.2.

The network consists of sixteen pipes (P01 – P16, with lengths between 500m

and 20km), two suppliers (S01 – S02), six consumers (C01 – C06), three pumps

(Pump01 - Pump03), four tanks (T01 – T04) and two valves (V01 – V02).
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Table 1.2 Models used during simulation for different values of TOL

TOL ALG LIN NL

1e-01 100% 0% 0%

1e-02 46.7% 53.3% 0%

1e-03 13.7% 85% 1.3%

1e-04 2.5% 73.7% 23.7%

P04

P02

P03

P14

S01

S02

C01

C02

C03

C04

C05

C06

P15

P16

P09

P10

P13P11

P05
P07

P12

P06

P01

Pump01

Pump02

Pump03

V02V01

P08

T02 T03

T04

T01

Fig. 1.2 Water supply network with pumps, valves and tanks

The simulation starts with approximately stationary data. The boundary condi-

tions as well as the control for the pumps and the valves are time-dependent. As

above, plots of the control functions are given in Fig. 1.2. The target functional is

given by the total energy consumption of the pumps, which is proportional to

M(u) = ∑
c∈Jc

∫ T

0
Pc(t)dt .

The simulation time is 86,400 seconds (24 hours) with an initial time step size Δ t =
3,600 seconds. The subintervals are 7,200 seconds (2 hours) each. The initial spatial

step size has been chosen as coarse as possible such that the applied (spatial) error

estimators can be evaluated, that is exactly four grid points per pipe. Similar to

above, the factor κ is set to 10−1 and the shift down factor s = 10−1. The tolerance

TOL is set to values between 10−1 and 10−4.

Table 1.3 shows the maximal relative error in the target functional according

to (1.25), the total target functional, the maximal and the minimal time and spatial

step size used subject to the tolerance TOL and the running time. As an approxima-

tion of the exact solution we computed a solution with the time-dependent model
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Table 1.3 Results using different values for TOL

TOL rel.err. M(uh) max/min Δ t max/min Δx time [s]

1e-01 1.228465e-02 8.3184539798e+01 3600/900 6666.7/166.7 5.4e-01

1e-02 1.491658e-03 8.3079443781e+01 900/225 6666.7/166.7 1.9e+00

1e-03 9.460297e-04 8.3014423132e+01 112.5/28.125 6666.7/166.7 9.7e+00

1e-04 7.546011e-05 8.3037462607e+01 14.0625/3.5156 6666.7/166.7 1.6e+02

reference solution 8.3038197026e+01 2 100 1.5e+03

and a finer discretization than used in the adaptive algorithm, which is shown in the

last row.

As above, we observe that the maximal relative error in each block decreases

with TOL. Moreover, the error tolerance is satisfied here. Obviously, the time dis-

cretization plays the crucial role in this example. The initial spatial discretization

is not refined. Additionally, the difference between the two models only becomes

important for the smallest tolerance, which can be seen from Table 1.4.

Table 1.4 Models used during simulation for different values of TOL

TOL ALG LIN

1e-01 100% 0%

1e-02 100% 0%

1e-03 100% 0%

1e-04 42.2% 57.8%

1.6 Conclusion and Outlook

In this chapter, we have presented an algorithm to adaptively control model and

discretization errors for the simulation of gas and water flow through networked

pipelines. The gas and water dynamics in the pipes are described by a hierarchy

of models, ranging from partial differential to algebraic equations. Further network

components are modelled by algebraic and ordinary differential equations. Using

adjoint equations, we introduced error estimators to measure the influence of the

discretization in time and space and the applied models with respect to a given

target functional. With these estimators, we developed an algorithm to adaptively

control the different errors within a given tolerance.

We gave examples for both types of networks to show the applicability of the

algorithm. In both cases, it could be seen that the actual errors decreased with the

prescribed tolerance. By construction, the error estimators do not provide an upper

bound but are a first order approximation of the true error. For the considered water

supply network, all error bounds were maintained. For the gas network, the actual

errors were slightly larger than the given tolerance.

The results achieved so far (also in [6, 7]) make us confident that the presented

techniques to solve simulation tasks can build a reliable basis to address optimal

control problems for gas and water supply networks. In particular, the sensitivity



1 Adjoint-Based Control of Model and Discretization Errors 17

information computed for the evaluation of the error estimators can be used to com-

pute gradient information for derivative-based optimization. There, we will have to

consider multiple quantities of interest. These are the objective function of the given

task and all constraints, which are supposed to be evaluated within given tolerances

as well.

Another part of our future work is the extension of the presented approach to fur-

ther applications. The principle of adjoint-based control of model and discretization

errors does not stick to gas and water supply networks. For instance, other transport

processes on networks can be considered. Here, one application we have in mind is

traffic flow on networks.
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Chapter 2

Derivative-Free Optimization
for Oil Field Operations

David Echeverrı́a Ciaurri, Tapan Mukerji, and Louis J. Durlofsky

Abstract. A variety of optimization problems associated with oil production in-

volve cost functions and constraints that require calls to a subsurface flow simulator.

In many situations gradient information cannot be obtained efficiently, or a global

search is required. This motivates the use of derivative-free (non-invasive, black-

box) optimization methods. This chapter describes the use of several derivative-free

techniques, including generalized pattern search, Hooke-Jeeves direct search, a ge-

netic algorithm, and particle swarm optimization, for three key problems that arise

in oil field management. These problems are the optimization of settings (pressure

or flow rate) in existing wells, optimization of the locations of new wells, and data

assimilation or history matching. The performance of the derivative-free algorithms

is shown to be quite acceptable, especially when they are implemented within a

distributed computing environment.

2.1 Introduction

Oil and natural gas account for around 60% of the current worldwide primary energy

supply, and the demand for these key resources is expected to increase for several

decades. Because the development of new fields is often very expensive and techni-

cally challenging, it is essential that these operations are performed as efficiently as

possible. In addition, the high expense of discovering and developing new fields pro-

vides a substantial economic incentive to maximize production from existing fields.

Both of these trends provide strong motivation for the development and application

of robust methodologies for the computational optimization of oil field operations.
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The closed-loop reservoir management paradigm [1] provides a framework for

efficiently operating an oil field. This approach relies on the continuous acquisition

of field data, which are then used to calibrate the computational reservoir model.

This represents a data assimilation or history-matching step. The resulting (history-

matched) model is then used for optimizing future production. This can be accom-

plished by either determining optimal settings/controls (e.g., flow rates, well pres-

sures) for existing wells or by finding the best locations for new wells. Given the

fact that many different types of wells can be drilled, such as deviated, horizontal

or multi-branched wells, the determination of the appropriate well type can also be

viewed as an optimization problem.

In this chapter, we address three of the key optimization problems that arise in

reservoir engineering – optimization of well settings, optimization of the placement

of new wells, and data assimilation. Although there are inter-relationships between

these various problems, they have important differences and are typically addressed

in a decoupled manner. Well control optimization usually has real-valued decision

variables, and a nonlinear, simulation-based cost function and constraints. The well

location (often referred to as field development) problem entails, in general, finding

the number, type, location and drilling sequence of new wells. In practice, because

wells are associated to cell centers in the underlying simulation grid, the optimiza-

tion variables are typically integers. The well type is described by categorical vari-

ables. Model calibration (data assimilation) can be formulated as an inverse problem

where we seek to minimize the discrepancy between measured data and model out-

put. The requisite optimization usually involves a very large number of variables

(normally at least one per simulation grid block, and in practical problems there

are O(104 −106) blocks), so parameter reduction and regularization techniques are

commonly applied. The subsurface flow simulations required for all of the afore-

mentioned optimizations entail numerical solutions of sets of discretized partial dif-

ferential equations. These function evaluations can be very costly, and this is a key

consideration when designing the optimization framework.

Although our emphasis in this paper is on the use of derivative-free optimization

methods, it is important to recognize that gradient-based approaches are appropri-

ate in many settings. In particular, when gradients are available through an adjoint

procedure [2], these techniques can be highly efficient. Successful applications of

gradient-based methods to oil field problems have been presented in many papers;

see, e.g., [3, 4, 5, 6].

Gradient-based approaches do, however, have some drawbacks. As a result of the

nonconvex nature of the optimizations considered here, these problems generally

contain multiple optima, and hence, a purely local search, which can get trapped in

local solutions, might not be the best approach. In addition, for some problems (par-

ticularly well placement), the optimization surface can be very rough, which results

in discontinuous gradients. It is also important to recognize that derivative informa-

tion is often not readily available. Adjoint-based techniques, which are a popular

way for computing derivatives efficiently, are invasive with respect to the flow sim-

ulator, and are therefore only feasible with full access to, and detailed knowledge

of, the simulator source code. Numerical gradients are straightforward to calculate,
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though this computation is expensive and may be subject to practical difficulties

(for example, in finite differencing, the selection of the perturbation size and/or

simulation tolerances can be problematic). Thus there is clearly a need for other,

derivative-free, techniques for oil reservoir optimization problems.

The derivative-free techniques considered in this work are noninvasive with re-

spect to the flow simulator. They treat the simulator as a black-box – only cost func-

tion values are required and no explicit gradient calculations are involved. These

methods are therefore much easier to implement than, for example, adjoint-based

techniques, though this advantage is counterbalanced by a significant deterioration

in computational efficiency compared to adjoint approaches. The computational cost

associated with derivative-free methods depends strongly on the number of opti-

mization variables considered (in adjoint-based schemes this dependence is much

weaker). However, most of these algorithms parallelize naturally and easily, and

therefore their efficiency, measured in terms of elapsed time, is usually satisfactory.

Derivative-free optimization approaches can be divided into deterministic (e.g.,

generalized pattern search) and stochastic (e.g., particle swarm optimization) tech-

niques. Stochastic approaches can be useful for dealing with rough functions or

functions that contain multiple local optima. Based on the computational resources

typically available in current practice (e.g., O(100) cores), derivative-free optimiza-

tion methods are appropriate when the number of optimization variables is at most

a few hundred [7, 8].

Although gradient-free methodologies have been in existence for many years,

they have become widely used in only the last 20 years or so [9]. This relatively

recent uptake can be attributed to several factors, including the wide availability

of large numbers of cores (combined with algorithms that parallelize easily), the

significant theoretical results achieved in this period, and the successful applica-

tion of derivative-free techniques in a number of areas. Examples can be found

in molecular geometry [10], aircraft design [11, 12], hydrodynamics [13, 14] and

medicine [15, 16].

Many derivative-free stochastic schemes have also been applied within the oil

industry. The field development problem has often been addressed by means of

global stochastic-search techniques; see, e.g., [17, 18, 19, 20, 21]. These stochas-

tic schemes have also been hybridized with deterministic search techniques, as

presented in [22, 23, 24]. Both global [25, 26] and local (deterministic) [27, 28]

derivative-free search techniques have been applied for well control optimization.

The history matching problem has also been approached from both a stochastic

point of view [29,18,30,31] and using local methodologies combined with regular-

ization and initial guess selection [32, 33].

Our goal in this chapter is to illustrate the applicability of derivative-free opti-

mization methods for three types of problems arising in oil field operations. The

examples presented are taken from [28] (well control optimization), [21] (field de-

velopment optimization), and [32] (history matching). This chapter is structured

as follows. In Section 2.2 we briefly describe the simulation modeling procedures

and basic optimizers considered. Examples demonstrating the use of derivative-

free techniques for well control optimization, field development optimization, and
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history matching are presented in Sections 2.3, 2.4 and 2.5, respectively. En-

hancements to the basic optimization algorithms required for the target problem

are discussed in these three sections. We end the chapter with a summary and

recommendations.

2.2 Basic Methodologies

We now discuss the simulation techniques used in the optimizations, and describe

the basic optimizers considered in this work.

2.2.1 Simulation Techniques

The optimization problems studied here rely on simulations of fluid flow in subsur-

face formations. Additionally, in Section 2.5, equations describing wave diffraction

tomography must also be solved as part of the inverse modeling process. These sim-

ulations require the numerical solution of systems of partial differential equations

(PDEs).

In this work we consider oil-water systems. These two components exist in sep-

arate phases, both of which reside within the pore space of porous rock. Within

the context of oil production, the subsurface formation containing oil (and associ-

ated water) is referred to as a reservoir. The flow of oil and water in a reservoir is

described by statements of mass conservation combined with constitutive (Darcy’s

law) relationships that relate phase flow rates to pressure gradient. For single-phase

flow, Darcy’s law is given by u = −(k/µ)∇p, where u is the Darcy velocity (volu-

metric flow rate divided by total area), k is the absolute permeability, which is a key

property of the rock, µ is fluid viscosity and p is fluid pressure. For two or three-

phase flow, this relationship is modified by the inclusion of the so-called relative

permeability function, which is a scalar function of local phase volume fraction.

Another key quantity is porosity φ , which specifies the fraction of the bulk rock

volume that is pore space.

In most reservoir simulators, the governing equations are discretized using a fi-

nite volume numerical procedure. The detailed equations and discretizations can be

found in, e.g., [34, 35]. In practical applications, simulation models may contain

O(105 ∼ 106) grid blocks and may require several hundred time steps (the systems

considered here are somewhat smaller). In addition, the discrete system of equa-

tions is nonlinear and is solved using a Newton-Raphson procedure. Thus the evalu-

ation of reservoir performance is computationally demanding. In this work we apply

Stanford’s general purpose research simulator (GPRS; [36,37]) for two of the cases

considered and the commercial streamline simulator 3DSL [38] for the other cases.

The streamline simulator shares many similarities with GPRS, though it uses the

streamlines from the total velocity field (total velocity is equal to the sum of the

water and oil Darcy velocities) to define a coordinate system that is used to solve

the water transport equation. This introduces some approximations but it provides

a more computationally efficient solution than would typically be achieved using a
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standard simulator. We note finally that, in the examples presented here, some sec-

ondary effects (such as capillary pressure in all cases, compressibility in the stream-

line simulations) are neglected. These effects could be included if necessary though

they would not be expected to impact our basic findings.

Seismic measurements involve first a number of sources, such as dynamite, air

guns, or piezoelectric transducers, which send out elastic waves through the reser-

voir. The transmitted and reflected waves are then recorded on geophones that re-

spond to ground displacement or stresses. The recorded wavefields are processed

and analyzed, and by means of a data assimilation process, such as that described in

Section 2.5, can be used to infer the rock properties needed in the calculation of oil

production forecasts.

In this work diffraction tomography (see e.g., [39, 40, 41]) simulations are used

as seismic measurements. The simulations for diffraction tomography require the

numerical solution of the elastic wave equation, which describes the propagation of

mechanical waves in elastic media. This equation is a statement of conservation of

momentum, combined with the constitutive relation for an elastic material relating

stresses to strains (Hooke’s law). The velocity of the traveling waves depends on

the elastic properties of the rock (Young’s modulus and Poisson’s ratio) and the

density, which in turn depend on the rock type, porosity, and the saturations of the

pore fluids. Rock physics models relate these rock and fluid properties to the seismic

velocities.

The wave equation is solved using the Born approximation [42, 43], which is a

perturbation method applied to the scattering of waves in inhomogeneous media.

In that approximation, the spatial heterogeneities in elastic properties are divided

into a smooth background medium with fluctuations around the background. The

wavefield is also divided into an incident wavefield traveling in the background

medium along with a scattered wavefield from the heterogeneities. The contribu-

tions from the scattered field are expressed in terms of an integral which is computed

numerically.

2.2.2 Optimization Problem Statement

A general single-objective optimization problem, as is addressed in this chapter, can

be stated as:

min
x∈Ω⊂Rn

f (x) subject to g(x) ≤ 0, (2.1)

where f (x) is the objective function (e.g., negative of net present value (−NPV) or

norm of discrepancy between measurements and model output), x ∈R
n is the vector

of control variables (e.g., sequence of well pressures, locations for each well, or

calibration parameters), and g : R
n → R

m represents the nonlinear constraints in the

problem. Bound and linear constraints are included in the set Ω ⊂ R
n. As indicated

above, the objective function (and constraints, in some cases) are computed using

the output from a simulator.

Though the optimization problems considered in this work share some common-

alities, there are important distinctions between them. Well control optimization is
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in most cases formulated in terms of continuous variables and includes nonlinear,

simulation-based constraints. Previous studies demonstrate that this problem often

displays multiple solutions with comparable cost function values [44, 28]. For that

reason, this optimization is usually addressed using local search optimization tech-

niques. By contrast, the optimization landscapes found in field development prob-

lems can be very rough [20], and this motivates the use of global search approaches.

As is the case with most inverse problems, history matching typically involves

more unknowns than informative measurements, which leads to an undetermined

optimization problem. Additionally, noise in the measurements can introduce rough-

ness into the cost function. In our application, many of the multiple optima that can

result from history matching are not consistent with prior geological information,

and should therefore be discarded. Strategies for finding geologically realistic op-

tima include regularization methodologies, performing a global exploration of the

search space, and/or selecting a proper initial guess in local optimization schemes.

Since the number of optimization parameters in history matching can be compa-

rable to the number of grid blocks in the simulation model, parameter reduction

techniques, which can be interpreted in regularization terms, are extremely helpful.

These techniques can be used to assure consistency with prior geological informa-

tion, as described in [45, 46].

Discrete-valued variables are common in optimization problems in the oil and

gas industry. Such problems cannot in general be addressed by gradient-based op-

timizers. In some cases, however, these variables can be treated as real-valued in

order to establish a more amenable optimization problem (in this case we say that

the discrete-valued variable is relaxed to a real-valued variable).

2.2.3 Derivative-Free Optimization Methods

In this section we describe, within an unconstrained real-valued optimization frame-

work, the derivative-free local and global methods applied in this chapter. Most of

these procedures can be extended to cases with discrete-valued variables, bound

and/or linear constraints and, with slightly more effort, to problems with compu-

tationally inexpensive nonlinear constraints (in Section 2.3.1 we provide mathe-

matically sound procedures for handling simulation-based nonlinear constraints).

Additional enhancements of these basic methodologies are introduced for the case

examples when necessary. It is important to note that the variants devised for dis-

crete optimization are generally based on heuristics. In Sections 2.3 and 2.5, a

gradient-based method, sequential quadratic programming (SQP; see [47]), with

numerical derivatives is also considered to enable additional comparisons between

the various approaches. The SQP implementation used in this work is SNOPT [48].

2.2.3.1 Local Search Algorithms

The local search techniques considered here are two different pattern search meth-

ods: generalized pattern search and Hooke-Jeeves direct search. Pattern search op-

timization has recently become popular as a result of the development of a solid
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mathematical convergence theory [49,8,7] and of the increasing availability of par-

allel computing resources. Pattern search schemes evaluate iteratively the cost func-

tion in a stencil-based manner. This stencil is modified as iterations proceed, and

convergence theory requires that the stencil size eventually tends toward zero [8,7].

By using a relatively large stencil size during the first stages in a pattern search tech-

nique, some local minima can be avoided. This strategy may endow pattern search

with a degree of robustness against noisy cost functions. We note that pattern search

schemes (and, in general, most local as well as global optimizers) can be accelerated

by means of computationally inexpensive surrogates. The use of surrogates can be

quite useful for reservoir engineering problems given the large number of expensive

objective function evaluations that are typically required.

Generalized Pattern Search

Generalized pattern search (GPS; [49, 50]) comprises a family of optimization al-

gorithms. By considering different types of stencils and various strategies for evalu-

ating the stencil points (which is known as polling [50]), multiple GPS-based opti-

mizers can be constructed. For unconstrained optimization, the basic GPS iteration,

for a given stencil centered at the intermediate solution x0, is as follows. First, the

objective function is evaluated for a number of stencil points. If some of these points

yield cost function improvement, the current solution is updated with either the best

point (if the full stencil is evaluated) or the first point that improves the solution (if

an opportunistic search is used). The stencil can then be modified, but in most im-

plementations it stays unaltered. If none of the stencil points improves on x0, then

the stencil size is decreased. The search progresses until some stopping criterion is

satisfied (typically, a minimum stencil size).

The stencil should contain a generating set for R
n [8]. A generating set of vectors

has the property that, if ∇ f (x0) �= 0, then at least one element of the set is a descent

direction [8]. Though only n + 1 points are needed to establish a generating set

for R
n, stencils containing 2n elements are commonly used in GPS. We illustrate

these two types of stencils in Figure 2.1(a) and 2.1(b).

If the stencil polling process is opportunistic then, as soon as a point improving

on the current solution is found, the stencil is moved to that new point. Therefore,

only a subset of stencil points will be polled at a given iteration. We show an exam-

ple of opportunistic polling for a two-dimensional compass stencil in Figure 2.1(c).

The point in the east direction is assumed to yield improvement over x0. As a con-

sequence, the other three points are not evaluated.

In GPS the set of directions in the stencil remains the same at each itera-

tion, which typically provides a coordinate or compass search, as depicted in

Figure 2.1(a). The approach can be further generalized by iteratively varying the

set of directions in the stencil. For example, at a given iteration the stencil for a

two-dimensional optimization problem could be as shown in Figure 2.1(a). Upon

polling success, the new stencil is rotated arbitrarily, as in Figure 2.1(d). If the sten-

cil is randomly selected from an asymptotically dense set of directions, the resulting
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(a) (b) (c) (d)

Fig. 2.1 Types of stencil-based search for a two-dimensional space: (a) positive basis with

2n directions (compass), (b) positive basis with n+1 directions, (c) opportunistic search (the

first point tried, the one in the east direction, is assumed to improve on x0; the other points, for

which the cost function is not evaluated, are plotted with dashed lines), and (d) mesh adaptive

compass search (the stencil changes randomly at every iteration)

algorithm is the mesh adaptive direct search (MADS; [51]). The MADS approach

may be beneficial in situations where the cost function is noisy [51].

If the polling process is not opportunistic (which means the cost function is eval-

uated for all stencil points), generalized pattern search requires on the order of n

function evaluations per iteration. However, the GPS method parallelizes naturally

since, at a particular iteration, the objective function evaluations at the polling points

are completely independent and can thus be accomplished in a distributed fashion.

We note that opportunistic polling is well suited to situations where parallel com-

puting resources are limited or unavailable.

Hooke-Jeeves Direct Search

Hooke-Jeeves direct search (HJDS; [52]) is a compass-based pattern search method.

There are two different types of moves in HJDS: exploratory and pattern. In the ex-

ploratory move the cost function is evaluated at consecutive perturbations of the

stencil center x0 in the coordinate directions. All directions are polled opportunis-

tically. The exploratory move resembles a numerical gradient estimation (with a

perturbation size that may initially be large, but that eventually tends to zero). If

no cost function improvement is found in the exploratory step (and this implies 2n

function evaluations), the stencil size is decreased.

Otherwise, a new point x1 is obtained, and the next exploratory move is cen-

tered at x0 +2(x1 −x0). This aggressive step in the underlying successful direction

is the pattern move, which is somewhat analogous to a line search procedure. The

pattern move can be beneficial in situations where an optimum is far from the cur-

rent solution. If the new exploratory step yields no cost function decrease, another

opportunistic compass search is centered at x1, and if, again, this search yields no

improvement, the step size is reduced, keeping the stencil at x1. Because HJDS is

inherently sequential, it is most appropriate for use with serial computing resources.



2 Derivative-Free Optimization for Oil Field Operations 27

2.2.3.2 Global Search Algorithms

The global search approaches applied in this work are a genetic algorithm and par-

ticle swarm optimization. These techniques share some similarities as they are both

based on abstractions of natural processes, have a markedly stochastic nature, and

apply sequential updating of a set of solutions (population of individuals in genetic

algorithms, swarm of particles in particle swarm optimization).

Genetic Algorithms

Genetic algorithms (GAs) are well known and widely used so our discussion here

will be brief (refer to [53] for a detailed description). GAs are inspired by the the-

ory of natural selection. An iteration starts with a population of individuals, which

is ranked in terms of cost function (referred to as fitness in the context of GAs).

Thereafter, a set of operators, typically selection, crossover and mutation, are ap-

plied to generate a new population. The population size, like the swarm size in

particle swarm optimization, has a marked impact on the performance of GAs. With

a proper population size, a genetic algorithm can be used to explore complex objec-

tive function landscapes, and to thus identify promising regions in the search space.

A thorough global exploration, even for a moderate number of optimization vari-

ables, often requires many function evaluations, and accordingly, a large population

size. However, the cost function computation for all of the individuals can be readily

performed in a distributed manner.

Particle Swarm Optimization

Particle swarm optimization (PSO; [54, 55]) was introduced by Kennedy and Eber-

hart in the mid 1990s. The algorithm mimics the social behaviors exhibited by

swarms of animals. At each PSO iteration, all particles in the swarm move to a new

position in the search space. Let xi,k ∈ R
n be the position of particle i at iteration k,

x∗i,k represent the best position (solution) found by particle i up to iteration k, and y∗i,k
be the best position found by any of the particles in the ‘neighborhood’ of particle i

up to iteration k. The neighborhood can include all of the PSO particles, in which

case the algorithm is referred to as global-best PSO. Other neighborhood specifi-

cations [56] limit particle communication such that particle i interacts with only a

subset of the swarm (this has been observed to be useful in avoiding premature con-

vergence). The new position of particle i at iteration k + 1, xi,k+1, is computed by

adding a so-called velocity term, vi,k ∈ R
n, to the current position xi,k [54, 55, 57]:

xi,k+1 = xi,k + vi,k. (2.2)

The velocity vi,k is in turn calculated as follows:

vi,k = ω vi,k−1 + c1 r1 ◦
(
x∗i,k −xi,k

)
+ c2 r2 ◦

(
y∗i,k −xi,k

)
, (2.3)

where ω , c1, and c2 are weights, r1 and r2 are random vectors in R
n with com-

ponents uniformly distributed in the interval (0,1), and ◦ denotes the Hadamard
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(component-wise) product. Thus, we see that each particle moves to a new posi-

tion based on its existing trajectory, its own memory, and the collective experience

of neighboring particles. These three velocity contributions are referred to as the

inertia, cognitive, and social components [54, 57].

Some constraints can be handled in PSO through use of the ‘absorption’ tech-

nique [56, 58, 59]. With this approach, particles corresponding to infeasible solu-

tions are moved to the nearest constraint boundary, and the corresponding velocity

components are set to zero. We should note that this constraint handling procedure

should be accompanied by an efficient scheme for projecting infeasible points back

into the feasible domain. When this projection algorithm cannot be applied (e.g., for

simulation-based constraints), the penalty function approach is a likely viable alter-

native (though this approach is not exempt from potential issues; see Section 2.3.1).

2.3 Well Control Optimization with Operational Constraints

The optimization of well settings/controls typically entails maximizing either net

present value (NPV) or the cumulative volume of oil produced through time by

finding the optimal well flow rates or pressures (these pressures are referred to as

bottom-hole pressures or BHPs). In many actual scenarios, and in the cases consid-

ered here, water is injected to drive the oil toward production wells and to maintain

reservoir pressure. Secondary objectives could include minimizing the total volume

of water injected or produced, or maximizing the initial oil production rate. The

problem is usually solved subject to operational constraints, such as maximum and

minimum BHP, maximum water injection rate, maximum well water cut (fraction

of water in the produced fluid), etc. The optimization variables are generally real-

valued, and the relationships between these variables and both the objective function

and constraints are in general nonlinear. Thus, the problem can be addressed by non-

linear programming techniques [47].

The production optimization cases presented here involve the maximization of

undiscounted NPV by adjusting the BHPs of water injection and production wells

(well flow rates could also have been the optimization variables). The objective

function we seek to minimize is

f (x) = −NPV(x) = −roQo (x)+ cwpQwp (x)+ cwiQwi (x) , (2.4)

where ro is the price of oil ($/STB, where ‘STB’ stands for stock tank barrel;

1 STB = 0.1590 m3), cwp and cwi are the costs of produced and injected water

($/STB), respectively (produced water reduces NPV due to pumping and separa-

tion costs), and Qo, Qwp and Qwi are the cumulative oil production, water production

and water injection (STB) obtained from the simulator.
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2.3.1 Constraint Handling Techniques

The nonlinear programming methods applied here are generalized pattern search

(GPS), Hooke-Jeeves direct search (HJDS), and a genetic algorithm (GA), with

enhancements introduced to deal with general constraints. Consistent with the

derivative-free spirit of this work, the constraint handling techniques considered,

namely penalty functions and filter methods, allow us to continue treating the simu-

lator as a black-box. These methodologies are not exclusive to gradient-free optimiz-

ers, so they could be implemented with a wide variety of optimization approaches.

The description below of constraint handling techniques follows the discussion pre-

sented in [28].

Penalty Functions

The penalty function method (see, e.g., [47]) for general optimization constraints

entails modification of the objective function with a penalty term that depends on

some measure of the constraint violation h : R
n → R. The modified optimization

problem

min
x∈Ω

f (x)+ ρ h(x) , (2.5)

where ρ > 0 is a penalty parameter, may still have constraints, but they should be

straightforward to handle (for example, bound constraints). In this work we apply

h(x) = ||g+ (x)||
2
2, with g+ : R

n → R
m defined as g+

i (x) = max{0,gi (x)} (normal-

izing the constraints can be beneficial since they are all weighted equally in the

penalty term). If the penalty parameter is iteratively increased (tending to infinity),

the solution of the modified optimization problem (2.5) converges to that of the

original nonlinearly constrained problem. However, the sequence of values to use

for ρ may require some numerical experimentation and the overall procedure can

lead to significant additional computation. In certain cases, a finite (and fixed) value

of the penalty parameter also yields the correct solution (this is the so-called exact

penalty; see [47]). However, for exact penalties, the modified cost function is not

smooth around the solution [47], and thus the corresponding optimization problem

can be challenging to solve.

Filter Method

The penalty function approach is straightforward to implement but, as discussed

above, can introduce some potential difficulties and complications. Filter meth-

ods [60, 47] provide an alternate and systematic approach for handling general

constraints. A filter is a set of pairs (h(x) , f (x)), such that no pair dominates an-

other pair. The concept of dominance, borrowed from multi-objective optimization,

is defined as follows: the point x1 ∈ R
n dominates x2 ∈ R

n if and only if either

f (x1) ≤ f (x2) and h(x1) < h(x2), or f (x1) < f (x2) and h(x1) ≤ h(x2). In this

work, the constraint violation h associated to the filter method is computed the same

way as described above for the penalty method.



30 D.E. Ciaurri, T. Mukerji, and L.J. Durlofsky

Filters have been combined with a variety of basic optimization algorithms in-

cluding sequential quadratic programming [60], interior point methods [61], and

pattern search techniques [62, 63]. They can be understood as essentially an add-on

for a basic optimization procedure. Within the context of a pattern search method,

a filter acts to modify the standard acceptance criterion which, as discussed in

Section 2.2.3, is based only on cost function improvement. At a given iteration, the

basic optimization algorithm proposes a number of intermediate solutions. These

solutions are accepted if they are not dominated by any point in the filter. Prior

to continuing with the next iteration, the filter is updated based on all the points

evaluated by the optimizer. Using filters, the original problem (2.1) is thus viewed

as a bi-objective optimization: besides minimizing the cost function f (x), we also

minimize the constraint violation h(x). Using this multi-objective perspective, the

optimization search is enriched by considering infeasible points. We reiterate that

the ultimate solution is intended to be feasible (it may however show a very small

constraint violation).

2.3.2 Production Optimization Example

This example is taken from [28]. The reservoir is a portion of the synthetic SPE 10

model [64]. It is represented on a three-dimensional grid containing 60×60×5

blocks. The reservoir contains oil and water. The 25 wells (16 water injectors and

nine producers) are distributed following a five-spot pattern (see Figure 2.2). This

model is similar to models used in practice except it contains fewer grid blocks.

The variation in permeability, evident in Figure 2.2, strongly impacts the flow field.
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Fig. 2.2 Well configurations and top layer of the geological model considered in the produc-

tion optimization case in Section 2.3. Grid blocks are colored to indicate value of permeabil-

ity (red is high permeability, blue is low permeability). Injection and production wells are

represented as blue and red circles, respectively (from [28]); see online version for colors.
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By optimizing the well settings, we can achieve a more uniform distribution of the

injected water, thus increasing the amount of oil produced and maximizing NPV.

Reservoir production proceeds for a total of 1460 days. The BHP of each well

is updated every 365 days. There are thus a total of four control intervals. Since

there are 25 wells, the number of optimization variables is 100. During each con-

trol interval, the BHPs are held constant. Injection well BHPs are specified to

be in the range 6500 − 12000 psi and production wells are constrained to the

range 500−5500 psi.

The additional constraints, which are nonlinear, specify that (1) the maximum

field-wide water injection rate not exceed 15000 STB/day, (2) the maximum field-

wide liquid (oil+water) production rate not exceed 10000 STB/day, (3) the minimum

field-wide oil production rate not fall below 3000 STB/day, and (4) the fraction of

water in the produced fluid (water cut) not exceed 0.7 in any of the nine production

wells. The oil price considered is $50/STB, and the costs of produced and injected

water are $10/STB and $5/STB, respectively. Additional details of the problem

specification are provided in [65].

Based on results for another nonlinearly constrained production optimization

problem presented in [28], we apply the following four approaches for this case:

sequential quadratic programming (SQP) with numerical derivatives and an active

set constraint handling method [47], generalized pattern search (GPS) with penalty

function, GPS with filter, and Hooke-Jeeves direct search (HJDS) with filter. The

gradients required by SQP were computed using second-order finite differencing,

with a perturbation size of 0.1 psi (this perturbation size was established through

numerical experimentation – we reiterate that this can be an issue when estimat-

ing gradients numerically). In all cases, the initial stencil size for GPS and HJDS

was 1375 psi. The penalty method relies on some heuristics for increasing the

penalty parameter and terminating each corresponding intermediate optimization.

Details on the strategy used here can be found in [28]. The two approaches con-

sidered with the filter method, GPS and HJDS, do not rely nearly as directly on

heuristics.

The initial guess x0 for all methods was the center of the orthotope given by

the bound constraints (i.e., BHP of 9250 psi for all injectors at all times, BHP

of 3000 psi for all producers at all times). This reference case has an associated NPV

of $193.43 million and a constraint violation value of 0.3731. The optimization re-

sults are summarized in Table 2.1. Consistent with the underdetermined nature of

Table 2.1 Performance summary for the production optimization case (from [28])

Optimization approach Number of simulations Max. NPV [$ MM] h

SQP + active set 41004 341.32 0.0031

GPS + penalty function 60001 342.95 0.0000

GPS + filter 39201 342.61 0.0001

HJDS + filter 01618 336.28 0.0001
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the optimization problem, the solutions computed by the four approaches differ. The

NPVs for the first three methods are within 0.5% of one another, though the NPV

for the last method (HJDS with filter) is about 1.5% less. Note that all algorithms

except GPS with penalty function have nonzero constraint violations. For the filter-

based methods, we allowed a constraint violation of 0.0001. Were we to require zero

constraint violation, GPS with filter would provide an NPV of $341.12 million, and

HJDS with filter would provide an NPV of $332.93 million.

All algorithms other than HJDS were implemented within a distributed com-

puting environment (67 cores were used, which provided a speedup factor of

around 50). We therefore observe that, although SQP and GPS with filter required a

factor of about 24 times more function evaluations than HJDS, in terms of elapsed

time, these two methods required only about half the time as HJDS. The procedure

that required the highest number of function evaluations, GPS with penalty function,

needed about 3/4 of the time of HJDS. This highlights the impact of the availability

of multiple cores on algorithm selection. We note finally that, although the results

in Table 2.1 for GPS with penalty function and GPS with filter are similar, the filter

method is less heuristic and may, therefore, be preferable for many problems.

We now illustrate the degree of nonlinear constraint satisfaction provided by the

various optimization algorithms. Figures 2.3 and 2.4 present the field-wide fluid

production rates and the maximum of the water cut in any producer well. The red

horizontal lines in these figures indicate the constraint value. It is evident that, at

late time, the initial guess settings lead to constraint violations. The constraints are

essentially satisfied by the other algorithms, with the exception of SQP. This occurs
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Fig. 2.3 Total field-wide fluid production rate for the initial guess x0 and the four solutions

found for the production optimization case. The red line indicates the maximum total fluid

rate allowed. GPS1 and GPS2 denote GPS with the penalty function and the filter method,

respectively (from [28]); see online version for colors.
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Fig. 2.4 Maximum well water cut for the initial guess x0 and the four solutions found for the

production optimization case. The maximum water cut at a given time is the maximum of the

water cut values for all producer wells at that time. The red line indicates the maximum water

cut allowed for any producer well. GPS1 and GPS2 denote GPS with the penalty function and

the filter method, respectively (from [28]); see online version for colors.

because our SQP stopping criterion does not enforce strict feasibility. SQP does,

however, encounter solutions during the course of the optimization with lower con-

straint violations but also with lower NPVs. Thus, it is clear that the SQP results

could be improved if it was used with a filter.

The quantities that directly impact NPV are displayed in Figure 2.5, where we

show the production and injection profiles for x0 and for the solution computed by

GPS with filter. The peaks in the rates in the optimized solution, evident every 365

days, result from the changes in the well BHPs, which occur at those times. It is

evident that, relative to the initial guess, the optimized controls lead to a significant

increase in cumulative oil production along with a significant decrease in cumulative

water production (note that cumulative oil production corresponds to the integral of

the curve shown in Figure 2.5, and similarly for other quantities). The cumulative

water injection does not vary significantly between the two cases. This example

illustrates the substantial gains that can potentially be achieved in oil field operations

through the use of computational optimization.

2.4 Optimal Well Placement with Particle Swarm Optimization

The general problem of field development optimization involves the determination

of how many new wells to drill, what type of wells these should be (i.e., injec-

tion well or production well; vertical, horizontal or multi-branched well; type of
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Fig. 2.5 Total field-wide production and injection rates for the initial guess x0 and solution

computed by GPS with filter for the production optimization case. Top: Oil (red) and wa-

ter (blue) production rates. Bottom: Water injection rate (from [28]); see online version for

colors.

downhole instrumentation), and the drilling schedule, in order to maximize a pre-

scribed objective function. In previous work, a number of gradient-based and

derivative-free procedures have been developed and applied for this problem (see

[20] for a full discussion). Of the stochastic search approaches employed, many

researchers have applied genetic algorithms (e.g., [23, 66, 24, 67, 68, 19, 69, 70]),

though simultaneous perturbation stochastic approximation algorithms [71], as well
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as other approaches, have also been explored [68]. Mattot et al. [72] evaluated sev-

eral optimization algorithms for a groundwater remediation problem and achieved

the best results using particle swarm optimization (PSO). This motivated the use of

PSO for optimization of oil field development in [20]. Consistent with [72], in [20]

PSO was found to outperform GA for several example cases. All of these examples

involved relatively few wells (20 or less).

The development of large-scale oil fields, however, often involves drilling many

wells. If we restrict ourselves for now to vertical wells (which can be either pro-

duction or injection wells) that penetrate the entire thickness of the formation, the

optimization variables include the areal (x,y) location of each well and a binary

variable b defining the well type. Thus there are a total of n = 3Nw optimization

variables, where Nw is the number of wells. Even given the restriction of fully-

penetrating vertical wells, the optimization problem is challenging. For large-scale

problems, Nw can be several hundred, so the number of optimization variables can

be large. In addition, for large Nw the imposition of well-to-well distance constraints

(which are commonly used in field applications) can lead to a large number of in-

feasible solutions, and this can negatively impact the performance of a population-

based algorithm such as PSO. Another key concern is that the number of wells Nw

should itself be an optimization variable. Direct inclusion of Nw as an integer vari-

able in the set of parameters will further complicate the optimization and will lead

to much larger computational requirements.

2.4.1 Optimization Methodology

In recent work, a field development optimization procedure that addresses some

of the issues raised above was presented [21]. In this implementation, rather than

prescribe Nw and optimize 3Nw parameters, the wells were constrained to be ar-

ranged in repeated patterns (such patterns are commonly used for onshore oil field

development). By optimizing the parameters that define the well patterns, a close-to-

optimal Nw and the locations and types of all wells can be determined. This method

would theoretically be expected to lead to suboptimal results relative to those that

could be achieved by optimizing the number of wells and the associated 3Nw pa-

rameters, but it is much more tractable computationally than the more exhaustive

approach.

In this section we describe and then apply this new well pattern optimization

procedure and a second-stage optimization that perturbs well locations within the

patterns. The core optimizer used is PSO, but the method could be implemented

with other derivative-free optimization algorithms including GA.

2.4.1.1 Well Pattern Description

The basic PSO procedure was described in Section 2.2.3.2. In the well pattern de-

scription (WPD), the optimization parameters define the target pattern. This pattern

is then replicated over the entire domain, with wells that fall outside of the reser-

voir eliminated. The algorithm considers four different well pattern types, as shown



36 D.E. Ciaurri, T. Mukerji, and L.J. Durlofsky

(a) Inverted five-spot (b) Inverted six-spot

(c) Inverted seven-spot (d) Inverted nine-spot

Fig. 2.6 Illustration of the well patterns considered. The solid black circles represent produc-

tion wells and the circles with arrows represent injection wells. The patterns are referred to

as ‘inverted’ because the injection wells are at the centers of the patterns (from [21]).

in Figure 2.6. Optimization variables include the pattern type (categorical variable

I
wp
i ), the location of one of the wells in the pattern (ξ 0

i ,η0
i ), pattern dimensions

(ai,bi), and parameters associated with a number of pattern operators, which we

now describe.

The patterns determined using the representation above will be quite regular and

oriented with the x − y coordinate system. It may be advantageous, however, to

adjust the orientation of the pattern to better accommodate the reservoir shape or the

spatial variation/correlation of rock properties such as permeability. To accomplish

this, several different pattern operators were introduced in [21]. These include a

rotation operator, a shear operator and a scale operator. Well locations for the target

pattern, after application of these operators, can be expressed as:

WT
out = M WT

in, (2.6)

where Wout and Win are Nwp ×2 (relative) well location matrices, where Nwp is the

number of wells in the pattern, and M is a 2×2 transformation matrix, defined for

each operator. For example, for the rotation operator, we have:

Mθ =

(
cosθ sinθ
−sinθ cosθ

)

, (2.7)
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where θ designates the angle of rotation. M matrices are also defined for shear

and scale operators; see [21] for details. A fourth operator, referred to as ‘switch,’

which acts to convert all injection wells to production wells and vice versa, was also

introduced. This operator changes the target pattern from the so-called ‘normal’

form to the ‘inverted’ form (or back).

The full set of optimization variables for the well pattern description, for PSO

particle i, is given by (with the iteration index k omitted for clarity):

xi = [{I
wp
i , [ξ 0

i ,η0
i ,ai,bi]}

︸ ︷︷ ︸

pattern parameters

{Si,1,Si,2, . . . ,Si,No
}

︸ ︷︷ ︸

operator sequence

{Oi,1,Oi,2, . . . ,Oi,No
}

︸ ︷︷ ︸

pattern operators

]. (2.8)

Here {I
wp
i , [ξ 0

i ,η0
i ,ai,bi]} are the basic pattern parameters for particle i, No is the

number of pattern operators, {Oi,1,Oi,2, . . . ,Oi,No
} are the parameters associated

with the pattern operators, and {Si,1,Si,2, . . . ,Si,No
} defines the sequence in which

the operators are applied. The total number of optimization variables depends on

the number and type of operators included, but it is only around 25 when all of the

operators noted above are used. All components of xi are treated as real numbers in

the optimization. Some of these parameters (e.g., I
wp
i and Si, j) are, however, integers.

Where necessary, integer values are determined from real values by simply rounding

to the nearest integer.

2.4.1.2 Second-Stage Optimization

Following the determination of the optimum repeated pattern using the well pattern

description (WPD) approach described above, a second-stage optimization can be

applied to further improve the solution. This procedure is based on a well-by-well

perturbation (WWP) and involves the local shifting of wells within patterns. Opti-

mization variables (PSO particles) for WWP optimization are:

xi = {∆ξ1, ∆η1
︸ ︷︷ ︸

well 1

, ∆ξ2, ∆η2
︸ ︷︷ ︸

well 2

, . . . , ∆ξ j, ∆η j
︸ ︷︷ ︸

well j

, . . . , ∆ξNw , ∆ηNw
︸ ︷︷ ︸

well Nw

}, (2.9)

where Nw is the number of wells determined in the first-stage (WPD) optimiza-

tion and ∆ξ j and ∆η j are the perturbations of the spatial locations of well j. The

minimum and maximum values of ∆ξ j and ∆η j are constrained to keep wells es-

sentially within their original patterns. The dimension of this optimization problem

can be high for large Nw, but the size of the search space is greatly limited by bound

constraints on ∆ξ j and ∆η j . We note finally that this second-stage optimization

could be extended to determine completion intervals (i.e., vertical locations where

the well is open to flow), to eliminate particular wells, or to modify individual well

types.
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2.4.2 Field Development Optimization Example

We now apply the procedures described above to a two-dimensional reservoir

model. This example is taken from [21]; refer to that paper for full details. The

reservoir domain is irregular, as shown in Figure 2.7, where the dark regions along

the boundaries designate non-reservoir zones. Wells that fall outside of the reser-

voir region are eliminated from the set. The model contains a total of 80 × 132

grid blocks. The production and injection wells are prescribed to operate at fixed

bottom-hole pressures of 1200 psi and 2900 psi, respectively. The total production

time is 1825 days. Flow simulations for this case were performed using the stream-

line simulator 3DSL [38]. Streamline simulators are not as broadly applicable as

standard finite-volume based simulators, but when appropriate, as they are in many

waterflood simulations, streamline approaches can be considerably more efficient

than standard procedures.

The well pattern optimization runs used 40 PSO particles and proceeded for

40 iterations. The optimization was run five times. Following these five runs,

the best optimization solution (run 3 in Table 2.2) was used for five subsequent

WWP optimizations. Results for NPV for the well pattern optimizations are shown

in Table 2.2, while those from the subsequent use of WWP are presented in

Table 2.3. It is evident from Table 2.2 that the inverted five-spot was the best pattern

in all runs. We see from Table 2.3 that WWP consistently led to improvements of

around 20% over the unperturbed patterns. The progress of the overall optimization

is displayed in Figure 2.8, where the improvement in NPV during both stages is

evident.

Fig. 2.7 Logarithm of permeability field for field development optimization example (from

[21]).
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Table 2.2 Optimization results using well pattern description (from [21])

Run Best pattern
NPV Well count

($MM) Producers Injectors

1 inv. 5-spot 1377 16 15

2 inv. 5-spot 1459 15 15

3 inv. 5-spot 1460 15 15

4 inv. 5-spot 1372 15 15

5 inv. 5-spot 1342 13 15

Average 1402

Table 2.3 Optimization results using the second-stage procedure relative to run 3 (from [21])

Run
NPV Increase over well pattern description

($MM) ($MM) %

1 1777 317 21.7

2 1787 327 22.4

3 1776 316 21.6

4 1801 341 23.4

5 1771 311 21.3

Average 1782 322 22.1

Fig. 2.8 NPV of best result from well pattern description (WPD), and average NPV of the

best second-stage well-by-well perturbation (WWP) solutions, versus number of simulations

(from [21]).

Figures 2.9(a) and (b) show the optimal well locations from both stages of the

optimization. Repeated five-spot patterns are evident in both figures. It is interesting

to observe that, although the differences in well locations between the two figures

are relatively slight, these perturbations result in an improvement in NPV of 23%.
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(a) WPD

(b) WWP

Fig. 2.9 Well locations for the best well pattern description (WPD) and well-by-well pertur-

bation (WWP) solutions (circles indicate production wells, crosses indicate injection wells).

Logarithm of permeability field is shown as background (from [21]).

We note finally that several other examples demonstrating the use of PSO for

well placement optimization were presented in [20, 21]. In the examples in [20]

the number of wells was always specified, though in some cases the well type

was also optimized (e.g., deviated and branched wells were considered in some

cases). Comparisons to optimizations using a genetic algorithm (GA) were pre-

sented and, as noted above, PSO was shown to consistently outperform the GA

considered. In one of the examples in [21], the well pattern optimization followed by
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well-by-well perturbation was compared to an unconstrained optimization that used

3Nw decision variables (the latter is referred to as the ‘concatenation’ approach).

For this case the two-stage optimization consistently outperformed the concatena-

tion approach. Taken in total, the results in [20,21] display the applicability of PSO

for well placement optimization problems, as well as the potential advantages of the

well pattern description and the two-stage optimization procedure.

It will clearly be useful to combine the well control optimization described in

Section 2.3 with the field development optimization considered here. This coupled

optimization problem will be computationally demanding, but the solutions pro-

vided can be expected to outperform those determined through the sequential appli-

cation of the two procedures. Work along these lines is currently underway.

2.5 Assimilation of Reservoir Data (Inverse Modeling)

The reliability of oil production forecasts, and the ‘optimal’ strategy that is deter-

mined based on these predictions, depend strongly on the proper calibration of the

reservoir simulation model. In essence, this calibration aims at finding appropriate

model parameters given a number of observations. The two model parameters that

(in many cases) most directly impact reservoir flow are permeability and porosity.

Both of these parameters vary spatially. For a given rock type, which is denoted as

facies in this context, porosity and permeability are often correlated, and one can be

estimated from the other. In this work, the calibration parameter is taken to be the

facies in each grid block, and we assume that each facies corresponds to a particular

permeability and porosity.

Historic flow production represents one set of observed data. Such data are cru-

cial because it is precisely the prediction of the reservoir flow response that is the

ultimate purpose of the modeling. However, production data provides direct infor-

mation only at well locations (though of course the flow rates and pressures observed

at wells are impacted by reservoir properties outside the well region). In contrast to

production data, seismic measurements (such as diffraction tomography) provide

more global information and thus can be used to improve estimates of the spatial

distribution of rock properties. Here we consider as observable data both flow and

seismic measurements.

The use of observational data to infer reservoir properties is an inverse problem.

As such, we anticipate that the solution will be non-unique. This is typically the

case because there are more parameters to estimate than there are independent mea-

surements, so many combinations of parameters yield similar model responses. In

addition to the underspecified nature of the problem, additional complications arise

from the approximations used in the forward modeling and from the presence of

noise in the data. Uncertainty quantification/assessment involves finding multiple

solutions of the inverse problem in order to generate a collection of production fore-

casts. For more information on data assimilation under uncertainty in this context,

refer to, e.g., [73, 45, 74].
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2.5.1 Problem Statement

The solutions of a geophysical inverse problem are the set of geological models that,

when forward-modeled to provide simulation data, match the observations to within

some tolerance. Since the approach here, as shown below, involves formulating the

data assimilation process in optimization terms, any model configuration (set of in-

version parameters) will be denoted by x ∈ Ω ⊂ R
n, and Ω is the set of admissible

models. The admissibility criteria can be formulated with respect to geological con-

sistency. Geological consistency typically implies a particular spatial correlation of

parameters (e.g., a given spatial covariance). The model x in this work represents

the facies type associated with every grid block. Thus, the number of optimization

variables n is on the order of the number of grid blocks in the discretized reservoir

model (which can be very large in practical models).

From an optimization perspective, the inverse problem can be stated as follows

min
x∈Ω

‖O(x)−y‖2 , (2.10)

where y ∈ R
m are the observations and O(x) ∈ R

m represent the numerically-

simulated observations. All the observable data considered are concatenated in y

and O(x). Thus, if O1 (x) ∈ R
m1 and O2 (x) ∈ R

m2 are the two sets of observable

data considered, then O(x) = [O1 (x) , O2 (x)], with m1 +m2 = m. In the norm (Eu-

clidean in this work), we can account for data uncertainty and include weights for

the different sets of data. Since the observable data in this work are normalized,

weights are taken to be unity. We reiterate that there are typically a much larger

number of inversion parameters than there are independent measurements (n ≫ m),

and therefore the optimization problem in (2.10) is frequently ill-conditioned.

2.5.2 Methodologies for Data Assimilation

The optimization problem in (2.10) presents a number of challenges in addition to

ill-conditioning. The cost function requires costly simulations, and in many cases

derivative information is expensive to obtain or not available. The number of opti-

mization variables is often large and the objective function can be non-smooth due

to, for example, the presence of noise in the observations. These difficulties can be

addressed by means of the following strategies.

The integration of disparate data in reservoir modeling has been suggested in a

number of publications (e.g., [75,76,77]) as a means to alleviate the ill-conditioned

character of (2.10). In essence, the use of different data types provides a degree

of regularization for the inverse problem. Here, as in [32], we use as observable

data oil and water production rates and diffraction tomography data. These data sets

are complementary since they measure system responses on different spatial and

temporal scales.

We can also expect a better conditioned optimization problem if the number of

parameters is decreased. Instead of searching in n dimensions, we consider a sub-

space of dimension nR. This subspace selection is not arbitrary and essentially aims
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at reducing the correlation between inversion parameters. The parameter reduction

used here is based on principal component analysis (PCA), or the Karhunen-Loève

transform, and can also be interpreted from a data compression perspective. The

statistical information needed is generally obtained from a prior (rough) knowledge

of the reservoir properties, and provides the inversion with geological consistency.

We essentially follow the PCA-based parameter reduction technique used in [6],

though that approach considers only flow production data and is invasive with re-

spect to the flow simulator (thus it is very efficient but requires source-code access

to implement).

In the example in Section 2.5.3, both production and seismic measurements

provide the observable data. We reduce the number of optimization variables and

introduce geological consistency through principal component analysis, and we ap-

proach (2.10) by derivative-free local optimization with an initial guess selected by

a heuristic procedure that is based on information obtained by PCA. The use of

numerical derivatives and a global procedure (GA) are also considered for com-

parison. All of these black-box approaches are more demanding computationally

than an invasive adjoint-based gradient procedure but, as mentioned above, can

be significantly accelerated through distributed computing. We briefly present be-

low the fundamentals of PCA, since that transformation is a key component of our

methodology.

2.5.2.1 Parameter Reduction Using Principal Component Analysis

Principal component analysis (PCA) optimally selects a subspace of dimension nR

from a larger space of dimension n. Given N possible models sampled from Ω ,

the region of the search space where plausible optimal solutions are expected,

{xk}
N
k=1 ⊂ Ω ⊂ R

n, PCA seeks an affine transformation

x̂k =
nR

∑
i=1

(
sT

i (xk − µ)
)

si + µ ,

with µ ∈ R
n and the set {si}

nR
i=1 ⊂ R

n orthonormal. We note that this transforma-

tion is essentially an orthogonal projection. PCA is optimal in the sense that the

Euclidean reconstruction error ‖x̂k−xk‖2, averaged over {xk}
N
k=1, is minimized (or,

equivalently, that the average reconstruction energy is maximized).

The optimal solution [78] implies that µ is the average of the N models sam-

pled {xk}
N
k=1, and that each si is an eigenvector for the covariance matrix associated

with these models. Additionally, it can be seen that the covariance matrix for the nR

PCA coefficients for {xk}
N
k=1 is a diagonal matrix, and that the contribution to the

average reconstruction error from each of the PCA basis components si is equal to

the corresponding eigenvalue.

The selection of the N models {xk}
N
k=1 is crucial and is done based on prior

information. If these models provide an acceptable representation of Ω , a large part

of the nR-dimensional search space will provide solutions that are (in this case,

geologically) consistent. Therefore, PCA not only reduces the search space, but also
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helps to ensure that the solutions obtained are practically acceptable. The value nR

is typically much smaller than n. Low values of nR yield low-dimensional search

spaces that are easier to explore, but the reconstruction error can be unacceptably

large. In other words, the optimal search would take place only in a small part of Ω ,

and thus the solutions obtained in that reduced space may be clearly suboptimal. The

determination of the appropriate value for nR is application specific and is typically

done through numerical experimentation.

A ranking for the PCA components can be established based on their respective

eigenvalues – the higher the eigenvalue, the higher the rank (and thus the impor-

tance) of the associated PCA basis vector. This, together with the fact that the co-

variance matrix for the PCA coefficients is diagonal, suggests that a sequence of

one-dimensional optimizations aimed at computing coefficients for the highest-rank

PCA basis vectors may be beneficial in the overall optimization. Based on this ob-

servation, a heuristic PCA-based procedure for computing the initial guess in (2.10)

can be obtained (please consult [32] for details).

2.5.3 Data Assimilation Example

The case study is taken from [32] and is based on a ten-layer synthetic model (with

20× 20× 10 = 4000 cells) extracted from the Stanford VI reservoir model [79].

This approach provides a good framework for comparing inversion methodologies

since the true model is known. We simulate a five-spot well pattern (four injectors

in the corners, and one producer in the center of the domain; see Figure 10(a)).

The optimization variable x is a binary facies indicator in every grid block (desig-

nating the block as either sand or shale). Though this variable is binary valued, it

can be relaxed to a continuous variable. Thus, a value of 0.5 indicates that in the

corresponding grid block, sand and shale are distributed equally.

The observable production data consists of the total field cumulative oil produc-

tion and water injection, obtained at intervals of ten days up to 90 days (therefore,

m1 = 10+10 = 20). The production data are computed by solving the (discretized)

reservoir flow equations. Here we use Stanford’s general purpose research simula-

tor (GPRS; [36,37]). The permeability and porosity fields are functions of the facies

parameter x. Given a (real-valued) facies parameter for grid block i, designated xi,

we compute the associated porosity φi by the following expression

φi(xi) = φ0 exp(xi ln(φ1/φ0)),

where the coefficients φ0 and φ1 are the porosity values associated with the shale

and sand facies (in practice, these values can be determined through measurements

on rock cores or regression). We relate the block permeability ki to the porosity φi

using the Kozeny-Carman equation (see, e.g., [80])

ki(φi) = α
φ3

i

(1−φi)
2
,

with the parameter α calculated from measurements or regression.
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(a) (b)

(c) (d)

Fig. 2.10 Layer 4 from (a) the true model studied in Section 2.5 (injection and production

wells are indicated as blue and red circles, respectively), (b) corresponding reconstruction

after PCA with N = 1000 realizations and nR = 30, (c) model selected randomly from the set

of N = 1000 realizations, and (d) corresponding reconstruction after PCA with nR = 30. Red

and blue represent sand and shale facies, respectively. The original facies model is binary-

valued, but after PCA it becomes continuous (from [32]); see online version for colors.

The second set of observable data is derived from crosswell diffraction tomogra-

phy. In crosswell tomography, sound wave sources are placed in one (usually ver-

tical) well and recorded and placed in another well (typically some hundred meters

away). By recording the waves propagating from one well to another, it is possible

to reconstruct approximately the structure of the earth in between the wells. The

estimated earth image is sometimes called a crosswell section. In this example we

have two crosswell sections obtained by associating diagonally the injectors in the
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five-spot pattern in Figure 10(a). Each section involves the ten layers in the model

and is discretized by a 20×20 matrix of velocities (hence, m2 = 400+400 = 800).

The tomographic data along these two perpendicular crosswell sections are com-

puted only once, after 90 days. The seismic observable data depends on certain rock

properties (elastic bulk modulus and density) which in turn are functions of the fluid

saturations at each grid block [80]. The input for the seismic tomography simula-

tor thus includes the model x, which provides the porosity for each grid block, and

fluid saturations. These quantities, together with rock physics models, are used to

compute the elastic velocities [80]. In all tomography calculations, both for the ob-

servations and during optimization, a simplified geometry for the top of the reservoir

is considered, and the associated corrections are not included.

A priori knowledge of the reservoir geology, in the form of a so-called training

image [81], together with facies data obtained at the well locations, allow the gener-

ation of N = 1000 geologically consistent model realizations, all conditioned to the

prior information. These models are generated using a multipoint geostatistical al-

gorithm [81], which can represent complex spatial structures. Through application

of PCA to these 1000 realizations we reduce the number of inversion parameters

from n = 4000 to nR = 30. In Figure 2.10 we show two of these models (one of the

ten model layers is shown) and their corresponding reconstructions. For our appli-

cation, these PCA reconstructions are acceptable.

2.5.3.1 Inversion Results and Prediction

We compare here sequential quadratic programming (SQP) using numerical gradi-

ents with generalized pattern search (GPS), Hooke-Jeeves direct search (HJDS), and

a genetic algorithm (GA). The initial guess for the local optimizers is computed as

outlined above (see [32] for details). The GA population is 60 individuals and the

algorithm is run for 100 generations. The initial population in the GA does not con-

tain the initial guess taken for the local optimizers. In this way, we can test if GA can

be beneficial in cases when useful initial guesses are not available. The distributed

computing environment consists of a cluster with 48 nodes, and it is used for the

SQP, GPS and GA optimizations. Each observable data value is assigned random

noise with an amplitude of 5% of the standard deviation of the corresponding data

type.

The models determined through inversion are shown in Figure 2.11. These results

are for the same layer as shown in Figure 2.10, though they are generally represen-

tative for all ten layers in the model. As noted earlier, after PCA the original binary

facies model is continuous (it could be transformed back to binary values using

thresholding if necessary). It is evident that all of the methods provide reasonable

models. A carefully selected initial guess is crucial for obtaining acceptable inver-

sion results with the SQP, GPS and HJDS methods. Our process for determining the

initial guess relies on some heuristics and therefore is not fully general, though it

appears adequate for this case. The GA result appears slightly less accurate than the

others, though the main model features are captured.



2 Derivative-Free Optimization for Oil Field Operations 47

(a) (b)

(c) (d)

Fig. 2.11 Inverse model results for layer 4 of the reservoir section studied in Section 2.5.

Facies distribution obtained by (a) sequential quadratic programming, (b) generalized pattern

search, (c) Hooke-Jeeves direct search, and (d) a genetic algorithm. The genetic algorithm,

because of its global nature, does not require an initial guess. The true distribution for layer 4

is shown in Figure 10(a). Red and blue represent sand and shale facies, respectively. Though

the original facies model is binary-valued, after PCA it becomes continuous (from [32]); see

online version for colors.

Figure 2.12 illustrates the performance of the local optimizers used for this prob-

lem. In this plot the horizontal axis is the number of equivalent simulations, which

is defined as the total number of simulations divided by the speedup obtained by

the parallel implementation. The concept of equivalent simulation is used to en-

able comparisons, in terms of elapsed time (not total computation time), between

HJDS and the other (parallel) procedures. Since HJDS is inherently serial, for that

algorithm the number of equivalent simulations coincides with the total number of
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Fig. 2.12 Performance results for the local optimizers studied in the model inversion in Sec-

tion 2.5 (from [32]); see online version for colors.

simulations. Note that one simulation involves calls to both the flow and seismic to-

mography simulators and that the initial guess computation for the local optimizers

requires roughly five equivalent simulations. It is evident from Figure 2.12 that SQP

provides the most efficient performance for this case. However, we expect that SQP

performance would degrade if the cost function was less smooth. If the comparison

was made in terms of total computation time, HJDS would be the most efficient al-

gorithm for this problem (HJDS would thus be the method of choice in the absence

of distributed computing resources).

The best individual in the initial GA population had a cost function of 0.036.

After around 200 equivalent function evaluations, the objective function for GA de-

creased to about 0.006, though more gradually than for the other methods shown in

Figure 2.12. This performance is promising since the GA was run without providing

any initial guess as input. If a larger population is used, GA can explore the global

search space and, as a consequence, potentially identify multiple solutions that are

comparable in terms of the cost function. These solutions could then be used for

uncertainty assessment.

The oil production and water injection forecasts over 360 days, for the model

obtained using SQP, are shown in Figure 13(a) (we note that the inversion involved

data over only the first 90 days). Agreement is generally very close, though slight

mismatches are evident at later times, and these mismatches grow with time. In or-

der to achieve accuracy over long simulation periods (up to 2000 days), the solution

determined by SQP was adjusted as follows. A new data assimilation was performed

after the first 1000 days. The observable data considered were the cumulative pro-

duction of oil and water, together with two new crosswell tomographies at the end
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Fig. 2.13 (a) Oil production and water injection forecast (360 days) for the solution obtained

by SQP. (b) Oil and water production forecast (2000 days) for the solution recalibrated after

1000 days. In both cases the noise in the observations has been removed (from [32]); see

online version for colors.

of the interval. The calibration at 1000 days started with the previously determined

model (as shown in Figure 2.11) and it involves only one additional parameter (λ ).

This parameter simply scales globally the facies distribution; i.e., the new model is

given by λ x, where x is the (old) model obtained using data for the first 90 days.
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The attendant one-dimensional optimization problem in λ required approximately

two additional equivalent simulations.

Figure 13(b) shows predictions from the new model for oil and water production

over 2000 days. The model provides accurate predictions over the entire period.

This type of recalibration can be done in practice whenever the deviation between

the prediction and the corresponding data is larger than some acceptable tolerance.

Since this new calibration is performed using a solution calculated previously, the

number of parameters considered can be relatively small. Alternative approaches, in

which more parameters (or the entire model) are computed, could also be applied.

2.6 Concluding Remarks

In this chapter we have applied derivative-free optimization methods to three dif-

ferent problems relevant to oil field operations. The examples considered are repre-

sentative of a wide range of practical simulation-based optimization problems and

involve oil production optimization with general operating constraints, field devel-

opment using a well pattern description, and data assimilation based on flow and

seismic measurements. These problems involved continuous, integer and categori-

cal variables, and the search spaces contained at most 100 dimensions. The success-

ful use of derivative-free methods for these problems clearly demonstrates that these

algorithms are viable for a range of oil field applications.

The derivative-free algorithms studied include generalized pattern search, Hooke-

Jeeves direct search, a genetic algorithm, and particle swarm optimization. In order

to enable additional comparisons, we also tested a gradient-based method, sequen-

tial quadratic programming, with derivatives estimated numerically. With the ex-

ception of Hooke-Jeeves direct search, all of these procedures can be readily paral-

lelized and as such benefit immensely when implemented in a distributed manner.

When parallel computing resources are limited or nonexistent, Hooke-Jeeves direct

search represents a promising serial derivative-free optimization strategy.

The performance of derivative-free approaches depends strongly on the dimen-

sion of the search space, and for the computational resources typically available,

these approaches are applicable when the number of optimization variables is on

the order of a few hundred or less. Therefore, it may be necessary in some occa-

sions to combine these approaches with some type of parameter reduction strategy.

In this work, in one case we limited the size of the search space by restricting wells

to be located within patterns, while in another case we applied principal component

analysis to reduce the number of inversion parameters.

There are still a number of challenges related to the problems considered in this

chapter. Though categorical (decision) variables were included in the optimal field

development example presented in Section 2.4, a comprehensive study on the use

and limitations of derivative-free algorithms for this type of mixed-integer nonlinear

optimization problem would be of great interest. In addition, further comparisons

between local and global methods, and the development of hybrid procedures, will

also be useful. It will be beneficial to jointly address field development optimization
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and well control optimization, as the optimal well locations will in general depend

on how the wells are operated. Multi-objective optimization may be of interest for

this and other applications.

The efficient treatment of uncertainty in all of the problems considered is also a

topic of great importance. Data assimilation methodologies that generate multiple

solutions consistent with observed data are required. Optimization techniques that

can efficiently handle multiple models are also needed. Finally, because the forward

simulations required for our optimization methods are themselves often very time-

consuming, the development of fast and reliable surrogate models will be of great

use. Research in many of these areas is currently underway.
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pp. 49–58. Birkhäuser, Basel (1998)



52 D.E. Ciaurri, T. Mukerji, and L.J. Durlofsky

12. Marsden, A.L., Wang, M., Dennis Jr., J.E., Moin, P.: Trailing-edge noise reduction us-

ing derivative-free optimization and large-eddy simulation. Journal of Fluid Mechan-

ics 572, 13–36 (2003)

13. Duvigneau, R., Visonneau, M.: Hydrodynamic design using a derivative-free method.

Structural and Multidisciplinary Optimization 28, 195–205 (2004)

14. Fowler, K.R., Reese, J.P., Kees, C.E., Dennis Jr., J.E., Kelley, C.T., Miller, C.T., Audet,

C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky,

J.M., Gray, G., Kolda, T.G.: Comparison of derivative-free optimization methods for

groundwater supply and hydraulic capture community problems. Advances in Water

Resources 31(5), 743–757 (2008)

15. Oeuvray, R., Bierlaire, M.: A new derivative-free algorithm for the medical image regis-

tration problem. International Journal of Modelling and Simulation 27, 115–124 (2007)

16. Marsden, A.L., Feinstein, J.A., Taylor, C.A.: A computational framework for derivative-

free optimization of cardiovascular geometries. Computational Methods in Applied

Mechanics and Engineering 197, 1890–1905 (2008)

17. Cullick, A.S., Heath, D., Narayanan, K., April, J., Kelly, J.: Optimizing multiple-field

scheduling and production strategy with reduced risk. SPE paper 84239 presented at

the 2009 SPE Annual Technical Conference and Exhibition, Denver, Colorado, October

5–8 (2009)

18. Velez-Langs, O.: Genetic algorithms in oil industry: an overview. Journal of Petroleum

Science and Engineering 47, 15–22 (2005)

19. Artus, V., Durlofsky, L.J., Onwunalu, J., Aziz, K.: Optimization of nonconventional

wells under uncertainty using statistical proxies. Computational Geosciences 10,

389–404 (2006)

20. Onwunalu, J., Durlofsky, L.J.: Application of a particle swarm optimization algo-

rithm for determining optimum well location and type. Computational Geosciences 14,

183–198 (2010)

21. Onwunalu, J., Durlofsky, L.J.: A new well pattern optimization procedure for large-

scale field development. SPE Journal (in press)

22. Bittencourt, A.: Optimizing Hydrocarbon Field Development Using a Genetic Algo-

rithm Based Approach. PhD thesis. Dept. of Petroleum Engineering, Stanford Univer-

sity (1997)

23. Bittencourt, A.C., Horne, R.N.: Reservoir development and design optimization. SPE

paper 38895 presented at the 1997 SPE Annual Technical Conference and Exhibition,

San Antonio, Texas, October 5–8 (1997)

24. Yeten, B., Durlofsky, L.J., Aziz, K.: Optimization of nonconventional well type, loca-

tion and trajectory. SPE Journal 8(3), 200–210 (2003)

25. Harding, T.J., Radcliffe, N.J., King, P.R.: Optimization of production strategies using

stochastic search methods. SPE paper 35518 presented at the 1996 European 3-D Reser-

voir Modeling Confe rence, Stavanger, Norway, April 16–17 (1996)

26. Almeida, L.F., Tupac, Y.J., Lazo Lazo, J.G., Pacheco, M.A., Vellasco, M.M.B.R.:

Evolutionary optimization of smart-wells control under technical uncertainties. SPE

paper 107872 presented at the, Latin American & Caribbean Petroleum Engineering

Conference, Buenos Aires, Argentina, April 15–18 (2007)

27. Carroll III, J.A.: Multivariate production systems optimization. Master’s thesis, Dept.

of Petroleum Engineering, Stanford University (1990)

28. Echeverrı́a Ciaurri, D., Isebor, O.J., Durlofsky, L.J.: Application of derivative-free

methodologies for generally constrained oil production optimization problems. Inter-

national Journal of Mathematical Modelling and Numerical Optimisation (in press)



2 Derivative-Free Optimization for Oil Field Operations 53

29. Schulze-Riegert, R.W., Axmann, J.K., Haase, O., Rian, D.T., You, Y.-L.: Evolutionary

algorithms applied to history matching of complex reservoirs. SPE Reservoir Evalua-

tion & Engineering 5(2), 163–173 (2002)

30. Ballester, P.J., Carter, J.N.: A parallel real-coded genetic algorithm for history match-

ing and its application to a real petroleum reservoir. Journal of Petroleum Science and

Engineering 59, 157–168 (2007)

31. Maschio, C., Campane Vidal, A., Schiozer, D.J.: A framework to integrate history

matching and geostatistical modeling using genetic algorithm and direct search meth-

ods. Journal of Petroleum Science and Engineering 63, 34–42 (2008)

32. Echeverria, D., Mukerji, T.: A robust scheme for spatio-temporal inverse modeling of

oil reservoirs. In: Anderssen, R.S., Braddock, R.D., Newham, L.T.H. (eds.) Proceedings

of the 18th World IMACS Congress and MODSIM 2009 International Congress on

Modelling and Simulation, pp. 4206–4212 (2009)

33. Dadashpour, M., Echeverria Ciaurri, D., Mukerji, T., Kleppe, J., Landrø, M.: A

derivative-free approach for the estimation of porosity and permeability using time-

lapse seismic and production data. Journal of Geophysics and Engineering 7, 351–368

(2010)

34. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Kluwer Academic Publishers,

Dordrecht (1979)

35. Gerritsen, M.G., Durlofsky, L.J.: Modeling fluid flow in oil reservoirs. Annual Review

of Fluid Mechanics 37, 211–238 (2005)

36. Cao, H.: Development of Techniques for General Purpose Simulators. PhD thesis, Dept.

of Petroleum Engineering, Stanford University (2002)

37. Jiang, Y.: Techniques for Modeling Complex Reservoirs and Advanced Wells. PhD

thesis, Dept. of Energy Resources Engineering, Stanford University (2007)

38. Streamsim Technologies Inc., 3DSL v2.30 User Manual (2006)

39. Stewart, R.R.: Exploration Seismic Tomography: Fundamentals. Course Notes Series,

Society of Exploration Geophysicists (1991)

40. Devaney, A.J.: Geophysical diffraction tomography. IEEE Transactions on Geoscience

and Remote Sensing 22(1), 3–13 (1984)

41. Harris, J.M.: Diffraction tomography with arrays of discrete sources and receivers.

IEEE Transactions on Geoscience and Remote Sensing 25(4), 448–455 (1987)

42. Chernov, L.A.: Wave Propagation in a Random Medium. McGraw-Hill, New York

(1960)

43. Aki, K., Richards, P.: Quantitative Seismology. W.H. Freeman, New York (1980)

44. van Essen, G.M., van den Hof, P.M.J., Jansen, J.D.: Hierarchical long-term and short-

term production optimization. SPE Journal (in press)

45. Oliver, D.S.: Multiple realizations of the permeability field from well test data. SPE

Journal 1, 145–154 (1996)

46. Sarma, P., Durlofsky, L.J., Aziz, K.: Kernel principal component analysis for effi-

cient, differentiable parameterization of multipoint geostatistics. Mathematical Geo-

sciences 40, 3–32 (2008)

47. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg

(2006)

48. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale con-

strained optimization. SIAM Review 47(1), 99–131 (2005)

49. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on Opti-

mization 7(1), 1–25 (1997)

50. Audet, C., Dennis Jr., J.E.: Analysis of generalized pattern searches. SIAM Journal on

Optimization 13(3), 889–903 (2002)



54 D.E. Ciaurri, T. Mukerji, and L.J. Durlofsky

51. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained op-

timization. SIAM Journal on Optimization 17(1), 188–217 (2006)

52. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems.

Journal of the ACM 8(2), 212–229 (1961)

53. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading (1989)

54. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-

ceedings of the Sixth International Symposium on Micromachine and Human Science,

pp. 39–43 (1995)

55. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE In-

ternational Joint Conference on Neural Networks, pp. 1942–1948 (1995)

56. Clerc, M.: Particle Swarm Optimization. ISTE Ltd (2006)

57. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the

1998 IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

58. Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In:

Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS,

vol. 5199, pp. 889–898. Springer, Heidelberg (2008)

59. Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the 2001 Workshop

on Particle Swarm Optimization, pp. 1–6 (2001)

60. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Mathe-

matical Programming 91, 239–269 (2000)
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Chapter 3  

Simulation-Driven Design in Microwave 

Engineering: Application Case Studies 

Slawomir Koziel and Stanislav Ogurtsov
*
 

Abstract. Application of surrogate-based optimization methods to simulation-
driven microwave engineering design is demonstrated. It is essential for the con-
sidered techniques that the optimization of the original high-fidelity EM-simulated 
model is replaced by the iterative optimization of its computationally cheap surro-
gate. The surrogate is updated using available high-fidelity model data to maintain 
its prediction capability throughout the optimization process. The surrogate model 
is constructed from the low-fidelity model which—depending on a particular ap-
plication case—can be either an equivalent circuit or a coarsely discretized full-
wave electromagnetic model. Designs satisfying performance requirements are 
typically obtained at the cost of just a few evaluations of the high-fidelity model. 
Here, several surrogate-based design optimization techniques for the use in mi-
crowave engineering are discussed. Applications of space mapping, simulation-
based tuning, variable-fidelity optimization, as well as various response correction 
techniques are illustrated. Design examples include planar filters, antennas, and 
transmission line transitions structures. 

Keywords: computer-aided design (CAD), microwave design, simulation-driven 
optimization, electromagnetic (EM) simulation, surrogate-based optimization, 
space mapping, tuning, surrogate model, high-fidelity model, coarse model. 

3.1   Introduction 

In this chapter, first, we describe several simulation-driven design optimization 

methods exploiting physically-based surrogate models, which can be used to  
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design a variety of microwave structures and devices in a computationally effi-

cient way. Second, we illustrate application of these surrogate-based optimization 

methods for design of microwave components. Examples include a variety of 

structures such as microstrip filters, ultrawide band (UWB) antenna, planar Yagi 

antenna, broadband antenna on multilayer substrate, low-loss transition from co-

planar waveguide to microstrip and substrate integrated waveguide. All these de-

sign problems are computationally expensive so that application of conventional 

simulation-driven techniques (e.g., gradient-based algorithms) is not practical or 

even unfeasible. It will be demonstrated that the surrogate based methods exploit-

ing the physically-based low-fidelity models can generate satisfactory designs at 

the cost corresponding to a few high-fidelity electromagnetic (EM) simulations of 

the structure of interest. 

3.2   Surrogate-Based Design Optimization in Microwave 

Engineering 

Microwave design task can be formulated as a nonlinear minimization problem 

 

( )*
arg min ( )

f

f
X

U
∈

∈
x

x R x                                                (3.1) 

 

where Rf ∈ R
m
 denotes the response vector of the device of interest, e.g., the mod-

ulus of the transmission coefficient |S21| evaluated at m different frequencies. U is a 

given scalar merit function, e.g., a minimax function with upper and lower specifica-

tions [1]. Vector x
*
 is the optimal design to be determined. Normally, Rf is obtained 

through computationally expensive electromagnetic simulation. It is referred to as 

the high-fidelity or fine model. 

The conventional way of handling the design problem (3.1) is to employ the EM 

simulator directly within the optimization loop. This direct approach faces some 

fundamental difficulties. The most important one is the high computational cost of 

high-fidelity EM simulation which makes the optimization impractical. Another dif-

ficulty is that the responses obtained through EM simulation typically have poor 

analytical properties. In particular, EM-based objective functions are inherently noi-

sy. Additional problem for direct EM-based optimization is that the sensitivity in-

formation may not be available or expensive to compute. Only recently, computa-

tionally cheap adjoint sensitivities [2] started to become available in some major 

commercial EM simulation packages, although for frequency-domain solvers only 

[3], [4]. 

Computationally efficient simulation-driven design can be performed using sur-

rogate models. Microwave design through surrogate-based optimization (SBO) 

[1], [5], [6] is the main focus of this chapter. The primary reason for using SBO 

approach in microwave engineering is to speed up the design process by shifting 

the optimization burden to an inexpensive yet reasonably accurate surrogate model 

of the device.  
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The generic SBO framework described here that the direct optimization of the 

computationally expensive EM-simulated high-fidelity model Rf is replaced by an 

iterative procedure [1], [6] 

 

( )( 1) ( )arg min ( )i i

sU+ =
x

x R x                                               (3.2) 

 

that generates a sequence of points (designs) x
(i) 

∈ Xf, i = 0, 1, …, being approxi-

mate solutions to the original design problem (3.1). Each x
(i+1)

 is the optimal de-

sign of the surrogate model Rs
(i) 

: Xs
(i)

 → R
m
, Xs

(i)
 ⊆ R

n
, i = 0, 1, … . Rs

(i)
 is as-

sumed to be a computationally cheap and sufficiently reliable representation of the 

fine model Rf, particularly in the neighborhood of the current design x
(i)

. Under 

these assumptions, the algorithm (3.2) is likely to produce a sequence of designs 

that quickly approach xf
*
.  

Typically, Rf is only evaluated once per iteration (at every new design x
(i+1)

) for 

verification purposes and to obtain the data necessary to update the surrogate 

model. Since the surrogate model is computationally cheap, its optimization cost 

(cf. (2)) can usually be neglected and the total optimization cost is determined by 

the evaluation of Rf. The key point here is that the number of evaluations of Rf for 

a well performing surrogate-based algorithm is substantially smaller than for any 

direct optimization method (e.g., gradient-based one) [7].  

In the remaining part of this section we characterize the surrogate models used 

in microwave engineering (Section 3.2.1) and present several techniques for com-

putationally efficient simulation-driven design of microwave structures (Sections 

3.2.2 through 3.2.6). Discussion covers the following methods: space mapping [1], 

[7], simulation-based tuning [8], shape-preserving response prediction [9], vari-

able-fidelity optimization [10], as well as optimization through adaptively adjusted 

design specifications [11]. 

3.2.1   Surrogate Models in Microwave Engineering 

There are a number of ways to create surrogate models of microwave and radio-

frequency (RF) devices and structures. They can be classified into two groups: 

functional and physical surrogates. Functional models are constructed from sam-

pled high-fidelity model data using suitable function approximation techniques 

(e.g., polynomial regression [5] or kriging [5]). Physical surrogates exploit fast but 

limited-accuracy models that are physically related to the original structure under 

consideration. 

Here, we focus on methods exploiting physical surrogates. Their primary ad-

vantage is that they are typically able to ensure good accuracy and generalization 

capability while using only a few training data points [12]. Physical surrogates are 

based on underlying physically-based low-fidelity models of the structure of inter-

est (denoted here as Rc). Physically-based models describe the same physical phe-

nomena as the high-fidelity model, however, in a simplified manner. In micro-

wave engineering, the high-fidelity model describes behavior of the system in 

terms of the distributions of the electric and magnetic fields within (and,  
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sometimes in its surrounding) that are calculated by solving the corresponding set 

of Maxwell equations [13]. Furthermore, the system performance is expressed 

through certain characteristics related to its input/output ports (such as so-called S-

parameters [13]). All of these are obtained as a result of high-resolution electro-

magnetic simulation where the structure under consideration is finely discretized. 

In this context, the physically-based low-fidelity model of the microwave device 

can be obtained through: (i) analytical description of the structure using theory-

based or semi-empirical formulas, (ii) different level of physical description of the 

system. The typical example in microwave engineering is equivalent circuit [1], 

where the device of interest is represented using lumped components (inductors, 

capacitors, microstrip line models, etc.), (iii) low-fidelity electromagnetic simula-

tion. This approach allows us to use the same EM solver to evaluate both the high- 

and low-fidelity models; however, the latter is using much coarser simulation 

mesh which results in degraded accuracy but much shorter simulation time. The 

properties of the three groups of models are summarized in Table 3.1.  

Table 3.1 Physically-based low-fidelity models in microwave engineering 

Model Type CPU Cost Accuracy Availability 

Analytical Very cheap Low Rather limited 

Equivalent circuit Cheap Decent Limited (mostly filters) 

Coarsely-discretized 
EM simulation 

Expensive 
Good to very 

good 
Generic: available for all 

structures 
 

3.2.2   Space Mapping 

Space mapping (SM) [1], [7] is probably one of the most recognized SBO tech-

niques using physically-based low-fidelity (or coarse) models in microwave engi-

neering. SM exploits the algorithm (3.2) to generate a sequence of approximate  

solutions x
(i)

, i = 0, 1, 2, …, to problem (3.1). The surrogate model at iteration i, 

Rs
(i)

, is constructed from the low-fidelity model so that the misalignment between 

Rs
(i)

 and the fine model is minimized using so-called parameter extraction process, 

which is the nonlinear minimization problem by itself [1]. The surrogate is defined 

as [7] 
 

( ) ( )

.( ) ( , )i i

s s g=R x R x p                                               (3.3) 

 

where Rs.g is a generic space mapping surrogate model, i.e., the low-fidelity model 

composed with suitable transformations, whereas  

( ) ( ) ( )

. .0
arg min || ( ) ( , ) ||

ii k k

i k f s gk
w

=
= −∑

p
p R x R x p                         (3.4) 

is a vector of model parameters and wi.k are weighting factors; a common choice 

of wi.k is wi.k = 1 for all i and all k. 
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Various space mapping surrogate models are available [1], [7]. They can be 

roughly categorized into four groups: (i) Models based on a (usually linear) distor-

tion of coarse model parameter space, e.g., input space mapping of the form 

Rs.g(x, p) = Rs.g(x, B, c) = Rc(B·x + c) [1]; (ii) Models based on a distortion of the 

coarse model response, e.g., output space mapping of the form 

Rs.g(x, p) = Rs.g(x, d) = Rc(x) + d [7]; (iii) Implicit space mapping, where the pa-

rameters used to align the surrogate with the fine model are separate from the de-

sign variables, i.e., Rs.g(x, p) = Rs.g(x, xp) = Rc.i(x, xp), with Rc.i being the coarse 

model dependent on both the design variables x and so-called preassigned parame-

ters xp (e.g., dielectric constant, substrate height) that are normally fixed in the 

fine model but can be freely altered in the coarse model [30]; (iv) Custom models 

exploiting parameters characteristic to a given design problem; the most character-

istic example is the so-called frequency space mapping 

Rs.g(x, p) = Rs.g(x, F) = Rc.f(x, F) [1], where Rc.f is a frequency-mapped coarse 

model, i.e., the coarse model evaluated at frequencies different from the original 

frequency sweep for the fine model, according to the mapping ω → f1 + f2ω, with 

F = [f1  f2]
T
.  

A though discussion of various issues as well as generalizations of space map-

ping can be found in the literature [12, 14, 15]. 

3.2.3   Simulation-Based Tuning and Tuning Space Mapping 

Tuning space mapping (TSM) [8] combines the concept of tuning, widely used in 

microwave engineering [16], [17], and space mapping. It is an iterative optimiza-

tion procedure that assumes the existence of two surrogate models: both are less 

accurate but computationally much cheaper than the fine model. The first model is 

a so-called tuning model Rt that contains relevant fine model data (typically a fine 

model response) at the current iteration point and tuning parameters (typically im-

plemented through circuit elements inserted into tuning ports). The tunable pa-

rameters are adjusted so that the model Rt satisfies the design specifications. The 

second model, Rc is used for calibration purposes: it allows us to translate the 

change of the tuning parameters into relevant changes of the actual design vari-

ables; Rc is dependent on three sets of variables: design parameters, tuning pa-

rameters (which are actually the same parameters as the ones used in Rt), and SM 

parameters that are adjusted using the usual parameter extraction process [1] in 

order to have the model Rc meet certain matching conditions. Typically, the model 

Rc is a standard SM surrogate (i.e., a coarse model composed with suitable trans-

formations) enhanced by the same or corresponding tuning elements as the model 

Rt. The conceptual illustrations of the fine model, the tuning model and the cali-

bration model are shown in Fig. 3.1. 

The iteration of the TSM algorithm consists of two steps: optimization of the 

tuning model and a calibration procedure. First, the current tuning model Rt
(i)

 is 

built using fine model data at point x
(i)

. In general, because the fine model with in-

serted tuning ports is not identical to the original structure, the tuning model re-

sponse may not agree with the response of the fine model at x
(i)

 even if the values  
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Fig. 3.1 Conceptual illustrations of the fine model, the tuning model and the calibration 

model: (a) the fine model is typically based on full-wave simulation, (b) the tuning model 

exploits the fine model “image” (e.g., in the form of S-parameters corresponding to the cur-

rent design imported to the tuning model using suitable data components) and a number of 

circuit-theory-based tuning elements, (c) the calibration model is usually a circuit equiva-

lent dependent on the same design variables as the fine model, the same tuning parameters 

as the tuning model and, additionally, a set of space mapping parameters used to align the 

calibration model with both the fine and the tuning model during the calibration process. 

of the tuning parameters xt are zero, so that these values must be adjusted to, say, 

xt.0
(i)

, in order to obtain alignment [8]:  
 

( ) ( ) ( )

.0 arg min ( ) ( )
t

i i i

t f t t= −
x

x R x R x                                    (3.5) 

 

In the next step, one optimizes Rt
(i)

 to have it meet the design specifications. Op-

timal values of the tuning parameters xt.1
(i)

 are obtained as follows:  
 

( )( ) ( )

.1 arg min ( )
t

i i

t t t
U=

x
x R x                                            (3.6) 

Having xt.1
(i)

, the calibration procedure is performed to determine changes in the 

design variables that yield the same change in the calibration model response as 

that caused by xt.1
(i)

 – xt.0
(i)

 [8]. First one adjusts the SM parameters p
(i) 

of the cali-

bration model to obtain a match with the fine model response at x
(i)

  

 
( ) ( ) ( ) ( )

.0arg min ( ) ( , , ) .i i i i

f c t= −
p

p R x R x p x                               (3.7) 
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The calibration model is then optimized with respect to the design variables in or-

der to obtain the next iteration point x
(i+1)

  

 
( 1) ( ) ( ) ( ) ( )

.1 .0arg min ( ) ( , , ) .i i i i i

t t c t

+ = −
x

x R x R x p x                          (3.8) 

 

Note that  xt.0
(i)

 is used in (3.7), which corresponds to the state of the tuning model 

after performing the alignment procedure (3.5), and xt.1
(i)

 in (3.8), which corre-

sponds to the optimized tuning model (cf. (6)). Thus, (3.7) and (3.8) allow finding 

the change of design variable values x
(i+1)

 – x
(i)

 necessary to compensate the effect 

of changing the tuning parameters from xt.0
(i)

 to xt.1
(i)

.  

Thorough discussion of various variations of tuning space mapping algorithms, 

calibration procedures, as well as recent development in the TSM technology can 

be found in the literature [18, 19, 20]. 

3.2.4   Shape-Preserving Response Prediction 

Shape-preserving response prediction (SPRP) [9] is a response correction tech-

nique that takes advantage of the similarity between responses of the high- and 

low-fidelity models in a very straightforward way. SPRP assumes that the change 

of the high-fidelity model response due to the adjustment of the design variables 

can be predicted using the actual changes of the low-fidelity model response. 

Therefore, it is critically important that the low-fidelity model is physically based, 

which ensures that the effect of the design parameter variations on the model re-

sponse is similar for both models. In microwave engineering this property is likely 

to hold, particularly if the low-fidelity model is the coarsely-discretization struc-

ture evaluated using the same EM solver as the one used to simulate the high-

fidelity model. 

The change of the low-fidelity model response is described by the translation 

vectors corresponding to a certain (finite) number of characteristic points of the 

model’s response. These translation vectors are subsequently used to predict  

the change of the high-fidelity model response with the actual response of Rf at the 

current iteration point, Rf(x
(i)

), treated as a reference. 

Figure 3.2(a) shows the example low-fidelity model response, |S21| in the fre-

quency range 8 GHz to 18 GHz, at the design x
(i)

, as well as the low-fidelity model 

response at some other design x. The responses come from the double folded stub 

bandstop filter example considered in [9]. Circles denote characteristic points of 

Rc(x
(i)

), selected here to represent |S21| = –3 dB, |S21| = –20 dB, and the local |S21| 

maximum (at about 13 GHz). Squares denote corresponding characteristic points 

for Rc(x), while line segments represent the translation vectors (“shift”) of the cha-

racteristic points of Rc when changing the design variables from x
(i)

 to x. Since the 

low-fidelity model is physically based, the high-fidelity model response at the giv-

en design, here, x, can be predicted using the same translation vectors applied to 

the corresponding characteristic points of the high-fidelity model response at x
(i)

, 

Rf(x
(i)

). This is illustrated in Fig. 3.2(b). Rigorous formulation of SPRP as well as 

generalizations of the basic algorithm can be found in [9]. 
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Fig. 3.2 SPRP concept: (a) Example low-fidelity model response at the design x(i), Rc(x
(i)) 

(solid line), the low-fidelity model response at x, Rc(x) (dotted line), characteristic points of 

Rc(x
(i)) (circles) and Rc(x) (squares), and the translation vectors (short lines); (b) High-

fidelity model response at x(i), Rf(x
(i)) (solid line) and the predicted high-fidelity model response 

at x (dotted line) obtained using SPRP based on characteristic points of Fig. 3.2(a); characteristic 

points of Rf(x
(i)) (circles) and the translation vectors (short lines) were used to find the character-

istic points (squares) of the predicted high-fidelity model response; low-fidelity model responses 

Rc(x
(i)) and Rc(x) are plotted using thin solid and dotted line, respectively [9]. 

3.2.5   Multi-fidelity Optimization Using Coarse-Discretization EM 

Models 

The most versatile type of physically-based low-fidelity model in microwave en-

gineering is the one obtained through EM simulation of coarsely-discretized struc-

ture of interest. The computational cost of the model and its accuracy can be easily 

controlled by changing the discretization density. This feature has been exploited 

in the multi-fidelity optimization algorithm introduced in [10]. 

The design optimization methodology of [10] is based on a family of coarse-

discretization models {Rc.j}, j = 1,…, K, all evaluated by the same EM solver as 

the one used for the high-fidelity model. Discretization of the model Rc.j+1 is finer 

than that of the model Rc.j, which results in better accuracy but also longer evalua-

tion time. In practice, the number of coarse-discretization models is two or three. 

Having the optimized design x
(K)

 of the last (and finest) coarse-discretization 

model Rc.K, the model is evaluated at all perturbed designs around x
(K)

, i.e., at xk
(K)

 = 

[x1
(K)

 … xk
(K) 

+ sign(k)·dk … xn
(K)

]
T
, k = –n, –n+1, …, n–1, n. A notation of R

(k)
 =  
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Rc.K(xk
(K)

) is adopted here. This data can be used to refine the final design without di-

rectly optimizing Rf. Instead, an approximation model involving R
(k)

  is set up and 

optimized in the neighborhood of x
(K)

 defined as [x
(K)

 – d, x
(K)

 + d], where d = [d1 d2 

… dn]
T
. The size of the neighborhood can be selected based on sensitivity analysis of 

Rc.1 (the cheapest of the coarse-discretization models); usually d equals 2 to 5 per-

cent of x
(K)

. 

Here, the approximation is performed using a reduced quadratic model q(x) = 

[q1 q2 … qm]
T
, defined as  

 
2 2

1 .0 .1 1 . . 1 1 .2
( ) ([ ... ] ) ... ...T

j j n j j j n n j n j n n
q q x x x x x xλ λ λ λ λ

+
= = + + + + + +x       (3.9) 

 

Coefficients λj.r, j = 1, …, m, r = 0, 1, …, 2n, can be uniquely obtained by solving 

the linear regression problems  
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where xk.j
(K)

 is a jth component of the vector xk
(K)

, and Rj
(k)

 is a jth component of 

the vector R
(k)

, i.e., 

In order to account for unavoidable misalignment between Rc.K and Rf, instead 

of optimizing the quadratic model q, it is recommended to optimize a corrected 

model q(x) + [Rf(x
(K)

) – Rc.K(x
(K)

)] that ensures a zero-order consistency [21] be-

tween Rc.K and Rf. The refined design can be then found as  
 

( ) ( )

* ( ) ( )

.arg min ( ( ) [ ( ) ( )])
K K

K K

f c KU
− ≤ ≤ +

= + −
x d x x d

x q x R x R x               (3.11) 

 

This kind of correction is also known as output space mapping [7]. If necessary, 

the step (4) can be performed a few times starting from a refined design, i.e., 

x
*
 = argmin{x

(K)
 – d ≤ x ≤ x

(K)
 + d : U(q(x) + [Rf(x

*
) – Rc.K(x

*
)])} (each iteration 

requires only one evaluation of Rf). 

The design optimization procedure can be summarized as follows (input argu-

ments are: initial design x
(0)

 and the number of coarse-discretization models K): 

1. Set j = 1; 

2. Optimize coarse-discretization model Rc.j to obtain a new design x
(j)

 using 

x
(j–1)

 as a starting point; 

3. Set j = j + 1; if j < K go to 2; 

4. Obtain a refined design x
*
 as in (3.13); 

5. END; 

Note that the original model Rf is only evaluated at the final stage (step 4) of the 

optimization process. Operation of the algorithm in illustrated in Fig. 3.3. Coarse-

discretization models can be optimized using any available algorithm. 
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x
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Fig. 3.3 Operation of the multi-fidelity design optimization procedure for K = 3 (three coarse-

discretization models). The design x(j) is obtained as the optimal solution of the model Rc.j, 

j = 1, 2, 3. A reduced second-order approximation model q is set up in the neighborhood of 

x(3) (gray area) and the final design x* is obtained by optimizing a reduced q as in (3.13). 

3.2.6   Optimization Using Adaptively Adjusted Design 

Specifications 

The techniques described in Section 3.2.2 to 3.2.5 aimed at correcting the low-

fidelity model so that it becomes, at least locally, an accurate representation of the 

high-fidelity model. An alternative way of exploiting low-fidelity models in simu-

lation-driven design of microwave structures is to modify the design specifications 

in such a way that the updated specifications reflect the discrepancy between the 

models. This approach is extremely simple to implement because no changes of 

the low-fidelity model are necessary. 

The adaptively adjusted design specifications optimization procedure intro-

duced in [11] consists of the following two simple steps that can be iterated if 

necessary:  

1. Modify the original design specifications in order to take into account the 

difference between the responses of Rf and Rc at their characteristic points. 

2. Obtain a new design by optimizing the coarse model with respect to the 

modified specifications. 

Characteristic points of the responses should correspond to the design specifica-

tion levels. They should also include local maxima/minima of the respective re-

sponses at which the specifications may not be satisfied. Figure 3.4(a) shows fine 

and coarse model response at the optimal design of Rc, corresponding to the band-

stop filter example considered in [11]; design specifications are indicated using 

horizontal lines. Figure 3.4(b) shows characteristic points of Rf and Rc for the 

bandstop filter example. The points correspond to –3 dB and –30 dB levels as well 

to the local maxima of the responses. As one can observe in Fig. 3.4(b) the selec-

tion of points is rather straightforward. 

In the first step of the optimization procedure, the design specifications are 

modified (or mapped) so that the level of satisfying/violating the modified specifi-

cations by the coarse model response corresponds to the satisfaction/violation lev-

els of the original specifications by the fine model response. Modified design 

specifications are shown in Fig. 3.4(c). 

The coarse model is subsequently optimized with respect to the modified speci-

fications and the new design obtained this way is treated as an approximated solu-

tion to the original design problem (i.e., optimization of the fine model with 
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Fig. 3.4 Bandstop filter example (responses of Rf and Rc are marked with solid and dashed 

line, respectively) [11]: (a) fine and coarse model responses at the initial design (optimum 

of Rc) as well as the original design specifications, (b) characteristic points of the responses 

corresponding to the specification levels (here, –3 dB and –30 dB) and to the local response 

maxima, (c) fine and coarse model responses at the initial design and the modified design 

specifications. 

respect to the original specifications). Steps 1 and 2 (listed above) can be repeated 

if necessary. Substantial design improvement is typically observed after the first 

iteration, however, additional iterations may bring further enhancement [11]. 

In the first step of the optimization procedure, the design specifications are 

modified (or mapped) so that the level of satisfying/violating the modified specifi-

cations by the coarse model response corresponds to the satisfaction/violation lev-

els of the original specifications by the fine model response. It is assumed that the 

coarse model is physically-based, in particular, that the adjustment of the design 

variables has similar effect on the response for both Rf and Rc. In such a case the 
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coarse model design that is obtained in the second stage of the procedure (i.e., op-

timal with respect to the modified specifications) will be (almost) optimal for Rf 

with respect to the original specifications. As shown in Fig. 3.4, the absolute 

matching between the models is not as important as the shape similarity. 

3.3   Surrogate-Based Design Optimization of Microwave Filters 

In this section, three examples of microwave filter design using various surrogate-

based optimization techniques are presented. A common feature of these three 

cases is that the surrogate model is created exploiting equivalent-circuit coarse 

model which is computationally much cheaper than the EM-simulated high-

fidelity model. This results in a significant speedup of the optimization process.  

3.3.1   Optimization of a Microstrip Bandpass Filter Using Space 

Mapping Technique 

Consider the fourth-order ring resonator bandpass filter [22] shown in Fig. 3.5(a). The 

design parameters are x = [L1 L2 L3 S1 S2 W1 W2]
T
 mm. The fine model Rf is simulated 

in the EM simulator FEKO [23]. The coarse model, Fig. 3.5(b), is an equivalent circuit 

implemented in Agilent ADS [24]. The design goal is to adjust the design variables so 

that the modulus of the transmission coefficient of the filter, |S21|, satisfies the follow-

ing requirements: |S21| ≥ –1 dB for 1.75 GHz ≤ f ≤ 2.25 GHz, and |S21| ≤ –20 dB for 

1.0 GHz ≤ f ≤ 1.5GHz and 2.5 GHz ≤ f ≤ 3.0 GHz, where f stands for frequency. The 

initial design is the coarse model optimal solution x
(0)

 = [24.74 19.51 24.10 0.293 

0.173 1.232 0.802]
T
 mm (minimax specification error +9.0 dB). 

Table 3.2 shows the optimization results. The surrogate model is constructed 

using input and output space mapping of the form Rs
(i)

(x) = Rc
(i)

( x + c
(i) 

) + d
(i)

 [7], 

where c
(i)

 is obtained using the parameter extraction procedure [1], see also  

Section 3.2.2, eq. (3.4), whereas d
(i)

 = Rf(x
(i)

) – Rc(x
(i)

 + c
(i)

). Also an enhanced 

model of the form Rs
(i)(x) = Rc

(i)( x + c(i) ) + d(i) + E(i)( x ‒ x(i) ) is considered, where 

E
(i)

 is an approximation of the Jacobian of Rf(x) – Rc(x + c
(i)

) obtained using 

Broyden update [25]. The space mapping algorithm working with the enhanced 

surrogate uses trust-region convergence safeguard [25]. 

Figure 3.6 shows the initial fine model response and the optimized fine model re-

sponse obtained using the algorithm with the enhanced surrogate model. Figure 3.7 

shows the convergence plot for the both cases. For this example, the first version of 

the space mapping algorithm does not converge. Also, the final design is worse 

than the best one found in the course of optimization. This illustrates one of the 

difficulties of the standard SM technique: the algorithm does not ensure objective 

function improvement from iteration to iteration. The algorithm using approxi-

mated Jacobian and trust-regions exhibits better performance. 
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Fig. 3.5 Fourth-order ring resonator bandpass filter: (a) geometry [22], (b) coarse model 

(Agilent ADS). 
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Fig. 3.6 Fourth-order ring resonator filter: Initial (dashed line) and optimized (solid line) 

|S21| versus frequency; optimization using SMTR-B2 algorithm [25] with the Rc(x+c) model: 

(a) full frequency range, (b) magnification at 1.4 GHz to 2.6 GHz and –22 dB to 0 dB. 
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Table 3.2 Fourth-order ring-resonator bandpass filter: optimization results 

Spec. Error [dB] 
Surrogate Model 

Final Best Found 

Fine Model 

Runs [times] 

Rs
(i)

(x) = Rc
(i)

( x + c
(i) 

) + d
(i)

 –0.2 –0.3          21# 

Rs
(i)(x) = Rc

(i)( x + c(i) ) + d(i) + E(i)( x ‒ x(i) ) –0.4 –0.4          17 

# Convergence not obtained; algorithm terminated after 20 iterations. 
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Fig. 3.7 Fourth-order ring resonator filter: convergence plots for the SM algorithm using 

surrogate model Rs
(i)(x) = Rc

(i)( x + c(i) ) + d(i) (o) and the algorithm using model Rs
(i)(x) = 

Rc
(i)( x + c(i) ) + d(i) + E(i)( x ‒ x(i) ). 

3.3.2   Optimization of a Microstrip Bandpass Filter Using Tuning 

Space Mapping 

Consider the box-section Chebyshev microstrip bandpass filter [26] (Fig. 3.8). The 

design parameters are x = [L1  L2  L3  L4  L5  S1  S2]
T
. The fine model is simulated 

in Sonnet em [27] with a grid of 1 mil × 2 mil. The width parameters are 

W = 40 mil and W1 = 150 mil. Substrate parameters are: relative permittivity 

εr = 3.63, and height H = 20 mil. The design specifications for the transmission 

coefficient are |S21| ≤ –20 dB for 1.8 GHz ≤ f ≤ 2.15 GHz and 

2.65 GHz ≤ f ≤ 3.0 GHz, and |S21| ≥ –3 dB for 2.4 GHz ≤ f ≤ 2.5 GHz.  

The filter is optimized using the tuning space mapping technology (Section 3.2.3). 

The tuning model is constructed by dividing the polygons corresponding to parameters 

L1 to L5 in the middle and inserting the tuning ports at the new cut edges. Its S28P data 

file (i.e., the file generated by the EM solver and containing the fine model S-

parameter data) is then loaded into the S-parameter component in Agilent ADS [24]. 

The circuit-theory coupled-line components and capacitor components are chosen to 

be the tuning elements and are inserted into each pair of tuning ports (Fig. 3.9). The 

lengths of the imposed coupled-lines and the capacitances of the capacitors are as-

signed to be the tuning parameters, so that one has xt = [Lt1 Lt2 Lt3 Lt4 Lt5 Ct1 Ct2]
T
 (Ltk in 

mil, Ctk in pF). 

The calibration model is implemented in ADS and shown in Fig. 3.10. It con-

tains the same tuning elements as the tuning model. It basically mimics the 
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Fig. 3.8 Chebyshev bandpass filter: geometry [26], and the tuning port insertion points. 
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Fig. 3.9 Box-section Chebyshev bandpass filter: tuning model (Agilent ADS). 

division of the coupled-lines performed while preparing Rt. The calibration model 

also contains six (implicit) SM parameters that will be used as parameters p in the 

calibration process [8]. These parameters are p = [εr1 εr2 εr3 εr4 εr5 H]
T
, where εrk is 

dielectric constant of the microstrip line segment of length Lk (Fig. 3.8), and H is 

the substrate height of the filter. Initial values of these parameters are [3.63 3.63 

3.63 3.63 3.63 20]
T
.  

The initial design, x
(0)

 = [928 508 50 50 201 5 19]
T
 mil, is the optimal solution 

of the coarse model, i.e., the calibration model with zero values of the tuning pa-

rameters. The specification error is +19 dB. 
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Fig. 3.10 Box-section Chebyshev bandpass filter: calibration model (Agilent ADS) [28]. 

The misalignment between the fine and the tuning model response with the tun-

ing elements set to zero is negligible (thanks to the co-calibrated port feature in 

Sonnet em [8]) so that xt.0
(0)

 = [0 0 0 0 0 0 0]
T
 was used throughout. The values of 

the tuning parameters at the optimal design of the tuning model are xt.1
(0)

 = [–85.2 

132.5 5.24 1.13 –15.24 0.169 –0.290]
T
. Note that some of the parameters take 

negative values, which is permitted in ADS. The values of preassigned parameters 

obtained in the first calibration phase [8] are p
(0)

 = [3.10 6.98 4.29 7.00 6.05 

17.41]
T
.  



3 Simulation-Driven Design in Microwave Engineering: Application Case Studies 73

 

1.8 2 2.2 2.4 2.6 2.8 3
-50

-40

-30

-20

-10

0

Frequency [GHz]

|S
2

1|

(a) 

1.8 2 2.2 2.4 2.6 2.8 3
-50

-40

-30

-20

-10

0

Frequency [GHz]

|S
2

1|

 (b)  

Fig. 3.11 Box-section Chebyshev bandpass filter: (a) the coarse (dashed line) and fine (sol-

id line) model response at the initial design; (b) fine model response at the design found af-

ter one iteration of the TSM algorithm. 

Figure 3.11 shows the coarse and fine model response at the initial design, as well 

as the fine model response after just one TSM iteration (two fine model evaluations) 

with x
(1)

 = [1022 398 46 56 235 4 10]
T
 mil (specification error –1.8 dB).  

It should be emphasized that the evaluation time of both the tuning and the cali-

bration model is very low (a fraction of a second), and, it is negligible compared 

to the evaluation time of the fine model. Therefore, the computational cost of each 

tuning space mapping iteration corresponds to two electromagnetic simulations 

(one for the fine model and one for the “cut” fine model). 

3.3.3   Design of Dual-Band Bandpass Filter Using Shape- 

Preserving Response Prediction 

To illustrate the performance of the shape-preserving response prediction (SPRP) 

algorithm [9] (Section 3.2.4), consider the dual-band bandpass filter [29] shown in 
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Fig. 3.12. The design parameters are x = [L1 L2 S1 S2 S3 d g W]
T
 mm. The fine 

model is simulated in Sonnet em [27]. The design specifications are |S21| ≥ –3 dB 

for 0.85 GHz ≤ f ≤ 0.95 GHz and 1.75 GHz ≤ f ≤ 1.85 GHz, and |S21| ≤ –20 dB for 

0.5 GHz ≤ f ≤ 0.7 GHz, 1.1 GHz ≤ f ≤ 1.6 GHz and 2.0 GHz ≤ f ≤ 2.2 GHz. The 

coarse model is implemented in Agilent ADS [24] (Fig. 3.13). The initial design is 

x
(0)

 = [16.14 17.28 1.16 0.38 1.18 0.98 0.98 0.20]
T
 mm (the optimal solution of 

Rc). The following characteristic points are selected to set up the SPRP surrogate 

model [9]: four points for which |S21| = –20 dB, four points with |S21| = –5 dB, as 

well as 6 additional points located between –5 dB points. For the purpose of opti-

mization, the coarse model was enhanced by tuning the dielectric constants and the 

substrate heights of the microstrip models corresponding to the design variables L1, 

L2, d and g (original values of εr and H were 10.2 and 0.635 mm, respectively).  

Figure 3.13 shows the initial fine model response as well as the fine model 

response at the design obtained using the stand-alone SPRP. Table 3.3 shows the 

optimization results. Two variants of the SPRP algorithm were considered [9]:  

 

Input Output

gL2

L2

W

S3

S1

L1

S2

d

  
 

Fig. 3.12 Dual-band bandpass filter: geometry [29]. 
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Fig. 3.13 Dual-band bandpass filter: coarse model (Agilent ADS). 
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Table 3.3 Optimization Results for Dual-Band Bandpass Filter 

Algorithm Final Specification Error [dB] Fine Model Runs1 [times] 

SPRP –2.03 3 

SPRP + input SM2 –1.94 2 

1 Excludes the fine model evaluation at the starting point.  
2 Surrogate model is Rs

(i)(x) = Rc(x + c(i)); c(i) is found using parameter extraction [9]. 
3 Design specifications satisfied after the first iteration (spec. error –1.2 dB).  
4 Design specifications satisfied after the first iteration (spec. error –1.0 dB). 

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
-50

-40

-30

-20

-10

0

Frequency [GHz]

|S
2
1
| 
[d

B
]

 

Fig. 3.14 Dual-band bandpass filter: fine model (dashed line) and coarse model (thin 

dashed line) response at x(0), and the optimized fine model response (solid line) at the de-

sign obtained using SPRP. 

stand-alone and combined with input SM. Note a very small number of fine model 

evaluations necessary to yield the optimized design. 

3.4   Surrogate-Based Design Optimization of Antennas 

Building a surrogate model may not be straightforward for certain types of micro-

wave devices since reliable circuit equivalents, as those used in the previous sec-

tion for planar microwave filters, may not be available for many types of antennas, 

e.g., ultrawide band (UWB) antennas, Yagi-type of antennas, or dielectric resona-

tor antennas. Often, the only way to create a surrogate model is to use a coarsely-

discretized full-wave EM model which is evaluated using the same EM solver as 

the one used for the high-fidelity model. However, coarsely-discretized EM simu-

lation is still relatively expensive so that typically only a limited number of such 

simulations can be afforded. One way to deal with this situation is to generate 

smooth and computationally inexpensive surrogate by approximating sampled 

coarse-discretization EM data. The surrogate created this way can be then used in 

the space mapping optimization process. Another possibility is to exploits tech-

niques that do not require excessive number of coarse-discretization EM simula-

tions. Two of such methods—adaptive design specifications and multi-fidelity 

optimization algorithm—are also demonstrated in this chapter for antenna design. 
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3.4.1   Design of UWB Antipodal Vivaldi Antenna Using Coarsely-

Discretized EM Models, Kriging and Space Mapping 

The example considered here, a UWB antipodal Vivaldi antenna [30] of Fig. 3.15, 

shows how to combine functional and physical models to build a surrogate. De-

sign variables are x = [a1 a2 b1 b3 h1 h2 d1]
T
. The profile of the antipodal metal fins 

is with arks of ellipses; for the upper fin they are: BC, DE, and DB. The point A is 

the center of two ellipses with the arks of BC and DE, and the semiaxes of a1 and 

b1 and a2 and b2, respectively. The point F is the center of the ellipse with the se-

miaxes of a3 and b3. Note that here a3 = (a2‒a1)/2, b2 = b1+ws, and d2 = d1. Other 

parameters are fixed: ws = 2.15, w1 = 12.9, and h3 = 5 (all in mm). Antenna metal-

lization is with 0.05 mm copper. The fins are interfaced with the microstrip input 

(width of the ground of w1) through the linear taper of length h2. Rogers RT5880 

(0.787 mm thick) is for the substrate of finite extends, and dielectric losses are 

maximal at 10 GHz.  

The design specifications for reflection are |S11| ≤ –10 dB for 3.1 GHz to 10.6 

GHz. Total lateral and longitudinal dimensions are constrained by 100 mm and 

200 mm, respectively.  The antenna models include an edge mount SMA connector 

(AEP part number: 9650-1113-014) [31] and its hex nut since their presence, as it 

was seen from numerical experiments, can affect the radiation pattern, e.g., tilt the 

main beam from the end-fire direction, change the gain in the back direction, etc. 

The connector pin extends 0.5 mm from the flange over the microstrip signal trace. 

The upper connector tips, the lower connector tips, and the microstrip ground are 

connected with a pair of vias (1 mm in diameter) going through the substrate. 

The mismatch level of the connector-to-input microstrip junction itself is below 

−28 dB in the bandwidth of interest. The antenna models are excited through the 50 

ohm coaxial port which is in the SMA connector.  

The initial design is x
in
 = [30 50 10 10 100 20 2]

T
 mm. The high-fidelity antenna 

model is evaluated with the CST MWS transient solver [3] (8,954,244 mesh cells at 

x
in
, simulation time 1h 45 min). 
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Fig. 3.15 Vivaldi antenna: top view, substrate shown transparent. 
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Here, a suitable equivalent-circuit coarse model is not available to apply opti-

mization using space mapping. Instead, a coarse-discretization CST model Rcd 

(1,039,008 mesh cells at x
in
, evaluation time 6 minutes) is used. Rcd is still compu-

tationally too expensive to be used directly as a coarse model, therefore, a coarse 

model Rc is created in the neighbourhood of the starting point (here, the approxi-

mate optimum of Rcd), using kriging interpolation [5] of the Rcd data. The proce-

dure is as follows. 

1.   Allocate N base designs, XB = {x
1
, …, x

N
}, using Latin Hypercube Sampling [32]; 

2.   Evaluate Rcd at each design x
j
, j = 1, 2, …, N; 

3.   Build Rc as a kriging interpolation of data pairs {(x
j
, Rcd(x

j
))}j = 1,...,N. 

The coarse model created this way is computationally cheap, easy to optimize, and 

yet retains the features of a physically-based model. The starting point for space 

mapping optimization, x
(0) 

= [37.57 32.85 25.75 53.34 122.55 32.31 1.129]
T
 mm, is 

the approximate optimum of Rcd. The kriging coarse model Rc is set up in the vi-

cinity of x
(0)

 using N = 100 base points. 

Figure 3.16 shows the fine model reflection response at the initial design as well 

as that of the fine and coarse-discretization model Rcd at x
(0)

. The final design, 

x
(2)

=[37.66 33.16 25.21 53.22 122.50 33.06 1.012]
T
 mm, is obtained after two space 

mapping iterations (Fig. 3.17). The surrogate model used by the optimization algo-

rithm exploited input and output space mapping of the form Rs(x) = Rc(x + c) + d 

[7]. Optimization costs are summarized in Table 3.4. The total design time corre-

sponds to about 16 evaluations of the fine model. It should be noted that the design 

improvement between x
(0)

 and x
(2)

 is somehow limited, which is because of a limited 

accuracy of the coarse model as shown in Fig. 3.16. The far-field response of the fi-

nal design at selected frequencies is shown in Fig. 3.18.  
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Fig. 3.16 Vivaldi antenna, |S11| versus frequency: Fine model Rf at the initial design (- - -), 

optimized coarse-discretization model Rcd (· · · ·), and Rf at the optimum of Rcd (—). 
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Fig. 3.17 Vivaldi antenna, |S11| versus frequency: Rf at the final design. 

Table 3.4 UWB Vivaldi antenna: optimization cost 

 

Algorithm Component 
Number of Model 

Evaluations 

CPU Time 

Absolute Relative to Rf 

Optimization of Rcd 135 · Rcd 13.5 hours 7.7 

Setting up Rc 100 · Rcd 10.0 hours 5.7 

Evaluation of Rf 3 · Rf 5.3 hours 3.0 

Total cost N/A 28.8 hours 16.4 
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Fig. 3.18 Gain [dBi] of the Vivaldi antenna, x-pol. component: pattern cut in YOZ plane at 4 

GHz (—), 6 GHz (- - -), 8 GHz (- ⋅ - ⋅ -), and 10 GHz (• • •). 900 on the left, 00, and 900 on the 

right are for Y, Z, and ‒Y directions, respectively.  
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3.4.2   Design of Planar Yagi Antenna Using Adaptive Design  

Specifications 

Performance of the adaptive design specifications methodology [11] can be dem-

onstrated with design optimization of a planar Yagi antenna for the 2.4-2.5 GHz 

band [33]. Optimization of planar Yagi antennas on finite substrate is a challeng-

ing task due to the finite substrate and proximity of the feeding circuitry to the ra-

diators both introducing additional degrees of freedom to the design as well as 

complicate the use of methods developed for Yagi aerials [34, 35] and permits a 

limited use of existing design techniques [36].  

Design geometry. The considered Yagi antenna comprises three directors, one driv-

ing element of a modified shape consisting of partially overlapping strips, and the 

feeding microstrip ground plane serving also as the reflector. The presented antenna 

can be viewed as a planar realization of the five-element Yagi. An outline of the an-

tenna is given with Fig. 3.19. The antenna components are defined on a single 

layer of 0.025” thick Rogers RT6010 substrate which has extends of 100 mm × 

160 mm. The ground extend is 100 mm × 40 mm. The input 50 ohm microstrip is 

to be interfaced to the terminals of the driving element through a section of the pa-

rallel strip transmission line in a way that provides the balanced input to the an-

tenna. The antenna model is defined with CST MWS, discretized with subgrids, 

and simulated using the CST transient solver.  

Design objectives. Maximum directivity of the principal polarization (E-field is 

parallel to XOZ plane) in the 2.4-2.5 GHz band is chosen as the main objective. 

The following antenna figures are treated as constraints (also in the 2.4-2.5 GHz 

band): the side lobe level relative to maximum (SLL < –10 dB), front-to-back ratio 

(FBR < –12 dB), direction of maximal radiation θm (elevation angle from the  
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(a)                                                                    (b)  

Fig. 3.19 Printed quasi-Yagi antenna: (a) the model used at the optimization stage of design 

(no feeding section), (b) the model updated with a feeding section starting from the 50 ohm 

microstrip. Source impedance is not shown at the diagrams. For simplicity, the feeding section 

at the panel (b) is shown as a simple two section structure: 50 ohm microstrip (dimensions 

lm and wm) and parallel strips (dimensions lp1 and wp1). Detailed geometry of the optimized 

feeding section is given with Fig. 3.21(a).  
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Z axis, |θm| < 1
o
). The antenna should be interfaced to the 50 ohm environment so 

that |S11| < –10 dB in the 2.4-2.5 GHz band. 

Design stages. As the input impedance of Yagi antennas is typically sensitive to var-

iations of antenna dimensions [36], and since its value is not available prior to simu-

lation while it is needed to define the feeding part of the antenna, the design optimi-

zation proceeds in two major steps as follows: First, the antenna is optimized for 

maximal directivity subject to the constraints on SLL, FBR, and θm. At this step the 

excitation is applied directly at the driving element’s terminals (Fig. 3.19(a)). Design 

optimization procedure is based on surrogate-based optimization and involves opti-

mization of a coarse-discretization antenna model. Having the optimal design, the 

feed interfacing the 50 ohm input and the driving element terminals, is designed.  

Optimization methodology. Optimization of the coarse-discretization antenna 

model is carried out much faster. However, the coarse-discretization model is also 

less accurate: the figures of interest (e.g., directivity, SLL, FBR) are shifted in fre-

quency with respect to those of the high-fidelity model. The frequency relationship 

between the two models using characteristic points (e.g., local maxima, points of 

corresponding response levels) is captured as shown in Fig. 3.20. Using this rela-

tionship, the original frequency band of interest is mapped into the corresponding 

band that is used in the optimization of the coarse-discretization model. This proce-

dure, i.e., mapping of the frequency band, optimization of the coarse-discretization 

model and evaluation of the high-fidelity model is performed a few times as the fre-

quency dependence between the models’ responses may change from one design to 

another. The high-fidelity model is only evaluated a few times for verification pur-

poses and to set up a new mapping.  

Results. The design variables when optimizing the antenna for maximal directivity 

are x = [l1 l2 l3 l4 s1 s2 s3 s4 w0 wp]
T
 (Fig. 3.19(a)). Other parameters are fixed: ls=160, 

ws = 100, lg = 40, wg = 100, and h = 0.635 (all in mm). The initial design is 

x
(0) 

= [40.42 35.7 31.5 27.3 17.85 22.05 22.05 22.05 2.35 1.5]
T
. Simulation time of 

the coarse-discretization model (51,580 cells at x
(0)

) is about 6 minutes, and it is 

about 2 hours for the original, high-fidelity model (1,096,980 cells at x
(0)

). The opti-

mum is found at x
* 
= [40.87 37.31 34.33 29.80 17.35 22.55 23.05 24.55 1.55 2.13]

T
. 

Based on the optimum x
*
 and the antenna impedance at the driving element ter-

minals Zt (Fig. 3.19(a)), a feed is designed (Fig. 3.21) using analytical formulas with 

a microstrip (lm = 35 mm, wm = 0.586 mm) and parallel strips (lp1 = s1 – w0/2, 

wp1 = 0.36 mm). The updated antenna model is then simulated. Its reflection does not 

meet the design specifications for frequency over 2.484 GHz. Therefore, the feed is 

redesigned with geometry of Fig. 3.21(a) through optimization of its full-wave mod-

el and a schematic of Fig. 3.21(b). Dimensions of the simple feed are used as an ini-

tial guess. Optimal feed dimensions are found to be [wp1 wp2 wp3 lp1 lp2]
T
 = [0.428 

0.275 0.245 0.575 8.08]
T
. The updated antenna model is then simulated, and re-

sponses are shown in Figs. 3.22 through 25 and Table 3.5. Table 3.6 shows the com-

putational cost of the optimization process, which corresponds to only 19 full-wave 

antenna simulations. 
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Fig. 3.20 Directivity versus frequency for the antenna structure (solid line) and its coarse-

discretization model (dashed line). Characteristic points (squares and circles) are used to estab-

lish a frequency relationship between the two responses and to map the original frequency band 

of interest (2.4 to 2.5 GHz, thick solid line) into the corresponding band used in the coarse-

discretization model optimization (thick dashed line). 

 

 

εr

Z
X

Y Z

wm wp1

lp1lm
lp2

wp2

lp3

wp3

h

1 2

s1-w0/2

       

[z]
1 2

Zt50 Ω

Zin
 

(a)                                                              (b)  

Fig. 3.21 A feed interfacing the 50 ohm input and the driving elements: (a) geometry of its 

full-wave model; (b) implemented schematic. 
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Fig. 3.22 Antenna impedance: resistance Rin (thick solid) and reactance Xin (thick dash) at 

the antenna input (Fig. 3.19(b)); Rt (solid) and Xt (dash-dot) at the driving element terminals 

(Fig. 3.19(a)). 
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Table 3.5 Printed Yagi antenna: performance summary 

 

Figure                    Value 

Directivity, maximum* 
Directivity, end fire maximum* 

10 dBi 
9.85 dBi 

IEEE gain, end fire maximum*  9.49 dBi 
Radiation efficiency, minimum* 92 % 
Front to back ratio (FBR), minimum* 15.5 dB 
Side lobe level (SLL), maximum*  -10.2 dB 
End-fire polarization purity, minimum* 40 dB 

3 dB beamwidth at 2.45 GHz 
E-plane: 59o, 
H-plane: 74o 

Relative bandwidth (|S11| < –10 dB)  4.4 % 
Input impedance at resonance (2.466 GHz)  54.6 ohms 

 

* maximum/minimum over 2.4 GHz to 2.5 GHz  

 

 

Table 3.6 Printed Yagi antenna: optimization cost summary 

Algorithm Component 
# of Model 
Evaluations

Absolute 
Time 

Relative Time3 

Coarse-discretization model optimization1 316 32 h 16 
High-fidelity antenna simulation2 3 6 h 3 
Total optimization time4 - 38 h 19 

 
1 Total number of evaluations (coarse-discretization model is optimized once  

  per iteration, two iterations were performed in total). 
2 Evaluation at the initial design and after each iteration. 
3 Equivalent number of high-fidelity antenna simulations. 
4 Does not include the time necessary to design the antenna feed, which is  

  negligible compared to the optimization time of the antenna itself. 
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Fig. 3.23 Reflection from the input of the Yagi antenna. 
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Fig. 3.24 Front-to-back ratio. 
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Fig. 3.25 Directivity pattern at 2.4 GHz (solid), 2.45 GHz (dash-dot), and 2.5 GHz (dash): 

(a) co-pol. in the E-plane (XOZ); (b) ×-pol. in the H-plane (YOZ). 
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3.4.3   Multi-fidelity Design of Microstrip Broadband Antenna 

Application of the multi-fidelity optimization algorithm [10] is demonstrated be-

low using the broadband antenna [37] shown in Fig. 3.26. Here, x = [l1 l2 l3 l4 w2 

w3 d1 s]
T
 are the design variables. Multilayer substrate is ls×ls (ls=30 mm). The 

stack (from bottom-to-top) is: ground, RO4003, signal trace, RO3006 with a 

through via (trace-to-patch), the driven patch, RO4003, and four patches. Feeding 

is with 50 ohm SMA connector. 

The design objective is |S11| ≤ –10 dB for 3.1 GHz to 10.6 GHz. IEEE gain not less 

than 5 dB for the zero elevation angle over band is an optimization constrain. The ini-

tial design is x
(0)

 = [15 15 15 15 20 –4 2 2]
T
 mm. Two coarse-discretization models are 

used: Rc.1 (122,713 mesh cells at x
(0)

) and Rc.2 (777,888 mesh cells). The evaluation 

times for Rc.1, Rc.2 and Rf  (2,334,312 mesh cells) are 3 min, 18 min and 160 min at x
(0)

, 

respectively. Figure 3.27(a) shows the responses of Rc.1 at x
(0)

 and at its optimal design 

x
(1)

. Figure 3.27(b) shows the responses of Rc.2 at x
(1)

 and at its optimized design x
(2)

. 

Figure 3.26(c) shows the responses of Rf at x
(0)

, at x
(2)

 and at the refined design x
*
 = 

[14.87 13.95 15.4 13.13 20.87 –5.90 2.88 0.68]
T
 mm (|S11| ≤ –11.5 dB for 3.1 GHz to 

4.8 GHz) obtained in two iterations of the refinement step [10], see also Section 3.2.5, 
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Fig. 3.26 Microstrip broadband antenna: top/side views, substrates shown transparent.  

Table 3.7 Microstrip broadband antenna: design cost 
 

Design Step Model Evaluations 
Computational Cost 

Absolute [hours] Relative to Rf 

Optimization of Rc.1 125 · Rc.1 6.3 2.6 

Optimization of Rc.2 48 · Rc.2 14.4 5.4 

Setup of model q 17 · Rc.2 5.1 1.9 

Evaluation of Rf 2 · Rf 5.3 2.0 

Total design time N/A 31.1 11.9 
 

* Excludes Rf evaluation at the initial design. 
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Fig. 3.27 Microstrip broadband antenna: (a) responses of the coarse-discretization model Rc.1 at 

the initial design x(0) (- - -) and at the optimized design x(1) (—); (b) responses of the coarse-

discretization model Rc.2 at x(1) (- - -) and at its optimized design x(2) (—); (c) responses of the 

high-fidelity model Rf at x(0) (⋅⋅⋅⋅), at x(2) (- - -) and at the refined final design x* (—). 

  -20

  -10

  0

  10

60

120

30

150

0

180

30

150

60

120

90 90

     

  -20

  -10

  0

  10

60

120

30

150

0

180

30

150

60

120

90 90

 

(a)                                                              (b)  

Fig. 3.28 Microstrip antenna, gain [dBi] of the final design at 3.5 GHz (· ‒ ·), 4.0 GHz (‒ ‒), 

and 4.5 GHz (―): (a) co-pol. in the E-plane (XOZ), and connector is at 900 on the right; (b) x-

pol., primary, (thick lines) and co-pol. (thin lines) in the H-plane (YOZ). 
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eq. (3.13). The design cost (Table 3.7) corresponds to about 12 runs of the high-fidelity 

model Rf. Antenna gain at the final design is shown in Fig. 3.28. 

3.5   Surrogate-Based Design Optimization of Microwave  

Transitions 

Design of low-loss broad-band transitions interfacing different type of transmission 

lines at microwave frequencies usually involves full-wave EM simulation to accu-

rately describe the transition responses [38, 39]. Circuit models and analytical  

formulas, when available, can only be used to get initial designs which should be ve-

rified and tuned for required design requirements. Typically, reliable circuit 

models are either unavailable or require significant amount of development and va-

lidation effort. Moreover, additions or modifications introduced in the transition ge-

ometry may invalidate existing models, which leads to repeating the model devel-

opment procedure. On the other hand, optimization techniques exploiting surrogates 

[40], including those based on coarsely-discretized EM models, may substantially 

reduce the computational complexity of the conventional optimization methods and, 

at the same time, be applied to modified/improved geometries without extra effort.  

Two examples are presented in this section. The first one illustrates the multi-

fidelity design optimization technique to improve performance of a coplanar wa-

vequide-to-microstrip transition based on EM coupling. The second example  

demonstrates the use of the adaptive design specifications method for design of 

coplanar waveguide-to-substrate integrated waveguide transition. In both cases the 

use of coarsely-discretized EM models is essential, since no accurate circuit equi-

valents are available for the considered structures.  

3.5.1   Multi-fidelity Design of Microstrip-to-Coplanar Waveguide 

Transition 

Here, the multi-fidelity optimization algorithm [10] is applied to design optimization 

of a microstrip-to-CPW transition [41]. The methodology exploits sequential optimiza-

tion of coarse-discretization EM models. The optimal design of the current model is 

used as an initial design for the finer-discretization one. The final design is then refined 

using a polynomial-based approximation model of the responses obtained from the 

coarse-discretization simulations. The design process is computationally efficient be-

cause the optimization burden is shifted to the coarse-discretization models.  

Two frequency bands with the center frequencies fc of 5 GHz and 10 GHz are of 

interest for this transition [41] (Fig. 3.29). The port-to-port distance is 20 mm. The 

transition geometry and the input transmission lines (TLs) are on 0.635 mm thick 

RT6010 substrate. Metallization (5.7e8 S/m) is 0.0254 mm thick. Dimensions of 

the input TLs are the following: Wm=0.6, Wc=0.8, and sc=0.3 (all in mm). The 

ground plane is common to the CPW and microstrip and it is modelled of infinite 

lateral extend. The low frequency TL impedances are about 50 ohms each. All 

models are simulated using the CST MWS transient solver. 
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Fig. 3.29 Coplanar waveguide-to-microstrip transition with EM coupling [41]: (a) 3D view, 

substrate shown transparent; (b) layout views. 

In this example the ground plane is modelled to be of infinite lateral extend. The 

design objective is the 50% symmetrical bandwidth at the –20 dB level for both |S11| 

and |S22|. The design variables are x = [L1 W1 W2 L2 L3]
T
 mm. Designs start from x

(0)
 = 

[L
(0)

1 0.8 0 0.3 0]
T
, where L

(0)
1 = 6 and 3 for designs of 5 GHz and 10 GHz, respec-

tively. For this example one again uses two coarse-discretization models Rc.1 and Rc.2 

with the following evaluation times: 60s and 100s (5 GHz) and 71 s and 106 s  

(10 GHz). The fine model evaluation time is 17 min (5 GHz) and 26 min (10 GHz). 

The optimal designs are found to be x
*
 = [6.200 1.105  0.113 0.319 –0.033]

T
 for 

5 GHz and  [2.877 1.017 0.038  0.287 –0.090]
T
 for 10 GHz. Both final designs 

meet the specifications completely, which is shown in Fig. 3.30. Figure 3.31 

shows the transmission responses |S21| versus frequency at the initial and final de-

signs. Significant improvement in reflection and transmission responses (in level 

and bandwidth) is achieved: the bandwidth was extended to 53% from initial 0% 

for the 5 GHz design and to 51% from initial 20% for the 10 GHz design. Design 

cost are 9.3 evaluations of the fine model for the 5 GHz design and 7.0 evaluations 

of the fine model for the 10 GHz design (see Table 3.8 for details).  

As a comparison with “classical” simulation-driven design, the transition for 

fc = 10 GHz has been also designed through direct optimization of the fine model 

using the pattern search algorithm [42]. The final design obtained this way is al-

most as good as that produced by the multi-fidelity technique (50% bandwidth), 

however, the design cost is almost 18 times higher (124 evaluations of Rf versus 

about 7 for the multi-fidelity algorithm). 

The reduced quadratic model [10], see also Section 3.2.5, eqs. (3.11)-(3.12), is 

also utilized to perform sensitivity analysis of the final designs. For this purpose, 

however, the quadratic model is set up using the high-fidelity model data. Because 

sensitivity analysis is performed assuming relatively small deviations around the 

optimized design (0.0125 and 0.025 mm for geometry variables), the accuracy of 

the quadratic model is sufficiently good with respect to Rf. Results of the sensitiv-

ity analysis are shown in Fig. 3.32. 
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Fig. 3.30 Transition through coupling: fine model responses at initial (dashed line) and final 

design (solid line) for (a) fc = 5 GHz, and (b) fc = 10 GHz; –20 dB bandwidth at the final de-

sign marked with horizontal line. 
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Fig. 3.31 Transition through coupling: transmission response at the initial (dashed line) and 

the final design (solid line) for (a) fc = 5 GHz and (b) fc = 10 GHz; –20 dB bandwidth at the 

final design marked with horizontal line.  
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Table 3.8 CPW-microstrip transition: design cost 

 
 

Center     

frequency 

Design Procedure 

Component 

Number of 

Model Evaluations 

Evaluation Time 

Absolute [min] Relative to Rf 

5 GHz  

Optimization of Rc.1 62 62 3.6 
Optimization of Rc.2 27 45 2.6 
Setup of model q 11 (Rc.2) 18 1.1 
Evaluation of Rf 2 34 2.0 
Total design time N/A 159 9.3 

10 GHz 

Optimization of Rc.1 54 64 2.5 
Optimization of Rc.2 26 46 1.8 

Setup of model q 11 (Rc.2) 19 0.7 
Evaluation of Rf 2 52 2.0 
Total design time N/A 181 7.0 
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Fig. 3.32 Transition through coupling: sensitivity analysis using 200 random samples allo-

cated in the neighbourhood of the optimized designs: (a) fc = 5 GHz and (b) fc = 10 GHz; –

20 dB bandwidth at the final design marked with horizontal line. The sensitivity analysis 

setup is described in the text. Thick solid lines denote transition responses at optimized de-

signs. Thin lines represent the family of responses corresponding to random samples as de-

scribed above. 
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3.5.2   Design of Coplanar Waveguide-to-Substrate Integrated  

Waveguide Transition 

Substrate integrated circuits (SICs), and substrate integrated waveguides (SIWs) in 

particular, find application in modern microwave and millimeter wave engineering 

due to their capability of low cost realization of waveguide components as well as 

integration of different components all in the frame of planar technology [43]. One 

of the major tasks in SIC transition design is the adjustment of geometry parame-

ters so that given design specifications are satisfied. For research in the computer 

aided design (CAD), this casts into a problem of developing straightforward and 

reliable procedures to tune geometries of SIC transitions for required performance 

in a given environment.  

Increasing a useable bandwidth of conductor backed coplanar waveguide 

(CBCPW)-to-SIW transitions is targeted here.  Metalized vias partially protruding 

into substrate in the transition region are used as tuning elements, and the surro-

gate-based optimization [7] is applied as a design tool. Adjustable metal screws 

and pins are classical tuning elements in hollow waveguides and cavities [44]; 

however, they are not used in SICs in the similar way since post-manufacturing 

adjustment of SICs is hardly possible, and finding optimal position, diameter, and 

protruding depth of vias represents a challenging task in the case of SIC. Design of 

SIC transitions can be conducted successfully by means of surrogate-based optimiza-

tion [7], [45] and coarse-discretization electromagnetic models [46] with the transition 

dimensions considered as design optimization variables.  

Examples include: (i) design optimization of a transition interfacing the conductor 

backed coplanar waveguide (CBCPW) to SIW without vias (not capable to satisfy the 

design specifications), and (ii) re-optimized transitions with metalized vias protruding 

into substrate in the transition region, which improves the usable bandwidth.  

Geometry under design. Consider the planar transition interfacing a conductor 

backed coplanar waveguide (CBCPW) to a SIW shown in Fig. 3.33. The CBCPW, 

SIW, and transition are on the 3.175 mm RT5880 substrate. The CBCPW upper and 

lower grounds, the SIW top and bottom walls are of infinite lateral extend. All metal 

parts have conductivity of copper (5.8e7 S/m). Metallization of the CBCPW signal 

trace, CBCPW upper ground, and SIW top wall is with 1.5 oz copper (≈ 0.05 mm). 

Design specifications are |S11|, |S22|<= ‒20 dB for the X-band (here 8.2 GHz to 

11.7 GHz).  

The dimensions of the input CBCPW are: signal trace width w0 = 2.25 mm; slot 

width s0 = 0.2 mm; spacing between the rows of vias u0 = 6.95 mm; spacing be-

tween vias in the row v0 = 2 mm; via diameter d = 1 mm. The dimensions of the 

input SIW are: spacing between the rows of vias, u2 = 15.95 mm; spacing between 

vias in the terminating rows v1 = 1.5 mm; spacing between vias in the row v2 = 2 

mm; via diameter is the same as in the CBCPW (1 mm). The cutoff of the SIW’s 

quasi TE10 dominant mode is at 6.55 GHz. 
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Fig. 3.33 CBCPW-to-SIW transition with two vias added: top and side views. The via walls 

are not shown on the side view. The dash-dot line shows the location of the symmetry plane 

(magnetic wall).  

The transition comprises a CBCPW section, the probe connecting the CBCPW 

signal trace to the SIW bottom wall, and pairs of protruding vias. The length of the 

transition, i.e., l1 + l2 in the case without protruding vias, and l1 + y1 in the case of 

two protruding vias, is constrained to 20 mm (≈ 1.25 of u2). Figure 3.2 gives a 

conceptual view of the transition with two extra vias. Via location, x1, y1, radius, 

r1, and protruding depths, h1, will be additional (to the dimensions of the CBCPW 

section) design variables. In the CAD models, the port-to-port distance is 55 mm 

of which 25 mm is for the SIW section. The SIW is excited through a 2.5 mm sec-

tion of the equivalent rectangular waveguide [46]. The 50 ohm CBCPW wave-

guide port has a perfect metal periphery connecting the upper and lower CBCPW 

grounds. The extra vias protrude into the dielectric from the SIW bottom wall but 

they are not allowed to touch the SIW top wall.  

Design process. The first step of the optimization process is to optimize the 

coarse-discretization EM model of the transition (low-fidelity model) using pat-

tern search [42]. The design is further improved using adaptively adjusted design 

specifications technique [46, 47] which consists of the following two steps: 

(i) Modify the original design specifications to account for the discrepancy be-

tween the low- and high-fidelity models; (ii) Obtain a new design by optimizing 

the low-fidelity model with respect to the modified specifications. 

In Step (i), the design specifications are modified so that the level of satisfy-

ing/violating the modified specifications by the low-fidelity model response 

corresponds to the satisfaction/violation levels of the original specifications by the 

high-fidelity model [46]. The low-fidelity model is then optimized in Step (ii) with 

respect to the modified specifications and the new design obtained this way is 

treated as an approximated solution to the original design problem (i.e., optimization 

of the high-fidelity model with respect to the original specifications). Steps (i) and 

(ii) can be repeated if necessary. Typically, a substantial design improvement is ob-

served after the first iteration. Additional iterations may bring further enhancement 

as the discrepancy between the high- and low-fidelity models may change somehow 
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from one design to another. Figure 3.34 illustrates an iteration of this technique used 

for design of a CBCPW-to-SIW transition.  

It should be noted that employing simulation-driven design based on low-fidelity 

models allows us to find optimal designs that might not be obtainable otherwise.  
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Fig. 3.34 Adaptively adjusted design specification technique applied to optimize CBCPW-to-

SIW transitions. High- and low-fidelity model response denoted as solid and dashed lines, re-

spectively. |S22| distinguished from |S11| using circles. Design specifications denoted by thick 

horizontal lines. (a) High- and low-fidelity model responses at the beginning of the iteration as 

well as original design specifications; (b) High- and low-fidelity model responses and modi-

fied design specifications that reflect the differences between the responses; (c) Low-fidelity 

model optimized to meet the modified specifications; (d) high-fidelity model at the low-

fidelity model optimum shown versus original specifications.  

Results. For the case without extra vias the design variables are x0in=[l1 l2 l3 w1 s1 

s2 r0]
T
. The optimization procedure starts from x0in=[1.0 7.0 0.75 2.0 0.4 1.0 

0.75]
T
. The responses of the initial design are shown in Fig. 3.35 (a) and Fig 

3.36(a). The optimal design is found to be x0opt= [0.695 7.451 0.323 2.387 0.764 

0.235 0.250]
T
, its responses are shown at Fig. 3.35(a) and Fig 3.36(a). The optimal 

design has the improved reflection and transmission responses compared to the in-

itial one; however, it does not meet the design requirements. Therefore, additional 

vias are introduced (see Fig. 3.33) as tuning elements. The optimum design for the 

case of two protruding vias is shown in Table 3.9. The response corresponding to 

this design is shown in Fig. 3.35(b) and Fig 3.36 (b).  
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Fig. 3.35 CBCPW-to-SIW transitions, |S11| (solid) and |S22| (dash): (a) the initial (thin) and 

optimized (thick) design without protruding vias; and (b) optimized design with two vias. 
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Fig. 3.36 CBCPW-to-SIW transitions, |S21|: (a) the initial (thin-dash) and optimized (thick-

solid) design without protruding vias; (b) optimized design with two vias. 
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Table 3.9 CPW-SIW transitions: final designs 

 

Parameter [mm] Design 1 (no extra vias) Design 2 (two extra vias) 

l1 0.695 0.570 
l2 7.451 7.389 
l3 0.323 0.323 
w1 2.387 2.387 
s1 0.764 0.839 
s2 0.235 0.235 

r0 0.250 0.250 
r1 - 0.313 
x1 - 1.750 
y1 - 11.375 
h1 - 1.355 

|S11|,|S22| [dB] >?"‒14.6 >?"‒20 
Bandwidth [GHz] 8.0‒11.75 7.78‒11.72 

 

3.6   Conclusion 

In this chapter, several techniques for computationally efficient simulation-driven 

design optimization of microwave structures have been discussed. We also pre-

sented a number of design examples concerning various microwave components, 

including microstrip filters, planar antennas, as well as transition structures. In all 

cases, the surrogate-based techniques presented in the previous chapter have been 

employed as optimization engines. The results presented here indicate that the sur-

rogate-based optimization methods make the simulation-driven microwave design 

feasible and efficient, both in terms of the quality of the final design, and in terms 

of the computational cost. In most cases, the design cost corresponds to a few 

high-fidelity electromagnetic simulations of the microwave structure under con-

sideration, typically comparable to the number of design variables. While this kind 

of performance is definitely appealing, improved robustness and reliability as well 

as availability through commercial software packages are needed to make the sur-

rogate-based techniques widely accepted by microwave engineering community. 

Therefore, a substantial research effort in this area is expected in the years to 

come. 
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Chapter 4 

Airfoil Shape Optimization Using Variable-

Fidelity Modeling and Shape-Preserving 

Response Prediction 

Slawomir Koziel and Leifur Leifsson* 

Abstract. Shape optimization of airfoils is of primary importance in the design of 
aircraft and turbomachinery with computational fluid dynamic (CFD) being the ma-
jor design tool. However, as CFD simulation of the fluid flow past airfoils is compu-
tationally expensive, and numerical optimization often requires a large number of 
simulations with several design variables, direct optimization may not be practical. 
This chapter describes a computationally efficient and robust methodology for  
airfoil design. The presented approach replaces the direct optimization of an accu-
rate but computationally expensive high-fidelity airfoil model by an iterative  
re-optimization of a corrected low-fidelity model. The shape-preserving response 
prediction technique is utilized to correct the low-fidelity model by aligning the 
pressure and skin friction distributions of the low-fidelity model with the corre-
sponding distributions of the high-fidelity model. The algorithm requires one evalua-
tion of the high-fidelity CFD model per design iteration. The algorithm is applied to 
several example case studies at both transonic and high-lift flow conditions. 

4.1   Introduction 

The use of optimization methods in the design process, as a design support tool or 
for design automation, has now become commonplace. In aircraft design, the de-
velopment of numerical optimization techniques started in the mid 1970’s when 
Hicks and Henne [1] used gradient-based optimization methods coupled with 
computational fluid dynamic (CFD) codes to design airfoils and wings at both 
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subsonic and transonic conditions. Substantial progress in gradient-based methods 
for aerodynamic design has been made since then. Jameson [2] introduced control 
theory and continuous adjoint methods to the optimal aerodynamic design for two-
dimensional airfoils and three-dimensional wings. Initially, using inviscid flow 
solvers [3, 4], and later using viscous flow solvers [5, 6]. 

The use of higher fidelity methods, coupled with optimization techniques, has 
led to improved design efficiency. However, simulation-driven aerodynamic de-
sign optimization involves numerous challenges. In particular, the high-fidelity 
CFD simulations are computationally expensive (e.g., three-dimensional simula-
tions of turbulent flows can take many days on a parallel computer), the design 
optimization normally requires a large number of simulations, and a large number 
of design variables are often involved. Therefore, direct optimization of the high-
fidelity CFD model may be impractical, especially when using traditional gradi-
ent-based techniques. 

Computationally feasible design exploiting CFD simulations can be realized us-
ing surrogate-based optimization (SBO) techniques [7, 8]. One of the objectives of 
SBO is to reduce the number of evaluations of the high-fidelity models, and there-
by making the optimization process more efficient. This is achieved by using com-
putationally cheap surrogate functions in lieu of the CPU-intensive high-fidelity 
models. The surrogate models can be created either by approximating the sampled 
high-fidelity model data using regression (so-called function-approximation surro-
gates), or by correcting physics-based low-fidelity models which are less accurate 
but computationally cheap representations of the high-fidelity models. 

A variety of techniques are available to create the function-approximation sur-
rogate model, such as polynomial regression [7] and kriging [9]. Function-
approximation models are versatile, however, they normally require substantial 
amount of data samples to ensure good accuracy. The physics-based surrogates are 
constructed by correcting the underlying low-fidelity models, which can be ob-
tained through simplified physics models [10], coarse-discretization CFD simula-
tion [11], or relaxed convergence criteria [12]. Popular correction methods include 
response correction [13] and space mapping [14]. 

The physics-based surrogate models are typically more expensive to evaluate 
than the function-approximation surrogates, but less high-fidelity model data is 
needed to obtain a given accuracy level. In many cases, SBO algorithms that utilize 
physics-based low-fidelity models—so-called variable- or multi-fidelity SBO—
typically require only a single high-fidelity model evaluation per algorithm iteration. 
Due to this, the variable-fidelity SBO method is more scalable to larger numbers of 
design variables (assuming that no derivative information is required). A review of 
SBO methods popular in aerospace design can be found in [7] and [8]. 

In this chapter we describe a computationally efficient variable-fidelity airfoil 
shape optimization methodology [15, 16, 17], which employs physics-based low-
fidelity surrogate models created by means of the shape-preserving response predic-
tion (SPRP) technique [18]. Section 4.2 describes briefly the problem formulation 
for airfoil shape optimization. The optimization methodology is described in detail 
in Section 4.3. Application of the method to transonic and high-lift airfoil design is 
given in Sections 4.4 and 4.5, respectively. Section 4.6 summarizes the chapter. 
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4.2   Airfoil Shape Optimization 

Out of a variety of design problems in aerodynamics, we focus here on airfoil 

shape optimization (ASO). Material concerning general aerodynamic optimiza-

tion, CFD analysis, shape parameterization, and other relevant issues can be found 

in [26], Chapter 9. 

An airfoil is a streamlined aerodynamic surface such as the one shown in 

Fig. 4.1. The function of the airfoil is to generate a lift force l at a range of operat-

ing conditions (Mach number M∞, Reynolds number Re, angle of attack α). The 

drag force increases quadratically with increasing lift. Normally, the drag force is 

to be minimized for a given lift. These forces are non-dimensionalized by divind-

ing them by q∞S, where q∞ ≡ (1/2)ρ∞V∞
2

 
is the dynamic pressure, ρ∞ is the air den-

sity, V∞ is the free-stream velocity, and S is a reference surface. After non-

dimensionalization they are called the lift coefficient, denoted by Cl, and the drag 

coefficient, denoted by Cd. 

In direct ASO, the objective is to determine an airfoil shape that maximizes a 

performance criterion for a given set of constraints at a particular operating condi-

tion. Usually, the lift coefficient is maximized, the drag coefficient is minimized, 

or the lift-to-drag ratio is maximized. For example, if the lift coefficient is maxi-

mized, then a constraint is necessary on the maximum allowable drag coefficient. 

Further constraints are often included, e.g., to account for the wing structural 

components inside the airfoil one sets a constraint on the airfoil cross-sectional 

area. In inverse ASO, the airfoil shape is designed to attain a specific flow behav-

ior which is defined a priori. Typically, a target airfoil surface pressure distribu-

tion is prescribed. 

The optimization methodology described in this chapter is illustrated using the 

direct ASO approach. However, the method itself is more general and can also be 

applied to inverse airfoil design. 

 

t

α

V∞

l

d

c

x

z

 
 

Fig. 4.1 A single-element airfoil section of chord length c and thickness t. V∞ is the free-
stream velocity at an angle of attack α relative to the x-axis. l is the lift force (perpendicular 

to V∞) and d is the drag force (parallel to V∞). 
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4.3   Optimization Methodology 

In this section, we formulate the variable-fidelity airfoil optimization methodology 
that exploits the CFD-based low-fidelity models and the shape-preserving re-
sponse prediction [18] methodology as the model correction tool. The NACA 
four-digit airfoil parameterization method is used due to its simplicity. The details 
of this parameterization, as well as the details of the CFD modeling methodology 
using the grid generator ICEM CFD [19] and the flow solver FLUENT [20] can be 
found in [26], Chapter 9. 

4.3.1   General Description 

The method follows the general principles of SBO [7, 8], as shown in Fig. 4.2, 
where the optimization burden is shifted to the low-cost surrogate model (referred 
to as s), whereas the high-fidelity model (referred to as f) is referenced occasion-
ally for verification purposes and to obtain data necessary to update the surrogate. 
The surrogate is a corrected physics-based low-fidelity model (referred to as c). 

The low-fidelity model is corrected to become a reliable representation of the 
high-fidelity model. Normally, the figures of interest in the optimization, i.e., the 
objectives and constraints, are aligned between the high-fidelity and low-fidelity 
models using a correction procedure, e.g., space mapping [14]. However, in the  
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Fig. 4.2 A flowchart of the surrogate-based optimization algorithm 
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case of aerodynamic shape optimization, the figures of interest, such as the lift and 
drag coefficients, are scalars for a given operating condition and a given design 
vector x, which results in non-uniqueness of any alignment procedure that could 
be applied in order to match the low-fidelity model with the high-fidelity one, 
unless a sufficiently large amount of high-fidelity data is used in the model match-
ing process. 

Here, the model alignment is performed using intermediate simulation results, 
more specifically, the pressure and skin friction distributions, whose dimensional-
ity can be made as large as necessary by selecting sufficient number of control 
points along the airfoil chord. As the objectives and constraints are uniquely de-
termined by the pressure and skin friction distributions, alignment of the corre-
sponding distributions for the low- and high-fidelity models will result in an 
(unique) alignment of the figures of interest. The SPRP methodology [18] is 
adopted here for the alignment procedure. 

4.3.2   Surrogate Modeling Using Shape-Preserving Response 

Prediction 

The SPRP model is formulated here using the pressure distribution. The formula-
tion for the skin friction part is analogous. We denote the pressure distributions for 
the high- and low-fidelity models as Cp.f and Cp.c, respectively. The surrogate 
model is constructed assuming that the change of Cp.f due to the adjustment of the 
design variables x can be predicted using the actual changes of Cp.c. The change of 
Cp.c is described by the translation vectors corresponding to certain (finite) number 
of its characteristic points on the pressure distribution. These translation vectors 
are subsequently used to predict the change of Cp.f, whereas the actual Cp.f at the 
current design, Cp.f(x

(i)), is treated as a reference. 
Figure 4.3(a) shows the pressure distribution Cp.c of the low-fidelity model at 

x
(i) = [0.02 0.4 0.12]T (NACA 2412 airfoil) for M∞ = 0.7 and α = 1 deg, as well as 

Cp.c at x = [0.025 0.56 0.122]T; x(i) will denote a current design (at the ith iteration 
of the optimization algorithm; the initial design will be denoted as x

(0) accord-
ingly). Circles denote characteristic points of Cp.c(x

(i)), here, representing, among 
others, x/c equal to 0 and 1 (leading and trailing airfoil edges, respectively), the 
maxima of Cp.c for the lower and upper airfoil surfaces, as well as the local mini-
mum of Cp.c for the upper surface. The last two points are useful to locate the pres-
sure shock. Squares denote corresponding characteristic points for Cp.c(x), while 
small line segments represent the translation vectors that determine the “shift” of 
the characteristic points of Cp.c when changing the design variables from x(i) to x. 

In order to obtain a reliable prediction, the number of characteristic points has 
to be larger than illustrated in Fig. 4.3(a). Additional points are inserted in be-
tween initial points either uniformly with respect to x/c (for those parts of the pres-
sure distribution that are almost flat) or based on the relative pressure value with 
respect to corresponding initial points (for those parts of the pressure distribution 
that are “steep”). Figure 4.3(b) shows the full set of characteristic points (initial 
points are distinguished using larger markers). 
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Fig. 4.3 (a) Example low-fidelity model pressure distribution at the design x(i), Cp.c(x
(i)) 

(solid line), the low-fidelity model pressure distribution at other design x, Cp.c(x) (dotted 
line), characteristic points of Cp.c(x

(i)) (circles) and Cp.c(x) (squares), and the translation vec-
tors (short lines); (b) low-fidelity model pressure distributions, initial characteristic points 
(large markers) and translation vectors from Fig. 4.3(a) as well as additional points (small 
markers) inserted in between the initial points either uniformly with respect to x/c (for the 
“flat” parts of the pressure distribution) or based on the relative pressure value with respect 
to corresponding initial points (for the “steep” parts of the pressure distribution) 

 

The pressure distribution of the high-fidelity model at the given design, here, x, 

can be predicted using the translation vectors applied to the corresponding charac-

teristic points of the pressure distribution of the high-fidelity model at x(i), Cp.f(x
(i)). 

This is illustrated in Fig. 4.4(a) where only initial characteristic points and transla-

tion vectors are shown for clarity. Figure 4.4(b) shows the predicted pressure dis-

tribution of the high-fidelity model at x as well as the actual Cp.f(x). The agree-

ment between both curves is very good. 
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Fig. 4.4 (a) High-fidelity model pressure distribution at x(i), Cp.f(x
(i)) (solid line) and the pre-

dicted high-fidelity model Cp at x (dotted line) obtained using SPRP based on characteristic 
points of Fig. 4.3(b); characteristic points of Cp.f(x

(i)) (circles) and the translation vectors 
(short lines) were used to find the characteristic points (squares) of the predicted high-
fidelity model pressure distribution (only initial points are shown for clarity); low-fidelity 
model distributions Cp.c(x

(i)) and Cp.c(x) are plotted using thin solid and dotted line, respec-
tively; (b) high-fidelity model pressure distribution at x, Cp.f(x) (solid line), and the pre-
dicted high-fidelity model pressure distribution at x obtained using SPRP (dotted line) 

SPRP can be rigorously formulated as follows. Let Cp.f(x) = [cp.f(x,y1) … 
cp.f(x,ym)]T and Cp.c(x) = [cp.c(x,y1) … cp.c(x,ym)]T, where yj, j = 1, …, m, are control 
points on the x/c axis (we assume that yj+1 > yj and 0 ≤ yj ≤ 1 for all j). To simplify 
the notation we assume that Cp.f (Cp.c) is the pressure distribution for the upper sur-
face only. Formulation for the lower surface is identical. Let pj

f = [yj
f  rj

f]T, pj
c0 = 

[yj
c0

 rj
c0]T, and pj

c = [yjc rj
c]T, j = 1, …, K, denote the sets of characteristic points of 

Cp.f(x
(i)), Cp.c(x

(i)) and Cp.f(x), respectively. Here, y and r denote the x/c and magni-
tude components of the respective point. The translation vectors of the low-fidelity 
model pressure distribution are defined as Ti = [yj

t rj
t]T, j = 1,…, K, where yj

t = yj
c – 

yj
c0 and rj

t = rj
c – rj

c0. 
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The SPRP surrogate model is defined as follows 
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for j = 1, …, m. ),(. yc fp x  is an interpolation of {cp.f(x,y1), …, cp.f(x,ym)} onto the 

interval [0,1]. The scaling function F interpolates the data pairs {y1,y1}, {y1
f,y1

f–
y1

t}, …, {yK
f,yK

f–yK
t}, {ym,ym}, onto the interval [0,1]. The function r does a similar 

interpolation for data pairs {y1,r1}, {y1
f,r1

f–r1
t}, …, {yK

f,rK
f–rK

t}, {ym,rm}; here r1 = 
cp.c(x,y1) – cp.c(x

r,y1) and rm = cp.c(x,ym) – cp.c(x
r,ym). Note that Cp.s

(i)(x(i)) = 
Cp.f

(i)(x(i)) as all translation vectors are zero at x = x(i). 
The prediction method assumes that the high- and low-fidelity model pressure 

distributions have corresponding sets of characteristic points. This is usually the 
case for the practical ranges of design variables because the overall shape of the 
distributions is similar for both models. In case of a lack of correspondence, origi-
nal definitions of characteristic points are replaced by their closest counterparts. 
The typical example would be non-existence of the local minimum of the pressure 
distribution for the upper surface for the high- and/or low-fidelity model at certain 
designs. In this case, the original point (local minimum) is replaced by the points 
characterized by the largest curvature. 

4.3.3   Objective Function 

Due to unavoidable misalignment between the pressure distributions of the high-
fidelity model and its SPRP surrogate at the designs other than the one at which 
the model is determined, i.e., x(i), it is not convenient to handle constraints (e.g., 
drag) directly, because the design that is feasible for the surrogate model, may not 
be feasible for the high-fidelity model. In particular, the design obtained as a result 
of optimizing the surrogate model Cp.s

(i), i.e., x(i+1), will be feasible for Cp.s
(i). How-

ever, if x(i+1) is not feasible for the high-fidelity model, it will not be feasible for 
Cp.s

(i+1) because we have Cp.s
(i+1)(x(i+1)) = Cp.f(x

(i+1)) by the definition of the surro-
gate model. In order to alleviate this problem, we shall use the penalty function 
approach to handle the constraints. 

More specifically, if the figure of interest is the lift coefficient, while the drag and 
the airfoil cross-sectional area are constraints, the objective function is defined as 

 

[ ] [ ]22
.. )())(())(())(( xxxx ACCCCCH psdpslp ∆+∆+−= γβ

                  
(4.3) 

 
where ∆Cd.s = 0 if Cd.s ≤ Cd.s.max and ∆Cd.s = Cd.s – Cd.s.max otherwise, and ∆A = 0 if 

A ≥ Amin and ∆A = A – Amin otherwise. In the numerical experiments, presented  

in the next section, we use β = γ = 1000. Here the pressure distribution for the  
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surrogate model is Cp = Cp.s, and for the high-fidelity model Cp = Cp.f. Also, Cl.s 
and Cd.s denote the lift and drag coefficients (both being functions of the pressure 
distribution). 

4.3.4   Optimization with SPRP Surrogate 

The efficiency of variable-fidelity optimization with SPRP model is illustrated by 

airfoil design at M∞ = 0.75 and α = 0°. The initial design is set as NACA 2412 
and the objective function is defined by Eq. (4.3), with Cd.s.max =0.0040 and Amin = 

0.075. The side constraints on the design variables are 0 ≤ m ≤ 0.03, 0.3 ≤ p ≤ 0.6, 

and 0.09 ≤ t ≤ 0.13. Constraint tolerance bands are set to 5%. 
The high-fidelity model is based on the Euler equations and it is solved as 

described in [26], Chapter 9. The low-fidelity model is the transonic small-
disturbance equation (TSDE) and it is solved using the computer code TSFOIL 
[21], which was developed at NASA in the 1970s. The code is capable of solving 
the TSDE for flow past lifting airfoils in both free air and various wind-tunnel en-
vironments by using a finite-difference method and an iterative successive line 
over-relaxation (SLOR) algorithm. The computational grid is a simple, fixed Car-
tesian grid.  

Five iterations of the SPRP-based design methodology were executed. The 
computational cost is 5 high-fidelity and 161 surrogate model evaluations. The 
surrogate model optimization is performed using the pattern-search algorithm [22]. 
The results are given in Table 4.1. As the surrogate model evaluates quite fast 
(about 1 to 3 seconds depending on the design) and the high-fidelity model 
evaluation takes a few minutes, the total cost of evaluating the low-fidelity model 
in the whole optimization run corresponds to roughly 1-2 evaluations of the high-
fidelity model. The equivalent number of high-fidelity model evaluations is less 
than 7 for this particular case. 

 
Table 4.1 Numerical results of the design optimization. All the numerical values are from 
the high-fidelity model. Nc is number of low-fidelity model evaluations and Nf is the num-
ber high-fidelity model evaluations. 

 
Variable Initial Direct

#
 VF-SPRP

$
 

m 0.0200 0.0160 0.0173 
p 0.4000 0.5999 0.5930 
t 0.1200 0.1199 0.1163 

C
l
 0.4732 0.4770 0.5085 

C
d
 0.0100 0.0040 0.0041 

A 0.0808 0.0808 0.0783 
N

c
 N/A 0 161 

N
f
 N/A 130 5 

Total cost
*
 N/A 130 < 7 

 

# Direct optimization of the high-fidelity model using the pattern-search algorithm [22]. 
$ Design obtained using the methodology described here and the pattern-search algorithm [22]. 
* The total optimization cost is expressed in the equivalent number of high-fidelity model evaluations. 
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The optimizer achives this design by reducing maximum ordinate of the mean 
camber line (m) from 2% to 1.6%, and moving the location of the maximum camber 
(p) is rearward from 40% to 59% (which is close to the side constraint upper limit). 

By reducing the camber, the flow velocity decreases on the upper surface and the 
shock strength is reduced. This can be seen in Fig. 4.5. By moving the maximum 
camber rearward, the aft camber increases and the pressure distribution opens up 
behind the shock, where flow is subsonic, and lift is increased by 3.5 lift counts (one 

lift count is ∆Cl = 0.01). This can be seen in Fig. 4.6. The drag is reduced to satisfy 
the constraint limit. This is achived by reducing the thickness from 12% to 11.6%. 

The case was also performed by direct optimization of the high-fidelity model 
using the pattern-search algortihm. Direct optimization obtained a very simlar 
optimal design, but required 130 high-fidelity model evaluations. 
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Fig. 4.5 (a) Mach number contours for the initial design (NACA 2412) at M∞ = 0.75 and  

α = 0°, (b) Mach number contours of the optimum design at the operating condition as  
in (a) 
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It should be emphasized that despite the encouraging results obtained for the 

considered test case, the use of the TSFOIL code may be problematic in general. 

In particular, TSFOIL would not converge to a valid flow solution for all designs 

in the solution domain. This may results in the convergence problems of the opti-

mization algorithm. Furthermore, it turns out that the TSDE-based surrogate does 

not give a sufficiently reliable prediction of the drag coefficient. In particular, for 

small (local) changes of the design variables the low-fidelity model does not fol-

low closely of the high-fidelity model. 
The conclusions drawn from this study are:  

• a proper low-fidelity model needs to be selected to provide a reliable pre-
diction of the high-fidelity model, especially for small changes in the de-
sign variables,  

• the low-fidelity model has to be reliable in terms of execution, and  

• the optimization algorithm should be endowed with suitable convergence 
safeguards. 

4.3.5   Optimization Algorithm 

In this section, we formulate the optimization algorithm exploiting the SPRP-
based surrogate model and a trust-region convergence safeguard [23]. This algo-
rithm is used to solve the transonic and high-lift airfoil design cases, presented in 
Sections 4.4 and 4.5. The algorithm flow can be summarized as follows: 

1. Set i = 0; Select λ (initial trust region radius); Evaluate Cp.f(x
(0)); 

2. Setup SPRP model; 

3. Obtain x(i+1) = argmin{l ≤ x ≤ u, ||x – x(i)|| ≤ λ : H(Cp.s
(i)(x))}; 

4. Evaluate high-fidelity model to get Cp.f(x
(i)); 

5. If H(Cp.f
(i)(x(i+1))) < H(Cp.f

(i)(x(i))) accept x(i+1); Otherwise x(i+1) = x(i); 

6. Update λ; 

7. Set i = i + 1; 

8. If termination condition is not satisfied, go to 2. 

 
The SPRP surrogate model is updated before each iteration of the optimization al-

gorithm using the high-fidelity model data at the design obtained in the previous 

iteration. The trust-region parameter λ is updated after each iteration, i.e., de-

creased if the new design was rejected or the improvement of the high-fidelity 

model objective function was too small compared to the prediction given by  

the SPRP surrogate, or increased otherwise. Classical updating rules are used  

(see, e.g., [23, 24]). The algorithm is terminated if ||x(i+1) – x
(i)|| < 0.001 or λ  

< 0.001. 
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Fig. 4.6 (a) Pressure distributions of the initial (solid) and optimized (dashed) airfoil 
shapes, (b) initial (solid) and optimized (dashed) airfoil shapes 

4.4   Transonic Airfoil Design 

In this section, the variable-fidelity optimization algorithm is applied to airfoil  
design at a steady transonic flow condition. The surrogate model optimization is 
performed using the pattern-search algorithm [22]. The results of the design meth-
odology are compared to the results obtained through direct optimization of the 
high-fidelity model. 

4.4.1   Case Setup 

The initial design is set as NACA 3210 and the the objective function is defined 

by Eq. (4.3), with Cd.s.max =0.0041 and Amin = 0.065. The operating condition is M∞ 

= 0.75 and α = 1°. The side constraints on the design variables are 0 ≤ m ≤ 0.1, 0.2 
≤ p ≤ 0.8, and 0.05 ≤ t ≤ 0.20. Constraint tolerance bands are set to 5%. 

4.4.2   Model Setup 

In this case, variable-resolution modeling is employed. The high- and low-fidelity 
models solve the Euler equations, but the low-fidelity model uses a coarser  
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computational mesh and relaxed convergence criteria. The particulars of the low-
fidelity model mesh and convergence criteria are found by performing a paramet-
ric study on a typical airfoil section. 

The NACA 2412 was selected for the parametric study. The Mach number is 

taken to be M∞ = 0.75 and the angle of attack is set to α = 1 deg. First a fine mesh 
is developed with a total of 320 points in the y-direction, 180 points on the airfoil 
surface and 160 points in the wake behind the airfoil, with a total of 106 thousand 
cells. Then, the flow is solved to full convergence to get the reference values. The 
convergence history is shown in Fig. 4.7(a). The solver needed 216 iterations to 
reach a converged solution based on the residuals. However, the lift and drag  
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Fig. 4.7 (a) Convergence history of the simulation of the flow past the NACA 2412 at M∞ = 
0.75 and α = 1 deg., (b) convergence of the lift and drag coefficients. The converged values 
of the lift coefficient is Cl = 0.67 and the drag coefficient is Cd = 0.0261. 
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coefficient values have reached a converged value after approximately 50 itera-
tions, as can be seen in Fig. 4.7(b). Therefore, the number of iterations limit is set 
to 100 iterations in the subsequent steps. 

Subsequently, the number of mesh points was reduced. This was done in two 
steps. First, the number of mesh points in the y-direction and the number of mesh 
points behind the airfoil were halved in each step. Then, the number of mesh 
points on the airfoil surface was reduced incrementally. In each step, the pressure 
distribution was plotted. This was done so the overall number mesh points could 
be reduced as much as possible, without reducing the mesh density on the airfoil 
surface, so that the shock could be resolved adequately. 
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Fig. 4.8 (a) Pressure distributions for the first part of the parametric mesh study where the 
mesh points are reduced in the y-direction and in the wake behind the airfoil, (b) pressure 
distributions for the second part where the mesh points are reduced on the airfoil surface. 

The Mach number is M∞ = 0.75 and the angle of attack is α = 1 deg. 
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The results of the first mesh reduction are shown in Fig. 4.8(a). In the first four 
steps the number of cells is reduced from 106 thousand to 8295, but the pressure 
distribution does not change significantly, aside in the region of the shock, where 
the shock has strengthened and moved aft by less than 2.5% of the chord length. 

This has led, however, to a significant increase in the estimation of the drag co-
efficient (+23.7%), as can be seen in Fig. 4.9(a), and a moderate increase in the  
lift coefficient (+2.7%). The evaluation time has been reduced from 470 s to 40 s 
(Fig. 4.9(b)). In the last step the number of mesh points in the y-direction is re-
duced to only 12 and the total number of cells is 3750. Now, there is a large 
change in the shock strength and location, but the pressure distribution is also  
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Fig. 4.9 (a) Lift and drag coefficients as a function of the number of cells for the parametric 
mesh study, (b) evaluation time of the CFD simulation model as a function of the number 

of cells. The Mach number is M∞ = 0.75 and the angle of attack is α = 1 deg. 



114 S. Koziel and L. Leifsson

 

altered in the front part the airfoil, leading to a large increase in the drag coeffi-
cient and a reduction in the lift coefficient. 

The fourth mesh was selected for the second mesh reduction. The results are 
shown in Fig. 4.8(b). The number of mesh points on the airfoil surface was re-
duced by 50 in the first two steps (meshes 6 and 7) and then by 20 (mesh 8). It is 
clear, as the mesh gets coarser on the airfoil surface, the shock is smeared over  
a larger area and the estimated shock strength is reduced. As can be seen from  
Fig. 4.9 (a), both the drag and lift coefficients are reduced in this process. The 
overall evaluation time is reduced to about 34 s in the last step (Fig. 4.9(b)). 

The second but last mesh (number 7) was selected as a basis to construct the 
low-fidelity model. The mesh has 48 points in the y-direction, 115 points on the 
airfoil surface, and 20 points in the wake behind the airfoil, with a total of 8295 
thousand cells. The reason for selecting this particular mesh is that the difference 
in evaluation time is insignificant between the last two meshes (7 and 8), but the 
difference in the shock is quite substantial: it is easier to correct the low-fidelity 
model if the difference between it and the high-fidelity model is smaller. 

For the airfoil considered in this parametric study, the overall evaluation time for 
the low-fidelity model using the above mentioned mesh, and an iteration limit of 
100, is about 35 s, which is approximately 13.5 times faster than the high-fidelity 
model using the fine mesh and traditional convergence criteria. The criteria used in 
this work for the high-fidelity model is a maximum residual of 10-6, or a maximum 
number of iterations of 1000. The overall evaluation time of the high-fidelity model 
in this parametric study is 471 s with a total of 216 iterations. In many cases the 
solver does not fully converge with respect to the residuals and goes on up to 1000 
iterations. Then the overall evaluation time goes up to 2500 s, and the low-fidelity 
model is approximately 73 times faster. Note that the evaluation times reported here 
includes the time required for connecting to twice to the license server, once for the 
grid generator, ICEM CFD [19], and once for the flow solver, FLUENT [20]. 

4.4.3   Results and Discussion 

The optimization method presented here was able to meet the design goals and 
yield the optimized design—within the given constraint bands—using 330 low-
fidelity model evaluations and 11 high-fidelity model evaluations (Table 4.2). The 
equivalent number of high-fidelity model evaluations is less than 18 (using the ra-
tio of the high-fidelity model evaluation time to the corrected low-fidelity model 
as 50). The direct method obtained a similar optimized design, but required 120 
high-fidelity model evaluations. 

To meet the design goals, the optimizer does three fundamental shape changes: 
(i) the maximum ordinate of the mean camber line (m) is reduced or kept constant, 
(ii) the location of the maximum ordinate of the mean camber line (p) is moved 
aft, thus increasing the trailing-edge camber, and (iii) the thickness (t) is reduced. 
Shape changes (i) and (iii) reduce the shock strength and, thus, reduce the drag  
coefficient. The associated change in the pressure distribution reduces the lift co-
efficient. However, shape change (ii) improves (or recovers a part of) the lift by 
opening up the pressure distribution behind the shock. These effects are clearly 
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demonstrated in the pressure distribution plot in Fig. 4.10(a), the airfoil shape 
plots in Fig. 4.10(b), and the Mach contour plots in Figs. 4.11(a) and 4.11(b). 

Table 4.2 Numerical results for lift maximization while keeping drag below a desired value 

at M∞ = 0.75 and α = 1 deg. All the numerical values are from the high-fidelity model. Nc 
and Nf are the numbers of low- and high-fidelity model evaluations, respectively 

Variable Initial Direct
#
 VF-SPRP

$
 

m 0.0300 0.0080 0.0090 
p 0.2000 0.6859 0.6732 
t 0.1000 0.1044 0.1010 

C
l
 0.8035 0.4641 0.4872 

C
d
 0.0410 0.0041 0.0040 

A 0.0675 0.0703 0.0680 
N

c
 N/A 0 330 

N
f
 N/A 120 11 

Total cost
*
 N/A 120 < 18 

 

# Direct optimization of the high-fidelity model using the pattern-search algorithm [22]. 
$ Design obtained using the algorithm described in Section 4.3; surrogate model optimization per-
formed using the pattern-search algorithm [22]. 
* 

The total optimization cost is expressed in terms of the equivalent number of high-fidelity model 
evaluations. The ratio of the high-fidelity model evaluation time to the corrected low-fidelity model 
evaluation time varies between 13.5 to 73 depending on the design. We use a fixed value of 50 here. 
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Fig. 4.10 (a) Pressure distribution of initial (solid) and optimized (dashed) airfoils, (b) ini-

tial (solid) and optimized (dashed) airfoil shapes. The Mach number is M∞ = 0.75 and the 
angle of attack is α = 1 deg. 
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Fig. 4.11 Mach contour plots of (a) the initial airfoil, (b) the optimized airfoil. The Mach 

number is M∞ = 0.75 and the angle of attack is α = 1 deg. 

 
The variable-resolution modeling exploited in this study exhibits consistent be-

havior, i.e., the changes of the pressure distribution (and, consequently, the figures 
of interest such as lift and drag) of the low-fidelity model closely follows that of 
the high-fidelity one. This was not the case in the example in Section 4.3.4, where 
variable-fidelity physics modeling was exploited with the Euler equations and 
TSDE. 

4.5   High-Lift Airfoil Design 

In this section, design optimization of a single-element airfoil at steady subsonic 
high-lift condition is considered. As before, the surrogate model optimization is 
performed using the pattern-search algorithm [22] and the results of the design 
methodology are compared to the results obtained through direct optimization of 
the high-fidelity model. 
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4.5.1   Case Setup 

The Mach number is set to M∞ = 0.2, the angle of attack is α = 12 degree, and the 
Reynolds number is Re = 2.3 million. The initial design is set as NACA 0012 and 
the the objective function is defined by Eq. (3), but with the skin friction 
distribution Cf included, as viscous effects are important at this condition. The 
maximum allowable drag is set to Cd.s.max = 0.0212. The area constraint is not used 
here. The side constraints on the design variables are 0 ≤ m ≤ 0.08, 0.3 ≤ p ≤ 0.6, 
and 0.08 ≤ t ≤ 0.14. Constraint tolerance bands are set to 5%. 

4.5.2   Model Setup 

The high-fidelity model f solves the RANS equations with the Spalart-Allmaras 
one equation turbulence model [25]. The details of the CFD model are as de-
scribed in [26], Chapter 9. The low-fidelity model c is constructed as a low-order 
polynomial approximation of the high-fidelity model data, i.e., both the pressure 
distribution Cp.f and the skin friction distribution Cf.f. The low-fidelity model is es-
tablished in the entire design using evaluations of f at the following seven designs: 
x

0 = [0.04 0.45 0.11]T (center point), and x
1 = [0.0 0.45 0.11]T, x2 = [0.08 0.45 

0.11]T, x3 = [0.04 0.3 0.11]T, x4 = [0.04 0.6 0.11]T, x5 = [0.04 0.45 0.08]T, x6 = 
[0.044 0.45 0.14]T (single-variable perturbations for all design variables). The 
low-fidelity model is defined as a reduced quadratic model (no mixed terms) 

2
6

2
5

2
43210)( tpmtpmc λλλλλλλ ++++++=x

                        
(4.4) 

where the coefficients λ are found by solving the linear system c(xj) = f(xj), j = 0, 
1, …, 6. 

The reason for choosing the approximation-based model c is that the pressure 
distribution does not change significantly for the design space considered in this 
case. The simple model (4.4) is a reasonable compromise between the accuracy 
and the computational cost of creating the response surface. Still, the low-fidelity 
model has to be corrected in order to become a reliable representation of the high-
fidelity one in the optimization process. 

Figure 4.12 shows the construction of the SPRP model for the high-lift airfoil 
design. When compared to the transonic case, the pressure distribution is simpler 
(no pressure shock). However, the figures of interest (particularly drag) are very 
sensitive to the changes of the distribution, so that much attention has to be put to 
detailed “description” of the distribution through SPRP characteristic points, par-
ticularly for x/c close to zero, where the pressure gradients with respect to x/c are 
large. The pressure distributions of the low-fidelity model are illustrated in 

Fig. 4.12, at x(i) = [0.01 0.40 0.09]T for M∞ = 0.2 and α = 10°, as well as Cp.c at x = 
[0.02 0.35 0.10]T. The pressure distribution of the high-fidelity model at the given 
design, here, x, is predicted using the translation vectors applied to the corre-
sponding characteristic points of the pressure distribution of the high-fidelity 
model at x(i), Cp.f(x

(i)). This is illustrated in Fig. 4.13. The predicted pressure distri-
bution (magnified parts only) of the high-fidelity model at x as well as the actual 
Cp.f(x) is shown in Fig. 4.14. 
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4.5.3   Results and Discussion 

The optimization method of Section 4.3 with the low-fidelity model (4.4) im-
proves the lift coefficient from 1.235 to 1.491 (+25.6 lift counts) by increasing 
camber by 2.34% and moving the location of maximum camber more aft, from 
0.45 to 0.60, which is the upper bound (Table 4.3). The thickness is increased 
from 12% to 14% (which is the upper bound). A comparison of the initial and op-
timized airfoil shapes is given in Fig. 4.15(c). The optimized design is achieved by 
using only 11 high-fidelity CFD evaluations. The direct optimization method re-
quired 65 high-fidelity CFD evaluations and improves the lift only by 11.3%. 
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Fig. 4.12 Example low-fidelity model pressure distribution at the design x(i), Cp.c(x
(i)) (solid 

line), the low-fidelity model pressure distribution at other design x, Cp.c(x) (dotted line), 
characteristic points of Cp.c(x

(i)) (circles) and Cp.c(x) (squares), and the translation vectors 
(short lines). Only selected points and vectors are shown for the sake of clarity of the pic-
ture. Selected parts of the distributions are magnified. 
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Fig. 4.13 High-fidelity model pressure distribution at x(i), Cp.f(x
(i)) (solid line) and the pre-

dicted high-fidelity model Cp at x (dotted line) obtained using SPRP based on characteristic 
points of Fig. 4.12; characteristic points of Cp.f(x

(i)) (circles) and the translation vectors 
(short lines) were used to find the characteristic points (squares) of the predicted high-
fidelity model pressure distribution 
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Fig. 4.14 High-fidelity model pressure distribution at x, Cp.f(x) (solid line), and the pre-
dicted high-fidelity model pressure distribution at x obtained using SPRP (thick dotted 
line). Low-fidelity model pressure distribution at x is shown using a thin dashed line. SPRP 
model ensures better accuracy than the low-fidelity model. 

 
Table 4.3 Numerical results for lift maximization while keeping drag below a desired value 

at M∞ = 0.2, α = 12 deg, and Re = 2.3 million 

 
Variable Initial Direct# VF-SPRP$ 

m 0.0000 0.0150 0.0234 
p 0.4500 0.4840 0.6000 
t 0.1200 0.1247 0.1400 

Cl 1.235 1.392 1.491 
Cd 0.0212 0.0212 0.0210 

Design cost N/A 65 11 
 

# Direct optimization of the high-fidelity CFD model using the pattern-search algorithm [22]. 
$ Design obtained using the algorithm described in Section 4.3; surrogate model optimization per-
formed using the pattern-search algorithm [22]. 

 
There are three major changes in the optimized design when compared to the 

initial one. First of all, the increased camber opens up the pressure distribution 
over the whole airfoil, as can be seen in Fig. 4.15(a), and thus the lift increases. 

Also, the aft camber opens the pressure distribution up near the trailing-edge, 
also increasing lift. Finally, the increased thickness reduces the pressure peak near 
the leading-edge, thus creating a milder expansion around the leading-edge, and 
thereby reducing pressure drag. The result is an optimized airfoil with improved lift 
coefficient at the same drag coefficient. A comparison of the lift and drag curves is 
given in Fig. 4.16. Although the airfoil was optimized at α = 12°, the entire lift 
curve is shifted upwards. In this case, the angle of attack at maximum lift increases 
slightly (approximately by 1°).  

Figure 4.17 shows the optimization history. In particular, one can observe a con-
vergence plot (Fig. 4.17(a)), as well as the evolution of the objective function  
(Fig. 4.17(b)), the lift coefficient (Fig. 4.17(c)) and the drag coefficient  
(Fig. 4.17(d)). It follows that the algorithm exhibits a good convergence pattern and 
that the mechanisms introduced in the algorithm (in particular the trust region ap-
proach and the penalty function) enforce the drag limitation to be satisfied while 
increasing the lift coefficient as much as possible. 
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Fig. 4.15 Comparison of initial and optimized designs at M∞ = 0.2, α = 12 deg, and Re = 2.3 
million; (a) Pressure distributions of the initial and optimized designs, (b) skin friction dis-
tributions of the initial and optimized designs, (c) initial and optimized airfoil shapes 
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Fig. 4.16 A comparison of the lift and drag curves of the initial and optimized designs at  

M∞ = 0.2 and Re = 2.3 million 
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Fig. 4.17 Optimization history; (a) convergence plot; (b) evolution of the objective func-
tion; (c) evolution of the lift coefficient; and (d) evolution of the drag coefficient (drag con-
straint marked using a solid horizontal line). The graphs show all high-fidelity function 
evaluations performed in the optimization. 

4.6   Summary 

A variable-fidelity airfoil design optimization algorithm has been presented. The 

algorithm uses a computationally cheap low-fidelity model to construct a surro-

gate of an accurate but CPU-intensive high-fidelity model. The low-fidelity model 

is corrected by aligning the airfoil surface pressure distribution with the corre-

sponding distribution of the high-fidelity model by means of the shape-preserving 

response correction prediction technique. This ensures a good generalization ca-

pability of the surrogate model with respect to both objectives and constraints. The 

robustness of the algorithm is enhanced by embedding it in the trust region 

framework. Applications for transonic and high-lift airfoil design are demon-

strated with the optimized designs obtained at the computational cost correspond-

ing to of a few high-fidelity model evaluations. 
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Chapter 5

Evolutionary Optimisation Techniques to
Estimate Input Parameters in Environmental

Emergency Modelling

Kerstin Wendt, Mónica Denham, Ana Cortés, and Tomàs Margalef

Abstract. Parameter estimation in environmental modelling is essential for input pa-

rameters, which are difficult or impossible to measure. Especially in simulations for

disaster propagation prediction, where hard real-time constraints have to be met to

avoid tragedy, the additionally introduced computational burden of advanced global

optimisation algorithms still hampers their use in many cases and poses an ongoing

challenge. In this chapter we demonstrate how modifications of a Genetic Algorithm

(GA) are able to decrease time-consuming fitness evaluations and hence to speed up

parameter calibration. Knowledge from past observed catastrophe behaviour is used

to guide the GA during various phases towards promising solution areas resulting

in a fast convergence. Together with parallel computing techniques it becomes a

viable estimation approach in environmental emergency modelling. Encouraging

results were obtained in predicting forest fire spread.

Keywords: input parameter estimation, environmental modelling, knowledge-

guided Genetic Algorithm, forest fire spread prediction.

5.1 Introduction

There exist many environmental models for simulating, explaining, and predict-

ing the behaviour of complex natural phenomena. These comprise models which
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simulate standard events and processes in meteorology, oceanography, groundwater

hydrology, and petroleum reservoirs, as well as more specific models which attempt

to simulate environmental emergencies such as floods, hurricanes, oil spills, forest

fires, or volcanic eruptions. In either case, the precision of simulation output heavily

depends on the quality of entered input parameter values. One cannot expect cor-

rect results if the entries fed into the simulator were erroneous. Special applications

such as propagation predictions of natural catastrophes require the most reliable

simulation outcomes to prevent tragedy. Furthermore, these computationally inten-

sive applications have to fulfil stringent real-time constraints to be of use during an

ongoing disaster.

The need for input parameter estimation and calibration to improve model output

is a long-known and often-tackled problem, particularly in environments where cor-

rect and timely input parameters cannot be provided [2, 24, 40]. Therefore, compu-

tational parameter estimation and optimisation strategies are required to minimise

the deviation between the predicted scenario and the real phenomenon behaviour.

Since input parameter calibration adds a significant computational effort to the sim-

ulation process, a fast and efficient approach is the more important for time-critical

applications.

Many approaches for parameter calibration mainly use standard numerical op-

timisation techniques, e.g. Kalman filter [22], principal differential analysis [34],

which are not fully capable of handling high dimensionality, nonlinearity, and ir-

regularities contained in environmental models [41]. Bayesian calibration methods,

including Monte Carlo sampling, as well as stochastic practices, e.g. Simulated An-

nealing and Genetic Algorithms, are numerically very intensive, but generally de-

liver good results and tend to find global optima. With the continuous increases in

computing power, these calibration methods, especially Genetic Algorithms (GA),

have become practicable to solve the parameter problem of environmental mod-

els. High performance, parallel, and distributed computing now enable the gener-

ation of tractable solutions [7, 17] to expensive and time-consuming optimisation

problems.

In this chapter, we summarise how a hybrid GA approach introduces problem-

specific knowledge into different phases of the GA and is able to boost its perfor-

mance. In doing so, online parameter estimation in time-critical applications can be

provided. The real case of forest fire spread prediction is chosen to demonstrate how

the employment of past observed or simulated disaster behaviour stored in a knowl-

edge base speeds up parameter calibration for environmental emergency models.

The remainder of this work is organised as follows. The next section gives an

overview of modelling environmental emergencies and explains details about the

prediction of forest fire spread. Afterwards, the input parameter estimation problem

is characterised. In section 5.3, we describe the implementation of a parallelised

GA for parameter estimation. The benefits of applying domain-specific knowledge,

including knowledge representation, retrieval and insertion, are outlined. Experi-

mental results are shown in section 5.4 and section 5.5 comprises main conclusions

and briefly discusses future work.
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5.2 The Input Parameter Problem in Environmental

Emergency Modelling

Environmental emergencies include natural events and also human-induced acci-

dents, that are able to cause severe environmental damage, e.g. loss of ecological

resources, air pollution, erosion, water contamination, climate changes, extinction

of species, as well as destruction of buildings and infrastructure and, maybe most

importantly, loss of human lives. Where environmental emergencies cannot be pre-

vented, their prediction is crucially important. To avoid tragedy, most environmental

emergency management systems include effective tools to forecast the propagation

of an ongoing event. Based on these forecasts combined with expert user experience,

disaster warnings are issued and catastrophe fighting actions are decided. There is

no doubt about the importance of quick and most reliable forecasts to minimise the

number of victims, the amount of damage caused, and the employed resources for

disaster combatting. For prediction purposes mainly computer modelling and simu-

lation applications are used to forecast the state of the event for a given time in the

near future.

Basic disaster propagation models for the different emergencies are available

since the early seventies, e.g. CLIPER for hurricane track prediction [31], Rother-

mel’s model for forest fire spread behaviour [36], and are subject to continu-

ous enhancements, e.g. NAME III for volcanic ash dispersion [21]. Many envi-

ronmental models and simulators originate from research activities and are often

bound to a specific geographic region or particular vegetational characteristics, e.g.

PROMETHEUS, a wildfire growth simulator designed to work in Canadian boreal

forest [38], or HFire, a rasterbased model for fire behaviour through Southern Cal-

ifornia chaparral [30]. To become established in the scientific community, a model

should preferably be generally applicable. If the model itself and, moreover, the

simulator which implements the model, furthermore fulfil certain end user require-

ments, e.g. graphical user interface, GIS integration, user support and training, mod-

elling of special disaster occurrences as crown fires or underground peat fires, it is

most likely to be applied in daily use in disaster management centres, e.g. FARSITE

[13].

5.2.1 Forest Fire Spread Prediction

There exists a large variety of wildfire behaviour and spread simulators (e.g. FAR-

SITE [13], BehavePlus, fireLib [5], NEXUS) and most of them are based on the

Rothermel equation model [36]. The two main approaches to propagate fire spread

are based on a regular grid system (cellular automata) and on continuous planes (el-

liptical wave propagation). Fire simulators can be used as stand-alone applications

for risk analysis, disaster evolution prediction and fire fighter training. Furthermore,

they form a fundamental part of complex decision support systems (DSS), which

are typically applied to monitor environmental emergencies such as forest fires.

The simulators traditionally work with a set of input parameters describing the
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environmental conditions of the region where the fire takes place including veg-

etational, climatological and topographical characteristics. Simulators differ in re-

quired model parameters and input and output data formats. The classic way of

predicting forest fire behaviour takes the initial state of the fire front (RF = real fire)

as input as well as the input parameters given for time tx. The simulator then returns

the prediction (SF = simulated fire) for the state of fire front at a later time tx+1 as

shown in figure 5.1.

Fig. 5.1 Classical forest fire

prediction scheme

Comparing the simulation result SF from time tx+1 with the advanced real fire

RF at the same instant, the forecasted fire front tends to differ to a greater or lesser

extent from the real fire line because the calculation of the simulated fire is based

upon a single set of input parameters afflicted with certain insufficiencies. These are

explained in section 5.2.2. To enable real-time calibration of model input parameters

in each time step during an ongoing prediction, a simulator independent two-stage

data-driven prediction scheme was proposed by Abdalhaq et al. in [1]. Introducing

a previous calibration step as shown in figure 5.2, the set of input parameters is

refined before every prediction step. A similar two-stage data assimilation scheme

for ecological modelling has been proposed by Zhu et al. in [44] and delivered

promising results.

The objective is to solve an inverse problem: Find a parameter configuration

such that, given this configuration as input, the model output matches real disaster

Fig. 5.2 Two-stage data-driven forest fire prediction scheme
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behaviour. Having detected the simulator input that describes best current environ-

mental conditions, the same values, it is argued, could also be used to describe

best the immediate future assuming stable meteorological conditions during the fol-

lowing prediction interval. Thus, the prediction becomes the result of a series of

automatically adjusted input configurations.

Initially, as an optimisation technique during the calibration step, Abdalhaq et

al. proposed to employ a Genetic Algorithm (GA) in [1]. Different combinations of

input parameter values (scenarios) are generated, evolved, and evaluated. Compar-

ing the simulated fire front at time tx+1 to the real fire front at the same time the

quality of the corresponding parameter set can be obtained. Lastly, the best fitting

scenario is selected to serve as input for the following prediction phase. On the one

hand, the data-driven prediction scheme significantly enhances the quality of input

parameters and overall prediction results as proven by Denham et al. in [9]. On

the other hand, it introduces a significant additional amount of computational effort

and consequently increases prediction runtime in a non-negligible way. In real-time

disaster modelling applications parameter estimation time needs to be reduced to

a practicable minimum. In section 5.3 we will give reason why a modified GA is

suited as parameter estimation technique in environmental modelling and explain

implementation details.

5.2.2 The Input Parameter Problem

Inaccuracy and uncertainty in the normally large number of input parameters are

known and serious problems in environmental modelling leading to unreliable prop-

agation predictions in disaster modelling. Model output is particularly sensitive to

those parameters which have a direct impact on model simulation but can not be

well determined by direct observations. In disaster propagation models input pa-

rameters are often difficult or even impossible to measure in practice and hence are

always incomplete and uncertain. Many parameters are highly dynamic and subject

to frequent spatiotemporal changes in the microclimate generated by a disaster (e.g.

strong wind gusts in forest fires). Recent advances in measurement technologies,

remote sensing and power supply for sensors [37] help to remove part of this un-

certainty, but installation and maintenance of sufficient sensors remain expensive

and therefore a fundamental hindrance in large areas, which are sparsely populated

and difficult to access. Instead, input parameter values for an upcoming real-time

prediction are initialised with current weather and area forecast data provided by

discrete meteorological stations. These might include measurements for uncommon

parameters (e.g. fuel moisture) with temporal resolutions too low to be of use during

an ongoing hazard prediction.

Assuming observed parameter values with sufficient precision became available

as the prediction advances, simulators often work with a static set of input param-

eters not considering changes in parameter values over time. While some of the

available simulators offer integration and support for GIS data, fewest tools present
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abilities for real-time data assimilation of altered meteorological data during a run-

ning simulation. In consequence, the prediction error accumulates gradually and

simulation outcomes will deviate from the true state when the model is run for an

increased prediction period [44]. A workaround to this problem might be the inclu-

sion of the simulator into external frameworks as proposed by Rodriguez in [35].

Nevertheless, the correct or real parameter value set might not result in the best

overall simulation output as explained in [2]. Simulation errors are not only due to

uncertainties in input, but are also the product of model errors (overly simplified

description of the natural system) and computation errors (truncation and rounding

problems). It is therefore common practice to apply the concept of best fitting in-

put and search for input parameters in the way that they produce the best overall

simulation result.

Additionally to imprecision in input parameters, grid-based propagation models

have to deal with spatial uncertainty [18]. When real-time constraints have to be

met, low resolution representations of the region under consideration are preferable

to reduce simulation runtime. Consequently, the contained heterogeneous environ-

ments (e.g. different vegetation models) might not be mapped with the necessary

degree of exactness. Furthermore, some theoretical model parameters, e.g. arbitrary

empirical values, might miss a readily-identifiable counterpart in reality according

to [2].

These observations strongly recommend to apply parameter estimation in en-

vironmental emergency modelling, but up-to-date only the minority of models and

simulators includes estimation techniques by default. Hence, the work with outdated

field measures, estimated, extrapolated and missing values remains generating un-

satisfactory results and poses an ongoing optimisation challenge. This is why we

propose a general and simulator independent approach to enhance the prediction of

disaster propagation by using a knowledge-guided GA for input parameter calibra-

tion, always following requirements are met: (1) The range of each input parameter

is known and defined, (2) The sensitivity index of each model parameter is known

or at least the most sensitive input parameters are identified, (3) Information about

the true state of the disaster is available in reasonable time intervals, and (4) There

exists an initial knowledge base (KB) containing information about past disasters.

5.3 Parameter Estimation with Knowledge-Guided Genetic

Algorithm

Annan and Hargreaves state in [2], that the estimation of input parameters in high

dimensional models is an inherently intractable problem. Moreover, there is proba-

bly no general solution to the problem that will work efficiently in all applications,

though there exist efforts in developing universal and model-independent parame-

ter estimation frameworks [12, 33]. Building on that, our focus is on developing

methods, which aim to achieve acceptable levels of precision by taking advantage

of characteristics that exist in disaster propagation prediction.
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Various approximations and heuristic methods have become popular over the

years and are now established standards in the scientific community. Especially Ge-

netic Algorithms, together with Monte Carlo sampling and ensemble Kalman filter,

are widely applied as an approach to solve global optimisation problems in all areas.

GA are a search heuristic and imitate the process of natural evolution [15]. GA are

part of the larger class of evolutionary algorithms (EA) and they repetitively apply

the methods elitism, selection, crossover, mutation, fitness calculation, and reinser-

tion. In accordance with [41], GA can be an effective tool for parameter optimisation

in environmental modelling and have, like other population-based global-search ap-

proaches, desirable properties: They are able to rapidly locate good solutions, even

for large search spaces, and especially useful in problem domains that have a com-

plex fitness landscape. GA are therefore applicable and widely-used to solve the

parameter problem of environmental models [8, 14, 25, 29, 32].

5.3.1 Parallel Implementation of Hybrid Genetic Algorithm

The major obstacle to utilise parameter estimation practices in time-critical simu-

lations is, first of all, due to the enormously increased computational burden. Most

computational time required for calibrating parameters in complex environmental

models is spent running the model code and generating the desired output. GA ex-

ecution requires repeated fitness function evaluations with often very expensive ob-

jective functions. In addition, most environmental modelling problems possess a

large quantity of input parameters creating a vast search space to be explored by the

GA. Relying on fitness approximation methods summarised in [20, 28] can be one

possibility to tackle this problem and remains an animated research field. Further

criticisms include the complex parameter tuning of GA and their tendency to con-

verge towards local optima or even arbitrary points rather than the global optimum

in many problems.

During an ongoing disaster, short simulator response time is a key characteristic

to cope with real-time capabilities and that simulation outcomes can be of use. To

make evolutionary parameter estimation methods generally applicable to real-time

environmental emergency modelling, possibly even granting feasible solutions in

case of limited computational resources or high-resolution prediction maps, some

modifications and enhancements are needed to speed up GA runtime.

Firstly, instead of using a sequential GA implementation, it is indispensable to

make use of high performance computation and apply a parallel GA to substantially

reduce global computing time. GA are extremely parallelisable and Denham imple-

mented a parallel GA version based on the master/worker paradigm in [10]. MPI

[16] libraries manage communication between the configurable number of worker

nodes. Data parallelism was chosen and divides the individuals of the GA popu-

lation into chunks and distributes them to available workers, which carry out the

corresponding fitness evaluations. The pseudo code of the parallelised implementa-

tion split up into master and worker node operations can be found in [10].
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The GA used for parameter calibration in the data-driven forest fire prediction

works on a population x = [x1,x2, ...,xp] consisting of p individuals (chromosomes)

xk = [xk1,xk2, ...,xkd ], ∀k = 1 ≤ k ≤ p . Each individual of the population represents

a simulator input parameter set (scenario) made up of d parameter values, e.g. fuel

model, slope, fuel moistures and wind characteristics. The genes xk j ∈ [lb j,ub j]
of each individual are encoded as real values within a previously defined range,

where lb j,ub j ∈ ℜ,∀k = 1 ≤ k ≤ p, j = 1 ≤ j ≤ d and lb j being the lower bound

of parameter values for gene j and ub j the upper bound for gene j. Individuals of

the initial population are randomly generated within given lower and upper bounds.

We apply elitism to keep the most promising individuals throughout the number of

generations and guarantee fast and smooth convergence of the GA. Roulette wheel

selection and one-point crossover are employed. Details on the mutation operator

are given in section 5.3.4.

The goodness of the generated scenarios is evaluated by a problem dependent

fitness function. In the fire prediction context, the fittest scenario is the one that

generates a simulated fire map the most similar to the real map of fire propagation.

To determine the fitness of each scenario, an error function (5.1) based on a cell-by-

cell comparison of the affected terrain is applied putting into relation the erroneous

burnt cells of the simulated fire with all really burnt cells.

error =
(
⋃

−initial fire)− (
⋂

−initial fire)

real fire− initial fire
(5.1)

with
⋃

resulting in the number of cells burnt in one or both real and simulated fire

map and
⋂

denominating the number of cells burnt in both real and simulated fire

map is to be minimised during the optimisation process. For every individual xk

in the population of the GA a simulation has to be run to be able to compute the

goodness of this individual, which makes the fitness evaluation process particularly

time-consuming and expensive, as explained at the beginning of this section.

Secondly, to further speed up GA execution and reduce the number of fitness

evaluations to a ble minimum, decreasing the number of individuals in the popu-

lation could be considered. This approach normally leads to an unwanted loss of

population diversity and is therefore not recommended. On the contrary, population

size should be proportional to problem size and therefore increase in high dimen-

sional optimisation problems to cover most parts of the search space.

Thirdly, to provide near-optimal solutions with sufficient precision in early gen-

erations, i.e. yield short convergence times of the GA without compromising the

good search quality, we embed domain knowledge into various phases of the GA to

quickly guide it towards promising solution areas. This technique, together with an

adapted mutation probability, not only manages to accelerate GA execution, but also

prevents the algorithm from converging towards arbitrary points. The architecture of

the resulting hybrid GA is shown in figure 5.3 and our proposals for representation,

retrieval, and insertion of problem-specific knowledge are outlined in the following

subsections.
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Fig. 5.3 Architecture of the hybridised GA guided with problem-specific knowledge

5.3.2 Knowledge Representation

To make proper use of expert knowledge during GA execution, we maintain a

knowledge base (KB), which contains information on the behaviour of past for-

est fires. It associates model input parameter sets with their model outcome. More

precisely, data is stored in form of simulator output parameters determining fire

propagation, e.g. spread direction and speed, together with the causing environmen-

tal conditions, e.g. slope, fuel model, wind characteristics, as inputs to the simulator.

The majority of these parameters are continuous, few are nominal. This approach

does not require the complete set of input parameters to be stored, but best results

are obtained if the most sensitive and dynamic parameters are available.

Where data of real emergencies was not available, synthetical fires were simu-

lated to ensure that the knowledge base contains a considerable number of input

configurations and covers the input parameter space to the highest degree possible.

At the moment, there are more synthetical fires present in the KB than informa-

tion on real catastrophes, as correct and reliable data is difficult to obtain. But due

to improved observation technologies and documentation possibilities via satellites

and remote sensing, reasonable growth and refinement of knowledge is expected in

the near future. The KB was implemented as a standard relational database, which

is essential if it reaches a reasonable size. We can thus take advantage of database

management techniques enhancing flexibility in general knowledge management

and retrieval.

5.3.3 Knowledge Retrieval

It is necessary to find the corresponding knowledge in an efficient manner to

avoid a new increase in parameter estimation runtime. For this purpose, model out-

put parameters, which describe the current fire’s behaviour (maximum fire spread
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direction and speed), are obtained from the real fire map RF at time tx+1 once in

every calibration step before starting the GA. A clustering algorithm takes these

values together with available static terrain characteristics as arguments to query the

KB. It aims to find the most similar past fire behaviours and returns their causing

meteorological conditions, i.e. the query result delivers the input parameter values

from forest fires that performed comparably to the ongoing event. The encountered

values are then gathered in a knowledge chromosome kc = [kc1,kc2, ...,kcd ] which

is stored temporarily and thus available in every phase during each iteration of the

GA.

The clustering algorithm is based on a k-Nearest Neighbour search and delivers

the k input parameter scenarios that are most likely to cause current wildfire propa-

gation. Presently, k is set to 1. We apply a distance function derived from the Het-

erogeneous Euclidean-Overlap Metric (HEOM) [43] to measure similarity between

individual events. This distance measure takes into account differences between

nominal and linear parameters: For nominal data a value-matching-based metric

is defined and linear parameters are compared with the normal Euclidean metric in-

cluding range normalisation to avoid that parameters with large ranges overpower

those with smaller ranges.

The sensitivity analysis conducted by Abdalhaq et al. in [1] shows that fire spread

is influenced to varying degrees by the existing input parameters. The parameters

which mainly affect fire propagation are wind speed, wind direction and slope char-

acteristics. In order to correctly reflect this sensitivity of inputs and to obtain mean-

ingful results, in [42] Wendt et al. added HEOM a parameter importance ranking by

means of a weight factor wk. The distance measure finally results in

WHEOM(x,y) =

√

√

√

√

d

∑
k=1

wkhk(xk − yk)2 (5.2)

where hk stands for the two mentioned metrics.

Knowledge retrieval is performed in two steps. First, the SQL mechanism identi-

fies the stored forest fire observations related to the current fire, i.e. fires that present

the most similar slope and fuel model characteristics compared to the ongoing disas-

ter. The second step evaluates the similarity of the retrieved observations to the fire

under prediction applying WHEOM. Thus, we can avoid that distance calculation

is executed on the complete KB dataset, but only performed on the result set of an

intermediary range query.

5.3.4 Knowledge Insertion

In recent years, it proved of value for certain problems in different areas to hybridise

GA by introducing problem-specific knowledge [11, 19, 23, 26, 27]. A special in-

terest in the use of non-random mutation operators could be observed. In general,

the quality of the optimisation is remarkably better when domain knowledge is in-

corporated in the problem solving process as mentioned by [6]. Up-to-date, few
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general principles, guidelines and best practices on how to incorporate which type

of knowledge into GA exist and the efficiency of this method is mainly proven by

experiments. This is why current investigation tries to generalise the introduction of

domain knowledge in evolutionary algorithms [3, 4, 6].

Using historical incidences can be a good choice to treat uncertainty and miss-

ing values. The approach of using information about past experiences furthermore

results fully legitimate and reasonable as it tries to imitate behaviour and experi-

ence of human system experts. Like domain experts applying their knowledge of

observed phenomenon behaviour to rectify decision support from automated pre-

diction systems when forecasting a new disaster, we investigated the injection of

domain-specific knowledge into the GA. In doing so, a faster convergence of the

GA towards fitter solutions can be reached and the risk of parameter estimation

becoming the bottleneck of the overall prediction process is further diminished.

5.3.4.1 Knowledge Insertion during Mutation

In nature, mutation occurs very infrequently and can often result in a weaker indi-

vidual. Occasionally, the result might be to produce a stronger one. In GA, mutation

is an operator that changes the information contained in one or more gene values

in an individual according to the defined mutation probability. This probability usu-

ally is set fairly low. Directing the mutation process towards promising zones in the

search space and transforming randomness into controlled variation, a significantly

increased mutation probability up to 0.4 should be considered.

The most common mutation operator for real-valued parameters is the uniform

mutation that replaces the value of a chosen gene xk j with a uniform random value

selected from the problem-specific parameter range between lower and upper bound

[lb j,ub j]. Our guided mutation approach uses the domain knowledge contained in

the knowledge chromosome kc to narrow valid ranges of parameter values. These

values then oscillate in their smaller limits, finally, forcing the GA to adopt spe-

cific values in certain dimensions from which we know that they will increase an

individual’s fitness. The three steps to follow for each gene during mutation are:

1. Preparation

Compute the mutation probability for the gene by associating a random number

from the interval [0,1] with the gene. The gene is mutated if the associated num-

ber is less than the specified mutation rate.

2. Knowledge insertion

If knowledge is available for this gene in the knowledge chromosome kc, then

re-define the gene’s range of valid parameter values. Set the new lower bound

lb r j to

lb r j = kc j − t j (5.3)

and the re-defined upper bound ub r j to

ub r j = kc j + t j , (5.4)
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where t j is a configurable threshold that can be chosen independently for every

gene. If necessary, the bounds have to be repaired after knowledge insertion in

order to obtain a consistent program: If lb r j < lb j then reset lb r j = lb j, and if

ub r j > ub j then reset ub r j = ub j.

3. Mutation

If the gene needs to be mutated the gene is modified choosing a random value

from the original range, or, if applicable, from the narrowed range of valid values.

5.3.4.2 Knowledge Insertion during Population Initialisation

Further to direction mutation, population initialisation is an obvious phase during

GA execution to be supported with available problem-specific knowledge. Accord-

ing to a predefined initialisation probability, part of the individuals could be seeded

in areas where optimal solutions are likely to be found. Knowledge injection follows

the same three steps as described for mutation.

Again, during guidance, a valid subset of the original range is chosen by adding

a threshold t j to the value of retrieved knowledge, instead of using the raw value

without further modification. The knowledge retrieval process only returns parame-

terisations most similar to the real event and depending on the degree of detailedness

of the information in the KB, the configuration of the real fire might be found or not.

At present, we employ knowledge for wind speed and wind direction and cut the

ranges for these two parameters because they are highly dynamic and model output

proved extremely sensitive to them. The present thresholds used as margin are 5 deg

for wind direction and 2 mph for wind speed. There exist other factors influencing

fire spread (e.g. fuel moisture), which are, though less determining, also frequently

changing and difficult to measure and it should therefore also be considered to guide

their values during GA execution.

5.4 Experimental Evaluation

The experimentation’s objective is to prove the benefit of introducing domain-

specific knowledge. If inserted to guide the GA towards promising solution areas,

we can significantly reduce the number of performed fitness evaluations while main-

taining the prediction error magnitude. Experiments are divided into three different

scenarios, which were all executed using the forest fire spread simulator fireLib [5].

Presented results are based on a series of real fire plots performed as prescribed

burns in the frame of the European SPREAD project [39] in Gestosa (Portugal) in

2004. Figure 5.4 shows aerial photographs of three selected plots. Fire front evolu-

tion through time of the used fire maps can be seen in figure 5.5. The specific plot

characteristics are outlined in table 5.1. In order to get around arbitrary evolution ef-

fects and to get more descriptive results, all presented experiments are the averaged

outcome of ten different initial populations. The first scenario demonstrates the su-

periority of population size and diversity over evolutionary methods. In the second



5 Evolutionary Optimisation in Environmental Emergency Modelling 137

Fig. 5.4 Selected plots from SPREAD project: (a) Plot 520 and (b) plot 533 and (c) plot 751

Table 5.1 Characteristics of selected burns from SPREAD project

Plot Width m Length m Slope Ignition type

520 89 91 18◦ line ignition

533 95 123 21◦ point ignition

751 20 30 6◦ line ignition

test scenario we show the effect of knowledge introduction into the GA during dif-

ferent phases and the third experiment scenario illustrates how the same introduction

of knowledge is able to reduce error variability.

The first scenario illustrates the importance of population diversity. If numerous

individuals are present in a randomly initialised population, these, by default, create

a good coverage of the search space and evolutionary methods of the GA tend to

have less influence. Figures 5.6 and 5.7 show the calibration step results for plots

520 and 751. Populations of 50 and 500 individuals, respectively, were used and

results were obtained applying the described guidance during mutation compared

to a non-guided version for both population sizes. Mutation probability was set to

0.2 when guiding, 0.01 otherwise. It can be observed, that best calibration results

can be obtained in every case, if many individuals are available. Guidance, depend-

ing on the characteristics of each plot, is only able to produce minor enhancements.

As excessively increased runtime makes this practice unfeasible in real online ap-

plications, an acceptable compromise is to reduce population size to a practicable

minimum and guide the GA. Working with a relatively small population generates

the highest calibration error in this experiment. But the introduction of knowledge

is able to compensate a reduced number of individuals and to gain precision in
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Fig. 5.5 Fire front evolution through time for (a) plot 520 and (b) plot 533 and (c) plot 751

Fig. 5.6 Calibration step

results for different GA

configurations applied to

plot 520 after five iterations

the majority of time steps. Predominant influence of population diversity is further

supported by the fact that convergence of the GA is notably slower in bigger popu-

lations as exemplarily shown in figure 5.8 for minute 12 to 14 from plot 520. Very

fit individuals are already present in the initial population.

The second scenario gives evidence that the introduction of problem-specific

knowledge into a GA for input parameter estimation is able to clearly boost its per-

formance in terms of runtime and, though to a minor extent, with regard to prediction

quality. Figure 5.9(a) shows the input parameter refinement during calibration stage

for plot 520 applying guided (guidance during mutation (0.2), population initialisa-

tion (0.25), and mutation and population initialisation) and non-guided GA versions

(population size 50). It can be observed that the incorporation of knowledge results

in a comparable or smaller calibration error and requires less than half of execu-

tion time. Using the optimised input parameter (the best individual after two or five

generations, respectively) for the subsequent prediction step, we can note in figure

5.9(b) that the parameter obtained after fewer GA iterations supported by knowl-

edge generates predictions with the same error magnitude as the parameter obtained
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Fig. 5.7 Calibration step

results for different GA

configurations applied to

plot 751 after ten iterations

Fig. 5.8 Convergence for

different GA configurations

during calibration phase for

plot 520 in minute 12 to 14

Fig. 5.9 (a) Calibration errors (after five (non-guided) and two (guided) GA iterations) and

(b) prediction phase errors for plot 520 applying different GA configurations

after five generations without supporting knowledge. Figures 5.10(a) and (b) show

a similar behaviour for plot 751 comparing the performance of the non-guided GA

approach after ten iterations with the guided GA approach after five iterations.

The third scenario analyses error variability of the GA approach in its guided and

non-guided version. Figure 5.11 plots the results for map 533 including calibration
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Fig. 5.10 (a) Calibration errors (after ten (non-guided) and five (guided) GA iterations) and

(b) prediction phase errors for plot 5751 applying different GA configurations

Fig. 5.11 Calibration step

and prediction step error for

different time steps of plot

533 applying guidance dur-

ing mutation (observations

after 5 generations) com-

pared to the non-guided GA

(observations after 10 gen-

erations) including observed

error variability.

and prediction phase. In each of the two phases the mutation-guided version (results

after five GA iterations) is compared to the non-guided version (results after ten GA

iterations). Mutation probability was set to 0.4 when guiding, 0.01 otherwise. Aver-

age errors are depicted as columns and observed minimum and maximum values are

provided as bars. We can clearly observe that, during calibration phase, the guided

GA delivers improved results after half of the number of GA iterations. In addition,

it significantly reduces error variability. Results oscillate in a smaller error range

compared to the non-guided approach. During prediction phase, the guided GA ver-

sion again manages to decrease error range and produces comparable predictions.

The introduction of knowledge thus helps to guarantee acceptable results with low

variance after few GA iterations.

5.5 Conclusions and Future Work

In this chapter, we have presented an approach for input parameter estimation for

real-time disaster modelling using the example of forest fire spread prediction. The

calibration process takes advantage of domain-specific knowledge guiding a parallel

GA during mutation and population initialisation towards promising solution areas.

This notably speeds up the calibration of highly dynamic or unavailable model input.
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The method is able to ensure that resulting parameter value sets oscillate in a certain

error range. The gain in estimation speed helps the simulation application to cope

with real-time requirements and to deliver predictions results for online decision

support systems closer to reality.

Future work aims to determine the benefit of including additional domain-

dependent information (e.g. fire shape, geographical and seasonal information) into

the KB and to prove the potential of the approach with a different fire simulator

or another disaster application. Experiments with larger real plots are ongoing. The

combination of GA with an intelligent paradigm (IP, e.g. fuzzy inference system,

neural network) to form an Evolutionary Intelligent System delivered first promis-

ing results and the application of further IP is currently investigated.
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Chapter 6 

Harmony Search Algorithms in Structural 

Engineering 

M.P. Saka, I. Aydogdu, O. Hasancebi, and Z.W. Geem
*
 

Abstract.  Harmony search method is widely applied in structural design optimi-

zation since its emergence. These applications have shown that harmony search 

algorithm is robust, effective and reliable optimization method. Within recent 

years several enhancements are suggested to improve the performance of the algo-

rithm. Among these Mahdavi has presented two versions of harmony search 

methods. He named these as improved harmony search method and global best 

harmony search method. Saka and Hasancebi (2009) have suggested adaptive 

harmony search where the harmony search parameters are adjusted automatically 

during design iterations. Coelho has proposed improved harmony search method. 

He suggested an expression for one of the parameters of standard harmony search 

method. In this chapter, the optimum design problem of steel space frames is for-

mulated according to the provisions of LRFD-AISC (Load and Resistance Factor 

Design-American Institute of Steel Corporation). The weight of the steel frame is 

taken as the objective function to be minimized. Seven different structural optimi-

zation algorithms are developed each of which are based on one of the above men-

tioned versions of harmony search method. Three real size steel frames are  
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designed using each of these algorithms. The optimum designs obtained by these 

techniques are compared and performance of each version is evaluated. 

Keywords: Structural Optimization, Metaheuristic Techniques, Harmony Search 

Algorithm. 

6.1   Introduction 

Building construction causes use of large amount of land, consumption of energy 

and water. Furthermore, production of the materials used in the building construc-

tion add large amount of pollution into the atmosphere. It is important to reduce 

the amount of natural resources utilized in building construction if we would like 

to reduce the environmental impact and have a sustainable development. Green 

construction is becoming a common practice all over the world which intends to 

construct buildings that are environmentally friendly and resource-efficient 

throughout its life cycle. This practice covers all the stages from setting to design, 

construction and operation. Overdesigns and use of excessive materials are not de-

sired because they consume more of natural sources and add more pollution to the 

atmosphere. Hence it is clear that in order to have a sustainable development 

structures are required to be designed and built using sufficient amount of material 

but not more. Structural design optimization tools exactly try to achieve this goal. 

They aim to design the steel structures such that the steel frame has the minimum 

weight and in the mean time the response of the frame under the external loads 

that the frame may be subjected to during its life time is within the design code 

limitations. Design of steel structures has its own features and not similar to the 

design of other structures. Designer cannot use any section she/he may desire but 

to select among the set of steel profiles available in practice for beams and col-

umns of the frame under consideration. This selection is required to be carried out 

such that the frame with the selected steel profiles should have the displacements 

less than those prescribed in the design code and its members have sufficient 

strength to satisfy the strength limitations under the external loads. In the mean 

time its cost is the minimum.  

In this chapter firstly the design optimization problem of steel space frames ac-

cording to the provisions of LRFD-AISC (Load and Resistance factor Design- 

American Institution of Steel Corporation) [1] is presented. The weight of the steel 

frame is taken as the objective function to be minimized. Such formulation of the 

optimum design problem yields a discrete programming problem. The solution of 

this programming problem is obtained by harmony search algorithm [2-6]. This 

method is one of the recent combinatorial optimization techniques that belong to 

general class of what is called metaheuristic algorithms. Metaheuristic algorithms 

[7-11] finds the solution of optimization problems by utilizing certain tactics that 

are generally inspired from the nature, though not limited to, instead of classical 

procedures that move along the descending direction of gradient of objective func-

tion. Harmony search method mimics music improvisation. Harmony search  

method is widely applied in structural design optimization since its emergence 

[12-19]. These applications have shown that harmony search algorithm is robust, 



6   Harmony Search Algorithms in Structural Engineering 147

 

effective and reliable optimization method.  Within recent years several enhance-

ments are suggested to improve the performance of the harmony search method. 

Among these Mahdavi [20, 21] has presented two versions of harmony search me-

thods. He named them as improved harmony search method and global best har-

mony search method. Hasancebi et. al. (2010) [22, 23] has suggested adaptive 

harmony search where the harmony search parameters are adjusted automatically 

during design iterations. Coelho [24] has proposed improved harmony search me-

thod. He suggested an expression for one the parameters of standard harmony 

search method. In this chapter seven different structural optimization algorithms 

are developed each of which is based on one of the above mentioned versions of 

harmony search method. Three steel space frames are designed using each of these 

algorithms. The optimum designs obtained by each of these techniques are com-

pared and performance of each version is evaluated. 

6.2   Discrete Optimum Design of Steel Space Frames to  

        LRFD-AISC 

The design of steel space frames necessitates the selection of steel sections for its 

columns and beams from a standard steel section tables such that the frame satis-

fies the serviceability and strength requirements specified by the code of practice 

while the economy is observed in the overall or material cost of the frame. When 

the design constraints are implemented from LRFD-AISC the following discrete 

programming problem is obtained. 

6.2.1   The Objective Function  

The objective function is taken as the minimum weight of the frame which is ex-

pressed as in the following. 
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A  (6.1) 

 

where; W defines the weight of the frame, mr is the unit weight of the steel section 

selected from the standard steel sections table that is to be adopted for group r. tr is 

the total number of members in group r and ng is the total number of groups in the 

frame. ls is the length of member s which belongs to group r. 

6.2.2   Strength Constraints 

For the case where the effect of warping is not included in the computation of the 

strength capacity of W-sections that are selected for beam-column members of the 

frame  the following inequalities given in Chapter H of LRFD-AISC are required 

to be satisfied.  
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where, Mnx is the nominal flexural strength at strong axis (x axis), Mny is the nomi-

nal flexural strength at weak axis (y axis), Mux is the required flexural strength at 

strong axis (x axis), Muy is the required flexural strength at weak axis (y axis), Pn 

is the nominal axial strength (tension or compression)  and Pu is the required axial 

strength (tension or compression) for member i. l represents the loading case. The 

values of Mux and Muy are required to be obtained by carrying out P – Δ analysis of 

the steel frame. This is an iterative process which quite time consuming. In Chap-

ter C of LRFD-AISC an alternative procedure is suggested for the computations of 

Mux and Muy values. In this procedure, two first order elastic analyses are carried 

out. In the first, frame is analyzed under the gravity loads only where the sway of 

the frame is prevented to obtain Mnt values. In the second, the frame is analyzed 

only under the lateral loads to find Mlt values. These moment values are then com-

bined using the following equation as given in the design code. 

ltntu MBMBM 21 +=  (6.4) 

where B1 is the moment magnifier coefficient and B2 is the sway moment magni-

fier coefficient. The details of how these coefficients are calculated are given in 

Chapter C of LRFD-AISC [1]. 

Eqns. (6.2) and (6.3) represents strength constraints for doubly and singly sym-

metric steel members subjected to axial force and bending. If the axial force in 

member k is tensile force the terms in these equations are given as: Puk is the re-

quired axial tensile strength, Pnk is the nominal tensile strength, φ becomes φt in 

the case of tension and called strength reduction factor which is given as 0.90 for 

yielding in the gross section and 0.75 for fracture in the net section, φb is the 

strength reduction factor for flexure given as 0.90, Muxk and Muyk are the required 

flexural strength Mnxk and Muyk are the nominal flexural strength about major and 

minor axis of member k respectively. It should be pointed out that required flex-

ural bending moment should include second-order effects. LRFD suggests an ap-

proximate procedure for computation of such effects which is explained in C1 of 

LRFD. In the case the axial force in member k is compressive force the terms in 

Eqns. (6.2) and (6.3) are defined as:  Puk is the required compressive strength, Pnk 

is the nominal compressive strength, and φ becomes φc which is the resistance fac-

tor for compression given as 0.85. The remaining notations in Eqns. (6.16) and 

(6.17) are the same as the definition given above.  

The nominal tensile strength of member k for yielding in the gross section is 

computed as Pnk = FyAgk where Fy is the specified yield stress and Agk is the gross 

area of member k. The nominal compressive strength of member k is computed as 
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Pnk = AgkFcr where ycr FF c ⎟⎠⎞⎜⎝⎛=
2

658.0
λ

for 5.1≤cλ  and ( ) yccr FF
2

/877.0 λ=  for 

5.1>cλ  and 
E

F

r

Kl y
c

π
λ = . In these expressions E is the modulus of elastic-

ity, K and l are the effective length factor and the laterally unbraced length of 

member k respectively. 

6.2.3   Displacement Constraints 

The lateral displacements and deflection of beams in steel frames are limited by 

the steel design codes due to serviceability requirements. According to the ASCE 

Ad Hoc Committee report [25], the accepted range of drift limits in the first-order 

analysis is 1/750 to 1/250 times the building height H with a recommended value 

of H/400. The typical limits on the inter-story drift are 1/500 to 1/200 times the 

story height. Based on this report the deflection limits recommended are proposed 

in [26, 27, 28] for general use which is repeated in Table 6.1. 

Table 6.1 Displacement limitations for steel frames 

  Item Deflection Limit  

1 Floor  girder deflection for service live load L/360 

2 Roof girder deflection L/240 

3 Lateral drift for service wind load H/400 

4 Inter-story drift for service wind load H/300 

6.2.3.1   Deflection Constraints 

It is necessary to limit the mid-span deflections of beams in a steel space frame 

not to cause cracks in brittle finishes that they may support due to excessive dis-

placements. Deflection constraints can be expressed as an inequality limitation as 

shown in the following.  

  lcsmu
j

jl
dj nlnjg ,,1,,101 , …… ==≤−=

δ

δ
                          (6.5) 

where, δjl
 
is the maximum deflection of j

th
 member under the l

th

  load case, δj
u
is 

the upper bound on this deflection which is defined in the code as span/360 for 

beams carrying brittle finishers, nsm is the total number of members where deflec-

tions limitations are to be imposed  and nlc is the number of load cases. 

6.2.3.2   Drift Constraints 

These constraints are of two types. One is the restriction applied to the top story 

sway and the other is the limitation applied on the inter-story drift.  
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Top Story Drift Constraint 

Top story drift limitation can be expressed as an inequality constraint as shown in 

the following. 

 

( )
1 0 1, , , 1, ,

/

top
jl

td j jtop lcg j n l n
H Ratio

Δ
= − ≤ = =… …  

(6.6) 

 

where H is the height of the frame, njtop is the number of joints on the top story, nlc 
is the number of load cases, (Δtop)jl is the top story drift of the j

th
 joint under l

th
 load 

case. Ratio is a constant value given in ASCE Ad Hoc Committee report [25].  

 

Inter-story Drift 

In multi-story steel frames the relative lateral displacements of each floor is re-

quired to be limited. This limit is defined as the maximum inter-story drift which 

is specified as hsx/Ratio where hsx is the story height and Ratio is a constant value 

given in ASCE Ad Hoc Committee report [25].  
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where nst is the number of story, nlc 
is the number of load cases and (Δoh)jl is the 

story drift of the j
th

 story under l
th

 load case. 

6.2.4    Geometric Constraints 

In steel frames it is not desired that column section for upper floor should not have 

a larger section than the lower story column for practical reasons. Because having 

a larger section for upper floor requires a special joint arrangement which is nei-

ther preferred nor economical. The same applies to the beam-to-column connec-

tions. The W-section selected for any beam should have a flange width smaller 

than or equal to the flange width of the W-section selected for the column to 

which the beam is to be connected. These are shown in Fig. 6.1 and named as 

geometric constraints. These limitations are included in the design optimization 

model to satisfy practical requirements. Two types of geometric constraints are 

considered in the mathematical model. These are column-to-column geometric 

constraints and beam-to-column geometric limitations. 

6.2.4.1    Column-to-Column Geometric Constraints 

The depth and the unit weight of W sections selected for the columns of two con-

secutive stores should be either equal to each other or the one in the upper story 
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should be smaller than the one in the lower story. These limitations are included in 

the design problem as inequality constraints as shown in the following.  
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where nj is the number of stories, mi is the unit weight of W section selected for  

column story i, mi–1 is the unit weight of W section selected for of column story 

(i–1), Di is the depth of W section selected for of column story i and Di–1 is the 

depth of  W section selected for of column story (i-1). 

6.2.4.2    Beam-to-Column Geometric Constraints 

When a beam is connected to a flange of a column, the flange width of the beam 

should be less than or equal to the flange width of the column so that the connec-

tion can be made without difficulty. In order to achieve this, the flange width of 

the beam should be less than or equal to (D – 2tb) of the column web dimensions 

in the connection where D and tb are the depth and the flange thickness of W sec-

tion respectively as shown in Fig. 6.1. 
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where nj1 is the number of joints where beams are connected to the web of a col-

umn, nj2 is the number of joints where beams connected to the flange of a column, 

Dci is the depth of W section selected for the column at joint i, (tbc)i is the flange 

thickness of W section selected for the column at joint i, (Bf)ci is the flange width 

of W section selected for the column at joint i and (Bf)bi is the  flange width of W 

section selected for the beam at joint i. 

The above optimum design of steel space frames problem where the objective 

function is given in Eqn. (6.1) and the constraints are described from Eqn. (6.2) to 

Eqn. (6.11) is a combinatorial optimization problem of discrete optimization. This 

is because the solution of the problem necessitates the selection of appropriate 

steel sections for the beams and columns of the frame from W-sections list such 

that the objective function described in Eqn. (6.1) has the minimum value while 

the design constraints given in inequalities from Eqn. (6.2) to Eqn. (6.11) are satis-

fied. Designer has to find out the suitable combination of W-sections that makes 

the frame weight minimum in the same time the design code provisions are all  
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satisfied. Here the selection of a W-section from an available steel profile list is 

carried out by choosing an integer number from a set which consist of integer 

numbers starting 1 to the total number of sections in the list. This integer number 

is the sequence number of that particular W-section. Hence the design solution is a 

set of integer numbers each of which represents the sequence number of W-

section in the design pool. This is a combinatorial optimization problem [7,8].  

 

Fig. 6.1 Beam column geometric constraints 

In last two decades a new kind of algorithms have emerged which make use of 

certain heuristics in order to explore a search space efficiently. These methods are 

called metaheuristic algorithms [7-11]. A metaheuristic is an iterative process with 

set of concepts that are used for exploring and exploiting the search space to de-

termine the best solution among the alternative solutions. Metaheuristic algorithms 

are not problem specific, approximate and usually non-deterministic. It is impor-

tant that there should be a dynamic balance between diversification and intensifi-

cation in metaheuristic procedure. Diversification generally refers to the explora-

tion of the search space and intensification refers to the exploitation of the 

accumulated search experience [7]. The balance between these two concepts is 

important so as not waste too much time in regions of the search space which does 

not possess high quality solutions while the algorithm can quickly find out the re-

gions of high quality solutions. Some of the metaheuristic algorithms employ 

strategies that are inspired from nature. They simulate natural phenomena such  

as survival of the fittest, immune system, swarm intelligence and the cooling proc-

ess of molten metals through annealing into a numerical algorithm. They are 

named according to the natural phenomena their search strategy is based such as 

evolutionary algorithms, immune system algorithm, particle swarm optimization 
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and simulated annealing. Metaheuristic methods are non-traditional stochastic 

search and optimization methods and they are very suitable and efficient in finding 

the solution of combinatorial optimization problems. 

It is shown in the literature that harmony search method which is one of the re-

cently-developed metaheuristic techniques is quite effective and robust in solving 

structural optimization problems [12-19]. Performance evaluation of seven meta-

heuristic technique used in optimum design of pin jointed and rigidly jointed real 

size steel frames is carried in [16, 19]. In these studies it is shown that harmony 

search algorithm is quite successful stochastic search method and its performance 

in some problems is better than some other metaheuristic methods. Since its emer-

gence, numbers of enhancements are suggested in order to improve the perform-

ance of the standard harmony search method. In this chapter these improvements 

are employed in solving the optimum design problem of steel space frames de-

scribed above and their performances are compared. 

6.3   Harmony Search Algorithms 

The harmony search algorithm (HS) is originated by Geem et al. [2]. The algo-

rithm was inspired by using the musical performance processes that occur when a 

musician searches for a perfect state of harmony, such as during jazz improvisa-

tion [2-6]. The analogy between finding a pleasing harmony in music and the op-

timum solution in an optimization problem is illustrated in Figure 6.2. A musician 

always intends to procedure a piece of music with perfect harmony. On the other 

hand, the optimal solution of an optimization problem should be the best solution 

available to the problem under given objective and limited by constraints. Both 

processes aim at reaching the best solution that is the optimum. 

 

 

Fig. 6.2 Analogy between music improvisation and optimization [5] 
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6.3.1    Standard Harmony Search Algorithm 

Harmony search method imitates the improvisation process of a skilled musician. 

When a musician is improvising, he or she has three possible choices: (a) can play 

any tune from his or her memory; (b) can play something similar to aforemen-

tioned tune by just adjusting pitch slightly; (c) can play a tune completely new. 

These three options are simulated in three components in harmony search method. 

These are usage of harmony memory matrix (H), pitch adjusting (par) and ran-

domization. Before initiating the design process, a set of steel sections selected 

from an available profile list are collected in a design pool. Each steel section is 

assigned a sequence number I that varies between 1 to total number of sections 

( secN ) in the list. It is important to note that during optimization process selection 

of sections for design variables is carried out using these numbers. The steps of 

the algorithm are outlined in the following as given in [2]: 

6.3.1.1   Initialization of Harmony Memory Matrix  

A harmony memory matrix H  given in Eqn. (6.12) is randomly generated. The 

harmony memory matrix simply represents a design population for the solution of 

a problem under consideration, and incorporates a predefined number of solution 

vectors referred to as harmony memory size ( hms ). Each solution vector (har-

mony vector, iI ) consists of ng  design variables, and is represented in a separate 

row of the matrix; consequently the size of H  is )( nghms × . 
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6.3.1.2   Evaluation of Harmony Memory Matrix  

)(hms  solutions are then analyzed, and their objective function values are calcu-

lated. The solutions evaluated are sorted in the matrix in the increasing order of 

objective function values, that is )( 1Iφ ≤ )( 2Iφ ≤ …≤ )( hmsIφ .  

6.3.1.3   Improvising a New Harmony 

In harmony search algorithm the generation of a new solution (harmony) vector is 

controlled by two parameters ( hmcr  and par ) of the technique. The harmony 

memory considering rate ( hmcr ) refers to a probability value that biases the algo-

rithm to select a value for a design variable either from harmony memory  

or from the entire set of discrete values used for the variable. That is to say, this 
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parameter decides in what extent previously visited favorable solutions should be 

considered in comparison to exploration of new design regions while generating 

new solutions. At times when the variable is selected from harmony memory, it is 

checked whether this value should be substituted with its very lower or upper 

neighboring one in the discrete set. Here the goal is to encourage a more explor-

ative search by allowing transitions to designs in the vicinity of the current solu-

tions. This phenomenon is known as pitch-adjustment in harmony search method, 

and is controlled by pitch adjusting rate parameter ( par ). In the standard algo-

rithm both of these parameters are set to suitable constant values for all harmony 

vectors generated regardless of whether an exploitative or explorative search is in-

deed required at a time during the search process. Accordingly a new harmony 

[ ]ngIII ′′′= ,..,, 21
'

I  is improvised (generated) by selecting each design variable 

from either harmony memory or the entire discrete set. The probability that a de-

sign variable is selected from the harmony memory is controlled by harmony 

memory considering rate )(hmcr . To execute this probability, a random number 

ir  is generated between 0 and 1 for each variable iI . If ir  is smaller than or equal 

to hmcr , the variable is chosen from harmony memory. Otherwise, a random val-

ue is assigned to the variable from the entire discrete set as shown in Eqn. (6.13). 
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If a design variable attains its value from harmony memory, it is checked whether 

this value should be pitch-adjusted or not. In pitch adjustment, the value of a de-

sign variable is altered to its very upper or lower neighboring value obtained by 

adding ± 1 to its current value. Similar to )(hmcr  parameter, it is operated with a 

probability known as pitch adjustment rate )( par .  If not activated by )( par , the 

value of the variable does not change as given in Eqn. (6.14). 
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(6.14) 

where, bw  is arbitrary distance bandwidth which is taken as 1 in the standard 

harmony search method.  

6.3.1.4   Update of Harmony Matrix  

After generating the new harmony vector, its objective function value is calcu-

lated. If this value is better (lower) than that of the worst harmony vector in the 

harmony memory, it is then included in the matrix while the worst one is dis-

carded out of the matrix. The updated harmony memory matrix is then sorted in 

ascending order of the objective function value.  
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6.3.1.5   Termination  

The steps 3.1.2 and 3.1.3 are repeated until a pre-assigned maximum number of 

cycles are reached. 

6.4   Various Harmony Search Algorithms 

Within the recent years, number of enhancements is suggested to standard har-

mony search method in order to improve its performance. In this study, seven 

variations of harmony search algorithms are considered to determine the solution 

of the optimum design problem of steel space frames. These techniques are sum-

marized in the following. 

6.4.1   Standard Harmony Search with Adaptive Error Strategy 

(SHSAES) 

This version is same as the standard harmony search method. It follows the same 

steps explained above. The only difference is that in addition to feasible solution 

vectors slightly infeasible solution vectors are also included in the harmony mem-

ory matrix. The candidate solution vectors that violate one or more design con-

straints slightly are also accepted as solutions due to the fact that they may possess 

some appropriate values for some of the design variables which can be used in 

pitch adjusting in the next iteration. It should be noticed that such candidate design 

vectors are allowed in the beginning phase of the design process but they are re-

quired to be taken out from the harmony memory matrix towards final phases  

of design cycles. This achieved by using larger error value initially and then this 

value is adjusted during the design cycles according to the expression given  

below. 

( )
( ) 5.0

max

5.0
minmax

max)(
iter

iTolTol
ToliTol

⋅−
−=  (6.15) 

where, )(iTol  is the error value in iteration i, maxTol and minTol are the maximum 

and the minimum error values defined in the algorithm respectively, maxiter  is the 

maximum iteration number until which tolerance minimization  procedure contin-

ues. Equation (6.15) provides larger error values in the beginning of the design 

cycles and quite small error values towards the final design cycles. Hence when 

the maximum design cycles are reached the acceptable design vectors remain in 

the harmony memory matrix and the ones which do not satisfy one or more design 

constraints smaller than the error tolerance would be pushed out during the design 

iterations.  
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6.4.2   Standard Harmony Search with Penalty Function 

(SHSPF) 

In this application of the harmony search method also follows the steps of the 

standard harmony search technique. It only differs from the standard one in the 

acceptance of the candidate solution vectors. All the design vectors selected ran-

domly are included in the harmony memory matrix regardless of whether they sat-

isfy the design constraints in design problem or not. However, a penalty function 

is constructed as shown in the following. 
 

( )εCWWp += 1  (6.16) 

 

where, pW  is the objective function that contain the penalty and W is the original 

objective function which is taken as the minimum weight of the steel space frames 

as given in Eqn. (6.1). C  is the total constraint violation value calculated from the 

sum of the values of constraints function violations as given in equation (6.17).  ε  

is the penalty coefficient taken as 2.  
 

∑∑∑∑∑∑∑ ++++++= bccccdtdidds CCCCCCCC (6.17) 

 

 

where, sC , dC , idC , tdC , cdC , ccC  and bbC  are the constraint functions viola-

tions for strength, deflection, inter-story drift, top story drift, column-to-column 

depth and unit weight and beam-to-column geometric constraint functions given in 

inequalities (6.2), (6.3), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10) and (6.11)  

respectively. In general form, constraint function violation is calculated as: 
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where, )(xgi  is i
th 

constraint function, x  is the vector of design variables, nc is 

the total number of constraint functions and ng is the total number of member 

groups (the total number of design variables) in the optimum design problem. It is 

apparent from Eqn. (6.18) that feasible solutions will not be subjected to any pen-

alty and their objective function value will be equal to the original objective func-

tion value given in Eqn. (6.1). The harmony search method seeks solution vectors 

in the design space that have smaller objective function values and stores these in 

the harmony memory matrix during the design cycles. As a result those solution 

vectors that have larger objective function values are eliminated from the harmony 

memory matrix within the harmony search iterations. Towards the end of design 
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cycles only those solution vectors that do not have any penalty remains in the 

harmony memory matrix and among these that have the least weight represents the 

optimum solution.  

6.4.3   Adaptive Harmony Search with Penalty Function (AHSPF) 

In standard harmony search method there are two parameters known as harmony 

memory considering rate ( hmcr ) and pitch adjusting rate ( par ) that play an im-

portant role in obtaining the optimum solution. These parameters are assigned to 

constant values that are arbitrarily chosen within their recommended ranges by 

Geem [2-6] based on the observed efficiency of the technique in different problem 

fields. It is observed through the application of the standard harmony search me-

thod that the selection of these values is problem dependent. While a certain set of 

values yields a good performance of the technique in one type of design problem, 

the same set may not present the same performance in another type of design 

problem. Hence it is not possible to come up with a set of values that can be used 

in every optimum design problem. In each problem a sensitivity analysis is re-

quired to be carried out determine what set of values results a good performance. 

Adaptive harmony search method eliminates the necessity of finding the best set 

of parameter values [22, 23]. It adjusts the values of these parameters automati-

cally during the optimization process. The basic components of the adaptive har-

mony search algorithm are outlined as follows. 

6.4.3.1   Initialization of a Parameter Set 

Harmony search method uses four parameters values of which are required to be 

selected by the user. This parameter set consists of a harmony memory size (hms), 

a harmony memory considering rate (hmcr), a pitch adjusting rate (par) and a 

maximum search number (Nmax). Out of these four parameters, (hmcr) and (par) 

are made dynamic parameters in adaptive harmony search method that vary from 

one solution vector to another. They are set to initial values of hmcr
(0)

 and par
(0)

 

for all the solution vectors in the initial harmony memory matrix. In the standard 

harmony search algorithm these parameters are treated as static quantities, and 

they are assigned to suitable values chosen within their recommended ranges of 

hmcr ∈ [0.70, 0.95] and par ∈ [0.20, 0.50] [2-6]. 

6.4.3.2   Initialization and Evaluation of Harmony Memory Matrix 

The harmony memory matrix is established randomly as explained in section 3.1.1 

which contains candidate design vectors for the optimum design problem under 

consideration. The structural analysis of each solution is then performed with the 

set of steel sections selected for design variables, and responses of each candidate 

solution are obtained under the applied loads. The objective function values of the 

feasible solutions that satisfy all problem constraints are directly calculated from 

Eqn. (6.1). However, infeasible solutions that violate some of the problem  
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constraints are penalized using external penalty function approach, and their  

objective function values are calculated according to Eqn. (6.19). 
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In Eqn. (6.19), φ  is the constrained objective function value, ig  is the i-th prob-

lem constraint value and α  is the penalty coefficient used to tune the intensity of 

penalization as a whole. This parameter is set to an appropriate static value of 

1=α  in the numerical examples. Finally, the solutions evaluated are sorted in the 

matrix in the descending order of objective function values, that is, )( 1Iφ ≤ 

)( 2Iφ ≤ …≤ )( hmsIφ . 

6.4.3.3   Generating a New Harmony Vector 

In the adaptive algorithm a new set of values is sampled for hmcr  and par  pa-

rameters each time prior to improvisation (generation) of a new harmony vector, 

which in fact forms the basis for the algorithm to gain adaptation to varying fea-

tures of the design space. Accordingly, to generate a new harmony vector in the 

algorithm proposed, a two-step procedure is followed consisting of (i) sampling of 

control parameters, and (ii) improvisation of the design vector. 

6.4.3.3.1   Sampling of Control Parameters 

For each harmony vector to be generated during the search process, first a new set 

of values are sampled for hmcr  and par  control parameters by applying a logis-

tic normal distribution based variation to the average values of these parameters 

within the harmony memory matrix, as formulated in Eqns. (6.20 and 6.21). 
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In Eqns. (6.20) and (6.21), khmcr)(  and kpar)(  represent the sampled values of 

the control parameters for a new harmony vector. The notation )1,0(N  designates 

a normally distributed random number having expectation 0 and standard devia-

tion 1. The symbols )( ′hmcr  and )( ′par  denote the average values of control  

parameters within the harmony memory matrix, obtained by averaging the corre-

sponding values of all the solution vectors within the H  matrix, that is,  
 



160 M.P. Saka et al.

 

,
)(

)(
)( 1

hms

hmcr
hmcr

hms

i

i∑ ==′
)(

)(
)( 1

hms

par
par

hms

i

i∑ ==                                   (6.22) 

 

Finally, the factor γ  in Eqns. (6.20) and (6.21) refers to the learning rate of con-

trol parameters, which is recommended to be selected within a range of [0.25, 

0.50]. In the numerical examples this parameter is set to 0.35. 

In this implementation, for each new vector a probabilistic sampling of control 

parameters is motivated around average values of these parameters )( ′hmcr  and 

)( ′par  observed in the H  matrix. Considering the fact that the harmony memory 

matrix at an instant incorporates the best )(hms  solutions sampled thus far during 

the search, to encourage forthcoming vectors to be sampled with values that the 

search process has taken the most advantage in the past. The use of a logistic nor-

mal distribution provides an ideal platform in this sense because not only it guar-

antees the sampled values of control parameters to lie within their possible range 

of variation, i.e., [0, 1], but also it permits occurrence of small variations around 

)( ′hmcr  and )( ′par  more frequently than large ones. Accordingly, sampled val-

ues of control parameters mostly fall within close vicinity of the average values, 

yet remote values are occasionally promoted to check alternating demands of the 

search process. 

6.4.3.3.2   Improvisation of the Design Vector 

Upon sampling of a new set of values for control parameters, the new harmony 

vector [ ]k
ng

kkk
III ,..,, 21=I  is improvised in such a way that each design variable 

is selected at random from either harmony memory matrix or the entire discrete 

set. Which one of these two sets is used for a variable is determined probabilisti-

cally in conjunction with harmony memory considering rate khmcr)(  parameter 

of the solution. To implement the process a uniform random number ir  is gener-

ated between 0 and 1 for each variable k
iI . If ir  is smaller than or equal to 

khmcr)( , the variable is chosen from harmony memory in which case it is as-

signed any value from the i-th column of the H  matrix, representing the value set 

of the variable in )(hms  solutions of the matrix (Eqn. 6.12). Otherwise (if 

k
i hmcrr )(> ), an arbitrary value is assigned to the variable from the entire design 

set. 
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If a design variable attains its value from harmony memory, it is checked whether 

this value should be pitch-adjusted or not. In pitch adjustment the value of a de-

sign variable ( k
iI

′
) is altered to its very upper or lower neighboring value obtained 

by adding  ± 1 to its current value. This process is also operated probabilistically 

in conjunction with pitch adjusting rate kpar)(  parameter of the solution,  

Eqn. (6.21). If not activated by kpar)( , the value of the variable does not change. 

Pitch adjustment prevents stagnation and improves the harmony memory for  

diversity with a greater chance of reaching the global optimum. 
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6.4.3.4   Update of the Harmony Memory and Adaptivity 

After generating the new harmony vector, its objective function value is calculated 

as per Eqn. (6.19). If this value is better (lower) than that of the worst solution in 

the harmony memory matrix, it is included in the matrix while the worst one is 

discarded out of the matrix. It follows that the solutions in the harmony memory 

matrix represent the best )(hms  design points located thus far during the search. 

The harmony memory matrix is then sorted in ascending order of objective func-

tion value. Whenever a new solution is added into the harmony memory matrix, 

the )( ′hmcr  and )( ′par  parameters are recalculated using Eqn. (6.22). This way 

the harmony memory matrix is updated with the most recent information required 

for an efficient search and the forthcoming solution vectors are guided to make 

their own selection of control parameters mostly around these updated values. It 

should be underlined that there are no single values of control parameters that lead 

to the most efficient search of the algorithm throughout the process unless the de-

sign domain is completely uniform. On the contrary, the optimum values of con-

trol parameters have a tendency to change over time depending on various regions 

of the design space in which the search is carried out. The update of the control 

parameters within the harmony memory matrix enables the algorithm to catch up 

with the varying needs of the search process as well. Hence the most advantages 

values of control parameters are adapted in the course of time automatically (i.e., 

by the algorithm itself), which plays the major role in the success of adaptive 

harmony search method discussed in the paper.   

6.4.3.5   Termination 

The steps 4.3.4 and 4.3.5 are iterated in the same manner for each solution sam-

pled in the process, and the algorithm terminates when a predefined number of  

solutions ( maxN ) is sampled. 
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6.4.4    Improved Harmony Search (IHS, Mahdavi) 

Standard harmony search method uses fixed values for both pitch adjustment rate 

(par) and arbitrary distance width (bw). Prior to the application of the algorithm 

some appropriate values are selected for these parameters and they are kept the 

same until the end of the iterations. For example the value of the arbitrary distance 

bandwidth (bw) is taken as ±1 in the standard harmony search method, although 

some other value can also be used if preferred. It is also stated in the work of 

Mahdavi et. al. [20] that the use of for example small fixed values for pitch ad-

justment rate (par) with large values of arbitrary distance bandwidth (bw) can 

cause considerable increase in the total number of iterations required to reach the 

optimum solution, resulting in an undesirable poor performance of the algorithm.  

In order to avoid such a poor performance of the algorithm they have suggested 

adaptive expressions for both of these parameters instead of fixed values. The val-

ues of these parameters are adjusted dynamically by using Equations (6.25) and 

(6.26) during the harmony search iterations. However, the fixed value is used for 

the harmony memory consideration rate (hmcr) which is kept the same until the 

end of the iterations as in the standard harmony search method. 
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where; )(ipar  is pitch adjusting rate at iteration i, maxpar and minpar are the 

maximum and the minimum values of pitch adjusting rates, maxIter  is the maxi-

mum iteration number. 
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where; )(ibw  is bandwidth in iteration i, maxbw and minbw are the maximum and 

the minimum distance bandwidth. maxpar , minpar , maxbw  and minbw  are speci-

fied prior to the application of the algorithm. They are taken as 0.5, 0.05, 1 and 5 

respectively. In this study this technique is used with adaptive error strategy ex-

plained in section 4.1 not with penalty function concept. 
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6.4.5   Global Best Harmony Search (GBHS, Mahdavi) 

Mahdavi [5] also suggested another enhancement which makes use of the concept 

of particle swarm optimizer [29, 30] to the improved harmony search method [20]. 

In particle swarm optimizer system, a swarm of particles fly through the search 

space. Each particle represents a candidate solution to the optimization problem. 

The position of a particle is influenced by its best position and also the position of 

the best particle in the swarm. The global best harmony search modifies the pitch 

adjustment step of the harmony search method similar to particle swarm opti-

mizer. It replaces the arbitrary distance width (bw) altogether and adds a social 

dimension to the harmony search by selecting the best harmony for the new har-

mony vector. The algorithm computes (par) from the equation (6.25) and but does 

not use (bw) at all. Instead, it employs the following equation to construct the new 

harmony vector, not the one given in Eq. (6.14). 

              
best
k

new
i II →                                                     (6.27) 

where; best is the index of the best harmony in the harmony memory matrix and k 

is the variable number randomly selected between 1 to ng which is the total num-

ber of design variables in the optimum design problem. In this study this technique 

is used with adaptive error strategy explained in section 4.1 not with penalty  

function concept. 

6.4.6   Improved Harmony Search (IHSC, Coelho) 

In another enhancement to standard harmony search algorithm Coelho et al. [24] 

has suggested another adaptive expression given in Eqn. (6.28) for the pitch ad-

justment rate (par). This version of harmony search method is also called im-

proved harmony search method and it has the same steps of the standard harmony 

search algorithm with the exception that it changes the value of the pitch adjust-

ment rate (par) each iteration with the value computed from the following  

equation. 
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where; )(ipar  is the value of the pitch adjusting rate in iteration i, maxpar and 

minpar are  the maximum and the minimum values of pitch adjusting rates respec-

tively, maxHMVal , minHMVal  and )(HMValMean  are the minimum, the maxi-

mum and the mean values of objective function in the harmony memory matrix  
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respectively. The values of maxpar  and minpar are taken as 0.99 and 0.01 respec-

tively in this study. In this study this technique is used with adaptive error strategy 

explained in section 4.1 not with penalty function concept. 

6.4.7   Dynamic Harmony Search (DHS)  

Dynamic harmony search is suggested in this study. This version of the harmony 

search method has the same steps of the standard harmony search algorithm with 

the exception that instead of using fixed values for both parameters of harmony 

memory considering rate (hmcr) and pitch adjusting rate (par) their values are cal-

culated by means of adaptive expressions. The value of (hmcr) is computed from 

Eqn. (6.20) and (par) is calculated from Eqn. (6.28). In other words dynamic har-

mony search method is a mixture of adaptive harmony and Coelho’s improved 

harmony search algorithms. The adaptive error strategy explained in section 4.1 

but not the penalty function concept is employed in this technique as well. 

6.5   Design Examples 

Seven different structural optimization programs are coded each of which is based 

on one of the above explained versions of the harmony search algorithms. Three 

steel space frames are designed using these seven different versions of harmony 

search algorithms and the optimum solutions determined are compared with each 

other in order to evaluate the performance of each version. 

6.5.1   Five-Story, Two-Bay Regular Steel Space Frame 

The plan and 3D views of the five-story, two-bay steel frame shown in the  

Figures 6.3 and 6.4 is a regular steel frame with 54 joints and 105 members that 

are grouped into 11 independent design variables. The frame is subjected to grav-

ity loads as well as lateral loads that are computed as per ASCE 7-05 [28]. The de-

sign dead and live loads are taken as 2.88kN/m
2
 and 2.39kN/m

2 
respectively. The 

ground snow load is considered to be 0.755kN/m
2
 and a basic wind speed is 

105mph (65 m/s). The un-factored distributed gravity loads on the beams of the 

roof and floors are tabulated in Table 6.2. The following load combinations are 

considered in the design of the frame according to the code specification. 

1.2D+1.6L+0.5S, 1.2D+0.5L+1.6S, 1.2D+1.6W+0.5L+0.5S where D is the dead 

load, L represents the live load, S is the snow load and W is the wind load.  

The drift ratio limits of this frame are defined as 1.33 cm for inter story drift and 

6.67 cm for top story drift. Maximum deflection of beam members is restricted as 

1.67 cm. 
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Table 6.2 Beam gravity loading of the five-story, two bay steel frame 

Uniformly distributed load (kN/m) 
Beam Type 

Dead Load Live Load Snow Load 

Roof Beams 4.78 - 1.508 

Floor Beams 4.78 5.76 - 
 

 

 
 

Fig. 6.3 Plan view of five-story, two bay steel frame 
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Fig. 6.4 3D View of the five-story, two bay steel frame 

Optimum design problem of the five-story, two-bay steel frame is solved by us-

ing seven different versions of harmony search algorithms. In these algorithms the 

following harmony search parameters are used: harmony memory size (hms) = 20, 

pitch adjusting rate (par) = 0.3, harmony memory considering rate (hmcr) = 0.9 

and maximum iteration number = 50000. The optimum designs obtained from 

each of these algorithms are shown in Table 6.3. It is apparent from the table that 

the lightest weight is 261.128 kN which is obtained by the adaptive harmony 

search algorithm and the second lightest design is 261.360kN attained by the dy-

namic harmony search method suggested in this study. The design histories of 

these algorithms for the best solutions are plotted in Fig. 6.5. It is apparent from 

the figure that the dynamic harmony search and adaptive harmony search algo-

rithms show better performance than others.  It is noticed that the minimum 

weight determined by the dynamic harmony search and adaptive harmony search 

algorithms are 12.3% less than the heaviest frame. 
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Table 6.3 Design results of the five-story, two bay steel frame 

Member 

Group 
Type SHSAES SHSPF AHSPF 

1 Beam W530X66 W360X39 W410X46.1 

2 Beam W310X38.7 W310X38.7 W310X38.7 

3 Column W200X35.9 W360X39 W250X32.7 

4 Column W200X35.9 W200X46.1 W200X46.1 

5 Column W360X44 W610X101 W460X52 

6 Column W310X38.7 W530X66 W410X53 

7 Column W360X72 W410X60 W360X64 

8 Column W610X92 W1000X222 W920X201 

9 Column W410X53 W610X92 W410X53 

10 Column W360X72 W410X60 W460X74 

11 Column W760X147 W1100X390 W1000X258 

Max. Strength Ratio 0.979 0.986 0.936 

Top Drift(cm) 4.837 5.264 4.81 

Inter Story Drift(cm) 1.333 1.329 1.331 

Maximum Iteration 50000 50000 50000 

Weight (kN) 278.196 268.172 261.128 

Member 

Group 
Type 

IHS GBHS IHSC DHS 

(Mahdavi) (Mahdavi) (Coelho) 
Present 

Study 

1 Beam W530X66 W530X74 W530X74 W460X52 

2 Beam W310X38.7 W360X44 W360X44 W250X38.5 

3 Column W200X35.9 W200X41.7 W200X41.7 W310X38.7 

4 Column W200X35.9 W200X41.7 W200X41.7 W200X35.9 

5 Column W360X44 W360X44 W360X44 W460X52 

6 Column W310X38.7 W360X44 W360X44 W360X51 

7 Column W360X64 W360X44 W310X44.5 W250X73 

8 Column W610X82 W610X92 W610X113 W610X101 

9 Column W410X53 W360X51 W360X51 W360X51 

10 Column W360X64 W410X60 W410X60 W460X74 

11 Column W840X193 W840X193 W760X134 W840X193 

Max. Strength Ratio 0.989 0.986 0.979 0.975 

Top Drift(cm) 4.763 4.579 4.73 5.074 

Inter Story Drift(cm) 1.331 1.325 1.333 1.33 

Maximum Iteration 50000 50000 50000 50000 

Weight (kN) 275.46 297.928 297.424 261.36 
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Fig. 6.5 Design histories of the five-story, two bay steel frame 

6.5.2    Ten-Story, Four-Bay Steel Space Frame 

The three dimensional view, side view and the plan of ten-story four-bay steel 

frame shown in Figures 6.6 and 6.7 is taken from [19, 22]. This frame has 220 

joints and 568 members which are collected in 25 member groups which are the 

independent design variables as shown in Figure 6.6. Inner roof beams, outer roof 

beams, inner floor beams and outer floor beams are subjected to 14.72kN/m, 

7.36kN/m, 21.43kN/m and 10.72kN/m uniformly distributed gravity loads respec-

tively. Lateral forces acting at the level of each story of the steel space frame are 

tabulated in Table 6.3. Drift ratio limits are defined as 400/h  where h is the story 

height for inter story drift and 400/H  for top story drift where H is the total 

height of the structure. 
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Fig. 6.6 3-D view of ten-story, four-bay steel space frame 
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Fig. 6.7 Plan and side view of ten-story, four-bay steel space frame 
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Table 6.4 Lateral loads acting at the level of each story of ten-story, four-bay steel space 

frame 

 

Windward Leeward Story Num-

ber (lb/ft) (kN/m) (lb/ft) (kN/m) 

1 12.51 0.1825 127.38 1.8585 

2 28.68 0.4184 127.38 1.8585 

3 44.68 0.6519 127.38 1.8585 

4 156.86 2.2886 127.38 1.8585 

5 167.19 2.4393 127.38 1.8585 

6 176.13 2.5698 127.38 1.8585 

7 184.06 2.6854 127.38 1.8585 

8 191.21 2.7897 127.38 1.8585 

9 197.76 2.8853 127.38 1.8585 

10 101.9 1.5743 127.38 1.8585 

 
Optimum design problem of this frame is solved under the design constraints 

described in section 2 by using seven different versions of harmony search algo-

rithms described. In these algorithms the following harmony search parameters are 

used: harmony memory size (hms) = 30, pitch adjusting rate (par) = 0.3, harmony 

memory considering rate (hmcr) = 0.9, and maximum iteration number = 80000.  

The optimum designs obtained by each of these algorithms are shown in  

Table 6.5. It is clear from the table that the lightest weight is 1699.88kN which is 

obtained by the dynamic harmony search method and the second lightest weight of 

the frame is 1714.46kN attained by the adaptive harmony search algorithm. The 

design histories of these algorithms for the best solutions are plotted in Fig. 6.8. It 

is apparent from the figure that the dynamic harmony search algorithms shows 

steady convergence and outperforms others. It is noticed that the minimum weight 

determined by the dynamic harmony search is 7.3% less than the heaviest frame. 
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Table 6.5 Design results for ten-story, four-bay steel space frame 

Member 

Group 
Type SHSAES SHSPF AHSPF 

1 Column W310X28.3 W150X22.5 W310X28.3 

2 Column W310X28.3 W200X86 W310X28.3 

3 Column W360X32.9 W760X173 W360X39 

4 Beam W410X46.1 W250X25.3 W410X46.1 

5 Beam W410X46.1 W410X38.8 W460X52 

6 Column W410X46.1 W410X114 W410X38.8 

7 Column W460X52 W760X196 W410X38.8 

8 Column W530X66 W840X176 W610X82 

9 Beam W310X23.8 W360X110 W310X23.8 

10 Beam W460X60 W690X152 W460X52 

11 Column W250X67 W410X100 W200X35.9 

12 Column W250X73 W460X128 W250X80 

13 Column W310X44.5 W690X170 W360X44 

14 Beam W310X97 W310X60 W460X113 

15 Beam W460X128 W530X85 W460X113 

16 Column W530X85 W310X97 W530X85 

17 Column W310X107 W310X117 W460X128 

18 Column W530X150 W530X85 W610X217 

19 Beam W690X170 W250X32.7 W760X173 

20 Beam W310X117 W410X46.1 W530X150 

21 Column W760X196 W310X97 W690X217 

22 Column W840X176 W200X59 W760X173 

23 Column W150X29.8 W410X60 W150X24 

24 Beam W250X73 W250X32.7 W250X49.1 

25 Beam W410X132 W310X38.7 W360X134 

Max. Strength Ratio 0.99 1 0.995 

Top Drift(cm) 8.158 7.639 7.695 

Inter Story Drift(cm) 0.914 0.914 0.914 

Maximum Iteration 80000 80000 80000 

Weight (kN) 1756.56 1800.28 1714.46 
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Table 6.5 (continued) 

IHS GBHS IHSC DHS 
Member 

Group 
Type 

(Mahdavi) (Mahdavi) (Coelho) 
Present 

Study 

1 Column W310X28.3 W310X23.8 W200X19.3 W310X23.8 

2 Column W310X28.3 W360X32.9 W530X85 W310X28.3 

3 Column W360X39 W460X52 W410X132 W410X46.1 

4 Beam W410X38.8 W310X38.7 W310X23.8 W410X46.1 

5 Beam W530X66 W360X64 W460X60 W410X46.1 

6 Column W530X66 W530X150 W310X107 W410X46.1 

7 Column W410X46.1 W310X32.7 W760X196 W530X66 

8 Column W410X38.8 W690X125 W760X257 W530X66 

9 Beam W310X23.8 W310X23.8 W530X109 W310X23.8 

10 Beam W460X60 W360X32.9 W360X134 W460X52 

11 Column W250X67 W250X73 W310X97 W250X73 

12 Column W250X73 W250X58 W250X101 W250X67 

13 Column W360X44 W360X51 W690X170 W360X44 

14 Beam W310X97 W250X80 W410X60 W310X97 

15 Beam W410X100 W610X113 W530X85 W460X113 

16 Column W530X85 W530X85 W250X73 W610X92 

17 Column W310X107 W610X101 W250X101 W360X134 

18 Column W530X150 W690X140 W530X92 W460X128 

19 Beam W690X170 W610X174 W410X38.8 W840X176 

20 Beam W360X162 W610X155 W410X46.1 W360X134 

21 Column W760X196 W920X201 W250X73 W760X196 

22 Column W690X170 W1000X296 W200X59 W840X176 

23 Column W150X29.8 W150X24 W410X60 W150X24 

24 Beam W410X53 W250X49.1 W310X28.26 W250X49.1 

25 Beam W310X129 W840X193 W310X28.3 W530X150 

Max. Strength Ratio 0.988 0.961 0.965 0.976 

Top Drift(cm) 7.774 8.077 7.589 8.069 

Inter Story Drift(cm) 0.915 0.914 0.913 0.912 

Maximum Iteration 80000 80000 80000 80000 

Weight (kN) 1739.47 1842.95 1773.51 1699.88 
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Fig. 6.8 Design histories of ten-story, four-bay steel space frame 

6.5.3    Twenty-Story, 1860–Member, Steel Space Frame 

The three dimensional view and plan of twenty-story, 1860-member steel space 

frame are illustrated in Figures 6.9 and 6.10. The frame has 820 joints and 1860 

members which are collected in 86 independent design variables. The member 

grouping is given in Figure 6.9. The frame is subjected to gravity loads as well as 

lateral loads that are computed according to ASCE 7-05 [28]. The design dead and  

live loads are taken as 2.88kN/m
2
 and 2.39kN/m

2
 respectively. Basic wind  

speed is considered as 85mph (38 m/s). The following load combinations are con-

sidered in the design of the frame according to code specification [25]. 

1.2D+1.3WZ+0.5L+0.5S and 1.2D+1.3WX+0.5L+0.5S where D is the dead load, 

L represents the live load, S is the snow load and WX, WZ are the wind loads in 

the global X and Z axis respectively. Drift ratio limits are defined as 400/h  

where h is the story height for inter story drift and 400/H  for top story drift 

where H is the height of structure. 
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(a) Plan view of 1-4th story 

 

 
(b) Plan view of 5-8th story 

Fig. 6.9 Plan view of twenty-story, 1860 member steel space frame 
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(c) Plan view of 5-8th story 

        

(d) Plan view of 13-16th story           

 
(e) Plan view of 17-20th story 

 
Fig. 6.9 (continued) 
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Fig. 6.10 3-D view of twenty-story, 1860 member steel space frame 
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This frame which has 1860 members is also designed seven times using differ-

ent versions of harmony search algorithms. In these runs the harmony search pa-

rameters are selected as: harmony memory size (hms) = 50, the pitch adjusting 

rate (par) = 0.3, the harmony memory considering rate (hmcr) = 0.9, the maximum 

iteration number = 80000. The optimum designs obtained by each of these algo-

rithms are given in Table 6.6. It is apparent from the table that the best design is 

obtained by dynamic harmony search method which has the minimum weight of 

4716.576kN. The second best design is obtained by the adaptive harmony search 

algorithm (AHS) as 4932.012kN. Difference between these results is only 4%. 

However the minimum weights of best designs obtained by other harmony search 

algorithms are around 6000kN.  Therefore, it can be stated that the dynamic and 

adaptive harmony search methods demonstrated better performance than the other 

versions of harmony search methods. The design histories of each harmony search 

method are shown in Fig. 6.11. The figure clearly reveals the fact that the dynamic 

and adaptive harmony search methods perform better than the other versions of 

the harmony search algorithms from the beginning of the design cycles. 

Table 6.6 Design results for twenty-story, 1860-member steel space frame 

Beam Type 
Member 

Group 
SHSAES SHSPF AHSPF 

Outer 1 W410X67 W410X53 W460X60 

Interior 2 W460X52 W460X68 W460X60 

Columns 

Story 

Member 

Group 
SHSAES SHSPF AHSPF 

20,19 3 W410X85 W250X73 W310X38.7 

19,18 6 W410X132 W690X125 W410X38.8 

16,15 9 W410X60 W200X41.7 W200X22.5 

14,13 15 W920X223 W460X68 W200X26.6 

12,11 21 W920X271 W610X174 W360X39 

10,9 29 W1000X314 W840X176 W460X60 

8,7 37 W150X29.8 W200X22.5 W250X25.3 

6,5 48 W410X46.1 W460X128 W310X28.3 

4,3 59 W1000X272 W840X176 W360X51 

4,3 72 W310X44.5 W200X86 W250X32.7 

2,1 73 W1000X272 W840X251 W690X125 

Top Story Drift (cm) 9.013 8.777 9.809 

Inter-Story Drift (cm) 0.742 0.738 0.75 

Max. Strength Ratio 0.84 0.837 1 

Weight (kN) 6319.554 6204.204 4932.012 
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Table 6.6 (continued) 

 

Beam 

Type 

Member 

Group 

HIS 

 (Mahdavi) 

GBHS 

(Mahdavi) 

HIS 

 (Coelho) 

DHS Present 

Study 

Outer 1 W410X60 W410X60 W360X51 W410X53 

Interior 2 W460X60 W410X60 W460X60 W460X60 

Columns 

Story 

Member 

Group 

HIS  

(Mahdavi) 

GBHS 

(Mahdavi) 

HIS  

(Coelho) 

DHS  

(Present 

Study) 

20,19 3 W200X46.1 W250X80 W360X51 W410X53 

19,18 6 W310X52 W460X82 W460X128 W410X53 

16,15 9 W200X41.7 W200X22.5 W150X37.1 W200X22.5 

14,13 15 W920X201 W760X161 W410X60 W310X28.3 

12,11 21 W920X201 W920X345 W690X265 W310X32.7 

10,9 29 W1000X258 W1100X499 W1000X412 W360X39 

8,7 37 W250X73 W610X82 W360X39 W310X28.3 

6,5 48 W840X193 W760X147 W760X196 W310X38.7 

4,3 59 W1000X222 W1000X249 W760X257 W610X101 

2,1 73 W1100X343 W1000X249 W1100X433 W610X101 

Top Story Drift (cm) 8.954 8.76 9.576 10.02 

Inter-Story Drift (cm) 0.75 0.744 0.733 0.748 

Max. Strength Ratio 0.795 0.69 0.892 1 

Weight (kN) 6259.736 6431.886 6337.728 4716.756 
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Fig. 6.11 Design histories of for twenty-story, 1860-member steel space frame 

Table 6.7 Performance evaluation of seven different versions of the harmony search algo-

rithms in the design examples 

IHS GBHS IHSC DHS 
Design Examples SHSAES SHSPF AHSPF

(Mahdavi) (Mahdavi) (Coelho) 
Present 

Study 

Five-story frame  5 3 1 4 7 6 2 

Ten-story frame 4 6 2 3 7 5 1 

Twenty-story 

frame 
5 3 2 4 7 5 1 

6.6   Conclusions 

Seven different structural optimization algorithms are developed that are based on 

seven different versions of the harmony search algorithms that are recently developed. 

Three steel space frames are designed by these algorithms to evaluate their perform-

ance in finding the optimum solutions. All of these alternative harmony search algo-

rithms are shown to be reliable, robust and effective algorithms. However, two ver-

sions among the all; adaptive harmony search method and dynamic harmony search 

method show better performance than the other versions. Particularly in the third de-

sign example where there are relatively large number of design variables and bigger 
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design domain, the dynamic harmony search method has succeeded to find the opti-

mum weight which is 25.36% less than the one determined by the standard harmony 

search algorithm. The performance evaluation of all these techniques in the design of 

three steel space frames considered is summarized in Table 6.7. 

References 

1. Load and Resistance Factor Design, Structural Members Specifications Codes, 3 

edn.,vol.1 American Institute of Steel Construction (2001) 

2. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony 

search algorithm. Computers and Structures 82, 781–798 (2004) 

3. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering 

optimization: Harmony search theory and practice. Computer Methods in Applied Me-

chanics and Engineering 194, 3902–3933 (2005) 

4. Geem, Z.W., Lee, K.S., Tseng, C.-L.: Harmony Search for Structural Design. In: Pro-

ceedings of 2005 Genetic and Evolutionary Computation Conference (GECCO-2005), 

Washington, DC, USA, June 25–29 pp. 651–652 (2005) 

5. Geem, Z.W. (ed.): Music-Inspired Harmony Search Algorithm; Theory and Applica-

tions, Studies in Computational Intelligence. SCI, vol. 191. Springer, Heidelberg 

(2009) 

6. Geem, Z.W. (ed.): Harmony Search Algorithm for Structural Design Optimization. 

SCI, vol. 219. Springer, Heidelberg (2009) 

7. Kochenberger, G.A., Glover, F.: Handbook of Meta-Heuristics. Kluwer Academic 

Publishers, Dordrecht (2003) 

8. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and  

conceptual comparison. ACM Computing Surveys 35(30), 268–308 (2003) 

9. Gonzales, T.F.: Handbook of Approximation Algorithms and Metaheuristics. CRC 

Press, Chapman & Hall (2007) 

10. Yang, X.-S.: Nature Inspired Metaheuristic Algorithms. Luniver Press (2008) 

11. Luke, S.: Essentials of Metaheuristic. Lulu Press (2011) 

12. Erdal, F., Saka, M.P.: Optimum design of grillage systems using harmony search algo-

rithm. In: Proceedings of 8th International Conference on Computational Structures 

Technology (CST 2006), Las Palmas de Gran Canaria, Spain September 12–15 (2006) 

13. Saka, M.P.: Optimum design of steel sway frames to BS5950 using harmony search 

algorithm. In: Proceedings of The Eleventh International Conference on Civil, Struc-

tural and Environmental Engineering Computing (CC-2007) Civil-Comp Press, St. 

Julians (2007) 

14. Saka, M.P.: Optimum geometry design of geodesic domes using harmony search algo-

rithm. An International Journal, Advances in Structural Engineering 10(6), 595–606 

(2007) 

15. Carbas, S., Saka, M.P.: Optimum design of single layer network domes using harmony 

search method. Asian Journal of Civil Engineering, 10(1), 97–112 (2009) 

16. Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., Saka, M.P.: Performance evaluation of 

metaheuristic techniques in the optimum design of real size pin jointed structures. 

Computers and Structures 87, 284–302 (2009) 

17. Saka, M.P.: Optimum design of steel sway frames to BS5950 using harmony search 

algorithm. Journal of Constructional Steel Research 65, 36–43 (2009) 



182 M.P. Saka et al.

 

18. Saka, M.P., Erdal, F.: Harmony search based algorithm for the optimum design of gril-

lage systems to LRFD-AISC. Structural and Multidisciplinary Optimization 38, 25–41 

(2009) 

19. Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., Saka, M.P.: Comparison of non-

deterministic search techniques in the optimum design of real size steel frames. An In-

ternational Journal, Computers and Structures 88(17-18), 1033–1048 (2010) 

20. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm 

for solving optimization problems. Applied Mathematics and Computation 188,  

1567–1579 (2007) 

21. Omran, M.G.H., Mahdavi, M.: Global-Best harmony search. Applied Mathematics and 

Computation 198, 643–656 (2008) 

22. Saka, M.P., Hasancebi, O.: Adaptive Harmony Search Algorithm for Design Code Op-

timization of Steel structures. In: Geem, Z.W. (ed.) Harmony Search Algorithms for 

Structural Design Optimization. SCI, vol. 239, pp. 79–120. Springer, Heidelberg 

(2009) 

23. Hasançebi, O., Erdal, F., Saka, M.P.: An Adaptive Harmony Search Method for  

Structural Optimization. Journal of Structural Engineering, ASCE 136(4), 419–431 

(2010) 

24. Coelho, L.D.S., Bernett, D.L.D.A.: An improvement harmony search algorithm for 

synchronization of discrete-time chaotic systems. Chaos, Solutions and Fractals 41, 

2526–2532 (2009) 

25. Ad Hoc Committee on Serviceability: Structural Serviceability: A critical Appraisal 

and Research needs. Journal of Structural Engineering, ASCE 112(12), 2646–2664 

(1986) 

26. Ellingwood, B.: Serviceability guidelines for steel structures. Engineering Journal, 

AISC 26,1st Quarter 1–8 (1989) 

27. Chen, W.F., Kim, S.-E.: LRFD Steel Design Using Advanced Analysis. CRC Press, 

Boca Raton (1997) 

28. ASCE 7-05. Minimum Design Loads for Building and Other Structures (2005) 

29. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: FromNatural to Artifi-

cial System. Oxford University Press, U.K (1999) 

30. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan KaufmanPublishers, 

San Francisco (2001) 



Chapter 7

Waveform Optimization for Integrated Radar
and Communication Systems Using

Meta-Heuristic Algorithms

Momin Jamil and Hans-Jürgen Zepernick

Abstract. Integration of multiple functions such as navigation and radar tasks with

communication applications has attracted substantial interest in recent years. In this

chapter, we therefore focus on the waveform optimization for such integrated sys-

tems based on Oppermann sequences. These sequences are defined by a number

of parameters that can be chosen to design sequence sets for a wide range of per-

formance characteristics. It will be shown that meta-heuristic algorithms are well-

suited to find the optimal parameters for these sequences. The motivation behind the

use of biologically inspired heuristic and/or meta-heuristic algorithms is due to their

ability to solve large, complex, and dynamic problems.

7.1 Introduction

In recent years, integration of multiple functions such as navigation and radar tasks

with communication applications has sparked a number of research initiatives. This

includes research on future signals for hybrid receivers for Global Navigation Satel-

lite Systems (GNSS)/communication and others tasks. The many benefits of multi-

functionality range from reducing costs and probability of intercept to offering

tolerable co-site interference. While navigation and radar applications require wave-

form designs that offer excellent autocorrelation characteristics, the target for com-

munication applications is on sets of waveforms with minimum crosscorrelation

among the sequences in the set. In the former case, typically only a single sequence
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is needed while in the latter case many sequences are required to support access of

multiple users to the common transmission medium. As excellent autocorrelation

properties come at the expense of crosscorrelation characteristics and vice versa,

a related waveform optimization problem has to be posed and solved taking into

account these conflicting requirements.

As far as the integration of radar and communication functionalities are con-

cerned, the Office of Naval Research in 1996 launched the Advanced Multifunction

Radio Frequency Concept (AMRFC) program [18,53]. This major program was mo-

tivated by the lack of integration of radar, communications, and electronic warfare

functions which resulted in a significant increase of the number of topside anten-

nas. Furthermore, it was realized that the lack of integration may also cause severe

problems with antenna blockage and difficulties with own-ship electromagnetic in-

terference. Also, a large number of antennas puts stress on maintenance resources.

The concepts developed within the AMRFC program are centered around suitable

broadband RF apertures that can cope with simultaneous operation of multiple func-

tions and as such focuses on the rather expensive radio frequency (RF) front-end.

A different approach on the basis of linear frequency modulated (LFM) waveforms,

also known as chirps, has been proposed in [49]. In order to enhance the orthogo-

nality among the signals and to support distinct separation of the different functions,

it uses up-chirps for the communications component and down-chirps for the radar

functionality of the integrated system. In this way, the suggested chirp signals al-

low for the radar and communication data to be simultaneously transmitted and

received using some standard antenna array. Noting the inherent connection of the

chirp-based integration concept to spread spectrum techniques, the work of [59,60]

investigated integrated radar and communication systems with the help of bipolar

pseudo noise (PN) sequences, namely m-sequences [14, 63]. However, one of the

severe drawbacks of m-sequences with respect to radar applications is their poor

Doppler tolerance [32] and related problems of detecting multiple targets. These

and related designs such as polyphase Barker sequences are optimized only with

respect to the zero Doppler cut of the ambiguity function but produce much higher

interference levels in the presence of Doppler shifted waveforms. As for the applica-

tion to communications, large sets of m-sequences that would be needed to support

multiple-access of many users have typically rather poor crosscorrelation proper-

ties [63]. As a consequence, they are generally only used as components of more

complex designs such as Gold sequences. On the other hand, the large advances in

modern integrated circuit technologies would facilitate an efficient implementation

of more advanced sequence designs such as complex-valued sequences. Clearly, ef-

ficient optimization methods are needed to find suitable waveform and sequence

designs for different applications.

Over the last few decades, researchers around the world have developed a vast

number of algorithms to solve different optimization problems. Many of these al-

gorithms are based on numerical linear and non-linear programming methods. As

a result, the related algorithms require substantial gradient information and try to

improve the solution in the proximity of an initial starting point. As a consequence,

these methods provide useful strategies to find the global optimum for rather ideal
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and simple models. However, if the objective function and constraints have multi-

ple or sharp peaks, these methods tend to become unstable. Most of the real world

problems turn out to be too complex and difficult to solve using numerical based op-

timization methods as these tend to fail or are even unable to solve them. There exist

also several direct search approaches which use no gradient information such as the

Hooke and Jeeves method [17], Nelder-Mead simplex method [44], the Rosenbrock

method [50], and the Powell method [47]. Common to these methods is that they

take some basic approach of heading downhill from an arbitrary starting point but

differ in deciding in which direction to and how far to move. Accordingly, the final

outcome depends somewhat on the initial guess of the starting point. This would

not be a major shortcoming if the parameter space is well behaved, i.e. if it con-

tains a single, well-defined minimum. However, if the parameter space contains

many local minima, as may be the case in waveform optimization, it can be more

difficult for such traditional approaches to find the global minimum. In contrast to

population based algorithms, these direct searches cannot explore the search space

effectively in different directions simultaneously. Successive improvements can be

made to speed up the downhill movement of the algorithms but this does not im-

prove the algorithms ability to find the global minimum instead of converging to a

local minimum.

The drawbacks of numerical methods motivated researchers to adopt ideas from

nature and to translate them to solve problems in engineering sciences. This has led

to the inception of many biologically inspired heuristic or meta-heuristic algorithms

to solve challenging optimization problems. The word “meta” means beyond or

higher and “heuristic” means to find or to discover by trial and error. These methods

have proven to be efficient in handling computationally complex problems. They

aim at defining effective general purpose methods to explore the solution space and

avoid tailoring them to a specific problem. Due to their general purpose nature, they

can be applied to a wide range of problems. Meta-heuristic algorithms are also re-

ferred to as black-box algorithms as they exploit limited knowledge about the prob-

lem to be solved. As no gradient or Hessian matrix information is required for their

operation, they are also referred to as derivative-free or zero-order algorithms [5].

The term zero-order implies that only the function values are used to establish the

search vector. Moreover, the function to be optimized does not necessarily have to be

continuous or differentiable and may also be accompanied by a set of constraints.

The choice of method for solving a particular problem depends primarily on the

type and characteristics of the problem at hand. It must be stressed that the goal of

a particular method used is to find the “best” solution of some sort to a problem

compared to finding the optimal solution. In this context, the term “best” refers to

an acceptable or satisfactory solution to the problem. This could be the absolute best

solution from a set of candidate solutions or may be any of the candidate solutions.

The requirements and characteristics of the problem determine if the overall best

solution can be found [10, 54].

Nature has an evolution span of millions or even billions of years. In all these

years, it has mastered the art of finding a perfect solution to almost all the prob-

lems it has been confronted with. As mentioned above, the development of nature
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inspired optimization algorithms has been an area of active research during recent

years and resulted in many approaches such as genetic algorithms (GA), ant colony

optimization (ACO), bee algorithms (BA), artificial bee algorithms (ABC), particle

swarm optimization (PSO), simulated annealing (SA), harmony search (HS), firefly

algorithms (FA), and artificial immune systems (AIS). The interested reader may be

referred to [4, 10, 15, 31, 51, 56, 62] and the reference therein for more details and

discussions on these topics.

Given the vast amount of available optimization methods, their application in

waveform design also stretches from simple searches over more sophisticated and

computational demanding realizations to the use of meta-heuristic algorithms. A

simple computer search has been used in [45] to obtained sets of sequences with var-

ious combinations of sequence parameters. In [58], the optimization of orthogonal

polyphase spreading sequences for wireless data applications is reported. It uses a

built-in standard ‘fmin’ function provided in the numerical computing environment

MATLAB. In particular, the related functions support multidimensional uncon-

strained nonlinear minimization including the Nelder-Mead direct search method.

As the utilized cost functions in terms of average mean-square autocorrelation and

crosscorrelation are very irregular and may have several local minima, the authors

report the dependency of the optimization outcome on the starting point and cor-

responding convergence to different local minima. A similar optimization problem

for complex-valued spreading sequences has been investigated in [9] using a global

optimization method based on a modified bridging method. In order to solve the

related complex optimization problem having a non-linear cost function and a non-

linear constraint, a bridged function is used in the search for the global minimum

such that the algorithm does not get stuck in a local minimum. Given that cost func-

tions in waveform optimization are often highly irregular with many local minima or

are even discontinuous, evolutionary algorithms have gained increased attention in

the design of waveforms with respect to communication and radar applications. An

evolutionary approach for designing complex spreading codes for direct sequence

code-division multiple-access (DS-CDMA) systems has been proposed in [42, 43].

In particular, a multi-objective evolutionary approach is used to search for solutions

that satisfy simultaneous objectives posed on autocorrelation and crosscorrelation

properties. This approach turned out to be beneficial in the communications field

for designing large number of spreading sequence sets with a wide range of corre-

lation properties. In [7], genetic algorithms have been used to design PN sequence

families with bounded correlation properties. It is claimed that this approach can

produce sequences of any length and superior performance compared to the well-

known Gold sequences. A number of recent works has also been reported for the use

of evolutional algorithms in the field of radar applications. In [2], an evolutionary

algorithm is applied to determine a suite of optimal waveforms to simultaneously

perform different surveillance missions such as ground moving target indication,

airborne moving target indication, and synthetic aperture radar. The authors have

shown that evolutionary algorithms are well suited to design optimal waveforms

for multi-mission objectives such as peak sidelobe levels, integrated sidelobe levels,

pulse integration, and revisit time. The work reported in [38] used meta-heuristic
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algorithms to optimize waveforms with sparse spectrum for radar applications in

the high frequency band. In particular, a genetic algorithm and particle swarm op-

timization are used to produce optimal waveforms with acceptable autocorrelation

sidelobes. It is concluded that the particle swarm optimization is simpler and faster

than the genetic algorithm. They are of the opinion that computational efficiency of

particle swarm optimization is comparable or would be even better than the adaptive

method of [40].

In view of the above, this chapter considers integrated radar and communication

systems based on waveforms known as polyphase sequences. In order to account for

the waveform design challenges associated with such integrated systems, we have

compared performance and potential application scenarios of different classes of

polyphase pulse compression sequences in our earlier studies reported in [25, 26].

Specifically, Oppermann sequences have been revealed in these studies to poten-

tially better support the considered integration as these allow for the design not only

of families with a wide range of correlations but also support a variety of charac-

teristics with respect to the ambiguity function, i.e. delay-Doppler tolerance. These

sequences provide a number of parameters that can be chosen to design sequences

for a wide range of performance characteristics. It will be shown that meta-heuristic

algorithms are well-suited to find the optimal parameters for these sequences. Nu-

merical results will be provided for optimal Oppermann sequences obtained with

meta-heuristic algorithms.

The rest of this chapter is organized as follows. In Section 7.2, an overview

of meta-heuristic algorithms is presented. A brief discussion of polyphase se-

quences and the definition of Oppermann sequences is provided in Section 7.3. In

Section 7.4, performance measures are introduced. Numerical examples are given

in Section 7.5. In Section 7.6, conclusions are drawn.

7.2 Meta-Heuristic Algorithms

Meta-heuristic algorithms, also referred to as meta-heuristics for brevity, belong to

a branch of stochastic optimization. They are utilized by both engineers and sci-

entists wishing to optimize solutions to problems that are intractable by conven-

tional methods. Meta-heuristic methods consist of two major components known

as randomization and selection of the best solutions. The first component avoids

that an algorithm gets trapped in a local optimum but also increases the diversity

of the potential solutions while the latter component ensures convergence towards

the optimal value [10,61,62]. A good combination of these two components usually

ensures that the global optimum is achievable. The popularity of these algorithms

stems from their ability to solve large, complex and dynamic problems. The effi-

ciency of these algorithms or solutions they provide is a measure of their ability to

reach an acceptable solution within a reasonable time frame.

The applications of meta-heuristics are broad, versatile and diverse. Application

areas include controller design, applied mathematics, power systems, physics, data

mining, fuzzy systems and many others. In this chapter, we will apply some of these
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algorithms to pseudo random signal processing with focus on waveform design for

integrated radar and communication systems. For this purpose, meta-heuristic algo-

rithms may be classified as being either population-based or flight/trajectory-based.

Genetic algorithms, for example, can be classified as a population-based method

while particle swarm optimization utilizes multiple particles to reach the optimal

solution. On the other hand, simulated annealing uses a single solution that moves

through the search space or design space in a piecewise manner. The essence of the

algorithm is always to accept a better solution, whereas a not-so-good solution is

accepted with certain probability. In the sequel, selected state-of-the-art zero order

and meta-heuristic algorithms are presented.

7.2.1 Particle Swarm Optimization

The PSO is a population-based stochastic optimization technique which has been

inspired by social behavior of a flock of birds, school of fishes and swarm of bees

as proposed by Eberhart and Kennedy [30]. Since its inception, there have now as

many as about 20 different variants of PSO been proposed while remaining still an

active area of research. It shares many similarities with genetic and virtual ant al-

gorithms including concepts such as population initialization with random solutions

and search for a global optimum solution in successive generations. However, the

evolution operators like mutation and crossover as well as encoding or decoding of

the parameters into binary strings are not used with PSO algorithms. Instead, it uses

a real-number randomness and global communication among the swarm population.

Accordingly, each member in the swarm adapts its search patterns by learning from

its own experiences of the other members. A member in the swarm is referred to as a

particle and represents a potential solution which is a point in the search space. The

global optimum is regarded as the location of food [37]. Each particle has a fitness

value and a velocity to adjust its flying direction by learning from the best experi-

ences of the swarm to search for the global optimum in the D-dimensional solution

space. In our case, the dimension D of the problem is given by the number of pa-

rameters that are available for optimization for a given class of sequences. In order

to avoid haphazard movements of the particles in the search space, upper and lower

bounds are usually specified on the velocity. If the velocity v falls below the spec-

ified lower bound, it is set to vmin as a measure to prevent in-sufficient exploration

of the search space. On the other hand, if the velocity exceeds the specified upper

bound, it is set to vmax in order to avoid particles moving away from or past a good

solution. Similarly, the actual search range for a D-dimensional problem is usually

also constrained to a given interval [cmin,cmax]
D, in order to restrain the particles

moving on the search boundary.

The standard PSO uses both the personal best, pbest, with respect to the loca-

tion achieved by an individual particle and the global best, gbest, referring to the

best solution/location among all particles in the swarm [10,30]. The concept of per-

sonal best is primarily used to increase the diversity in finding a solution and to

avoid pulling all the particles to the global best. This may cause the algorithm to
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converge prematurely without finding the overall best solution. However, such

diversity can also be simulated by using some kind of randomness [61, 62]. Based

on this observation, [62] argues that there is no need to use the personal best, unless

the optimization problem is highly nonlinear and multi-modal. This version of the

PSO is known as accelerated PSO (APSO) [61, 62].

7.2.2 Harmony Search

A new type of heuristic optimization algorithms known as harmony search (HS)

was developed by Lee and Geem [31]. It formalizes the musician improvisation

process, i.e. inventing music while performing, into a quantitative optimization pro-

cess. It comprises of the following parts: (1) Usage of harmony; (2) pitch adjust-

ment; and (3) randomization. In an HS algorithm, each musician (decision variable)

plays (generates) a note (value) for finding a best harmony (global optimum). In

other words, a harmony translates to an optimization solution vector and the mu-

sician’s improvisation corresponds to local and global search schemes in terms of

optimization. Solutions of the optimization process correspond to a musician while

the harmony of the notes generated by a musician corresponds to the fitness of the

solution. The pitch adjustment rate rpa ∈ [0.1,0.5] and so-called harmony memory

raccept ∈ [0.7,0.95] ensure that the best harmonies established at some point will

be carried over to a new harmony memory. For a detailed discussion on harmony

search, the interested reader is referred to [31, 61, 62] and the references therein.

7.2.3 Adaptive Simulated Annealing

The classical SA algorithm [10, 54, 61, 62] relies on the Boltzmann sampling dis-

tribution. It comprises of components such as the probability density function of

the state space g(γ) with γ being the current solution, an acceptance probability

function h(∆E) with respect to the difference in system energy ∆E between two

design vectors, and an annealing schedule for temperature T (k) with annealing time

k using Boltzmann annealing. An enhanced version of the classical SA known as

adaptive SA (ASA) has been proposed in [20,21,22,23] including comparisons, test

case studies and applications. In contrast to SA, the annealing schedule for tempera-

ture T (k) decreases exponentially in annealing time k. In addition, re-annealing and

quenching is introduced with ASA that allows for adaptation to changing sensitivi-

ties in multidimensional parameter spaces.

7.2.4 Artificial Bee Colony Algorithm

The ABC algorithm was proposed by Karaboga [27] in 2005. It simulates the forag-

ing behavior associated with bee colonies. A colony of honey bees can extend itself

over long distances, sometimes more than 10 kilometers and in multiple directions

simultaneously to exploit a large number of food sources. In a bee colony, tasks are
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divided among the specialized individuals or bees, namely employed, onlooker and

scout bees. The population in a bee colony is divided into two halves. The first half

of the population is comprised of employed bees while the second half includes the

onlooker bees. The foraging process begins in a colony by scout bees being sent to

search for promising food sources. Scout bees move from one food source to an-

other in a random fashion. Employed bees perform duties of exploiting the possible

food sources and passing on the information about the quality of the food source

to the onlookers bee. The decision taken by onlooker bees to exploit a potential

food source depends on the information provided by the employed bees. ABC al-

gorithms have been used to solve both unconstrained and constrained optimization

problems [3,27,28,29]. It requires only a few control parameters such as the colony

size and maximum number of cycles [29].

7.2.5 Preliminaries for Waveform Design

From this point onwards, we will consider two-dimensional optimization problems

unless otherwise specified. In the context of waveform design using Oppermann se-

quences, the term swarm in APSO, harmonies in HS, bees in ABC and candidate

points in ASA relate to the parameters m and n which define a specific sequence

family. In all these algorithms, the control parameters are defined in the initializa-

tion phase. Initially, all the algorithms start with a population randomly distributed

except for ASA, which starts with the initial guess in the search space. In each step

of the algorithms, there is always a solution or a set of solutions, representing the

current state of the algorithm. These solutions are used to generate phases of the Op-

permann sequences (see Section 7.3). In order to distinguish good waveform designs

from inferior designs, waveform characteristics such as aperiod correlations, figure

of merit, and integrated sidelobe measures are computed. The interested reader can

find pseudo code of HS in [62], ASA in [52], and ABC in [27] while details of the

APSO can be found in [61, 62].

7.3 Polyphase Sequences and Their Applications

The history of complex-valued sequences ranges back as far as the 1950s when

polyphase sequences where considered in many research laboratories. As the re-

lated research outcomes were reported mainly in classified documents with limited

access, a broader audience was first reached with the work in [16] on phase shift

pulse sequences. In the following decades, many complex-valued sequences have

been proposed and analyzed with their applications ranging from radar systems to

spread-spectrum communication systems. In particular, polyphase sequences have

gained increased attention due to their ability to match regular phase shift key-

ing modulation schemes. In addition, the advances in integrated circuit technolo-

gies have paved the way for moving from simple binary sequences to implementa-

tions of complex-valued sequences and related more involved pseudo random sig-

nal processing. In the sequel, we consider polyphase sequences and will shed some
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light on their potential to serve in integrated radar and communication systems. In

particular, the family of Oppermann sequences [45] are considered in more detail as

they offer the system designer large sets of sequences with a wide range of correla-

tion properties compared to other classes of polyphase sequences.

7.3.1 Polyphase Sequences for Radar Systems

Pseudo random sequences and the related signal processing have emerged from

space and military applications. In this context, the concept of pulse compres-

sion, i.e. expanded pulses with large time-bandwidth products, has been utilized

in radar systems. This type of signals offer high range resolution as they can obtain

high pulse energy and large pulse width. As an alternative to frequency-modulated

signals, pulse compression sequences have been subject of many studies [14, 32].

Polyphase sequences are known to have better Doppler tolerance for a broader

range-Doppler coverage than binary sequences [8, 32, 41, 46]. These sequences

can be derived from the phase history of chirp or step chirp analog signals and

can be processed digitally [36]. In radar applications, the performance of differ-

ent polyphase sequences can be compared in terms of delay or range tolerance

using measures such as the autocorrelation function, mainlobe-to-total-sidelobe ra-

tio and peak-to-sidelobe ratio. The sensitivity of a particular waveform design to-

wards Doppler shifts in case of moving targets can be characterized by using the

ambiguity function. As there exist no analytical method that would allow for syn-

thesizing the desired waveform given its desired ambiguity function, more prac-

tical optimization approaches are needed to facilitate such designs. For example,

the design of a particular radar waveform may be first aiming for optimization of

autocorrelation properties with respect to range characteristics followed by eval-

uating the ambiguity function to identify the Doppler tolerance of the deduced

sequence.

As far as radar applications are concerned, Frank sequences [12] were the first

polyphase sequences used in pulse compression radar [46]. They can only be de-

signed for perfect square lengths, therefore, they have limited family size. Later

in [34] modified versions of Frank sequences were obtained by permuting their

phase history. The modified versions are referred to as P1 and P2 sequences.

Rapajic and Kennedy in [48] proposed a new class of sequences, known as Px se-

quences. These sequences have superior performance in terms of integrated side-

lobe levels compared to Frank, P1, and P2 sequences. However, for even square

root sequence lengths, their performance is the same as for P2 sequences. In [35],

the families of P3 and P4 sequences were proposed that can be constructed for

any length. The authors of [6, 13] generalized the ideas behind Frank sequences

resulting in Frank-Zadoff-Chu (FZC) sequences which can also be designed for

any length. Several performance aspects of the aforementioned classes of polyphase

sequences with respect to radar applications have been discussed in literature

[34, 36, 48].
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7.3.2 Polyphase Sequences for Communication Systems

A major boost for the application of pseudo random sequences in the field of

communication systems was given by the development of cellular mobile com-

munication systems and spread-spectrum based radios for indoor communication.

In particular, the CDMA system for digital cellular phone applications by Qual-

comm Incorporated and the family of IEEE802.11 standards for wireless local

area networks (WLANs) has taken the theoretical concepts into practical systems.

The main classes of sequences used with these systems are Walsh-Hadamard se-

quences [11, 55], m-sequences [11, 63], Barker codes [11, 63], and complementary

code keying based modulation [19]. Subsequently, with the advent of the third

generation of mobile communication systems, more advanced spread-spectrum

techniques such as orthogonal variable spreading factor sequences [1] and complex-

valued short scrambling sequences have been utilized. In contrast to radar

applications where it is usual sufficient to have a single sequence with good au-

tocorrelation characteristics, communication systems require a set of sequences to

facilitate simultaneous channel access to a number of users. Clearly, minimum

crosscorrelation among the sequences is a major design consideration in this case.

Given the large advances in modern integrated circuit technologies, it has become

feasible to implement complex-valued sequence designs including polyphase se-

quences such as Frank sequences, FZC sequences, and Oppermann sequences.

7.3.3 Application of Oppermann Sequences for Integrated Radar

and Communication Systems

Given the insights from the brief overview on polyphase sequences from the view-

point of radar and communication applications, it can be concluded that more flex-

ible waveform designs are needed to address the conflicting objectives of these two

applications. Our earlier research [25, 26] on this topic has revealed that Opper-

mann sequences may serve favorable in such integrated radar and communication

systems compared to conventional waveform designs. This is mainly due to the fact

that families of Oppermann sequences can be designed for a wide range of correla-

tion properties. For any given sequence length, Oppermann sequences are defined by

three parameters. These parameters can be used in an optimization process to control

the progression of the autocorrelation function, crosscorrelation function, the power

spectral density and characteristics of the ambiguity function. Due to space limi-

tations, however, we will concentrate here on range (autocorrelation) and multiple

access (crosscorrelation) characteristics. On the other hand, inclusion of moving tar-

gets and the related Doppler shifts into the framework of meta-heuristic algorithms

may be addressed in our future research considering ambiguity and cross-ambiguity

functions.

In this chapter, we consider weighted pulse trains that can be described by a

complex envelope as
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Ux(t) =
1√
T

N−1

∑
i=0

ux(i) rect

(
t − iTc

Tw

)

(7.1)

where T = N Tc is the duration of the xth pulse train while Tc and Tw ≤ Tc, respec-

tively, denote the repetition period and the width of each rectangular pulse

rect

(
t

Tw

)

=

{

1 for − Tw

2 ≤ t ≤ Tw

2

0 otherwise
(7.2)

The elements ux(i), i = 0,1, . . . ,N−1, of the xth complex-valued sequence ux of

length N represent the weights of the pulse train in (7.1). In general, these elements

are given for a polyphase sequence as

ux(i) = exp [ jϕx(i)] , j =
√
−1 (7.3)

where the set of N phases {ϕx(0),ϕx(1), . . . ,ϕx(N − 1)} are referred to as phase

sequence. In particular, the phase ϕx(i) of the ith element ux(i) of the xth Oppermann

sequence ux = [ux(0),ux(1), . . . ,ux(N − 1)] of length N taken from a family or set

U of sequences is given as

ϕx(i) =
π

N
[xm(i+ 1)p +(i+ 1)n + x(i+ 1)N] (7.4)

where 1≤ x≤N − 1, 0≤ i≤N − 1 and integers i are relatively prime to the length

N. The maximum size of a family U of Oppermann sequences is obtained as N −
1 when the length N of the sequences is a prime number. A particular family of

Oppermann sequences is defined by the real-valued parameters m, n, and p. All the

sequences in a family have the same magnitude of the autocorrelation function for

a fixed combination of these three parameters. In [45], it has been shown that the

magnitude of the autocorrelation function depends only on the parameter n if the

parameter p = 1. For this case, the autocorrelation magnitude follows the expression

|Cx(l)| =
∣

∣

∣

∣

∣

1

N

N−1−l

∑
i=0

exp

{

jπ

N
[(i+ 1)n−(i+ l + 1)n]

}

∣

∣

∣

∣

∣

(7.5)

In the sequel, we therefore focus on the case of p = 1 which leaves us with m and n

as free parameters for use in an optimized waveform design.

Due to the general definition of Oppermann sequences, they include some more

specific sequences. For example, for the parameters m = 2, n = −∞, p = 1, FZC

sequences can be generated. As such, application of the considered meta-heuristic

algorithms to these more specific sequences is straightforward.
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7.4 Performance Measures

In the following sections, the definitions of the measures used in the performance

comparison of the considered Oppermann sequences will be given. Specifically, let

an Oppermann sequence of length N be denoted as ux =[ux(0),ux(1), . . . ,ux(N−1)]
where subscript 1 ≤ x ≤U relates to the xth sequence ux taken from a given set U
of size U .

7.4.1 Aperiodic Correlation Measures

In order to quantify the degree of similarity between different sequences from a

given set or between a given sequence and a shifted version of it, respectively, au-

tocorrelation and crosscorrelation measures are usual considered. In many fields,

aperiodic signals need to be processed which occur only once within a considerable

time span and appear to the application as more or less singular events. Accord-

ingly, the aperiodic crosscorrelation (ACC) between two complex-valued sequences

ux =[ux(0),ux(1), . . . ,ux(N−1)] and uy =[uy(0),uy(1), . . . ,uy(N−1)] of length N at

discrete shift l is given as [11, 63]

Cxy(l)=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
N

N−1−l

∑
i=0

ux(i)u
∗
y(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l

∑
i=0

ux(i−l)u∗y(i), 1−N ≤ l < 0

0, |l| ≥ N

(7.6)

where (·)∗ denotes the complex conjugate of the argument (·). In case of ux = uy,

(7.6) is referred to as aperiodic autocorrelation (AAC) and is denoted as Cx(l) =
Cxx(l).

In addition to ACC and AAC, it is often more realistic to incorporate the whole

range of possible correlation values into the performance evaluation of a given set of

sequences rather than considering only peak values of aperiodic correlations. In this

context, mean-square values from AAC and ACC may be used in favor of worst case

scenarios. For this purpose, let us introduce the mean-square out-of-phase autocor-

relation (MSAC), Rac, and mean-square crosscorrelation (MSCC), Rcc, respectively,

of a given set U of size U as

Rac =
1

U

U

∑
x=1

N−1

∑
l=1−N

l �=0

|Cx(l)|2 (7.7)

Rcc =
1

U(U −1)

U

∑
x=1

U

∑
y=1
y�=x

N−1

∑
l=1−N

∣

∣Cxy(l)
∣

∣

2
(7.8)
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7.4.2 Sidelobe Measures

The figure of merit (FOM) of a sequence ux ∈U , 1 ≤ x ≤U of length N with aperi-

odic autocorrelation function Cx(l) measures the ratio of energy in the mainlobe to

the energy in the sidelobe of the autocorrelation function. It is defined as

FOMx =
Cx(0)

2
N−1

∑
l=1

|Cx(l)|2
, ∀x (7.9)

Alternatively, the integrated sidelobe level (ISL) is often used for radar applications

in the context of distributed target environments. The ISL of a sequence ux ∈ U ,

1 ≤ x ≤U of length N is defined as

ISLx =
1

FOMx

, ∀x (7.10)

Another important measure in relation to radar applications is the peak-to-sidelobe

ratio (PSLR) which relates to the ability of detecting targets without masking in-

terfering targets. For example, if an AAC has large sidelobes, it will mask nearby

targets and leave them undetected. Specifically, the PSLR of a sequence ux measures

the ratio of the in-phase value Cx(0) to the maximum sidelobe magnitude |Cx(l)| of

the periodic autocorrelation function Cx(l). It is defined as

PSLRx =
Cx(0)

max
1≤l<N

|Cx(l)|
, ∀x (7.11)

7.5 Numerical Examples

In the sequel, some numerical examples are provided to illustrate the application

of meta-heuristic algorithms for waveform optimization for integrated radar and

communication systems. For this purpose, we consider the class of Oppermann se-

quences as defined in (7.4) of length N = 31. It is noted that the maximum number

of N − 1 = 30 sequences in the designed set is obtained as N is chosen as a prime

number. Furthermore, the considered sequence family offers parameters m and n for

optimization given the case of parameter p = 1. Accordingly, the following opti-

mization problems may be posed:

P1 : min
n∈[n1,n2]

ISL(U ) (7.12)

P2 : max
n∈[n1,n2]

PSLR(U ) (7.13)

P3 : min
m∈[m1,m2],n∈[n1,n2]

[Rac(U )+ αRcc(U )] (7.14)
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where m ∈ [m1,m2] and n ∈ [n1,n2] are the search regions for m and n, respectively,

and α is a weighting factor. While problems P1 and P2 given in (7.12) and (7.13),

respectively, relate strongly to radar applications, problem P3 formulated in (7.14)

can be used to find a trade-off between conflicting objectives of radar and communi-

cation applications. Especially, the weighting factor α may be chosen with respect

to desirable system specifications. In contrast to [25], where we have used a two-step

approach to first optimize autocorrelation properties by a simple brute-force search

over parameter n followed by tuning m towards favorable delay-Doppler properties,

we consider here two-dimensional optimization to simultaneously find the optimal

values of n and m for problem P3. On the other hand, in view of the independence

of the autocorrelation of Oppermann sequences on parameter m as shown in (7.5),

problems P1 and P2 remain one-dimensional as PSLR and ISL only involve the

aperiodic autocorrelation.

In order to solve the problems formulated in (7.12)-(7.14), we use APSO, HS

ASA and ABC. The two-dimensional search space was constrained to the interval

m ∈ [0,4] and n ∈ [0,4]. The algorithms were executed on a laptop computer with

Intel Pentium M 740 Processor running at 1.73 GHz and 2048 Megabytes of RAM.

With the exception of ASA, where we used a C-routine called from MATLAB, all

the other algorithms have been implemented in MATLAB. As for the translation of

the notions from meta-heuristics to the optimization problem at hand, the following

interpretation can be given.

• APSO: Initially, particles in a swarm are randomly distributed in a D-dimensional

search space. In APSO, the parameter D refers to the dimension of the problem,

swarm refers to a population, and particle is similar to an individual. Alterna-

tively, each solution (or particle) flies through the search space and looks for an

optimal position to land. In terms of Oppermann sequences, particles are repre-

sented by the values of m and n in a two-dimensional search space and are used to

generate the phases of Oppermann sequences as defined in (7.4). The search for

the optimal landing position, i.e. finding optimal values of m and n will continue

until the criteria selected from (7.7) to (7.11) are met.

• HS: Initially, harmonies are randomly generated in a D-dimensional space and

are stored in a harmony memory (HM). The use of HM ensures that the best

harmonies will be carried over to the HM. As for the optimization of Oppermann

sequences, the parameters m and n are represented by the obtained harmonies to

generate phases as defined in (7.4). Then, pitch adjustment is used to control the

convergence of the algorithm. Randomization introduced in the algorithm drives

the algorithm to search previously unexplored areas in the search space until the

criteria selected from (7.7) to (7.11) are met.

• ASA: This algorithm starts with the initial guess of the parameters in the D-

dimensional search space. In terms of Oppermann sequences, the initial guess

represents values of the parameters m and n. Each step of the ASA algorithm re-

places the current solution by a random nearby solution. The obtained solutions

are used to generate Oppermann sequences. The process of finding optimal val-

ues of m and n continues by generating feasible points in the search space and
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acceptance probability including annealing and re-annealing temperatures until

criteria selected from (7.7) to (7.11) are met.

• ABC: It is recalled that food sources are randomly distributed in the D-dimen-

sional search space at the start of the search. Here, bees refer to a population of

bees (employed, onlookers and scout) which are in the search of the best food

position. Employed bees search for new food sources within their neighborhood

that have more nectar compared to the food sources they have previously visited.

These food sources represent the values of the parameters m and n of Oppermann

sequences to generate the phases defined in (7.4). If during the optimization pro-

cess the criteria set for (7.7) to (7.11) are not met, it will represent abandoned

food source or bad sequence designs.. The search for the final food position rep-

resent optimal values of m and n that satisfy the criteria set for (7.7) to (7.11).

Figure 7.1 compares the performance of Oppermann sequences obtained through

meta-heuristics in terms of PSLR with the brute-force search method with fixed

step size reported in [25]. Clearly, the random search strategy employed in meta-

heuristics widens the search area allowing the particles to explore the search space

more effectively compared to an optimization using fixed step size. As can be seen

from the figure, PSLR values can be improved for those prime length that would

have inferior performance using brute-force search with fixed increment on n. In

this case, meta-heuristic algorithms improve the performance of the designed set of

Oppermann sequences to be comparable to other families such as the FZC sequences

(see also [25]).
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Fig. 7.1 Performance comparisons between brute-force search with fixed increment and

meta-heuristic algorithms in terms of PSLR

The convergence behavior of the considered algorithms for the example of opti-

mizing PSLR is illustrated in Fig. 7.2. It can be seen from the progressions in terms

of iterations shown in the figure that ASA achieves the fastest convergence to the

optimal values followed by APSO, ABC and HS. The fast convergence of ASA may

be attributed to the fact that exponential annealing permits the algorithm to adap-

tively re-anneal and pacing the convergence in the search space in all dimensions. It
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Fig. 7.2 Convergence of different meta-heuristic algorithms towards optimal PSLR: (a)

APSO, (b) HS, (c) ASA, (d) ABC

should be mentioned that the similar convergence behavior and ranking among the

algorithms can be observed when applied to optimize FOM, ISL, and mean-square

aperiodic correlation measures.

Tables 7.1(a)-(e) show numerical results of optimal designs for Oppermann se-

quences of length N = 31 with respect to the optimization problems posed in (7.12),

(7.13), and (7.14) using APSO, HS, ASA, ABC. As for the optimal designs pre-

sented in Table 7.1(a) and Table 7.1(b) for PSLR and ISL, respectively, it is suffi-

cient to consider only the parameter n as these metrics involve only the AAC (see

also (7.10) and (7.11)). It is recalled that according to (7.5), the AAC is independent

of the parameter m for the considered case of parameter p = 1. Also, all N −1=30

Oppermann sequences in an optimized set achieve the same PSLR and ISL. Clearly,

all considered meta-heuristic algorithms converge towards very similar results for

these two classical design objectives of radar systems.

In order to illustrate the trade-off in waveform optimization for integrated radar

and communication systems, let us focus now on the results presented in Ta-

bles 7.1(c)-(e) with respect to the optimization problem posed in (7.14). In par-

ticular, we have chosen α = 0 relating to radar systems, α = 60 emphasizing on

communication systems, and α = 1 as an example of an integrated radar and com-

munication scenario. Clearly, the autocorrelation properties indicated by the small

Rac values in Table 7.1(c) are beneficial for radar systems and are independent of

parameter m. On the other hand, good crosscorrelation characteristics are shown

Table 7.1(d) for use with communication systems but these come at the expense

of poor autocorrelation properties quantified by high values of Rac. The results of
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Table 7.1 Optimal designs for Oppermann sequences of length N = 31

(a) Peak-to-sidelobe ratio

Algorithm n PSLR

APSO 2.000 11.735

HS 2.000 11.734

ASA 2.000 11.735

ABC 2.000 11.735

(b) Integrated sidelobe level

Algorithm n ISL

APSO 2.007 0.110

HS 2.007 0.110

ASA 2.000 0.116

ABC 2.007 0.110

(c) MSAC; α = 0

Algorithm m n Rac Rcc

APSO 2.597 2.007 0.110 1.000

HS 2.744 2.007 0.110 1.001

ASA 2.000 2.000 0.116 1.000

ABC 0.614 2.007 0.110 1.005

(d) MSCC; α = 60

Algorithm m n Rac Rcc

APSO 1.003 1.002 19.676 0.341

HS 1.003 1.000 19.677 0.341

ASA 1.000 1.000 19.677 0.344

ABC 1.003 1.000 19.677 0.341

(e) MSAC+MSCC; α = 1

Algorithm m n Rac Rcc

APSO 0.930 2.007 0.110 0.997

HS 1.000 2.007 0.110 0.996

ASA 1.000 2.000 0.116 0.996

ABC 0.999 2.007 0.110 0.996

the trade-off example shown in Table 7.1(e) may perform favorable with integrated

radar and communication systems keeping autocorrelation values low and driving

crosscorrelation values smaller. An additional increase of α would result in an in-

crease of autocorrlelation values and further reduce crosscorrelation values. Also,

all four considered meta-heuristic algorithms provide very similar outcomes to the

different optimization problems.

7.6 Conclusions

In this chapter, we have focused on the waveform optimization for integrated radar

and communication systems. Given the conflicting requirements on autocorrelation

and crosscorrelation characteristics, meta-heuristic algorithms are considered to ba-

sically perform a multidimensional optimization. Specifically, the selected class of
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Oppermann sequences allows for designing families with a wide range of

correlations with respect to a two-dimensional search space. The numerical re-

sults illustrate the potential of meta-heuristic algorithms for designing sequences

for radar, communications, as well as integrated systems. By way of example with

respect to PSLR, it is shown that meta-heuristics can improve performance com-

pared to search methods with fixed increment.
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Chapter 8

Parameter Estimation from Laser Flash
Experiment Data

Louise Wright, Xin-She Yang, Clare Matthews, Lindsay Chapman,

and Simon Roberts

Abstract. Optimisation techniques are commonly used for parameter estimation

in a wide variety of applications. The application described here is a laser flash

thermal diffusivity experiment on a layered sample where the thermal properties

of some of the layers are unknown. The aim is to estimate the unknown properties

by minimising, in a least squares sense, the difference between model predictions

and measured data. Two optimisation techniques have been applied to the problem.

Results suggest that the classical nonlinear least-squares optimiser is more efficient

than particle swarm optimisation (PSO) for this type of problem. Results have also

highlighted the importance of defining a suitable objective function and choosing

appropriate model parameters.

8.1 Introduction

Many components that operate in a high-temperature corrosive environment, such as

engine parts and turbine blades, use coatings to increase their operational lifetime.

In some cases these coatings are grown on the component by reaction (e.g. oxide

layers), and in other cases they are separate substances applied to the surface of the

component before it is put into operation. It is often difficult to obtain samples of the

coating on its own, since the coating is often too thin and too fragile to be removed

from the component in pieces of a usable size.

Accurate prediction of the behaviour and, in particular, the lifetime of such com-

ponents in operation can avoid unexpected component failure and hence reduce

downtime and maintenance costs. Models for prediction of component lifetime
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generally require a coupled thermal-mechanical analysis to predict stresses caused

by differential thermal expansion and oxide layer growth. The thermal part of this

analysis requires knowledge of the thermal conductivity of each material present

within the component, including coatings.

This chapter describes the application of an optimisation process to a finite vol-

ume model of the laser flash experiment using a layered sample. The optimisation

minimises the difference between the measured data and model predictions by ad-

justing model parameters, including the thermal conductivity of one of the layers.

The aim is to demonstrate that the thermal conductivity of a layer within a sample

can be obtained using optimisation techniques.

The process described shows the steps required for application of optimisation

techniques to a real-world problem: data preparation, model development, choice

of objective function and parameters, and choice of an appropriate optimisation

method. The work reported also illustrates that each of these steps may be revis-

ited repeatedly before a fit-for-purpose model is achieved.

The laser flash experiment will be summarised in section 8.2, and the initial

model used to simulate the experiment will be defined in section 8.3. The initial

optimisation results obtained will be discussed in section 8.4, and subsequent alter-

ations to the model will be explained in section 8.4.2. The final optimisation results

will be discussed in section 8.4.3. Our concluding remarks are given in section 8.5.

8.2 The Laser Flash Experiment

The laser flash experiment measures the thermal diffusivity of materials. Thermal

diffusivity is a measure of how quickly heat travels through a material and has units

of m2 s−1. Thermal diffusivity α is related to density ρ , thermal conductivity λ , and

specific heat capacity cp by the equation

α =
λ

ρcp
, (8.1)

and so if the density and the specific heat capacity of a material can be obtained

from other experiments, the thermal conductivity can be calculated from the thermal

diffusivity.

The laser flash experiment generates a set of temperature measurements gathered

over time. The model used to determine the thermal diffusivity from the measure-

ments is based on a number of assumptions, including the assumption that the ma-

terial is uniform and isotropic. These assumptions are clearly not true for layered

and coated materials such as the components described above. Since it is generally

difficult to obtain samples of the coating that are sufficiently large to use in the laser

flash experiment, a method of obtaining the thermal properties of each layer within

a layered sample would enable the properties of the coating to be determined.

The experiment exposes one circular face of a cylindrical sample of material to a

pulse of laser light, and measures the temperature rise of the centre of the opposite

circular face. The sample is placed in a furnace so that measurements can be carried
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out at well-controlled temperatures. The sample is put in the furnace before the

experiment starts and the experiment is not started until the furnace temperature

and sample temperature are judged to be equal. The sample is supported by three

small pins to minimise conductive losses, and the furnace is held in near-vacuum

conditions to minimise convective losses.

The laser flash is a pulse of laser light lasting less than 1 ms. The laser power

is adjusted so that the maximum temperature rise in the sample caused by the laser

flash is typically between 3 K and 4 K. This temperature rise gives a good signal-to-

noise ratio on the detected signal, but is sufficiently small that radiative losses can

be approximated well by linearisation and can be taken into account in a straightfor-

ward manner when calculating the thermal diffusivity. The laser power used is not

known by the user and cannot be obtained from the equipment.

The temperature change of the rear face of the sample is measured throughout

the experiment by an infra-red (IR) temperature sensor. The temperature sensor has

a finite spot size and so the measurement is an average over an area rather than a

value at a single point.

In order to shield the temperature sensor from the laser flash, a guard cap with a

window in it is placed over the end of the sample. The guard cap should not be in

contact with the material sample since the conductive heat losses from the sample

to the cap will affect the measured temperature and hence the calculated thermal

diffusivity value.

The measurement data set used in this work is shown in Fig. 8.1. This data set

is used as target data in the work reported here, meaning that the aim of the opti-

misation work was to generate model results that fit these data well. The measure-

ment was carried out at a furnace temperature of 947.15 K, and Fig. 8.1 shows the

change in temperature relative to the firnace temperature. This data set was chosen

because i) the ambient temperature was sufficiently high that radiative losses would

be significant, and so determination of emissivity would be a possibility, and ii) the

same data set had been studied previously [1], giving values to which the calculated

results could be compared.

The measurement data set consists of temperature change measurements every

1.568 ms. The measurements are continued for 2.373952 s after the laser flash,

giving a total of 1515 measurements for time t ≥ 0 (the first measurement being at

t = 0). It is assumed that the sample temperature has fully stabilised by the time that

the laser is fired, and so the temperature measured at t = 0 is taken to be the ambient

(furnace) temperature. The time axis is scaled such that the laser was fired at t = 0.

The small peak shortly after t = 0 is caused by energy from the laser flash that has

not been absorbed by the sample being measured by the temperature sensor.

The simplest form of data analysis of these data [9] is based on an analytical

solution to the transient heat flow equation that assumes a uniform sample, an in-

stantaneous uniform laser flash, and no heat losses from the sample. This approach

leads to a 1-D model for the heat flow, and solution of this model gives an expression

of the form

ΔT = ΔTm

(

1 + 2
∞

∑
n=1

(−1)n exp(−n2π2αt/L2)

)

(8.2)
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Fig. 8.1 Measured data set used for the work reported here

where ΔT (t) is the temperature rise of the rear face at time t, ΔTm is the maximum

temperature rise, and L is the thickness of the sample. Defining t1/2 as the time

taken for the temperature rise to reach half of its maximum value, which can be

determined from the measured temperature values, gives

∞

∑
n=1

(−1)n exp(−n2π2αt1/2/L2)+
1

4
= 0. (8.3)

This is a nonlinear equation that gives α in terms of known values. Solving the

equation gives

α = 0.138785
L2

t1/2

(8.4)

Subsequent work [2, 5, 7, 11] has developed corrections to the simple one-dimensional

model to allow for the finite duration of the laser pulse and for radiant heat losses

(including those from the curved faces). The methods of data processing that in-

clude corrections still make a number of assumptions, including spatial uniformity

and isotropy of sample properties, insignificant temperature-dependency of material

properties during the experiment, spatial uniformity of the laser flash, and absence

of conductive and convective heat losses. The first of these assumptions is clearly

not the case for the layered samples of interest in this work. It will be shown in

section 8.3 that the final assumption is not valid either.

For the purposes of the modelling work, the sample is assumed to be perfectly

cylindrical with plane parallel circular faces of radius 6 mm. The data shown in

Fig. 8.1 were gathered during the measurement of a layered sample. It is assumed
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that the sample consists of two distinct layers. Each layer is assumed to be uniform

and isotropic. The known sizes and properties of the layers in the sample are listed

in table 8.1. The emissivity, ε , is required for implementation of radiative bound-

ary conditions. A dash in a cell indicates that the property is unknown and is to

be determined using optimisation methods to minimise the difference between the

measured data and the model predictions. As has been mentioned above, the power

of the laser that generates the flash is unknown and also must be determined using

optimisation.

Table 8.1 Thicknesses and thermal properties of the layers. A dash in a cell indicates that the

property is unknown and is to be determined using optimisation

Material P92 steel Oxide

Thickness (mm) 2.0942 0.2265

Density (kg m−3) 7871 5015

Specific heat capacity (J kg−1 K−1) 1473.2 934.8

Thermal conductivity (W m−1 K−1) 45.181 -

Emissivity 0.8 -

Previous analysis and simulation relating to this sample have been described in

an NPL report [1]. All properties used in the work reported here have been taken

from that report or from the references therein. The full chemical composition of

the steel is given in the earlier report. The oxide layer consists of two components,

magnetite and iron/chromium spinel, but they have been treated as a single uniform

substance in order to provide a simpler model for initial investigations. The model

could easily be extended to account for more complex layered structures.

8.3 Mathematical Model

8.3.1 Governing Equations

The model considers heat flow within the sample and assumes that the heat flow

within the rest of the equipment is either irrelevant or can be taken into account

via an appropriate choice of boundary conditions. Cylindrical polar coordinates r =
{ r,θ ,z} and total temperature (rather than temperature change relative to furnace

temperature) will be used throughout.

The temperature distribution within the sample obeys the transient heat flow

equation

ρ(r)cp(r)
∂T (r,t)

∂ t
= ∇.(λ (r)∇T (r,t))+ Q(r, t), (8.5)

where r denotes a position within the sample, T (r, t) is the temperature at a point

r and time t, and Q(r, t) is a heat source term that is used to account for the laser

flash.
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The domain is defined as 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ L where R is the radius

of the sample and L is its thickness. It is assumed that the problem is axisymmetric

so that variation with θ can be neglected. This reduces the model to two dimensions,

making it simpler and quicker to solve.

The domain is split into two layers in the z direction. The properties of each layer

are isotropic and uniform and the two layers are assumed to have a perfect thermal

bond. The layers are of thickness z1 (P92) and z2 (oxide), with z1 + z2 = L. Then the

material properties of the two layers are dependent only on z and are given by

λ (z) =

{

λ1 0 ≤ z ≤ z1

λ2 z1 < z ≤ L
(8.6)

ρ(z) =

{

ρ1 0 ≤ z ≤ z1

ρ2 z1 < z ≤ L
(8.7)

ε(z) =

{

ε1 0 ≤ z ≤ z1

ε2 z1 < z ≤ L
(8.8)

cp(z) =

{

cp1 0 ≤ z ≤ z1

cp2 z1 < z ≤ L
(8.9)

The source term Q is assumed to affect a uniform layer (thickness ∆z) at the front

of the sample directly. It is assumed that the flash is of equal intensity over its finite

duration. If the duration is t0 and the intensity is I then

Q(z, t) =

{

I 0 ≤ z ≤ ∆z, 0 ≤ t ≤ t0
0 otherwise

(8.10)

A value for t0 is known from the experiment and a value for ∆z will be assigned

when the numerical solution method is described. The value of t0 used in this work

was 0.8 ms.

The initial conditions assume that the sample is uniformly at the ambient temper-

ature T0 at time 0, so that

T (r,z,0) = T0, 0 ≤ r ≤ R, 0 ≤ z ≤ L. (8.11)

8.3.2 Boundary Conditions

The simplest modelling assumption for boundary conditions is that all cooling is

due to radiation only. A straight-line fit to the cooling section of the curve shown

in Fig. 8.1 shows a cooling rate of approximately 0.42 K s−1. A simplified model

assuming instantaneous uniform temperature change throughout the sample during

cooling shows that the maximum radiative heat loss for a sample of this type at

an ambient temperature of 947.15 K and a sample temperature of 952.15 K is ap-

proximately 0.02 K s−1 (this value is likely to be an overestimate due to the model

assumptions). The difference of an order of magnitude in cooling rates suggests that

the sample must be losing heat via some mechanism in addition to radiation.
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Considering the experimental set-up, the most likely source of extra heat loss

from the sample is contact between the guard cap and the sample. This contact

could be caused by thermal expansion of the sample, the sample being too large for

the holder, or poor positioning of the sample within the holder.

The cross section of the guard cap is shown in Fig. 8.2, including dimensions. The

cap has a window at its centre through which the sample temperature is measured

and which is transparent to infrared radiation. The radiative losses of the sample

pass through this window. It is assumed that there is a perfect thermal bond between

the surface of the guard cap marked with a heavy line and the equivalent portion

of the sample, and that the guard cap is uniformly at the ambient temperature. It

is assumed that the window is not in contact with the sample since in reality it is

slightly offset from the main part of the guard cap. These assumptions avoid the

need to include the heat flow within the guard cap in the model and enable the

conductive heat losses to be modelled as a boundary condition.

Fig. 8.2 Sketch of the guard cap geometry (not to scale). The dark area marks the region of

contact between guard cap and sample

The curved surfaces of the sample are assumed to be perfectly insulated. The

temperature gradient along the axis of symmetry must be zero for axisymmetry to

be valid. The flat face exposed to the laser is assumed to lose heat radiatively. These

boundary conditions can be expressed as

∂T

∂ r

∣

∣

∣

∣

r=0

= 0, 0 ≤ z ≤ L, (8.12)

∂T

∂ r

∣

∣

∣

∣

r=R

= 0, 0 ≤ z ≤ L, (8.13)

∂T

∂ z

∣

∣

∣

∣

z=0

= εσ(T (4r,0, t)−T4
0 ), 0 ≤ r ≤ R (8.14)

∂T

∂ z

∣

∣

∣

∣

z=L

= −εσ(T 4(r,L, t)−T 4
0 ), 0 ≤ r ≤ rw (8.15)
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T (r,L, t) = T0 rw < r ≤ R (8.16)

where rw is the radius of the window in the guard cap and σ is the Stefan-Boltzmann

constant.

8.3.3 Numerical Methods

These equations, boundary conditions, initial conditions, and material properties

fully define the two-dimensional model. The model cannot be solved analytically.

A numerical approximation technique must be used instead.

The technique used to solve the model numerically is based on the finite volume

method. The structure and approach are described in detail elsewhere [1, 6]. The

work reported here has used a version of TherMol [1, 6], an NPL software package

for multiphysics applications focussing on the diffusion equation, as the basis for

the model. The software used has been adapted from a three-dimensional imple-

mentation of TherMol.

The finite volume mesh uses two different volume sizes Δz in the z direction,

one for each material. The oxide layer had Δz = 0.0453 mm and the P92 steel had

Δz = 0.0419 mm. The latter value was used as the value of Δz in the definition of

Q(r,t) in ( 8.10). A uniform volume size of Δr = 0.1 mm was used in the r direction.

The finite volume model calculates the change in temperature relative to the ini-

tial temperature. This approach means that the rounding errors caused by the use

of finite-precision arithmetic have little effect. The only feature of the model that

requires the use of the true temperature is the calculation of radiative losses, and the

apropriate formulation is used in that section of the software.

An explicit time integration method has been used for the transient calculations

for simplicity and ease of implementation. The time step was chosen by trial and

error for a typical set of parameter values, and was then divided by 10 to ensure

that the model would run for more extreme parameter value choices. No numerical

stability problems have been encountered during the work.

The results of interest from the calculations were the temperature changes of the

rear face averaged over the spot size of the temperature sensor. It was assumed that

the temperature sensor spot size was the same size as the window of the guard cap.

The results were output at the same time intervals as the measurements to enable

direct comparison.

The software TherMOL has been used before with an optimisation routine to

determine unknown properties of the laser flash experiment [1]. The work reported

used a one-dimensional model with radiative cooling only and an extension of the

Nelder-Mead algorithm, COBYLA [10], able to handle constraints on the parameter

values. When applied to the data shown in Fig. 8.1, the optimisation process gave

a thermal conductivity of 2.1 W m−1 K−1 for the oxide layer, and a laser power

intensity of 1.6× 108 W m−2, but the model results did not fit the cooling part of

the temperature curve at all well.



8 Parameter Estimation from Laser Flash Experiment Data 213

8.4 Optimisation Results

The initial optimisation aimed to minimise the relative difference between the mea-

sured temperatures and the model predictions by varying the thermal conductivity

of the oxide layer, λ2, the laser power I, and the emissivity of the oxide layer ε2.

For any optimisation problem, the formulation of the right objective function is im-

portant. Here we intend to minimise errors, but errors can be defined as relative er-

rors and absolute errors, which implies two different ways of defining the objective

function.

8.4.1 Initial Optimisation Results

The objective function was initially defined as the root mean square average of the

relative differences between the measured data and the calculated values:

√

√

√

√

1

N

N

∑
n=1

(

1−
T̄ (tn;λ2, I,ε2)

Tn

)2

, (8.17)

where N = 1515 is the number of data points. Tn is the measured temperature rise

(i.e. T −T0) at time tn, and T̄ (tn;λ2, I,ε2) is the calculated averaged surface temper-

ature rise over the spot size of the temperature sensor for a given set of values of the

model parameters λ2, I,ε2.

Two optimisation algorithms were used: the Levenburg-Marquardt algorithm

within a trust-region [3, 4] and a particle swarm optimisation algorithm (PSO) [8].

The Levenburg-Marquardt algorithm is an efficient local optimiser and will find

global minima for smooth unimodal surfaces. The work reported here uses the

Matlab Optimisation Toolbox function lsqnonlin, an implementation of the

Levenburg-Marquardt algorithm designed for minimisation of least-squares func-

tions such as (8.17). The PSO implementation used was developed at NPL. The

technique is a global optimiser and can be used to check that the local optimiser’s

results are globally optimal. The PSO is expected to take more time to converge to

the optimal solution than the local optimiser.

The initial optimisation results gave a poor fit to the measurement data, particu-

larly at later times. A typical set of results, generated by parameter values identified

as optimal by both algorithms, is shown in Fig. 8.3. The lower of the plots shows a

close-up of the first 0.15 seconds. The measured temperature changes here are very

close to zero, and the model is a very good fit to these values. The small values of

Ti for these initial times mean that the relative errors are very large, and so the fit of

the model to the data at small times dominates the overall fit.

This dominance of small measured temperature change values suggests that the

root mean square of differences,

√

1

N

N

∑
n=1

(Tn − T̄ (tn;λ2, I,ε2))
2
, (8.18)
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Fig. 8.3 An inappropriate objective function leads to a poor fit of model results to measured

data (upper figure), but an unnecessarily good fit to values around 0 (lower figure)
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would be a better choice of objective function. This function has been used to gen-

erate all results in the rest of this chapter. Normally this sum would be weighted

according to the uncertainties associated with the measurements, but here it is

assumed that the uncertaintes were the same for all measurements.

In general, if the target data contains values close to zero, absolute differences

may be a better choice of objective function than relative differences. Whilst min-

imisation of relative errors can be a good way to combine results of different types,

the measured data may not be the best choice of scaling factor when measured values

are close to zero. The problems experienced illustrate the importance of considering

the construction of the objective function carefully.

In order to check the sensitivity of the converged solution to the initial parameter

estimates, five sets of optimisation runs were carried out using each optimisation

algorithm. The runs started from randomly-generated points within the parameter

search space. The optimal solutions found and the number of function evaluations

required to find them are summarized in Table 8.2.

The results in Table 8.2 show that both algorithms converge to the same opti-

mal solution repeatedly. The PSO showed more variation within the five runs than

lsqnonlin, leading to a higher standard deviation for each of the parameters. The

size of the standard deviation is strongly linked to the stopping criteria of the opti-

misation algorithms. The deviations listed below are consistent with the algorithms

effectively arriving at the same solution. As expected, PSO required more function

evaluations (about 327) to converge than the efficient local optimiser (about 32). As

stated in section 8.3, earlier work had found values of λ2 = 2.1 W m−1 K−1 and

I = 1.6×108 W m−2, which is a change of about 25% in the value of λ2.

Table 8.2 Summary of optimisation results. Means and standard deviations of parameters

calculated from 5 runs. Note that intervals specified here are ±one standard deviation

PSO LSQnonlin

Evaluations 327±56 32±3

Mean/Std λ2 = 2.83±0.23 W m−1 K−1 2.82±0.005 W m−1 K−1

I = [1.69±0.12]×108 W m−2 [1.69±0.04]×108 W m−2

ε2 = 0.092±0.073 0.0000±0.002

The covariance matrix, Va, associated with these parameter estimates has been

calculated from the goodness of fit and Jacobian matrix, using the equation

Va = (JTJ)−1 1

N −m

N

∑
n=1

(Tn − T̄(tn;λ2, I,ε2))
2

(8.19)

where J is the Jacobian matrix and m = 3 since there are three parameters. The Ja-

cobian matrix has been estimated using finite difference approximations since the

objective function of this model is a black box. The standard uncertainties asso-

ciated with the parameter estimates are given by the square root of the diagonal
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entries of the resulting matrix. The standard uncertainties were, in the order λ2, I,

ε2, 0.047 W m−1 K−1, 7.2 ×105 W m−2, and 0.17. This reflects the high degree of

uncertainty about the emissivity. The associated estimate of the goodness of fit was

8.3×10−3 K.

The results of the model obtained by using the optimal parameter values are

shown in Fig. 8.4. These model results are clearly a better fit to the measured

data than those shown in Fig. 8.3, illustrating the benefit of changing the objective

function. The results are also a better fit to the measured values than the results ob-

tained during the work described in [1], illustrating that the new model simulates the

experiment better than the original version.

Fig. 8.4 Model results calculated using the best solutions found (λ2 = 2.8229, I = 1.6903×
108 and ε = 0.0)

There is still a discrepancy in the cooling part of the curve: the model re-

sults appear to cool too fast. In addition, the value of ε that has been found is

unexpectedly low (physically the value must be between 0 and 1, and was ex-

pected to be close to 0.8). These observations suggest that the conductive losses

through the guard cap over-estimate the true cooling, and that the conductive

losses dominate the radiative losses to the point where emissivity cannot be

determined.
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8.4.2 Revision of the Model

The results of the initial model suggest that whilst the inclusion of the effects of the

guard cap improves the fit to the measured data, the model is still not predicting the

cooling part of the measured data correctly. In order to improve the fitting of the

cooling part of the data, the perfect bond between the guard cap and the sample is

changed to an imperfect thermal bond parameterised by the unknown thermal bond

quality parameter β with units W m−2 K−1.

The imperfect bond is defined as an extra layer between the guard cap and the

surface of the sample. The bond quality parameter is effectively the thermal conduc-

tivity of the extra layer divided by its thickness. The boundary conditions describing

the imperfect bond are generated by solving a one-dimensional steady state heat flux

equation analytically at each point on the sample surface that is in contact with the

guard cap, and imposing continuity of temperature and flux at the boundaries of the

extra layer. This approach assumes that the only heat flow within the extra layer

only occurs in the z direction, which is valid because the extra layer is not real and

is only a simulation of a poor thermal bond.

The imperfect thermal bond boundary condition is implemented as

λ
∂T (r,z, t)

∂ z

∣

∣

∣

∣

z=L

=
β λ/(∆z/2)(T0 −T(r,L−∆z/2,t))

β + λ/(∆z/2)
, (8.20)

where rw ≤ r ≤ R. From this implementation it is clear that β = 0 is a perfectly

insulating boundary, and that as β →∞ the condition tends towards a perfect thermal

bond with T (r,L,t) = T0 as in the initial model.

8.4.3 Optimisation Results with the New Model

Following the successful application of the Levenbug-Marquardt algorithm to the

initial version of the model, the optimisations using the new model with the im-

perfect bond are carried out using lsqnonlin only. The new model uses four

parameters and so it is expected that more function evaluations will be required to

find a converged solution. The optimisation identified the best parameter values as

• λ2=3.55 W m−1K−1,

• I=1.67 ×108 W m−2,

• ε2=1.0,

• β =1.92 ×104 W m−2K−1.

These values were obtained from five runs started from randomly-generated initial

parameter estimates. The average number of function evaluations required for con-

vergence was 126. The standard deviations of each of the parameter values across

the five runs were less than 10−3, suggesting good repeatability. The covariance ma-

trix was calculated using equation ( 8.19). This calculation was complicated by the

Jacobian estimates suggesting that the derivative of the objective function with re-

spect to ε2 at ε2 = 1 was zero. This zero sensitivity meant that the emissivity could
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not be included in the covariance calculation, so the covariance matrix only con-

sidered λ2, I, and β . The standard uncertainties found from the matrix were, in the

order λ2, I, and β , 0.045 W m−1 K−1, 1.9 ×105 W m−2, and 620 W m−2K−1. The

associated estimate of the goodness of fit was 5.2×10−3 K, an improvement on the

previous model.

The model results obtained by using these parameter values are plotted in Fig.

8.5, along with the measured data and the model results shown in Fig. 8.4 (dashed

line). These plots show that the use of an imperfect thermal bond improves the fit

of the model results to the measured data, particularly for t > 0.5. The old and new

models are in close agreement for t < 0.3, which is the time period where the energy

absorbed by the sample from the laser flash is likely to dominate the heat flow and

differences in the value of λ2 are less likely to have an effect as the oxide layer is

comparatively thin.

Fig. 8.5 Comparison of new model and original model and their best-fit curves

8.5 Discussion

Using the revised model, the value of λ2 has increased by about 20 %, and that of

ε2 has gone from 0 to 1, whereas the value of I has not changed significantly. The

parameter I defines how much energy goes into the sample during the laser flash,

and the good fit of the model predictions to the peak temperature rise suggests that

this value has been determined accurately. The value of λ2 affects how the heat

flows within the sample, so it is expected that a change in the boundary conditions

would affect the optimal value of λ2. Whilst the new value of ε2 is closer to the
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expected value of 0.8, it is by no means certain that this value is a good estimate of

the true value. It is likely that the cooling due to the contact with the guard cap still

dominates the heat loss, making determination of ε2 difficult to determine.

It is worth pointing out that the fit, though improved, is still not perfect. Ideally

the differences between the model predictions and measured values would lie be-

low the level of the measurement noise, but this level of agreement has not been

achieved. There are differences between the model results and the measured values

for 0.3 ≤ t ≤ 0.5 which suggest that further improvements could be made to the

model. Possibilities for improvements include adding circumferential heat losses,

considering an imperfect thermal bond between the sample and the oxide, adding

extra layers to allow for the multi-phase nature of the oxide, and including a full

model of the guard cap so that the conductive losses are modelled more accurately.

It is clear from the results shown here that choosing the best optimisation al-

gorithm can significantly reduce the number of function evaluations, leading to a

reduction in computational time. There was no difference between the algorithms

in terms of the accuracy of the estimates. The results suggest that the accuracy of

the parameter estimates is constrained by the quality of the underpinning model and

(were the model to be improved) the uncertainties associated with the measurement

data.

Recent trends suggest that metaheuristic algorithms such as PSO are increasingly

widely used [8, 12], but popularity does not mean the algorithm is the best choice.

In this case study, both PSO and nonlinear least squares provided very good results,

but the classical, well-tested nonlinear squares required significantly fewer func-

tion evaluations to reach a converged solution. The objective function in this case

study was formulated in the least-squares sense, and the results suggest that a unique

global optimum exists, which makes the least-squares optimiser more suitable than

a metaheuristic algorithm.

Experience gained in this case study and in other applications suggests that it is a

good idea to use well-established algorithms when first solving a new optimisation

problem. If the well-established algorithms fail, it is worth trying metaheuristic al-

gorithms [12]. This approach can avoid unnecessary and time-consuming trial and

error.
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Chapter 9 

Applications of Computational Intelligence in 

Behavior Simulation of Concrete Materials 

Amir Hossein Gandomi and Amir Hossein Alavi
*
 

Abstract. The application of Computational Intelligence (CI) to structural engi-

neering design problems is relatively new. This chapter presents the use of the CI 

techniques, and specifically Genetic Programming (GP) and Artificial Neural 

Network (ANN) techniques, in behavior modeling of concrete materials. We first 

introduce two main branches of GP, namely Tree-based Genetic Programming 

(TGP) and Linear Genetic Programming (LGP), and two variants of ANNs, called 

Multi Layer Perceptron (MLP) and Radial Basis Function (RBF). The simulation 

capabilities of these techniques are further demonstrated by applying them to two 

conventional concrete material cases. The first case is simulation of concrete com-

pressive strength using mix properties and the second problem is prediction of 

elastic modulus of concrete using its compressive strength. 

9.1   Introduction 

Modeling of structural engineering nonlinear systems is a diverse research area 

where different kinds of methods can be utilized. Due to the large variety of  

this field, no method can impose itself as the best solution. Estimating both the 

structure and the parameters of the structural engineering problems makes their 

modeling process a difficult task. Different criteria for model classification can  

be characterized while dealing with a system modeling task [1]. A model can be 
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classified as phenomenological or behavioral [2]. A phenomenological model is 

derived by taking into account the physical relations governing the system. As a 

result, the structure of the model is selected according to the prior knowledge 

about the system. It is not always possible to design phenomenological models for 

many of the structural engineering systems due to their complexity. In order to 

overcome such a problem, the behavioral models are commonly employed. Such 

models approximate the relationships between the inputs and outputs based on a 

measured set of data without a need to prior knowledge about the mechanism that 

produced the experimental data. The behavioral models can provide very good re-

sults with a minimal effort [2]. Traditional statistical regression techniques are 

commonly used for the behavioral modeling purposes. The regression analysis can 

have large uncertainties. It has major drawbacks for idealization of complex proc-

esses, approximation, and averaging widely varying prototype conditions. Another 

important issue is due to the limitation of this method. The regression analysis 

tries to model the nature of the corresponding problem by a pre-defined linear or 

nonlinear equation. Another major constraint in application of the regression 

analysis is the assumption of normality of residuals.  

In the case of the behavioral models, several alternative computer-aided pattern 

recognition and data classification approaches have been developed. Computa-

tional intelligence (CI) [3] techniques are well-known pattern recognition meth-

ods. Developments in the computer hardware during the last two decades have 

made it much easier for these techniques to grow into more efficient frameworks. 

In addition, various CI-based approaches may be used as efficient tools in prob-

lems where conventional approaches fail or perform poorly. Artificial neural net-

works (ANNs) are the most widely-used CI methods. ANNs have been used for a 

wide range of structural engineering problems (e.g. [4]). In spite of the successful 

performance of ANNs, they usually do not give a deep insight into the process 

which they use the available information to obtain a solution. In the present  study, 

the approximation ability of two of the most widely used ANN architectures, 

namely Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) are  

investigated.  

Genetic algorithm (GA) is a powerful stochastic search and optimization me-

thod based on the principles of genetics and natural selection. GA has been shown 

to be suitably robust for a wide variety of complex civil engineering problems 

(e.g. [5]). Genetic programming (GP) [6] is an alternative approach for behavior 

modeling of geotechnical engineering tasks. GP is a developing subarea of evolu-

tionary algorithms inspired from the Darwin’s evolution theory. It may generally 

be defined as a specialization of GA where the solutions are computer programs 

rather than fixed-length binary strings. The programs generated by traditional GP 

are represented as tree structures and expressed in the functional programming 

language [6]. This classical GP approach is referred to as Tree-Based GP (TGP). 

For the last ten years, traditional GP has been pronounced as an alternative method 

for simulating the behavior of civil engineering problems (e.g. [7]). Linear genetic 

programming (LGP) [8] is a new subset of GP with a linear structure similar to the 

DNA molecule in biological genomes. More specifically, LGP operates on pro-

grams that are represented as linear sequences of instructions of an imperative 
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programming language [8, 9]. In contrast with traditional GP and ANNs, applica-

tion of LGP in the field of civil engineering is totally new and original. (e.g., [10, 

11]). 

This chapter presents the feasibility of using TGP, LGP, MLP, and RBF for  

behavior simulation of concrete materials. To verify the capabilities of these tech-

niques, they are applied to the modeling of compressive strength and elastic mod-

ulus of concrete. The chapter is organized as follows: Section 9.2 presents the ba-

sic aspects and the characteristics of the employed algorithms. The modeling 

process and parameters settings for the methods are given in Section 9.3. Numeri-

cal examples and the obtained results are presented in Section 9.4. Section 9.5 pre-

sents a discussion of the capabilities of the methods. Finally, some concluding re-

marks are provided in Section 9.6. 

9.2   Computational Intelligence 

Evolutionary algorithms (EAs) [12] are a subset of evolutionary computations. 

They use biology-inspired mechanisms to optimize a solution with regard to de-

sired result. Computational intelligence (CI) [3] includes EAs and all of their dif-

ferent branches with artificial neural networks and fuzzy logic. The CI techniques 

have wide ranging applications for approximating the nonlinearities. A survey  

of the literature reveals the growing interest of the research community in the rela-

tively new field of computational intelligence. In the following subsections,  

different branches of the CI techniques employed in this research are briefly  

introduced.  

9.2.1   Genetic Programming  

GP is a symbolic optimization technique that creates computer programs to solve a 

problem using the principle of Darwinian natural selection [6]. The breakthrough 

in GP then came in the late 1980s with the experiments on symbolic regression. 

GP was introduced by Koza [6] as an extension of GA. Most of the genetic opera-

tors used in GA can also be implemented in GP with minor changes. The main dif-

ference between GP and GA is the representation of the solution. GA creates a 

string of numbers that represent the solution. The GP solutions are computer pro-

grams represented as tree structures and expressed in a functional programming 

language (like LISP) [6, 10, 20]. In other words, in GP, the evolving programs 

(individuals) are parse trees than can vary in length throughout the run rather than 

fixed-length binary strings. Essentially, this is the beginning of computer pro-

grams that program themselves [6]. Since GP often evolves computer programs, 

the solutions can be executed without post-processing, while coded binary strings 

typically evolved by GA require post-processing. The traditional optimization 

techniques, like GA, are generally used in parameter optimization to evolve the 

best values for a given set of model parameters. GP, on the other hand, gives the 

basic structure of the approximation model together with the values of its parame-

ters [13]. GP optimizes a population of computer programs according to a fitness 
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landscape determined by a program ability to perform a given computational task. 

The fitness of each program in the population is evaluated using a fitness function. 

Thus, the fitness function is the objective function GP aims to optimize [14].  

The classical GP technique is also referred to as tree-based GP (TGP) [6]. In 

TGP, a random population of individuals (computer programs) is created to 

achieve high diversity. A population member in TGP is a hierarchically structured 

tree comprising functions and terminals. The functions and terminals are selected 

from a set of functions and a set of terminals. For example, the function set F can 

contain the basic arithmetic operations (+, -, ×, /, etc.), Boolean logic functions 

(AND, OR, NOT, etc.), or any other mathematical functions [10,20]. The terminal 

set T contains the arguments for the functions and can consist of numerical con-

stants, logical constants, variables, etc. The functions and terminals are chosen at 

random and constructed together to form a computer model in a tree-like structure 

with a root point with branches extending from each function and ending in a ter-

minal. An example of a simple tree representation of a TGP model is illustrated in 

Fig. 9.1. 

 

Fig. 9.1 The tree representation of a TGP model (X1 + 3/X2)
2 (After [10]) 

Once a population of individuals (models) has been created at random, the TGP 

algorithm evaluates the fitness of individuals, selects individuals for reproduction, 

and generates new individuals by reproduction, crossover and mutation [6]. The 

reproduction operation gives a higher probability of selection to more successful 

individuals. They are copied into the next generation without any change. The 

crossover operation ensures the exchange of genetic material between the evolved 

programs. During the crossover procedure, a point on a branch of each solution 

(program) is selected at random and the set of terminals and/or functions from 

each program are then swapped to create two new programs. Fig. 9.2 shows a 

typical crossover operation of two computer programs consisting of several func-

tion and terminal genes. Two new child computer programs (Child I, Child II) are 

generated from two parental computer programs (Parent I, Parent II). In Fig. 9.2, 

the randomly generated crossover points are shown by dotted lines. It can be seen 

that both child organisms include the genetic material from their parents. It is nec-

essary to preserve syntactic structure of the programs during the crossover  

process.  
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Fig. 9.2 Typical crossover operation in TGP 

During this mutation process, the TGP algorithm occasionally selects a function 

or terminal from a model at random and mutates it. The mutation operation can be 

applied to the function or terminal nodes. A node in the tree is selected at random. 

If the selected node is a terminal, it is replaced by another terminal. If the node is a 

function and point mutation is to be applied, it is replaced by a new function with 

the same parity. If a tree mutation is to be performed, a new function node,  

which is not necessarily with the same parity, is chosen. Then, the original node 

together with its relative sub-tree is replaced by a new randomly created sub-tree. 

Fig. 9.3 illustrates a typical mutation operation in TGP. The best program that  

appeared in any generation, the best-so-far solution, defines the output of the GP 

algorithm [6]. 

 

 

Fig. 9.3 Typical mutation operation in GP 

In addition to traditional tree-based GP, there are other types of GP where pro-

grams are represented in different ways. These are linear and graph-based GP 

[15]. The emphasis of the present study is placed on the linear GP techniques. 

Several linear variants of GP have recently been proposed such as linear genetic 

programming (LGP) and multi-expression programming (MEP). The linear vari-

ants of GP make a clear distinction between the genotype and phenotype of an in-

dividual. In these variants, individuals are represented as linear strings [11,16]. 

Such linear programs can have a complex control flow similar to the trees of  
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standard GP when executed. There are some main reasons for using linear GP. 

Basic computer architectures are fundamentally the same now as they were twenty 

years ago, when GP began. Almost all architectures represent computer programs 

in a linear fashion. In other words, computers do not naturally run tree-shaped pro-

grams. Hence, slow interpreters have to be used as part of tree-based GP. Con-

versely, by evolving the binary bit patterns, the use of an expensive interpreter (or 

compiler) is avoided. Consequently, the linear GP methods can run several orders 

of magnitude faster than comparable interpreting systems [11,17]. The enhanced 

speed of the linear variants of GP (e.g., LGP) permits conducting many runs in re-

alistic timeframes. This leads to deriving consistent, high-precision models with 

little customization [18]. 

9.2.1.1   Linear Genetic Programming  

LGP is a subset of GP with a linear representation of individuals. The main char-

acteristic of LGP in comparison with traditional tree-based GP is that expressions 

of a functional programming language (like LISP) are substituted by programs of 

an imperative language (like C/C++) [8, 9]. Fig. 9.4 presents a comparison of the 

program structures in LGP and tree-based GP. As shown in Fig. 9.4(a), a linear 

genetic program can be seen as a data flow graph generated by multiple usage of 

register content. That is, on the functional level the evolved imperative structure 

denotes a special directed graph. As can be observed from Fig. 9.4(b), in tree-

based GP, the data flow is more rigidly determined by the tree structure of the 

program [9,11].  

 

 

Fig. 9.4 Comparison of the GP program structures. (a) LGP (b) Tree-based GP (after [19]) 

In the LGP system described here, an individual program is interpreted as a 

variable-length sequence of simple C instructions. The instruction set or function 

set of LGP consists of arithmetic operations, conditional branches, and function 

calls. The terminal set of the system is composed of variables and constants. The 

instructions are restricted to operations that accept a minimum number of con-

stants or memory variables, called registers (r), and assign the result to a destina-

tion register, e.g., r0 := r1 + 1. A part of a linear genetic program in C code is rep-

resented in Fig. 9.5. In this figure, register r[0] holds the final program output. 
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Fig. 9.5 An excerpt of a linear genetic program 

Here are the steps the LGP system follows for a single run [8,11,20]:  

1. Initializing a population of randomly generated programs and calculating their 

fitness values. 

2. Running a Tournament. In this step four programs are selected from the popu-

lation randomly. They are compared and based on their fitness, two programs 

are picked as the winners and two as the losers. 

3. Transforming the winner programs. After that, two winner programs are copied 

and transformed probabilistically into two new programs via crossover and mu-

tation operators. 

4. Replacing the loser programs in the tournament with the transformed winner 

programs. The winners of the tournament remain without change. 

5. Repeating steps two through four until termination or convergence conditions 

are satisfied. 

Crossover occurs between instruction blocks. Fig. 9.6 demonstrates a two-point 

linear crossover used in LGP for recombining two tournament winners. As it is 

seen, a segment of random position and arbitrary length is selected in each of the 

two parents and exchanged. If one of the two children would exceed the maximum 

length, crossover is aborted and restarted with exchanging equally sized segments. 

The mutation operation occurs on a single instruction. Two types of standard  

 

 

Fig. 9.6 Crossover in LGP [9] 
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LGP mutations are commonly used: micro and macro mutation. Micro mutation 

changes an operand or an operator of an instruction. The macro mutation opera-

tion inserts or deletes a random instruction [9]. Comprehensive descriptions of the 

basic parameters used to direct a search for a linear genetic program can be found 

in [8, 20].  

9.2.2   Artificial Neural Network 

ANNs have emerged as a result of simulation of biological nervous system. The 

ANN method was founded in the early 1940s by McCulloch and co-workers [21]. 

The first researches were focused on building simple neural networks to model 

simple logic functions. At the present time, ANNs can be applied to problems that 

do not have algorithmic solutions or problems with complex solutions. ANN for-

mulates a mathematical model for a system in which no clear relationship is avail-

able between inputs and outputs. ANNs use the data alone to determine the struc-

ture of the model and unknown model parameters. The ability of ANNs to learn 

by example makes them very flexible and powerful techniques. Thus, this ap-

proach has widely been applied to solving regression and classification problems 

in many fields. In this study, the approximation ability of two of the most well-

known ANN architectures, MLP and RBF, are investigated.  

9.2.2.1   Multilayer Perceptron Network  

MLPs are a class of ANN structures using feed forward architecture. The MLP 

networks are usually applied to perform supervised learning tasks, which involve 

iterative training methods to adjust the connection weights within the network. 

MLPs are universal approximators, that is, they are capable of approximating es-

sentially any continuous function to an arbitrary degree of accuracy. They are of-

ten trained with back propagation (BP) [22] algorithm. Fig. 9.7 shows a schematic 

representation of an MLP network. MLP consist of an input layer, at least one 

hidden layer of neurons and an output layer. Each of these layers has several proc-

essing units and each unit is fully interconnected with weighted connections to 

units in the subsequent layer. Each layer contains a number of nodes. Every input 

is multiplied by the interconnection weights of the nodes. The output (hj) is ob-

tained by passing the sum of the product through an activation function as follows:  

⎟⎠
⎞⎜⎝

⎛
+= ∑

i

ijij bwxfh                                                    (9.1)  

where f () is activation function; xi  is the activation of i
th

 hidden layer node; wij is 

the weight of the connection joining the j
th

 neuron in a layer with the i
th

 neuron in 

the previous layer, and b is the bias for the neuron. For nonlinear problems, the 

sigmoid functions (Hyperbolic tangent sigmoid or Log-sigmoid) are usually 

adopted as the activation function. Adjusting the interconnections between layers 

will reduce the following error function: 
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where tk
n
 and hk

n
 are respectively the calculated output and the actual output value, 

n is the number of sample and k is the number of output nodes. Further details of 

MLPs can be found in [23, 24]. 

 

Fig. 9.7 A schematic representation of an MLP network 

9.2.2.2   Radial Basis Function 

RBFs have feed forward architectures. Compared to other ANN structures such as 

MLPs, the RBFs procedure to find complex relationships is generally faster and 

their training is much less computationally intensive. The schematic representation 

of the RBF network is illustrated in Fig. 9.8. The structure of the RBF network 

consists of an input layer, a hidden layer with a non-linear RBF activation func-

tion, and a linear output layer. Input vectors are transformed into radial basis func-

tions by means of the hidden layer. 

 

Fig. 9.8 A schematic representation of RBF network 

The transformation functions used are based on a Gaussian distribution as an 

activation function. Center and width are two important parameters that are related 

to the Gaussian basis function. As the distance, that is usually Euclidean distance, 
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between the input vector and its center increases the output given by the activation 

function decays to zero. The rate of decrease in the output is controlled by the 

width of RBF. The Gaussian basis function (c) is given in the following form:  

⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜

⎝

⎛
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σ
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(x)j

                                                   (9.3) 

where ||•|| is the Euclidian norm, x is the input pattern, and μj and σj are the center 

and the spread of the Gaussian basis function respectively. The output of k
th

 neu-

ron in the output layer of network is computed as: 

k
bn

j
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j
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                                      (9.4) 

in which n is the number of the hidden neurons, wjk is the weight between j
th 

hid-

den neuron and k
th

 output neuron and bk is the bias term. The RBF networks with 

Gaussian basis functions have been shown to be universal function approximators 

with high pointwise convergency [25].  

9.3   Modeling Process and Parameters Setting 

9.3.1   Model Development Using GP-Based Methods  

Various parameters are involved in the TGP and LGP predictive algorithm. Sev-

eral runs were conducted to come up with a parameterization of TGP and LGP 

that provided enough robustness and generalization to solve the problems. In this 

study, basic arithmetic operators and mathematical functions were utilized to get 

the optimum GP models. The number of programs in the population that TGP and 

LGP will evolve is set by the population size. A run will take longer with a larger 

population size. The maximum number of tournaments sets the outer limit of the 

tournaments that will occur before the program terminates the run. The proper 

number of population and tournaments depends on the number of possible solu-

tions and complexity of the problem. Different levels were tested for the number 

of population and tournaments to find models with minimum error. The program 

was run until there was no longer significant improvement in the performance of 

the models or the runs terminated automatically. The mutation rate was set to 

90%. At the low level the crossover rate is 50% and at the high level it is 95%. 

The values of the other involved parameters were selected based on some previ-

ously suggested values [6, 11, 20, 26] and also after a trial and error approach. 

Different parameter combinations were tested and 10 replications for each were 

carried out. For each of the problems, the overall number of runs was equal to 60 

for each of the TGP and LGP algorithms. For the TGP analysis, a MATLAB tool-

box, namely GPLAB [27] was used. The LGP algorithm was implemented using 

the Discipulus software [28]. 
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Overfitting is one of the principal problems in machine learning generalization. 

An efficient approach to prevent overfitting is to test other individuals from the 

run on a validation set to find a better generalization [15]. This technique was used 

in this study for improving the generalization of the models. For this purpose, the 

available data sets were randomly divided into learning, validation and testing 

subsets. The learning data were used for training (genetic evolution). The valida-

tion data were used to specify the generalization capability of the evolved pro-

grams on data they did not train on (model selection). In other words, the learning 

and validation data sets were used to select the best evolved programs and in-

cluded in the training process. Thus, they were categorized into one group referred 

to as “training data”. The testing data were finally used to measure the perform-

ance of the models obtained by TGP and LGP on data that played no role in build-

ing the models. A trial study was conducted to find a consistent data division. The 

selection was such that the statistical properties (e.g. mean and standard deviation) 

of the training and testing subsets were similar.  

9.3.2   Model Development Using ANN-Based Methods  

For the development of the MLP and RBF models, two scripts were written in the 

MATLAB environment using Neural Network Toolbox 5.1 [29]. The performance 

of an ANN model mainly depends on the network architecture and parameter set-

tings. For the traditional MLP, a single hidden layer network is sufficient to uni-

formly approximate any continuous and nonlinear function according to a univer-

sal approximation theorem [23]. Choice of the number of the hidden layer nodes, 

learning rate, epochs and types of activation function plays an important role in 

the construction of the MLP and RBF models. Hence, several network models 

with different settings for the mentioned characters were trained to reach the opti-

mal configurations with the desired precision [30]. The written program automati-

cally tries various numbers of neurons in the hidden layer and reports the R and 

MAE values. The data division for the MLP and RBF analyses was similar to that 

considered for TGP and LGP. 

9.3.3   Finding the Optimum Models 

The best models were chosen on the basis of a multi-objective strategy as follows:  

• The simplicity of the models, although this was not a predominant factor.  

• Providing the best fitness value on the learning set of data.  

• Providing the best fitness value on a validation set of data.  

The first objective can be controlled by the user through the parameter settings 

(e.g., program size for GP and hidden layer neurons for ANN). For the other ob-

jectives, the following objective function (OBJ) was constructed as a measure of  

how well the model predicted output agrees with the experimentally measured  

output. The selection of the best models was deduced by the minimization of the 

following function: 
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where No.Learning, No.Validation and No.Training are respectively the number of learning, 

validation and training data; R and MAE are respectively correlation coefficient 

and mean absolute error given in the form of formulas as follows: 
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in which hi and ti  are respectively actual and calculated outputs for the i
th

 output, 

ih  is the average of the actual outputs, and n is the number of sample. It is well 

known that the R value alone is not a good indicator of prediction accuracy of a 

model. This is because that by shifting the output values of a model equally, the R 

value will not change. The constructed objective function takes into account the 

changes of R and MAE together. Higher R values and lower MAE values result in 

lower OBJ and, consequently, indicate a more precise model. In addition, the 

above function considers the effects of different data divisions for the learning and 

validation data. 

9.4   Case Studies 

9.4.1   Compressive Strength of Concrete 

The performance characteristics of concrete are major concerns in construction of 

civil engineering applications. The enhanced performance characteristics of con-

crete are generally achieved by addition of various cementitious materials and 

chemical and mineral admixtures to the conventional concrete mix designs. Ac-

cording to the Abrams’ well-known rule, the correlation of the strength of con-

crete with the water to cement ratio is negative. This rule indicates that only the 

quality of the cement paste controls the strength of comparable cement. Based on 

a variety of experimental studies, this is not quite true. For example, if two compa-

rable concrete mixtures have the same water to cement ratio, the strength of the 

concrete with the higher cement content is lower [31]. Several studies have inde-

pendently shown that concrete strength development is determined not only by the 

water to cement ratio, but that it is also influenced by the content of other ingredi-

ents [32]. Advances in recent years have been assisted by the use and understand-

ing of chemical admixtures, notably super plasticizers, and cement replacement 

materials, notably fly ash, blast furnace slag, etc. The use of fly ash and slag plays  
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an important role in contributing to a better workability and low slump loss rates 

of concrete. This is due to the mutual containment with surface lubrication and the 

ball-bearing effects among the fly ash and micro fine materials. In many cases, 

there is also the economic benefit of the price differential between cement and the 

supplementary cementitious material. Additionally, partial replacement of cement 

nearly always allows a significant reduction in the dosage of the super plasticizer, 

which is a particularly expensive ingredient [33]. 

9.4.1.1   Modeling 

In its current state, behavior modeling of the compressive strength of concrete 

containing additives is inherently more difficult than for the conventional con-

crete. In order to provide accurate assessment of the performance characteristics of 

the concrete mix, the effects of several parameters should be incorporated into the 

model development. Therefore, in this study, the GP and ANN-based approaches 

were utilized to obtain meaningful relationships between the compressive strength 

(fc) of concrete mixes and the predictor variables as follows: 

⎟⎠
⎞⎜⎝

⎛
=  Ln(A) ,

Fa

Ca
 S, F, B, ,

C

W
ffc

                                          (9.8) 

where, 

W/C: Water to cement ratio 

%B: Blast furnace slag content 

%F: Fly ash content 

%S: Superplasticizer content 

Ca/Fa: Coarse aggregate to fine aggregate ratio 

Ln(A): Natural logarithm of age 

The above variables were chosen as the input variables on the basis of a literature 

review [33-35].  

It is known that the models derived using the GP, ANNs or other CI ap-

proaches, in most cases, have a predictive capability within the data range used for 

their development. Thus, the amount of data used for the training of these algo-

rithms is an important issue, as it heavily bears on the reliability of the final mod-

els. The only way to overcome this limitation is to employ comprehensive data 

sets for training their algorithms. Hence, a reliable database consisting of tests on 

mixtures with a wide range of aggregate gradation and properties was obtained 

from the literature to develop the generalized models. The database contains 1133 

compressive strength of concrete test results presented by Yeh [34, 35]. It includes 

measurements of water (W), cement (C), blast furnace slag (B), fly ash (F), super-

plasticizer (S), coarse aggregate (CA), fine aggregate (FA), age of specimens (A) 

and fc of concrete mixes. To visualize the distribution of the samples, the data are 

presented by frequency histograms (Fig. 9.9).  
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Fig. 9.9 Histograms of the variables used in the model development 

Some of the HPC property variables may be fundamentally interdependent. The 
first step in the analysis of interdependency of the data is to make a careful study 
of what it is that these variables are measuring, noting any highly correlated pairs. 
High positive or negative correlation coefficients between the pairs may lead to 
poor performance of the models and difficulty in interpreting the effects of the ex-
planatory variables on the response. This interdependency can cause problems in 
analysis as it will tend to exaggerate the strength of relationships between vari-
ables. This is a simple case commonly known as the problem of multicollinearity 
[36]. Thus, the correlation coefficients between all possible pairs were determined 
and shown in Table 9.1. As it is seen, there are not high correlations between the 
predictor variables. For the analysis, 907 values (80%) of the data were taken for  
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Table 9.1 Correlation coefficients between all pairs of the explanatory variables 

Variable W/C B (%) F (%) S (%) CA/FA Ln(Age) (day) 

W/C 1.000 0.341 0.337 -0.141 -0.091 0.044 

B (%) 0.341 1.000 -0.275 0.045 0.065 -0.026 

F (%) 0.337 -0.275 1.000 0.393 -0.078 0.000 

S (%) -0.141 0.045 0.393 1.000 -0.255 -0.060 

CA/FA -0.091 0.065 -0.078 -0.255 1.000 0.056 

Ln(Age) (day) 0.044 -0.026 0.000 -0.060 0.056 1.000 

 
the training process (807 sets for learning and 100 sets for validation). The rest of 
the data were used for the testing of the generalization capability of the models. 

The maximum tree depth and program size for the optimal TGP and LGP mod-

es were respectively equal to 30 and 256. Various training algorithms were im-

plemented for the training of the MLP networks. The best results were obtained by 

Quasi-Newton back-propagation method. Also, hyperbolic tangent sigmoid was 

adopted as the transfer function between the input and hidden layer. The transfer 

function between the hidden layer and output layer was a linear transfer function. 

The best MLP model was built with one hidden layer with 18 hidden neurons, a 

learning rate of 0.05 and was trained for 1000 epochs. For the RBF analysis dif-

ferent spreads were checked and the optimum one was equal to 4.4.  

9.4.1.2   Comparison of the Results 

The compressive strength prediction equations for the best results of the TGP and 

LGP algorithms are given as follows: 

( ) ( ) 1Ln(A)F
C

W
B135Ln(A)Ln(A)

C

W
BFLn(A)

Fa

Ca
4F

W

C
)(, +⎟⎟⎠

⎞
⎜⎜⎝
⎛ ⎟⎟⎠
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Comparisons of experimental versus predicted compressive strength values using 

TGP, LGP, MLP and RBF are illustrated in Fig. 9.10. The other performance sta-

tistics of these models is presented in Table 9.2. It is notable that no rational 

model to predict the compressive strength of HPC mixes has yet been developed 

that would encompass the influencing variables considered in this study. There-

fore, it was not possible to conduct a more comprehensive comparative study 

herein. The results indicate that the TGP, LGP, MLP and RBF models are able to 

predict the compressive strength with high degree of accuracy. Comparing the  

performance of the GP-based methods, it can be observed from Fig. 9.10 and Ta-

ble 9.2 that LGP has produced better outcomes than TGP. The ANN-based  
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techniques have provided better results than TGP and LGP. The best results for 

the training and testing data are respectively obtained by RBF and MLP. 

 

 

Fig. 9.10 Histograms of the CI models (a) TGP, (b) LGP, (c) MLP, and (d) RBF 

Table 9.2 Statistical performances of the CI models 

Training data Testing data 
Model 

 R MAE Ave. Std.  R MAE Ave. Std. 

GP techniques          

 TGP 0.873 5.97 0.980 0.223  0.881 6.14 0.979 0.233 

 LGP 0.894 5.70 0.969 0.218  0.906 5.71 0.983 0.232 

ANN techniques          

 MLP 0.943 3.99 1.018 0.260  0.935 4.31 0.992 0.278 

 RBF 0.956 3.44 1.005 0.207  0.930 4.37 1.043 0.232 

9.4.2   Elastic Modulus of Concrete 

The elastic modulus of concrete is a key factor in structural and material engineer-

ing. Designers need the elastic modulus for estimating immediate and time-

dependant deformation, determining modular ratio, and evaluating the stiffness of 

buildings and members. The modulus of elasticity is also important in reinforced 

and pre-stressed concrete for creep and shrinkage evaluation, as well as in crack 

control, especially at an early age [26,37]. The modulus of elasticity can be de-

rived from the stress–strain responses of concrete under compression. The mod-

ulus of elasticity is defined in the region in which Hooke's law is obeyed for the 

material as the ratio of stress over strain [38]. In mechanics, Hooke's law of elas-

ticity is an estimation that states that the amount of strain is linearly related to the 
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stress. This can be determined from the slope of compressive stress-strain curves. 

As shown in Fig. 9.11, in a typical stress-strain diagram of concrete, the first part 

of the curve is nearly a straight line with some curvature at σ, which is equal to 

half of the maximum value, σu. The initial slope of the stress-strain curve defines 

the initial or tangent modulus used with the parabolic stress method. The slope of 

the chord connecting the origin of the coordinate system to 0.5σu determines the 

secant modulus of elasticity, which is generally used in straight-line stress calcula-

tion [26,39].  

 

Fig. 9.11 Typical stress-strain diagram of concrete 

Despite its importance, tensile strength (and elastic modulus) is not usually 

measured in the site for compliance purposes. It is often estimated from the meas-

ured compressive strength based on the empirical relationships proposed by vari-

ous codes of practice. This is mainly to avoid performing laborious and time-

consuming direct measurements from load-deformation curve [40]. 

9.4.2.1   Modeling 

The GP and ANN-based approaches were employed to formulate the elastic 

modulus (Ec) of NSC and HSC in terms of compressive strength (fc) as follows: 

( ) ffE cc =
                                                      

(9.11)
  

An experimental database of previously published test results [41] was utilized to 

develop the models. The database has previously been employed by Gandomi et 

al. [26] and Demir [42] to develop the LGP and ANN models, respectively. The 

database contains 89 and 70 test results respectively for the elastic modulus of 

normal-strength concrete (NSC) and high-strength concrete (HSC). Of the total 

159 data sets for HSC and NSC, 126 values were taken for the training of the al-

gorithm (112 sets for learning and 15 sets for validation). The remaining 33 values 

were used for the testing of the derived models. To visualize the distribution of the 

samples, the data are presented by frequency histograms (Fig. 9.12).  

For the TGP analysis, the maximum tree depth was set to 10. The parameters 

setting of the LGP algorithm can be found in [26]. The characteristics of the best  
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Fig. 9.12 Histograms of: (a) compressive strength and (b) elastic modulus for all data 

MLP structure are given in [42]. For the RBF analysis, different spreads were 

checked and the optimum one was equal to 35.   

9.4.2.2   Comparison of the Results 

The TGP and LGP-based formulation of the Ec of concrete in terms of fc are as 

given below:  

( ) 854, ++= ccTGPc ffGPaE
                                      

(9.12) 

( ) 934, +−= cLGPc fGPaE
                                               

(9.13) 

The elastic modulus predictions obtained by TGP, LGP, MLP and RBF are shown 

in Fig. 9.13. Statistical performance of different models in terms of their predic-

tion capabilities is summarized in Table 9.3. As it seen, TGP, LGP, MLP and RBF 

give precise estimates of the target values. The performance of these techniques is 

fairly similar to each other. Overall, RBF has provided better results than other 

methods.  

 

 

Fig. 9.13 Histograms of the CI models (a) TGP, (b) LGP, (c) MLP, and (d) RBF 
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Table 9.3 Statistical performances of the CI models 

Training data Testing data 
Model 

 R MAE Ave. Std.  R MAE Ave. Std. 

GP techniques          

 TGP 0.946 2.382 0.997 0.096  0.956 2.254 0.954 0.174 

 LGP 0.946 2.354 1.001 0.096  0.957 2.181 0.957 0.173 

ANN techniques          

 MLP 0.952 2.215 1.000 0.094  0.966 2.110 0.951 0.170 

 RBF 0.961 2.031 0.997 0.083  0.962 2.276 0.945 0.171 

9.5   Discussion 

Based on a logical hypothesis [43], if a model gives R > 0.8, and the error values 

(e.g., MAE) are at the minimum, there is a strong correlation between the pre-

dicted and measured values. The model can therefore be judged as very good. It 

can be observed from Figs. 9.10 and 9.13 and Tables 9.2 and 9.3 that all the GP 

and ANN-based models with very high R and low MAE values can accurately 

predict the target values. Meanwhile, it is noteworthy that the MAE values are not 

only low but also as similar as possible for the training and testing sets. This sug-

gests that the proposed models have both predictive ability (low values) and gen-

eralization performance (similar values). 

The task faced by the GP-based approaches is mainly the same as that faced by 

the ANN-based methods. GP and ANNs are machine learning techniques that can 

effectively be applied to the classification and approximation problems. They di-

rectly learn from raw experimental (or field) data presented to them in order to  

extract the subtle functional relationships among the data, even if the underlying 

relationships are unknown or the physical meaning is difficult to be explained. 

Contrary to these methods, most conventional empirical and statistical methods 

like finite element method need prior knowledge about the nature of the relation-

ships among the data [11]. Classical constitutive models rely on assuming the 

structure of the model in advance, which may be suboptimal. Therefore, the GP 

and ANN-based approaches are well-suited to modeling the complex behavior of 

most geotechnical engineering problems with extreme variability in their nature 

[44]. In spite of similarities, there are some important differences between GP and 

ANNs. ANNs suffer from some shortcomings including lack of transparency and 

knowledge extraction. That is, they do not explicitly explain the underlying physi-

cal processes. The knowledge extracted by ANNs is stored in a set of weights that 

cannot properly be interpreted. Due to the large complexity of the network struc-

ture, ANNs do not give a transparent function relating the inputs to the corre-

sponding outputs. The main advantage of GP over ANNs is that GP generates a 

transparent and structured representation of the system being studied. An addi-

tional advantage of GP over ANNs is that determining the ANN architecture is a 

difficult task. The structure and network parameters of ANNs (e.g. number of in-

puts, transfer functions, number of hidden layers and their number of nodes, etc.) 

should be identified a priori, which is usually done through a time consuming trial 
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and error procedure [11]. In GP, the number and combination of terms are auto-

matically evolved during model calibration [13, 44]. A notable limitation of GP 

and its variants is that these methods are parameter sensitive. The performance of 

the TGP and LGP algorithms employed herein can be improved by using any form 

of optimally controlling the parameters of the run (e.g., GAs).  

However, one of the goals of introducing the expert systems, such as the GP 

and ANN-based approaches, into the design processes is better handling of the in-

formation in the pre-design phase. In the initial steps of design, information about 

the features and properties of targeted output or process are often imprecise and 

incomplete [11,45]. Nevertheless, it is idealistic to have some initial estimates of 

the outcome before performing any extensive laboratory or field work. The ap-

proaches employed in this research are based on the data alone to determine the 

structure and parameters of the models. Thus, the derived models can particularly 

be valuable in the preliminary design stages. For more reliability, the results of the 

analyses are suggested to be treated as a complement to conventional computing 

techniques. In any case, the importance of engineering judgment in interpretation 

of the obtained results should not be underestimated. In order to develop a sophis-

ticated prediction tool, TGP, LGP, MLP, and RBF can be combined with ad-

vanced deterministic models. Assuming the deterministic model captures the key 

physical mechanisms, it needs appropriate initial conditions and carefully cali-

brated parameters to make accurate predictions. An idea could be to calibrate the 

required parameters by the use of TGP, LGP, MLP, and RBF which take into ac-

count historic data sets as well as the laboratory or field test results. This allows 

integrating the uncertainties related to in-situ conditions which the deterministic 

model does not explicitly account for. TGP and LGP provide a structured repre-

sentation for the constitutive material model that can readily be incorporated into 

the finite element or finite difference analyses. In this case, it is possible to use a 

suitably trained GP-based material model instead of a conventional (analytical) 

constitutive model in a numerical analysis tool such as finite element code or fi-

nite difference software (like FLAC) [11]. It is notable that the numerical imple-

mentation of ANNs in the finite element analyses has already been presented by 

several researchers (e.g. [46]). This strategy has led to some qualitative improve-

ment in the application of finite element method in engineering practice [13]. 

9.6   Conclusions 

In this study, the TGP, LGP, MLP, and RBF paradigms were utilized to assess dif-

ferent characteristics of concretes. The following conclusions can be derived from 

the results presented in this research: 

1. TGP, LGP, MLP, and RBF are effectively capable of predicting the compres-

sive strength and elastic modulus of concrete. The validity of the derived mod-

els was tested for a part of test results beyond the training data domain. In all 

cases, LGP gives more accurate predictions than TGP. RBF and MLP generally 

provide better results than TGP and LGP.  
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2. The proposed TGP, LGP, MLP, and RBF models simultaneously take into ac-

count the role of several important factors representing the concrete behavior. 

The proposed TGP and LGP simplified formulations can reliably be employed 

for the pre-design purposes or may be also used as quick checks on solutions 

developed by more time consuming and in-depth deterministic analyses. 

3. Utilizing the models derived via the GP and ANN methods, the concrete com-

pressive strength can easily be estimated from the design mixture basic proper-

ties and subsequently the elastic modulus can be assessed using the compres-

sive strength. Thus, there is no need to go through sophisticated and time-

consuming laboratory tests.  

4. A substantial distinction of GP and ANN to the statistical techniques lies in 

their powerful abilities to model the complex behavior of the concrete without 

any need to pre-defined equations or simplifications. 

5. Although ANNs are successful in prediction, they usually do not give a certain 

function to calculate the outcome using the input values. Furthermore, they re-

quire the structure of the neural network (e.g. number of inputs, transfer func-

tions, number of hidden layers, etc.) to be identified a priori. On the other hand, 

the GP-based techniques provide greatly simplified prediction equations.  

6. The constitutive models derived using TGP, LGP, MLP, and RBF are basically 

different from the conventional constitutive models based on the first principles 

(e.g., elasticity and plasticity theories). One of the distinctive features of GP 

and ANN-based constitutive models is that they are based on the experimental 

data rather than on the assumptions made in developing the conventional mod-

els [11]. Consequently, as more data becomes available, these material models 

can be improved by re-training the TGP, LGP, MLP, and RBF algorithms. 
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Chapter 10 

A New Approach to Network Optimization 

Using Chaos-Genetic Algorithm 

Golnar Gharooni-fard and Fahime Moein-darbari1* 

Abstract. Genetic Algorithms (GAs) have been widely used to solve network op-
timization problems with varying degrees of success. Part of the problem with 
GAs lies in the premature convergence when dealing with large-scale and com-
plex problems; Caught in local optima, the algorithm might fail to reach the global 
optimum even after a large number of iterations. In order to overcome the prob-
lems with traditional GAs, a method is proposed to integrate Chaos Optimization 
Algorithms (COAs) with GA to fully exploit their respective searching advantag-
es. The basic idea of COA is to transform the problem variables, by way of a map, 
from the solution space to a chaos space and to perform a search that benefits from 
the randomness, orderliness and ergodicity of chaos variable. In this chapter, we 
will first discuss network optimization in general, and then focus on how chaos 
theory can be incorporated into the GA in order to enhance its optimization capac-
ities. We will also examine the efficiency of the proposed Chaos-Genetic algo-
rithm in the context of two different types of network optimization problems, Grid 
scheduling and Network-on-Chip mapping problem. 

Keywords: network optimization, Genetic Algorithm, Chaos theory, Grid sche-
duling, Network-on-Chip mapping problem. 

10.1   Introduction 

Network theory basically deals with problems that have a graph structure. Graphs 
are mathematical structures used to model pair wise relations between objects. 
They consist of points, and lines connecting pairs of points. The points are called 

                                                           
Golnar Gharooni-fard · Fahime Moein-darbari 

Computer Department of Islamic Azad University,  

Mashhad Branch, Young Researchers Club, Iran 

e-mail: golnar.ghf@gmail.com, fahime.md61@gmail.com 



246 G. Gharooni-fard and F. Moein-darbari

 

nodes or vertices and the lines are called arcs. The arcs may have a direction on 
them, in which case they are called directed arcs. If an arc has no direction, it is 
often called an edge. If all the arcs in a graph are directed, the graph is said to be 
directed (digraph). Graphs are among the most ubiquitous models of both natural 
and human-made structures. They can be used to model many types of relations 
and process dynamics in physical, biological and social systems. Many problems 
of practical interest can be represented by graphs [1]. In computer science, graphs 
are used to represent networks of communication, data organization, computation-
al devices, the flow of computation, etc. Fig. 10.1 is an example of a network 
modeled with graphs. At any given time, a message may take a certain amount of 
time to traverse each line (due to congestion effects, switching delays, etc.). The 
expended time can vary greatly and telecommunication companies dedicate a sig-
nificant amount of their resources tracking these delays. Assuming a centralized 
switcher knows these delays, there remains the problem of routing a call so as to 
minimize the delays. This is an example of a particular type of network model, 
called the shortest path which includes a network with weighted edges and two 
special nodes: a source and a destination. The goal is to find a path from the 
source to the destination with the minimum total weight. 

 

Fig. 10.1 A Phone network modeled by a graph 

Network problems that involve finding the least-cost solution to a problem 
where each solution is associated with a numerical cost are generally studied un-
der combinatorial optimization which concerns the efficient allocation of limited 
resources to meet desired objectives when the values of some or all of the va-
riables are restricted to be integral [2]. Still, in most such problems, there are 
many possible alternatives to consider and one overall goal determines which of 
these alternatives is best. 

Different approaches have been used to solve network optimization problems 
[3] among which are a large family of algorithms collectively labeled metaheuris-
tics. A metaheuristic designates a computational method that optimizes a problem 
by iteratively trying to improve a candidate solution with regard to a given meas-
ure of quality. Metaheuristics make few or no assumptions about the problem be-
ing optimized and can search very large spaces of candidate solutions [4], [5]. Me-
taheuristics can be used for the purpose of combinatorial optimization where an 
optimal solution is sought over a discrete search-space. Popular metaheuristics for 
combinatorial problems include Simulated Annealing (SA) [6], Genetic Algorithm 
(GA) [7], Particle Swarm Optimization (PSO) [8], Ant Colony Optimization 
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(ACO) [9] and Tabu Search (TS) [10]. Since our focus here is on GAs, in the next 
section we will discuss them as one of the most popular metaheuristics used for 
optimization purposes. The interested reader is referred to [11] and [12] for more 
general surveys on the metaheuristics.  

10.2   Genetic Algorithms 

Genetic algorithms are inspired by the evolutionary theory of the origin of species 
which explains how weak and unfit species in nature face extinction by way of 
natural selection. Natural selection is the process by which traits become more or 
less common in a population due to consistent effects upon the survival or repro-
duction of their bearers, the strong species. In the long run, species carrying the 
correct combination in their genes become dominant in their population. Some-
times, during the slow process of evolution, random changes may occur in the 
genes. If these changes provide additional advantages in the challenge for surviv-
al, new species evolve from the old ones. Unsuccessful changes are eliminated by 
natural selection. 

The concept of Genetic Algorithms (GAs) was introduced by John Holland in 
the early seventies as a special technique for function optimization [7]. In GA ter-
minology, a solution vector is called an individual or a chromosome. Chromo-
somes are made of discrete units called genes. Each gene controls one or more 
features of the chromosome. In the original implementation of GA by Holland, 
genes are assumed to be binary numbers. In later implementations, more varied 
gene types have been introduced. Normally, a chromosome corresponds to a 
unique solution in the solution space. The GA operates with a collection of chro-
mosomes, called a population. The population is normally randomly initialized. 
As the search goes on, populations evolve to include fitter and fitter solutions, and 
eventually converge, to a single solution.  

The basic idea of a GA is that the genetic pool of a given population potential-
ly contains the best solution, to a given adaptive problem, although this solution 
might not have been realized yet. The algorithm operates in an iterative manner 
and evolves a new generation from the current generation by applying genetic op-
erators [13]. Given a clearly defined problem to be solved and strings of candidate 
solutions, a simple GA works as follows: 

 
1. Initialize the population. 
2. Calculate the fitness value for each individual in the population. 
3. Reproduce selected individuals to form a new population. 
4. Perform crossover and mutation on the population. 
5. Loop to step 2 until some termination condition is met. 

 
In some GA implementations, operations other than crossover and mutation are 
carried out in step 4. Crossover is considered by many to be an essential operation 
of all GAs. It plays an important role in distributing the individuals over the space 
of interest through the GA. Termination of the algorithm is usually based either  
 



248 G. Gharooni-fard and F. Moein-darbari

 

on achieving a population member with some specified fitness or on running the 
algorithm for a given number of generations. Like many other metaheuristics, 
GAs do not guarantee an optimal solution is ever found. They often show a very 
fast initial convergence followed by progressive slower improvement. Therefore 
different techniques have been used to improve the results obtained from the GAs 
[14]. By introducing Chaos theory in the next section, we will explain how to in-
tegrate this concept with GA, in order to enhance the quality of the solutions. 

10.3   Chaos Theory 

Chaos theory is the study of the behavior of dynamical systems that are highly 
sensitive to initial conditions. In common usage, "chaos" means “a state of disord-
er”, but the adjective "chaotic" is defined more precisely in chaos theory.  
Although there is no universally accepted mathematical definition of chaos, a 
commonly used definition describes, chaos as a non-periodic, long-term behavior 
in a deterministic system that exhibits sensitive dependence on initial conditions 
[15]. None-periodic long-term behavior means that the system's trajectory in phase 
space does not settle down to any fixed points or periodic orbits, as time tends to 
infinity. Deterministic systems can have no random (or probabilitistic) parameters. 
It is a common misconception that chaotic systems are noisy systems driven by 
random processes. The irregular behavior of chaotic systems arises from intrinsic 
nonlinearities rather than noise. Sensitive dependence on initial conditions, the 
proverbial “the butterfly effect”, requires that trajectories originating from nearly 
identical initial conditions diverge exponentially. Despite what the name suggests, 
chaos is not the absence of order; it is a subtle state that is poised between order 
and randomness, with both aspects intermingled.  

If a chaotic system’s behavior is plotted in a graph over an extended period, 
obscure patterns might emerge. When a bounded chaotic system does have some 
long term pattern, but not a simple periodic oscillation or orbit, it is said to have a 
strange attractor [16]. In other words, strange attractor is the natural shape of 
chaos. It is called strange because of its complex geometry, and it is an attractor 
because the system that it describes is always drawn to the behavior that it 
represents as if attracted to it. The mathematical model developed, called the “Lo-
renz system1 has been used as a paradigm for chaotic systems that satisfy the 
above definition. The Lorenz system consists of three first-order coupled differen-
tial equations as follows 

 

۔ۖەۖ
ௗ௫ௗ௧ ۓ ൌ ݕሺߪ  െ ሻ       ௗ௬ௗ௧ݔ ൌ ߩሺݔ െ ሻݖ െ ௗ௭ௗ௧ݕ  ൌ ݕݔ  െ  (10.1)                                           ݖߚ

                                                 

                                                           
1
 The “Lorenz system” is named after the American meteorologist Edward N. Lorenz, who 
in 1963 discovered chaotic behavior in a computer study of weather. 
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where all σ, ρ, β > 0, but usually σ = 10, β = 8/3 and ρ is varied. The system exhi-
bits chaotic behavior when ρ = 28 [15]. The Lorenz system has three dynamic va-
riables, and consequently the state-space picture of such a system is three-
dimensional. Plotting the trajectory of the Lorenz system in state space, shown in 
Fig. 10.2, reveals what was earlier defined as a strange attractor (the Lorenz chao-
tic attractor). The map shows how the state of a dynamical system (the three  
variables of a three-dimensional system) evolves over time in a complex, non-
repeating pattern. 

 

Fig. 10.2 The Lorenz attractor 

One-dimensional noninvertible maps are the simplest systems capable of gene-
rating chaotic motion. As such, they serve as a convenient starting point for the 
study of chaos [17]. Here, we introduce some well known one-dimensional maps. 

 
Logistic Map. The logistic map proposed by Robert May is a polynomial map and 
is often cited as an example of how complex behavior can arise from a very sim-
ple nonlinear dynamical equation [15]. This map is defined as 

௡ାଵݔ  ൌ ݂ሺߤ, ௡ሻݔ ൌ ௡ሺͳݔߤ െ ,  ௡ሻݔ Ͳ ൏ ߤ ൑ 4                            (10.2) 
 

where ߤ is a control parameter, and ݔ is a variable. Since the equation represents a 
deterministic dynamic system, it might seem like its long-term behavior can be 
predicted, but that is in fact not the case since its behavior is heavily dependent on 
the variations of  ߤ. The value of the control parameter, determines whether ݔ 
converges to a constant point, oscillates between two or more values, or behaves 
chaotically in an unpredictable pattern [18]. 

 
Tent Map. In mathematics, the tent map is an iterated function, in the shape of a 
tent, forming a discrete-time dynamical system. It takes a point xn on the real line 
and maps it to another point as 
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௡ାଵݔ  ൌ ൝ ݔߤ௡           ,        ݔ௡ ൏ ଵଶߤሺͳ െ ௡ሻ  ,         ଵଶݔ ൑ ௡ݔ                                           (10.3) 

 
where μ is a positive real constant [19]. The tent map and the logistic map are to-
pologically conjugate and thus their behavior under iteration is identical in this 
sense. Depending on the value of μ, the tent map demonstrates a range of dynami-
cal behavior ranging from predictable to chaotic. 

 
Bernoulli Shift Map. The Bernoulli shift map belongs to a class of piecewise li-
near maps which consist of a number of piecewise linear segments. This map is a 
particularly simple, consisting of two linear segments to model the active and pas-
sive states of the source [20]. It is defined as follows 

௡ାଵݔ  ൌ ቐ ௫೙ሺଵିఒሻ      ,           Ͳ ൏ ௡ݔ ൏ ሺͳ െ ሻ௫೙ିሺଵିఒሻఒߣ  , ሺ݀ ؠ ͳ െ ሻߣ ൏ ௡ݔ ൏ ͳ                                 (10.4) 

 
Sine Map. The sine map is described by the following equation 

௡ାଵݔ  ൌ  ௔ସ sinሺݔߨ௡ሻ                                                    (10.5) 

 
where  Ͳ ൏ ܽ ൑ 4 . Qualitatively this map has the same shape as the logistic map. 
 
ICMIC Map. The iterative chaotic map with infinite collapses (ICMIC) has infi-
nite fixed points in comparison with finite collapses one-dimensional maps [21], 
[22]. The ICMIC map is described by following equation  

௡ାଵݔ  ൌ  sin ௔௫೙                                                       (10.6) 

 
where ܽ א ሺͲ,∞ሻ is an adjustable parameter. 

10.4   Chaos Optimization Algorithm (COA) 

In random-based optimization algorithms, the methods using chaotic variables in-

stead of random variables are called Chaotic Optimization Algorithm (COA) [23], 

[24]. Originally proposed by Li and Jiang, COA searches the solution space based 

on the regularity of chaotic variables and more easily escapes local minima com-

pared with stochastic optimization algorithm [25]. By means of ergodicity, regu-

larity and semi-stochastic properties of chaos, the optimal solution migrates in a 

chaotic way among the local minima and finally converges to the global optimal  
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solution [26]. Experimental studies assert that the benefits of using chaotic signals 
instead of random signals are often evident although it is not mathematically 
proved yet [27]. The procedure of COA is demonstrated as followings: 

1. Set k = 0 and ݂ሺݔ௜௞ሻ as a random solution in the problem domain and a 

chaotic variable  Ͳ ൏ ௜ݎ  ൏ ͳ, ሺ݅ ൌ ͳ,ʹ, ڮ , ݊ሻ.  

2. Map the chaotic sequences ݎ௜௞ to 
*

x according to the characteristics of the 

particular problem.  

3. Compare the function value of )( *
xf  with ݂ሺݔ௜௞ሻ, pick the better value 

and replace it with ݂ሺݔ௜௞ሻ. Then replace 
*

x  with ݔ௜௞.  

4. Apply one of the aforementioned chaotic equations (denoted by M)  
௜௞ାଵݎ  ൌ  ௜௞൯                                                   (10.7)ݎ൫ܯ

 
Note that the interval of chaotic sequences is between 0 and 1. 

5. Set ݇ ൌ ݇ ൅ ͳ and loop back to step 2 until the termination condition is 
reached. 

 
Numerical results show that COA takes less iteration to reach to an optimum solu-
tion than most global optimization methods [25]. However, COA has the deficien-
cy of taking much time to get to the optimum value, which affects the speed of 
convergence [28]. To overcome this limitation, an improved chaos optimization 
method that combines COA and GA is presented in the next section.  

10.4.1   Chaos-Genetic Algorithm (CGA) 

The idea of using chaotic systems instead of random processes has recently been 

noticed in several fields, including optimization theory. The basic idea is to trans-

form the variables of a problem from the solution space to chaos space and then 

perform a search to find a solution by virtue of the randomness, orderliness and 

ergodicity of the chaos variable. Although the COA has many advantages, it 

makes no use of the experiential information previously acquired [29]. Further-

more, in GAs there is no guaranteed convergence even to a local minimum [30]. 

Since the genes from a few highly fit (but not optimal) individuals may rapidly 

come to dominate the population, causing it to converge on local minima and once 

the population has converged, the ability of the GA to continue to search for better 

solutions is largely compromised.  
In order to overcome the shortcomings of both COA and GA, one option is to 

integrate the two in order to bring together the searching advantages of both algo-

rithms. The concept of Chaos-genetic algorithms (CGA), first introduced in [30], 

has the following characteristics: Firstly, CGA benefits from the characteristics  

of the chaotic variables to make the individuals of subgenerations distributed  
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ergodically in the defined space and thus to avoid premature convergence in the 

subgenerations. Secondly, according to its evolutionary nature, CGA maintains the 

fittest individuals in each run and hence increases the probability of finding the 

global optimal solution. CGA can be implemented by simply adding a chaotic 

mapping operator to the standard GA operators, namely crossover and mutation.  

As an example of a chaotic equation, the logistic map has been extensively ana-

lyzed in the past decade. The evolution of the chaotic variables could be defined 

through the following equation [31],  
௜௞ାଵݎ  ൌ ௜௞൫ͳݎ4 െ ݅       , ௜௞൯ݎ ൌ ͳ, ʹ, … , ݊.                             (10.8) 

 
In principle, this is the same as the equation introduced for logistic map in Section 
10.3. The value of the parameter ߤ ൌ 4  is chosen in order for the system to act 
chaotically. Here ݎ௜ is the i-th chaotic variable and ݇ denotes the number of itera-
tions. The value of  ݎ௜ , is distributed in the range of ሾͲ , ͳሿ and n denotes the num-
ber of genes in each chromosome. In order to perform the chaotic mapping, the 
following procedure is proposed. 

 
1. Divide the interval ሾͲ , ͳ] to ݊ equal sub-intervals, of which the lower 

limit ሾܽଵ, ܽଶ, … , ܽ௡ሿ is represented by vector ܽ, and the upper limit ሾܾଵ, ܾଶ, … , ܾ௡ሿ by vector ܾ. 
2. The real value of each  ݔ௜  in the first randomly produced population is li-

nearly mapped to new values of  ͳ ൏ ௜ݎ ൏ Ͳ,  using 

௜ݎ  ൌ  ଵ௕೔ି௔೔  ሺݔ௜ െ ܽ௜ሻ.                                               (10.9) 

 

3. The next iteration chaotic variables ݎ௜ሺଶሻ
, will be produced through apply-

ing the logistic map equation to ݎ௜ሺଵሻ
 values, generated in the previous 

section.  

4. The chaotic variables ݎ௜ሺଶሻ
, are then used to produce ݔ௜ሺଶሻ

, using 

௜ሺଶሻݔ  ൌ  ܽ௜ ൅ ݎ௜ሺଶሻሺܾ௜ െ ܽ௜ሻ , ݅ ൌ ͳ, ʹ, … , ݊ .                       (10.10) 

 

We can repeat the process in order to produce the next values of ݔ௜ሺ௞ሻ
. Although 

chaos variables are usually generated by the logistic map, there’s no reason not to 
try any of the previously defined one-dimensional maps in order to form a chaotic 
mapping operator. Fig. 10.3 demonstrates a flowchart of the overall process of 
Chaos-genetic algorithm using the logistic map as a chaotic mapping operator to 
produce the chaotic population P2 from the randomly produced initial population 
P1. In the next section we will examine the performance of CGA in two types of 
network optimization problems, namely Grid scheduling and Network-on-Chip 
mapping problem. 
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Fig. 10.3 Chaos-Genetic Algorithm procedure 

10.5   Grid Scheduling: Case Study # 1 

A grid is a hardware and software infrastructure that provides dependable, consis-

tent, pervasive, and inexpensive access to high-end computational capabilities 

[30]. It is a shared environment, implemented via the deployment of a persistent, 

standards-based service infrastructure that supports the creation and sharing of the 

resource within distributed communities. The resources might be computers, sto-

rage space, instruments, software applications, and data, all connected through the 

Internet and a middleware software layer that provides basic services for security, 

monitoring, resource management, and etc. Resources owned by various adminis-

trative organizations are shared under locally defined policies that specify what is 

shared, who is allowed to access what, and under what conditions [32]. 

From the point of view of scheduling systems, a higher level abstraction for the 

Grid can be applied by ignoring some infrastructure components such as authenti-

cation, authorization, resource discovery and access control. Thus, the following 

definition for the term Grid is adopted in our study: “A type of parallel and distri-

buted system that enables the sharing, selection, and aggregation of geographically 

distributed autonomous and heterogeneous resources dynamically at runtime de-

pending on their availability, capability, performance, cost, and users' quality-of-

service requirements” [33].  
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To facilitate the discussion on grid scheduling, we need to define some  
frequently used terms; tasks are atomic units to be scheduled by the scheduler and 
assigned to resources. The properties of a task are parameters like CPU/memory 
requirement, deadline, priority, etc. A job (metatask or application) is a set of 
atomic tasks that will be carried out on a set of resources. Resources are required 
to carry out an operation, for example: a processor for data processing, a data sto-
rage device, or a network link for data transporting. A site (or node) is an auto-
nomous entity composed of one or multiple resources. 

Based on the definitions above, task scheduling can be defined as the mapping 
of tasks to a selected group of resources which may be distributed in multiple ad-
ministrative domains. Although, a grid is a system of high diversity, which is ren-
dered by various applications, middleware components, and resources, we can still 
find a logical architecture of the task scheduling subsystem in the grid that as 
noted by Schopf in [34], can be generalized into three stages:  

 
1. Resource discovering and filtering, 
2. Resource selecting and scheduling according to certain objectives, 
3. Job submission. 

 
Since the study of scheduling algorithms is our primary concern, we mainly focus 
on the second step. Scheduling of interdependent tasks in distributed heterogene-
ous computing environments is well known to be an NP-hard problem [35]. Sev-
eral heuristic algorithms have been applied to solve the scheduling problem. These 
can be classified into two major groups, in view of their main objectives. First, a 
group of works that only attempt to minimize workflow execution time, without 
considering user’s budget. Min-Min, which sets the highest priority to tasks with 
the shortest execution time, and Max-Min, which sets the high priority to the tasks 
with the long execution times are two major heuristic algorithms employed for 
scheduling workflows on grids [36]. Sufferage, is another heuristic algorithm 
which sets high scheduling priority to tasks whose completion time by the second 
best resource is far from that of the best resource [36]. Another workflow schedul-
ing algorithm developed by the authors of [37], is based on a Greedy Randomized 
Adaptive Search Procedure (GRASP). Another workflow level heuristic is a Hete-
rogeneous-Earliest-Finish-Time (HEFT) algorithm proposed by Wieczorek et al. 
[38]. Second, a group of works which address scheduling problems based on us-
er’s budget constraints. Nimrod-G [39] schedules independent tasks for parameter-
sweep applications to meet user’s budget. More recently, LOSS and GAIN sche-
duling approaches were developed, to adjust a schedule which is generated by a 
time-optimized heuristic and cost optimized heuristic to meet the user’s budget 
constraints [40].  

10.5.1   Challenges of Scheduling Algorithms in Grid Computing 

Although previous research in this area is of great value, traditional scheduling 
models generally produce poor grid schedules in practice [32]. To remedy this let 
us go through the assumptions underlying traditional systems: 
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• All resources reside within a single administrative domain. 

• To provide a single system image, the scheduler controls all of the re-
sources. 

• The resource pool is invariant. 

• Contention caused by incoming applications can be managed by the 
scheduler according to some policies, so that its impact on the perfor-
mance that the site can provide to each application can be well predicted. 

• Computations and their data reside in the same site.  

 
Unfortunately, not all of these assumptions hold in grid circumstances. There are 

unique characteristics in grid computing, listed by the authors of [41], which make 

the design of scheduling algorithms more challenging: 

• Heterogeneity and Autonomy. In grid computing, because resources are distri-

buted in multiple domains on the Internet, heterogeneity is a characteristic not  

only of computational and storage nodes but also of the underlying networks con-

necting them. This results in different capabilities for job processing and data 

access. The autonomy also gives way to aa diverse array of local resource man-

agement techniques and access control policies, such as, priority settings for dif-

ferent applications and resource reservation methods. Thus, a grid scheduler is  

required to be adaptive to different local policies. The heterogeneity and  

autonomy on the grid user side are represented by various parameters, including 

application types, resource requirements, performance models, and optimization 

objectives.  

• Performance Dynamism. Making a feasible scheduling usually depends on the 

performance estimate that candidate resources can provide, especially when the 

algorithms are static. Grid schedulers work in a dynamic environment where per-

formance of available resources is constantly changing. The change comes from 

site autonomy and competition for resources by various applications.  

• Resource Selection and Computation.-Data Separation In traditional systems, 

executable codes of applications and input/output data are usually in the same site, 

or the input sources and output destinations are determined before the application 

is submitted. Thus the cost for data staging can either be neglected or is a constant 

determined before execution, and scheduling algorithms need not consider it. But 

in a grid which consists of a large number of heterogeneous computing sites (from 

supercomputers to desktops) and storage sites connected via wide area networks, 

the computation sites of an application are usually selected by the grid scheduler 

according to resource status and certain performance models. Additionally, in a 

grid, the communication bandwidth of the underlying network is limited and 

shared by a host of background loads, so the inter-domain communication cost 

cannot be neglected.  
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Many grid applications are data intensive, so the data staging cost is considera-

ble. This situation brings about the computation-data separation problem: the ad-

vantage brought by selecting a computational resource that can provide low  

computational cost may be neutralized by its high access cost to the storage site. 

These challenges depict unique characteristics of grid computing, and put signifi-

cant obstacles to design and implement efficient and effective grid scheduling sys-

tems. It is believed, however, that research achievements on traditional scheduling  

problems can still provide stepping-stones for a new generation of scheduling  

systems.  

In order to introduce the Chaos-genetic algorithm to solve the workflow sche-

duling problem, we need to define an appropriate problem representation, fitness 

assignment, and genetic operators. These will be discussed in the following sub-

sections. 

10.5.2   Problem Description 

As mentioned in the previous section, the scheduling problem becomes more chal-

lenging because of some unique characteristics of grid computing. The grid sche-

duling problem can be defined as follows: A workflow application can be modeled 

as a Directed Acyclic Graph (DAG). There is a finite set of tasks Ti ( i = 1,2, …, n) 

and a set of directed arcs of the form ( Ti ,Tj ), where Ti is the parent task of Tj , 

and Tj  is the child of Ti. A child task can never be executed unless all of its parent 

tasks have been completed. Let B be the cost constraint (budget) and D the time 

constraint (deadline), specified by the user’s workflow execution. The total num-

ber of available services is shown by m. There’s a set of services ௝ܵ  ሺ  ݆ ൌͳ,ʹ, … , ݉ሻ capable of executing task ௜ܶ , but each task can only be assigned for ex-

ecution to one of these services. Services have varied processing capabilities deli-

vered at different prices. We denote ݐ௜௝ as the processing time, and ܿ௜௝ as the ser-

vice price for processing ௜ܶ  on service ௝ܵ . The scheduling problem is to map every ௜ܶ  onto a suitable ௝ܵ in order to get the best trade-off between execution time and 

cost in a workflow considering the user’s budget and deadline.  

10.5.3   The Chaos-Genetic Scheduling Algorithm (CGA) 

For a workflow scheduling problem, a feasible solution is required to meet several 
conditions:  

1. A task can only be started after all its predecessors have completed. 
2. Every task appears once and only once in the schedule. 
3. Each task must be allocated to one available time slot of a service capa-

ble of executing the task. 
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Fig. 10.4 A sample workflow followed by a set of source-to-task assignments 

Each individual in the population represents a feasible solution to the problem, 
and consists of a vector of task assignments. Each task assignment includes four 
elements (task ID, service ID, start time, end time) [42]. The first two parameters 
identify to which service each task is assigned. Since involving time frames during 
the genetic operation may lead to a very complicated situation [43], we ignore the 
time frames here. Therefore, the operation strings (chromosomes) encode only the 
service allocation for each task and the order of the tasks allocated to each service. 
Different execution priorities of such parallel tasks within the workflow may im-
pact the performance of workflow execution significantly. For this reason, the so-
lution representation strings are required to show the order of task assignments on 
each service in addition to service allocation of each task. As suggested by Buyya 
[43], we create an array to represent a schedule as illustrated in Fig.10.4. Each 
element of this array represents a service and the indexes refer to the task number.  

As stated earlier, the problem is to schedule a workflow execution considering 
both time and user budget constraints. The first decision to be made is how to 
represent the solution, which was shown in Fig.10.4. Initializing the population is 
done randomly using a random generator to produce values between 1 to n. For 
each task, these random values are chosen from sources that are capable of execut-
ing that task. The length of the chromosome depends on the number of tasks in the 
workflow. A chaotic mapping operator is then applied to the initial population, 
generating a new chaotic population.  

At this stage, the fitness of the individuals of the entire population is evaluated. 
The fitness value is often proportional to the output value of the function being op-
timized according to the given objectives. As the goal of scheduling is to get the 
best trade-off between the time and cost of the workflow execution, the fitness 
function divides the evaluation into two parts [43]: cost-fitness and time-fitness. 
For budget constrained scheduling, the cost-fitness component produces results 
with less cost. The cost fitness function of an individual I is defined by 

ሻܫ௖௢௦௧ሺܨ  ൌ ௖ሺூሻ஻                                                        (10.11)  



258 G. Gharooni-fard and F. Moein-darbari

 

where c(I) is the sum of the task execution cost and data transmission cost of I and 
B is the budget of the workflow. For budget constrained scheduling, the time-
fitness component is designed to produce individuals that satisfy the deadline con-
straint. The time-fitness function of an individual I is defined by 

ሻܫ௧௜௠௘ሺܨ  ൌ ௧ሺூሻ஽                                                      (10.12) 
 

where t(I) is the completion time of I, D is the deadline of the workflow. The final 
fitness function combines the two parts and it is expressed as: 

ሻܫሺܨ  ൌ ቊܨ௖௢௦௧ሺܫሻ ൅ ,ሻܫ௧௜௠௘ሺܨ ሻܫ௖௢௦௧ሺܨ ݂݅ ൐ ͳ ܨ ݎ݋௧௜௠௘ሺܫሻ ൐ ͳ௖ሺூሻ௠௔௫௖௢௦௧ ൈ ௧ሺூሻ௠௔௫௧௜௠௘ ݁ݏ݅ݓݎ݄݁ݐ݋                                                          (10.13) 

 

where maxcost is the most expensive solution of the current population and max-

time denotes the largest completion time in the current population. 
Elitism is incorporated into the algorithm by transferring the single fittest indi-

vidual directly to the next generation. Crossover is used to create new solutions by 
rearranging parts of the existing solutions in the current population. The idea be-
hind the crossover operation is that a higher quality solution may result from the 
combination of two of the current fittest solutions [44]. We have implemented a 
two-point crossover which is illustrated in Fig. 10.5. For population based algo-
rithms, mutation occasionally occurs in order to allow a child to obtain features 
that are not possessed by either of its parents. This process helps the algorithm ex-
plore new and possibly better genetic material than has been previously consi-
dered. The process of mutation is shown in fig. 10.6. 

 

 
 

Fig. 10.5 The Crossover operation: First, two random parents are chosen from the current 
population. Then two random points are selected from the schedule order of both parents. 
The locations of all tasks between the two parents are exchanged. Two new offsprings are 
generated by combining task assignments taken from two parents. 

 

 
 

Fig. 10.6 The Mutation operation: A task is randomly selected in a chromosome. An alter-
native service which is also capable of executing the task is randomly selected to replace 
the current task allocation 
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The new population is now ready for another round of chaotic mapping, cros-
sover, and mutation, producing yet another generation. So the initial population is 
replaced by the newly generated individuals. More generations are produced until 
the stopping condition (a maximum number of generations) is met. The fittest 
chromosome is thus returned as a solution.  

10.5.4   Experimental Results 

Given that different workflow applications may have different impact on the per-
formance of the scheduling algorithms, we have evaluated algorithms on different 
workflow structures. According to many grid workflow projects [45], workflow 
applications can be categorized into balanced structures and unbalanced struc-

tures. Fig. 10.7 shows balanced and unbalanced-structure applications used in our 
experiments. As shown in Fig. 10.7(a), the balanced-structure application consists 
of several parallel pipelines, which require the same types of services but process 
different data sets. As can be seen in Fig. 10.7(b), the structure of the unbalanced 
application is more complex. Unlike the balanced-structure application, many pa-
rallel tasks in the unbalanced structure require different types of services, and their 
workload and I/O data varies significantly. 

 
(a)                                                                            (b) 

Fig. 10.7 Workflow structures: (a) Balanced workflow (fMRI). (b) Unbalanced workflow 
(DNA)  

A Chaos-Genetic scheduling Algorithm (CGA) is introduced to solve the 
workflow execution planning problem. Our goal is to simultaneously minimize 
two conflicting objectives; execution time and execution price while meeting us-
ers’ maximum time constraint (deadline) and price constraint (budget). We have 
simulated 15 types of services with various price levels. The parameter settings 
used as a default configuration for the algorithms are listed in Table 10.1. The be-
haviors of algorithms are also observed at three constraint levels, namely relaxed 
constraint, medium constraint, and tight constraint. The relaxed constraint level 
assumes that users require relatively large deadline and budget, while the tight 
constraint level assumes that users require small deadline and budget. In other 
words, the relaxed/tight deadlines and budgets of an application are determined by 
the maximum/minimum time and cost for the workflow execution.  
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Table 10.1 Parameter settings for workflow scheduling problem 

Value/type Parameter 

10 Population size 
randomly generated solution Initial population 

100 Maximum Generation 
0.98 Crossover Probability 
0.05 Mutation Probability 
10 Maximum Iteration  

 
As it is illustrated in Fig. 10.8, neither of GA and CGA satisfy the low budget 

constraint (about G$3500), however CGA shows better results in both applica-
tions. Results are gradually improved under medium budget constraints. Obvious-
ly, the descending trend in the diagram shows that as the budget increases, it’ll be 
easier for the algorithms to meet the user budget constraints. On the other hand, 
considering the differences between the two approaches, it is clear that GA takes 
longer to complete even under relaxed constraints. Therefore, CGA shows better 
performance compared to GA in both applications. 

 

 
 

Fig. 10.8 Comparison between the execution cost of GA and CGA on balanced (fMRI) and 
unbalanced (DNA) workflows, under three constraint types: tight (G$3500), medium 
(G$5500) and relaxed (G$7500). Each experiment was repeated 10 times and the average 
values are used to report the results. For fMRI, the results are obtained under the assump-
tion of D = 220(H) and D = 240(H) for DNA. The values of the vertical axes are the result 
of the total cost divided by the user budget constraint. 

 
In Fig. 10.9 a comparison between the execution times of the two algorithms on 

fMRI and DNA workflows is illustrated. Here we change the user deadline values 
from 190(H) to 290(H) for DNA and from 170(H) to 270(H) for fMRI, since the 
latter is a balanced workflow and takes less time to complete. It can be seen that 
GA takes longer to complete in most of the conditions. The differences are ob-
viously better observed in the unbalanced workflow structure.  
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Fig. 10.9 Comparison between the execution time of GA and CGA on balanced (fMRI) and 
unbalanced (DNA) workflows, under three constraints: tight (around 180H), medium 
(around 230H) and relaxed (around 280H) with a medium budget of G$5000. Each experi-
ment was repeated 10 times and the average values are used to report the results. 

 
In all of the above diagrams, there are conditions where CGA and GA show 

similar results (for instance in Fig. 10.9 for fMRI, under medium constraint). 
These are the conditions where GA solutions were not trapped in a local optimum, 
resulting in similar performance patterns for the two algorithms. In those condi-
tions, CGA does not do any good in keeping the suitable solutions. In the rest of 
the states though, GA, is stuck somewhere in a local optimum (as it usually is), 
which prevents it from producing possible better results. In other words, CGA 
takes advantage of the characteristics of the chaotic variable to make the individu-
als of subgenerations distributed ergodically in the defined space and thus to avoid 
premature convergence [30]. It also takes advantage of the convergence characte-
ristic of GA to overcome the randomness of the chaotic process and hence to in-
crease the probability of finding the global optimal solution. 

10.6   Network-on-Chip (NoC): Case Study # 2 

System-on-Chip (SoC) is a chip design method where all of the components of an 
electronic system are integrated into a single chip. Benefits of this integration 
compared with traditional multi-chip design include a size and energy reduction. 
An important concept in chip design is the core. A core is basically a separate and 
reusable unit of logic. Examples of cores include processors, memory banks and 
external communication components. These cores may be licensed from a number 
of vendors, under the common label Intellectual Property-cores (IP-cores). A Sys-
tem on Chip can include many IP-cores that need to communicate with each other. 
This is traditionally done by shared buses and ad-hoc core to core links. Using 
such traditional communication structures, functions well without creating com-
munication bottlenecks when a system has few cores [46]. But as the number of 
IP-cores increases, the number of potential connections between them increases 
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exponentially to a point where assigning the same bus to many IP-cores is not a 
practical option due to latency issues.  

Over time, traditional SoC communication methods gradually became ineffi-
cient and complex, and do not scale well for large SoCs (say, more than 20 IP-
cores) [46]. The increasing complexity of such systems leads to some difficulties 
in creating a proper communications infrastructure for the chip. When time-
division buses and custom point to point communications are no longer sufficient, 
more elaborate networks are the obvious choice. By going beyond current buses 
and custom communication designs for the higher levels of interconnection on the 
chip, it might indeed be possible to reach higher performance with lower design 
and verification costs. A scalable communication architecture that avoids these 
problems is required and this is where creating a global network on the chip be-
comes a viable option. 

10.6.1   Network on Chip 

Network on Chip (NoC) is an emerging communication method for a System on 
Chip [47]. NoC attempts to solve the communication problems mentioned in the 
previous section by creating an inter-chip network consisting of network adapters, 
routers/switches and links between them. Each IP-core is connected to a network 
adapter which converts the transaction data from the IP-core to the flow digits 
(flits) transmitted across the network. Fig. 10.10 illustrates the basic concepts in a 
NoC. 

 
 

Fig. 10.10 An example of the Network-on-Chip architecture with ‘S’ for Switches, ‘M’ for 
Memory, ‘Re’ for Reconfigurable logic, ‘rni’ for resource-network interface and ‘L’ for 
dedicated hardware.  
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The individual IP-cores do not need to be aware of how the data is transmitted 
on the network. This decoupling of the processing from communication is an im-
portant benefit of NoC. This means that IP-cores with different transaction stan-
dards can easily communicate with each other, simplifying the design process. 
Other benefits include shorter, simplified wiring and lower energy usage. There 
are also some potential drawbacks including increased delay/latency especially if 
the network is congested, and the extra space used on the chip for the routers and 
network adapters. However the overhead is estimated to be fairly small [48] and 
space is usually not the bottleneck in chip design especially with the continuing 
shrinking microchip technologies. 

The future for NoC looks promising, but many problems need to be addressed 
in order for it to find more widespread application. One of the problems is how to 
connect systems of IP-cores that vary in size and/or communication requirements 
(a heterogeneous SoC) defined as the network layout or topology selection. Three 
main factors that have to be taken into account when evaluating a NoC design are 
latency, energy usage and size (area overhead). Another important matter is appli-
cation mapping which deals with finding the best node arrangement with the aim 
of improving the quality of service parameters. The mapping process can be de-
scribed as follows: first select a set of IP-cores to distribute the data processing on 
and secondly construct a topology that connects the IP-cores and minimizes com-
munication costs. The selected set of IP-cores and the data transmission between 
them constitutes what is defined as the Core Graph. 

10.6.2   Problem Description 

The investigation of different network topologies pointed to a two-dimensional 
mesh as the most suitable topology for most on-chip networks. This is also the 
common topology proposed by most researchers [48], [49], [50]. The main rea-
sons for selecting the two-dimensional mesh instead of other topologies such as 
hypercubes, butterflies, or trees are that a two-dimensional mesh has an acceptable 
wire cost, reasonably high bandwidth, and a nice mapping onto a chip. Routing ei-
ther refers to the problem of connecting a topology or choosing data transmission 
routes through a constructed topology. The transmission routes can either be static 
or dynamic. Dynamic routing is definitely more flexible [46] but requires more 
complex routers and larger buffers in the network. The static routing scheme cho-
sen in the implementation of the algorithm is a shortest path routing algorithm. 

The input of our problem is a directed task graph ܩሺܸ, ௜ݒ ሻ, in which everyܧ א ܸ  denotes a processing element or a memory unit (generally an IP core), and 

a directed edge ݁௞ ൌ ൫ݒ௜ , ௝ݒ  ௜ to the destination nodeݒ ௝൯  denotes a communication trace from the source nodeݒ  . The weights of the edges ݓሺ݁௞ሻ usually refer to the 

communication cost between two corresponding nodes. A mesh based topology of 
NoC is defined by ሺܷ, ௜ݑ ሻ , where each vertexܮ א ܷ denotes a node in the topolo-
gy and each ݈௜ א  denotes a physical link between two vertices. The weight of a ܮ
link ݓ ሺ݈௞ሻ  represents the bandwidth available across the link ݈௞ . Fig. 10.11 exhi-
bits the mapping process of a sample task graph onto a tile-based mesh structure. 
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Fig. 10.11 The mapping process 

 
In order to optimize the results of the mapping process, various authors have 

tried to enhance the results considering different performance elements. Lei and 

Kumar, proposed a two-step GA for mapping task graphs to the NoC architecture 

in [51], with the objective of minimizing the average communication delay of the 

network. Following the same objective, Murali and De Micheli, proposed NMAP, 

as a fast algorithm that maps the cores onto mesh NoC architecture under band-

width constraints, in [52]. BMAP a binomial mapping and optimization algorithm 

that reduce the hardware cost of on-chip network infrastructure [53].  

In Chaos-Genetic Mapping (CGMAP) approach [54], determining solution re-

presentation is the first priority. The values of the genes in this problem can only 

be integer values between 1 and  ݊ (the value of ݊ is proportional to the number of 

tiles in the mesh). The length of each chromosome depends on the number of 

nodes in the communication task graph. Population size is another important pa-

rameter. In an actual application, it would be common to have somewhere between 

a few dozen and a few hundred individuals. For the purposes of this problem, we 

assume that the first population consists of 100 individuals. The initialization of 

the first population is done randomly by means of a random number generator 

which assigns values between 1 and n, to each of the ݊ positions in every one of 

100 individuals. Then the chaotic mapping operator is applied to each individual in 

the initial population and creates the chaotic population. At this stage, the fitness 

of all 200 individuals is evaluated. The fitness value is often proportional to the 

output value of the function being optimized. Since data always take the shortest 

distance in the network and often more than one such path exists for data going 

from node ݒ௜ ൌ ሺݔ௜ , ௝ݒ ௜) toݕ ൌ ൫ݔ௝ ,  ௝൯ , we estimated this hop distance asݕ

 ݄݀ሺ݁௞ሻ ൌ ሺหݔ௜ െ ௝หݔ ൅ ൫หݕ௜ െ  ௝ห൯,                                    (10.14)ݕ

 
and defined the fitness function as follows 

ܨ  ൌ ∑ ௘ೖ׊ ሺ݁௞ሻ݄݀ሺ݁௞ሻݓ .                                               (10.15) 
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Elitism is incorporated into the algorithm by transferring the single fittest individ-
ual directly to the next generation. Crossover and mutation are also performed on 
randomly selected individuals. The initial population is replaced by these newly 
generated individuals. Obviously, more generations are produced until the stop-
ping condition (a maximum number of generations) is met. The fittest chromo-
some is thus returned as a solution.  

10.6.3   Simulation Results 

The results of the execution of CGMAP on two benchmark applications are dem-

onstrated in this section; a Video Object Plane Decoder (VOPD) with 16 IP-cores 

and 20 links and an MPEG-4 decoder with 12 nodes and 13 links. Fig. 10.12 is an 

instance of a VOPD task graph mapped onto a two-dimensional mesh using 

CGMAP. Afterwards the results are compared with those of previous mapping al-

gorithms such as NMAP [52], BMAP [53], PBB [55], etc. using the same routing 

and scheduling characteristics. 

 

        
    

Fig. 10.12 VOPD task graph and the place of each associated IP core in a 2-dimensional 
mesh 

 
Fig. 10.13 demonstrates the results of CGMAP compared with five other map-

ping algorithms in both applications, considering the communication costs. As it is 
clear in the figure, CGMAP performs well in both applications. Table 10.2, shows 
a comparison between the hop counts of the three most efficient mapping algo-
rithms for two benchmark applications. The hop count is a measure of distance 
across an IP-based network which keeps track of the number of intermediate  
devices (like routers) an IP packet has to pass through in order to reach its destina-
tion. Generally speaking, the more hops data must traverse to reach their destina-
tion, the greater the transmission delay incurred. Assuming the average hop count 
in NMAP is 1, the table proves that using CGMAP decreases the hop number to 
an average of 0.97 in the first application (MPEG-4) and to 0.99, in the case of the 
second application (VOPD).  
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Fig. 10.13 Comparison betw
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between five one-dimensional chaotic maps. It is noticeable that, ICMIC and Tent 
map have the greatest convergence rates and the lowest convergence rate belongs 
to the Bernoulli Shift and the Logistic map. This means that in order to get the 
best results for this specific application, CGMAP should be implemented with the 
ICMIC map as a chaotic operator. This way the algorithm reaches an optimum so-
lution within the shortest time period. 

Communication costs of executing CGMAP are also compared with each of the 
discussed chaotic maps and the average results are demonstrated in Fig. 10.14. 
The Sine map achieves the lowest communication cost among all and the Bernoul-
li Shift costs a lot to complete the application. The main aim of this experiment 
was to prove that the choice of the most effective chaotic map is a function of the 
benchmark problem on the one hand and the main objective of the problem on the 
other.  

10.7   Concluding Remarks 

The chaos optimization algorithm adopts chaos variable to search, and the search 
goes on according to the regularity characteristics of the chaotic variables. Chaos 
variable’s traversal property ensures that a true optimum solution can be found if 
allowed to run for sufficient time. Even if the optimization calculation time is li-
mited we can get approximate solution with extremely good precision.  

Grid Scheduling and Network-on-Chip mapping problems both belong to the 
group of NP-complete problems, which are traditionally solved using metaheuris-
tic algorithms such as GA. In this chapter a Chaos-Genetic Algorithm (CGA) was 
used in order to take advantage of the properties of the chaotic variables to make 
the search of optimal values in GA more effective and faster. This is done by de-
signing a chaotic mapping operator, using one-dimensional chaotic maps and ap-
plying it to the GA along with the common genetic operators, namely crossover 
and mutation. Experimental results were highly dependent upon the chaotic map 
that was used. Therefore, by prioritizing the favorites that one seeks, a chaotic eq-
uation may be selected that is the most congruent with ones will. 
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