Studies in Computational Intelligence 355

Yan Meng
Yaochu Jin (Eds.)

Bio-Inspired
Self-Organizing
Robotic Systems

@ Springer



Yan Meng and Yaochu Jin (Eds.)

Bio-Inspired Self-Organizing Robotic Systems



Studies in Computational Intelligence, Volume 355

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 332. Jianguo Zhang, Ling Shao, Lei Zhang, and
Graeme A. Jones (Eds.)

Intelligent Video Event Analysis and Understanding, 2011
ISBN 978-3-642-17553-4

Vol. 333. Fedja Hadzic, Henry Tan, and Tharam S. Dillon
Mining of Data with Complex Structures, 2011
ISBN 978-3-642-17556-5

Vol. 334. Alvaro Herrero and Emilio Corchado (Eds.)
Mobile Hybrid Intrusion Detection, 2011
ISBN 978-3-642-18298-3

Vol. 335. Radomir S. Stankovic and Radomir S. Stankovic

From Boolean Logic to Switching Circuits and Automata, 2011

ISBN 978-3-642-11681-0

Vol. 336. Paolo Remagnino, Dorothy N. Monekosso, and
Lakhmi C. Jain (Eds.)

Innovations in Defence Support Systems - 3, 2011

ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 6, 2011

ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, Eugene V. Aidman, and
Canicious Abeynayake (Eds.)

Innovations in Defence Support Systems — 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and
Detlef Zuehlke (Eds.)

Model-Driven Development of Advanced User Interfaces, 2011

ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)

New Horizons in Evolutionary Robotics, 2011

ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros

Mining and Control of Network Traffic by Computational
Intelligence, 2011

ISBN 978-3-642-18083-5

Vol. 343. Kurosh Madani, Anténio Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2011

ISBN 978-3-642-20205-6

Vol. 344. Atilla El¢i, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)

Semantic Agent Systems, 2011

ISBN 978-3-642-18307-2

Vol. 345. Shi Yu, Léon-Charles Tranchevent,

Bart De Moor, and Yves Moreau

Kernel-based Data Fusion for Machine Learning, 2011
ISBN 978-3-642-19405-4

Vol. 346. Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)

Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1

Vol. 347. Sven Helmer, Alexandra Poulovassilis, and Fatos
Xhafa

Reasoning in Event-Based Distributed Systems, 2011
ISBN 978-3-642-19723-9

Vol. 348. Beniamino Murgante, Giuseppe Borruso, and
Alessandra Lapucci (Eds.)

Geocomputation, Sustainability and Environmental
Planning, 2011

ISBN 978-3-642-19732-1

Vol. 349. Vitor R. Carvalho
Modeling Intention in Email, 2011
ISBN 978-3-642-19955-4

Vol. 350. Thanasis Daradoumis, Santi Caballé,

Angel A. Juan, and Fatos Xhafa (Eds.)
Technology-Enhanced Systems and Tools for Collaborative
Learning Scaffolding, 2011

ISBN 978-3-642-19813-7

Vol. 351. Ngoc Thanh Nguyen, Bogdan Trawinski, and
Jason J. Jung (Eds.)

New Challenges for Intelligent Information and Database
Systems, 2011

ISBN 978-3-642-19952-3

Vol. 352. Nik Bessis and Fatos Xhafa (Eds.)

Next Generation Data Technologies for Collective
Computational Intelligence, 2011

ISBN 978-3-642-20343-5

Vol. 353.Igor Aizenberg

Complex-Valued Neural Networks with Multi-Valued
Neurons, 2011

ISBN 978-3-642-20352-7

Vol. 354. Ljupco Kocarev and Shiguo Lian (Eds.)
Chaos-Based Cryptography, 2011
ISBN 978-3-642-20541-5

Vol. 355. Yan Meng and Yaochu Jin (Eds.)
Bio-Inspired Self-Organizing Robotic Systems, 2011
ISBN 978-3-642-20759-4



Yan Meng and Yaochu Jin (Eds.)

Bio-Inspired Self-Organizing
Robotic Systems

@ Springer



Yan Meng Yaochu Jin

Department of Electrical and Computer Department of Computing
Engineering University of Surrey

Stevens Institute of Technology Guildford, Surrey, GU2 7XH, UK
Castle Point on Hudson, E-mail: yaochu.jin@honda-ri.de
Hoboken, NJ 07030

USA

E-mail: yan.meng@stevens.edu

ISBN 978-3-642-20759-4 e-ISBN 978-3-642-20760-0
DOI 10.1007/978-3-642-20760-0

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011927941

© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.
Printed on acid-free paper
987654321

springer.com



Preface

Robotic systems are increasingly required to work under various dynamic, unpre-
dictable, and unknown environments to accomplish various complex tasks. To ad-
dress these challenges, self-organizing swarming robots and self-reconfigurable
modular robots have been proposed. For example, emerging collective behaviors
of large-scale swarm robotic systems can provide high flexibility and adaptation to
deal with environmental changes. Self-reconfigurable modular robots can auto-
matically change the morphology of the systems to adapt to complex terrains. To
deal with more complex and demanding environments as well as task require-
ments, autonomous development of cognitive abilities together with the body plan
of robots also becomes extremely important nowadays. Compared to traditional,
preprogrammed techniques, self-organizing robotic systems are more promising in
dynamic, unknown environments, particularly in terms of robustness, self-repair,
and self-adaptation. To exhibit the above-mentioned properties, self-organizing
systems must be controlled in a distributed manner, ideally through local interac-
tions among individual simple robots without an external global control. Unfortu-
nately, design of distributed self-organizing robotic systems remains one of the
most challenging problems in robotics.

Biological systems, from macroscopic swarm systems of social insects to mi-
croscopic cellular systems, can generate robust and complex emerging global be-
haviors through relatively simple local interactions in the presence of various
kinds of uncertainty. Borrowing ideas from biological systems for developing self-
organizing robotic systems has become increasingly popular and enjoyed consid-
erable success in recent years. For example, swarm intelligence, a novel paradigm
for solving complex problems with massively parallel systems, has been inspired
by behaviors observed in social insect colonies and flocks of birds. Another self-
organizing process in biology is morphogenesis of multi-cellular organisms.
Morphogenetic approaches based on computational models of embryogeny to self-
organizing robotic systems, which are now known as morphogenetic robotics,
have shown to be very promising.

This edited book presents a collection of the most representative research work
on biological inspired self-organizing robotic systems. This book is composed of four
parts. Part I discusses bio-inspired self-organizing approaches to swarm robotic sys-
tems, such as morphogenetic approaches inspired by biological morphogenesis in
multi-cellular organisms, swarm intelligence based approaches simulating the behav-
iors of social insects (e.g., birds, honeybees), hormone-based approaches to robotic
organisms, and genetic stigmergy based communication mechanism for swarm ro-
bots. In Chapter 1, a new emerging research field in developmental robotics,
morphogenetic robotics, is introduced by Jin and Meng. The main philosophy of
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morphogenetic robotics is to apply development principles to design the morphology
and controller of self-organizing robotic systems. The main topics belong to morpho-
genetic robotics are summarized and the relationship between morphogenetic robotics
to evolutionary robotics and epigenetic robotics are discussed. Evolutionary devel-
opmental robotics, which is a natural marriage of evolutionary and developmental ro-
botics, is envisaged. Chapter 2, contributed by Schmickl, first presents different
swarm robotic systems using controllers inspired from collective behaviors of honey-
bees and slime model aggregation. Then, a hormone-based control paradigm for
multi-modular robotic organisms is discussed. All these systems are self-organized in
a distributed manner. In Chapter 3, La and Sheng propose two flocking control algo-
rithms, namely, Multi-CoM-Shrink and Multi-CoM-Cohesion, for multi-robot target
tracking in cluttered and noisy environments inspired from flocking behaviors of
birds, bees, and fish observed in nature. The stability and scalability of the algorithms
have also been investigated theoretically. Inspired by the pheromone-based stigmergy
in ant systems, in Chapter 4, Brandoff and Sayama describe an artificial genetic stig-
mergy for indirect communications among robots in a swarm system, where swarm
robots conduct an unknown environment mapping task. In the last chapter of Part I,
Garnier,a biologist, shares his points of view on how swarm roboticsinspired from
biological self-organization in animal societies can benefit from and contribute back
to the study of collective animal behaviors.

Part II introduces several bio-inspired approaches to self-reconfigurable modular
robots. Kernbach et al., in Chapter 6, propose constrained-based self-optimization
of self-assembly of heterogeneous modular robots, which is mainly inspired
from gene regulatory networks observed in molecular organisms. Mechanical and
integration constrains of robot modules are taken into account. Inspired by the em-
bryonic development of multi-cellular organisms, hierarchical morphogenetic
approaches are presented for self-reconfiguration of two modular robots (i.e.,
Cross-Cube and Cross-Ball) by Meng and Jin in Chapter 7. This hierarchical
framework consists of three layers, where the virtual-cell based layer 1 controller is
responsible for automatically generating appropriate target configurations for ro-
bots based on environmental constraints, the gene regulatory network based layer 2
controller provides self-reconfiguration plans for modules, and the skeleton-based
layer 3 controller guides the modules to move to the target configuration with the
mechanical and connectivity constraints of modules. By using this hierarchical
morphogenetic framework, the target patterns of the robots can be automatically
generated to adapt to changing environments. In Chapter 8, Miyashita et al. first
discuss three basic research issues in self-assembling robots for manufacturing 3D
micro products, namely, assembly, dynamic, and interaction issues. Then, a case
study with passive modules (actuated by permanent magnet) and active modules
(actuated by vibration motors) has shown the segregation behaviors of modules in a
distributed manner. Entropy analysis is also provided to govern macroscopic self-
assembly systems.

Whereas Part I and Part II concentrate on the self-organizing of swarm and
modular robots, autonomous mental development of robotic systems is the main
focus of Part III. In Chapter 9, Weng presents a developmental network (DN)
based general purpose model of the brain for robotic systems. A cell-centered
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in-place learning scheme is proposed to handle all levels of brain development and
operation based on biological genomic equivalence principles, which is automati-
cally built up from five basic brain puzzles: development, architecture, area, space
and time. The focus of this chapter is the analysis on how this model deals with
temporal contexts.

Two specific applications of self-organizing robotic systems are presented in
Part IV. Inspired by the slime mouldPhysarumpolycephalum in biological organ-
isms, Jones et al. propose physarum robots in Chapter 10, where physarum can be
considered as a smart computing material. A particle-based computational model
is proposed for physarum robots, which spontaneously generate complex oscilla-
tory patterns from simple local interactions in a distributed manner. The authors
expect that physarum robots may be used as physical instances of smart materials
for the future robotic devices. In the final chapter of the book, Chapter 11, a lay-
ered architecture is presented by Hoffmann et al. to build up self-organizing ro-
botic cells for industrial robots. In the proposed system, an organic computing
based model is employed to combine the system emergence and self-organization
properties.

We believe that this book will provide readers an up-to-date and comprehensive
view of bio-inspired self-organizing robotic systems. We hope this book will
bridge multi-disciplinary research areas such as robotics, artificial life, cognitive
sciences, systems biology, developmental biology and evolutionary computation,
thereby inspiring researchers and engineers to generate more creative ideas to fur-
ther promote this emerging and exciting research field.

We would like to thank all contributors who prepared excellent chapters for this
book. We would also like to thank Prof. JanuszKacprzyk, Editor-in-Chief of this
book series and Dr. Thomas Ditzinger from Springer for offering us the opportu-
nity to edit the book.

Yan Meng

Department of Electrical and Computer Engineering
Stevens Institute of Technology

Hoboken, NJ 07030, USA

Yaochu Jin

Department of Computing
University of Surrey
Guildford, GU2 7XH, UK
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Morphogenetic Robotics - An Evolutionary
Developmental Approach to Morphological and
Neural Self-Organization of Robotic Systems

Yaochu Jin and Yan Meng

Abstract. Morphogenesis can be considered as a self-organizing process shaped
by natural evolution, in which two major adaptation mechanisms found in nature
are involved, namely evolution and development. The main philosophy of morpho-
genetic robotics is to apply evolutionary developmental principles to robotics for
designing self-organizing, self-reconfigurable, and self-repairable single- or multi-
robot systems. We categorize these methodologies into three areas, namely, morpho-
genetic swarm robotic systems, morphogenetic modular robots, and co-development
of body and brain of robotic systems. In this chapter, we give a brief introduction to
morphogenetic robotics. A few examples are also presented to illustrate how evolu-
tionary developmental principles can be applied to swarm robots in changing envi-
ronment. We also describe computational models for genetically driven neural and
morphological development and activity-dependent neural development. As devel-
opmental mechanisms are often shaped by evolution both in nature and simulated
systems, we suggest that evolutionary developmental robotics is a natural next step
to follow.

1 Introduction to Morphogenetic Robotics

The physical development of animals includes the processes that cause the creation
of both the body plan and nervous system, including cleavage, gastrulation, neurula-
tion, organogenesis [S5]. Some living organisms, such as amphibians, also undergo
a biological process known as metamorphosis, during which both the shape and
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size of the organisms change [5]]. The past decade has witnessed rapid technical and
theoretical advances in evolutionary developmental biology [10] (often known as
evo-devo) and systems biology in understanding molecular and cellular mechanisms
that control the biological morphogenesis. These advances have not only helped us
in understanding biological processes such as human deceases, but also provided
us new powerful tools for designing engineered systems. For example, increasing
evidence has been revealed that biological morphogenesis can be regarded as a self-
organizing and self-assembling process through cellular and molecular interactions
under the genetic and environmental control [2,[50]]. In addition, biological morpho-
genesis has also shown a surprising degree of robustness [3]]. Due to the attractive
properties that biological morphogenesis exhibits, much attention has been paid to
employ genetic and cellular mechanisms for designing robotic systems, in particular
for self-organizing swarm robotic systems and self-reconfigurable modular robots.
In addition, a large body of research has been performed in artificial life and robotics
to design the body plan and neural controller of robots using an evolutionary devel-
opmental approach [54].

In this chapter, we provide a brief introduction to morphogenetic robotics, a ter-
minology that was first coined by the authors in 2009 and reported on a wiki web-
page [[17], later more formally presented in [20]. In general, morphogenetic robotics
denotes the research area dedicated to the application of genetic and cellular mech-
anisms underlying biological morphogenesis to robotics. Morphogenetic robotics
includes the following three main topics:

e Morphogenetic swarm robotic systems that deal with the self-organization of
swarm robots using genetic and cellular mechanisms 149]).

e Morphogenetic modular robots where modular robots adapt their configurations
autonomously based on the current environmental conditions using morpho-
genetic principles [35].

e Developmental approaches to the design of the body or body parts and its neural
controller of robots [13] 26].

Neural development may further be divided into activity-independent [18] and
activity-dependent neural development [6]. Activity-independent neural develop-
ment lays down the initial structure of the nervous system and is mainly regulated
by genetic networks, whereas activity-dependent development refines the neural
connectivity driven by neural activities. However, a clear boundary between activity-
independent and activity-dependent neural development does not exist. Recent find-
ings in neuroscience suggest that early neural development, including neuronal
proliferation, migration, differentiation axon growth and dendrite outgrowth are
more or less influenced by spontaneous neural activity. On the other hand, activity-
dependent neural plasticity involves in changes in gene expression, i.e., activity-
dependent neural development is eventually also regulated by genetic networks.
The three areas of morphogenetic robotics are not necessarily fully separated.
For example, it can happen that morphogenetic principles are applied to a hybrid of
swarm and modular robotic system, where a number of swarm robots may assem-
ble into one single “modular” robot and then dissemble into multiple single robots



Morphogenetic Robotics 5

again. Meanwhile, developmental design of the morphology and controller may be
employed for modular robots to accomplish complex tasks.

The motivation to create this new terminology is to fill the gap between develop-
mental robotics and natural development of intelligent animals. In traditional devel-
opmental robotics, often known as epigenetic robotics, attention has mainly be paid
to cognitive development and the physical development of the body plan and neural
system is often neglected.

2 Computational Modeling of Multi-cellular Morphogenesis

2.1 Biological Morphogenesis and Metamorphosis

Morphogenesis of animals can be divided into early embryonic development and
later embryonic development [9]]. Early embryonic development typically involves
cleavage, gastrulation, and axis formation, while later embryonic development is
mainly responsible for the development of the nervous systems, starting with the
segregation of neural and glial cells from the ectoderm germ layer [47]. An example
of morphogenesis of nematostella vectensis is illustrated in Fig. Il

B. °gg e Q Q
108 e je>

Fig. 1 Morphogenesis of nematostella vectensis. The development stages are: Egg (A), mor-
lula (B-F), blastula (G), gastrula (H), planula (I-J), and polyp (K-L). Taken from [27].

A

Metamorphosis is another interesting stage of biological development. There are
two types of metamorphosis, namely, incomplete and complete metamorphosis. For
organisms underlying incomplete metamorphosis, there are three developmental
stages, in which nymphs look similar to adults. In contrast, organisms that undergo
complete metamorphosis have four developmental stages, in which the shape of the
organisms changes drastically.

2.2 Modeling of Developmental Gene Regulatory Networks

Biological morphogenesis is governed by gene regulatory networks (GRNs). To un-
derstand the genetic and cellular principles underlying morphogenesis in silico, it
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is necessary to build up a mathematical model of developmental gene networks.
In recent years, much research work has been reported on computational modeling
of signal transduction and developmental genetic networks. These network models
have been employed either to reconstruct a gene regulatory sub-network in biology
based on experimental data, or to analyze the basic properties of biological genetic
networks, such as robustness and evolvability.

For describing the morphogenesis of multi-cellular organisms, the interaction be-
tween the cells and its influence on gene expression dynamics must be taken into
account. Mjolsness et al. [36] has suggested a generalized GRN model that consid-
ered diffusion of transcription factors among the cells:

d;] =—78ijt¢

ng )
> wilgy+6;
i=1

+D;V3gi, )

where g;; denotes the concentration of j-th gene product (protein) in the i-th cell.
The first term on the right-hand side of Equation (1) represents the degradation
of the protein at a rate of y;, the second term specifies the production of protein
gij» and the last term describes protein diffusion at a rate of D;. ¢ is an activation
function for the protein production, which is usually defined as a sigmoid function
¢(z) = 1/(1 +exp(—uz)). The interaction between the genes is described with an
interaction matrix W/!, the element of which can be either active (a positive value)
or repressive (a negative value). 6; is a threshold for activation of gene expression.
ng is the number of proteins.

An illustration of cell-cell interactions is provided in Fig.[2l where gene 1 of cell
1 is activated by its own protein and repressed by the protein produced by gene 1 of
cell 2 through diffusion. Similarly, gene 2 of cell 1 is activated by its own protein,
and repressed by the protein of gene 2 of cell 2 through diffusion.

3 Morphogenetic Self-Organization of Swarm Robots

3.1 Swarm Robotic Systems

A swarm robotic system consists of a number of robots. Usually, each robot has only
low computational power and limited communication capability, which therefore,
can only accomplish simple tasks. However, with a proper control mechanism, the
robots can work together to perform complex tasks. Swarm robotic systems with
a decenralized control strategy are often believed to be more flexible and robust.
Typical applications of swarm robotic systems include group transport, foraging,
shape formation, boundary coverage, urban search and rescue, and unknown en-
vironment exploration. However, designing a decentralized control algorithm for
swarm robotic systems has been a challenging task [30].
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Fig. 2 Illustration of cell signaling in a multi-cellular system.

3.2 A Metaphor between Swarm Robotic Systems and
Multi-cellular Systems

3.2.1 The Cell-Robot Mapping

To apply genetic and cellular mechanisms in biological morphogenesis to self-
organization of swarm robots, it is necessary to establish a metaphor between a
multi-cellular system and a multi-robot system. In the metaphor, the most impor-
tant functions of a robot is mapped to concentrations of a cell. In [18], [31], the
location and velocity of the robots are described by the protein concentration of a
few genes whose expression is influenced by each other. Typically, for a robot in a
three-dimensional space, three proteins are used for denoting the robot’s position,
and three for the velocity. Note, however, that the mathematical definition of the
protein concentrations standing for position and velocity of the robots do not satisfy
the exact physical relationship between position and velocity. So the speed in this
context can be seen as an internal state of the robots.

Keeping the metaphor between the cells and the robots in mind, the movement
dynamics of each robot can be described by a GRN model, where the concentration
of two proteins of type G represents the x and y position of a robot, respectively,
and that of the proteins of type P representing an internal state of the robot.

dgix

d;x = —azjx+mpix )
dgiy _
i = A%yt mpiy

d i,x
Pir = —cpiv+kf(zix) +bDix

3)
Wiy — _epiy+kf(ziy) +bDiy
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where i =1,2,...,n. and n is the total number of robots (cells) in the system. g; , and
gi,y are the x and y position of the i-th robot, respectively, which corresponds to the
concentration of two proteins of type G. p;, and p;, are the concentration of two
proteins of type P, which denotes the internal state of the i-th robot along the x and y
coordinates, respectively. D; , and D; ;, are the sum of the distances between the i-th
robot and its neighbors. In the language of the multi-cellular system, it is the sum of
the concentration of protein type G diffused from neighboring cells. Mathematically,
we have:

N N

_ J _ y

Di,x = Z Di"xa Di,y - Z Dw ) (4)
j=1 j=1

where N; denotes the number of neighbors of robot i, and Dl] . and Dl] , are the pro-

tein concentrations diffused from neighboring robot j received by robot i, which is
defined as:

D] _ (gi,x_gj,x) ’ (5)
o \/(gi,x - gj,x)2 + (gi,y - gj.,y)2
D - (8iy — 8&i) ©)

YV (gix— 8jx) + (813 —8)y)?

The diffusion term in the regulatory model simulates the cell-cell signaling in

multi-cellular systems. For a swarm robotic system, this entails that each robot is

able to detect the distance to its neighboring robots, which is practical and easy to
realize.

3.2.2 Target Shape Representation Using Morphogen Gradients

In biological morphogenesis, morphogen concentration gradients control cell fate
specification and play a key role in understanding pattern formation [1I]. In the
present gene regulatory model for shape formation of swarm robots, the target shape
information is also provided in terms of morphogen gradients, which is defined by f;
in Equation 3] For a two-dimensional target shape, f(z;) can be defined as follows:

Ly Lt
Max) =1 Fm (7
flaiy) = ==

B 14e G

where z; , and z;, are the gradients along x-axis and y-axis, respectively, of an ana-
lytic function i, which is described as:

~_oJh  Jh
Zix = agi,x7 iy =

-— 8
e ®)

where h defines the shape the robots should form.
The map between a multi-cellular system and a multi-robot system used in this
work is provided in Fig.[3l
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Cell Robot
Concentration of protein 1, type G X-position
Concentration of protein 2, type G y-position

Concentration of protein 1, type P Velocity in x-coordinate

Concentration of protein 2, type P Velocity in y-coordinate

Local robot-robot interaction
based on distance

Target shape

Diffusion of protein type G

LT

Morphogen gradient

Fig. 3 A metaphor between a multi-cellular system and a multi-robot system.

3.3 From Analytic to Freeform Shape Representation

Representation of the target shape of the swarm robotic system in terms of mor-
phogen gradients is an important step in designing morphogenetic self-organizing
systems. The most straightforward way to represent a shape is to use an analytic
function. For example, if the robots are required to form a unit circle, the following
function can be used:

There are potentially three problems with this way of shape representation. First,
the complexity of the shapes is limited. In general, analytic functions can describe
closed two-dimensional shapes only. Second, the algorithm needs a global coordi-
nate system for describing the shapes, which poses a big problem for decentralized
systems. Third, the shape can be formed only on a predefined location. To address
these issues, parametrized shape representation models, such as Bézier, B-Spline
and non-uniform rational B-Spline (NURBS) can be used [31]].

A NURBS curve is defined by its order, a set of weighted control points, and a
knot vector. The control points define the shape of the curve, and the knot vector
is a set of parameters that determines where and how the control points affect the
NURBS curve. A NURBS model can represent both curve and surface in a two- or
three-dimensional Cartesian space. Let B ; (1) be the B-spline basis functions of the
NURBS model, where i corresponds to i-th control point, and k denotes the degree
of the basis function. In the NURBS model, a curve can be defined as a combination
of a set of piecewise rational basis functions with n+1 control points p; and the
associated weights as follows:
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Y PiwiBi i (u)
Y PiBi,k(”) ’

where n is the number of control points, u is a parameter in the NURBS represen-
tation. For basis functions of degree k — 1, a NURBS curve has n+ k+ 1 knots ¢;
in a non-decreasing sequence: fo < f; < ... < t,,44. The basis functions are defined
recursively as:

c(u) = (10)

A L <u<tiyg
Bz,k(u) - {0, otherwise v
where t t
U—t itk — U
Bij(u) = ————Bjj—1(u) + ————Bj1 -1 (u). 2
livkt1 =l fiek =l

The range of the parameteris f_| < u < f3y].

Simulation results where 17 robots are used to form a bird-flocking shape are
given in Fig. [l The robots are randomly distributed in the area in the beginning. A
reference robot is chosen through a competition process, during which the robot that
has the maximum number of neighbors wins. Driven by the GRN-based dynamics,
the robots will then autonomously form the target shape. Snapshots showing 17
robots forming a bird-flocking shape are provided in Fig. @l More details about this
part of the work can be found in [12].

@) (b) ©

Fig. 4 Snapshots showing the emergence of a pattern from 17 robots similar to bird flock-
ing [[12]]. (a) Random initialization; (b) Determination of a reference robot (denoted by a star)
through competition; (c) Emergence of the target shape.

3.4 From Predefined Target Shape to Adaptive Shape Generation

In the previous models, it is assumed that the target shape to be constructed by the
robots is known beforehand and therefore can be pre-defined. Unfortunately, this as-
sumption does not hold if the target shape must change as the environment changes.
To address this issue, a hierarchical GRN (H-GRN) network consisting of two lay-
ers has been suggested [19], as illustrated in Fig. 5l Layer 1 generates patterns in
terms of protein concentration depending on the given environment, for instance,
the location of the targets to be followed and entrapped. Layer 2 is responsible for
controlling the robot’s movement dynamics, where protein types G and P represent
the position and internal state vectors of the robots, respectively. If the patterns are
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Environmental input

Layer 1 v

Layer 2

%fDiffusiou—»

[
Cell 1 Cell 2

Fig. 5 A diagram of the H-GRN. Layer 1 is a GRN having four proteins, of which protein p
can be regulated by environmental inputs, and protein g3 is the morphogen gradient describ-
ing the pattern to be formed. Protein g3 can influence the production of both proteins G and
P, which represents the position and velocity vectors of the robots, respectively.

generated in a two-dimensional (2D) space, the vector length of G and P is two.
In a 3D space, the dimension of both position and internal state vectors is three.
Note that only protein type G can diffuse into other cells and influence the motion
dynamics of other robots. The functionality of GRN layer 2 is similar to the single
layer GRN described in the previous section.

From the above discussions, we note that the pattern generated by layer 1 plays a
similar role of morphogen gradients in biological morphogenesis. The main advan-
tage of having an additional GRN layer for pattern generation is that it enables the
system to generate a desired pattern adaptively in a changing environment, which is
impossible to achieve if the target pattern is predefined.

Note that the GRN of layer 1 is activated only when the robot detects a target or
multiple targets. Based on the position of the detected targets, a target pattern will
be generated. These robots are termed as organizing robots. Once a target pattern is
generated in organizing robots, the dynamics of the GRN of layer 2 in these robots
are then activated to guide the robots to the target pattern. The robots that do not
detect any target will follow the movement of the organizing robots until they detect
any targets by themselves. By then, they also become organizing robots: the GRN
of layer 1 will be activated, the target pattern will be generated and finally the robots
will move to the target pattern guided by the dynamics of the GRN of layer 2.
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Simulations have been carried out to verify the capability of adaptive pattern
generation of the H-GRN. A few snapshots of the simulation results on adaptive
pattern generation are given in Fig. |6l In the simulation, two targets move in the
considered area. Furthermore, they can move so distantly from each other that two
separate patterns are needed. These results show that the proposed model works
properly for adaptive pattern generation without any centralized control.

E R R R R T R & s w0 @
(c)

Fig. 6 Snapshots of simulations showing the adaptive pattern generation when the targets to
be entrapped move.

Proof-of-concept experiments with physical robots have also been conducted. In
the experiments, two targets (e-puck mobile robots covered with a piece of yellow
paper) should be entrapped by other eight robots. This function has been achieved,
as shown in Fig.[7l After that, one of the target robots moves out the circular shape
that the eight robots have formed. This environmental change should be detected
automatically and a new pattern must be constructed. Once the new pattern is gen-
erated, the eight robots should formulate a new shape that entrap the two target
robots again. This adaptation process is shown in Fig. |8

3.5 Intermediate Summary

Compared to existing approaches [16], the morphogenetic approach to self-
organizing swarm robotic systems has the following advantages. First, the global
behavior, i.e., the target shape in the context of pattern formation, can be embedded
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Fig. 7 Snapshots from experimental results where two robots (covered with a piece of paper)
are trapped with another eight robots organized by the H-GRN model.

in the robot dynamics in the form of morphogen gradients. In pattern formation,
the global shape can be described using parametrized models such as a NURBS
model that can represent both analytical and free-form shapes. The GRN model can
then generate implicit local interaction rules automatically to generate the global
behavior, which can be guaranteed through a rigorous mathematical proof. Second,
the morphogenetic approach is robust to perturbations in the system and in the en-
vironment. Third, it has also shown that the morphogenetic approach can provide
a unified framework for multi-robot shape formation and boundary coverage [12]],
since the representation of the target shape is independent of a specific global coor-
dination system. Last but not the least, the morphogenetic framework can generate
patterns automatically in a changing enviornment, which, to the best of our knowl-
edge, has not been reported in the literature.

4 Morphogenetic Modular Robots for Self-Organized
Reconfiguration

Self-reconfigurable modular robots consist of a number of modules and are able to
adapt their shape (configuration) by re-arranging their modules to changing environ-
ments [39]. Each module is a physical or simulated *body’ containing a controller.
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Fig. 8 Adaptation of the target pattern and reformulation of the shape to maintain the entrap-
ping of the targets.

Both physical modular robots, such as M-TRAN [38]] and Molecube [40], and sim-
ulated *animats’, such as Karl Sims’ virtual creature [51]] and Framsticks [23] have
been constructed for reconfigurable robotic systems.

The connection between reconfigurable modular robots and multi-cellular organ-
isms appears more straightforward. Each unit in modular robots can be seen as a
cell, and there are similarities in control, communication and physical interactions
between cells in multi-cellular organisms and modules in modular robots. For ex-
ample, control in both modular robots and multi-cellular organisms is decentralized.
In addition, global behaviors of both modular robots and multi-cellular organisms
emerge through local interactions of the units, which include mechanic, magnetic
and electronic mechanisms in modular robots, and chemical diffusion and cellular
physical interactions such as adhesion in multi-cellular organisms. Therefore, it is
a natural idea to develop control algorithms for self-reconfigurable modular robots
using biological morphogenetic mechanisms [56}, 34 33, 35]. More details can be
found in [34} 33}, 33].

As we discussed before, there is also a link between swarm robotic systems and
modular robots. This happens when individual robots in a swarm robotic system
assemble into a modular robots. Vice versa, a modular robot consisting of individual
robots can again disassembled into swarm robots.
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5 Morphogenetic Brain-Body Co-development
5.1 A GRN Model for Neural and Morphological Development

The growth of the animat morphology is under the control of GRNs and cellular
physical interactions. Extended from the cellular growth model for structural de-
sign, GRN models for the development of a nervous system [21]] and body plan [48]
of primitive animals have been proposed. In the genome of the GRN models, each
gene consists of a number of structural units (SUs) proceeded by a number of reg-
ulatory units (RUs). RUs can be activating (RU™) or repressive (RU ). When SUs
are activated, they will produce proteins either responsible for cellular behaviors
such as cell division, cell death, cell migration, and axon growth, or proteins reg-
ulating the activation of the structural units, which are also known as transcription
factors (TFs). If a TF can only regulate the genes inside the cell, it is then called an
internal TFE. If a TF can also diffuse out of the cell and regulate the genes of other
cells, it is termed as an external TE. A TF can be both intracellular and intercellular.
An example of a chromosome in the cellular model for neural development is pro-
vided in Fig.[9 From the figure, we note that single or multiple RUs may regulate
the expression of a single or multiple SUs.

Whether a TF can influence an RU is dependent on the degree of match between
the affinity value of a TF and that of an RU. If the difference between the affinity
values of a TF and a RU is smaller than a predefined threshold &, the TF can bind
to the RU to regulate. The affinity match (¥, ;) between the i-th TF and j-th RU is
defined by:

¥;,j = max (sf’affiTFfaff?ULO). (13)

If 7 ; is greater than zero and the concentration ¢; of the i-th TF is above a threshold
(¥) defined in the j-th RU, then the i-th TF influences the j-th RU.

Thus, the activation level contributed by this RU (denoted by aj,j = 1,...,N)
amounts to a; = Y2, |¢;, — 8|, where M is the number of existing TFs. The expres-
sion level of the k-th gene, that is regulated by N RUs, can be defined by

_ — TH TH
rRUT| RUT| stP| stM] ru RUTsM]su?] su'| RUY sU

+ —_
RU  : Activating regulatory unit RU : Inhibitory regulatory unit
suP . cell division st™ . cell migration
A TF . -
S : Axon growth SU  : Producing transacription factor

Fig. 9 An example of chromosome for neural development.
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N
o =100 hja;(2s;— 1), (14)
j=1

where s; € (0, 1) denotes the sign (positive for activating and negative for repressive)
of the j-th RU and £; is a parameter representing the strength of the j-th RU. If
oy > 0, then the k-th gene is activated and its corresponding behaviors encoded in
the SUs are performed.

A SU that produces a TF encodes all parameters related to the TF, such as the
affinity value, a decay rate DY, a diffusion rate D{ , as well as the amount of the TF

to be produced:
2

A=Piiemra !

; (15)
where f and B are both encoded in the SUTF.

A TF produced by a SU can be partly internal and partly external. To determine
how much of a produced TF is external, a percentage (p** € (0, 1)) is also encoded
in the corresponding gene. Thus, p*A is the amount of external TF and (1 — p**)A
is that of the internal TF.

To make it easier for simulating the diffusion of TFs, cells are put in an environ-
ment that is divided into a number of grids. External TFs are put on four grid points
around the center of the cell, which undergoes first a diffusion (Eqn. and then
decay process (Eqn.[T7):

w(t) = wi(t — 1)+0.1-D/ - (G -u;(r — 1)), (16)
u;(r) = min ((1—0.1-Df)u;(z), 1), (17)

where u; is a vector of the concentrations of the i-th TF at all grid points and the
matrix G defines which grid points are adjoining.

The SUs encode cellular behaviors and the related parameters. The SU for cell
division encodes the angle of division, indicating where the daughter cell is placed.
A cell with an activated SU for cell death will die at the end of the developmental
time-step.

The above cellular model has been applied to simulate both morphological and
neural development [21} 48]|. In the experiment to generate an animat like C. el-
egans, two prediffused, external TFs without decay and diffusion are deployed in
the computation area (maternal morphogen gradients). The first TF has a constant
gradient in the x-direction and the second in the y-direction. A few snapshot of the
self-stabilized cellular growth is provided in Fig.

5.2 Activity-Dependent Neural Development

Biological findings indicate that both the structure and connecting weights of the
neurons in the brain can change over time depending on the neuronal activities [23]],
which is resulted from changes in the expression of relevant genes [7]. Based on
findings in neuroscience and systems biology, a gene regulatory network model
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Fig. 10 Self-stabilized cellular growth under the control of a GRN model presented in [48]].

is combined with the the Bienenstock, Cooper, and Munro (BCM) spiking neural
network [4] to model the synaptic and neural plasticity [32]. BCM-based spiking
neural network (SNN) is a graph with weighted, directed edges replacing synapses,
as shown in Fig[TT] The weight, weight plasticity, and meta-plasticity of the spik-
ing neural network will all be regulated by the GRN, and the GRN will also be
influenced by the activity of the neurons it resides in, in a closed loop.
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Fig. 11 A diagram of a BCM spiking neural network model.
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To optimize the parameters of the gene regulatory network, an efficient evolution-
ary algorithm, i.e., the covariance matrix adaptation evolution strategy (CMA-ES)
[23], [24], is employed. A diagram of the whole system is provided in Fig.[T2l

The evolutionary GRN-BCM model has been employed for spatiotemporal pat-
tern recognition, e.g., human behavior detection [32]]. The simulation results indi-
cate that the GRN-BCM model is more powerful for spatiotemporal pattern recog-
nition than popular machine learning models such as support vector machines or
feedforward neural networks. In addition, only spatial features are used, different
from most machine learning models that require for spatiotemporal features.
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Fig. 12 Tllustration of the E-GRN-BCM framework, where the expression level of the GRN
regulates the plasticity parameters in the BCM neural network. Meanwhile, the gene expres-
sion level is influenced by the activity of the neurons. An evolutionary algorithm is employed
to evolve the parameters in the GRN model.

6 Towards Evolutionary Developmental Robotics
(Evo-Devo-Robo)

From the discussions in Section[Il we can see that several different but related re-
search lines exist in robotics, which in our view, can be grouped into two cate-
gories, namely, evolutionary robotics [46], including coevolutionary robotics [43]]
and competitive co-evolutionary robotics [8]], and developmental robotics [28], in-
cluding morphogenetic approaches to robotics discussed in this chapter. A natural
question is, what is the relationship between evolutionary robotics and developmen-
tal robotics?
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As pointed out in [24], living systems have three main adaptation mechanisms,
i.e., learning, development and evolution. In the context of bio-inspired hardware
systems, Sipper et al has provided a nice view on how to combine the three
dimensions of natural adaptation, that is, epigenesis, ontogeny, and phylogeny in
a unified framework, which is termed as the POE model. We will discuss these
mechanisms from the robotics perspective.

e FEpigenesis. Epigenesis can be defined as autonomous, incremental and open-
end learning through sensori-motor adaptation, self-exploration, imitation, pre-
diction, and social interactions, which are the main topics of epigenetic robotics.
Thus, epigenetic robotics emphasizes on modeling of mental development.

e Ontogenesis / morphogenesis. Ontogenesis (ontogeny) includes cell growth, cel-
lular differentiation and morphogenesis. Considering the fact that ontogenetic
robotics has been used interchangeably with epigenetic robotics and that most
computational models of morphogenesis also include cellular differentiation, we
suggest that morphogenetic robotics be used to refer to the physical development
of the body, including the nervous system. In contrast to epigenetic robotics,
morphogenetic robotics covers the physical development of living systems.

e Phylogeny. In biology, phylogeny refers to the evolutionary relatedness of dif-
ferent species or populations. In robotics, evolution has been a powerful tool for
robotics to be adaptable to large environmental changes through genetic varia-
tions such as mutation, crossover, and gene duplication.

Obviously, research in epigenetic robotics, morphogenetic robotics and evolution-
ary robotics cannot be performed separately. First, autonomous mental develop-
ment would not have been possible without an intrinsic motivation system
and genetically wired neural structures for prediction, anticipation and memory.
So far in epigenetic robotics, intrinsic motivation systems have often been pre-
defined [41]]. We hypothesize that the most basic components of such intrinsic mo-
tivation systems have been endowed by evolution. Second, the body plan of the
robots are a result of morphogenetic development, on which mental development is
based through interaction with the environment. Particularly, activity-dependent and
activity-independent development of neural networks are closely coupled, which
suggests that a synergy between epigenetic robotics and morphogenetic robotics is
indispensable. Finally, development can not only bias the direction of evolution,
but also enhance evolvability [22], while learning can influence evolution [[14]]. For
example, it has been shown in [43]], learning can attribute to genetic diversity in
changing environments, and evolution is able to find an optimal balance in allocat-
ing adaptation resources for evolution and learning [44]).

Evolutionary developmental biology has revolutionized our understanding of the
morphological and neural development of living organisms [37]. In addition, the
evo-devo approach has also helped us gain deeper insights into human cognitive de-
velopment, resulting a new discipline known as evolutionary developmental
psychology [11]].
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To summarize, we believe that evolutionary robotics and developmental robotics,
two distinct yet complementary disciplines in robotics, should also integrate and
form a new discipline: evolutionary developmental robotics (evo-devo-robo).

7 Conclusions

This chapter introduces a morphogenetic approach to self-organizing robotic sys-
tems, which focuses on employing genetic and cellular mechanisms in biological
morphogenesis for developing self-organizing, self-reconfigurable and self-adaptive
robotic systems, covering a wide range of robotic systems such as swarm robotic
systems, modular robots and intelligent robots. While epigenetic robotics concen-
trates on the cognitive development of robotic systems, morphogenetic robotics
focuses on the growth process of the body plan and nervous system. Therefore,
we believe that morphogenetic robotics is complementary to epigenetic robotics
and fills the gap between epigenetic robotics and developmental robotics in that
developmental robotics should include both neural, morphological and cognitive
development. We also expect that we will benefit from the synergies between mor-
phogenetic and epigenetic robotics, as neural and morphological development lay
the neuro-physiological foundation for cognitive development. Finally, we advo-
cate to go from developmental robotics to evolutionary developmental robotics, thus
systematically embedding the three main adaptation mechanisms of natural intelli-
gence, i.e., evolution, development and learning, in robotic systems.
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Abstract. In large-scale systems composed of autonomous embodied agents (e.g.,
robots), unpredictability of events, sensor noise and actuator imperfection pose sig-
nificant challanges to the designers of control software. If such systems tend to self-
organize, emergent phenomena prevent classical engineering approaches per se. In
recent years, the Artificial Life Lab at the University of Graz has investigated a vari-
ety of methods to synthesize such control algorithms used in multi-modular robotics
and in swarm robotics. These methods either translate mechanisms directly from bi-
ology to the engineering domain (bio-mimicry, bio-inspiration) or generates such
controllers through artificial evolution from scratch. In this article I first discuss dis-
tributed control algorithms, which determine the collective behavior of autonomous
robotic swarms. These algorithms are derived from collective behavior of honeybees
and from slime mold aggregation. One of these algorithms is inspired by inter-adult
food exchange in honeybees (’trophallaxis’) another one from chemical signaling
in slime molds. In addition to the control of robot swarms, control paradigms for
multi-modular robotic organisms are presented, which are again based on simulated
fluid exchange (hormones) among compartments of robotic organisms. In both do-
mains —swarms and organisms— the control system is self-organized and consists of
many homeostatic sub-systems which adapt to each other on the individual (mod-
ule) and on the collective level (organism, swarm). Additionally, I discuss the im-
portance of distributed feedback networks, as well as the benefits and drawbacks of
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1 Introduction

Even though much progress was made in the field of robotic engineering in the past,
it is still a challenging task to develop control software for robots that are aimed to
work in heterogeneous, dynamic, and sometimes even unpredictable environments.
This challenge is even harder whenever the aim is to control not only one singular
robotic unit but several — sometimes even masses — of robot modules.

The field of collective robotics can be roughly split into two domains: (1)
Swarm robotics: Robotic modules are fully autonomous in control and in their phys-
ical connectedness. (2) Multi-modular robotics and reconfigurable robotics: Robotic
modules are physically coupled. I think that systems of both domains can be seen as
being quite similar. It is just the degree of (physical) connectedness between mod-
ules that differs between systems of these two domains. Thus I interpret a swarm as
being a ‘very loosely coupled’ variant of an organism, or, in other words, I call an
organism to be a very tightly connected swarm of modules. In the work of the Arti-
ficial Life Lab in Graz (Austria), we draw bio-inspiration from natural swarm sys-
tems and from simple multi-cellular organisms. The basic principles that govern the
self-organization of the natural systems are then translated into algorithms that pro-
duce comparable self-organization in robotic systems. However, as the ‘substrate’
changes significantly, this translational step has to carefully consider the capabilities
and constraints of the technical target systems. In figure [Tl the potential ‘flows of in-
spiration’ between biological research domains and engineering research domains,
which are relevant for my work group’s research paradigm, are depicted.

Within the community of biology-interested engineers, the term ‘bio-mimicry’
and ‘bio-inspiration’ are used very often synonymously. I think there is significant
difference between these two research fields: In bio-inspiration, a mechanism is im-
ported from the biological source of inspiration to the technical target system. Very
often, the biological mechanism is either a chemical or a behavioural mechanism,
which is converted into a sort of algorithm that reflects the key aspects of the inspi-
ration. Prominent examples are genetic algorithms & evolution strategies (22 [12]],
particle swarm optimization [[14] or ant colony optimization [7]. Although these al-
gorithmic methodologies clearly reflect key features of the biological counterpart,
they are very abstract, disembodied and do not incorporate any biological constraints
into the technical world. Thus they act similar to the biological counterpart but they
do not look similar to it. In contrast to that, ‘bio-mimicry’ is a field of research where
the engineer tries to copy the look of biological systems as closely as possible. For
example, the walking of a modern humanoid robot might look similar to a human’s
walk, but it is achieved by servo motors, hydraulics and similar mechanisms, which
do not at all resemble the biological mechanisms associated with walking. Thus, in
‘bio-mimicry’, products look similar to biological examples but act in a different
way. However, there are many examples that aim for approach an engineering prob-
lem from both sides, thus which exploit ‘bio-inspiration’ and and ‘bio-mimicry’ in
parallel. I consider these approaches to be typical Artificial Life approaches, as the
estimative product of such an approach will be in-discriminable from a living or-
ganism: It will act and look like a natural organism. The re-creation of life forms
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(c) ' (d)

Fig. 1 Biological sources of inspiration for swarm robotic and for multi-modular robotics
organisms. The arrows indicate how knowledge in one domain could potentially influence
research on another domain. (b) ‘Volvox’, by Dr. Ralf Wagner, reprinted from the ‘wikimedia
commons’ library.

is a fundamental goal of Artificial Life, thus 100% successful ‘bio-inspiration” and
‘bio-mimicry’ might lead to a technical singularity: the first artificially created life
form.

In the article at hand, I give a short overview how such systems, robotic swarms
and robotic organisms, can be controlled in a bio-inspired way, that means that con-
trol software is written that functionally resembles a known control mechanism in
a comparable natural system. Of course, abstraction is needed to achieve this con-
version from the natural domain to the artificial. This is a critical issue, because the
more the control mechanism gets abstracted the lower is the linkage between the
natural system and the artificial one. This means that high abstraction prevents in-
spiration of further biological research, converting the potential symbiosis between
biology and engineering into a rather parasitic relationship. To prevent our research
to be such a one-way street of knowledge-flow, we keep on our biological research
even after the moment of bio-inspiration. By performing in parallel ‘bio-mimicry’
kind of research, our work group tries to transfer engineering success back into
biologically relevant research topics.

Another approach to generate control software for robotic swarms and robot or-
ganisms is open-ended evolution. In this approach, which is frequently used in my
lab for the projects SYMBRION and REPLICATOR [16, [23]], we use a bio-
inspired pluri-potent (maybe also Turing-complete) control system which is sub-
ject to artificial evolution algorithms. This represents a three-fold combination of
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bio-inspiration in parallel: Morphology, control (physiology) and selection are well
known domains in biology and are important aspects in our way to automatically
generate controllers, body shapes and interaction patterns of robots. In the article at
hand, both of my major scientific approaches mentioned above are described exem-
plary in two case studies.

In a final discussion, I review the relative positions of the methods and projects
described in this article in the ‘bio-inspiration/bio-mimicry’ feature space, thus I
discuss how close these research tracks have approached the fundamental techno-
logical singularity of artificial life.

2 Bio-Inspiration and Bio-Mimicry in Swarm Robotics
2.1 Bio-Inspiration

The aim of bio-inspiration is to find solutions to a problem by looking at comparable
natural systems where natural selection has already favored genetic, morphologic or
physiologic variants of organisms that are able to solve the particular problem. As
described above, in my interpretation the aim of bio-inspiration is not to produce a
technological copy of these biological systems. Instead, the aim of bio-inspiration is
to understand why and how the focal biological system works in an efficient manner.
After these questions are answered, a mechanism is developed that is efficient in the
technical entity in a comparable way, following similar sets of governing rules. In
my work group, we perform laboratory experiments with those animals that we
take as source of inspiration. In those experiments we find out the key components
of the natural solution to identify all relevant mechanisms. Afterwards, these key
mechanisms are abstracted and analyzed in mathematical models and simulation
studies to identify a suitable simplified model of the actual task and of the nature-
inspired solution. Based on these models, a robot controller and a suitable robot
arena setup are constructed, which is the major ‘translational process’ to convert
the algorithmic core of the observed natural mechanism into a robot algorithm. For
additional studies, a model and a simulation tool that depicts the robotic setup is
constructed, which allows parameter optimization and evolutionary computation on
the robotic system. At this point in time, the investigated task is scientifically studied
on various levels and with various tool sets: real animal experiments and robotic
experiments, simulation of biological entities and of the robotic system.

Initially, the bio-inspired robotic system is usually able to produce qualitatively
similar behaviors as the natural system. However, we usually observe lowered
efficiency or unwanted side-effects in the robots’ collective behaviors, as a straight-
forward translation of behaviors and mechanisms from the biological to the tech-
nical domain will always be sub-optimal. To compensate for this, we perform
additional experiments, modeling and computational parameter optimization. In
some cases, the biological system is not studied in our lab. This is the case when the
interesting behavioral mechanisms in the natural system are already well researched
and well described in existing literature.
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Based on biological inspiration, we have developed a set of bio-inspired control
algorithms for swarm robotics: vector-based algorithm [40Q], slime-mould-inspired
algorithm [26], trophallaxis-inspired algorithm [30, 27], and the BEECLUST al-
gorithm [31]]. These algorithms are described in the following to demonstrate the
different levels of detail at which nature can inspire robotic algorithms.

2.1.1 A Benchmark Scenario for Swarm Algorithms

To compare algorithms and to tune the performance of swarm algorithms, it is
important to develop realistic benchmark scenarios. During the EU IST-FET FP6
project [-Swarm, two types of robots were designed: The small three-legged I-
Swarm robot, communicating with four LEDs pointing into 4 directions (inter-beam
angle 90°) and the Jasmine robot (2 wheels, 6 LEDs for communication at an angle
of 60°). The I-swarm robot is able to pick up small dust particles with an electro-
static lever and also the Jasmine robot was initially planned to be equipped with an
magnetic gripper. Having these two hardware platforms in mind, we developed a
scenario which can be best described by a collective approach to foraging: forag-
ing for dirt, which means collective cleaning. The swarm of autonomous robots is
distributed randomly in the arena, all robots start unloaded. In the arena, there are
designated ’dump’ regions, where individually collected particles should be dropped
by robots. These particles are deposited initially in designated ’dirt’ regions, which
have to be discovered by the robots. This is a hard task, as the robots have no sen-
sors that can report dirt or dump from a distance, they just can observe the arena
floor located directly below themselves. Moreover, communication to other robots
as well as obstacle detection, is also restricted to a short distance around the robots
(1-2 robot diameters).

The collective tasks are: The robots have to explore the arena collectively in
an efficient manner. After some robots have found the dirt areas, they have to re-
cruit other robots to these places and —simultaneously— pick up dirt particles and
carry them to the dump region in an efficient manner. This involves a sort of ’find-
the-shortest-path’ task which should be solved collectively. This scenario has the
advantage that efficiency measures are obvious, e.g.: How many particles are deliv-
ered by x robots within a period of y time steps? The ’difficulty’ of this collective
task can be adjusted by increasing the distance between dirt and dump areas or by
placing obstacles in the way. Using this benchmark, we were able to compare dif-
ferent swarm algorithms. In addition, it allowed us to investigate important swarm
properties, for example, the critical minimum swarm density.

In the following, I describe 4 different swarm algorithms, beginning with the
communication-extensive and rather technical "vector-based’ strategy. This strategy
has little bio-inspiration and is more or less a classical engineering approach to
the posed set of problems. The second algorithm is the ’trophallaxis-inspired’ al-
gorithm, which still requires a lot of communication (several float numbers), which
is inspired by social-insect inter-adult feedings. The third algorithm is the ’slime-
mold’ algorithm, which has lower requirements concerning communication, as
only one-bit signals have to be exchanged. Finally, the 'BEECLUST’ algorithms is
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described. This algorithm is almost communication-less. However, as no more trail
formation of robots can be observed in swarms using this algorithm, it was inves-
tigated in an aggregation scenario which is just a subset of the above-described
cleaning scenario.

2.1.2 Vector-Based Algorithm

The first algorithm we investigated is called ’vector-based algorithm’, because it is
based on inter-robot communication of vector information and on collective vector
summarization. It was analyzed in several publications [40, [6], and will be shortly
summarized in the following. Using this algorithm, a robot that found a target (dirt
or dump) by chance in its random exploration mode turns on a binary signal that
indicates the location of the target to nearby other robots. These robots, which now
can calculate the angle between their current heading and the signaling robot, turn on
another binary signal and send this angular information to other robots nearby. The
vector calculation of other robots is made possible as the sending robots, which send
the message through their LEDs, encode also the direction of the sending LED into
the message. This way, the receiving robot can assume the relative heading of the
other robot and the communicated angle between the heading of the sending robot
and the foraging target. By vector addition, this interpreted information is passed
throughout the swarm, ideally telling all robots their bearing towards the target.

As can be seen in figure Ph, simulations predict trail formation of swarm robots
that transport particles from dirt areas to dump areas. Using this benchmarks, we
analyzed also the impact of swarm size (density) onto important efficiency mea-
sures of the swarm (see figure2b). However, we realized many shortcomings of this
algorithm: As soon as we implemented noise into robot-to-robot communication
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Fig. 2 (a) Emerging transportation trails in the cleaning scenario. Loaded robots (black
boxes) carry their particles on the shortest path from the dirt areas (dark grey floor) to the
central dump area (light grey floor). Unloaded robots (grey boxes) help in navigation through
vector communication. (b) Analysis of the dependency of several efficiency measures on the
swarm density. We clearly found an optimal density (size) of the robot swarm. Reprinted
from [[G]].
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and angular measurements, the errors due to this noise were summed up and finally
impaired the swarms from performing well. Another shortcoming of this algorithm
was that we observed that the communicated vectors were always pointing directly
towards the foraging targets, even when obstacles blocked the way. This impaired
the robots from circumventing such obstacles. A third shortcoming was that old,
thus outdated, information never leaves the system, which prevents the swarm from
reacting to environmental changes. First we tried to fix these issues by additionally
using hop-counts for determining the age’ of communicated vectors and allowed
the robots to accept only these information that were newer than the information
they already carried. But even with these improvements, the performance and ro-
bustness of the swarm behavior was not of the desired quality. Thus, we started to
look for swarm algorithms which are more robust to noise and which require less
communication bandwidth. As natural selection shaped natural systems into effi-
cient and robust configurations, we aimed for increasing the level of bio-inspiration,
as can be seen by the algorithms described in the following.

2.1.3 Trophallaxis-Inspired Algorithm

In contrast to the vector-based strategy, the next algorithm does not require any
"vector’-calculations which can lead to an aggregation of calculation errors (due
to noise) within the swarm. It requires less computational power of the robots and
requires the communication of two floating point numbers as *messages’ between
neighboring robots. The trophallaxis-based algorithm uses the mechanisms found in
of bee-to-bee nectar feedings to regulate the behavior of a robot swarm. It is used to
generate a distributed map and this way it is also some kind of collective perception
of the swarm. In this distributed algorithm the agents can generate a shared gradient
map by adding and consuming virtual nectar volumes to their internal memory. This
shared gradient map is then locally used by agents for target oriented navigation. In
the cleaning scenario, which resembles social insects’ foraging task, one source of
virtual nectar is a place with dirt particles which should be picked up by the agents
and dropped off at a dump. The dump is another source for a different sort of vir-
tual nectar. Like honeybees, the agents also consume a small part of their virtual
nectar loads when moving, which results in decay of old information. Nectar is also
shared with neighbors, like social insects do in ’trophallaxis’. From these locally
executed rules, two gradients emerge within the swarm, one pointing towards the
dirt particles, the other one pointing towards the dump. Fig.[Blshows a visualization
of the shared collective maps. In the depicted scenario, we placed walls in the en-
vironment, which blocked robot movement and also robot communication. This is
clearly reflected in the shared map.

The trophallaxis-inspired algorithm is based on three important features: (1)
Positive feedback (gradient & uphill movement of agents) recruits the robots to
their targets. (2) Negative feedback (consumption of nectar) prevents overcrowding
and removes outdated information from the system. (3) ’Trophallaxis’-like com-
munication leads to diffusion of information within the swarm, allowing collective
adaptation to environmental fluctuations by modulating the emergent gradient map.
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Basically, the shared gradient map dynamically encodes those local steady-states
that are established in a homeostatic way by the individual agents’ behaviors and
by their interactions with local neighbors and with the environment. Thus, multi-
level distributed and behavior-based homeostasis is a key component of this swarm
algorithm.

[(a)

Fig. 3 Simulation of a robot swarm using the throphallaxis-inspired algorithm. a) Screenshot
of the cleaning scenario arena setup: Robots (red) try to find the shortest path from the two
places with dirt particles (blue) to the central dump (yellow). The path is blocked by 2 walls
(gray). b) Top view of the emerged gradient pointing towards the dump. c) Side view of
the same gradient from the left side. d) Side view of the same gradient from the right side.
Reprinted from [30].

2.1.4 Slime Mold Algorithm

The slime-mold algorithm [26]] is an algorithm that reduces the amount of required
communication but still produces collective behaviors comparable to the two algo-
rithms described above. It is inspired by the collective aggregation of amoebas of
the slime mold species dictyostelium discoideum. In this algorithm, robots emit sig-
nals whenever they locate themselves either on the dirt area or on the dump area by
chance due to the basic random motion that all uninformed robots perform in all of
our swarm algorithms. This binary signal can be perceived by local neighbors which
in turn emit a similar signal and then switch to a pause mode (= refractory period)
for some time in which they do not respond to any signals. The emerging chain reac-
tion is well known from many examples in nature, usually referred to as ’excitable
media’. In slime mold, amoebas that want to aggregate emit a chemical stimulus
frequently, fireflies emit light signals and even in soccer stadiums, ’Laola’-waves
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are produced by similar mechanisms. In our robot swarm, blinking wave propa-
gation throughout the swarm can be observed, leading to pulsating waves emitted
from dirt areas and dump areas. Depending on whether individual robots are cur-
rently loaded or unloaded, they turn their heading against the dirt-originating wave
or against the dump-originating wave, thus they are guided towards their foraging
targets. It is known from other domains that such waves yield interesting properties:
They automatically circumvent barriers/obstacles and they annihilate each other as
soon as such waves collide, which allows interesting systems: If there are multiple
ways from the origin to the target, a consistent wave propagation occurs only on
the shortest path, as all longer path will encounter colliding waves and thus wave
annihilation. This allowed our robotic swarm to always find the shortest path from
dirt to dump, as it is shown in figure @

Fig. 4 Simulation of a robot swarm using the slime-mould-inspired algorithm showing the
cumulative paths of loaded robots from the dirt area in lower left corner of the arena to the
dump area in the upper right corner of the arena. (a) First the swarm selects the shortest
path through the central door in the barrier, only a small fraction of the swarm chooses the
second door which allows a slightly longer way from dirt to dump. (b) After the central door
was closed, the swarm automatically selects the lower door which offers now the shortest
path. (c) After this door was closed too, the swarm chooses the only remaining longest path.
Reprinted from [26]].

2.1.5 BEECLUST Algorithm

However, all algorithms described above rely heavily on communication, which is
sometimes hard to establish in bigger swarms. Therefore, we developed another
swarm algorithm which works almost without explicit communication and which
was also inspired by honeybee behavior.

The swarm algorithm ‘BEECLUST” is inspired by the aggregation behavior of
young honeybees and resulted in an very simple, yet robust and flexible aggregation
algorithm for robot swarms. The idea for this algorithm originates from the obser-
vation of young honeybees in the beehive where the freshly emerged honeybees
have a preferred temperature of approx. 36 ° C [[11]]. These young bees tend to locate
themselves in a collective way in the warmest central areas of the hive. Experiments
with single young honeybees in a temperature gradient (approx. 30°C - 36°C)
showed that most bees cannot locate themselves in the warmest zone permanently.
Instead, most of them wander around aimlessly and frequently leave warm areas
soon after they have encountered them (see Fig. Bh). Thus, a ‘swarm effect’ seems
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to be responsible for the bees’ well-functioning collective temperature-finding be-
havior. Further experiments with a specialized arena offered insight to this behavior
[13]]: Single honeybees usually wandered around in the arena randomly but stopped
when colliding with another bee and then waited at this place for a duration that
correlated with the temperature at this place. Low temperatures resulted in a short
waiting-time of the bee, whereas warmer temperatures resulted in longer waiting-
times. Thus, clusters of bees formed all over the arena, but in the warmer zone these
clusters lasted longer than in colder zones. Finally all clusters merged into one big
cluster near the global temperature optimum (Fig. Bb-d).

Fig. 5 Experiment with bees in a specialized arena. a) A single bee does not find the 36 ° C
temperature optimum to the left, indicated by the red arrow. b) Initial state of an experiment
with 64 bees. The 36 ° C (global) optimum is to the left, indicated by the red arrow. The
32 ° C sub-optimum is to the right. ¢) Bees collectively clustered at the optimum. d) After the
36 ° C optimum to the left was switched off, the bees were able to re-decide and cluster at the
new 32 ° C (global) optimum to the right, indicated by the red arrow. Ambient temperature:
approx. 30 ° C.
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This behavior of the young honeybees was then abstracted into an algorithm
(called ‘BEECLUST algorithm’) and analyzed in a multi-agent simulation. Sim-
ulations showed that this algorithm is not only able to aggregate robots at a zone of
interest, but is also able to enable the swarm to differentiate between zones of dif-
ferent qualities. Furthermore, it also allows the swarm to adapt to quality changes
of the target zones.

The BEECLUST algorithm works as described by the following rules that are
executed one after another in the microprocessors of the autonomous robots or in
the executing loops of other (non-embodied) types of agents:

1. All agents move in straight lines and constantly check for collisions.

2. If they sense a collision, they stop.

3. If the collision happened with an obstacle which is not another agent, the agent
turns around and continues with step 1.

4. If the collision happened with another agent, the focal agent measures the local
quality of the environment. The higher the quality is, the longer it waits at this
spot.

5. After the waiting period is over, the agent continues with step 1.

After the simulation studies, the BEECLUST algorithm was ported to swarm
robots and adapted for light spot finding behavior with Jasmine robots [[13]]. In these
experiments, the temperature gradient that we used in bee experiments was replaced
by light gradients, as the Jasmine robot has a luminance sensor but no temperature
sensor. These experiments posed very low requirements for the robots’ hardware, as
they only need to be able to avoid collisions, to discern other robots from obstacles
or walls and to measure the local luminance.

In our experiments robot swarms executing BEECLUST show a collective be-
havior that is very similar to the behaviour of swarms of young honeybees [31]]: The
robots are able to optimally distribute themselves in the arena, resulting in more
robots clustering at a brighter light spot and fewer robots clustering at a dimmed
light spot. Moreover, the robots were able to quickly redistribute themselves after
these different light spots changed places (see Fig. [6).

2.2 Evolutionary Adaptation of Swarm Algorithms

Swarms of robots that run a bio-inspired algorithm usually show a qualitatively sim-
ilar, but quantitatively different behavior compared to the natural swarm systems
that acted as a source of inspiration. We use evolutionary computation techniques to
significantly optimize our swarm algorithms [27]]. In these studies, the key param-
eters of the swarm (swarm density, robot speed, collision-avoidance distances, ...)
were modulated by an evolution strategy [22]], whereby the whole swarm of robots
was the unit of selection. Thus, we tested populations of swarms in a competitive
scenario, one swarm against each other.
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Fig. 6 Photographs of an experiment with real swarm robots using the BEECLUST algo-
rithm. The red arrows indicate the global optimum. Reprinted from [31].

2.3 Bio-Mimicry

In contrast to bio-inspiration, the process of bio-mimicry shapes a technical entity
(algorithm, robot) in a way that it resembles the biological counterpart. Although
it looks like the biological organism (from the outside) it does not necessarily have
to use the same internal mechanisms. However, in most cases this means that the
interface to the outer world (for example sensors and actuators) closely resemble
the biological source of inspiration. This can be important for understanding real
organisms, because bio-mimicry forces the engineer or scientist to ‘see the world
through the eyes of the biological organism’. Even though inside mechanisms can
differ from biology, they are fed with data similar to the data a biological organism
might perceive and, in case of bio-mimetic actuation, motion-principles have to be
finally transformed into patterns that are close to those observed in biology.

2.3.1 Bio-Mimicry of the BEECLUST Algorithm

In addition to abstract models and light-finding Jasmine swarms, we want to inves-
tigate the BEECLUST-algorithm also in real temperature fields, which is the kind
of stimulus that mainly drives honeybee aggregation in nature. Therefore we de-
signed an add-on for the Hemisson robot (Fig.[7) which allows such a robot to nav-
igate in such a temperature gradient. This add-on consists of a set of temperature
sensors that are mounted on two artificial antennae, similar to the configuration of
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temperature sensors in honeybees. We called these robots ‘“Thermobots’. In contrast
to light, heat has different physical characteristics concerning the diffusion of heat
in the air, the stability of the gradient and the time delay of the measurement, thus
we expect this task to be more challenging than aggregation in a light gradient.

Fig. 7 Thermobot: The robot ‘Hemisson’ with additional antennae which hold the sensors
that measure local temperature.

Experiments with three robots in a temperature gradient field showed that robots
executing the swarm intelligent BEECLUST algorithm have a higher success rate
compared to a standard gradient ascent algorithm. We expect that working with
an even bigger swarm will further increase the success rate for the BEECLUST-
algorithm, due to the fact that more robots lead to more collisions and so more
measurements are taken.

2.3.2 Bio-Mimicking Ant Pheromone Trails

Ants use pheromone trails in order to navigate efficiently between potential food
sources and the nest. We investigate this behavior in the ANTBOTS project [18]].
There have been several approaches to model the pheromone trail laying and fol-
lowing of ants using robots:

By means of chemical sensors and alcohol-depositing robots [23]]. This is a very
realistic imitation of the pheromone-based trails of ants. However, the chemical sen-
sors used in this setup and the combination of robotics and substances such as alco-
hol have been shown to be very unreliable and not very practical.

Drawing lines onto the floor using pen and paper [37]. In this scenario each robot
is equipped with a pen, with which it is able to draw solid thin lines onto the ground.
Although a decay of these trails is archived by using a special kind of disappearing
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ink, the trails laid by these robots remain thin in comparison to the robots. This does
not provide a close analogy to the biologically inspired behavior of ants.

Laying trails of heat [24)]. This method promises an extremely flexible way to
model the foraging behavior of ants by laying trails of residual heat onto normal
surfaces such as carpets or tiles. One problem is that the electrical generation of heat
is not possible even on bigger mobile robots because of constraints in battery power.
The researchers stored heat in the form of paraffin wax to lay trails instead. This
presents an additional difficulty for experimental use and dynamically adjusting the
strength of the trail is not possible.

Using robot-tracking and a projector setup, in which each robot is able to lay
trails by being tracked using a camera suspended above the arena [9]. A computer
superimposes ‘virtual pheromones’ by projecting them onto the arena floor. This
system does not present a fully autonomous way for the robots to lay and follow
trails, and a a central unit, an external computer, is needed. However, this system
provides a very flexible way to modify parameters of the pheromones, such as decay
and diffusion.

Emitting ultraviolet light onto a phosphorescent paint, and thus laying luminous
green trails on the arena floor. This method of modeling ant trails has been published
for use in an artistical context [1l]. In this setup, the arena floor is coated with a
special phosphorescent glow-paint that glows in the dark for several minutes after
being stimulated by an external UV light source. By attaching UV-LEDs to the
mobile robots, they can leave glowing trails on the ground. The idea is that because
of the constant decay in brightness, the green glow that emanates from the floor
can be seen as an analogy to the evaporating pheromones ants utilize in their trail
following.

For our ‘ANTBOTS’ we have extended the approach of using phosphorescent
paint for the emulation of pheromone streets. In our experimental setup we use the
e-puck robot developed at the EPFL Lausanne [2] with two add-on boards to allow
for trail laying and navigation to a light source outside of the arena. By emitting
ultraviolet light onto the arena floor, robots are able to lay trails on the arena floor.
Trail following is achieved using the on-board camera of the e-puck robot. In order
to navigate back to the nest we use six photodiodes to measure the light intensity
from a light source in a corner of the arena (sun compass and sun).

We have conducted several experiments with a single robot in order to test the
feasibility of our setup using repeated trail laying and following cycles with a single
robot. In these experiments we placed transparent plastic enclosures with red and
blue LEDs in the arena, representing nest and food source respectively. The robots
task was to navigate back and forth between the two target zones on its own trail
repeatedly. The results show that our newly developed sensors are reliable enough
for the robot to navigate to the two spots for longer periods of time with a distance
of about 1.3m (Fig.[8).

In addition to these single robot trials we have developed a multi-agent simula-
tion closely resembling our experimental setup in order to test if the efficiency is
enhanced when the robots have the ability to lay trails on the arena floor versus a
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Fig. 8 Photograph showing the trail laid by the robot in a Imx 1m arena and a distance of
1.3m between food (top-right) and nest (bottom-left). The robot is on its way back from the
food source pointing towards the nest and is following its own line.
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Fig. 9 Efficiency measurements for 4 different simulation runs. Top-left shows 4 robots, top-
right 6, bottom-left 8, bottom-right 12. Solid lines are with pheromones turned on, dashed
lines represent runs without pheromones. The plots show the sum of units of food delivered
to the nest. The efficiency of the agents that could utilize the pheromone trails is greatly

increased.
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‘normal’ arena without phosphorescent paint. Our results show that in this simula-
tion the efficiency is greatly enhanced with the use of trails (Fig.[0).

In the future we plan to do experiments with multiple robots in order to fully
emulate the ant foraging behavior with autonomous robots in real life. Figure
shows a contrived photograph of how this could look like.

Fig. 10 Contrived photograph of how the glowing floor and our sensors should be used in
the future. Two robots leave the nest to search for food, the remaining robots navigate to and
from the nest around an obstacle.

3 Evolving Self-Organized Control Structures for Robotic
Organisms

In the precious section we have discussed the trophallaxis-inspired algorithm and the
BEECLUST algorithm. While the capabilities of the trophallaxis-inspired algorithm
were impressive in simulation studies (see Fig. 3) it was found to be difficult to
implement in a real robotic swarm due to the immense communication interference
of nearest-neighbor-communication in such systems (e.g., sound or IR-light).
However, in robotic organisms, where the modules are closely connected to each
other, communication between modules is less defective and also the bandwidth
is usually much higher. Thus, for robotic organisms, we want to explore again the
potential of a network of homeostatic sub units which all interact autonomously
and which generate collective information (maps, waves, . ..) on the organism level.
In addition, the system should not be hand-coded per se, it should represent an
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(almost) open-ended dynamical system which can encode many processes in par-
allel. Again looking into comparable counterparts in nature, we found that signal
processing in unicellular organisms and the homeostatic hormone control in multi-
cellular organisms provide a good model for such an open-ended system.

To allow evolutionary computation operators to act on the configuration of such
robotic organisms, the parametrization of the underlying dynamical system was
encoded into a data-structure called ‘genome’ of the organism, which is subject
to selection, mutation and inheritance. We named our control system Artificial
Homeostatic Hormone Systems (AHHS), basically defined and investigated in

[10. 291 28, 36].

3.1 AHHS for Robot Control

In AHHS, a physiological model depicts the inner space of the robot and this model
is controlling the robot’s behaviors: Sensors trigger hormone excretions, which in-
crease hormone concentrations in the robot’s virtual inner body. These hormones
diffuse, integrate, decay, interact and finally, affect actuators. The virtual inner body
is partitioned into several compartments, whereas each compartment is associated
with a specific part of the real robot’s body to facilitate the emergence of complex
behaviors. Each sensor and actuator is associated with one of these compartments.
Thus, we achieve a kind of embodiment [21] that enforces an appropriate spatio-
temporal context.

The principle functionality of AHHS is based on homeostatic processes that are
interrupted by dynamic sensory stimuli. The hormone concentrations of an AHHS
are initially set to zero. Once the system is started, an initial intrinsic dynamics is
instantiated. Hormone concentrations increase and hormones begin to interact. This
happens even without any initial sensor input. From a system theoretic point of view,
the system undergoes a transient until an equilibrium, or preciser, an attractor (fixed
point, oscillation, or even a chaotic attractor) is reached. This can be interpreted
as homeostasis. Once the sensors report non-zero input the current equilibrium is
disturbed. A new equilibrium associated to the current sensor input is pursued and
finally reached, if the sensor input was constant for long enough. Typically each
robot module will execute a copy of a common controller. These controllers com-
municate implicitly via hormones that diffuse from module to module.

The AHHS is implemented by a system of ordinary differential equations (which
are discretized in the microprocessor). Hence, the execution of an AHHS controller
is mathematically interpreted as the numerical forward integration in time of an
initial value problem with time-variant disturbances (sensor inputs).

An important issue in evolutionary robotics and multi-modular robotics is to
achieve systems with high evolvability, that is, fast synthesis of controllers by ar-
tificial evolution. A good model for understanding the underlying processes of this
evolution is the concept of fitness landscapes. The fitness landscape of a controller
synthesis scenario is defined by the mapping from the high-dimensional space of
features, that describe the controller, to the actual fitness value that is obtained by
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(b) 5 modules

Fig. 11 Example benchmark scenario of ‘gait learning’ in modular robotics. In both config-
urations, an AHHS evolved that moved the robot efficiently within several tens generations.

executing the controller and observing the resulting behavior. The shape of such
landscapes is defined by a variety of influences, such as the robot’s task, robot’s
hardware, its environment, the used mutation operators, and the controller design it-
self. The leading design concept of AHHS is to generate smooth fitness landscapes,
that is, there is a high causality of the mutation operator (small changes in the con-
troller result in small changes of the behavior). Several effects, for example the
trade-off between evolvability and an increase of the search space, are investigated
currently.

First studies of the AHHS in the context of multi-modular robotics and compar-
isons to other controller approaches have been made [[10, [29]. One of the bench-
marks was the so-called ‘gait learning” in modular robotics (see Fig.[[T). One of the
results, that was reported in [[10], is shown in Fig. It shows a comparison of the
best fitness obtained by artificial evolution for N = 12 independent runs per con-
troller approach. The superiority of AHHS over a simple artificial neural network
approach is significant.
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Fig. 12 Comparison between the AHHS controller and a simple artificial neural network for
a gait learning task with three modules (N = 12) [10].

3.2 Comparison of AHHS to Other Controller Types

The controller described above was analyzed concerning its evolvability and adapt-
ability. As a first benchmark test a scenario was chosen in which a maze had to
be explored: A robot controlled by the AHHS was put in a simulated 2D-arena
and evolutionary runs were performed. Behavior which resulted in moving around
in the arena was rewarded with good fitness values. The population in the evolu-
tionary runs consisted of 100 individuals and evolution took 500 generations. For
comparison these evolutionary runs were repeated for the same task with standard
types of artificial neural network (ANN) controllers. The results revealed that max-
imum and average fitness gained by the two the controller families did not differ
after having evolved for 500 generations. Additional analyses on the time needed to
evolve satisfying behavior (75% of the overall maximum fitness) were performed.
Those studies revealed that after 20 to 30 generations this value was reached by both
controller families and the observed behavior was a kind of wall following behav-
ior (Fig[T3). Interestingly, the behavior between the two controller families differed
significantly qualitatively. In contrast to the ANN controller the AHHS steered the
robot in straight lines and very smooth curves (see Fig[T3(a)).

- o,

o

(a) AHHS (b) ANN

Fig. 13 Trajectory of the best evolved individual of (a) AHHS and (b) ANN controller in an
“exploring the maze” scenario.
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4 Evolutionary Shaping of Network Topology of Controllers to
Body Shapes

Neural networks are a state-of-the-art technology in evolutionary robotics. ([8]).
One advantage is that they are easy to mutate and quite powerful and efficient in
a computational sense. In contrast to out-of-the-box ANNSs, living organisms show
highly structured neural networks, often split up into brains and ganglia. Often,
regular patterns of such ganglia are found, for example in a ventral nerve cord.
In such structured networks, specific ganglia (densely clustered aggregations of
neural cells) can specialize on specific local tasks, for example coordinating the
motion of a nearby limb. An engineering approach to generate such patterns of ar-
tificial neural networks is Hyperneat [34]], an extension of Neat [33]], which was
used successfully in several applications [5[4]. To enhance our evolutionary robotic
systems, we aim for a similar pattern-generating system which is inspired by the
growth process of multi-cellular organisms (see Fig. [I4). To achieve this, we devel-
oped of virtual embryogenesis (VE) to generate various topologies autonomously
and dynamically [39, [16]. The main idea of VE is the simulation of EvoDevo-like
processes [3]]. These processes are observable in nature during the developmental
phase of multicellular lifeforms e.g. Drosophila m. [19]. EvoDevo-inspired pro-
cesses will allow us to evolve network patterns and multi-modular robot shapes
in parallel (see Fig.[T3(b)), thus expecting a joint evaluation of controller and corre-
sponding body shape.

The embryo developed by VE (see Fig. consists of many individual
cells. The virtual embryogenetical growth process is controlled again by a genome
(see Fig. [[3). There is high similarity between the rule-set of AHHS and VE,
which is also reflected by high similarities in the genome syntax and grammar.
In VE the genome encodes the reactions of a cell to different concentrations of

(a) Robot shape (b) Shape of evolved embryo (c) Shape of resulting ANN

Fig. 14 Evolution of structured ANNS. (a): The robot’s given shape, which is part of the
fitness-function of the artificial evolutionary process. (b): Evolved shape of the virtual embryo
which constructs the ANN network topology. (c): Example of one ANN topology, grown in
this embryo.
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(a) Genome (b) Multi-modular robot

Fig. 15 a): Evolved genome structure that controls the growth process of the embryo shown
in Fig.[[4b. Each gene of this genome is able to produce proteins, which in turn can activate
other genes, produce morphogens, change the receptivity of the cell for morphogens, or build
neural links to other cells. Genes and proteins are indicated by geometrical shapes. Interac-
tions of proteins and genes are indicated by arrows. b): Formation of a multi-modular robot
using VE in a simulation environment. In contrast to the VE mentioned above, the cellular du-
plication process is realized by docking robotic modules to the robotic organism. Blue boxes
indicate docked robotic modules that are part of a multicellular robotic organism. Brown
boxes indicate robotic modules, that are available for the docking process. Green patches
indicate positions where a “free” robotic module can dock the robotic organism. Left subfig-
ure: start of the process. The robotic organism consists of a single module, which waits for an
other module to dock. Middle subfigure: A robotic module docks, the robotic organism now
consists of 2 modules. Right subfigure: Body-formation in progress. Several modules have
already docked together.

morphogens (virtual chemical substances diffusing throughout the embryo, emitted
by the cells), which could be compared to the flow of hormones in AHHS. Each cell
of an embryo has the same genome during the whole embryogenetical process. The
genome is not changed during the life-time of the cell. Offspring-cells have the same
properties as their ancestor-cells, so that tissue specialization can emerge. Fig. [[4]
exemplary shows one target robotic organism, the evolved embryo and the ANN
topology grown by this virtual embryo. Evolution operates on the genome only,
which is depicted in Fig. which also indicates the feedbacks that exist between
gene products. It is important to understand this feedback network to understand the
evolutionary path that can be observed during evolution. This understanding links
back to biological research were similar ways of thought are current topics of state-
of-the-art research. AHHS and VE are both derived from biology in a classical bio-
inspired way to solve engineering problems. However, both models can additionally
fertilize new understanding and novel research also in the biological domain, as the
course of evolution in the development of our robotic organisms might well resem-
ble the ‘how?’ and the ‘why?’ of their natural counterparts’ evolution.
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5 Discussion

As was shown throughout the previous sections, bio-inspiration, bio-mimicry and
artificial evolution are clearly promising candidates for methods to generate control
software for collective robotics. In my research, this was demonstrated for both
types of collective robotics (swarms and organisms of robots).

From a pure engineering perspective it is not an issue whether or not biological
research draws benefit from bio-inspired robotics, as long as enough progress in
robotic control is made. However, maybe because I am trained as a biologist, I think
bio-robotics may provide symbiosis for biologists and robotic engineers.

I try to achieve this symbiosis by a two-fold approach: On the one hand my lab
performs comparable research scenarios with robots and with animals in parallel,
thus allowing two groups of researchers to influence each other. This happens, for
example, whenever one research group inspires the other for performing a new ex-
perimental setup. On the other hand, we generate ‘bio-mimicking’ robots that are
driven by nature-derived ‘bio-inspired’ control software that further supports such
a potential scientific symbiosis. In addition, we follow another method of joint re-
search which is abstract (macroscopic) modeling. By generating such models we can
excavate the ‘algorithmic core’ of both the natural system and the freshly emerged
bio-inspired robotic system. This way, a process of abstraction and generalization
allows us to draw new scientific insights of the similarities and intrinsic causations
within and between both systems.

In most of our approaches we use a network of positive and negative feedbacks
and delays to govern the behavior of the collective system (swarm or organism). Es-
pecially in the trophallaxis-inspired algorithm, but also in AHHS and VE, a major
component is behavior-based, distributed, multi-level homeostasis in which every
single module and the collective system are both designed as autonomous homeo-
static systems. Similar concepts for collective robotics were suggested in for
robot organisms and in [33] for swarm systems. Although significant differences
exist, our approach of AHHS and VE has similarities to [33]], which are subject to
evolutionary adaptation as was shown in [20]. AHHS and VE also have aspects that
can be interpreted as gene regulatory networks (GRN), as they were investigated in
[17]. In AHHS and VE, these GRN-like functionality is acting locally and is closely
bound to the shape of the robot (or of the simulated physics of the virtual embryo),
thus our research paradigm contains significant aspects of embodiment, as it is dis-
cussed in [21].

As pointed out in the introduction section, I see important differences between the
approach of ‘bio-inspiration’ and ‘bio-mimicry’. Bio-inspiration means deduction
of mechanisms and/or functionality from biological sources of inspiration which
can be converted significantly to work in a technical application in a similar way.
For example wing shapes of airplanes are in fact inspired by wings of birds, but
concerning their embodiment significant differences are obvious: Wings of birds
are bendable, are made of a stiff skeleton with several joints and are covered by
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very light and soft feathers. In contrast, wings of airplanes are solid without feather-
like structures, they have no joints and their basic skeleton is of median stiffness.
Thus they act (function) similar to some birds wings, but they do not look and feel
similar.

The approach of bio-mimicry is more about producing technical entities that look
and feel like living organisms but are internally exploiting totally different mecha-
nisms. Prominent examples are humanoid robots, toy robots (dogs, dinosaurs, ... ),
and scarecrows.

In figure [T6] I depict a feature space that spans along two axes: The top axis
indicates the level of bio-inspiration while the right axis indicates the level of bio-
mimicry. In the lower left corner (B), we see classical technical entities like cars, cell
phones, computers and satellites which incorporate mainly non-bioinspired mecha-
nisms and which also do not resemble biological organisms very much. In the upper
left corner (A) we see typical forms of bio-mimicry, which look similar to living or-
ganisms but are based on classical technical mechanisms. In the lower right corner,
we find bio-inspired algorithms. They are strongly inspired by mechanisms found
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technical (mechanisms) biology s
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\
\ Ciermabors — &
| | virtual embryology * o w
. -
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Fig. 16 Bio-inspiration/bio-mimicry feature space. Top axis: level of bio-inspiration. Techni-
cal applications that use nature-like mechanisms are locate towards the right side of this axis.
Right axis: Level of bio-mimicry. The closer a technical entity resembles a biological coun-
terpart, the higher it is located on this axis. S: The ALife singularity, indicating the highest
simultaneous level of bio-inspiration and bio-mimicry. Technological products located at this
point are indiscriminable form natural organisms from inside (mechanisms) and from outside
(bio-mimicry). For discussion of the examples located in this graph see text. Picture source:
wikimedia commons.



48 T. Schmickl

in nature but, as they are computer algorithms, they have a totally different physical
nature (bits). Also wings of airplanes could probably be grouped here.

In the upper right corner, we find the field of ALife research, which tries to
achieve the creation of life-like structures and mechanisms, thus it tries to maxi-
mize both aspects in this feature-space. In the very-most upper right corner, we find
the before-mentioned ALife singularity which is reached as soon as one succeeded
in producing a robot that achieves the highest level along both axes: Such an entity
would be indiscriminable from a natural organism.

As is shown in this figure, the work of my lab is approaching the Alife cor-
ner step-by-step. While earlier robotic algorithms (trophallaxis-algorithm, slime
mold algorithms, BEECLUST in multi agent simulation or in non-bio-mimicking
robots) are quite distant from the ALife area, newer research (e.g., SYMBRION,
thermobots, antbots) are getting much closer to the upper right corner. However,
our projects are still not located quite deep inside of the ALife field, telling us that
we are still quite far away from recreating living organisms. The reason for this is
also shown in figure It shows two shaded fields along both axis. These fields
indicate a sort of ‘no-access’ area. I think that a certain degree of bio-inspiration
is unachievable without a high degree of bio-mimicry and vice versa. This means
that for a technical entity to resemble a living organism’s mechanisms, also form
and material have to be adapted in a well adjusted manner to support — or even to
allow — these mechanisms. Only specific forms and materials allow for nature-near
functionality and mechanisms.

I realized this important role of embodiment in various cases in our work: When-
ever we found a (swarm-)intelligent behavior by observation of animals, we trans-
lated it into a well-working computer model and algorithm. But as soon as these
mechanisms were implemented on real embodied agents (robots), we encountered
significant drops in performance. At this point, there are two ways to go: On the
one hand, it is possible to adapt the mechanisms (algorithms) in a way that they fit
better to the new form of embodiment. This is done in my lab by exploiting artificial
evolution. This adaptation increases the performance of the technical system signif-
icantly, but does not bring the system closer to the upper right corner (S) in figure
as it does not increase the level of bio-mimicry. On the other hand, it is possible
to alter the form of embodiment, what is to increase the degree of bio-mimicry. This
step involves hardware engineering and the testing of new materials. Although this
way is more time consuming and more resource-intensive as the first one, it brings
the system closer to or deeper into the field of artificial life.

For swarm intelligent systems, embodiment is an important challenge and op-
portunity [21]]. Many algorithms that work perfectly in non-embodied systems, like
optimization algorithms [22}, (12} [7]] show significantly lowered efficiency as soon
as they are executed by embodied agents. Also, many macroscopic models (ODE,
PDE) which basically treat entities as volumeless points in space are not sufficient
to derive microscopic behavioral rules (algorithms) necessary for swarms or organ-
isms of embodied autonomous agents (robots). Frequently agent collisions, forces
applied by one agent to another, and other forms of physical interferences tend to
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inhibit algorithms from functioning well in real-world embodied systems. For ex-
ample, our antbots still have problems with collision handling on their ant trails
which do not appear in well known ODE models of ant pheromone trails. The more
the antbots algorithm is extended with collision handling procedures the further
the overall antbots’ algorithm deviates from mechanisms described in these ODE
models.

However, the existance of physics does not only pose problems to the field of
bio-inspired/bio-mimicking robotics. Exploitation of physical phenomena provides
also an important opportunity for engineering such collective systems: Emergent
phenomena of self-organized systems can be exploited by optimization procedures
like artificial evolution, exhibiting collective behaviors and solutions that are un-
reachable in abstract models, because one of the major components of such mecha-
nisms is missing there in most cases: physics. Physical properties and mechanisms
based on physical interactions can provide functionality that replaces algorithmic
mechanisms that are executed by software. In my opinion, each embodied agent ex-
ecutes a sort of ‘master-algorithm’ which is the summarization of the sensor system,
the software algorithm (incl. BIOS, operating system, hardware-abstraction layers
and middleware), the actuators, the physics of the agents and all physical interac-
tion with the environment (including all other agents). If one of these components
is altered, the ‘master-algorithm’ is altered. Also here, emergent phenomena arise
from the interplay of sub-components, again suggesting a favouring of evolutionary
approaches over engineering approaches, as emergence is still not engineerable.

Finally in this discussion, I want to point out a major shortcoming of our current
mechatronic systems in the field of bio-inpired/bio-mimicking robotics: Reproduc-
tion. In figure the path towards the ALife singularity becomes more and more
narrow due to the converging two ‘non-access’ areas. One essential functionality
of living systems is the ability to reproduce. While this is not a problem in non-
embodied systems (e.g. genetic algorithms [[12] or evolution strategies [22]]), real-
world replication of embodied autonomous agents is currently not achievable in
mechatronics. To achieve embodied replication, material science has to bring new
techniques and materials to the field of robotics and ALife research has to solve
many replicator-related problems that would allow for autonomous replication on
such a level. Currently, many researchers are discussing this issue (personal com-
munication), pushing the ALife field more towards research with bacteria or even
bio-molecules. In these systems, the issue of replication is already solved by nature,
thus scientific progress in such research will not improve our understanding in how
larger embodied compounds can be made replicating. Thus, as the robots’ basic goal
is to serve and assist humans in dangerous, unpleasant or boring tasks, progress in
larger scale robotics (at least cm-range) is still a desirable challenge to tackle. Such
demands will not be satisfied by altering bacteria or molecules, as they cannot ex-
ecute most of the real-world jobs robots are thought to perform. In conclusion, I
think that ALife research with mechatronic devices should be continued with high
intensity, of course in parallel with further and novel research in self-organizing,
evolving and complexity-generating life forms.
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Flocking Control Algorithms for Multiple
Agents in Cluttered and Noisy Environments

Hung Manh La and Weihua Sheng

Abstract. Birds, bees, and fish often flock together in groups based on local in-
formation. Inspired by this natural phenomenon, flocking control algorithms are
designed to coordinate the activities of multiple agents in cluttered and noisy en-
vironments, respectively. First, to allow agents to track and observe a target better
in cluttered environments, an adaptive flocking control algorithm is proposed. With
this algorithm, all agents can track the target better and maintain a similar forma-
tion and connectivity. Second, to deal with noisy measurements we proposed two
flocking control algorithms, Multi-CoM-Shrink and Multi-CoM-Cohesion. Based on
these algorithms, all agents can form a network and maintain connectivity, even
with noisy measurements. We also investigate the stability and scalability of our
algorithms. Simulations and real experiments are conducted to demonstrate the
effectiveness of the proposed approach.

Keywords: Flocking control, multi-agent systems, mobile sensor networks.

1 Introduction

Flocking is a natural phenomenon in which a number of agents move together and
interact with each other. In nature, schools of fish, birds, ants, and bees, etc. demon-
strate the phenomena of flocking. Flocking control for multiple mobile agents has
been studied in recent years [1} 2], and it is designed based on three basic flocking
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rules proposed by Reynolds [3]]: flock centering , collision avoidance, and velocity
matching. The problems of flocking have also attracted many researchers in physics
[4], mathematics [3]], biology [6] and especially in control science in recent years
7.

Flocking control has wide applications in mobile robots and mobile sensor net-
works. Early work on flocking control includes [} 2. Tanner et al. [1]] studied the
stability properties of a system of multiple mobile agents with double integrator
dynamics in the case of fixed and dynamic topologies. However, in their work the
target tracking problem and sensing errors are not considered. In the context of tar-
get tracking Olfati-Saber [2] proposed the theoretical framework for the design and
analysis of distributed flocking algorithms, which solve the flocking problem in free
space and in the presence of obstacles. Based on his flocking control algorithms,
all agents can flock together and track the target quite well in free space. However,
the target tracking performance is not satisfactory in the obstacle space. Moreover,
every agent is assumed to know the position and velocity of the target precisely. To
relax this assumption, he developed a distributed Kalman filter in [8]] for each agent
to estimate the target’s position. Due to the measurement errors, the target tracking
performance is not very good. In addition, there is another assumption in his flock-
ing algorithm [2, [§] that all agents need the information of the target to maintain
the cohesion or avoid the fragmentation. To deal with this situation, an extension of
the flocking control algorithm in [2]] with a virtual leader in the case of a minority
of informed agents and varying velocity of the virtual leader was presented in [[7]].
However, their work does not consider the tracking problems in cluttered and noisy
environments.

In this paper we propose three new flocking control algorithms to deal with more
realistic environments. The main differences between our algorithms and those of
the above related work are listed below.

1. In cluttered environments, the agents usually get stuck behind the obstacles and
sometimes can not follow the target [2]]. To handle this problem we present a new
algorithm to flocking control of multi-agent systems to track a moving target while
avoiding obstacles. The main motivation of this algorithm is to make the agents flock
together in an adaptive and distributed fashion. In this way the agents can track the
moving target better and maintain connectivity in cluttered environments where the
normal flocking control algorithms [2] [7, 8] have poor tracking performance and
connectivity loss.

2. In real flocking control environments, noise handling is always an important
issue since the noise usually causes broken network or connectivity loss. This prob-
lem exists in most of the previous work on flocking control [T} 2| [7, [8]]. To make
the flocking control more applicable in real applications we consider the effect of
position and velocity measurement errors of the agent itself, the agent’s neighbors
and the target. None of the flocking control algorithms in the above related work
considers this noise issue. We propose two flocking control algorithms, Multi-CoM-
Shrink and Multi-CoM-Cohesion, which are based on the extensions of the Multi-
CoM flocking control algorithm in our previous work [9]]. Our algorithms allow the
flocks to preserve connectivity, avoid collision, and follow the target in such noisy
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environments. We demonstrate that by applying our algorithms the agents can flock
together in the presence of noise with better performances such as connectivity and
tracking performance.

The rest of this paper is organized as follows. In the next section we present the
background of flocking control and the problem formulation. Section [3] describes
the adaptive flocking control algorithm for tracking and observing a moving target
in noise-free environments. Section [ presents flocking control algorithms, Multi-
CoM-Shrink and Multi-CoM-Cohesion, for tracking a moving target in noisy envi-
ronments. Section [3lshows the main results on stability analysis of flocking control
in both noise-free and noisy environments. Section[6ldemonstrates the experimental
results. Finally, Section[7] concludes this paper.

2 Flocking Backgrounds and Problem Formulation

In this section we present the flocking control background and the problems in ex-
isting flocking control algorithms.

We consider n agents moving in an m (m = 2,3) dimensional Euclidean space.
The dynamic equations of each agent are described as:

{qz‘zpi )

pi=u,i=12,..n.

here g;, p; € R™ are the position and velocity of node i, respectively, and u; is the
control input of agent i.

To describe the topology of flocks we consider a dynamic graph G consisting
of a vertex set ¥ = {1,2...,n} and an edge set E C {(i,j) :i,j € ¥, j #i}. In this
topology each vertex denotes one member of the flock, and each edge denotes the
communication link between two members.

We know that during the movement of agents, the relative distance between them
may change, hence the neighbors of each agent also change. Therefore, we can
define a neighborhood set of agent i as follows:

NF={jed:llgj—aill <r 0 ={1,2,.,n},j#i}, 2)

here r is an active range (radius of neighborhood circle in the case of two dimen-
sions, m = 2, or radius of neighborhood sphere in the case of three dimensions,
m = 3), and ||.|| is the Euclidean distance. The superscript ¢ indicates the actual
neighbors (o neighborhood agents) of agent i that is used to distinguish with virtual
neighbors (B neighborhood agents) in the case of obstacle avoidance discussed later.

The geometry of flocks is modeled by an o-lattice that meets the following
condition:

lgj—qill =d.j N, 3)

here d is a positive constant indicating the distance between agent i and its neigh-
bor j. However, at singular configuration (g; = g;) the collective potential used to
construct the geometry of flocks is not differentiable. Therefore, the set of algebraic
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constrains in (@) is rewritten in term of o - norm [2] as follows:
lgj — gille = d%,j € N7, (4)

here the constraint d* = ||d||s with d = r/k., where k. is the scaling factor. The ¢
- norm, ||.||s, of a vector is a map R” = R defined as

Iello = 5 1y/1 + el - 1], ©

here € > 0. Unlike the Euclidean norm ||z||, which is not differentiable at z = 0, the
o - norm ||z||s, is differentiable every where. This property allows to construct a
smooth collective potential function for agents.

The flocking control law in [2] controls all agents to form an a-lattice configura-
tion. This algorithm consists of three components as follows:

wi=fo+ P47 (6)

The first component of (€) f*, which consists of a gradient-based component and
a consensus component (more details about these components see [10], [T11], [12]),
is used to regulate the potentials (repulsive or attractive forces) and the velocity
among agents.

fE=ct Y dalllgi—aillo)nij+c§ Y, aij(q)(pj—pi), (7)

JEN? JENY

where c‘l’C and c‘z’C are positive constants, and each term in (Z) is computed as follows
21

1. The action function @ (z) that vanishes for all z > r* with r* = ||r|| s is defined
as follows:

0o (2) = pu(z/ra)¢(z—d") (8)

with the uneven sigmoidal function ¢(z) defined as ¢(z) = 0.5[(a+b)o1(z+¢) +
(a—Db)], here 01(z) = z/V'1+ 22 (zis an arbitrary variable), and parameters 0 < a <
b, c =|a—b|/v/4ab to guarantee ¢(0) = 0. The bump function p;,(z) with i € (0,1)
is

1, z€1[0,h)
pi(z) = { 0.5[1 +cos(n(3=4))], z € [h, 1) ©)
0, otherwise.

2. The vector along the line connecting g; to g; is

nij = (q;—qi)/\/ 1+ €llg; — qil*- (10)
3. The elements a;;(g) of the adjacency matrix [a;;j(g)] are defined as

aii(q) = {gfﬂlqj—qina/ra), i;f? (an
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25

20

A" (Global minimum)

% 10 20 R
llg; = gilla
Fig. 1 Smooth pairwise potential function ¥y (||g; — gi||s)-

The pairwise attractive/repulsive potential ¥ (z) is defined as:
4
Yo(2)) = y Pa(s)ds, (12)

and this function is illustrated in Figure[Tl
Then we have the smooth collective potential function in the following form
1
Va(q) = 5 22 Yala; — illo). (13)
i A

The second component of Equation (G)) fiﬁ is used to control the mobile agents to
avoid obstacles,

fP= T oplas—allo)ia+d ¥ biul@)pa—p) (14
keNiﬂ keNiﬂ
where c? and cg are positive constants, and the set of 8 neighbors (virtual neigh-
bors) of agent i at time ¢ with k obstacles is

NP0 = {ke o llaw—aill <705 = {12,k } (1)

here 7 is selected to be less than r, in our simulations r = 0.6r. @ﬁ is a set of
obstacles. §; , p; x are the position and velocity of agent i projecting on the obstacle
k, respectively. The virtual neighbors are used to generate the repulsive force to push
the agents away from the obstacles.

Similar to vector n;; defined in Equation (I0), vector ;4 is defined as

ik = (Gik—qi)/\/ 1 + €|k — qil|* (16)
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The elements b; x(g) of the adjacency matrix [b; x(q)] are defined as
bix(q) = Pu(|Gix — qillo/dp) A7)

where dg = 17 |-
The repulsive action function of 8 neighbors is defined as

0(2) = pn(z/dp)(o1(z—dp) — 1). (18)
The third component of (&) fiy is a distributed navigational feedback.
' ==cl(ai—ay) = 3(pi—py) (19)

where c)l/ and c)z/ are positive constants, and the y - agent (gy, py) is the virtual leader
(more information of virtual leader, see [13]]) defined as follows

4y ="Pr 20
{ Py = fy(ay, py) 20)

Finally, the Olfati-Saber flocking control algorithm [2] is proposed as:

ui =t Y, dalllgj—aillo)nij+c5 Y, aij(q)(p;— pi)

JEN? JEN?
b > o ([ldix — gill o)Ak + o Y bix(q)(Pix— pi)
keNi[3 keNi[3
—cl(qi—qy) = 3(pi—py)- 1)

Observing the algorithm (2T}, we see that in cluttered environments or obstacles
spaces:

e [tis hard for the agents to follow the target because of repulsive forces generated
from the obstacles.

e The tracking performance is not good.

e The agents sometimes get stuck around the obstacles.

e The network sometimes gets broken.

In addition, this algorithm works under the following assumptions:

e FEach agent can sense its own position and velocity precisely (without noises).

e Each agent can obtain its neighbor’s position and velocity via sensing or com-
munication precisely.

e Each agent can sense the target position and velocity precisely.

However, in reality these assumptions are not valid because sensing errors always
exist. Motivated by these observations we will study how to design distributed flock-
ing control algorithms which can still perform well when the agents are in cluttered
environments, and the measurements are affected by noises.
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3 Adaptive Flocking Control for Tracking a Moving Target

We consider the y agent as the moving target. Hence, we slightly modify the flocking
control algorithm 21) as

=cf Y, dalllgj—aillo)nij+c5 Y, aij(q)(pj—pi)

JEN? JEN?
+C? > o ([ldix — gillo)Aix + Cg Y bix(q)(pix— pi)
keN? keN?
—ci(gi—ar) — &3 (pi—pr), (22)

here g, and p, are the position and velocity of the moving target, respectively, and
¢!, ¢ are positive constants. In this control algorithm, we assume that each agent
has the ability to sense the position and velocity of the moving target.

Back to original size

Shrink into smaller size

* e
#w b fWlens v

w2 o *

Initial Flocking Flocking

_:[ dapting to an envi while maintain ivity, § ion and tracking performance P‘

Fig. 2 Tllustration of the adaptive flocking control.

Form a connected network

The problem here is how to cooperatively control the size of the network in an
adaptive and decentralized fashion in order to maintain the network’s connectiv-
ity, similar formation and tracking performance in the presence of obstacles. One
example of such flocking control is illustrated in Figure2l

To control the size of the network, we need to control the set of algebraic con-
straints in Equation (@), which means that if we want the size of the network to be
smaller to pass the narrow space then d* should be smaller. This raises the question
of how small the size of network should be reduced and how to control the size in a
decentralized and dynamic fashion.

To control the constraint d* one possible method is to use the knowledge of
obstacle obtained by any agent in the network, which will broadcast a new d“ to
all other agents. However, it is difficult for a single agent to learn the size of the
passage due to its limited sensing range. To overcome this problem we propose a
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method based on the repulsive force, 3, _ s ¢p (I1G: x — gill o), which is generated by

the B-agent (virtual agent) projected on the obstacles. If any agent in the network
gets this repulsive force it will shrink its own d. If this repulsive force is big (agent
is close to obstacle(s)) d¥ will be further reduced. Then, in order to maintain the
neighborhood (topology) the active range of each agent is re-designed. To achieve
an agreement on the relative distance and active range among agents, a consensus or
a local average update algorithm is proposed. Furthermore, to keep the connectivity
each agent maintains with an adaptive weight of attractive force from the target
and an adaptive weight of interaction force from its neighbors so that the network
reduces or recovers the size gradually. That is, if an agent has weak connection to
the network it should have a big weight of attraction force to the target and a small
weight of interaction force from its neighbors.
Firstly, we control the set of algebraic constraints as

lg; —aille =di",j € N7, (23)
and let each agent have its own d¥, which is designed as

d’, if %, 8 984ik —aille) =0
4 — o N (24)
") Soplarater  otherwise.

From Equation (24) we see that if the repulsive force generated from the obsta-
cles ¥, s 0p(lGix —qille) =0 or Niﬁ = 0 (empty set) then the agent will keep its
original d®. When the agent senses the obstacles it reduces its own d*, and the value

of d* depends on the repulsive force that the agent gets from obstacles.
In order to control the size of network each agent needs its own r{* that relates to

o 2_
d® as follows: % = |[ked||s with ||d||s = d or d =/ &1
computed as in Equation 23).

. Explicitly, r{* is

re, if ¥ 8 9qik—qillc) =0
rq _ kGNI- (25)

o 2_
[ kgw +1—1], otherwise.

o=

Similar to computing 7, r; is computed as

r, if 3, 8 06 (1dik—gille) =0
keny *P (26)

ri=
l [(er®+1)2—1], otherwise.

1
&€

It should be pointed out that the active range 7; is different from the physical com-
munication range. The active range is the range that each agent decides its neighbors
to talk with, but the physical communication range is the range defined by the RF
module. This implies that even a robot can communicate with many other robots in
the network, it will only talk (interact) with robots in its active range. That is why we
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want to control the active range of each robot in order to reduce the communication
and maintain the similar formation when the network shrinks.

To achieve an agreement on d, r¥ and r; among agents in the connected network
we use the following update algorithm based on the local averages for d%, r¥* and

rj, respectively:
[N Ui

o _ 1 | o
di = pe 221 d;
o_ 1 [NFIUi o 2
T = WA Z‘AJ;LlJl 7j 27)
1

R W W .
i = o 2l T

here |[N?| is the number of neighbors of agent i, and |[N* U 1| is the inclusive set of
agent i and its neighbors.

The coefficients of the interaction forces (cf, ¢§), (c? , cg ) and attractive force
(¢, ¢5) which deliver desired swarm-like behaviour are used to adjust the weight
of interaction forces and attractive force. The pair (c¢{f, ¢¥) is used to adjust the

attractive/repulsive forces among agent i and its actual neighbors (¢-agent), and the

BB

pair (¢}, c;) is used to adjust the repulsive forces among agent i and its virtual
neighbors (f-agent) that is generated from agent i when it sees the obstacles, and
the pair (¢, ¢5) is used to adjust the attractive forces between agent i and its target.
The bigger ¢ and ¢} the faster convergence to the target. However if ¢} and ¢ are
too big the center of mass (CoM) as defined in Equation (28)

— 1 yn
q= n Zi=l qi (28)
{ p=x3l D

oscillates around the target, and the formation of network is not guaranteed.

From the above analysis we see that these adaptive weights allow the network to
reduce and recover the size gradually. They also allow the network to maintain the
connectivity in obstacle space. Therefore, we let each agent have its own weight of
the interaction forces as in Equation (29)

f, if INY| >3

(i) = 29
FO= oo if ve| <, 9

/
here ¢ < cf,c§(i) =2/cf(i),andi=1,2,...,n.
In addition, we let each agent have its own weight of the attractive force to the
target as in Equation (30)

fif INY| >
diy=] =3 (30)
L if N <3,

!
here ¢| > ¢, (i) =2/¢|(i),and i = 1,2,....n.
In the a-lattice configuration if the agent has less than 3 neighbors it is consid-
ered as having a weak connection to the network. This means that this agent is on
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the border of network, or far from the target hence it should have bigger weight
of attractive force from its target and smaller weight of interaction forces from its
neighbors to get closer to the target. This design also has the benefit of making the
whole network track the target faster.

Now, the neighborhood of agent (Nil @), the new adjacency matrix a; ;(¢) and the

new action function (P; (z) are redefined as follows:

={jed:|lgj—qill <ri, 9 ={1,2,...n}, j#i}; (31)
dii(q) = {gf(lqj—qila/n ), ijz 32)
0o (ll7; —aillo) = pullla; — aillo/r)0(lq; — gill s — d). (33)

Finally, the adaptive flocking control law for dynamic target tracking is

up = 2 d)a HQJ ql” nl]+C2 2 a,] pi)
]eNla ]EN,O‘
+c} > 0pldia— aillo)ie+h Y, biala)(pia— pi)
keNP keNP
—c}()(gi — qr) — &5 (@) (pi — pr)- (34)

4 Flocking Control for Multiple Agents in Noisy Environments

The above flocking control algorithms are designed under the following assump-
tions: each agent can sense the position and velocity of itself, the neighbors and the
target precisely. However, in reality these assumptions are not valid because sensing
always has noise. Motivated by this observation we study how to design distributed
flocking control algorithms which can still perform well when the measurements
are corrupted by noises.

In this section we are going to design two algorithms in noisy environments.
The first one is the Multi-CoM-Shrink flocking control algorithm. The main idea
of this algorithm is to shrink the size of the network in oder to keep the connec-
tivity. The second one is the Multi-CoM-Cohesion flocking control algorithm, and
its main idea is based on the position and velocity cohesion feedbacks to create the
strong cohesion between the agent and the network. Both algorithms are based on
the Multi-CoM flocking control algorithm presented in our previous work [9]. The
Multi-CoM flocking control algorithm is shown below

=t 3 dallaj—ailo)mj+c§ X, aij(a)(p;—pi)

JEN JEN?

—ci(gi—qi) — 5 (pi— i) — ¢4 (@ — ar) — 5 (B — pr), (35)
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here cl] and cl2 are positive constants. g; and p; are the local average of position and
velocity, respectively for each agent i defined as:
_— 1 [N*Ui|
9 = W1 Zj=l1 qj
i i (36)
- 1 [NFUi|
Pi= S b

In this control algorithm, the first two terms are used to control the formation (o-
lattice configuration) and to allow agents to avoid collision [2]]. The terms —c} (¢; —
qr) — ¢ (pi— p:) and —c! (g; — g:) — ¢4 (p; — p:) allow each agent and its neighbors
to closely follow the target [9].

4.1 Multi-CoM-Shrink Algorithm

Assume that the estimates of the position and velocity of agent i are: §; = ¢; + sé
and p; = p;i + 8;,, where sé and 81", are the position and velocity measurement errors,
respectively. Then we have: N N ' N '

Gi—4j=qi—qj+ej:pi—pj=pi—pj+e . heree] =gl —gjand ey = g}, — €},

Similarly, the estimates of the position and velocity of the target are: §; = g + sf]
and p; = p; +&},, where &, and ¢, are the position and velocity measurement errors,
respectively. Then we have:

Gi— Qi = qi—qi +&)s pi— pi = pi— pi +