

Accelerating Test, Validation and Debug of High
Speed Serial Interfaces

Yongquan Fan · Zeljko Zilic

Accelerating Test, Validation
and Debug of High Speed
Serial Interfaces

123

ISBN 978-90-481-9397-4 e-ISBN 978-90-481-9398-1
DOI 10.1007/978-90-481-9398-1
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010938288

c© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dr. Yongquan Fan
High Performance Analog
Texas Instruments
12500 TI Blvd, Dallas, TX 75243
USA
yfan@ti.com

Prof. Zeljko Zilic
Department of Electrical & Computer

Engineering
McGill University
University Street 3480
H3A 2A Montréal, Québec
Canada
zeljko.zilic@mcgill.ca

3

To Ji Lei

Yongquan

To Kasia, Maria, Ivan Alexander and Pauline Veronica

Zeljko

vii

Acknowledgments

Systems/LSI Corporation and Texas Instruments for providing a good environ-

ment to conduct this research and finish the book. We especially thank Dr. Yi Cai

at LSI for providing longstanding and wise technical advice and co-authoring two

papers, Professor Gordon Roberts at McGill for giving research guidelines, Bill

Kempler and Sam Yingsheng Tung at Texas Instruments for reviewing the manu-

script. A part of the work leading to this book was undertaken while Yongquan

Fan was pursuing first his M. Eng. and then Ph. D. degree at McGill University.

Altera Corporation has provided also a great support throughout the years, from

their devices and intellectual property, to the encouragement and research funding.

Special thanks go to Steve Brown, Fort Blair, Tomasz Czajkowski and David

Mendel.

At Springer Science+Business Media, Mark de Jongh and Cindy Zitter were

always there for us, providing encouragement and cheering the race to the finish

line.

As with the recent book (Generating Hardware Assertion Checkers, Springer

2008) co-written by Marc Boulé and Zeljko Zilic, the cover page art was drawn by

the second author’s children. This time, Maria Zilic took artistic leadership, with

Authors would like to thank our colleagues and friends at McGill University, Agere

Our thanks also go to Liming Fang, Anant Verma, Bill Burchanowski, and San-

deep Kumar for collaborating on a work that led to co-authoring one paper. We

also appreciate the technical support and help from the whole PHY and Storage

team at Agere/LSI, especially from Angshu Bhattacharyya, Joe Martone, John

 Kevin Richter, P aul Hua, Tom

Gibson, Kahn Neguen, Bob Hain and Ken Paist.

In addition, we thank the many people who have given valuable advice, feed-

back and help at conferences and various other occasions. Special thanks are ex-

tended to Mohamed Hafed at DFT Microsystems, Takahiro J. Yamaguchi at Ad-

vantest Corporation, Yang Liang at Maxim, Steve Sunter at Logic Vision, Mike Li

at Wavecrest (now at Altera), Xu Fang at Teradyne, Joe Venable, Shu Xia and

truments, Jwo Cheng and Carlo DiGiovanni from GigOptix,

-Samuel Chenard at McGill

Wai Lee at Texas Ins

Minh Tran from Teledyne, Mani Soma at University of Washington, Luo He at

Concordia University, Warren Gross, Kasia Radecka, Atanu Chattopadhyay,

Man-Wah Chiang, Rong Zhang, Milos Prokic and Jean

University

Janney, Suri Basharapandiyan, Bernhard Laschinsky,

Ivan and Pauline Zilic doing their share to together depict the effects of the jittery

clock in an appealing and a surprisingly lucid way.

Last but not least, we would like to thank our whole families for their love and

support over the years. Without their support, it would be impossible to undertake

all the work and finally write the book.

viii Acknowledgments

ix

Table of Contents

 1 Introduction ... 1

1.1 Motivation.. 1

1.1.1 HSSI Technology Trends ... 2

1.1.2 Qualification Challenges .. 5

1.1.3 ATE Perspectives ... 6

1.2 Contributions.. 8

1.3 Overview of the Book.. 9

2 Background ... 11

2.1 High-Speed Serial Communication ... 11

2.1.1 HSSI Structure.. 14

2.1.2 BER Mechanisms ... 16

2.1.3 Jitter and Noise Impacts to BER .. 19

2.2 Timing Jitter... 21

2.2.1 Jitter Overview ... 21

2.2.2 Jitter and BER .. 23

2.2.3 Jitter Testing ... 26

2.3 Amplitude Noise .. 28

2.3.1 BER and SNR... 28

2.3.2 Simulation and Emulation .. 33

2.3.3 AWGN Emulation .. 34

3 Accelerating Receiver Jitter Tolerance Testing on ATE 37

3.1 Introduction.. 38

3.1.1 Receiver Structure and Characteristics... 38

3.1.2 Jitter Tolerance Testing Overview ... 44

3.1.3 Proposed New Method ... 47

3.2 Jitter Test Signal Generation.. 51

3.2.1 Choosing Test Signal Parameters... 52

3.2.2 Periodic Jitter Injection .. 54

3.2.2.1 Creating Jitter-Free Data Signal ... 55

3.2.2.2 Creating a Digitized Jitter Signal.. 55

3.2.2.3 Modulating the Data Signal .. 56

3.2.2.4 Generating Bandwidth Limited Signals...................................... 57

3.2.2.5 Downsampling to Get AWG Samples .. 59

3.2.3 Fractional Sampling ... 60

3.2.4 Jitter Calibration ... 61

3.2.5 Random Jitter Control .. 64

3.3 Receiver Bit Error Monitoring... 65

3.3.1 ATE-based Error Detection...66

3.3.2 DFT-based Error Detection...67

3.4 Jitter Tolerance Extrapolation...68

3.4.1 Jitter Tolerance Extrapolation Algorithm ...69

3.4.2 Accelerating Jitter Tolerance Characterization72

3.4.3 Accelerating Jitter Tolerance Compliance Testing79

3.4.4 Discussion ...81

3.5 Other Applications of the New Method..82

3.5.1 Jitter Transfer Characterization...82

3.5.2 CDR Characteristics Analysis ...84

4 Transmitter Jitter Extractions on ATE...87

4.1 Introduction...87

4.1.1 Transmitter Jitter Testing Overview ...88

4.1.2 Proposed Solution ...89

4.2. Test Setup for Data Acquisition ..90

4.2.1 Overview of the Test Setup...90

4.2.2 Principles of Clock Settings ..91

4.2.3 Test Setting Parameter Calculations ...93

4.3. Jitter Extraction..97

4.3.1 Generating Edge Displacement ...98

4.3.2 Time Domain Approach..100

4.3.2.1 RJ Extraction ...102

4.3.2.2 DJ Extraction ...102

4.3.2.3 TJ Calculation..103

4.3.3 Frequency Domain Approach ...107

4.3.3.1 RJ Extraction ...107

4.3.3.2 DJ Extraction ...108

4.3.4 Hybrid Approach...109

4.3.5 Limitations of Each Approach ..111

4.4 Experimental Results ..112

4.4.1 Bench Correlation ...113

4.4.2 Correlating Two RJ Approaches ...113

4.4.3 Impact of Test Patterns..115

4.4.4 Impact of the Reference Clock..116

4.4.5 Extending to 6 Gbps Applications ..117

4.5 Summary...118

5 Testing HSSIs with or without ATE Instruments ..121

5.1 DFT in HSSIs ...122

5.1.1 Internal BERT ...122

5.1.2 Internal Loopback ...123

5.1.3 Other DFT Techniques..124

5.1.4 Limitations of DFTs ..125

x Table of Contents

5.2 FPGA-based Bit Error Detection ... 125

5.2.1 Implementing a Serial BERT ... 126

5.2.2 Implementing a Parallel BERT .. 128

5.2.3. HSSI Testing Demonstration... 129

5.3 Loopback Testing with Jitter Injection .. 130

5.3.1 Testing Setup .. 130

5.3.2 Phase Delay Based jitter Injection.. 131

5.3.3 Experimental Results.. 134

5.4 A Versatile HSSI Testing Scheme... 137

5.4.1 Major Functions of our Setup... 138

5.4.1.1 Testing, Validation and Debugging on ATE 138

5.4.1.2 External Loopback with Jitter Injection.................................... 139

5.4.1.3 Other Configurations .. 140

5.4.2 High Speed Relays ... 141

5.4.3 Limitations and Further Considerations ... 146

6 BER Testing Under Noise .. 149

6.1 AWGN Generation Overview.. 149

6.1.1 Existing Methods.. 150

6.1.1.1 CLT Method ... 150

6.1.1.2 Box-Muller Method .. 150

6.1.1.3 Mixed Method... 151

6.1.1.4 Cellular Automata Based Method... 152

6.1.1.5 Analog Method ... 153

6.1.2 Our Method .. 153

6.2 Our Implementation ... 155

6.2.1 Generating Random Variables ... 155

6.2.1.1 One Bit Random Number Generator .. 155

6.2.1.2 Multiple-Bit Random Number Generator................................. 158

6.2.2 Gaussian Variable Generation.. 159

6.2.2.1 Implementing a Single Generator ... 159

6.2.2.2 Implementing Two Generators ... 163

6.2.2.3 Accuracy Improvement... 164

6.2.3 Statistical Properties of our AGWN Generator 165

6.2.3.1 Q(x) Evaluation... 165

6.2.3.2 Kurtosis Value .. 168

6.3 Baseband Transmission Testing .. 169

6.3.1 Baseband Signal Formats ... 169

6.3.2 SNR Setting .. 171

6.3.3 Testing Setup and Results .. 172

6.4 Advantages of Our AWGN Generator... 17

7 Conclusions.. 179

xTable of Contents i

6

Reference ...183

Index ..193

x Table of Contents ii

1 Introduction

Abstract This chapter brings out the motivation for our research, together with

the rudimentary background information on high�speed serial interface standards.

The chapter then enumerates the challenges that we are facing in high�speed se�

rial interface testing, validation and debugging, and finally outlines our solutions

to some of the most pressing challenges.

1.1 Motivation

The High Speed Serial Interface (HSSI), which is interchangeably referred to as

Serializer/Deserializer (SerDes) or simply a Transceiver, is a cornerstone of mod#

ern communication, from high#performance communication and computation in#

frastructure, to the desktop computing and increasingly even to consumer elec#

tronics.

As the HSSI data rate reaches a few Giga#bits per second (Gbps) and continues

to increase, the room for its timing deviation, i.e., jitter, is getting tighter and

tighter. To achieve high data rates, sophisticated techniques such as equalization

and pre#compensation have now become common in HSSIs. With the concurrent

increase in design complexity and decrease in the timing budget, the traditional

“Guaranteed by Design” paradigm is not valid anymore. It is hence becoming im#

perative to qualify the tight timing and other specifications in silicon in order to

guarantee the design quality.

The post#silicon qualification usually consists of three processes: validation of

the first set of fabricated devices, characterization of the devices under all settings

across Process, Voltage and Temperature (PVT) corners, and production testing.

Validation emphasizes on verifying complete device functionality, including pa#

rameter values and electrical characteristics.

Because of the increasing design complexity, close to 25% of all design re#

sources at Intel, for example, are now spent on post#silicon validation [20]. Vali#

dation is usually performed in a lab environment, where standard instruments,

such as oscilloscopes, signal generators and logic analyzers are used. The standard

measurement equipment is also referred to as bench equipment, and the validation

and testing approaches based on standard equipment are also referred to as bench

test solutions.

 Characterization is the process that is more concentrated on verifying that the

device can work under all settings and can accommodate process variations al#

lowed in manufacturing. Characterization can in principle be done either in the lab

or on Automatic Test Equipment (ATE), and there is a significant push to achieve

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_1, © Springer Science+Business Media B.V. 2011

2 1 Introduction

as much characterization as possible on an ATE, provided that it is economical to

do so, hence the methods that speed up the characterization on production ATE

testers are of great interest.

Production testing determines the pass/fail of each device in a mass production

environment. The test throughput is paramount in production testing because it di#

rectly affects the device cost. ATE is widely used in production because of its high

throughput, but at high clock rates associated with the emerging HSSI devices, the

ATE equipment might be either too costly or not fast enough.

Among all the HSSI parameters that we need to qualify, Bit Error Rate (BER)

and Jitter are the critical ones. BER is the bit error probability of the system, which

shows how well the system works in an end#to#end manner. Jitter is the deviation

of a signal from its ideal timing, and it is the major cause of bit errors in a well#

designed high#speed communication system. It usually is expressed relative to the

clock signal, where such deviations can cause bits to be incorrectly latched. In

data communications, we now usually talk about bit errors caused by jitter. Jitter

specifications are normally defined at 10#12 BER rates or lower.

It is very challenging and costly to qualify the timing specification mainly for

three reasons:

•� ATE has been widely used in production testing because of its high throughput.

However, the increasing demand for more bandwidth is continuously pushing

the data communication rate higher, at a pace faster than the test equipment

evolves; systematic HSSI testing solutions on ATE for data rates above 6 Gbps

are not commercially mature yet [8].

•� Cost goals set by the marketplace demand competitive test solutions – testing

needs to be done as fast as possible, while using as inexpensive equipment as

possible; it is infeasible to use traditional lab instruments in a production envi#

ronment because it takes hours or even days to qualify the jitter and BER per#

formance.

•� Validating the jitter performance across PVT corners is becoming necessary

with the continuing scale of the process technology, but the validation is very

time#consuming; shortening the validation time (including debugging when

necessary) would directly reduce the time#to#market, which provides great

competitive advantages in gaining profit and market share.

Motivated by the great economic significance in qualifying HSSIs, this research

concentrates on developing HSSI test and characterization methodologies to ad#

dress the above challenges. We aim to qualify HSSIs accurately and cost#

effectively, yet overcoming ATE limitations.

1.1.1 HSSI Technology Trends

With the evolution of information technology during the past few decades, com#

modities such as cell phones and computers have become commonplace. They

1.1 Motivation 3

have made it a reality for people all over the world to share information or com#

municate directly in one way or another. This evolution has caused a drastic in#

crease in the amount of information generated and the number of end users that

need to access the information. As a platform to communicate information, Inter#

net has become the main driver for technology innovation and bandwidth growth.

The key to meeting the increasing demand for bandwidth is the HSSI.

Figure 1#1 illustrates the structure of an Ethernet#based communication infra#

structure. In this network, HSSIs are widely adopted into backplane applications,

short and long#haul communications, mass storage access networking, and com#

puter peripherals. The bandwidth requirement of the HSSIs depends on the prox#

imity to the end#user and the location in the network.

In recent years, different serial communication protocols have arisen to address

a wide set of communication applications, such as Ethernet, XAUI, GPON and

SATA.

Fig. 1�1. HSSIs in communication infrastructure

The HSSI protocols are continuously evolving to higher speeds to meet the

demand for higher bandwidth. One example is the Serial ATA (SATA): when the

SATA 1.0 Working Group was formed in February 2000 to design SATA for

desktops, the target speed was only 1.5Gbps; in 2004 it evolved to 3Gbps and now

SATA 3.0 provides 6Gbps data rate [22]. Another example is the Ethernet:

10Gbps Ethernet (10GbE) was first published by IEEE in 2002 [9]. Currently it is

the fastest matured standard, but IEEE is already in development of 40GbE and

100GbE.

The increasing bandwidth requirements are driving silicon vendors to provide

HSSIs with higher speeds. In 2002, the highest data rate in Altera Field Program#

mable Gate Arrays (FPGAs) was only 1.25 Gbps per channel, available in its

Mercury devices [10]; now in Altera Stratix IV GT FPGAs, the rate has increased

to 11.3 Gbps per channel, with up to 48 transceivers each device [11]. Another

major FPGA provider, Xilinx, provides up to thirty#six 11.2 Gbps transceivers in

its Virtex#6 and Spartan#6 FPGAs, capable of supporting 40G/100G applications

[12].

4 1 Introduction

The increase in data rate and integration in FPGAs is just a snapshot of the

trends in the whole semiconductor industry. Moore’s law is still driving the indus#

try to double the number of transistors in an integrated device every two years,

making it possible to integrate more functions and at the same time provide higher

performance.

The aggressive scaling in deep submicron technologies has enabled the Sys#

tem#on#Chip (SoC) integration of a microcontroller/DSP, ADC/DAC, memory

blocks, power management, PLL and external interfaces. Many Giga#Hertz serial

interfaces are built in SoC type devices with CMOS process. The data rate of the

interfaces also scales accordingly. Besides the FPGA providers, some other semi#

conductor companies have developed HSSIs with data rates up to 10Gbps per

channel, and with up to 100 channels per device [13], [14]. It has been a trend to

put more and faster HSSIs in a single device to meet the increasing bandwidth

demand.

When we keep pushing the speed envelope and increase the integration, many

signal integrity related issues arise, such as timing jitter, noise and frequency loss.

A few key technologies have been developed recently to address these issues [15].

Most notably, the pre#emphasis and equalization techniques are used to compen#

sate frequency#related losses, especially those related to Printed Circuit Board

(PCB) design due to the skin effect and dielectric loss [16].

Pre#emphasis is the process employed in the transmitter to boost the high#

frequency components of a data signal before it is launched to the transmission

medium. Equalization in the receiver acts as a high#pass filter to the data signal

when it enters the receiver and re#shapes the signal in order to interpret the re#

ceived signal correctly.

With the integration increase, there is a trend to implement multiple data rates

in a single HSSI to accommodate multiple protocols. This requires the HSSI capa#

ble of providing multiple rate clock signals. The Phase Locked Loop (PLL) is

widely used for clock generation, where a Voltage#Controlled Oscillator (VCO) is

a key component. There are two types of oscillators: Ring Oscillator (RO) and LC

tank oscillator (LC tank). RO has the advantages of small chip area and wide tun#

able frequency range, but LC tanks provide lower noise and better jitter perform#

ance [17], [18].

Multiple data rates can be implemented by changing divider ratios inside the

PLL or by providing additional VCOs. In Altera Stratix IV GT FPGAs, the RO

can support data rates from 600Mbps to 10.3 Gbps; two LC tanks are also imple#

mented in this device, one with 4.9~6.375 Gbps optimized for PCIe/CEI#6 com#

pliance and the other with 9.9~11.3 Gbps optimized for XLAUI/CAUI/CEI#11G

compliance [19].

A side effect of implementing multiple data rates is that the jitter performance

of the HSSI can vary across its data range. If the same PLL is used at two speeds,

such as 6Gbps and 8.5Gbps, one speed can be susceptible to higher jitter because

the two speeds are derived from the same VCO that can only be optimized at one

speed. If different PLLs are used to support different data rates, the performance at

one data rate does not correlate to another data rate. In either case, good perform#

1.1 Motivation 5

ance at a higher data rate does not guarantee better margin at lower data rates be#

cause PLL characteristics may be different.

1.1.2 Qualification Challenges

With the increasing data rate and higher degree of integration, the staggering

complexity makes it challenging to design fault#free devices. Post#silicon qualifi#

cations are critical in guaranteeing the design quality and the device quality. It is

challenging and expensive to qualify the HSSI devices, especially the jitter per#

formance – transmitter jitter and receiver jitter tolerance.

Numerous HSSI standards define jitter performance at the 10#12 BER level,

which requires running at least 1013 bits. This requirement fundamentally limits

the test speed: for instance, at 3Gbps data rate, it takes around one hour to run so

many bits. With some of the emerging applications demanding 10#14 BER, direct

measurements are even further from being practical.

In addition, many settings in the HSSI may affect its jitter performance. A few

examples include the boost control settings in the equalizer, the bandwidth setting

in the PLL and the driver strength settings in the transmitter. These settings are

quite common in today’s HSSIs. Choosing the optimal setting for the whole HSSI

from hundreds or even thousands of available settings is challenging. It requires a

tremendous amount of resources in validation and test in order to guarantee the

device quality.

Because of the long test time, traditionally the jitter performance of multi#

gigabit HSSI devices is only evaluated on bench in limited combinations of PVT.

Besides the long test time, another reason that jitter is not qualified in production

is the limited availability of ATE instruments, especially for very high#speed ap#

plications. For example, to evaluate 8.5GHz FC devices, we prefer the signal gen#

erator for the receiver and the digitizer for the transmitter with a bandwidth much

higher than 8.5G (such as 15GHz), but they are not commercially mature yet on

ATE [8]. Furthermore, there are currently no systematic ATE solutions that can

perform complete HSSI testing accurately and cost#efficiently. Most companies

only do loopback tests in production to check the functionality. Some HSSI pa#

rameters, such as transmitter jitter and receiver jitter tolerance, are assumed to be

guaranteed by design.

Unfortunately, the “Guaranteed by Design” quality paradigm is no longer valid

while we keep advancing the semiconductor technology and increasing the data

rate, which results in tightening the jitter specifications. The devices can increas#

ingly fail just because they do not comply with the timing specifications. Accord#

ing to the data by Collett International, the timing, mixed#signal interfaces, clock#

ing and crosstalk are among the prime failure reasons, each contributing 18% or

more to the failure of the first silicon.

Since HSSIs uniquely personify all such issues, they are therefore critical to

achieving the overall system quality. It is hence becoming imperative to develop

6 1 Introduction

systematic HSSI compliance testing solutions on ATE to distinguish bad devices

from good ones in production. This is the only way to ensure the device quality

and to eliminate or reduce customer returns.

Since the failures of the first fabricated silicon are now prevalent due to the in#

ability to find the bugs before the fabrication, the post#silicon debugging has be#

come very critical. Here, the goal is to identify the failing cases and perform the

root cause analysis that will detect the real source of the bug. We foresee more

need for HSSI post#silicon debugging and would want to provide the means to fa#

cilitate that in an economical way.

Besides the production testing, ATE is also becoming more and more popular

in characterization and validation due to its high throughput. A thorough valida#

tion and characterization of a design requires performing measurements on differ#

ent process materials at different temperature and voltage combinations. All these

combinations of parameters may lead to measure the same parameter more than

100 times on one device in order to obtain its characteristics under different condi#

tions.

The traditional bench validation approach can no longer meet the requirement

of measuring a large amount of parameters in a short time. ATE#based characteri#

zation and validation solutions therefore have to be employed to meet the re#

quirements.

Our aim in this book is to develop systematic HSSI testing solutions on ATE

that can measure the HSSI standard parameters and design specifications for vali#

dation and characterization purposes. To achieve the best test economy, we as#

sume throughout much of our considerations a simplified test flow in production

that aims to qualify the key parameters only.

1.1.3 ATE Perspectives

In general, ATE can provide high throughput and has been widely used in produc#

tion test. It is also more and more widely use for validation and characterization to

shorten the time#to#market. To validate, characterize and test HSSIs on ATE, there

are several considerations that need to be addressed.

The first concern is the test cost. In early days, HSSI devices were designed as

high#performance and high#margin devices. With the introduction of the low cost

CMOS processes, most of the Gigahertz HSSIs are now built in high#volume and

low#priced SoCs. The large#scale integration makes it however challenging to de#

sign a high performance HSSI block in a very noisy SoC environment. It is then

becoming more challenging to provide competitive production test solution be#

cause of the test time budget.

For an average high#volume SoC, the normal acceptable test time ranges from a

few seconds to ten seconds. The HSSI testing is tied with the testing of all other

analog and digital blocks in the SoC. As one of many blocks in an SoC, it is ex#

pected that the HSSI block testing can be done within 1~2 seconds. For transmitter

1.1 Motivation 7

jitter testing and the receiver jitter tolerance testing, the test time budget is usually

limited to a few tens or hundreds milliseconds because there are hundreds of other

parameters to test. Test cost control is one of the biggest challenges in a mass#

production environment. It is hence urgent to develop jitter testing techniques that

can meet the cost requirement.

Fig. 1�2. High speed serial interface technology trend

The second major concern is the availability of high#speed instruments on an

ATE tester. The increasing bandwidth demand has been pushing the HSSI data

rate higher and higher. Figure 1#2 illustrates the historic technology points and fu#

ture trends [8].

During the past ten years, the data rate has increased from around 1Gbps to the

10 Gbps range. The HSSI I/O frequency is growing faster than the packaging and

test fixture technology. Because of the physical limits due to the packaging and

test socket, the data rate may slow down somewhat beyond 13 Gbps, shown as the

technology leverage point in Figure 1#2 [8]. During the past few years, the ATE

industry has made significant progress in providing HSSI test solutions. We note

that several ATE suppliers have provided production pin#card solutions up to

6Gbps.

For higher speed, such as 8.5Gbps and 10Gbps applications, systematic ATE

production solutions with jitter testing are not commercially mature yet. Normally,

only loopback testing is implemented in production to provide limited coverage. It

is therefore imperative to address the ATE limitations in order to provide system#

atic production test solutions for applications above 6Gbps. Another ATE limita#

tion is in multi#lane HSSI testing; most ATE platforms do not have enough high#

speed instruments to accommodate the testing of multi#lane HSSI devices.

The third challenge is jitter decomposition and jitter injection. Many modern

HSSI standards specify the jitter specifications in term of Deterministic Jitter (DJ)

and Random Jitter (RJ), so the procedures for testing, characterization and valida#

tion as well need to be cognizant of such types of jitter.

8 1 Introduction

In practice, the traditional concept of histogram based peak�to�peak jitter has

been replaced the by the concept of Total Jitter (TJ), which is related to a certain

BER level. Jitter test solutions need to be capable of decomposing TJ to DJ and

RJ. In addition, uncorrelated jitter detection is also needed because it can fail the

device in real applications but some jitter measurement techniques cannot detect

it.

To conduct a jitter tolerance test for the receiver, we need to have instruments

that can deliberately inject controllable amounts of jitter. Depending on applica#

tions, we may need to inject PJ, RJ or DJ. Integrated ATE instruments that can in#

ject all these kinds of jitter do not exist currently. It is expected that these issues

can be addressed in the test community.

1.2 Contributions

This book addresses the urgent need in the semiconductor industry for cost effi#

cient solutions to qualify HSSI jitter and BER performance [1]. We develop accel#

erated jitter testing solutions based on existing ATE instrument. We also develop

novel low cost, non#ATE solutions that practically overcome the ATE instrument

limitation.

We briefly summarize the contributions of this book as the following set of

goals that we achieved. We:

•� Develop a jitter tolerance extrapolation algorithm that can accelerate jitter tol#

erance testing by >1000 times [2]. Based on the algorithm, the book proposes a

solution for jitter tolerance production testing and a solution for characteriza#

tion. Using existing ATE instruments, the production testing only takes a few

tens milliseconds and the characterization only takes around 1 second, the fast#

est solution to the best of our knowledge. Direct measurements down to 10#12

BER in 3Gbps applications demonstrate the excellent extrapolation accuracy:

the discrepancy between the measured results and extrapolation results is

within 2 ps [3].

•� Present solutions for transmitter jitter testing using the time domain, frequency

domain and hybrid approaches based on existing ATE instruments [4]. We

manage to achieve sub#picosecond RJ measurement accuracy: the discrepancy

between the ATE and bench measurement results is within 0.5ps and the run#

to#run variation on ATE is also within 0.5ps. The DJ discrepancy is only a few

pico#seconds. The transmitter jitter testing along with other transmitter testing

can be done in less than 100 milliseconds while existing solutions usually take

a few seconds. In addition, our innovative hybrid approach eliminates some

limitations posed by the time domain and the frequency domain approaches,

making test results more reliable.

•� Propose low#cost HSSI testing solutions without the need for employing high#

speed ATE instruments. This is achieved with the following set of sub#goals:

1.3 Overview of the Book 9

�� a) Develop a novel jitter injection technique using the state#of#the#art

phase delay lines that can handle clock/data rates of up to 12.5Gbps

[5].

�� b) Investigate the applications of high#speed relays and propose a ver#

satile loopback#based jitter compliance testing solution [5].

�� c) Develop an FPGA#based BER Tester (BERT) for HSSI bit error

detection [5].

•� Besides exploring the jitter impact to BER, the book also addresses the ampli#

tude noise impact on BER. We investigate the digital Gaussian noise genera#

tion and BER testing schemes and propose a novel approach to generate Gaus#

sian noise with excellent tail distribution properties [6].

1.3 Overview of the Book

In the remainder of the book, Chapter 2 presents the background of the research.

We first discuss the HSSI technologies and the BER mechanism. BER is a meas#

ure of the HSSI overall performance. We then introduce how the timing jitter and

the amplitude noise can affect the BER performance.

In Chapter 3, the details of an ATE#based receiver testing solution are pre#

sented. We use a high#speed Arbitrary Waveform Generator (AWG) to generate

test signals with controllable amounts of injected jitter. Based on the calibrated

test signals and the test setup, we develop a jitter tolerance extrapolation algo#

rithm. This algorithm enables us to accelerate the jitter tolerance characterization

and production testing by more than 1000 times. Experimental results demonstrate

the excellent accuracy of the approach.

In Chapter 4, we present the details of an ATE#based transmitter testing solu#

tion. A high bandwidth digitizer is used to capture the transmitter output. We will

introduce how the test settings are developed for data acquisition and how the jit#

ter components are extracted. The proposed solution can complete the transmitter

testing and characterization in100 milliseconds, and the test accuracy reaches sub#

picosecond range.

Chapter 5 discusses the HSSI testing techniques that do not rely on high#speed

ATE instruments. We propose a phase#delay line based jitter injection scheme.

Based on the novel scheme, an external loopback testing solution is developed to

reduce the test cost and also overcome some ATE limitations. By putting the

ATE#based approach and the loopback approach together using high#speed relays,

we propose a more versatile scheme for HSSI validation, debugging, characteriza#

tion and production testing.

In Chapter 6, we address BER testing and debugging under noise conditions.

Traditionally software is used to simulate/evaluate the BER performance of a

communication interfaces under different noise conditions. Even though a soft#

ware based approach is easy to setup, it is too time consuming to perform low

10 1 Introduction

BER evaluation. Hardware based emulation can greatly speed up the evaluation

process. In emulation, a scalable high speed high accuracy Gaussian noise genera#

tor is used to emulate noise conditions. In this chapter, we first survey the current

hardware based Gaussian noise generation techniques, and then propose a novel

approach. Our approach overcomes many limitations of other approaches and is

especially suitable for low BER evaluation.

Conclusions are provided in Chapter 7.

2 Background

Abstract In this chapter, we first introduce the architecture of the HSSI commu�

nication interfaces, together with its common applications. Then, the bit error rate

(BER) mechanisms are explained, and the jitter phenomenon is dealt with in de�

tail. Introduced are the relevant probabilistic properties and the basics of the

simulation and emulation approaches to the modeling of BER effects.

2.1 High�Speed Serial Communication

The high#speed serial communication interfaces have been widely used in modern

communication to deliver fast and robust data transmission. They deliver data at

rates from a few Gigabits per seconds to more than 10 Gbps. Traditional single#

ended I/O standards, such as in PCI and VME, has by now made way to HSSIs, as

they were limited to clock rates of about 200 Mbps due to the combination of

noise and loading (fanout) limitations. Differential I/O standards have been used

to break the frequency barrier of single#ended I/O standards with common mode

rejection. They allow data transmission at higher speeds, although the clock skew

issue arises for differential I/O standards when the frequency approaches 1 Gbps

and beyond [142].

The technology that enables multiple Gbps high#speed serial communication is

often referred to as Clock Data Recovery (CDR). The clock skew concerns are

removed by encoding the clock into every data stream, so CDR circuitry provides

a mechanism for the clock to track the data. Hence, it eliminates frequency barri#

ers faced by clock synchronous systems. Figure 2#1 illustrates the CDR mecha#

nism: a transmitter embeds the clock in the data stream and a receiver employs

specialized CDR circuitry to recover the data, as well as the clock. While this re#

covery circuit is often used to name the whole communication system as a CDR,

in this book, we prefer to refer to such a system as HSSI, as CDR block is just a

part of the receiver.

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_2, © Springer Science+Business Media B.V. 2011

12 2 Background

Fig. 2�1. CDR transmission mechanism

The CDR circuitry is nevertheless the key structure of an HSSI. At present, an

HSSI that employs the CDR technology and differential signaling can provide

communication at data rates above 10 Gbps. The roadmaps of many companies

point to even higher data rates on each pair of wires. In addition, a wider pipe, or

datapath, can be built by gluing multiple transceivers. Figure 2#2 shows such an

example where 64 bits of data at 250 MHz are transmitted through 8 serial trans#

ceivers. Each transceiver works at 2.5Gbps, but as 8B10 encode/decode is com#

monly used to guarantee data transitions for clock recovery, each serial channel

transmits actual data at 2 Gbps. Hence, the aggregated data rate is 16 Gbps.

���

�����	��

���

���
��

��

�

�

�

�

���������

����
����������

�����

 �����

�����

�����

�

�

�

�

�����

���������

Fig. 2�2. Applications of multiple HSSIs

Besides the high#speed capability, the serial communication also simplifies

routing among Integrated Circuits (ICs), or even parts of an IC. In parallel com#

munication, data is usually transmitted one bit at a time down one wire. Routing

for parallel communication is always challenging. For example, in an 8#bit parallel

communication system, 8 wires or 16 wires (in the case of differential IOs) are

needed for data signals and another one or two wires are needed for the clock sig#

nal. Routing 9 or 18 wires across a board, and keeping them all synchronized is

very difficult and costly, especially for long distance connections.

In multi#gigabit HSSIs, differential I/Os are used so that two wires are needed

for each connection, but the wire count is still much reduced relative to the paral#

lel approach. Furthermore, in serial communication, the clock signal is embedded

2.1 High#Speed Serial Communication 13

in the data and no clock skew exists. All these factors greatly simplify routing of

serial communication. Because much fewer wires are used in a serial communica#

tion system compared to a traditional parallel one, it is further possible to put more

circuitry on one die or in one package. Serial communication greatly relieves the

package pin count bottleneck problem for SoCs.

Finally, a significant advantage of serial communication is in its lower energy

consumption. Low energy consumption is facilitated by low#voltage differential

signaling technologies, such as LVDS. The LVDS technology uses a constant#

current line driver rather than a voltage#mode driver, so the supply current remains

constant as the operating frequency increases, whereas the supply current for

CMOS technology increases as the frequency increases. For a typical LVDS

driver, as shown in Figure 2#3, the constant current is typically 3.5 mA [21]. The

current passes to a resistor of about 100 Ohms (matched to the cable impedance)

at the receiver end, generating a signal with amplitude around 350mV. The low

power consumption of serial communication interfaces eliminates the need for ei#

ther heat sinks or special packaging. Hence, serial communication reduces the sys#

tem cost.

Fig. 2�3. Current#mode LVDS driver

Due to these advantages, multi#gigabit HSSIs are more and more widely used

in high speed communications between devices, boards and systems. To address

different applications, several HSSI standards have been developed, such as

SATA [25], Fiber Channel (FC) [23] and 10 Gigabit Attachment Unit Interface

(XAUI) [24]. Each standard specifies the detailed requirements of its functional#

ities and signal/device parameters, such as the data rate, amplitude level, slew rate

and jitter. As an example, Table 2#1 lists the physical layer general specifications

for SATA. Each device or system designed for the standard has to comply with

these specifications.

14 2 Background

Table 2�1. SATA Physical Layer General Specifications [22]

Parameter Units Limit Gen1 Gen2 Gen3

Channel Speed Gbps Nom 1.5 3.0 6.0

FER* Max 8.2e#8 8.2e#8 8.2e#8

Min 666.4333 333.2167 166.6083

Nom 666.6667 333.3333 166.6667 TUI, Unit Interval ps

Max 670.2333 335.1167 167.5583

 Min #350 #350 #350 Ftol, Tx freq. accuracy ppm

Max 350 350 350

* The Frame Error Rate is defined at the 95% confidence level

SATA is one of the most popular HSSI standards. It is the primary storage in#

terconnect for PCs to connect the host system to peripherals, such as hard disk

drives, solid state drives, optical drives and removable magnetic media devices

[25]. SATA is an evolutionary replacement for the Parallel ATA interface. It can

drastically increase the communication bandwidth and reduce the design cost

compared to Parallel ATA. Even compared to other HSSI standards used in stor#

age systems, SATA costs significantly less than SCSI or FC hard drivers. SATA

market share has increased tremendously during the past few years: from 43% in

2006 to 97.7% in 2008 in the mobile PC market, and from 58.1% in 2006 to 99%

in 2008 in the desktop PC market [26]. More than 1.1 billion SATA hard drivers

have been shipped from 2001 to 2008 [27].

Therefore, it is especially beneficial to develop cost#efficient test methodolo#

gies for SATA. The experiments that will be described in this book concentrate on

SATA devices, but the developed methodologies are equally applicable to other

HSSI standards.

2.1.1 HSSI Structure

An HSSI consists of two parts: a transmitter (Tx) and a receiver (Rx), connected

by transmission medium, such as cables or PCB traces. Figure 2#4 shows the

block diagram of an HSSI. The transmitter and the receiver can function inde#

pendently for half#duplex operation. They can also be combined for full#duplex

operation.

2.1 High#Speed Serial Communication 15

Fig. 2�4. Block diagram of an HSSI

The transmitter takes parallel data and converts it into a serial format. The PLL

in the transmitter generates an internal high#speed clock for the serializer to pro#

vide the synchronization mechanism for the outgoing serial data. The differential

line driver drives the serialized data into the transmission media. The receiver, on

the other hand, accepts the high#speed serial data from the transmitter. The CDR

in the receiver recovers a clock from the received serial data, and re#times the data

using the recovered clock. Then the deserializer restores the re#timed serial data to

the parallel format.

In the above transmission mechanism, the clock is embedded in the data signal,

so only one differential data signal needs to be transmitted. The clock is then re#

covered from the serial stream by the CDR at the receiver. The CDR circuit ex#

tracts the clock information by monitoring the edge transitions of the received

data. To ensure that the CDR circuit can function correctly, special encoding logic

is needed in the transmitter to make sure that the transmitted data has enough tran#

sitions all the time.

One solution to guarantee the transitions is to encode the original data using a

specialized encoder – most commonly, we will find an 8B10B encoder, because it

encodes on a byte#by#byte basis. An 8B10B encoder converts 8#bit words into 10#

bit words, so it can ensure that there are sufficient bit transitions, regardless of

what pattern is transmitted. For example, in the 8B10B encoding scheme, there are

four different symbols for the zero character; all the four symbols have transitions,

but get interpreted as zero. In the receiver, the frame alignment block recognizes

the word boundary and correctly restores the transmitted parallel sequences. Then

the 8B10B decoding logic converts the 10#bit format to the original 8#bit format.

The converted sequences are presented at the output ports of the receiver.

In the HSSI structure shown in Figure 2#4, the Encoding Logic block and De�

coding logic & Frame Alignment block can be built with digital circuits; all other

blocks can only be built with analog circuits. For HSSIs embedded in FPGAs, the

analog blocks are usually hard cores; users can instantiate them and set some pa#

rameters, such as PLL frequencies and differential signaling formats. For the digi#

tal blocks, the users have the option to use Intellectual Property (IP) cores or de#

16 2 Background

velop their own designs. We will demonstrate how these blocks can be instanti#

ated or built in Chapter 5.2.3.

In any communication system, including an HSSI system, we need physi#

cal medium to transmit the signal from the transmitter to the receiver. The

medium may be PCB traces, cables, or optical fiber in serial communication.

One essential feature of any such communication medium is that the transmit#

ted signal can be additionally corrupted by a variety of possible mechanisms,

such as medium loss and additive thermal noise.

2.1.2 BER Mechanisms

In the serial communication system, the transmitter, the receiver or the transmis#

sion media can introduce distortion or cause bit errors. The correctness and per#

formance of communication interfaces depend on many design choices, such as

the CDR mechanism, the PLL bandwidth, the method of encoding/decoding and

the transmitter power. As a measure of how well the overall communication sys#

tem performs, BER is the probability of a bit error at the output of the receiver,

compared to the input of the transmitter [28].

By definition, BER is derived by calculating the ratio of the number of errone#

ous bits to the number of transmitted bits. The concept is very simple, but there

are a few issues we need to consider when performing the BER measurement,

such as how many bits need to be transmitted and how many bit errors need to be

captured in order to get a reliable BER test result. If we transmit 10
12

 bits and get

one erroneous bit, can we claim that the BER performance of the system is 10
#12

?

If we transmit another 10
12

 bits, will we also get one and just one erroneous bit?

One would most likely not be able to claim so. The BER confidence level is used

to resolve this dilemma and to define how much confidence in the test result there

is.

For a given digital communication system or component, there usually is a

minimum specification for the BER #)(ep . In practice,)(ep is often estimated

by calculating the ratio of detected bit errors (l) to total bits transmitted (n) in a

fixed length test sequence. If we denote the ratio by)(' ep ,)(' ep is only an es#

timation of)(ep . The estimation accuracy improves with the increase of the

number of transmitted bits. As shown in the following equation,)(' ep only

equals to)(ep if an infinite number of bits are transmitted.

)()(' ep
n

l
ep

n →= ∞→

However, it is impossible to transmit an infinite number of bits to get)(ep in

real BER testing because the test time would be infinite. The actual number of

transmitted bits depends on the desired BER confidence level. The BER confi#

2.1 High#Speed Serial Communication 17

dence level will require the use of a probability that the actual)(ep is better than

a specified BER level y (such as 10
#12

).

The Confidence Level (CL) is formally expressed as a conditional probability

for a given BER level upon discovering the corresponding number of erroneous

bit transitions

],|)([nlyeppCL <=

where y is a specified BER level, and nl,| denotes a condition that n bits are

transmitted and l bits of errors are detected.

The confidence level is based on a set of BER measurements. One interpreta#

tion of the confidence level is that, if the BER test is repeated many times and the

value nlep =)(' is recomputed each time, we expect)(' ep to be better than

the BER level y for CL (in percent) of the measurements. To measure BER with a

constant confidence level, we need to use a variable#length test sequence [29],

[30]. The BER confidence level can be calculated based on the binomial distribu#

tion function [31], [32]. The binomial distribution function models events that

have only two possible outcomes, and is generally written as

knk

n qp
k

n
kp

−=)()(, where
)!(!

!
)(

knk

n

k

n

−
=

where)(kpn is the probability that k events (i.e., bit errors) occurs in n trials

(i.e., bits transmitted), p represents the probability that an event occurs in a single

trial (i.e. a bit error), and q represents the probability that the event does not occur

in a single trial. According to these denotations, we have p + q = 1.

Figure 2#5 plots the binomial distribution with n = 10
8
 and p = 10

#7
. If we treat

the n as the total number of bits transmitted, p as the BER, and)(kpn
as the

probability that k bit errors will occur, we can use the distribution to calculate the

BER confidence level. We are interested in the probability that 1 or fewer bit er#

rors occur in n transmitted bits. The probability is the Cumulative Distribution

Function (CDF) of the binomial distribution and is expressed as

∑ ∑
= =

−

−
==≤

1

k

1

k

knk

n qp
knk

n
kp1ep

0 0))!(!

!
)()(

Then, the confidence level can be expressed as:

∑
=

−−
−

−=
1

k

knk
pp

knk

n
CL

0

)1(]
)!(!

!
[1

18 2 Background

Fig. 2�5. Graph of the binomial distribution ()10,10 78 −== pn

To qualify a BER p, we need to determine how many bits n must be transmitted

with 1 or few errors. We can first choose a hypothetical value of p and a desired

CL, then solve the above CL equation to determine n and 1 to prove the hypothe#

sis. It is difficult to directly solve n and 1. One solution is to use Poisson theorem

[31] to simplify solving n and 1. Poisson theorem provides a conservative esti#

mate of the binomial distribution function, and is expressed as

np
k

nknk

n e
k

np
qp

knk

n
kp −∞→−  →

−
=

!

)(
)

)!(!

!
()(

An example of the solutions for 1 and n is listed in Table 2#2 [33]. In this sys#

tem, p is specified to
1010−

 and the confidence level CL is set to 99%. For various

bit errors of 1, the corresponding required transmitted bits of n are solved. As can

be seen from the table, we will have a 99% confidence level in claiming

that
1010)(−<ep in a 2.5Gbps system if no erroneous bit is detected in 18.5s of

testing, one erroneous bit occurs in 26.7s, or two erroneous bits occur in 33.7s.

Hence, given a desired confidence level, we can select the sufficient duration of

the bit stream from such a table and depending on how many erroneous bits were

detected.

Table 2�2. An Example of BER Estimation (CL=99% and p =
1010−

)

Bit Errors N 0 1 2 3 4

Required bits n 4.61*10
10

 6.64*10
10

 8.40*10
10

 1.00*10
11

 1.16*10
11

Test time @ 2.5Gbps (s) 18.5 26.7 33.7 40.2 46.6

2.1 High#Speed Serial Communication 19

The test time t can be calculated using Gaussian error distribution:

rp

CL
t

*

)1ln(−
=

where CL is the confidence level, p is the upper bound of BER and r is the data

rate. Figure 2#6 shows the relationship between the test time and the confidence

level. If we want to achieve a higher confidence level, the test time must increase.

We cannot achieve 100% confidence level in BER testing because that would re#

quire infinite test time. The BER measured by BERT equipment is only an esti#

mate of the true BER. In practice, we are hence forced to make tradeoffs between

the confidence level and the test time.

∞

Fig. 2�6. Test time vs. BER confidence level

Table 2#2 also shows that we need to give some margin for a measured BER if

we use only a few bit errors to qualify BER performance. For example, if we

measure 3 bit errors out of 10
11

 transmitted bits, we should not think that the BER

performance is 3.33*10
#11

. It is only reasonable to say that we have 99% confi#

dence level that the BER performance is better than 10
#10

. As a rule of thumb, we

normally need at least 10*(1/p) transmitted bits in order to qualify p BER per#

formance. As shown in Table 2#2, to qualify 10
#10

 BER performance, we can tol#

erate up to 3 bit errors if we transmit 10
11

 bits. This provides us guidelines on how

to efficiently and confidently test the BER for jitter tolerance qualifications dis#

cussed in Chapter 3.

2.1.3 Jitter and &oise Impacts to BER

In serial communication systems, there are various signal formats in time domain.

The most commonly used format is Non Return Zero (NRZ). Non Return Zero In#

verted (NRZI) and Return Zero (RZ) are also used in some systems. In NRZ#

20 2 Background

encoded format, the binary information digit 1 is encoded as a high signal repre#

sented by “1”, and the binary information digit 0 is encoded as a low signal repre#

sented by “0”. The ideal NRZ signal can be represented by a trapezoidal wave#

form as shown in Figure 2#7. The waveform consists of four components: high

level “1”, low level “0”, rising edge (0 to 1 transition) and falling edge (1 to 0

transition).

Fig. 2�7. Ideal digital signal

When the ideal signal is transmitted, it gets contaminated by a variety of physi#

cal processes that we collectively refer to as noise. The deviation of a noise#

contaminated signal from its ideal position can be viewed from two aspects: time#

deviation (jitter) and amplitude#deviation (amplitude noise). Figure 2#8 illustrates

the two deviations: Vt and Vv.

Fig. 2�8. Timing and amplitude deviations in an actual data signal.

At the receiver side, the CDR samples the actual data signal at sampling in#

stance ts and compares the sampled value with a threshold voltage Vt. If the value

is bigger than Vt, logic “1” is received; otherwise, logic “0” is received. An ideal

receiver samples data in the middle of each data bit. Without amplitude noise, the

receiver can always correctly recover the transmitted bit. Under the presence of

jitter and noise, the transition edge of the signal can fluctuate horizontally across

the sampling point (along the time axis), and the signal voltage can fluctuate verti#

cally at the sampling point (along the voltage axis). Both the time deviation and

amplitude deviation can cause a bit error – bit “0” is received as bit “1” or bit “1”

is received as bit “0”.

2.2 Timing Jitter 21

If we ignore the setup time and hold time requirements [109], timing jitter can

cause bit errors in the following two conditions:

•� For logic “1”, the rising edge lags behind the sampling instance or the

falling edge is ahead of the sampling instance

•� For logic “0”, the falling edge lags behind the sampling instance or the

rising edge is ahead of the sampling instance

Amplitude noise causes bit errors in the following two situations:

•� For logic “1”, the voltage level at the sampling instance is smaller than

the threshold voltage

•� For logic “0”, the voltage level at the sampling instance is bigger than the

threshold voltage

The timing and amplitude noise impacts on BER can be characterized by two

parameters – Jitter and Signal#to#Noise Ratio (SNR). The SNR quantifies the am#

plitude noise while jitter represents the timing deviation.

2.2 Timing Jitter

2.2.1 Jitter Overview

Jitter is the deviation of a signal from its ideal timing. There are several different

types of jitter, which all get superimposed into the Total Jitter (TJ). The simplest

view is that the TJ is composed of Random Jitter (RJ) and Deterministic Jitter (DJ)

[34], [35], [36]. RJ is caused by random events and is usually characterized statis#

tically by a Gaussian distribution, which can be quantified by a mean and a stan#

dard deviation. Because a Gaussian distribution is unbounded (its peak#to#peak

value approaching infinity), the peak#to#peak value is dependent on the total sam#

ple size. Therefore, the peak#to#peak value of RJ is related to the BER and TJ is

defined at a certain BER level.

DJ is caused by deterministic events and has a bounded peak#to#peak value. DJ

can be decomposed into Periodic Jitter (PJ), Bounded Uncorrelated Jitter (BUJ)

and Data Dependent Jitter (DDJ) [37]. PJ is caused by repetitive noise sources,

such as clock signals and oscillators. BUJ is usually caused by coupling, such as

from adjacent signal paths and on#chip logic switching. DDJ depends on the bit

pattern in the signal under test and can be further classified into Duty Cycle Dis#

tortion (DCD) and Inter#Symbol Interference (ISI). DCD is caused by an imbal#

ance in the drive circuit, which generates a signal having unequal pulse widths for

high and low logic values. ISI is caused by frequency related losses in the signal

22 2 Background

path, such as those caused by the bandwidth limitation. Figure 2#9 shows the rela#

tionship of all the jitter components.

Fig. 2�9. Jitter components

It is important to appreciate that the different jitter components exhibit widely

different behavior, as given, for instance, by a Probability Density Function (PDF)

characterizing the probability distribution of a jitter. Figure 2#10 illustrates the

typical PDF functions for PJ, RJ, DCD and ISI. Only RJ is unbounded, most often

associated with Gaussian distribution, while DCD and ISI are dependent on the

data pattern and are mostly thought of as having a discrete distribution. Finally, as

PJ is caused by a combination of repetitive events, the distribution is continuous

and largely independent of the data stream.

Fig. 2�10. Jitter components

Most communication standards, such as SATA, Fiber Channel and XAUI,

specify jitter in terms of DJ and TJ as separate specifications [22], [23], [24]. Ta#

ble 2#3 summarizes the HSSI transmitter jitter specifications for the SATA [22] at

10
#12

 BER. The normal data rate is 1.5Gbps for Gen1, 3.0Gbps for Gen2 and

6.0Gbps for Gen3. Table 2#4 summarizes the SATA specifications of the lab#

sourced signals for HSSI receiver jitter tolerance testing. As we can see, the

2.2 Timing Jitter 23

maximum jitter the receiver should tolerate is higher than the maximum jitter al#

lowed from the transmitter output. For example, the receiver TJ tolerance specifi#

cation for Gen2 is 0.60UI while the transmitter jitter specification is 0.37UI. This

is understandable because the transmission medium between the transmitter and

the receiver may introduce extra jitter.

Table 2�3. Transmitter Jitter Specifications for SATA

Parameters Units Limit Gen1 Gen2 Gen3

TJ, fBAUD/500 UI Max 0.37 0.37 ##

DJ, fBAUD/500 UI Max 0.19 0.19 ##

TJ* UI Max ## ## RJp#p + 0.34

RJ* UI Max ## ## 0.18p#p

* More detailed test conditions are defined in [22]

Table 2�4. Receiver Jitter Tolerance Specifications for SATA

Parameters Units Limit Gen1 Gen2 Gen3

TJ, fBAUD/500 UI Max 0.60 0.60 ##

DJ, fBAUD/500 UI Max 0.42 0.42 ##

TJ after CIC, JTF defined UI Max ## ## 0.60

RJ before CIC, MFTP JTF

defined

UI Max ## ## 0.18p#p (2.14ps,

1 sigma)

2.2.2 Jitter and BER

Jitter can cause bit errors in serial communication when the recovered clock re#

times the serial data signal. Figure 2#11 illustrates the relationship between jitter

and BER. Ideally, the data is always sampled in the mid#bit, sampling instance ts =

UI/2 in Figure 2#11(a), where UI is the Unit Interval (period) of the signal. This is

usually true if the jitter frequency is within the bandwidth of the CDR because the

sampling clock is recovered from the data signal and the clock can track the in#

band jitter. However, for out#of#band jitter, the sampling clock cannot track the

data any more and the jitter can cause bit errors.

24 2 Background

Fig. 2�11. Jitter and BER in the receiver

Figure 2#11(b) shows an example of the jitter profile. Here, we assume that the

signal edge transition is disturbed by RJ, and RJ alone. The RJ is further assumed

to be Gaussian. The Probability Density Function (PDF) of a zero#mean Gaussian

variable is

e xxp δ
πδ

22
2

2

1
)(−=

where δ is the standard deviation.

One important function used to characterize the Gaussian distribution is the Q

factor, which represents the area under the tail of the Gaussian PDF. The Q factor

is widely used for computing the error probability in communication systems [38].

Normalized to zero mean and unit variance, Q)(x is defined as

∫
∞ −

=
x

t
dtxQ e

22

2

1
)(

π
, 0≥x

)
2

(
2

1 x
erfc= (2#1)

2.2 Timing Jitter 25

where erfc(x) denotes the complementary error function, defined as

 ∫
∞

−=
x

t dtexerfc
22

)(
π

 (2#2)

As shown in Figure 2#11(b), the PDF of the left and right edge transitions of

the data bit can be expressed by

e xxp left
δ

πδ

22
2

_
2

1
)(−=

e
UIx

xp right
δ

πδ

22

2

_

)(

2

1
)(

−−=

Bit errors may occur when the left edge occurs after the ts (illustrated by back

slash in Figure 2#11(b)) or the right edge occurs before the ts (illustrated by for#

ward slash in Figure 2#11(b)). Assuming there is the uniform bit distribution, i.e.,

that there is a 50% chance of errors in these two cases, the BER can be obtained

by calculating the probability of the two erroneous cases:

 ∫∫
∞−

∞

+=
s

s

t

right

t

lefts dttpdttptBER)()((*5.0)(__

)
2

1

2

1
(*5.0 2

2

2

2

2

)(

2 dtdt

s

s

t UIt

t

t

ee ∫∫
∞−

−
−

∞
−

+= δδ

πδπδ

 dt
st

t

e∫
∞

−
= 2

2

2

2

1
δ

πδ
 (2#3)

According to Equation (2#2), Equation (2#3) can be rewritten as

)
2

(*5.0)(
δ

st
erfctsBER = (2#4)

By substituting δ with the Root#Mean#Square (RMS) value of the RJ, RJRMS.,

Equation (2#4) becomes

)
2

(*5.0)(
RMS

s

RJ

t
erfctsBER = (2#5)

Equation (2#5) directly links the jitter to BER. The BER and jitter relationship

can further be transferred to the BER and Q factor relationship. As shown in Fig#

26 2 Background

ure 2#11(c), the receiver works at the crossing points of the bathtub curves. There#

fore, we have

 2/UIts = (2#6)

 RMSRJQDJUI *2+= (2#7)

where Q is)(xQ defined in Equation (2#1) with BERx = [34].

By substituting st and RMSRJ in Equation (2#5) according to s (2#6) and (2#

7), we have

)
2

(*5.0
Q

erfcBER = (2#8)

or

)*2(*2 1 BERerfcQ −= (2#9)

Equations (2#8) and (2#9) directly link BER and Q factor. If we know one pa#

rameter, the other can be calculated accordingly. We would need these two equa#

tions for our jitter tolerance extrapolation.

In the above analysis, we ignore the DJ effect. This is reasonable since the bit

errors are caused by RJ at low BER regions. Because the DJ is bounded, it only

adds offsets to a bathtub curve; it does not change the shape of the lower part of

the bathtub curve [34].

2.2.3 Jitter Testing

As we can see, jitter can cause bit errors. From the receiver point of view, there

are two possible factors that can cause excessive bit errors. One is that there is ex#

cessive jitter in the received signal, which means that the transmitter generates too

much jitter (assuming there are no issues with the transmission media). Another

factor is that the minimum jitter that the receiver can tolerate at a certain BER

level is lower than what is expected. To quantify the two factors, the transmitter

jitter specification defines the maximum jitter the transmitter is allowed to gener#

ate, while the receiver jitter tolerance defines the minimum jitter the receiver

should tolerate to achieve a certain BER level. Therefore, in HSSI jitter compli#

ance testing, we qualify the transmitter jitter and the receiver jitter tolerance per#

formance.

Because the jitter is usually defined at 10
#12

 or lower bit error rates, direct

measurements are too time consuming to conduct in most cases. Considering the

BER performance of an HSSI is related to jitter according to Equation (2#5) or re#

lated to Q factor according to Equation (2#8), Q factor can be used to accelerate

the BER and jitter measurement. One important assumption for the Q factor ap#

2.2 Timing Jitter 27

proach is that RJ is Gaussian. A Gaussian distribution is theoretically unbounded

and can be characterized by its standard deviation. For example, a Gaussian distri#

bution on average will exceed a span of 14 times its standard deviation one time

for every 1012 samples, which can interpreted as Q factor is 7 (14/2 =7) at 10#12

BER. If we know the DJ and the RJ, we can estimate the transmitter TJ as follows:

RJQDJTJ *2+=

where the Q factor is 7 at 10
#12

 BER.

The above Q factor based transmitter TJ estimation is much faster than the di#

rect measurements at lower BERs. We can also use the Q factor to accelerate the

receiver jitter tolerance testing, as will be discussed in Chapter 3. Even though the

Q factor is widely used in the industry [34], [140], the measurement accuracy may

be affected if the RJ distribution deviates from the true Gaussian distribution

[141]. When the Power Spectrum Density (PSD) of the RJ is not white, its PDF

can not be described as Gaussian, such as the high#order jitter discussed in [7]. For

non#Gaussian distributions, we cannot use the Equation (2#3) to calculate the BER

as shown in the overlap area in Figure 2#11(b).

However, the Q factor based approaches in this book are still valid because RJ

is primarily due to the thermal noise in electronic components, which has a white

power spectrum density and whose PDF is Gaussian. Further, the fundamental fact

is that the random noise is caused by a combination of various uncorrelated ran#

dom noise sources, and by central limit theorem, the distribution of the aggregated

noise approaches Gaussian distribution. Even though there are some non#Gaussian

RJ sources, such as 1/f noise and shot noise [7], our eye mask testing approach

discussed in Chapter 4.3.5 will provide a mechanism to deal with this case.

For HSSI receiver jitter tolerance testing, we need to stress the receiver with a

pre#determined amount of jitter according to the related specification and then

qualify whether the BER performance of the receiver is better than the specified

BER level. Because the BER is usually defined at 10#12, it is too time consuming

to conduct direct measurements in most cases. To accelerate the jitter tolerance

qualification, we stress the receiver with controllable amounts of injected jitter. By

varying the injected jitter in the input signal, we can make the receiver work at dif#

ferent higher BER levels, which are much less time#consuming to test. The jitter

tolerance performance at low BER levels can then be extrapolated according to the

measured jitter vs. BER relationship at high BER levels. The details of the jitter

tolerance testing will be discussed in Chapter 3.

28 2 Background

2.3 Amplitude .oise

2.3.1 BER and S&R

As discussed in section 2.1.3, amplitude noise can cause bit errors when the noise

exceeds a certain level. The BER characterizes the probability of bit errors and the

SNR defines the ratio of the signal amplitude over the noise amplitude. The rela#

tionship between BER and SNR can be derived from the Additive White Gaussian

Noise (AWGN) communication channel model [38]. The basic components of a

communication system include a transmitter, a receiver and a communication

channel. One problem associated with the channel is that it corrupts the transmit#

ted signal in a random manner. The AWGN model is predominantly used to ana#

lyze this problem because the noise is predominantly white: its PSD is flat and its

distribution is Gaussian [7], [34], [140]. The mathematical model of the AWGN

channel is shown in Figure 2#12 [38].

 �!
" �!
"�#��!
"� ��!
"

�!
"

�$�����

Fig. 2�12. AWGN channel model

In the AWGN model, the transmitted signal s(t) is corrupted by noise n(t). The

model can be expressed by

 r(t) = s(t) + n(t).

The noise is introduced by the channel, as well as by electronic components, in#

cluding amplifiers at the receiver. This type of noise is most often characterized as

thermal noise, or statistically as Gaussian noise. Its PDF is expressed by

e xmxxp δ

πδ

22
2)(

2

1
)(−−=

where mx is the mean and σ2 is the variance of the Gaussian random variable.

In general, BER is a function of the characteristics of the channel (i.e., amount

of noise), the type of waveforms used to transmit information over the channel,

the transmitter power, the timing jitter, and the method of demodulation and de#

coding. In baseband transmission, the data and clock are combined on the trans#

mitter side and transmitted as digital waveforms.

2.3 Amplitude Noise 29

One commonly used baseband scheme is NRZ CDR encoding, which has been

discussed in Section 2.1. The receiver in the system samples the received bit

stream at an appropriate time point and decides whether the sampled value repre#

sents a binary one or zero. Careful timing extraction leads to a reduction in the

number of transmission errors. A matched filter is a linear system that signifi#

cantly alters the shape of both the signal and the noise in a way that increases the

SNR. Figure 2#13 shows the structure of a binary matched filter receiver [38],

[45]. We next introduce the “one or zero” decision principle and set the stage to

evaluate the BER performance of the binary matched filter receiver.

∫
T

dt
0

∫
T

dt
0

∑

)(1 ts

)(0 ts

Fig. 2�13. Binary matched filter receiver

The receiver consists of two filters, one matching to S0 (t) and the other match#

ing to S1 (t). Each filter consists of a multiplier and an integrator. The receiver

compares the output of the two filters. The output of each integrator is a number

composed of a deterministic part (due to the signal) and a random part (due to the

additive noise). The additive noise is assumed to be zero#mean Gaussian and its

frequency spectrum is flat. Suppose the input signal to the receiver is

),()(tntsi + where i is either zero (binary 0 is transmitted) or unity (binary 1 is

transmitted). The comparator input is

∫ ∫ −+−=
s sT T

i dttststndttststsy
0 0

0101)]()()[()]()()[(

The value of y consists of two integrals. The average of the second integral is

zero since the noise is zero mean. Therefore, due to the non#biased noise, the

mean value of y is given by

∫ −=
bT

iy dttststsm
0

01)]()()[(

and the variance of y is given by

 }]{[22

yy myE −=σ

30 2 Background

 ∫ −=
bT

dttststnE
0

2

01 }])]()()[({[

 = })]()([)]()()[()({ 010 0 01 dtdvvsvststsvntnE
b bT T

−−∫ ∫

Because the noise is assumed to be white, with power spectral density

2)(on 1fG = ,

the autocorrelation of the noise is the inverse Fourier transform of the power spec#

trum, or

.2)()(t1tR on δ=

According to this identity and the relationship between the expectation and auto#

correlation

)()}()({ vtRvntnE n −= ,

we have

∫ ∫ −−−=
b bT T

o

y dtdvvsvststsvt
1

0
0101

0

2 })]()()][()()[(
2

{ δσ

 ∫ −=
bT

dttsts
1

0

2

01

0)]()([
2

According to the mean and variance of y, we can get the probability density of

y. As shown in Figure 2#14, the probability density fits into one of the two PDFs

labeled with)(0 yp ## 0 being transmitted, and)(1 yp ## 1 being transmitted. The

two functions have the same variances but different mean values, 0m and 1m re#

spectively.

Fig. 2�14. Probability densities of y

2.3 Amplitude Noise 31

The comparator threshold is chosen as the two#PDF cross point labeled as
0y .

If y is greater than
0y , we assume that)(1 ts is being sent; otherwise,)(0 ts is be#

ing sent. Because of the symmetry, the threshold
0y is the midpoint between the

mean values of the two PDFs:

2

01

0

mm
y

+
=

 ∫ −+=
b

T

dttstststs
0

0101)]()()][()([
2

1

 ∫ −=
bT

dttsts
0

2

0

2

1)]()([
2

1

Because the integral of the square of the signal is the signal energy over the bit

period, the threshold becomes

2

01

0

EE
y

−
=

where 1E and
0E are denoted as the energy for the two signals)(1 ts and)(0 ts ,

respectively.

According to the two PDFs shown in Figure 2#14, we can calculate the error

probability of the receiver. The probability of mistaking a transmitted 1 for a 0 is

the integral of)(1 yp between [#∞ , 0y], and the probability of mistaking a

transmitted 0 for a 1 is the integral of)(0 yp between [0y ,∞]. Hence, the error

probability is given by the areas under the tails of the PDFs. Assuming that the

two signals,)(0 ts and)(1 ts , have equal energy, the probability of an error is

 dy
my

Pe]
2

)(
exp[

2

1

0 2

2

0∫
∞ −

=
σσπ

 =)
)1(

(
o1

E
Q

ρ−
 (2#10)

where Q() is the Q factor (discussed in Chapter 2.2.2), E is the average energy of

the two signals, ρ is the correlation coefficient of the two signals, and 01 is the

noise power per Hz. E, 01 and ρ are defined as

32 2 Background

2

10 EE
E

+
=

m

o
f

1
2σ

= (mf is the bandwidth)

E

dttsts
bT

∫
= 0

10)()(
ρ

As can be seen from Equation (2#10), the BER is determined by three factors: the

average energy per bit E, the correlation of the two signals ρ , and the noise power

per Hertz 01 .

To understand the relationship between BER and ,o1E we consider three

cases where the correlation coefficient ρ is different.

The first case assumes that)(0 ts =)(1 ts . Then the correlation coefficient ρ

equals to 1. According to Equation (2#10), the BER is

2
1)0(== QPe

This result can be easily explained. Since the same signal is used to transmit both

0 and 1, there is actually no information provided and the receiver can only ran#

domly guess the received information.

The second case assumes that)(0 ts = #)(1 ts . In this case, the correlation co#

efficient ρ equals to #1, and the BER is

)
2

(
o

e
1

E
QP =

The third case assumes that)(0 ts = 0 and)(1 ts =1. Because only a single

power supply is needed, most digital communication systems, including HSSIs,

use this format. In this case, the correlation is ρ = 0, and the BER becomes

)(
o

e
1

E
QP =

or

)(S1RQBER = (2#11)

2.3 Amplitude Noise 33

Figure 2#15 plots the relationship between the BER and the SNR for the above

three values of correlation: #1, 0 and 1.

Fig. 2�15. BER vs. SNR for baseband transmission

If a Gaussian noise at the input of the receiver is the dominant cause of bit errors,

according to Equation (2#11) we can get higher BER by reducing the SNR. In

simulation or real testing, the SNR can be reduced to a known quantity by adding

a controllable amount of noise to the test signal. Therefore, we need a high#

quality noise generator in order to control the SNR to be able to perform high#

quality testing procedures.

2.3.2 Simulation and Emulation

Usually, the BER performance of a communication system is first evaluated by

software simulation in the early development stage. Simulation tools such as

MATLAB and Simulink [46] are therefore used for pre#silicon evaluation. In

software simulations, each component of a communication system, including the

communication channel, is represented by a software model that exhibits the char#

acteristics of the represented component. In software#based BER testing scheme, a

communication channel is built using a software channel model. The BER per#

formance of the communication system can be easily evaluated by running the

simulations under different conditions of SNR.

Although software simulations are easy to set up, they are very time consuming

for BER evaluation. The execution is typically done using workstation CPU proc#

34 2 Background

essors or using acceleration methods. The execution speed depends on the level of

abstraction of the simulation models. Due to the vast amounts of data and run#time

overhead, simulations generally are only suitable for the evaluation of a system

with low BER performance (such as BER >
610−

). For example,
910 calculation

iterations are needed to get an accurate (±3.3%) estimation of a BER

around
610−

[47]; a simulation of BER=
810−

 with 10 errors takes days on a per#

sonal computer equipped with a 1 GHz Pentium 4 processor. In contrast, accept#

able BER in commercial communication systems (e.g. data transmission) go be#

low 10 errors out of
910 transmitted bits in many cases. Moreover, many design

variables, such as sampling frequency, digital format, etc., have to be optimized

while satisfying the best trade#off between performances and complexity, which

would further lengthen the simulation process.

In order to speed up the BER evaluation process, performing direct hardware

simulation, i.e., emulation is proposed. As an alternative to simulation, emulation

utilizes FPGAs to re#target all or part of a design. Many software tools and dedi#

cated hardware [48], [49] have been developed with the aim of automating this re#

targeting process. In emulation, performance evaluation takes place in hardware,

rather than in the virtual environment of a simulator. A hardware#based solution is

commonly 100,000 to 1 million times faster than the best simulation software at

the same abstraction level [50].

Emulation also makes it possible to run a design at a real time system. This fea#

ture is especially important for applications such as the video/audio, where the fi#

nal output needs to be observed in real time due to the subjective nature of the re#

ceiver (e.g. the human eye/ear). If such systems run in real time, the performance

of the system can be evaluated on the fly. Otherwise, large test vectors need to be

captured and replay mechanisms have to be created, which is much more time#

consuming and the evaluation result is less reliable.

Overall, emulation can greatly reduce the evaluation time. Additionally, its real

time test capacity can cover a much larger set of test conditions than simulation

and hence emulation can enhance the evaluation quality. For these reasons, emula#

tion has been widely used for performance evaluation [51], [52], [53], [54].

2.3.3 AWG& Emulation

As discussed in Chapter 2.3.1, the BER performance of a communication system

is closely related to the SNR. There exist instruments for BER testing [55], [56],

but few integrate an AWGN emulator. Therefore, such testers are difficult to set

up for BER testing under the presence of noise. An AWGN generator is needed in

order to perform BER performance evaluation under noise conditions.

AWGN generation usually utilizes a variety of statistical techniques. The im#

plementations of AWGN generators are almost always based on transformations

or operations performed on uniform random variables [57], [58], [59]. There are a

few publications on generating AWGN in digital hardware. The most relevant

2.3 Amplitude Noise 35

publications in this area are [47], [60], [61], [62] and [63], which implement

AWGN generators in FPGAs.

In this book, we propose a novel scheme to implement AWGN generators in

hardware. We also explore the advantages and applications of our method in BER

testing. More details are presented in Chapter 6.

3 Accelerating Receiver Jitter Tolerance Testing

on ATE

Abstract This chapter details the approaches that help to accelerate the receiver

jitter tolerance testing thousandfold. According to the receiver characteristics and

the test setup, we first propose a jitter tolerance extrapolation algorithm. Based on

this algorithm, we then propose acceleration schemes for production test, as well

as for characterization and silicon debugging. In this chapter, we first review the

operation of a receiver in high�speed serial interfaces, and especially the clock

data recovery block, under the influence of jitter, both in� and out�of�band. Then,

we show how a jitter tolerance testing is conducted, including a detailed descrip�

tion of the jitter test signal generation. The key part is presented in a jitter ex�

trapolation technique that will allow us to speed up the tests by inferring about the

low BER performance from the actual tests undertaken at higher BER levels, in a

fraction of time it would take otherwise.

Among all the receiver parameters, jitter tolerance is the most challenging to test,

validate and debug. Once the jitter tolerance testing is implemented, other tests are

either just by#products of the jitter tolerance testing or very straightforward to im#

plement. Jitter tolerance is also the most important parameter in the receiver be#

cause of its direct link to the BER performance of the device. This chapter concen#

trates on accelerating the receiver jitter tolerance testing on ATE. The approaches

developed in this chapter are design#independent, and they apply to HSSIs of any

type. Non#ATE based testing techniques, such as design for test and loopback#

based testing, will be discussed later in Chapter 5.

Jitter tolerance testing for HSSIs requires validating BER performance against

the specifications prescribed by various standards at the 10
#12

 BER or lower. This

low error rate requirement makes such compliance tests extremely time#

consuming. Such a validation normally takes tens of minutes to a few hours at

multiple Gbps data rates. As in the ATE world (i.e., in manufacturing test) the test

times are measured in milliseconds, it is obviously impractical to adopt this test di#

rectly on an ATE.

In this chapter, we demonstrate a technique to perform the jitter tolerance test

>1000 times faster. The technique involves extrapolation from the higher BER re#

gion down to 10
#12

 BER level for the compliance test. We propose a new model

suitable to reason about this extrapolation process. Based on this technique, we

then present methodologies to accelerate jitter tolerance characterization and pro#

duction test.

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_3, © Springer Science+Business Media B.V. 2011

38 3 Accelerating Receiver Jitter Tolerance Testing on ATE

3.1 Introduction

3.1.1 Receiver Structure and Characteristics

As discussed in Chapter 2.1, the receiver in the HSSI recovers the transmitted par#

allel data from the incoming serial stream. Figure 3#1 shows the typical structure

of a receiver. The equalizer and the CDR are the two most important blocks that

determine the BER performance of the receiver.

Fig. 3�1. The Typical Structure of a Receiver

The equalizer compensates for the low#pass nature of transmission media,

which may introduce ISI at high data rates. According to the cost goal for given

applications, different equalization techniques have been proposed. An equalizer

can be implemented in either the digital or analog domain, in a linear or non#linear

manner, with feed#forward or feedback topologies. Each technique has its advan#

tages and disadvantages. At high data rates, several techniques may be combined

together to achieve the best possible performance.

A linear equalizer is relatively simple to implement. However, it is susceptible

to noise because it also amplifies the noise while boosting the signal. A linear

equalizer hence only addresses ISI but not the crosstalk influence. A non#linear

equalizer can in principle amplify the signal but reject the noise. A Feed#Forward

Equalizer (FFE) cancels the pre#cursor ISI, where the current symbol is affected

by the preceding symbols. A Decision Feedback Equalizer (DFE) cancels the post#

cursor ISI, where the current symbol is affected by the post going symbols. An

FFE and a DFE are sometimes used together to achieve a design goal. In [143], a

serial interface is implemented with a 4#tap FFE, and used in conjunction with a

DFE to achieve 6.25/12.5Gbps data rates.

The CDR block is the most critical part of the receiver. It recovers the clock

from the received serial data, and then re#times the data using that recovered

clock. Figure 3#2 shows a more detailed block diagram of the CDR. The Edge De#

tector generates all the data edge transitions (both low#to#high and high#to#low

3.1 Introduction 39

transitions). Therefore, the output of the edge detector has the frequency compo#

nent of the data rate. The edge detector output is then fed into a PLL to recover a

clock that is locked to the input serial data rate. The serial data is then re#timed by

the recovered clock.

The overall CDR characteristics are mainly determined by the PLL inside the

CDR. The structure of a typical linear PLL is outlined in Figure 3#2, within the

dash#and#dotted block.

The input signal to the PLL comes from the Edge Detector, which recovers the

clock#like waveform from the signal degraded due to a multitude of effects at

higher rates. The Phase Frequency Detector (PFD) compares the frequency and

phase difference between the edge detector output and the recovered clock signal,

and produces narrow control pulses with widths proportional to the phase error.

The control pulses are sent to the Loop Filter (LF) to generate a control voltage re#

sponsible to adjusting the frequency and phase of the VCO output. The final result

is that there is a control system that adjust the VCO to track the input clock rate –

it obviously has to be designed to perform such function in a stable and predict#

able way.

�%&

'(�)(*�+

φ
in
!,"

φ
noise

!,"

φ
out
!,"

-��.

/�����

��
�

*�������

����0

123�

��
��
4�

� 5
��
���2���
�

���

���4	���2���4��

Fig. 3�2. Block diagram of the CDR with a typical linear PLL

To illustrate the characteristics of the PLL, we use φin(f) to denote the PLL in#

put phase of the signal and φout(f) to denote the PLL output phase in Figure 3#2. In

the PLL model, φnoise(f) represents all of the random VCO phase noise sources,

such as the thermal noise and the simultaneous switching noise. We refer the read#

ers to references such as [68] for more details on the noise sources affecting the

PLL operation.

Figure 3#3 shows the frequency behavior of the PLL [69]. The function φout(f)/

φin(f) is the input jitter transfer function, showing a low#pass characteristic. There#

fore, the PLL tracks the jitter in the input signal with jitter frequencies below the

PLL bandwidth fPLL (in#band jitter). The function φout(f)/ φnoise(f) is the VCO jitter

transfer function, showing a high#pass characteristic. The PLL will pass through

the spectral content of the phase noise that is above the PLL bandwidth (out#of#

band jitter).

40 3 Accelerating Receiver Jitter Tolerance Testing on ATE

Fig. 3�3. Phase transfer characteristics of the PLL

From the application point of view, the jitter that the receiver sees is observed

relative to its recovered clock. Therefore, the output jitter is the timing difference

between the recovered clock and the data. Because the PLL has a low#pass trans#

fer function set by the fPLL frequency, the jitter seen by the receiver will have a

high#pass transfer characteristic as shown in Figure 3#4, i.e., opposite relative to

the input jitter transfer function.

As a rule of thumb often referred to in industry, for the data rate Fd, a typical

PLL has a low#pass loop filter with the #3dB frequency at Fd/1666, where Fd is the

data rate [70]. The jitter transfer function implies that a receiver can tolerate more

of the low frequency jitter than the high frequency jitter. Therefore, transmitter jit#

ter and receiver jitter tolerance specifications are defined by jitter frequency

bands. The jitter tolerance function is then the mirror image of the jitter transfer

function [71], i.e., more jitter can be tolerated when it is known that it will not be

transferred further.

Fig. 3�4. Jitter transfer function of the receiver

Because of this frequency dependence of jitter tolerance, it is important to sepa#

rate the low frequency and high frequency components of the jitter as usually only

3.1 Introduction 41

the high frequency jitter can degrade the BER performance. Sunter et al. propose a

technique to separate the high frequency jitter from the low frequency jitter either

on#chip or off#chip [44], [72]. The technique uses an undersampling reference

clock whose frequency is slightly offset from the primary reference clock. The ef#

fective sampling resolution is equal to the difference between the two clock peri#

ods. The undersampling technique separates the high frequency jitter from the low

frequency jitter based on the unstable regions in aliased samples [44].

Bang�Bang Phase Detector

The above discussion concentrates on the linear PLL. In recent years, the Bang#

bang Phase Detector (BBPD) PLL has been gaining popularity in HSSI designs as

it is amenabl to HSSI applications. The main difference between a linear and a

BBPD CDR is that the BBPD only sends the phase error polarity, early/late, to

control the VCO frequency down/up while a linear phase frequency detector out#

puts a magnitude proportional to the phase error. Compared to the linear PLL, the

BBPD PLL has a few unique advantages. First, it does not need to generate nar#

row pulses and typically can avoid the use of charge pumps [145]. It hence can

operate at the highest speed at which a process can make a working flip#flop [73].

In addition, the VCO is undisturbed in the absence of data transitions; therefore it

suppresses pattern dependent jitter.

Most modern BBPD PLLs are implemented with some variations of Alexan#

der’s phase detector [146]. Two matched flip#flops are usually used: one is driven

on the rising edge of the clock while the other is driven on the failing edge of the

same clock. When the PLL is locked to data, the two flip#flops sample the incom#

ing data with both the rising edge and falling edge of the VCO clock. Based on

three consecutive samples, the phase detector can determine whether the VCO

runs faster or slower. Figure 3#5 illustrates the sampling mechanism: after the PLL

is locked, the rising edge of the VCO samples the centre of the data bit and pro#

duces a retimed data bit (A), and the next VCO rising edge produces a retimed

data bit (B). The VCO falling edge between the two rising edges samples the tran#

sition (T) between the data bits A and B. Table 3#1 shows the early/late/hold

judgments from the three consecutive samples [73]. The VCO frequency is ad#

justed according to the early/late judgment.

Fig. 3�5. BBPD PLL sampling

42 3 Accelerating Receiver Jitter Tolerance Testing on ATE

Table 3�1. VCO Judgments in BBPD PLL

State A T B Judgment

0 0 0 0 Hold

1 0 0 1 Early

2 0 1 0 Hold

3 0 1 1 Late

4 1 0 0 Late

5 1 0 1 Hold

6 1 1 0 Early

7 1 1 1 Hold

Although the sampling mechanism and early/late judgment seem to be simple,

it is challenging to design well a BBPD and analyze it accurately due to its nonlin#

ear nature.

There are few modeling approaches that have been proposed in literature to fa#

cilitate the design and analysis of the BBPD [73], [145], [147]. Figure 3#6 shows

the linearized first#order model of a BBPD PLL presented in [73] that we use here

as a reference model.

∑ β
s

1
∑ �

	s

1

�

vθ

fff nomin δ+=

)(tφ

dθ eθ

}1{±∈ε

6

bbnomvco fff *ε+=

Fig. 3�6. First order model of a BBPD

In this model, θe(tn) is defined as the difference between the data phase)(nd tθ

and the VCO phase θv(tn) at the nth sampling time tn. The data phase)(nd tθ can

be represented by

)(2)0()(nndnd tftt φπδθθ ++=

where δf is the frequency difference between the incoming data signal and the

VCO centre frequency, and Φ(t) is the phase jitter with a zero mean.

The phase detector quantizes the loop phase error to a ternary value at each

sampling time. The error can be expressed as:

3.1 Introduction 43

)]([nen tsign θε =

The error signal
nε is #1 when the phase is early, 1 when the phase is late or 0

when it is not possible to determine the phase error due to no data transitions. The

error signal drives the VCO to produce a change in the frequency of

Vbb kf *β=

where β is an attenuation factor. Therefore, from time tn to tn+1, the VCO runs at

one of the two frequencies determined by bbnnom ff ε+ (“hold state discussed

later), where fnom is the ideal clock frequency. In a typical CDR, fbb is on the order

of 0.1% of fnom. The VCO frequency changes in each cycle. We can approximate

the update period by

nomupdate ft /1=

and the up#or#down phase change (also called bang#bang phase step) by

)/(2 nombbbb ffπθ =

The loop will remain phase locked as long as the input data signal frequency is

in the range of the VCO frequency. Assuming the phase jitter Φ(t) is small, the in#

put signal frequency error δf needs to be smaller than the fbb frequency, which

gives the lock range:

bbbb fff <<− δ

Based on the fbb frequency, we can also calculate the maximum allowed phase

jitter. For phase jitter

)2sin()(modtfAt πφ = ,

where fmod is the phase modulation frequency, the instant jitter#induced frequency

error is the derivative of the data phase derivation:

)2cos(2
)]([

modmod tfAf
dt

td
f jitter ππ

φ
==

Assuming δf =0, in order to keep the loop locked, the phase modulation ampli#

tude A at frequency fmod should satisfy

mod2

||

f

f
A bb

π
<

Otherwise, the loop goes into a jitter#induced slew rate limiting. Even though

the average input frequency is in the loop lock range, the added jitter causes the

44 3 Accelerating Receiver Jitter Tolerance Testing on ATE

instantaneous input frequency deviation to exceed bbf± , resulting in a transient

phase error.

For the first order bang#bang loop, the quantities such as jitter generation, lock

range and jitter tolerance are all controlled by one parameter, fbb, which gives us

little design freedom. This limitation can be solved by adding another loop to dy#

namically adjust the VCO center frequency fnom to be equal to the incoming data

rate. The second loop can be implemented by an integrator.

We can consider the PLL being composed of two no#interacting branches – an

integral branch and a bang#bang branch (or proportional branch). To keep the

quality of the first order loop, it is required to keep the phase change due to the

proportional branch dominating over the phase change from the integral branch.

The stability factor ξ of the PLL is defined as the ratio of two phase changes [73]:

The dual branch BBPD structure provides two degrees of freedom: the loop

frequency step fbb and the stability factor ξ. In this way, it is possible to make the

lock range independent of jitter tolerance and jitter generation. However, more

loops also make the PLL design more complicated. To further improve the per#

formance, there is also a trend to implement hybrid phase detectors. The hybrid

approach presented in [144] exhibits the intrinsic advantages of low timing jitter in

a linear PLL in lock state and the fast locking time in a BBPD PLL.

Overall, there are many factors to consider when implementing a CDR and

sometimes we have to make tradeoffs [73], [74], [144] [145]. Nevertheless, as

there is a great pressure to characterize and test well the CDR whether it is imple#

mented with a linear PLL or a BBPD PLL, it is desirable to devise testing schemes

independent of the design style applied.

3.1.2 Jitter Tolerance Testing Overview

As discussed in Chapter 3.1.1, the CDR is the key differentiator for a serial inter#

face. The overall performance of an HSSI depends on many design choices of the

CDR. Due to the economic importance of delivering a correct, liability#free de#

sign, we have to perform very thorough characterization testing. This includes the

analysis across PVT corners. The traditional jitter tolerance test has always been

very challenging. There are mainly two outstanding issues: the long test time, and

the complexity to generate a controlled amount of jitter with a proper mix of dif#

ferent types of jitter [34].

The jitter tolerance test is notorious for its long test time. Since most standards

for serial links define jitter tolerance performance down to 10#12 BER, we need to

updateegral

lproportina

t

βτ
θ

θ
ξ

2

int

=
�

�
=

3.1 Introduction 45

run 1013 bits to check the BER level. Even at 1.5Gbps data rate, it takes 111 min#

utes (~2 hours) for the device to run so many bits. That is the fundamental limit

for running this test fast. With some applications on the trend demanding 10#14

BER, the direct measurement is even not practical.

The test time issue becomes much worse when we take into considerations that

many design parameters and device settings can affect the jitter tolerance per#

formance. One example is the equalizer settings, which can affect the shape of the

waveform sent to the input of the CDR. Another example is the bandwidth of the

PLL in the CDR. When the jitter frequency in the input data signal is below the

PLL bandwidth, the recovered clock can track the input jitter [69], [75]. However,

when the input jitter frequency is above the PLL bandwidth, the jitter gets attenu#

ated more than the lower frequency jitter in the recovered clock. As a result, the

jitter tolerance performance is better at lower frequency than that at higher fre#

quency, and the jitter tolerance specifications are defined accordingly to reflect

that reality.

'
7
�8
4
��
��
�
�
�

Fig. 3�7. Jitter tolerance specifications

For example, Figure 3#7 shows the jitter tolerance dependence on the jitter fre#

quency for the Serial#attached SCSI (SAS) standard. Here, the defining character#

istics are as follows: f1 is 120KHz, f2 is 1800KHz, A1 is 0.1UI and A2 is 1.5UI [76].

Therefore, the jitter tolerance performance needs to be characterized at multiple

frequencies, which can make the jitter tolerance testing extremely time#consuming

in practice.

The second challenge for jitter tolerance test is to generate different kinds of jit#

ter and mix them together. For SATA applications, the jitter tolerance test requires

a proper amount of deterministic jitter, random jitter and periodical jitter. This is

becoming a norm for most of the point#to#point serial links using backplanes or

cables [23], [24], [77], [78]. The reason is that the given transmission media gen#

erates these specific jitter types.

Jitter is traditionally injected using a few instruments in lab. In [34], a FM

source is used to inject PJ; a random noise generator is used to inject RJ; a long

cable or a long backplane PCB trace is used to inject DDJ. These kinds of setup

can be used to inject large amounts of jitter to test receiver jitter tolerance. How#

46 3 Accelerating Receiver Jitter Tolerance Testing on ATE

ever, besides the complexity, it is difficult to mix the different jitter components

together and characterize the test signals accurately.

Laquai and Cai propose a jitter tolerance test methodology in [40] based on a

DDJ injection filter. This approach uses a passive filter that is carefully tuned to

condition the data eye seen by the receiver. This filter can add jitter to stress the

receiver. Major advantages of the jitter injection filter are that it takes little space

on a loadboard and that its cost is very low. However, this methodology does not

offer the flexibility of varying the amount of injected jitter. In addition, the

amount of the injected jitter is very sensitive to the data rate. For example, for the

same filter and the same transceiver, the injected jitter changes from 0.25UI at

2.125Gbps to 0.42UI at 2.67Gbps [40]. This limits the applications of that ap#

proach, especially that it has become quite common for current HSSIs to accom#

modate multiple protocols and hence require the test equipment to have the ability

to generate a controllable amount of jitter.

Hafed et al. propose a high density HSSI tester that can significantly reduce the

HSSI validation time by relying on parallelism and efficient measurement tech#

niques [41]. In this tester, the jitter is injected by modulating the PLL input signal

of the transmit port module. The advantage of this approach is that the high#speed

signal path is completely untouched. Hence the approach would not produce un#

wanted jitter in the high#speed signal path when the injected jitter is programmed

to zero. However, the injected jitter frequency is limited to the tracking bandwidth

of the PLL. Chapter 3.5.1 will demonstrate that any jitter with frequencies above

the PLL bandwidth will be drastically attenuated.

Keezer et al. present another modular approach in [42] for testing multiple

Gbps HSSIs. Their approach eliminates the PLL bandwidth limitation by modulat#

ing the high#speed clock (PLL output signal) that has the same rate as the Gigabit

serial data signal. The jitter is injected to the clock signal through dynamically

shifting its phase by an ATE device. Advantest has also developed a jitter injec#

tion module that can mix any modulated signal as a jitter signal with a carrier sig#

nal [43].

Sunter et al. propose an alternative approach in [44] for the jitter tolerance test#

ing. Instead of injecting jitter to the test signal, their approach uses on#chip under#

sampling to measure parameters that affect the jitter tolerance, such as high#

frequency jitter in the received signal and the recovered clock. This approach re#

quires that the CDR be selected to lock either to the received serial data or to an

offset reference clock, and that the parallel data ports be fully accessible. A mod#

ule called UnLimited Time Resolution Analysis (ULTRA) is used to extract all the

measurements. The ULTRA module can be placed either on the loadboard or on#

chip. However, adding an extra module onto a loadboard or a device requires extra

space and cost that in many cases cannot be tolerated. It also complicates the de#

sign and test program development.

On ATE, supplying the proper mix and amount of jitter is always more chal#

lenging. Even though there are existing jitter injection techniques that are targeting

the test of HSSIs [41], [42], [44], they usually need extra add#on modules on the

testing loadboard or inside the device as a Design#for#Test (DFT) feature. To ac#

3.1 Introduction 47

tually implement them in an ATE environment needs a lot of considerations, such

as the loadboard design complexity and the impact to the overall design cycle

time. In this chapter, we present a jitter injection technique based on an Arbitrary

Waveform Generator (AWG) on ATE, which does not need any extra module or

add#on circuits. This approach can qualify the jitter tolerance performance of

HSSIs with data rates up to 3Gbps. Another jitter injection technique based on the

state#of#the#art phase delay product will be presented in Chapter 5, which can be

used to test HSSIs with data rates up to 12.5Gbps.

3.1.3 Proposed &ew Method

To address the two outstanding issues in jitter tolerance testing, we aim to develop

schemes that can perform jitter tolerance testing on ATE in a much faster manner.

ATE is well known for its high throughput in production. ATE#based solutions are

also more widely being used in validation and characterization, especially for per#

formance analysis across process, voltage and temperature corners on a large sam#

ple size.

In this chapter, we propose a new approach that can perform the jitter tolerance

test >1000 times faster. The approach is straightforward: we will be varying the

amount of input jitter to get the receiver into several higher BER levels, from

which we will then extrapolate down to the 10#12 BER specification for jitter toler#

ance qualification. The conceptual illustration is shown in Figure 3#8. We will

present the concept, assumptions, extrapolation models and experimental data in

the rest of this chapter

Fig. 3�8. Conceptual illustration of the jitter tolerance extrapolation

48 3 Accelerating Receiver Jitter Tolerance Testing on ATE

Jitter tolerance extrapolation is a relatively new subject in HSSI testing and

validation. We start by transplanting the main ideas from transmitter jitter meas#

urements. The histogram tail#fitting, real#time sampling and Time Interval Analy#

sis (TIA) approaches require the knowledge of the actual probability density func#

tion of the jitter. For the receiver CDR, that information is not as accessible as in

the transmitter. Therefore, we cannot use the jitter PDF for receiver testing. Only

the BER scan (also known as bathtub curve) uses a model based on certain as#

sumptions, which we may use for receiver jitter tolerance testing.

In the BER#scan based transmitter jitter measurement, a bathtub curve is usu#

ally used. The bathtub curve is generated through sweeping the sampling position

on the timing axis and then recording BER at each sampling position. Figure 3#9

shows an example of the bathtub curve. It is actually a plot of data eye openings at

various BER thresholds. The finite slope of the bathtub curve is caused by RJ.

Obviously, at a lower BER, the eye opening becomes narrower. Figure 3#9 also

shows a simplified formula to calculate DJ, RJ and TJ with only two data points

recommended by the XAUI standard [34].

Fig. 3�9. Transmitter BER scan

In the bathtub based transmitter jitter measurement, all that we can observe is

the combined TJ profile, which is a convolution of the DJ and RJ. We need to

work backwards to derive its DJ and RJ components. This separation is nearly im#

possible if we do not make some assumptions and use a simple enough model to

facilitate the analysis.

The most popular model used is the so called “double delta” model – assuming

that the only DJ is DCD, whose PDF is only comprised of a pair of delta functions

[80]. In this case, the complicated convolution is reduced to a standard comple#

3.1 Introduction 49

mentary error function. The double delta assumption now serves widely as the

model for modern bathtub curve fitting.

Theoretically, the double delta model is not the most flexible one for arbitrary

jitter profiles. Studies on the effect of the DJ profile when deviating from the dou#

ble delta assumption show that there are limitations of the double delta model

[80]. However, this seemingly limited model works reasonably well when used

appropriately (i.e. with the proper selection of the curve fitting range). This par#

ticular model is favored by many engineers because it directly links the jitter to the

system#level BER performance. Further, the eye openings at lower BER levels can

be extrapolated from the openings at high BER levels. The extrapolation results

can be verified by performing direct measurements at the lower BER levels.

Therefore, we show here how to borrow ideas from the transmitter BER scan for

our jitter tolerance extrapolation.

Similar to the transmitter BER scan, we perform a receiver BER scan. We col#

lect data points at higher BER levels, which takes much less time to do. Then we

extrapolate performance to the lower BER range. The extrapolation accuracy can

be easily verified by performing the test at the lower BER range, and comparing it

to the extrapolation result. If the error is small, then the new method is considered

acceptable.

However, there are two significant differences between the receiver BER scan

and the transmitter BER scan. First, the receiver BER scan is no longer going to

be a bathtub curve fit. We usually cannot control the data sampling position in a

receiver because the CDR circuitry is designed to sample the data in the middle of

each bit.

Therefore, the receiver always works at the crossing point of the bathtub curve.

The BER of a receiver is associated with the jitter in its input signal. As shown in

Figure 3#10, with the increase of the jitter in the input signal, the bathtub curve

moves up, indicating a higher BER. What we get is a series of crossed curves, as

shown in Figure 3#8. Therefore, a new extrapolation algorithm needs to be devel#

oped for the jitter tolerance test.

Fig. 3�10. Receiver BER scan

Another significant difference is that in the receiver BER scan we have the con#

trol over the jitter PDF of the test signal, while on the other hand, we do not have

50 3 Accelerating Receiver Jitter Tolerance Testing on ATE

that level of control over the jitter PDF in the transmitter. Normally, the HSSI

standards define separate DJ, PJ and RJ specifications, but they do not define the

shape of the jitter probability distribution. In the jitter tolerance test, it is important

to note that we have some flexibility to shape the jitter PDF. This is a critical

property because different types of jitter profiles can significantly affect the curve#

fitting accuracy when we employ the complementary error function to model the

curve [80].

Considering that in the transmitter BER scan, the jitter profile with a double

delta PDF gives a better curve fit, we choose to inject single#tone sine wave jitter

to the receiver test signal, which would generate a jitter profile similar to a double

delta distribution.

As shown in Figure 3#11, there is also a strong tendency to favor the two edges

in the sine wave PDF curve. Therefore, it would be a closer fit to the complemen#

tary error function. Another reason to inject the sine wave jitter is that only sinu#

soidal jitter can provide the worst#case jitter to HSSI devices as elaborated in

[81].

Sinusoidal jitter is commonly used to perform jitter tolerance testing [82], [83].

Even though in the receiver input signal there are other DJ components (e.g. ISI)

that may change the jitter profile a bit, we are not concerned about them. In the

transmitter jitter bathtub curve fitting, we can still achieve good accuracy with

many kinds of jitter distribution.

(a) Double delta PDF (b) Sine wave PDF

Fig. 3�11. Jitter PDFs for curve fitting

In this chapter, we propose to inject the sinusoidal PJ using an AWG available

on ATE. We can generate controllable amounts of PJ with only one piece of

equipment – AWG. In the receiver BER scan for jitter tolerance testing, the AWG

output is directly connected to the input of the receiver as shown in Figure 3#12.

By varying the amount of injected PJ, we can get different BER data points.

3.2 Jitter Test Signal Generation 51

Fig. 3�12. Test setup for jitter tolerance testing

The test setup of the proposed solution is very simple. There is no intermediate

add#on circuit, which means that we do not have to switch off any circuit for the

functional test and the input sensitivity test where clean signals (no jitter is in#

jected) are used. The AWG approach can also produce high frequency PJ, like the

more modern Voltage#Controlled Delay Line (VCDL) modulators. The high fre#

quency PJ is needed for testing CDR out#of#band jitter tolerance where the CDR

can no longer track the input PJ.

In the remainder of this chapter, we will present the details on how the test sig#

nal is generated, how the bit errors are detected, how we develop an algorithm for

jitter tolerance extrapolation and, finally, how we use the algorithm to accelerate

jitter tolerance qualifications.

3.2 Jitter Test Signal Generation

On ATE, there are mainly two types of instruments that can perform GHz receiver

testing: AWGs and binary digital pattern generators. Generally, binary digital pat#

tern generators such as Teradyne SPQ [84] and Agilent/Verigy NP3G [85], can

provide higher analog port count, suitable for multiple serial interface testing.

However, an AWG#based approach provides us more controllability to the signal

it generates, including jitter injection and multiple#level amplitude manipulation.

In addition, AWG#based solutions exhibit more capabilities in testing other

analog blocks: the same instrument can be used to provide test signals for unre#

lated blocks, such as an amplifier and ADC. This is especially attractive for SoCs,

which have a very limited number of HSSIs (typically 1 or 2), but have many

other analog blocks. AWG#based approaches can provide better overall cost effi#

ciency in this application. This chapter concentrates on the AWG#based approach.

Chapter 5.3 proposes a test solution suitable for multiple#port HSSIs, such as net#

working and switching devices.

52 3 Accelerating Receiver Jitter Tolerance Testing on ATE

To perform a jitter tolerance test, we need source signals with controllable jit#

ter. In our implementation, the source signals are generated by modulating the

ideal AWG binary signals with a user defined jitter profile. Generally speaking,

we can source any waveform with spectral contents limited to the Nyquist band.

The jitter injection approach does not require additional instruments as in some

other setups [78], [83].

Using the state#of#the#art AWG on ATE (6G samples/s and 2.0GHz analog

bandwidth), we have 2 samples per bit for 3 Gbps data. By manipulating the sam#

ple timing and amplitude, we can inject a controllable amount of jitter to the test

signals. Using the AWG6000, we can perform the receiver jitter tolerance testing

for data rates up to 3Gbps and the receiver function verification for data rates up

to 6Gbps.

The main principle of our jitter injection mechanism is to modulate jitter#free

data edges using a jitter signal. Oversampling, FFT and downsampling techniques

are further used to achieve high#quality test signals with a desired jitter resolution.

The generated signals are essential to characterize the jitter tolerance performance

along with other receiver parameters. The following section describes the details

of the jitter injection scheme.

3.2.1 Choosing Test Signal Parameters

In our implementation, AWG6000 is used and its sample rate is set to 6GHz. Each

data bit has two samples for 3Gbps signals and four samples for 1.5Gbps signals.

The AWG6000 can also be used to generate test signals with non#integer samples

per bit, such as for the 5.5Gbps application discussed in Chapter 3.2.3. The fol#

lowing jitter injection discussion is based on certain data rates for illustration pur#

poses; the principle is the same for other data rates, but minor changes are needed

based on specific requirements.

To generate test signals with controllable amount of jitter for jitter tolerance

testing, we need to properly choose or set the following parameters:

•� Test pattern

•� Length of the test signal

•� Jitter signal

•� Jitter injection resolution

As for the test pattern, it should be able to represent the bit patterns occurring

in real applications. Pseudo Random Bit Sequence (PRBS) patterns have been

widely accepted as a means to test different communication interfaces because

they have different run lengths and hence provide very good test coverage for pos#

sible data combinations.

3.2 Jitter Test Signal Generation 53

For instance, in SATA applications, the maximum run#length is 7. Therefore,

for this class of applications we choose the standard 128#PRBS pattern, which has

a maximum run#length of 7. Figure 3#13 shows the contents of the 128#PRBS pat#

tern. The 128#PRBS covers all run#lengths from 1 to 7. There are totally 63 transi#

tion edges in the test pattern. We inject jitter to the PRBS signal through modulat#

ing these transition edges. The injected jitter can have any arbitrary profile. In this

section, we demonstrate how different amounts of sinusoidal jitter are injected to

the data signal.

Fig. 3�13. The 128#PRBS sequence

Since the length of an AWG sequence is finite, the test signal (including data

and jitter) is generated by running the AWG pattern continuously. The injected

jitter signal needs to be coherent with the data pattern stored in the AWG. In [2],

we modulate one cycle of the 128#bit PRBS data pattern using a sinusoidal signal.

The generated test signal exhibits the exact amount of PJ as we expected accord#

ing to the calibration result using standalone lab equipment.

However, with the test signal, ATE reports better jitter tolerance performance

than that observed on bench equipment when we characterize some special de#

vices using the same 128#bit PRBS pattern. Further experiments demonstrate that

the difference is caused by different jitter injection mechanisms between the bench

and the ATE. On bench, the PJ signal and the un#modulated data signal are asyn#

chronous ## each edge of the data signal can be modulated up to 100% of the in#

jected PJ peak value. On ATE, the jitter and the un#modulated data signal are al#

ways synchronous: the jitter at each of the 63 edges of the 128#bit PRBS pattern is

54 3 Accelerating Receiver Jitter Tolerance Testing on ATE

a constant. Therefore, not every edge has a chance to be modulated with the peak

value of the injected PJ signal ## some edges even do not move.

We overcome this issue by increasing the length of the ATE test pattern. If the

movement of each edge of the test signal can reach or nearly reach the PJ peak

value, the bench test signal is emulated. For this reason, along with the ATE

memory source availability and FFT requirements, we increase the length of the

test pattern by repeating the 128#bit PRBS pattern 2n times, where n is an integer.

We then modulate the long test pattern using a sinusoidal jitter signal with an odd

number of cycles. This can greatly increase the randomness of the edge movement

for each edge of 128#bit PRBS pattern.

Our calculation shows that a good choice is to use a 1024#bit test pattern (con#

structed by repeating the 128#bit PRBS pattern eight times) and then to modulate

the test pattern using a sinusoid PJ signal with 39 cycles. In the generated test sig#

nal, each edge of the 128#bit PRBS can reach at least 92% of the injected PJ peak

value, which is very close to the bench test signal. Even though further increasing

the length of the test pattern can slightly further increase the randomness of the

edge modulation, choosing 1024 bits is a good tradeoff between the randomness

and the AWG memory usage (we need to store multiple test signals in the AWG

for jitter tolerance characterization and other tests).

When 1024#bit test signals are used in 3Gbps applications, the FFT frequency

resolution is given by

MHz
MHz

f resFFTawg 9296875.2
1024

3000
__ ==

We can inject any sinusoidal jitter signal that is a multiple of fawg_FFT_res. Lower

frequency jitter can be injected by increasing the length of the test pattern. In our

experiments, we investigate the jitter tolerance characteristics at different frequen#

cies while concentrating on the jitter frequency of 114.2578125MHz (= 39 x

2.9296875MHz) for most of our work. At this frequency, the generated test signal

exhibits very good randomness of edge modulation. This frequency is also a good

representative of the out#of#band frequency in SATA, whose range is from 6MHz

to 300MHz [22].

3.2.2 Periodic Jitter Injection

We inject jitter to the jitter#free data signal by modulating the ideal data edges ##

moving them forward when the jitter is positive or backwards when the jitter is

negative.

The process of jitter injection consists of the five steps outlined in the follow#

ing five subsections.

3.2 Jitter Test Signal Generation 55

3.2.2.1 Creating Jitter�Free Data Signal

The jitter resolution of the modulated data signal is directly determined by the

time resolution of the data edges. For instruments such as AWG6000, the maxi#

mum sampling rate is 6G samples/s. Each data bit can have two samples for

3Gbps signals and four samples for 1.5Gbps signals. If we directly manipulate the

edge transitions, the jitter resolution is only 0.25UI even with the 1.5Gbps signals

because each AWG sample represents 0.25UI. We cannot use this approach to

perform jitter tolerance testing because pico#second jitter resolution is required.

One solution is to oversample the jitter#free data signal to pico#second resolu#

tion. Considering the requirement of FFT that we will perform later, we need to

choose the oversampling rate to be a power of 2. For the 1.5Gbps signal, one UI is

667ps. We can choose an oversampling rate of 512 samples per bit, which trans#

lates into a jitter resolution of 1.3ps. Figure 3#14 shows one cycle waveform of the

128#bit PRBS jitter free data signal oversampled_data oversampled with 512

samples per bit.

Fig. 3�14. Oversampled jitter#free data signal

3.2.2.2 Creating a Digitized Jitter Signal

Now we have created the jitter#free data signal. Next, we need to modulate the

data edges in order to convert jitter amplitude information to timing information.

This is done by moving the edge of the data signal based on the jitter amplitude in#

formation. Therefore, we need to create a digitized PJ signal to modulate the ideal

data edges.

A sinusoidal jitter signal can be characterized by two parameters: the frequency

and the amplitude. The frequency can be represented by pj_bin * resFFTawgf __ ,

where pj_bin is the PJ frequency bin. The amplitude is the PJ peak value amp_UI,

which is the maximum edge displacement in the modulated data signal. Based on

the jitter parameters, the digitized jitter signal jitter[i] can be represented by

56 3 Accelerating Receiver Jitter Tolerance Testing on ATE

jitter[i] = amp_UI*sin(2*M_PI*i*pj_bin/1024 + M_PI/2)

where i is the sample index and ∈i [0, 1023], amp_UI is the jitter amplitude

measured in UI, pj_bin is the jitter frequency bin and M_PI is the constant

3.14159….

The jitter amplitude is measured in UI. Therefore the value of jitter[i] repre#

sents the data edge displacement in UI at data bit i. As the data signal is oversam#

pled with 512 samples per bit, the data edge timing resolution is UI/512. To con#

vert the jitter into data edge time displacement, we need to oversample the jitter[i]

with a resolution of UI/512, which gives

oversampled_jitter[i] = 512 * jitter[i]

where oversampled_jitter [i] represents the number of samples that the data edge

needs to be pushed back or forwards.

For the case of 1.5Gbps signal, one UI is 667ps and each data bit is oversam#

pled by factor of 512. If we set the jitter peak#to#peak value to 400ps, the jitter

amplitude amp_UI is 0.3UI, jitter[i] is between 0.3 and #0.3, and oversam�

pled_jitter[i] is between 153 and #153.

3.2.2.3 Modulating the Data Signal

Each bit of the oversampled data is then modulated by the oversampled jitter sig#

nal. Depending on the jitter amplitude and polarity at each data bit, the data transi#

tion edge is pushed forward or back by manipulating the oversampled_data sam#

ples. The following pseudocode demonstrates how the modulation algorithm is

executed:

for (i=0; i<l=1024; i++)

{

 if oversampled_jitter[i] > 0

 {oversampled_data[i*512]~oversampled_data[i*512+oversampled_jitter[i]]

 is replaced by oversampled_data[(i#1)*512] //push the edge later

 }

 else

 {oversampled_data[i*512#oversampled_jitter[i]]~oversampled_data[i*512]

 is replaced by oversampled_data[i*512] //pull the edge earlier

 }

}

3.2 Jitter Test Signal Generation 57

Figure 3#15 illustrates the first 32 bits of the data signal and the jitter signal.

The data signal has been oversampled by 512 and modulated by the jitter signal.

At the first transition edge (bit 7), the jitter is negative, so we pull the transition

edge earlier; at the second edge, the jitter is positive, so we push the transition

edge later; for the fourth edge, the jitter is 0, so the transition edge does not

change.

(a). Jitter signal oversampled_jitter: Vpp = 0.6 UI, resolution = UI/512

(b). Data signal: jitter#free data (broken line) and jittered#data (solid line)

Fig. 3�15. Jitter signal and modulated data signal

3.2.2.4 Generating Bandwidth Limited Signals

The above oversampled jittered data signal is an ideal signal that has zero transi#

tion time: it contains infinite frequency spectrum and does not suffer from any

bandwidth limitation. However, the actual AWG we use only has a bandwidth

around 2G, and its maximum sampling rate is 6G samples per second. In order to

retain the jitter and maximize the signal to noise ratio, we use two techniques: the

first one aims to smoothen the transition edges and second one limits the band#

width of the signal.

To smoothen the transition edges, we add a transition time. In this example, we

set the transition time from rail to rail to be 0.8UI (410 samples). At this step, the

transition is linear. Band#limited filtering in the following step will generate the

signal with “real” transitions. Figure 3#16 shows the data signal with linear transi#

tions.

58 3 Accelerating Receiver Jitter Tolerance Testing on ATE

Fig. 3�16. Adding edge transition time

To limit the modulated signal bandwidth, we need first to obtain the magnitude

frequency response and phase response of the data signal. This can be achieved by

performing FFT on the modulated oversampled data samples.

Figure 3#17 shows the frequency spectrum of the modulated data signal. Here,

only the first 160 bins of the total of 262144 bins spanning the frequency band are

displayed.

Fig. 3�17. Frequency spectrum of the oversampled data signal

In this case, we limit the bandwidth of the generated test signal to 3GHz be#

cause the AWG sampling rate is 6GHz. Therefore we filter out all frequency com#

ponents above the Nyquist frequency by setting these frequency components to

zero.

By performing an inverse FFT operation, we can get the time domain data.

Figure 3#18 shows the waveform of one cycle of the 128#prbs pattern after the in#

verse FFT operation.

3.2 Jitter Test Signal Generation 59

Fig. 3�18. Time domain data after the inverse FFT

3.2.2.5 Downsampling to Get AWG Samples

The data after the above manipulation is still oversampled with 512 samples per

bit. If we directly store the oversampled data in the AWG for 1.5Gbps application,

the AWG sampling rate needs to be as high as 768GHz. Because the AWG sam#

pling rate is limited to 6GHz, we need to decimate the waveform to get the desired

AWG samples.

For 1.5Gbps applications, we need to keep 4 samples out of 512 samples (one

data bit), which translates into a downsampling rate of 128. Figure 3#19 shows the

waveform of 128 bits of the final data signal that we generate, where each bit has

been represented by 4 samples. This data can be directly stored in the AWG mem#

ory.

Fig. 3�19. AWG waveform – data after under#sampling

With four samples per bit, the 1024#bit test signal takes 4k AWG sample

source memory. Because the AWG6000 has 32M sample source memory, we can

use one AWG to store multiple jittered test signals, which are needed when we

sweep the test signals to characterize the jitter tolerance performance. The same

60 3 Accelerating Receiver Jitter Tolerance Testing on ATE

AWG can still be used to store other waveforms to test other blocks in an SoC. In

addition, we can test multiple HSSIs in parallel if we have multiple AWGs.

3.2.3 Fractional Sampling

The test signal generation scheme discussed previously is based on integer sam#

pling – each data bit has an integer number of samples in the AWG6000, such as 2

samples per bit for 3Gbps signals and 4 samples per bit for 1.5Gbps signals when

the sampling rate is set at 6G samples per second. Normally there is only a limited

range of sampling frequencies that we can set for the AWG in order to optimize

the AWG performance. For example, for the AWG6000 waveform generator, the

sampling frequency can only be set to rates between 5.8GHz~6.2GHz or below

5GHz.

If the sampling rate cannot be set to a multiple of the data rate we need to in#

vestigate, fractional sampling has to be used # each data bit has a non#integer

number of samples. For example, if we need to investigate a 2.75Gbps application,

we need to use fractional sampling because the AWG sampling rate cannot be set

to 5.5G. This section presents a method to generate test signals with fractional

sampling. The following demonstrates how the test signals for the 2.75Gbps ap#

plication are generated using the 6G sampling rate.

When the AWG sampling rate fawg is set to 6G and the input data rate fin is

2.75Gbps, each data bit needs to be sampled by

11

24

75.2

0.6
==

in

AWG

f

f
 (3#10)

which shows that every 11 data bits need 24 AWG samples. Therefore, the length

of the data pattern needs to be a multiple of 11. For example, if we want to use a

160#bit test pattern, we need to repeat the 160#bit pattern 11 times, which means

we need to increase the test pattern to 1760 bits and the number of AWG samples

should be 3840 according to

1760

3840

160*11

160*24

11

24
===

in

AWG

f

f

To convert 1760 bits of data into 3840 AWG samples, we propose the follow#

ing procedure:

1)� Oversampling the data by a multiple of 24 (derived from Equation (3#

10)). We can choose an oversampling rate of 240. This oversampling

translates into a resolution around 1.5ps for the 2.75Gbps data signal

3.2 Jitter Test Signal Generation 61

2)� Performing an FFT on the 1760 bits data oversampled by 240 (the total

number of samples is 422400) to covert the time#domain data into fre#

quency domain data

3)� Modulating the data edge using a jitter signal if needed using the proce#

dure discussed in Chapter 3.2.2

4)� Filtering out all the frequency components above 3GHz by setting these

frequency bins to zero

5)� Performing an inverse FFT to convert the band#limited frequency domain

data into time#domain data

6)� Downsampling the time#domain data by 110 to get the 3840 AWG sam#

ples

If we run the AWG with the generated AWG samples continuously and set the

sampling frequency to 6G, the AWG would generate a 2.75Gbps data signal as we

need. It is equivalent to that each data bit has 2 and 11
2 AWG samples. For other

data rate applications, we only need to adjust the oversampling and downsampling

ratio based on fAWG and fin when applying the above procedure.

3.2.4 Jitter Calibration

We need to thoroughly calibrate the generated test signals for two reasons. The

first one is to verify our jitter injection technique. Secondly, we use the calibration

results to link the injected PJ to DJ and TJ because most HSSI standards define DJ

and TJ tolerance specifications separately and we control the DJ and TJ through

the injected PJ.

The jitter injection technique is verified by extracting the actual jitter in the

generated signal and then comparing it with the injected value. There are three ap#

proaches we can use for the verification. The quickest approach is to plot the eye

diagram according to the test signal data stored in the AWG. Another approach is

to use a digitizer on the ATE to capture the AWG output signal and then extract

the jitter information. The jitter in the generated test signal can further be cali#

brated using bench equipment.

We first verify our jitter injection technique using eye diagrams. Figure 3#20

captures the eye diagram of a 1.5Gbps test signal with 300ps PJ injected. The dia#

gram is generated by overlaying the data samples stored in the AWG in one UI in#

terval, and the figure is plotted in MATLAB. As we can see, the eye closure is

very close to the amount of PJ we injected. Without the need for any instrument,

the eye#diagram can be generated and used to verify the concept of our jitter injec#

tion technique.

62 3 Accelerating Receiver Jitter Tolerance Testing on ATE

Fig. 3�20. The eye diagram of the AWG samples with 300ps PJ injected

We can calibrate the amount of injected jitter on ATE by connecting the AWG

output to the input of a high bandwidth digitizer, such as the GigaDig, available on

systems such as Teradyne Catalyst/Tiger ATE. Figure 3#21 shows the connection

used to calibrate the injected jitter on ATE. We use the digitizer to capture the

AWG output and we then extract the jitter components from the captured wave#

form [4]. The details on how the jitter components are extracted are furthers dis#

cussed in Chapter 4.

Fig. 3�21. Test setup for jitter calibration on ATE

3.2 Jitter Test Signal Generation 63

Figure 3#22 plots the jitter calibration result using the ATE. The horizontal axis

is the injected PJ and the vertical axis is the measured jitter. As we can see, the

measured PJ correlates well with the ideal injected PJ. We have a good linear con#

trol on the injected jitter. DJ and TJ are also recorded. There is a small offset be#

tween the injected PJ and the measured DJ, which is contributed by other DJ com#

ponents. The offset between the measured DJ and the measured TJ is caused by

intrinsic RJ of the AWG.

9:� ��� ��� ��� ��� �:� ���

���

���

���

���

���

���

-�;��
�2�'7!�
"

�
�3
�
2
�3
��
�
�

.
��
2
�7
�

�
��
!�

"

-2����-�;��
�2�'7

��3�2�3����
.��2�87

��3�2�3����
.��2��7

��3�2�3����
.��2�'7

)������(�

��3�4,����
.��2���
�

Fig. 3�22. Jitter injection calibration curves with the digitizer

To further confidently report the jitter numbers, we used a Wavecrest SIA#3000

to calibrate the TJ, RJ and DJ numbers in the generated test signals. Figure 3#23

plots the measurement results. Similar to the ATE jitter measurement results

shown in Figure 3#22, the Wavecrest measured DJ and TJ are tracking the injected

PJ. The constant vertical offset between the measured TJ and the injected PJ is

caused by the intrinsic RJ, DCD and ISI from the AWG and the connection cables.

In this example, the offset between the PJ and TJ is around 92 ps.

64 3 Accelerating Receiver Jitter Tolerance Testing on ATE

��� ��� ��� ��� �:� ��� ��� ��� ���
���

���

���

���

���

���

-�;��
�2�'7!�
"

<
�
	
�
�
��
�

�
�
�
�

.
��
2
�7
�

�
�!
�

"

-2����-�;��
�2�'7

<�	����

����
.��2�87

<�	����

����
.��2��7

)������(�

��3�4,����
.��2���
�

Fig. 3�23. Jitter injection calibration curves with Wavecrest SIA#3000

Figure 3#23 demonstrates that in our test signals PJ and TJ are related by a con#

stant offset. Therefore, we can translate the TJ tolerance testing into PJ tolerance

testing once we know the offset. This is important because on ATE we can only

accurately generate controllable amount of PJ due to the AWG memory limitation.

The final jitter tolerance number we report will be derived from the calibration

curve shown in Figure 3#23.

3.2.5 Random Jitter Control

Even though we cannot deliberately inject controllable amount of RJ to the AWG

signal due to the size limitation of the AWG memory, we propose an approach to

control the RJ in the test signals. The approach utilizes the characteristics of the

AWG driver. The offset between the measured DJ and TJ in Figure 3#23 is caused

by the intrinsic RJ of the AWG. Because the AWG output signal has a constant

rise/fall time, the intrinsic RJ would vary at different output amplitude levels: RJ

increases when the signal amplitude decreases and decreases when the signal am#

plitude increases. Figure 3#24 shows the captured RJ RMS values of 3Gbps test

signals at amplitude levels from 230~780mV using the Wavecrest SIA#3000.

Therefore, we can control the RJ of our test signals by controlling the amplitude of

the AWG output signal, which is programmable on the ATE.

3.3 Receiver Bit Error Monitoring 65

�

�

�

9

�

�

�

=

�9� �:� 9�� ��� =:�

�����	
��
����

�
�

�
�
�
�

Fig. 3�24. RJ vs. AWG output amplitude

According to the SATA jitter tolerance specification shown in Table 2#4, the

difference between the out#of#band DJ and TJ for Gen2 SATA is 0.18UI. The dif#

ference suggests that a test signal with a 0.18UI RJ peak#to#peak value is the best

candidate to perform both DJ and TJ compliance tests at the same time. This RJ

peak#to#peak value translates into a 4.3ps RMS value. According to Figure 3#24,

setting the amplitude to around 600mv is the most reasonable setting for the jitter

tolerance compliance testing using the generated test signals. This amplitude is

also very reasonable as the SATA receiver amplitude range is from 250mv to

700mv.

3.3 Receiver Bit Error Monitoring

When the jittered test signals are applied to the receiver, bit errors may occur in

the recovered data. Jitter tolerance testing is done by supplying a test signal with a

certain amount of injected jitter to the receiver and then monitoring the bit errors

in the recovered data to check whether the BER is below a certain level. The re#

ceiver error rate can be monitored using several methods. One approach is to loop

back the received parallel data signals to the transmitter and then check the bit er#

rors from the output of the transmitter. This approach usually needs a high speed

BERT, which is not available on ATE. The under#sampler on the ATE is not a

good candidate for BER measurement. In addition, the transmitter itself might in#

troduce errors, which makes it hard to justify the receiver jitter tolerance test re#

sults. Therefore, we need to use alternative approaches. This chapter presents two

approaches based on available ATE instruments or DFT features. Chapter 5.2 in#

troduces another approach based on FPGAs.

66 3 Accelerating Receiver Jitter Tolerance Testing on ATE

3.3.1 ATE0based Error Detection

The ATE#based error detection solution brings out the recovered parallel data sig#

nals to device pins, and then compares the outputs of these pins with expected val#

ues in a digital pattern using digital channels. Figure 3#25 shows the testing con#

figuration of this approach.

Fig. 3�25. ATE#based BERT

 The number of errors on each pin can be accessed by reading back the error

counter of the High Speed Digital (HSD) channel associated to the parallel output

pin. The error counter is essentially a byproduct of the failure capture memory. It

keeps track of how many pattern cycles the fail flag has been asserted from the

last HSD reset or counter clear to the time the counter is read. Each failure counter

is 16 bits in width. In our devices, the parallel data are 20 bits in width. The

maximum number of errors the ATE can track is more than 1 million, which is

enough to suppress the statistical variation and allow a generous step size on in#

crementing the jitter injection amount. This is important because we need to ob#

tain multiple BER points for extrapolation, but the performance (and hence the er#

ror rate) can vary from device to device at the same injected jitter level.

One challenging issue of using the parallel data bus for error counting is the

synchronization. Because the AWG and digital channels on ATE are in two clock

domains, clock synchronization is a priority. Considering the two domains are

generated from the same clock source on ATE, clock synchronization can be

achieved by properly setting the two clock dividers such that the two frequencies

are coherent and the receiver can work correctly. The digital channel strobe is set

centered on the parallel data of the receiver output. The byte (i.e. word boundary)

alignment is becoming a norm for almost all devices. The frame alignment charac#

ter is detected by the receiver to ensure that the right sequence of a word (from

LSB to MSB) comes out of the parallel bus in a consistent way, from run to run,

and from device to device. For pattern alignment, because the delay from the input

3.3 Receiver Bit Error Monitoring 67

of the receiver to the output of the receiver varies from device to device, we use a

match loop to line up to the repeating PRBS pattern. As shown in Figure 3#26, the

match loop skips byte#by#byte to search expected parallel data. Once an expected

parallel data sequence is detected (the parallel data bus is aligned to the AWG se#

rial output sequence), the pattern jumps out of the match loop and the HSD chan#

nels start checking errors.

Fig. 3�26. Pattern alignment between the serial data and the parallel data

We can vary the length of the error checking pattern to get the BER with an

expected confidence level. A longer length pattern provides a higher confidence

level, but takes more test time. By sourcing test signals with different amounts of

injected jitter, we can get different bit error rates.

3.3.2 DFT0based Error Detection

The ATE#based BERT is complicated to implement from the test point of view

because it involves external synchronization. The BER testing can be simplified

by adding DFT features. DFT has been widely used in devices manufactured to#

day in order to reduce testing cost or removing the need for expensive testers. Re#

searchers have proposed Built#in#Self#Test (BIST) techniques specifically tailored

for testing common designs, such as bit error checkers, ADCs and PLLs [87],

[88], [89].

The idea of DFT#based error detection approach relies on an implementation of

a BERT inside the device. The internal BERT includes a pattern generator and an

error counter multiplexed with transmitter and receiver latches. Figure 3#27 illus#

trates the main idea of this approach [87]. The pattern generator generates test se#

68 3 Accelerating Receiver Jitter Tolerance Testing on ATE

quences, such as the 128#PRBS pattern as we used. When the test signals applied

to the receiver have the same sequence as the one generated by the pattern genera#

tor, the internal error counter can record the errors that have occurred after the

synchronization is achieved.

��		���

������	��

�����

��
�	��

�>�)�
�$

8>�)�
�$

�.>

�.>

8>

�>

8>�+.
�.

�>�-��.

Fig. 3�27. Conceptual illustration of the DFT#based BERT

This approach is widely used in HSSI designs because it simplifies the verifica#

tion and testing process with little extra design cost. With the built#in BERT,

loopback testing can easily be implemented. For receiver function verification,

only a small error counter, such as a 4#bit counter, needs to be implemented in the

error counter. The receiver function can be verified by just checking the contents

of the error counters after the synchronization is achieved: if the number of errors

is zero, the receiver functions correctly; otherwise, it fails.

For BER testing, the range of the error counter needs to be big enough to avoid

the error counter getting saturated quickly when the error rate is high. The jitter

tolerance testing requires us to sweep the input signals with different amounts of

injected jitter. The BERs may range from 10
#5

~10
#12

. To accommodate such a wide

BER range, the error counter needs to be bigger than 10
7
. Therefore, the width of

the error counter should be 24 bits or more for jitter tolerance characterization. By

reading back the values in all the error counter registers, we know the total num#

ber of errors. The BER is measured by calculating the ratio between the total

number of errors and the total number of tested bits.

3.4 Jitter Tolerance Extrapolation

As discussed in Chapter 3.1.2, we can not use the transmitter bathtub curve fitting

technique for receiver jitter tolerance testing. We need to develop a new algorithm

for jitter tolerance extrapolation.

3.4 Jitter Tolerance Extrapolation 69

3.4.1 Jitter Tolerance Extrapolation Algorithm

The goal of jitter tolerance extrapolation is to predict the jitter tolerance at low

BER based on high BER region data. Figure 3#28 illustrates the jitter extrapolation

process. We sweep the injected PJ in small increments to get several high BER

levels, which can be obtained quickly. In Figure 3#28, the right#bottom plot shows

the bathtub curves of these BER levels; the left bottom plot shows the PJ vs BER

curve. Because the Q factor and the BER are linked by the inverse error function

according to Equation (2#9), we can transfer the measured PJ vs. BER data into PJ

vs. Q factor data. According to our jitter tolerance extrapolation algorithm that the

relationship between the Q factor and the PJ is linear (discussed later), we can do a

Q factor linear fitting based on the PJ vs. Q factor data. The plot in the top left

corner is a Q factor fitting result. Based on the fitting result, we can return to pre#

dict the PJ tolerance at low BER region through the error function.

Fig. 3�28. Overview of the jitter tolerance extrapolation via Q#factor fitting

In the above jitter tolerance extrapolation process, every step is straightforward

except the Q#factor linear fitting. The fitting is based on the jitter tolerance ex#

trapolation algorithm that there is a linear relationship between the Q#factor and

the PJ.

The following reasoning will explain how we derive our jitter tolerance ex#

trapolation algorithm.

70 3 Accelerating Receiver Jitter Tolerance Testing on ATE

Mix

Fig. 3�29. Jitter sources to the CDR

In our testing setup shown in Figure 3#12, we use an AWG to source the test

signal and the AWG is connected to the receiver input through RF cables. The jit#

ter sources that stress the CDR come from the AWG, connection cables and the

CDR itself. Figure 3#29 illustrates how these different jitter sources act. All the jit#

ter components are convolved together to affect the CDR performance.

We will use in this chapter the following symbols to represent different jitter

sources:

�� PJINJECTED: the PJ injected in the AWG signals

�� DCDEXT: the DCD from the AWG and cables

�� ISIEXT: the ISI from the AWG and cables

�� BUJEXT: the BUJ from the AWG and cables

�� RJEXT: the intrinsic RJ of the AWG

�� DJCDR: the intrinsic DJ of the device

�� RJCDR: the intrinsic RJ of the device

Under the “black box” assumption, we have no knowledge about the DJCDR and

RJCDR. However, we can assume that DJCDR and RJCDR are constant for the same

device with the same injected jitter frequency because they are determined by the

CDR response to the jitter frequency. In [90], a method is proposed to measure the

receiver internal jitter that is worth pointing to.

We can also assume that the RJEXT is a constant when we sweep through differ#

ent amounts of injected PJ at a constant frequency. This is a reasonable assump#

tion because the RJ in the AWG comes mostly from the sampling clock, which is

3.4 Jitter Tolerance Extrapolation 71

constant when we change the programmed AWG data samples for PJ injection.

The assumption can also be validated by the jitter calibration result shown in Fig#

ure 3#23, where RJEXT is the constant offset between the measured DJ and the

measured TJ. Considering RJCDR and RJEXT are independent, if we denote the total

RJ seen by the CDR with RJTOT, RJTOT is constant and we have:

 CDREXTTOT RJRJRJ += (3#1)

The DCDEXT, ISIEXT and BUJEXT are assumed to be constant when the PJ is in#

cremented. This is also a reasonable assumption, because these sources of jitter are

mainly determined by the group delay caused by the bandwidth limitation. This

assumption is also validated by the constant offset between the PJ and TJ shown in

Figure 3#23. Of course, how exactly the PJ combines with the ISI depends on the

relative phase relationship, which is unknown inside the DUT. As all the DJ

sources are uncorrelated, the total DJ seen by the CDR, DJTOT, can be expressed

as:

CDREXTEXTEXTI1JECTEDTOT DJBUJDCDISIPJDJ ++++=)((3#2)

Under the Q#factor model at the bathtub crossing point (filling up 1UI) discussed

in Chapter 2.2.2, the RJ and DJ components are related to UI by Equation (2#7):

RMSRJQDJUI *2+=

where Q is)(xQ defined in Equation (2#1) with BERx = , as elaborated earlier

in [69].

After substituting Equations (3#1) and (3#2) to Equation (2#7), we obtain the

following expression:

TOTDELTAI1JECTED RJQDJPJUI *2++= (3#3)

where DJDELTA is a constant defined as

CDREXTEXTEXTDELTA DJBUJDCDISIDJ +++=

By rewriting Equation (3#3) to solve for Q and PJ, we obtain the following lin#

ear dependencies:

 SPJCQ I1JECTED +×= (3#4)

C

SQ
PJ I1JECT

−
= (3#5)

where C and S are constants defined by

TOTRJ

C
2

1
−= (3#6)

72 3 Accelerating Receiver Jitter Tolerance Testing on ATE

TOT

DELTA

RJ

DJUI
S

2

−
= (3#7)

Equation (3#4) demonstrates that the Q factor is a linear function of the injected

PJ. As discussed in Chapter 2.2.2, the Q factor and BER are related by the com#

plementary error function and shown in Equations (2#8) and (2#9). By substituting

Equation (3#4) into Equation (2#8), we have:

 BER = 0.5 *erfc (
C * PJI1JECTED + S

2
) (3#8)

Therefore, we related BER to a single variable, PJI1JECTED via the classical

complementary error function – erfc. The curve fitting for this function has ma#

tured for decades when applied to transmitter bath tub curve fitting. Even though

we cannot use in our case the bathtub curves to represent jitter tolerance extrapola#

tion, the mathematics needed for conducting the jitter tolerance curve fit is still the

complementary error function.

Equation (3#8) enables us to estimate BER according to the injected PJ in the

test signal. We can extrapolate the PJ tolerance at low BER levels (such as 10#12)

once we know the two constant values C and S, which can be obtained using

higher BER data (such as 10#10 and higher).

3.4.2 Accelerating Jitter Tolerance Characterization

In design validation and device characterization, we need to get the TJ tolerance

number at different PVT corners. The test signal calibration results shown in

Chapter 3.2.4 enable us to translate the TJ tolerance testing into PJ tolerance test#

ing.

Our scheme is aimed to perform a PJ tolerance BER scan using test signals

with different levels of injected PJ. High BER data are collected in the range of

10
#6

 to 10
#10

. Q#factor values at different BER levels are calculated according to

Equation (2#9). Theoretically, we only need two data points to get the two con#

stant values C and S from linear equations in Equation (3#4), according to the

equations:

21

21

PJPJ

QQ
C

−

−
=

21

2112 **

PJPJ

PJQPJQ
S

−

−
=

3.4 Jitter Tolerance Extrapolation 73

However, we still need to observe a large number of errors when testing BER

in order to get a high confidence level because of the randomness of the RJ, as ex#

plained in Chapter 2.

A better approach, taking into account the confidence level requirements, is to

use more data points and perform linear regression fitting over them. In the exam#

ple to be shown below, jitter tolerance BER scan was performed using 1.5Gbps

test signals discussed in Section 3.2.2, and BER data was collected in the range of

10#6 to 10#11. The data between 10#6 to 5x10#9 was considered to be a high BER

data and was used to predict the remainder of the points, which are considered as

low BER points.

Figure 3#30 shows a linear regression fitting of the Q factor versus injected PJ.

Figure (a) is the fitting result based on all measured BER points collected between

10#6 and 10#11, while Figure (b) displays the fitting results based on high BER

points only.

The difference between the two fitting results is shown in Figure 3#31. The two

fitting lines are almost the identical, which demonstrates that the prediction based

on high BER points only is very accurate.

Based on the Q factor fitting result, we can now plot the BER curve as a func#

tion of the injected PJ, and thus predict the jitter tolerance for a lower BER, e.g. at

levels such as 10#12.

Figure 3#32 shows the difference between the BER curve predicted based on

the high BER points and the curve fitted with all measured BER points. The dis#

crepancy is found to be very small; from Figure 3#32, we read only 2ps difference

at 10#12 BER. In this plot, diamond points (high BER data) are used for the predic#

tion; star points are additional real measurements at the lower BER region.

As shown in Figure 3#32, the real measurements in the lower BER range

(points labeled with stars) are very close to the predicted curve, which indicates

that our BER prediction can successfully match the measurements on real devices

under test.

74 3 Accelerating Receiver Jitter Tolerance Testing on ATE

 a) Fitting with all BER points

b) Fitting with high BER points

Fig. 3�30. Linear regression of Q factor as a function of the injected PJ

3.4 Jitter Tolerance Extrapolation 75

Fig. 3�31. A comparison between the two fitting results

��� ��� ��� ��� �:� ��� ��� ��� ��� �:� ���
6��

6��

6:

6�

6�

6�

�

��;��
�2�'7

)
4
3
�
�
!�
1
�
"

(�

��3��.�	��?�
$��������
.��2�'4��

(�

��3��.�	��?�
$���3$��1��'4��

�4��0

@�
.������
.�����

!,4���>
���4��
�4�"

@22�
�4����@�
.������
.�����

Fig. 3�32. A comparison of BER curve fitting results

76 3 Accelerating Receiver Jitter Tolerance Testing on ATE

The jitter tolerance result presented in Figure 3#32 is in terms of PJ only. To in#

clude the DCD, ISI, BUJ and RJ, we need to link this diagram with the jitter injec#

tion calibration curves from the Wavecrest SIA#3000.

As shown in Figure 3#23, the delta between the injected PJ and the actual TJ

observed by the SIA#3000 is a constant around 92ps. For this particular device un#

der test, the jitter (TJ) tolerance at 10#12 BER is 512ps or 0.76UI, while 420ps of

PJ is injected in the test signal.

 a) Predicted bathtub curves

 b) Predicted curves vs. actual measurements

Fig. 3�33. Bathtub curve prediction

3.4 Jitter Tolerance Extrapolation 77

Figure 3#33 can further help understand the story from the bathtub point of

view. Figure (a) conceptually shows that the depth of the bathtub curve moves

with different amounts of injected jitter; Figure (b) is a comparison of the pre#

dicted bathtub curves to real measurements. This is another way to visualize the

accuracy of our model.

We further verified our jitter tolerance extrapolation algorithm at 3Gbps appli#

cations and measured the BER down to the 10#12 level. For 3Gbps applications, the

test signals need to be re#generated and calibrated using the methods discussed in

Chapter 3.2. Figure 3#34 shows the calibration results of the generated 3Gbps test

signals using a Wavecrest SIA#3000; it plots the measured PJ and TJ values at dif#

ferent injected PJ levels on one tester. As can be seen, from 20ps to 200ps, the

measured PJ correlates well to the injected PJ and there is a constant offset be#

tween the measured PJ and the measured TJ. In this case, the offset is around

80ps. When the injected PJ is below 20ps, the TJ does not change much due to the

noise floor of the AWG. This does not impact us as we will show later that the

test signals we need should have PJ values more than 100ps.

Once again, the constant offset between the injected PJ and the measured TJ is

caused by the intrinsic RJ of the AWG, and DCD, ISI and BUJ from the AWG

and cables. The offset enables us to relate the PJ to TJ, and we can translate the TJ

compliance testing into PJ testing, which is needed because we can control the

amount of PJ in the test signal.

�

��

���

���

���

���

9��

9��

�

�
�

�
�

�
�

:
�

�
�
�

�
�
�

�
�
�

�
�
�

�
:
�

�
�
�

�����	��
��

�
�
�
�

��
�

�
�	
	�
�

���
.��2�'7

���
.��2�87

Fig. 3�34. 3Gbps test signal calibration results

Table 3#2 lists an example of measured BER values at different PJ levels using

the 3Gbps test signals; the Q#factor values are calculated based on the BER value

according to Equation 2#9. When we sweep the injected PJ from 228ps to 216ps,

the BER levels decrease from 10
#6

 to 10
#10

. In this experiment, the bit errors are

obtained using the DFT#based error detection approach discussed in Chapter 3.3.2.

We use these measured high BER data to extrapolate the BER performance at

78 3 Accelerating Receiver Jitter Tolerance Testing on ATE

lower BER levels and then verify the extrapolation results by making BER meas#

urements down to 10#12 BER.

Table 3�2. High BER Data for Jitter Tolerance Extrapolation

PJ(ps) 216 218 220 222 224 226 228

BER 2.13E#10 4.37E#10 3.90E#9 2.43E#8 1.05E#7 7.06E#7 2.05E#6

Q 6.24 6.13 5.77 5.46 5.19 4.82 4.60

Figure 3#35 is a linear regression fitting of the Q factor versus PJ based on the

measurement results shown in Table 3#2. Based on the Q factor fitting result, we

can now plot the BER curve as a function of the injected PJ according to Equation

(2#8), and thus predict the jitter tolerance at low BER levels. Figure 3#36 shows

the BER curve based on the fitting result from the measurements listed in Table 3#

2 (diamonds). It also shows low BER measurements for extrapolation accuracy

verification (star points).

As we can see from the data, at 10
#12

BER there is only 1ps discrepancy be#

tween the actually measured PJ tolerance and the extrapolated PJ tolerance based

on the BER data above 10
#10

. We tried the procedure on different devices and the

discrepancy is found to be within 2%, while our solution can speed up the charac#

terization over1000 times.

Fig. 3�35. Q factor vs. PJ

The jitter tolerance result presented in Figure 3#36 is in terms of PJ. To trans#

late the PJ tolerance into TJ tolerance, we need to use the jitter injection calibra#

tion curves shown in Figure 3#34, where the delta between the injected PJ and the

actual TJ observed by the SIA#3000 is a constant around 80ps. For this particular

device with BER data listed in Table 3#2, the TJ tolerance at 10
#12

 BER is 292ps or

0.88UI while PJ is 212ps.

3.4 Jitter Tolerance Extrapolation 79

Fig. 3�36. BER extrapolation

3.4.3 Accelerating Jitter Tolerance Compliance Testing

If we directly apply the jitter tolerance characterization technique in production to

qualify jitter tolerance compliance, the test time overhead is still a bit high because

it involves BER to Q#factor translation, Q#factor fitting and BER extrapolation

down to 10
#12

 level. It takes around one second, which is still too long for one pa#

rameter testing – on average an SoC device may have hundreds of parameters to

test, so the test time of each test is very critical to the final device cost.

Considering that the compliance testing in production is only a go/no#go judg#

ment process, we do not need to know the exact value of the jitter tolerance for

each device; we only need to know whether the jitter tolerance of a device is better

than the jitter specification defined at 10
#12

 BER.

Instead of extrapolating the jitter tolerance down to 10
#12

 BER and comparing it

with the specification, we propose to perform the jitter tolerance compliance test

at a higher BER level. For example, we can do the test by qualifying 10
#6

 BER

performance. We apply a test signal with a certain amount of injected PJ to the

device: if the measured BER of the device is better than 10
#6

, it passes; otherwise,

it fails. For this approach, we need to solve two issues:

80 3 Accelerating Receiver Jitter Tolerance Testing on ATE

�� Translating the jitter tolerance specification from 10#12 BER level to 10#6

BER level

�� Translating the TJ specification to a PJ specification

The proposed jitter tolerance extrapolation algorithm can transfer jitter toler#

ance specifications at different BER levels. Because the Q#factor values at 10#12

and 10#6 BER levels are known (7.0374 and 4.7534 respectively [38]), according

to Equation (3#5), the PJ tolerance difference between 10#12 and 10#6 BER levels

can be calculated by

C

QQ
PJ

)10()10(
612

1010 612

−−

−
−

=−− (3#9)

which is 25ps in the 3Gbps example in Chapter 3.4.2. According to Equation (3#1)

and Equation (3#6), the difference is determined by the RJ in the test signal and

the intrinsic RJ of the device that slightly varies from device to device. For each

new design, we need to perform the jitter tolerance extrapolation to characterize

the PJ difference distribution and use the worst case value (the minimum value) to

set test limits for production.

Next, we need to translate the TJ specification into PJ specification because we

can only control the amount of PJ in the test signal. The test limit we need to set in

production should be based on the amount of the injected PJ. This translation is

done according to the offset value between the measured TJ and the injected PJ as

shown in Figure 3#23 and Figure 3#34. To do this translation for production, we

need to perform the test signal calibration at all the testers because the offset may

vary from tester to tester. Figure 3#37 shows the offset at some testers. For these

testers, we can claim that the offset between the injected PJ and the actual TJ is at

least 70ps.

Fig. 3�37. The offset between PJ and TJ at different testers

3.4 Jitter Tolerance Extrapolation 81

Based on this offset, we can translate the TJ specification into a PJ tolerance

requirement. In the case of SATA II specification, the out#of#band TJ tolerance

specification is 200ps at 10#12 BER level [22]. We can guarantee the TJ specifica#

tion compliance by checking the PJ tolerance at 130ps: if a device can tolerate

130ps PJ at 10#12 BER level, we can guarantee that the device meets the SATA jit#

ter tolerance specification. Even though this might slightly overstress devices on

some testers (such as Tester2 and Tester3), this is acceptable as long as it does not

cause yield issues.

According to jitter translation Equation 3#9, the PJ difference between 10#12 and

10#6 BER levels is 25ps. Because the PJ tolerance requirement at 10#12 BER level

is 130ps, the PJ tolerance limit should be set to 155ps at 10#6 BER level. We can

source a test signal with 155ps injected PJ to the receiver and check 107 bits of re#

covered data. If no errors are detected, this device is classified as a good one; oth#

erwise, it fails the jitter tolerance compliance test.

3.4.4 Discussion

In the proposed acceleration scheme for jitter tolerance qualification, the injected

jitter calibration and the jitter tolerance extrapolation are the two key techniques

that we employ. When applying the scheme to production testing, we need to es#

pecially pay attention to them.

Please note that we need to calibrate the test signals on all testers to ensure that

the difference between the injected PJ and the measured TJ is bigger than the off#

set that we used to derive the test limit, which is set to 70ps in the 3Gbps example

of SATA devices. If the offset is smaller than this, we need to tighten our test limit

accordingly.

At the same time, we also need to keep a close eye on the possible yield loss

because we can overstress devices on some testers, such as Tester2 in Figure 3#37,

where the jitter in the test signal is 10ps more than the injected jitter that we need

to use to stress the device. This should not cause issues because the design margin

normally is big enough to accommodate it.

Another source that provides extra margin for the test is the fact that in practi#

cal testing we usually classify devices with errors between 1 and 10 out of 107 bits

as bad devices. Actually, they might be classified as good ones as they meet 10#6

BER performance, but with limited confidence level. Because of the extra margin,

we have a high confidence level that the good devices meet the jitter tolerance re#

quirement.

In addition, we need to do the jitter specification translation (from 10#12 to 10#6

BER levels) based on devices that can cover the products to be tested, such as de#

vices from all process corners. Doing this from one device may not be enough.

The good thing is that we only need to do this once for every new design.

Even though the experiment is conducted primarily on Teradyne AWG6000,

the jitter tolerance extrapolation technique is generic and can be used on any plat#

82 3 Accelerating Receiver Jitter Tolerance Testing on ATE

form that has jitter injection capability and that can perform BER testing. The

technique can rapidly report the actual jitter tolerance value for characterization,

or qualify a jitter tolerance specification in time that makes it practical to test mas#

sively manufactured devices.

3.5 Other Applications of the .ew Method

3.5.1 Jitter Transfer Characterization

In previous experiments, we demonstrate injecting PJ at a single frequency to in#

vestigate the receiver jitter tolerance. We can extend our experiments to investi#

gate the jitter transfer characteristics of the PLL by applying test signals with dif#

ferent jitter frequencies.

As we discussed in Chapter 3.1.1, the jitter tolerance performance of a CDR is

mainly determined by the PLL. The PLL has low#pass characteristics, as shown in

Figure 3#3: the recovered clock can track the in band jitter in the input data, but

cannot track the out#of#band jitter. We can employ the fact that we can routinely

perform the PLL jitter transfer function characterization on an ATE using the test

signals that we generated. Figure 3#38 shows the test setup for such characteriza#

tion tests.

Fig. 3�38. Test setup for the PLL jitter transfer characterization

In the test setup, the AWG sources test signals to the receiver input. The test

signals from the AWG all have a known constant amount of the injected PJ jitter.

The clock recovered at the receiver side is then used by the transmitter to align its

own output. A digitizer on the ATE is finally employed to capture the PJ in the

3.5 Other Applications of the New Method 83

transmitter output. In this way, the resulting jitter transfer function is readily ob#

served from the sent data stream.

The PLL jitter transfer function can be derived by the following scheme. One

needs to undertake the sweeping of the injected PJ frequencies across the fre#

quency range. Then, the relation between the two jitters is simply obtained by

comparing the injected PJ in the AWG with the captured PJ from the transmitter

output.

Figure 3#39 shows an example of the PLL jitter transfer experimental result,

where the normalized transmitter output jitter is the ratio of the transmitter output

PJ to the receiver input PJ.

�

���

���

���

��:

�

���

��
�

A�
�

��
��

�9
��

9�
��

9=
��

��
��

��
��

�:
��

��
��

=�
��

��
���
	
��		��
 ��!
���"
��#$�

%
�
��

�
��
$
�
�

&
�

'

	�

	

�
�	
	�
�

Fig. 3�39. Measured PLL jitter transfer characteristics

As we can see from the plot, when the frequency of the receiver input jitter is

bellow the receiver PLL bandwidth, which is around 20MHz in the above exam#

ple, the transmitter output jitter simply tracks the receiver input jitter. This is true

because the clock recovered at the receiver side faithfully tracks the jitter in the

AWG signals and therefore passes the injected jitter directly to the transmitter

output.

On the other hand, when the jitter frequencies are above the PLL bandwidth,

the clock recovered at the receiver cannot track the injected jitter. Therefore, the

out#of#band jitter gets naturally attenuated at the transmitter output, with the exact

relations depending on the PLL type and its bandwidth.

84 3 Accelerating Receiver Jitter Tolerance Testing on ATE

3.5.2 CDR Characteristics Analysis

Another application of our method is in the exploration of the jitter tolerance fre#

quency characteristics of the CDR. We generate test signals with injected jitter at

different jitter frequencies and then get the jitter tolerance performance of the re#

ceiver at different jitter frequencies.

Figure 3#40 shows an example of the frequency response of a CDR that we

obtained. As we can observe, the frequency response is not flat. It has higher jitter

tolerance at low frequencies. When the frequency increases, the jitter tolerance

decreases and reaches to a minimum around 50MHz, for a given SATA applica#

tion.

This type of frequency sensitivity investigation is extremely time#consuming

with traditional jitter tolerance test methods. It takes days to accurately character#

ize a device using traditional techniques. Our proposed accelerated jitter tolerance

test scheme can significantly reduce the time needed for this type of characteriza#

tion.

Fig. 3�40. Jitter tolerance frequency response

In addition, our proposed scheme provides a method to develop CDR models.

From the testing point of view, the CDR is just a black box. With our scheme, we

can easily stress the CDR using test signals with different jitter frequencies and jit#

ter profiles and check its response.

An important conclusion is that, based on this kind of experiments, it is possi#

ble to make an accurate CDR model through which the performance of the CDR

can be predicted. This is very helpful for the designer to choose the right CDR and

for the test engineer to set the proper test condition in production. Without accel#

erating the receiver jitter tolerance characterization, this achievement would not be

3.5 Other Applications of the New Method 85

possible for massively manufactured and marketed devices, which are the hall#

mark of the modern integrated circuits and systems.

4 Transmitter Jitter Extractions on ATE

Abstract In this chapter, we introduce the details of how the transmitter jitter

can be decomposed in a way that is fast and accurate enough to be implemented

in a production environment. The jitter can be extracted from either the time do�

main or the frequency domain. We also propose a hybrid approach to improve ac�

curacy while keep test time short. The advantages and disadvantages of each of

the proposed method are discussed, such that the best method can be selected for

task at hand. Finally, a set of experiments is undertaken to validate the proposed

approaches.

4.1 Introduction

Transmitter jitter testing has been investigated for years. There are quite a few

bench instruments that can make the jitter measurements accurately [91], [92].

There are also some ATE platforms that have transmitter jitter testing capability.

However, these solutions have limitations: either their throughput is too low or

their accuracy needs to be improved. In addition, almost every existing solution

has its own proprietary algorithms that are either protected by patents [93] against

wider use or unknown to the public.

To overcome these limitations, we research the transmitter jitter testing on ATE

and present a systematic solution for multiple Gbps transmitter jitter characteriza#

tion and production testing. Our under#sampling based approach can extract jitter

either from edge histograms in time domain or from the jitter spectrum in fre#

quency domain. The two approaches can also be combined to achieve more accu#

rate test results.

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_4, © Springer Science+Business Media B.V. 2011

88 4 Transmitter Jitter Extractions on ATE

4.1.1 Transmitter Jitter Testing Overview

As discussed in Chapter 2.2.1, most HSSI standards, such as SATA and Fiber

Channel, define DJ and TJ specifications separately. Table 4#1 lists the transmitter

out#of#band jitter specifications for the SATA II [22]. The TJ of the SATA trans#

mitter should not exceed 0.37UI at 10
#12

 BER level and DJ should not exceed

0.19UI. Though the SATA specification does not specify the RJ limit, we can get

the limit by assuming that all TJ is contributed by RJ. The RJ with 0.37UI peak#

to#peak value at 10#12 BER level translates into a RJ RMS value of 0.026UI, or

8.8ps at 3Gbps data rate and 4.4ps at 6Gbps data rate. The RJ RMS value is usu#

ally used to estimate TJ at 10
#12

 BER level, as it is impossible to directly measure

TJ at this BER level in volume production due to long test time – it takes tens of

minutes to take a single measurement even at 6Gbps data rate.

Table 4�1. Transmitter Jitter Specifications for SATA Gen2

TJ DJ RJ (RMS)*

0.37UI 0.19UI 0.026UI or 8.8ps@3G, 4.4ps at 6G

*Deduced from the TJ specification

To economically apply the above test limits in production, we need the jitter

test to have the capabilities of:

�� Separating jitter components

�� Achieving accuracy in sub#picoseconds

�� Having the test done in milliseconds

Unfortunately, there is currently no solution on ATE that meets these criteria,

even though the jitter measurement and decomposition have been investigated for

years [94], [95]. Popular jitter testing solutions include Bit Error Rate Testers

(BERT), histogram#based Oscilloscopes, and Time Interval Analyzers (TIA) [34].

These solutions are commonly used for design validation and characterization on

bench. However, we cannot directly apply them for at#speed testing in production

because of the low throughput.

There are not many systems right now that can do multi#gigabit devices jitter

compliance testing in production. Many jitter test solutions are based on extra on#

chip circuitry, or add#on modules [40], [41], [96], [97], [98], [99]. The applica#

tions of these solutions are limited either by their low throughput, low accuracy, or

high design complexity of the device or of the loadboard. Because of these limita#

tions, pure ATE#based solutions are preferred in production because of their high

portability and high throughput.

One approach to provide more and higher#end test functionality is to utilize

multi#gigabit signal generators and digitizers. The generators and digitizers are

becoming available as fully#integrated ATE instruments. One example is the Gi#

4.1 Introduction 89

gaDig on Catalyst/Tiger ATE from Teradyne [84]. The GigaDig is a digitizer, ca#

pable of capturing analog signals with a time resolution better than 1ps. With this

kind of instruments, it has become feasible to perform multi#gigabit devices jitter

test on ATE [4], [86], even though systematic jitter extraction algorithms on ATE

have not matured.

In [100], a transmitter jitter test solution is proposed based on the high#speed

digital pins of the Agilent’s 93000 ATE. By shifting the compare strobes in the

timing axis and level threshold axis, this approach first builds a bathtub curve, and

then applies the jitter separation algorithm.

However, the test economy of this solution needs to be improved: it takes close

to 1 second to perform the test even with 2ps resolution. Please note that as jitter is

just one of hundreds parameters to be tested on an average device, and the testing

need to be performed for millions of potentially faulty devices, one second spent

for one such test procedure is still too long to be practical in the ATE environ#

ment. In addition, the test accuracy also needs to be improved: RJ was here around

1ps higher than the bench result.

In [86], an SATA test solution on ATE is presented, which includes transmitter

jitter testing. However, the transmitter jitter testing scheme in [86] is not very ac#

curate; it reports higher RJ (1~2 ps) and also the higher TJ (20ps) than the bench

equipment does. Finally, one can further observe that the test parameters in this

solution can still be further optimized to achieve better test economy, as the cost

incurred during the testing phase is a significant part of the overall cost of the de#

vice.

4.1.2 Proposed Solution

In this chapter, we present a new transmitter jitter testing solution based on a high#

bandwidth digitizer on ATE [4]. We sensibly make the test setup and develop jit#

ter extraction procedures suitable for running the test fast and accurately. With the

current ATE instrument, we achieve sub#picosecond jitter accuracy and can finish

the whole transmitter testing in 100ms, which no one else has ever achieved in an

ATE environment to our best knowledge. The whole solution has been verified at

data rates up to 6Gbps applications.

Better performance and higher data rate applications are attainable using our

solution with the advances in ATE instruments in the future – they are only lim#

ited by the bandwidth and timing resolution of the digitizer. The accuracy of the

proposed solution was verified by both bench equipment and by the ATE itself.

More critically, the proposed test procedures have already been applied in volume

production.

In the remainder of this chapter, we first describe the principles of setting in#

struments and test parameters for data acquisition. Then we present the details of

the data processing – how jitter is extracted and decomposed in both the time do#

main and the frequency domain, as well as how the two ways can be combined to

provide more accurate information on the jitter sources. After that, the experimen#

90 4 Transmitter Jitter Extractions on ATE

tal results are presented and the advantages and limitations of each of the methods

are discussed.

4.2. Test Setup for Data Acquisition

The digitizer we use for the transmitter testing is GigaDig. The GigaDig is a fully

integrated ATE digitizing instrument with a typical under#sampling bandwidth

over 9 GHz [84]. Its input voltage range is 64mv to 1.024v, capable of covering

most HSSI standards. This chapter concentrates on the SATA transmitter, which

has an output range of 400mv~700mv.

With a 1 Mega sample memory and with 12#bit digitizing resolution, the Gi#

gaDig can perform all transmitter function and parameter tests with a single cap#

ture of the transmitter output. The following discusses how we sensibly set up the

GigaDig for data acquisition.

4.2.1 Overview of the Test Setup

The test setup is shown in Figure 4#1. The ATE provides a reference clock sig#

nal tx_ref_clk to the transmitter; a PLL in the transmitter then locks the transmitter

output rate to the reference clock. In our applications, the ideal tx_ref_clk is

around 30MHz and the transmitter output data rate Fdata can be 1.5G, 3G or

6Gbps. The GigaDig captures the transmitter output with an under#sampling rate

Fs between 5 Mega Samples per second (MS/s) to 10 MS/s.

Fig. 4�1. Transmitter test setup for data acquisition

The under#sampling technique has been already used in high#speed testing for

years [94]. This technique first captures the output signal of the DUT at a sam#

4.2. Test Setup for Data Acquisition 91

pling rate Fs that is lower than the output data rate Fdata, and then shuffles the cap#

tured samples in a predetermined manner.

The shuffled output is a sequence of samples that would have resulted from

sampling the data at a much higher frequency. The effective sampling rate Feff is

defined by

 SPBdataeff 1FF *= (4#1)

where 1SPB is the Number of Samples Per Bit (SPB) in the shuffled data.

4.2.2 Principles of Clock Settings

Although the under#sampling principle is simple, the challenge for transmitter jit#

ter testing is to properly set test parameters for data acquisition and to extract jitter

information from captured samples.

To capture within reasonable test time the transmitter output waveform with an

adequate resolution for jitter decomposition, we need to properly set the following

parameters:

o Test pattern length Lpattern

o Effective sampling rate Feff

o Undersampling rate Fs

In order to set the clock properly to capture the transmitter output in an under#

sampling environment, we need to first determine the test pattern. To provide ade#

quate test coverage, the test pattern length Lpattern should be at least 20 bits because

the width of the parallel data to the transmitter input is 20.

On the other hand, the test pattern length should be kept as short as possible in

order to save test time and also to simplify the subsequent data processing. For

these reasons, we choose a 20#bit test pattern 000001111101010011. Note that this

pattern includes both high density and low density transitions, with a total of eight

edges. The transmitter output (GigaDig input) fundamental frequency FDUT is de#

fined by

pattern

data
DUT

L

F
F = (4#2)

which generates a 150MHz FDUT when the data rate Fdata is 3GHz and the pattern

length is 20.

Our experimental data in Section 4.4.3 of this chapter also demonstrates that

the 20#bit test pattern is a very good choice for transmitter jitter testing. It gener#

ates similar RJ and DJ compared to a 128#bit PRBS pattern and a clock pattern.

The 20#bit pattern provides reasonably good coverage in a production environ#

ment.

92 4 Transmitter Jitter Extractions on ATE

The required effective sampling rate Feff is determined by the target test accu#

racy. To achieve a jitter measurement resolution better than 1ps, we need to have

the effective sampling resolution better than 1ps, which corresponds to an effec#

tive sampling rate higher than 1000GHz. For 3Gbps data signals, this translates

into capturing at least 333 samples per data bit. To leave some margin and also

keep the test time short, we choose to capture 400 samples per bit, which gives

1SPB=400

Feff=1200G

The under#sampling rate Fs needs to be calculated based on the GigaDig input

fundamental frequency FDUT and the effective sampling rate Feff. In order to cap#

ture samples coherent with the input signal, we need to satisfy the equation

effDUTs FF
K

F

111
+= (4#3)

where K is the number of cycles of FDUT slipped before the next sample. Accord#

ing to Equations (4#1) and (4#2), Equation (4#3) can be expressed as

)
1

*(
11

SPB

pattern

datas 1
LK

FF
+= (4#4)

As shown in Figure 4#1, ATE provides to the transmitter a reference clock

tx_ref_clk with a frequency Ftx_ref_clk. The PLL in the transmitter sets the transmit#

ter output data rate by multiplying the reference clock by an integer Md2ref. There#

fore, we have

 refdclkreftxdata MFF 2__ *= (4#5)

where Md2ref equals 100 for 3Gbps applications and 200 for 6Gbps applications

while Ftx_ref_clk is around 30MHz. For example, if the reference clock is set to be

exactly 30MHz, the output data rate of the transmitter Fdata would be exactly

3GHz.

However, the ATE cannot source a clock signal exactly at 30MHz because

this clock is derived from the Optical Reference Clock (ORC) divided by

t0_clk_div, where ORC is around 50,000THz and t0_clk_div can only be an inte#

ger. Similarly, Fs is also derived by dividing the ORC. According to Figure 4#1,

we have

divclkt

ORC
F clkreftx

__0
__ = (4#6)

divclkadivclkm

ORC
Fs

__0*__
= (4#7)

4.2. Test Setup for Data Acquisition 93

Based on Equations (4#5), (4#6), and (4#7), we can rewrite Equation (4#4) in the

following way:

)
1

*(
*

__0__0*__

2 SPB

pattern

refd 1
LK

MORC

divclkt

ORC

divclkadivclkm
+=

 (4#8)

By re#organizing Equation (4#8), we can get

1**

**__0

__

__0 2

+
=

SPBpattern

SPBrefd

1LK

1Mdivclka

divclkm

divclkt
 (4#9)

Equation (4#9) is the one that we use to determine the values of all the clock

dividers (t0_clk_div, a0_clk_div and m_clk_div) in order to capture the transmitter

output with the expected resolution. Equation (4#9) applies to all data rates and

test patterns. However, if the data rate and/or reference clock is different, Md2ref

needs to be adjusted accordingly. In addition, Lpattern is determined by the length of

the test pattern.

4.2.3 Test Setting Parameter Calculations

Equation (4#9) provides the principle of setting the clock dividers. As an example,

we first demonstrate how the clock dividers are set in a 3Gbps application using

the 20#bit test pattern. The test setup of the application is shown in Figure 4#1. The

reference clock rx_ref_clk needs to be around 30MHz; the intended effective sam#

pling rate Feff is 1200GHz; the ATE requires that mclk needs to be between

160MHz to 200MHz and the under#sampling clock Fs needs to be between 5MHz

and 10MHz [84].

If we want Fs to be around 7.5MHz, one choice is to set a0_clk_div to be 26

and mclk to be around 195MHz. By replacing Md2ref with 100, 1SPB with 400 and

Lpattern with 20 for the 3Gbps application, we can then simplify Equation (4#9) to

equal the following ratio

1*8000

1040000

__

__0

+
=

Kdivclkm

divclkt
 (4#10)

Basically, Equation (4#10) is a transformation of Equation (4#3) with pre#set

parameters based on the application.

The starting observation is hence that we can guarantee the coherent sampling

by satisfying Equation (4#10). Our next goal is to get the K value in Equation (4#

10). Considering that the tx_ref_clk should be around 30MHz and that mclk is ex#

pected to be around 195MHz, we can obtain the rough estimates of the t0_clk_div

and m_clk_div:

94 4 Transmitter Jitter Extractions on ATE

1666666666
30

___0 ≈=
MHz

ORC
roughdivclkt

256410256
195

___ ≈=
MHz

ORC
roughdivclkm

Therefore, we have

 5.6

___0

__

__0
≈≈

roughdivclkm

roughdivclkt

divclkm

divclkt
 (4#11)

According to Equations (4#11) and (4#10), we can solve K in Equation (4#10)

and K=20 gives the best approximation for the expected mclk and tx_ref_clk fre#

quencies. When K=20, Equation (4#10) becomes

160001

1040000

__

__0
=

divclkm

divclkt
 (4#12)

Because t0_clk_div and m_clk_div need to be integers and t0_clk_div should be

around 166666666, we can choose

 16660800001602*1040000__0 ==divclkt (4#13)

 2563216021602*160001__ ==divclkm (4#14)

where 1602 is the floor of the ratio between t0_clk_div_rough and 1040000

(1666666666/1040000 ≈ 1602.564).

Using the clock divider values shown in Equations (4#13) and (4#14) and the

a0_clk_div value (pre#set to 26), we can generate the clocks that enable us to cap#

ture the 3Gbps signal with 400 samples per bit.

We now illuminate how this line of reasoning is used in practice. For this pur#

pose we show examples of practically obtainable parameters for realistic clock

rates of modern devices. First, Table 4#2 presents a concise summary of the pa#

rameters used for the 3Gbps data capture. Then, Table 4#3 summarizes the actual

under#sampling frequency and the transmitter reference clock frequencies used in

this case.

It is important to keep in mind that the above derived clock divider values pre#

sent just one combination of the possible settings that can be used to capture

waveforms with the expected resolution. Based on the same procedure, we can

equally obtain other clock divider settings if we pre#set Fs and mclk to different

frequencies, only under the condition that the derived clocks are held within their

valid ranges.

4.2. Test Setup for Data Acquisition 95

Table 4�2. Parameter Settings for 20#bit Pattern 3Gbps Data Capture

Parameter Description Value

Fdata Transmitter output data rate 3GHz

Lpattern Length of the data pattern 20

Md2ref Transmitter PLL multiplier 100 (30MHz ref clock)

FDUT Fundamental frequency of Tx output 150MHz

NSPB Number of samples per bit 400

Feff Effective sampling rate 1200GHz

a0_clk_div a0 clock divider 26

t0_clk_div t0 clock divider 1666080000

m_clk_div mclk divider 256321602

Table 4�3. Actual Clock Frequencies for the 3Gbps Data Application

Parameter Description Value

Fs Undersampling clock frequency ≈7.502594MHz

Ftx_ref_clk Tx reference clock frequency ≈30.010564MHz

Fmclk mclk frequency ≈195.067445MHz

Based on the same principles applied to set the parameters in the explicit pro#

cedure demonstrated in the 3Gbps example, we can obtain the proper parameters

for other applications as well. Table 4#4 enumerates the parameters for 6Gbps ap#

plications using a 20#bit test pattern. Further, Table 4#5 lists the parameters for

5.5Gbps applications, where a 20#bit test pattern and a 27.5MHz reference clock

are used.

Following are few highlights of parameters that need to be changed for some

other applications:

•� If Fdata=5.5GHz and the test pattern is 20 bits in length, then FDUT is

275MHz

•� If Fdata=3GHz and the test pattern is 128 bits in length, FDUT is

23.4375MHz

•� If the expected reference clock is different, t0_clk_div_rough is then dif#

ferent

96 4 Transmitter Jitter Extractions on ATE

Table 4�4. Parameter Settings for 6Gbps Data Capture

Parameter Description Value

Fdata Tx output data rate 6GHz

Lpattern Length of the data pattern 20

Md2ref Tx PLL multiplier 200 (30MHz ref clock)

FDUT Fundamental frequency of Tx output 300MHz

NSPB Number of samples per bit 400

Feff Effective sampling rate 2400GHz

a0_clk_div a0 clock divider 26

t0_clk_div t0 clock divider 1666080000

m_clk_div mclk divider 256320801

Table 4�5. Parameter Settings for 5.5Gbps Data Capture

Parameter Description Value

Fdata Tx output data rate 5.5GHz

Lpattern Length of the data pattern 20

Md2ref Tx PLL multiplier 200 (27.5MHz ref clock)

FDUT Fundamental frequency of Tx output 275MHz

NSPB Number of samples per bit 400

Feff Effective sampling rate 2200GHz

A0_clk_div a0 clock divider 26

T0_clk_div t0 clock divider 1817920000

M_clk_div mclk divider 279680874

The last test setup parameter we need to choose is the required number of sam#

ples 1total. The required number of samples can be derived from the pattern length

and the effective sampling rate. To build edge transition histograms and to acquire

their statistical properties for jitter extraction, we need to capture at least a certain

number of cycles of the test pattern. For a statistics process, the Standard Error

(SE) of the mean SEm is defined by

n

SEm

δ
= (4#15)

4.3. Jitter Extraction 97

where δ is the standard deviation of the population and n is the size of the samples

[101] [102].

From the statistical confidence point of view, the larger the sample size is, the

less likely the error is. On the other hand, we need to minimize the number of

samples in an ATE environment in order to minimize the test cost. To balance

well the tradeoffs in this case, we decided to capture 20 cycles of the 20#bit test

pattern.

As we will discuss later, we use all the transition edges to calculate the RJ.

There is the total of 160 edges in 20 cycles of the 20#bit test pattern. Therefore, the

statistical error of the RJ is less than 8% according to Equation (4#15). This is an

acceptable error bound for our test in light of the existing margins throughout the

high#speed serial interface test and characterization.

Another factor that we need to consider when determining the total number of

samples is the Fast Fourier Transformation (FFT) requirement. We will need FFT

later for jitter decomposition in the frequency domain. Twenty cycles of the 20#bit

pattern with 400 samples per bit translate into 160k samples in total. The derived

number of samples is hence seen to satisfy the FFT requirement.

4.3. Jitter Extraction

Jitter is extracted from the transmitter output waveform captured with the test

setup and the parameters discussed in Chapter 4.2. Figure 4#2 is an example of the

captured waveform of a 3Gbps signal. The waveform consists of 20 cycles of the

20#bit test pattern, with 400 samples in each data bit and 160,000 samples in total.

This captured waveform is used to perform transmitter functional and parameter

testing.

Fig. 4�2. Captured transmitter output signal

The original work in this chapter focuses on jitter extraction, as a key part of

characterizing and testing the HSSI. Obviously, jitter is not the only parameter that

needs to be characterized and tested in the HSSI. However, other measurements,

98 4 Transmitter Jitter Extractions on ATE

such as transmitter function, rise/fall time and the amplitude characteristics, are

straightforward to perform once we capture the waveform, and their test time is

very short compared to the jitter testing.

4.3.1 Generating Edge Displacement

Basically, jitter is the edge displacement of the actual data edge transition position

compared to its ideal position. In our test setup as shown in Figure 4#1, the refer#

ence clock TX_ref_clk determines the data rate of the transmitter. The transmitter

ideal edge positions can be calculated by assuming that all the data bits are trans#

mitted without any jitter. The actual position of each edge transition might deviate

from its ideal position due to jitter.

Figure 4#3 shows an example of two edge transitions (L to H and H to L) cap#

tured using the digitizer. As the edge transitions contain various noise and inter#

ference sources in reality, they are not smooth functions of time. It is then suitable

to use a curve fitting technique to extract actual zero crossing positions [103] in a

way that reduces the effects of noise.

Fig. 4�3. Actual edge transitions and curve fitting

The curve fitting is done in a window centered in the edge transition period.

According to the SATA specification [22], the transmitter rise/fall time (20% #

80%) of 3Gbps signals is between 0.2UI (67ps) and 0.41UI(136ps). When the ef#

fective sampling resolution is 400 samples per bit, the number of samples during

an edge transition (20% # 80%) period is between 80 and 164. Therefore, we

choose a window with 80 samples to perform the curve fitting as shown in Figure

4#3. The first captured zero crossing sample in a transition edge determines the

centre of the window that we choose for the curve fitting.

Figure 4#4 plots all the edge transition positions calculated from our curve fit#

ting technique. The x#axis denotes the edge sequence, which has 160 edges in the

captured 400 data bits. The edge position in y#axis is denoted by the number of

samples relative to the first edge.

4.3. Jitter Extraction 99

Fig. 4�4. Derived edge positions from curve fitting

Fig. 4�5. Edge displacement data after interpolation

The edge displacement data is obtained from the derived edge position minus

the ideal edge position. The ideal position is calculated based on the ideal data rate

of the transmitter and the first derived edge position. In this way, we extract 160

samples of the edge displacement data from the 160 derived edge positions. To

perform FFT for the jitter spectrum analysis, we need edge displacement informa#

tion for every data bit.

In our implementation, we assume that no jitter is introduced in the data bits

where no data transitions occur between two or more bits, so we just insert the

edge displacement data from the previous edge transition to interpolate no#

transition data bits. We will later develop the scheme to eliminate the effect that

the interpolation may cause. Figure 4#5 illustrates the edge displacement data of

all the 400 captured data bits. With the interpolation, the edge displacement data

are equivalent to that obtained with a sampling rate of FDATA, where FDATA =3G for

3Gbps signals.

Once we get the edge displacement data, we can extract the DJ and RJ compo#

nents based on their properties in both the time domain and the frequency domain.

Then TJ can be obtained based on DJ and RJ. Extracting jitter from the time do#

100 4 Transmitter Jitter Extractions on ATE

main and the frequency domain is not a new topic and there are many existing so#

lutions [92], [93], [104]. Our contribution in this area is that of having developed a

fast and accurate test approach by sensibly setting test parameters for data acquisi#

tion and of proposing a jitter extraction procedure suitable in an ATE environ#

ment.

4.3.2 Time Domain Approach

In time domain, we can build in a straightforward manner the edge histograms of

the test pattern to extract the RJ and DJ information for a device. The histograms

are built by folding (overlaying) the extracted edge displacement data at a folding

frequency

pattern

DATA
fold

L

F
f = (4#16)

In the 20#bit test pattern (Lpattern=20), there are eight transition edges. Figure 4#

6 plots one cycle of the actually captured 20#bit test pattern as well as the ideal

waveform.

Eight consecutive samples of the 160#sample edge displacement data (taken be#

fore interpolation) correspond to one cycle of the test pattern. We then obtain the

actual edge histograms by folding the edge displacement data over every 8 sam#

ples.

The upper part of Figure 4#7 illustrates the histograms of the eight edges. We

can obtain the mean value mi and the SD value δi of each histogram. The mean

values are shown in the lower part of Figure 4#7. The histogram information is

used as a basis for extracting the main jitter components, such as RJ, DJ and TJ of

the device.

4.3. Jitter Extraction 101

Fig. 4�6. One cycle of the test pattern

Fig. 4�7. Histograms and DJ of all eight edges

102 4 Transmitter Jitter Extractions on ATE

4.3.2.1 RJ Extraction

RJ is caused by random events, primarily by thermal noise in electrical compo#

nents. As this kind of events exhibits a Gaussian distribution, we assume RJ is

Gaussian [34], characterized by the SD value. The RJ value of the device is ob#

tained by getting the RMS value of the SDs of the eight edge histograms:

1
RJ 1

22
2

2
1 ... δδδ +++

=

where 1 = 8 for the 20#bit test pattern.

The RJ Gaussian property is also demonstrated by the actual edge histograms

built from the captured data. As we can see from Figure 4#7 and Figure 4#12 (dis#

cussed later), the histograms are very close to Gaussian distributions even though

there are only 20 samples in each edge histogram. Therefore, we represent the RJ

at each edge using the Gaussian function

e
x

xp δ
πδ

22

2)(

2

1
)(

−=

where δ is the SD of the histogram at that edge. The RJ at each of the transition

edges can lead us to get the TJ profile of the device once we get the DJ at each

edge.

Because of the randomness of RJ, we need a lot of samples at each edge in or#

der to capture the randomness in its histogram. Based on the analysis in Chapter

4.2, for the 20#bit test pattern, taking samples on 400 bits can achieve good accu#

racy (the statistics error is below 8%) within reasonable test time. The choice of

capturing 400 bits is also proved to be reasonable by the fact that we still get simi#

lar jitter test results while we increase the number of captured bits.

4.3.2.2 DJ Extraction

By definition, the mean value m of an edge histogram would reflect the DJ at

that edge, which gives

ii mDJ =

where i is the edge index.

The DJ of a device is the maximum value minus the minimum value of the DJ

values at all edges, which gives

),...,,min(),...,,max(2121 nn DJDJDJDJDJDJDJ −=

where n is the number of total edges. In our case, with the patter given, we have n

= 8. The DJ value at each edge of the 20#bit data pattern is illustrated in the bot#

tom part of Figure 4#7. The DJ of the device is then equal to the peak#to#peak

4.3. Jitter Extraction 103

value of the plot, which is 23.1ps, obtained as the DJ at the 13
th

 UI minus the DJ at

the 10
th

 UI.

The lowest DJ frequency that can be cancelled and therefore excluded from the

RJ is the folding frequency ffold. Any DJ whose frequency is lower than ffold will af#

fect the RJ measurement accuracy. For the 20#bit test pattern (Lpattern=20) in 3Gbps

applications (FDATA=3G), according to Equation (4#16) we have ffold = 150MHz. In

our applications, the dominant fundamental DJ frequency is the word clock fre#

quency (discussed in Chapter 4.3.3 and shown in Figure 4#9), which is same as the

folding frequency. Therefore, we observe that the DJ components do not leak into

RJ.

TJ is comprised of DJ and RJ. As RJ is unbounded, the TJ specification defined in

any communication standard is actually the peak#to#peak value at a certain BER

level. Different BER levels give different TJ peak#to#peak values and the charac#

terization needs to account for that.

In order to extract the TJ peak#to#peak value, we need first to construct the TJ

profile. As we already know the DJ and RJ profile at each transition edge of the

data pattern, we can use that information to construct its TJ profile through convo#

lution. Table 4#6 lists all the RJ and DJ values at each of the eight edges shown in

Figure 4#7.

Table 4�6. RJ and DJ Values in Figure 4#7

Position RJ RMS(ps) DJ (ps) Notes

Edge 1: 5
th
 UI 1.64 3.5

Edge 2: 10
th
 UI 1.73 #11.4 Minimum DJ

Edge 3: 11
th
 UI 1.95 0.7

Edge 4: 12
th
 UI 1.75 #0.8

Edge 5: 13
th
 UI 2.32 11.7 Maximum DJ

Edge 6: 14
th
 UI 1.96 2.4

Edge 7: 17
th
 UI 1.73 8.4

Edge 8: 20
th
 UI 1.56 #9.9

As discussed previously throughout this book, the RJ PDF at each edge can be

characterized as

 e ix

i

i xPDFRJ δ

πδ

22
2)(

2

1
)(_ −= (4#17)

4.3.2. TJ Calculation 3

104 4 Transmitter Jitter Extractions on ATE

where i is the edge index and iδ is the RJ RMS at that edge.

As we know the actual DJ value at each edge, the TJ profile at an edge can be

obtained by calculating the convolution between the values of RJ and DJ at that

edge:

 iii DJPDFRJPDFTJ ⊗= __ (4#18)

where i is the edge index, i = 1,2,…,8. If we denote the DJ value at edge i with

im , according to Equations (4#17) and (4#18), the TJ PDF at edge i is represented

by

 e iimx

i

i xPDFTJ δ

πδ

22
2)(

2

1
)(_ −−= (4#19)

To be able to associate the TJ with the BER value, we now need to construct

the Cumulative Distribution Function (CDF) of the TJ profile at each edge, ob#

tained as:

 ∫
∞−

=
x

ii dxPDFTJxCDFTJ _)(_ (4#20)

The)(_ xCDFTJ i
 represents the probability that the jitter (please note that the

jitter is defined as the edge displacement) resides within the range of],[x−∞ . For

a zero#mean Gaussian distribution, we have CDF(#∞)=0, CDF(0)=0.5 and

CDF(∞)=1.

According to Equations (4#19) and (4#20), we have

 dxiimx
xCDFTJ

x

i

i e∫
∞−

−−= δ
πδ

22

2)(

2

1
)(_

)
2*

(*5.05.0

i

imx
erf

δ

−
+= (4#21)

where erf(x) denotes the error function, defined as

dtxerf

x
t

e∫
−

=
0

22
)(

π

Once we get the TJ CDF at each edge, the TJ CDF of the device can be repre#

sented by

 ∑
=

=
8

1

)(_
8

1
)(_

i

i xCDFTJxCDFTJ (4#22)

4.3. Jitter Extraction 105

According to Equation (4#21), we can re#write Equation (4#22)

])
2*

(*5.05.0[
8

1
)(_

8

1

∑
=

−
+=

i i

imx
erfxCDFTJ

δ
 (4#23)

Figure 4#8 plots the PDF and CDF of the device TJ. According to the TJ CDF,

we can get the TJ peak#to#peak value at a certain BER level by calculating the

time difference between t1 and t2:

 12@ ttTJ BERpeaktopeak −=−− (4#24)

where t1 and t2 satisfy

2/1)(_ 2 BERtCDFTJ −=

2/)(_ 1 BERtCDFTJ =

For the TJ profile shown in Figure 4#8, according to Equation (4#24) we have

)06975.0(08275.01210@2
UIUITJ

pkpk
−−=−

 UI15250.0=

The above calculated TJ would reflect the TJ peak#to#peak value of the device

at BER=10
#12

. In the 3Gbps example run throughout this derivation, the calculated

TJ value is equal to 50.8ps.

106 4 Transmitter Jitter Extractions on ATE

Fig. 4�8. The PDF and CDF of the device TJ

As we can see, the above TJ extraction process involves intensive computations

and hence takes a lot of time. In production, we can estimate the RJ peak#to#peak

value at a certain BER level by multiplying the RJ RMS value with the Q factor at

that BER level. The TJ value can then be obtained by summing the DJ and the RJ

peak#to#peak value:

RMSRJBERQDJTJ *)(*2+=

To obtain a tangible quantitative relation between the three types of jitter at the

BER levels of most practical interest, we note that Q(BER) is 7.035 at BER = 10
#12

[34].

In the above example (with RJ and DJ values being as listed in Table 4#6), the

TJ estimation based on the Q#factor gives a TJ value of 49.1ps. Quick comparison

confirms that this value is very close to the TJ value calculated based on the TJ

CDF profile (50.8ps). Therefore, it is fast and by far very much acceptable to use

the developed Q factor#based method for TJ calculation in production testing sce#

narios.

4.3. Jitter Extraction 107

4.3.3 Frequency Domain Approach

In the frequency domain, jitter components are extracted from the jitter spectrum.

The TJ spectrum can be obtained by passing the edge displacement data as shown

in Figure 4#5 through an FFT. Figure 4#9 illustrates the TJ spectrum of the cap#

tured signal shown in Figure 4#2. From the obtained spectrum, we can get the

power at each frequency bin – we will denote each such power by Ci, where i is

from 0 to 199.

Fig. 4�9. TJ spectrum

4.3.3.1 RJ Extraction

In the TJ spectrum, RJ is the noise floor while DJ components are the impulses.

The RJ RMS value is equivalent to the total noise power in the TJ spectrum. The

noise power spectrum is constructed by replacing all the DJ frequency bins in the

TJ spectrum with the average of the non#DJ frequency bins.

To remove the DJ completely for RJ extraction, this approach requires the DJ

frequencies to be coherent [103]: all the DJ frequencies need to be exactly multi#

ples of the FFT frequency resolution, as a non#coherent DJ frequency appears to

consist of many frequency components in the FFT frequency bins and hence con#

taminates the RJ spectrum. In our applications, one DJ source is the device refer#

ence clock, which is 30MHz.

Another DJ source is the word clock of the device, which is 150MHz for 3G

signals. The word clock is used in the HSSI to synchronize the parallel data. In

addition, the ISI is also a DJ source. For the 20#bit data pattern, the ISI frequencies

would be the multiples of 150MHz for 3G signals. For these facts and also ac#

cording to the TJ spectrum, we know that all the DJ frequencies in our applica#

tions are multiples of 30MHz – the device reference clock frequency. In addition,

as discussed in Chapter 4#2, our test setup strictly makes the reference clock fre#

quency and the output data rate coherent. In our applications, the FFT frequency

resolution is 7.5MHz for 3G signals.

108 4 Transmitter Jitter Extractions on ATE

Therefore, all the DJ frequencies are multiples of the FFT frequency resolution.

Among the 200 frequency bins, 49 of them are DJ bins (all Ci with i mod 4 = 0).

To calculate the noise floor of the TJ spectrum, we replace all the DJ bins with the

average of the RJ bins

)(*
150

1 199

04mod
1

_ ∑

≠
=

=

i
i

iaverageRJ CC

Fig. 4�10. RJ spectrum

Figure 4#10 plots the spectrum after the above replacement. It represents the RJ

spectrum of the device. According to Parseval’s theorem [103], the RMS value of

the RJ spectrum is the square#root#of#sum#of#power of all bins given by

averageRJ

k
k

k CCRJ _

199

04mod
1

*49+= ∑

≠
=

4.3.3.2 DJ Extraction

In the frequency domain, we extract the device DJ component from its TJ spec#

trum. Similar to some commercial stand#along jitter equipment [104], we adopt

the following steps for the DJ extraction:

(1)� Obtaining the DJ#only spectrum by setting to zero all bins in the TJ spectrum

that are attributable to RJ. In our case, we set to zero all the TJ bins that are

not multiples of 4 (bin 4 corresponds to 30MHz)

(2)� Performing an inverse FFT on the DJ#only spectrum to generate the time#

domain data. The generated data would reflect the edge displacement that is

only contributed by DJ.

4.3. Jitter Extraction 109

(3)� Getting the peak#to#peak value of the data excluding locations that actually do

not have edge transitions. The peak#to#peak value is the DJ value of the de#

vice.

In step (3), we exclude the locations that actually do not have edge transitions

when calculating the final DJ value. This would eliminate the artifacts that might

have been introduced when we insert the edge displacement data on no#transition

edges in order to perform the FFT.

Due to the DJ coherence constraint, we need to investigate the validity of each

new design when using the spectrum approach for jitter extraction. One good

thing is that the jitter spectrum is mainly determined by the device architecture

(such as the CDR and PLL structure) and the test setup (the test hardware and the

test pattern). Once a design is finalized, its jitter spectrum constitutes are constant.

Therefore, the validation only needs to be done once for every new design, which

makes it appealing.

4.3.4 Hybrid Approach

For standalone jitter testing equipment, the jitter is extracted on the background

and the users have very limited control over the extraction process. The test results

may vary from one instrument to another, depending on the jitter profiles in the

test signal. For example, if there is uncorrelated DJ, some instruments may bin it

to RJ and hence exaggerate RJ. Because we have the total control over the jitter

extraction process, when needed, our hybrid approach can use both the time do#

main and the frequency domain data to provide a more accurate test result

As discussed previously, we can extract the jitter components from either the

time domain or the frequency domain. Each approach has its advantages and dis#

advantages. If the test pattern length Lpattern is small, such as 20, we prefer the time

domain approach. The reasons are that we do not need to pay much attention to

the actual DJ frequencies and that folding 20#bit data are not too complicated.

However, in some special cases, the limitation of the time domain approach

may arise. As discussed in Chapter 4.3.2.2, the time domain approach cannot ex#

clude DJ frequencies below the folding frequency from RJ. When we fold the data

every 20 bits in 3Gbps applications, the lowest DJ frequency that can be excluded

from RJ is 150MHz (Ffold). This normally does not cause issues in our applications

because 150MHz and its multiples are the dominant DJ frequencies as shown in

the TJ spectrum in Figure 4#9. However, we did observe that in some special

cases there are DJ components with a frequency lower than Ffold. One example is

the reference clock bleeding through.

The reference clock (30MHz in our applications) may bleed into the transmitter

output through the loadboard ground or inside the device. Figure 4#11 captures in

such a case the edge histograms that are folded at 150MHz but contain 30MHz

DJ. In this case, the RJ distribution is not exactly Gaussian any more due to the DJ

leakage. If we still use the SD to represent the RJ, the RJ would be exaggerated.

110 4 Transmitter Jitter Extractions on ATE

To exclude the 30MHz DJ frequency from RJ in the time domain, we need Ffold

=30MHz. According to Equation (4#16), for 3Gbps applications we need the fold#

ing pattern length Lpattern=100. To build edge histograms, we need to capture at

least 2000#bit data, assuming capturing 20 cycles.

In production testing of massively manufactured devices, we cannot afford the

long test time required for the acquisition and the processing of such a large

amount of data.

We are hence forced to explore the more practical alternatives. In our case, in#

stead of lowering the folding frequency, we solve this problem by removing the

low frequency DJ from the edge displacement data before building edge histo#

grams.

We can actually set the specific low frequency DJ components in the jitter

spectrum to zero and then perform an inverse FFT to get the edge displacement

data that does not contain the low frequency DJ. Figure 4#12 plots an example of

the histograms where the low frequency DJ has been removed in the manner that

we just outlined.

After this removal step, the standard deviation of the histogram would much

more closely reflect the true RJ of the device as the main source of the DJ spill#

over into the actual RJ (commonly referred to in industry as “bleeding”) is at least

attenuated, if not completely removed.

This approach will be also useful when we cannot get accurate RJ measure#

ments using the frequency domain approach because DJ components are not co#

herent. We can use the hybrid approach to remove the uncorrelated jitter bins be#

fore calculating RJ.

Fig. 4�11. Histograms with low frequency DJ: SD = 4.08Ps

4.3. Jitter Extraction 111

Fig. 4�12. Histograms after removing low frequency DJ: RJ = SD = 1.70Ps

4.3.5 Limitations of Each Approach

As already mentioned, there are advantages and disadvantages in each of the two

jitter extraction approaches presented. It is useful to understand the advantages

and the disadvantages well, to be able to use the right method for the application at

hand.

To achieve a high accuracy, the frequency domain approach needs DJ compo#

nents to be constant and also be coherent with the FFT frequency resolution. Our

TJ spectrum demonstrates that this requirement is satisfied in our applications.

However, in some applications, the DJ frequencies may not be coherent and even

may vary from device to device. In this case, the frequency leakage may degrade

the jitter test accuracy if we only rely on the frequency domain approach.

The time domain approach requires that the major DJ frequencies are multiples

of the folding frequency in order to avoid DJ leakage. If we happen to have low

frequency DJ, the folding frequency then must be also low. The time domain

method can therefore require capture of a larger number of data bits and hence it

will definitely require longer test time.

Finally, please note that although the hybrid approach can save some test time

in the case of low frequency DJ, it still requires that the low frequency DJ compo#

nents are consistent so we can effectively deal with it.

112 4 Transmitter Jitter Extractions on ATE

Fig. 4�13. DJ leakage

To detect the possible DJ leakage and uncorrelated DJ, we also implement a

simple eye mask test. Figure 4#13 shows an example of captured waveform with

DJ leakage. We calculate the eye mask by extracting the zero#crossing width of

each edge and then overlay them together. The eye mask includes all kinds of jit#

ter components, including non#Gaussian RJ.

4.4 Experimental Results

To evaluate a jitter test solution used in mass production, throughput and accuracy

are the two most important criteria. We will now show that our experimental re#

sults demonstrate the superiority of our proposed solution in both throughput and

accuracy.

In the ATE environment, every millisecond adds to the cost of the product. As

discussed in Chapter 4#2, all the test parameters (pattern length, effective sampling

rate, number of samples, and undersampling rate) in our solution have been opti#

mized to keep the test time as short as possible while still capable of accurately

capturing all the information we need for the transmitter tests. For both 3Gbps and

6Gbps applications, we managed to finish the entire transmitter testing procedure

within only 100 milliseconds. The test time includes the data capture, the jitter ex#

traction and other transmitter tests, such as transmitter function and rising/falling

time tests.

Accuracy shows how close the measured jitter value is to its true value. The

true value is usually obtained using a bench instrument whose accuracy has been

verified and is widely accepted. Repeatability shows whether the test gives the

same or similar result from run to run and from time to time for the same device

while other conditions, such as supply voltages and temperature are the same. We

have conducted intensive exploration of the repeatability and accuracy of our solu#

tion.

4.4 Experimental Results 113

4.4.1 Bench Correlation

We have correlated our ATE jitter test results with the results obtained using the

commercially available jitter test instrument Tektronix JIT3. Tektronix JIT3 is fa#

vored by many test/application engineers for its excellent jitter extraction ability

and accuracy. Table 4#7 shows the results from 3 correlation devices. The ATE

data in this table records the jitter mean values from the time domain approach

with 20 runs for each device in a 3Gbps application. The repeatability of our ATE

solution is discussed later.

Table 4�7. Jitter Measurement Results between ATE and Bench

Device 1 Device 2 Device 3
Jitter/ Device

Bench ATE Bench ATE Bench ATE

RJ 1.9 1.92 2.05 1.83 2.02 1.81

DJ 19.9 21.5 27.3 29.4 25 26.5

TJ 40.8 48.38 49.3 55.02 45.8 51.84

As we can see, the RJ difference between the bench and ATE is within 0.2ps;

the DJ difference is within 3ps (DJ from ATE is consistently slightly higher than

that from the bench equipment). As we know, absolute correlation in numbers for

different jitter test solutions rarely happens. Considering this is done on ATE with

a completely different instrument and setup from the bench environment, the cor#

relation result is very good.

One reason for the higher DJ on ATE is that the signal path on ATE is longer

than that on bench. The longer signal path can introduce more ISI, and hence re#

sults in higher DJ on ATE. In addition, the different TJ extrapolation algorithms

between the bench and ATE also introduce difference in the final TJ report.

In Table 4#7, the three correlation devices generate similar amounts of jitter.

We further conduct the correlation between ATE and bench equipment using an

alternative reference clock to generate higher RJ and DJ. More details and correla#

tion data are presented in Chapter 4.4.4.

4.4.2 Correlating Two RJ Approaches

As we have discussed, the RJ can be extracted from both the time domain and the

frequency domain. The frequency domain approach is less pattern#dependent as it

does not involve building histograms. This approach is preferred on ATE if we

need to investigate the jitter performance with different test patterns. However, the

results from this approach need to be verified as the extraction process involves

data interpolation and jitter component replacement. These steps might introduce

114 4 Transmitter Jitter Extractions on ATE

errors as the assumptions for these steps may become invalid at a certain condi#

tion. In addition, the frequency domain approach requires that the DJ frequency

leakage is negligible, which may not be satisfied in some cases.

On the other hand, the time#domain approach is very straightforward. It can be

used to correlate the test results from the frequency domain. Figure 4#14 shows the

test results of a device with 20 runs on ATE, where RJ_Spectrum is the RJ value

from the frequency domain approach, and RJ_Timing is the RJ value from the

time domain approach. It demonstrates that both approaches exhibit good repeat#

ability and the correlation is also very good.

�

���

�

���

�

���

9

9��

� � 9 � � � = : A �� �� �� �9 �� �� �� �= �: �A ��
�
�
(�!
����

�
�

�
�
�
�

�7B/���
�.� �7B8����3

Fig. 4�14. RJ repeatability and correlation

We also evaluated the correlation between the two approaches across PVT cor#

ners. Figure 4#15 plots the jitter distribution across the PVT corners from both ap#

proaches, where the x#axis denotes the measured RJ values and the y#axis repre#

sents the number of hits. The difference between the two approaches is very small:

the measured jitter mean difference is only 0.2ps and distribution profiles are very

similar.

(a) RJ_Spectrum distribution (b) RJ_Timing distribution

Fig. 4�15. Jitter distribution across PVT corners

As we can see, the device#to#device correlation between the bench and the ATE

time domain approach is very good. On ATE, the time domain and frequency do#

Mean: 2.6ps

Min: 1.8ps

Max: 3.8ps

Mean: 2.4ps

Min: 1.6ps

Max: 3.7ps

4.4 Experimental Results 115

main approaches also correlate well from either multiple runs for a single device

or a larger number of devices across all conditions. These experiments confirm

the claim of the excellent accuracy and repeatability of our proposed jitter test

procedure.

4.4.3 Impact of Test Patterns

In our testing procedures presented so far, we use a 20#bit test pattern. Even

though the test pattern includes both high transition density and low transition

density data, the length of the pattern is short and the actual data in real applica#

tions has more variations. In order to make sure that the test results using the 20#

bit test pattern actually can represent the performance of the device in a real envi#

ronment, we now need to investigate the test pattern impact to jitter measurement

results.

Table 4#8 lists the jitter measurement results using the 20#bit test pattern, the

128#bit PRBS pattern discussed in Chapter 3 and a clock pattern (101010..) re#

spectively.

Table 4�8. Jitter Measurement Results Using Different Test Patterns

We take the measurements from an ATE loadboard. Instead of connecting the

transmitter output to the digitizer on ATE, we connect the transmitter outputs to

the bench instrument JIT3 to investigate the impacts of the test patterns. There are

three main benefits of this approach:

1)� It adopts the real production environment and hence can directly use the

results to evaluate our ATE solution

2)� Measurement results done on the “bench” equipment in general are more

acceptable and give more confidence level to the overall experiment re#

sults

3)� There is no need to develop ATE test program for new test patterns.

Jitter/Pattern 20#bit PRBS 1010

RJ 2.07 1.99 2.25

DJ 41.3 48.8 34.5

PJ 26.3 30.25 23.1

DCD 1.09 0.84 2.37

ISI 13.9 17.75 9.37

TJ 60.8 65.34 56.5

116 4 Transmitter Jitter Extractions on ATE

As we can see, the jitter numbers from all the three test patterns are very close.

The 20#bit test pattern generates a similar RJ value compared to the 128#bit PRBS

pattern or the clock pattern. It also generates moderate DJ: slightly lower (less

than 5ps) than the PRBS pattern and slightly higher than the clock pattern (the dif#

ference is caused by ISI). Therefore, the jitter measurements from the 20#bit test

pattern we used provide a good representation of the true jitter performance of the

device.

4.4.4 Impact of the Reference Clock

As shown in Figure 4#1 ## Transmitter Test Setup for Data Acquisition, the HSD

on ATE provides a reference clock to the transmitter PLL. The transmitter output

data is then synchronized by an internal transmitter clock generated by the PLL.

The quality of the reference clock can affect the jitter in the transmitter output sig#

nal.

To investigate the reference clock impact to the final transmitter jitter numbers,

instead of using the HSD clock, we create another clock using the AWG6000 on

the ATE as the reference clock to the transmitter. The AWG clock is generated by

directly storing consecutive zeros and ones in the AWG according to the transmit#

ter reference clock frequency requirement. We then measure the transmitter jitter

using the two different reference clocks. Table 4#9 shows the measurement results

using the bench equipment JIT3 and our jitter extraction techniques on ATE.

Table 4�9. Reference Clock Impacts to Transmitter Jitter Measurement

HSD clock AWG clock
Jitter / Device

Bench ATE Bench ATE

RJ 2.07 2.3 5.7 5.9

DJ 41.3 29.07 50.6 41.06

TJ 60.8 67.0 112.1 127.8

As we can see, using the reference clock generated by AWG (AWG clock), the

transmitter exhibits higher jitter than using the reference clock generated by an

HSD channel (HSD clock). One reason is that the AWG has much higher band#

width than the HSD channel, and hence more high frequency jitter in the AWG

clock transfers into the transmitter clock. Table 4#9 also further verifies our ATE

jitter extraction techniques: the ATE results correlate with the bench results under

different jitter levels.

The intrinsic jitter in reference clocks can be reduced by a clever design. A

method is presented in [130] to reduce jitter in clock signals at the cost of extra

hardware. It uses real#time averaging to combine multiple signals in order to pro#

4.4 Experimental Results 117

duce one output signal with much lower random jitter. The reduced jitter can be

expressed theoretically by

1

1

output

22

2

2

1 ... δδδ
δ

+++
=

where δoutput is the jitter of the output signal, 1 is the number of combined signals

and δi (i=1, 2, …, 1) is their jitter. The experimental result in [130] shows a 3x re#

duction in jitter (from 4ps to 1.3ps) by combing eight signals. This is very close to

the above theoretical analysis. Interestingly, similar to our CTL Gaussian genera#

tor from Chapter 6.2.2.3, it exploits the central limit theorem.

Even though a better reference clock can help report better transmitter jitter

numbers, in production we need to try to mimic the real application environment,

where the reference clock is usually provided by a crystal oscillator. We correlate

the ATE result (the reference clock is provided by an HSD on ATE) with the

bench evaluation board result where the reference clock is generated by a crystal

oscillator, and the results are very close.

4.4.5 Extending to 6 Gbps Applications

Although our previous discussion and experiments concentrate on 3Gbps applica#

tions, our approach applies to any data rates as long as the digitizer bandwidth is

sufficient. Because the bandwidth of our ATE instrument is now above 9 GHz, we

can extend our transmitter jitter test solution from 3Gbps applications to 6Gbps

applications.

For 6Gbps applications, we only need to adjust the reference clock and the un#

der#sampling clock, according to the data acquisition principles discussed in

Chapter 4#2 and the test setup parameters listed in Table 4#4. Figure 4#16 shows a

part of the 6Gbps waveform captured using our solution.

Based on the obtained waveform, we can then extract the jitter components us#

ing exactly the same scheme as discussed for 3G signals. Figure 4#17 shows the

measured jitter at 6Gbps data rate from one device with 20 runs, where the upper

part plots both DJ and RJ and the lower part plots RJ only.

At 6Gbps data rate, our solution still provides similar accuracy and repeatabil#

ity to that at 3G applications. As shown in Figure 4#17, the RJ variation from run

to run is within ±0.5ps. The measured jitter on ATE also correlates well with

bench results.

118 4 Transmitter Jitter Extractions on ATE

Fig. 4�16. Captured 6G waveform (only 45 bits shown)

�

�

��

��

��

��

� � 9 � � � = : A �� �� �� �9 �� �� �� �= �: �A ��

�
�	
	�
�

��
�
�

�7B/���
�.�
�7B8����3
�7

�

�

�

9

�

� � 9 � � � = : A �� �� �� �9 �� �� �� �= �: �A ��
�
�
(�!
����

�
�

�
�
�
�

�7B/���
�.� �7B8����3

Fig. 4�17. RJ and DJ at 6G data rate

4.5 Summary

In this chapter, we have presented a systematic approach to extract transmitter jit#

ter. By just capturing an adequate number of samples with adequate resolution, we

can achieve the whole transmitter testing within 100ms while keeping sub pico#

second jitter accuracy. We make it feasible to run the time#consuming jitter test in

an ATE environment with data rates up to 6Gbps.

4.5 Summary 119

To extract jitter, we first obtain the edge displacement data by comparing the

actual zero#crossing points with their ideal positions. Based on that edge dis#

placement information, we can easily extract the jitter characteristics from either

the time domain or the frequency domain. To guarantee accuracy while keeping

test time short, we further proposed a hybrid approach. Its main benefit is that it

prevents low frequency DJ from “bleeding” into RJ. Experimental data demon#

strates the validity of our approaches, as well as the ability to easily scale up to

higher frequencies.

5 Testing HSSIs with or without ATE

Instruments

Abstract This chapter introduces techniques that do not relay on high�speed

ATE instruments for both the transmitter and the receiver testing that is discussed

in Chapter 3 and Chapter 4, respectively. We describe the principles of the design

of FPGA�based test equipment, including Bit Error Rate Tester (BERT), pseudo�

random noise injection and channel emulation. Then, we provide the details of a

complete standalone tester that uses relays and/or MEMS�based switching de�

vices. The advantages and disadvantages of the state�of�the art in each such case

are presented.

As we discussed in Chapter 3 and Chapter 4, the ATE#based solutions greatly

speed#up the receiver jitter tolerance and transmitter jitter qualifications. However,

there are two major limitations in applying the ATE#based approaches for HSSI

qualifications.

The first one is the number of ATE instruments available. For each HSSI, we

need an AWG and a digitizer in order to do parallel testing. Nowadays, there are

some devices with a few tens or even more than 100 HSSIs. No ATE platform can

accommodate so many AWGs and Digitizers. In addition, the AWGs and Digitiz#

ers that can handle multiple GHz signals are very expensive. The AWG/Digitizer

approach is prohibitive from the cost point of view for devices with multiple

HSSIs.

The second limitation is the lack of high#speed instruments for the latest HSSI

receiver testing. AWG6000 is the best AWG on ATE from what we know in terms

of speed, but it can only perform jitter tolerance testing for devices with data rates

up to 3Gbps. Several ATE suppliers have provided production pin#card solutions

up to 6Gbps. However, for higher speed applications, such as 10Gbps and above,

systematic ATE solutions are not mature yet, even though there is lots of ongoing

research in that direction, e.g., [131].

In any case, because ATE equipment is very expensive and it takes long time to

amortize it in normal use, it is a fair assumption that the performance of ATE in#

struments used in production testing will be lagging behind the performance of the

devices developed using the state#of#the#art technology.

To overcome these limitations, this chapter presents HSSI testing techniques

that do not necessarily rely on ATE instruments. We first introduce common DFT

techniques in HSSIs. We then present our solutions that do not rely on ATE in#

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_5, © Springer Science+Business Media B.V. 2011

122 5 Testing HSSIs with or without ATE Instruments

struments and DFT techniques. We present an FPGA#based bit error detection

scheme for HSSI function validation and testing. We also propose a low#cost

loopback#based testing scheme, where a novel jitter injection method is proposed

using the latest phase delay lines. The loopback scheme can be applied to test

HSSIs with data rates up to 12.5Gbps. It is also suitable for multi#lane HSSI test#

ing. By using state#of#the#art high#speed relays, we combine the ATE solutions

and the loopback solution along with the FPGA#based BERT to provide a more

versatile scheme for HSSI validation and testing.

5.1 DFT in HSSIs

In order to qualify HSSIs, we need the speed of the test instruments to be higher

than the data rate of the DUT. While the HSSI data rate keeps increasing, the

availability of high#speed ATE instrument is always a bottleneck in HSSI testing.

In addition, the test cost is very high even there are high#speed instruments avail#

able.

A mixed#signal tester capable of testing Gigabit serial interfaces normally

costs millions of dollars. Many DFT techniques have been developed to ease the

instrument requirement and reduce test cost.

5.1.1 Internal BERT

A BERT consists of a pattern generator and an error detector. The pattern genera#

tor can generate one or several patterns. The pattern can be used as the input of the

transmitter.

The error detector can detect bit errors of the receiver after the received pattern

is aligned and synchronized. The pattern generator and the error detector are usu#

ally used together. One such application is based on driving the transmitter using

the pattern generator, sending the transmitter output to the input of the receiver,

and then using the error detector in the receiver to check for any bit errors gener#

ated in the process.

The pattern generator and the error detector can also been used separately. As

discussed in Chapter 3.3.2, a DFT#based error detector is used to check the bit er#

rors of the receiver while the pattern generator is not used; the input signal of the

receiver is provided by a high#speed ATE instrument # AWG. The cost of imple#

menting of a BERT is relatively low. Chapter 5.2 will give an example of the de#

tailed implementations.

5.1 DFT in HSSIs 123

5.1.2 Internal Loopback

In Chapter 3, we introduce techniques to test the receiver using a high#speed

AWG as the signal generator; for the transmitter testing techniques presented in

Chapter 4, we employ a high#bandwidth digitizer to capture the transmitter output,

from which the functionality is checked and the transmitter parameters are ex#

tracted. These approaches relay on high#end test instruments. By looping the

transmitter output back to the receiver input either internal or external, loopback

provides mechanisms to test an HSSI without the need of high#speed instruments.

Internal loopback is one of the most popular DFT techniques. Loopback testing

has been widely used to check the functionality of HSSIs [69], [111].

Internal loopback is implemented by looping internal nodes of the transmitter

to corresponding nodes in the receiver inside the HSSI. According to where the

signal is looped back, different loopback modes can be built. Figure 5#1 illustrates

major internal loopback paths:

Path 1 ## Near#end loopback mode, where the parallel data from the transmitter

digital logic is returned back to the digital logic after the deserializer in the re#

ceiver.

Path 2 ## Far#end loopback mode 1, where the transmitter pre#driver output is

fed back into the input of the deserializer.

Path 3 – Far#end loopback mode 2, where the transmitter driver output is fed

back to the receiver input.

Fig. 5�1. Internal Loopback modes

Internal loopback test paths can be constructed using a multiplex/de#multiplex.

As shown in Figure 5#2, a Mux can be used to choose the input signal from either

the normal signal or the test signal. The signal generated by the Pattern Generator

shown in Figure 3#27 is an example of the test signal. A De#Mux can be used to

send the output to either the normal signal path or the test signal path.

124 5 Testing HSSIs with or without ATE Instruments

Examples of test signal outputs include the signal paths to the Error Counter

shown in Figure 3#27, Path1, Path 2 and Path 3 shown in Figure 5#1. The Mux and

De#Mux are usually controlled independently in order to provide more flexibility

in testing configuration.

8�

�/�3����-��.

%�����
(�)���
���
	

�.> ��6�.>

8�

�/�3����+.
�.

%�����
(�)���
'
	�
	

Fig. 5�2. Mux and De#Mux

One possible issue associated with the Mux/De#mux approach is that the extra

circuitry may degrade the performance of the normal signal path, especially in the

high#speed serial data path. One alternative that can reduce/avoid the disturbance

is to tap the test signal from the normal signal path in a high impedance manner,

such as a big resistor. In this way, the signal in the test path might be weaker than

the signal in the normal path, but the integrity of the test signal is usually still

good for debugging and functionality verification.

5.1.3 Other DFT Techniques

As we are keeping pushing up the data rate, it is critical in verifying that the cir#

cuit performance of each sub#block in an HSSI meets expectations. As shown in

Fig. 2#4, an HSSI may only have a few pins for parallel data in/out, serial data

in/out and a reference clock. To debug and test internal blocks, such as the serial#

izer and the line driver, we need observability to critical internal nodes. Imple#

menting test buses, including analog and/or digital ones, is a DFT technique to ob#

serve the internal signals. Under this technique, the internal signals are muxed to

test buses and the test buses are de#muxed to device pins in test modes.

Some examples of critical internal signals include the transmitter and receiver

clocks, analog front end outputs, and equalizer outputs. The test buses are also

used to verify analog voltages/currents, such as critical bias points, bandgap refer#

ence voltages and loop filter voltages. The observed signals/voltages are very use#

ful during the debugging/root cause analysis and when verifying the devices

across a large sample of parts.

Boundary scan is a test technique that we can readily use to initiate the DFT

functions, such as setting the loopback mode and controlling what internal signals

are brought out to the test bus. Boundary scan, also known as Joint Test Action

Group (JTAG) or IEEE 1149, was introduced in early 1990s and is now widely

used for the test of electronic devices/systems at all stages of their lifecycle, as

well as for the debug and additional functionality such as in#system reprogram#

ming.

5.2 FPGA#based Bit Error Detection 125

IEEE 1149.6 standardizes the boundary scan structures and methods for ad#

vanced digital networks, especially for those that are AC#coupled, differential or

both [201]. The IEEE 1149.6 is suitable for HSSIs [202] and is hence widely im#

plemented in HSSI to facilitate testing and debugging.

In recent years, more DFT techniques have emerged to detect certain failure

mechanisms and process dependencies of devices. S. Sunter et al. proposed an un#

dersampling BIST technique in [44] to measure parameters that affect jitter toler#

ance in multi#Gbps serial interfaces. The technique requires the receiver to use a

reference clock that is slightly frequency#offset relative to the transmitter’s refer#

ence clock in a loopback mode. Using undersampling, an Unlimited Time Resolu#

tion Analysis module is used to extract high#frequency jitter, transition#density

dependent phase#shift, mean sampling position, sampling clock phase error and

pin#to#pin skew. The module can be implemented on chip without changing the

HSSI macro.

K#L Kim et al. proposes a duty cycle jitter measurement BIST in [200] to

evaluate the duty cycle distribution of a clock or data with alternating bit se#

quence. The duty cycle distribution of the signal can be observed from the gener#

ated histograms.

5.1.4 Limitations of DFTs

Even though DFT is becoming increasingly important in HSSIs, DFT is not a so#

lution for all. There are limitations associated with DFTs. First, the added circuitry

can degrade the performance of the device. Because we are pushing the speed en#

velop in order to get more bandwidth, many HSSI devices have very little per#

formance margin. Very small performance degradation might be problematic.

In addition, almost each DFT technique has its own limitations. For example,

for the widely used loopback testing technique, the transmitter and the receiver

work in synchronous mode in the loopback configuration, which is different from

in#field asynchronous applications; therefore, process variation and defect mecha#

nisms that affect both the transmitter and receiver might get masked

5.2 FPGA�based Bit Error Detection

In Chapter 3.3, we present two mechanisms to detect bit errors. The ATE based

solution utilizes high#speed digital channels on ATE to compare the receiver re#

covered parallel data with the expected data. There are two limitations for this ap#

proach. First, it is very difficult to achieve synchronization between the DUT and

ATE ## it depends on some special macros from the ATE vendor. In addition, it

requires many high#speed digital channels, which are expensive and sometimes

might not be available. Even though the DFT#based approach almost does not

126 5 Testing HSSIs with or without ATE Instruments

need any ATE instruments, it needs extra silicon area and design effort to imple#

ment and has to be planned before the HSSI is designed. In addition, once the de#

sign is finished, we can only choose the patterns that have been designed into the

DFT; we do not have the ability to program new patterns.

To overcome these limitations, we explore FPGA#based approaches. In recent

years, FPGAs have been widely used in testing applications because of their

strong capabilities in generating test patterns, providing high#speed interfaces and

performing configurable user#defined functions [53], [96], [135], [138]. One im#

portant FPGA application is Built#Off#Self#Test (BOST), where the test or BIST

circuit is implemented in an FPGA that is placed off the chip on the test fixture

[105].

One example of the BOST approach is presented by Sunter and Roy in [72],

where an FPGA on a DUT interface board is used to test HSSIs. This BOST ap#

proach implements three BIST techniques [44], [106], [107] in the FPGA. In this

section, we introduce a BOST approach for bit error detection [6]. Implemented in

an FPGA, our approach performs similar function as the DFT feature discussed in

Chapter 3.3.2 does, but the user has the freedom to set the test pattern. The solu#

tion does not need any ATE instrument or any DFT feature, and can be used to

test almost any HSSI.

As discussed in Chapter 2.1.2, the basic concept of BER measurement is as fol#

lows: the pattern generator sends a data stream to a DUT; the error detector con#

ducts a bit#by#bit comparison of the received signal from the DUT and records bit

errors. According to applications, a BER tester (BERT) can be either serial or

parallel.

5.2.1 Implementing a Serial BERT

A serial BERT sends serial bit sequences to a DUT and evaluates the output from

the DUT. The DUT can be any serial digital communication link. The structure of

a serial BERT is proposed and shown in Figure 5#3. In this scheme, the shift reg#

ister shift_reg1 and the gate XOR1 form a LFSR. As the pattern generator of the

serial BERT, the LFSR generates Pseudo Random Bit Sequences (PRBSs). These

sequences are then sent to the DUT.

5.2 FPGA#based Bit Error Detection 127

Fig. 5�3. Block diagram of a serial BERT

Before a measurement begins, the load/measure switch is set to be in load state

until the shift_reg2 is full loaded with the contents of the shift_reg1. The switch is

changed to measure state to start the BER measurement. The shift register

shift_reg2, the switch and the gate XOR2 are used for synchronization. They gen#

erate a reference pattern by replicating the PRBS from the shift_reg1, but delaying

the phase.

During the synchronization process, it is assumed that all the bits are correctly

transmitted. The gate XOR3 serves as a comparator. It compares the pattern from

the DUT to the reference pattern. If the test pattern is correctly transmitted by the

DUT, then the two inputs of XOR3 should be the same value in each clock cycle.

In a real BER measurement, the output of XOR3 is monitored every clock cycle:

if a ‘1’ is detected, a transmission error is counted; otherwise, the transmission is

error#free.

In a real communication system, the transmission errors are in forms of a sin#

gle#bit error, error bursts or bit slips. Bit slips result from a bit loss or a bit repeat.

If a bit slip happens, only the repeated or lost bits should be counted as errors. We

employ a mechanism to distinguish between error bursts and bit slips and to

eliminate false long#term errors. In Figure 5#3, the shift register shift_reg3 and the

gates XOR4 and XOR5 perform bit slip detection. The solution is based on the

fact that the addition or superimposition of two PRBSs shifted in phase relative to

each other produces another PRBS [108]. By monitoring the output of XOR3 and

XOR5, it can be determined whether a bit slip happens.

128 5 Testing HSSIs with or without ATE Instruments

5.2.2 Implementing a Parallel BERT

A parallel BERT is used to test communication interfaces that transmit parallel

data. The implementation of the parallel BERT is based on the serial BERT. We

build a k#bit parallel BERT using k independent serial BERTs, where k is the

width of the parallel data (bit0 ~ bit(k#1)).

The parallel BERT sends Pseudo Random Word Sequences (PRWSs) to the

DUT. In order to achieve randomness in the generated sequences, the independ#

ence of each serial BERT is important. Therefore, the lengths of the shift registers

in the serial BERTs should be different in order to be able to have different peri#

ods [109].

We need to remove the circuit redundancy when k independent serial BERTs

are directly put together to implement a parallel BERT. Each of the serial BERTs

has circuits for the load/measure switch control and bit slip detection. However,

the load/measure switches for the parallel data bits should change the state at the

same time. Therefore, only one of the k such control circuits is needed for the

switch control and word slip detection. Figure 5#4 shows the structure of the pro#

posed parallel BERT. In the design, the serial BERT control circuitry for bit0 is

used for the load/measure switch control and the word slip detection.

��
�
1����

�

C

8

��
�
'��/

��
�
/0��

��
 D����6�E

'�</

���
 D����6�E

/0�� ��
D����6�E
1����

<4�2�/���
��
��
 �4�

�1�

����.��
�4�

/���

�1�

1��4�

/�����

��������
*��&�C8��!��
4��6�"

�C8��!�"

�C84.
!�"

�C84.
!��
4��6�"

)4�2%
���
.��
�4�
�4�

Fig. 5�4. Block diagram of the parallel BERT

5.2 FPGA#based Bit Error Detection 129

5.2.3. HSSI Testing Demonstration

The BERT design has been built in VHDL, and can target almost any FPGA de#

vices. To demonstrate the functionality of the BERT, we use it to test the HSSI in

the Altera Mercury FPGA EP1M120F484C7 [10]. The Mercury HSSI can trans#

mit and receive high#speed serial data streams with speed up to 1.25Gbps. Figure

5#5 shows the setup used to test the HSSI.

&������		��
!/����������F

/0��$�4�����"

���
��
����������F

/0��$�4�����

<4�2

���3�

(-(+

'�

���

������
4�

�1�8

1��4�

��
��
�4�

'))

�4���

<4�2

2�
�

��4��

@��3��?4�2

3�����
�4�

)4�2�F

���
.��

�//-

�42�B�4�
�4�

:���

+,,6�$��

1��42�2

/�����

��
�

:���

��
�
��)��
*���+�

1��4�%/���

-�;��
�4�

�����,��

�4�����

:����

���42��

:����

1��42��

�����

�����

:���

��

��

��

��

��,���

Fig. 5�5. HSSI testing setup to verify BERT functionality

In the testing setup, the HSSI is built by instantiating the Altera Mercury Giga#

bit Transceiver MegaCore [110]. The data width of the BERT is 8 bits. The glue

logic is developed to directly interface the BERT and the HSSI. The Error/Slip In#

jection block inserts errors or word slips and could be used to test/verify the

BERT.

The 8B10B encoder encodes the 8#bit sequences to 10#bit sequences to ensure

enough bit transitions in the serial link for date recovery as discussed in Chapter

2.1.1. A FIFO is used to ensure that there is always data ready for transmission af#

ter a testing begins. Comma words are inserted at the start of the testing for word

alignment. The 8B10B decoder recovers the 8#bit PRWSs sent by the BERT.

The whole testing setup (the HSSI, BERT and the glue logic blocks) is imple#

mented in VHDL, targeting the EP1M120F484C7 device using Quartus II soft#

ware. The synthesized results are downloaded onto an Altera Mercury CDR Demo

board. The outputs of the transmitter are connected to the inputs of the receiver by

two Sub#Miniature type#A (SMA) cables. In this setup, the data signal is running

at 1.25Gbps. Higher data rates can be realized using higher performance FPGAs.

We obtained zero BER both from simulations and from running real tests on

the board when no error or bit slip was injected. We also captured the transmitter

130 5 Testing HSSIs with or without ATE Instruments

output signal using an oscilloscope and verified the sequence was what we ex#

pected.

When the slip was injected on the test board, the Error Detector detected bit er#

rors and the slip output was asserted. When only bit errors were injected, the

BERT reported bit errors but bit slip output was not asserted. The experiments that

we have performed demonstrate that even the relatively low#performance and in#

expensive Altera Mercury HSSI can successfully serialize the parallel data, trans#

mit the high#speed serial data over the cables, and recover the serial data sequence

back to the original parallel data. The experiment also verifies the FPGA#based bit

error detection scheme. Further experiments using the BERT will be demonstrated

in Chapter 6#3.

5.3 Loopback Testing with Jitter Injection

5.3.1 Testing Setup

In Chapter 3, we present an ATE#based HSSI receiver testing scheme, where con#

trollable amounts of jitter are injected through the AWG. This approach can suc#

cessfully test the jitter tolerance performance for data rates up to 3Gbps. For data

rates above 3Gbps, we cannot use the AWG#based jitter injection approach be#

cause the maximum sampling rate of the AWG is limited to 6Giga samples per

second.

To overcome the ATE instrument limitation, we propose a loopback testing

scheme. By looping the transmitter output back to the receiver input either internal

or external, loopback testing has been widely used to check the functionality of

HSSIs [69], [111].

The HSSI testing demonstrated in Chapter 5.2.3 is one example of the external

loopback. Traditional loopback approaches do not have the capability to qualify

design parameters, such as transmitter jitter and receiver jitter tolerance. Recent

research shows the directions that use external loopback to verify design parame#

ters. However, they need either special DFT features or extra special instrument

modules [98], [99].

Our approach does not rely on any DFT features or special instruments; it only

needs a few extra components that can fit into a testing loadboard. The approach is

especially attractive for testing multiple#lane HSSIs or HSSIs with data rates

above 6Gbps, where mature ATE solutions are not available. Figure 5#6 shows the

block diagram of the proposed loopback testing. With this approach, we inject a

controllable amount of jitter to the output of the transmitter signal using a phase

delay line, and then feed the signal back (the operation is often denoted in practice

with a verb “to loop back”) to the input of the receiver. When the injected jitter is

below a certain level, the receiver should be able to recover the transmitted data.

5.3 Loopback Testing with Jitter Injection 131

Otherwise, the device is defective. The details of the phase delay based jitter injec#

tion are discussed in Chapter 5.3.2.

Fig. 5�6. Loopback#based jitter testing

In the above loopback testing scheme, we use the FPGA#based BERT dis#

cussed previously. The Pattern Generator in the FPGA provides parallel data to

the transmitter. The Error Detector compares the recovered data with the trans#

mitted data and records errors. The FPGA may also need to provide some glue

logic. The FPGA#based BERT is not needed if we can still detect bit errors using

the digital channels on ATE [2] or DFT features if they are available.

5.3.2 Phase Delay Based jitter Injection

A delay line or a phase delay line is a component where the input signal reaches

the output of the component after a known period of time has elapsed [112]. The

elapsed time or delay time ranges from femtoseconds to microseconds. Delay lines

or phase delay lines have been widely used in electronics and derivative fields

such as telecommunications and testing [97], [133].

Early delay lines were implemented with a RC#based ramp generator and a

comparator that transitioned the delay line output when the ramp generator

reached a certain voltage level. Calibration was done at the factory by blowing a

serial fuses until the desired delay was achieved. The RC#based delay lines nor#

mally did not have temperature compensation provision. More sophisticated delay

132 5 Testing HSSIs with or without ATE Instruments

lines then were developed using a VCDL in conjunction with a compensation cir#

cuit to reduce delay variation across process, voltage and temperature [113].

Today, ultra#wideband phase delay lines have been developed using III#V tech#

nologies, such as InGap or InP Heterostructure Bipolar Transistor (HBT) devices

[116].

InGap HBT is a proven reliable technology that has been widely used in large

volume wireless applications. It exhibits characteristics such as high cutoff fre#

quency, high linearity and temperature stability, suitable for ultra wideband device

design. InP HBT has the highest cutoff frequency among the III#V available tech#

nologies [114], [115]. One unique product on the market is the phase delay line

iT4036. It was developed by GigOptix [39] using high speed HBT Emitter Cou#

pled Logic (ECL) topology realized in InP [116].

The iT4036 device is ultra#wideband, operating at speeds up to 12.5Gbps for

data signals and 11.7GHz for clock signals. It can provide tunable phase delay up

to 120#ps in a single device. Delay control can be either differential or single#

ended and the delay control bandwidth is up to 1GHz. Its output amplitude is

400mVpp in single#ended mode and 800mVpp in differential mode. Figure 5#7

shows the device diagram of the iT4036 [116].

Fig. 5�7. Block diagram of iT4036

Traditionally, a phase delay line is only used to provide a constant delay con#

trolled by a constant voltage in the delay control input. Considering the high

bandwidth both in the signal path and the delay control path, we propose using the

phase delay line for jitter injection to test HSSIs.

The main idea here is to apply an AC signal to the delay control pins. The delay

for each data edge may be different, depending on the amplitude of the control

signal at the instance of each edge. This is equivalent to injecting deterministic jit#

ter to the input signal. Because the delay control bandwidth is up to 1GHz, we can

inject DJ with frequencies up to a few hundreds MHz, suitable for HSSI jitter test#

ing and characterization.

In our proposed jitter injection scheme, we connect the HSSI transmitter output

to the input of the delay line. Then the output of the delay line is connected to the

5.3 Loopback Testing with Jitter Injection 133

input of the HSSI receiver. Jitter is injected by connecting an AC control signal to

its delay control pins Vcn and Vcp to dynamically control the phase delay be#

tween the input signal and output signal. By adjusting the amplitude of the delay

control signal, we can control the DJ injected to the data signal.

Figure 5#8 shows the relationship between the delay control signal and the

phase delay [116]. The relationship between the delay control voltage and the

phase delay is very close to linear between the 20ps to 110ps delay range. There#

fore, we can conveniently control the amount of injected DJ through adjusting the

amplitude of the AC signal on the delay control pins in this linear range, and the

following discussion refers to this range.

Fig. 5�8. Delay vs. delay control

To control the injected TJ in a linear manner, we need to primarily consider the

RJ degradation issue. The RJ degradation is the additional RJ source introduced

by the phase delay line. It can be straightforwardly characterized by obtaining the

difference in RJ between the input signal and the output signal of the phase delay

line. Figure 5#9 shows the RJ degradation for 12.5Gbps NRZ, 10.7Gbps NRZ and

12.5Gbps clock signals at different control voltage levels with Vcp tied to Vcref

[116].

134 5 Testing HSSIs with or without ATE Instruments

Fig. 5�9. RJ degradation vs. Vcm (courtesy of GigOptix)

Because the phase delay line shows a linear relationship between the injected

DJ and the delay control magnitude, the RJ degradation needs to be constant in

order to also keep a constant offset between the injected DJ and TJ. As discussed

in Chapter 3.4, a constant offset between injected DJ (or PJ) and TJ, such as the

one shown in Figure 3#17, enables us to translate TJ tolerance testing into DJ/PJ

tolerance testing. To maintain a constant offset between the injected DJ and TJ,

according to Figure 5#9, a clock signal is preferred when we use the phase delay

based new jitter injection technique at the 10Gbps data rate range.

5.3.3 Experimental Results

We demonstrate the phase delay line#based jitter injection technique on an iT4036

evaluation board as shown in Figure 5#10. The input and output signals of the de#

lay line on the evaluation board are routed to SMA connectors. In our experi#

ments, we connect the transmitter output of the DUT to the input of the delay line

through cables and then capture the output of the delay line using the digitizer

available on ATE (the digitizer was discussed in Chapter 4). The delay control

signal is provided by a digital channel on the ATE. Figure 5#11 shows the test

setup. The digital channel provides a clock signal and the injected jitter can be ad#

justed by changing the Voh and Vol levels of the digital channel. The injected jitter

frequency can also be adjusted according to test requirements.

5.3 Loopback Testing with Jitter Injection 135

Fig. 5�10. Phase delay line iT4036 evaluation board (courtesy of GigOptix)

Fig. 5�11. Phase delay evaluation setup

Figure 5#12 plots the captured waveform of a 6 Gbps NRZ data signal from the

output of the delay line with 400 samples for each bit. As we can see, the output

signal is very clean. The rise/fall time is very short as specified in the delay line

specification. The plot shows the output amplitude around 900mVpp, which is

also close to the delay line specification (800mVpp).

Fig. 5�12. The transmitter output waveform after the delay line

136 5 Testing HSSIs with or without ATE Instruments

Fig. 5�13. Extracted DJ profile from captured data signal.

Figure 5#13 plots the extracted DJ profile from the captured data signal using

the transmitter jitter extraction scheme proposed in Chapter 4.3. In the 400#bit

6Gbps data signal, the DJ profile repeats twice. Therefore, the DJ dominant fre#

quency is 30MHz. As we can see from the captured waveform, the DJ profile is

close to a square wave, which is the profile of the jitter source – a 30 MHz clock

signal.

There is a minor distortion at the second half of the high logic level, which is

likely caused by the intrinsic PJ of the device. The extracted DJ profile contains

all DJ components, including the injected DJ and the device intrinsic DJ. As dis#

cussed in Chapter 4.3.4, the device also has an intrinsic PJ component at 30 MHz.

This is why the DJ profile in Figure 5#13 is not exactly the same square waveform

as we inject.

Figure 5#14 shows the extracted DJ values at different amplitude levels of the

delay control signal. As we can see, we have an almost linear control of the in#

jected DJ.

We can calibrate the DJ and TJ of the test signal at different delay control am#

plitudes using either bench equipment or the digitizer on ATE. Then we can use

the same jitter tolerance extrapolation algorithm presented in Chapter 3.4 to accel#

erate the jitter tolerance testing.

The difference in the extrapolation process is that instead of varying the in#

jected PJ to vary the TJ of the test signal discussed in Chapter 3, we vary the mag#

nitude of the delay control to vary the TJ of the test signal in the proposed loop#

back testing scheme.

5.4 A Versatile HSSI Testing Scheme 137

�

��

��

��

:�

���

���

���

���

�:�

6��� 6���� 6��� 6����

�����	
��
�-
	.�
����"
���	���
���
	
�,�

/
�

�
�
�
�

Fig. 5�14. Extracted DJ from the phase delay output

According to Figure 5#9, the clock pattern is preferred in the test setup because

it has a constant RJ degradation over a wide range of delay control amplitudes and

hence can keep a constant offset between the injected DJ and TJ. However, NRZ

data signals can still be used in some applications, such as pass/fail testing, as we

still can control the amount of injected TJ. Because the control is not linear for

NRZ signals above 10Gbps, we cannot use NRZ signals for jitter tolerance charac#

terization, where we need to report a jitter tolerance number as discussed in Chap#

ter 3.4.2.

5.4 A Versatile HSSI Testing Scheme

In Chapter 3 and Chapter 4, we introduce ATE based HSSI test approaches. To

overcome some limitations of the ATE#based solutions, we present an external

loopback based testing solution using a new jitter injection technique in Chapter

5.3.

By utilizing high#speed relays, we combine all the solutions in Chapters 3, 4

and 5.3, and propose a versatile scheme in this section. The scheme provides more

functionality and flexibility in post#silicon validation, characterization, testing and

debugging of HSSIs. Figure 5#15 shows the block diagram of the proposed

scheme.

138 5 Testing HSSIs with or without ATE Instruments

Fig. 5�15. A versatile scheme for HSSI validation and test – block diagram of the proposed infra#

structure

5.4.1 Major Functions of our Setup

In Figure 5#15, the phase delay line and relays are incorporated on the testing

loadboard. The relays are connected to either the phase delay line or SMA connec#

tors. By changing the cable connections and controlling the relays, we can config#

ure the proposed setup to realize different functions for testing, validation and de#

bugging of HSSIs.

5.4.1.1 Testing, Validation and Debugging on ATE

In this configuration, the transmitter output is connected to the digitizer on the

ATE, and the output of the AWG on the ATE is connected to the receiver input.

Cables are used to:

•� Connect SMA1 to SMP1, and SMA2 to SMP2

•� Connect SMA3 to SMP3, and SMA4 to SMP4

5.4 A Versatile HSSI Testing Scheme 139

This is the test setup that we mainly used tests undertaken in Chapters 3 and 4.

Figure 5#16 plots this test configuration. The whole HSSI functionality and most

design specifications can be qualified in less than one second in production [3],

[4].

With this approach, we can accurately control the parameters in the receiver

test signal, such as injected jitter, amplitude and test patterns. We can also capture

the transmitter output waveform and extract transmitter parameters in a few tens

of milliseconds.

Fig. 5�16. Testing HSSIs on ATE

The ATE#based solution can also facilitate the HSSI validation and debugging

process. For example, if we find receiver jitter tolerance is too low, we can

quickly debug it by measuring the jitter tolerance at different conditions, such as

varying the amplitude of the receiver input signal, changing the equalizer and PLL

settings, turning on/off the transmitter block, sweeping supplying voltages, etc. All

the measurement results are stored automatically and can be analyzed using ATE

software. Using the ATE#based configuration, these kinds of debugging and vali#

dation procedures can be done more than 1000 times faster than traditional bench

approaches [3].

5.4.1.2 External Loopback with Jitter Injection

This is the test setup shown in Figure 5#6 and discussed in Chapter 5.3. In the

loopback configuration, Rx CNTL and Tx CNTL are set to low (the relays switch

to lower throw). Delay Control can be connected to a digital channel on ATE or

another resource to control injected jitter. Cables are used to:

•� Connect SMA1 to SMA5, and SMA2 to SMA6

•� Connect SMA3 to SMA7, and SMA4 to SMA8

140 5 Testing HSSIs with or without ATE Instruments

5.4.1.3 Other Configurations

Few other configurations are possible using the proposed infrastructure, and we

outline them here briefly.

1) External loopback without jitter injection: the DUT transmitter output is di#

rectly connected to the input of receiver. Cables are used to connect SMA1 to

SMA3, and SMA2 to SMA4. This provides a quick way to check the functionality

of the HSSI.

��3�
����

�&�

8G

�G

#((�

�G�

�G'

8G'

8G�

��3$6
���2�����0

'$�
������0

����0

�4�
�4�

/�@:

/�@=
/�'�

/�'�

��3$6
���2�����0

��3�
��

�$�����

Fig. 5�17. Characterizing the relay and the phase delay using the digitizer

2)� Characterization of Relay and Delay line using the Digitizer. The following

lists the control settings and cable connections. Figure 5#17 plots the simpli#

fied connections of this configuration.

•� Set Rx CNTL and Tx CNTL to low

•� Connect SMA1 to SMA5, and SMA2 to SMA6

•� Connect SMA7 to SMP2, and SMA8 to SMP1

3)� Characterization of relays only using the digitizer. The following list the con#

trol settings and cable connections. Figure 5#18 plots the connections of this

configuration.

•� Set Tx CNTL to high

•� Connect SMA1 to SMA5, and SMA2 to SMA6

5.4 A Versatile HSSI Testing Scheme 141

•� Connect SMA9 to SMP1, and SMA10 to SMP2

Fig. 5�18. Characterizing the relay using the digitizer

4)� Characterization of relays only or both the relay and the delay line using ex�

ternal instruments: Instead of connecting to the Digitizer in 2) and 3), we can

connect bench instruments to calibrate the relay and delay line.

In the above configurations, RF cables are used in order to maximize the con#

figuration flexibility for validation, testing, debugging and calibration. This is very

beneficial when we are in the debugging stage for a validation or test solution,

such as evaluating the relay and the phase delay line. Once the solution is final#

ized, many cables can be replaced by PCB traces.

5.4.2 High Speed Relays

In the proposed versatile testing scheme, high#speed relays are used to switch be#

tween instruments (ATE or bench equipment) and loopback paths. When investi#

gating signals with data rates at 6Gbps and above, it is challenging to maintain the

signal integrity with relays inserted in the signal paths. One requirement for the re#

lay is the bandwidth: it needs to be high enough to keep the signal characteristics

after the signal passes through the relay.

There are a few kinds of relay technologies and each technology has its advan#

tages and disadvantages in bandwidth, size, cost, reliability and life expectancy. A

thorough survey of the relay technologies can be found in [117]. Considering we

need to put the relays on the loadboard for high#speed applications, size and

bandwidth are two major considerations. We concentrate our experiments on two

kinds of relays: Micro#Electro#Mechanical System (MEMS) relays and electro#

mechanic relays.

MEMS relays have received a lot of attention lately because of its high band#

width and small size [118]. One disadvantage of the MEMS relays is that they are

susceptible to damage from high in#rush currents or hot switching. When we

started investigating the relay applications in multiple#Gigabit data applications,

TeraVicta was developing a new MEMS relay TT1244. This relay offers unparal#

lel RF performance in bandwidth (DC to 26.5GHz), insertion loss, and linearity.

142 5 Testing HSSIs with or without ATE Instruments

Figure 5#19 illustrates the block diagram of the MEMS and Figure 5#20 shows its

measured performance by TeraVicta [119].

Fig. 5�19. TT1244 functional block diagram

Fig. 5�20. TT1244 measured performance by TeraVicta

While the data rate of the HSSIs is continuing to increase and has reached

above 10 Gbps, this switch provides the means for us to address signal integrity

issues that are inherently very difficult to solve [120]. In addition, this switch has a

very small footprint: it uses a standard surface#mount micro BGA chip scale pack#

age.

We therefore explored how TeraVicta’s DC to 26.5 GHz switches can enable

us to extend our test system’s capabilities and keep pace with the increased fre#

quency requirements of our new products. While TeraVicta was still developing

the prototype of this switch, we developed our loadboard to include this switch

5.4 A Versatile HSSI Testing Scheme 143

and its control circuitry so we can evaluate the new product in a real ATE envi#

ronment.

For MEMS switches, the control voltage is usually higher than that of other

types of relays. The DC gate control voltage to CNTL1 and CNTL2 of TT1244

needs to be between 66v to 67v. Our ATE and loadboard do not have such a high

voltage.

Therefore, we used a charge pump to generate the high control voltage. Figure

5#21 is the charge pump circuitry. The charge pump TT6820 only needs a power

supply between 3v to 5v, which can be provided by any tester. The input signals

(In1~In6) can come from any digital channels of the ATE or from an FPGA if no

ATE instruments are available. The output signals (C1TL1~C1TL6) can directly

control the MEMS relays.

Fig. 5�21. Charge#pump circuit for the MEMS

When the TT1244 prototype was available, we were the first user evaluating

the MEMS switch on a real loadboard. We put the switch in a 6Gbps signal path

and compared the signal integrity of the path to the same length signal path with#

out a switch. We did not observe any noticeable signal integrity degradation – the

switch is nearly transparent.

However, we can easily notice some issues that hamper the usage of MEMS.

The major one is the reliability. The MEMS relay worked well at the beginning,

but it stopped working after a number of switching cycles. We carefully controlled

our program to avoid the possible damage advised by the MEMS provider, but the

MEMS relay still could get damaged. Even though the MEMS TT1244 product

did not succeed, the performance it exhibited was very promising. MEMS would

be a good direction to explore for applications with data rates at 10Gbps and

above.

Currently, the data rate of the mainstream HSSI products is still below 10Gbps.

Considering the issues in the MEMS switches and the current bandwidth require#

ments, we choose a hermetic electro#mechanic relay, Teledyne GRF300, for HSSI

144 5 Testing HSSIs with or without ATE Instruments

product testing after comparing performance, reliability and size [121]. Figure 5#

22 shows the schematic and recommended layout [122]. The relay features a

unique ground shield for each lead to ensure excellent isolation. The unique

ground connection pushes the RF performance up into the 10Gbps data rates for

signal integrity applications. In addition, its ultra#miniature size, high reliability

and surface mount features make it a perfect choice for current HSSI testing appli#

cations.

 (a) Schematic (b) Layout

Fig. 5�22. GRF300 relay (Courtesy of Teledyne)

Figure 5#23 shows the typical signal integrity characteristics of GRF300 [121].

The eye diagram was captured by Teledyne using the Agilent AG86100 Digital

Communication Analyzer. The data rate was set to 10Gbps and a 2
31

#1 PRBS sig#

nal was used. The relay was mounted on an evaluation board. In the measurement,

two 3#foot long RF cables were used to connect the evaluation board and the ana#

lyzer.

Fig. 5�23. Typical signal integrity performance at 10Gbps (courtesy of Teledyne)

We evaluated the signal integrity performance of the relay in our ATE envi#

ronment. Figure 5#24 shows the evaluation setup. In this setup, the differential

5.4 A Versatile HSSI Testing Scheme 145

output signals of the transmitter are connected to the poles of the relay through RF

cables.

Fig. 5�24. GRF300 relay evaluation setup

The signals are then routed to a Gigabit digitizer on the ATE through the relay.

Finally, the digitizer is used to capture the RF signal and extract the required sig#

nal integrity parameters, as we have already discussed in sufficient detail in Chap#

ter 4.

(a) Without relay in the signal path

(b)With Relay inserted in the signal path

Fig. 5�25. Captured waveforms on ATE

In our setup, we set the data rate of our device to its maximum – 6Gbps. We

capture the waveforms of the transmitter output after it passes through different

signal paths. Figure 5#25 shows the captured waveforms with the relay inserted

146 5 Testing HSSIs with or without ATE Instruments

and bypassed respectively in the signal path. Table 5#1 lists the extracted signal

parameters after the transmitter output passes through different signal paths.

As we can see, the signal still keeps similar characteristics after passing

through an extra 50#inch cable and the relay compared to the signal passing

through only an extra 20#inch cable.

The slight rising time increase is more likely caused by the extra length cable

according to the difference between the original signal and the signal passing

through an extra 20#inch cable.

Table 5�1. 6Gbps Signal Parameters in Different Signal Paths.

Signal Path

 /Parameters
Original Extra 20#inch cable

Extra 50#inch cable

+ Relay

Amplitude (mV) 610 595 572

Rise (ps) 60 63.4 71.2

Fall (ps) 64 66.3 75.5

DJ (ps) 11.2 19.1 21.5

RJ (ps) 1.8 1.8 1.9

5.4.3 Limitations and Further Considerations

The proposed loopback testing scheme from this chapter removes the need for ex#

pensive high#speed ATE instruments, and is useful even when the ATE is being

employed as well. The proposed infrastructure is especially suitable for multiple#

line HSSI testing due to its low cost. Low cost testing has always been attractive

the industry [79], [99], [137], and is a must for producing competitive, high#end

products. Our scheme also overcomes the ATE instrument limitation for data rates

above 6Gbps. However, there are also limitations and some special considerations

need to be taken.

In the delay#line based loopback approach, one thing we need to consider is the

amount of jitter that needs to be injected. In [3], we set the amount of injected jit#

ter using a jitter extrapolation algorithm based on calibrated test signals. In the

loopback approach, because the transmitter jitter may vary from device to device,

the jitter in the receiver test signal is not constant anymore even with the same

amount of injected jitter.

The loopback test cannot differentiate between the transmitter failure and re#

ceiver failure. To minimize the possibility of skipping bad devices or failing good

devices, we need to characterize the transmitter jitter performance in order to set a

proper amount of injected jitter. We can achieve a more accurate testing by using

a gold device or by measuring the transmitter jitter and then setting the injected jit#

5.4 A Versatile HSSI Testing Scheme 147

ter accordingly. However, the test setup and the test program in both cases become

complicated.

In addition, when implementing the loopback test in production, we also have

to take the following into considerations:

•� When multiple loadboards are used in a mass production environment, it

is required to characterize the delay line to make sure that the characteris#

tics variations of all the delay lines are within a permitted range.

•� We need to calibrate the delay line on a regular basis to make sure its

performance does not drift over time until the confidence to the new

component is established.

•� We need to characterize the delay line to get its delay control voltage vs.

injected jitter relationship for each data pattern we plan to use.

•� We still need to explore more sophisticated relays, such as MEMS for

data rates above 10Gbps to minimize the signal integrity degradation.

For the FPGA#based bit error detection scheme discussed in Chapter 5.2, one

drawback is that an FPGA device or board is needed if the current board does not

have one.

However, it is important to notice that, in long term, the FPGAs can provide

more testing functionality than just acting as a BERT. The BERT only takes a

small portion of the FPGA resources [6]. We can then implement new testing al#

gorithms or reduce the cost of the current testing solutions using the remaining

FPGA resources. It is important to notice that the modern FPGAs are well capable

of providing the necessary test and characterization circuitry, or even software run

on “soft” processor cores at speeds that are sufficient for high#end circuitry under

test.

6 BER Testing Under .oise

Abstract To test BER under noise, we need a BERT and a noise generator. In

further considerations, we will build on the BERT design already presented in

Chapter 5, Section 5�1. This chapter introduces how to implement additive white

Gaussian noise generators. Following the description of the underlying algo�

rithms in Section 6�1, we propose a complete design in Section 6�2. As in some

applications the distributions with long tail are a must, we show how one can

achieve the excellent performance, both in the terms of the fidelity of the distribu�

tion to the Gaussian one, as well as the achievable tail length. We also present an

application example for our noise generator.

In the jitter tolerance testing, we stress the receiver using signals with control#

lable amounts of injected jitter. We accelerate the qualification of the jitter toler#

ance characteristics at 10#12 BER level by evaluating it at higher BER levels. Simi#

lar to the jitter tolerance testing, we can stress the system with controllable

amounts of amplitude noise to test the BER performance under noise conditions.

In jitter tolerance testing, one challenge is how to inject controllable amounts of

jitter to the test signals. For BER testing under noise, the challenge becomes de#

veloping a noise generator with performance that meets test requirements. This

chapter presents a new method of implementing AWGN generator/generators in

FPGAs. The detailed implementation of the AWGN core, its performance and ap#

plications are discussed in this chapter.

6.1 AWG. Generation Overview

Existing methods of AWGN generation are based on a variety of statistical tech#

niques. After reviewing existing methods and their drawbacks, we present our

method.

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_6, © Springer Science+Business Media B.V. 2011

150 6 BER Testing Under Noise

6.1.1 Existing Methods

6.1.1.1 CLT Method

The CLT method is based on Central Limit Theorem (CLT). According to CLT, if

X is a random real variable of mean xm and standard deviation xδ , the random

variable 1X defined as

1
X

x

1
δ

1
= ∑

−

=

−
1

0

)(
1

i

xi mx

tends toward the Gaussian distribution of zero mean and the unity standard devia#

tion, when 1 tends toward infinity. In the above expression, ix , are 1 independ#

ent instances of the variable X.

Traditionally, the CLT method is implemented using an accumulator. The

AWGN generator in [64] is based on this method. This generator consists of four

M#sequence generators, three adders and an accumulator. The M#sequence gen#

erators are Linear Feedback Shift Registers (LFSRs) of lengths 28, 29, 30 and 31.

By treating the last 10 bits of the shift register as a signed binary integer, a random

number is generated. The AWGN generator produces one output every 12 system

clock cycles by adding 48 10#bit random numbers. The output rate is 1 MHz.

If only the CLT method is used to generate Gaussian distribution, the conver#

gence is very slow. Numerous independent random variables are needed to im#

plement a high accuracy AWGN generator. In this case, either a very larger num#

ber of LFSRs and adders are needed or the output rate is very slow. So the CLT

method is not suitable for high#speed applications.

6.1.1.2 Box�Muller Method

As a key tool in statistics, the Box#Muller algorithm can be applied to generate

Gaussian distribution. This generator is shown in Algorithm 6#1.

6.1 AWGN Generation Overview 151

This method has the advantage of maintaining a one#to#one correspondence be#

tween the random numbers used and the Gaussian random variables produced,

with every group of random values generated in step 1 producing one output in

step 3 in Algorithm 6#1.

An FPGA implementation of the Box#Muller method is proposed in [47],

where implementing ln and cos functions requires careful considerations regarding

the number of recursions and relative position of points, as well as the precision of

implementation. The efficient implementation is therefore not straightforward.

Another disadvantage of the Box#Muller method is that it is not suitable for

generating high maximum output values. As indicated in Algorithm 6#1, the

maximum output value of n is determined by f(x), as g(x) is bounded to the inter#

val [# 2 , + 2].

Since f approaches infinity when the value of x1 is close to zero, the maximum

output value of n is determined by the smallest value of x1. We express x1 as 2
#t
,

where t is the number of bits used to represent x1 (all bits represent the fractional

part). When t = 32, the maximum output value of the generator is around 6.7;

while t increases to 64, the maximum value can only increase to 9.4. Obviously,

the hardware cost is high and the output speed is limited if we need to achieve

good tail distribution using the Box#Muller method.

6.1.1.3 Mixed Method

A mixed method used to implement an AWGN generator in FPGAs is proposed in

[47]. This method is based on the combination of the Box#Muller algorithm and

Central Limit Theorem. The detailed hardware implementation and performance

evaluation of the generator are presented in [47].

In terms of speed and accuracy, the proposed implementation is very efficient

and has been adopted by industry to generate AWGN [60], [148]. However, the

1. Generate two independent random values 1x and 2x , uniformly distrib#

uted over [0,1].

2. Obtain:

 f (
1x) =)ln(1x−

 g(
2x) = 2 cos(2π 2x)

3. Generate Gaussian variable

n = f (
1x) g(

2x)

Algorithm 6�1: Box�Muller Method

152 6 BER Testing Under Noise

efficient implementation of the Box#Muller method is not straightforward as dis#

cussed in Chapter 6.1.1.2. Moreover, the implementation of Central Limit Theo#

rem in [47] slows down the output rate by a factor of 1, where 1 is the number of

iterations; therefore, the mixed method decreases the AWGN output rate. For the

generator proposed in [47], when 1=4, the output rate is only 24.5 MHz, while its

clock rate reaches 98 MHz.

6.1.1.4 Cellular Automata Based Method

The above existing methods all use LFSRs to produce pseudo#random numbers.

LFSRs are very popular and effective for pseudo#random number generation, and

have long been relied for generation of random numbers [149], [150]. However,

when many sequences of random numbers are needed, the area consumed by

LFSRs is large.

One good alternative is in using cellular automata to achieve a large variety of

random number generators. In 1986, Wolfram [151] suggested that cellular auto#

mata could be used for efficient hardware implementation for random number

generators. The generated random numbers can be transformed to Gaussian vari#

ables [152].

Cellular automata can be thought of as dynamic systems, discrete in both time

and space [153]. The principle of cellular automata is that the next value of each

register is calculated by a Boolean function from the current values of immediate

neighbours and itself.

The Boolean transfer functions are referred to as the computation rules. Such

rules have been categorized in a seminal work by Wolfram [153]. One of the set#

ups that can generate m#sequences is a careful mix of Rule 90 and Rule 150 as

shown bellow:

Rule − 90 : ai(t +1) = ai−1(t)⊕ ai+1(t)

Rule −150 : ai(t +1) = ai−1(t)⊕ ai(t)⊕ ai+1(t)

where)(tai is the content of register i at time t. The positions of Rule#90 and

Rule#150 in a register array can be determined according to [154], [155].

Due to its simplicity and regularity of design, cellular automata have been

widely used for uniformly distributed random number generators [156], [157],

[158], [159]. The transformation from uniform variables to Gaussian variables can

be done based on CLT method. Another method for this transformation is illus#

trated in Figure 6#1 [152].

In Figure 6#1, an n#bit uniform variable is compared with the numbers in a

Gaussian Cumulative Distribution Function (CDF) conversion table and then en#

coded to an l#bit Gaussian random number.

6.1 AWGN Generation Overview 153

Fig. 6�1. Transformation from Random Variables to Gaussian Variables

This process is equivalent to grouping all of the points in the area under a

Gaussian PDF to several columns, followed by randomly picking a point, and sub#

stituting the points with the one number that is the average value of the numbers in

the column.

However, this transformation is usually difficult to implement for applications

where high speed and high precision are required.

6.1.1.5 Analog Method

Even though the above digital implementations of AWGN generators have been

successfully realized, converting these multi#bit digital signals to analog signals is

challenging – it requires a high performance digital#to#analog converter.

An alternative is to utilize fully analog generators. Analog Gaussian noise gen#

erators are typically realized by low#pass filtering the output of a LFSR or by am#

plifying the thermal noise of a resistor. These kinds of generators are usually not

programmable and not accurate for low BER testing.

In [66], a programmable analog Gaussian noise generator has been presented.

The method encodes a specified Gaussian signal in a RAM, and filters the bit

stream using an analog low#pass filter. The performance of the Gaussian noise

generator realized in hardware is limited by the size of the available memory that

needs to be initialized. Tradeoffs have to be made between the memory size and

the signal quality. Typically the generator quality can only be guaranteed within

4δ.

6.1.2 Our Method

In order to overcome the disadvantages of the existing methods, we propose a

novel method to implement AWGN generators. Our method consists of Polar

method as shown in Algorithm 6#2 and our CLT method.

154 6 BER Testing Under Noise

As an improvement to the Box#Muller algorithm, Polar algorithm eliminates

the trigonometric calculations. Polar algorithm provides a method to generate two

independently distributed Gaussian variables with zero mean and the unity stan#

dard deviation [65].

For single channel emulation, we only need to generate one Gaussian variable

(1X or 2X), but there are also the applications where both outputs can be utilized

productively, such as in wireless signal modulations. The proof of the validity of

this method is elaborated in [65].

Polar algorithm is faster than the Box#Muller algorithm because it uses few

transcendental functions, even though it throws away, on average, 21% of num#

bers generated in the Do loop.

Our CLT method adopts the pipelined architecture instead of an accumulator

usually adopted by the traditional CLT method. Therefore, our CLT method effec#

tively eliminates the speed penalty while improving the accuracy of the AWGN

generator.

1.
 Do

2.� Generate two independent random variables, 1U and 2U , uniformly

distributed over [0,1].

3. Set: 1V =(2* 1U)#1

 2V =(2* 2U)#1

4. Set:
2

2

2

1 VVS +=

5. If S >=1, go back to line 2 and get new values for 1U and 2U

6. Loop until S < 1

7. Set: W =
s

s)ln(2−

8. Generate two independent Gaussian variables

 1X = 1V * W

 2X = 2V * W

Algorithm 6�2: Polar Method

6.2 Our Implementation 155

6.2 Our Implementation

6.2.1 Generating Random Variables

According to Algorithm 6#2, the first step to generate a Gaussian variable is to

generate two independent random variables, 1U and 2U , uniformly distributed

over [0,1]. In the past, the random variable generation was mostly done by soft#

ware.

The software#based methods are well understood [160], [161], [162], but they

frequently require complex arithmetic operations and thus are not feasible to be

constructed in hardware. In this section, some techniques suitable for random

number generation in hardware are first discussed, then the method used to gener#

ate 1U and 2U is introduced.

6.2.1.1 One Bit Random .umber Generator

Ideally, the generated random variables should be uncorrelated and satisfy any sta#

tistical test for randomness. True randomness can be derived from certain physical

phenomena, such as thermal noise in electronic circuit because of its well#

qualified spectral and statistical properties. Figure 6#2 shows a representative im#

plementation of a 1#bit true random variable generator [163]. In this circuit, the

source Vnoise, which is the thermal noise of a precision resistor, is amplified and

then passed to a high#speed comparator. The reference voltage of the comparator,

Vref, corresponds to the mean voltage of the amplified noise signal. The output of

the comparator is sampled and latched to a register. The latched 1#bit signal exhib#

its true randomness.

Fig. 6�2. A True 1#bit Random Variable Generator

156 6 BER Testing Under Noise

The true random variable generator consists of mainly analog components and

cannot be implemented by pure digital circuitry. The mixed#signal implementation

significantly increases the system complexity and is relatively slow, so this

method is not suitable for high#speed digital circuit design.

One common solution is to use linear feedback shift registers [164] to generate

pseudo random variables. The sequence of a LFSR is based on specific relation

between the feedback and feedforward values in the register. Though the gener#

ated pattern is actually repetitive and predictable, the sequence appears to be ran#

dom if the cycle period of the LFSR is very large.

An LFSR uses feedback from the various stages of an m#bit shift register, con#

nected to the first stage by means of XOR gates. The LFSR generating a single bit

random number is based on the recurrence equation:

 nx = 1a · 1−nx ⊕ 2a · 2−nx ⊕ ···⊕ ma · mnx −

Here, ix is the
thi number generated, ia is a pre#determined constant that can be

set to either 0 or 1, · is the AND operator, and ⊕ is the XOR (exclusive#OR) op#

erator.

This relation hence implies that a new number)(nx can be obtained by utiliz#

ing m previous values (1−nx , 2−nx ,···, mnx −) through a sequence of AND#XOR

operations.

In an LFSR, the maximum achievable period is determined by m, which is
m2 #

1. In order to achieve the maximum period, a special set of ia s has to be used. In

these sets, most ia s are 0; only two to four of them are 1. Thus, the actual recur#

rence equation is fairly simple, and the recurrence equations are different for dif#

ferent values of m.

Many references, such as [164], [165], have tables that list the recurrence equa#

tions exhaustively. Table 6#1 lists the recurrence equations for m with values from

2 to 8.

Table 6�1. Sample Recurrence Equations

M Recurrence equation

2
1−nx 2−nx

3
1−nx 3−nx

4
1−nx 4−nx

5
2−nx 5−nx

6.2 Our Implementation 157

6
1−nx 6−nx

7
1−nx 7−nx

8
2−nx 3−nx 4−nx 8−nx

As an example of the recurrence equation implementation in hardware, the cir#

cuit of an LFSR with m = 4 is shown in part (a) of Figure 6#3. A four#bit shift reg#

ister, with the signals from the first and fourth stages fed back through an XOR

gate, generates 15 different patterns during successive clock cycles. If the initial

value of the shift register is set to 3q 2q 1q 0q =1000, then the output of each reg#

ister and the generated 1#bit output can be determined. The results are shown in

part (b) of Figure 6#3.

As can be seen from Figure 6#3, in an LFSR implementation, an initial seed is

needed to set the initial condition of the registers. The seed can be any state except

for the combination of all zeros, which causes the random sequence to be stuck at

zero forever.

� 5

5H

� 5

5H

� 5

5H

� 5

5H

��4��

I9 I� I� I�

�6��

4.
�.

(a) Circuit

3q
1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 ···

2q
0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 ···

1q
0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 ···

0q
0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 ···

Output 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 ···

(b) Generated Sequence

Fig. 6�3. LFSR#based Pseudo Random Number Generator

As can be seen from Table 6#1 and Figure 6#3, an LFSR#based random number

generator only needs an m#bit shift register and one to three XOR gates, and thus

158 6 BER Testing Under Noise

the resulting circuit is very small in size, as well as its speed of operation is ex#

tremely high.

The generated sequence patterns have nevertheless the characteristics of ran#

domly created numbers. Furthermore, since the period grows exponentially with

the size of the registers, large non#repetitive sequences can be easily generated.

For example, with a 64#bit generator running at 1 GHz, the period is more than

500 years.

6.2.1.2 Multiple�Bit Random .umber Generator

It is also possible to generate multiple#bit random numbers using a LFSR. For ex#

ample, one can use the LFSR in Figure 6#3 to generator 4#bit random variables

(i.e. 3q 2q 1q 0q). However, the generated random variables are highly corre#

lated and fail many statistical tests since a new random number keeps most bits

from the old number and contains only 1#bit new information. To over the correla#

tion problem, it is necessary to replace all bits in the random number rather than

just one bit. One solution is to use parallel#LFSR method to generate multiple#bit

random numbers. In this method, m independent LFSRs are used to generate m#bit

random numbers.

Besides the parallel#LFSR method, there are other methods more efficiently

utilizing FPGA resources to generate multiple#bit random numbers. For example,

multiple#bit leap#forward LFSR method [166] is suitable for a small number of

bits, and multiple#bit lagged Fibonnaci method [161], [162], [166], [167] is suit#

able for a large number of bits. However, their implementations are not as simple

as the parallel#LFSR method. In addition, as discussed in Chapter 6.1.1.4, cellular

automata can also be used to generate random numbers, and is especially suitable

for generating a large number of random variables.

In our AWGN generator design, the parallel#LFSR method is used to generate

random numbers 1U and 2U . The FPGA resources taken by implementing 1U and

2U is very small. In the design, each of the two variables in line 2 of Algorithm 6#

2 is set to be four bits in width, so four single bit random number generators are

used to form a four#bit random generator. There are totally eight independent

LFSRs used to generate the two 4#bit independent random variables (1U and 2U)

in Algorithm 6#2.

The length of each of the LFSR is different, and all the LFSRs produce maxi#

mum periods. In this case, 1U and 2U are uniformly distributed between “0000”

and “1111” (binary form). Please note that all these four bits represent the frac#

tional part, so we get two independent random variables, 1U and 2U , uniformly

distributed over [0, 0.9375D]. The maximum period of 1U and 2U is determined

by the sum of all the lengths of the LFSRs, which can be adjusted to meet a re#

quired period.

6.2 Our Implementation 159

6.2.2 Gaussian Variable Generation

In this section, the detailed implementation of AWGN generators is elaborated

based on the generated random numbers 1U and 2U . First the structure of a single

AWGN generator is presented, then the structure of two AWGN generators is de#

rived. Finally, a novel accuracy improvement method is introduced.

6.2.2.1 Implementing a Single Generator

Algorithm 6#2 shows that the Polar method can generate two independent Gaus#

sian variables with a single iteration. It can also be simplified to fit the structure of

a single AWGN generator. Figure 6#4 shows the block diagram of a single AWGN

generator. In this implementation, pipelined structure is adopted to optimize the

output speed.

Fig. 6�4. Block Diagram of a Single AWGN Generator

160 6 BER Testing Under Noise

6.2.2.1.1 Generating 1V and S

The value for the variable 1V is generated using signed adders performing the

computation

1V = 1U + 1U #1

Please note that before the addition, 1U needs to be converted to a 6#bit signed

number.

Computing S involves lots of additions and multiplications, which are very

time#consuming. Most modern FPGAs include embedded RAM blocks. These

blocks enable us to implement complex arithmetic operations with ROM#based

designs, which are faster than the traditional arithmetic circuit implementations.

Generating S takes advantage of this FPGA feature. ROM#based computation is

used to implement the function

2

2

2

1)1*2()1*2(−+−= UUS

The concatenation of 1U and
2U is set to be the address of the ROM and the

values of S are set to be the data stored in the ROM. Both the address and data S

are 8 bits in width. All the 8 bits for S represent its fractional part. If computed S ≥

1, the value of S stored in ROM is set to “00000000”. As data “00000000” is only

used to control the w_en signal of the FIFO (discussed in the next section), the ef#

fective range of data S is between “00000001” and “11111111” in binary form. In

other words, the effective range of data S is over [0.00390625, 0.99609375] in

decimal form.

6.2.2.1.2 FIFO Implementation

In Algorithm 6#2, a Do loop (line 1 to line 6) is used to generate qualified S, 1V

and 2V for line 7 and line 8. On the average, line 1 to line 6 are executed 1.3 times

of line 7 and line 8.

To achieve a constant output rate, a synchronizing FIFO is used. The job of the

FIFO is to synchronize the implementation of the loop and the implementation of

line 7 and line 8 in Algorithm 6#2 without losing or corrupting data. The width of

the FIFO is 14 bits, 6 bits for 1V and 8 bits for S. The loop implementation logic

sends data to the FIFO receiver and the FIFO transmitter sends out data to the im#

plementation logic of line 7 and line 8. The structure of the synchronizing FIFO is

show in Figure 6#5.

The FIFO uses two clocks, clk for the receiver and clk2 for the transmitter.

When S is not equal to “00000000”, w_en is enabled, the FIFO receiving 1V and

S at the rising edge of clk. Otherwise, no data is written to the FIFO and the next

value of S is checked. In this case, the receiving data rate is a variable. In order to

6.2 Our Implementation 161

let the FIFO send data out at a constant rate (clk2), clk2 must be smaller than the

average rate of receiving data.

Hence, by setting the depth of the FIFO to be 16 and clk2 to be half of clk, a

constant output rate is achieved.

Fig. 6�5. Structure of the Synchronizing FIFO

In the FIFO design, four extra parameters (read_pointer, write_pointer, counter

and full) are used to deal with the issues of synchronization, overflow and under#

flow. The parameter counter indicates how many locations have been filled with

data in the FIFO according to the equation

counter = write_pointer � read_pointer

In situation of write_pointer = read_pointer, we do not know whether we have

an empty FIFO or full one. To prevent this problem, we consider the FIFO full

when 15 out of the 16 locations are occupied with unread data. When counter =0,

it indicates the FIFO underflow. When counter = 15, it indicates the FIFO over#

flow.

The FIFO is guaranteed not to overflow by the following mechanism: when

counter >= 14, full signal is asserted and the LFSRs are disabled. The FIFO w_en

is disabled one clock cycle later.

In this case, the FIFO can still receive one group of data, so no data is miss#

ing. As the LFSRs are disabled, they stop generating data and no more data will be

sent to the FIFO until counter < 14. Once counter < 14, LFSRs are enabled again

and the FIFO w_en is enabled one clock cycle later if S does not equal to

“00000000”. By this way, the counter will always be smaller than 16. The FIFO

will never really overflow.

With the above mechanism, the FIFO begins to send out data once counter

reaches 14. On average, the possible rate of writing data to the FIFO is around

1.5 times faster than the rate of reading data from the FIFO when the clock rate of

clk2 is set to be half of the clock rate of clk. In this case, the FIFO, with a depth of

162 6 BER Testing Under Noise

16, can still send data out even no data is written to it in 28 consecutive clk cy#

cles. From the simulations, 5 was the maximum number of clk cycles in which no

data was written to the FIFO (this number depends on the lengths and taps of

LFSRs). In fact, a FIFO with depth of 8 is enough. We choose 16 to make our de#

sign more reliable. From the simulation results of 1 million clock cycles, the

counter is always bigger than 10. It is concluded that the design is reliable enough

to prevent underflow from happening��

6.2.2.1.3 Generating W

ROM#based design is also used to implement the function in line 7 in Algo#

rithm 6#2

W =
s

s)ln(2−

where the symbol S denotes the address line width of the ROM. The feasible

width of S is 8 bits, and all the bits can represent the fractional part. The value of

W is obtained from the data stored in the ROM. The plot of W as a function of S is

shown in Figure 6#6.

Fig. 6�6. Plot of Function W(S)

As S is between 0.00390625 and 0.99609375, according to Figure 6#6, W is be#

tween 54.2835 and 0.0886. To represent W in binary form, 6 bits are needed to

represent its integer part. In our design, we use 14 bits to represent W, 6 bits for

the integer part and 8 bits for the fractional part.

As the absolute value of 1V from the FIFO is always smaller than 1, 1V from

the FIFO is clamped to 5 bits, 1 bit for the sign and 4 bits for the fractional part.

6.2 Our Implementation 163

The register reg3, which stores the values of W and clamped 1V , is clocked by

clk2, the clock rate of reading data from the FIFO.

6.2.2.1.4 Generating Outputs

The last step of implementing the AWGN generator is to implement the function

1X = 1V * W

This step is completed by a single signed multiplier. Before performing multipli#

cation, one ‘0’ is concatenated to the most significant bit of W to convert W to

signed form. The output of the multiplication is 19 bits in width, 1 bit for sign, 6

bits for the integer part and 12 bits for the fractional part. This output is sent to the

output register reg4. The output of the reg4 is what we need, which behaves like a

Gaussian random variable.

The output of the AWGN generator can however be truncated to different

widths, depending on application needs.

6.2.2.2 Implementing Two Generators

Figure 6#4 shows the structure of a single AWGN generator. For modulated data

like QPSK signals, two noise generators might be needed for I and Q channels.

According to Algorithm 6#2, the proposed one generator structure can be easily

modified to implement two AWGN generators by adding 2V implementation and

another multiplier. The block diagram of two AWGN generators is shown in Fig#

ure 6#7.

In this structure, the width of the registers for each stage should be increased

accordingly. As can be seen, the hardware cost is very small to add another

AWGN generator based on the structure of a single generator. The proposed

method of AWGN generation is especially suitable for multi#channel emulation.

164 6 BER Testing Under Noise

Fig. 6�7. Block Diagram of Two AWGN Generators

6.2.2.3 Accuracy Improvement

In our implementation, Central Limit Theorem method can also be used to

smoothen the variation of the distribution when high accuracy is need. CLT

method traditionally uses an accumulator. However, the accumulator will slow

down the speed of the output. For example, when 1 = 4, where 1 is the number of

random variables to be accumulated, the output rate after the accumulator is only

one#fourth of that before the accumulator. As our implementation can produce two

AWGN generators with little hardware cost, we can achieve one AWGN generator

with better performance by simply adding the outputs from the two AWGN gen#

erators shown in Figure 6#7. This implementation does not incur the speed pen#

alty.

To overcome the speed penalty problem, we propose a new CLT method for

accuracy improvement. The block diagram of this method is shown in Figure 6#8,

which implements the case when 1 = 4. The proposed scheme does not exhibit the

speed penalty while improving accuracy.

6.2 Our Implementation 165

�22��

�22��

�22��

��3� ��3� ��3�

��3�

'4����

'4����

'4����

'4���� +.
�.

(�4�

'4���

+.
�.

����

����

���� ����

Fig. 6�8. New CLT Method

6.2.3 Statistical Properties of our AGW& Generator

There are a few methods that are used to analyze the statistical properties of a

noise generator. The chi#square test and the Anderson#Darling (A#D) test are two

goodness#of#fit tests adopted to evaluate some emulators [63], [123], [124]. For

the chi#squire test, the axis is first quantized into segments. Then the actual num#

ber and expected number of samples appearing in each segment are determined.

Based on the numbers of the samples, a single number is derived to serve as an

overall quality metric of the generator. The chi#square test essentially compares

the measured histogram to the theoretical histogram.

The A#D test concentrates more on the continuous time properties of a genera#

tor. It is a modification of Kolmogorov#Smirnov (K#S) test that gives more weight

to the tails of the distribution than the K#S test does [125]. Other statistical meth#

ods include calculating Q(x) and Kurtosis values, as will be elaborated in the sub#

section to follow.

Recall that the implementation of our AWGN generator is almost a direct map

of the Polar algorithm without any partition or weighting [6], [67]. Because the

Polar algorithm has been widely accepted for Gaussian variable generation in soft#

ware, the statistical properties of our own hardware generator should be favorable

as well. However, for proper evaluation and better insight, we explore the Q(x)

values and the Kurtosis value.

6.2.3.1 Q(x) Evaluation

As the outputs of an AWGN generator are random variables with a mean of xm

and a standard deviation of δ , its performance evaluation should be based on sta#

tistics of the real outputs of the AWGN generator. Depending on the lengths of the

166 6 BER Testing Under Noise

LFSRs used to generate 1U and 2U , the period of the generator may reach the

range of
n2 , where n is the sum of the lengths of the LFSRs. When n is equal to

50, the period is greater than
15

10 . In this case, the complete verification of the

AWGN generator should be based on the statistics of a very large number of sam#

ples, at least greater than
1510 .

Proper statistical evaluation the performance of such a larger number of sam#

ples needs a lot of hardware resources and time. Our experiments show that statis#

tical results of thousands samples are a good approximation for the performance

evaluation of the real AWGN generator. In the discussion to follow, we show the

statistical properties of 10,000 and 500,000 samples from the output of our

AWGN generator.

The process of getting the statistical properties consists of the following four

steps:

1) Write the AWGN generator (VHDL top#level design) binary outputs to a

text file.

2) The output data is imported to a C program that generates the probability

density function of the outputs from the generator by sorting the outputs and com#

puting the probability density][nxP of each output.

3) The mean xm and standard deviation δ of the AWGN generator are calcu#

lated from its PDF according to the following definitions.

Mean ∑=
n

nnx xPxm][

Mean#Square ∑==
n

nnx xPxxEm][][
222

Variance])[(
22

xmxE −=δ 22][xmxE −=

4) Q(x) of our AWGN generator is obtained according to

∑
=

=
n

i

ii xPxxQ
1

][)(

where ix , i = 1, 2, …, n are the possible discrete values from our AWGN genera#

tor that meet the condition of ix ≥ x ; P(ix), i = 1, 2, …, n are the possibilities of

ix .

In this evaluation process, Q(x) is the area under the tail of Gaussian PDF. It

represents the probability that the Gaussian variable is between x and +∞. The

theoretical value of Q(x) is computed according to

6.2 Our Implementation 167

∫
∞ −

=
x

t
dtxQ e

22

2

1
)(

π

)
2

(
2

1 x
erfc=

where)(xerfc is the complementary error function.

Table 6#2 shows the mean, variance and standard deviation of our generator.

Displayed are the cases of 10,000 and 500,000 samples, respectively.

Table 6�2. Performance of our AWGN Generator

Samples 10,000 500,000

Mean 0.015835 0.008649

Variance 0.867620 0.866119

Standard Deviation 0.931461 0.930655

As we can see from Table 6#2, the relative error of mean and standard deviation

of our AWGN generator is very small. For 500,000 samples, the relative error of

mean is 0.008649 and the relative error of standard deviation is 0.069345. We can

also see from the above table that the relative error of the mean decreases when

the number of samples increases.

Table 6�3. Q(x) Relative Error of our AWGN Generator

Q(x) Relative Error of Our Generator

Figure 6#4 + Figure 6#8

x Theory Q(x) Figure 6#4

10,000 samples 10,000 samples 500,000 samples

0 0.5000 2.76 % 1.02 % 0.24%

0.2 0.4207 #2.50 % 0.50 % 0.42%

0.4 0.3446 1.69 % 0.26 % 0.55%

0.6 0.2743 #0.10 % 1.06 % 0.80%

0.8 0.2119 1.88 % 1.74 % 1.09%

1.0 0.1587 4.70 % 3.21 % 1.20%

1.2 0.1151 #7.17 % 3.99 % 1.49%

1.4 0.0808 #4.29 % 4.95 % 1.85%

1.6 0.0548 #3.06 % 6.57 % 2.37%

168 6 BER Testing Under Noise

The relative error of Q(x) of our AWGN generator is shown in Table 6#3.

Relative errors are computed according to

)(

)()(

xTheoryQ

xTheoryQxOurQ
errorrelative

−
=

Table 6#3 shows the results of Polar algorithm only implementation (Figure 6#

4) with 10,000 samples and the implementation combining Polar algorithm and

Central Limit Theorem (Figure 6#4 + Figure 6#8) with 10,000 and 500,000 sam#

ples.

As can be seen from Table 6#3, our method with the parameters as shown in

Figure 6#4 implements a high precision AWGN generator even with a limited

number of samples. Our proposed CLT method shown in Figure 6#8 can further

smoothen the variation of the distribution. We can also see from the above table

that the relative error of Q(x) decreases when the number of samples increases.

6.2.3.2 Kurtosis Value

Kurtosis is also used to evaluate the Gaussian distribution [126], [127]. It is a

measure of the flatness or peakedness of the probability distribution of a real#

valued random variable. The Kurtosis value is often defined as the fourth stan#

dardized moment. For a sample of n values, the sample Kurtosis is

2

2

4
2

m

m
g =

2

1

2

1

4

))(
1

(

)(
1

∑

∑

=

=

−

−
=

n

i i

n

i i

mx
n

mx
n

where 4m is the fourth sample moment above mean m, 2m is the second sample

moment (variance), ix is the i
th

 value and m is the sample mean [128].

The Kurtosis value of an idea Normal distribution is 3. A Kurtosis value greater

than 3 indicates that the distribution has a sharper peak and fatter tails, and the dis#

tribution is leptokurtic. If the Kurtosis value is less than 3, the distribution has a

more rounded peak and thinner tails, and the distribution is platykurtic. Based on

the 500,000 samples from the output of our AWGN generator, we calculated a

Kurtosis value of 2.95, which is less than 2 percent off the theoretical value.

6.3 Baseband Transmission Testing 169

6.3 Baseband Transmission Testing

In this section, we present the baseband transmission testing setup and its test re#

sults in terms of BER as a function of SNR. The test setup mainly consists of the

BERT core presented in Chapter 5#2 and the AWGN core presented in Chapter 6#

2. The test results are very close to the theoretical values.

6.3.1 Baseband Signal Formats

In digital baseband transmission systems, there are various time domain signal

formats. Figure 6#9 illustrates Return Zero (RZ), Non Return Zero (NRZ) and Non

Return Zero Inverted (NRZI) signaling for the binary information data sequence

10011011. The NRZ and NRZI formats are commonly used in digital baseband

transmission.

Fig. 6�9. Baseband Signal Formats

In a RZ transmission system, the binary information digit 1 is encoded as a

high signal represented by 1, but the high signal returns to zero state before reach#

ing the end of the bit interval. For illustrative purpose, it is assumed that the return

occurs at the midpoint of the interval in Figure 6#9. In a RZ transmission system,

the binary information digit 0 is encoded as a low signal represented by 0.

In NRZ format, the binary information digit 1 is encoded as a high signal repre#

sented by 1, and the binary information digit 0 is encoded as a low signal repre#

sented by 0. NRZ is the simplest baseband signal format. The NRZ modulation is

memoryless and is equivalent to a binary Pulse Amplitude Modulation (PAM) or a

170 6 BER Testing Under Noise

binary PSK modulation in a carrier#modulated system [38]. The NRZ signaling

format is more bandwidth efficient than RZ, as the pulses of NRZ signaling are

wider than the RZ format.

However, there are two particular problems associated with NRZ transmission.

First, when the transmitted data is static, which means there is no change from one

bit interval to the next, there is no transition in the transmitted waveform. This

causes timing problems when establishing bit synchronization. The second prob#

lem occurs with data inversion. If the levels of transmitted waveform are acciden#

tally inverted during transmission, all the data is inverted, hence every bit is in er#

ror. Inversion can occur in several ways, such as a phase shift or losing track of

the number of inversions.

To overcome these problems, NRZI format is introduced. NRZI signaling

adopts differential techniques, in which the data is represented as changes in lev#

els, rather than particular levels, of the signal. In NRZI format, the binary infor#

mation digit 1 results in a signal transition, which can be either a low#to#high or a

high#to#low; the binary information digital 0 results in no signal transition, which

means the signal amplitude level remains unchanged. This type of signal encoding

is called differential encoding. The coding operation is described mathematically

by the relation

1−⊕= kkk bab

where ka is the binary information sequence into the NRZI encoder, kb is the

output of the encoder, and ⊕ denotes the exclusive#OR operation (addition

modulo 2).

Based on the mathematical model of the processes involved, it is easily to get

the structure of the NRZI encoder, as shown in Figure 6#10 (a), where
1−Z de#

notes one#cycle delay.

⊕

1−Z

ka
kb

1−kb

⊕

1−Z

ka
kb

1−ka

 (a) Encoder (b) Decoder

Fig. 6�10. The Structure of a NRZI Encoder and Decoder

The NRZI decoder can be implemented as shown in Figure 6#10 (b). It com#

pares the NRZI encoded signal to a delayed version of itself. If the two signals are

the same in an interval, we know that 0 is being sent; if the two are different, a 1 is

being sent. An exclusive#OR gate performs this decision process.

6.3 Baseband Transmission Testing 171

6.3.2 S&R Setting

Recall that from Chapter 2.3.1, when the correlation ρ = 0 in baseband transmis#

sion, we have)(
o

e 1

E
QP = , where eP is BER, and

01

E
 is S1R. In other

words, the theoretical relationship between BER and S1R is characterized by

)(S1RQBER =

As can be seen from the above equation, BER is only determined by S1R . In

NRZ transmission systems, one (high level signal) is used to transmit data ‘1’ and

zero (low level signal) is used to transmit data ‘0’. We assume that data 1s and 0s

have equal occurring probability, the average energy of two signals is

2

10 EE
E

+
= = 0.5

In an AWGN communication channel, the noise is Gaussian and characterized

by a mean of zero and a variance of
2δ . The energy of the noise can be repre#

sented by

22δ=o1

Though the above equations are derived from NRI signaling, they are also ap#

plicable to NRZI signaling. This is verified at the end of this case study. Combin#

ing the equations for E and o1 , we can get the equation for the S1R of baseband

transmission. The S1R is determined by the variance of the noise and expressed as

24

1

δ
=S1R (6#1)

In Chapter 6#2, an AWGN generator with zero mean (0=xm) and unity vari#

ance ()12 =δ has been developed. The variance of the generator can be changed

to any value by adding a divider at the output of the generator. Suppose the origi#

nal output is denoted by x , and it is divided by a , then the new variance of the

generator becomes

])'[(22

xmxE −=δ

 =])[(
2

a
xE

 = 2
1

a
 (6#2)

172 6 BER Testing Under Noise

Combining equations 6#1 and 6#2, we have

4

2a
S1R =

where a is the scaling factor of the AWGN generator with zero mean and unity

variance. By changing a , we can get different SNR conditions for the AWGN

communication channel.

6.3.3 Testing Setup and Results

To test the BER under noise conditions, an AWGN generator with a variable gain

is used to emulate an AWGN communication channel. The output of the variable

gain AWGN generator is added to the output of the transmitter. The composed

signal is then sent to the input of the receiver. We can use a BERT to generate test

signals and compare recovered errors. Figure 6#11 shows the setup.

Fig. 6�11. Setup of testing BER under noise

In the test setup, the BERT can be a general purpose testing instrument that

many companies provide [55], [56]. We can also use the FPGA#based BERT we

present in Chapter 5.2. The DUT can be any communication interface or system

that receives bit or word sequences and then restores the sequences after some

signal processing or format changes. Some DUT examples include an HSSI and

the integration of an encoder and a decoder.

The amplitude of the AWGN generator is programmable. Hence, we can emu#

late an AWGN channel in which signals are transmitted with different SNRs. The

proposed setup can be used to test the BER performance of a real DUT in real op#

erations under different SNR conditions. Because the output of our AWGN is

digital, a Digital#to#Analog Converter (DAC) is needed if the AWGN output is

6.3 Baseband Transmission Testing 173

added to an analog data signal. If the data signal is digital, the DAC is not needed.

Figure 6#12 illustrates the BER setup for a NRZ digital baseband system, where

no DAC is needed.

In the testing setup shown in Figure 6#12, the AWGN generator block and the

BERT block are the IP cores introduced in Chapter 5#2 and Chapter 6#2, respec#

tively. This testing setup also constitutes a digital communication system. In this

system, the transmitter consists of the pattern generator; the communication chan#

nel consists of the AWGN generator, the divider and the adder; the receiver con#

sists of the comparator and output decision block. The error detection block is

used for performance evaluation.

÷

Fig. 6�12. BER Testing Setup for NRZ Digital Baseband

The output from the pattern generator is PRBSs. The output sequence, denoted

by s(t), is the data signal to be transmitted. The data signal s(t) is corrupted by the

noise signal n(t) in the AWGN communication channel. The noise signal n(t) is

derived from g(t) by dividing g(t) by the scaling factor a , where a is six bits in

width, five for integer and one for fraction. By setting the value a , the SNR con#

dition of the communication system can be set. The noise signal g(t) is the output

of the AWGN generator with zero mean and unity variance. As discussed in Chap#

ter 6#2, the noise signal g(t) is 19 bits in width, 1 bit for the sign, 6 bits for the in#

teger and 12 bits for the fraction.

The noise corrupted data signal r(t) is compared with a threshold to determine

the output of the receiver. In NRZ transmission system, 0s and 1s are transmitted

and they have equal occurring probability; therefore, the threshold is set to be 0.5.

If r(t) is bigger than 0.5, r`(t) is set to be 1; otherwise, r`(t) is 0. Finally, the re#

ceived bit sequence r`(t) is compared with a delayed transmitted sequence s(t) bit

by bit, and errors are counted. The measured BER is obtained as the ratio of the

counted errors and the number of transmitted bits.

174 6 BER Testing Under Noise

÷

Fig. 6�13. BER Testing Setup for NRZI Digital Baseband

In the above digital baseband testing, the signal format is NRZ. For a NRZI

baseband communication system, the testing setup shown in Figure 6#13 is used to

test its BER performance. In this test setup, the structure of the NRZI encoder and

the NRZI decoder is the same as these shown in Figure 6#10. The other blocks

have already been introduced in the NRZ digital baseband testing setup.

Table 6#4 lists the BER test results. The measurements were taken while run#

ning the AWGN core and the BERT core in an Altera Mercury FPGA board.

Measurements were also taken using an Agilent 81200 BERT to further verify our

BERT.

Table 6�4. BER Measurements for Digital Baseband

a SNR (dB) Total bits Our BER Agilent BER Error (%)

2 0.6 2024 1.62e#1 1.65e#1 1.85

3 4.1 12448 6.58e#2 6.61e#2 0.45

4 6.6 12448 2.32e#2 2.40e#2 3.33

5 8.5 20000 5.65e#3 5.32e#3 4.32

6 10.1 1000000 1.20e#3 1.31e#3 8.40

7 11.5 1000000 1.76e#4 1.83e#4 3.83

8 12.6 10000000 1.62e#5 1.78e#5 8.99

6.3 Baseband Transmission Testing 175

Fig. 6�14. Measured BER vs. theoretical BER

Figure 6#14 shows the plot of the measured BER and theoretical BER of digital

baseband as a function of input SNR. Recall from Chapter 2.3.1, the theoretical

BER of digital baseband is given by

)
2

(
2

1
)(

S1R
erfcS1RQBER ltheoretica ==

In Table 6#4, the following equations are used. These equations have been dis#

cussed previously.

2δ =
2

1

a

4

2a
S1R =

dBitsTransmitte

ErrorCout
BERmeasured =

In the testing setup, the pattern is generated using an LFSR, which produces

more 1s than 0s, as all zeros is not a valid pattern while all ones is. Therefore, the

actual signal energy is bigger than the theoretical value 0.5; for example, if the

length of the LFSR is 3, the signal energy it produces is 4/7. We take this factor

into consideration when calculating the SNRs in Table 6#4.

176 6 BER Testing Under Noise

As indicated in Figure 6#14, the measured BER using our BERT perfectly co#

incides with that from the expensive Agilent BERT, and is close to the theoretical

BER. The plot demonstrates the validity of the AWGN generator and the testing

scheme

In the above testing, it takes less than one second to generate the point at 1.62e#

5 BER, while software simulations take hours. Furthermore, regardless of the

noise generation scheme, going down to low error rates requires many samples

just to exhibit errors # for 10#12 BER at 1 Gbps data rate, it takes three hours (as#

suming running 10
13

 bits).

In production testing, the normal practice to qualify the BER performance at

such low levels is through extrapolation [2]. However, if direct BER measure#

ments at 10#12 or lower are needed, our AWGN is a good candidate as we will dis#

cuss in the next section.

Although the above experiment is based on testing a digital baseband system,

the proposed BER testing scheme can be applied to other AWGN transmission

system. Depending on the modulation scheme of the system, other components,

such as a digital#to#analog convertor and an attenuator, might be needed. Further#

more, the AWGN module can be modified to emulate more complex channels,

such as Rayleigh channels.

6.4 Advantages of Our AWG. Generator

For the AWGN generator we developed and discussed in Chapter 6.2, there are a

few advantages compared to other implementations. The prominent advantage is

its large maximum output value.

Theoretically, the tail of an AWGN distribution should extend towards infinity

and the maximum output value is infinity. In reality, it is impossible to generate an

infinity number. For an AWGN emulator, the tail is bounded by its maximum out#

put value m.

Most existing standalone AWGN emulators are based on the Box#Muller Algo#

rithm, through which is difficult to achieve a large maximum output value. Utiliz#

ing the Box#Muller method presented in [47], a commercial AWGN core has been

developed [60]. This core is only capable of generating a maximum m value of

4.7.

Two years later, Lee et al. advanced the Box#Muller method [61] and increased

the maximum m value to 6.7. This development has improved a bit the tail distri#

bution of the AWGN generator. However, the price paid for this improvement is

in quadrupled hardware resources, while the speed is halved. In 2005, this value

was increased to 8.2 by using sophisticated FPGAs and implementation tech#

niques [129].

The most recent advance in implementing AWGN generators in FPGAs based

on the Box#Muller Algorithm is presented by Alimohammad et al. from Univer#

sity of Alberta in [63], where the tail distribution is extended to ±15 times of the

6.4 Advantages of Our AWGN Generator 177

standard deviation δ. The paper [63] also gives a comprehensive overview of

Gaussian noise generation algorithms and related work on implementing the gen#

erators in hardware.

As a key advantage, the Polar method we developed can easily achieve high

maximum output values with little hardware. As indicated in Algorithm 6#2, the

maximum output value is calculated as a logarithm of the minimum value of the

square operation of the random variables U1 and U2. In contrast, the Box#Muller

method calculates a logarithm of the random variable x1 directly as shown in Al#

gorithm 6#1, which requires a tremendous amount of hardware to achieve a big

output value.

In our implementation, we can produce a maximum output value of 53.3 by us#

ing only 4 bits (all of them to be used for the fractional bits) to represent each uni#

form random variable (U1 and U2 in Algorithm 6#2). In contrast, we note that to

achieve such a high maximum output value using the Box#Muller method, we will

need to use more than 1000 bits of information to represent the uniform random

variable x1 in Algorithm 6#1, which is almost impossible to implement in hard#

ware.

A noise generator with a large maximum output value is essential for low BER

evaluation. According to Equation (2#11), the BER and SNR are linked by Q fac#

tor:

)(S1RQBER =

Therefore, low BERs require high SNRs. In an AWGN communication system,

the SNR is determined by the standard deviation δ of the AWGN generator when

the output of the generator is added to a data signal with constant energy. In order

to emulate a low BER system, we usually scale down the distribution of the Gaus#

sian generator to achieve a low standard deviation.

However, some samples of the noise generator output must be large enough to

produce bit errors. The lowest BER that an AWGN generator can emulate is de#

termined by the tail distribution of the AWGN generator, or more specifically lim#

ited by the maximum output value m of the noise variable. For a digital system

where data “0” and data “1” are transmitted, the maximum output of the noise

generator is required to be bigger than the threshold (usually 0.5) in order to gen#

erate bit errors.

Most existing hardware AWGN generators (e.g., [47], [60], [61] and [62]) only

have a maximum output value of 7. If we use such generators in baseband trans#

mission evaluation, they can only generate a theoretical maximum SNR of 16.9dB

by being scaled by a factor of 14 (the noise scale factor a) according to Equation

5#2.

The 16.9dB SNR can be translated into a BER around 10
#12

 according to Equa#

tion (2#11), but such generators are only suitable for exploring channel behavior at

BERs down to the range of 10
#9

 to 10
#10

 [61]. For any AWGN generator with

bounded output, the distribution near its maximum output value is not Gaussian

anymore and cannot be used because ideal Gaussian distribution is unbounded

178 6 BER Testing Under Noise

(the maximum output value is infinity). Hence, the tail distribution of these

AWGN generators needs to be improved for applications with low BERs, such as

10#12.

The latest AWGN generator presented in [63] can generate a maximum output

value of 15. The generator is capable of evaluating BERs below 10#12. Our AWGN

generator further increases the maximum output value to 53.3. Therefore, our

AWGN generator is a good candidate for very low BER applications, or alterna#

tively, for distributions with potentially long tail.

Besides the maximum output value, another advantage of our AWGN genera#

tors is that it is highly scalable. In the implementation discussed in Chapter 6.2,

we only use 4 bits to represent the uniformly distributed random variables, which

is a remarkable feature.

The lengths of the LFSRs used to generate each bit are also short. They can be

easily increased to achieve better performance if needed. In addition, our noise

generator is relatively straightforward to implement.

One challenge of the Polar method implementation is to convert the variable

output rate to a constant output rate. We resolve it by inserting a dual clock FIFO.

Other function implementation is almost a direct mapping of Algorithm 6#2. Due

to the bounds on the intermediate values, all of which lie within the unit value in#

terval, it can be easily shown that no further partition, rounding or approximation

is needed in the execution of the algorithm.

7 Conclusions

Abstract We summarize here the contents of the whole book and provides a per�

spective on the practicality and usefulness of the obtained high�speed serial inter�

face test and characterization results.

This book has presented schemes that can accelerate the qualifications of jitter

characteristics and BER performance of HSSIs. To deal with both the HSSI

transmitter and the receiver side test and characterization, we have developed sys#

tematic ATE solutions for the characterization and compliance qualification of re#

ceiver jitter tolerance and transmitter output jitter.

For the receiver jitter tolerance testing, we have proposes a jitter tolerance ex#

trapolation algorithm, capable of accelerating jitter tolerance testing by a factor of

thousand. This improvement makes it possible to run the time#consuming jitter

tolerance test in production testing of massively produced microelectronic devices.

The test signal for such tests is generated by the AWG on ATE. The BER can be

monitored either by the digital channels on ATE or by the BIST circuitry. This

approach does not need any add#on hardware modules. Based on the AWG6000,

we conduct jitter tolerance testing investigation on 1.5Gbps and 3Gbps signals,

primarily using SATA devices. Higher speed applications are attainable using a

higher performance AWG.

Further, for transmitter jitter testing, we have proposed three realistic ap#

proaches to extract the jitter components. With the proposed schemes, we can

manage to have the whole transmitter test done within 100ms and achieve a jitter

accuracy within +#0.5ps (in terms of run#to#run variation, and the difference be#

tween bench and ATE measurement results), which no one else has ever achieved,

to the best of our knowledge.

Extensive experiments have been done on 3Gbps and 6Gbps signals to verify

the accuracy and test repeatability. Based on a high#bandwidth digitizer available

on ATE, this solution too does not need any add#on circuitry. The same methodol#

ogy can be applied to test any HSSI transmitter.

Even though the book only addresses the transmitter jitter testing and receiver

jitter tolerance testing, other HSSI tests are either simply by#products of the two

tests or are very straightforward to conduct.

For most other transmitter related tests, they can directly be done based on the

captured transmitter waveform. For example, the transmitter function can be veri#

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1_7, © Springer Science+Business Media B.V. 2011

180 7 Conclusions

fied by comparing the captured values to expected values; the transmitter level can

be obtained by checking the captured level difference between 00000 and 11111,

and the rise/fall time can be obtained from any edge with a full swing (in low tran#

sition density areas). In addition, we can easily add more captured samples to test

other transmitter functions/parameters, such as transmitter Output Enabled (OE),

common mode level and pre#emphasis.

The receiver jitter tolerance test actually also covers significantly the receiver

functionality testing. If the receiver does not function, we could not get any jitter

tolerance data.

Other receiver parameter tests can be done using the same test setup with some

minor adjustments. For example, for the receiver tracking range test, we only need

to adjust the sampling frequency of the AWG to source a signal with a frequency

offset that we need; for the Out of Band (OOB) test, we only need to change the

AWG pattern and amplitude for different turn#on/turn#off level settings.

The whole transmitter and receiver testing solution can be used to test any

HSSI devices. It is independent of the detailed structure of the device to be tested,

so in that sense can be considered to be high#level design validation and test pro#

cedures.

In addition, the proposed solution is highly scalable. The scheme applies to any

speed. Its application is only limited by the performance of the ATE instrument.

Higher speed applications (such as 10Gbps) are attainable in the future with the

advance in ATE instruments.

Furthermore, we have presented the infrastructure that can be used standalone

or in conjunctions with an ATE, with the mean objective of being “ahead of the

curve” in high#speed serial interface testing. In other words, when ATE equipment

is not available to test at a newly achieved speed of the manufactured devices, our

infrastructure, based on discrete relays (including MEMS#based ones), can come

to the rescue.

The proposed ATE approaches have been successfully used in production to

test millions of devices. They also have been used for the validation of new de#

signs to quickly find design issues and search for the worst case devices across

PVT corners. With the approaches, we have provided a lot of invaluable charac#

terization data within very short time. All these are impossible to achieve by just

relying on bench work.

As another aspect of our work, we have made the ATE play a more and more

important role in more complete validation and characterization besides its tradi#

tional role in less involved production testing.

We also propose non#ATE based HSSI jitter qualification solutions. Using the

state#of#the#art phase delay lines, we can inject controllable amounts of jitter to

test HSSIs with data rates up to 12.5 Gbps. The low cost solution not only elimi#

nates the need for expensive high#speed ATE instruments, it also meets the test

need for applications with data rates above 6Gbps where no ATE instruments are

available. In addition, we also present FPGA#based BERTs that can be used to

check the bit errors and verify the functionality of HSSIs.

Finally, we also investigate the amplitude noise impact to BER. We present a

novel scheme to implement the digital AWGN generator that is suitable for low

BER evaluation. The proposed generator, and the complete BERT infrastructure

6.4 Advantages of Our AWGN Generator 181

around it, has a number of unique characteristics, not matched by any similar de#

sign. For instance, our AWGN generator can achieve the largest values achievable

by any (zero#mean, unity#value) Gaussian generator, at a very modest cost in

hardware.

Reference

 [1] Y. Fan and Z. Zilic, "Qualifying Serial Interface Jitter Rapidly and Cost#

effectively," Springer Journal of Electronic Testing: Theory and Applications,

Volume 26, 2010, 17 pages, DOI: 10.1007/s10836#009#5131#5

[2] Y. Fan, Y. Cai, L. Fang, A. Verma, B. Burcanowski, Z. Zilic and S. Kumar,

“An Accelerated Jitter Tolerance Test Technique on ATE for 1.5GG/s and

3GB/s Serial#ATA,” Proceedings of IEEE International Test Conference,

Oct. 2006

[3] Y. Fan and Z. Zilic "Accelerating Jitter Tolerance Qualification for High

Speed Serial Interfaces," Proceedings of the 10th International Symposium on

Quality Electronic Design, ISQED'09, March. 2009

[4] Y. Fan, Y. Cai and Z. Zilic, "A High Accuracy, High Throughput Jitter Test

Solution on ATE for 3 Gbps and 6 Gbps Serial#ATA," Proceedings of IEEE

International Test Conference, Oct. 2007

[5] Y. Fan and Z. Zilic, "A Versatile Scheme for Validation, Testing and Debug#

ging of High Speed Serail Interfaces," Proceedings of IEEE High Level De#

sign Validation and Test Workshop, HLDVT’09, Nov. 2009

[6] Y. Fan and Z. Zilic, “Bit Error Rate Testing of Communication Interfaces,”

IEEE Transactions on Instrumentation and Measurements, Vol. 57, No. 5, pp.

897#906, May 2008

[7] P. Patra, “On the Cusp of a Validation Wall,” IEEE Design & Test, volume

24, Issue 2, PP.193#196, Mar.#Apr. 2007

[8] ITRS. The International Technology Roadmap for Semiconductors, 2007 Edi#

tion

[9] IEEE 802.3 Ethernet Working Group. http://www.ieee802.org/3/

[10] Altera Corporation. Mercury Programmable Logic Device Family Data

Sheet, San Jose, California, January 2003

[11] Altera Corporation. Stratix IV Device Datasheet, December 2008

http://www.altera.com/literature/hb/stratix#iv/stx4_5v4_01.pdf

[12] Xilinx, Inc. Introducing Virtex#6 and Spartan#6 FPGA Families,

http://www.xilinx.com/products/v6s6.htm

[13] Texas Instruments Incorporated http://www.ti.com

[14] Cisco Systems Inc. http://www.cisco.com

[15] P. Noel, F. Zarkeshvari and T. Kwasniewski, “Recent Advances in High#

Speed Serial I/O Trends, Standards and Techniques,” Proceedings of 18th

Canadian Conference on Electrical and Computer Engineering, 2005

[16] H. Johnson and M. Graham, High#Speed Signal Propagation Advanced Black

Magic, Prentice Hall PTR, 2003

[17] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Kluwer

Academic Publishers, 1999

[18] T. Miyazaki, M. Hashimoto and H. Onodera, “A Performance Prediction of

Clock Generation PLLs: A Ring Oscillator Based PLL and an LC Oscillator

Based PLL,” IEICE Transactions on Electronics 2005 E88#C (3): 437#444

Y. Fan, Z. Zilic, Accelerating Test, Validation and Debug of High Speed Serial Interfaces,

DOI 10.1007/978-90-481-9398-1, © Springer Science+Business Media B.V. 2011

184 Reference

[19] Altera Corporation, Innovating with a Full Spectrum of 40#nm FPGAs and

ASICs with Transceivers, white paper

[20] M. P. Li, Jitter, Noise, and Signal Integrity at High#Speed, Prentice Hall,

2007

[21] Altera Corporation, The Evolution of High#Speed Transceiver Technology,

White Paper, San Jose, California, 2002

[22] Serial ATA International Organization: Serial ATA Revision 3.0. Gold Revi#

sion, June 2, 2009

[23] National Committee for Information Technology Standardization (NCITS)

T11.2/Project 1316#DT/Rev 3.1: “Fiber Channel – Methodologies for Jitter

and Signal Quality Specification”, October 2001

[24] IEEE Draft P802.3ae/D3.3, “Supplement to Carrier Sense Multiple Access

with Collision Detection (CSMA/CD) Access Method & Physical Layer

Specifications,” XGMII Extended Sublayer (XGXS) and 10 Gigabit Attach#

ment Unit Interface (XAUI), October 2001

[25] SATA#IO, Serial ATA International Organization. http://www.sata#io.org/

[26] "Serial ATA: Meeting Storage Needs Today and Tomorrow # Introducing

SATA 6Gb/s and the Serial ATA Revision 3.0 Specification," SATA#IO

SATA Rev 3.0 Presentation, May 27#June 6, 2009.

http://www.serialata.org/documents/SATA#Rev#30#Presentation.pdf

[27] "Economic Crisis Response: Worldwide 2008#2012 Forecast Update," IDC

Doc #215614, December 2008

[28] E. A Newcombe and S. Pasupathy, “Error Rate Monitoring for Digital Com#

munications,” Proceedings of the IEEE, volume 70, Issue: 8, Aug.1982,

pp.805#828

[29] D.H. Wolaver, "Measure Error Rate Quickly and Accurately," Electronic De#

sign, pp.89#98, May 30, 1995

[30] S. Berber, “An Automated Method for BER Characteristics Measurement,”

IEEE Transactions on Instrumentation and Measurement, VOL. 53, No. 2,

April 2004

[31] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New

York: McGraw#Hill, 1984

[32] K. S. Shanmugan and A.M. Breipohl, Random Signals: Detection, Estima#

tion, and Data Analysis, New York, John Wiley and Sons, 1988

[33] Maxim Integrated Products, Inc. HFTA#05.0: Statistical Confidence Levels

for Estimating Error Probability, Application Notes, 2007

[34] Y. Cai, S. Werner, G. Zhang, M. Olsen, and R. Brink, “Jitter Testing for

Multi#gigabit Backplane SerDes – Techniques to Decompose and Combine

Various Types of Jitter,” Proceedings of IEEE International Test Conference,

2002, p700#709

[35] John Patrin and Mike Li, “Comparison and Correlation of Signal Integrity

Measurement Techniques,” DesignCon 2002

[36] “Jitter Fundamentals,” Wavecrest Corporation, Rev.1. July 6, 2005.

http://www.wavecrest.com/technical/pdf/jittfun_hires_sngls.pdf

[37] A. Kuo, T. Farahmand, N. Ou, S. Tabatabaei, and A. Ivanov, “Jitter Models

and Measurement Methods for High#Speed Serial Interconnects,” Proceed#

ings of IEEE International Test Conference, 2004

6.4 Advantages of Our AWGN Generator 185

[38] J. G. Proakis, Digital Communications, McGraw#Hill High Education, 2001

[39] http://www.altera.com/products/devices/mercury/features/mcy#cdr.html

“Mecury Advanced CDR Support”, Altera Application Notes

[40] B. Laquai and Y. Cai “Testing Multilane Gigabit SerDes Interfaces with Jitter

Injection,” Proceedings of IEEE International Test Conference, 2001

[41] M. Hafed, D. Watkins, C. Tam, and B. Pishdad, “Massively Parallel Valida#

tion of High#speed Serial Interfaces Using Compact Instrument Modules,”

Proceedings of IEEE International Test Conference, 2006

[42] D.C. Keezer, D. Minier, and P. Ducharme, "Source#Synchronous Testing of

Multilane PCI Express and HyperTransport Buses," IEEE Design & Test of

Computers, January 2006

[43] http://www.advantest.de/dasat/index.php?cid=100354&conid=100984&

[44] S. Sunter and A. Roy, "Structural Tests for Jitter Tolerance in SerDes Re#

ceivers," Proceedings of IEEE International Test Conference, 2005

[45] M. S. Toden, Analog and Digital Communication Systems, Discovery Press,

Los Angeles, California, 2001

[46] The MathWorks, Inc. Natick, Massachusetts. http://www.mathworks.com

[47] A. Gazel, E. Boutillon, J.L. Danger, G. Gulak, and H. Lamaari, “Design and

Performance Analysis of a High Speed AWGN Communication Channel

Emulator,” Proceedings of IEEE PACRIM Conference, Aug. 2001

[48] Altera Corporation, San Jose, California, http://www.altera.com

[49] Xilinx, Inc. San Jose, California, http://www.xilinx.com

[50] M. Courtoy, “Rapid System Prototyping for Real#time Design Validation,”

Proceedings of Ninth International Workshop on Rapid System Prototyping,

1998, pp. 108#112

[51] T. Matsumura, N. Yamanaka, T. Yamaguchi, and K. Ishikawa, “Real#time

emulation Method for ATM Switching Systems in Broadband ISDN,” Pro#

ceedings of seventh IEEE International Workshop, Jun 1996

[52] Wai#Kei Mak and D. F. Wong, “Board#level Multiterminal Net Routing for

FPGA#based Logic Emulation,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), April 1997

[53] J. Chen, J. Moon and K. Bazargan, “A Reconfigurable FPGA#Based Read#

back Signal Generator for Hard#Drive Read Channel Simulator,” Proceedings

of ACM/IEEE Design Automation Conference, June 10#14, 2002

[54] C. Change, K. Kuusilinna, B. Richards and R.W. Brodersen, “Implementation

of BEE: a Real#time Large#scale Hardware Emulation Engine,” Proceedings

of the International Symposium on Field programmable Gate Arrays, Febru#

ary 2003

[55] Agilent Technologies, Agilent 81200 Data Generator/Analyzer Data sheet,

2002

[56] Anritsu Corporation, 48 Gb/s BER Test System Datasheet. Atsugi#shi, Kana#

gawa, Japan, 2002

[57] M. F. Schollmeyer and W. H. Tranter, “Noise Generators for the Simulation

of Digital Communication Systems,” Proceedings of the 24th Annual Simula#

tion Symposium, April 1#5, 1991, pp. 264 – 275

[58] P. Kabal, “Generating Gaussian Pseudo#random Deviates”, Tech. Rep., De#

partment of Electrical and Computer Engineering, McGill University, 2000

186 Reference

[59] D. B. Thomas, W. Luk, P. Leong, and J. D. Villasenor, “Gaussian Random

Number Generators,” ACM Computing Surveys, Vol. 39, No. 4, October

2007

[60] Xilinx Inc., “Additive White Gaussian Noise (AWGN) Core v1.0”, Produc#

tion Specification, Oct. 2002

[61] D. Lee, W. Luk, J. Villasenor, and P. Y. K. Cheung, “A Gaussian Noise Gen#

erator for Hardware#Based Simulators,” IEEE Transactions on Computers,

Vol. 53, No. 12, December 2004

[62] A. Alimohammad, B.F. Cockburn, and C. Schlegel, "An iterative hardware

Gaussian noise Generator," Proceedings of IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, Aug. 2005

[63] A. Alimohammad, S.F. Fard, B.F. Cockburn, and C. Schlegel, "A compact

and accurate Gaussian Variate Generator," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol.16, No.5, May 2008

[64] P. Atiniramit, Design and implementation of an FPGA#based adaptive filter

single#use receiver, M. Sc. Thesis, Virginia Polytechnic Institute, 1999

[65] D. E. Knuth, The Art of Computer Programming, Addison#Wesley, 1998

[66] S. Aouini and G. W. Roberts, “A Predictable Robust Fully Programmable

Analog Gaussian Noise Source for Mixed#Signal/Digital ATE,” Proceedings

of IEEE International Test Conference, 2006

[67] Y. Fan and Z. Zilic, “A Novel Scheme of Implementing High Speed AWGN

Communication Channel Emulators in FPGAs,” Proceedings of 2004 Interna#

tional Symposium on Circuits and Systems, Volume: 2, 23#26, May 2004

[68] Henry H. Y. Chan and Zeljko Zilic, “Modeling Simultaneous Switching

Noise#Induced Jitter for System#on#Chip Phase#Locked Loops,” Proceedings

of ACM/IEEE Design Automation Conference, June 2007

[69] Y. Cai, B. Laquai, and K. Luehman, “Jitter Testing for Gigabit Serial Com#

munication Transceivers,” IEEE Design & Test of Computers, Vol. 19, Issue

1, Jan, 2002

[70] "Fibre Channel # Methodologies for Jitter and Signal Qualify Specification #

MJSQ Technical Report, Revision 12.2," Ed. Bill Hamn, January 2004

[71] M. Li, “Statistical and System Approaches for Jitter, Noise, and Bit Error

Rate (BER) Tests for High Speed Serial Links and Devices,” Proceedings of

IEEE International Test Conference, 2005

[72] S. Sunter and A. Roy, "A Self#Testing BOST for High#Frequency PLLs,

DLLs and SerDes," Proceedings of IEEE International Test Conference, 2007

[73] R. Walker, “Designing Bang#bang PLLs for Clock and Data Recovery in Se#

rial Data Transmission Systems,”

http://www.omnisterra.com/walker/pdfs.papers/BBPLL.pdf White Paper,

2003

[74] Behzad Razavi, "Challenges in the Design of High#Speed Clock and Data

Recovery Circuits," IEEE Communication Magazine, August 2002

[75] D. Hong and K.T. Cheng, “Bit#Error Rate Estimation for Bang Bang Clock

and Data Recovery Circuitry in High#Speed Serial Links,” Proceedings of

26th IEEE VLSI Test Symposium, 2008

[76] Working Draft American National Standard, Serial Attached SCSI#2 (SAS#

2), Revision 5a, 21 July 2006

6.4 Advantages of Our AWGN Generator 187

[77] T. Palkert, “SFI#5 Proposed Electrical Specifications,” Optical Internetwork#

ing Forum (OIF2001.033), January 2001

[78] “High Frequency Serial Communication: Technology Requirement”, Test

and Test Equipment Section, ITRS: International Technology Roadmap for

Semiconductors, Nov, 2004

[79] D.C. Keezer, J.S. Davis, S. Bezos, D. Minier, M.C. Caron, K. Bergman, and

O. Liboiron#Ladouceur, "Low#Cost Strategies for Testing Multi#Gigahertz

SOPs and Components," Proceedings of IEEE 5th Electronics Packaging

Technology Conference, 2003

[80] M. Li and J. B. Wilstrup, “On the Accuracy of Jitter Separation from Bit Er#

ror Rate Function,” Proceedings of IEEE International Test Conference, 2002,

p710#716

[81] P. R. Trischitta and E. L. Varma, Jitter in Digital Transmission Systems,

Artech House, 1989

[82] Bellcore, SONET OC#192 Transport System Generic Criteria, GR#1377#

CORE, Issue 5, 1998

[83] T.J. Yamaguchi, M. Soma, M. Ishida, H. Musha, and L. Malarsie, "A New

Method for Testing Jitter Tolerance of SerDes Devices Using Sinusoidal Jit#

ter," Proceedings of IEEE International Test Conference, 2002

[84] Teradyne, Inc. http://www.teradyne.com

[85] H. Werkmann, "Enabling the PCI Express Ramp # ATE Based Testing of PCI

Express Architecture," Euro DesignCon 2004 Also available at

www.verigy.com

[86] Y. Cai, A. Bhattacharyya, J. Martone, A. Verma, and W. Burchanowski, “A

Comprehensive Production Test Solution for 1.5GB/S and 3GB/S Serial#

ATA,” Proceedings of IEEE International Test Conference, 2005

[87] Y. Cai, T. P. Warwick, S. G. Rane, and E. Masserrat, “Digital Serial Com#

munication Device Testing and Its Implications on Automatic Test Equipment

Architecture,” Proceedings of IEEE International Test Conference, 2000

[88] E.S. Erdogan and S. Ozev, "A Robust, Self#tuning CMOS Circuit for Built#in

Go/No#Go Testing of Synthesizer Phase Noise," Proceedings of IEEE Inter#

national Test Conference, 2006

[89] E.S. Erdogan and S. Ozev, "An ADC#BiST Scheme Using Sequential Code

Analysis," Proceedings of the conference on Design, Automation and Testing

in Europe, 2007

[90] M. Li and J. Chen, "New Methods for Receiver Internal Jitter Measure#

ments," Proceedings of IEEE International Test Conference, 2007

[91] Tektronix, "Jitter Measurement and Timing Analysis," Product guideline,

http://www.tek.com/applications/serial_data/jitter.html

[92] Agilent Technologies, "Jitter Solutions for Telecom, Enterprise, and Digital

Designs," Cooperate literature,

http://cp.literature.agilent.com/litweb/pdf/5988#9592EN.pdf

[93] B.A. Ward, K. Tan, and M.L. Guenther, "Apparatus and Method for Spec#

trum Analysis#Based Serial Data Jitter Measurement," US Patent No.

6832172, issued on December 14, 2004

188 Reference

[94] W. Dalal and D. Rosenthal, “Measuring Jitter of High Speed Data Channels

Using Undersampling Techniques,” Proceedings of IEEE International Test

Conference, 1998

[95] M. Li, J.Wilstrup, R. Ressen and D. Petrich, “A New Method for Jitter De#

composition through Its Distribution Tail Fitting,” Proceedings of IEEE In#

ternational Test Conference, 1999

[96] S. Sunter, A. Roy, and J. Cote, “An Automated, Complete, Structural Test

Solution for SERDES,” Proceedings of IEEE International Test Conference,

2004

[97] A. H. Chan and G. W. Roberts, “A Jitter Characterization System Using a

Component#Invariant Vernier Delay Line,” IEEE Transactions on VLSI Sys#

tems, Volume 12, Issue 1, Jan. 2004

[98] A. Meixner, A. Kakizawa, B. Provost, and S. Bedwani, “External Loopback

Testing Experience with High Speed Serial Interfaces,” Proceedings of IEEE

International Test Conference, Oct. 2008

[99] W. Fritzsche and A. Haque, “Low Cost Testing of Multi#GBit Device Pins

with ATE Assisted Loopback Instrument,” Proceedings of IEEE International

Test Conference, Oct. 2008

[100] G. Hansel, K. Stieglbauer, K. Schulze and J. Moreira, “Implementation of

an Economic Jitter Compliance Test for a Multi#Gigabit Device on ATE”,

Proceedings of IEEE International Test Conference, 2004

[101] Standard Error (Statistics)

http://en.wikipedia.org/wiki/Standard_error_(statistics)

[102] “Standard Error of the Mean,” material from Brighton Webs Ltd, statistical

and data services for industry. http://www.brighton#

webs.co.uk/statistics/standard_error.asp

[103] M. Burns and G. W. Roberts, An Introduction to Mixed#Signal IC Test and

Measurement, Oxford University Press, 2001

[104] Analyzing Jitter Using a Spectrum Approach, Tektronix Application note

[105] J. Dorsch, "The Softer Side of Test: Software Products to Star at Interna#

tional Test Conference," Electronic News, September 1999

[106] S. Sunter, C. McDonald and G. Danialy, "Contactless Digital Testing of IC

Pin Leakage Currents," Proceedings of International Test Conference, 2001

[107] S. Sunter and A. Roy, "Purely Digital BIST for Any PLL or DLL," Proceed#

ings of European Test Symposium, May 2007

[108] R. Kiefer, Test Solutions for Digital Networks, Huthig GmbH, Heidelberg,

1998

[109] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL De#

sign, McGraw#Hill Higher Education, 2000

[110] Altera Corporation, Mercury Gigabit Transceiver MegaCore Function User

Guide, February 2002

[111] T. Yamaguchi, “Loopback or Not,” Proceedings of IEEE International Test

Conference, 2004, p. 1434

[112] http://en.wikipedia.org/wiki/Delay_line

[113] http://www.maxim#ic.com/appnotes.cfm/an_pk/209, “How Delay Lines

Work,” Application notes

6.4 Advantages of Our AWGN Generator 189

[114] K.W. Kobayashi, "A DC#40 GHz InP HBT Gilbert Multiplier," Proceedings

of IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 25th

Annual Technical Digest 2003

[115]

http://www.gigoptix.com/pdf/whitepapers/Optical_Interconnection_rev6.pdf,

“ Semiconductor Technologies for Optical Interconnection, from Ultra Long

Haul to Very Short Reach,” white paper by GigOptix

[116] www.hikari#trading.com/opt/gigoptix/file/it4036/it4036_data.pdf, “iT4036

Wideband Phase Delay Preliminary Datasheet”

[117] J. Moreira, H. Barnes and G. Hoersch, “Analyzing and Addressing the Im#

pact of Test Fixture Relays for Multi#Gigabit ATE I/O Characterization Ap#

plication,” Proceedings of IEEE International Test Conference, 2007

[118] D.C. Keezer, D. Minier, P. Ducharme, D. Viens, G. Flynn, and J.S. McKil#

lop, “Multi#GHz Loopback Testing Using MEMS Switches and SiGe Logic,”

Proceedings of IEEE International Test Conference, October 2007

[119] “TT1244: SPDT 265.GHz RF MEMS Switch”, Data Sheet, TeraVicta,

http://www.rapidtek.net/spec/mems/DS#TT1244_1.3.pdf

[120] “TeraVicta Announces Availability of DC to 26.5 GHz SPDT MEMS

Switch,” Press Release, TeraVicta Technologies, Inc., Austin, Texas, April

30, 2007. http://news.thomasnet.com/fullstory/518285

[121] http://www.teledynerelays.com/pdf/electromechanical/grf300grf303.pdf,

GRF300 Series data sheet

[122] http://www.teledynerelays.com/pdf/SurfacemountingGRF300.pdf, “Sur#

face Mounting GRF300 and GRF303 relays”, Application Note

[123] R. D’Agostino and M. Stephens, Goodness#of#Fit Techniques, Marcel Dek#

ker Inc., 1986

[124] D. Lee, W. Luk, J. Villasenor, G. Zhang and P. Leong, “A Hardware Gaus#

sian Noise Generator Using the Wallace Method,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 13, No. 8, August 2005

[125] D. Knuth, The Art of Computer Programming, Seminumerical Algorithms,

3rd Edition Ser. Addison#Wesley, 1997 Vol. 2

[126]D. Ruppert, “What is Kurtosis? An Influence Function Approach,” The

American Statistician, Vol. 41, No. 1, pp. 1#5, Feb. 1987

[127]D.N. Joanes and C.A. Gill, “Comparing Measures of Sample Skewness and

Kurtosis,” Journal of the Royal Statistical Society (Series D): The Statistician

47 (1), 183–189, 1998

[128] http://en.wikipedia.org/wiki/Kurtosis

[129] D. Lee, J. Villasenor, W. Luk and P. Leong, “A Hardware Gaussian Noise

Generator Using the Box#Muller Method and Its Error Analysis,” IEEE

Transactions on Computers, 2006

[130] D. C. Keezer, D. Minier and P. Ducharme, “Method for Reducing Jitter in

Multi#Gigahertz ATE,” Proceedings of the Conference on Design, Automa#

tion and Test in Europe, 2007, Pages 701#706

[131] D. C. Keezer, C. Gray, A. Majid and P. Ducharme, “A Development Plat#

form and Electronic Modules for Automated Test Up to 20Gbps,” Proceed#

ings of IEEE International Test Conference, 2009

190 Reference

[132] K#L. Lim and Z. Zilic, “An Undersampled Duty Cycle Jitter BIST Circuit”,

Proceedings of IEEE Midwest/NEWCAS Symposium, pp. 201#204, Aug.

2007.

[133] M. Hafed, N. Abaskharoun and G. W. Roberts, “A Stand#Alone Integrated

Test Core for Time and Frequency Domain Measurements,” Proceedings of

IEEE International Test Conference, 2000

[134] IEEE 1149.6 http://grouper.ieee.org/groups/1149/6/

[135] J.S. Davis, D.C. Keezer, O. Liboiron#Ladouceur and K. Berg#

man, “Application and Demonstration of a Digital Test Core: Optoelectronic

Test Bed and Wafer#level Prober,” Proceedings of IEEE of the International

Test Conference, 2003

[136] IEEE 1149 familiy.

www.siliconaid.com/2006_SWDFT_presentations/IEEE%201149%20family

%20%5BRead#Only%5D.pdf

[137] D.C. Keezer, J.S. Davis, M. Haris, S. Bezos, D. Minier, M.C. Caron, K.

Bergman, and O. Liboiron#Ladouceur, “Recent Advances in Low#Cost Multi#

GigaHertz Testing,” Proceedings of Napa KDG Packaging and Test Work#

shop, 2003

[138] C. Gray, O. Liboiron#Ladouceur, D.C. Keezer, and K. Bergman, “Co#

Development of Test Electronics and PCI Express Interface for a Multi#Gbps

Optical Switching Network,” Proceedings of IEEE International Test Con#

ference, 2007

[139] B. R. Veillette and G. Roberts, “Reliable Analog Bandpass Signal Genera#

tion,” Proceedings of IEEE International Symposium on Circuits and Sys#

tems, 1998

[140] IEC 61280#2#8, “Fibre Optic Communication Subsystem Test Procedures –

Digital Systems – Part 2#8: Determination of low BER using Q#factor Meas#

urements,” Feb 2003

[141] K. Willox, “Q Factor: The Wrong Answer for Service Providers and

Equipment Manufactures,” IEEE Communications Magazine, Feb. 2003

[142] GigOptix, http://www.gigoptix.com.

[143] P. Landman, “A Transmit Architecture with 4#Tap Feedforward Equaliza#

tion for 6.25/12.5Gb/s Serial Backplane communications”, Proceedings of

IEEE International Solid#State Circuits Conference, 2005

[144] J. Li and F. Yuan, “A New Hybrid Phase Detector for Reduced Lock Time

and Timing Jitter of Phase Locked Loops”, Journal of Analog Integrated Cir#

cuits and Signal Processing, Vol. 56, Issue 3 (September 2008), Pages: 233#

240

[145] S. Mehrmanesh and N. Masoumi, “A Comprehensive Bang#Bang Phase De#

tector Model for High Speed Clock and Data Recovery Systems”, Proceed#

ings of the 17th International Conference on Microelectronics, 2005. ICM

2005

[146] J. D. H. Alexander, “Clock Recovery from Random Binary Signals”, Elec#

tronics Letters, Vol. 11, Issue 22 (Octomber 1975), Pages: 541#542

[147] J. Lee, K. S. Kundert and B. Razavi, “Analysis and Modeling of Bang#Bang

Clock and Data Recovery Circuits”, IEEE Journal of Solid#State Circuits,

Vol. 39, Issue 9 (September 2004), Pages: 1571#1580

6.4 Advantages of Our AWGN Generator 191

[148] MSS (Mobile Satellite Services) Corporation, Bit Error Rate Generator and

Additive White Gaussian Noise Generator Specification, Gaithersburg, Mary#

land

[149] VR. C. Tausworthe, “Random Numbers Generated by Linear Recurrence

Modulo Two,” Mathematical Computing, vol. 19, pp201#209, 1965

[150] S. W. Golomb, Shift Register Sequences, Holden#Day, San Francisco, 1967

[151] S. Wolfram, “Random Sequence Generation by Cellular Automata,” Ad#

vances in Applied Mathematics, vol. 7, pp. 123#169, June 1986

[152] J. Chen, J. Moon and K. Bazargan, “A Reconfigurable FPGA#based Read#

back Signal Generator for Hard#drive Read Channel Simulator,” Proceedings

of 39th Design Automation Conference, Pages: 349#354, June 2002

[153] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of

Modern Physics, vol. 55, pp.601#644, July 1983

[154] S. Zhang, D. M. Miller, J. C. Muzio, “Determination of Minimal Cost One#

dimensional Linear Hybrid Cellular Automata,” Electronics Letters, vol. 27,

no.18, pp.1625#1627, Aug. 1991

[155] K. Cattell, S. Zhang, “Minimal Cost One#dimensional Linear Hybrid Cellu#

lar Automata of Degree through 500,” Journal of Electronic Testing: Theory

& Applications, vol6, no.2, pp255#258, April 1995

[156] M. Sipper and M. Tomassini, “Generating Parallel Random Number Gen#

erators by Cellular Programming,” International Journal of Modern Physics

C, vol. 7, no. 2, pp.181#190, 1996

[157] M. Tomassini, M. Sipper, M. Zolla, and M. Perrenoud, “Generating High#

quality Random Numbers in Parallel by Cellular Automata,” Future Genera#

tion Computer Systems, vol. 16, pp. 291#305, 1999

[158] M. Tomassini, M. Sipper, and M. Perrenoud, “On the Generation of High#

quality Random Numbers by Two#dimensional Cellular Automata,” IEEE

Transactions on Computers, vol.49, pp.1146#1151, October 2000

[159] B. Shackleford, M. Tanaka, R. J. Carter and G. Snider, “FPGA Implementa#

tion of Neighbourhood#of#four Cellular Automata Random Number Genera#

tors,” Proceedings of the Tenth ACM International Symposium on Field#

Programmable Gate Arrays, pp.106#112, Feb. 2002

[160] F. James, “A Review of Pseudo#random Number Generators,” Computer

Physics Communications 60, 1990

[161] P. L`Ecuyer, “Random Numbers for Simulation,” Communications of the

ACM, 33:10, 1990

[162] G.A. Marsaglia, “A Current View of Random Number Generators,” Compu#

tational Science and Statistics: The Interface, Balliard, Elsevier, Amsterdam,

1985

[163] Quantum World Corporation, QNG Model J20KP True Random Number

Generator Users Manual, 1998

[164] P. H. Bardell, W.H. McAnney and J. Savir, Build#in Test for VLSI: Pseudo#

random Techniques, John Wiley and Sons, 1987

[165] P.Alfke, “Efficeent Shift Registers, LFSR Counters, and Long Psudo#

Random Sequence Generators,” Xilinx Application Note, 1995

192 Reference

[166] P. Chu and R. Jones, “Design Techniques of FPGA#Based Random Number

Generator,” Military and Aerospace Applications of Programmable Devices

and Technologies Conferences, 1999

[167] P. L`Ecuyer, “Efficient and Portable Combined Random Number Genera#

tors,” Comm. ACM 31:6, 1988

Index

8

8B10B, 15

A

A-D, 165

ATE, 1

AWG, 47

AWGN, 28

B

BBPD, 41

bench, 1

BER, 2

BERT, 88

BIST, 67

BOST, 126

BUJ, 21

C

CDF, 17

CDR, 11

Characterizatio, 1

CL, 17

CLT, 150

D

DAC, 173

DCD, 21

DDJ, 21

DFE, 38

DFT, 46

DJ, 21

E

ECL, 132

F

FC, 13

FFE, 38

FFT, 97

FPGA, 3

G

Gbps, 1

H

HBT, 132

HSD, 66

HSSI, 1

I

IC, 12

IEEE 1149, 124

IP, 15

ISI, 21

J

JTAG, 124

K

K-S, 165

L

LC tank, 4

LF, 39

LFSR, 150

M

MEMS, 141

N

NRZ, 19

NRZI, 19

O

OE, 182

OOB, 182

ORC, 92

P

PAM, 170

PCB, 4

PDF, 22

PFD, 39

PJ, 21

PLL, 4

PRBS, 52

Production, 2

PRWS, 128

PSD, 27

PVT, 1, 44

Q

Q factor, 24

R

RJ, 21

RMS, 25

RO, 4

Rx, 14

RZ, 19

S

SAS, 45

SATA, 3

SE, 96

SerDes, 1

SMA, 129

SNR, 21

SoC, 4

SPB, 91

T

TIA, 48

TJ, 21, 76

Transceiver, 1

Tx, 14

U

UI, 23

ULTRA, 46

V

Validation, 1

VCDL, 51

VCO, 4

X

XAUI, 13

194 Index

	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 HSSI Technology Trends
	1.1.2 Qualification Challenges
	1.1.3 ATE Perspectives

	1.2 Contributions
	1.3 Overview of the Book

	2 Background
	2.1 High-Speed Serial Communication
	2.1.1 HSSI Structure
	2.1.2 BER Mechanisms
	2.1.3 Jitter and &oise Impacts to BER

	2.2 Timing Jitte
	2.2.1 Jitter Overview
	2.2.2 Jitter and BER
	2.2.3 Jitter Testing

	2.3 Amplitude .oise
	2.3.1 BER and S&R
	2.3.2 Simulation and Emulation
	2.3.3 AWG& Emulation

	3 Accelerating Receiver Jitter Tolerance Testing on ATE

	3.1 Introduction
	3.1.1 Receiver Structure and Characteristics
	3.1.2 Jitter Tolerance Testing Overview
	3.1.3 Proposed &ew Method

	3.2 Jitter Test Signal Generation
	3.2.1 Choosing Test Signal Parameters
	3.2.2 Periodic Jitter Injection
	3.2.2.1 Creating Jitter-Free Data Signal
	3.2.2.2 Creating a Digitized Jitter Signal
	3.2.2.3 Modulating the Data Signal
	3.2.2.4 Generating Bandwidth Limited Signals
	3.2.2.5 Downsampling to Get AWG Samples

	3.2.3 Fractional Sampling
	3.2.4 Jitter Calibration
	3.2.5 Random Jitter Control

	3.3 Receiver Bit Error Monitoring
	3.3.1 ATE-based Error Detection
	3.3.2 DFT-based Error Detection

	3.4 Jitter Tolerance Extrapolation
	3.4.1 Jitter Tolerance Extrapolation Algorithm
	3.4.2 Accelerating Jitter Tolerance Characterization
	3.4.3 Accelerating Jitter Tolerance Compliance Testing
	3.4.4 Discussion

	3.5 Other Applications of the .ew Method
	3.5.1 Jitter Transfer Characterization
	3.5.2 CDR Characteristics Analysis

	4 Transmitter Jitter Extractions on ATE
	4.1 Introduction
	4.1.1 Transmitter Jitter Testing Overview
	4.1.2 Proposed Solution

	4.2. Test Setup for Data Acquisition
	4.2.1 Overview of the Test Setup
	4.2.2 Principles of Clock Settings
	4.2.3 Test Setting Parameter Calculations

	4.3. Jitter Extraction
	4.3.1 Generating Edge Displacement
	4.3.2 Time Domain Approach
	4.3.2.1 RJ Extraction
	4.3.2.2 DJ Extraction
	4.3.2.3
TJ Calculation

	4.3.3 Frequency Domain Approach
	4.3.3.1 RJ Extraction
	4.3.3.2 DJ Extraction

	4.3.4 Hybrid Approach
	4.3.5 Limitations of Each Approach

	4.4 Experimental Results
	4.4.1 Bench Correlation
	4.4.2 Correlating Two RJ Approaches
	4.4.3 Impact of Test Patterns
	4.4.4 Impact of the Reference Clock
	4.4.5 Extending to 6 Gbps Applications

	4.5 Summary

	5 Testing HSSIs with or without ATE Instruments

	5.1 DFT in HSSIs
	5.1.1 Internal BERT
	5.1.2 Internal Loopback
	5.1.3 Other DFT Techniques
	5.1.4 Limitations of DFTs

	5.2 FPGA-based Bit Error Detection
	5.2.1 Implementing a Serial BERT
	5.2.2 Implementing a Parallel BERT
	5.2.3. HSSI Testing Demonstration

	5.3 Loopback Testing with Jitter Injection
	5.3.1 Testing Setup
	5.3.2 Phase Delay Based jitter Injection
	5.3.3 Experimental Results

	5.4 A Versatile HSSI Testing Scheme
	5.4.1 Major Functions of our Setup
	5.4.1.1 Testing, Validation and Debugging on ATE
	5.4.1.2 External Loopback with Jitter Injection
	5.4.1.3 Other Configurations

	5.4.2 High Speed Relays
	5.4.3 Limitations and Further Considerations

	6 BER Testing Under Noise

	6.1 AWG. Generation Overview
	6.1.1 Existing Methods
	6.1.1.1 CLT Method
	6.1.1.2 Box-Muller Method
	6.1.1.3 Mixed Method
	6.1.1.4 Cellular Automata Based Method
	6.1.1.5 Analog Method

	6.1.2 Our Method

	6.2 Our Implementation
	6.2.1 Generating Random Variables
	6.2.1.1 One Bit Random .umber Generator
	6.2.1.2 Multiple-Bit Random .umber Generator

	6.2.2 Gaussian Variable Generation
	6.2.2.1 Implementing a Single Generator
	6.2.2.1.1 Generating 1 V and S
	6.2.2.1.2 FIFO Implementation
	6.2.2.1.3 Generating W
	6.2.2.1.4 Generating Outputs

	6.2.2.2 Implementing Two Generators
	6.2.2.3 Accuracy Improvement

	6.2.3 Statistical Properties of our AGW& Generator
	6.2.3.1 Q(x) Evaluation
	6.2.3.2 Kurtosis Value

	6.3 Baseband Transmission Testing
	6.3.1 Baseband Signal Formats
	6.3.2 S&R Setting
	6.3.3 Testing Setup and Results

	6.4 Advantages of Our AWG. Generator

	7 Conclusions
	Reference
	Index
	Cover
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 HSSI Technology Trends
	1.1.2 Qualification Challenges
	1.1.3 ATE Perspectives

	1.2 Contributions
	1.3 Overview of the Book

	2 Background
	2.1 High-Speed Serial Communication
	2.1.1 HSSI Structure
	2.1.2 BER Mechanisms
	2.1.3 Jitter and &oise Impacts to BER

	2.2 Timing Jitte
	2.2.1 Jitter Overview
	2.2.2 Jitter and BER
	2.2.3 Jitter Testing

	2.3 Amplitude .oise
	2.3.1 BER and S&R
	2.3.2 Simulation and Emulation
	2.3.3 AWG& Emulation

	3 Accelerating Receiver Jitter Tolerance Testing on ATE
	3.1 Introduction
	3.1.1 Receiver Structure and Characteristics
	3.1.2 Jitter Tolerance Testing Overview
	3.1.3 Proposed &ew Method

	3.2 Jitter Test Signal Generation
	3.2.1 Choosing Test Signal Parameters
	3.2.2 Periodic Jitter Injection
	3.2.2.2 Creating a Digitized Jitter Signal
	3.2.2.1 Creating Jitter-Free Data Signal
	3.2.2.3 Modulating the Data Signal
	3.2.2.4 Generating Bandwidth Limited Signals
	3.2.2.5 Downsampling to Get AWG Samples

	3.2.3 Fractional Sampling
	3.2.4 Jitter Calibration
	3.2.5 Random Jitter Control

	3.3 Receiver Bit Error Monitoring
	3.3.1 ATE-based Error Detection
	3.3.2 DFT-based Error Detection

	3.4 Jitter Tolerance Extrapolation
	3.4.1 Jitter Tolerance Extrapolation Algorithm
	3.4.2 Accelerating Jitter Tolerance Characterization
	3.4.3 Accelerating Jitter Tolerance Compliance Testing
	3.4.4 Discussion

	3.5 Other Applications of the .ew Method
	3.5.1 Jitter Transfer Characterization
	3.5.2 CDR Characteristics Analysis

	4 Transmitter Jitter Extractions on ATE
	4.1 Introduction
	4.1.1 Transmitter Jitter Testing Overview
	4.1.2 Proposed Solution

	4.2. Test Setup for Data Acquisition
	4.2.1 Overview of the Test Setup
	4.2.2 Principles of Clock Settings
	4.2.3 Test Setting Parameter Calculations

	4.3. Jitter Extraction
	4.3.1 Generating Edge Displacement
	4.3.2 Time Domain Approach
	4.3.2.1 RJ Extraction
	4.3.2.2 DJ Extraction
	4.3.2.3
TJ Calculation

	4.3.3 Frequency Domain Approach
	4.3.3.1 RJ Extraction
	4.3.3.2 DJ Extraction

	4.3.4 Hybrid Approach
	4.3.5 Limitations of Each Approach

	4.4 Experimental Results
	4.4.1 Bench Correlation
	4.4.2 Correlating Two RJ Approaches
	4.4.3 Impact of Test Patterns
	4.4.4 Impact of the Reference Clock
	4.4.5 Extending to 6 Gbps Applications

	4.5 Summary

	5 Testing HSSIs with or without ATE Instruments
	5.1 DFT in HSSIs
	5.1.1 Internal BERT
	5.1.2 Internal Loopback
	5.1.3 Other DFT Techniques

	5.2 FPGA-based Bit Error Detection
	5.1.4 Limitations of DFTs
	5.2.1 Implementing a Serial BERT
	5.2.2 Implementing a Parallel BERT
	5.2.3. HSSI Testing Demonstration

	5.3 Loopback Testing with Jitter Injection
	5.3.1 Testing Setup
	5.3.2 Phase Delay Based jitter Injection
	5.3.3 Experimental Results

	5.4 A Versatile HSSI Testing Scheme
	5.4.1 Major Functions of our Setup
	5.4.1.1 Testing, Validation and Debugging on ATE
	5.4.1.2 External Loopback with Jitter Injection
	5.4.1.3 Other Configurations

	5.4.2 High Speed Relays
	5.4.3 Limitations and Further Considerations

	6 BER Testing Under Noise
	6.1 AWG. Generation Overview
	6.1.1 Existing Methods
	6.1.1.2 Box-Muller Method
	6.1.1.1 CLT Method
	6.1.1.3 Mixed Method
	6.1.1.4 Cellular Automata Based Method

	6.1.2 Our Method
	6.1.1.5 Analog Method

	6.2 Our Implementation
	6.2.1 Generating Random Variables
	6.2.1.1 One Bit Random .umber Generator
	6.2.1.2 Multiple-Bit Random .umber Generator

	6.2.2 Gaussian Variable Generation
	6.2.2.1 Implementing a Single Generator
	6.2.2.1.2 FIFO Implementation
	6.2.2.1.1 Generating 1 V and S
	6.2.2.1.3 Generating W

	6.2.2.2 Implementing Two Generators
	6.2.2.1.4 Generating Outputs

	6.2.2.3 Accuracy Improvement

	6.2.3 Statistical Properties of our AGW& Generator
	6.2.3.1 Q(x) Evaluation
	6.2.3.2 Kurtosis Value

	6.3 Baseband Transmission Testing
	6.3.1 Baseband Signal Formats
	6.3.2 S&R Setting
	6.3.3 Testing Setup and Results

	6.4 Advantages of Our AWG. Generator

	7 Conclusions
	Reference
	Index

