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The Internet is changing the way of life

The Internet will change the way of control

For researchers devoted to Networked Control Systems



Preface

In the last decade, network technology has dramatically been developed. Re-
cently, more and more network technologies have been applied to control
systems. Now, networked control is a new area in control systems. Particu-
larly, Internet based control systems allow remote monitoring and adjustment
of plants over the Internet, which makes the control systems benefit from the
ways of retrieving data and reacting to plant fluctuations from anywhere
around the world at any time. The networked control has also opened up
a complete new range of real-world applications, namely tele-manufacturing,
tele-surgery, museum guidance, traffic control, space exploration, disaster res-
cue, and health care. In recent years, the techniques of Internet of Things are
developed rapidly, the research of networked control systems (NCSs) plays a
key role in Internet of Things.

In NCSs, the plant, controller, sensor, actuator and reference command are
connected through networks. As the structure of NCSs is different from that
of tradition control systems, there exist various specific problems in NCSs, for
example, quantization, network delay, loss of data packets, network security
and safety. Therefore, analysis and synthesis of NCSs are of great importance.

The first chapter of this book is an overview of recent development of
NCSs, which is concluded in Chapter 1.

Then, this book will present four parts:
Part I: Some development of quantization has been introduced and new

results on quantization over networks are given. In Chapter 2, a simple quan-
tization strategy is proposed and the feedback control is designed based on
quantized estimated states sent through network. In Chapter 3, the problem
of the mean square stability of linear discrete systems with quantization and
packet dropout is considered. The quantizer used in this chapter is uniform
quantizer and the packet dropout rate is important to the performance of
system. The Lyapunov method and “zoom” strategy are used to guaran-
tee the mean square stability of the discrete linear systems. In Chapter 4,
the stability of a quantized system is considered, which is based on a quan-
tized input computed from quantized measurements. The problem of globally
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asymptotic stability of the system is transferred to the one of an equivalent
system depending on a multiplier which is nonnegative and boundness. It is
the focus of this chapter to discuss the nonnegative and boundness of mul-
tiplier. A sufficient condition is given for the globally asymptotic stability of
the system.

Part II: New results on data fusion over networks are presented. In Chapter
5, the method of the state estimation algorithm in single channel is extended
to multi-channel. Each channel is with a different packet arrival statistics.
The arrival process via a random variable is modeled and two different data
fusion architectures with finite buffer are proposed. The optimal state esti-
mation for a kind of linear dynamic systems with the observations obtained
asynchronously with multiple rates is concerned in Chapter 6, where the ob-
servations may lose randomly. For each sensor, a rule is proposed to check out
whether the measurement is missing. With the help of the modified Kalman
filter, the multiscale system theory and the federated square root filter, the
optimal state estimate is obtained at the highest sampling rate given.

Part III: Most work have ignored another important feature of NCSs. This
feature is that the communication networks can transmit a packet of data at
the same time, which is not done in traditional control systems. Therefore,
in Chapter 7, the network feature is made full use of and a new networked
predictive control scheme is proposed, which can overcome the effects caused
by network data dropout modeled as Markov chain. In Chapter 8, an optimal
estimation method is proposed to overcome the time delay and data dropout
in the feedback channel. There is a buffer to store the data from the sensor
and the length of the buffer can be set to store the data in this step and
before.

Part IV: With the development of NCSs, the research of fault detection
over networks is of great interest. In Chapter 9, a more general case that the
fault detection center is neither located at the controller node nor located
at the plant node is considered, all the input data and measurement data
are transmitted from the actuator node and the sensor node to the fault
detection center, respectively, over unreliable networks with bounded packet
loss. The bounded packet loss is modeled in two ways: arbitrary packet loss
process and Markovian packet loss process. The stability analysis of the er-
ror system and the design of fault detection filter (FDF) gains are given to
satisfy some performance constraints. In Chapter 10, a fault detection and
compensation scheme based likelihood ratios for networked predictive control
systems with random time delay and clock asynchronism is considered. A pre-
dictive control scheme based on state observer is designed to compensate the
network-induced time delay. The measured outputs of plant are sent back to
the local node with a buffer. The likelihood ratios of fault are computed, and
if a fault is detected and identified, the estimate of the fault is sent to the
controller to compensate the fault.

We would like to acknowledge the collaborations with Dr. Liping Yan on
the work of multisensor data fusion reported in the monograph and PH.D
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Symbols and Acronyms

A system matrix
A−1 inverse of matrix A
AT transpose of matrix A
A ≥ 0 symmetric positive semi-definite
A > 0 symmetric positive definite
A ≤ 0 symmetric negative semi-definite
A < 0 symmetric negative definite
C field of complex numbers
Ci measurement matrix
det(A) determinant of matrix A
diag(X1, X2, · · · , Xm) diagonal matrix with Xi as its ith diagonal element
I identity matrix
lim limit
LMI linear matrix inequality
P (k|k) the covariance of x̃(k|k)
Pi(k|k) the covariance of x̃i(k|k)
PN (k|k) the estimation error covariance of x(k) based on Sensor N under

the ideal assumption that without any measurements missing.
PN |i(k|k) the covariance of x̃N |i(k|k)
PN |ij(k|k) the cross-covariance between x̃N |i(k|k) and x̃N |j(k|k)
rank(A) rank of matrix A
R field of real numbers
Rn n-dimensional real Euclidean space
Rn×m space of n × m real matrices
sgn(x) the sign of x
Si the sampling rate of Sensor i
tr(A) trace of matrix A
T the sampling interval of Sensor N
0n×m zero matrix of dimension n × m
λ(A) eigenvalue of matrix A
λmin(A) minimum eigenvalue of matrix A
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λmax(A) maximum eigenvalue of matrix A
σ(A) singular value of matrix A
σmin(A) minimum singular value of matrix A
σmax(A) maximum singular value of matrix A
|x| absolute value (or modulus) of x
‖x‖ Euclidean norm
‖P‖ induced norm sup‖x‖=1 ‖Px‖
∀ for all
∈ belong to
→ tend to, or mapping to (case sensitive)
⊗ matrix Kronecker product∑

sum
E{·} mathematical expectation operator
Σ(k) an nN × nN matrix, whose ij-th block is PN |ij(k|k)
sup supremum
inf infimum
A ⊥ B E{ABT } = 0
δkj Kronecker delta function
x(k) the state variable vector at time kT
w(k) process noise, meet N(0, Q)
xi(k) the state variable vector at Scale i
yi(k) the k-th measurement observed by Sensor i
γi(k) a stochastic sequence that takes values on 1 and 0 with Bernoulli

distribution, which is used to describe the missing of measureme-
nts of Sensor i

vi(k) measurement noise, meet N(0, Ri)
x̂(k|k) the estimation of x(k) based on the measurements observed by

all the sensors before time kT
x̂i(k|k) the estimation of xi(k) based on the first to the k-th measureme-

nts of Sensor i
x̂N |i(k|k) the estimation of x(k) based on the measurements of Sensor i

observed before time kT
x̃(k|k) the estimation error of x̂(k|k)
x̃i(k|k) the estimation error of x̂i(k|k)
x̃N |i(k|k) the estimation error of x̂N |i(k|k)
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Chapter 1

Introduction

1.1 Background

With the emergence of high speed network technology that allows a clus-
ter of devices to be linked together economically to form distributed net-
works which are capable of remote data transmission and data exchanges,
distributed control systems based on networks are increasing rapidly in var-
ious applications([83, 84]). Due to the use of networks, the complexity and
the cost of distributed control systems are reduced greatly and the mainte-
nance of the systems becomes much easier ([229]). Because of these attractive
benefits, many industrial companies and institutes have shown great interest
in applying various networks to remote control systems and manufacturing
automation. As a result of extensive research and development, several net-
work protocols for industrial control have been released, such as industrial
Ethernet, ControlNet, and DeviceNet.

The further expansion of the Internet and rapid development of wireless
network technology will no doubt lead to even wider applications of control
systems through networks. Through a real-time network, a feedback control
system can be seen as a NCSs ([189]) which includes fieldbus control sys-
tems constructed on the basis of bus technology (e.g., DeviceNet, ControlNet
and LonWorks) and Internet based on control systems using general com-
puter networks. NCSs are completely distributed real-time feedback control
systems, which are integration of sensors, controllers, actuators and commu-
nication networks. The frame diagram of NCSs can be shown as Fig. 1.1.

The NCSs provide data transmission between devices to ensure that the
users of different sites can realize resource sharing and coordinating manip-
ulation, reduce system wiring, make system diagnosis and increase system
flexibility. But, the insertion of the communication network in the feedback
control loop makes the analysis and design of NCSs complex. Conventional
control theories with many ideal assumptions, such as synchronized control
and non-delayed sensing and actuation, must be re-evaluated before they are
applied to NCSs.

Y.Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 1–11.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1.1 Networked control system.

1.2 Internet of Things

In recent years, the Internet of Things is a hot research area. It is a technolog-
ical revolution that represents the future of computing and communications,
and its development depends on dynamic technical innovation in a number
of important fields, from wireless sensors to nano-technology. NCSs play a
key role in the Internet of Things.

1.2.1 The Origin of Internet of Things

Over a decade ago, the late Mark Weiser developed a seminal vision of future
technological ubiquity-one in which the increasing “availability” of processing
power would be accompanied by its decreasing “visibility”. As he observed,
“the most profound technologies are those that disappear...they weave them-
selves into the fabric of everyday life until they are indistinguishable from
it”. Early forms of ubiquitous information and communication networks are
evident in the widespread use of mobile phones: the number of mobile phones
worldwide surpassed 2 billion in mid-2005. These little gadgets have become
an integral and intimate part of everyday life for many millions of people.
Today, developments are rapidly under way to take this phenomenon an im-
portant step further, by embedding short-range mobile transceivers into a
wide array of additional gadgets and everyday items, enabling new forms of
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communication between people and things, and between things themselves.
A new dimension has been added to the world of information and communi-
cation technologies: from anytime, any place connectivity for anyone, we will
now have connectivity for anything.

1.2.2 The Definition of Internet of Things

Connections will multiply and create an entirely new dynamic network of
networks-an Internet of Things. The Internet of Things is neither science
fiction nor industry hype, but is based on solid technological advances and
visions of network ubiquity that are zealously being realized. Furthermore,
the technologies of the Internet of Things offer immense potential to con-
sumers, manufacturers and firms. The Internet of Things refers to a network
of objects, such as household appliances. It is often a self-configuring wireless
network. The concept of the Internet of Things is attributed to the original
Auto-ID Center, founded in 1999 and based at the time in Massachusetts
Institute of Technology. If all cans, books, shoes or parts of cars are equipped
with minuscule identifying devices, daily life on our planet will undergo a
transformation. Things like running out of stock or wasted products will no
longer exist as we will know exactly what is being consumed on the other
side of the globe. Theft will be a thing of the past as we will know where a
product is at all times. The same applies to parcels lost in the post.

1.2.3 The Meaning of Internet of Things

In Internet of Things, NCSs play a key role. First, in order to connect every-
day objects and devices to large databases and networks- and indeed to the
network of networks (the internet)-a simple, unobtrusive and cost-effective
system of item identification is crucial. Only then can data about things be
collected and processed. Radio-frequency identification offers this function-
ality. Second, data collection will benefit from the ability to detect changes
in the physical status of things, using sensor technologies. Embedded intelli-
gence in the things themselves can further enhance the power of the network
by devolving information processing capabilities to the edges of the network.
Finally, advances in miniaturization and nano-technology mean that smaller
and smaller things will have the ability to interact and connect. A combi-
nation of all of these developments will create an Internet of Things that
connects the world’s objects in both a sensory and an intelligent manner.
The Internet of Things will draw on the functionality offered by all of these
technologies to realize the vision of a fully interactive and responsive network
environment. Fig. 1.2 shows the future applications of the Internet of Things.
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Fig. 1.2 Internet of Things.

1.3 Main Issues

Specifically, the following issues need to be addressed ([130, 188, 225]).

1) The network-induced delay (sensor-to-controller delay and controller-
to-actuator delay) occurs while exchanging data among devices connected
to the shared network, which will be either constant (up to jitter) or time
varying, can degrade the performance of control systems designed without
considering the delay and can even destabilize the system([201, 117, 200]).

2) The network can be viewed as a web of unreliable transmission paths.
Some packets not only suffer transmission delay but, even worse, can be lost
during transmission. Thus, how such packet dropouts affect the performance
of a NCS is an issue that must be considered([224, 207]).

3) The plant outputs may be transmitted using multiple network packets
(so-called multiple packet transmission) due to the bandwidth and packet size
constraints of the network. Only a part or none of the packets could arrive on
the controller side because of the arbitrariness of the network medium with
other nodes on the network([138, 77]).

4) Stability and robustness analysis for NCSs is challenging since the net-
work delay varies with network topology, network protocol, network load,
network bandwidth and package size and its value may be bounded, un-
bounded, time-varying, constant or random([116, 107, 112, 199, 111]). There
also exist several uncertainties in NCSs, e.g., external disturbance, modeling
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error, system dynamics change. Up to date, some research results have been
obtained in stability and robustness analysis of systems.

The problem of robust stabilization for uncertain systems with time-delay has
been dealt using a number of different approaches, for example, the Riccati
equation approaches, linear matrix inequality (LMI) approaches, and the
Lyapunov min-max approaches. In particular, several approaches are applied
to solve the problems arising in networked linear control systems.

1.4 Methods

Generally speaking, there are three types of NCS methods:

Type 1 – scheduling methods that guarantee network QoS (quality of ser-
vice);

Type 2 – control methods that guarantee system QoP(quality of perfor-
mance);

Type 3 – integrating scheduling and control methods that consider both
QoS and QoP.

For Type 1, the following scheduling methods have been developed:
scheduling method MEF (Maximum-Error-First) based on MATI (Maximal-
Allowable-Transfer-Interval) ([189]), a scheduling protocol P-CSMA/CA
(Prioritized -CSMA-CA) based on IEEE 802.11 wireless standard ([216]),
and a sampling time scheduling method of network bandwidth allocation and
sampling period decision for multi-loop NCSs in virtue of the notion “win-
dow”, namely the service window of each transmission data in network ([73]).

For Type 2, there are many control methods developed for NCS, for ex-
ample, augmented deterministic discrete-time model method ([64]), Queuing
method ([114]), optimal control method ([130, 113]), perturbation method
([189]), robust control method ([60, 220]), fuzzy logic modulation method
([3]), event-based method ([177]), end-user control adaptation method ([183]),
control under data rate constrains method([41, 126]).

For Type 3, the following problems have been studied: the optimal sam-
pling period selection problem for a set of digital controllers ([162]), the
sampling period optimization problem under the schedulability constraints
([147]), the optimal scheduling problem under both RM-schedulability con-
straints and NCS stability constraints ([229]), and the NCS analysis and
simulation problem solved by two Matlab-based toolboxes: Jitterbug and
TrueTime (http://www.control.lth.se/ anton/, 2003).

In addition, the stability problem of closed-loop NCS in the presence of
network delays and data packet drops has been addressed in ([229]). The sta-
bility problem of NCSs with stochastic protocols and channels has been stud-
ied in ([175]). The problem of observer and robust state estimation has been
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addressed in ([153, 151]). To reduce network traffic load, a sampled-data NCS
scheme has been presented and some necessary and sufficient conditions for
global exponential stability of the closed-loop systems via state/output feed-
back without/with network delays have been established in ([121]). Some is-
sues related to network bandwidth constraints and network traffic congestion
in NCSs have been studied in ([1, 65, 197]). Internet based control has also
been considered for practical applications, for example, Internet-based pro-
cess control ([148]), Internet-based control system as a control device ([34]),
Internet robots ([179]), Internet based multimedia education ([129]), process
monitoring and optimization via the web ([127]) and game-theoretic treat-
ment of distributed power control in CDhlA wireless systems using outage
probabilities([5]).

1.5 Problems Studied in This Book

The following four major issues for NCSs will be studied in this book: quan-
tization, data fusion, predictive control and fault detection. In fact, because
of the joint of network, the signals are necessary to be quantized before they
are sent to the network. After the data are transmitted through network, the
method of data fusion can be used to fuse the data to reduce the burden of
respondents and avoid bias, then predictive control is adopted to deal with
data losses and asynchronous measurement sampling in the control system,
the last and necessary step is fault detection, which is used to detect fault
and make a binary decision-either that something has gone wrong or that ev-
erything is fine. Therefore, quantization, data fusion, predictive control and
fault detection are the main four issues in NCSs.

1.5.1 Quantization over Networks

Control using quantized feedback has been an important research area for a
long time. A quantizer is a function that maps a real-valued function into a
piecewise constant function taking on a finite set of values. At present, there
exist two kinds of quantizers, which are uniform quantizers and logarithmic
ones. As for uniform quantizer, which maps real-valued function to a finite
number of quantization regions with rectilinear shape ([17]) or arbitrary shape
([100]). The study of system affected by uniform quantizer is always basing
on “zoom” strategy , which is usually composed of two stages, i.e. “zooming-
out” and “zooming-in”. In first stage, the range of quantizer is increased
to guarantee the states of system can be adequately measured. In second
stage, the quantization error is decreased to drive the states to the origin.
When system is affected by logarithmic quantizer, in which the quantization
levels are linear in logarithmic scale, the simple classical approach to analysis
and mitigation of quantization effects is to treat the quantization error as
uncertainty or nonlinearity and bound it using a sector bound ([51]). The
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main problem about quantization is to find a quantized feedback control law
to stabilize the given system which can be stabilized by linear time-invariant
feedback.

There is a new line of research on quantized feedback control where a
quantizer is regarded as an information coder. The fundamental question of
interest is how much information needs to be communicated by the quantizer
in order to achieve a certain control objective. The problem of quadratic sta-
bilization of discrete linear systems using quantized feedback is studied in
[40]. It is proved that for a quadratically stabilizable system, the quantizer
needs to be logarithmic, which means that the quantization levels are linear
in logarithmic scale. Furthermore, the coarsest quantization density is given
explicitly in terms of the system’s unstable poles. Note that the required
quantizer has an infinite number of quantization levels because of its time-
invariance nature. When a finite number of quantization levels are available,
the so-called practical stability is obtained where there is a region of attrac-
tion in the state and the steady state converges to a small limit cycle. In a
different point of view ([17]), the number of quantized values is treated as be-
ing fixed a priori, but it allows to alter other quantization parameters while
the system evolves. This approach enables to achieve asymptotic stability,
which is a property that cannot be obtained with the schemes previously
investigated. When the quantizer is allowed to be dynamic and time-varying,
it is obviously advantageous to scale the quantization levels dynamically so
that the region of attraction is increased and the steady state limit cycle is
reduced. In addition, the minimum number of quantization levels is explicitly
related to the unstable poles of the system under the assumption of noise free
communications. In this setting, the dynamic quantizer effectively consists of
two parts: an encoder at the output end and a decoder at the input end.

We do caution that many results on quantized feedback with dynamic
quantizers may be impractical due to three problems: 1) Most results are for
stabilization only rather than for performance control; 2) The transient re-
sponse is typically very poor due to the lack of good control design algorithms;
3) The capacity results are in general not valid for practical communications
channels which are not noise free. The section of quantization in this book
attempts to solve these problems.

1.5.2 Data Fusion over Networks

Initial data fusion applications are predominant in the defense systems. Data
fusion originates from market studies especially in media and consumption
surveys, where it is often impossible to ask the same sample all the items
when there are too many questions. There is an increasing interest in data
fusion due to the availability of multiple sources in various fields. In order
to reduce the burden of respondents and thus avoid bias, one proceeds with
two different independent samples where the questions of interest are split
two parts with a common set of descriptors. Numerous mathematical tools,
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such as probability theory, Bayes analysis, evidence theory, possibility the-
ory, fuzzy-logic, neural networks and evolutionary algorithms, are applied
in solving data fusion problems. Currently, this field has expanded to cover
many research topics in which data fusion is an essential component: combin-
ing and updating the mapping of gravitational anomalies and meteorological
variables, target tracking, land mine detection, threat assessment, to name a
few. Medicine, geoscience and industrial engineering are some other research
fields which have vast applications of data fusion. With the rapid group of the
internet and other electronic sources of information, the problem of the coher-
ent merging of information from multiple sources has become an important
issue. Unified fusion rules are proposed in the sense of best linear unbiased
estimate and weighted least-square for all fusion architectures ([96]). A state
estimation fusion algorithm which is optimal in the sense of maximum a pos-
teriori is proposed in [24]. An algorithm accounting is provided in [19] for
dynamically changing interconnections among sensors, unreliable communi-
cation links, and faults, where convergence of the estimates to the true values
is proved, under suitable hypothesis of “dynamical” graph connectivity, while
in [172] the authors propose a minimum variance estimator for distributed
tracking of a noisy time-varying signal. The problem of distributed discrete-
time state estimation over sensor networks has been considered in [165].

Some terms of the estimation fusion problem are defined in [168]. The term
“raw measurement” refers to the measurement from any sensor at the end of
its signal processing chain. The term “processed measurement” refers to the
data after some transform of the raw measurement to be used for estimation.
One of the purposes in processing the raw measurements is to compress the
data and save communication bandwidth. The term “local estimate” refers
to any estimate that uses measurements from the local platform. A local esti-
mate may include data from a single sensor or multiple sensors, but all inputs
must be from the local platform or the data processing unit. The fusion sys-
tems use three basic approaches of communication between a local platform
and the fusion center, namely: i) sending raw measurements, ii) sending pro-
cessed measurements, e.g., quantized measurements to satisfy the bandwidth
constraint, iii) sending local posteriors, e.g., local estimates/covariances. The
third approach is commonly used in the existing distributed tracking sys-
tems. To design a fusion system, one needs to choose the system architec-
ture, develop an algorithm to perform the fusion based on certain optimality
criterion, and find a way to compute the possible cross-correlations among
the estimation errors from different sources. Apart from these three steps, an-
other major component is to develop a data association algorithm when there
is an association ambiguity among the local estimates from different sources.
[9] presents an algorithm for the association of multiple estimates in target
tracking. For brevity data association from different sources for estimation
fusion will not be discussed further.
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1.5.3 Predictive Control over Networks

In model predictive control, the current control action is obtained by solving
a finite horizon open-loop optimal control problem on-line using the current
state of the plant as the initial state at each sampling instant. The optimiza-
tion yields an optimal control sequence, in which the first control is applied to
the plant. This is its main difference from conventional control which uses a
pre-computed control law. It can be seen that the raison d’être for model pre-
dictive control with the clarity gained by hindsight is able to handle control
problems, where off-line computation of a control law is difficult or impossible
although other features, such as its capability for controlling multi-variable
plants, are initially deemed more important. Almost all applications impose
constraints, for example, actuators are naturally limited in the force, safety
limits states such as temperature, pressure, velocity and efficiency.

In the present work, the model-based control approach is adopted to deal
with data losses and asynchronous measurement sampling in the control sys-
tem. A Lyapunov-based model predictive controller is proposed for a broad
class of nonlinear uncertain systems with both disturbances and data losses.
Model predictive control is a popular control strategy based on a model to
predict in the process of control at each sampling time, the future evolution
of the system from the current state follows a given prediction horizon. Using
these predictions, the input trajectory that minimizes a given performance
index is computed by solving a suitable optimization problem. To solve fi-
nite dimensional optimization problems, MPC is used to optimize a family
of piecewise constant trajectories with a fixed sampling time and a fixed pre-
diction horizon. Once the optimal problem is solved, only the first input is
implemented, the rest of the trajectory is discarded and the optimization
is repeated at the next sampling step. In [136], MPC framework is particu-
larly appropriate for controlling systems subject to data losses because the
actuator can profit from the predicted evolution of the system. In recent
years, a wide class of MPC algorithms have been documented many times,
for examples [94, 76, 158], and the references therein. Furthermore, a sub-
optimal model predictive control algorithm is proposed to reduce the severe
computational problems [159]. By using a parameter dependent Lyapunov
functional, a MPC law for linear parameter varying systems is proposed in
[187]. For nonlinear system, a robust MPC algorithm is developed by using
a contractive formulation [157]. Moreover, a MPC algorithm is presented for
nonlinear sampled data control systems [115]. Another MPC of nonlinear
systems subject to data losses is considered in [35]. A MPC for constrained
linear systems to track piecewise constant references is presented in [102].
A solution to a finite-horizon MPC problem for max-plus-linear systems is
derived in [128]. The problem of robust MPC satisfying hard constraints on
inputs and outputs of a closed-loop system with polytopic type uncertain-
ties is investigated in [204]. Other researches about MPC can be shown as
[198, 203, 109, 202, 105, 78].
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1.5.4 Fault Detection over Networks

Observer based fault detection and isolation technology has attracted much
attention from many researchers because of the increasing demand for re-
liability and safety in industrial processes. Generally speaking, an observer
based fault detection system consists of an observer based residual generator
and a residual evaluator. The basic idea of fault detection is to construct a
residual signal and compare it with a predefined threshold. If the residual ex-
ceeds the threshold, an alarm is generated. Because noises and disturbances
may result in significant changes in the residual and lead to false alarms,
fault detection observers have to be robust, namely, it is insensitive or even
invariant to noise and disturbances. A residual generator for fault detection
based on multirate sampled data is designed in [87]. Moreover, some results
on fault detection and isolation by using frequency domain approach have
been reported in literature, such as [150, 228]. Problems related to the inte-
grated design of robust fault detection systems in time-frequency domain are
studied in [215].

Usually, H∞ norm optimization technique is used to design the robust fault
detection observers, the way of this technique is to introduce a performance
index and formulate the fault detection as an optimization problem. But the
technique may result in significant changes in the residual and lead to false
alarms, and it is contrary to main objective of fault detection because the
H− norm measures the maximum effect of an input on an output. Based on
H−, which is defined as the smallest nonzero singular value of the transfer
function matrix from fault to residual at the particular frequency, the study
on minimum singular value aiming to maximize the minimum effect of faults
on the residual output of a fault detection observer has gained much attention.
On the one hand, the linear matrix inequality methodology has been under
intensive research and widely used for various kinds of robust control and
filtering problems. One advantage of the LMI approach is the relative ease in
incorporating additional design objectives into the formulation. Hence, LMI
formulations for the H− and mixed H−/H∞ problems are of interest. Based
on these performance evaluation criteria, multiple objective optimal filter
problems such as H−/H∞ have attracted a great deal of research interests
in the recent years, for examples [97, 75, 88]. There are also some results on
fault finite frequency ranges detection filters with H∞ and H− performance
indices for discrete systems [190] and continuous systems [191], respectively.
In view of the wide usage of network cables in today’s world, a seemingly
natural research problem is to study fault detection problems for networked
systems in the presence of network-induced delays or/with data missing [138].

1.6 Summary

As there are more and more applications of NCSs in industry, such as traffic,
communication, aviation and spaceflight, more attention in this area has been
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paid to design and analysis of NCSs. The main problems about NCSs are
quantization, data fusion, predictive control and fault detection. In this book,
these four issues are discussed on NCSs affected by network-induced delay,
packet dropout, which are the significant factors in NCSs. The results in this
book will no doubt advance the study of NCSs and potential applications in
the area of Internet of Things.
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Quantization over Networks



Chapter 2

Stability Analysis of Quantized
Systems over Networks

2.1 Introduction

Recently there have been many of interests in NCSs, that is, control systems
closed via possibly shared communication links with delay/bandwidth con-
straints. Particularly, Internet based control systems allow remote monitoring
and adjustment of plants over the Internet. This enables the control system
to benefit from the way it retrieves data and reacts to plant fluctuations
from anywhere around the world at any time, see for example [56, 78], and
references therein. The main advantages of NCSs are low cost, simple instal-
lation and maintenance, and potentially high reliability. As the structure of
NCSs is different from that of traditional control systems, there exist various
specific problems in NCSs, for example, quantization, network delay, loss of
data packets, network security and safety [148]. In recent years, more and
more network techniques have been applied to control systems [133], much
attention has been paid to the study of control design and stability analysis
of NCSs ([29, 131, 229, 221, 106, 122]). A state estimation problem involving
bit-rate communication capacity constraints is studied in [119]. A current
survey of the emerging field of NCSs is provided in [7] and Hespanha, et. al
review several recent results on estimation, analysis, and controller synthe-
sis for NCSs in [70]. In [206], a practical architecture and some algorithms
for the networked data fusion system with packet losses and variable delays
are given, in which optimal state estimates through network are presented.
However, one important issue is not considered in [206], that is, the measure-
ment or estimated states have to be quantized before they are sent through
network.

Many research results on quantization have been obtained. For example,
the problem of detectability and stabilization of nonlinear systems via lim-
ited capacity digital communication channels is considered in [152], state es-
timation and stabilization with coder-decoder and coder-decoder-controller
procedures are studied in [238] and the controllability condition under the
discrete-valued input in [144]. The characterizations of the minimum data
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rate and the quantization level for stabilizing feedback control systems are
considered in [40, 125, 178], and the optimal quantizer for the identification
and control is discussed in [18]. An optimal dynamic quantizer is proposed
for control of linear time-invariant plants whose inputs are constrained to be
discrete-valued in [6]. In [17], Brockett and Liberzon consider the problems of
quantized feedback stabilization of linear system and propose a new control
design methodology which yields globally asymptotic stability of the systems.
[100] and [101] conduct a deeper study based on [17]. Although fruitful results
on quantization can be found in recent publications, there are still a lot of
space for further investigation such as quantization problems under network
conditions.

In fact, there are some works about quantized systems over network. For
example, the problem of output feedback control for NCSs with limited com-
munication capacity is considered by Engang Tian, Dong Yue, Chen Peng
in [181]. Very recently, [137], [182]and [223] propose some new results about
the guaranteed cost control and H∞ control of continuous systems over net-
work with quantization, where the effect of both network conditions and
data quantization are taken into consideration. Yue et al. [223] considers the
guaranteed cost control of continuous systems over networks with state and
input quantization based on the sector bound condition of quantizer given
in [51]. Gao et al. [56] combines the transformation method similar to [223]
with a technique of two successive delay components, and investigates prob-
lems of H∞ stability and stabilization for continuous-time NCSs with only
quantized state feedback. The problems of H∞ stability and stabilization for
NCSs with both sensor-to-controller and controller-to-actuator quantizations
are considered in [239]. The issue of designing quantizers in order to reduce a
remote control system, where the plant and the controller are connected by
a network cable, to be stable has been studied in [86].

In this chapter, the problem of quantized feedback under network condi-
tions is considered. It is known that the quantized feedback problem has been
considered in [17] and globally asymptotic stability is achieved. This chapter
has many different points from [17]. First, the network is considered in this
chapter. Second, the stability discussed in this chapter is not the same as
globally asymptotic stability. Third, Kalman filter is adopted in this chapter
to estimate states from measurements on the sensor side. So, this chapter
has its own significance. In this chapter, a simple quantization strategy is
proposed and the feedback control is designed based on quantized estimated
states sent through network. Sufficient condition is given to guarantee the sta-
bility of the closed-loop systems. Finally, a numerical simulation is presented
to show the effectiveness of the main results.

This chapter is organized as follows: Section 2.2 gives the problem formu-
lation. Quantization strategy is proposed in Section 2.3. Section 2.4 presents
the results of the stability of the closed-loop systems. A numerical example
is designed in Section 2.5. Some conclusions are given in Section 2.6.
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2.2 State Estimation Based on Kalman Filter

In this section, we will consider the following system:

x(k + 1) = Ax(k) + Bu(k) + ω(k)
y(k) = Cx(k) + v(k)

(2.1)

where x(k) ∈ Rn is the state variable, u(k) ∈ Rp is the control variable, y(k) ∈
Rm is the measurement output, A ∈ Rn×n is the system matrix, B ∈ Rn×p

is the input matrix, C ∈ Rm×n is the measurement matrix, ω(k) ∈ Rn is the
input noise, v(k) ∈ Rm is the measurement noise. The following assumptions
are standard.

Assumption 2.1. A is unstable and (A, B) is controllable.

Assumption 2.2. ω(k) ∈ Rn and v(k) ∈ Rm are the uncorrelated white
noises with zero mean and

E[ω(k)ωT (j)] = Qδkj

E[v(k)vT (l)] = Rδkl

E[ω(k)vT (j)] = 0
(2.2)

Assumption 2.3. The initial state x(0) is independent of ω(k) and v(k), k =
1, 2, · · ·M and

E[x(0)] = μ0

E[(x(0) − μ0)(x(0) − μ0)
T ] = P0

(2.3)

The following lemmas will be used to prove our main results in this chapter.

Lemma 2.1. [49] Assume A ∈ Rn×n, ρ(A) denotes spectral radius of matrix
A. Then for any ǫ > 0, there exists a kind of norm ‖ · ‖M satisfying:

‖A‖M ≤ ρ(A) + ǫ (2.4)

Lemma 2.2. [49] The norms are equal to each other in finite normed linear
space, that is, for any two kinds of norm ‖ · ‖1 and ‖ · ‖2, there exist positive
constants c1, c2, c3 and c4 satisfying:

c1‖ · ‖1 ≤ ‖ · ‖2 ≤ c2‖ · ‖1 (2.5)

c3‖ · ‖2 ≤ ‖ · ‖1 ≤ c4‖ · ‖2 (2.6)

Some notations are defined as follows:

Y (k) = [y(1), · · · , y(k)]T

x̂(k|k) = E[x(k)|Y (k)]
P̄ (k|k) = E[(x(k) − x̂(k|k))(x(k) − x̂(k|k))T |Y (k)]

x̂(k + 1|k) = E[x(k + 1)|Y (k)]
P̄ (k + 1|k) = E[(x(k + 1) − x̂(k + 1|k))T |Y (k)]

(2.7)
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The purpose of this chapter is to propose a quantization strategy and design a
quantized feedback controller u(k) which depends on estimated value x̂(k|k)
basing on Kalman filtering ([206]) such that system (2.1) is stable.

The Kalman filter based state observer is designed as

x̂(k|k − 1) = Ax̂(k − 1|k − 1) + Bu(k − 1)
x̂(k|k) = x̂(k|k − 1) + K̄(k)(y(k) − Cx̂(k|k − 1))
P̄ (k|k) = P̄ (k|k − 1) − K̄(k)CP̄ (k|k − 1)

K̄(k) = P̄ (k|k − 1)CT (CP̄ (k|k − 1)CT + R)−1

(2.8)

where x̂(k + 1|k) ∈ Rn and u(k − 1) ∈ Rm are the one-step ahead state
prediction and the input of the observer at time k, P̄ (k|k − 1) is the solution
of the following Riccati equation [167]

P̄ (k|k − 1) = AP̄ (k − 1|k − 2)AT + Q̄ − P̄ (k − 1|k − 2)CT

(CP̄ (k − 1|k − 2)CT + R)−1CP̄ (k − 1|k − 2)AT (2.9)

Due to the insertion of network, the estimated states have to be quantized
before being sent through network, the control strategy proposed in this
chapter is shown as Fig. 2.1:

ˆ( | )x k k

ˆ( ( | ))D Q x k kc

Fig. 2.1 Control based on quantized states.

It is assumed that the input of the plant at last time can be used as an
input of Kalman filter, which is reasonable in some cases. The estimated states
x̂(k|k) are quantized before sent through network, as is shown in Fig. 2.1, the
quantizer Q(·) is introduced to quantize x̂(k|k). At the other side of the
network, Q(x̂(k|k)) is decoded by decoder D(·) such that the closed-loop
system (2.1) is stable with quantized feedback.
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2.3 Quantization Strategy

Let us consider the quantizer Q(·). First, the 2-dimensional state quantization
is considered to show the method proposed in this chapter, and then we
extend it to the n-dimensional case. As is shown in Fig. 2.2, the quantization
regions are squares with length L and the quantized value is a sequence.

(-1,1) (0,1) (1,1)

(1,0)(-1,0)

(-1,-1) (0,-1) (1,-1)L

L

(0,0)

Fig. 2.2 2-dimensional state quantization.

If x = [x1 x2]
T with x1 ∈ (−L/2, L/2) and x2 ∈ (−L/2, L/2), then x

will be quantized to (0, 0) by quantizer Q(·), that is, Q(x) = (0, 0). In other
words, as to x = [x1 x2]

T , we will ensure the components
′

sequence according
to the interval which components belong to. Indicated by Fig. 2.2, we can see
that the quantization rule of quantizer Q : R2 → Z × Z is:

Q([x1 x2]
T ) = (i, j) (2.10)

where Z denotes integer set, x1 ∈ (iL−L/2, iL+ L/2), x2 ∈ (jL−L/2, jL+
L/2).

Decoder D(·) : Z × Z → R2 decodes the sequence (i, j) to the center of
the square, that is

D((i, j)) = [iL jL]T (2.11)

where i, j ∈ Z.
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As to the vector x on the edge of square, we quantize it according to
the principle of the smallest vector norm after decoding the quantization
sequence. For example, we choose (0, 0) as the quantized value of the ∗ point
on the edge of square. That is obtained according to the principle of the
smallest vector norm after decoding the quantization sequence. After decoded
by decoder D(·), (0, 0) is transferred to [0, 0]T and (−1, 0) is to [−L 0]T . It is
obvious that vector norm after decoding is smaller by selecting (0, 0), which
is shown in Fig. 2.3.

(-1,1) (0,1) (1,1)

(1,0)(-1,0)

(-1,-1) (0,-1) (1,-1)L

L

(0,0)

,

Fig. 2.3 Indication for edge point’s quantization.

According to the quantization rule, it can be shown that the components
of vectors on the edge of squares can be quantized to −iL/2 or iL/2, where
i is a positive odd number. The sequence numbers of −iL/2 and iL/2 are
ensured by the following rule:

{

−iL/2 → −(i − 1)/2
iL/2 → (i − 1)/2

(2.12)

where i is a positive odd number.
As to n-dimensional vector, 2-dimensional square in Fig. 2.2 is changed

to n-dimensional super square box without an intuitive geometric figure to
represent it.
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The quantization rule of n-dimensional quantizer Q : Rn → Zn is obtained
easily by extending the 2-dimensional case:

Q([x1 x2 · · ·xn]T ) = (i1, i2, · · · in) (2.13)

where, Z denotes integer set, xk ∈ (ikL − L/2, ikL + L/2), k = 1, 2, · · ·n.
The decode rule of decoder D : Zn → Rn is:

D((i1, i2, · · · in)) = [i1L i2L · · · inL]T (2.14)

where i1, i2, · · · , in ∈ Z.
The quantized value of the point on the edge of the n-dimensional super

square box is ensured by rule (2.12).
Then, we can obtain a general equation for quantization from the previous

analysis:
{

ik = ⌈xk

L − 1
2⌉ xk ≥ 0

ik = ⌊xk

L + 1
2⌋ xk ≤ 0

(2.15)

where, xk is the kth component of the n-dimensional vector and ik is the
quantized value of xk, ⌈·⌉ and ⌊·⌋ indicate the integer function upward and
downward, respectively, which can be described as follows:

{

⌈x⌉ = m + 1 m < x ≤ m + 1
⌊x⌋ = m m ≤ x < m + 1

(2.16)

where m ∈ Z.
From Assumption 2.1, it follows that there exit a positive definite matrix

P and matrix K satisfying the following equation:

(A + BK)T P (A + BK) − P = −I (2.17)

It is obvious that A+BK is a Schur stable matrix based on Lyapunov stability
theory and (2.17). We design u(k) = KD ◦ Q(x̂(k|k)), system (2.1) can be
written as

x(k + 1) = Ax(k) + BKD ◦ Q(x̂(k|k)) + ω(k) (2.18)

Then the following equation is obtained from (2.18)

x̄(k + 1) = Ax̄(k) + BKE[D ◦ Q(x̂(k|k))] (2.19)

Definition 2.3. Let x̄(k) = E[x(k)] and P (k) = E[(x(k) − x̄(k))(x(k) −
x̄(k))T ], system (2.1) is said to be stable, if lim

k→∞
x̄(k) = 0 and there is a

constant M > 0 such that ‖P (k)‖2 < M .
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2.4 Stability Analysis

In this section, a quantization control strategy is given based on quantization
strategy presented in previous section and the stability of system is discussed.

System (2.18) can be written as:

x(k + 1) = Ax(k) + BKD ◦Q(x̂(k|k)) + ω(k)
= (A + BK)x(k) − BK(x(k) − x̂(k|k)) − BK((x̂(k|k)

−D ◦Q(x̂(k|k))) + ω(k)
= (A + BK)x(k) − BK(x(k) − x̂(k|k)) − BKs(k) + ω(k)

(2.20)

where s(k) = x̂(k|k) − D ◦Q(x̂(k|k)).
Since the estimate x̂(k|k) is unbiased, take the expectation at both sides

of (2.20), the following equation is achieved:

x̄(k + 1) = (A + BK)x̄ − BKE[s(k)] (2.21)

In fact, equation (2.21) is equal to (2.19).
The inequality ‖s(k)‖2 ≤ √

nL/2 can be obtained by the former quanti-
zation strategy. Let s̄(k) = E[s(k)], the following inequality can be derived
according to the above inequality:

‖s̄(k)‖2 = ‖E[s(k)]‖2 ≤ E[‖s(k)‖2] ≤
√

nL/2 (2.22)

In the sequel, a quantization control strategy depending on Lyapunov sta-
bility theory is presented. Lyapunov function can be chosen as V (x̄(k)) =
x̄T (k)P x̄(k)(P > 0) by quantization rule (2.15) and equation (2.17). Let
λ̄ and λ indicate the maximum and minimum eigenvalue of the symmetric
positive definite matrix P, then λ̄ > 0 and λ > 0.

Let ∆V (x̄(k)) = V (x̄(k + 1)) − V (x̄(k)), then

∆V (x̄(k)) = x̄T (k)(A + BK)T P (A + BK)x̄(k) − x̄T (k)P x̄(k)
−2x̄T (k)(A + BK)T PBKE[s(k)] + ET [s(k)]KT BT BKE[s(k)]

= −‖x̄(k)‖2
2 − 2x̄T (k)(A + BK)T PBKs̄(k)

+s̄T (k)KT BT BKs̄(k)
≤ −‖x̄(k)‖2

2 + 2‖(A + BK)T PBK‖2‖x̄(k)‖2‖s̄(k)‖2

+‖BK‖2
2‖s̄(k)‖2

2

≤ −(1 − θ)‖x̄(k)‖2
2 − (θ‖x̄(k)‖2

2

−√
n‖(A + BK)T PBK‖2L‖x̄(k)‖2 − nL2‖BK‖2

2/4)
≤ −(1 − θ)‖x̄(k)‖2

2

(2.23)
when

‖x̄(k)‖2 ≥ (
√

nL/2θ)(‖(A + BK)T PBK‖2

+
√

‖(A + BK)T PBK‖2
2 + θ‖BK‖2

2), θ ∈ (0, 1)
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For simplicity, let

Π = (‖(A + BK)T PBK‖2 +
√

‖(A + BK)T PBK‖2
2 + θ‖BK‖2

2) (2.24)

then ∆V (x̄(k))≤−(1−θ)‖x̄(k)‖2
2 can be guaranteed by (2.23) when ‖x̄(k)‖2 ≥

(
√

nL/2θ)Π .
Let

Ω0 = {x̄(k) ∈ Rn : ‖x̄(k)‖2 < (
√

nL/2θ)Π} (2.25)

From the above discussion, it can be concluded that if there is a time t̄
such that ‖x̄(k)(t̄)‖2 ≥ (

√
nL/2θ)Π , there exists a finite time T such that

x̄(k) ∈ Ω0 when k > T , that is, the track of x̄(k) is in Ω0 after T . Observing
the variability of parameter L, if L is decreased, a new smaller sphere can
be defined similar to (2.25) to make x̄(k) arrive at it in finite time and never
leave it thereafter. In the ideal case, when L is reduced infinitely small, the
sphere reduces infinitely small correspondingly. From (2.23), it can be shown
that Ω0 → 0 when L → 0, that is, x̄(k) → 0 when k → ∞.

Let a constant ζ ∈ (0, 1) represent the decay factor of L, that is, take
Li = ζiL to represent the length of super square box after the ith decay,
where i = 0, 1, · · ·. The spheroid is defined as:

Ωi = {x̄(k) ∈ Rn : ‖x̄(k)‖2 < (
√

nLi/2θ)Π} (2.26)

Let τi be the time when x̄(k) enters the spheroid Ωi and decreases L for the
ith time. Define Ti+1 as the time when x̄(k) enters the spheroid Ωi+1. Let
∆T (i, i + 1) = Ti+1 − τi, then a time interval is defined by ∆T . Generally
speaking, it is difficult to get the time interval precisely, but the upper bound
which is enough in practice can be obtained.

Assume x̄(k) ∈ Ωi, x̄(k) �∈ Ωi+1 and L is decreased (i+1)th at time instant
k. From (2.23), it can be shown that

V (x̄(k + 1)) − V (x̄(k)) ≤ −(1 − θ)‖x̄(k)‖2
2 ≤ −(1 − θ)V (x̄(k))/λ̄ (2.27)

Then
V (x̄(k + 1)) ≤ (1 − (1 − θ)/λ̄)V (x̄(k)) (2.28)

Suppose that (1− (1−θ)/λ̄) < 1 or (1− (1−θ)/λ̄) ≤ 0. In the later situation,
it follows that x̄(·) is able to reach zero at time instant k + 1 according to
(2.28). But an upper bound is needed, thus, a general case is assumed, that
is, 0 < (1 − (1 − θ)/λ̄) < 1. From (2.28), it results in

V (x̄(k + p)) ≤ (1 − (1 − θ)/λ̄)pV (x̄(k)) (2.29)
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And then

‖x̄(k + p)‖2 ≤
√

(1 − (1 − θ)/λ̄)pV (x̄(k))/λ̄

≤
√

λ̄(1 − (1 − θ)/λ̄)p/λ‖x̄(k)‖2

≤
√

λ̄(1 − (1 − θ)/λ̄)p/λ(
√

nLi/2θ)Π

(2.30)

In order to get the upper bound of time interval, let the last line of (2.30) be
smaller than the radius of sphere Ωi+1, then

√

λ̄(1 − (1 − θ)/λ̄)p/λ(ζi√nL/2θ)Π ≤ (
√

nLi+1/2θ)Π (2.31)

Let a = 1 − (1 − θ)/λ̄, then

p ≤ loga(λζ2/λ̄) (2.32)

and then,
∆T (i, i + 1) ≤ loga(λζ2/λ̄) (2.33)

It is obvious that the right side of inequality (2.33) is a constant. Let ∆T (i, i+
1) = ∆T , it results in

∆T ≤ loga(λζ2/λ̄) (2.34)

Then an upper bound of time interval between reduced time and arrival time
is obtained.

Let ẽ(k) = x(k) − x̂(k|k) and P̃ (k) = E[ẽ(k)ẽT (k)], then there exists
a positive definite matrix M̄ > 0 such that E[‖ẽ(k)‖2

2] < M̄ . Considering
s̃(k) = s(k) − s̄(k) and above discussion, the following inequality can be
obtained:

‖s̃(k)‖2 ≤ ‖s(k)‖2 + ‖ ¯s(k)‖2 ≤ √
nLi =

√

Si (2.35)

Then
E[‖s̃(k)‖2

2] ≤ Si (2.36)

Let e(k) = x(k) − x̄(k), it follows from (2.20) and (2.21) that

e(k + 1) = (A + BK)e(k) − BKẽ(k) − BKs̃(k) + ω(k) (2.37)

Then

P (k + 1) = E[e(k + 1)eT (k + 1)]
= (A + BK)E[e(k)eT (k)](A + BK)T

−(A + BK)E[e(k)ẽT (k)]KT BT

−(A + BK)E[e(k)s̃T (k)]KT BT − BKE[ẽ(k)eT (k)](A + BK)T

+BKE[ẽ(k)ẽT (k)]KT BT + BKE[ẽ(k)s̃T (k)]KT BT

−BKE[s̃(k)eT (k)](A + BK)T + BKE[s̃(k)ẽT (k)]KT BT

+BKE[s̃(k)s̃T (k)]KT BT + Q
(2.38)
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From the above discussion, the following inequality can be obtained:

P (k + 1) ≤ 2(A + BK)P (k)(A + BK)T − (A + BK)P̃ (k)KT BT

−BKP̃ (k)(A + BK)T + 2BKE[s̃(k)s̃T (k)]KT BT

+BKP̃ (k)KT BT + BKE[ẽ(k)s̃T (k)]KT BT

+BKE[s̃(k)ẽT (k)]KT BT + Q

= 2(A + BK)P (k)(A + BK)T + AP̃ (k)AT

−(A + BK)P̃ (k)(A + BK)T + 2BKE[s̃(k)s̃T (k)]KT BT

+BKE[ẽ(k)s̃T (k)]KT BT + BKE[s̃(k)ẽT (k)]KT BT + Q
(2.39)

where AAT + BBT ≥ −ABT − AT B and the following equality are useful

E[e(k)ẽT (k)] = E[(x(k) − x̄(k))ẽT (k)]
= E[(x(k) − x̂(k|k) + x̂(k|k) − x̄(k))ẽT (k)]

= P̃ (k) + E[x̂(k|k)ẽT (k)] − x̄(k)E[ẽT (k)]

= P̃ (k)

(2.40)

Let Li be the length of super square box, the boundedness of P (k) can
be guaranteed by Lemma 2.2. For the norm discussed in Lemma 2.2, it is
assumed that there exist constants c̃ > 0 and c > 0 satisfying c̃‖ · ‖2 ≤
‖ · ‖M ≤ c‖ · ‖2, where ‖ · ‖2 denotes 2 norm in Euclid space.

Basing on above analysis and observing that A, A+BK, P (k), P̃ (k), BK,
s̃(k)s̃T (k), ẽ(k)s̃T (k) are all square matrices, we have

‖P (k + 1)‖M ≤ 2‖A + BK‖2
M‖P (k)‖M + ‖A‖2

M‖P̃ (k)‖M

+‖A + BK‖2
M‖P̃ (k)‖M + 2‖BK‖2

M‖E[s̃(k)s̃T (k)]‖M

+‖BK‖2
M‖E[ẽ(k)s̃T (k)]‖M + ‖BK‖2

M‖E[s̃(k)ẽT (k)]‖M

+‖Q‖M

≤ 2‖A + BK‖2
M‖P (k)‖M + c3‖A‖2

2‖P̃ (k)‖2

+c3‖A + BK‖2
2‖P̃ (k)‖2 + 2c3‖BK‖2

2‖E[s̃(k)s̃T (k)]‖2

+c3‖BK‖2
2‖E[ẽ(k)s̃T (k)]‖2 + c3‖BK‖2

2‖E[s̃(k)ẽT (k)]‖2

+c‖Q‖2

≤ 2‖A + BK‖2
M‖P (k)‖M + c3‖A‖2

2‖P̃ (k)‖2

+c3‖A + BK‖2
2‖P̃ (k)‖2 + 2c3‖BK‖2

2E[‖s̃(k)‖2
2]

+2c3‖BK‖2
2E[‖ẽ(k)‖2‖s̃(k)‖2] + c‖Q‖2

≤ 2‖A + BK‖2
M‖P (k)‖M + c3‖A‖2

2‖P̃ (k)‖2

+c3‖A + BK‖2
2‖P̃ (k)‖2 + 2c3‖BK‖2

2E[‖s̃(k)‖2
2]

+2c3‖BK‖2
2{E[‖ẽ(k)‖2

2]}
1
2 {E[‖s̃(k)‖2

2]}
1
2 + c‖Q‖2

≤ 2‖A + BK‖2
M‖P (k)‖M + c3(‖A‖2

2 + ‖A + BK‖2
2)M̄

+2c3‖BK‖2
2Si + 2c3‖BK‖2

2

√
M̄

√
Si + c‖Q‖2

≤ 2‖A + BK‖2
M‖P (k)‖M + c3(‖A‖2

2 + ‖A + BK‖2
2)M̄

+2c3‖BK‖2
2S0 + 2c3‖BK‖2

2

√
M̄

√
S0 + c‖Q‖2

(2.41)
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Let

Ξ = c3[(‖A‖2
2 + ‖A+BK‖2

2)M̄ +2‖BK‖2
2S0 +2‖BK‖2

2

√
M̄

√
S0]+ c‖Q‖2,

it is obvious that Ξ > 0, then (2.41) can be written as

‖P (k + 1)‖M ≤ 2‖A + BK‖2
M‖P (k)‖M + Ξ (2.42)

Theorem 2.4. If ρ(A + BK) <
√

2/2, there exists a kind of quantization
control strategy such that system (2.1) is stable in the sense of Definition 2.3.

Proof. The quantization control strategy which make lim
k→∞

x̄(k) = 0 is dis-

cussed above. In the following part, inequality (2.42) is used to prove that
there exists a constant M̃ > 0 such that ‖P (k)‖2 < M̃ .

A sequence is defined as

m(k + 1) = 2‖A + BK‖2
Mm(k) + Ξ, m(0) = ‖P (0)‖M (2.43)

It is obvious that ‖P (k)‖M ≤ m(k). From Lemma 2.1 and ρ(A+BK) <
√

2/2,
‖·‖M satisfying ‖A+BK‖M <

√
2/2, then 2‖A+BK‖2

M < 1 can be obtained.
For any finite initial value which is larger than zero, the sequence {m(k)}∞k=1

is convergent to a positive constant Ξ/(1 − 2‖A + BK‖2
M ), that is,

lim
k→∞

m(k) = Ξ/(1 − 2‖A + BK‖2
M ) (2.44)

Because of the boundedness of convergence sequence, it can be seen that
there exists a constant M > 0 such that 0 < m(k) < M̃ , then ‖P (k)‖M < M̃
and ‖P (k)‖2 < M̃/c̃.

Therefore, system (2.1) is stable in the sense of Definition 2.3 based on the
quantization control strategy proposed above.

Remark 2.5. Because of the controllable of (A, B), the poles of A + BK
can be assigned arbitrarily, therefore, the condition ρ(A + BK) <

√
2/2 in

Theorem 2.4 can be satisfied.

2.5 Numerical Example

Simulation is given in this section to demonstrate the performance of the
quantization strategy designed above comparing with the conventional state
feedback control u = Kx. The model is taken from [81], which is specified by

A =

[

1.3 0.3
0 1.2

]

, B =

[

1
0.5

]

, C =
[

1 1
]

, w(k) and v(k) are white noises with

covariance matrices Q =

[

0.01 0
0 0.01

]

and R = 0.01. The feedback gain is

selected as K =
[

−5.28 6.16
]

which satisfies the condition in Theorem 2.4.



2.5 Numerical Example 27

The system performances under the two control strategies are depicted
in Fig. 2.4-Fig. 2.12 when L = 0.01. It is apparent that the system behav-
ior under the quantization scheme is almost the same as conventional state
feedback control approach (see Fig. 2.10 and Fig. 2.11), and the norm of
estimated error covariance is finite (see Fig. 2.12).
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Fig. 2.4 Estimated state x1 when L=0.01.
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Fig. 2.5 Estimated state x2 when L=0.01.

The system states are depicted in Fig. 2.13-Fig. 2.14 when parameter L is
selected as L = 1. It is clear that the system performance under the quantiza-
tion scheme is inferior than the state feedback control method. The norm of
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Fig. 2.6 Quantized value of estimated state x1 when L=0.01.
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Fig. 2.7 Quantized value of estimated state x2 when L=0.01.

estimated error covariance is given in Fig. 2.15, which shows the boundness
of the norm of estimated error covariance.

The system trajectories are depicted in Fig. 2.16-Fig. 2.17 when parameter
L is select as L = 1000. It is obvious that the system performance under
the quantization scheme works badly. However, we can still guarantee the
finiteness of the norm for the estimated error covariance although it is very
large (see Fig. 2.18).

In the above simulations, it is clear that L is an essential factor in the per-
formance of the closed-loop systems. When L is very small, such as L = 0.01,
the performance of the closed-loop system with quantized feedback control
is almost the same as the one with conventional feedback control (see Fig.
2.10 and Fig. 2.11). When L = 1, the norm of covariance of estimated error,
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Fig. 2.8 Decoded value of estimated state x1 when L=0.01.
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Fig. 2.9 Decoded value of estimated state x2 when L=0.01.

P (k), increases (see Fig. 2.15). While L = 1000, the norm of covariance of
estimated error, P (k), increases remarkably (see Fig. 2.18). It is worth to say
that even if L is very large, for example L = 1000, the states of system are
bounded although the bound is very large. This is reasonable, because if L is
small, in this example, L = 0.01, the error induced by quantization is small,
and it is helpful to decrease the bound of estimated state x̂(k|k) after quan-
tizing. If L increases, however, the decoder performs is not so well. In fact,
when L > 1, the bound of quantized estimated state x̂(k|k) becomes larger
after quantizing, which brings the negative effect to the system. Therefore, it
is very important to choose a suitable L for implementation in practice.
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Fig. 2.10 x1 with quantized control when L=0.01.
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Fig. 2.11 x2 with quantized control when L=0.01.
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Fig. 2.12 Norm of estimated error covariance when L=0.01.
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Fig. 2.13 x1 with quantized control when L=1.
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Fig. 2.14 x2 with quantized control when L=1.
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Fig. 2.15 Norm of estimated error covariance when L=1.
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Fig. 2.16 x1 with quantized control when L=1000.
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Fig. 2.18 Norm of estimated error covariance when L=1000.

2.6 Summary

In this chapter, the stability of closed-loop systems based on quantization
feedback has been investigated. The Kalman filter is employed in this chap-
ter to estimate states from noisy measurements on the sensor side. A simple
quantization strategy is proposed to quantize the estimated states. The feed-
back control is designed based on quantized estimated states sent through
network. Sufficient condition has been given to guarantee the stability of the
closed-loop systems.



Chapter 3

Stabilization of Quantized Systems
with Packet Dropout

3.1 Introduction

In recent years, NCSs have been actively investigated ([229, 236, 221, 161, 107,
198, 170, 210, 230, 58, 193, 202, 219, 206]). Due to the limited transmission
capacity of the network and some devices in the closed-loop systems, data
transmitted in practical NCSs should be quantized before they are sent to the
next network node. Therefore, to achieve better performance of the considered
systems, the effect of data quantization on the system should be taken into
consideration. Furthermore, the network can be viewed as a web of unreliable
transmission paths. Some packets not only suffer transmission delay but, even
worse, can be lost during transmission. Thus, how such packet dropouts affect
the performance of a NCS is an issue that must be studied.

Nowadays, there are two quantizers used frequently, one is logarithmic
quantizer and another is uniform quantizer. Comparing logarithmic quan-
tizer with the uniform one, it is not hard to see that the former one holds
more advanced performance around origin and the later one is more easily
to operate. Each quantizer has advantages and disadvantages. Some of the
recent works about logarithmic quantizer include [40, 51, 86, 66, 67] and some
ones relating to uniform quantizer are [17, 100, 43, 46, 101, 50].

The purpose of this chapter is to consider the quantization issue and packet
dropout issue simultaneously. Some papers have already studied the two prob-
lems at the same time ([142, 61, 62, 132, 222, 182, 137, 181, 185, 14, 233, 212,
143, 25, 218]). The quantizers used in [142, 61, 62, 132, 222, 182, 137, 181, 185]
are logarithmic ones. As to uniform quantizer, the problem of stabilizing lin-
ear systems by taking quantization and packet dropout together is studied in
[14, 233, 212, 143, 25, 218]. Most of existing works considering quantization
and packet dropout simultaneously do not study the effect of packet dropout
rate on system performance. Reference [218] provid a sufficient and neces-
sary condition to ensure the system to be asymptotically stabilizable in the
mean square sense via quantized feedback. In [218], the relationship between
packet dropout rate and eigenvalues of system matrix plays an important

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 35–48.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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role. However, there is a strong assumption in [218], that is, all the eigenval-
ues of system matrix lie outside or on the unit circle. In fact, if the system is
unstable, it can only ensure that there is at least one eigenvalue outside the
unit circle. Furthermore, the quantization regions of uniform quantizer used
in [218] hold rectangular shapes, which is not in general.

In this chapter, we will consider the mean square stability of linear discrete
system affected by uniform quantization and packet dropout simultaneously
and show that the packet dropout rate is important to the performance of
system. The shapes of quantization regions considered here are arbitrary and
there is no limit to the eigenvalues of system matrix. The Lyapunov method
and “zoom” strategy which involved in [17] and [100] are used to guarantee
the mean square stability of the discrete linear system. The “zoom” strategy
is composed of two stages, i.e. “zooming-out” and “zooming-in”. In the first
stage, the range of quantizer is increased to guarantee that the states of
system can be adequately measured, at this stage, the system is open-loop.
In the second stage, the quantization error is decreased to drive the states to
the origin, at this stage, the system is closed-loop. Because the quantization
regions in [17] are rectilinear and the quantization regions with arbitrary
shapes are considered in [100], the uniform quantizer used in this chapter
will adopt the one introduced in [100]. Although the “zoom” strategy used
here is the same as [17] and [100], the analysis process is more complex than
[17] and [100] because of the consideration of packet dropout in this chapter.

The contents of this chapter are as follows. In Section 3.2 we introduce the
quantizer used in this chapter. In Section 3.3 the problem considered here
is given and the main result is shown in section 3.4. A numerical simulation
is presented in section 3.5 to show the effectiveness of the main result. In
section 3.6 we draw the conclusion.

Notations: Rn denotes the n-dimensional Euclidean space. The superscript
“T ” stands for matrix transposition. The notation P > 0 (≥ 0) means that
P is a real symmetric positive definitive matrix (positive semi-definite). In
symmetric block matrices, asterisk ∗ is used to represent a term that is in-
duced by symmetry. We denote by | · | the standard Euclidean norm in Rn

and by ‖ · ‖ the corresponding induced matrix norm in Rn×n. E{x} stands
for the expectation of x. Mn denotes the set of all n × n matrices over C
which represents the complex field.

3.2 Quantizer

Let x(k) be the variable being quantized. A quantizer can be described by a
piecewise constant function q : Rn → Γ , where Γ is a finite subset of Rn with
a fixed number of elements N . This leads to a partition of Rn into a finite
number of quantization regions of the form {x(k) ∈ Rn : q(x(k)) = i, i ∈ Γ}.
The quantization regions can be shown as Fig. 3.1
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Fig. 3.1 The square domain denotes the set of states being quantized. Quanti-
zation regions are denoted by closed domains surrounding by dotted line. Every
quantization region has a quantized value represented by a dot.

We assume that there exist positive real number M and △such that

I. If |x(k)| ≤ M , then |q(x(k)) − x(k)| ≤ △;
II. If |x(k)| > M , then |q(x(k))| > M −△.

Then the quantizer above is called a uniform quantizer, where M is saturation
value and △ means sensitivity. When x(k) does not belong to the union of
quantization regions of finite size, the quantizer saturates. So Condition I
gives a bound on the quantization error when the quantizer does not saturate.
Condition II provides a way to detect the possibility of saturation.

Remark 3.1. Generally speaking, quantizer q : R → Z with sensitivity △ and
saturation value M is defined as

q(x) =

⎧

⎨

⎩

M, if x > (M − 1
2 )△,

−M, if x ≤ −(M − 1
2 )△,

⌊

x
△ + 1

2

⌋

, if − (M − 1
2 )△ < x ≤ (M − 1

2 )△
(3.1)

It is obvious that the quantizer defined above satisfys Condition I and II and
the quantization regions of the quantizer (3.1) are rectangular [100]. Because
the quantization regions of uniform quantizer with Condition I and II have
arbitrary shapes, the uniform quantizer is more useful and worthy to be
considered.

Remark 3.2. Note the quantizer defined as (3.1) has some differences with
the one in [17]. In fact, based on the analysis process of system performance,
(M + 1

2 )△ should be changed to (M − 1
2 )△ in the definition of quantizer in

[17].
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In this chapter, we use quantized measurements of the form in [100], i.e.

qµ(x(k)) = μ(k)q

(

x(k)

μ(k)

)

(3.2)

where μ(k) > 0.
It is obvious that the following conditions about qµ(·) can be given:

III. If |x(k)| ≤ Mμ(k), then |qµ(x(k)) − x(k)| ≤ △μ(k);
IV. If |x(k)| > Mμ(k), then |qµ(x(k))| > Mμ(k) −△μ(k).

Remark 3.3. The role of μ(k) is to simply the analysis. In fact, for the quan-
tizer satisfying the Condition I and II, the process of “zooming-out” stage
is increasing M such that |q(x(k))| ≤ M − △, then the quantizer does not
saturate, that is, |x(k)| ≤ M , according to Condition II. Based on Condition
I, we have |q(x(k))−x(k)| ≤ △. In the stage of “zooming-in”, △ is decreased
to ensure the stability of the system. When μ(k) is introduced, we just need
to increase or decrease μ(k) rather than M and △ in “zoom” strategy.

3.3 Problem Formulation

In this chapter, we will consider the following discrete-time linear system:

G : x(k + 1) = Ax(k) + Bu(k). (3.3)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rn is the control input, A and B
are matrices of suitable dimensions. Assume that A is unstable and (A, B) is
stabilizable.

The following control law will be considered

u(k) = θ(k)Kqµ(x(k)) (3.4)

where qµ(·) is defined as (3.2) and θ(k) is a 0-1 random variable with proba-
bility distribution given by

Pr(θ(k) = i) =

{

α, i = 0,
1 − α, i = 1,

0 ≤ α < 1. (3.5)

when θ(k) = 0, the packet dropout occurs and the control law u(k) = 0,
otherwise u(k) = Kqµ(x(k)), that is

Pr(u(k) = 0) = α
Pr(u(k) = Kqµ(x(k))) = 1 − α

(3.6)

Then system (3.3) with control law (3.2) can be given as

x(k + 1) = Ax(k) + Bθ(k)Kqµ(x(k)) (3.7)
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We explain how the control signal is processed when it is transmitted from a
controller to the input side of G according to Fig. 3.2.

G

( )k

( )q

K

( )x k( )u k

Fig. 3.2 Stabilization via quantized signals with stochastic losses.

Definition 3.4. System (3.7) is said to be mean square stable if

limk→∞E{|x(k)|2} = 0 (3.8)

for any initial state x(0) ∈ Rn.

As we can see, system (3.7) is affected by quantization and packet dropout
simultaneously, then we will consider the problem of which conditions the
packet dropout rate α should satisfy to ensure that the states of the closed-
loop system (3.7) is mean square stable.

Lemma 3.5. The following inequality holds for any positive matrix P and
matrices E and F :

ET PF + FT PE ≤ ET PE + FT PF. (3.9)

Definition 3.6. [74] The spectral radius ρ(A) of a matrix A ∈ Mn is

ρ(A) ≡ max{|λ| : λ is an eigenvalue of A} (3.10)

where |λ| denotes the amplitude of λ.

Lemma 3.7. [74] If ‖ · ‖∗ is any matrix norm and if A ∈ Mn, then ‖ A ‖∗≥
ρ(A).

Remark 3.8. If the following system

x(k + 1) = Ax(k) (3.11)

is unstable, then there is at least one eigenvalue λ̃ for which |λ̃| > 1. Based
on Definition 3.6 and Lemma 3.7, we have ‖ A ‖∗≥ ρ(A) > 1, especially,
‖ A ‖> 1.
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3.4 Main Results

In this section, the main result is given as Theorem 3.9.

Theorem 3.9. Consider system (3.7), for a given packet dropout rate α, if
there exist a matrix Ψ and a positive matrix Ξ satisfying

⎡

⎣

−Ξ (AΞ + BΨ)T (BΨ)T

∗ − 1
2Ξ 0

∗ ∗ − 1
2αΞ

⎤

⎦ < 0 (3.12)

then we let K = ΨΞ−1, the closed-loop system (3.7) is mean square stable.

Proof: The system (3.7) can be rewritten as

x(k + 1) = (A + BK)x(k) − BKx(k)(1 − θ(k)) + BKθ(k)s(x(k)) (3.13)

where the “error” vector s(x(k)) = qµ(x(k)) − x(k).
In the following, we will use “zoom” strategy in [17] and [100] to prove the

mean square stability of system (3.7).
The “zooming-out” stage: If we let u(k) = 0 and increase μ(k) fast enough

to dominate the rate of growth of ‖A‖k, that is, μ(0) = 1 and μ(k) = ‖A‖k,
then based on ‖ A ‖> 1, there exists a positive integer k such that

∣

∣

∣

∣

x(k)

μ(k)

∣

∣

∣

∣

≤ M

√

λmin(P )

λmax(P )
− 2△ (3.14)

hence
∣

∣

∣

∣

q(
x(k)

μ(k)
)

∣

∣

∣

∣

≤
∣

∣

∣

∣

x(k)

μ(k)

∣

∣

∣

∣

+ △ ≤ M

√

λmin(P )

λmax(P )
−△ (3.15)

Thus, we can define

k0 = min

{

k ≥ 1 :

∣

∣

∣

∣

q(
x(k)

μ(k)
)

∣

∣

∣

∣

≤ M

√

λmin(P )

λmax(P )
−△

}

(3.16)

It is obvious that
∣

∣

∣

∣

q(
x(k0)

μ(k0)
)

∣

∣

∣

∣

≤ M

√

λmin(P )

λmax(P )
−△ (3.17)

hence
∣

∣

∣

∣

x(k0)

μ(k0)

∣

∣

∣

∣

≤
∣

∣

∣

∣

q(
x(k0)

μ(k0)
)

∣

∣

∣

∣

+ △ ≤ M

√

λmin(P )

λmax(P )
(3.18)

that is

|x(k0)| ≤ Mμ(k0)

√

λmin(P )

λmax(P )
(3.19)
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Therefore, x(k0) belongs to the ellipsoid

R1 = {x(k) : xT (k)Px(k) ≤ M2μ2(k0)λmin(P )} (3.20)

In the following part, we will prove that R1 is a invariant region, that is, if
we let u(k) = θ(k)Kqµ(k)x(k) with μ(k) = μ(k0) for k ≥ k0, then x(k) will
not leave R1.

Based on (3.20), it is obvious that

|x(k)| ≤ Mμ(k) (3.21)

holds with μ(k) = μ(k0) for all x(k) ∈ R1, which means the quantizer does
not saturate, then based on the Condition III, we have

|s(x(k))| ≤ △μ(k) (3.22)

for all x(k) ∈ R1.
Let V (x(k)) = xT (k)Px(k), where P = Ξ−1, it is obvious that P is a

positive matrix.
Based on (3.5) and E{(θ(k))2} = E{θ(k)} = 1 − α, we have

∆V (x(k))
= E{xT (k + 1)Px(k + 1)} − xT (k)Px(k)
= xT (k)[(A + BK)T P (A + BK) − P + αKT BT PBK

−αKT BT P (A + BK) − α(A + BK)T PBK]x(k)
+(1 − α)sT (x(k))KT BT PBKs(x(k))
+(1 − α)sT (x(k))KT BT P (A + BK)x(k)
+(1 − α)xT (k)(A + BK)T PBKs(x(k))

(3.23)

Let E = −BK, F = (A + BK), M = BKs(x(k)) and N = (A + BK)x(k),
the following inequalities can be given by Lemma 3.5:

−αKT BT P (A + BK) − α(A + BK)T PBK
< αKT BT PBK + α(A + BK)T P (A + BK)

(3.24)

(1 − α)sT (x(k))KT BT P (A + BK)x(k)
+(1 − α)xT (k)(A + BK)T PBKS(x(k))

< (1 − α)sT (x(k))KT BT PBKs(x(k))
+(1 − α)xT (k)(A + BK)T P (A + BK)x(k)

(3.25)

Based on (3.23), (3.24) and (3.25), it is obvious that

∆V (x(k)) ≤ xT (k)[2(A + BK)T P (A + BK) − P + 2αKT BT PBK]x(k)
+2(1 − α)sT (x(k))KT BT PBKs(x(k))

(3.26)
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Define Λ = diag{P, I, I} and pre–multiplying and post-multiplying (3.12) by
Λ give

⎡

⎣

−P (A + BK)T (BK)T

∗ − 1
2P−1 0

∗ ∗ − 1
2αP−1

⎤

⎦ < 0 (3.27)

Then based on Schur complement and (3.27), we can see that

2(A + BK)T P (A + BK) − P + 2αKT BT PBK < 0, (3.28)

which means that there exists a positive matrix Q̃, such that

2(A + BK)T P (A + BK) − P + 2αKT BT PBK = −Q̃ < 0 (3.29)

Then

∆(V (x(k)))

≤ −xT (k)(Q̃)x(k) + 2(1 − α)sT (x(k))KT BT PBKs(x(k))

≤ −λmin(Q̃)|x(k)|2 + 2(1 − α) ‖ KT BT PBK ‖ △2μ2(k)

(3.30)

The last expression is negative outside the ball B={x(k) : |x(k)| ≤ Φ△μ(k)},
where

Φ =

(

2(1 − α)

λmin(Q̃)
‖ KT BT PBK ‖

)
1
2

(3.31)

Define the scaling factor Ω by the formula

Ω =

√

λmax(P )

λmin(P )

√

Φ2 + ǫ△M−1 (3.32)

for some fixed ǫ > 0, and take M of △ to be large enough such that Ω < 1,
we have R1 ⊃ Band R1 is a invariant region. It follows that if we let u(k) =
θ(k)Kqµ(k)x(k) with μ(k) = μ(k0) for k ≥ k0, then x(k) will not leave R1.

The “zooming-in” stage:
Define

τ̃ =
M2λmin(P ) −△2Φ2λmax(P )

λmin(Q̃)△2ǫ
. (3.33)

Since Ω < 1, it is easy to see that τ̃ > 0. Define τ = ⌈τ̃⌉, where ⌈·⌉ denotes
the smallest integer which satisfying τ ≥ τ̃ , it is obvious that τ ∈ Z≥0.

We claim that the following inequality can be given for the τ defined above,

E{xT (k0 + τ)Px(k0 + τ)} ≤ △2μ2(k0)(Φ
2 + ǫ)λmax(P ) (3.34)

where ǫ is defined in (3.32).
Define

R̃2 = {x(k) : E{xT (k)Px(k)} ≤ △2μ2(k0)(Φ
2 + ǫ)λmax(P )} (3.35)
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It is obvious that R̃2 is a invariant region based on R̃2 ⊃ B for all k0 ≤ k ≤
k0 + τ . Suppose that (3.34) is not true. Then for τ ∈ Z≥0, we have

E{xT (k0 + τ)Px(k0 + τ)} > △2μ2(k0)(Φ
2 + ǫ)λmax(P ) (3.36)

Therefore
E{|x(k)|2} > △2μ2(k0)(Φ

2 + ǫ) (3.37)

for all k0 ≤ k ≤ k0 + τ . Based on (3.30) and Ω < 1, we can see that

∆V (x(k0 + τ − 1))
= E{xT (k0 + τ)Px(k0 + τ)} − E{xT (k0 + τ − 1)Px(k0 + τ − 1)}
≤ −λmin(Q̃)E{|x(k0 + τ − 1)|2} + λmin(Q̃)Φ2△2μ2(k0)

< −λmin(Q̃)△2μ2(k0)(Φ
2 + ǫ) + λmin(Q̃)Φ2△2μ2(k0)

= −λmin(Q̃)△2μ2(k0)ǫ

(3.38)

Similarly, we have

∆V (x(k0 + τ − i))
= E{xT (k0 + τ − i + 1)Px(k0 + τ − i + 1)}

−E{xT (k0 + τ − i)Px(k0 + τ − i)}
≤ −λmin(Q̃)E{|x(k0 + τ − i)|2} + λmin(Q̃)Φ2△2μ2(k0)

< −λmin(Q̃)△2μ2(k0)ǫ

(3.39)

where i ∈ {1, 2, 3, · · · , τ}.
Then the following inequality can be given

E{xT (k0 + τ)Px(k0 + τ)} − xT (k0)Px(k0)

< −λmin(Q̃)△2μ2(k0)ǫ · τ
≤ −λmin(Q̃)△2μ2(k0)ǫ · τ̃
= △2Φ2λmax(P )μ2(k0) − M2λmin(P )μ2(k0)

(3.40)

But (3.20), (3.36) imply that

∆V (x(k0)) = E{xT (k0 + τ)Px(k0 + τ)} − xT (k0)Px(k0)
> △2μ2(k0)(Φ

2 + ǫ)λmax(P ) − μ2(k0)M
2λmin(P )

> △2Φ2λmax(P )μ2(k0) − M2λmin(P )μ2(k0)
(3.41)

Comparing (3.40) and (3.41), we arrive at a contradiction, which establishes
the validity of (3.34).
Based on Ω < 1, for the τ ∈ Z≥0, we have

E{xT (k0 + τ)Px(k0 + τ)} ≤ △2μ2(k0)(Φ
2 + ǫ)λmax(P )

< (Ωμ(k0))
2M2λmin(P )

(3.42)

that is
E{xT (k0 + τ)Px(k0 + τ)} < (Ωμ(k0))

2M2λmin(P ) (3.43)
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Then x(k0 + τ) belongs to

R2 = {x(k) : E{xT (k)Px(k)} ≤ (Ωμ(k0))
2M2λmin(P )} (3.44)

Thus we let u(k) = Kθqµ(x(k)) with μ(k) = Ωμ(k0) for k0 +τ ≤ k < k0 +2τ ,
similar to above analysis, we have

E{xT (k0 + 2τ)Px(k0 + 2τ)} < (Ω2μ(k0))
2M2λmin(P ) (3.45)

Similarly, let μ(k) = Ωi−1μ(k0) for k0 + (i − 1)τ ≤ k < k0 + iτ , we have

E{xT (k0 + iτ)Px(k0 + iτ)} < (Ωiμ(k0))
2M2λmin(P ) (3.46)

Repeating this procedure, it is obvious that μ(k) → 0 as k → ∞ which
means i → ∞, and the closed-loop system (3.7) is mean square stable, that
is, limk→∞E{|x(k)|2} = 0. �

Remark 3.10. According the proof of Theorem 3.9, if the initial state x(0) is
not saturate, then we can omit “zooming-out” strategy and select k0 = 1.

Remark 3.11. As we can see, the packet dropout just occurs at the input side
in the above analysis. Then what will happen if the packet dropout exists at
the both sides of the input and output? In the following, we will consider the
system shown as Fig.3.3.

G
( )x k( )u k

K ( )q

( )k( )k

(̂ )x k

Fig. 3.3 Stabilization via quantized signals with stochastic losses occurred at the
both sides.

Where qµ(·) and θ(·) are defined as above and x̂(k) = ϕ(k)x(k), where ϕ(·)
is a 0-1 random variable with probability distribution given by

Pr(ϕ(k) = i) =

{

β, i = 0,
1 − β, i = 1,

0 ≤ β < 1. (3.47)
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When ϕ(k) = 0, the packet dropout occurs and x̂(k) = 0, otherwise
x̂(k) = x(k).

It is easily to see that the control law u(k) = θ(k)Kqµ(ϕ(k)x(k)) has the
following property:

u(k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 when θ(k) = 0, ϕ(k) = 0
0 when θ(k) = 1, ϕ(k) = 0
0 when θ(k) = 0, ϕ(k) = 1

Kqµ(x(k)) when θ(k) = 1, ϕ(k) = 1

(3.48)

that is

Pr(u(k) = 0) = α + β − αβ
Pr(u(k) = Kqµ(x(k))) = 1 − α − β + αβ

(3.49)

Comparing (3.49) with (3.6) and based on Theorem 3.9, it is obvious that
for the given packet dropout rate α and β, if there exist a matrix Ψ̃ and a
positive matrix Ξ̃ satisfying

⎡

⎢

⎣

−Ξ̃ (AΞ̃ + BΨ̃)T (BΨ̃)T

∗ − 1
2 Ξ̃ 0

∗ ∗ − 1
2(α+β−αβ) Ξ̃

⎤

⎥

⎦
< 0 (3.50)

let K = Ψ̃Ξ̃−1, system (3.3) under control law u(k) = θ(k)Kqµ(ϕ(k)x(k)) is
mean square stable.

3.5 Numerical Example

Example 3.12. In this example, we consider an application of the method
proposed in this chapter to the following discrete-time system

x(k + 1) = Ax(k) + Bu(k) (3.51)

where

A =

⎡

⎣

0.1 −0.4 −0.2
0 1.5 −0.1

0.1 0.1 −0.1

⎤

⎦ B =

⎡

⎣

0.5 0
0.5 1
1 0.5

⎤

⎦ (3.52)

The eigenvalues of A are 0.0022+0.1156i, 0.0022-0.1156i and 1.4956, it is
obvious that the system (3.51) is unstable. The system is stabilizable since
rank[B AB A2B] = 3.

If packet dropout rate α = 0.2, there exist positive matrics

Ξ =

⎡

⎣

0.7244 −0.0287 0.0020
−0.0287 0.5054 0.0223
0.0020 0.0223 0.7033

⎤

⎦ (3.53)



46 3 Stabilization of Quantized Systems with Packet Dropout

and

Ψ =

[

−0.1119 0.3407 0.1232
0.0893 −0.7548 −0.0481

]

(3.54)

satisfying (3.12), then system (3.51) under control u(k) = θ(k)Kqµ(ϕ(k)x(k))
is mean square stable based on Theorem 3.9 and K is defined as

K =

[

−0.1288 0.6600 0.1546
0.0643 −1.4889 −0.0213

]

(3.55)

Here, the quantizer is selected as

qµ(xi(k)) =

{

3μ(k)sgn{xi(k)}, if |xi(k)| > 3μ(k),
⌊

xi(k) + 1
2μ(k)

⌋

, if |xi(k)| ≤ 3μ(k).
(3.56)

where xi(k) is the ith component of x(k) and sgn{xi(k)} is a symbolic func-
tion. It is obvious that Condition III and IV are satisfied with M = 3 and
△ = 0.5.

When ǫ = 0.1, we have Ω = 0.6660 < 1. Let initial state x(0) = [7 8 7]T

and μ(k) =‖ A ‖k, it is obvious that x(0) is saturate, that is, |x(0)| > Mμ(0).
Then based on “zooming-out” strategy, a unsaturate time k0 which satisfying
(3.19) can be shown as Fig. 3.4.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

k

 

 

L(k)

|x(k)|

Fig. 3.4 The selection of k0.

In Fig. 3.4, L(k) = Mμ(k)
√

λmin(P )
λmax(p) and k0 = 3 is the smallest k satis-

fying (3.19). Then based on “zoom” strategy, μ(k) can be shown as Fig. 3.5
according to k0 = 3 and τ = 1.

Then the mean square of x(k) can be shown as Fig. 3.6 and system (3.51)
is mean square stable.
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Fig. 3.5 µ(k) in “zoom” strategy.
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Fig. 3.6 The mean square of x(k).

Remark 3.13. Note that when u(k)=θ(k)Kqµ(ϕ(k)x(k)), the states of closed-
loop will be influenced by random variable θ(k), then the states trajectory will
be random. Therefore, the k0 selected is random and μ(k) must be adjusted
according to k0.

Remark 3.14. If the initial state is selected as x(0) = [1 2 1]T , then based on
Fig. 3.7, k0 is selected as 1 and the “zooming-out” strategy can be omitted.

If packet dropout rate α = 0.3, we have

⎡

⎣

−Ξ (AΞ + BΨ)T (BΨ)T

∗ − 1
2Ξ 0

∗ ∗ − 1
2αΞ

⎤

⎦ > 0 (3.57)



48 3 Stabilization of Quantized Systems with Packet Dropout
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Fig. 3.7 The selection of k0.

for all matrices Ψ and positive matrices Ξ, so Theorem 3.9 is not useful to
verify the mean square stability of system (3.51).

Remark 3.15. In fact, when initial state x(0) = [7 8 7]T , we can solve the
largest packet dropout α ≈ 0.2741 to ensure the mean square stability of
the closed-loop system (3.51), that is, if the packet dropout rate α ≤ 0.2741,
the closed-loop system (3.51) is mean square stable, otherwise, Theorem 1 is
invalid to verify the mean square stability of system (3.51).

3.6 Summary

In this chapter, the problem of mean square stability of linear discrete sys-
tem with quantization and packet dropout is considered. For a given packet
dropout rate, a sufficient condition is given to ensure that the closed loop
system is mean square stable. The “zoom” strategy is used here, which was
based on the hypothesis that it is possible to change the sensitivity △μ(k)
and saturation value Mμ(k) of the quantizer. Based on (3.12) and (3.50), the
largest packet dropout rate can be given to ensure the mean square stability
of closed-loop system. However, the condition given in main Theorem is a
sufficient one, the sufficient and necessary is worthy to be considered in fu-
ture. Because the form of packet dropout considered in this chapter is simple,
some “representation complexity” of packet dropout needs to be developed
and taken into account. The system considered here is linear discrete, so the
nonlinear systems can be studied in future.



Chapter 4

Stabilization of Systems with
Quantized Feedback and
Measurements

4.1 Introduction

As we know, two quantizers are used frequently. The uniform quantizer is
introduced in above chapter, as for logarithmic quantizer, wonderful results
have been obtained. In [40], a logarithmic quantizer is firstly presented for sta-
bilization of a linear discrete-time system. Ref. [51] shows an alternative proof
for the optimal design and extends the results to quantized output feedback
and quantized quadratic performance control using the sector bound method.
Output feedback control of discrete-time linear systems using a finite-level
quantizer is studied in [52]. A new approach based on sector bound method
is used to analyze the stability of quantized feedback control systems in
[237]. Remote control system affected by quantized signal is considered in
[86]. Based on a quantization dependent Lyapunov function, the study on
stability analysis of quantized feedback control system is given in [55]. The
problems of discontinuous stabilization and robust stabilization of nonlinear
systems are discussed in [21] and [139], respectively. Ref. [57] considers the
problem of dynamic out-feedback stabilization of NCSs. In [66] and [67], the
adaptive quantized control is considered and an adaptive feedback control
law is given to ensure Lyapunov stable and x(k) → 0 as k → ∞. In [185],
quantization and packet dropout are considered simultaneously, packet losses
rate and unstable poles of the plant are considered to ensure different stabil-
ity of the system, such as stochastically quadratically stable and mean square
practically stable.

Note that most of results just considered the network exists at one side of
systems, i.e. input inside or output side. In fact, the network always exists
at the both sides in practice. So a quantized input computed from quantized
measurements (QIQM) system in accordance with network exists at both
sides is necessary to be considered.

In Ref. [223], the guaranteed cost control design (GCCD) problem of linear
system, which is affected by both quantized input and quantized output, is
considered. Based on linear matrix inequation, a sufficient condition is given

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 49–71.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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to ensure the GCCD problem for system with a network-based quantized
controller is solvable. Ref. [33] investigates the case of feedback control sys-
tems subject to both input and output quantization. Based on sector bound
approach, a sufficient and necessary condition for quadratic stabilization of
closed-loop system is given. But the condition given in [33] is hard to verified
because of the uncertainty of variables. So, in this chapter, another method,
which is proposed in [146], is used to analyze the stability of closed-loop sys-
tem. Note that quantizer used in [146] is a uniform one, which is simpler
implement but holds lower performance compared to logarithmic quantizer.
Therefore, in order to improve the performance of system, the logarithmic
quantizer is more useful than uniform quantizer when network exists at the
both sides of system.

In this chapter, the globally asymptotic stability of QIQM system is ana-
lyzed and a sufficient condition is given to ensure the stability. The quantizer
used here is a logarithmic one and a nonnegative and bounded multiplier
plays an important role in the process of stability analysis. Attention of this
chapter is restricted to linear discrete-time system, which is open-loop stable
and affected by network at both input and output sides. Note that network is
necessary to be inserted although the open-loop is stable in some situations,
such as remote control system. Therefore the problem considered here holds
it’s own practical meanings.

The contents of this chapter are as follows. In Section 4.2 we introduce
QIQM system and quantizer used in this chapter. In Section 4.3 the stability
of system is analyzed and a sufficient condition is given for globally asymp-
totically stable of closed-loop system. A numerical simulation is presented in
Section 4.4 to show the effectiveness of the main results and the conclusion
is drawn in Section 4.5.

4.2 QIQM System Description

In this chapter, we will consider the system with network exists at both
input and output sides. Because of the existence of network, quantization is
necessary to be considered and framework of system can be shown as Fig. 4.1.

The system shown as above can be seen as a QIQM system:

Σ0 :

{

x(k + 1) = Ax(k) + Bu(k)
u(k) = −Q(FQ(x(k)))

(4.1)

where x(k) is the n-dimensional state vector, A is a square matrix with
eigenvalues inside the unit circle, B is an n-by-1 vector and F ∈ Rn×1 is a
state feedback matrix. The mapping Q : R → R is a logarithmic quantizer
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ゲ x kx ku k

ゲ x k Fゲ x ku k

Fig. 4.1 System description.

with a dead-zone around origin. Similar to quantizer used in [185], Q(·) can
be expressed as:

Q(z) =

⎧

⎨

⎩

vi, z ∈ [ρ+1
2ρ vi,

ρ+1
2 vi)

−vi, z ∈ (− ρ+1
2 vi,− ρ+1

2ρ vi]

0, z ∈ (−v, v)

(4.2)

vi = ρiv0, v0 > 0, i ∈ Z≥0.

Where the coarseness ρ > 1 and v = ρ+1
2ρ v0.

The logarithmic quantizer Q(·) can be shown as Fig. 4.2

z

Q(z)

v0

v1

v2

1 0 0 1

1 1 1 1

2 2 2 2
v v v v v v

t t t t- - - -/ / /
0

-v0

-v1

-v2

Fig. 4.2 Logarithmic quantizer with dead-zone.

The mapping Q : Rn → Rn is the vector quantization function satisfying:

Q(x) = ξ, where ξi = Q(xi). (4.3)
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Remark 4.1. Note that the logarithmic quantizer considered here is different
from traditional quantizer used in [40] and [51], where quantization coarseness
ρ < 1 and quantization levels decrease monotonously. But in this chapter,
quantization levels increase monotonously according to ρ > 1. In fact, the
quantizer described as (4.2) is the same as traditional quantizer essentially
and ρ considered here is equal to 1

ρ in [40] and [51]. Comparing to [185],
quantization regions are different from each other, but the changes do not
influence the performance of quantizer. The changes here are just to facilitate
the discussion.

4.3 Stability of QIQM System

4.3.1 Construction of an Equivalent System and a

Multiplier

Define the following system:

L1 :

{

x(k + 1) = Ax(k) + Bũ(k)
y(k) = Fx(k) + dũ(k)

(4.4)

where ũ(k) is the same as u(k) defined in (4.1) and d is a parameter to be
determined, it is obvious that the state trajectory of (4.4) is equal to the one
of (4.1) according to the same initial state.

Then we have the following Lemma.

Lemma 4.2. There exists a mapping α : Rn → R, called multiplier, such
that

ũ(k) = −Q[α(x(k))y(k)] = u(k), ∀k (4.5)

Proof: Let
Ωvi

= {x(k) ∈ Rn|Q(x(k)) = vi}
F0 = {x(k) ∈ Rn|Fx(k) = 0}
Λ = Ω0 ∩ F0

(4.6)

We will show that there exists a mapping α(x(k)) satisfying Q[α(x(k))y(k)] =
Q[FQ(x(k))], then the result is satisfied.

If Q(FQ(x(k))) > 0, all we should do is to illustrate that there exists a
mapping α(·) such that

ρ + 1

2ρ
Q(FQ(x(k))) ≤ α(x(k))y(k) <

ρ + 1

2
Q(FQ(x(k))) (4.7)

In fact, if x �∈ Λ, then there exists an appropriate d, such that

y(k) = Fx(k) − dQ(FQ(x(k))) > 0 (or < 0) (4.8)
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Then (4.7) is equal to

ρ+1
2ρ

Q(FQ(x(k)))
Fx(k)−dQ(FQ(x(k))) ≤ (or ≥) α(x(k)) < (or >) ρ+1

2
Q(FQ(x(k)))

Fx(k)−dQ(FQ(x(k)))

(4.9)
Let

α(x(k)) =
Q(FQ(x(k)))

Fx(k) − dQ(FQ(x(k)))
(4.10)

It is obvious that α(x(k)) defined above satisfies (4.5).
If x ∈ Λ, then Q[α(x(k))y(k)] is equal to Q[FQ(x(k))] for any α(x(k)), we

let α(x(k)) = 0 for simplicity.
If Q(FQ(x(k))) < 0, the proof is the same as Q(FQ(x(k))) > 0 and

α(x(k)) is defined as (4.10).
Last, α(x(k)) can be chosen as 0 when Q(FQ(x(k))) = 0.
Based on the proof of Lemma 4.2, the multiplier α(x(k)) is defined as:

α(x(k)) =

{

Q(FQ(x(k)))
Fx(k)−dQ(FQ(x(k))) , if x �∈ Λ

0, if x ∈ Λ
(4.11)

4.3.2 Well-Defined Multiplier

Note that the selection of d should be considered in the proof of Lemma
4.2, now we will show that there exists a suitable d such that Fx(k) −
dQ(FQ(x(k))) = 0 if and only if x ∈ Λ.

In the following, two-dimensional system is discussed for simplicity. Firstly,
we consider supx∈Ωη

Fx and infx∈Ωη
Fx, where η = [η1 η2]

T and η1, η2 ∈
{±vi, i ∈ Z≥0}.

Because Fx is linear, supx∈Ωη
Fx and infx∈Ωη

Fx should happen on the
edge of Ωη.

For ηj = vi > 0, j = 1, 2 and i ∈ Z≥0, we have

max
xj∈Ωηj

xj =

{

(ρ+1)2

4ρ ηj + ρ2−1
4ρ ηj if fi > 0

(ρ+1)2

4ρ ηj − ρ2−1
4ρ ηj if fi < 0

(4.12)

Otherwise, if ηj = −vi < 0,

max
xj∈Ωη

xj =

{

(ρ+1)2

4ρ ηj − ρ2−1
4ρ ηj if fi > 0

(ρ+1)2

4ρ ηj + ρ2−1
4ρ ηj if fi < 0

(4.13)

where (ρ+1)2

4ρ ηj is the middle point between ρ+1
2ρ ηj and ρ+1

2 ηj and ρ2−1
4ρ |ηj | is

the distance between the middle point and boundary points.
Then based on (4.12) and (4.13), we have

max
xj∈Ωη

xj =
(ρ + 1)2

4ρ
ηj + sgn(fj)

ρ2 − 1

4ρ
|ηj | (4.14)
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for any fj and ηj , where sgn(·) is a symbolic function. Then

sup
x∈Ωη

Fx =
(ρ + 1)2

4ρ
Fη +

ρ2 − 1

4ρ
‖Fη‖1 (4.15)

Note that Q(FQ(x(k))) = Q(Fη) when x ∈ Ωη. In the following, we will
show that there exists a suitable d such that

Fd � {x(k)|Fx(k) = dQ(Fη)} ∩ Ωη = Ø (4.16)

That is, the denominator of α(x(k)) can not be zero in Ωη and it can not be
zero for all x(k) except for Ω0 according to the arbitrary of η.

To verify (4.16), we discuss the value of ‖ Fη ‖1 for sub-four cases:

i) When η1 = vi > 0 and η2 = vj > 0, the quantization region Ωη can
be shown as Fig. 4.3. Note that supx∈Ωη

Fx can be realized at a1, b1, c1 or
d1. Assume that supx∈Ωη

Fx is achieved at a1 and there exists a suitable d
such that the distance between Fη and Fd is larger than the one between
Fη and supx∈Ωη

Fx, then (4.16) is satisfied. It is obvious that if supx∈Ωη
Fx

is achieved at b1, c1 or d1 rather than a1, d selected above can also ensure
(4.16). So, the case, supx∈Ωη

Fx is achieved at a1, is only considered.
When supx∈Ωη

Fx is achieved at a1, f1 > 0, f2 > 0 should be satisfied.
Then

‖Fη‖1 = |f1η1| + |f2η2| = Fη (4.17)

ii) For η1 = vi > 0 and η2 = −vj < 0, the quantization region is illus-
trated as Fig. 4.4. The same as above analysis, we only consider the case that
supx∈Ωη

Fx is achieved at d2 and then f1 > 0, f2 < 0. Again, we have

‖Fη‖1 = Fη (4.18)

As for η = [−vi vj ]
T and η = [−vi −vj ]

T , the case, supx∈Ωη
Fx is achieved

at b3 and c4, is considered respectively and ‖Fη‖1 = Fη.
Above all, we can see that the case, ‖Fη‖1 = Fη, is only discussed whatever

η chooses. Then there is no point of intersection between Ωη and Fd, that is
(4.16) is satisfied, is equal to

|Fη − supx∈Ωη
Fx| < |Fη − dQ(Fη)|

⇔ |Fη − (ρ+1)2

4ρ Fη − ρ2−1
4ρ ‖Fη‖1| < |Fη − dQ(Fη)|

⇔ |Fη − (ρ+1)2

4ρ Fη − ρ2−1
4ρ Fη| < |Fη − dQ(Fη)|

(4.19)

Let ρ = 1+δ
1−δ , (4.19) is changed to

| − δ

1 − δ
Fη| < |Fη − dQ(Fη)| (4.20)
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According to 0 < δ < 1 and there exists an uncertain variable △ such that
Q(Fη) = (1 + △)Fη, where |△| < δ [51], (4.20) is equivalent to

δ
1−δ |Fη| < |1 − d(1 + △)||Fη| ⇔ δ

1−δ < |1 − d(1 + △)| (4.21)

Assume d < 0, it is obvious that 1− d(1 + △) > 0 and the inequation above
is equal to

d <
1 − 2δ

(1 − δ)(1 + △)
(4.22)
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When 1 − 2δ ≥ 0, that is 0 < δ ≤ 1
2 , 1−2δ

(1−δ)(1+△) decreases when △ increases.

Then (4.22) is satisfied if and only if

d <
1 − 2δ

1 − δ2
(4.23)

Otherwise, if 1 − 2δ ≤ 0, that is 1
2 ≤ δ < 1, 1−2δ

(1−δ)(1+△) increases as long as

△ increases. Then (4.22) is equivalent to

d <
1 − 2δ

(1 − δ)2
(4.24)

Summarized above, it is obvious that (4.22) is equal to

d < f(δ) �

{

1−2δ
1−δ2 if 0 < δ ≤ 1

2
1−2δ

(1−δ)2 if 1
2 ≤ δ < 1

(4.25)

Note that d < 0 is assumed, d has to satisfy

d < min(0, f(δ)) � g(δ) =

{

0 if 0 < δ ≤ 1
2

1−2δ
(1−δ)2 if 1

2 ≤ δ < 1
(4.26)

In the above, supx∈Ωη
Fx is considered. As for infx∈Ωη

Fx, if ηj = vi > 0,
j = 1, 2 and i ∈ Z≥0, we have

min
xj∈Ωηj

xj =

{

(ρ+1)2

4ρ ηj − ρ2−1
4ρ ηj if fi > 0

(ρ+1)2

4ρ ηj + ρ2−1
4ρ ηj if fi < 0

(4.27)

Otherwise, if ηj = −vi < 0,

min
xj∈Ωη

xj =

{

(ρ+1)2

4ρ ηj + ρ2−1
4ρ ηj if fi > 0

(ρ+1)2

4ρ ηj − ρ2−1
4ρ ηj if fi < 0

(4.28)

Combining (4.27) with (4.28), we have

min
xj∈Ωη

xj =
(ρ + 1)2

4ρ
ηj − sign(fj)

ρ2 − 1

4ρ
|ηj | (4.29)

for any fj and ηj . Then

inf
x∈Ωη

Fx =
(ρ + 1)2

4ρ
Fη − ρ2 − 1

4ρ
‖Fη‖1 (4.30)
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In the following, we discuss the value of ‖ Fη ‖1 for sub-four cases:

i) When η1 = vi > 0 and η2 = vj > 0, the quantization region Ωη can
be shown as Fig. 4.3. Note that infx∈Ωη

Fx can be realized at a1, b1, c1 or
d1. The same as the above analysis, the case, infx∈Ωη

Fx is achieved at a1,
is just discussed.

When infx∈Ωη
Fx is achieved at a1, f1 < 0, f2 < 0 must be satisfied. Then

‖Fη‖1 = |f1η1| + |f2η2| = −Fη (4.31)

ii) For η1 = vi > 0 and η2 = −vj < 0, the quantization region is shown as
Fig. 4.4. Then we only consider the case that infx∈Ωη

Fx is achieved at d2

and then f1 < 0, f2 > 0. Again, we have

‖Fη‖1 = −Fη (4.32)

As for η = [−vi vj ]
T and η = [−vi − vj ]

T , the case, infx∈Ωη
Fx is achieved

at b3 and c4, is considered respectively and ‖Fη‖1 = −Fη.
Above all, we can see that the case, ‖Fη‖1 = −Fη, only need to be con-

sidered whatever η chooses when infx∈Ωη
Fx is discussed. Then there is no

common point of intersection between Ωη and Fd, which means

|Fη − infx∈Ωη
Fx| < |Fη − dQ(Fη)|

⇔ |Fη − (ρ+1)2

4ρ Fη + ρ2−1
4ρ ‖Fη‖1| < |Fη − dQ(Fη)|

⇔ |Fη − (ρ+1)2

4ρ Fη − ρ2−1
4ρ Fη| < |Fη − dQ(Fη)|

⇔ (4.19)

(4.33)

Then the same as above analysis, d defined as (4.26) can ensure (4.16).
Therefore, the following condition can be given.

Corollary 4.3. The multiplier α(x(k)) in (4.11) is well-defined if

d < g(δ) =

{

0 if 0 < δ ≤ 1
2

1−2δ
(1−δ)2 if 1

2 ≤ δ < 1
(4.34)

Remark 4.4. Note that all analysis above just shows that if x �∈ Ω0, then
a(x(k)) is well-defined when d < g(δ). Comparing to α(x(k)) defined in (4.11),
we should also prove that a(x(k)) is well-defined if x(k) ∈ Ω0\F0. In fact, the
result is obvious. If x(k) ∈ Ω0\F0, it is easy to see that Q(FQ(x(k))) = 0
and Fx(k) �= 0, then Fx(k) − dQ(FQ(x(k))) = Fx(k) �= 0 for any d.

4.3.3 Nonnegativity of Multiplier

In this section, nonnegativity of α(x(k)) is discussed and one Lemma is given.
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Let x(k) ∈ Ωη, then Q(FQ(x(k))) is equal to Q(Fη) and

α(x(k)) =
Q(Fη)

Fx(k) − dQ(Fη)
(4.35)

is a function of Fx(k). Note that α(x(k)) has singular points satisfying
Fx(k) = dQ(Fη). When d < g(δ), these singular points are not in Ωη and
α(x(k)) is monotonic in Ωη based on

dα(x(k))

dFx(k)
= − Q(Fη)

(Fx(k) − dQ(Fη))2
(4.36)

It is obvious that α(x(k)) increases monotonously when Q(Fη) ≤ 0 and
α(x(k)) decreases monotonously when Q(Fη) ≥ 0.

Lemma 4.5. Suppose d is chosen such that d < g(δ), then α(x(k)) ≥ 0 for
all x(k) ∈ Rn.

Proof: Suppose x(k) ∈ Ωη, where η = {±vi, i ∈ Z≥0}. When d < g(δ),
the multiplier α(x(k)) is well-defined and α(x(k)) ≥ 0 if and only if
infx(k)∈Ωη

α(x(k)) ≥ 0. Three cases are considered to verify the result.

Case 1: Fη ≥ v
It is obvious that α(x(k)) decreases monotonously with Fx(k) and denomi-
nator of α(x(k)) is a positive definite constant within Ωη.

Then infx(k)∈Ωη
α(x(k)) ≥ 0 is equal to

sup
x(k)∈Ωη

F (x(k)) − dQ(Fη) ≥ 0 (4.37)

In fact,
supx(k)∈Ωη

F (x(k)) − dQ(Fη)

= (ρ+1)2

4ρ Fη + ρ2−1
4ρ ‖ Fη ‖1 −dQ(Fη)

≥ (ρ+1)2

4ρ Fη + ρ2−1
4ρ Fη − dQ(Fη)

= [ 1
1−δ − d(1 + △)]Fη

≥ 0

(4.38)

where |△| < δ < 1. The last inequation is based on d < 0 and Fη > 0. Then,
(4.37) is satisfied and α(x(k)) ≥ 0 in Ωη.

Case 2: Fη ≤ −v
In this case, Q(Fη) is negative definite and α(x(k)) increases monotonously
with Fx(k). In order to verify α(x(k)) ≥ 0, the following inequation should
be satisfied:

inf
x(k)∈Ωη

F (x(k)) − dQ(Fη) ≤ 0 (4.39)
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In fact,
infx(k)∈Ωη

F (x(k)) − dQ(Fη)

= (ρ+1)2

4ρ Fη − ρ2−1
4ρ ‖ Fη ‖1 −dQ(Fη)

≤ (ρ+1)2

4ρ Fη − ρ2−1
4ρ Fη − dQ(Fη)

= [ 1
1+δ − d(1 + △)]Fη

≤ 0

(4.40)

where |△| < δ < 1. The last inequation is based on d < 0 and Fη < 0. Then,
(4.39) is satisfied and α(x(k)) ≥ 0 in Ωη.

Case 3: −v < Fη < v
It is obvious that α(x(k)) = 0 in this case.

Above all, we have α(x(k)) ≥ 0 for x(k) ∈ Ωη. Then for any x(k) ∈ Rn,
α(x(k)) is nonnegative based on the arbitrary of η. �

4.3.4 Boundedness of Multiplier

In the following, we discuss the boundedness of multiplier α(·) and show that
the least upper bound of α(·) exists.

If Fη ≥ 0, then Q(Fη) ≥ 0 and α(·) decreases monotonously in Ωη.
Therefore

supx(k)∈Ωη
α(x(k)) = Q(Fη)

infx(k)∈Ωη Fx−dQ(Fη)

= Q(Fη)
(ρ+1)2

4ρ
Fη− ρ2−1

4ρ
‖Fη‖1−dQ(Fη)

(4.41)

can be seen as a function of Fη.
Let ᾱ = supη supx∈Ωη

α(x(k)), the boundedness of ᾱ is discussed based on
graphic method.

Select v0 = 1 > 0, ρ = 1.5 > 1 and d = −0.5 < 0, then v = ρ+1
2ρ v0 = 0.8333

and the following graphic, Fig. 4.7, can be given
Then, we can see that the supremum of α(·) is achieved at Fη = v and ᾱ

can be given as

ᾱ = supη supx(k)∈Ωη
α(x(k))

= supη
Q(Fη)

infx(k)∈Ωη Fx−dQ(Fη)

= supη
Q(Fη)

(ρ+1)2

4ρ
Fη− ρ2−1

4ρ
‖Fη‖1−dQ(Fη)

= v0
(ρ+1)2

4ρ
v− ρ2−1

4ρ
v−dv0

= 4ρ2

(ρ+1)2−4dρ2

(4.42)
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Fig. 4.7 Variations of Multiplier.

As for Fη ≤ 0, Q(Fη) ≤ 0 and α(·) increases monotonously in Ωη. Then

supx(k)∈Ωη
α(x(k)) = Q(Fη)

supx(k)∈Ωη
Fx−dQ(Fη)

= Q(Fη)
(ρ+1)2

4ρ
Fη+ ρ2−1

4ρ
‖Fη‖1−dQ(Fη)

(4.43)

Note that supx(k)∈Ωη
α(x(k)) can be seen as a function of Fη also. Let

α = sup
η

sup
x(k)∈Ωη

α(x(k)) (4.44)

and variations of multiplier selected as above, Fig. 4.8 can be shown as follows
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Fig. 4.8 Variations of Multiplier.
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Then, when Fη = −v, α can be achieved and shown as

α = supη supx(k)∈Ωη
α(x(k))

= −v0

− (ρ+1)2

4ρ
v+ ρ2−1

4ρ
v+dv0

= 4ρ2

(ρ+1)2−4dρ2

= ᾱ

(4.45)

Above all, if there exists η such that Fη = v or Fη = −v, then the least

upper bound of α(·) exists and equals to 4ρ2

(ρ+1)2−4dρ2 .

But, what will happen if there does not exist η such that Fη = v or
Fη = −v? We will explain that the least upper bound of α(·) exists although
the η, which satisfies Fη = v or Fη = −v, does not exist.

If there does not exist η such that Fη = v or Fη = −v, we will find the
node η ∈ {±vi, i ∈ Z≥0}, for which the contour approaches the value v or
−v. Mathematically, define the set

F̃ = {Fη|η ∈ Zη = ±ρivo, i ∈ Z≥0, Fη ≥ v =
ρ + 1

2ρ
v0} (4.46)

and

F̄ = {Fη|η ∈ Zη = ±ρivo, i ∈ Z≥0, Fη ≤ −v = −ρ + 1

2ρ
v0} (4.47)

We claim that the infimum of F̃ exists for any F . In the following, ηj ≥ 0, j =
1, 2 is considered only and other cases can be analyzed similarly.

Case 1: If f1 > 0 and f2 > 0, then Fη ≥ ρ+1
2ρ v0 is equal to

f1ρ
iv0 + f2ρ

jv0 ≥ ρ + 1

2ρ
v0 (4.48)

If i, j are selected large enough, then the above inequation is satisfied and it
is obvious that there exist suitable ĩ, j̃ such that

f1ρ
ĩv0 + f2ρ

j̃v0 = inf{f1ρ
iv0 + f2ρ

jv0} = inf F̃ (4.49)

Case 2: If f1 > 0 and f2 < 0, then Fη ≥ ρ+1
2ρ v0 is equal to (4.48). If i and j are

selected large enough and small enough respectively, then (4.48) is satisfied
and there exist suitable ĩ and j̃ such that

f1ρ
ĩv0 + f2ρ

j̃v0 = inf F̃ (4.50)

Case 3: As for f1 < 0 and f2 > 0, the analysis is the same as case 2.
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Case 4: If f1 < 0 and f2 < 0, then Fη ≤ − ρ+1
2ρ v0 can be changed to

(−f1)ρ
iv0 + (−f2)ρ

jv0 ≥ ρ + 1

2ρ
v0 (4.51)

and i, j selected large enough can ensure the above inequation. Therefore
there exists suitable ĩ, j̃ such that

(−f1)ρ
ĩv0 + (−f2)ρ

j̃v0 = inf{(−f1)ρ
iv0 + (−f2)ρ

jv0} = − sup F̄ (4.52)

that is the supremum of F̄ exists and can be shown as

sup F̄ = −[(−f1)ρ
ĩv0 + (−f2)ρ

j̃v0] (4.53)

and
inf F̃ = − sup F̄ = (−f1)ρ

ĩv0 + (−f2)ρ
j̃v0 (4.54)

Then the claim above is satisfied. To show analysis above clearly, a graph is
given as follows.

In Fig. 4.9, v0 = 1, ρ = 1.5, f1 = −0.4 and f2 = 0.3, based on the definition
of F̃ and Fη ≥ ρ+1

2ρ v0 which is equivalent to

f1ρ
iv0 + f2ρ

jv0 ≥ ρ + 1

2ρ
v0 (4.55)

there exist i, j such that (4.55) is satisfied, such as i and j chosen as 2 and 10
respectively. Also, ĩ and j̃, which satisfy (4.50), exist. If there exist i, j ∈ Z≥0

such that

− 0.4ρiv0 + 0.3ρjv0 =
ρ + 1

2ρ
v0 (4.56)
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Fig. 4.9 Existence of the infimum of F̃ .
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then ĩ and j̃, which satisfy (4.50), exist and the infimum of F̃ is equal to
ρ+1
2ρ v0. Otherwise, ĩ and j̃ are chosen such that −0.4ρiv0 + 0.3ρjv0 is larger

than and closed to ρ+1
2ρ v0. In this case, the optimal ĩ and j̃ can be chosen

as 8 and 7 respectively and the infimum of F̃ is 0.8543 approximately. Then
select Fq = inf F̃ = 0.8543 > 0, we have

ᾱ = supη supx(k)∈Ωη
α(x(k))

=
Q(Fq)

(ρ+1)2

4ρ
Fq−

ρ2−1
4ρ

‖Fq‖1−dQ(Fq)

= 1
(ρ+1)2

4ρ
×0.8543− ρ2−1

4ρ
×0.8543−d

≈ 0.8252

(4.57)

where d = −0.5 and Q(Fq) = v0 = 1 based on

ρ + 1

2ρ
v0 ≤ Fq = 0.8543 ≤ ρ + 1

2
v0 (4.58)

Above all, the supremum of multiplier α(x(k)) can be given as

ᾱ = supη supx(k)∈Ωη
α(x(k)) =

Q(Fq)
(ρ+1)2

4ρ
Fq−

ρ2−1
4ρ

‖Fq‖1−dQ(Fq)
(4.59)

where

Fq = inf F̃ = inf {Fη|η ∈ Zη = ±ρivo, i ∈ Z≥0, Fη ≥ v = ρ+1
2ρ v0} (4.60)

Note that if Fq < 0, it is easy to see that α is equal to ᾱ defined in (4.59).

Remark 4.6. In the above, all of analysis are based on two-dimensional sys-
tem, as to n-dimensional system, the analysis process is the same as above
but more complex than it. The results according to two-dimensional system
are satisfied for n-dimensional system.

4.3.5 Expression of Multiplier

The multiplier α(x(k)) is given as (4.11). If

d < g(δ) =

{

0 if 0 < δ ≤ 1
2

1−2δ
(1−δ)2 if 1

2 ≤ δ < 1
(4.61)

then α(x(k)) is well-defined and satisfies

0 ≤ α(x(k)) ≤ ᾱ ∀x(k) ∈ Rn (4.62)
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where

ᾱ =
Q(Fq)

(ρ+1)2

4ρ Fq − ρ2−1
4ρ ‖ Fq ‖1 −dQ(Fq)

(4.63)

and

Fq = inf F̃ = inf {Fη|η ∈ Zη = ±ρivo, i ∈ Z≥0, Fη ≥ v = ρ+1
2ρ v0} (4.64)

4.3.6 A Useful Lemma

Definition 4.7. [146] Let a class of function be defined by

S(K1, K2) =
{

σ : R → R
∣

∣K1 <
σ(y)

y
< K2

}

(4.65)

A function φ is said to be of the sector type with sector bounds K1 < K2 if
φ ∈ S(K1, K2). If equality is allowed in either side, the notations S[K1, K2),
S(K1, K2], and S[K1, K2] are used.

Definition 4.8. [146][71] Let A have eigenvalues inside the open unit circle
and let K̄ be a constant. Define the transfer matrix

W (z) =
1

K̄
= C(zI − A)−1B. (4.66)

We say that W (z) is DPR (discrete positive real) if

Re{W (ejω)} ≥ − 1

K̄
∀ω ∈ R. (4.67)

Lemma 4.9. [146] Let L1 be a stable discrete-time system represented by

{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Fx(k) + Du(k)

(4.68)

Let α : Rn → R be a mapping such that there exists a finite constant ᾱ sat-
isfying 0 ≤ α(x) < ᾱ for all x ∈ Rn. Let N : R → R be a sector nonlinearity
N ∈ S[0, n̄]. Assume that a unique solution to the above system exists when
u(k) = −N [α(x(k))y(k)]. Then, if the transfer matrix

H(z) = F (zI − A)−1B + D +
1

K̄
(4.69)
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is DPR, and ᾱn̄ < K̄, the closed-loop system formed by applying the feedback
u(k) = −N[α(x(k))y(k)] is stable in the large.

4.3.7 Stability Theorem for QIQM Systems

Theorem 4.10. Let a linear time-invariant system under quantized feedback
with QIQM described by

{

x(k + 1) = Ax(k) + Bu(k)
u(k) = −Q(FQ(x(k))).

(4.70)

Suppose A has eigenvalues inside the open unit circle. Define the transfer
function

G(z) = F (zI − A)−1B (4.71)

Then, the closed-loop system is globally asymptotically stable about origin if

inf
ω∈R

Re{G(ejω)} > ε (4.72)

where

ε =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
(δ−1)(δ+1)2 (

Fq

Q(Fq) − δ
‖Fq‖1

Q(Fq) ) if 0 < δ ≤ 1
2

(2δ−1)δ
(1−δ)2(1+δ) + 1

(δ−1)(δ+1)2 (
Fq

Q(Fq) − δ
‖Fq‖1

Q(Fq) ) if 1
2 ≤ δ < 1.

(4.73)

Proof: The outline of the proof is similar to that of Richter and Misawa
(2003). We focus on the difference in the following, but also refer to some
parts of the proof of Richter and Misawa (2003) in order to make the proof
in a self-contained form.

At first, change system (4.70) to the equivalent form

⎧

⎨

⎩

x(k + 1) = Ax(k) + Bu(k)
y(k) = Fx(k) + du(k)
u(k) = −Q(α(x(k))y(k))

(4.74)

where α(x(k)) is defined in (4.11) and the state of this system is identical
to that of original system based on Lemma 4.2. A unique solution sequence
exists for every initial condition. Assume a suitable d is selected to guarantee
that α(x(k)) is nonnegative and upper-bounded by ᾱ. Note that quantizer in
(4.2) is a nonlinear function with Q ∈ S(0, 2ρ

ρ+1 ], that is, n̄ = 2ρ
ρ+1 . Based on

Lemma 4.9, global stability is obtained if the transfer function

H(z) = F (zI − A)−1B + d +
1

K̄
(4.75)
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is DPR with 2ρ
ρ+1 ᾱ < K̄, that is

Re{G(ejω)} ≥ −d − 1

K̄
(4.76)

for all frequencies ω. The maximum of K̄ can be chosen as

K̄max =
1

−d − inf Re{G(ejω)} (4.77)

and the following inequation must be satisfied

K̄max >
2ρ

ρ + 1
ᾱ (4.78)

where ᾱ defined in (4.63). Then (4.78) is equal to

d >
1

δ(δ2 − 1)

Fq

Q(Fq)
+

1

1 − δ2

‖ Fq ‖1

Q(Fq)
− 1 + δ

δ
inf Re{G(ejω)} (4.79)

It is obvious that K̄max is positive based on infω∈R Re{G(ejω)} ≤ 0 and d <
0. Take Condition 1 into consideration, the following inequation is obtained:

1
δ(δ2−1)

Fq

Q(Fq) + 1
1−δ2

‖Fq‖1

Q(Fq) − 1+δ
δ inf Re{G(ejω)}

< d <

{

0 if 0 < δ ≤ 1
2

1−2δ
(1−δ)2 if 1

2 ≤ δ < 1

(4.80)

Then (4.72) is given. Based on Lemma 4.9, stability of closed-loop system is
satisfied. As for asymptotic stability, △V (x(k)) is given as [146]

△V (x(k)) = −[LT x(k) − WQ(α(x(k))y)]T [LT x(k) − WQ(α(x(k))y)]

−2Q(α(x(k))y)[y − Q(α(x(k))y)
K̄

]
(4.81)

where P , L, W satisfies

AT PA − P = −LLT

BT PA = F − WT LT

WT W = 2D + 2
K̄

− BT PB
(4.82)

The first term and second term of (4.81) have to be zero for △V (x(k)) to be
zero. It can be seen that the second term is zero if and only if Q(α(x(k))y) = 0
or y = 0. Then the first term of (4.81) is changed to −xT (k)LLT x(k).

Note that Q(α(x(k))y) = 0 is equal to |FQ(x(k))| < v based on
Q(α(x(k))y) = Q(FQ(x(k))), and y = Fx(k)−dQ(FQ(k)) = 0 only happens
in Λ ∈ Ω0, where Ω0 = {x(k)|Q(x(k)) = 0}, we have
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Θ = {x|△V (x(k)) = 0}
= [{x

∣

∣|FQ(x(k))| < v}⋃{x|Q(x(k)) = 0}]⋂null(LLT )}
= {x

∣

∣|FQ(x(k))| < v}⋂null(LLT )
(4.83)

where null(LLT ) = {x
∣

∣xT LLT x = 0}. It is obvious that no information is
available about null(LLT ), therefore, the left set is taken into consideration.
Let Ω be an arbitrary bounded region of state-space, in which △V (x(k)) ≤
0. It can be seen that Θ is the largest invariant set in Ω, therefore, the
trajectories of system must stay within Θ. Note that system equation in Θ is

x(k + 1) = Ax(k) (4.84)

Then the trajectories of system must converge asymptotically to the origin
based on the eigenvalues of A are inside the open unit circle. Also, the globally
asymptotic stability is proved according to the arbitrarily large of Ω.

4.4 Numerical Example

Example 4.11. In this example, we consider an application of the method
proposed in this chapter to system (4.1), where

A =

[

− 1
2 − 1

4
1 3

4

]

, B =

[

1
2

]

(4.85)

It is obvious that A has eigenvalues inside the unit circle, therefore
Theorem 4.10 can be applied. Select v0 = 1, ρ = 1.5, f1 = −0.4 and
f2 = 0.3 as above, let x0 = [38 40]T , we have ĩ = 8, j̃ = 7, Fq = 0.8543
and Q(Fq) = v0 = 1, then δ = 0.2 and ε ≈ −0.5933, the graph of G(ejw) and
state trajectories of system can be shown as
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Fig. 4.10 Nyquist curve of QIQM system.
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Fig. 4.11 Limit Cycle of QIQM system.

The top figure shows stability condition being violated and resulting in
limit cycle. If F = [−0.4 − 0.4], we have Fq = −1.2, ε ≈ −1.25 and Q(Fq) =
−v0 = −1. The Nyquist curve and state trajectories of system can be shown
as Fig. 4.12 and Fig. 4.13.
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Fig. 4.12 Nyquist curve of QIQM system.

It is obvious that the sufficient condition in Theorem 4.10 is not satisfied
and a state trajectory shown as limit cycle and the other converge to a nonzero
equilibrium. If F = [0.2 0.2], then Fq = 0.9, ε ≈ −0.6250 and the states of
the system asymptotically convergence to zero.
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Fig. 4.13 State trajectories of QIQM system.
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Fig. 4.14 Nyquist curve of QIQM system.
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Fig. 4.15 Asymptotic stability of QIQM system.
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4.5 Summary

Asymptotic stability of QIQM system is analyzed in this chapter. In the pro-
cess of analysis, a multiplier, which is well-defined, nonnegative and bounded,
plays an important role. The stability analysis of QIQM system is transferred
into the one of an equivalent system by the multiplier. A sufficient condition
is given for asymptotic stability of QIQM system. Note that the open-closed
system considered in this chapter is restrict to be stable, that is, the system
matrix A has eigenvalues inside the unit circle. As to unstable open-closed
system, the stability analysis of closed-loop system is more challenging and
will be considered in future.
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Data Fusion over Networks



Chapter 5

Data Fusion over Networks with
Measurement Delay

5.1 Introduction

Data fusion, one of the key technologies of NCSs, has been served as an inter-
esting benchmark in the past decades. The fusion center deals with the infor-
mation from the local sensors to improve the performance of the system. It
has been applied in both military and nonmilitary fields. Military applications
include: automated target recognition, guidance for autonomous vehicles, re-
mote sensing, battlefield surveillance, and automated threat recognition sys-
tems, such as identification-friend-foe-neutral (IFFN) systems. Nonmilitary
applications include: monitoring of manufacturing processes, condition-based
maintenance of complex machinery, robotics, and medical applications.

The popularization of network technology promotes the development of the
data fusion. It can implement remote transmission and real-time monitoring
and so on. However, because of the property of the network, it also exist some
challenges such as data transmission delay and loss. A significant work is to
model the arrival process and then to find an optimal algorithm to update
the current estimate through the delayed measurements.

The measurement arrival process is modeled as different forms and the re-
lationship between the process and the stability is studied in many researches.
[169] addresses Kalman filtering with i.i.d. Bernoulli losses and shows that
depending on the eigenvalues of the state matrix and the structure of the
observation matrix, there exists a critical value λc which is related to the
stability. Meanwhile, [169] gives explicit upper and lower bounds on λc, and
shows that they are tight in some special cases. [209] proposes a sufficient sta-
bility condition for time-varying Kalman filter with finite consecutive packet
losses driven by a Markovian chain. [81] introduces the notion of peak co-
variance and gives the upper envelope of the actual covariance process in an
unstable scalar model and a sufficient condition for peak covariance stability
for the general vector model. A related problem has been studied in [140],
which further shows the known lower bound on λc is the exact critical prob-
ability. However, in the above two papers, the number of consecutive packet

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 75–88.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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losses can be infinite, which may not be practical and can lead to conserva-
tive results. [171] develops a suboptimal jump linear estimator for complexity
reduction in computing the corrector gain using finite loss history where the
loss process is modeled by a two-state Markovian chain. [45] considers the
state estimation with lost measurements resulting from time-varying channel
conditions and introduces a more general multiple state Markovian chain to
model the loss and non-loss channel states, and the asymptotic mean squares
estimation error for a suboptimal linear estimator is analyzed and optimized
by a LMI approach. [37] shows that the expected (with respect to the fading
process) estimation error covariance at the fusion center remains bounded and
converges to a steady state value and provides exact deterministic bounding
sequences on the average error covariance for the system models with scalar
measurements (per sensor) and specific fading distributions.

Recently, many researches on state estimation both in centralized and in
distributed architectures with intermittent measurements have been carried
out, such as in [118, 205, 206, 123, 13, 124, 8, 164, 163, 180, 155, 166]. [118]
presents an optimal algorithm for updating with out-of-sequence measure-
ments, however, the method is referring to one-step-lag measurements. [206]
presents a practical architecture and some algorithms for the networked data
fusion systems with packet losses and variable delays. It’s main contribution
is proposing an optimal solution for one-step and multi-step out-of-sequence
measurements (OOSM) problem and proving it’s stability. However, the as-
sumption that all the measurements for the different Local Filters are com-
pressed in the same packets is not realistic. [123] shows the impact of the
stochastic communication noise on the estimation process and proves that in
order to maximize the stability range, the receiver should keep all the pack-
ets independent of the quality of the link or availability of a cross-layer path.
[13] presents two streamlined algorithms. One is IFAsyn which is optimal for
the linear system and avoids to recalculate the information of the already
received measurements, the other is EIFAsyn which is suboptimal solution
for nonlinear systems. [8] also considers the optimal update algorithm with
single one-step-lag OOSM, which is called “algorithm A”, and the optimal
update algorithm, which are called algorithm Al1 and algorithm Bl1. [164]
extends the optimal update algorithm with single one-step-lag and l-step-lag
OOSMs algorithms in [8] to some optimal centralized update algorithms with
multiple asynchronous (different lag time) OOSMs. Based on [164], [163] fur-
ther presents the optimal distributed fusion update algorithm with multiple
local asynchronous (1-step-lag) OOSM updates, which is proved, under some
regularity conditions, to be equivalent to the corresponding optimal central-
ized update algorithm with all-sensor 1-step-lag OOSMs, and an optimal
distributed fusion update algorithm with multiple local arbitrary-step-lag
OOSM updates is also developed. A related problem has been studied by
[180], in which the transmission time from each radar to the fusion center
is assumed to be known only statistically but not exactly, that is, no time
tag is appended to the measurement. [155] studies optimal estimation design
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for sampled linear systems where the sensors measurements are transmitted
to the estimator site via a generic digital communication network. Sensor
measurements are subject to random delay or might even be completely lost.
But the assumption in this paper which the arrival process should satisfy,
is too strict. A parallel work is studied in [166], in which a probabilistic ap-
proach of state estimation for two different architectures is developed, and
the assumption in it is more realistic.

In this chapter, based on the state estimation algorithm in single channel in
[166], we further extends the method to multi-channel, each with a different
packet arrival statistics. We first model the arrival process via a random
variable. Then, we propose two different data fusion architectures with finite
buffer. In the first architecture, we consider the multi-channel system as a
single one with random variables through a stacked equation, then solve the
state estimation problem through the Modified Kalman Filter, see Fig. 5.1.
In the second architecture, we combine the Local Filter (LF) and the Master
Filter (MF) as a data fusion system. The measurements are transmitted
to the Local Filter with certain data delay probability, then the local state
estimates are sent to the Master Filter faultlessly to be fused through a fusion
criteria, see Fig. 5.2. Meanwhile, the stability of the two fusion architectures
is analyzed straightforward.

The rest of this chapter is organized as follows: The problem of state es-
timation with intermittent measurements is formalized in Section 5.2. The
centralized and distributed fusion architectures and the corresponding fu-
sion criteria are proposed in Section 5.3 and Section 5.4. In Section 5.5 two
numerical examples are given to illustrate the effectiveness of the proposed
algorithms. Finally, Section 5.6 gives the conclusions and directions of the
future study.

5.2 Description of Multi-sensors

Consider the following discrete time linear stochastic system with local
sensors:

x(k + 1) = Ax(k) + w(k) (5.1)

yi(k) = Cix(k) + vi(k), i = 1, 2, ..., N (5.2)

where N is the total local sensors number, x(k) ∈ Rn is the state vector,
yi(k) ∈ Rmi , i = 1, 2, ..., N, are measurements, w(k) ∈ Rn is the input noise,
and vi(k) ∈ Rmi , i = 1, 2, ..., N, are measurement noises, and A, Ci are system
matrices with compatible dimensions.

Assumption 5.1. w(k), v(k), k = 1, 2, ..., N , are the uncorrelated white
noises with zero mean and
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E{w(k)w(j)T } = Q(k)δkj

E{v(k)v(j)T } = R(k)δkj

E{w(k)v(j)T } = 0

where E{·} is the expectation, Q(k) ≥ 0 and R(k) > 0 are covariances
respectively.

δkj =

{

1 if k = j ,
0 if k �= j .

Assumption 5.2. The initial state x(0) is independent of w(k), vi(k), i =
1, 2, ..., N , and

E{x(0)} = μ(0)

E{[x(0) − μ(0)][x(0) − μ(0)]T } = P (0)

Assumption 5.3. (A, Ci) is observable, (A, Q1/2) is controllable.

The stacked equation is defined as

y(k) = Cx(k) + v(k) (5.3)

where

y(k) = [ (y1(k))T , (y2(k))T , ... , (yN(k))T ]T

C = [ CT
1 , CT

2 , ... , CT
N ]T

v(k) = [ (v1(k))T , (v2(k))T , ... , (vN (k))T ]T

There are two forms of sending information to the Fusion Center (FC). One
is that the measurements of local sensors are time-stamped and transmitted
through network to the Fusion Center directly. The other is that the mea-
surements are sent to the Local Filters, then the state estimates of the Local
Filters are delivered to the Master Filter. Time-stamping is necessary to re-
order measurements at the filter as they can arrive out of sequence or even
be lost due to the unreliability of the transmission through network. For the
model in this chapter, each yi(k) is delayed by di(k) times, where di(k) is a
random variable described by a probability mass function fi:

fi(j) = Pr[di(k) = j], j = 0, 1, 2, ... , i = 1, 2, ..., N (5.4)

For simplicity, we assume that fi1 and fi2 are independent and identical
distribution (i.i.d) if i1 �=i2, and d(k1) and d(k2) are independent if k1 �=k2.
We further assume that di(k) is independent of w(k), vi(k) and the initial
state x(0).

In this chapter, similar to [166], we assume that all observation packets
correctly delivered to the Fusion Center are stored in a buffer with length
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of L. If yi(k − L) is not received by the FC before or at k, then it will be
considered to be lost, the arrival process is modeled via the random variable
γi(t, k):

γi(t, k) =

{

1 if yi(t) arrived before or at time k, k ≥ t
0 otherwise.

(5.5)

From this definition, it follows that if γi(t, k) = 1, then γi(t, k + l) = 1 for
∀l ∈ N, which indicates that if yi(t) is received by the filter before or at time
k, then it will be present for all future times. More formally, the value stored
in the t-slot of the buffer at time k can be written as

yi(t, k) = γi(t, k)yi(t) = γi(t, k)Cix(t) + γi(t, k)vi(t) (5.6)

The optimal update problem is as follows:

x̂(k|k) = E{x(k)|Yk, γk} (5.7)

x̂(k|k − 1) = E{x(k)|Yk−1, γk−1} (5.8)

where

Yk = [y(1, k), y(2, k), ..., y(k, k)]

y(t, k) = [(y1(t, k))T , (y2(t, k))T , ..., (yN (t, k))T ]T

γk = [γ(1, k), γ(2, k), ..., γ(k, k)]

γ(t, k) = [γ1(t, k), γ2(t, k), ..., γN (t, k)]T

Without loss of generality, the error and error covariance are defined as

e(k|k) = x(k) − x̂(k|k) (5.9)

P (k|k) = E{e(k|k)(e(k|k))T |Yk, γk} (5.10)

e(k|k − 1) = x(k) − x̂(k|k − 1) (5.11)

P (k|k − 1) = E{e(k|k − 1)(e(k|k − 1))T |Yk−1, γk−1} (5.12)

For convenience, we define the following variables:

x̂(t|h, k) = E{x(t)|y(1, k), y(2, k), ..., y(h, k), γ(1, k), γ(2, k), ..., γ(h, k)}
e(t|h, k) = x(t) − x̂(t|h, k)

P (t|h, k) = E{e(t|h, k)(e(t|h, k))T |y(1, k), y(2, k), ..., y(h, k),

γ(1, k), γ(2, k), ..., γ(h, k)}

Obviously, x̂(k|k) = x̂(k|k, k) and P (k|k) = P (k|k, k) .
In the following, two different architectures and methods of computing the

optimal estimate and the error covariance by utilizing the delayed observa-
tions will be considered.
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5.3 A Centralized Fusion Method of Multi-channel

Estimation with Measurement Delay

In this part, we assume that all the measurements are sent to the Fusion Cen-
ter directly through the communication channels, then a centralized method
of computing the optimal estimate and the error covariance by using all the
information including the delayed observation will be presented.

Fig. 5.1 Centralized fusion system.

Similar to (5.3) , the observation equation can be written as

y(t, k) = C(t, k)x(t) + v(t, k) (5.13)

where

y(t, k) =

⎛

⎜

⎜

⎜

⎝

y1(t, k)
y2(t, k)

...
yN (t, k)

⎞

⎟

⎟

⎟

⎠

, C(t, k) =

⎛

⎜

⎜

⎜

⎝

γ1(t, k)C1

γ2(t, k)C2

...
γN (t, k)CN

⎞

⎟

⎟

⎟

⎠

,

v(t, k) =

⎛

⎜

⎜

⎜

⎝

γ1(t, k)v1(t, k)
γ2(t, k)v2(t, k)

...
γN (t, k)vN (t, k)

⎞

⎟

⎟

⎟

⎠

(5.14)

and the covariance of the vector v(t, k) is given as

R(t, k) = E{v(t, k)(v(t, k))T } =

⎡

⎢

⎢

⎢

⎣

R̃1 0 · · · 0

0 R̃2 · · · 0
...

...
. . .

...

0 0 · · · R̃N

⎤

⎥

⎥

⎥

⎦
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where

R̃i =

{

Ri if γi(t, k) = 1
σ2I if γi(t, k) = 0

In reality, the absence of observation corresponds to the limiting case of
σ → ∞ , i.e., the measurement noise can be seen as infinite if the observation
is not received, see [169].

The length of the buffer in multi-channel will be described as

L =

{

max{Li| if ∃Li s.t. P r[Pi(k|k)(Li, fi) ≤ M ] ≥ 1 − ǫ}
∞ otherwise

(5.15)

where Li is the length of the given buffer in single channel and the computa-
tion of it can be seen in [166], fi was defined in (5.4) and Pr[Pi(k|k)(Li, fi) ≤
M ] is the probability of Pi(k|k) ≤ M under the condition of Li, fi. The
received measurements are stored in the buffer which the length is L, i.e.,
y(t, k) = [(y1(t, k))T , (y2(t, k))T , ..., (yN (t, k))T ]T , t = k − L + 1, ..., k, are
stored in the t-slot of the buffer at time k, meanwhile, if the measurement
yi(t, k), t = k − L + 1, ..., k, i = 1, 2, ..., N has not been received until time
k, then the dummy variable zero would be stored in the corresponding slot.

τ =

⎧

⎨

⎩

min{t|
N
∑

i=1

γi(t, k) >
N
∑

i=1

γi(t, k), k − L + 1 ≤ t < k}
k otherwise

(5.16)

From the definition of τ , it can be seen that y(τ, k) is the oldest measurement
vector, in which at least one measurement yi(τ, k) is received by the FC at
time k.

Now we can give the main results of this section:

Theorem 5.1. Consider the stochastic linear system given in equations (5.1)
- (5.2), the optimal estimate x̂(k|k, k) can be computed as follows:

(1) when 1 ≤ k ≤ L , we have:

x̂(t|t − 1, k) = Ax̂(t − 1|t − 1, k) (5.17)

P (t|t − 1, k) = AP (t − 1|t − 1, k)AT + Q (5.18)

K(t, k) = P (t|t − 1, k)C(t, k)T (C(t, k)P (t|t − 1, k)C(t, k)T + R(t, k))−1

(5.19)

x̂(t|t, k) = x̂(t|t − 1, k) + K(t, k)(y(t, k) − C(t, k)x(t|t − 1, k)) (5.20)

P (t|t, k) = (I − K(t, k)C(t, k))P (t|t − 1, k) (5.21)

for t = 1, 2, ..., k and x̂(0|0, k) = x(0) , P (0|0, k) = P (0) .
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(2) when k > L , from the definition of τ , we have:

x̂(τ − 1|τ − 1, k) = x̂(τ − 1|τ − 1, k − 1) (5.22)

P (τ − 1|τ − 1, k) = P (τ − 1|τ − 1, k − 1) (5.23)

then as equations (5.17)-(5.21), for t = τ, ..., k, the optimal estimate x̂(k|k)
and the error covariance P (k|k) can be easily obtained by iterating k − τ + 1
times from x̂(τ − 1|τ − 1, k).

Proof:

(1) Substituting y(t, k), C(t, k), v(t, k) and R(t, k) into the standard
Kalman filter, then (5.17)-(5.21) can be gotten.

(2) From the definition of τ in equation (5.16), it can be known: τ is
the oldest time when the measurement of one communication channel was
updated, i.e., no new information in observation vector y(t), t = k − L +
1, ..., τ−1 in equation (5.3) was received at time k, therefore, x̂(τ−1|τ−1, k) =
x̂(τ −1|τ −1, k−1), and P (τ −1|τ −1, k) = P (τ −1|τ −1, k−1), the optimal
estimate x(k|k) and error covariance P (k|k) can be obtained by iterating
k − τ + 1 times from x̂(τ − 1|τ − 1, k).

Remark 5.2. If there is no observation delay or loss, i.e., γi(t, k) = 1 for
✔t ≤ k and ∀i = 1, 2, ..., N , then the method in Theorem 5.1 can be seen as
the standard Kalman Filter. If there is only one communication channel, i.e.,
N = 1, then the method is similar to the Modified Kalman Filter in [169]
and [166].

Remark 5.3. [154] also presented a method of state estimation with buffer,
but the assumption x̂(k − L + 1|k − L + 1, k) = x̂(k − L + 1|k − L + 1, k −
1), P (k − L + 1|k − L + 1, k) = P (k − L + 1|k − L + 1, k − 1) is unrealistic.
Compared with [154], there is no such constraint on the arrival process, so the
method in this chapter is not necessary to iterate L times from the beginning
of the buffer, but just k − τ + 1 times from τ − 1(k − L + 1 ≤ τ ≤ k) when
one new measurement yi(τ, k) is received by the FC at time k. In particular,
if τ = k − L + 1, then the method of Theorem 5.1 is similar to that of [154],
i.e., the result in [154] is a special case of this chapter.

Note that the data fusion method with buffer in Theorem 5.1 always includes
more information than that without buffer, then another result can be given
as follows:

Theorem 5.4. Consider the stochastic linear system given in equations (5.1)-
(5.2), and the data arrival process in equation (5.5). Let the optimal estimate
x̂(k|k) computed by Theorem 5.1 with buffer be x̂(k|k, k), and without buffer be
x̃(k|k) if P (k|k, k) = E{(x(k)− x̂(k|k, k))(x(k)− x̂(k|k, k))T }, and P̃ (k|k) =
E{(x(k) − x̃(k|k))(x(k) − x̃(k|k))T }, then

P (k|k, k) ≤ P̃ (k|k) (5.24)
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Proof: According to the computation of x̂(k|k, k) = E{x(k)|Yk, γk}, we know
that Yk includes both the measurements arrived on time and that delayed not
more than L−1 times. Meanwhile, x̃(k|k) = E{x(k)|Ỹk, γ̃k}, Ỹk only includes
the measurements arrived on time. Obviously, Yk contains more information
than Ỹk, i.e., Yk ⊇ Ỹk. Therefore, the error covariance of x̂(k|k, k) with buffer
is always smaller than that of x̃(k|k).

5.4 A Distributed Fusion Method of Multi-channel

with Measurement Delay

In this section, we assume that all the measurements are sent to the local
fusion filter through the communication channels, then the local optimal
estimates are delivered to the Fusion Center directly. We also assume that
the Fusion Center received the optimal estimates without data loss or delay,
then based on [166], in which a single channel optimal estimate method was
proposed, a distributed fusion theorem of computing the optimal estimate
and the error covariance by using all the information including the delayed
observation will be presented.

Fig. 5.2 Distributed fusion system.

First, we will introduce a well-known distributed fusion architecture: Fed-
erated Filter. In this fusion architecture, the Local Filters sent their state
estimates to the Master Filter, then the Master Filter fused the estimates
according to the following criteria to get the global state estimate:

Pg = [

N
∑

i=1

(Pi)
−1]−1

x̂g = Pg

N
∑

i=1

(Pi)
−1x̂i
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where x̂i(k|k) and Pi(k|k) are the state estimate and the error covariance of
the ith Local Filter, respectively, x̂g(k|k) and Pg(k|k) are the global optimal
state estimate and its error covariance.

As aforementioned, for the model in this chapter, each yi(k) is delayed by
di(k) times, where di(k) is a random variable described by a probability mass
function fi:

fi(j) = Pr[di(k) = j], j = 0, 1, 2, ... , i = 1, 2, ..., N

where fi1 and fi2 are independent and identical distribution (i.i.d) if i1�=i2,
and d(k1) and d(k2) are independent if k1�=k2.

Based on the single channel fusion method in [166], it is easy to find a
sufficient and necessary Li such that E{Pi(k|k)} is stable, i.e., E{Pi(k|k)} ≤
M . We also define

τi =

⎧

⎨

⎩

min{t| if ∃ t s.t. γi(t, k) = 1 and γi(t, k − 1) = 0,
0 < k − Li + 1 ≤ t < k},

k otherwise.
(5.25)

for the ith channel.
Then the global state estimate can be computed as follows:

Theorem 5.5. Consider the stochastic linear system given in equations (5.1)-
(5.2), and the data arrival process in equation (5.5), the optimal estimate
x̂(k|k, k) can be yielded by two steps:

Step 1: Computing the state estimate and the corresponding error covariance
of the ith Local Filter as in [166]:

x̂i(τi − 1|τi − 1, k) = x̂i(τi − 1|τi − 1, k − 1) (5.26)

Pi(τi − 1|τi − 1, k) = Pi(τi − 1|τi − 1, k − 1) (5.27)

Ki(τi, k) = Pi(τi|τi − 1, k)CT
i (CiPi(τi|τi − 1, k)CT

i + Ri)
−1

(5.28)

x̂i(τi|τi, k) = Ax̂i(τi|τi, k) + γi(τi, k)Ki(τi, k)(yi(τi) − Cixi(τi|τi, k))

(5.29)

Pi(τi|τi, k) = (I − γi(τi, k)Ki(τi, k)Ci)Pi(τi|τi − 1, k) (5.30)

where x̂(0|0, k) = x(0), P (0|0, k) = P (0).
Then the optimal estimate x̂i(k|k) and the corresponding error covariance

Pi(k|k) can be yielded by iterating k − τ times from x̂(τ |τ, k).

Step 2: After receiving the state estimates from the Local Filters, the global
estimate can be obtained according to the Federated Filter criteria as

Pg(k|k) = [

N
∑

i=1

(Pi(k|k))−1]−1 (5.31)
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x̂g(k|k) = Pg(k|k)

N
∑

i=1

(Pg(k|k))−1x̂i(k|k) (5.32)

Proof: The proof is similar to the proof of Theorem 5.1.

Theorem 5.6. Consider the stochastic linear system given in equations (5.1)-
(5.2), and the data arrival process in equation (5.5), the sufficient and nec-
essary minimum Li, i = 1, 2, ..., N, can be always found such that:

Pg(k|k) ≤ M

Proof: For the ith (i = 1, 2, ..., N) Local Filter, [166] has proved that there
must be sufficient and necessary minimum Li, i = 1, 2, ..., N , such that
Pi(k|k) ≤ M , and it is obvious that Pg(k|k) ≤ Pi(k|k) according to
equation (5.31), therefore, we have Pg(k|k) ≤ M .

5.5 Numerical Examples

In this section, we illustrate some examples of different parameters to support
the results in this chapter.

Consider the following discrete time linear stochastic system with local
sensors in equation (5.1) and equation (5.2):

A =

[

1.01 0.3
0 1.01

]

, C1 = [ 1 1 ], C2 = [ 1 1.5 ],

Q =

[

1 0
0 1

]

, R1 = 1, R2 = 1.5,

Similar to [166], we model the packet delay as a Poisson distribution with
mean di, i.e., the probability density function satisfies:

fi(j) =
(di)

je−di

j!
, j = 0, 1, ...

where di = E{di
k} denotes the mean value of the packet delay in the ith

channel, and in this chapter suppose d1 = 3 and d2 = 2.

5.5.1 A Centralized Example

In this example, from the centralized filter architecture, we can obtain corre-
sponding D1 = 5 and D2 = 3 by utilizing the same method as shown in [166]
such that single channel keep stable. Then we choose D = max{D1, D2} = 5
to illustrate Theorem 5.1 as shown in Fig. 5.3-Fig. 5.5.
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Fig. 5.3 The trace of the covariance of filter with buffer=5 and without buffer in
centralized system.
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Fig. 5.4 The trace of the covariance of filter with buffer=5 and buffer=3 in cen-
tralized system.
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Fig. 5.5 The trace of the covariance of filter with buffer=5 and buffer=6 in cen-
tralized system.
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From Fig. 5.1, it is clear that the trace of the error covariance with buffer
D = 5 is much smaller than that without buffer. However, if D = 3 as
shown in Fig. 5.2, the performance of the filter become worse than D = 5.
Meanwhile, from Fig. 5.3 we also notice that D = 6 leads to little difference
on the filter, but increases burden of calculations.

5.5.2 A Distributed Example

In this example, a distributed filter architecture is considered and we also
choose D1 = 5 and D2 = 3 to estimate the Local Filters states, then send
them to Master Filter. Fig. 5.6 and Fig. 5.7 show the simulation results as
follows:
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Fig. 5.6 The trace of the covariance of filter with buffer=5 and without buffer in
distributed system.
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Fig. 5.7 The trace of the covariance of the Local Filters and the Master Filter
with buffer=5 in distributed system.
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From Fig. 5.6 and Fig. 5.7, we can see that the trace of the error covariance
of the Master Filter is smaller than that of local filters and that without
buffer.

Actually, there have been proved that under the assumption of cross-
uncorrelated sensor noises, the centralized Kalman Filter is equivalent to
the distributed Kalman Filter when all the measurements information are
received.

5.6 Summary

In this chapter, we have presented two different architectures for networked
data fusion-a centralized architecture and a distributed architecture with
finite buffer. It is shown that the performance of the fusion filter with buffer
is much better than that without it. The results obtained are useful for the
practical applications. Finally, two numerical examples are given to show the
theorem proposed in this chapter. An important future study is to consider
the relationship between the local sensors, it is interesting to extend the work
in this chapter to that aspect.



Chapter 6

Networked Data Fusion with the
Asynchronous Observations at
Multiple Rates

6.1 Introduction

Most of the earlier works are based on the measurements observed by sen-
sors with synchronous samples at the same sampling rate [10, 20, 23, 28, 39].
Only a few pieces of work deal with asynchronous multirate multisensor data
fusion. Based on continuous time systems, Alouani with his group [4] and
Bar-Shalom et al. [10, 8] present some effective algorithms for asynchronous
multisensor systems. As far as the discrete time systems are concerned, the
related researches include the approaches based on multiscale system the-
ory [72, 11, 12, 195, 211, 226], the batch process methods [104], and the
algorithms based on the designing of multirate filter banks [42], etc. In the
literature listed above, the missing of observations is rarely concerned, which
is inclined to encounter in many application fields including communication,
navigation, etc. For filtering of incomplete measurements, there are some in-
teresting results. Among these, the algorithms presented by the team of Wang
are promising that it has proper computation complexity and can generate
nearly optimal state estimate [194]. Based on a discrete-time linear dynamic
system, Kalman filtering with intermittent observations is studied in [169],
where the arrival of the observations is modeled as a random process, and
the statistical convergence property of Kalman filter is given. The modified
Riccati equation is studied by Boers and his group [15]. Some useful results
are presented as far as a single sensor observing a single target which is de-
scribed by a linear state space model is concerned. Kalman filtering with
faded measurements is studied in [173]. By use of peak covariance as an
estimate of filtering deterioration caused by packet losses, the stability of
Kalman filtering with Markovian packet losses is studied in [81] based on a
linear time-invariant system. Bar-Shalom studies the state estimation with
out of sequence measurements based on a time-invariant dynamic system
[8]. Xia, Shang, Chen and Liu study the networked data fusion with packet
losses and variable delays, and an optimal state estimate is generated [206].
However, in all these interesting papers, multirate systems are not concerned.

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 89–105.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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The multi-rate linear minimum mean squared error state estimation problem
is solved by use of the lifting technique [99]. While, asynchronous sampling
and data losses are not concerned in this reference. To sum up, there are few
results on the fusion of multirate sensors that sample asynchronously with
measurements randomly missing. This motivates us for the present study.

In this chapter, the optimal state estimation for a kind of linear dynamic
systems with the observations obtained asynchronously with multiple rates
will be concerned, where the observations may lose randomly. For each sensor,
a rule is proposed to check out whether the measurement is missing. With
the help of the modified Kalman filter, the multiscale system theory and the
federated square root filter, the optimal state estimate is obtained at the
highest sampling rate.

This chapter is organized as follows: Section 6.2 is the problem formulation.
In Section 6.3, the state estimation algorithm is presented. Section 6.4 is the
numerical simulation and Section 6.5 reaches the conclusion.

6.2 Description of Multi-sensors with Different

Sampling Rates

A class of dynamic system that is observed by multiple sensors will be con-
sidered in this chapter. These sensors sample asynchronously at different
sampling rates with measurements randomly missing [211, 104, 194, 103]

x(k + 1) = Ax(k) + w(k) (6.1)

yi(k) = γi(k)Cixi(k) + vi(k), i = 1, 2, ..., N (6.2)

where x(k) ∈ Rn is the state variable vector at time kT , where T is the
sampling interval of sensor N . A ∈ Rn×n is the system matrix. The process
noise w(k) ∈ Rn×1 is zero-mean white Gaussian sequence, whose variance
is Q.

The system state vector x(k) is observed by N sensors, and each sen-
sor i observes the same single target independently with different sampling
rates. The measurements yi(k), i = 1, 2, · · · , N are obtained asynchronously.
yi(k) ∈ Rqi×1(qi ≤ n) is the kth measurement observed by sensor i with
sampling rate Si. The sampling rates of the sensors meet

Si = SN/ni, 1 ≤ i ≤ N − 1 (6.3)

where ni are known positive integers. For i = 1, 2, · · · , N , Ci ∈ Rqi×n is the
measurement matrix. The measurement noise vi(k) ∈ Rqi×1 is supposed to
be a zero-mean white Gaussian noise with variance Ri, i = 1, 2, · · · , N .

The initial value of the state vector x(0) is a random vector, whose mean
and estimation error covariance are x0 and P0, respectively. It is assumed
that x(0), w(k) and vi(k) are mutually independent.
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The variable γi(k) ∈ R is a stochastic sequence that takes values on 1
and 0 with Bernoulli distribution, which is used to describe the missing of
measurements. It is assumed that γi(k) is independent of w(k), vi(k) and
x(0), i = 1, 2, · · · , N .

The objective of this chapter is to develop an algorithm, which can effec-
tively fuse the measurements observed by different sensors with asynchronous
sampling at multiple rates in case of measurements randomly missing, in or-
der to generate the optimal estimate of state x(k).

Remark 6.1. The asynchronous multirate multisensor dynamic system is de-
scribed at different scales, where the sensors that observe the target with
higher sampling rates are at finer scales, and the sensors that observe with
lower sampling rates are at lower scales.

Remark 6.2. For simplification, time delay and out of sequence measurements
are not concerned in this chapter. The measurements of sensor N are divided
into blocks, and the length of per block m(n1, n2, · · · , nN−1) is the least
common multiple of n1, n2, · · · , and nN−1. It is assumed that sensor N (at
the highest sampling rate) should sample uniformly. While, any other sen-
sor i(1 ≤ i ≤ N − 1) does not need to sample uniformly but should sample
pi = m(n1, n2, · · · , nN−1)/ni times per block. This means yi(k) can be ob-
tained at any time between (pi(k− 1)+1)T and (pik)T , and the sampling of
different sensors can be asynchronous. For example, in Fig. 6.1, sensor 3 at
the highest sampling rate samples uniformly, i.e., y3(k) is obtained at time
kT . As to sensors 2 and 1, whose sampling rates are half and one third of
sensor 3, respectively, may sample non-uniformly. y2(k) is obtained at any
time between (2k − 1)T and (2k)T . y1(k) is obtained between (3k − 2)T and
(3k)T . We refer the readers to [211] or [104] for more detail.

time (sampling instant)

1blockdata 2blockdatasensor

1 2 3 4 5 6 7 8 9 10 1112

1

2

3

Fig. 6.1 Time (sampling instant) vs. sensor.

6.3 The Data Fusion State Estimation Algorithm

When there is no any prior information, the state variable vector xi(k) at
scale i may be established by the state vector x(nik) at scale N through the
following linear transformation [11, 12, 211, 226, 104]:
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xi(k) =
1

ni
[

ni−1
∑

m=0

A−m]x(nik) (6.4)

where ni is the sampling ratio of sensor N to sensor i, i = 1, 2, · · · , N .
In the sequel, we will first establish the state space model at scale i(1 ≤

i ≤ N). Then, using the modified Kalman filter at scale i to estimate xi(k).
Finally, by regressing the estimate from scale i to N , and then by fusing
them, the optimal state estimate of x(k) will be generated.

Theorem 6.3. The dynamic system models can be described at scale i(1 ≤
i ≤ N) by the following formulas:

xi(k + 1) = Aixi(k) + wi(k) (6.5)

yi(k) = γi(k)Cixi(k) + vi(k) (6.6)

where wi(k) and vi(k) are zero-mean Gaussian white noises that satisfy

E{wi(k)wT
i (l)} = Qiδkl (6.7)

E{vi(k)vT
j (l)} = Qiδijδkl (6.8)

E{wi(k)vT
j (l)} = 0, i, j = 1, 2, · · · , N − 1; k, l = 1, 2, · · · (6.9)

and

Ai = Ani (6.10)

Qi =
1

n2
i

[

ni−1
∑

m=0

A−m][

ni−1
∑

m=0

AmQAm,T ][

ni−1
∑

m=0

A−m]T (6.11)

where E{·} is the expectation function, δkl is the Kronecker δ function, and
Am,T denotes the transpose of Am that is the mth power of matrix A.

Proof. When i = N, nN = 1, we have AN = AnN = A. Therefore, from (6.1)
and (6.2), we have Theorem 1 in the case of N = 1. Generally speaking, from
(6.4), we have

xi(k + 1) =
1

ni
[

ni−1
∑

m=0

A−m]x(ni(k + 1))

=
1

ni
[

ni−1
∑

m=0

A−m][Ax(nik + ni − 1) + w(nik + ni − 1)] (6.12)

=
1

ni
[

ni−1
∑

m=0

A−m][Anix(nik) +

ni−1
∑

m=0

Amw(nik + ni − 1 − m)]

= Aixi(k) + wi(k)
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where

Ai = Ani (6.13)

and

wi(k) =
1

ni
[

ni−1
∑

m=0

A−m]

ni−1
∑

m=0

Amw(nik + ni − 1 − m) (6.14)

For the stochastic sequence wi(k), by use of the linear property of the math-
ematical expectation, we have

E{wi(k)} =
1

ni
[

ni−1
∑

m=0

A−m]

ni−1
∑

m=0

AmE{w(nik + ni − 1 − m)} (6.15)

and

E{wi(k)wT
i (l)} = E[{ 1

ni
[

ni−1
∑

m=0

A−m] (6.16)

ni−1
∑

m=0

Amw(nik+ni−1−m)}{ 1

ni
[

ni−1
∑

m=0

A−m]

ni−1
∑

m=0

Amw(nik + ni − 1 − m)}T ]

=
1

n2
i

[

ni−1
∑

m=0

A−m][

ni−1
∑

m=0

AmQAm,T ][

ni−1
∑

m=0

A−m]T δkl (6.17)

= Qiδkl

where Am,T denotes the transpose of Am, and where

Qi =
1

n2
i

[

ni−1
∑

m=0

A−m][

ni−1
∑

m=0

AmQAm,T ][

ni−1
∑

m=0

A−m]T (6.18)

In addition, by use of (6.14) and the independence of w(k) and vi(k), for
i, j = 1, 2, · · · , N − 1; k, l = 1, 2, · · ·, we have

E{wi(k)vT
j (l)} = E[{ 1

ni
[

ni−1
∑

m=0

A−m]

ni−1
∑

m=0

Amw(nik + ni − 1 − m)}vT
j (l)] = 0

�

For i = 1, 2, · · · , N , denote

x̂i(k|k) ≡ E{xi(k)|Y k
1 (i)} (6.19)

x̂N |i(k|k) ≡ E{x(k)|Y [ k
ni

]

1 (i)} (6.20)

x̂(k|k) ≡ E{x(k)|Y k
1 (N), Y

[ k
nN−1

]

1 (N − 1), · · · , Y [ k
n1

]

1 (1)} (6.21)
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where

Y k
1 (i) ≡ {yi(1), yi(2), · · · , yi(k)} (6.22)

In the sequel, x̂(k|k) is to be generated.
It should be noted that Y k

1 (i) is the first to the k-th measurements observed
by sensor i. x̂i(k|k) means the expectation (the estimation) of xi(k) based
on information from Y k

1 (i). x̂N |i(k|k) means the expectation of x(k) based
on the information from sensor i obtained till time kT . x̂(k|k) means the
expectation of x(k) based on the information from all the sensors up to time
kT . ′[·]′ in (6.20) and (6.21) means the minimum integer that is not less
than ′·′.
Based on the results in [20, 169, 30], we have the following theorem.

Theorem 6.4. For any k = 1, 2, · · · , the estimate and the estimation error
covariance of x(k) based on all the observations before time kT are denoted
by x̂(k|k) and P (k|k), then they can be generated by use of the following
formulas:

x̂(k|k) =

N
∑

i=1

αi(k)x̂N |i(k|k) (6.23)

P (k|k) = (
N
∑

i=1

P−1
N |i(k|k))−1 (6.24)

where

αi(k) = P (k|k)P−1
N |i(k|k) (6.25)

x̂N |i(k|k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ni[

ni−1
∑

m=0

A−m]−1x̂i(l|l), if k = nil

niA
p[

ni−1
∑

m=0

A−m]−1x̂i(l|l), if k = nil + p, p = 1, 2, · · · , ni − 1

(6.26)

PN |i(k|k) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n2
i [

ni−1
∑

m=0

A−m]−1Pi(l|l)[
ni−1
∑

m=0

A−m]−T , if k = nil

n2
i A

p[

ni−1
∑

m=0

A−m]−1Pi(l|l)[
ni−1
∑

m=0

A−m]−T Ap,T

+

p−1
∑

l=0

AlQAl,T ,

if k = nil + p, p = 1, 2, · · · , ni − 1

(6.27)
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and for l = k/ni,

x̂i(l|l) =

{

x̂i(l|l − 1) + Ki(l)[yi(l) − Cix̂i(l|l − 1)], if yi(l) ∈ Y(i, l)
x̂i(l|l − 1), otherwise

Pi(l|l) =

{

[I − Ki(l)Ci]Pi(l|l − 1), if yi(l) ∈ Y(i, l)
Pi(l|l − 1), otherwise

x̂i(l|l − 1) = Aix̂i(l − 1|l − 1)

Pi(l|l − 1) = AiPi(l − 1|l − 1)AT
i + Qi

Ki(l) = Pi(l|l − 1)CT
i [CiPi(l|l − 1)CT

i + Ri]
−1

where

Y(i, l) = {yi(l)‖[yi(l) − Cix̂i(l|l − 1)][yi(l) − Cix̂i(l|l − 1)]T ≤ λRi} (6.28)

where λ could be any scalar larger than 4. The initial terms are,

x̂i(0|0) = x0, Pi(0|0) = P0 (6.29)

Proof. We will prove this theorem by use of the deduction method.
For i = N and k = 1, from equation (6.1), it follows that

x̂N (1|0) = Ax0 = Ax̂N (0|0) (6.30)

therefore,

x̃N (1|0) = x(1) − x̂N (1|0) = Ax̃N (0|0) + w(0) (6.31)

and

PN (1|0) = E{x̃N (1|0)x̃N (1|0)T } = APN (0|0)AT + Q = ANPN (0|0)AT
N + QN

If measurement yN (1) is missing or faulty, then it should be avoided. In this
case, x̂N (1|0) does not need to be updated. Then we have

x̂N (1|1) = x̂N (1|0), PN (1|1) = PN (1|0) (6.32)

If measurement yN (1) is normal, then by use of Kalman filter [30], it results
in

x̂N (1|1) = x̂N (1|0) + KN(1)[yN (1) − CN x̂N (1|0)] (6.33)

PN (1|1) = [I − KN(1)CN ]PN (1|0) (6.34)

where

KN (1) = PN (1|0)CT
N [CNPN (1|0)CT

N + RN ]−1 (6.35)



96 6 Networked Data Fusion with the Asynchronous Observations

When k = 1, if there are no other observations, then

x̂(1|1) = x̂N (1|1), P (1|1) = PN (1|1) (6.36)

Otherwise, if there exist yi(1) and ni = 1, then x̂i(1|1) and Pi(1|1) can
be generated in the same way as x̂N (1|1) and PN (1|1). The fused state
estimate x̂(1|1) and the error covariance P (1|1) can be generated by use
of the federated filter [20], and (23)-(24) can be obtained. For measure-
ments yi(1) with ni �= 1, it is obvious that yi(1) should be obtained at
time lT that meets uniform distribution between [1, ni]T . Hence, the event
“yi(1) and yN (1) arrive at exactly the same time” can be viewed as a small
probability event. When l ∈ (1, ni], for simplification and consistency, yi(1)
would not be dealt with until time niT .

It should be pointed out that one may use the following rule to judge
whether measurement yi(1) is missing or not:

[yi(l) − Cix̂i(l|l − 1)][yi(l) − Cix̂i(l|l − 1)]T ≤ λRi (6.37)

where λ could be any scalar larger than 4. The reason is that

E{[yi(1) − Cixi(1)][yi(1) − Cixi(1)]T } = Ri (6.38)

Briefly, the theorem is true when k = 1.
Suppose x̂(k − 1|k − 1) and P (k − 1|k − 1) have been generated by use of

Theorem 6.4, x̂(k|k) and P (k|k) will be deduced in the sequel.
Denote

Y(i, l) = {yi(l)‖[yi(l) − CiAix̂i(l − 1|l − 1)]

[yi(l) − CiAix̂i(l − 1|l − 1)]T ≤ λRi}

Then, ′yi(l) �∈ Y(i, l)′ means the l-th measurement from Sensor i is missing.
It follows from (6.5) and (6.19) that

x̂i(l|l)

=

{

E{xi(l)|Y l−1
1 (i)} + Ki(l)[yi(l) − CiE{xi(l)|Y l−1

1 (i)}], if yi(l) ∈ Y(i, l)

E{xi(l)|Y l−1
1 (i)}, else

=

{

x̂i(l|l − 1) + Ki(l)[yi(l) − Cix̂i(l|l − 1)], if yi(l) ∈ Y(i, l)
x̂i(l|l − 1), else

(6.39)

therefore, from (6.5), (6.6) and (6.39), we have

x̃i(l|l) = xi(l) − x̂i(l) (6.40)

=

{

[I − Ki(l)Ci]x̃i(l|l − 1) + Ki(l)vi(l), if yi(l) ∈ Y(i, l)
x̃i(l|l − 1), else
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and

Pi(l|l) = Ex̃i(l|l)x̃
T
i (l|l) (6.41)

=

{

[I − Ki(l)Ci]Pi(l|l − 1), if yi(l) ∈ Y(i, l)
Pi(l|l − 1), else

where Ki(l) is deduced by Kalman filter as follows,

Ki(l) = Pi(l|l − 1)CT
i [CiPi(l|l − 1)CT

i + Ri]
−1 (6.42)

Equation (6.4) can be rewritten as

x(nil) = ni[

ni−1
∑

m=0

A−m]−1xi(l) (6.43)

therefore,

x̂N |i(nil|nil) = E{x(nil)|Y l
1 (i)}

= E{ni[

ni−1
∑

m=0

A−m]−1xi(l)|Y l
1 (i)}

= ni[

ni−1
∑

m=0

A−m]−1E{xi(l)|Y l
1 (i)} (6.44)

= ni[

ni−1
∑

m=0

A−m]−1x̂i(l|l)

From (6.1), for p = 1, 2, · · · , ni − 1, we have

x̂N |i(nil + p|nil + p) = E{x(nil + p)|Y [
nil+p

ni
]

1 (i)}
= E{x(nil + p)|Y l

1 (i)}

= E{Apx(nil) +

p−1
∑

l=0

Apw(nil + p − 1 − l)|Y l
1 (i)}

= ApE{x(nil)|Y l
1 (i)}

= niA
p[

ni−1
∑

m=0

A−m]−1x̂i(l|l) (6.45)

Equations (6.44) and (6.45) can be rewritten as

x̂N |i(k|k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ni[

ni−1
∑

m=0

A−m]−1x̂i(l|l), if k = nil

niA
p[

ni−1
∑

m=0

A−m]−1x̂i(l|l), if k = nil + p, p = 1, 2, · · · , ni − 1

(6.46)



98 6 Networked Data Fusion with the Asynchronous Observations

From (6.21), by use of the federated filter, we have

x̂(k|k) = E{x(k)|Y k
1 (N), Y

[ k
nN−1

]

1 (N − 1), Y
[k

n1
]

1 (1)}

=
N
∑

i=1

αi(k)E{x(k)|Y [ k
ni

]

1 (i)} (6.47)

=

N
∑

i=1

αi(k)x̂N |i(k|k)

where

P (k|k) = (

N
∑

i=1

P−1
N |i(k|k))−1, αi(k) = P (k|k)P−1

N |i(k|k) (6.48)

and

PN |i(k|k) = E{[x(k) − x̂N |i(k|k)][x(k) − x̂N |i(k|k)]T } (6.49)

which can be deduced by use of (6.50)-(6.53).
For k = nil, by use of (6.4) and (6.46), we have

x̃N |i(k|k) = x(k) − x̂N |i(k|k)

= ni[

ni−1
∑

m=0

A−m]−1xi(l) − ni[

ni−1
∑

m=0

A−m]−1x̂i(l|l) (6.50)

= ni[

ni−1
∑

m=0

A−m]−1x̃i(l|l)

therefore,

PN |i(k|k) = E{x̃N |i(k|k)x̃T
N |i(k|k)}

= n2
i [

ni−1
∑

m=0

A−m]−1Pi(l|l)[
ni−1
∑

m=0

A−m]−T (6.51)

For k = nil + p, p = 1, 2, · · · , ni − 1, by use of (6.1), (6.4) and (6.46), we
obtain

x̃N |i(k|k) = x(k) − x̂N |i(k|k)

= x(nil + p) − x̂N |i(nil + p|nil + p) (6.52)

= Apx(nil) +

p−1
∑

l=0

Alw(nil + p − 1 − l) − x̂N |i(nil + p|nil + p)

= niA
p[

ni−1
∑

m=0

A−m]−1x̃i(l|l) +

p−1
∑

l=0

Alw(nil + p − 1 − l)
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and

PN |i(k|k) = E{x̃N |i(k|k)x̃T
N |i(k|k)}

= n2
i [

ni−1
∑

m=0

A−m]−1Pi(l|l)[
ni−1
∑

m=0

A−m]−T Ap,T +

p−1
∑

l=0

AlQAl,T

(6.51) and (6.53) can be rewritten as (6.27). This concludes the proof of
Theorem 2.

Remark 6.5. From (6.38) we could get (6.37), the reason is that from the
problem formulation, we know that yi(1)−Cixi(1) is zero-mean white Gaus-
sian sequence. Based on the property of the normal distribution, one has
P ([yi(1) − Cix̂i(1)][yi(1) − Cix̂i(1)]T < 4

√
Ri) = 0.9544, where P (A) means

the probability of A. So, if we choose λ lager than 4, (6.37) is true in the
probability of lager than 0.9544.

After Theorem 6.3 and Theorem 6.4, the following result could be obtained
immediately.

Theorem 6.6. The state fusion estimation algorithm generated by Theorem
6.4 is meaningful and convergent, and we have

P (k|k) ≤ PN |i(k|k) (6.53)

and

lim
k→∞

P (k|k) ≤ P (6.54)

where P is a constant positive matrix.

Proof. (6.53) can be drawn from (6.24) directly since for each i = 1, 2, · · · , N ,
PN |i(k|k) is nonnegtive. In fact, PN |i(k|k) is generally positive, in this case,
we have P (k|k) < PN |i(k|k). On the other hand, from Theorem 6.4, we have

P (k|k) = (

N
∑

i=1

P−1
N |i(k|k))−1

≤ max{PN (k|k), PN (k|k − 1)} (6.55)

= max{PN (k|k), ANPN (k − 1|k − 1)AT
N + Qi}

therefore

lim
k→∞

P (k|k) ≤ lim
k→∞

[max{PN (k|k), ANPN (k − 1|k − 1)AT
N + Qi}]

= max{ lim
k→∞

PN (k|k), lim
k→∞

[ANPN (k − 1|k − 1)AT
N + QN ]}

= max{PN , APNAT + Q}
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where PN (k|k) denotes the estimation error covariance of x(k) based on Sen-
sor N without measurements missing, and PN denotes the steady value of
PN (k|k).
Denote

P = max{PN , APNAT + Q} (6.56)

and (6.54) can be directly generated.

Remark 6.7. Theorem 6.6 indicates two facts: (1) The presented data fusion
state estimation algorithm is effective. From (6.53), one can see that the fused
state estimate error covariance is smaller than those from each single sensor’s.
(2) The presented algorithm is meaningful. From (6.54), one can see that the
presented algorithm is convergent.

Remark 6.8. For simplicity and without lose of generality, in Theorem 6.4,
the effects of the cross-covariances among the local state estimation errors
were not considered. In considering of the estimation error cross-covariances,
the global optimal fused state estimate could be obtained by generalizing the
results given by [174] from single sampling rate synchronous data fusion to
the formulated problem:

x̂(k|k) =

N
∑

i=1

αi(k)x̂N |i(k|k) (6.57)

P (k|k) = (eT (k)Σ−1(k)e(k))−1 (6.58)

where

(α1(k) α2(k) · · · αN (k) )T = Σ−1(k)e(k)(eT (k)Σ−1(k)e(k))−1(6.59)

PN |ij(k|k) = E{[x(k) − x̂N |i(k|k)][x(k) − x̂N |j(k|k)]T }
≡ E{x̃N |i(k|k)x̃T

N |j(k|k)} (6.60)

and where e(k) = ( In In · · · In )T is the nN × n matrix and In denotes the
identity matrix of dimension n. Σ(k) = (PN |ij(k|k)) is an nN × nN matrix
whose ijth block is PN |ij(k|k), i, j = 1, 2, · · · , N . x̃T

N |i(k|k) and x̃T
N |j(k|k) in

(6.60) are given by (6.50) and (6.52), for k mod ni = 0 and k mod ni �= 0,
respectively, i, j = 1, 2, · · · , N . In this case, similar as [174], by use of Schwartz
matrix inequality, it can be easily proven that Theorem 6.6 also holds.

The sketch of the proposed algorithm is illustrated in Fig. 6.2, where two
sensors are shown with the sampling ratio being 2. The legends of the blocks
are:
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Fig. 6.2 The illustration of the presented state estimation algorithm.

6.4 Simulations

To demonstrate the performance of the proposed algorithm, an example is
illustrated in this section. A radar tracking system with three sensors can be
described by [104]

x(k + 1) =

⎡

⎣

1 T T 2/2
0 1 T
0 0 1

⎤

⎦x(k) + w(k)

yi(k) = γi(k)Cixi(k) + vi(k), i = 1, 2, 3

where T is the sampling period. The state x(k) = [s(k) ṡ(k) s̈(k)]T , where
s(k), ṡ(k), and s̈(k) are the position, velocity and acceleration, respectively, of
the target at time kT . yi(k)(i = 1, 2, 3) are the measurements of three sensors,
which observe the acceleration, the velocity and the position, respectively, i.e.,
C1 = [0 0 1], C2 = [0 1 0], C3 = [1 0 0]. vi(k) are zero-mean Gaussian noises
with variances Ri, and are independent of white Gaussian noise w(k) with
zero-mean and variance Q. In the sequel, one should generate the estimate
of x(k) by fusing the information from three sensors.

In this simulation, set T = 0.01s, Q = 0.01, R3 = 0.25, R2 = 0.09, and
R1 = 0.01. The stochastic variable γi ∈ R is a Bernoulli distributed white
sequence taking values on 0 and 1, whose mean is γ̄i. Here, we take γ̄1 = 0.9,
γ̄2 = 0.8, and γ̄3 = 0.8. It means that the measurements are missing at the
probability of 0.1, 0.2 and 0.2, respectively. The initial values are x(0) =
[10 0 0]T and P0 = I3. Sensor 1, sensor 2, and sensor 3 sample 100, 150 and
300 data, respectively.
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The Monte Carlo simulation results are shown in Table 1, and Figs. 6.3 to
6.6.

In Fig. 6.3, the measurements of the three sensors are shown, where (a), (c)
and (e) denote the measurements from sensors 1, 2 and 3, respectively, under
the assumption that all the measurements are normal. Figs. (b), (d) and
(f) of Fig. 6.3 are the real measurements of sensors 1, 2 and 3, respectively,
with the measurements randomly missing. From Fig. 6.3, one can see that
the data missing of each sensor is obvious. In Fig. 6.4, the first dimension of
the original signal (blue real line) and the estimate signals (the red dashed
line) are illustrated, where the dashed lines in (a) through (d) denote: the
Kalman filter of sensor 3, the estimate by use of the algorithm presented
in [194], the estimate by use of the algorithm presented in [211], and the
estimate by use of the presented method, respectively. The corresponding
estimation error curves are drawn in Fig. 6.5. From Fig. 6.4 and Fig. 6.5, one
can observe that the traditional Kalman filter and the algorithm proposed by
[211] are divergent in the case of measurements randomly missing. However,
the algorithm presented by [194] and the proposed algorithm are effective.

In Fig. 6.6, the Monte Carlo simulation curves of 100 runs are shown,
where (a) through (d) are the statistical estimation errors of (i) the result
based on Kalman filter of sensor 3, (ii) the result based on the algorithm
presented in [194], (iii) the result based on the algorithm presented in [211],
and (iv) the result by use of the proposed algorithm, respectively. From Fig.
6.6, one can see that the proposed algorithm is also effective in the sense of
statistics. However, statistically, the algorithm in [194] is divergent.

The values listed in Table 6.1 are the means of the absolute values of the
estimation errors, which is computed by 1

KJ

∑J
j=1

∑K
k=1 |x̃j(k|k)|, where K =

360 denotes the number of the sampling points of sensor 3, J = 100 denotes
the Monte Carlo simulation runs, while x̃j(k|k) denotes the estimation error
of the state at the jth run. Six schemes are tested and listed in Table 6.1
for the proposed algorithm: (i) Kalman filter of sensor 1; (ii) Kalman filter of
sensor 2; (iii) Kalman filter of sensor 3; (iv) by use of the algorithm presented
by [194] to generate the state estimate by use of measurements from sensor
3; (v) by use of the algorithm presented by [211] to fuse three sensors and
generate the state estimate; (vi) by use of the presented algorithm to fuse
sensors 1, 2 and 3. The second to fourth rows of Table 6.1 denote the statistical
means of the absolute values of the estimation errors of position, velocity, and
acceleration, respectively.

From Table 6.1, one can notice that, because of the randomly missing of
measurements, statistically, both Kalman filter (Observe the second to the
fourth lines of Table 6.1 and algorithm in [194] and [211], Observe the fifth
and the sixth line of Table 6.1) are divergent. The reasons are: (1) When
there are measurements randomly missing, the measurement error variances
became very large. In this case, Kalman filter still updates in the same way
as the measurements are not missing, which results in divergence. (2) The
algorithm of [211] is the generation of Kalman filter to multiple sensors. So,
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Fig. 6.3 Measurements with and without missing.
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Fig. 6.4 The original signal and the estimate signals.

Table 6.1 The statistical means of the absolute values of the estimation errors

state (i) (ii) (iii) (iv) (v) (vi)

position 10.4958 13.3191 230.0571 46.7013 226.7272 2.1055
velocity 7.3700 22.2880 33.0451 9.6595 32.0598 1.9001
acceleration 2.5496 5.2736 9.5893 7.5492 5.5450 1.1923
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Fig. 6.5 The estimation errors corresponding to Fig. 6.4.
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Fig. 6.6 The statistical estimation errors.

it has the same problem as Kalman filter. (3) The algorithm presented by
[194], which takes measurements missing into consideration, is more effective
than Kalman filter and even than the fusion algorithm proposed by [211].
From Fig. 6.4 and Fig. 6.5, one can observe that it is effective in simulation
of randomly one run. However, stochastically, it is not so effective. It means
the stability of algorithm [194] is not as good as the presented algorithm.
(4) The bad measurements are checked out and properly dealt with in the
presented algorithm, which result in the convergence of the results.
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Briefly, the simulation results in this section illustrate the effectiveness of
the presented algorithm.

6.5 Summary

When a target is observed by multiple sensors that sample asynchronously
at different sampling rates with the measurements randomly missing, a state
estimation algorithm has been presented in this chapter. From theoretical
analysis and simulation results, it can be concluded that the proposed algo-
rithm is effective and has potential value especially in some application fields,
such as target tracking, integrated navigation, network transportation, and
fault tolerance, etc.



Part III

Predictive Control over Networks



Chapter 7

Networked Predictive Control Systems
with Data Dropout

7.1 Introduction

In recent years, networked control and data fusion technology have become
popular control problems which have been extensively studied under various
assumptions and scenarios [197, 235, 98, 145, 91, 2, 206]. There has been a
growing interest in the design of controllers based on the network systems
such as traffic, communication, aviation and spaceflight [236]. Particularly,
the rapid rising of Internet makes Internet based control systems accomplish
remote monitoring and adjustment over a long distance. This makes the con-
trol systems benefit from the ways of retrieving data and reacting to plant
fluctuations from anywhere around the world at any time [34, 179, 129, 127].
In NCSs, the plant, controller, sensor, actuator and reference command are
connected through a network. As the structure of NCSs is different from that
of traditional control systems, there exist various specific problems in NCSs,
for example, network delay, loss of data packets, network security and safety
[213].

Several methodologies have been reported in the open literature to han-
dle with the problems mentioned above in networked systems. Among these
papers, two basic control strategies are applied when the packet dropping
happens, they are zero-input schemes, by which the actuator input is set to
zero when the control packet is lost, and hold-input scheme which implies
the previous control input is used again when the control packet drops. The
further research is proposed in [156] by directly comparing the two control
methods. In [229], the stability problem of closed-loop NCSs in the pres-
ence of network delays and data packet drops has been addressed under an
assumption that the network-induced delay is less than the sampling pe-
riod. To reduce network traffic load, a sampled-data NCSs scheme combining
the model-based control methods has been presented and some necessary
and sufficient conditions for globally exponential stability of the closed-loop
systems via state/output feedback without/with network delays have been

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 109–125.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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established in [121]. In [221], a new model of NCSs is provided under con-
sideration of both the network-induced delay and the data packet dropout
in the transmission. State feedback stabilizing controller is proposed based
on the delay-dependent approach and the maximum allowable value of the
network-induced delay can be determined by solving a set of LMIs. Since H∞

control can make a well established connection between the performance in-
dex being optimized and performance requirements encountered in practical
situations, the method is proposed in [160] where the packet dropouts and
channel delays are modeled as Markov Chains with the usual assumption,
that is all the transition probabilities are completely accessible. The work
of [106] present a novel control technique combining modified Model Predic-
tive Control (MPC) and modified Smith predictor to guarantee the stability
of NCSs. Especially, the key point in this paper is that the future control
sequence is used to compensate for the forward communication time delay
and predictor is responsible for compensating the time delay in the backward
channel. In [110], a novel networked predictive control method is proposed
to deal with NCSs with random time-delay existing in both feedback and
forward channels. The dynamics of the plant is explicitly used to derive a
sequence of forward control predictions, which are sent to the actuator si-
multaneously and the actuator chooses the appropriate one to compensate
for the delays.

Although much research work have been done in NCSs, many of those
results simply treat the NCSs as a system with time delay, which ignores
NCSs’ features, e.g., random network delay and data transmission in packets
[200]. In order to solve the problem, Markovian jump system can be used
to model the random time-delay. Moreover, most work have also ignored
another important feature of NCSs. This feature is that the communication
networks can transmit a packet of data at the same time, which is not done
in traditional control systems. Therefore, in this chapter, we will make full
use of this feature and propose a new networked predictive control scheme
which can overcome the effects caused by network data dropout modeled as
Markov chain.

This chapter is organized as follows. Section 7.2 presents a novel networked
predictive control scheme such that the closed-loop system is asymptotically
stable. Section 7.3 gives a review of other control methods for NCSs. The
furuta pendulum of a NCSs is modeled with random packet dropouts in Sec-
tion 7.4. Numerical simulations are presented in Section 7.5. Some conclusion
remarks are given in Section 7.6.

7.2 Networked Predictive Control for Systems

To overcome unknown network transmission dropout, a networked predic-
tive control scheme is proposed. It mainly consists of a control prediction
generator and a network dropout compensator. The control prediction gen-
erator is designed to generate a set of future control predictions. The network
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dropout compensator is used to compensate the unknown random network
dropout. The structure of the networked predictive control system (NPCS)
is shown as Fig. 7.1. This chapter mainly focus on the random transmission
data dropout existing in both feedback and forward channels in NCSs. So,
the network-induced time delay is not discussed here.

Consider a MIMO discrete system described as the following state space
form

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + v(k)

(7.1)

where x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rl are the system state, input, and
output vectors, respectively. The noise process {w(k)} is a white, zero-mean,
uncorrelated one with known covariance matrice Q1. A, B, C are matrices of
appropriate dimensions. For the simplicity of stability analysis, it is assumed
that the reference input of the system is zero and the following assumptions
are hold.

The arrival of the observation at time k is a binary random variable γ(k)
with probability distribution P (γ(k) = 1) = λk, λk ∈ (0, 1) and γ(k) is
independent of γ(s) if k �= s. The output noise is defined as

v(k) ∼

{

N(0, R1), γ(k) = 1
N(0, σ2I), γ(k) = 0

(7.2)

for some σ2.

Assumption 7.1. (A, B) is completely controllable and (A, C) is completely
observable.

Assumption 7.2. The number of consecutive data dropouts must be less than
N (a positive integer).

Remark 7.1. In a real NCS, if a data packet does not arrive at a destination
in a certain transmission time, it means that the data packet is lost based
on the commonly used network protocols. From the physical point of view, it
is natural to assume that only a finite number of consecutive data dropouts
can be tolerated in order to avoid the NCS to be an open-loop. Thus, the
number of consecutive data dropouts should be less than a finite number N .

Some notations are defined as follows:

Y (k) = [y(0), · · · , y(k)]T

Γ (k) = [γ(0), · · · , γ(k)]T

x̂(k|k) = E[x(k)|Y (k), Γ (k)]
P (k|k) = E[(x(k) − x̂(k|k))(x(k) − x̂(k|k))T |Y (k), Γ (k)]

x̂(k + 1|k) = E[x(k + 1)|Y (k), Γ (k)]
P (k + 1|k) = E[(x(k + 1) − x̂(k + 1|k))(x(k + 1) − x̂(k + 1|k))T |Y (k), Γ (k)]
ŷ(k + 1|k) = E[y(k + 1)|Y (k), Γ (k)]

(7.3)
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Fig. 7.1 The networked predictive control system.

The Kalman filter based state observer is designed as

x̂(k|k − 1) = Ax̂(k − 1|k − 1) + Bu(k − 1)
x̂(k|k) = x̂(k|k − 1) + γ(k)K(k)(y(k) − Cx̂(k|k − 1))
P (k|k) = P (k|k − 1) − γ(k)K(k)CP (k|k − 1)

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT + R)−1

(7.4)

where x̂(k + 1|k) ∈ Rn and u(k|k) ∈ Rm are the one-step ahead state predic-
tion and the input of the observer at time k, respectively. P (k|k − 1) is the
solution of the following modified Riccati equation [169]

P (k|k − 1) = AP (k − 1|k − 2)AT + Q − γ(k)AP (k − 1|k − 2)
×CT (CP (k − 1|k − 2)CT + R)−1CP (k − 1|k − 2)AT (7.5)

The state predictions at time k are constructed as

x̂(k + 1|k) = Ax̂(k|k − 1) + Bu(k) + γ(k)AK(k)(y(k) − Cx̂(k|k − 1))
x̂(k + 2|k) = Ax̂(k + 1|k) + Bu(k + 1|k)

...
x̂(k + N |k) = Ax̂(k + N − 1|k) + Bu(k + N − 1|k)

(7.6)
Assume that the controller is of the following form:

u(k) = u(k|k) = L(k)x̂(k|k) (7.7)

where L(k) ∈ Rm×n is the state feedback control matrix to be determined
using modern control theory. Then, the control predictions are generated by

u(k + t|k) = L(k)x̂(k + t|k), for t = 0, 1, 2, · · · , N (7.8)

Thus, it follows from equation (7.6) that

x̂(k + t|k) = (A + BL(k))t−1x̂(k + 1|k) (7.9)



7.3 Previous Work for Networked Control Systems 113

Based on equations (7.4), (7.6) and (7.8), it can be shown that

x̂(k + t|k)

= (A + BL(k))t−1[Ax̂(k|k − 1) + Bu(k) + γ(k)AK(k)(y(k) − Cx(k|k − 1))]

= (A + BL(k))t−1[(A + BL(k) − γ(k)(AK(k) − BL(k)K(k))C)x̂(k|k − 1)

+γ(k)(AK(k) + BL(k)K(k))Cx(k)]

and

u(k + t|k)

= L(k)x̂(k + t|k)

= L(k)(A + BL(k))t−1[(A + BL(k) − γ(k)(AK(k) − BL(k)K(k))C)

×x̂(k|k − 1) + γ(k)(AK(k) + BL(k)K(k))Cx(k)] (7.10)

In order to compensate the network transmission data loss, a network delay
compensator is proposed. A very important characteristic of the network is
that it can transmit a set of data at the same time. Thus, it is assumed
that predictive control sequence at time k is packed and sent to the plant
side through a network. The network delay compensator chooses the latest
control value from the control prediction sequences available on the plant
side. For example, if the following predictive control sequences are received
on the plant side:

[uT (k|k), uT (k + 1|k), · · · , uT (k + N − 1|k), · · · , uT (k + N |k)]T (7.11)

then u(k|k) is used as the input to the actuator. If new control package con-
taining control predictive sequences is dropped at the next step, one step
control prediction u(k + 1|k) will be used as control input to the actua-
tor. Then, if new package of control predictive sequences are received, then
the first control input will be used as the input to the actuator. Otherwise,
u(k + 2|k) will be used as input to the actuator, ... and so on. Based on the
assumption, it is reasonable that there are N times consecutive data dropout
at least. The stochastic stability criteria of the closed-loop networked pre-
dictive control systems can be analytically derived based on the methods in
previous work [110]. In fact, using the networked predictive control scheme
presented in this section, the control performance of the closed-loop system
with data dropout is very similar to the one without data dropout.

7.3 Previous Work for Networked Control Systems

Some strategies have been declared for dealing with NCSs. In this section,
many of representative control schemes are reviewed.
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7.3.1 Another Networked Predictive Control Based

on State Observer

A predictive control scheme for NCSs with random network delay and packet
dropout in both forward and feedback channels has been studied in [110].
The control method also utilizes the characteristic that it can transmit a
set of data at the same time via networks. Similarly, control predictors and
compensators are built to reduce the impact caused by time delay and data
dropout. It is assumed that control predictions at time k are packed and sent
to the plant side through a network. On the actuator side, only the control
latest prediction sequence is kept. The network delay compensator chooses
the control value from the control latest prediction sequence. The model
considered here is similar to (7.1) but without considering system noise and
measurement noise.

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(7.12)

In particular, for NCSs without time delay and the state feedback control
u(k) = Kmx̂(k|k − 1) is considered and the state predictions at time k are
finally constructed as follows:

x̂(k + 1|k) = (A + BKm − LmC)x̂(k|k − 1) + LmCx(k)
x̂(k + 2|k) = Ax̂(k + 1|k) + Bu(k + 1|k)

...
x̂(k + N |k) = Ax̂(k + N − 1|k) + Bu(k + N − 1|k)

(7.13)

The control predictions are calculated by

u(k + t|k) = Kmx̂(k + t|k) (7.14)

It should be noted that the control strategy proposed in [110] can be used in
the NCSs with both time delay and data dropout. Here, the control approach
is revised to deal with NCSs without time delay. It is shown that if the data
is lost within the current sampling period, the control input should be taken
as the ith-step ahead control prediction of the current time, which is received
in the previous sampling period. In the same way, when the data dropout
happens in the feedback channel, the observer will use the measurement out-
put y(k − 1) received at the last sampling instant if the measurement output
y(k) is lost; otherwise, y(k − j) will be used if y(k − i) arrives after y(k − j),
where j < i. These methods play a very important role in compensating
for data dropout in the proposed NPC implementation. When data dropout
exists in both forward and feedback channels, the scheme proposed in this
chapter can achieve the desired control performance, which is similar to that
of the system without data dropout. Thus, on the sensor side, the measure-
ment output is sent to the controller side through the feedback channel. On
the controller side, the control prediction sequence at time k, which consists
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of the future control predictions, is packed and sent to the plant side through
the forward channel. The compensator chooses the latest control value from
the latest control prediction sequence on the plant side.

7.3.2 Zero Control and Zero-Order Hold Control

In literature, two basic control strategies are applied when packet dropping
happens. They are zero-input scheme, by which the actuator input is set to
zero when the control packet is lost, and hold-input scheme, which implies the
latest control input is used again when the control packet drops. Generally,
the two methods are applied only in the forward channel concerning whether
the control packet is obtained or not. Here, the methods are extended in both
feedback and forward channels.

i) Zero-input method
Zero-input scheme can be described as follows. Consider the stochastic

system [85]

x(k + 1) = Ax(k) + α(k)Bu(k)
y(k) = β(k)x(k)

(7.15)

The plant is remotely controlled over a network containing random packet
losses. The stochastic process α(k) and β(k) depict the unreliable nature of
the network. Basically, α(k) = 0 when the transmission from the controller
to the plant fails, i.e. the control packet is lost, and α(k) = 1 when the
control packet is successfully acquired in the forward channel. The link from
the plant to the controller is unreliable as well, β(k) = 0 when the link from
the sensor to the controller fails, and β(k) = 1 when the measurement packet
is correctly obtained in the feedback channel.

ii) Hold-input method
Consider system (7.12), on the condition of hold-input scheme applied in

both forward and feedback channels, the measure y(k) is chosen as y(k) =
y(k − 1) if dropout happens in the feedback channel, and in the forward
channel, if the control packet is lost, the actuator could employ the previous
control value u(k) = u(k − 1).

7.4 Digital Control Design of Furuta Pendulum

In this section, in order to construct the NCS, we will adopt a nonlinear
furuta pendulum which can be linearized as a plant and introduce Markov
process to depict the random packet dropout.
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7.4.1 Furuta Pendulum Model

Consider a single inverted pendulum which contains two parts, a vertical
level of the inverted pendulum and a horizontal arm. The structure of the
furuta pendulum is shown in Fig. 7.2, where φ is the arm angle, θ denotes
the pendulum angle, φ̇ and θ̇ present their angular velocity respectively.

Fig. 7.2 Structure of the Furuta pendulum.

The nonlinear dynamics of the furuta pendulum using Euler-Lagrange
equations has been researched in many reports, for example, in [53].

d
dtθ = θ̇
d
dt θ̇ = 1

αβ−γ2+(β2+γ2) sin2 θ
{β(α + β sin2 θ) cos θ sin θφ̇2

+2βγ(1 − sin2 θ) sin θφ̇θ̇

−γ2 cos θ sin θθ̇2 + δ(α + β sin2 θ) sin θ − γ cos θ × τ}
d
dtφ = φ̇
d
dt φ̇ = 1

αβ−γ2+(β2+γ2) sin2 θ
{βγ(sin2 θ − 1) sin θφ̇2 − 2β2 cos θ sin θφ̇θ̇2

−γδ cos θ sin θ + β × τ}
(7.16)

where

α = (M+
m

3
)l2, β = J+(M+m)r2, γ = (M+

m

2
)rl, δ = (M+

m

2
)gl (7.17)

The notation M , m, l, r, J , g denote the parameters used in the furuta
pendulum model, which is shown in Table 7.1. τ ∈ R is the input torque
which can be divided into a driving torque and its consumption of friction

τ = τu − τF (7.18)
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where the friction τF can be modeled as coulomb friction with stiction

τF =

⎧

⎨

⎩

τcsgnφ̇ if φ̇ �= 0

τu if φ̇ = 0 and |τu| < τs

τs otherwise

(7.19)

Table 7.1 Parameters used in the Furuta pendulum model

Symbol Value Meaning

m 0.025 Kg Mass of pendulum rod
M 0.004 Kg Mass of pendulum ball
l 0.241 m Length of pendulum rod
r 0.152 m Length of horizontal arm
J 1.21e−3Kg · m2 Moment of inertia of central shaft
g 9.81m/s2 Gravitational constant

Introducing the state variable

x =
(

θ θ̇ φ φ̇
)T

, u = τ (7.20)

and linearized pendulum model [53]

ẋ = Ax + Bu =

⎡

⎢

⎢

⎣

0 1 0 0
αδ

αβ−γ2 0 0 0

0 0 0 1
−γδ

αβ−γ2 0 0 0

⎤

⎥

⎥

⎦

x +

⎡

⎢

⎢

⎣

0
−γ

αβ−γ2

0
β

αβ−γ2

⎤

⎥

⎥

⎦

u (7.21)

7.4.2 Random Network Data Dropout Model

The problem of network data dropout over a network has been proposed in
[141, 89], some types of model have been established. The networks can be
described as having long periods of good performance and relatively short
periods of bad performance. The two-state Markov chains are the simplest
model to capture the behavior accurately, which are described in Fig. 7.2.
The parameters ri,j and ei are transition probability depicting the switching
movement between two states.

The model explicitly switches between a good network state and a bad one
with state-based transition probability. If the network is in a good state, it
has a higher probability to move the good state in next stage to a bad one.
Similarly, if the network is in a bad state, it has a higher probability to keep
the bad state and a lower probability to switch to a good state. In addition,
packet dropout appears for either states. The probability of individual packet
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Table 7.2 Parameters in the 2-state Markov model

Symbol Value Meaning of Probability transition

r0,1 0.005 Good state to Bad state of the network
r0,0 0.995 Good state to Good state of the network
r1,0 0.0027 Bad state to Good state of the network
r1,1 0.9973 Bad state to Bad state of the network
e0 0.01 Data drop out in the Good state
e1 0.90 Data drop out in the Bad state

Fig. 7.3 Two-state Markov chain network model.

loss in the bad state is more significant while the probability is quite small
in good state.

Based on above description, the data dropout can be modeled as follows.
Consider S(k), γ(k) at any time k > 0, where S(k) = 0 denotes the good
state and S(k) = 1 represents the bad state. The variable γ(k) determines
whether data dropout appears in the network. Here, γ(k) = 0 means that
the dropout happens and γ(k) = 1 means not. Given S(k), the chain’s next
move can be specified by:

S(k + 1) =

{

0, if U1 ≤ r(S(k), 0)
1, if r(S(k), 0) < U1 ≤ 1

(7.22)

γ(k + 1) =

{

0, if U2 ≤ e(S(k + 1))
1, if e(S(k + 1)) < U2 ≤ 1

(7.23)

where U1, U2 are random variables following a uniform distribution on the
interval [0, 1].

7.4.3 Structure of Controller

The optimal control of LQR scheme is adopted here for the control design.
The objective is to design a discrete state feedback controller

τu = −Lx (7.24)
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to stabilize the pendulum system (7.21) by minimizing the quadratic cost
functional

J = lim
N→∞

N
∑

k=0

(xT (k)Qx(k) + uT (k)Ru(k)) (7.25)

7.5 Simulation Results

In order to demonstrate the effectiveness of the proposed predictive control
scheme (7.10), numerical simulations have been performed and presented
comparing with another three kinds of control methods in this section. The
plant is chosen as furuta pendulum model (7.21) with (7.17) and the pendu-
lum parameter values are selected in Table 7.1. This section gives the trajec-
tory curves of the arm angle φ and pendulum angle θ when the horizontal
arm tracks the square-wave signals. The numerical simulations are discussed
in three steps. We first consider the model of the furuta pendulum (7.21)
and LQR state feedback control law (7.24) without data dropouts and noise.
Then, four control methods are applied for NCSs with data dropout, and
we will show that the two predictive control schemes are superior than zero-
input and input-hold control approaches. Especially, in the high dropout rate
condition, the predictive control methods can perform much better. Finally,
the two predictive control methods are considered on the conditions of NCSs
with packet loss and noise, and the simulation results indicate that the pre-
dictive control strategy we proposed in this chapter has the best performance
when data dropout and noise appear in the network simultaneously.

7.5.1 Track a Square-Wave Signal without Network

and Noise

Consider the model of the furuta pendulum (7.21) and LQR state feedback
control law (7.24) without data dropouts and noises. The parameters in cost
function (7.25) are selected as

Q =

⎡

⎢

⎢

⎣

300 0 0 0
0 100 0 0
0 0 30 0
0 0 0 3

⎤

⎥

⎥

⎦

, R = 1000 (7.26)

which yield the feedback gain

L = [−2.094 − 0.378 − 0.117 − 0.092] (7.27)

The horizontal arm tracking square-waves and the trajectory of pendulum
angle are depicted in Fig. 7.4, which indicates that, without networks and
noises, the arm tracking and pendulum stability can be guaranteed under the
LQR state feedback control law.
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7.5.2 Track a Square-Wave Signal with Network

without Noise

In this part, we will consider the NCSs with data dropouts. In order to
construct a NCS with random packet loss which is depicted by Markov chains,
the transition probability in Markov model (7.22) is selected as Table 7.2.
System performances of the four kind of control methods are shown when
the data dropout happens in both the forward and feedback channels.

System performances for zero-input control approach with random data
dropouts are shown in Fig. 7.5 and Fig. 7.6. When data dropout happens
in the forward and feedback channels, the input of the actuator is set to be
zero. Fig. 7.5 gives the result with 10% data dropouts and Fig. 7.6 presents
the result with 18% data dropouts. It is obvious that the control loop will
be instability as the data dropout rate raised. With the data dropout rate
raised to 18%, the horizontal arm can not track the square-wave signal and
the pendulum arm can not keep in the upright position, which means that
this method can not control the system with high data dropout rate.

Fig. 7.4 Tracking of a square-wave for 200 Hz control without network and noise.

Simulation results for hold-input control scheme with data dropouts are
shown in Fig. 7.7 and Fig. 7.8. As seen in Fig. 7.7, it can guarantee the stable
tracking for the case of 40% data dropouts following a random distribution,
but with the increased data dropout rate, the pendulum switches to be un-
stable, which is shown in the Fig. 7.8 with the data dropout rate of 48%. It
is significant that the hold-input control scheme can maintain the trajectory
tracking at an even higher data dropout rate than the zero-input control
approach. However, the system becomes unstable when data dropout rate is
larger than 48%.
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Fig. 7.5 Tracking of a square-wave for 200 Hz Zero control with 10% data
dropouts.

Fig. 7.6 Tracking of a square-wave for 200 Hz Zero control with 18% data
dropouts.

The arm tracking and stability of pendulum for the two predictive control
schemes are described in Fig. 7.9 and Fig. 7.10. It is clear that, for both
predictive methods, when we put the prediction generator into the controller
and the network data dropout compensator into the actuator, the stability
of pendulum can be guaranteed with high data dropout rate. Fig. 7.9 shows
the simulation result for network predictive control (7.13) based on the state
observer with the 48% data dropouts and Fig. 7.10 shows the simulation
result for network predictive control (7.10) based on the Kalman filter with
the same data dropout rate. As seen in the two trajectories, the arm can
track the square-wave signal well with the small overshoot and the pendulum
also can be stabilized in the vertical position. As expected, the performance
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Fig. 7.7 Tracking of a square-wave for 200 Hz input-hold control with 40% data
dropouts.

Fig. 7.8 Tracking of a square-wave for 200 Hz input-hold control with 48% data
dropouts.

of the system is improved dramatically with the predictive control algorithms
compared with the zero-input and input-hold control approaches.

7.5.3 Track a Square-Wave Signal with Network and

Noise

It has been shown that the two predictive control methods perform much
better than other control schemes for resisting the packet loss. On the other
hand, noise is also an ingredient affecting the performance of the system. In
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Fig. 7.9 Tracking of a square-wave for 200 Hz control based on the state observer
with 48% data dropouts.

Fig. 7.10 Tracking of a square-wave for 200 Hz control based on the Kalman filter
with 48% data dropouts.

this subsection, we concern about the NCS with both data dropout and noise
under the two predictive control schemes.

Consider NCS (7.1) with noise and data dropout (7.22), the covariance of
noise {w(k)} and {v(k)} are selected as

Q1 =

⎡

⎢

⎢

⎣

0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

× 10−3, R1 =

⎡

⎢

⎢

⎣

0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

(7.28)
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The predictive control (7.13) based on state observer is shown in Fig. 7.11 and
the predictive control (7.10) based on Kalman filter is depicted in Fig. 12. Due
to the process noises, the performance of the system become worse than the
system without noise at the same rate of the data dropouts. Compared Fig. 11
with Fig. 7.12, it is clear that the performance of the predictive control based
on Kalman filter we proposed is better than the predictive control based on
state observer. This indicates that the proposed predictive control based on
Kalman filter can keep an outstanding system performance when the data
dropout and noise exist in the network.

Fig. 7.11 Tracking of a square-wave for 200 Hz control based on the state observer
with 40% data dropouts and processes noise.

Fig. 7.12 Tracking of a square-wave for 200 Hz control based on the Kalman filter
with 40% data dropouts and processes noise.
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The control behaviors of zero-input and input-hold approaches have been
discussed in many aspects [156]. The numerical result of the pendulum NCS
shows that the input-hold control scheme performs better than zero-input
control approach for resisting the data dropout. In this simulation, input-
hold control approach can guarantee the system stable until the dropout rate
reaches to 48% while zero-input control method with the data loss rate to
18% (see Fig. 7.6 and Fig. 7.8). However, both the two methods are not so
excellent as predictive control approaches which can guarantee the stability
of the pendulum and arm tracking at the 48% data dropout rate (see Fig. 7.9
and Fig. 7.10). Moveover, the proposed predictive control approach based on
Kalman filter (7.10) performs better than the predictive controller (7.13)on
noise attenuation since the advantage of Kalman filter over state observer is
noise resistance (see Fig. 7.11 and Fig. 7.12).

7.6 Summary

A new networked predictive control scheme based on Kalman filter has been
proposed for MIMO networked distributed control systems with random
network data dropout. Based on the network feature of transmitting a set of
data at each time, the proposed networked predictive controller consists of
the control prediction generator and the network data loss compensator. The
former one provides a set of future control predictions to satisfy the system
performance requirements. The latter compensates for the random network
transmission packet loss. Simulation results are presented to illustrate the
effectiveness of the proposed predictive control strategy via comparing with
other three existing control schemes.



Chapter 8

Networked Control of Systems with
Predictive Compensator

8.1 Introduction

With the development of network technology, an increasing number of net-
work technology has been applied to control systems. The networked control
has became a new area in control systems. In this chapter, we will make full
use of the network feature and propose a new networked predictive control
scheme with the optimal estimation.

This chapter is organized as follows. Section 8.2 presents a novel networked
predictive control scheme and an optimal estimation method for the state
estimate such that the closed-loop system is asymptotically stable. The linear
inverted pendulum of a NCS is modeled with random time delay and packet
dropouts in Section 8.3. Numerical simulations are presented in Section 8.4.
Some conclusion remarks are given in Section 8.5.

8.2 Networked Predictive Control for Systems

In this section, a networked predictive control scheme, which mainly con-
sists of a control prediction generator and a network delay and data dropout
compensator, is proposed to overcome unknown network transmission with
time delay and data dropout. The control prediction generator is designed to
generate a set of future control predictions with the optimal state estimate.
The network time delay and data dropout compensator is used to compen-
sate for the unknown random network dropout. This networked predictive
control system (NPCS) structure is shown in Fig. 8.1.

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 127–139.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 8.1 The networked predictive control system.

8.2.1 System Model

Consider a MIMO discrete system described in the following state space form

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + v(k)

(8.1)

where x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rl are the system state, input, and
output vectors, respectively. The noise process {w(k)} is white, zero-mean,
uncorrelated one with known covariance matrices Q1. A, B, C are matrices
of appropriate dimensions. The reference input of the system is assumed as
zero and the following assumptions are made.

The arrival of the observation at time k is a binary random variable γ(k),
with probability distribution P (γ(k) = 1) = λk, λk ∈ (0, 1) and γ(k) is
independent of γ(s) if k �= s. The output noise is defined in the following
way:

v(k) ∼
{

N(0, R1), γ(k) = 1
N(0, σ2I), γ(k) = 0

(8.2)

for some σ2.

Assumption 8.1. The pair, (A, B), is completely controllable, and the pair,
(A, C), is completely observable.

Assumption 8.2. The number of consecutive data dropouts must be less than
N1 (a positive integer).

Assumption 8.3. The upper bound of the network delay is not greater than
N (a positive integer).
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Some notations are defined as follows:

Y (k) = [y(0), · · · , y(k)]T

Γ (k) = [γ(0), · · · , γ(k)]T

x̂(k|k) = E[x(k)|Y (k), Γ (k)]
P (k|k) = E[(x(k) − x̂(k|k))(x(k) − x̂(k|k))T |Y (k), Γ (k)]

x̂(k + 1|k) = E[x(k + 1)|Y (k), Γ (k)]
P (k + 1|k) = E[(x(k + 1) − x̂(k + 1|k))T |Y (k), Γ (k)]
ŷ(k + 1|k) = E[y(k + 1)|Y (k), Γ (k)]

(8.3)

8.2.2 Network Delay and Data Dropout

As we know, more and more control systems use the network to transmit
control signals. Because the network is used in control systems, there are
various factors introduced as a consequence of the communication network,
such as time delay and data dropout, which are considered for ensuring the
desired performance of the NCS.

We assume that the measurement data y(k) from the sensor is sent to
the controller across a network with delay and data dropout. Time delays
and data dropout occur in a NCS due to the addition of a network. This
delay can destabilize a system designed or can degrade the system perfor-
mance. Network delay can be further subdivided into sensor-to-controller de-
lay, controller-to-actuator delay, and the computational delay. In this chapter,
the sensor-to-controller delay and controller-to-actuator delay will be consid-
ered and the computational delay is not considered.

The problem of network time delay over a network has been proposed
in [90, 92] and some types of the model have already been established. In
this chapter, a simple approach of random time delay, which we set up as
the Markov model for its accurate and sample is considered. To construct a
Markov chain in discrete time, the time delay is a stochastic process with an
upper bound N(N is a positive integer), which is a multiple of the sampling
period of the system.

8.2.3 The Predictive Control Scheme to Compensate

for Time Delay and Data Dropout in the

Forward Channel

The Kalman Filter(KF) based state observer is designed as

x̂(k|k − 1) = Ax̂(k − 1|k − 1) + Bu(t − 1)
x̂(k|k) = x̂(k|k − 1) + γ(k)K(k)(y(k) − Cx̂(k|k − 1))
P (k|k) = P (k|k − 1) − γ(k)K(k)CP (k|k − 1)

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT + R)−1

(8.4)
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where x̂(k|k − 1) ∈ Rn and u(k − 1) ∈ Rm are the one-step ahead state
prediction and the input of the observer at time k− 1, respectively, and γ(k)
indicate the signal is received or not by controller at time k. If the γ(k) = 1,
it means that the signal is received by the controller at time k, otherwise
γ(k) = 0 means the signal is not received. P (k|k − 1) is the solution of the
following modified Riccati equation [169]

P (k|k − 1) = AP (k − 1|k − 2)AT + Q − γ(k)AP (k − 1|k − 2)CT

×(CP (k − 1|k − 2)CT + R)−1CP (k − 1|k − 2)AT (8.5)

The state predictions at time k are constructed as

x̂(k + 1|k) = Ax̂(k|k − 1) + Bu(k) + γ(k)AK(k)(y(k) − Cx̂(k|k − 1))
x̂(k + 2|k) = Ax̂(k + 1|k) + Bu(k + 1|k)

...
x̂(k + N |k) = Ax̂(k + N − 1|k) + Bu(k + N − 1|k)

(8.6)
Assume that the controller is of the following form:

u(k) = u(k|k) = L(k)x̂(k|k) (8.7)

where L(k) ∈ Rm×n is the state feedback control matrix to be determined
using modern control theory. Then, the control predictions are generated by

u(k + t|k) = L(k)x̂(k + t|k), for t = 0, 1, 2, · · · , N (8.8)

Thus, it follows from equation (8.6) that

x̂(k + t|k) = (A + BL(k))t−1x̂(k + 1|k) (8.9)

Based on equations (8.4), (8.6) and (8.8), it can be shown that

x̂(k + t|k)
= (A + BL(k))t−1[Ax̂(k|k − 1) + Bu(k) + γ(k)AK(k)(y(k)−Cx(k|k − 1))]
= (A + BL(k))t−1[(A + BL(k) − γ(k)(AK(k)

−BL(k)K(k))C)x̂(k|k − 1) + γ(k)(AK(k) + BL(k)K(k))Cx(k)]
(8.10)

and

u(k + t|k)
= L(k)x̂(k + t|k)
= L(k)(A + BL(k))t−1[(A + BL(k) − γ(k)(AK(k)

−BL(k)K(k))C)x̂(k|k − 1) + γ(k)(AK(k) + BL(k)K(k))Cx(k)]

(8.11)

In order to compensate for the network transmission delay and data loss, a
network delay compensator is proposed. A very important characteristic of
the network is that it can transmit a set of data at the same time. Thus,
it is assumed that predictive control sequence at time k is packed and sent
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to the plant side through a network. The network delay compensator chooses
the latest control value from the control prediction sequences available on
the plant side. For example, if the following predictive control sequences are
received on the plant side:

[uT (k|k), uT (k + 1|k), · · · , uT (k + N − 1|k), · · · , uT (k + N |k)]T (8.12)

On the side of the actuator, u(k|k) is used as the input to the actuator.
If a new control package containing control predictive sequences, which are
delayed or dropped at the next step, is dropped, one step control prediction
u(k + 1|k) will be used as control input to the actuator. If the new package
of control predictive sequences are received, then the first control input will
be used as the input to the actuator. Otherwise, u(k + 2|k) will be used as
input to the actuator, ... and so on. Based on the assumption, it is reasonable
that there are at least N times consecutive time delay or data dropout. The
stochastic stability criteria of the closed-loop networked predictive control
systems can be analytically derived based on the methods in previous work
[110, 198]. In fact, using the networked predictive control scheme presented
in this section, the control performance of the closed-loop system with delay
and data dropout is very similar to that of the closed-loop system without
delay and data dropout.

8.2.4 The Optimal Estimation Method to Compensate

for Time Delay and Data Dropout in the

Feedback Channel

In this part, we will propose an optimal estimation method, which is modified
from the method presented in [166], to overcome the time delay and data
dropout in the feedback channel. There is a buffer to store the data from the
sensor and the length of the buffer can be set to store the data in this step
and before.

We assume that the length of the buffer is set to be D, so the controller
discards the data, which are delayed by D times or more, from the sensor.
For example, if y(k − D) is not received by the controller before k, then
even if y(k − D) arrives at k or at a later time, it will be discarded by the
controller. In 8.2.3, We have given the form of the Kalman Filter, which is
shown in (8.4). Let γ(k) be the indicator function for y(k) at time t, k ≤ t.
i.e.,γ(k) = 1 if y(k) arrives at t and γ(k) = 0 otherwise. Depending on
whether y(k) is received or not, i.e., γ(k) = 1 or 0. (x̂(k|k), P (k|k)) is known
to be computed by a Kalman Filter(KF) through equation (8.4). We write
the (x̂(k|k), P (k|k)) in the compact form as

(x̂(k|k), P (k|k)) = KF(x̂(k − 1|k − 1), P (k − 1|k − 1), γ(k), y(k), u(k − 1))
(8.13)

which represents the equation (8.4).
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A method to optimal the control with time delay in the feedback channel
will be presented in this part. As y(k − i) may arrive at time k due to the
delays introduced by the network, we can improve the control quality by
recalculating x̂(k − i|k − i) utilizing the new available measurement y(k − i).
Once x̂(k− i|k− i) is updated, we can update x̂(k− i+1|k− i+1) in a similar
fashion. Let y(k− i), i ∈ [0, D−1] be the oldest measurement received by the
estimator at time k, then x̂(k|k) is computed by i + 1 KFs as

(x̂(k − i|k − i), P (k − i|k − i))

= KF(x̂(k − i − 1|k − i − 1), P (k − i − 1|k − i − 1), 1, y(k − i), u(k − i − 1))

(x̂(k − i + 1|k − i + 1), P (k − i + 1|k − i + 1))

= KF(x̂(k − i|k − i), P (k − i|k − i), γ(k − i + 1), y(k − i + 1), u(k − i))

...

(x̂(k − 1|k − 1), P (k − 1|k − 1))

= KF(x̂(k − 2|k − 2), P (k − 2|k − 2), γ(k − 1), y(k − 1), u(k − 2))

(x̂(k|k), P (k|k)) (8.14)

= KF(x̂(k − 1|k − 1), P (k − 1|k − 1), γ(k), y(k), u(k − 1))

In order to compensate for the network transmission time delay and data
dropout in the feedback channel, a buffer is set in the controller to store the
new data from the sensor and recalculate the x̂(k − i|k − i) to get the new
x̂(k|k). With the new x̂(k|k), the controller can give out the control signal
u(k|k) and the predictive control sequences u(k + 1|k), · · · , u(k + N |k) and
send it to the actuator through network. In the controller, if the controller
received the new data y(k − i) at time k, where i ∈ [0, D − 1], the controller
will store the new data corresponding to the cell of the buffer and set the
γ(k − i) to 1. Then the controller will find the oldest measurement stored in
the buffer with γ(k − i) = 1 and calculate the x̂(k|k) according to equations
(8.14). At last. the controller can calculate the predictive state sequences
x(k + 1|k), x(k + 2|k), · · · , x(k + N |k) according to equations (8.6) and gets
the predictive signal sequence u(k|k), u(k+1|k), · · · , u(k+N |k), which is sent
to the actuator to control the system. After the actuator received the predic-
tive control sequences, the compensator will choose the best control signal
from the sequences according to the law which have been proposed in 8.2.3.
Using this method, we can compensate for the time delay and data dropout,
which happen in the both forward and feedback channels, and optimize the
performance of the system.

8.3 Choose Model of System Structure

In the MPC schemes for NCS, we use a full nonlinear model and its linearized
model to denote the inverted pendulum, and it would be accomplished by
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the control loop with the network simulation, in which the Markov model
is used.

8.3.1 Inverted Pendulum Model

Consider a single inverted pendulum, which contains a vertical level of the
inverted pendulum and a cart. The structure of the inverted pendulum is
shown as Fig. 8.2. The pendulum angle, the cart position, the inverted pen-
dulum angular velocity and the cart velocity are denoted by φ, x, φ̇ and ẋ,
respectively.

Fig. 8.2 Structure of the linear inverted pendulum.

We can obtain the nonlinear dynamics equations (8.15) of the inverted
pendulum through the mechanical analysis of the inverted pendulum.

Table 8.1 Parameters used in the linear inverted pendulum model

Symbol Value Meaning

m 0.109 Kg Mass of the pendulum rod
M 1.096 Kg Mass of the cart
l 0.25 m Length from the pendulum axis

to its centroid
b 0.1 N/m/sec The friction coefficient of the cart
I 0.0034kg ∗ m ∗ m Inertia of the rod
g 9.81m/s2 Gravitational constant
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1. Nonlinear Model

(M + m)ẍ + bẋ + mlφ̈ cosφ − mlφ̇2 sinφ = F

−(I + ml2)φ̈ + mgl sinφ = mlẍ cosφ
(8.15)

where, F means the force, which can drive the cart moving to keep the
pendulum rod in the vertical upward.

2. Linear Model
Linearize the nonlinear dynamics equations, let cosφ = −1, sinφ =
φ, (dφ

dt )2 = 0 and use u instead of F , we can get

−(I + ml2)φ̈ + mglφ = mlẍ

(M + m)ẍ + bẋ + mlφ̈ = u
(8.16)

Let XT = [x, ẋ, φ, φ̇], u = −ẍ and I = 1
3ml2, we can obtain the state-space

model:

Ẋ =

⎡

⎢

⎢

⎣

0 1 0 0
0 0 0 0
0 0 0 1

0 0 3g
4l 0

⎤

⎥

⎥

⎦

X +

⎡

⎢

⎢

⎣

0
−1
0
3
4l

⎤

⎥

⎥

⎦

u (8.17)

y =

[

x
φ

]

=

[

1 0 0 0
0 0 1 0

]

⎡

⎢

⎢

⎣

x
ẋ
φ

φ̇

⎤

⎥

⎥

⎦

+

[

0
0

]

u (8.18)

By using the plant parameters of the TABLE 8.1 and discretize the system
dynamics with the sample time 0.01s, we have

X(k + 1) = AdX(k) + Bdu(k)

=

⎡

⎢

⎢

⎣

1 0.01 0 0
0 1 0 0
0 0 1.0015 0.01
0 0 0.2941 1.0015

⎤

⎥

⎥

⎦

X(k) +

⎡

⎢

⎢

⎣

−0.0001
−0.01
0.0002
0.03

⎤

⎥

⎥

⎦

u(k)

(8.19)

8.3.2 Random Network Time Delay Model

As described in 8.2.2, in this chapter, the network with time delay and data
dropout are simulated by the Markov model. Let each of states of the Markov
chain represents the different random time delay and data dropout. According
to the state jump in the Markov chain, the time delay of the network is
variable. In this example, we assume a 5 states Markov chain with N = 4,
which means that the maximum number of steps of time delay is 4 in the
both forward and feedback channels. Thus the maximum number of steps of
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time delay in the control loop is 8 steps and the state transition probability
matrix of the forward and feedback channel is shown in the following:

Pforward = Pfeedback =

⎡

⎢

⎢

⎢

⎢

⎣

0.3 0.2 0.2 0.2 0.1
0.2 0.3 0.2 0.2 0.1
0.1 0.2 0.4 0.2 0.1
0.1 0.2 0.2 0.3 0.2
0.1 0.1 0.2 0.2 0.4

⎤

⎥

⎥

⎥

⎥

⎦

(8.20)

where Pforward is the state transition probability matrix of the forward chan-
nel and the Pfeedback is the state transition probability matrix of the feedback
channel.

8.3.3 Structure of the Controller

Through the discrete LQR state feedback control law, the linearized model
(8.19) could be used to derive a controller with the form

u = −LX (8.21)

Design a discrete LQR state feedback control law for state regulation, then
it can be obtained by minimizing the cost function:

J =

∫ ∞

0

(XT QX + uT Ru)dt (8.22)

8.4 Simulation Results

In order to demonstrate the effectiveness of the proposed predictive control
scheme (8.11) and the optimal estimation method (8.14) in the feedback
channel, numerical simulations have been performed and presented compar-
ing with the control method without any compensation in this section. The
plant is chosen as the linear inverted pendulum model (8.17) and the pen-
dulum parameter values are selected in Table 8.1. This section gives the
trajectory curves of the pendulum angle φ and the cart position x with dif-
ferent control methods when the pendulum angle φ reaches stable from the
initial state φ = 0.2 (X = [0 0 0.2 0]′).

8.4.1 Control the Inverted Pendulum without Network

Consider the model of the inverted pendulum (8.19) and LQR state feedback
control law (8.21) without data dropouts and noises. The parameters in cost
function (8.22) are selected as
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Q =

⎡

⎢

⎢

⎣

1000 0 0 0
0 0 0 0
0 0 500 0
0 0 0 0

⎤

⎥

⎥

⎦

, R = 1 (8.23)

which yields the feedback gain

L = [−31.6228 − 20.8404 − 77.0990 − 13.6080] (8.24)

The trajectory of the pendulum angle reaches at zero from the initial posi-
tion and keeps the pendulum stability. The trajectory of the cart position is
depicted in Fig. 8.3, which indicates that, without networks, the pendulum
stability can be guaranteed under the LQR state feedback control law.

Fig. 8.3 Control the inverted pendulum without network.

From Fig. 8.3, we can see that the cart position and the pendulum angle
reach stability before k = 600 and the overshoot of the pendulum angle is
smaller than 0.1. The curve of the cart position shows that the cart doesn’t
leave far away from the center position x = 0, which tells us that the perfor-
mance of the system is good when the controller control the pendulum and
keep it stable.

8.4.2 Control the Inverted Pendulum through

Network without Compensation of the Time

Delay and Data Dropout

In this part, we will consider the NCSs with time delay and data dropouts.
In order to construct a NCS with random time delay and packet loss, which
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is depicted by Markov chains, the transition probability matrix is selected as
the Markov model (8.20). System performances of the control without any
compensation are shown when the time delay and data dropout happen in
both the forward and feedback channels.

The method of controlling the system without any compensation means
that if the signals of control and feedback, which are transited through net-
work, are delayed or discarded when the network is busy, the actuator will
give out a zero signal to control the plant. Because of the time delay and data
dropout, the closed-loop system will become the open-loop system and the
performances of the system will be worse than the system without network.
As Fig. 8.4 shown, we can see that the curves of the pendulum angle and
cart position are divergence because time delay and data dropout are bad for
the performances of the system. Time delay and data dropout are added to
the channel of the transition, which will lead the inverted pendulum out of
control.

Fig. 8.4 Control the inverted pendulum through network without compensation.

8.4.3 Predictive Control Scheme and Optimal

Estimation Method for NCSs

In the following, we firstly consider that only the predictive control is ap-
plied in the NCSs. Fig. 8.5 shows the curves of the pendulum angle and cart
position with predictive control used to compensate for the time delay and
data dropout. From the figure, we can get that the pendulum angle is well
stabilized in the equilibrium position when there are time delay and data
dropout in both forward and feedback channels. Compared with Fig. 8.4, the
pendulum angle and the cart position are stable at the position of equilibrium
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in Fig. 8.3 although the curve of the cart position has larger overshoot and
the time delay and data dropout happen in both the forward and feedback
channels with network. Because the predictive control is introduced to control
the system, the pendulum angle can be stabilized in the vertical position but
the performance of the system is not good and the cart position is far away
from the center position shown as Fig. 8.4 and Fig. 8.5.

Fig. 8.6 shows the curve of the pendulum angle and the cart position with
predictive control and optimal estimation. As we expect, the performance
of the system is improved after introducing both the predictive control and
optimal estimation method to the controller. Compared Fig. 8.6 with Fig. 8.5,
it is obvious that the curve of cart position in Fig. 8.6 has smaller overshoot
and settling time than the one in Fig. 8.5.

Fig. 8.5 Control the inverted pendulum through network with predictive control.

The control behavior of LQR state feedback control with network and
without network have been shown, and we have also discussed the control
behavior of the predictive control and optimal estimation method in the
front of this part. In this simulation, the predictive control can guarantee
the stability of inverted pendulum system with time delay and data dropout
while the system is unstable without any compensation for the time delay
and data dropout. Both the predictive control and optimal estimation method
are introduced into the controller, which can not only guarantee the inverted
pendulum system stable but also the curve of the cart position with smaller
overshoot. In this part, the result of the simulation shows that the predictive
control and optimal estimation method can compensate for the time delay
and data dropout in the network and improve the performance of the NCSs.
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Fig. 8.6 Control the inverted pendulum through network with predictive control
and optimal estimation.

8.5 Summary

A new networked predictive control scheme and an optimal estimation
method, which is based on the Kalman filter, have been proposed for MIMO
networked distributed control systems with random network time delay and
data dropout. The controller uses the optimal estimate to compute a set of
future control predictions satisfying the system performance requirements.
The compensator chooses the best control signal to compensate for the ran-
dom network transmission time delay and packet loss. Simulation results have
been presented to illustrate the effectiveness of the proposed predictive con-
trol and the optimal estimation method based on Kalman filter strategy via
comparing with the control scheme without any compensation.
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Fault Detection over Networks



Chapter 9

Robust Fault Detection of Systems
over Networks with Packet Loss

9.1 Introduction

It is clear that fault diagnosis (including fault detection and isolation, FDI)
has been becoming an important subject in modern control theory and prac-
tice. Since the beginning of 1970s, research in fault diagnosis has been gaining
increasing consideration world-wide in both theory and application [134, 47].
This development was mainly stimulated by the trend of automation towards
more complexity and the growing demand for higher availability and secu-
rity of control systems. However, a strong impetus also comes from the side
of modern control theory estimation and parameter identification that have
been made feasible by the spectacular progresses of computer technology [26].

Generally speaking, a fault detection (FD) process is to construct a residual
signal which can then be compared with a predefined threshold. When the
residual signal exceeds the threshold, the fault is detected and an alarm
is generated [26, 38]. During last three decades, many methods have been
proposed, for example: Clark, and co-workers proposed observer-based FDI
approach [31] and the parity relation schemes for FDI were later developed
by Mironovski [120]. Leininger [95] pointed out the impact of modeling errors
on FDI performance. The first attempt of improving robustness of observer-
based FDI approaches is attributed to Frank and Keller [48]. It should be
pointed out that, in all the aforementioned schemes, it has been implicitly
assumed that data transmission is without time delay and packet loss. Since
network cables are involved in control systems in today’s world, a seemingly
natural problem is to study FDI problems for networked control systems
(NCSs) in the presence of network-induced delays or with data packet loss
[68, 193, 149, 198, 16]. Fang et al [44] proposed an overview of main ideas
and results on fault diagnosis of NCSs, including the fundamentals of fault
diagnosis for NCSs with information scheduling, fault diagnosis approaches
based on the simplified time-delay system models, and the quasi T-S fuzzy
model and fault diagnosis for linear and nonlinear NCSs with long delay.

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 143–158.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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However, in the most of the aforementioned methods, it is assumed that
the fault detection center is located at the same node with the controller.
In this chapter, we focus our attention on a more general case that the FD
center is neither located at the controller node nor located at the plant node,
all the input data and measurement data is transmitted from the actuator
node and the sensor node to the FD center, respectively, over unreliable
networks with bounded packet loss. The bounded packet loss is modeled in
two ways: arbitrary packet loss process and Markovian packet loss process.
The stability analysis of the error system and the design of fault detection
filter (FDF) gains are also given to satisfy some performance constraints.

The rest of this chapter is organized as follows. In Section 9.2, the FD
model taking into account the packet transmission loss and main assump-
tions are presented. The stability analysis and FDF design are given, which
satisfies the given constraits in Section 9.3. In Section 9.4, the FD algorithm
is proposed according to the trade-off design of robustness and sensitivity.
An illustrative example is presented in Section 9.5 to show the effectiveness
of the result. The chapter is concluded in Section 9.6.

9.2 Description of Fault Detection over Networks

Consider a monitored system described by

{

ẋ(t) = Acx(t) + Bcu(t) + Edcd(t) + Efcf(t)
y(t) = Ccx(t)

(9.1)

where x ∈ Rn, u ∈ Rp and y ∈ Rm are the system’s state, reference inputs
and measurements, respectively, d ∈ Rnd and f ∈ Rnf are disturbance and
the latent fault in the system. Matrices Ac, Bc, Cc, Edc, and Efc are of ap-
propriate dimensions. For data acquisition, it is supposed that the sensor and
the actuator are time-driven with an constant sampling period h. Discretiza-
tion of the monitored system (9.1) according to the sampling period h will
then give

{

x(k + 1) = Ax(k) + Bu(k) + Edd(k) + Eff(k)
y(k) = Cx(k)

(9.2)

where

A = eAch, C = Cc, B =

∫ h

0

eAcsBcds,

Ed =

∫ h

0

eAcsEdcds, Ef =

∫ h

0

eAcsEfcds

Remark 9.1. The monitored system is shown in Fig. 9.1, the inputs and out-
puts of the plant are uR(t) and yR(t), respectively. However, uR(t) are not
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available for measurement, we have to use the reference command u(k) and
the measured output y(k) in FDI. Hence, the model of the monitored system
involves the actuator and the sensor additionally.

plant

local controller

FD center

actuator sensor

networked controller

( )u k

network

( )Ry t( )
R

u t

( )y k

monitored system

Fig. 9.1 The structure of FD over networks.

The structure of fault detection over networks discussed in this chapter is
shown in Fig. 9.1. The inputs of monitored system, u(k), and the measure-
ments of the monitored system, y(k), are transmitted to the FD center node
from the actuator and the sensor in a single packet at each time step with-
out time delay, respectively. However, the networks are not reliable, the data
packets may be lost during the transmission. Note that the structure con-
sidered in this chapter is not as same as structures in most literature, this
structure is a more general case, namely, the fault detection center is located
neither at the controller node nor plant node, and the controller considered
in this structure is also not limited in topology. Some researchers focus on
the scheme that the controller is remote, and fault detection center is with
the remote controller at a same network node. On the other side, local con-
trollers is generally used in distributed control systems (DCS). For example,
in most thermal power plant DCS, every controlled object is with a local sta-
bilizing controller, which ensures the plant stable. This plant-controller pair
is called subsystem. The entire system of controllers and objects is connected
by networks to a center node for communication and monitoring. The fault
detection algorithm can be applied in this center to diagnose the latent faults
of every subsystem. The aforementioned two schemes are special cases of the
structure considered in this chapter.

We define λk = {0, 1} for data packets transmitted from the actuator to
the FDI node at time instant k, if the FDI node receives the data packet
successfully, then λk = 1, if the data packet losses, then λk = 0. Similarly,
We define γk = {0, 1} for data packets transmitted from the sensor to the
FDI node in the same way. Let F = {i|1, 2, 3, · · ·} denote the sequence of time
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points of successful data transmission from the sensor to the FDI node. We
define a function g(x), x ∈ {k|γk = 1}

i = g(k) =

k
∑

j=0

γj − 1 (9.3)

which denotes the map from index k to the index i, see Fig. 9.2. The following
concept and mathematical models are introduced to capture the nature of
packet losses.

Definition 9.2. Packet-loss process is defined as

{Ni � g−1(i + 1) − g−1(i)} (9.4)

where g−1(·) denotes the inverse function of g(·), which takes values in the
finite state space N � {1, 2, · · · , s}. Note that the N(i) is duration between
two successful transmissions.

Definition 9.3. Packet-loss process (9.4) is said to be arbitrary if it take
values in N arbitrarily.

Definition 9.4. Packet-loss process (9.4) is said to be Markovian if it is a
discrete-time homogeneous Markov chain on a complete probability space
(Ω, N, P ), and takes values in N with known transition probability matrix
Π � (πij) ∈ Rs×s, where

πij � Pr (Ni+1 = j|Ni = i) ≥ 0 (9.5)

for all i, j ∈ N, and
∑s

j=1 πij = 1 for each i ∈ N.

We further impose an assumption on the design as follows:

Assumption 9.1. The data from the controller to each actuator are re-
stricted to belong to a small and fixed finite set of scalars U.

Remark 9.5. The information used for FDI in this chapter is the measured
outputs from sensor and the inputs to the actuators. The case that the con-
troller is placed at the plant’s node is same as the case that the controller is
placed at another node which is connected with networks.

The principle of model-based FD is to reconstruct the outputs of the moni-
tored system and compare them with real measurements [38]. Therefore, only
the time instants when new measurement data packets arrive are of concern.
Let ū(k) and ȳ(k) denote the data available at the FDI node:

ū(k) = λku(k) (9.6)

ȳ(k) = γky(k) (9.7)
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1( )g i
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Fig. 9.2 Double index.

Therefore, system (9.2) can be rewritten as

{

x(i + 1) = A(i)x(i) + B̄(i)Ū(i) + B̆(i)U(i) + Ēd(i)d̄(i) + Ēf (i)f̄(i)
y(i) = Cx(i)

(9.8)
where

A(i) = ANi ∈ A � {Ai|Ai � ANii ∈ N} (9.9)

B̄(i) =
[

ANi−1B ANi−2B · · · B
]

B̆(i) = B̄(i)
(

diag{λ̄g−1(i)λ̄g−1(i)+1, · · · , λ̄g−1(i+1)−1}
⊗

Ip

)

(9.10)

Ēf (i) = ANi−1Ef , Ēd(i) = ANi−1Ed

Ū(i) =

⎡

⎢

⎢

⎢

⎣

ū(g−1(i))
ū(g−1(i) + 1)

...
ū(g−1(i + 1) − 1)

⎤

⎥

⎥

⎥

⎦

, U(i) =

⎡

⎢

⎢

⎢

⎣

u(g−1(i))
u(g−1(i) + 1)

...
u(g−1(i + 1) − 1)

⎤

⎥

⎥

⎥

⎦

where λ̄k = 1 − λk and Ip ∈ C
p×p is a unit matrix.

Remark 9.6. f̄(i) and d̄(i) are not the sampled value of fault signal f(t) and
noise signal d(t) at time instant i. According to Chen and Francis [27], the
inter-sample behavior of d(t) and f(t) is omitted in the system described by
equation (9.8), the virtual signals f̄(i) and d̄(i) are equivalent to the effect of
real signals, they have a relation as follows:

ANi−1Ef f̄(i) =

Ni−1
∑

l=0

f(g−1(i) + l) (9.11)

ANi−1Edd̄(i) =

Ni−1
∑

l=0

d(g−1(i) + l) (9.12)
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Note that, the vector B̆(i)U(i) is unknown for the FD center, but this term
can be regarded as a random disturbance according to Assumption 9.1, thus
we rewrite system (9.8) as

{

x(i + 1) = A(i)x(i) + B̄(i)Ū(i) + Bm(i)ωm(i) + Ēf (i)f̄(i)
y(i) = Cx(i)

(9.13)

where

Bm(i) = [I Ēd(i)], ωm(i) = [UT (i)B̆T (i) d̄T (i)]T (9.14)

we can also rewrite system (9.8) as

{

x(i + 1) = A(i)x(i) + B̄(i)Ū(i) + Ba(i)ωa(i) + Ēf (i)f̄(i)
y(i) = Cx(i)

(9.15)

where

Ba(i) = [B̆(i) Ēd(i)] (9.16)

ωa(i) = [UT (i) d̄T (i)]T (9.17)

Remark 9.7. If system (9.1) is with the Markovian packet-loss process (9.4),
the parameter matrix A(i) � ANi ∈ A � {Ai|Ai � ANi} and Bm(i) are
Markovian jump matrices [32], [210]. Meanwhile, if system (9.1) is with the
arbitrary packet-loss process (9.4), the parameter matrices A(i) and Ba(i)
are arbitrary matrices. For a measurements transmission mode i, there are
∑i

h=0 Ah
i submodes for inputs transmission, so Ba(i) has

∑s
i=1

∑i
h=0 Ah

i

modes totally in system (9.15), where Ah
i denotes the permutation of h ele-

ments in i elements.

9.3 Observer Based Residual Generation and

Evaluation

In this section, a fault detection filter (FDF) will be designed to achieve
residual generation and evaluation over networks with bounded packet loses.

The FDF to be designed is

{

x̂(i + 1) = A(i)x̂(i) + B̄(i)Ū(i) + K(i) (y(i) − Cx̂(i))
r(i) = L (y(i) − Cx̂(i))

(9.18)

where x̂(i) is the estimate of the state x(i), r(i) is residual, and K(i), L are
design parameters matrices. In this chapter, the FDF gain K(i) is designed
to be time variant, and the matrix L is the risidual weighting factor which,
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in this chapter, is static. Let the state estimation error e(i) = x̂(i)−x(i) and
the residual r(i) propagate as

Pa :

{

e(i + 1) = (A(i) − K(i)C) e(i) + Ba(i)ωa(i) + Ēf (i)f̄(i)
r(i) = LCe(i)

(9.19)

or

Pm :

{

e(i + 1) = (A(i) − K(i)C) e(i) + Bm(i)ωm(i) + Ēf (i)f̄(i)
r(i) = LCe(i)

(9.20)

In order to guarantee a satisfactory FD performance, K(i) and L should be
designed such that the residual r(i) is sensitive to the fault f̄(i) and robust
to disturbance ωa(i) or ωm(i).

Rest of the aim of the chapter is then to design the FDF parameters
satisfying the constrains as:

C1: For the monitored system (9.1) with arbitrary packet-loss process (9.4),
the H∞-norm of system Pa is less than a prescribed scalar γ > 0, namely:

‖Pa‖∞ := sup
Ni∈N

sup
0�=ωa∈l2

‖ωa‖2

‖r‖2
< γ (9.21)

C2: For the monitored system (9.1) with Markovian packet-loss process
(9.4), the H∞-norm of system Pm is less than a prescribed scalar γ > 0,
namely:

‖Pm‖∞ := sup
Ni∈N

sup
0�=ωm∈l2

‖ωm‖2

‖r‖2
< γ (9.22)

C3: For the monitored system (9.1) with arbitrary packet-loss process (9.4)
or with Markovian packet-loss process (9.4), the H -norm of system Pa or
system Pm is greater than a prescribed scalar β > 0, namely:

‖Pa‖−(‖Pm‖−) := inf
Ni∈N

‖f̄‖2

‖r‖2
> β (9.23)

9.3.1 FDF Stability Analysis with Packet Loss

In this subsections, we analyze the stability property of the FDF. For the
monitored system (9.1) with the arbitrary packet-loss process (9.4), a suffi-
cient condition is derived by adopting a packet-loss dependent Lyapunov func-
tion approach. For the monitored system (9.1) with the Markovian packet-loss
process (9.4), a necessary and sufficient condition is established by using the
theory from Markovian jump systems. The conditions are given in terms of
LMIs.

Definition 9.8. Let e(l; e0) be the trajectory of system (9.19) with initial
state e0. System (9.19) with arbitrary packet-loss process (9.4) is said to be
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stable if for any ε > 0 there exists a δ � δ(ε) > 0 such that ‖ e0 ‖< δ implies
‖ e(l; e0) ‖< ε for l ∈ Z+. Furthermore, it is said to be asymptotically stable
if it is stable and liml→∞ ‖ e(l; e0) ‖2= 0 for any initial state e0 ∈ Rn.

Theorem 9.9. System (9.19) with arbitrary packet-loss process asymptoti-
cally stable if there exist matrices Pi ∈ S+, i ∈ N, such that

(Aj − KjC)
T

Pj (Aj − KjC) − Pi < 0 (9.24)

holds for all i, j ∈ N, where Aj ∈ A.

Proof. The initial state of system (9.19) is e(1) = (A(0)−K(0)C)e0, and let
i � Ni−1, j � Ni, we take the packet-loss Lyapunov function as

V (i) = eT (i)P(g−1(i)−g−1(i−1))e(i) = eT (i)Pie(i), (9.25)

so we have

V (i + 1) = eT (i)(Aj − KjC)T Pj(Aj − KjC)e(i) (9.26)

Therefor, V (i + 1) − V (i) < 0 for any e(i) �= 0 if inequality (9.24) holds.
Hence, limi→∞ V (i) = 0.

Furthermore, let β1 � maxl∈N ‖Pl‖, β2 � minl∈N{1/‖P−1
l ‖}, β3 �

max{maxl∈N ‖Al − KC‖2, 1}, and β =
√

(β1β2)/β3. Then given any ε < 0,
we prove that ‖e0‖ < βε implies ‖e(l, e0)‖ < ε for l ∈ Z+ in the following.

For l > 1, we have β2‖e(l, e0)‖2 < V (l) according to the definition of Lya-
punov function, and V (l) < V (1) ≤ β1‖e(1)‖2 ≤ β1β3‖e0‖2. So ‖e(l, e0)‖ <
√

(β1β2)/β3‖e0‖ <
√

(β1β2)/β3βε ≤ ε. Thus we conclude that ‖e(l, e0)‖ < ε
for all l ∈ Z+ if ‖e0‖ < δ with δ = βε. According to Definition 9.8, system
(9.19) is asymptotically stable.

Definition 9.10. System (9.20) with Markovian packet-loss process (9.4) is
said to be mean square stable if liml→∞ E(‖e(l, e0)‖2) = 0 for any initial
state e0 ∈ Rn

Theorem 9.11. System (9.20) with Markovian packet-loss process (9.4) is
mean square stable if, and only if, there exist matrices Pi ∈ S+, i ∈ N, such
that

s
∑

j=1

[

πij(Aj − KjC)T Pj(Aj − KjC)
]

− Pi < 0 (9.27)

holds for all i ∈ N.

Proof. (Sufficiency) Because {Ni : i ∈ N} is a discrete-time homogeneous
Markov chain, system (9.20) is a discrete-time Markovian jump linear system
with s operation modes. Now take a Lyapunov function as follows:

V (i) = eT (i)P(g−1(i)−g−1(i−1))e(i) = eT (i)Pie(i) (9.28)
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we have

E (V (i + 1|Ni−1 = i) − V (i))

= eT (i)

⎛

⎝

s
∑

j=1

[λij(Aj − KjC)T Pj(Aj − KjC)] − Pi

⎞

⎠ eT (i) < 0

for any e(i) �= 0 if inequality (9.27) holds. Hence, limi→∞ E(V (i)) = 0 and
limi→∞ E(‖e(i; e(1))‖2) = 0. That is, system (9.20) is mean square stable.

(Necessity) Suppose system (9.20) is mean square stable. Because system
(9.20) is a Markovian jump system, according to the stability results from
Markovian jump systems, there exist matrices Pi ∈ S+, i ∈ N, such that
(9.27) holds.

9.3.2 Robust Design of FDF

With the stability results developed in subsection 9.3.1, the robust FDF de-
sign techniques are provided in this subsection. We introduce two lemmas as
follows

Lemma 9.12. For a given scalar γ > 0 and a system as follows:

P :

{

x(k + 1) = Aθk
x(k) + Bφk

ω(k)
z(k) = Cx(k) + Dω(k)

(9.29)

where θk ∈ N1 � {1, 2, · · · , s1} and φk ∈ N2 � {1, 2, · · · , s2}, the following
conditions are equivalent:

(i) system P is asymptotically stable and the H∞-norm denoted as

‖P‖∞ � sup
θ0∈N1,φ0∈N2

sup
0�=ω∈l2

‖z‖2

‖ω‖2
(9.30)

satisfies ‖P‖∞ < γ.
(ii) there exist matrices Pij > 0, ∀i ∈ N1, ∀j ∈ N2 that satisfy

[

Ai Bj

C D

]T [
Pij 0
0 I

] [

Ai Bj

C D

]

−
[

Phg 0
0 γ2I

]

< 0 (9.31)

(iii) there exist matrices Pij > 0 and Gij , ∀i ∈ N1, ∀j ∈ N2 that satisfy

[

GijAi GijBj

C D

]T [
Gij + GT

ij − Pij 0
0 I

]−1 [
GijAi GijBj

C D

]

−
[

Phg 0
0 γ2I

]

< 0

(9.32)

Proof. (ii) ⇔ (i). If there exist matrices Pij > 0 such that inequality (9.31)
holds, so there exist a proper scalar ǫ, 0 < ǫ < 1 such that
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[

Phg 0
0 (1 − ǫ)γ2I

]

>

[

Ai Bj

C D

]T [
Pij 0
0 I

] [

Ai Bj

C D

]

(9.33)

holds. According to inequality (9.31), we have

Phg − AT
i PijA > 0 (9.34)

so, system (9.29) is asymptotically stable, and

V (k) = xT (k)Px(k) (9.35)

is a Lyapunov function of system (9.29). Now we prove that γ2‖ω‖2
2 is an

upper bound of ‖z‖2
2, consider a function:

Jk = ‖z‖2 − (1 − ǫ)γ2‖ω‖2. (9.36)

Let ∆V (k) = V (k + 1) − V (k), we have

Jk =
[

‖z‖2 − (1 − ǫ)γ2‖ω‖2 + ∆V (k)
]

−∆V (k)

=

[

x(k)
ω(k)

]T (

[C D]T [C D] −
[

Phg 0
0 (1 − ǫ)γ2I

]

+[Ai Bj ]
T Pij [Ai Bj ]

)

[

x(k)
ω(k)

]

−∆V (k)

=

[

x(k)
ω(k)

]T
(

[

Ai Bj

C D

]T [
Pij 0
0 I

] [

Ai Bj

C D

]

−
[

Phg 0
0 (1 − ǫ)γ2I

]

)

[

x(k)
ω(k)

]

−∆V (k)

According to inequality (9.33), we have Jk < −∆V (k), that is

‖z(k)‖2 < (1 − ǫ)γ2‖ω‖2 − ∆V (k) (9.37)

sum both side of inequality (9.37) from k = 0 to k = n, since the disturbance
w(k) ∈ l2, we have

n
∑

k=0

‖z(k)‖2 < (1 − ǫ)γ2
n
∑

k=0

‖w(k)‖2 − V (n + 1) (9.38)

≤ (1 − ǫ)γ2‖w(k)‖2
2 − V (n + 1), (9.39)

because of limn→∞ x(n) = 0, we have

‖z(k)‖2
2 ≤ (1 − ǫ)γ2‖ω‖2

2 < γ2‖ω‖2
2 (9.40)
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(ii)→ (iii). We choose Gij = GT
ij = Pij , that is (ii) implies (iii).

(iii)→ (ii). By Schur compement, an LMI can be obtained from (iii) as
follows

⎡

⎢

⎢

⎣

−Phg 0 AT
i GT

ij CT

0 −γ2I BT
j GT

ij 0
GijAi GijBj Pij − Gij − GT

ij 0
C 0 0 −I

⎤

⎥

⎥

⎦

< 0 (9.41)

and pre-multiplying and post-multiplying
[

I Ā
]

and its transpose to (9.41)
will yield (ii), where

Ā =

[

Ai Bj

C D

]

Lemma 9.13. [149] For a given scalar γ > 0 and a system as follows:

P :

{

x(k + 1) = Aθk
x(k) + Bθk

ω(k)
z(k) = Cx(k) + Dω(k)

(9.42)

where θk ∈ N � {1, 2, · · · , s} and we define that πij = Pr{θk+1 = j|θk = i} ≥
0 is Markovian jump probability, the following conditions are equivalent:

(i) system (9.42) is square stable and the H∞-norm denoted as

‖P‖∞ � sup
θ0∈N1,φ0∈N2

sup
0�=ω∈l2

‖z‖2

‖ω‖2
(9.43)

satisfies ‖P‖∞ < γ.
(ii) there exist matrices Pi > 0 that satisfy

[

Ai Bi

C D

]T [
P̄i 0
0 I

] [

Ai Bi

C D

]

−
[

Pi 0
0 γ2I

]

< 0 (9.44)

where P̄i =
∑s

j=1 πijPj and i = θk ∈ N

(iii) there exist matrices Pi > 0 and Gi that satisfy

[

GiAi GiBi

C D

]T [
Gi + GT

i − P̄i 0
0 I

]−1 [
GiAi GiBi

C D

]

−
[

Pi 0
0 γ2I

]

< 0 (9.45)

where P̄i =
∑s

j=1 πijPj and i = θk ∈ N

Based on Lemma 9.12 and Lemma 9.13, two theorems can be obtained easily
to design the FDF gain as follows:

Theorem 9.14. For given scalar γ > 0, if there exist matrices Pij = PT
ij > 0,

Gij and Yij, ∀i ∈ N, j ∈ Nf such that
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⎡

⎢

⎢

⎣

−Phg 0 AT
i GT

ij − CT Y T
ij CT LT

0 −γ2I BT
ajG

T
ij 0

GijAi − YijC GijBaj Pij − Gij − GT
ij 0

LC 0 0 −I

⎤

⎥

⎥

⎦

< 0 (9.46)

where Kij = G−1
ij Yij , then system (9.19) with arbitrary packet-loss process

(9.4) is asymptotically stable and ensures the constraint C1.

Proof. If there exist matrices Pij = PT
ij > 0, Gij and Yij = GijKij such that

LMI (9.46) holds, we obtain

⎡

⎢

⎢

⎣

−Phg 0 ĀT
i GT

ij C̄T

0 −γ2I B̄T
j GT

ij 0
GijĀi GijB̄j Pij − Gij − GT

ij 0
C̄ 0 0 −I

⎤

⎥

⎥

⎦

< 0 (9.47)

where Āi = Ai − KijC, B̄j = Baj and C̄ = LC. By Schur complement, we
obtain that (9.47) implies (9.32). Hence, the FDF gain Kij = G−1

ij Yij ensures
system (9.19) asymptotically stable and the constraint C1.

Theorem 9.15. For given scalar γ > 0, if there exist matrices Pi = PT
i > 0,

Gi and Yi, �i ∈ N, j ∈ Nf such that

⎡

⎢

⎢

⎣

−Pj 0 AT
i GT

i − CT Y T
i CT LT

0 −γ2I BT
miG

T
i 0

GiAi − YiC GiB
T
mi P̄i − Gi − GT

i 0
LC 0 0 −I

⎤

⎥

⎥

⎦

< 0 (9.48)

where P̄i =
∑s

j=1 πijPj and Ki = G−1
i Yi, then system (9.20) with Markovian

packet-loss process (9.4) is square stable and ensures the constraint C2.

Proof. If there exist matrices Pi = PT
i > 0, Gi and Yi = GiKi such that LMI

(9.48) holds, we obtain

⎡

⎢

⎢

⎣

−Pi 0 ĀT
i GT

i C̄T

0 −γ2I B̄T GT
i 0

GiĀi GiB̄ P̄i − Gi − GT
i 0

C̄ 0 0 −I

⎤

⎥

⎥

⎦

< 0 (9.49)

where Āi = Ai − KiC, B̄ = Bmi, C̄ = LC and P̄i =
∑s

j=1 πijPj . By Schur
complement, we obtain that (9.49) implies (9.45). Hence, the FDF gain Kij =
G−1

ij Yij ensures system (9.20) asymptotically stable and the constraint C2.

Remark 9.16. In Theorem 9.14, we can substitute a positive matrix P , a
symmetric matrix G and a matrix Y for the positive matrices Pij , symmetric
matrices Gij and matrices Yij , respectively, then a conservative FDF gain is
given by K = G−1Y . Same result can be obtained in Theorem 9.15.
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9.3.3 Sensitivity Constraint of FDF

First, we look at the minimum (i.e., worst-case) fault sensitivity requirement:

‖Pa‖−(‖Pm‖−) := inf
Ni∈N

‖f̄‖2

‖r‖2
> β, (9.50)

similarly, we have the following two lemmas from Lemma 9.12:

Lemma 9.17. For a given scalar β > 0 and an asymptotically stable system
as follows:

P :

{

x(k + 1) = Aθk
x(k) + Bθk

f(k)
z(k) = Cx(k) + Df(k)

(9.51)

where θk ∈ N � {1, 2, · · · , s}, the following conditions are equivalent:

(i) the H−-index of system (9.54) denoted as

‖P‖− � inf
θk∈N

‖f‖2

‖z‖2
(9.52)

satisfies ‖P‖− > β.
(ii) there exist symmetric matrices Pi that satisfy

[

Ai Bi

C D

]T [
Pi 0
0 −I

] [

Ai Bi

C D

]

−
[

Pj 0
0 −β2I

]

< 0 (9.53)

where i = θk ∈ N.

Lemma 9.18. For a given scalar β > 0 and a square stable system as follows:

P :

{

x(k + 1) = Aθk
x(k) + Bθk

f(k)
z(k) = Cx(k) + Df(k)

(9.54)

where θk ∈ N � {1, 2, · · · , s} and we define that πij = Pr{θk+1 = j|θk = i} ≥
0 is Markovian jump probability, the following conditions are equivalent:

(i) the H−-index of the system (9.54) denoted as

‖P‖− � inf
θk∈N

‖f‖2

‖z‖2
(9.55)

satisfies ‖P‖− > β.
(ii) there exist symmetric matrices Pi that satisfy

[

Ai Bi

C D

]T [
P̄i 0
0 −I

] [

Ai Bi

C D

]

−
[

Pi 0
0 −β2I

]

< 0 (9.56)

where P̄i =
∑s

j=1 πijPj and i = θk ∈ N.

Proof. The proofs of these Lemmas are similar to Lemma 9.12.
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9.4 Fault Detection Algorithm Design

According to Chen and Patton [26], the combined constraints C1/C2 with
C3 such as in the way of

‖Grf‖−
‖Grf‖∞

> α2

can, of course, be chosen and this combination also makes sense. However,
this is not recommended. The reason are as follows. First, the problem for-
mulation in C1/C2 has clear physical meaning. The constraints C1/C2 and
C3 provide directly quantitative measures for robustness and sensitivity of
a fault detection observer. The value γ is very useful for threshold selection
in detection decision-making. The ratio β/γ indicates how good a designed
fault detection observer is and therefore can be used for evaluation of fault
detection observers. Secondly, the present problem formulation enables the
direct time-domain solution of the robust fault detection observer problem
by using the LMI approach. Finally, as will be shown, the robust fault detec-
tion is equivalent to a constrained H∞ estimation problem, the latter can be
further reformulated as standard problem of constrained optimization, thus
we give the following algorithms:

Algorithm 9.1. Given a scalar β, the search problem of the lowest possible
value of γ and make system (9.1) with arbitrary packet-loss process (9.4)
asymptotically stable can be formulated as the following convex optimization
problem:

min γ s.t. LMI (9.46) (9.53) (9.57)

which can be effectively solved by the existing Matlab LMI toolbox [54].

Algorithm 9.2. Given a scalar β, the search problem of the lowest possible
value of γ and make system (9.1) with Markovian packet-loss process (9.4)
square stable can be formulated as the following convex optimization problem:

min γ s.t. LMI (9.48) (9.56) (9.58)

which can be effectively solved by the existing Matlab LMI toolbox [54].

9.5 Numerical Example and Simulations

In this section, in order to validate the proposed method, a servo motor
control system [110] that consists of a DC motor, load plate, speed, and
angle sensors is considered. The model of the motor control plant at sampling
period h = 0.04s was identified to be

G(z−1) =
0.05409z−2 + 0.115z−3 + 0.001z−4

1 − 1.12z−1 − 0.213z−2 + 0.335z−3
(9.59)
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The system can also be written as the state space form with the following
system matrices

A =

⎡

⎣

1.12 0.213 −0.335
1 0 0
0 1 0

⎤

⎦ , B =

⎡

⎣

1
0
0

⎤

⎦ , Ef = Ed =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦

C =
[

0.0541 0.1150 0.0001
]

The state feedback matrix Ku is designed to be

Ku =
[

0.027 0.575 0.0001
]

which ensures that the close-loop system is stable. A state jump fault

f(k) =

⎡

⎣

1
0
0

⎤

⎦

occurs when k ≥ 60, and the disturbance d(k) is assumed to be white noise,
d(k) ∈ N(0, 0.1). The outputs of controller u(k) and the measurements from
sensor y(k) are transmitted to the FD center over networks with packet loss.

For arbitrary packet loss process simulation, we assume that packet loss is a
random process, and let β = 10, and weighting matrix L = 0.001[100 50 5000],
then the optimal value of γ is γ∗ = 1.8177, thus the conservative filter gain
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Fig. 9.3 The simulation results of proposed methods in arbitrary packet loss pro-
cess situation.
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is designed to be K = [8.4400 8.1843 7.5937]T , Fig. 9.3 shows the results of
this simulation.

For Markovian packet loss process simulation, we assume that the transi-
tion probability matrix

Π =

⎡

⎣

0.6 0.3 0.1
0.8 0.1 0.1
0.7 0.2 0.1

⎤

⎦

and let β = 10, then the optimal value of γ is γ∗ = 2.5310, thus the filter gain
is designed to be K1 = [7.4890 6.3995 5.6861]T , K2 = [8.0768 7.7909 6.1123]T ,
K2 = [0.1791 0.3511 −0.0415]T . Fig. 9.4 shows the results of this simulation.
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Fig. 9.4 The simulation results of proposed methods in Markovian packet loss
process situation.

9.6 Summary

A problem of fault detection over unreliable networks is considered in this
chapter, the missing data of actuator is treated as noise, and the fault de-
tection filter updates at every time instant when the measurements arrive at
the fault detection center successfully. The stability analysis and filter gain
design method are proposed, a numerical example is also given to illustrate
the proposed scheme.



Chapter 10

Fault Detection over Networks Subject
to Delay and Clock Asynchronism

10.1 Introduction

The research of fault detection (FD) stems from its practical application to
a variety of industries such as aerospace, energy systems, and process control
to name a few. The main function of a FD scheme is to detect a fault when
it happens, which may then be acted on by sending alarm signals, taking
protection measures, or reconfiguring a running control scheme [135] [176].
The observer based FD scheme is currently receiving much attention [227],
Generally speaking, an observer based FD system consists of an observer
based residual generator and a residual evaluator. It is the state of the art
that problems related to the observer based FD system design are mainly
addressed in the context of improving system robustness against unknown
disturbances and simultaneously enhancing system sensitivity to faults. Study
on solving such problems builds the recent research which focus on designing
observer based FD systems [69], [82].

Networked control system (NCS) has many advantages over a traditional
point-to-point control system includes low cost of installation, ease of main-
tenance, low cost and greater flexibility. For these reasons the networked
control architecture has been already used many applications, particularly
where weight and volume are of consideration, for example in automobiles
and aircraft [198], [110], [108]. However, there are many fundamental ques-
tions regarding stable operation of an interconnected hard real-time system,
such as signal coding and control information flow, peer-to-peer networking,
effects of the network on the performance of the system, etc. Different con-
trol methods for NCS have been reported (see, for example, [232], [80], [186]).
The network-induced time delay and data packet dropout cannot be ignored
in fault detection and isolation [231]. There are some important achieve-
ments in the fault detection and isolation (FDI) for NCS (see, for example,
[192], [59], [68]). The theory and practice of fault diagnosis and fault-tolerant
control for NCS are different from the ones for traditional control systems
in many aspects. For example, it is apparent that networked-induced delay,

Y. Xia, M. Fu, and G.-P. Liu: Analysis and Synthesis of NCSs, LNCIS 409, pp. 159–181.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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packet dropout and other characteristics of networks could influence the per-
formance of a fault diagnosis system designed without taking them into ac-
count [44]. With some assumptions, the NCS was modeled as a simplified
delay system, then many existing methods, such as state observer, filtering
algorithm, etc., developed originally for ordinary time-delay systems could
be used for or extended to fault diagnosis of NCS. Further, new algorithms
dedicated to NCS have been presented based on these models.

In control systems, faults are defined as a kind of latent disordered dynam-
ics, which may occur at any part of control systems. Usually, sensor and actu-
ator faults as a sudden offset or drift can all be modeled as additive changes in
state (for example, see [36], [22]) or as unknown nonlinear functions (for ex-
ample, see [184, 234, 93]). In addition, disturbances are traditionally modeled
as additive state changes. In the current chapter, we model faults as abrupt
changes in system states with unknown occurrence time and jump magni-
tude. Hence, the fault detection problem in this chapter becomes estimation
of the changes. Maximum likelihood (ML) estimation is a powerful tool for
estimating the unknown parameters by maximizing the likelihood of given
measurements. However, it is more popular to use the ratio of likelihoods
under different hypotheses to estimate the unknown parameter [63]. As for
estimating the occurrence time and magnitude of an unknown abrupt state
change for linear systems, Willsky and Jones [196] proposed the generalized
likelihood ratio test algorithm in time domain. In their method, a Kalman
filter is applied to estimate the states under the hypothesis that there is no
any state change occur, meanwhile the innovations of the Kalman filter are
refiltered under the hypothesis that a change occurs at the hypothetical time
instant with unknown magnitude to obtain the estimate of magnitude, then
the estimate of occurrence time is solved by maximizing the likelihood ratio.

This chapter proposes a fault detection and compensation scheme based
likelihood ratios for networked predictive control systems with random time
delay and clock asynchronism. A predictive control scheme based on state
observer is designed to compensate the network time delay. Two schemes are
proposed to update the fault estimation. One of them is conservative and it
need a buffer to keep the data packet’s sequence. The other one is without
buffer, and the observer processes the packets in sequence, and it discard
others. Hence, the likelihood ratios of fault are computed, and if a fault is
detected and identified, the estimate of the fault is sent to the controller to
compensate the fault. A numerical simulation is also given to validate the
proposed method.

10.2 Networked Predictive Control for Systems with

Network Delay

This chapter considers the case where the controller at the local node is far
away from the plant and the manipulated variables and measured outputs of
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plant are transmitted through networks with random time delay and clock
asynchronism. The network delay in the feedback channel and forward chan-
nel is bounded. The plant studied in this chapter is described by

x(k + 1) = A(k)x(k) + B(k)u(k) + v(k) + σk−k′ν (10.1)

y(k) = C(k)x(k) + e(k) (10.2)

where x ∈ Rn, y ∈ Rl and u ∈ Rm represent the state variables, measured
outputs and manipulated inputs, respectively. The additive fault ν ∈ Rn

enters at time k′ as a step jump, where σk denotes the unit step function. v(k)
and e(k) are noises. Here v(k), e(k) and x(0) are assumed to be independent
Gaussian variables:

v(k) ∈ N(0, Q(k)), e(k) ∈ N(0, R(k)), x(0) ∈ N(0, Π(0)) (10.3)

Furthermore, they are assumed to be mutually independent. For the simplic-
ity of stability analysis, it is assumed that the reference input of the system
is zero. Also, the following assumptions are made.

Assumption 10.1. The pair (A(k), B(k)) is completely controllable, and the
pair (A(k), C(k)) is completely observable.

Assumption 10.2. The sum of the upper bound of the network delay in the
forward channel and the feedback channel is not greater than N1, where N1

is a positive integer.

Assumption 10.3. A buffer is set at the local node with length of N2, which
is to gather the measured outputs transmitted from the sensors, where N2 is
the upper bound of the network delay in the feedback channel. Note that if
GLR with intermittent observation (proposed in Section 10.5) is applied, this
buffer is not needed.

Assumption 10.4. Clock asynchronism exists between the local clock and
the remote clock.

In the rest part of this section, we present a predictive control scheme con-
sidering the clock asynchronism and random time delay. Liu et al proposed a
predictive control method to compensate for the network-induced time delay
[107] [108], but their method is not suitable for the system in this chapter
since there is clock asynchronism exists.

First, we explain why the predictive control method proposed by Liu et al
[107] [108] can not be applied in the current chapter. The predictive controller
gives predictive control signals based on the measurements and the controlled
plants model. Assume that at time instant k the clock of the controller (at the
local node) reads k′, there is a constant shift, denoted by δ, exists between
k and k′, i.e., k′ + δ = k, and the shift δ = ±1,±2, · · · is unknown and can
not be obtained easily since the time delay between the local node and the
remote node is random. There are two cases needed to be considered: δ > 0
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and δ < 0. First, if δ > 0, then the local node receives the measured outputs
with time stamp k at time instant k + ∆b, but the clock at local node reads
k + ∆b − δ, where ∆b denotes the time delay in the feedback channel of this
transmission. As for the case ∆b ≥ δ, the controller treats the delay as ∆b−δ,
which is shorter than its real value. Thus the controller gives the predictive
control signals not based on k, but k′, i.e., uk′+i|k′ , i = 0, 1, · · ·. This set
of control signal does not guarantee that the controlled plant is stabilized.
On the other hand, if ∆b < δ, then a serious logical error occurs since the
controller receives the measured outputs before it is transmitted according
to its clock. As for another case that δ < 0, the analysis is very similar. In
summary, the existence of clock asynchronism may incur some drawback even
serious error in predictive control systems.

Due to the latent asynchronism between the local clock and the remote
clock and the existence of random delay in the feedback channel, we present a
scheme that the controller and observer generate the estimates and predictive
manipulated variables based on the remote clock time, namely, all the time
information subscripts in this chapter denote the time shown by remote clock,
thus the asynchronism can be ignored. See Fig. 10.1, a data packet with time
stamp k is transmitted to the local node at time instant k (remote node clock
time), and it arrives at the local node at time instant k + ∆b (remote node
clock time). Then the controller at the local node gives a set of predictive
manipulated variables which is put into a forward data packet with time
stamp k, and sends it to the remote node. The remote node receives the same
packet at time instant k+∆b+∆f , where ∆f is the time delay in the forward
channel. According to the assumptions, we have ∆b+∆f ≤ N1, the time delay
compensator at the remote node chooses the newest ûk+∆b+∆f |h, where h is
anyone available, as the input of the plant, thus the time asynchronism is
canceled.

Based on the scheme and analysis above, the networked control system
considered in the current chapter is equal to a system, in which the data
packets are transmitted from the remote node to local node without any
time delay, and the data packets are transmitted from the local node to the
remote node with random time delay ∆b + ∆f .

Since the networks time delay is random, the data packet transmitted may
be out of sequence. As aforementioned Assumption 10.3, a buffer of length
N2 is set at local node and the measured outputs arrived at local node are
stored in the buffer. The observer chooses the measured observations from the
buffer according to the sequence in which the measured outputs are sampled
by sensors. For example, after the measured output y(k) is processed, the
buffer deletes the same measured output, and the observer searches the next
measured output y(k + 1) from the buffer, if y(k + 1) is not available in the
buffer, then the observer holds on, and searches the same one at the next step,
and if y(k + 1) is available, then the observer uses it to update. This kind
of application is to ensure the observations are processed by their intrinsic
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Time stamp: k Measured observation: ( )y k

Time stamp: k
Predictive manipulated variables: 

1( 1| ),..., ( | )u k k u k N k

Local node

Remote node

Feedback data packet 

Forward data packet 

Fig. 10.1 Both feedback and forward data packets are with a same time stamp.

order. However, an alternative method does not process those observations
out of sequence.

First, the state observer is designed as

x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(ok) + L(k)ε(k) (10.4)

where x̂(k + 1|k) ∈ Rn and u(ok) ∈ Rm are the one-step ahead state
prediction and the input of the observer at time k, respectively. ε(k) =
y(k) − C(k)x̂(k|k − 1) is innovation. The matrix L(k) = A(k)M(k) ∈ Rn×l

can be designed using observer design approaches.
The estimator of the state is

x̂(k|k) = x̂(k|k − 1) + M(k)ε(k) (10.5)

where M(k) is filter gain, and it can be obtained by

S(k) = C(k)P (t|t − 1)C(k)T + R(k) (10.6)

M(k) = P (k|k − 1)C(k)T S(k)−1 (10.7)

P (k + 1|k) = A(k)[P (k|k − 1) − M(k)C(k)P (k|k − 1)]A(k)T

+Q(k) (10.8)

where P (k+1|k) is covariance of estimate before the measurement y(k+1) is
processed, and (10.5)-(10.8) is obtained easily from the famous Kalman filter
equations.

Following the state observer described by (10.4), based on the output data
up to k, the state predictions from time k + 1 to k + N1 are constructed as
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x̂(t + 1|t) = A(k)x̂(k|k − 1) + B(k)u(ok) + L(k)(y(k) − C(k)x̂(k|k − 1))
x̂(k + 2|k) = A(k + 1)x̂(k + 1|k) + B(k + 1)û(k + 1|k)

...
x̂(k + N1|k) = A(k + N1 − 1)x̂(k + N1 − 1|k)

+B(k + N1 − 1)û(k + N1 − 1|k)
(10.9)

The gain of feedback controller, Kk, can be designed based on the modern
control theory in the case of no delay, for example, Linear Quadratic Gaussian
(LQG), eigenstructure or pole assignment, H2 and H∞ in the presence of
disturbance, etc. The predictive manipulated variables are calculated by

û(k + i|k) = K(k + i)x̂(k + i|k), i = 0, 1, ..., N1 (10.10)

and it follows from equation (10.9) that

û(k + i|k) = K(k + i)

k+i−1
∏

h=k

(A(h) + B(h)K(h))x̂(k|k),

i = 1, 2, ..., N1 (10.11)

At every step, the controller sends a set of predictive manipulated variables
in a data packet:

{û(k + i|k) | i = 0, 1, ..., N1}
while at the remote node, a compensator is designed to choose a predictive
manipulated variables to plant as the actual manipulated input from it’s
receiving buffer:

u(k) = û(k|k − i) (10.12)

where

i = min {i | û(k|k − i) has arrived at the remote node buffer.}

From the above, it is shown that in the case of no network delay in the
communication channel, the input to the plant actuator is the output of
the controller. In the case of a delay iT , where T is the sampling period, the
control input to the actuator is the ith-step ahead control prediction received
in the current sampling period.

10.3 Stability Analysis of Closed-Loop Systems

In the fault free and disturbance free case, namely, v(k) = 0 and ν = 0, the
stability of closed-loop system will be proved in this section. Use predicted
value as the control input to actuator:

u(k) = K(k)x̂(k|k − i) (10.13)
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Fig. 10.2 Structure of proposed control method for networked predictive control
systems.

while the control input to the observer is

u(ok) = û(k|k) = K(k)x̂(k|k) (10.14)

where K(k) ∈ Rm×n is the state feedback control matrix to be determined
using modern control theory. Fig. 10.2 shows the structure of proposed control
method for networked predictive control systems.

Remark 10.1. In some research works, the actual inputs u(k) of plant are
assumed to be sent back to the local node without time delay, thus the actual
inputs and outputs of plant are available for observer. However, this scheme
can not be easily applied in practice, so it is assumed in this chapter that the
actual inputs u(k) of plant can not be sent back to the local node, and are
also not available for observer.

Thus, it follows from equation (10.4)? that

x̂(k + i|k) =

k+i
∏

h=k+1

(A(h) + B(h)K(h))x̂(k + 1|k) (10.15)

Based on equations (10.1), (10.2) and (10.4), it can be shown that

x̂(k + i|k)

=
k+i
∏

h=k+1

(A(h) + B(h)K(h)) (B(k)K(k)M(k)C(k) + L(k)C(k)) x(k)

+

k+i
∏

h=k+1

(A(h) + B(h)K(h))

×(A(k) + B(k)K(k) − L(k)C(k) − B(k)K(k)M(k)C(k))

×x̂(k|k − 1) (10.16)
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and

û(k + i|k)

= K(k + i)

k+i
∏

h=k+1

(A(h) + B(h)K(h))(B(k)K(k)M(k)C(k) + L(k)C(k))x(k)

+K(k + i)

k+i
∏

h=k+1

(A(h) + B(h)K(h))

×(A(k) + B(k)K(k) − L(k)C(k) − B(k)K(k)M(k)C(k))

×x̂(k|k − 1) (10.17)

Theorem 10.2. For the networked predictive control systems with random
network delay, the closed-loop system described by (10.4), (10.11) and (10.12)
is stable if there exists a positive definite matrix P ∈ R(2N1+2)n×(2N1+2)n such
that

A
T
(i)PA(i) − P < 0 (10.18)

for i = 0, 1, 2, · · · , N1, where

A(i) =

⎡

⎢

⎢
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⎢
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(10.19)

with i ∈ {1, 2, · · · , N1}, A(i) ∈ R2(N1+1)n×2(N1+1)n,

M1(i) = B(k)K(k)
k
∏

h=k−i+1

(A(h) + B(h)K(h))

× (B(k − i)K(k − i)M(k − i)C(k − i) + L(k − i)C(k − i))
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M2(i) = B(k)K(k)

k
∏

h=k−i+1

(A(h) + B(h)K(h))

× (A(k − i) + B(t − i)K(t − i) − L(t − i)C(t − i)

− B(t − i)K(t − i)M(t − i)C(t − i))

M3(i) = B(k)K(k)M(k)C(k) + L(k)C(k)

M4(i) = A(k) + B(k)K(k) − L(k)C(k) − B(k)K(k)M(k)C(k)

A(0) =
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(10.20)

M1(0) = A(k) + B(k)K(k)M(k)C(k)

M2(0) = B(k)K(k) − B(k)K(k)M(k)C(k)

M3(0) = B(k)K(k)M(k)C(k) + L(k)C(k)

M4(0) = A(k) + B(k)K(k) − L(k)C(k) − B(k)K(k)M(k)C(k)

Proof. Since the control input to the actuator of the plant is u(k) =
K(k)x̂(k|k− i), then, based on (10.17), the closed-loop system can be written
as

x(k + 1) = A(k)x(k) + B(k)u(k)
= A(k)x(k) + B(k)û(k|k − i)
= A(k)x(k) + M1(i)x(k − i)

+ M2(i)x̂(k − i|k − i − 1)

(10.21)

Since the control input to the observer is u(ok) = u(k|k) = Kx̂(k|k), then,
based on (10.4), the state observer has the following form
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x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(k|k)
+ L(k)(C(k)x(k) − Ctx̂(k|k − 1))

= (A(k) − L(k)C(k))x̂(k|k − 1) + L(k)C(k)x(k)
+ B(k)K(k)(x̂(k|k − 1) + Mt(y(k) − C(k)x̂(k|k − 1)))

= M4(i)x̂(k|k − 1) + M3(i)x(k)

(10.22)

Let

xT (k) = [xT (k) xT (k − 1) · · · xT (k − i) xT (k − (i + 1)) · · ·
· · · xT (k − N) x̂T (k|k − 1) x̂T (k − 1|k − 2) · · ·

· · · x̂T (k − i|k − i − 1) · · · x̂T (k − N |k − N − 1)]
(10.23)

then, the augmented system can be expressed as

x(k + 1) = A(i)x(k)

When i = 0, based on (10.16), the augmented system can be expressed as

x̄(t + 1) = A(0)x(k) (10.24)

It follows that the closed-loop system is a switched system which is composed
of N1 + 1 discrete-time subsystems, i.e.,

x(k + 1) = A(i)x(k) (10.25)

where i = 0, 1, · · · , N1. The switched system can be described as

x(t + 1) = Aδ(k)x(k) (10.26)

where δ(k) : {0, 1, · · ·} → {0, 1, 2, · · · , N1}, δ(k) is switching signal.
Let V (k) = xT (k)Px(k), then

V (k + 1) − V (k) = xT (k + 1)Px(k + 1) − xT (k)Px(k)

= xT (k)[A
T

δ(k)PAδ(k) − P ]xT (k) (10.27)

From (10.18), it follows that V (k+1)−V (k) < 0, for δ(k). Therefore, system
(10.26) is stable for all switching sequences δ(k).

10.4 Fault Detection and Identification Based on

Likelihood Ratios

The likelihood ratios (LR) test is a multiple hypotheses test, where the dif-
ferent fault hypotheses are compared to the no fault hypotheses pairwise. In
the LR test, the fault magnitude is assumed to be known. The hypotheses
under consideration are
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H0: no fault
H1(k

′, ν): a fault of magnitude ν at time k′.

The log likelihood ratio for the hypotheses as the test statistic:

lN (k′, ν) := 2log
p(yN |H1(k

′, ν))

p(yN |H0)
= 2log

p(yN |k′, ν)

p(yN |k′ = N)
(10.28)

where the factor 2 is for notational convenience, and yN denotes the set of
measurements y(1), y(2), ..., y(N). In this chapter, we use the convention that
H1(N, ν) = H0, so again, k′ = N means no fault. Then the LR estimate can
be expressed as

k̂′
ML

= argmax
k′

lN(k′, ν) (10.29)

when fault magnitude ν is known. However, the fault magnitude ν is assumed
to be unknown in this chapter, so a double maximization over k′ and ν called
Generalized Likelihood Ratio (GLR) proposed by Willsky and Jones [196] is
given to estimate the fault:

ν̂(k′) = argmax
ν

2log
p(yN |k′, ν)

p(yN |k′ = N)
(10.30)

k̂′ = arg max
k′

2log
p(yN |k′, ν̂(k′))

p(yN |k′ = N)
(10.31)

where ν̂(k′) is the maximum likelihood estimate of ν, given a fault at time

k′. The fault candidate k̂′ in the GLR test is accepted if

lN (k̂′, ν̂(k̂′)) > h,

where the threshold h is a parameter to be tuned. The key point of GLR test
is that the innovation from the state observer can be expressed as a linear
regression in ν,

εk′(k) = ϕT
k′ (k)ν + ε(k) (10.32)

where εk′(k) is the actual innovation from the state observer if ν and k′

are known, ε(k) is the virtual innovation of system (10.1) without additive
fault. Before the fault occurs, the actual innovation is equal to the virtual
innovation:

εk′(k) = ε(k)

and the innovations get a bias,

ε(k) ∈ N(0, S(k))

that means
ϕk′ (k) = 0, k′ = 0, 1, ..., k
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However, given a fault ν at time k′, the innovations get a bias,

εk′(k) ∈ N(ϕk′(k)ν, S(k)),

and the regressors ϕk′(k) can be computed using

ϕT
k′ (k) = C(k)

[

t−1
∏

i=k

A(h) − A(k − 1)μk′(k)

]

(10.33)

μT
k′ (k + 1) = A(k)μk′ (k) + M(k + 1)ϕT

k′(k), (10.34)

initialized by zeros at time k = k′. Here ϕ(k) ∈ Rn and μ(k) ∈ Rn×n.
At the time k′ = N , the test statistic is given by

lN(k′, ν̂(k′)) = fT
k′(N)R−1

k′ (N)fk′(N) (10.35)

where the linear regression quantities are

Rk′(k) =

k
∑

i=1

ϕk′ (i)S(i)−1ϕT
k′(i) (10.36)

fk′(k) =
k
∑

i=1

ϕk′(i)S(i)−1ε(i) (10.37)

for each k′, 1 ≤ k′ ≤ k. A change candidate is given by

k̂′ = arg max lN (k′, ν̂(k′))

It is accepted if lN (k′, ν̂(k′)) is greater than some threshold h (otherwise

k̂′ = N) and the corresponding estimate of the change magnitude is given by

ν̂N (k̂′) = R−1

k̂′
(N)fk̂′(N).

The formulation (10.35) is off-line. Since the test statistic involves a matrix
inversion of R(N), a more efficient on-line method is as follows,

lk(k′, ν̂(k′)) = fT
k′(k)ν̂k′(k)

where k is used as time index instead of N . ν̂k′(k) can be updated recursively,
eliminating the matrix inversion of Rk′(k).

However, in real applications, because of the observed signal is too large,
the memories required to restore the computed data is square increasing, and
computation time increases step by step, so setting a suitable data structure
becomes important. In this chapter, we recommend a trade-off windowed
on-line GLR method if the FDI system is with limited computation capacity:

lk(k − W, ν̂(k − W )) = fT
k−W (k)ν̂k−W (k) (10.38)
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where W is the length of data window. Better performance of estimate can be
obtained if a larger W is chosen, however, a larger W means that much time
is needed for detecting a fault after it occurs. Computing ν̂k−W (k) recursively
needs data from step k − W to k, so that the computing time of every step
is fixed.

From (10.32), we can know that the innovations from the state observer
are the linear combinations of fault ν, so that the Recursive Least Squares
(RLS) algorithm can be used to estimate the fault ν for each time k′:

ν̂k′ (k) = ν̂k′(k − 1) + Kν(k)[ε(k) − ϕT
k′ (k)ν̂k′(k − 1)] (10.39)

K(k)ν =
P (k − 1)ϕk′ (k)

λ + ϕT
k′ (k)P (k − 1)ϕk′ (k)

(10.40)

P (k) =
1

λ
[P (k − 1) −

P (k − 1)

ϕk′ (k)ϕT
k′ (k)P (k − 1)

λ

+ϕT
k′(k)P (k − 1)ϕk′ (k)] (10.41)

where the design parameter λ is called the forgetting factor.
If the windowed likelihood ratios estimate ν̂k−W (k) is greater than the

threshold, the fault detection

(

ν̂(k̂′), k̂′
)

= (ν̂k−W (k), k − W )

is sent to the predictive state observer to compeansate the fault. From the
time k′, the predictive state observer (10.4) is modified to:

x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(ok) + L(k)ε(k) + ν̂(k̂′), (10.42)

and the state predictive equation and predictive manipulated variables equa-
tion are modified as follows

x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(ok) + L(k)ε(k) + ν̂(k̂′)

x̂(k + 2|k) = A(k + 1)x̂(k + 1|k) + B(k + 1)û(k + 1|k) + ν̂(k̂′)
...

x̂(k + N1|k) = A(k + N1 − 1)x̂(k + N1 − 1|k)

+B(k + N1 − 1)û(k + N1 − 1|k) + ν̂(k̂′)

(10.43)

and the predictive manipulated variables are as follows,

û(k + i|k) = K(k + i)x̂(k + i|k), i = 0, 1, ..., N1

From the above, the recursive computing equations of predictive states and
predictive manipulated variables are given as follows
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x̂(k + i|k)

=

k+i−1
∏

h=k

(A(h) + B(h)K(h))x̂(k|k) +

[

k+i−1
∏

h=k+1

(A(h) + B(h)K(h))

+

k+i−1
∏

h=k+2

(A(h) + B(h)K(h)) +... +

k+i−1
∏

h=k+i−1

(A(h) + B(h)K(h)) + I

]

ν̂(k̂′)

=

k+i−1
∏

h=k

(A(h) + B(h)K(h))x̂(k|k) +

i−1
∑

m=1

[

k+i−1
∏

h=k+m

(A(h) + B(h)K(h))

]

ν̂(k̂′)

+ν̂(k̂′)û(k + i|k)

= K(k + i)x̂(k + i|k) (10.44)

Fig. 10.3 shows the structure of proposed FDI method for networked predic-
tive control system. The likelihood ratios are computed according to (10.38)-
(10.41) step by step. When the log likelihood ratio is greater than a given
threshold, the estimate of the fault is sent to the controller, the state observer
compensates the fault immediately.

controller

FDI

network

compensator

( )y k

ˆ( )u k

( )u k

plant

( , ')k

Fig. 10.3 Structure of proposed FDI method for networked predictive control
system.

Remark 10.3. Note that after a fault is detected, the controller compensates
the fault according to (10.44). If the fault estimate converges at its true value,
the state estimates converge at their true value. However, since the existence
of network time delay and the data window size W , the additive fault keeps
its effect on the system state for a period of time after compensation, the
states and the measured outputs converge at another stable points after fault
compensation.

10.5 GLR with Intermittent Observations

In the previous section, a buffer is set at the local node to save the observation
packets which are out of sequence. The observer processes the observations
according to the sequence in which the remote node sends the packets. This
method is easy to be applied, but with some drawbacks. First, though an
observation is available for the observer, it is not processed until all the
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previous observations have arrived at the local node and been processed. It
costs much more time to detect a fault after it occurs. Secondly, if there is
no any observation packet need to be processed at some time instants, the
observer is idle. On the contrary, the computation burden is heavy at some
time instants when there are many packets need to be processed. Thirdly,
the additional buffer increase the hardware cost.

An alternative scheme for the local node is to process the observations
without buffer. In this case, when an observation packet arrives at the local
node, the observer checks the time stamp of this packet, if this time stamp is
greater than every time stamp of the packets which has already arrived at the
local node, the observer processes it; if the time stamp is not the newest at
the present time instant, the observer discards it and treats the observation
as zero. First, the state observer is designed as

x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(ok) + γ(k)L(k)ε(k) (10.45)

where γ(k) = {0, 1} denotes whether the observation with time stamp k is
processed or is discarded, which is with probability distribution pγ(k)(1) = λ.
Note that a similar description of γ(k) is presented in much literature to de-
note whether the data is transmitted successfully. The meanings of these two
descriptions of γ(k) are different from each other, but same in mathematical
analysis.

Now we give the convergence analysis of GLR with intermittent obser-
vations. However, the work of this section is limited to LTI (linear time-
invariant) systems. First, by minimizing the following loss function,

Vk(ν) =

k
∑

t=1

γ(t)
(

ε(t) − ϕ(t)T ν
)T

S(t)−1
(

ε(t) − ϕ(t)T ν
)

(10.46)

we have the least square estimate with intermittent observations:

ν̂(k) = ν̂(k−1)+γ(k)(Rϕ(k))−1ϕ(k)S(k)−1
(

ε(k) − ϕ(k)T ν̂(k − 1)
)

(10.47)

where Rϕ(k) =
∑k

t=1 ϕ(t)S(t)−1ϕ(t)T . This is the recursive update for esti-
mate, we also can obtain the update of Rϕ(k):

Rϕ(k) = Rϕ(k − 1) + γ(k)ϕ(k)S(k)−1ϕ(k)T (10.48)

Let P (k) denotes the covariance matrix of ν̂, according to [63], we have
P (k) = (Rϕ(k))−1. The famous matrix inversion lemma applied to (10.48)
gives

P (k) = P (k−1)−γ(k)P (k−1)ϕ(k)[ϕ(k)T P (k−1)ϕ(k)+S(k)]−1ϕ(k)T P (k−1)
(10.49)
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Now, we define a function

gλ,k(X) = X − λXϕ(k)(ϕ(k)T Xϕ(k) + S(k))−1ϕ(k)T X (10.50)

From (10.50), we have gλ,k(X) ≤ X , ∀k, X . Now, we state some properties
of function (10.50) as following lemmas:

Lemma 10.4. For a LTI system described in (10.1), where A(k) = A,
B(k) = B, C(k) = C, Q(k) = Q, R(k) = R, ∀k, let λ(A) denote the eigen-
values of matrix A, and M̄ denotes the solution of the following equation:

M̄ = AM̄AT − AM̄CT (CM̄CT + R)−1CM̄AT + Q (10.51)

If |λ(A)| < 1 and |λ(A−M̄CA)| < 1, then the limit of regressors ϕk(t) exists,
k = t, t + 1, · · ·, ∀t, which is described as follows:

ϕT
k (t) = C

[

Ak−t − Aμk(t)
]

(10.52)

μk+1(t) = Aμk(t) + M(k + 1)ϕT
k (t) (10.53)

where M(k) is Kalman filter gain, and

lim
k→∞

ϕT
k (t) = (I − M̄C)(I − A)−1, (10.54)

Proof. Assume that t = 0 without loss of generality, we have the following
equation from (10.1):

x(k + 1) = Ak+1x(0) +

k+1
∑

i=1

Ak+1−iv(i) +

k+1
∑

i=1

Ak+1−iν (10.55)

and from the Kalman filter equations, we have

x̂(k|k) = (A − M(k)CA)x̂(k − 1|k − 1) + M(k)CAkx(k)

+M(k)C

k
∑

i=1

Ak−iv(i) + M(k)C

k
∑

i=1

Ak−iν + M(k)e(k)

the alternative Kalman filter which is assumed to have the information of the
fault gives

x̂0(k|k) = (A − M(k)CA)x̂0(k − 1|k − 1) + M(k)CAtx(0)

+M(k)C

k
∑

i=1

Ak−iv(i) + M(k)C

k
∑

i=1

Ak−iν

+M(k)e(k) + (I − M(k)C)

k
∑

i=1

Ak−iν
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thus we define that the error between these two filters is x̃(k):

x̃(k) = x̂0(k|k) − x̂(k|k)

= (A − M(k)CA)x̃(k − 1) + (I − M(k)C)

k
∑

i=1

Ak−iν. (10.56)

From the concept of ϕT
k (t) and (10.56), we have

lim
k→∞

ϕT
0 (k)ν = lim

k→∞
x̃(k) (10.57)

Since |λ(A)| < 1, the steady state Kalman filter gain M̄ = lim k → ∞M(k)
exists and is found by solving:

M̄ = AM̄AT − AM̄CT (CM̄CT + R)−1CM̄AT + Q

Because |λ(A − M̄CA)| < 1, the first term of the right side of (10.56) will
approach to zero when k → ∞. For the second term of the right side of
(10.56), we need to analyze the existence of limit of the following equation:

lim
k→∞

k
∑

i=1

Ak−i.

Without loss of generality, we assume that all eigenvalues of A are distinct.
Then we can factorize A = T−1ΛT , where Λ is a diagonal matrix with diag-
onal elements being the eigenvalues. Then

lim
k→∞

k
∑

i=1

Ak−i = T−1

(

lim
k→∞

k
∑

i=1

Λk−i

)

T

= T−1(I + Λ + Λ2 + · · · + Λt + · · ·)T
= T−1(I − Λ)−1T

=
(

T−1(I − Λ)T
)−1

= (I − A)−1

Then, the limit of the regressor exists

lim
k→∞

ϕT
k (t) = (I − M̄C)(I − A)−1

Lemma 10.5. [169] Consider the function

gλ,k(X) = X − λXϕ(k)(ϕ(k)T Xϕ(k) + S(k))−1ϕ(k)T X. (10.58)
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Assume X, S(k) ∈ S = {S ∈ Rn×n|S ≥ 0}, and 0 < λ ≤ 1. Then, the
following facts are true.

1) If X ≤ Y , then gλ,k(X) ≤ gλ,k(Y ).
2) If X ≥ gλ,k(X), then X > 0.
3) Let Xk+1 = gλ,k(Xk), if X1 ≥ X0, then Xk+1 ≥ Xk, and if X1 ≤ X0,

then Xk+1 ≤ Xk.

Now, we formally state the convergence analysis of GLR with intermittent
observations as the following theorem:

Theorem 10.6. For a LTI system described in (10.1), where A(k) = A,
B(k) = B, C(k) = C, Q(k) = Q, R(k) = R, ∀k, let λ(A) denote the eigen-
values of matrix A, if |λ(A)| < 1, then the GLR estimation covariance P (k)
with intermittent observation is bounded and for any P (0) there exists P̄ = 0
independent of P (0) such that

lim
t→∞

P (k) = P̄ (10.59)

Proof. From (10.49), we have

P (0) ≥ P (1) ≥ · · · ≥ P (k) ≥ · · ·

thus, for any k, 0 ≤ P (k) ≤ P (0), that means for any initial condition
P (0) > 0, P (k) is a monotonically decreasing sequence with a lower bound
0. According to Dedekind theorem, the sequence converges at a finite matrix.
Let P̄ denotes the limit of P (k), we have

P̄ = lim
k→∞

gk
λ,k(P (0)) = lim

k→∞
gk

λ,k(P (k)) (10.60)

Substituting (10.60) to (10.59) gives

P̄ ϕ̄(ϕ̄T P̄ ϕ̄ + S̄)−1ϕ̄T P̄ = 0

where ϕ̄ and S̄ denote the limits of ϕk(t) and S(k), respectively, for any
t, when k approaches infinity. According to Lemma 10.4, ϕ̄ exists and does
not always equal to zero. Sinopoli et al proved that if A is stable, the state
covariance P (k|k) is convergent when k approaches infinity [169], namely, S̄
exists and

S̄ = CA

(

lim
k→∞

P (k|k)

)

AT CT + CT QC + R > 0

This implies that the term

ϕ̄(ϕ̄T P̄ ϕ̄ + S̄)−1ϕ̄T

does not always equal to zero, which proves that P̄ = 0.
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10.6 Numerical Simulation

In this section, in order to validate the proposed method, a servo motor
control system [110] that consists of a DC motor, load plate, speed, and
angle sensors is considered. The model of the motor control plant at sampling
period 0.04s is identified to be

G(z−1) =
0.05409z−2 + 0.115z−3 + 0.001z−4

1 − 1.12z−1 − 0.213z−2 + 0.335z−3
(10.61)

The system can also be written as the state space form with the following
system matrices

A =

⎡

⎣

1.12 0.213 −0.335
1 0 0
0 1 0

⎤

⎦

B =

⎡

⎣

1
0
0

⎤

⎦ , C =
[

0.0541 0.1150 0.0001
]

The state feedback matrix K is designed to be

K =
[

0.027 0.575 0.0001
]

which ensure that the close-loop system without time delay is stable. In this
simulation, the upper bound of network time delay N1 = 4 and the data
window size of GLR is W = 5, the fault occurs at time k′ = 20 and its
magnitude is ν = [8 0 0]T .

The threshold h = 2000, and as Fig. 10.4 shows, the fault detected is
(ν̂(k̂′), k̂′) = (7.98, 26). Note that if the threshold is designed to be smaller,
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Fig. 10.4 Test statistics with fault compensation of numerical simulation in this
chapter.
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the k̂′ is closer to its true value k′, but the estimate of fault departure its
true value, so a suitable threshold should be designed considering the trade-off
between the precision of estimated k′ and estimated ν. Fig. 10.5 shows the test
statistics without compensation of this simulation, the log likelihood ratios
do not converge at zero after the fault is detected without compensation.
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Fig. 10.5 Test statistics without fault compensation of numerical simulation in
this chapter.

Fig. 10.6 shows the states and their estimates with fault compensation
in this simulation, the estimates departure from their true values when the
fault occurs at k = 20, and after the fault is detected and compensated, the
estimates of states converge at their true values. Fig. 10.7 shows the actual
inputs and their corresponding outputs with fault compensation.
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Fig. 10.6 The states and their estimates with fault compensation of this simulation.
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Fig. 10.7 The inputs and outputs with fault compensation of this simulation.

10.7 Discussion

Network-induced time delay is the key issue in the investigation of NCS. Gen-
erally speaking, there are two delays, sensor to controller delay (or delay in
backward channel) and the controller to actuator delay (or delay in forward
channel). These two delays can be combined together when the controller
is linear and time-invariant. It is shown in [214], that the network-induced
delay will prevent a traditional observer based fault detection system from
satisfying the essential requirement of a qualified residual generator, i.e., with
the delay, the residual signal of a traditional residual generator will not be
able to be decoupled from the control input any longer. To solve this prob-
lem, some methods are proposed. If the network-induced time delay of an
NCS is unknown and smaller than the sampling period, then the NCS with
disturbance and latent fault can be described as a system without any time
delay, and the affect of time delay is modeled as an unknown input item [229].
The fault diagnosis system should be robust to this term, and some schemes
are developed recently. For example, traditional parity relation based low-
pass post filtering residual generator for NCS with network-induced delay is
proposed in [217] to reduce the influence of the unknown input item. As for
the case when the delay time is greater than one sampling period, the tradi-
tional robust methods do not have good performance since the influence of
the unknown input item caused by time delay is great. Huang and Nguang
proposed an observer based fault detection scheme for NCSs with network-
induced time delay and data packet dropout [79], wherein the lengths of
delay are not limited to be smaller than sampling period, but bounded. They
also treated the time delays as time-varying input delays, and developed new
disturbance attenuation notation according to the H∞ performance. There
are two kinds of nuisances needed to be attenuated in the FDI systems, one
is disturbance or unmodeled dynamics; the other is unknown inputs caused
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by time delay. In the current chapter, the proposed predictive method faces
only one nuisance, and the influence of network-induced time delay is totally
compensated theoretically.

As mentioned above, predictive control is a good choice to design the
FDI scheme without considering attenuating the influence of network-induced
time delay, but it need the observer and controller work according to time
precisely. Much literature has not paid attention to this practical problem,
and its methods of predictive control have nice performance only in theory.
Estimating the clock asynchronism is not easily applied in practice when the
network-induce time delay is unknown and random, the proposed scheme of
using the time stamps in the measurements data packets is suitable and easy
to be carried out. Furthermore, it converts a NCS with time delays both in
the backward channel and in the forward channel to an equivalent system
with time delay in the forward channel if the controlled plant is linear. It is
easy to analyze the stability of the NCS and to design controller. On the other
hand, this scheme involves heavier computation burden since the controller
has to extend the predictive horizon to make it longer then the sum of the
maximum of time delays in two channels.

Two schemes for updating the likelihood ratios for the latent fault are also
proposed in the current chapter. One is to set up a buffer at the local node
to gather measurement data packets to keep them be processed in sequence,
i.e., an observation is processed after all other observations are processed,
which are sampled by sensors earlier than the observation. This method is
conservative and easy to give an analysis of stability. The other scheme is
to process the intermittent observations that are in sequence and discard
the observations that are out of sequence. Based on this scheme, the NCS
with random network-induced time delay is modeled as a NCS with data
packet dropout. Xiao et al proposed a peak covariance stability analysis of
time-varying Kalman filter with possible packet losses in transmitting mea-
surement outputs to the filter via a packet-based network [208]. It is shown
that if the observability index of the discrete-time LTI system under investi-
gation is one, the Kalman filter is peak covariance stable under no additional
condition. In the current chapter, updating likelihood ratios of the latent fault
with intermittent observations is converted to the least square problem with
intermittent observations. The result shows that GLR test with intermittent
observations is convergent if the state transfer matrix and the covariance ma-
trices of noise satisfy a proposed condition. However, there is still limitation
exists. For example, the latent fault must be a step type function, and the
convergence analysis of GLR test with intermittent observations is only for
LTI systems.

10.8 Summary

A fault detection and compensation scheme based on likelihood ratios for
networked predictive control systems with random network time delay and
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clock asynchronism is proposed in this chapter. The networked control system
is stabilized by designing a state feedback gain and sets of predictive manip-
ulated variables. The measured outputs are sent back to the local node. The
likelihood ratios of fault are computed step by step, and if a fault is detected
and identified, the fault estimate is sent to the controller to compensate the
fault. Two methods are proposed for the local node to update the estimates.
One of them is to process the observations according to the sequence in which
the observation packets are sent from the remote node. The other method is
to process the observations if they are the newest, and discard the other ob-
servations. However, the convergence analysis of the second method is limited
to LTI systems. A numerical simulation shows that after the fault is detected
and compensated with the proposed scheme, the states estimates converge
at their true value again.
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