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ABSTRACT

Analysis and Modeling of World Wide Web Traffic
by
Ghaleb Abdulla
Doctor of Philosophy in Computer Science and Applications

Virginia Polytechnic Institute and State University, 1998
Professor Edward A. Fox, Chair

This dissertation deals with monitoring, collecting, analyzing, and modeling of World Wide
Web (WWW) traffic and client interactions. The rapid growth of WWW usage has not
been accompanied by an overall understanding of models of information resources and their
deployment strategies. Consequently, the current Web architecture often faces performance
and reliability problems. Scalability, latency, bandwidth, and disconnected operations are
some of the important issues that should be considered when attempting to adjust for the
growth in Web usage. The WWW Consortium launched an effort to design a new proto-
col that will be able to support future demands. Before doing that, however, we need to
characterize current users’ interactions with the WWW and understand how it is being used.

We focus on proxies since they provide a good medium for caching, filtering information,
payment methods, and copyright management. We collected proxy data from our environ-
ment over a period of more than two years. We also collected data from other sources such
as schools, information service providers, and commercial sites. Sampling times range from
days to years. We analyzed the collected data looking for important characteristics that can
help in designing a better HT'TP protocol. We developed a modeling approach that considers
Web traffic characteristics such as self-similarity and long-range dependency. We developed
an algorithm to characterize users’ sessions. Finally we developed a high-level Web traffic
model suitable for sensitivity analysis.

As a result of this work we develop statistical models of parameters such as arrival times,
file sizes, file types, and locality of reference. We describe an approach to model long-range
and dependent Web traffic and we characterize activities of users accessing a digital library
courseware server or Web search tools.

Temporal and spatial locality of reference within examined user communities is high, so
caching can be an effective tool to help reduce network traffic and to help solve the scalability
problem. We recommend utilizing our findings to promote a smart distribution or push model
to cache documents when there is likelihood of repeat accesses.
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Chapter 1

Introduction

1.1 Motivation

In recent years the Internet in general, and World Wide Web (WWW or Web) in particular,
have grown rapidly as dissemination tools for different kinds of information resources. Fre-
quently, the Web is used for deployment of educational and commercial material. Educators
are using the Web to post course notes, syllabi, homework assignments, and even exams
and quizzes. Companies are using the Web for advertising, publicity, and to sell products.
Recent literature shows that the number of clients and servers is increasing rapidly and that
Web traffic displays exponential growth [BC94]. As a result, the Web has changed the fun-
damental dynamics of network usage. A URL broadcast on a popular television program
(such as during a commercial in the Superbowl game in the United States) or in a historic
event (such as the Shoemacker-Levy comet encounter with Jupiter) can produce a sudden
spike in demand for a particular server. This phenomenon was termed the “flash crowd” by
Jakob Nielsen [Mau96], when winter sports fans tried to access the latest results of the 1994
Winter Olympics in Lillechammer that were posted on the Web by the Norwegian Oslonett.

The rapid growth of WWW usage often is not accompanied by an overall understanding of
models of information resources and their deployment strategies [BCC™94]. Consequently,
the current Web architecture is vulnerable and lacks optimized interaction between appli-
cations and network protocols [BC94|. Performance and reliability are two major concerns
for Web users. Although the Web enhances accessibility, users still demand faster response
[WA97]. Performance problems can result from poor protocol design [PM94, Spe94], or in-
adequate servers, clients, or network speed. In addition, the popularity of the Web created
other unexpected problems. Scalability, latency, bandwidth, and disconnected operations
[Get95] are some of the important issues that should be considered to make up for the rate
of growth in Web usage. The WWW Consortium (W3C) realized these issues and they have
launched an effort to design a new protocol that will be able to support future demands
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[Get95]. Spero [Spe94] did a careful analysis of the HTTP protocol and showed that it is not
optimized for fast interactions. One of the major problems with the current protocol is that
it has to establish a new connection for each retrieved document whether it is an embedded
image or a stand alone document. This negotiation process introduces delays in retrieving
documents and overloads the network with unnecessary packets.

The dynamic nature and flexibility of the Web introduce other challenges. Documents are
frequently edited, updated, or replaced and some pages are dynamically generated. The
situation becomes even more complicated when users in large numbers exploit the flexibility
inherent in the Web. Any person regardless of age or education can get to a browser and
in no time he or she can access any document anywhere in the world. This flexibility is a
major challenge to scalability and network bandwidth.

To help solve these problems we attempt to understand the Web architecture, monitor it for
a sufficient amount of time, analyze the collected data, and come up with interaction models.
Those models can be used to run simulations and come up with usage scenarios based on
the studied history. Scalability can be achieved by the collective effort of protocol designers,
browser developers, proxy and Web server developers. To reach this stage, however, we
need to characterize the current types of interactions over the WWW. We need to look
at the long term behavior of Web users, and find similarities and differences in the way
different communities use the Web. The results obtained can be used in generating scenarios
for the new HTTP protocol design [Jan97|, for building simulation models, and for better
understanding Web growth and usage.

The W3C realizes the importance of studying and understanding the system under consid-
eration before attempting to optimize it [NG97]. We need to characterize the way the Web
is being used. Characterization deals with: tasks, documents, access times (e.g., arrival
rate of GET commands), file sizes, and other factors that will be discussed in detail in this
dissertation.

In our early work we focused on proxies since they provide a good medium for caching,
filtering information, payment methods, and copyright management [Win97]. We collected
data from our environment over a period of over two years. We also collected data from
other sources such as schools, information service providers, and commercial sites. Sampling
time ranges from days to years. Collecting data over a long period of time allows for better
understanding of the nature of interactions that appear over the Web. It also allows for
caching studies and simulations. One of our findings is that the locality of reference within
a certain community is high, hence caching can be an effective tool to help reduce network
traffic and so help in solving the scalability problem. Recent tests and studies by our group,
however, showed that proxies increase latency [Liu98, LAJF98], so some type of engineering
balance is needed involving network traffic quantity and time for response latency.
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1.2 The problem

The central problem we address is managing the unprecedented growth and rapid evolution
of the WWW in an affordable and scalable manner that leads to good performance. Ac-
cordingly, there is a great need for studies that deal with Web traffic characterization and a
methodology to continue sampling the Web traffic for future studies. Several published stud-
ies undertook partial characterization of the Web traffic, however there is a need for study
that includes different user groups and spans over a sufficient amount of time. In addition
the analytical models used in the literature are not accurate enough and they ignore the
fact that the Web traffic is highly correlated on different time scales and displays long-range
dependency.

1.3 Contributions of this dissertation

This dissertation focuses on Web traffic and task characterizations and lays the foundation for
future research that will help in solving the scalability problem. In particular its contributions
include the following:

e a procedure for Web traffic collection and filtering over a long period of time and a
library of Web traffic data from different sources;

e a comprehensive characterization of Web proxy traffic that has been used as a guide
in answering questions raised from the W3C protocol design group;

e a detailed empirical model of arrival rates of Web traffic to a proxy server and an
analysis of the long-range dependency observed in Web traffic, along with its causes;

e a characterization of usage of the Web for information retrieval as a sample task that
is performed by Web users;

e a characterization of interactions with a digital library server that is used to deliver
Computer Science course material from Virginia Tech over the Web [AHF97, Hea98|;
and

e a simple WWW model with scenarios to show how we can help scale up the current
Web architecture.

The core of the work in this dissertation deals with workload characterization. Network
monitoring and collecting data on the internet scale is a major challenge. In this dissertation,
however, we show how to sample data from user communities and how to use the data to
reach useful conclusions. The Web traffic observed on the internet is mostly the result of
the interactions that occur between clients and servers on intranets. We say mostly because
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much of the traffic is local or sometimes managed through caching and will not appear on
the internet. For example, in all the locally collected data sets only 40%-60% of the accesses
are to remote servers.

The first part of the dissertation discusses the relation between traffic that appears between
different Web objects such as a proxy, a client, a network, and a server, and through the data
collection and analysis process. The next part of the dissertation introduces a comprehensive
Web proxy traffic characterization study. The results of the study include general statistics
and comprehensive statistical and empirical models that can be used for simulation studies
and to understand the nature of Web interactions in order to help in optimizing the network
and the HT'TP protocol for faster responses.

The third part of the dissertation focuses on characterizing two tasks that are of great
importance for Web users. The first task is the use of search tools to find information over
the Web. The second task is the use of the Web as a tool to distribute information through
digital libraries.

The last part of the dissertation introduces a simple model of the WWW and shows how to
use some of the results obtained from the characterization process to come up with scenarios
of future Web usage. The model in this part is far from being complete, however; it serves as
an example of how to make use of the identified characteristics in constructing such models
and it shows some possible future usage of the Web. The purpose of the model is to identify
factors that help in solving the Web scalability problem.

1.4 Overview of this dissertation

This chapter presents the motivation to this work, the problem under study, and gives a high
level overview of the structure of the dissertation. Chapter 2 is divided into two parts; the
first part describes the Web architecture and methods to make it scalable. The second part
describes the data collection points and the sampling method that we are using. In addition
it describes the data sets that we have collected. The third chapter describes a detailed
characterization study on proxies and some implications on caching and HTTP protocol
design. Chapter 4 shows how to use Fourier analysis to build an accurate model of arrival
rate of Web GET commands to proxy servers and it explains the long-range dependency
and strong correlation observed in the literature. Chapters 5 and 6 are two studies that
characterize two different tasks that the Web is used for. Chapter 5 presents a study to
characterize interactions with a digital library server that is used by the Department of
Computer Science and others for content and course delivery. Chapter 6 presents a study
to characterize the activities while using the Web for searching and retrieving information.
Chapter 7 introduces several different scenarios that show how to scale the Web for future
demands. Finally, chapter 8 presents conclusions and suggests future work.



Chapter 2

Background and Sources of Web
Traffic

2.1 Introduction

The Web is a distributed set of servers and clients connected via networks. Information,
which is stored on servers, can be accessed easily by any client over the network using a
client application called a browser. The browser issues requests to the server to retrieve
documents which can be identified by a network identifier called a URL (Uniform Resource
Locator). The server responds by sending the requested document. Web documents contain
formating and rendering information that is written in a language called HTML (Hyper Text
Markup Language). The browser is responsible for displaying the retrieved document using
the HTML commands embedded in it. The protocol that controls transactions between
clients and servers is called the HT'TP protocol or Hyper Text Transfer Protocol.

The Web is one of the most successful ideas in the last decade and it has changed the
way people think of computers. Computers are used not only for scientific calculations or
programming, but also for information, education, and communication. Information can be
shared through different formats and methods and it can be manipulated, updated, created or
deleted easily. In addition, the Web introduced new users to the computer world. Home users
are consuming a significant percentage of network bandwidth. Educational organizations,
governments, and commercial companies have invested in this environment and will keep
investing in the future. This huge success leads to new challenges that almost every Web
user is willing to help solve so as to keep the Web alive.

Major challenges to the Web are scalability, latency, bandwidth, and disconnected operations
[Get95]. Scaling issues are a major concern with the current Web architecture. To help with
such issues the protocol that carries Web interactions should be redesigned to be able to
meet the new challenges. Before we can do that, however, we have to understand the
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nature of the current interactions that appear over the network. In the following sections
we define scalability, discuss some promising techniques that will help in scaling the current
Web architecture, and then introduce a taxonomy of sources of Web traffic that help in
identifying data collection points for further research and exploration studies.

2.2 Scalability

Scalability can be defined as the ability to increase the size of the problem domain with
a small or negligible increase in the solution’s time and space complexity. Scalability of
the World Wide Web architecture is the ability to increase the number of servers, clients,
users, data types, data size, and the ability to handle servers in widely spread geographic
locations, with minimum change in the quality of service. In this chapter we discuss methods
and techniques that will help in scaling up the Web. We start by identifying techniques that
improve scalability other than the brute force solutions of increasing network bandwidth and
server throughput. These techniques are: use of caching on the server side (e.g., [KMR95b]),
on the client side (e.g., caches built into Web browsers), and in the network (known as “Proxy
caching”) (e.g., [LA94]); creating better Web citizens; protocol enhancement; compression;
and finally delta encoding.

2.2.1 Caching

One impediment to scalability is use of the wrong protocol for a given type of document
delivery. For example, the aforementioned flash crowd phenomena consumes Internet band-
width and server capacity because HI'TP delivers a separate document copy to each of many
readers whereas multicast methods, for example, have one shared copy sent as far as possi-
ble for multiple users. The convenience of Web browsers made misuse of HI'TP inevitable.
Nevertheless, in many cases, caching can alleviate bandwidth consumption. For example,
see the discussion on FTP caching in [DH93].

The Web design, not inherently scalable, can be helped by greater use of proxies in concert
with widespread migration (e.g., push) of document copies from servers to points closer to
users. Migration can follow a distribution model, in which servers control where document
copies are stored prior to client requests, or a cache model, in which copies automatically
migrate in response to user requests. Distribution or replication is popular with commercial
users that want to protect material with copyrights, and will only trust certain sites to keep
copies of such material, rather than relinquishing control over who has a copy of the material.
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Cache placement

Caching can be implemented in three places: at servers, in the network itself, and at clients.
Caching on the server side reflects overall interest in server content. It can be implemented
by replicating the file system and the HTTP server and connecting the replicated servers
with a high speed network [KMR95b]|. This is similar to server mirroring, where the data
on the server is copied into several other servers to reduce the load on the network and the
original server. However in server mirroring the servers are not placed in one location; they
can be separated by long distances. Server caching is used mainly to reduce the load on the
server and enhance its response time and throughput.

Caching on the client side will reflect user interests. The cache contents will change according
to the user access pattern and the cache size. Caching on the network side will reflect the
access pattern of a group of users who share the cache. The effectiveness of the network
cache can increase by placing it where we know that a group of users has a high degree of
similarity of interest (or locality of reference), and by implementing multiple [MLB95] or
hierarchical proxy caching. Multiple proxy caching is when many clients share many caches
and a cache that misses can query other caches. In two-level caching we have several network
caches connected to another parent or first level network cache with a larger cache size. If
the document is not found in the first cache level, the second level caches are accessed, and
if the document is not in the second cache level then it must be accessed from the source.

Caching will not provide a magical solution for the scalability problem but it will help in
solving it. Combined with other techniques, such as data compression, server replication,
and better networks we may be able to provide a usable Web architecture for the future.

Obstacles to caching

There are various obstacles to caching; we consider four. First, caching only works with
static and infrequently changing documents. Some suggest that their number is declining
due to the trend among commercial content providers toward dynamically generating Web
pages from databases. Second, in HT'TP 1.0 there is no reliable method to identify whether
a Web document is cacheable (e.g., one cannot reliably distinguish a static text file from a
script generated file). The HTTP 1.1 draft specification provides a response message pragma
to request no caching, that can address this problem. Third, there is no accepted method in
the Web for keeping cached copies consistent. Finally, copyright laws could legislate caching
proxies out of existence, unless they incorporate a pay-per-view method.

2.2.2 Create better Web citizens

The network and the WWW are shared resources and will continue as such. To help scal-
ability we should increase the awareness of this fact and we should teach users to use the
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network effectively to avoid wasting network bandwidth. Browsing rapidly and aimlessly
through large multimedia files can result in transferring huge numbers of bytes and slowing
the access of someone else. Searching if done effectively can reduce the amount of browsing
required for a person with a specific information need [ALSF97]. Effective search can be
achieved by having effective Web Information Retrieval Systems and by teaching users to
submit effective queries.

2.2.3 HTTP protocol enhancement

The HTTP protocol suffers from several problems; it was not designed for optimized inter-
action [BC94, Get95]. One problem with the original protocol is the use of a new connection
for every single document retrieved over the network. This creates extra packets over the
network and causes network congestion.

Another problem with HT'TP 1.0 is that it does not follow a distribution model and whenever
a document is accessed by a client it has to be fetched from the original server. This
increases the load on servers and increases network traffic. Mirroring using Web servers
is done currently by manually creating a copy of documents on another server in another
location. Proxies also are used to cache the accessed documents, however, there is still a
need to notify mirrors or caches about document changes.

A third problem with the current HT'TP protocol is that it is not able to carry and deliver
different kinds of real time multimedia information with adequate quality of service. One
specific example is video and audio delivery over the network. The current method is to
use another protocol for such transactions. This introduces the overhead of starting a new
communication protocol. The HTTP protocol could be designed to utilize available func-
tionalities in such protocols for faster delivery. Work to enhance the HT'TP protocol is done
by several groups; see for example Nielsen et. al. [NGBS'97].

2.2.4 Compression

Compression works well with text documents but can be less effective with binary files
especially if they are already compressed (such as JPEG or GIF). Using the percentage of
compressible files and the average entropy in each of those types of files we can estimate how
much bandwidth we can save through compression.

2.2.5 Delta encoding

The idea of caching is very appealing and experiments showed that it can save network
bandwidth [ASAT95]. Caching usually assumes that the entire document should be retrieved
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whenever it changes. However, some documents might change because of a typo or a minor
revision and retrieving the whole new document will be a waste of bandwidth when an older

copy is at hand. The idea behind delta encoding is to retrieve only the parts of the document
which have changed [Wil97].

Using delta encoding over the Web was suggested in [WAST96]. The work reported by
Mogul et al. [MDFK97] shows that delta encoding can provide remarkable improvements
in response size and delay for certain types of Web documents. The research in this field
triggered recommendations to extend the HTTP protocol to include delta encoding in its
future versions [MDFK97, Wil97, HP97].

2.3 Web traffic, data collection and analysis

Characterizing interactions and kinds of tasks that the Web is used for is an essential step
to help design a better protocol. Consequently, the WWW Consortium created a working
group to collect and review the literature, gather and analyze data, and make use of available
Web characterization results. The work described in this dissertation was one of the major
sources that helped in answering some of the questions raised by the W3C protocol design
group [AFAW97, AFA97, ANF97, Pit98|.

Braun and Claffy pointed out the difficulty of tracking Web statistics on a large scale —
e.g., the entire Internet [BC94]. A more reasonable approach is to study Web statistics
collected from representative Web objects which are responsible for initiating, responding
to, and carrying Web transactions. In this section we describe sources of Web traffic data
and how to collect data from those sources.

2.3.1 Taxonomy of Web traffic data sources
Network traffic

The lower part of Figure 2.1 shows a situation where n clients, a server, and a proxy are
connected to a LAN. One or more other Web servers (or proxies) can be connected to the
same LAN. However, for simplicity and without loss of generality we will assume that there
is only one Web server and one proxy connected to this LAN. The upper half of the figure
shows m clients, a server, and a proxy connected to another LAN.

We can think of Web traffic as transactions ordered by time between clients and servers. Let
Tran be the set of all Web transactions that appear over the LAN in the lower part of the
figure. Considering transaction source and destination we can define subsets of Web traffic
over the LAN; see Table 2.1.
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Figure 2.1: Web objects and the network model
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Table 2.1: Subsets of Web traffic that appear over the LAN
Symbol H Definition

T.p the set of Web transactions between local clients and
local proxy server p

T, s the set of Web transactions between local clients and
local server s

Ters the set of Web transactions between local clients who
do not use the proxy server, and remote servers rs

Tres the set of Web transactions between remote clients
and local server s

Ty rs the set of Web transactions between the proxy p
and remote servers rs

Using the definitions in Table 2.1,

TLAN - Tc,p U Tc,rs U Tc,s U Trc,s U Tp,rs (21)

To capture this traffic we use tepdump [Ste94] with filters that we have developed to extract
relevant data [AW96a).

Server traffic

To simplify the analysis we will split the server traffic into two sets, traffic that results from
accesses by local clients, T 5, and by remote clients, 7). . If we let T represent server traffic,
then

Ts=TesUTres (2.2)

Equations 2.1 and 2.2 show that T C Ty an and we can extract T if we can classify the data
for TL AN -

Proxy traffic

The proxy(p) traffic also can be split into two sets, T, and T}, ,s, so the expression for the
proxy traffic or 7, is
T, =T, UT,,s (2.3)

Equations 2.1 and 2.3 show that 7}, C Trany and we can extract 7, if we can classify the
data for TLAN-
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Client traffic

Client traffic is from all clients going to the local proxy, local servers, or remote servers (in
case the clients are not using the proxy). This traffic does not contain accesses to the client
local cache. We will call it T..

To =T s UTep UTers (2.4)

Equations 2.1 and 2.4 show that T, C Trany and we can extract T, if we can classify the data
for TL AN -

We can extract T, T}, and T; from our data easily. These are the main subsets of data that
should be considered when characterizing the WWW interactions. Using our knowledge
about the environment where the data was collected, we can classify T, into that originat-
ing from single user machines (personal or used serially by several people), or multiuser
machines. This classification is important for characterizing user behavior and for WWW
traffic characterization. Our collection method proved to be very useful since we used it to
reconstruct some of the missing 75 data for our digital library server that was lost from the
server logs.

In the next chapter we explore further about collections of data describing Web traffic , and
their characteristics.



Chapter 3

WWW Proxy Traffic Characterization
with Application to Caching

3.1 Introduction

The dynamics of Web traffic are not well understood. There are several differences between
the Web and other types of network traffic. Those differences emerge from the protocol used
and from Web users’ behavior. With respect to the protocol, traffic is generated by clicking
on hyper-links that are part of HTML pages and, as a result, usually a new HTML page or
an image is displayed. HTML pages contain formatted text and nicely organized graphics.
Sometimes HTML pages lead to other types of media, such as video or audio. In contrast,
traditional network traffic has formatted or unformatted text, and rarely uses graphics, video
or audio. With respect to users, the lower level of expertise required to navigate with a Web
browser has resulted in a large and diverse user population. Therefore, it is reasonable
to assume that Web users behave differently from those who use other network resources.
Change in user behavior over a period of time may influence Web dynamics too.

Characterizing World Wide Web proxy traffic helps identify parameters that affect caching,
capacity planning and simulation studies. In this chapter we identify invariants that hold
across a collection of ten traces representing traffic seen by caching-proxy servers. The
traces were collected from governmental, industry, university, high school, and an online
service provider environment, with request rates that range from a few accesses to millions of
accesses per hour. We also show that the examined traffic is self-similar. We explore sources
of Web self-similarity and we conclude that a strong source is the bursts that come in a
periodic fashion due to users’ behavior. The tests revealed that there is a strong connection
between access rate and hour of the day or week. We also report the hit rate and weighted
hit rate obtained by running a trace driven simulation on the workloads to simulate a proxy
with infinite cache. We note that accesses to unique servers and URLs are a small portion

13
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of the total.

Earlier versions of the work described in this chapter were reported in [AFA97, AFAWO7|.
The next section relates this study to some of the relevant literature.

3.1.1 Related work

Most of the research that uses proxy traces aims to reduce network latency, enhance response
time and conserve network bandwidth. Examples of such studies are systems and simula-
tions using server [AW96b, BC94, KMR95a, AKMS95] and proxy traffic [ASA195, WAST96,
Smi94, O’C95]. In those studies the authors have shown that caching will reduce network
traffic.

There have been several studies to characterize client workloads [CB96, CBC95, Cun97] and
server workloads [AW96b, BC96]. There are, however, fewer studies to fully characterize
proxy traffic. This is due to the difficulty of collecting proxy log files from different sources
due to the sensitivity of such logs.

One of the earliest studies to characterize proxy traffic was done by Glassman [Gla94].
Characterization included parameters such as document popularity, cache misses, cache hits,
and rate of change for Web pages. Sedayao [Sed94] studied and characterized the distribution
of several parameters. Gwertzman and Seltzer [GS96] have used several server and proxy
traffic sources to characterize MIME types and the average life span of a Web document.
A study that characterizes accesses of dial-in users with modem connections was done by
Gribble and Brewer [GB97|. They have focused on inter-arrival time and discovered that
the traffic is periodic on large time scales (hourly, daily and weekly). This is similar to what
we have noticed and reported earlier in [AFAW97].

Arlitt and Williamson [AW96b] used six different log files to characterize accesses to WWW
servers. From these logs the authors identified ten different invariants for Web server work-
loads. The invariants are important since they aim to represent universal truths for all
Internet Web servers. The invariants in the study were used to identify two strategies for
cache design and to determine the bounds on performance improvement due to each strategy.
A study to test if those invariants hold true over time and across location is necessary.

In [CB96] and [CBC95] the data were collected from a group of clients accessing the Web.
Cunha et al. [CBC95] showed that many characteristics of the WWW can be modeled
using power-law distributions. Crovella and Bestavros [CB96] showed that the Web traffic
has characteristics that are consistent with self-similarity. They traced the reasons for Web
self-similarity to the basic characteristics of information organization and retrieval.

Finally, Pitkow [Pit98] comprehensively summarizes work done in the field of workload char-
acterization.
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Table 3.1: Workloads used in this study.

Workload || Duration | # accesses | Bytes transferred (MB)
DEC1 9/3/96 1304565 11,207
DEC2 9/19/96 1293147 10,889
BU(G) 11/29/94-2/27/95 52901 294
BU(U) 1/27/95-2/22/95 414350 1,201
Korea 9/02/95-9/26/95 1681963 21,942
VT-Lib 9/19/96-11/20/96 127853 589
VT-CS 1/1/96-11/18/96 570385 3,492
VT-Han | 7/12/96-11/20/96 440345 2,578
AUB 10/21/96-10/22/96 19259 110
AOL 12/96(few minutes) 883082 6,018

3.1.2 Chapter outline

In this chapter we characterize the traffic seen by a caching-proxy by identifying a set of
invariants that hold true between the examined workloads. We also test for the existence of
self-similarity in the traffic and the reasons for it. We examine caching-proxy traffic over a
long period of time and see if the identified invariants change with time. Finally, we run a
trace driven simulation for all workloads and report the hit rate and weighted hit rate for
each workload.

3.2 Workloads used in the study

To generalize our results we picked 10 different workloads from our collection; the traces come
from governmental, industry, university, high school and online service provider sources. The
workloads were collected either using the the normal proxy logging methods, or by simulating
a proxy log file using the theory in chapter 2 and the tools developed by our group. In the
later case we collect the WWW LAN traffic; according to Figure 2.1 and equations 2.1 and
2.3 we can extract the traffic that will use the proxy (if installed). Table 3.1 summarizes the
workloads used in this study, showing dates of collection, numbers of accesses represented,
and total bytes transferred.

3.3 Proxy workload invariants

In this section we identify invariants that hold true across the workloads studied. We follow
closely the work done in [AW96Db] in establishing the invariants. However, since our workloads
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are for a different class of HT'TP traffic, namely traffic seen at a caching-proxy server, we
expect that though our set of invariants will overlap with the set identified in [AW96b], they
will not be the same. Our workload invariants for proxy-server traffic are listed in Table 3.2.
These invariants are discussed in detail below.

Table 3.2: Invariants for Web proxies

Number H Name ‘ Description

1 Median file size ~ 2K

2 Mean file size less than 27KB

3 File types (accesses) 90%-98% of accessed files
are of types Graphics,
HTML, and CGI/Map

4 File types (bytes) Most bytes accessed are
of type graphics

5} % of accesses to unique servers | less than 11%

6 % of servers referenced one time | less than 5%

7 Accesses concentration (servers) | 25% are responsible
for 80%-95%

8 Bytes concentration(servers) 25% are responsible for
90% of the bytes accessed

9 Success rate 88%-99%

10 Self-similarity 059 < H <0.94

3.3.1 File sizes

Table 3.3 shows file size statistics for the workloads. For this analysis, we removed all files
that have length zero, such as dynamically-generated or CGI/Map files. The median size
in all workloads is very close to 2K; the minimum for the median is 1938 bytes and the
maximum is 2658 bytes. This appears in Table 3.2 as an invariant. The mean file size ranges
between 7K to 27K; this is consistent with the invariant for average server file size found in
[AWO6b|. This is our second invariant and also appears in Table 3.2.

The value for the third quantile is less than the average file size and the maximum file size
is large when compared to the median and mean file sizes; this implies that the file size
distribution is heavy tailed. The variability in file size is due to the different file types; video
and audio file sizes are typically huge compared to text files but they are not accessed as
frequently as other types. (This will be shown in the next section.)

In Figure 3.1 we show the size distribution for the tested workloads. Clearly the size distri-
bution in all workloads is almost the same. In all workloads small size files are accessed the
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most. In addition there is a small set of files which are very large in size and that are accessed
a small number of times. The X axis is in log scale to simplify the process of comparison of
distributions.

In Table 3.4 we give a suitable statistical model of the file size for each workload. We used
ExpertFit to derive the model in each case. The results for the Boston University workloads
(BU(G) and BU(U)) were consistent with findings in [BC98]. In all workloads the best model

suggested by ExpertFit was either a Weibull or a Lognormal distribution.

With the huge size of the tested samples, fitting the data to a statistical distribution can
become very difficult and involves artistic as well as scientific judgment. Most of the goodness
of fit tests rejected the suggested models, especially when we included the entire data set in
the test. Sizes of the data sets tested in this case range between 10,000 and 60,000 points.
For such large numbers of points we verified our models by testing the suggested distribution
with sampled subsets from the original dataset or using the Q-Q plot. The Q-Q plot proved
to be as effective as the other statistical tests. Another source of confidence was to compare
our results with published results, when available. Modeling samples of data with such
sizes is an open research topic; a tool to create random subsets of the original data set,
fit the subsets into distributions, and then do goodness of fit tests would be very useful.
In a personal communication with the W3C Web characterization group, they mentioned
that they are facing the same problem and they suggested another validation technique that
uses regression to fit parts of the curves for the synthesized and the original data. In yet
another case, when the data does not fit properly into any statistical model, we suggest using
empirical distributions.

In Table 3.4 we list the parameters required to generate the synthesized data. The expressions
for the suggested distributions can be found easily in the literature. One can use the listed
parameters’ values in the table to substitute for @ and (3 in the expression for the suggested
distribution to generate synthetic data sets for the purposes of simulation and prediction.

3.3.2 File types

In Table 3.5 we show the percentage of accesses for each file type in each workload. Graphics
files are the most accessed type in all workloads. However HTML and graphics account for
less than 90% of the total accesses which is different from the servers invariants in [AW96b].
By comparing the results from the different workloads we notice that BU(G), BU(U) and
Korea follow the results reported in [AW96b]|. However, in the other workloads HTML and
graphics represent less than 89% of the accesses. This is especially true in the DEC data
which has a no type category. Based on Table 3.5, we can identify a third invariant, namely
that in all workloads, graphics is the most accessed file type followed by HTML followed by
CGI/Map.

The CGI/Map percentage is lower in the BU workloads than in the other workloads. Since
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Table 3.3: File size statistics.

Workload || Max.(K) | Mean | Median | 1st Qu. | 3rd Qu. | S
DEC1 22,620 | 8,792 2,087 386 6,831 | 86,758
DEC2 31,690 | 8,598 1,939 320 6,582 | 88,312
BU(G) 16,710 | 27,480 2,259 766 7,028 | 336,495
BU(U) 14,160 | 16,240 | 2,652 | 1,046 | 6,876 | 145,939
Korea 56,220 | 14,640 2,222 506 7,197 | 152,902
VT-Lib 12,780 | 7,008 2,070 738 6,044 | 68,958
VT-CS 20,440 | 9,762 2,115 957 6,225 | 123,637
VT-Han 26,860 | 8,272 2,261 864 6,064 | 95,956
AUB 6,779 | 8,863 1,938 560 5,615 | 96,405
AOL 46,290 | 7,545 2,030 790 9,963 | 127,056

Table 3.4: Fitted statistical models

Workload || Model

‘ Parameters

DEC1 Weibull 0 =3,240, a = 0.48
DEC2 Weibull 0 =3,822, a=0.48
BU(G) Lognormal | =794, a = 1.71
BU(U) Lognormal | f = 7.97, o = 1.57
Korea Lognormal | 8 = 7.54, a = 1.78
VT-Lib Lognormal | 8 = 7.53, a = 1.58
VT-CS Lognormal | g = 7.37, a = 1.89
VT-Han | Lognormal | = 7.84, a = 1.46
AUB Lognormal | g =7.88, a = 1.44
AOL Lognormal | 8 = 7.64, a = 1.49

19
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the BU workloads are the oldest set of log files (please see Table 3.1), this could mean that
the percentage of dynamic documents is going up over time. Documents which are dynamic
cannot be cached; hence if they have a higher percentage of occurrence in the log file then
we can predict that effectiveness of caching will decrease. In section 3.4 we will try to assess
this hypothesis using the workload with the longest duration.

Table 3.5: Percentage of accesses for each type

Workload || graphics | HTML | CGI | audio | video com- PS | other no

Map pressed | PDF type
DEC1 59.1 11.3 1.8 NA NA NA | NA 4.3 | 23.5
DEC2 58.5 10.9 1.6 NA NA NA | NA 4.5 | 24.5
BU(G) 82.8 12.8 2.1 0.1 0.0 0.2 0.1 1.8 NA
BU(U) 84.8 12.5 1.5 0.1 0.0 0.0 0.0 1.0 | NA
Korea 66.8 217 5.7 0.2 0.2 0.4 0.0 49| NA
VT-Lib 67.1 15.0 | 12.7 0.0 0.0 0.0 0.0 50| NA
VT-CS 51.3 20.6 | 19.2 0.2 0.0 0.1 0.3 83| NA
VT-Han 69.5 14.8 | 8.7 0.1 0.0 0.0 0.0 6.7 | NA
AUB 67.5 13.6 | 9.3 0.1 0.0 0.0 0.0 9.3 | NA
AOL 73.9 14.2 8.2 0.0 0.0 0.0 0.0 3.5 | NA

From Table 3.6 we uncover another invariant that is related to the previous one. File type
graphics is responsible for most of the accessed bytes. This invariant might not hold for a
long time, since video and audio files are becoming more popular.

Table 3.6: Percentage of bytes transferred for each type

Workload || graphics | HTML | CGI | audio | video com- PS | other no

Map pressed | PDF type
DEC1 38.0 1.0 8.0 NA NA NA NA | 326 204
DEC2 40.1 1.0 7.5 NA NA NA NA | 30.8| 20.5
BU(G) 21.4 2.3 | 10.0 28.7 3.5 6.6 | 10.3 17.1 | NA
BU(U) 48.5 2.0 | 13.9 6.5 | 185 3.8 0.3 6.3 | NA
Korea 48.8 2.7 7.7 2.1 12.5 14.4 2.6 9.1 NA
VT-Lib 64.1 1.5 | 13.3 1.7 11.6 1.5 1.2 51| NA
VT-CS 46.0 0.8 | 15.0 5.2 8.0 6.8 9.2 9.0 NA
VT-Han 53.9 1.1 9.3 7.5 13.7 2.8 0.6 11.0 | NA
AUB 52.1 1.5 7.8 0.1 27.4 1.0 0.0 44| NA
AQOL 59.9 791 11.2 1.5 5.0 2.2 04 1]11.95| NA
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By comparing Tables 3.5 and 3.6 we observe that types such as video, audio, compressed
and Postscript/Portable Document Format (PS/PDF) constitute a very small percentage in
number of accesses, however the percentage of transferred bytes for such types is significant.
The files of type compressed include files that have the name extension ZIP, GZIP, or Z.

3.3.3 Concentration of references

In Table 3.7 we show the percentage of accesses to unique servers, which is less than 12% in
all workloads, so approximately 90% of the accesses are to the same set of servers. This is
identified as an invariant and is listed in Table 3.2. We also can see that the percentage of
servers which were accessed only once is very small, less than 5%; this is another invariant
shown in Table 3.2. On the other hand, percentage of accesses to unique URLs, and per-
centage of URLs accessed one time, had close percentages in all workloads except for the
DEC workloads which has a short duration and large number of clients, compared to the
other workloads. By examining the logs carefully we found that many clients access a page
once and stay inactive for the rest of the day. This keeps the number of unique pages and
number of servers accessed one time very high.

Table 3.7: Concentration of references to URLs and servers.

% of accesses | % of servers | % of accesses | % of URLs

to unique | accessed one to unique | accessed one

Workload servers time URLs time
DEC1 11.2 4.9 59.2 51.0
DEC2 11.3 4.9 60.1 51.8
BU(G) 1.3 0.2 1.8 0.5
BU(U) 05 0.0 0.9 0.2
Korea 1.3 0.3 2.8 1.2
VT-Lib 8.8 3.1 13.4 8.4
VT-CS 5.1 1.3 9.2 5.1
VT-Han 2.4 0.3 6.4 3.7
AUB 4.5 0.9 9.5 5.4
AOL 2.4 0.5 6.8 3.9

The small percentages of accesses to unique servers and URLs, and servers and URLs accessed
one time, suggests that the locality of reference is very high for all workloads and that caching
should be very helpful. To check this assumption we use a simulation and check the hit rate
and the weighted hit rate for the workloads. The results are described in section 3.5.
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3.3.4 Distribution of accesses

In this section we examine the distribution for clients accesses and the distribution of accesses
to servers and URLs. To do this we plot percentage of accesses vs. percentage of servers,
URLS, and clients. Figure 3.2 shows that 25% of the servers get 80%-90% of the accesses
while the other 10%-20% get the rest of the accesses. This is another invariant that is listed
in Table 3.2.

By examining Figure 3.3 we see that in all workloads, except the DEC workloads for the
same reason explained in section 3.3.3, 85%-95% of the accesses go to 25% of the paths. The
workloads which share this behavior have similar graphs and access distributions. The figure
also shows that accesses to URLs has a heavy tailed distribution.

We examined client access distributions to see if we can find invariants across workloads.
The percentage of clients versus percentage of accesses made by those clients is plotted in
Figure 3.4. Except for the Boston workloads, in all other workloads 50% of the clients are
responsible for 80%-95% of the accesses. This could be true because of the existence of
multiuser machines associated with those other workloads where users can login and run
multiple instances of the network browser. Two cases that represent the extreme points in
the graph, Computer Science at Virginia Tech (VT-CS), and Boston University BU(G) are
collected from similar environments, i.e., from computer science departments and graduate
students. However in reality the behavior is completely different. The BU(G) curve is almost
linear and approximately 50% of the clients are responsible for 50% of the accesses. On the
other hand, 50% of the clients in the VT-CS workload are responsible for more than 95% of
the accesses. One reason for the difference is that in VT-CS most of the accesses come from
one multiuser machine. Other machines are accessed much less. In the BU(G) workload
there are only five workstations, however in the VT-CS workload we have over thirty clients
and most of them are multiuser machines.

Figure 3.5 shows that 90% of the bytes transferred come from 25% of the accessed servers.
This is an invariant and is listed in Table 3.2.

3.3.5 Rate of success and not modified files

Retrieving documents with no errors occurs with high percentage in all workloads, as can
be seen in Table 3.8. We assume that a file is retrieved with no problems if it returns one
of the following status codes in HTTP: 200 (success), 304 (not modified) or 204 (OK but no
contents). In all workloads we notice this percentage is in the range 88%-99%. We include
this invariant in Table 3.2. The 304 return code is of particular interest for us since it reflects
the percentage of files that are retrieved from the local or proxy cache. We notice that it
is higher in the DEC workload although the accesses to unique servers and unique URLs
are very high and we will expect the accesses to the cache to be lower than for the other
workloads. The reason is that the DEC workload is only for one day and as a result the cache
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is fresh and all the accessed files are not flushed. On the other hand the other workloads are
for longer times and some of the files which will be accessed more than one time might be
deleted from the cache because they have expired. This shows that when we do caching and
characterization studies we should consider collecting data for a sufficient period of time —
at least several weeks.

Boston University and America On Line workloads did not have the status code field in their
log files. That is why we have “NA” for these workloads in Table 3.8.

The Status code 400, “bad request” appears in the Digital proxy workload, however it is
zero elsewhere. We could not find out the reason for this since the logs were encoded in a
way so as to preserve the anonymity of users, clients, servers, and URL’s.

Table 3.8: Status codes and their percentages
Workload || 200 | 204 | 302 | 304 | 400 | 401 | 404 | 500 | other
DEC1 729 46| 1.7 151 1.8 0.1 ] 1.1 | 0.1 2.5
DEC2 71.1| 48| 1.8 164 | 20| 0.1 | 1.1 | 0.2 2.3
BU(G) NA|NA|NA| NA|NA|NA|NA | NA| NA
BU(U) NA|NA|NA| NANA|NA|NA | NA| NA
Korea 8441 00| 1.0} 56| 00| 0.1| 1.7] 6.0 1.0
VT-Lib 845 0.1| 32]106| 00| 0.1| 1.1] 0.0 0.2
VT-CS 86.3| 0.0 22| 94| 00| 0.1| 1.5| 0.0 0.2
VT-Han || 87.2 | 00| 1.9 93] 00| 0.1 | 1.1 | 0.0 0.2
AUB 85.1] 04| 42| 85| 00| 00| 1.2| 0.2 0.4
AOL NA|NA|NA| NA|NA|NA|NA | NA| NA

3.3.6 Self-similarity

Self-similarity can be defined informally as: looking at the data with different time resolutions
does not change the distribution. In other words, the data has similar properties to fractals
where you can “zoom in” into the fractal and see the same structure.

This time independent structure of the data is shown in Figure 3.6. The figure shows the
arrival times for a 17 day segment of a trace of all HI'TP packets that have appeared on
the Computer Science LAN. The x axis represents time and the y axis represents number
of HTTP packets appearing on the network. These graphs can be used to test for the
appearance of self-similarity in the data, however that does not prove that the data has this

property.

Definitive tests for self-similarity in the collected data showed that these workloads are self-
similar. Table 3.9 shows the estimated Hurst or H parameter [Ber94| for tested workloads.
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Table 3.9: Values for the Hurst parameter
H Access rate H Bytes rate
Workload | R/S| Var || R/S | Var
VT-Lib 0.93 | 0.93 || 0.81 | 0.86
VT-CS 0.86 | 0.82 || 0.80 | 0.70
VT-Han | 0.79 | 0.75 || 0.59 | 0.65
AUB 0.94 | 0.85 || 0.82 | 0.81

We have generated two time series for each workload. The first one is access rate and the
second is bytes rate. Access rate is defined as the number of accesses that a proxy gets per
unit time. Bytes rate is defined as the number of bytes that a proxy sends per unit time. We
used the R/S statistics and the normalized variance tests to estimate the H value [CB96].
For self-similar traffic H should be between 0.5 and 1. The closer H is to one, the stronger
the self-similarity in the tested traffic. The Boston traffic has been proven previously to be
self-similar [CB96]. Self-similarity is an invariant and it is listed in Table 3.2.

3.3.7 Invariants

Table 3.2 shows a list of the identified invariants across the workloads. Some of the identified
invariants can be linked directly to caching and can be used to estimate if caching will help
or not. Invariants 5, 6, 7 and 8 should be good predictors for cache performance. The initial
results reveal that we can model some of these distributions using Weibull distribution.

The previous discussion to identify invariants reveals two important questions that should
be explored. First, do the identified invariants hold over time? Second, which of those
invariants have more effect on caching? In the rest of this chapter we will attempt to answer
these two questions.

3.4 Longitudinal study of invariants and self similarity.

In this section we test if the previously identified invariants hold for the VT-CS workload over
time. To do this we split the workload into monthly log files and applied the same analysis
that we used to identify the invariants across workloads. We used the VT-CS log file because
it has the longest duration since it spans over 11 months. Although the conclusions drawn
from such an analysis may not be generalized since we are using only one workload, still we
can identify trends or changes that appear over time.

Table 3.10 shows the statistics for each month for the VT-CS data. We notice that accesses
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during the summer are lower than accesses during the regular academic year. The number of
accesses is not large compared to other workloads since most of the students’ accesses were
to local servers and so were filtered out.

Table 3.10: Accesses and bytes transferred for each month

Month || Accesses | Bytes transferred

(MB)
Jan 55,916 333
Feb 66,589 482
Mar 37,473 239
Apr 59,542 410
May 71,217 434
Jun 11,486 69
Jul 35,936 215
Aug 40,141 168
Sep 65,395 356
Oct 100,033 582
Nov 26,657 203

3.4.1 File size statistics

Table 3.11 shows file size statistics for each month. Some of the previously identified in-
variants are still true for the monthly analysis. Mean file size is still in the same range; in
addition the median is also around 2K. However we notice that the mean file size seems to
grow with time. To test if this is true or not we performed a linear regression with the mean
as the response variable and month as the dependent variable. The t statistic has a value
of 3.05 and the slope is 391 which means that the model is a good predictor and that the
mean file size is increasing over time. The increase appears to be due to the increase in the
maximum file sizes available from the accessed Web servers, and the increase in the text,
HTML, and image file sizes; we will show that this is true in the next section. This increase
will continue as long as authors can create such pages, and users can access such files over
the network with minimum problems. Table 3.11 reveals another trend which is the increase
and decrease in the average file size; for example January and August show the lowest values.
For a school setup this is normal since these are the two months when students are less active
in browsing the Web. As a result we expect that students will access fewer files and that
the sizes of files accessed will not vary greatly. That may be why the variance for these two
months is relatively low compared to the other months.
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3.4.2 File types

Table 3.12 shows percentage of accesses to each file type for every month. Another invariant
from the previous section holds across the months, that is graphics and HTML account for
the highest percentage of accesses. Linear regression, on the three file types graphics, HTML,
and CGI/Map, revealed that all three percentages are changing over time. For the graphics
file type the t statistic was -3.54 which means that the percentages of graphics files are
decreasing. For the HTML file type the t statistic was 4.72; the percentage of HTML files is
increasing. Finally, the CGI/Map has a t statistic of -4.96 which means that its percentage
is decreasing. HTML and graphics are static documents, i.e., they are cacheable documents.

Table 3.13 shows percentage of bytes transferred for each type per month. Types such as
video, audio, PS/PDF and compressed appear with significant percentages due to their large
sizes.

3.4.3 Concentration of references

Table 3.14 shows that other invariants from the previous section, especially concentration
of references (invariants 5, 6, 7 and 8), hold over time. A linear regression for each one of
the variables with respect to month showed that the model is significant and that there is a
positive relationship between each variable and the month. The t statistic is over 2.5 for all
the variables. Hence, there is strong evidence that those percentages are increasing which
means that locality of reference is decreasing and hence caching will be less effective.

3.4.4 Rate of success and not modified files

The identified invariant for success rate in the previous section holds true over the year for
the VT-CS data. From Table 3.15 we notice that the percentage of the code 200 (success)
is increasing. However the value of the status code 304 (not modified) is decreasing. This
means that fewer files are being accessed from the cache. This is consistent with what we
have noticed with respect to percentage of accesses to unique servers and URLs and with
the increase in CGI/Map files.

3.5 Invariants and caching

Table 3.16 shows the infinite cache hit rate for each workload using simulation. We ran
all the workloads through a trace driven simulation of a proxy server with infinite cache
[WAST96]. After examining Figures 3.2 and 3.3 we expect the DEC workloads to have the
lowest hit rates due to their short duration and Table 3.16 confirms this result. Also by



WWW Proxy Traffic Characterization with Application to Caching

Table 3.11: File size statistics each month

Month | Max. | Mean | Median | 1st Qu. | 3rd Qu. | S
Jan 6,876,000 | 7,806 | 1,963 439 5,749 | 82,113
Feb 20,440,000 | 9,232 | 1,976 509 6060 | 139,921
Mar 3,064,000 | 8,707 | 2,060 431 6,196 | 73,368
Apr 14,580,000 | 9,328 | 2,015 468 5,812 | 108,827
May 12,620,000 | 9,163 | 1,884 407 5,927 | 104,259
Jun 2,836,000 | 11,940 | 2,608 849 7,214 | 74,181
Jul 16,810,000 | 10,910 | 2,250 768 6,468 | 150,187
Aug 5,759,000 | 8,115 | 2,176 758 6,283 | 67,139
Sep 17,350,000 | 10,680 | 2,250 687 6,405 | 172,139
Oct 13,820,000 | 11,070 | 2,371 780 6,773 | 127,460
Nov 16,950,000 | 13,890 | 2,544 838 6,922 | 182,887

Table 3.12: Percentage of accesses for each file type

Month || graphics | HTML | CGI | audio | video com- PS | other
Map pressed | PDF
Jan 59.6 9.0 | 234 0.2 0.0 0.0 0.2 7.4
Feb 57.7 7.8 | 26.1 0.1 0.0 0.0 0.2 7.9
Mar 57.3 82| 25.0 0.0 0.0 0.1 0.3 8.9
Apr 56.3 10.6 | 22.9 0.1 0.0 0.1 0.6 9.2
May 53.1 16.2 | 21.3 0.0 0.1 02| 05 8.6
Jun 40.9 32.1 | 16.8 0.1 0.0 0.1 1.2 8.7
Jul 44.4 24.0 | 20.3 0.3 0.0 0.0 03] 10.6
Aug 48.8 22.6 | 19.0 0.2 0.0 02| 0.2 8.4
Sep 47.2 26.9 | 16.9 0.1 0.0 02| 0.2 8.4
Oct 43.8 32.3 | 16.0 0.2 0.1 0.2 0.0 7.4
Nov 49.1 25.0 | 18.9 0.2 0.1 0.0 0.1 6.6
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Table 3.13: Percentage of bytes transferred for each file type

Month || graphics | HTML | CGI | audio | video com- PS | other
Map pressed | PDF
Jan 52.5 04| 16.8 0.8 13.3 2.5 8.7 5.1
Feb 57.5 0.3 | 20.1 5.7 5.8 4.1 7.4 9.5
Mar 48.7 04| 18.9 5.2 1.4 1.0 11.8 7.9
Apr 40.0 0.1 13.6 3.5 6.4 3.5 | 21.9 10.8
May 48.0 1.1 | 14.8 1.4 11.4 3.9 8.5 10.9
Jun 40.5 0.1 11.1 4.4 2.0 6.3 | 19.9 15.7
Jul 38.1 0.6 | 12.5 | 20.9 0.8 39| 144 8.8
Aug 54.4 0.1 14.0 1.7 7.2 5.0 7.1 6.4
Sep 45.3 25| 15.6 2.3 7.2 17.9 6.1 4.6
Oct 46.6 1.3 12.2 10.1 7.6 10.0 2.8 11.0
Nov 39.9 0.9 12.3 6.2 21.2 5.9 3.2 10.5
Table 3.14: Concentration of references to URLs and servers per month
% of accesses | % of servers | % of accesses | % of URLs
to unique accessed to unique accessed
Month servers once URLSs once
Jan 4.4 0.8 8.9 4.2
Feb 4.3 0.7 8.5 4.0
Mar 5.2 0.8 10.9 5.6
Apr 4.1 0.7 8.6 4.4
May 4.6 0.9 8.4 4.3
Jun 6.9 1.3 10.8 5.5
Jul 6.2 1.5 10.0 5.6
Aug 5.8 1.5 9.6 5.3
Sep 5.7 1.3 9.6 5.5
Oct 4.9 1.1 8.7 4.8
Nov 9.2 2.8 13.1 7.5
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Table 3.15: Status codes and their percentages

Month | 200 | 204 | 302 | 304 | 400 | 401 | 404 | 500 | other

Jan 81.71 00| 3.1}126| 0.0} 0.2 | 1.8 | 1.1 0.5
Feb 8151 00| 24138 00| 0.1 | 1.8} 0.1 0.3
Mar 8241 00| 221241 00| 02| 1.8 ] 04 0.6
Apr 826 00| 20136 | 00| 0.1 | 14| 0.1 0.3
May 846 1| 00| 22|11.1 ] 0.0} 0.1 | 1.5 | 0.1 0.3
Jun 90.1| 00| 1.7} 5900} 01| 1.9 0.1 0.3
Jul 8821 00| 19| 84| 00| 0.0 1.0] 0.1 0.4
Aug 846 | 00| 231108 0.0 0.1 | 1.5| 0.0 0.6
Sep 900 00} 21} 6.0 0.0 01| 1.3] 0.0 0.4
Oct 9291 00| 19| 34, 00| 01| 1.4 0.0 0.3
Nov 9051 00| 22| 46| 00| 01| 2.7 0.0 0.3

Table 3.16: Theoretical maximum hit rate and weighted hit rate

Final Size Weighted

of Cache | Hit Rate | Hit Rate

(MB) (%) (%)

DEC1 10,159.7 6.2 2.7
DEC2 9,881.9 5.5 2.7
Boston(G) 265.2 81.1 38.7
Boston(U) 507.9 85.5 46.7
Korea 10,078.3 63.1 51.2
VT-Lib 498.8 26.7 13.5
VT-CS 780.5 28.3 22.2
VT-Han 1,695.9 43.7 31.4
AUB 75.9 36.7 30.4
AOL 3,672.5 50.2 38.2
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examining the same figures we expect that the BU(U), BU(G) and Korea workloads will
have the highest hit rates since they have very high locality of reference. This is confirmed
by the results in Table 3.16.

3.6 Autocorrelation and self-similarity

One of the identified invariants for the workloads from the previous section is self-similarity.
We have shown that VT-CS data is self-similar. The value obtained for the Hurst parameter
from the R/S plot was 0.86 and from the normalized variance plot was 0.82. For 0.5 < H <1
the correlation decays to zero slowly so that

i p(k) = o0

k=—00

and the process has long memory [Ber94]. As a result we expect that the access rate for the
VT-CS data will have a strong correlation. To test for this we extracted accesses/minute,
accesses/hour, accesses/day, and accesses/week. We then generated a time series and plotted
the autocorrelation function with different lags. Figure 3.7, which is the ACF plot for
accesses/hour, shows that the correlation is strong and cyclic. The daily cycle is very clear
in the figure; every 24 hours we get a peak.
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Figure 3.7: ACF for the VT-CS data by hour with Lag 100

In [CB96] the authors tried to identify sources of self-similarity in the Web traffic by showing
that transmission times may be heavy-tailed, primarily due to the distribution of Web file
sizes. The transmission times correspond to the on times and user think time corresponds
to the off time. Multiplexing on/off times will generate a self-similar traffic. We think that
there are other important sources for Web traffic self-similarity that the authors missed.
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Figure 3.8: ACF plot for bytes/hour, VT-CS data

Burstiness, which is a major characteristic of a self similar traffic, can appear as a result of
protocol interactions and HTML document structure. For example, accessing one HTML
page using the HTTP 1.0 protocol will trigger a sequence of accesses to other embedded
images, files or icons. This activity will appear as a burst followed by a low activity period.
This means that changes in the protocol and in the Web page design will affect Web traffic
self-similarity contrary to what they have concluded in their paper.

Table 3.9 shows that self-similarity appeared in the tested data sets to be stronger with access
rate than with bytes rate. As a result we think that another source of Web self-similarity
is the repeated behavior of Web users since they do things in a repeated and correlated
manner relative to minutes, hours, days and weeks. For example, in a school or a company
environment, users will start accessing the Web slowly at the beginning of the day and in
time more users will join the active ones. At lunch hour the number of accesses will go down
and then build up again during the afternoon and the evening. Note that this phenomena is
clear with a group of clients since most of the time they are in the same time zone. However
servers get hits from all over the world and the cyclic or periodic behavior will be weaker.
This could be the reason why self-similarity was not identified as one of the invariants for
the server workload in [AW96b].

In this chapter we only try to show that there might be other sources for self-similarity and
that it is dependent on users’ behavior and schedule, protocol, and Web document structure
in addition to the sources identified in [CB96]. Figure 3.7 shows that there is a significant
correlation between accesses from one hour to another. This leads us to hypothesize that
a source for Web traffic burstiness and hence self-similarity is the way users interact with
Web browsers. We also examined the ACF plot for accesses/minute, accesses/day and ac-
cesses/week. In all of these the correlation (p) was sinusoidal and different from zero. This
means that the long range dependence is a behavior that exists for different time resolutions
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and the data is not completely random. As a result another source of burstiness can be the
HTTP 1.0 protocol, and the structure of Web documents.

We test the effect of Web file sizes on the auto-correlation by plotting the auto-correlation
function for bytes rate instead of arrival rate of accesses. We generated the time series
bytes/hour for the same data set. Figure 3.8 shows that the correlation exists and it is
periodic, however, its amplitude is less than the amplitude noticed for request arrival rate.
Self similarity also was found to be weaker in the bytes rate data (see Table 3.9). This
suggests that including file sizes might have a negative effect on self-similarity contrary to
what was suggested by [CB96].

3.7 Conclusions

In this chapter we identified a set of invariants that hold true across different proxy workloads.
One of the identified invariants was self-similarity. We also showed that some of the identified
invariants hold over time for the VT-CS workload. One of our observations is that most of
the accesses go to a small set of servers and URLs. In addition, in the majority of the
workloads, a small set of clients are responsible for most of the accesses. For future work
it is worth combining all workloads together and examining the distribution of accesses per
server. Is there a universal set of popular servers across all workloads, and what are those
servers? Does this set change over time?

We explored the sources for self-similarity in the VT-CS data and our conclusion is that
major sources for self-similarity include the periodic behavior of Web users, the protocol,
and the structure of Web documents. The periodic behavior appeared at minute, hour, day
and week intervals.

In the next chapter we will discuss how to model traffic that displays periodic behavior.
We also will show that we can generate self-similar traffic using the suggested modeling
technique.



Chapter 4

Modeling Proxy Web Traffic Using
Fourier Analysis

4.1 Introduction

Proper and correct models of network and WWW traffic are important for simulation studies
and for understanding the nature of interactions that appear over the Internet and the Web
[DJ91, PF94, Pax97], as aids to planning network infrastructure. Recent studies to under-
stand and model network traffic challenge the traditional Poisson distribution assumption
[CB96, LTWW94, PF94, Pax97|. Leland and Wilson [LW91] show that simulations using
real network traffic produce different results from simulations of synthetic traffic generated
using traditional approaches (that ignore long-range dependency in network traffic). An
important feature of models created for Web traffic simulation studies is that they should
have a period of several weeks or months in order to capture the cache behavior and predict
user accesses for studies such as forward caching or pre-fetching [BC95, Lee96]. Forward
caching is when documents are pushed to the places where it is anticipated that they will be
accessed. Collecting traces that satisfy this requirement is a major challenge for technical
and privacy reasons.

Web traffic, which is a major component of Internet traffic, displays a significant variance
or burstiness over a wide range of time scales. This is an important distinguishing property
of self-similar traffic. Web traffic also displays strong auto-correlation and long-range depen-
dence as we showed in Chapter 3. The number of accesses per unit time at a certain time
t is correlated with values at time t 4+ 7, where 7 is an arbitrary time delay. As a result,
modeling methods that assume independent and identically distributed data are not suitable
for Web traffic data. New methods and approaches that capture the characteristics of Web
traffic should be developed.

There are several efforts to define methods to generate self-similar traffic for network simu-

38



Modeling Proxy Web Traffic Using Fourier Analysis 39

lation purposes. Leland et al. [LTWW94, WTSW97| describe a methodology for generating
bursty and hence self-similar traffic by multiplexing a large number of on/off sources with
heavy tailed period lengths. Paxson [Pax97] introduces “a fast Fourier transform method
for synthesizing approximate self-similar sample paths for one type of self-similar process.”
However he warns that “One must use caution in assuming that traffic sources are well
modeled using self-similar processes.” In Section 6 of the same article he questions “even if
network traffic is long-range dependent, are self-similar models sufficient for capturing the
long-range dependence?”. By examining the ethernet traffic collected from Bellcore (see ap-
pendix) we managed to remove the auto-correlation from the signal; after that we tested the
random part for self-similar behavior and it was still self-similar. In other words, self-similar
models by themselves might not be enough to capture the long-range dependency in the Web
traffic especially if they are constructed from pure statistical on/off signals.

A daily cycle was observed by other researchers, see for example Gribble and Brewer [GB97].
To our knowledge, however, no one has succeeded in using this phenomena to model the traf-
fic. Gribble et al. describe the daily cycle and argue that internet service providers should be
ready to deal with this behavior. In this chapter we introduce a modeling algorithm that will
help in forecasting future behavior by characterizing the deterministic part of the signal in
addition to the random part. This chapter shows the importance of modeling the determin-
istic component by calculating the signal to noise ratio and showing that the deterministic
component is almost 30% of the total signal; hence we cannot use pure statistical models
for arrival rate. By using our earlier work to characterize other important parameters of
the proxy traffic [AFAW97, AFA97] we are ready to generate synthetic proxy log files for
simulation studies.

Barford and Crovella [BC98] use statistical techniques to model on/off periods of arrival
rates from clients at Boston University using data collected in 1994 and 1995. The work
presented in this chapter is different from their paper in three ways. First, they model
individual clients while we model the aggregate accesses of a group of clients to a caching
proxy. Second, they use only one workload to create their models; however, we tested
our approach on four different workloads as well as on their logs. Third, they suggest an
architecture of workload generators using their results and earlier results that include file
size and file type distributions and other parameters. Our approach is actually to create
synthetic proxy access log files for simulation studies. Using the results from this work and
the results in Chapter 3 and [AFAW97, AFA97] we have all necessary parameters to generate
a synthetic proxy workload.

There are three main contributions in this chapter. First, we introduce a new approach to
model traffic that has oscillatory or periodic autocorrelation and is self-similar. Using our
suggested approach, we show how to generate synthetic traffic that displays similar burstiness
characteristics. Our objective is not only to generate self-similar traffic, but also to identify
and use traffic characteristics that can generate traffic that is long-range dependent and
self-similar. The methodology is explained by applying it step by step to a specific proxy
workload. Note, however, that the steps to model the deterministic part also have been



Modeling Proxy Web Traffic Using Fourier Analysis 40

tested successfully on other collected proxy workloads.

Second, by examining the auto-correlation plots for Web traffic, we uncover and explain
the long-range dependency noticed in the literature [PF94, AFAW97]. The auto-correlation
function reveals periodic long-range dependency in the examined data. Tests over several
workloads show that this periodicity is not arbitrary; it is common to all tested workloads
and can be explained in terms of daily and weekly cyclic behavior of Web users. Although
the daily and weekly cycles seem to be intuitive the strong and sinusoidal nature of the
correlation makes the detailed analysis interesting and useful for modeling. In addition we
demonstrate that these cycles are the source for Web traffic burstiness and hence they can
be the source for Web self-similarity. In this chapter we go beyond identifying those cycles;
we quantify and generate traffic based on user cyclic behavior.

Third, we show that the synthesized traffic has long-range dependent and self-similarity char-
acteristics that are very close to the long-range dependent and self-similarity characteristics
observed in the original data set. That is, we validate our analysis and modeling by showing
our generated traffic is similar to the real traffic. This way we address the concern raised by
Paxson in [Pax97], section 6, which was quoted earlier.

We use proxy workloads because proxies are the most attractive solutions for scaling in-
formation distribution and copyright management [Win97]. We encourage caching using
proxy servers because it captures locality of reference within the user community. Studies
show that proxies have good potential for reducing network loads and thus are important
for building scalable architectures; see for example [ASAT95].

4.2 Background and discussion

4.2.1 Network traffic and long-range dependency

Long-range dependency in network traffic was noticed in the Ethernet measurement for a
local area network (LAN) at Bellcore and for Web proxy and server traffic AFAW97]. Leland
et al. [LTWW94, WTSW97| show how to model this data with a self-similar process. Beran
[Ber94] lists common features that distinguish a long-range dependent process, including
both qualitative and quantitative features, and provides additional details on this subject.

The qualitative features include:

a) burstiness or long periods of high level activity are followed by periods of low level
activity; and

b) the time series appears to be random when observed using a long period of time,
however by examining shorter times one can see trends or cycles.
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The quantitative characteristics of a long-range dependent series include:

1

a) the variance of the sample mean decays to zero at a rate slower than n~', where n is

the number of data points, and

b) the series correlations p(t) decay to zero at rate that is proportional to K¢, where
0 <a<1,andtis alarge number.

4.2.2 Fourier analysis of time series

The main objective of this analysis is to study the structure embedded within the data in
order to develop accurate models of it. The structure can be captured by representing the
set of data in terms of sinusoidal functions. Sinusoidal functions are attractive because of
their simple behavior under change of time scale.

Periodic and quasiperiodic data When a series can be expressed in terms of a sinusoidal
function with one fundamental frequency w and its harmonics, it is called periodic. However,
if the data contains more than one incommensurate frequency and we need more than one
periodic component to represent the signal, it is called quasiperiodic. The analysis done here
shows that the data is quasiperiodic; however, for simplicity we always use the term periodic
instead of quasiperiodic.

4.2.3 Web traffic characterization and self-similarity

The main objective of the study reported by Arlitt [Arl96] and Arlitt and Williamson
[AWO96Db| was to identify workload invariants across a set of log files collected from different
locations. The authors identified 10 invariants in all collected workloads. Self-similarity was
not reported as an invariant across all workloads, however some of the tested workloads
appeared to be self-similar.

Crovella et al. [CB96] used traces collected from Web clients to test for the existence of self-
similarity in the client-based Web traffic and to explain the causes for this phenomenon. They
conclude that traffic due to WWW transfers shows characteristics that are approximately
consistent with self-similarity. They trace the causes of the existence of self-similarity to the
basic characteristics of information organization and distribution. Accordingly, they claim
that changes in the protocols or machine architecture will not affect self-similarity in Web
traffic.

Abdulla et al. [AFAW97] identified the self-similarity property as an invariant for a set of
proxy workloads. However, to our knowledge, no one have done a complete study to model
proxy Web traffic in a way that the models can be used in simulation studies.
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Table 4.1: Workloads used in this study

Workload Collection date | Duration | Number of

in days | (K) accesses
Korea 9/2/95 24 1680
Library 1/14/97 62 241
S 1/20/97 38 87
Engineering 7/12/96 131 440
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4.3 Data sets used in this study

For this study we examine four log files collected from different communities. The files were
analysed using perl scripts. The script extracts the times of access and then creates a time
series of arrival rates per hour for each log file. The time series is further examined using
Splus [Sta97] and Matlab [Mat97]. The workloads, except those from Korea and Boston,
were considered when collecting the WWW LAN traffic and using Figure 2.1 and equations
2.1 and 2.3 we extract the proxy traffic.

Table 4.1 describes the workloads used in this study, showing dates of collection, duration,
and number of accesses.

4.4 Visualizing periodicity

In this section we describe methods to identify what periodicities if any are present in the
data. These tools can be used to test for periodic behavior on other data sets and with
different time resolutions. We start by examining the time traces for the collected data.

4.4.1 Time traces

In Figure 4.1, we show the time traces for four samples of WWW access logs from our set
of collected workloads. The graphs look different from each other and some of them suggest
that the data is completely random. Figure 4.1(b) illustrates the shortest workload period:
three weeks. The data in this workload seem to have a periodic signal. To explore this
further we can zoom-in to each of the data sets.

In Figure 4.2 we show the first 200 hours from the previous samples for the CS department
workload. By counting the main peaks in the figures, we note that there are 9 peaks; this
was true for all of the tested workloads. This suggests that there is a periodic signal with a
period approximately 7' = 22.2, which is very close to 24 hours or a day period. This value
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is roughly estimated by counting the number of peaks in the figure. We will see in section
4.5 how to extract the correct periods.

Although inspection of the time series visually can help identify strong periodic signals, there
might be some hidden periodicities that are not easily identified by such tests.
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Figure 4.2: First 200 hours of the CS time trace

4.4.2 Auto-correlation function

The autocorrelation function R,.(7) is a measure of correlation between z(t) and x(t + 7),
where 7 is a time delay [NB95, BR94, Sta97]. For random signals, R,.(7) decays to zero as
T increases. However for a signal with a periodic component, R,.(7) does not decay to zero
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and is oscillatory. Using R,,(7) will give a less confusing representation of the data than
examining the time trace, especially when there is a high-frequency component in the signal.

As we showed in the previous section, the data has a periodic component. However, we could
not ascertain if more than one such component is present, and if so what are the frequencies
involved.

By examining Figure 4.3 we clearly see that the numbers of accesses are strongly correlated
and it is not clear whether the correlations decay to zero. Actually in some data (a, ¢, and d)
the correlation gets weaker and then becomes stronger. By examining the figures carefully,
we note the daily cycle mentioned previously. In addition a weekly cycle appears to be very
strong in the data collected from the Engineering building and the Library but less strong
in the case of the CS and Korea data. The reason for this is that the Korea data is for the
shortest period and the CS data comes in second in terms of duration. When we have longer
periods the weekly cycle appears stronger.

The autocorrelation function in Figure 4.3 was plotted after characterizing the mean using a
moving average program. Plotting the ACF before taking out the mean will give a periodic
correlation, however it will be weaker and may be on one side of the = axis especially if the
data is not stationary.

4.4.3 Fourier and spectral analysis

In Figure 4.4 we show the Fourier spectra for the four sets of data under examination. These
plots were made after the data mean was extracted. (We show how to characterize the mean
in the next section.) The plot shows half of the data points because the second half is a
mirror image of the first half due to aliasing [Blo76]. Again we clearly see the peaks that
correspond to daily and weekly cycles. We now show how to find the frequencies associated
with these peaks. Although the peaks in the Korea data are not isolated and clear as in
the other data sets, they exist and can be considered a major component of the data. The
reason that the peaks are not very well isolated is that the Korea data set was collected over
three weeks only. A longer collection period will emphasize these peaks.

We can find the frequencies of these peaks by locating the index for each peak using the
FFT command in Splus or any other mathematical software, dividing the index value by the
number of points in the data set, and multiplying the result by 27. To determine the period,
we take the reciprocal of that number obtained.

Autoregressive spectrum

Another way to visualize periodicity in the data is to plot the autoregressive spectrum using
the Yule-Walker algorithm. In Figure 4.5 we show the autoregressive spectra for the four
data sets. Again the periodicity in the data is very clear in three of the data sets and it
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exists but is weaker in the case of the Korea workload. The peaks in these figures correspond
to the major frequencies. From the figure we obtain the frequency w = 2 % /7" and hence
T=2x%7/w.
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Figure 4.5: The autoregressive spectrum

4.5 Modeling algorithm

The tools described in the previous section can be used to test for the existence of periodic
components in the data because identifying these components is important in the modeling
process.

In Figure 4.6 we show the steps needed to develop a model for data that contains deterministic
components and displays long-range dependency and oscillatory correlation. In some cases
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we might need to add tapering, or filtering, depending on the characteristics of the data
under examination. The modeling steps are very easy and we will make the required software
available for other interested researchers.

_ Create zero mean Characterize Extract random
Collect and Characterize stationary process the periodic process (subtract
prepare data the mean (wbtrgct the mean part deterministic part
over time) from the data)
Use model for Characterize the
- Assess model Develop residual usinga
rediction and to -
zenerate datafor validity the model probability distribution
smulations function

Figure 4.6: Steps to model the data

4.5.1 Characterizing the mean

The first step in the modeling process is to characterize the data mean. The mean might be
a function of time in a linear or nonlinear fashion. In general, we can identify three main
cases for the mean:

e constant mean,
e linear time-varying mean, and

e nonlinear time-varying mean.

For data with constant mean, we calculate the mean by summing all of the values and
dividing the sum by the number of points. If the mean varies with time in a linear fashion, it
can be characterized using linear regression. If the mean varies in a nonlinear fashion, then
we can characterize it using a program that calculates the moving average over a specific
window. For our data sets we used the second method. The main objective of this step is
to create a zero-mean stationary process from the data set. Non-stationarity in our data
can result from the change in the amplitude due to the change in number of users or can
result from the main frequencies phase change. Our data showed constant phase difference
for all major frequencies identified. That change was due to the change in the number of
accesses. Hence, the effect of this change can be characterized by linear regression. The
moving average should not be used here since it will remove some of the targeted cyclic
trends or changes in the original signal.
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4.5.2 Periodic part

The data examined so far displays a strong and periodic correlation. Before building a
complete model, we need to determine the amplitudes and periods of all of the periodic
components. Finding all of the periods can be done by using Fourier analysis, as described
in the previous section. Determining the amplitudes can be done using linear regression
[Blo76]. The details are given below.

Determining the frequencies

Frequencies, single or multiple, can be determined using Fourier spectra or autoregressive
spectra. From the Fourier spectra we can use the index value for each peak to calculate the
period T by dividing the number of data points by the index value. The frequency is easily
obtained from the period. The autoregressive spectrum can give the frequency directly.

Determining the amplitudes

A data set that has a periodic signal and a constant mean can be expressed by the equation
zy =+ Reos(wt + @) + €

where p is the mean, w is the frequency of the signal, and e is the residual or random part.
This function is quadratic so we cannot use linear regression to find an R that minimizes .
To solve this problem, we let @ = Rcos¢ and b = —Rsin¢ [Blo76]. Then, we can rewrite
the previous equation as

Ty =+ acoswt + bsinwt + €

After the previous transformation, the amplitude for each frequency can be obtained by
linear regression over the data using the following generalized linear equation:

x(t) = Z a; cos w;t + b; sin w;t

where the a; and b; are the required amplitudes (assuming that these amplitudes are station-
ary), and the w; are the frequencies associated with the peaks. This equation can be used
to model data with multiple frequencies.

For the CS data, the peaks are at wy = 1/24, wy = 1/12, and w3 = 1/151. For the day and
half day cycles we can see that the numbers are exact for the corresponding periods. The
week period is not exact (151) because of the length of the workload. In the longest workload
the calculated weekly period from the FFT was 165.2 which is closer to the expected value
of 168. This is due to the variation from week to week; when we have longer duration the
effect of these variations is minimized. The first period corresponds to the daily cycle, the
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second corresponds to the periods of no activity at night, and the third corresponds to a
cycle every 6.3 days which is approximately a week. By using linear regression, we found
the following expression to represent the periodic part of the data:

Tper(t) = 58.98sin((27t)/24) — 51.61 cos((2nt)/24) + 17.41sin((27t)/12) —
21.18 cos((27t)/12) — 4.51sin((27t)/151) — 16.75 cos((2mt)/151)  (4.1)

In Figure 4.7 we compare the Fourier spectra for the generated data using equation 1 and the
collected data. The figure indicates that the suggested model captures the main frequencies
and their amplitudes.
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Figure 4.7: The FFT’s of the original data and the generated data set using the periodic model

4.5.3 Modeling the residual

The main purpose of characterizing the mean and the periodic part is to minimize the
residual, which is the non-deterministic or random part of the collected data. Up to this
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point, we can stop and describe the data in terms of its deterministic component. The
significance of characterizing the deterministic components comes from their implications.
First, this characterization allows predicting the users’ behavior in the future. Second,
it provides a nice explanation for the repetitive users’ behavior and the time dependent
component of the Web data.

Before we perform the statistical characterization of the residual, we test it for the existence
of major periods. This test will help identify if the residual still has any periodic components.
We generate a data set using the suggested model in equation (1) and subtract the generated
data from the original collected data, yielding the residual e. In Figure 4.8 we show the
residual and the associated Fourier spectrum. It is clear from the figure that the main
frequencies have disappeared and that the residual is random.
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Figure 4.8: The time trace and the FFT of the residual

Autocorrelation and the residual part

One other test that can serve as a validation step and can explain the sources of the strong
and periodic correlation in the Web traffic is the autocorrelation function. In Figure 4.9
we show the autocorrelation function of the residual. The horizontal band about the zero
line represents the approximate 95% confidence limits for the null hypothesis that the au-
tocorrelation has zero value. Comparing this figure with Figure 4.3(a), which contains the
autocorrelation function for the data including the periodic component, we find that extract-
ing the periodic part removed the periodic correlation in the data. This means that the main
source for the correlation is the periodic behavior of the Web users.
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Figure 4.9: The autocorrelation function for the residual

In the rest of this section, we attempt to model the third component of the data, namely
the random part using techniques described in [LK91].

Fitting the residual

We use quantile summaries and histogram plots to study the distribution for the residual. In
Figure 4.10 we show the histogram and the normal quantile-quantile plots for the residual of
the data under examination. The histogram shows that the distribution is asymmetric and
the right-hand side of the distribution contains more values than the left-hand side. This
implies that the distribution might be a long-tail distribution. The quantile-quantile plot
[Jai91] confirms that the distribution is a long-tail distribution from the right-hand side.

We use a Weibull distribution to model the residual. To generate a synthetic set of data,
we used the Unifitll software [VL92]. The parameters for the distribution were estimated
from the data. We followed the modeling process used in the previous chapter to validate
the model.

In Figure 4.11 we show the original data, its Fourier spectrum, the newly generated or syn-
thetic data, and its Fourier spectrum. The main three frequencies and the general behavior
of the data are captured in the model. The amplitudes of the negative peaks in the model
are clearly higher than the ones in the original data. The reason for this is that the periodic
part is symmetric around the zero value while the original collected data does not have the
symmetry property.



Modeling Proxy Web Traffic Using Fourier Analysis o4

o
S
o o -
o e
S -
o
Lo
™~ o
I >
@ >~
S | I
N o I 4
S
[aN]
2 -
=X < o
S
i
o
S |
— o A
I i
o ) .-— — o | .
a 4
-200 -100 O 100 200 300 400 ' -3 -2 -1 (o] 1 2 3
X Quantiles of Standard Normal

Figure 4.10: Histogram and Q-Q plot of the residual of the CS data

The final step in constructing the model is to get rid of the excess values from the negative
peaks. A crude solution for this problem is to write a filter that will replace all negative
values with zeroes. We apply this filter after we add the mean to the generated data.

4.5.4 Model validation

The time series of the synthesized data after applying the filter looks very similar to the
time series of the original data. However, we validate the model using other techniques such
as the Q-Q plot rather than eyeballing the time series. We should note, however, that the
model validity is assessed for the data used in this analysis. To generate a suitable model
for a different environment, data should be collected from that environment, whereupon the
mean (as a function of time), amplitudes, and frequencies should be characterized.

In Figure 4.12 we show the Q-Q plot for the original data versus the modeled data. The
relation is almost linear which means that the two sets have very similar distributions.

In Figure 4.13 we show the autocorrelation function for the modeled data. Clearly the model
displays a periodic autocorrelation and captures the long-range dependent behavior that was
observed in Figure 4.3.
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Figure 4.12: Q-Q plot of the model vs. original data

4.5.5 Self-similarity in the generated model

To measure if the synthesized data displays a self-similar behavior we use the R/S statistical
test to obtain a value for the Hurst Parameter (H). We run the test on both the original and
the synthesized data. The H value for both data sets was 0.6 and this means that they have
very close self-similar characteristics. Thus by focusing on the network traffic characteristics
we created a synthetic traffic that is self-similar and long-range dependent.

We have tested the modeling algorithm on the data sets that we have collected and we came
up with the following general equation that can capture the changing mean, the periodic
part, and the random part:

X(t) = p(t) + > _(a; coswit + b; sinw;t) + €

4.6 Measuring periodicity in the data

To find the strength of our periodic signal with respect to the random part, we use a measure
that is called signal to noise ratio (SNR) [Blo76], defined as,

mean square value (MSV') of the signal

SNR =
mean square value (MSV') of the random part
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For the periodic signal

=2
Msy = 2 Z T
n—2

Where y; is the periodic signal, 7 is the mean of the periodic signal, and n is the number
of data points.

Because 7; is zero (since we extracted the mean), the previous equation reduces to

sy — 2Ws)?
n—2

With a similar argument we can show that for the random signal

> (yr)?

M =
SV —

Where vy, is the original signal.

E (ys)

Finally we can write SNR = Z - )2 , which reduces to

> (ys)?
> (yr)?

For the tested data we found that SNR=0.5639. This is a significant ratio, since the periodic
signal is approximately 44% of the full signal.

SNR =
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Figure 4.14: Auto-correlation functions for bytes rate

In this section we show that the bytes rate in the workloads listed in Table 4.1 in addition to
Boston University workload have a periodic long range dependent behavior. We will show
in Appendix A that the ethernet data from Bellcore have a periodic long range dependent
behavior too. In Figure 4.14 we show the ACF for the four previous workloads in addition
to the Boston University workload. The behavior is similar to the behavior in the arrival
rate time series and we can use the suggested modeling algorithm to model this traffic. The
amplitude, however, in Figure 4.14 is smaller than the one in the arrival rate; which means
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that the deterministic component is weaker than the one in the request arrival rate, Figure
4.3.
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Figure 4.15: FF'T for bytes rate

In Figure 4.15 we show the FF'T for the bytes rate for the same workloads. We can see the
same behavior in Figure 4.4.
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4.8 Implications and future work

Accesses to Web proxies are highly correlated from day to day and from one week to another.
A key source for this correlation is the daily and weekly schedule of Web users. Users who
share the same time zone should have similar schedules and hence part of their accesses
should reflect it. This result is important for commercial proxies since they will act similar
to a local broadcasting station or local cable company that distributes information and other
kinds of media. Proxies will be installed to support a group of users in a certain locality.
Peak and minimum usage hours can be identified for upgrades, price commercials, and other
time dependent jobs.

The fact that Web traffic has a significant deterministic and cyclic component is very impor-
tant for internet service providers. This fact can be used for predicting peak hours and hence
to schedule software upgrades or maintenance. It also can help in the efforts to smooth and
distribute the traffic to the service provider proxy by advertising the low activity times and
having lower pricing rates then to encourage and attract more users. Internet network proto-
col designers can use this information to support pre-fetching and filtering of data based on
the daily and hourly level of activity and locality of reference of a group of clients connected
to a certain proxy.

This result is also important when characterizing accesses to busy Web servers. The traffic
to such servers can be split based on the time zones of the clients accessing the server. Then
the characteristics of sub-groups can be modeled using the suggested approach.

The discovered periodic correlation indicates that queuing and statistical models are not the
appropriate techniques to model such systems. Simulations need more accurate models that
represent the characteristics of the Web traffic. We introduce a new modeling approach that
captures the real characteristics of the Web traffic by using a combination of Fourier analysis
and the traditional techniques of statistical analysis. The new approach characterizes the
random and the deterministic parts of the data. The generated data displays long-range
dependent and self-similar characteristics comparable to the ones observed in the original
data. We demonstrate the modeling approach with an example and we validate each step
by comparing the generated data to the original.

We also have shown the same periodic behavior exists for bytes rate and hence the suggested
modeling algorithm works for it too.



Chapter 5

Digital Library for Computer Science
Courses: Lessons Learned from
Tracking Users’ Accesses

5.1 Introduction

There are many good reasons to use the Web for deployment of educational material, in-
cluding:

e The material is easily accessible from any place at any time, for example students can
access it in the classroom, in the lab, and from home.
e Updating material is easier and students can access changes instantaneously.

e Online interactive demonstrations, exercises, quizzes, and other courseware resources
can motivate and involve learners.

e Student/teacher and student/student communication is enhanced using the new paradigm
by:

— posting the teaching assistant and instructor’s email address on the course pages,
— using discussion and conferencing tools, and

— posting the teaching assistant and instructor’s information such as office hours.

e The posted material can include links to other sources and the students can explore
the new links easily.

61
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It is important to know if the posted material is used by students and other users. It is
hard, however, to judge the effect of this usage on the learning process. Each WWW server
can be configured to log all accesses in a log file. Log files can give us valuable information
about what is popular, and what is not. Unfortunately while such logs indicate “what”
was accessed, “when” | “where from”, and sometimes “who” accessed it, they do not contain
information on “why” it was accessed or “how much” benefit resulted. Hence, any question
that is related to the last two items cannot be answered easily. To answer such questions we
have to look at the log files, come up with a questionnaire, interview users, and analyze the
results of the interview guided by the users’ access history.

It is useful here to discuss two methods that are used to evaluate multimedia educational
material. The two methods are formative and summative evaluation [UoH96]. During the
formative process, data is collected from users who are using the current system or material.
Small numbers of students, sometimes working in pairs, are monitored and data is collected
using surveys, video recordings, and/or logs. The results obtained from the analysis are
given to the courseware designers to adopt recommendations or modify the presentation
based on the conclusions obtained from analyzing the data. For Web courseware designers
the main objective of this evaluation is to make sure that students will get the full benefit
from deploying the course material over the Web.

In the summative evaluation, the success of the program is tested [UoH96]. The process of
summative evaluation is done over a long period of time and it should include analysis of all
the material presented. The results should give us an idea about the long term benefits for
education that will result from using the new technology. This phase can include controlled
experiments with human subjects to measure how much they learn relative to the traditional
environment.

In this chapter we analyze accesses to the Educational Infrastructure (EI) server as an
example of a courseware digital library server. We compare the general statistical results
with the results published in the literature. Especially, we try to assess the applicable
invariants identified for Web servers in [AW96b]. We define metrics derived from examining
the log files to assess the value of using the EI digital library server. We then show how to
apply these metrics to make useful conclusions about the effects of digital library servers.

5.2 Quantitative analysis and visualization regarding
El

The Educational Infrastructure (EI) server is a DEC Alpha machine that hosts the online
courses for the Computer Science Department. Key concepts of the EI project are to improve
CS education by increasing interactivity and use of digital library technology [FB94, AHF97].
Currently the server hosts the home pages and class material for over 40 Computer Science
courses. The courses cover undergraduate and graduate classes and different areas of the
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Table 5.1: Number of accesses and bytes transfered from EI during the last three years
Year | Accesses | Bytes (MB)

1995 || 1,015,185 6,308
1996 || 2,247,780 28,225
1997 || 5,027,607 59,188

Computer Science field. The server has been used by faculty and students for three years. In
addition, the server is being accessed by users from the Virginia Tech domain and by others
from around the world.

5.2.1 Accesses to the EI server

In Figure 5.1 we show the number of weekly accesses to EI for three years: 1995, 1996, and
1997. Weekly accesses to EI is almost doubling every year and the growth rate is very high.
In Table 5.1 we show the number of accesses and number of bytes transfered from EI. The
table confirms that the numbers are at least doubling every year. This growth is attributed
to several effects. First, the number of courses has increased from a few courses to about 40
courses in the fall of 1997. Second, the increase in the number of students in the department
has been about 20% per year. Third, faculty and new students are becoming more educated
about the WWW and hence they do not mind using it as an educational tool. We noticed
that accesses from outside the school also are increasing; the reason for this is that more
people are using the Web and as a result more people know about our server.

In Figure 5.2 we compare accesses from remote clients to accesses from local clients for
the first 100 weeks of the log history. As can be seen the rate of access in both cases
is growing. Accesses from local clients, however, tend to be bursty compared to remote
accesses. Burstiness in the local traffic is due to the school and students’ schedules. For
example, the graph between weeks 15 and 30 and weeks 70 and 85 are the periods of the
summer when the accesses are low for a long time.

5.2.2 File types

In Table 5.2 we show the percentages of references and number of bytes for different file
types accessed from the EI server. The left two columns in the table show accesses from
local clients. Local clients are clients in the Virginia Tech domain; this includes labs, offices,
dorms, and apartments with ethernet or modem connections. With respect to accessed file
types the behavior between the two groups is not really different. In both cases graphics
and text (which includes HTML) are responsible for 95 percent of the references to the EI
server. This is consistent with the identified invariant for accesses to proxies in [AFA97] and
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Figure 5.1: Weekly accesses to EI server
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Table 5.2: File type distribution on the EI server, remote clients vs. local clients

Local clients Remote clients
File type Y%Refs ‘ %Bytes || %Refs ‘ %Bytes
Graphics 45.95 40.94 || 44.93 57.97
Text 50.80 48.30 || 52.80 40.50
Script or Map 0.11 0.01 0.03 0.00
Audio 0.04 0.03 0.01 0.04
Video 0.04 6.68 0.01 0.50
Other 3.07 3.72 2.11 0.90

servers in [AWO96b]. As expected, the numbers of references to audio and video files are very
small. This is due to the low percentage of audio and video files in the server collection, and
because network performance does not encourage accessing this type of data.

We notice that remote clients don’t access video files as much as local clients. We attribute
this phenomena to network speed. If the speed was fast enough to view video files over the
network, users will be encouraged to access them. The problem is less severe in the case of
local clients.

Although the number of accesses to files of type video is negligible as can be seen in Table
5.2, still the number of bytes transferred as a result is high. Video and audio files should
be measured in terms of both number of files accessed and bytes transfered since these files
are huge in size. A file count will not give an accurate idea of the server and network load
required for multimedia.

5.2.3 File size

In Table 5.3 we show the file size statistics for each file type for local clients. In Table 5.4 we
show the same information for remote clients. In both tables the mean and the median are
different. The median is much smaller than the mean and the variance is large especially for
the two main file types, graphics and text, which skews the file size distribution. The two
groups also display differences especially in the mean and median of files accessed. Remote
clients on average access larger files.

To better describe the data it is essential to consider the median and the mean since the
file size distribution for each type is skewed. Measuring and characterizing the file sizes
and distributions should continue since the distribution might change over time in accord
with the change of technology. There is a study, however, that suggests that the number
of dynamically generated documents does not increase in time [MS97] which is an accurate
statement about our server, however, it was not true for the proxy traffic case which we
demonstrated in Chapter 3. Nevertheless, a change in technology might increase or decrease
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Table 5.3: File size statistics for local clients

File type H Mean ‘ Median ‘ Var
Graphics 9353 1952 | 2.6312e+-09
Text 10474 2287 | 4.1320e+09
CGI/Map 1758 960 | 1.8022e+07
Audio 97854 56003 | 4.4454e+-09
Video 2.21e+06 | 2660335 | 4.1216e+12
Other 20111 2464 | 2.3169e+10

the popularity of certain file types.

Table 5.4: File size statistics for remote clients

File type H Mean ‘ Median ‘ Var
Graphics 19590 4622 | 1.3867e+09
Text 11976 3744 | 1.3659e+09
CGI/Map 1748 704 | 1.6814e+07
Audio 63832 | 49152 | 4.6792e+09
Video 1.3214e+06 | 208896 | 3.3113e+12
Other 9094 2304 | 3.5523e+09

5.2.4 Size distribution

In Figures 5.3 and 5.4 we show graphs for the cumulative distribution function of the file
sizes accessed by local and remote clients. Statistical tests that we performed confirmed that
a lognormal or Weibull distribution can be used to model file sizes for our digital library
server. This is consistent with identified invariants for other servers [AW96b].

5.2.5 Inter-arrival time

The inter-arrival time of accesses to the EI server was calculated from the log files. Also the
cumulative distribution function for the inter-arrival time was calculated. Figure 5.5 shows
a histogram plot for a sample of the inter-arrival times. We can see that most of the accesses
are 50 seconds apart or less. This implies that the traffic is bursty and whenever there is
an access then there is a great possibility that other accesses will follow. This is mainly
attributed to the structure of Web documents, since a document normally contains several
embedded images or icons that are accessed individually. This burstiness can be another
source for Web traffic self-similarity. This implies that a change in the protocol design, such
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Figure 5.3: File size distribution for the EI server, remote clients

as using persistent connections, might decrease burstiness and hence decrease self-similarity.
A change in the document structure, such as having fewer embedded images, might cause
the same effect.

In Figure 5.6 we show the cumulative distribution function for inter-arrival time. The graph
confirms that the majority of accesses appear within a short period of time. By examining
the data we found out that 90% of accesses appear 11.55 minutes or less apart.

5.3 Implications from analyzing students’ and teach-
ers’ accesses

Studies of this type are very important for the following reasons:

e Educators, administrators, and sponsors want to know if and how digital libraries help
with learning.

e Educators want tools to help them understand students’ reactions to the various aspects
of digital libraries, that can be used in conjunction with surveys and focus groups.

e Digital library researchers want validated methods to determine if digital libraries have
beneficial effects, both as part of formative and summative evaluations.

As was discussed earlier with education-oriented digital libraries accessed over the WWW
by a large numbers of users, it is very difficult to evaluate their effectiveness or to determine
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Figure 5.5: Inter-arrival time histogram shows that consecutive accesses are dominant

how to improve them over time.

Extensive logging of user accesses of the digital library of CS information and courseware on
ei.cs.vt.edu started in January 1995. In addition, there has been logging of network traffic
from various labs and buildings to understand how the use of that server compares with
other WWW activities of students.

In Table 5.5 we show the results of the regression done to find out what significant factors
will help in predicting number of accesses and transferred bytes from EI. To perform this
regression we first extracted the accesses by faculty to the EI server; we also extracted
accesses to each class’ pages. The level of how “paperless” a course is was calculated from
the number of accesses that the faculty made to EI and faculty involvement in the project.
The table shows that paperlessness, number of students attending the class, and the faculty



Digital Library for Computer Science Courses 70

1 oW OO T T T
‘access_Jan95_feb5_nvt-sz-log.intcum’ o
0.9

Cumulative frequency

L L L L L
0 10000 20000 30000 40000 50000 60000
Inter-arrival time Seconds

Figure 5.6: The Cumulative Distribution Function for inter-arrival time

Table 5.5: Regression showing relationship of number of faculty, students, and paperlessness
to amount of use of ei.cs.vt.edu

Coeflicients | t Stat
Faculty 429.60 2.28
Number of Students 130.85 3.25
Paperless 11,377.69 8.60

are significant parameters in predicting accesses to EI. Given which courses lead to the most
accesses, we sought to understand more about such accesses and their purpose, and how
they relate to the course web.

5.4 Accesses to courses

Accesses to a courseware server will be affected greatly by the school schedule and offering
of classes. As was seen in Figure 5.2 accesses from local clients follow the school calendar.
In Table 5.6 we show the number of accesses to the most popular course pages on our server.
The table is divided according to the school calendar. We did that in order to see if we can
find clues that the students access the course pages when it is offered.

From the table we notice that accesses to courses increase during the semester when it
is offered. We conclude that the students are considering the server as a source for their
readings. In a class such ¢s5604 during the fall of 1995 there were approximately 25 students
with 35,430 accesses; assuming that the bulk of the accesses were made by the students then
during that semester each student averaged 1417 accesses per semester. The class material
includes links to other sources of information and those accesses might have led to other
accesses that cannot be recorded in the server log file. In Fall of 1996, however, accesses to
the course pages went down sharply, compared to Fall of 1995, this kind of behavior should
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Table 5.6: Accesses to course pages

Course Spring | Summer Fall | Break | Spring | Summer Fall

1995 1995 1995 1996 1996 1996
cs1206 NA NA 57 6| 20,568 719 | 2,936
cs1704 NA NA 3 0 | 159,553 5,064 | 44,953
cs2304 10,337 655 | 14,894 69 5675 281 1048
cs2504 4,889 1,684 | 33,208 177 | 23,141 896 | 9,034
cs2604 35,430 5,740 | 24,796 86 | 22,358 1,501 | 7,586
cs3204 5,773 3,990 | 4,768 73 814 8,474 | 5,793
cs3604 23,875 1,104 | 20,836 198 | 16,915 3,525 | 18,847
cs4624 45,100 4,652 | 46,241 602 | 62,050 19,225 | 62,849
csh604 9,189 380 | 37,031 422 5,667 2,138 | 8,291
History 2,711 108 | 5,506 53 1,693 991 | 3,161
Netinfo 45,100 4,652 | 46,241 602 | 62,050 19,225 | 62,894
WWWhbth NA NA NA NA 448 263 | 6,801
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be looked at to know the reasons for such change. This can happen because of a decrease
in the number of students in the class, making alternative material sources available for
students, or because that group of students was not interested in using the Web. A survey
about how students feel about using the class material over the WWW will help in clarifying
some of these numbers.

Another interesting thing to notice in the table is that some classes continue to be popular
and get lots of hits even during semesters when they are not offered. For example, cs4624
was accessed 19,225 times during the summer of 1996. This could mean that students are
making use of the material after they finish the class, or maybe the class material is used
by students as reference material. Indeed, various email messages to the instructor have
indicated accesses by former students even several years after graduation. Accesses to the
same class during the break are relatively higher than the other classes. By examining the
log files we found out that these accesses were made mainly by the instructor during the
authoring process in preparation for the spring semester.

Accesses to certain courses on EI generate lots of bytes. For example, 1,817 MB were
transferred from EI in the Spring of 1996 as a result of the accesses made to cs1704. The
number of bytes transferred per access to each class differs between classes. The difference
mainly comes from the types and sizes of files that the course pages contain.

Some course pages are more popular outside our domain for example History and sometimes
the WWWhbtb. The History material was compiled by Professor Lee, and is one of the
richest collections of WWW information about the history of computing. The WWWhbtb
pages are a version of a book, to be published in 1998 by Prentice-Hall, on WWW_ with
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Table 5.7: Bytes transferred from course pages (in MB)

Course Spring | Summer | Fall | Break | Spring | Summer | Fall

1995 1995 | 1995 1996 1996 | 1996
cs1206 NA NA 0 0 136 10 20
cs1704 NA NA 0 0| 1,817 224 | 401
cs2304 18 1 30 0 10 0 3
cs2504 108 41 | 151 3 96 6 23
cs2604 67 10 43 0 17 2 19
cs3204 171 110 40 0 4 56 18
cs3604 79 3 75 1 57 17 65
cs4624 241 34 | 384 5 531 231 | 766
csh604 34 2| 140 1 26 12 39
History 45 3| 127 1 44 14 66
Netinfo 241 34 38 5 531 231 | 766
WWWhbtbh NA NA | NA NA 2 2 31
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subtitle “Beyond the Basics”.

The NA in the tables means that the course was not online yet.

5.5 Conclusions

The computer science digital library server characteristics do not appear to be different from
other server characteristics noticed in the literature. The server is utilized by the Computer
Science students and faculty.

We found that paperlessness, number of students attending the class, and the faculty are
significant parameters in predicting accesses to EI. Faculty access the server a lot before
the start of the semester during the authoring and course preparation phase. Accesses after
that are mainly to add, fix, and post information. The most popular pages accessed in
the courses are the announcements and the grades (if available) page. The syllabus page is
another popular page.This implies that the server is mainly used to enhance student/teacher
communication.

Accesses to the server follow the school calendar closely. They also reflect the faculty and
students’ schedule. For example, the beginning of August and January are active periods for
faculty. Before the midterms and before finals accesses from students are very high. During
the spring break accesses are very low. Some accesses are searches; see more on that general
topic in the next chapter.



Chapter 6

Characterizing Users’ Searches and
Sessions

6.1 Introduction

In this chapter we analyze accesses from groups of clients to several Web Information Re-
trieval Systems (IRS), and in particular study their queries.

To help users locate information on the Web, special search tools and cataloging systems
were developed. We call these tools Web Information Retrieval Systems (IRS). They have
evolved rapidly since 1994, and have been used by millions who thereby had their first
experience with search engines. Borgman et al. [BHH96] observed that “The end users
who now dominate searching are using systems with exploratory interfaces, under less time
pressure, and have less clear retrieval goals than do skilled search intermediaries.”

As part of our effort to characterize WWW traffic so as to support modeling, planning
and prediction, and to help scale up the Web, we seek to study retrieval-related traffic. In
particular we study sessions, queries, and browsing activities using five log files from our
collection; the log files come from diverse situations. We characterize accesses to different
Web IRS to find out the most popular systems. Next, we study client systems to see how
much Web traffic is due to multiuser systems and if such systems have similar access patterns
to those of individual users. We then characterize queries by looking at their complexity
with respect to numbers of terms and operators. Finally, we demonstrate that sessions with
searching tend to consume less network bandwidth than other sessions. We do this by first
defining an algorithm to extract client sessions. Second, we analyze the sessions and show
that those with more search steps are responsible for fewer transferred bytes. We define
user sessions in terms of “Browsing,” “Searching,” and “Next step” activities. Then we
look at the most popular patterns in the identified sessions. Using regression, we discover a
correlation between amount of searching in a session and the bandwidth requirement.
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6.1.1 Clients, users and sessions

A WWW client can use an instance (or multiple instances) of a WWW browser. One instance
of the browser can run on a single user machine such as a PC with Windows 95. In this case
the client accesses are exactly the same as the user accesses. In some other cases multiple
instances of the browser might be running on a multiuser machine. In such cases, accesses
from this client might be due to several users running multiple instances of the browser.

Sessions are very hard to characterize [BC94]. In this paper we define sessions with respect
to clients not users. We then use heuristics to define session boundaries, which serve as the
basis for the details in section 6.

6.1.2 Finding information over the Web

Currently users can look for information over the Web using three methods:

Browsing: Users can follow links from page to page, reading or looking at what they find
interesting. However, even those with a focused information need may get distracted during
the browsing process and end up reading or looking at something completely irrelevant to
their initial interest. On the other hand, browsing can be particularly efficient when users
are looking for information within a specific collection that is limited in size.

Using Web catalogues: Like with Yahoo, users with a general topic can apply a classifi-
cation system provided to narrow their subject until they find what they are looking for. For
example, if we are interested in HTML and want to read about it, we can take the following
path to get to the required information: from the main directory in the Yahoo home page to
Computers and Internet, World Wide Web, and finally HTML. Following these three steps
will lead to several further choices about HTML including editing tools, standards, manuals,
etc.

Using Web IRS: When looking for something more specific, users often turn to search
engines such as Lycos or Infoseek. For example, we may want to read a certain article and
know the author of the article but not know the journal or date. We can use the author’s
name and a key word from the article to locate it.

While the Web is used in other ways, these three methods cover a high volume of WWW
traffic, and so are worth more careful characterization.
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Table 6.1: Workloads used in this study

Workload | Period | Number of (K) accesses
Korea 0/2/95-9/26/95 1,682
Library (VT) || 9/19/96-11/20/96 128
CS (VT) 10/9/96-11,/10/96 02
A