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http://www.csc.ncsu.edu/faculty/perros//simulation.pdf 

 

Self-study: You can use this book to learn the basic simulation techniques by yourself! 

At the end of Chapter 1, you will find three examples. Select one of them and do the 

corresponding computer assignment given at the end of the Chapter. Then, after you read 

each new Chapter, do all the problems at the end of the Chapter and also do the 

computer assignment that corresponds to your problem, By the time you reach the end of 

the book, you will have developed a very sophisticated simulation model ! 

You can use any high-level programming language you like. 

 

Errors: I am not responsible for any errors in the book, and if you do find any, I would 

appreciate it if you could let me know (hp@csc.ncsu.edu). 

 

Acknowledgment: Please acknowledge this book, if you use it in a course, or in a project, 

or in a publication. 

 

Copyright: Please remember that it is illegal to reproduce parts of this book or all of the 

book in other publications without my consent. 
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CHAPTER 1: 

 

INTRODUCTION 
 

 

1.1 The OR approach 

 

The OR approach to solving problems is characterized by the following steps: 

 

1. Problem formulation 

2. Construction of the model 

3. Model validation 

4. Using the model, evaluate various available alternatives (solution) 

5. Implementation and maintenance of the solution 

 

 The above steps are not carried out just once. Rather, during the course of an OR 

exercise, one frequently goes back to earlier steps. For instance, during model validation 

one frequently has to examine the basic assumptions made in steps 1 and 2. 

The basic feature of the OR approach is that of model building. Operations 

Researchers like to call themselves model builders! A model is a representation of the 

structure of a real-life system. In general, models can be classified as follows: iconic, 

analogue, and symbolic. 

 An iconic model is an exact replica of the properties of the real-life system, but in 

smaller scale. Examples are:  model airplanes, maps, etc. An analogue model uses a set of 

properties to represent the properties of a real-life system. For instance, a hydraulic 

system can be used as an analogue of electrical, traffic and economic systems. Symbolic 

models represent the properties of the real-life system through the means of symbols, 
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such as mathematical equations and computer programs. Obviously, simulation models 

are symbolic models. 

 Operations Research models are in general symbolic models and they can be 

classified into two groups, namely deterministic models and stochastic models. 

Deterministic models are models which do not contain the element of probability. 

Examples are:  linear programming, non-linear programming and dynamic programming. 

Stochastic models are models which contain the element of probability. Examples are:  

queueing theory, stochastic processes, reliability, and simulation techniques. 

 Simulation techniques rely heavily on the element of randomness. However, 

deterministic simulation techniques in which there is a no randomness, are not 

uncommon. Simulation techniques are easy to learn and are applicable to a wide range of 

problems. Simulation is probably the handiest technique to use amongst the array of OR 

models. The argument goes that "when everything else fails, then simulate". That is, 

when other models are not applicable, then use simulation techniques. 

 

1.2 Building a simulation model 

 

Any real-life system studied by simulation techniques (or for that matter by any other OR 

model) is viewed as a system. A system, in general, is a collection of entities which are 

logically related and which are of interest to a particular application. The following 

features of a system are of interest: 

 

• Environment: Each system can be seen as a subsystem of a broader system. 

• Interdependency: No activity takes place in total isolation. 

• Sub-systems: Each system can be broken down to sub-systems. 

• Organization: Virtually all systems consist of highly organized elements or 

components, which interact in order to carry out the function of the system. 

• Change: The present condition or state of the system usually varies over a long 

period of time. 
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 When building a simulation model of a real-life system under investigation, one 

does not simulate the whole system. Rather, one simulates those sub-systems which are 

related to the problems at hand. This involves modelling parts of the system at various 

levels of detail. This can be graphically depicted using Beard's managerial pyramid as 

shown in Figure 1.1. The collection of blackened areas form those parts of the system 

that are incorporated in the model. 

 

 

Levels of          

Detail

 
 

Figure 1.1: Beard's managerial pyramid 

 
 

A simulation model is, in general, used in order to study real-life systems which 

do not currently exist. In particular, one is interested in quantifying the performance of a 

system under study for various values of its input parameters. Such quantified measures 

of performance can be very useful in the managerial decision process. The basic steps 

involved in carrying out a simulation exercise are depicted in Figure 1.2. 

 All the relevant variables of a system under study are organized into two groups. 

Those which are considered as given and are not to be manipulated (uncontrollable 

variable) and those which are to be manipulated so that to come to a solution 

(controllable variables). The distinction between controllable and uncontrollable 

variables mainly depends upon the scope of the study. 
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Define the Problem 

Analyze Data

Formulate Sub-Models

Combine Sub-Models

Collect Data

Write the Simulation 
Program

Debug

Validate Model

Design Simulation 
Experiments

Run the Simulator

Analyze the Results

Implement Results

(alternatives)

a

a

Earlier 
Steps

 
 

Figure 1.2: Basic steps involved in carrying out a simulation study. 

 
 Another characterization of the relevant variables is whether they are affected or 

not during a simulation run. A variable whose value is not affected is called exogenous. A 

variable having a value determined by other variables during the course of the simulation 

is called endogenous. For instance, when simulating a single server queue, the following 

variables may be identified and characterized accordingly. 

 

Exogenous variables 

 1. The time interval between two successive arrivals. 

 2. The service time of a customer. 

 3. Number of servers. 

 4. Priority discipline. 
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Endogenous variables 

 1. Mean waiting time in the queue. 

 2. Mean number of customers in the queue. 

 

 The above variables may be controllable or uncontrollable depending upon the 

experiments we want to carry out. For instance, if we wish to find the impact of the 

number of servers on the mean waiting time in the queue, then the number of servers 

becomes an controllable variable. The remaining variables-the time interval between two 

arrivals and the service time, will remain fixed. (uncontrollable variables) 

 Some of the variables of the system that are of paramount importance are those 

used to define the status of the system. Such variables are known as status variables. 

These variables form the backbone of any simulation model. At any instance, during a 

simulation run, one should be able to determine how things stand in the system using 

these variables. Obviously, the selection of these variables is affected by what kind of 

information regarding the system one wants to maintain. 

 We now proceed to identify the basic simulation methodology through the means 

of a few simulation examples.  

 

1.3 Basic simulation methodology:  Examples 

 

1.3.1 The machine interference problem 

 

Let us consider a single server queue with a finite population known as the 

machine interference problem. This problem arose originally out of a need to model the 

behavior of machines. Later on, it was used extensively in computer modelling. Let us 

consider M machines. Each machine is operational for a period of time and then it breaks 

down. We assume that there is one repairman. A machine remains broken down until it is 

fixed by the repairman. Broken down machines are served in a FIFO manner, and the 

service is non-preemptive. Obviously, the total down time of a machine is made up of the 

time it has to "queue" for the repairman and the time it takes for the repairman to fix it. A 
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machine becomes immediately operational after it has been fixed. Thus, each machine 

follows a basic cycle as shown in figure 1.3, which is repeated continuously. 

 

 

Operational Broken Down

Queueing
Time

Repair
Time  

 
Figure 1.3: The basic cycle of a machine. 

 

In general, one has information regarding the operational time and the repair time 

of a machine. However, in order to determine the down time of a machine, one should be 

able to calculate the queueing time for the repairman. If this quantity is known, then one 

can calculate the utilization of a machine. Other quantities of interest could be the 

utilization of the repairman. 

 

Finite 
Population 

of Machines

Repairman

 
 

Figure 1.4: The machine interference problem. 

 

Let us now look at the repairman's queue. This can be visualized as a single server 

queue fed by a finite population of customers, as shown in figure 1.4 

 For simplicity, we will assume that the operational time of each machine is equal 

to 10 units of time. Also, the repair time of each machine is equal to 5 units of time. In 

other words, we assume that all the machines have identical constant operational times. 
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They also have identical and constant repair times. (This can be easily changed to more 

complicated cases where each machine has its own random operational and repair times.) 

The first and most important step in building a simulation model of the above 

system, is to identify the basic events whose occurrence will alter the status of the 

system. This brings up the problem of having to define the status variables of the above 

problem. The selection of the status variables depends mainly upon the type of 

performance measures we want to obtain about the system under study. 

  

 

A machine 
breaks down

Repairman 
busy

?

yes

Repairman 
becomes busy

Repair 
starts

Join the 
queue

 
 

Figure 1.5: An arrival event. 

 

In this problem, the most important status variable is n, the number of broken 

down machines, i.e., those waiting in the queue plus the one being repaired. If n=0, then 

we know that the queue is empty and the repairman is idle. If n=1, then the queue is 

empty and the repairman is busy. If n>1, then the repairman is busy and there are n-1 

broken down machines in the queue. Now, there are two events whose occurrence will 

cause n to change. These are: 

 

 a)  A machine breaks down, i.e., an arrival occurs at the queue. 
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 b)  A machine is fixed, i.e., a departure occurs from the queue. 

 

 The flow-charts given in figures 1.5, and 1.6 show what happens when each of 

these events occur. 

 

 

A machine 
is repaired

no

A new repair 
starts

Repairman 
becomes 

idle

Other 
machines to be 

repaired?

 
 

Figure 1.6: A departure event. 

 

 

In order to incorporate the above two basic events in the simulation model, we 

need a set of variables, known as clocks, which will keep track of the time instants at 

which an arrival or departure event will occur. In particular, for this specific model, we 

need to associate a clock for each machine. The clock will simply show the time instant 

at which the machine will break down, i. e., it will arrive at the repairman's queue. 

Obviously, at any instance, only the clocks of the operational machines are of interest. In 

addition to these clocks, we require to have another clock which shows the time instant at 

which a machine currently being repaired will become operational, i.e., it will cause a 

departure event to occur. Thus, in total, if we have m machines, we need m+1 clocks. 

Each of these clocks is associated with the occurrence of an event. In particular, m clocks 

are associated with m arrival events and one clock is associated with the departure event. 
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In addition to these clocks, it is useful to maintain a master clock, which simply keeps 

tracks of the simulated time. 

 The heart of the simulation model centers around the manipulation of these 

events. In particular, using the above clocks, the model decides which of all the possible 

events will occur next. Then the master clock is advanced to this time instant, and the 

model takes action as indicated in the flow-charts given in figures 1.5 and 1.6. This event 

manipulation approach is depicted in figure 1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7: Event manipulation. 

 

 We are now ready to carry out the hand simulation shown below in table 1. Let us 

assume that we have 3 machines. Let CL1, CL2, and CL3 be the clocks associated with 

machine 1, 2, and 3 respectively (arrival event clocks). Let CL4 be the clock associated 

with the departure event. Finally, let MC be the master clock and let R indicate whether 
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the repairman is busy or idle. We assume that at time zero all three machines are 

operational and that CL1=1, CL2=4, CL3=9. (These are known as initial conditions.) 

 

 
MC CL1 CL2 CL3 CL4 n  

0 1 4 9 - 0 idle 

1 - 4 9 6 1 busy 

4 - - 9 6 2 busy 

6 16 - 9 11 1 busy 

9 16 - - 11 2 busy 

11 16 21 - 16 1 busy 

16 - 21 26 21 1 busy 

 
Table 1: Hand simulation for the machine interference problem 

 

 We note that in order to schedule a new arrival time we simply have to set the 

associated clock to MC+10. Similarly, each time a new repair service begins we set 

CL4=MC+5. A very important aspect of this simulation model is that we only check the 

system at time instants at which an event takes place. We observe in the above hand 

simulation that the master clock in the above example gives us the time instants at which 

something happened (i.e., an event occurred). These times are:  0, 1, 4, 6, 9, 11, 16, ... We 

note that in-between these instants no event occurs and, therefore, the system's status 

remains unchanged. In view of this, it suffices to check the system at time instants at 

which an event occurs. Furthermore, having taken care of an event, we simply advance 

the Master clock to the next event which has the smallest clock time. For instance, in the 

above hand simulation, after we have taken care of a departure of time 11, the simulation 

will advance to time 16. This is because following the time instant 11, there are three 

events that are scheduled to take place in the future. These are:  a) arrival of machine 1 at 

time 16; b) arrival of machine 2 at time 21; and c) a departure of machine 3 at time 16. 

Obviously, the next event to occur is the latter event at time 16.  
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The above simulation can be easily done using a computer program. An outline of 

the flow-chart of the simulation program is given in figure 1.8. The actual 

implementation of this simulation model is left as an exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.8: A flowchart of the simulation program. 

 

1.3.2 A token-based access scheme 

 

We consider a computer network  consisting of a number of nodes interconnected via  a 

shared wired or wireless transport medium, as  shown in figure 1.9. Access to the shared 

medium is controlled by a token. That is, a node cannot transmit on the network unless it 

has the token. In this example, we simulate a simplified version of such an access 

scheme. Below, we describe how such a token-based access scheme operates.  

Initiate 
simulation 

A 

Next 
event 

MC=0, CL1=1, CL2=4 
CL3=9, n=0, R=0 (idle) 

Arrival 
(ith machine) 

Departure 
(ith machine) 

MC=CLi MC=CLi 

n=0 ? 

R=1 

yes 

No n=n+1 

CL4=MC+5 

A 

n=n-1 

n=0 ? Yes R=0 

A 

CL4=MC+5 

 No 

CLj=MC+10 

A 
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Figure 1.9: Nodes interconnected by a shared medium 

 

There is a single token that visits the nodes in a certain logical sequence. The nodes are 

logically connected so that they form a logical ring. In the case of a bus-based  or ring-

based wireline medium, the order in which the nodes are logically linked  may not be the 

same with the order in which they are attached to the network. We will assume that the 

token never gets lost. A node cannot transmit unless it has the token. When a node 

receives the token, from its previous logical upstream node, it may keep it for a period of 

time up to T. During this time, the node transmits packets. A packet is assumed to consist 

of data and a header. The header consists of the address of the sender, the address of the 

destination, and various control fields. The node surrenders the token when:  a) time T 

has run out, or  b) it has transmitted out all the packets in its queue before T runs out, or 

c) it receives the token when it has no packets in its queue to transmit. If time T runs out 

and the node is in the process of transmitting, it will complete the transmission and then it 

will surrender the token. Surrendering the token means, that the node will transmit it to 

its next downstream logical neighbour. 

 

. . . 

token

 
Figure 1.10. The conceptual queueing system. 
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 Conceptually, this network can be seen as comprising of a number of queues, one 

per node. Only the queue that has the token can transmit packets. The token can be seen 

as a server, who cyclically switches between the queues, as shown in figure 1.10. Once 

the token is switched to a queue, packets waiting in this queue can be transmitted on the 

network. The maximum time that a queue can keep the token is T units of time, as 

explained above. The time it takes for the token to switch from one queue to the next is 

known as switch-over time.  

 It is much simpler to use the queueing model given in figure 1.10 when 

constructing the simulation model of this access scheme. The following events have to be 

taken into account in this simulation. For each queue, there is an arrival event and service 

completion event. For the token, there is a time of  arrival at the next queue event and a 

time-out event. For each queue, we keep track of the time of arrival of the next packet, 

the number of customers in the queue, and the time a packet is scheduled to depart, if it is 

being transmitted. For the token, we keep track of the time of arrival at the next queue, 

the number of the queue that may hold the token, and the time when the token has to be 

surrendered to the next node, known as time-out.  

In the hand simulation given below we assume that the network consists of three 

nodes. That is, the queueing system in figure 1.10 consists of three queues. The inter-

arrival times to queues 1, 2, and 3 are constant and they are equal to 10, 15, and 20 unit 

times respectively. T is assumed to be equal to 15 unit times. The time it takes to transmit 

a packet is assumed to be constant equal to 6 unit times. The switch over time is equal to 

1 unit time. For initial  conditions we assume that the system is empty at time zero. The 

first arrival to queues 1, 2, and 3 will occur at time 2, 4 and 6 respectively. Also, at time 

zero, the token is in queue 1. In case when an arrival and a departure occur 

simultaneously at the same queue, we will assume that the arrival occurs first. 

 The logic for each of the events in this simulation is summarized in figures 1.11 to 

1.14. The set of all possible events that can occur at a given time in a simulation is known 

as the event list. This event-list has to be searched each time in order to locate the next 

event. This event manipulation forms the basis of a simulation, and it is summarized in a 

flow-chart given in figure 1.15. 
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Figure 1.11: Arrival event at queue i. 
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Figure 1.12:  Service completion at queue i. 
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Figure 1.13 : Time-out of token 
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Figure 1.14 :  Arrival of token at next queue. 
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Figure 1.15 :  Event manipulation. 

 
The following variables represent the clocks used in the flow-charts: 

 

• MC: Master clock 

• ATi: Arrival time clock at queue i, i=1,2,3 

• DTi: Departure time clock from queue i, i=1,2,3 

• TOUT: Time out clock for token 

• ANH: Arrival time clock of token to next queue 

 

The hand simulation is given in table 2. 
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 Queue 1  Queue 2  Queue 3  Toke

n 

  

MC Arr 
Clock 

Depart 
Clock 

Queue 
size 

Arr 
Clock 

Depart 
Clock 

Queue 
size 

Arr 
Clock 

Depart 
Clock 

Queue 
size 

Node  
No 

Time 
Out 

Clock 

Arriva
l Next 
Node 

0 2  0 4  0 6  0 1  1 

1 2  0 4  0 6  0 2  2 

2 12  1 4  0 6  0 3  3 

3 12 9 1 4  0 6  0 1 18  

4 12 9 1 19  1 6  0 1 18  

6 12 9 1 19  1 26  1 1 18  

9 12  0 19  1 26  1 1  10 

10 12  0 19 16 1 26  1 2 25  

12 22  1 19 16 1 26  1 2 25  

16 22  1 19  0 26  1 2  17 

17 22  1 19  0 26 23 1 3 32  

19 22  1 34  1 26 23 1 3 32  

22 32  2 34  1 26 23 1 3 32  

23 32  2 34  1 26  0 3  24 

24 32 30 2 34  1 26  0 1 39  

26 32 30 2 34  1 46  1 1 39  

30 32 36 1 34  1 46  1 1 39  

32 42 36 2 34  1 46  1 1 39  

34 42 36 2 49  2 46  1 1 39  

36 42 42 1 49  2 46  1 1 39  

39 42 42 1 49  2 46  1 1 *  

42 52 42 2 49  2 46  1 1 *  

42 52  1 49  2 46  1 1  43 

43 52  1 49 49 2 46  1 2 58  

 
Table 2: Hand simulation for the token-based access scheme 
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1.3.3 A two-stage manufacturing system 

 

Let us consider a two-stage manufacturing system as depicted by the queueing network 

shown in figure 1.16. The first queue has an infinite capacity, and the second queue has a 

finite capacity. When the second queue becomes full, the server at the first queue stops. 

In particular, upon service completion at server 1, the server gets blocked if the second 

queue is   

 

 
Figure 1.16: A two-stage queueing network. 

 

full. Server 1  will remain blocked until a customer departs from the second queue. Each 

server may break down. For simplicity, we will assume that a server may break down 

whether it is busy or idle. A broken down server cannot provide service until it is 

repaired. If a customer was in service when the breakdown occurred, the customer may 

resume its service after the server is repaired without any loss. That is, it will continue 

from where it stopped when the breakdown occurred. 

 In the hand-simulation given in table 3, it is assumed that the buffer capacity of 

the second queue is 3 (this includes the customer in service). All service times, inter-

arrival times, operational and repair times are constant with the following values:  inter-

arrival time = 40, service time at node 1 = 20, service time at node 2 = 30, operational for 

server 1 = 200, operational time for server 2 = 300, repair time for server 1 = 50, and 

repair time for server 2 = 150. Initially the system is assumed to be empty. The first 

arrival occurs at time 10, server 1 will break down for the first time at time 80, and server 

2 at time 90. 
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  Stage 1 Stage 2 
 

MC 
 

AC 
# 

Cust 
Server 
Clock 

Oper 
Clock 

Rep 
Clock 

Server 
Status 

# Cust Server 
Clock 

Oper 
Clock 

Rep 
Clock 

Server 
Status 

10 50 1 30 80  busy   90  idle 

30 50 0  80  idle 1 60 90  busy 

50 90 1 70 80  busy 1 60 90  busy 

60 90 1 70 80   0  90  idle 

70 90 0  80  idle 1 90 90  busy 

80 90 0   130 down 1 90 90  busy 

90 90 0   130 down 0  90  idle 

90 130 1   130 down 0  90  idle 

90 130 1   130 down 0   240 down 

130 170 2   130 down 0   240 down 

130 170 2 150 330  busy 0   240 down 

150 170 1 170 330  busy 1   240 down 

170 210 2 170 330  busy 1   240 down 

170 210 1 190 330  busy 2   240 down 

190 210 0  330  idle 3   240 down 

210 250 1 230 330  busy 3   240 down 

230 250 1  330  blocked 3   240 down 

240 250 1  330  blocked 3 270 540  busy 

250 290 2  330  blocked 3 270 540  busy 

270 290 1 290 330  busy 3 300 540  busy 

290 330 2 290 330  busy 3 300 540  busy 

290 330 2  330  blocked 3 300 540  busy 

300 330 1 320   busy 3 330 540  busy 

320 330 1    blocked 3 330 540  busy 

330 370 2  330  blocked 3 330 540  busy 

330 370 1 350 330  busy 3 360 540  busy 

330 370 1   380 down     busy 

360 370 1   380 down 2 390 540  busy 

370 410 2   380 down 2 390 540  busy 

380 410 2 400 580  busy 2 390 540  busy 

390 410 2 400 580  busy 1 420 540  busy 
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Table 3: hand simulation for the two-stage manufacturing system 

 

Since we are dealing with integer numbers, it is possible that more than one clock may 

have the same value. That is, more than one event may occur at the same time. In this 

particular simulation, simultaneous events can be taken care in any arbitrary order. In 

general, however, the order  with which such events are dealt with may matter, and it has 

to be accounted for in the simulation. In a simulation, typically, clocks are represented by 

real numbers. Therefore, it is not possible to have events occurring at the same time. 

 

Problems 

 

1. Do the hand simulation of the machine interference problem, discussed in section 

1.3.1, for the following cases: 

 a.  Vary the repair and operational times. 

b.  Vary the number of repairmen. 

c. Assume that the machines are not repaired in a FIFO manner, but according to 

which machine has the shortest repair time. 

 

2. Do the hand simulation of the token-based access scheme, described in section 

1.3.2, for the following cases: 

a.  Vary the inter-arrival times. 

b. Vary the  number of queues. 

c.  Assume that packets have priority 1 or 2 (1 being the highest). The packets in a 

queue are served according to their priority. Packets with the same priority are 

served in a FIFO manner. 

 

3. Do the hand simulation of the two-stage manufacturing system, described in 

section 1.3.3, for the following cases: 

 a.  Assume no breakdowns. 
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b.  Assume a three-stage manufacturing system. (The third  stage is similar to the 

second stage.) 

 

Computer assignments 

 

1. Write a computer program to simulate the machine interference problem as 

described in section 1.3.1. Each time an event occurs, print out a line of output to 

show the current values of the clocks and of the other status parameters (as in the 

hand simulation). Run your simulation until the master clock is equal to 20. 

Check by hand whether the simulation advances from event to event properly, and 

whether it updates the clocks and the other status parameters correctly. 

 

2. Write a computer program to simulate the token bus as described in section 1.3.2. 

Each time an event occurs, print out a line of output to show the current values of 

the clocks and of the other status parameters (as in the hand simulation). Run your 

simulation until the master clock is equal to 100. Check by hand whether the 

simulation advances from event to event properly, and whether it updates the 

clocks and the other status parameters correctly. 

 

3. Write a computer program to simulate the two-stage manufacturing system as 

described in section 1.3.3. Each time an event occurs, print out a line of output to 

show the current values of the clocks and of the other status parameters (as in the 

hand simulation). Run your simulation until the master clock is equal to 500. 

Check by hand whether the simulation advances from event to event properly, and 

whether it updates the clocks and the other status parameters correctly. 





 

 

 

 

CHAPTER 2:  
 

GENERATING  PSEUDO-RANDOM NUMBERS 
 

 

2.1 Introduction 
 

We shall consider methods for generating random number uniformly distributed. Based 

on these methods, we shall then proceed in the next Chapter to consider methods for 

generating random numbers which have a certain distribution, i.e., exponential, normal, 

etc. 

Numbers which are chosen at random are useful in a variety of applications. For 

instance, in numerical analysis, random numbers are used for solving complicated 

integrals. In computer programming, random values make a good source of data for 

testing the effectiveness of computer algorithms. In simulation, random numbers are used 

in order to represent real-life situations. 

Let us consider for a moment the machine interference simulation model 

discussed in the previous Chapter. In this model it was assumed that the operational time 

of a machine was constant. Also, it was assumed that the repair time of a machine was 

constant. It is possible that one may identify real-life situations where these two 

assumptions are valid. However, in most of the cases one will observe that the time a 

machine remains operational varies. Also, the repair time may vary from machine to 

machine. If we are able to observe the behavior of a machine over a reasonably long 

period, we will find that the operational times can be characterized by a theoretical or an 

empirical probability distribution. Similarly, the repair times can be also characterized by 

a theoretical or empirical distribution. Therefore, in order to make the simulation model 

more realistic, one would require a built-in mechanism which will produce random 

numbers which follow the given distributions. Now, in order to generate such random 



24  Computer Simulation Techniques 

numbers one needs to be able to generate uniformly distributed random numbers, 

otherwise known as pseudo-random numbers. The generation of pseudo-random numbers 

is the subject matter of this Chapter. 

 

2.2 Pseudo-random numbers 

 

In a sense, there is no such a thing as a single random number. Rather, we speak of a 

sequence of random numbers which follow a specified distribution. Each number in the 

sequence has been obtained merely by chance, having nothing to do with other numbers 

of the sequence, and each number has a specified probability of falling in any given 

range.  

Uniformly distributed random numbers in the space [0,1] are usually referred to 

as random numbers, whereas random numbers following any other distribution are 

referred to as random variates or stochastic variates. 

Historically, the first method for creating random numbers by computer was Von 

Neuman's mid-square method. His idea was to take the square of the previous random 

number and to extract the middle digits. For example, let us assume that we are 

generating 10-digit numbers and that the previous value was 5772156649. The square of 

this value is 33317792380594909291 and the next number is 7923805949. The question 

here that arises is how such a method can give a sequence of random numbers. Well, it 

does not, but it appears to be!  

The mid-square method was relatively slow and statistically unsatisfactory. It was 

later abandoned in favour of congruential methods. At the present time, nearly all 

computer codes for generating random numbers use some variation of the congruential 

method. As will be seen, this method generates random numbers in a deterministic 

manner. However, a sequence of such random numbers appear to be statistically random 

Because of that, they are often referred to as pseudo-random numbers. 

In general, an acceptable method for generating pseudo-random numbers must 

yield sequences which are: 

 
1. uniformly distributed 
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2. statistically independent 

3. reproducible, and 

4. non-repeating for any desired length. 

 

2.3 Congruential methods for generating pseudo-random numbers 

 

These methods are completely deterministic. Formulae are available for calculating in 

advance the exact value of the ith number in a sequence of numbers, before the sequence 

is actually generated. Numbers generated in this manner are not random. However, we 

treat them as if they were random as long as they pass a certain number of statistical tests 

designed to test various properties of random numbers. In particular, if it can be shown 

that a sequence of numbers generated using the congruential method are uniformly 

distributed and statistically independent, then these numbers can be assumed to be 

random (even if they were created in a deterministic fashion). 

Congruential methods use the following recursive relationship: 

 

xi+1 = axi + c (mod m) 

 

where xi, a, c and m are all non-negative numbers. Given that the previous random 

number was xi, the next random number xi+1 can be generated as follows. Multiply xi by 

a and then add c. Then, compute the modulus m of the result. That is, divide the result by 

m and set xi+1 equal to the remainder of this division. For example, if x0 = a = c = 7, m = 

10 then we can obtain the following sequence of numbers: 7,6,9,0,7,6,9,0,... 

 The method using the above expression is known as the mixed congruential 

method. A simpler variation of this method is the multiplicative congruential method. 

This method utilizes the relation xi+1 = axi(mod m). Historically, multiplicative 

congruential generators came before the mixed congruential generators. Below we limit 

our discussion to mixed congruential generators. 

 The numbers generated by a congruential method are between 0 and m-1. Quite 

frequently in simulation, one needs uniformly distributed random numbers between 0 and 
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1. Such random numbers can be easily obtained from the congruential method by simply 

dividing each xi by m. 

 The number of successively generated pseudo-random numbers after which the 

sequence starts repeating itself is called the period. If the period is equal to m, then the 

generator is said to have a full period. Theorems from number theory show that the 

period depends on m. The larger the value of m, the larger the period. In particular, the 

following conditions on a, c, and m guarantee a full period: 

 

1. m and c have no common divisor. 

2. a = 1 (mod r) if r is a prime factor of m. That is, if r is a prime number 

(divisible only by itself and 1) that divides m, then it divides a-1. 

3. a = 1 (mod 4) if m is a multiple of 4. 

 

It is important to note that one should not use any arbitrary values for a, c and m. 

Systematic testing of various values for these parameters have led to generators which 

have a full period and which are statistically satisfactory. A set of such values is:  a = 

314, 159, 269, c = 453, 806, 245, and m = 231 (for a 32 bit machine). 

 In order to get a generator started, we further need an initial seed value for x. It 

will become obvious later on that the seed value does not affect the sequence of 

generated pseudo-random numbers in the long run. 

 The implementation of a pseudo-random number generator involves a 

multiplication, an addition and a division. A division, being comparatively a slow 

operation, can be avoided if m is set equal to the size of the computer word. For, if the 

total numerical value of the expression axi+c is  less than the word size, then it is in itself 

the result of the operation axi+c (mod m), where m is set equal to the word size. Now, let 

us assume that a, xi and c have values such that the expression axi+c will give a number 

greater than the word size. In this case, when the calculation is performed, an overflow 

will occur. If the overflow does not cause the execution of the program to be aborted, but 

it simply causes the significant digits to be lost, then the remaining digits left in the 

register is the remainder of the division (axi+c)/m. This is because the lost significant 
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digits will represent multiples of the value of m, which is the quotient of the above 

division.  

 In order to demonstrate the above idea, let us consider a fictitious decimal 

calculator whose register can accommodate a maximum of 2 digits. Obviously, the 

largest number that can be held in the register is 99. Now, we set m equal to 100. For 

a=8, x=2, and c=10, we have that axi + c = 26, and 26 (mod 100) = 26. However, if x=20, 

then we have that axi + c = 170. If this computation is performed in the above fictitious 

calculator, the product axi (which is equal to 8x20) will cause an overflow to occur. The 

first significant digit will be lost and thus the register will contain the number 60. If we 

now add c (which is equal to 10) to the above result we will obtain 70, which is, the 

remaining of the division 170/100. 

 

2.4 General congruential methods 

 

The mixed congruential method described above can be thought of as a special case of a 

following generator: 

 

xi+1 = f(xi, xi-1, ...) (mod m), 

 

where f(.) is a function of previously generated pseudo-random numbers. A special case 

of the above general congruential method is the quadratic congruential generator. This 

has the form: 

 

 xi+1=a1x
2
i  + a2xi-1+ c.  

 

The special case of a1=a2=1, c=0 and m being a power of 2 has been found to be related 

to the midsquare method. Another special case that has been considered is the additive 

congruential method, which is based on the relation  

 

f(xi, xi-1, ..., xi-k) = a1xi + a2xi-1 + ... akxi-k . 



28  Computer Simulation Techniques 

 

The case f(xi, xi-1)=xi+xi-1 has received attention. 

 

2.5 Composite generators 

 

These methods were developed by combining two separate generators (usually 

congruential generators). By combining separate generators, one hopes to achieve better 

statistical behaviour than either separate generator. 

 The best known of the composite generators uses the second congruential 

generator to shuffle the output of the first congruential generator. In particular, the first 

generator is used to fill a vector of size n with its first k generated random numbers. The 

second generator is then used to generate a random integer r uniformly distributed over 

the numbers 1, 2, …, k. The random number stored in the rth position of the vector is 

returned as the first random number of the composite generator. The first generator then 

replaces the random number in the rth position with a new random number. The next 

random number that will be returned by the composite generator, is the one selected by 

the second generator from the updated vector of random numbers. The procedure repeats 

itself in this fashion. It has been demonstrated that such a combined generator has good 

statistical properties, even if two separate generators used are bad. 

 

2.6 Tausworthe generators 

 

Tausworthe generators are additive congruential generators obtained when the modulus 

m is equal to 2. In particular, 

 

xi = (a1xi-1 + a2xi-2 + ...+ anxi-n) (mod 2) 

 

where xi can be either 0 or 1. This type of generator produces a stream of bits {bi}. In 

view of this, it suffices to assume that the coefficients ai are also binary. Thus, xi is 

obtained from the above expression by adding some of preceding bits and then carrying 
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out a modulo 2 operation. This is equivalent to the exclusive OR operation, notated as ⊕ 

and defined by the following truth table. 

 

A B A⊕B 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

A⊕B is true (i.e. equal to 1), when either A is true and B false, or A is false and B true. 

 The generated bits can be put together sequentially to form an -bit binary integer 

between 0 and 2 -1. Several bit selection techniques have been suggested in the 

literature. 

 In the composite generator scheme discussed earlier on, one of the generators (but 

not both) could be a Tausworthe generator. 

 Tausworthe generators are independent of the computer used and its word size 

and have very large cycles. However, they are too slow since they only produce bits. A 

fast variation of this generator is the trinomial-based Tausworthe generator. Two or more 

such generators have to be combined in order to obtain statistically good output. 

 

2.7 The Mercenne Twister 

 

This is a newer algorithm that has created a great deal of excitement. Its output has 

excellent statistical properties and its period is very long, i.e., 219937-1. (219937-1 is a prime 

number and it is also a Mersenne prime, since it is one less than a power of two.) The 

algorithm uses  a seed value which is 19,937 bits long, and is essentially a large linear-

feedback shift register.   

 

2.8 Statistical tests of pseudo-random number generators 

 

Pseudo-random number generation techniques are completely deterministic. Numbers 

generated in this manner are not random. However, we can treat them as random as long 
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as they pass a certain number of statistical tests. A sequence of pseudo-random numbers 

are treated as random if statistically they are uniformly distributed and independent of 

each other.  

 

2.8.1 Runs test 

 

This statistical test can be used to test the assumption that the pseudo-random numbers 

are independent of each other. We start with a sequence of pseudo-random numbers 

between 0 and 1. We then look for unbroken subsequences of numbers, where the 

numbers within each subsequence are monotonically increasing. Such a subsequence is 

called a run up, and it may be as long as one number.  

 For example, let us consider the sequence:  0.8,  0.7, 0.75,  0.55,  0.6,  0.7,  0.3,  

0.4,  0.5. Starting from the beginning of this sequence (in this case, starting from the left), 

we find a run up of length 1, i.e. 0.8, then a run up of length 2, i.e. 0.7, 0.75, followed by 

two successive run ups of length 3, i.e. 0.55, 0.6, 0.7, and 0.3,  0.4,  0.5. 

 In general, let ri be the number of run ups of length i. (In the above example we 

have r1=1, r2=1, r3=2.)  All run-ups with a length i>_ 6, are grouped together into a single 

run-up. The ri values calculated for a particular sequence are then used to calculate the 

following statistic: 

 

R  =  
1
n ∑

1≤i,j≤6
  (ri-nbi)(rj-nbj)aij , 1≤i≤6, 1≤j≤6 

 

where n is the sample size and bi, i=1,...6, and aij are known coefficients. The aij 

coefficient is obtained as the (i,j)th element of the matrix 

 









4529.4 9044.9 13568 18091 22615 27892

9044.9 18097 27139 36187 45234 55789
13568 27139 40721 54281 67852 83685
18091 36187 54281 72414 90470 111580
22615 45234 67852 90470 113262 139476
27892 55789 83685 111580 139476 172860

  , 
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and the bi coefficient is obtained as the ith element of the vector 

 

(b1,...,b6) = ( 
1
6  , 

5
24  , 

11
120  , 

19
720  , 

29
5040  , 

1
840  ) . 

 

For n >_  4000, R has a chi-square distribution (see below) with 6 degrees of freedom 

(d.f). under the null hypothesis that the random numbers are independent and identically 

distributed (i.i.d). 

 

2.8.2 Chi-square test for goodness of fit 

 

Having tested the independence assumption using the above test, we now proceed to 

check the uniform distribution assumption. The chi-square test, in general, can be used to 

check whether an empirical distribution follows a specific theoretical distribution. In our 

case, we are concerned about testing whether the numbers produced by a generator are 

uniformly distributed. 

 Let us consider a sequence of pseudo-random numbers between 0 and 1. We 

divide the interval [0,1] into k subintervals of equal length, where k > 100. Let fi be the 

number of pseudo-random numbers that fall within the ith subinterval. (Make sure that 

enough random numbers are generated so that fi > 5.)  The fi values are called the 

observed values. Now, if these generated random numbers are truly uniformly 

distributed, then the mean number of random numbers that fall within each subinterval is 

n/k, where n is the sample site. This value is called the theoretical value. The chi-square 

test measures whether the difference between the observed and the theoretical values is 

due to random fluctuations or due to the fact that the empirical distribution does not 

follow the specific theoretical distribution. For the case where the theoretical distribution 

is the uniform distribution, the chi-square statistic is given by the expression 

 

χ2 = 

! 

k

n
( fi "

n

k
)
2

i=1

k

# , 
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and it has k-1 degrees of freedom. The null hypothesis is that the generated random 

numbers are i.i.d. uniformly distributed in [0,1]. This hypothesis is rejected if the 

computed value of χ2 is greater than the one obtained from the chi-square tables for k-1 

degrees of freedom and 1-a level of significance. (The chi-square tables can be found in 

any introductory Statistics book, and of course they are also accessible through the 

Internet!) 

 

Problems 

 

1. Consider the multiplicative congruential method for generating random digits. 

Assuming that m=10,  determine the length of the cycle for each set of values of a 

and x0 given below.  

 (a)  a = 2, x0 =1, 3, 5. 

 (b)  a = 3, x0 = 1, 2, 5. 

 

Computer Assignments 

 

1. Use the two statistical tests described in section 2.7, to test a random number 

generator available at your computer. 

 



 

 

 

 

CHAPTER 3:  

 

GENERATING STOCHASTIC VARIATES 

 

 

3.1 Introduction 

 

In the previous Chapter we examined techniques for generating random numbers. In this 

Chapter, we discuss techniques for generating random numbers with a specific 

distribution. Random numbers following a specific distribution are called random 

variates or  stochastic variates. Pseudo-random numbers which are uniformly distributed 

are normally referred to as random numbers. Random numbers play a major role in the 

generation of stochastic variates. 

 There are many techniques for generating random variates. The inverse 

transformation method is one of the most commonly used techniques. This is discussed 

below. Sections 3.3 and 3.4 give methods for generating stochastic variates from known 

continuous and discrete theoretical distributions. Section 3.5 discusses methods for 

obtaining stochastic variates from empirical distributions. Section 3.6 describes an 

alternative method for stochastic variates generation known as the rejection method. 

 

3.2 The inverse transformation method 

 

This method is applicable only to cases where the cumulative density function can be 

inversed analytically. Assume that we wish to generate stochastic variates from a 

probability density function (pdf) f(x). Let F(x) be its cumulative density function. We 

note that F(x) is defined in the region [0,1]. We explore this property of the cumulative 

density function to obtain the following simple stochastic variates generator. 
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 We first generate a random number r which  we set equal to F(x). That is,  F(x) = 

r. The quantity x is then obtained by inverting F. That is,  x = F-1(r),  where F-1(r) 

indicates the inverse transformation of F. 

 As an example, let us assume that we want to generate random variates with 

probability density function 

 

f(x) = 2x,  0 <_  x <_  1. 

 

A graphical representation of this probability density function is given in figure 3.1a. We 

first calculate the cumulative density function F(x). We have 

 

F(x) = ⌡⌠
0

x
 2tdt  

 = x2, 0 <_  x <_  1. 

 

Let r be a random number. We have 

 

r = x2, 

or 
x = r . 

 

2

f(x)

0

x

1

F(x) r

0

x 11

Figure 3.1a:  pdf f(x). Figure 3.1b: Inversion of F(x).  



Generating stochastic variates  35 

This inversion is shown graphically in figure 3.1b.  

 In sections 3 and 4 we employ the inverse transformation method to generate 

random variates from various well-known continuous and discrete probability 

distributions. 

 

3.3 Sampling from continuous probability distributions 

 

In this section, we use the inverse transformation method to generate variates from a 

uniform distribution, an exponential distribution, and an Erlang distribution. We also 

describe two techniques for generating variates from the normal distribution.  

 

3.3.1 Sampling from a uniform distribution 

 

The probability density function of the uniform distribution is defined as follows: 

 

 f(x) = 


 1

b-a a < x < b

0 otherwise
 , 

 

 and it is shown graphically in figure 3.2. 

 

f(x)

a b

1
b-a

 
Figure 3.2: The uniform distribution. 

 

The cumulative density function is: 
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F(x) = ⌡
⌠

a

x
1

b-a  dt  =  
1

b-a ⌡⌠
a

x dt   =  
x-a
b-a  . 

 

The expectation and variance are given by the following expressions: 
 

E(X) = 

! 

f(x)xdx
a

b

" =  

! 

1

b " a
xdx

a

b

# = 
b+a
2   

 

Var(X) = 

! 

(x - E(X))
2
 F(x)dx

a

b

" = 
(b-a)2

12    . 

 

 The inverse transformation method for generating random variates is as follows.  

 

r = F(x) = 
x-a
b-a  

or 

x = a + (b - a)r. 

 

3.3.2 Sampling from an exponential distribution 

 

The probability density function of the exponential distribution is defined as follows: 

 

f(x) = ae-ax , a > 0, x >_  0. 

 

The cumulative density function is: 

 

F(x) = 

! 

f(t)dt
0

x

" = 

! 

ae
"at
tdt

0

x

# = 1 - e-ax. 

 

The expectation and variance are given by the following expressions: 
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E(X) = 

! 

aet
"at
dt

0

#

$ dt  =  
1
a  

 

Var(X) = 

! 

(t "E(X))2e"attdt
0

#

$ dt = 
1
a2  . 

 

The inverse transformation method for generating random variates is as follows: 

 

r = F(x) = 1 - e-ax 

or 

1 - r = e-ax  

or 

x = - 
1
a  log(1-r) = - E(x)log(l-r). 

 

Since 1-F(x) is uniformly distributed in [0,1], we can use the following short-cut 

procedure  

 

r = e-ax, 

and therefore, 

x = -
1
a  log r. 

 

3.3.3 Sampling from an Erlang distribution 

 

In many occasions an exponential distribution may not represent a real life situation. For 

example, the execution time of a computer program, or the time it takes to manufacture 

an item, may not  be exponentially distributed. It can be seen, however, as a number of 

exponentially distributed services which take place successively. If the mean of each of 
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these individual services is the same, then the total service time follows an Erlang 

distribution, as shown  in figure 3.3.  

 

 

•!•!•1/a 1/a 1/a

 
Figure 3.3 : The Erlang distribution. 

 

The Erlang distribution is the convolution of k exponential distributions having 

the same mean 1/a. An Erlang distribution consisting of k exponential distributions is 

referred to as Ek. The expected value and the variance of a random variable X that 

follows the Erlang distribution are: 

 

E(X) = 
k
a  

and 

Var(X) = 
k
a2  . 

 

 Erlang variates may be generated by simply reproducing the random process on 

which the Erlang distribution is based. This can be accomplished by taking the sum of k 

exponential variates, x1, x2, ..., xk with identical mean 1/a. We have 

 

 x = ∑
i=1

k  xi  

 = - 
1
a ∑

i=1

k  log ri  = 
-1
a  




log ∑

i=1

k  ri   . 
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3.3.4 Sampling from a normal distribution 

 

A random variable X with probability density function  

 

f(x) = 
1

σ 2π   e
-
1
2 

(x-µ)2

σ2
  ,  -∞ < x < +∞, 

 

where σ is positive, is said to have a normal distribution with parameters µ and σ. The 

expectation and variance of X are µ and σ2 respectively. If µ=0 and σ=1, then the normal 

distribution is known as the standard normal distribution and its probability density 

function is  

 

f(x) = 
1
2π   e

- 
1
2 x2 

  ,   -∞ < x < +∞ . 

 

If a random variable X follows a normal distribution with mean µ and variance σ2, then 

the random variable Z defined as follows 

 

Z = 
X - µ
σ    

 

follows the standard normal distribution. 

 In order to generate variates from a normal distribution with parameters µ and σ, 

we employ the central limit theorem. (This approach is named after this particular 

theorem.)  The central limit theorem briefly states that if x1, x2, ... ,xn are n independent 

random variates, each having the same probability distribution with E(Xi)=µ and 

Var(Xi)=σ2, then the sum ΣXi = X1+X2+...+Xn approaches a normal distribution as n 

becomes large. The mean and variance of this normal distribution are: 

 

E(ΣXi) = nµ 
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Var (ΣXi) = nσ2. 

 

 The procedure for generating normal variates requires k random numbers r1, r2,... 

,rk. Since each ri is a uniformly distributed random number over the interval [0 ,1],  we 

have that 

 

E(ri) = 
a+b
2    =  

1
2  

 

Var(ri) = 
(b-a)2

12    = 
1
12  . 

 

Using the Central Limit theorem, we have that the sum Σri of these k random numbers 

approaches the normal distribution. That is 

 

Σri ~ N



k

2 , 
k
12   , 

 

or 

 

Σri - k/2
k/ 12    ~ N(0, 1).     (3.1) 

Now, let us consider the normal distribution with parameters µ and σ from which we 

want to generate normal variates. Let x be such a normal variate. Then 

 

x - µ
σ    ~ N(0,1).      (3.2) 

 

Equating (3.1) and (3.2) gives 

 



Generating stochastic variates  41 

x - µ
σ    =  

Σri - k/2
k/ 12    , 

or 

 

x = σ
12
k   





Σri - 
k
2   + µ . 

 

 This equation provides us with a simple formula for generating normal variates 

with a mean µ and standard deviation σ. The value of k has to be very large, since the 

larger it is the better the accuracy. Usually, one has to balance accuracy against 

efficiency. The smallest value recommended is k=10. (In fact, one can observe that k=12 

has computational advantages). 

 An alternative approach to generating normal variates (known as the direct 

approach) is the following. Let r1 and r2 be two uniformly distributed independent 

random numbers. Then 

 

x1 = (-2 loge r1)
1
2  cos 2πr2 

 

x2 = (-2 loge r1)
1
2  sin 2πr2 

 

are two random variates from the standard normal distribution. This method produces 

exact results and the speed of calculations compares well with the Central Limit approach 

subject to the efficiency of the special function subroutines. 

 

3.4 Sampling from discrete probability distributions 

 

In this section, we use the inverse transformation method to generate variates from a 

geometric distribution. Also, we describe a technique for sampling from a binomial 

distribution, and a technique for sampling from a Poisson distribution.  
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3.4.1 Sampling from a geometric distribution 

 

Consider a sequence of independent trials, where the outcome of each trial is either a 

failure or a success. Let p and q be the probability of a success and failure respectively. 

We have that  p+q=1. The random variable that gives the number of successive failures 

that occur before a success occurs follows the geometric distribution. The probability 

density function of the geometric distribution is 

 

p(n) = pqn,  n = 0,1,2, . . ., 

 

and its cumulative probability density function is 

 

F(n) = ∑
s=0

n
pqs  , n = 0, 1, 2, . . . 

 

 The expectation and the variance of a random variable following the geometric 

distribution are: 

 

E(X) = 
p
q  

 

Var(X) = 
p
q2  . 

 

 The generation of geometric variates using the inverse transformation method can 

be accomplished as follows. 

 

F(n)   = ∑
s=0

n
pqs    
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 = p ∑
s=0

n
qs  

 

  = p 
1 - qn+1

1 - q   . 

 

Since p = 1 - q, we have that F(n) = 1-qn+1. From this expression we obtain that  1-F(n) 

= qn+1. We observe that 1-F(n) varies between 0 and 1. Therefore, let r be a random 

number, then we have 

 

r = qn+1 

or 
log r = (n+1) log q 

or 

n = 
log r
log q   - 1. 

 

Alternatively, since (1-F(n))/q=qn, and (1-F(n))/q varies between 0 and 1, we have 

 

r = qn 

or 

n = 
log r
 log q  . 

 

3.4.2 Sampling from a binomial distribution 

 

Consider a sequence of independent trials (Bernoulli trials). Let p be the probability of 

success and q=1-p the probability of a failure. Let X be a random variable indicating the 

number of successes in n trials. Then, this random variable follows the Binomial 

distribution. The probability density function of X is  
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p (k) =  n
k  pkqn-k, k = 0, 1, 2, . . . 

 

The expectation and variance of the binomial distribution are: 

 

E(X) = np 

 

Var(X) = npq. 

 

 We can generate variates from a binomial distribution with a given p and n as 

follows. We generate n random numbers, after setting a variable k0 equal to zero. For 

each random number ri, i=1, 2, ..., n,  a check is made, and the variable ki is incremented 

as follows: 

 

ki = 

ki-1 + 1 if ri < p

ki-1 if ri > p   

 

The final quantity kn is the binomial variate. This method for generating variates is 

known as the rejection method. This method is discussed in detail below in section 6. 

 

3.4.3 Sampling from a Poisson distribution 

 

The Poisson distribution models the occurrence of a particular event over a time period. 

Let λ be the average number of occurrences during a unit time period. Then, the number 

of occurrence x during a unit period has the following probability density function 

 

p(n) = e-λ(λn/n!),  n = 0, 1, 2, . . . 

 

 It can be demonstrated that the time elapsing between two successive occurrences 

of the event is exponentially distributed with mean 1/λ, i.e., f(t) = λe-λt . One method for 
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generating Poisson variates involves the generation of exponentially distributed time 

intervals t1, t2, t3,... with an expected value equal to 1/λ. These intervals are accumulated 

until they exceed 1, the unit time period. That is,  

 

! 

ti

i=1

n

" <  1 < 

! 

ti

i=1

n+1

" . 

 

The stochastic variate n is simply the number of events occurred during a unit time 

period. Now, since ti = -
1
λ  logri, n can be obtained by simply summing up random 

numbers until the sum for n+1 exceeds the quantity e-λ. That is, n is given by the 

following expression: 

 

∑
i=0

n
 ri   >  e-λ  > ∑

i=0

n+1
 ri . 

 

3.5 Sampling from an empirical probability distribution 

 

Quite often an empirical probability distribution may not be approximated satisfactorily 

by one of the well-known theoretical distributions. In such a case, one is obliged to 

generate variates which follow this particular empirical probability distribution. In this 

section, we show how one can sample from a discrete or a continuous empirical 

distribution. 

 

3.5.1 Sampling from a discrete probability distribution 

 

Let X be a discrete random variable, and let p(X = i) = pi, where pi is calculated from 

empirical data. Let p(X≤i) = Pi be the cumulative probability. Random variates from this 

probability distribution can be easily generated as follows. Now let r be a random 

number. Let us assume that r falls between P2 and P3 (see figure 3.4). Then, the random 

variate x is equal to 3. In general, if Pi-1<r<Pi then x=i. This method is based on the fact 
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that pi=Pi-Pi-1 and that since r is a random number, it will fall in the interval (Pi, Pi-1) 

pi% of the time. 

 

 

0 1 2 3 • •!• n

r

P
1

2
P

3
P

1

x

• •!•

 
Figure 3.4: Sampling from an empirical discrete probability distribution. 

 

 As an example, let us consider the well-known newsboy problem. Let X be the 

number of newspapers sold by a newsboy per day. From historical data we have the 

following distribution for X. 

 

 

X 1 2 3 4 5 

f(x) 0.20 0.20 0.30 0.15 0.15 

 

 

The cumulative probability distribution is: 

 

X 1 2 3 4 5 

f(x) 0.20 0.40 0.70 0.85 1 

 

The random variate generator can be summarized as follows: 

 

1. Sample a random number r. 
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2. Locate the interval within which r falls in order to determine the random 

variate x.  

• If 0.85 < r ≤ 1.00  then  x = 5 

• If 0.70 < r ≤ 0.85  then x = 4 

• If 0.40 < r ≤ 0.70  then x = 3 

• If 0.20 < r ≤ 0.40  then x = 2 

• Otherwise       then x = 1 

 

3.5.2 Sampling from a continuous probability distribution 

 

Let us assume that the empirical observations of a random variable X can be summarized 

into the histogram shown in figure 3.5. From this histogram, a set of values (xi, f(xi)) can 

be obtained,  

 

f(x  )

x

1

f(x  )

f(x  )

2

3

f(x  )4

f(x  )
5

f(x  )
6

f(x  )7

1 2 3 4 5 6 7x x x x x x
 

 

Figure 3.5: Histogram of a random variable X. 

 

where xi is the midpoint of the ith interval, and f(xi) is the length of the ith rectangle. 

Using this set of values we can approximately construct the cumulative probability 

distribution shown in figure 3..6, where F(xi) = Σ1≤k≤1f(xk). The cumulative distribution 

is assumed to be monotonically increasing within each interval [F(xi-1), F(xi)].  
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x

F(x  )1

F(x  )2

F(x  )3

F(x  )
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Figure 3.6: The cumulative distribution. 

 

Now, let r be a random number and let us assume that F(xi-1)<r<F(xi). Then, using linear 

interpolation, the random variate x can be obtained as follows: 

 

x = xi-1 + (xi - xi-1) 
r - F(xi-1)

F(xi) - F(xi-1)  , 

 

where xi is the extreme right point of the ith interval.  

 

x1 2 3 4 nx x x x•!•!•

f(x)

f(x  )1

2f(x  )

3
f(x  )

4f(x  )

nf(x  )

 
 

Figure 3.7: "Discretizing" the probability density function. 
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 This approach can be also used to generate stochastic variates from a known 

continuous probability distribution f(x). We first obtain a set of values (xi, f(xi)) as shown 

in figure 3.7. This set of values is then used in place of the exact probability density 

function. (This is known as "discretizing" the probability density function.) Using this set 

of values we can proceed to construct the cumulative probability distribution and then 

obtain random variates as described above. The accuracy of this approach depends on 

how close the successive xi points are. 

 

c

a b

f(x)

1

 
Figure 3.8: Normalized f(x) 

 

3.6 The Rejection method 

 

The rejection technique can be used to generate random variates, if f(x) is bounded and x 

has a finite range, say a ≤ x ≤ b. The following steps are involved: 

 

• Normalize the range of f(x) by a scale factor c so that  cf(x) ≤ 1, a ≤ x ≤ b. (See 

figure 3.8) 

• Define x as a linear function of r, i.e. x = a + (b-a) r, where r is a random number.  

• Generate pairs of random numbers (r1, r2). 

• Accept the pair and use x = a + (b-a)r1 as a random variate whenever the pair 

satisfies the relationship r2 ≤ cf(a + (b-a)r1), i.e. the pair (x,r2) falls under the 

curve in figure 3.8. 

 

The idea behind this approach is that the probability of r2 being less than or equal to 

cf(x) is p[r2 ≤ cf(x)] = cf(x). Consequently, if x is chosen at random from the range (a,b) 
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and then rejected if r2>cf(x), the probability density function of the accepted x's will be 

exact.  

 We demonstrate the rejection method by giving two different examples. The first 

example deals with random variate generation, and the second example deals with a 

numerical integration problem. 

 

Example 1:  

Use the rejection method to generate random variates with probability density function 

f(x)=2x, 0≤x≤1.  

This can be accomplished using the following procedure: 

 

1. Select c such that df(x)≤1, i.e. c = 1/2. 

2. Generate r1, and set x = r1. 

3. Generate r2. If   r2 < cf(r1) = (1/2)2r1 = r1 then accept r2, otherwise, go back 

to step 2. 

 

Example 2:   

Use the rejection method to compute the area of the first quadrant of a unit circle.  

We first note that any pair of uniform numbers (r1, r2) defined over the unit 

interval corresponds to a point within the unit square. A pair (r1, r2) lies on the 

circumference if 

r
2
1 +r

2 
2  = 1. 

 

The numerical integration can be accomplished by carrying out the following two steps 

for a large number of times: 

 

1. Generate a pair of random numbers (r1, r2). 

2. If r2 < f(r1), , where f(r1) = 

! 

1" r1
2 , then r2 is under (or on) the curve and 

hence the pair (r1, r2) is accepted. Otherwise, it is rejected. 
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The area under the curve can be obtained as the ratio 

 

area = 
total number of acceptable pairs
total number of generated pairs    . 

 

 The rejection method is not very efficient when c(b-a) becomes very large. The 

method of mixtures can be used, whereby the distribution is broken into pieces and the 

pieces are then sampled in proportion to the amount of distribution area each contains. 

This process is identical to the rejection method for each piece of the distribution, plus a 

straightforward sampling of data. 

 

3.7 Monte Carlo methods 

 

Monte Carlo methods comprise that branch of experimental mathematics which is 

concerned with experiments on random numbers. Monte Carlo methods are usually 

associated with problems of theoretical interest, as opposed to the simulation methods 

described in this book, otherwise known as direct simulation. Unlike direct simulation 

techniques, Monte Carlo methods are not concerned with the passage of time. Every 

Monte Carlo computation that leads to quantitative results may be regarded as estimating 

the value of a multiple integral.  

 The previously demonstrated rejection method for calculating the integral of a 

function is an example of Monte Carlo, known as hit-or-miss Monte Carlo. An alternative 

method for calculating an integral of a function is the crude Monte Carlo method. Let us 

assume that we wish to calculate the one-dimensional integral 

 

θ = ⌡⌠
0

1
f(x)dx  . 

 

Let ζ1,ζ2,...ζn, be random numbers between 0 and 1. Then, the quantities fi = f(ζi) are 

independent random variates with expectation θ. Therefore, 
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f
_
   =  

1
n  ∑

i=1

n
fi  

 

is an unbiased estimator of θ. Its variance can be estimated using the expression 

 

s2 = 
1

n-1 ∑
i=1

n
 (fi - f

_
) 2 . 

Thus, the standard error of f
_
  is s/ n . 

 The above technique of evaluating θ is based on the following idea. In general, if 

X is a random variable that takes values in [0,1] and f(x) is a function of this random 

variable, then  

 

E(f(x) = ⌡⌠
0

1
f(x)g(x)dx  

 

where g(x) is the density function of X. Assuming that X is uniformly distributed in (0,1), 

i.e. g(X) = 1, we obtain 

 

E(f(x)) = ⌡⌠
0

1
f(x)dx  . 

 

Thus, f
_
  is an unbiased estimate of E(f(X)). 

 This technique is more efficient than the technique mentioned in the previous 

section.  
 

Problems 
 

1. Use the inverse transformation method to generate random variates with 

probability density function 
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 f(x)  = 

3x2 , 0 ≤ x ≤ 1
0 , otherwise   

  

2. Apply the inverse transformation method and devise specific formulae that yield 

the value of variate x given a random number r. (Note that f(x) below needs to be 

normalized.) 

 

f(x)  = 

! 

5x 0 " x " 4

x # 2 4 < x "10

$ 
% 
& 

 

 

3. Set up a procedure to generate stochastic variates from 

 

f(x)  = 

! 

x 0 " x "1/2

1# x 1/2 < x "1

$ 
% 
& 

 

 

4. A customer in a bank may receive service which has an Erlang distribution E3 

(each phase with mean 10) or an Erlang distribution E4 (each phase with mean 5) 

with probability  0.4 and 0.6 respectively. Set-up a procedure to generate random 

variates of a customer's service. 

 

5. Use the rejection method to generate stochastic variates from 

 

f(x) = (x-3)4,   0 ≤ x ≤ 10 

 

6. Modify the procedure for generating stochastic variates from an Erlang 

distribution, in order to generate variates from a Coxian distribution. A Coxian 

distribution consists of a series of exponential distributions, each with a different 

mean, and it has the following structure:  
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µ

b
1

2 n

b

µ µ
a
1

a
2

1

2

...

 
 

 After receiving an exponential service  time with parameter µ1, there  is a  

probability b1(=1-a1) of departing, or a probability a1 of receiving another 

exponential service time with parameter µ2, and so on until the kth exponential 

service is received.  

 

Computer Assignments 

 

1. Test statistically one of the stochastic variates generator discussed in this Chapter. 

 

2. Consider the machine interference problem. Change your simulation program so 

that the operational time and the repair time of a machine are exponentially 

distributed with the same means as before. Make sure that your clocks are defined 

as real variables. Run your simulation model as before. Each time an event 

occurs, print out a line of output to show the new value of the clocks and the other 

relevant parameters. 

 

3. Consider the token-based access scheme. Change your simulation program so that 

the inter-arrival times are exponentially distributed with the same means as 

before. The switch over time and the time period T remain constant as before. The 

packet transmission time is calculated as follows. We assume that 80% of the 

transmitted packets are due to interactive traffic (i.e. computer/terminal type of 

traffic), and 20% of the transmitted packets are due to file transfer. Packets due to 

interactive traffic tend to be short, whereas packets due to file transfers tend to be 

large. Consequently, we will assume that the time to transmit an interactive packet 

is exponentially distributed with mean 2.5, and the time to transmit a file transfer 

packet is exponentially distributed with mean 20. 
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Make sure that your clocks are defined as real variables. Run your simulation 

model as before. Each time an event occurs, print out a line of output to show the 

new value of the clocks and the other relevant parameters 

 

4. Consider the two-stage manufacturing system. Change your simulation program 

so that the inter-arrival, service, operational, and repair times are all exponentially 

distributed with the same means as before. Make sure that your clocks are defined 

as real variables. Run your simulation model as before. Each time an event 

occurs, print out a line of output to show the new value of the clocks and the other 

relevant parameters. 

  

Solutions to the above problems 

 

1. ⌡⌠

0

1
f(x)  dx = ⌡⌠

0

1
3x  dx = 3 

x3
3  

1
0

 = 3
1
3   = 1 

 F(x) = ⌡⌠
0

x
3t2  dt = 3 

t3
3  

x
0

 = 
3x3
3    = x3 

 Hence, r = x3 or x = 3 r . 
 

2. F(x)  = ⌡⌠
0

x
stdt  ,x < 4 

          = 5
t2
2  

x
0

 =  
5
2  x2 

 F(x) = ⌡⌠
0

4
5tdt   = ⌡⌠

4

x
(t - 2)dt  ,x > 4 

  =  5
t2
2  

4
0

  + 
t2
2   - 2t 


x
4

  

  = 40 + 
x2
2   - 2x - 



16

2  - 8   
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 F(x) = 


 

5
2 x2  0 ≤ x ≤ 4

 40 + 
x2
2  - 2x  4 < x ≤ 10

  

 
 In order to normalize f(x), we have 
 

 ⌡⌠

0

4
5xdx  + = ⌡⌠

4

10
(x - 2)dx  

 or 
 

 =  
5
2  x2 


4
0

 + 
x2
2    - 2x 


10

4
  

 = 
5
2   16 + 

100
2   = 2 x 10 - 

42
2   + 2 - 4 

 
 Thus, 
 

 F(x) = 


 

1
70 

5
2 x2  0 ≤ x ≤ 4

 
1
70 





40 + 
x2
2  - 2x  4 < x ≤ 10

  

 
 Procedure: 
  Draw a random number r.  

   If r < 
40
70   then r = 

5
140  x2 or x = 

140
5  xr . 

  Otherwise, r = 
1
70 





40 + 
x2
2  - 2x  , from which one can solve for x. 

 
5. Step 1. Use calculus to establish the bounds of f(x) 
 

3

1 2 3

7

10

4

4
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 Thus c = 1/74 
 
 Step 2: 
  2.1 generate r1. Then 10r1. 
  2.2 generate r2. 

   if r2 < 
1
74  f(10r1) then accept 10r1 as a stochastic variate. 

   Otherwise go back to 2.1. 
 





 

 

 

 

CHAPTER 4: 

 

SIMULATION DESIGNS 
 

 

4.1 Introduction 

 

In this Chapter, we examine three different designs for building simulation models. The 

first two designs are: a) event-advance and b)unit-time advance. Both these designs are 

event-based but utilize different ways of advancing the time. The third design is activity-

based. The event-advance design is the most popular simulation design.  

  

4.2 Event-advance design 

 

This is the design employed in the three examples described in Chapter 1. The basic idea 

behind this design is that the status of the system changes each time an event occurs. 

During the time that elapses between two successive events, the system's status remains 

unchanged. In view of this, it suffices to monitor the system's status. In order to 

implement this idea, each event is associated with a clock. The value of this clock gives 

the time instance in the future that this event will occur. The simulation model, upon 

completion of processing an event, say at time t1, regroups all the possible events that 

will occur in the future and finds the one with the smallest clock value. It then advances 

the time, i.e., the master clock, to this particular time when the next event will occur, say 

time t2. It takes appropriate action as dictated by the occurrence of this event, and then 

repeats the process of finding the next event (say at time t3). The simulation model, 

therefore, moves through time by simply visiting the time instances at which events 

occur,. In view of this it is known as event-advance design. 
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 In the machine interference problem, described in section 3.1 of Chapter 1, there 

are two types of events. That is, the event of an arrival at the repairman's queue, and the 

event of a departure from the repairman's queue. These events are known as primary 

events. Quite often the occurrence of a primary event may trigger off the creation of a 

new event. For instance, the occurrence of an arrival at the repairman's queue may trigger 

off the creation of a departure event (if this arrival occurs at a  time when the repairman is 

idle). Such triggered events are known as conditional events. The basic approach of this 

design is shown in the flow chart in figure 4.1. 

 

 

A

Find next 
event

Advance
time

Take appropriate
action depending

on the type
of event

Any
conditional

events
?

A
no

yes

Create a new
event(s)

Future
event
list

A

Future
event
list

 
 

Figure 4.1: The event-advance simulation design. 
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4.3 Future event list 

 

Let us assume that a simulation model is currently at time t. The collection of all events 

scheduled to occur in the future (i.e., events with clock greater than t) is known as the 

future event list. For each event scheduled to occur in the future, the list contains the 

following information: 

 

• Time of occurrence (i.e., value of the event's clock) 

• Type of event 

The event type is used in order to determine what action should be taken when the event 

occurs. For instance, using the event type the program can determine which procedure to 

call or to which statement in the program to go to. 

In each of the simulation examples described in section 3 of Chapter 1, there were 

only a few events. For instance, in the case of the machine interference problem there 

were only two: an arrivals at the repairman's queue and a service-ending (departure) 

event. However, when simulating complex systems, the number of events may be very 

large. In such cases, finding the next event might require more than a few comparisons. 

Naturally, it is important to have an efficient algorithm for finding the next event since 

this operation may well account for a large percentage of the total computations involved 

in a simulation program. The efficiency of this algorithm depends upon the amount of 

information kept in the future event list, and the way this information is stored in the 

computer. An event list should be stored in such a way so as to lend itself to an efficient 

execution of the following operations. 

 
• Locating the next future event time and the associated event type. 

• Deleting an event from the list after it has occurred. 

• Inserting newly scheduled events in the event list. 

 
 Below we examine two different schemes for storing an event list. In the first 

scheme, the event list is stored in a sequential array. In the second scheme, it is stored as 

a  linked list. 
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4.3.1 Sequential arrays 

 

In this scheme,  all future event times are stored sequentially in an array. The simplest 

way to implement this, is to associate each event type with an integer number i. The clock 

associated with this event is always stored in the ith location of the array . For instance, in 

figure 4.2, the clock CL1 for event type 1 is kept in the first location of the array, the 

clock CL2 for the event type 2 is kept in the second position of the array, and so on. 

 

 

CL CL CL CL1 2 3 n
•  !•   !•

 
 

Figure 4.2: Future event list stored sequentially in an array. 

 

 Finding the next event is reduced to the problem of locating the smallest value in 

an array. The following simple algorithm can be used to find the smallest value in an 

array A. 

 

 num  ← 1 
 help ← A(1) 
 for i ← 1,n 
  if help ≤ A(i) then continue else 
   help ← A(i) 
   num ← i 
 

Variable num will eventually contain the location of the array with the smallest value. If 

num=i, then the next event is of type i and it will occur at time A(i). 

 An event is not deleted from the array after it has occurred. However, its clock 

should not be considered when locating the next event. This can be avoided by simply 

setting its clock to a very large value so that the above algorithm will never select this 

event as the next event to occur. Finally, a newly-scheduled event j is inserted in the list 

by simply updating its clock given by A(j). 
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 The advantage of storing an event list in a sequential array is that insertions of 

new events and deletions of caused events can be done very easily (i.e., in constant time). 

The time it takes to find the smallest number in the array depends, in general, on the 

length of the array n (i.e., its complexity is linear in time). Locating the smallest number 

in array does not take much time if the array is small. However, if the array is large, it 

becomes very time consuming. For such cases, one should store the future event list in a 

linked list. 

 

 

a a a
1 2 3

F a
n 0. . .

 
 

Figure 4.3: A linked list. 

 

4.3.2 Linked lists 

 

A linked list representation of data allows us to store each data element of the list in a 

different part of the memory. In order to access the data elements in the list in their 

correct order, we store along with a data element the address of the next data element. 

This is a pointer pointing to the location of the next data element. This pointer is often 

referred to as a link. The data element and the link (or links) is generally referred to as a 

node. In general, a node may consist of a number of data elements and links. Linked lists 

are drawn graphically as shown in figure 4.3. Each node is represented by a box 

consisting of as many compartments as the number of data elements and links stored in 

the node. In the example given in figure 4.3, each node consists of two compartments, 

one for storing a data element and the other for storing the pointer to the next node. 

Pointer F points to the first node in the list. If the linked list is empty, i.e., it contains no 

nodes, then F is set to zero. The pointer of the last node is always set to zero indicating 

that this is the last node in the linked list structure. Due to the fact that two successive 

nodes are connected by a single pointer, this data structure is known as a singly linked 

list. 
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Figure 4.4: Future event list stored sequentially in a linked list. 

 

 A single linked list can be used to store a future event list as shown in figure 4.4. 

Each node will consist of two data elements, namely a clock CLi showing the future time 

of an event, and a value i indicating the type of event. The nodes are arranged in an 

ascending order so that CLi ≤ CLj ≤ . . . ≤ CLn. 
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Figure 4.5: An implementation of a singly linked list 

 

In order to get a better insight into linked list structures, let us consider the 

following example. Integer numbers are stored arbitrarily in various locations of an array 

T. It is required that these numbers are maintained in an ascending order. This can be 

achieved by setting up an equally dimensioned array, P, as shown in figure 4.5. Each 

location i of P is associated with the corresponding location i of T. The content of P(i) is 

a pointer to a location in array T which contains the next larger number after T(i). For 

instance, P(1)=7. That means that the next larger number after T(1) is in the 7th location 

of T, i.e. it is T(7). Thus, array P permits the occupied locations of T to be linked an 
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ascending order. Pointer F (=5) points to the lowest integer number. This is a simple 

implementation of a singly linked list. A node consists of a location in T and its 

corresponding location in P. For instance, the second node is given by the pair (T(3), 

P(3)) and it contains (4, 1). 

 Linked list structures provide the means to do insertions and deletions very easily. 

For instance, let us assume that we want to delete number 10. Using pointer F, we first 

check the value stored in the first node (T(5), P(5)). Using pointer P(5) we can locate the 

second node (T(3), P(3)). Pointer P(3) gives the address of the third node (T(1), P(1)), 

whose pointer P(1) contains the address of the sought node. Given, therefore, that we 

know the address of the first node of the linked list, we can easily visit all the other nodes 

of the list. Note that we can only move forward and not backwards. This is due to the fact 

that the nodes are singly linked. At each node, we only know the location of the next 

node, and we do not know the location of the previous node.  
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Figure 4.6: Deletion of node containing the value  10. 

 

 Now, deletion of a node simply means that we change the value of the pointer of 

the previous node, so that this particular node is no longer part of the linked list. In 

particular, the previous node is (T(1), P(1)) = (5, 4). Now, the node containing 10 has a 

pointer P(7) = 4. In order to delete the node, it suffices to set P(1) = P(7) = 4, as shown in 
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figure 4.6. The information pertaining to this node will be still in the arrays T and P. 

However, it will no longer be accessible from the linked list. In figure 4.6, the above 

deletion is shown using the standard graphical representation of linked lists. 
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Figure 4.6: Deletion of node containing the value 10 using the linked list representation. 

 

 Insertions can be carried out just as easily. Let us assume that we want to insert 

number 6 in the linked list. The first step is to locate the two successive nodes in between 

of which 6 will be inserted. Starting from the first node, we sequentially search the nodes 

until we find that the new node has to be inserted between (5, 4) and (12, 8). In order to 

do this, we first have to acquire an unused location in T. Let this be T(2). We set T(2)=6 

and then we link (T(2), P(2)) to the list by appropriately rearranging the pointers P(2) and 

P(1). That is P(1)=2 and P(2)=4, as shown in figure 4.7. 
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Figure 4.7:  Insertion  of node containing the value  6. 
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Using the standard graphical representation of linked lists, the above insertion is shown 

figure 4.8. 
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Figure 4.8: Insertion of node containing the value 6 using the linked list representation. 

 

4.3.3 Implementation of linked lists 

 

In order to process linked list structures, one has to be able to carry out the following 

basic operations. 

 

• Organize information such as data elements and pointers into a node. 

• Access a node through the means of a pointer. 

• Create a new node(s) or delete an existing unused node(s). 

 

Programming languages provide commands that permit the user to carry out the above 

operations. However, if such commands are not available, the user has to set-up an 

appropriate storage scheme where these basic operations can be implemented. Such a 

storage scheme can be easily set up by using sequential arrays as shown in the previous 

section. If each node consists of K data elements and a pointer, then this storage scheme 

requires K+1 arrays. The arrays should be long enough in order to accommodate the 

maximum number of nodes that might be generated during the execution of the 

simulation program. All the unused nodes have to be linked together in order to form a 

pool of free nodes. Creating a new node would simply require getting a node from the 

pool of free nodes. Similarly, discarding a node from the linked list would simply require 

that this node be transferred back to the pool. 
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 In the following, we assume that each node consists of two fields, namely a 

DATA field containing a data element and a LINK field containing a pointer. 

Furthermore, we will assume a storage scheme whereby either fields of node i can be 

accessed using DATA(i) and LINK(i). The pool of free nodes is assumed to be managed 

by the following two functions: 

 

1. GETNODE (X): This provides a pointer X to a free node. This command can 

be used when creating a new node. 

2. RET (X): This returns a node with address X back to the pool of free nodes. 

 

Create a linked list 

 

The following procedure creates a linked list consisting of two nodes containing the 

integer numbers 1 and 4. This procedure can be easily expanded to create the linked list 

given in section 4.3.2. 

 

Procedure CREATE (F) 
// F points to the first node of the linked list. // 
call GETNODE (F) 
DATA (F) ← 1 
call GETNODE (I) 
LINK (F) ← I 
DATA (I) ← 4 
LINK (I) ← 0 
end CREATE 

 

Deletion of a node 

 

The following procedure deletes the node containing the data element 10 from the linked 

list given in the example in section 4.3.2. It is assumed that data element 10 occurs only 

once. Otherwise, the first node encountered that contains 10 will be deleted. 

 

Procedure DELETE (F, C) 
// F points to the first node of the linked list and C=10, Initial condition LINK (F) 
= F // 
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If F = 0 then error: list empty 
I ← J ← F 
do 
If DATA (I) = C then  
 [LINK (J) ← LINK (I) 
 RET(I) 
 exit] 
else [J ← I 
 I ← LINK (I)] 
forever 
end DELETE 

 

Insertion of a new node 

 

The following procedure inserts a node containing the data element G in the linked list 

given in example 4.3.2. 

 

Procedure INSERT (F, G) 
//  F points to the first node of the linked list and C is the data element to be 
inserted, i. e., C = 6 // 
If F = 0 then  
 [GETNODE (X) 
 DATA (X) ← C 
 LINK (X) ← 0 
 F ← X 
 exit] 
If DATA (F) > C then  
 [GETNODE (X) 
 DATA (X) ← C 
 LINK (X) ← F 
 F ← X 
 exit] 
J ← F 
I ← LINK (J) 
do 
if DATA (I) > C then  
 [GETNODE (X) 
 DATA (X) ← C 
 LINK (X) ← LINK (J) 
 LINK (J) ← X 
 exit] 
else  [J ← I 
 I ← LINK (I)] 
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forever 
end INSERT 

 

Managing the storage pool 

 

The storage pool contains all the nodes that are not being used. Function GETNODE 

removes a node from the pool, and function RET returns a node to the pool. Most high-

level languages provide commands similar to GETNODE and RET. The following set of 

procedures can be used to manage the storage pool in the absence of such commands. In 

the following, it is assumed as above that the linked list is stored using sequential arrays. 

Before using the linked list for the first time, all available nodes are linked 

together as follows. 

 

Procedure INIT (n) 
//The number of nodes to be linked is n. AV is the pointer to the first node.// 
For i ← 1 to n - 1 do 
 LINK (I) ← i + 1 
end LINK (n) ← 0 
 AV ← 1 
end INIT 
 

Procedures GETNODE (X) and RET (X) can be implemented as follows. 

 

Procedure GETNODE (X) 
// X points to a node to be used by the linked list // 
if AV = 0  then error:  no more nodes 
else [X ← AV 
        AV ← LINK (AV)] 
end GETNODE 
 

Procedure RET (X) 
// X points to a node which is to be returned back to the pool // 
LINK (X) ← AV 
AV ← X 
end RET 
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4.3.4 Future event list 

 

The future event list can be implemented as a singly linked list as described in 4.3.2 and 

shown in figure 4.4. Data element CLi and i describe each event scheduled to occur in the 

future. The nodes are organized so that CLi ≤ CLj ≤ . . . ≤ CLn. Thus, in order to obtain 

the next event, it suffices to look up the node pointed to by F. When this event has 

occurred, it can be deleted from the list by simply executing RET(F) and then setting F 

← LINK (F). A newly generated event can be appropriately inserted using the insertion 

procedure given in 4.3.3. 

 It is obvious that locating the next event and deleting a caused event can be done 

in constant time. However, in order to insert a new event with clock CLm, it is necessary 

to search sequentially each node, starting from the first node, until we find the first node 

with clock CLk, such that CLm > CLk. The time to carry out this operation, in general, 

depends on the number of events n in the list, i. e., it is linear on n. The worst case, in 

fact, is to have to search all nodes in the list. Searching a linked list might be time 

consuming if n is very large. In this case, one can employ better searching procedures. 

For example, a simple solution is to maintain a pointer B to a node which is in the middle 

of the linked list. This node logically separates the list into two sublists. By comparing 

CLm with the clock stored in this node, we can easily establish in which sublist the 

insertion is to take place. The actual insertion can then be located by sequentially 

searching the nodes of the sublist. 

 

4.3.5 Doubly linked lists 

 

So far we have examined singly linked lists. The main disadvantage of these lists is that 

they can be only traversed in one direction, namely from the first node to the last one. 

Doubly linked lists allow traversing a linked list in both directions. This is enabled by 

linking two successive nodes with two pointers as shown in figure 4.9. Depending upon 

the application, a doubly-linked list may be more advantageous than a singly-linked list. 
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A doubly-linked list can be processed using procedures similar to those described in 

section 4.3.3. 
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Figure 4.9: A doubly linked list. 

 

4.4 Unit-time advance design 

 

In the event-advance simulation, the master clock is advanced from event to event. 

Alternatively, the master clock can be advanced in fixed increments of time, each 

increment being equal to one unit of time. In view of this particular mode of advancing 

the master clock, this simulation design is known as the unit-time advance design. Each 

time the master clock is advanced by a unit time, all future event clocks are compared 

with the current value of the master clock. If any of these clocks is equal to the current 

value of the master clock, then the associated event has just occurred and appropriate 

action has to take place. If no clock is equal to the current value of the master clock, then 

no event has occurred and no action has to take place. In either case, the master clock is 

again increased by unit-time and the cycle is repeated. This mode of advancing the 

simulation through time is depicted in figure 4.10. The basic approach of the unit-time 

design is summarized in the flow-chart in figure 4.11. 
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Figure 4.10: The unit-time advance design. 
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Figure 4.11: The unit-time advance design. 

 

 In the flow-chart of the unit-time simulation design, given in figure 4.11, it was 

implicitly assumed that a future event clock is a variable which, as in the case of the 

event-advance design, contains a future time with respect to the origin. That is, it contains 

the time at which the associated event will occur. Alternatively, a future clock can simply 

reflect the duration of a particular activity. For instances, in the machine interference 

problem, the departure clock will simply contain the duration of a service, rather than the 

future time at which the service will be completed. In this case, the unit-time design can 
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be modified as follows. Each time the master clock is advanced by a unit of time, the 

value of each future clock is decreased by a unit-time. If any of these clocks becomes 

equal to zero, then the associated event has occurred and appropriate action has to take 

place. Obviously, the way one defines the future event clock does not affect the unit-time 

simulation design.  
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Figure 4.12: A unit-time advance design of a single server queue. 

 

 In order to demonstrate the unit-time advance design, we simulate a single queue 

served by one server. The population of customers is assumed to be infinite. Figure 4.12 

gives the flow-chart of the unit-time design. Variable AT contains the inter-arrival time 
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between two successive arrivals. Variable ST contains the service time of the customer in 

service. Finally, variable MCL contains the master clock of the simulation model. 

 

4.4.1 Selecting a unit-time 

 

The unit-time is readily obtained in the case where all future event clocks are represented 

by integer variables. For, each event clock is simply a multiple of the unit-time. However, 

quite frequently future event clocks are represented by real variables. In this case, it is 

quite likely that an event may occur in between two successive time instants of the master 

clock as shown in figure 4.13. Obviously, the exact time of occurrence of an event E is 

not known to the master clock. In fact, as far as the simulation is concerned, event E 

occurs at time t+1 (or t+2 depending upon how the program is set-up to monitor the 

occurrence of events). This introduces inaccuracies when estimating time parameters 

related to the occurrence of events. Another complication that might arise is due to the 

possibility of having multiple events occurring during the same unit of time. 

 

 

t E E
ij

time

t + 1 t + 2 t + 4t + 3

 
 

Figure 4.13: Events occurring in between two successive values of the master clock. 

 

 In general, a unit-time should be small enough so that at most one event occurs 

during the period of a unit of time. However, if it is too small, the simulation program 

will spend most of its time in non-productive mode, i.e. advancing the master clock and 

checking whether an event has occurred or not. Several heuristic and analytic methods 

have been proposed for choosing a unit-time. One can use a  simple heuristic rule such as 

setting the unit-time equal to one-half of the smallest variate generated. Alternatively,  

one can carry out several simulation runs, each with a different unit-time, in order to 

observe its impact on the computed results. For instance, one can start with a small unit 
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time. Then, it can be slightly increased. If it is found to have no effect on the computed 

results, then it can be further increased, and so on. 

 

4.4.2 Implementation 

 

The main operation related to the processing of the future event list is to compare all the 

future event clocks against the master clock each time the master clock is increased by a 

unit time. An implementation using a sequential array as described in section 4.3.1 would 

suffice in this case. 

 

4.4.3 Event-advance vs. unit-time advance 

 

The unit-time advance method is advantageous in cases where there are many events 

which occur at times close to each other. In this case, the next event can be selected fairly 

rapidly provided that an appropriate value for the unit-time has been selected. The best 

case, in fact, would occur when the events are about a unit-time from each other. 

 The worst case for the unit-time advance method is when there are few events and 

they are far apart from each other. In this case, the unit-time advance design will spend a 

lot of non-productive time simply advancing the time and checking if an event has 

occurred. In such cases, the event-advance design is obviously preferable. 

 

4.5 Activity-based simulation design 

 

This particular type of simulation design is activity based rather than event based. In an 

event oriented simulation, the system is viewed as a world in which events occur that 

trigger changes in the system.  For instance, in the simulation model of the single server 

queue considered in section 4, an arrival or a departure will change the status of the 

system. In an activity oriented simulation, the system modelled is viewed as a collection 

of activities or processes. For instance, a single server queueing system can be seen as a 

collection of the following activities:  a) inter arriving, b) being served, and c) waiting for 

service. In an activity based design, one mainly concentrates on the set of conditions that 



Simulation designs  77 

determine when activities start or stop. This design is useful when simulating systems 

with complex interactive processing patterns, sometimes referred to as machine-oriented 

models.  

 We demonstrate this design by setting up an activity-based simulation model of 

the single server queue problem studied in section 4. Let STi and WTi be the service time 

respectively the waiting time of the ith arrival. Also, let ATi+1 be the interarrival time 

between the ith and (i+1)st arrival. Finally, let us assume that the ith arrival occurs at time 

ai, starts its service at time si and ends its service at time si + STi, as shown in figure 

4.14.  
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Figure 4.14:  Time components related to the ith arrival. 

 

 Let us assume now that we know the waiting time WTi and the service time STi 

of the ith customer. Let  ATi+1 be the inter-arrival time of the (i+1)st customer. Then, 

one the following three situations may occur. 

 

a. The (i+1)st arrival occurs during the time that the ith arrival is waiting.  

b. The (i+1)st arrival occurs when the ith arrival is in service 

c. The (i+1)st arrival occurs after the ith arrival has departed from the queue 

 



78  Computer Simulation Techniques 

 

A

Generate
AT

Compare
TW with

AT

TW = ST

A

Generate
ST

TW > AT TW ! AT

Initial
conditions

Next arrival 
occurs when 
server is idle

TW = ST + (TW - AT)

A

Generate
ST

Empty system
WT = ST = 0, TW = 0

Next arrival occurs
when current arrival
is either waiting or 

is in service

 
 

Figure 4.15: An activity-based simulation design for a single server queue. 

 

For each of these three cases, the waiting time WTi+1 of the (i+1)st customer can be 

easily determined as follows: 

 

a) WTi+1 = (WTi -ATi+1) + STi 

  = (WTi + STi) - ATi+1 

  = TWi - ATi+1, 

where TWi is the total waiting time in the system of customer i. 

 

b) WTi+1 = (WTi + STi) - ATi+1 
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  = TWi - ATi+1 

 

c)  WTi+1=  0 

 

Having calculated WTi+1, we generate a service time STi+1 for the (i+1)st arrival, and 

an inter-arrival time ATi+2 for the (i+2)nd arrival. The waiting time of the (i+2)nd arival 

can be obtained using the above expressions. The basic mechanism of this activity-based 

simulation model is depicted in figure 4.15. 

 

4.6 Examples 

 

In this section, we further highlight the simulation designs discussed in this Chapter by 

presenting two different simulation models. 

 

4.6.1 An inventory system 

 

In an inventory system, one is mainly concerned with making decisions in order to 

minimize the total cost of the operation. These decisions are mainly related to the 

quantity of inventory to be acquired (or produced) and the frequency of acquisitions. The 

total cost of running an inventory system is made up of different types of costs. Here, we 

will consider the following three costs:  a) holding cost, b) setup cost, and c) shortage 

cost. The holding cost is related to the cost of keeping one item of inventory over a period 

of time. One of the most important components of this cost is that of the invested capital. 

The setup cost is related to the cost in placing a new order or changes to production. 

Finally, the shortage cost is associated with the cost of not having available a unit of 

inventory when demanded. This cost may be in the form of transportation charges (i.e., 

expediting deliveries), increased overtime, and loss of future business. 

Let It be the inventory at time t. Let S be the quantity added in the system 

between time t and t´. Also, let D be the demand between these time instances. Then, the 

inventory at time t´ is 
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It´ =  It + S - D. 

 

If It´ is below a certain value, then an order is placed. The time it takes for the ordered 

stock to arrive is known as the lead time. We assume that the daily demand and the lead 

time follow known arbitrary distributions. The inventory level is checked at the end of 

each day. If it is less than or equal to the re-ordering level, an order is placed. The lead 

time for the order begins to count from the following day. Orders arrive in the morning 

and they can be disposed of during the same day. During stockout days, orders are 

backlogged. They are satisfied on the day the order arrives. The fluctuation in the 

inventory level is shown in figure 4.16. 
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Figure 4.16: An inventory system. 

 

The simulation model is described in the flow chart given in figures 4.17 and 4.18. The 

model estimates the total cost of the inventory system for specific values of the 

reordering point and the quantity ordered. The model keeps track of It on a daily basis. In 

view of this, the model was developed using the unit-time advance design. We note that 

this design arises naturally in this case. A unit of time is simply equal to one day. The 

lead time is expressed in the same unit-time. The basic input parameters to the simulation 

model are the following. a) ROP, reordering point, b) Q, quantity ordered, c) BI, the 

beginning inventory, d) probability distributions for variables D and LT representing the 

daily  demand and lead time, respectively, e) T, the total simulation time, and f) C1, C2, 

C3, representing the holding cost per unit per unit time, the setup cost per order, and the 
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shortage cost per unit per unit time, respectively. The output parameters are TC1, TC2, 

TC3 representing the total holding, setup and shortage costs respectively. 
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Figure 4.17: A unit-time simulation design of an inventory system. 
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Figure 4.18: A unit-time simulation design of an inventory system. 

 

4.6.2 A round-robin queue 

 

Let us consider a computer system consisting of N terminals accessing a single CPU. A 

user at a terminal spends sometime thinking (i.e., typing a line or thinking what to do 

next), upon completion of which it creates a job that is executed at the CPU. (Every time 

the user hits the return key a process runs on the CPU). We assume that a user at a 

terminal continuously cycles through a think time and a CPU time, as shown  in figure 

4.19. During the time that a user’s job is being executed, the user cannot submit another 

job. 
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Figure 4.19: Cycling through a think time and a CPU time 

 

 Jobs accessing the CPU are served in a round robin manner. That is, each job is 

allowed to use the CPU for a small quantum of time. If the job is done at the end of this 

quantum (or during the quantum), then it departs from the CPU. Otherwise, it is simply 

placed at the end of the CPU queue. In this manner, each job in the CPU queue gets a 

chance to use the CPU. Furthermore, short jobs get done faster than long ones. A job that 

leaves the CPU simply goes back to the originating terminal. At that instance the user at 

the terminal goes into a think state. The think time is typically significantly longer than 

the duration of a quantum. For instance, the mean think time could be 30 seconds, 

whereas a  
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Figure 4.20: A round-robin queue 

 

quantum could be less than 1 msec. A job, in general, would require many CPU quanta. If 

a job requires 5 seconds of CPU time, and a quantum is 1 msec, then it would cycle 

through the CPU queue 5000 times. 
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The queueing system reflecting this round-robin queue is shown in figure 4.20. 

This system is similar to the machine interference problem. The terminals are the 

machines and the CPU is the repairman. A terminal in the think state is like a machine 

being operational. The main difference from the machine interference problem is that the 

CPU queue is served in a round robin fashion rather in a FIF0 manner. 

 The basic events associated with this system are: a) arrival of a job at the CPU 

queue, and b) service completion at the CPU. A job arriving at the CPU queue may be 

either a new arrival (i.e., a user at a terminal hit the return key, thus completing the think 

state), or it may be a job that has just received a quantum of CPU time and it requires 

further processing. A departing job from the CPU may either go back to the originating 

terminal, or it may simply join the end of the CPU queue for further execution. We 

observe that during the time that the CPU is busy, departure events occur every quantum 

of time. However, new arrivals of jobs at the CPU queue occur at time instances which 

may be a few hundreds of quanta apart.  

 Following the same approach as in the machine interference problem, described in 

section 1.3.1 of Chapter 1, we can easily develop an event-advance simulation model. We 

observe that in this case, the event-advance design is quite efficient. The future event list 

will contain one event associated with a departure from the CPU and the remaining 

events will be associated with future new arrivals of jobs. When a departure occurs, most 

likely a new departure event will be scheduled to occur in the next quantum of time. This 

new event will more likely be the next event to occur. In view of this, most of the time, a 

newly created event will be simply inserted at the top of the future event list. Such 

insertions can be done in 0(1) time. 
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Figure 4.21: Future event list of all new arrivals to the CPU queue. 

 

 We now give an alternative simulation model of the round-robin queue which 

utilizes both the event-advance and unit-time advance designs! Specifically, all the events 
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related to new arrivals at the CPU queue are kept in a linked list as shown in figure 4.21. 

Each node contains a future event time and a terminal identification number. The event 

time simply shows the time at which the user will stop thinking and will access the CPU. 

Nodes are ordered in an ascending order of the data element that contains the future event 

time. Thus, the next new arrival event is given by the first node of the linked list. 

 

 

•  •  •
t
j1

j
1B t

j2
j
2

t
jk

j
k E

 
 

Figure 4.22: Future event list of all new arrivals to the CPU queue. 
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Figure 4.23: Hybrid simulation design of the round-robin queue. 
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All the information regarding the jobs in the CPU queue, including the one in 

service, is maintained in the separate linked shown in figure 4.22. This linked list is 

known as a circular singly linked list, since it is singly linked and the last node is linked 

to the first node. Each node contains the number of quanta required by a job and its 

terminal identification number. Pointers B and E point to the beginning and end of the list 

respectively. The nodes are ordered in the same way that the jobs are kept in the CPU 

queue. Thus, the first node corresponds to the job currently in service. When a new job 

arrives at the CPU queue, a new node is created which is attached after node E. If a job 

requires further service upon completion of its quantum, then its node is simply placed at 

the end of the list. This is achieved by simply setting E←B and B←LINK(B). 

The simulation model operates under the unit-time advance design during the 

period of time that the CPU is busy. During the time that CPU is idle, the simulation 

model switches to an event-advance design. This hybrid design is summarized in figure 

4.23. Note that  tarr gives the time of the next new arrival at the CPU queue. The 

remaining details of this program. are left up to the reader as an exercise! 

 

Problems 

 

Consider the following systems: 

 

1. Checkout stands at a supermarket 

2. Teller's window at a bank 

3. Elevators serving an office building 

4. Traffic lights in a configuration of 8 city blocks 

5. Outpatient clinic 

6. Pumps at a gasoline station 

7. Parking lot 

8. Runways at an airport 

9. A telecommunication system with 5 nodes  (virtual HDLC three linked lists) 

10. Solar heating of a house 
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Choose any of the above systems. First, describe how the system operates. (Make 

your own assumptions whenever necessary. Make sure that these assumptions do not 

render the system trivial!)  Then, set up a simulation model to represent the operations of 

the system. If you choose an event-based simulation design, then state clearly which are 

the state variables and what are the events. For each caused event, state clearly what 

action the simulation model will take. If you choose an activity-based design, state 

clearly which are the activities and under what conditions they are initiated and 

terminated. 

 

Computer Assignments 

 

1. Implement the hybrid simulation model of the round-robin queue discussed in 

section 4.6.2. 

 

2. Consider the machine interference problem. Modify your simulation model so 

that the event list is maintained in the form of a linked list. Assume that the queue 

of broken-down machines can be repaired by more than one server (i.e., there are 

more than one repairman repairing machines off the same queue). Parametrize 

your program so that it can run for any number of machines and repairmen 

(maximum 20 and 10, respectively). Run your simulation model until 20 repairs 

have been completed. As before, each time an event occurs, print out the usual 

line of output and also additional information pertaining to the event list. Check 

by hand that your linked list implementation is correct. 

 

3. Consider the token-based access scheme problem. Assume that transmissions are 

not error-free. That is, when a packet arrives at the destination node, it may 

contain errors. In this case, the packet will have to be re-transmitted. The 

procedure is as follows: 

 

 Upon completion of the transmission of a packet, the host will wait to hear from 

the receiving host whether the packet has been received correctly or not. The time 
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for the receiver to notify the sender may be assumed to be constant. If the packet 

has been correctly received, the host will proceed with the next transmission. If 

the packet has been erroneously transmitted, the sender will re-transmit the 

packet. There is 0.01 probability that the packet has been transmitted erroneously. 

The sender will re-transmit the packet immediately. This procedure will be 

repeated until the packet is correctly transmitted. No more than 5 re-transmissions 

will be attempted. After the 5th re-transmission, the packet will be discarded, and 

the sender will proceed to transmit another packet. All these re-transmissions take 

place while the host has the token. When the token's time-out occurs, the host will 

carry on re-transmitting until either the packet is transmitted correctly, or the 

packet is discarded. 

Describe how you will modify your simulation model in order to 

accommodate the above acknowledgement scheme. Can this additional structure 

be accommodated without introducing more events?  If yes, how? If no, what 

additional events need to be introduced?  Describe what action will be taken each 

time one of these additional events takes place. Also, describe how these new 

events will interact with the existing events (i.e., triggering-off each other). 

 

4. Consider the token-based access scheme problem. Modify the simulation design 

in order to take advantage of the structure of the system. Specifically, do not 

generate arrivals to each of the nodes. Store the residual inter-arrival time when 

the node surrenders the token. Then, when the token comes back to the station, 

continue to generate arrivals until the token times-out or it is surrendered by the 

node. This change leads to a considerably simpler simulation model.  

 



 

 

 

 

CHAPTER 5: 

 

ESTIMATION TECHNIQUES FOR ANALYZING  

ENDOGENOUSLY CREATED DATA 
 

 

5.1 Introduction 

 

So far we have examined techniques for building a simulation model. These techniques 

were centered around the topics of random number generation and simulation design. The 

reason why one develops a simulation model is because one needs to estimate various 

performance measures. These measures are obtained by collecting and analyzing 

endogenously created data. In this Chapter, we will examine various estimation 

techniques that are commonly used in simulation. Before we proceed to discuss these 

techniques, we will first discuss briefly how one can collect data generated by a 

simulation program. 

 

5.2 Collecting endogenously created data 

 

A simulation model can be seen as a reconstruction of the system under investigation. 

Within this reconstructed environment, one can collect data pertaining to parameters of 

interest. This is similar to collecting actual data pertaining to parameters of interest in a 

real-life system. Using the techniques outlined in the previous Chapters, one can 

construct, say, an event simulation model of a system. This model simply keeps track of 

the state of the system as it changes through time. Now, one can incorporate additional 

logic to the simulation program in order to collect various statistics of interest such as the 

frequency of occurrence of a particular activity, and the duration of an activity. These 
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statistics are obtained using data generated from within the simulation programs, known 

as endogenous data. 

 Endogenous data can sometimes be collected by simply introducing in the 

simulation program single variables, acting as counters. However, quite frequently one is 

interested in the duration of an activity. For instance, in the machine interference problem 

one may be interested in the down time of a machine. This is equal to the time the 

machine spends queueing up for the repairman plus the duration of its repair. In such 

cases, one needs to introduce a storage scheme where the relevant endogenously created 

data can be stored. The form of the storage scheme depends, of course, upon the nature of 

the problem. 

 In the machine interference problem, the down time of a machine can be obtained 

by keeping the following information:  a) time of arrival at the repairman's queue, and b) 

time at which the repair was completed. This information can be kept in an array. At the 

end of the simulation run, the array will simply contain arrival and departure times for all 

the simulated breakdowns. The down time for each breakdown can be easily calculated. 

Using this information one can then obtain various statistics such as the mean, the 

standard deviation, and percentiles of the down time. 

 

 

•! • !• Bt i t j t k
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Figure 5.1: The linked list for the repairman's queue. 

 

 A more efficient method would be to maintain a linked list representing those 

machines which are in the repairman's queue. This linked list is shown in figure 5.1. Each 

node contains the following two data elements:  a) time of arrival at the repairman's 

queue, and b)  index number of the machine. The nodes are linked so that to represent the 

FIFO manner in which the machines are served. Thus, the first node, pointed by F, 

represents the machine currently in service. If a machine arrives at the repairman's queue, 

a new node will be appended after the last node, pointed to by B. The total down time of 

a machine is calculated at the instance when the machine departs from the repairman. 
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This is equal to the master clock's value at that instance minus its arrival time. In this 

fashion we can obtain a sample of observations. Each observation is the duration of a 

down time. Such a sample of observations can be analyzed statistically.  

 Another statistic of interest in is the probability distribution of the number of 

broken down machines. In this case, the maximum number of broken down machines 

will not exceed m, the total number of machines. In view of this, it suffices to maintain an 

array with m + l locations. Location i will contain the total time during which there were i 

broken down machines. Each time an arrival or a departure occurs, the appropriate 

location of the array is updated. At the end of the simulation run, the probability p(n) that 

there are n machines down is obtained by dividing the contents of the nth location by T, 

the total simulation time. 

 As another example on how to collect endogenously created data, let us consider 

the simulation model of the token-based access scheme. The simulation program can be 

enhanced so that each node is associated with a two-dimensional array, as shown in 

figure 5.2. In each array, the first column contains the arrival times of packets, and the 

second column contains their departure time. When a packet arrives at the node, its 

arrival time is stored in the next available location in the first column. When the packet 

departs from the node, its departure time is stored in the corresponding location of the 

second column. Thus, each array contains the arrival and departure times of all packets 

that have been through the node. Also, it contains the arrival times of all the packets 

currently waiting in the queue. Instead of keeping two columns per node, one can keep 

one column. When a packet arrives, its arrival time is stored in the next available 

location. Upon departure of the packet, its arrival time is substituted by its total time in 

the system. These arrays can be processed later in order to obtain various statistics per 

node.  

An alternative approach is to maintain a linked list per node, as described above 

for the machine interference problem. Each time a packet is transmitted, its total time is 

calculated by subtracting the current master clock value from it arrival time stored in the 

linked list. This value is then stored into a single array containing all durations of the 

packets in the order in which they departed. 
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Figure 5.2: Data structure for the token-based access scheme simulation model. 

 

5.3 Transient state vs. steady-state simulation 

 

In general, a simulation model can be used to estimate a parameter of interest during the 

transient state or the steady state. 

 Let us consider the machine interference problem. Let us assume that one is 

interested in obtaining statistics pertaining to the number of broken down machines. The 

simulation starts by assuming that the system at time zero is at a given state. This is 

known as the initial condition. Evidently, the behaviour of the system will be affected by 

the particular initial condition. However, if we let the simulation run for a long period, its 

statistical behaviour will eventually become independent of the particular initial 

condition. In general, the initial condition will affect the behavior of the system for an 

initial period of time, say T. Thereafter, the simulation will behave statistically in the 

same way whatever the initial condition. During this initial period T, the simulated 

system is said to be in a transient state. After period T is over, the simulated system is 

said to be in a steady state. 

 

5.3.1  Transient-state simulation 

 

One may be interested in studying the behavior of a system during its transient state. In 
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this case, one is mostly interested in analyzing problems associated with a specific initial 

starting condition. This arises, for example, if we want to study the initial operation of a 

new plant. Also, one may be forced to study the transient state of a system, if this system 

does not have a steady state. Such a case may arise when the system under study is 

constantly changing. 

 

5.3.2   Steady-state simulation 

 

Typically, a simulation model is used to study the steady-state behaviour of a system. In 

this case, the simulation model has to run long enough so that to get away from the 

transient state. There are two basic strategies for choosing the initial conditions. The first 

strategy is to begin with an empty system. That is, we assume that there are no activities 

going on in the system at the beginning of the simulation. The second strategy is to make 

the initial condition to be as representative as possible of the typical states the system 

might find itself in. This reduces the duration of the transient period. However, in order to 

set the initial conditions properly, an a priori knowledge of the system is required. 

 One should be careful about the effects of the transient period when collecting 

endogenously created data. For, the data created during the transient period are dependent 

on the initial condition. Two methods are commonly used to remove the effects of the 

transient period. The first one requires a very long simulation run, so that the amount of 

data collected during the transient period is insignificant relative to the amount of data 

collected during the steady state period. The second method simply requires that no data 

collection is carried out during the transient period. This can be easily implemented as 

follows. Run the simulation model until it reaches its steady state, and then clear all 

statistical accumulations (while leaving the state of the simulated system intact!). 

Continue to simulate until a sufficient number of observations have been obtained. These 

observations have all been collected during the steady-state. The second method is easy 

to implement and it is quite popular. 

 The problem of determining when the simulation system has reached its steady 

state is a difficult one. A simple method involves trying out different transient periods 

T1,T2,T3,...,Tk, where T1<T2<T3<...<Tk. Compile steady-state statistics for each 
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simulation run. Choose Ti so that for all the other intervals greater than Ti, the steady-

state statistics do not change significantly. Another similar method requires to compute a 

moving average of the output and to assume steady-state when the average no longer 

changes significantly over time. 

 

5.4 Estimation techniques for steady-state simulation 

 

Most of the performance measures that one would like to estimate through simulation are 

related to the probability distribution of an endogenously created  random variable. The 

most commonly sought measures are the mean and the standard deviation of a random 

variable. Also, of importance is the estimation of percentiles of the probability 

distribution of an endogenously created random variable. 

 For instance, in the machine interference problem one may be interested in the 

distribution of the down time. In particular, one may settle for the mean and standard 

deviation of the down time. However, percentiles can be very useful too. From the 

management point of view, one may be interested in the 95% percentile of the down 

time. This is the down time such that only 5% of down times are greater than it. 

Percentiles often are more meaningful to the management than the mean down time.  

 

5.4.1 Estimation of the confidence interval of the mean of a random variable 

 

Let x1, x2,..., xn be n consecutive endogenously obtained observations of a random 

variable. Then 

 

x
_
  = 

1
n ∑

i=1

n
xi       (5.1) 

 

is an unbiased estimate of the true population mean, i.e., the expectation of the random 

variable. In order to obtain the confidence interval for the sample mean we have to first 
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estimate the standard deviation. If the observations x1, x2,... ,xn are independent of each 

other, then 

 

s2 = 
1

n - 1  ∑
i=1

n

 (xi -x
_
)2      (5.2) 

 

or, using the short-cut formula 

 

s2 = 
1

n - 1  







∑
i=1

n
x
2
i  - 

(Σxi)2
n   

 

and, therefore, we obtain the confidence interval 

 

(x
_
   - 1.96 

s
n  ,  x

_
  + 1.96 

s
n  ) 

 

at 95% confidence. The confidence interval provides an indication of the error associated 

with the sample mean . It is a very useful statistical tool and it should be always 

computed. Unfortunately, quite frequently it is ignored. The confidence interval tells us 

that the true population mean lies within the interval 95% of the time. That is, if we 

repeat the above experiment 100 times, 95% of these times, on the average, the true 

population mean will be within the interval. 

 The theory behind the confidence interval is very simple indeed. Observations x1, 

x2, …xn are assumed to come from a population known as the parent population whose 

mean µ we are trying to estimate. Let σ2 be the variance of the parent population. The 

distribution that 

! 

x  follows is known as the sampling distribution. Using the Central Limit 

Theorem we have that 

! 

x  follows the normal distribution N(µ, σ/

! 

n ), as shown in figure 

5.3. Now, let us fix points a and b in this distribution so that 95% of the observations (an 

observation here is a sample mean 

! 

x ) fall in-between the two points. Points a and b are 
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symmetrical around µ. The areas (-∞, a) and (b, +∞) account for 5% of the total 

distribution. Using the table of the standard normal distribution, we have that a is 1.96 

standard deviation below µ, i.e., a=µ-1.96σ/

! 

n . Likewise, b=µ+1.96σ/

! 

n . Now, if we 

consider an arbitrary observation 

! 

x , this observation will lie in the interval [a,b] 95% of 

the time. That is, its distance from µ will be less than 1.96σ/

! 

n 95% of the time. 

Therefore, µ will lie in the interval 

 

(

! 

x - 1.96 σ

! 

n , 

! 

x + 1.96 σ

! 

n ) 

 

95% of the time. If σ is not known, one can use in its place the sample standard deviation 

s. 

 

 

a µ b
 

 
Figure 5.3:  The normal distribution. 

 

   The value 95% is known as the confidence. In general, a confidence interval can 

be calculated for any value of confidence. Most typical confidence values are 99%, 95% 

and 90%. For each value, points a and b are calculated from the table of the standard 

normal distribution. If the sample size is small (less than 30), then we can construct 

similar confidence intervals, but points a and b will be obtained using the t distribution, 

i.e., 

 

(

! 

x - t.95
s
n
  , 

! 

x + t.95
s
n
  ) 
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with (n-1) degrees of freedom. 

 In general, the observations x1, x2,..., xn that one obtains endogenously from a 

simulation model are correlated. For instance, the down time of a machine depends on the 

down time of another machine that was ahead of it in the repairman's queue. In the 

presence of correlated observations, the above expression (5.2) for the variance does not 

hold. Expression (5.1) for the mean holds for correlated or uncorrelated observations. The 

correct procedure, therefore, for obtaining the confidence interval of the sample mean is 

to first check if the observations x1, x2,..., xn are correlated. If they are not, one can 

proceed as described above. If the observations are correlated, then one has to use a 

special procedure to get around this problem. Below, we discuss the following four 

procedures for estimating the variance of correlated observations: 

a. Estimation of the autocorrelation function. 

b. Batch means. 

c. Replications. 

d. Regenerative method. 

 

a) Estimation of the autocorrelation coefficients 

 

Let X and Y be two random variables. Let µX and µY be the expectation of X and Y 

respectively. Also, let 

! 

" X
2 and 

! 

"Y
2  be the variance of X and Y respectively. We define the 

covariance between X and Y to be 

 

Cov (X,Y) = E[(X-µX) (Y-µY)] 

 

 = E(XY) - µX µY 

 

This statistic reflects the dependency between X and Y. If X and Y are uncorrelated, then 

Cov(X,Y) = 0. If Cov (X,Y) > 0, then X and Y are positively correlated, and if Cov (X,Y) 

<0, then they are negatively correlated. If Y is identical to X, then Cov(X,X)= 

! 

" X
2 .  
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(i) uncorrelated, i.e. Cov(X,Y) = 0. 

 

 

 

 

 

 

 

 

 
 (ii) positive correlation, i.e. Cov (X,Y) > 0. 

 

 

 

 

 

 

 

 
 (iii) negative correlation, i.e. Cov (X,Y) <0. 

 
Figure 5.4:  The three cases of correlation. 
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 Let us assume that we have obtained actual observations of the random variables 

X and Y in the form of (x,y). Then, the scatter diagram can be plotted out. The scatter 

diagrams given in figure 5.4 shows  the three cases of correlation between X and Y 

mentioned above. 

The Cov (X,Y) may take values in the region (-∞, +∞). Also, it is not 

dimensionless, which makes its interpretation troublesome. In view of this, the 

correlation ρxy defined by 

 

ρ XY =  
Cov(X,Y)
σx σy   

 

is typically used as the measure of dependency between X and Y. It can be shown that -

1≤ρXY≤1. If ρXY is close to 1, then X and Y are highly positively correlated. If ρXY is 

close to -1, then they are highly negatively correlated. Finally, if ρXY=0, then they are 

independent from each other. 

 Now, let us assume we have n observations x1, x2, ..., xn. We form the following 

n-1 pairs of observations: (x1,x2), (x2,x3), (x3,x4), ..., (xi,xi+1), ..., (xn-1,xn). Now, let us 

regard the first observation in each pair as coming from a variable X and the second 

observation as coming from a variable Y. Then, in this case ρXY is called the 

autocorrelation or the serial correlation coefficient. It can be estimated as follows: 

 

r1  = 

! 

i=1

n"1

# (x
i
"X )(x

i+1 "Y )

i=1

n"1

# (x
i
"X)

2

i=1

n"1

# (x
i+1 "Y )

2

, 

 

where X
_

  = 
1

n-1∑
i=1

n-1
xi   and Y

_
  = 

1
n-1 ∑

i=2

n
xi . For n reasonably large, ρXY can be 

approximated by 

 



100  Computer Simulation Techniques 

r1  =  

! 

i=1

n"1

# (x
i
"X )(x

i+1 "X )

i=1

n"1

# (x
i
"X)

2

 

 

where X
_

  = 
1
n∑

i=1

n
xi  is the overall mean.  

 We refer to the above estimate of ρXY as r1  in order to remind ourselves that this 

is the correlation between observations which are a distance of 1 apart. This auto-

correlation is often referred to as lag 1 autocorrelation. In a similar fashion, we can 

obtain the lag k autocorrelation, that is the correlation between observations which are a 

distance k apart. This can be calculated using the expression: 

 

rk  = 

! 

i=1

n"k

# (x
i
"X )(x

i+k
"X )

i=1

n"1

# (x
i
"X )

2

) 

 

In practice, the autocorrelation coefficients are usually calculated by computing the series 

of autocovariances R0, R1, ..., where Rk is given by the formula 

 

Rk = 

! 

1

n i=1

n"k

# (x
i
"X )(x

i+k
"X )    (5.3) 

 

We then compute rk   as the ratio 

 

rk   = 
Rk
R0  ,     (5.4) 

 

where R0 = σ2. Typically,  rk  is not calculated for values of k greater than about n/4. 
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Figure 5.5: A correlogram with short-term correlation. 

 

 A useful aid in interpreting the autocorrelation coefficients is the correlogram. 

This is a graph in which rk is plotted against lag k. If the time series exhibits a short-term 

correlation, then its correlogram will be similar to the one shown in figure 5.5. This is 

characterized by a fairly large value of r1 followed by 2 or 3 more coefficients which, 

while significantly greater than zero, tend to get successively smaller. Values of rk   for 

longer lags tend to be approximately zero. If the time series has a tendency to alternate, 

with successive observations on different sides of the overall mean,  then the correlogram 

also tends to alternate as shown in figure 5.6. 

 

lag k

+1

r
k

0

 
Figure 5.6: An alternating correlogram. 

 



102  Computer Simulation Techniques 

 Let us now return to our estimation problem. Having obtained a sample of n 

observations x1,x2,...,xn, we calculate the autocorrelation coefficients using the 

expressions (5.3) and (5.4). Then, the variance can be estimated using the expression 

 

s2 = 

! 

s
X

2 [1 + 2

! 

(1"
k

n
r
k
)

k=1

n"1

# ] 

 

where 

! 

s
X

2  is the standard deviation given by 

 

! 

sX
2  = 

! 

1

n "1 i=1

n

# (x
i
"X )  

 

and X
_

  = 

! 

1

n
xi

i=1

n

" . 

 

b) Batch Means 

 

This is a fairly popular technique. It involves dividing successive observations into 

batches as shown in figure 5.7. Each batch contains the same number of observations. Let 

the batch size be equal to b. Then batch 1 contains observations x1, x2, ..., xb, batch 2 

contains xb+1, xb+2, ...,  

 

 |  x1,  x2,  ...,  xb  |  xb+1,  xb+2,  ...,  x2b |  . . . |  xkb+1,  xkb+2, ..., x(k+1)b  | 
  batch 1  batch 2     batch k 

 
Figure 5.7: The batch means method. 

 

x2b, and so on. The observations close to batch 2 are likely to be correlated with the 

observations in batch 2 which are close to batch 1. Also, the observations in batch 2 

which are close to batch 3 are likely to be correlated with those in batch 3 which are close 
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to batch 2, and so on. Let 

! 

X 
i  be the sample mean of the observations in batch i. If we 

choose b to be large enough, then the sequence 

! 

X 
1 , 

! 

X 
2 , ..., 

! 

X 
k  can be shown that it is 

approximately uncorrelated. Therefore, we can treat these means as a sample of 

independent observations and calculate their mean and standard deviation. We have 

 

X
__

  = 
1
k ∑

i=1

k
  X

_
 i 

 

s2 =  

! 

1

k "1
(X 

i

i=1

k

# "X )
2

. 

 

Therefore, for large k (i.e. k ≥30), we obtain the confidence interval 

 

(X
__

  - 1.96
s
k  , X

__
 + 1.96

s
k ). 

 

For small k, we can construct our confidence interval using the t distribution.  

 In general, the batch size b has to be large enough so that the successive batch 

means are not correlated. If b is not large, then the successive batch means will be 

correlated, and the above estimation procedure will yield severely biased estimates. An 

estimate of b can be obtained by plotting out the correlogram of the observations 

x1,x2,...,xn, which can be obtained from a preliminary simulation run. We can fix b so 

that it is 5 times the smallest value b' for which rb'  is approximately zero. 

 

c) Replications 

 

Another approach to constructing a confidence interval for a mean is to replicate the 

simulation run several times. Suppose we make n replications, each resulting to n 

observations as follows: 

  replication 1:  x11, x12, ..., x1m   
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  replication 2:  x21, x22, ..., x2m 

   . 

   . 

   .   
  replication n:  xnm, xn2, ..., xnm   

 

For each sample, we can construct the sample mean 

 

 X
_

 i = 
1
m ∑

j=1

n
xij .  

We can then treat the sample means X
_

 1, X
_

 2, ..., X
_

 n as a sample of independent 

observations, thus obtaining 

 

X
__

  = 
1
n ∑

i=1

n
  X

_
 i 

 

 s2  = 

! 

1

n
(X

i
" X

i=1

n

# )2. 

 

Using the above statistics we can construct our confidence interval. 

 The problems that arise with this approach are:  a) decide on the length of each 

simulation run, i.e., the value m, and b) decide on the length of the transient period. One 

of the following two approaches can be employed: 

 Start each simulation run with different values for the seeds of the random 

number generators. Allow the simulation to reach its steady state and then collect the 

sample observations. Repeat this procedure n times. In order to obtain n samples, 

therefore, we have to run n independent simulations, each time having to allow the 

simulation to reach its steady state. 
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 Alternatively, we can run one very long simulation. Allow first the simulation to 

reach its steady state, and then collect the first sample of observations. Subsequently, 

instead of terminating the simulation and starting all over again, we extend the simulation 

run in order to collect the second sample of observations, then the third sample and so on. 

The advantage of this method is that it does not require the simulation to go through a 

transient period for each sampling period. However, some of the observations that will be 

collected at the beginning of a sampling period will be correlated with observations that 

will be collected towards the end of the previous sampling period. 

 The replication method appears to be similar to the batch means approach. 

However, in the batch means method, the batch size is relatively small and, in general, 

one collects a large number of batches. In the above case, each sampling period is very 

large and one collects only a few samples. 

 

d) Regenerative method 

 

 The last two methods described above can be used to obtain independent or 

approximately independent sequences of observations. The method of independent 

replications generates independent sequences through independent runs. The batch means 

method generates approximately independent sequences by breaking up the output 

generated in one run into successive subsequences which are approximately independent. 

The regenerative method produces independent subsequences from a single run. Its 

applicability, however, is limited to cases which exhibit a particular probabilistic 

behaviour. 

 Let us consider a single server queue. Let t0, t1, t2,... be points at which the 

simulation model enters the state where the system is empty. Such time instances occur 

when a customer departs and leaves an empty system behind. Let t0 be the instance when 

the simulation run starts assuming an empty system. The first customer that will arrive 

will see an empty system. During its service, other customers may arive thus forming a 

queue. Let t1 be the point at which the last customer departs and leaves an empty system. 

That is, t1 is the time instance where the server becomes idle. This will repeat itself as 

shown in figure 5.8. It is important to note that the activity of the queue in the interval (ti, 
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ti+1) is independent of its activity during the previous interval (ti-1,ti). That is to say, the 

probability of finding customer n in the interval (ti, ti+1) does not depend on the number 

of customers in the system during the previous interval. These time instances are known 

as regeneration points. The time between two such points is known as the regeneration 

cycle or tour. The queue-length distribution observed during a cycle is independent of the 

distribution observed during the previous cycles. The same applies for the density 

probability distribution of the total time a customer spends in the system. 

 

 

Number 
in system

t
0

Time

1
t

2
t

3
t

 
 

Figure 5.8: Regeneration points. 

 

   The regeneration points identified above in relation with the queue-length (or 

waiting time) probability distribution are the time points when the system enters the 

empty state. Regeneration points identified with time instances when the system enters 

another state, can be also obtained if the service time is exponentially distributed. For 

instance, the time instances when the system contains 5 customers are regeneration 

points. Due to the memoryless property of the service time, the process repeats itself 

probabilistically. 

 In the case of the machine interference problem, regeneration points related to the 

repairman's queue-length probability, or waiting time in the queue, can be identified with 

the time instances when the repairman is idle. Such time instances occur when the last 

machine is repaired and the system enters the state where all machines are operational. 

Due to the assumption that operational times are exponentially distributed, the process 
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repeats itself probabilistically following the occurrence of this state. Other states can be 

used to identify regeneration points, assuming exponentially distributed repair times. 

 Now, let us assume that we are interested in estimating the mean value of a 

random variable X. Let (xi1, xi2, ..., xini) be a sequence of realizations of X during the ith 

regeneration cycle occurring between ti and ti+1 regeneration points. Let ni be the total 

number of observations. This sequence of observations will be independent from the one 

obtained during the (i+1)st cycle. Thus, the output is partitioned into independent 

sequences. In the batch means case, the output was partitioned into approximately 

independent sequences. However, the number of observations in each batch was constant 

equal to batch size. In this case, the number of observations in each cycle is a random 

variable. 

 Due to the nature of the regeneration method, there is no need to discard 

observations at the beginning of the simulation run. The simulation starts by initially 

setting the model to the regeneration state. Then the simulation is run for several cycles, 

say M cycles. Let  

 

Zi = ∑
j=1

ni
xij   

 

be the sum of all realizations of X in the ith cycle. Then a point estimate of E(X) can be 

obtained using the expression: 

 

 X
_

  =  

1
M ∑

i=1

M
 Zi

 
1
M ∑

i=1

M
 ni

   . 

 

That is, E(X) is estimated using the ratio E(Z)/E(N), where Z is a random variable 

indicating the sum of all observations of 

! 

X  in a cycle, and N is a random variable 

indicating the number of observations in a cycle. 
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! 

X is not an unbiased estimator of E(X). That is E(

! 

X ) ≠ E(X). However, it is 

consistent. That is, 

! 

X → E(X) as M → ∞. Now, in order to construct a confidence 

interval of 

! 

X , we note that 

! 

X is obtained as the ratio of two random variables. The 

following two methods can be used to construct confidence intervals for a ratio of two 

random variables: the central limit theorem,  and the jackknife method. 

 

The central limit theorem 

 

Let  σ12 = Cov (Z, N), 

! 

"
11

2 = Var(Z), and 

! 

"
22

2 = Var(N). Also, let V=Z-NE(X). That is, for 

cycle i we have Vi=Zi-niE(X). Then, the Vi's are independent and identically distributed 

with a mean E(V) = 0. This because 

 

E(V) = E(Z - NE(X)) 

 = E(Z) - E(N)E(X) 

 = 0. 

 

The variance σv
2   of the Vi's is as follows: 

 

E(V - E(V))2 = E(V2) 

 = E(Z - NE(X))2 

 = E(Z2 - 2ZNE(X) + N2E(X)2) 

 = E(Z2) - 2E(X)E(ZN) + E(N2)E(X)2. 

 

Since Var(Y) = E(Y2) - E(Y)2 we have that 

 

σv
2  = σ11

2   + E(Z)2 - 2E(X)E(ZN) + E(X)2 σ22
2   + E(N)2E(X)2 

 

 = σ11
2   + E(X)2 σ22

2   - 2(E(X)E(ZN) + E(Z)2 + E(N)2E(X)2. 
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Given that E(Z) = E(N)E(X) we have 

 

σv
2  = σ11

2   + E(X)2 σ22
2   - 2E(X)E(ZN) + 2E(N)2E(X)2 

 

  = σ11
2   + E(X)2 σ22

2   - 2E(X)[E(ZN) - E(X)E(N)2 

 

  = σ11
2   + E(X)2 σ22

2   - 2E(X)[E(ZN) - E(Z)E(N)] 

 

or 

 

 σv
2  = σ11

2   + E(X)2 σ22
2   - 2E(X)σ12 

since 

 

Cov(Y1, Y2) = E(Y1 - E(Y1))(Y2 - E(Y2)) 

 = E(Y1Y2 - E(Y1)Y2 - E(Y2)Y1 + E(Y1)E(Y2)) 

 = E(Y1Y2) - E(Y1)E(Y2) - E(Y2)E(Y1) + E(Y1)E(Y2) 

 = E(Y1Y2) - E(Y1)E(Y2). 

 

 By the central limit theorem,  we have that as M increases V
_

  becomes normally 

distributed with a mean equal to 0 and a standard deviation equal to 

! 

"
v

2
/M , where 

 

 V
_

  =  
1
M ∑

i=1

M
Vi  

 

 =  
1
M ∑

i=1

M
 (Zi - niE(X))  
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 =  
1
M ∑

i=1

M
 Zi - E(X) 

1
M ∑

i=1

M
 ni  

 

 =  Z
_

  - E(X)N
_

  . 

 

Hence, 

 

 Z
_

  - E(X)N
_

  ~ N(0,
σv

2

M  ) 

or 

 Z
_

 - E(X)N
_

σv
2

M 

   ~  N(0, 1) 

 

Dividing by N we obtain that 

 

 Z
_

/N
_

 - E(X)

(1/N
_

)
 

σv
2

M 

  ~ N(0, 1). 

 

Therefore, we obtain the confidence interval 

 

Z
_

N
_   ±  1.96 

σv
2 / M

N
_    . 
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Now, it can be shown that sv
2  = sZ 

2  - 2X
_

 RZ,N + X
_

 2sN
2  is an estimate of σ2. Therefore, it 

can be used in place of σv
2  in the above confidence interval. 

The above method can be summarized as follows: 

1. Run the simulation for M cycles and obtain 

Z1, Z2, Z3, ..., ZM 

n1, n2, n3, ..., nM. 

2. Estimate Z
_

 , N
_

  and set  X
_

  =  Z
_

  / N
_

  . 

3. Estimate 

   sZ
2   =  

! 

1

M "1
i=1

M

# (z
i
"Z

2
)  

   sN
2   =  

! 

1

M "1
i=1

M

# (n
i
"N

2
)  

   sZ,N
2   = 

! 

1

M "1
i=1

M

# (z
i
"Z)(n

i
"N) . 

 

The jacknife method 

 

This method constitutes an alternative method to obtaining a confidence interval of a 

ratio of two random variables. It also provides a means of obtaining a less biased point 

estimator of the mean of the ratio of two random variables, sine the classical point 

estimator is usually biased. 

 Let X,Y be two random variables. Suppose we want to estimate φ=E(Y)/E(X) 

from the data y1, y2, ..., yn and x1, x2, ..., xn, where the yi's are i.i.d., the xi's are i.i.d. and 

Cov(yi,xj)≠0 for i≠j. The classical point estimator of φ is φc = 

! 

Y /

! 

X and its confidence 

interval can be obtained as shown above. The jacknife point and interval estimator can be 

constructed as follows. Let 
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θg = n φ̂ 
C
 - (n - 1) 

∑
j≠g

yj

∑
j≠g

xj
  ,  g = 1,2, ...,n. 

The jacknife point estimator of φ is 

φ̂ J = ∑
g=1

n
θg/n  . 

This is, in general, less biased than φ̂ C. Let 

 

σ2
J  =  

! 

g=1

n

"
(#g $% j

)
2

n $1
. 

Then, it can be shown that 

φ̂ J ~ N(φ, 
σ2

J
n    ),  as n → ∞. 

 

That is, we can obtain the confidence interval at 95% 

 

(φ̂ J -1.96 
σJ

n  , φ̂ J +1.96 
σJ

n  ) . 

 

 The difficulty in using the regenerative method is that real-world simulations may 

not have regeneration points. If they do happen to have regeneration points, the expected 

regeneration cycle may be too large so that only a few cycles may be simulated. 

 

5.4.2 Estimation of other statistics of a random variable 

 

So far we considered estimation techniques for constructing a confidence interval of the 

mean of an endogenously created random variable. Other interesting statistics related to 

the probability distribution of a random variable are: 
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a. Probability that a random variable lies within a fixed interval. 

b. Percentiles of the probability distribution. 

c. Variance of the probability distribution. 

 

Below, we examine ways of estimating the above statistics. 

 

a) Probability that a random variable lies within a fixed interval 

 

The estimation of this type of probability can be handled exactly the same way as the 

estimation of the mean of a random variable. Let I be the designated interval. We want to 

estimate 

 

p = Pr (X ∈ I) 

 

where X is an endogenously created random variable. We generate M replications of the 

simulation. For each replication i we collect N observations of X. Let vi be the number of 

times X was observed to lie in I. Then, pi = vi/N is an estimate of probability p. Thus, 

 

p
_
  = 

1
M ∑

i=1

M
pi  

and 

s2 = 

! 

1

M "1
i=1

M

# (pi " p)
2. 

As before, (p
_
 -p)/(s/ M ) ~ N(0,1)  if M is large. 

 We observe, that the estimation of p requires M independent replications, each 

giving rise to one realization of p. Other methods examined in section 4.1 of this Chapter 

can be used in order to remove unwanted autocorrelations. For instance, instead of 

replications, the batch means method or the regenerative method can be used. 

 Alternatively, the estimation of p can be seen as estimating a population mean. 

Let Yi=1 if ith realization of X belongs to I. Otherwise, Yi=0. Then, in one replication we 
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have that (1/N)ΣYi  is equal to Vi/N or pi. Thus, the techniques developed in section 4.1 

of this Chapter can be employed to estimate p. 

 

!

x!  
Figure 5.9:  Percentile xβ. 

 

b) Percentile of a probability distribution 

 

This is a very important statistic that is often ignored in favour of the mean of a random 

variable X. Management, sometimes, is not interested in the mean of a particular random 

variable. For instance, the person in charge of a computer real-time system may not be 

interested in its mean response time. Rather, he or she may be interested in "serving as 

many as possible as fast as possible". More specifically, he or she may be interested in 

knowing the 95th percentile of the response time. That is, a value such that the response 

time of the real time system is below it 95% of the time.  

 In general, let us consider a probability density function f(x). The 100βth 

percentile is the smallest value xβ such that  f(xβ) < β. That is, the area from -∞ to xβ 

under f(x) is less or equal to β as shown in figure 5.9. Typically, there is interest in the 

50th percentile (median) x0.50 or in extreme percentiles such as x0.90, x0.95, x0.99. 

 We are interested in placing a confidence interval on the point estimator of xβ of a 

distribution of a random variable X. Let us assume independent replications of the 

simulation. Each replication yields N observations, having allowed for the transient 

period. For each replication i, let xi1, xi2, ..., xiN be the observed realizations of X. Now, 

let us consider a reordering of these observations Yil, Yi2, ..., YiN so that Yij<Yi,j+1. 

Then, the 100βth percentile x(i)
β   for the ith replication is observation Yik where 
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k = 

N if Nβ is integer
∈βN�  + 1 otherwise   

 

(x means the largest integer which is less or equal to x). For instance, if we have a 

sample of 50 observations ordered in an ascending order, then the 90th percentile is the 

observation number 0.90.50 = 45. The 95th percentile is 50x.95+1=47.5+1=47+1=48.  

Hence 

x
_
 β = 

! 

1

M
i=1

M

" x(i)
β   

and 

s2 = 

! 

1

M "1
i=1

M

# (x(i)"x $ )2. 

 

Confidence intervals can now be constructed in the usual manner. 

 The estimation of extreme percentiles requires long simulation runs. If the runs 

are not long, then the estimates will be biased. The calculation of a percentile requires 

that a) we store the entire sample of observations until the end of the simulation, and b) 

that we order the sample of observations in an ascending order. These two operations can 

be avoided by constructing a frequency histogram of the random variable on the fly. 

When a realization of the random variable becomes available, it is immediately classified 

into the appropriate interval of the histogram. Thus, it suffices to keep track of how many 

observations fall within each interval. At the end of the replication, the 100βth percentile 

can be easily picked out from the histogram. Obviously, the accuracy of this 

implementation depends on the chosen width of the intervals of the histogram. 

 Finally, we note that instead of independent replications of the simulation, other 

methods can be used such as the regeneration method.  

 

c) Variance of the probability distribution 

 

Let us consider M independent replications of the simulation. From each replication i we 

obtain N realizations of a random variable xi1,xi2,...,xiN, after we allow for the transient 
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period. We have 

µ
_

 i = 
1
N ∑

j=1

N
 xij  

and 

µ
__

  = 
1
M ∑

i=1

M
µi  

 

is the grand sample mean. Hence, 

 

 s2
i   = 

! 

1

N
j=1

N

" (xij #µ) )2 

  = 
1
N  [∑

j=1

N
   xij

2
  - 2µ

_
 iµ

__
  +µ

__
 2]. 

 

As the point estimate of the variance σ2 we take 

 

 s2
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1

M
i=1

M

" s
2
i    

  = 
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1

M
i=1

M

" (
1

N ij

2
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j=1

N
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1

M

2
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i=1

M
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2

M
µ2 

  = 

! 

1

M
i=1

M

" (
1

N ij

2

x
j=1

N

" ) - µ
__

 2 

The estimates of 

! 

s
i

2are all functions of  

! 

µ . Thus, they are not independent. A confidence 

interval can be constructed by jacknifing the estimator s2. Let 

! 

" i
2  be an estimate of σ2  

with the ith replication left out. That is, 

 σ
_2

i   = 

! 

1

M "1
j# i

$ (
1

N
i=1

N

$ x2)- 
1

M - 1 ∑

j≠i
  µ
_
j 

2 . 
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Define zi = Ms2 - (M-1) σ
_2

i   . Then, 

 

Z = 
1
M ∑

i=1
M  Zi  

 

s2
Z   =  

1
M-1  ∑

i=1
M  (Zi  - Z

_
) 2 

 

and a confidence interval can be constructed in the usual way. 

 Alternatively, we can obtain a confidence interval of the variance by running the 

simualtion only once, rather than using repications, and then calculating the standard 

deviation assuming that the successive observations are independent! This approach is 

correct when the sample of observations is extremely large. 

 

5.5 Estimation techniques for transient-state simulation 

 

The statistical behaviour of a simulation during its transient state depends on the initial 

condition. In order to estimate statistics of a random variable X during the transient state 

one needs to be able to obtain independent realizations of X. The only way to get such 

independent observations is to repeat the simulation. That is, employ the replications 

technique discussed above in section 4.1. Each independent simulation run has to start 

with the same initial condition. 

 As an example, let us assume that we want to estimate the 95th percentile of the 

probability distribution of a random variable X. This can be achieved by simply 

replicating the simulation times. For each replication we can obtain an estimate x.95. A 

confidence interval can be obtained as shown in 4.2. Each replication will be obtained by 

starting the simulation with the same initial condition, and running the simulation during 

its transient period. This, of course, requires advanced knowledge of the length of the 

transient period. Furthermore, the pseudo-random numbers used in a replication have to 

be independent of those used in previous replications. This can be achieved by using a 
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different seed for each replication. The difference between two seeds should be about 

10,000. 

 

5.6 Pilot experiments and sequential procedures for achieving a required 

accuracy 

 

So far, we discussed techniques for generating confidence intervals for various statistics 

of an endogenously generated random variable. The expected width of the confidence 

interval is, in general, proportional to 1/ N , where N is the number of i.i.d. observations 

used. Obviously, the larger the value of N, the smaller the width confidence interval. 

(This is defined as half the confidence interval.)   For instance, in order to halve the width 

of the confidence interval of the mean of a random variable, N has to be increased by four 

times so that 1/ 4N =(1/2)(1/ N ). In general, the accuracy of an estimate of a statistic 

depends on the width of the confidence interval. The smaller the width, the higher is the 

accuracy. 

 Quite frequently one does not have prior information regarding the value of N that 

will give a required accuracy. For instance, one does not know the value of N that will 

yield a width equal to 10% of the estimate. Typically, this problem is tackled by 

conducting a pilot experiment. This experiment provides a rough estimate of the value of 

N that will yield the desired confidence interval width. An alternative approach is the 

sequential method. That is, the main simulation experiment is carried out continuously. 

Periodically, a test is carried out to see if the desired accuracy has been achieved. The 

simulation stops the first time it senses that the desired accuracy has been achieved. 

Below, we examine the methods of independent replications and batch means. 

 

5.6.1 Independent replications 

 

This discussion is applicable to transient and steady state estimation. Let us assume that 

we want to estimate a statistic θ of a random variable using independent replications. A 

pilot experiment is first carried out involving N1 replications. Let 

! 

ˆ " 
1
 be a point estimate 
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of θ and let Δ1 be the width of its confidence interval. We assume that the width of the 

confidence interval is required to be approximately less or equal to 0.1θ̂ . If Δ1≤0.1

! 

ˆ " 
1
, 

then we stop. If Δ1>0.1

! 

ˆ " 
1
, then we need to conduct a main experiment involving N2 

replications where, N2 = (Δ1/0.1

! 

ˆ " 
1
)2N1 appropriately rounded off to the nearest integer. 

Let 

! 

ˆ " 
2

 and Δ2 be the new estimate and width based on N2 replications. Due to 

randomness, the N2 observations will not exactly yield a confidence interval width equal 

to 0.1

! 

ˆ " 
2

. We note that it is not necessary  to run a new experiment involving N2 

replications. Rather, one can use the N1 replications from the pilot experiment, and then 

carry out only N2- N1 additional replications. 

 The above approach can be implemented as a sequential procedure  as follows. 

The simulation program is modified to conduct N* independent replications. The point 

estimate 

! 

ˆ " 
1
 and the width Δ1 of its confidence interval are calculated. If  Δ1≤0.1

! 

ˆ " 
1
, then 

the simulation stops. Otherwise, the simulation proceeds to carry out N* additional 

replications. The new point estimate 

! 

ˆ " 
2

 and width Δ2 are constructed based on the total 

2N* replications. The simulation will stop if  Δ2≤0.1

! 

ˆ " 
2

. Otherwise, it will proceed to 

generate another N* replication and so on. N* can be set equal to 10. 

 

5.6.2 Batch means 

 

This discussion  is obviously applicable to steady state estimations. Using the pilot 

experiment approach, one can run the simulation for k1 batches. From this, one can 

obtain 

! 

ˆ " 
1
 and Δ1. If Δ1≤0.1

! 

ˆ " 
1
, then the desired accuracy has been achieved. Otherwise, 

k2-k1 additional batches have to be simulated, where k2=(Δ1/0.1

! 

ˆ " 
1
)2k1. These additional 

batches can be obtained by simply re-running the simulator for k2-k1 batches. 

 Alternatively, the simulation program can be enhanced to include the following 

sequential procedure. The simulation first runs for k* batches. Let 

! 

ˆ " 
1
 and Δ1 be the point 

estimate and the width of its confidence interval respectively. The simulation stops if 

Δ1≤0.1

! 

ˆ " 
1
. Otherwise, it runs for k* additional batches. Now, based on the 2k* batches 
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generated to this point, 

! 

ˆ " 
2

 and Δ2 are constructed. If Δ2≤0.1

! 

ˆ " 
2

, then the simulation stops. 

Otherwise, it runs for another k* batches, and so on. 

 

Computer Assignments 

 

1. Consider the machine interference problem. Modify the simulation model to carry 

out the following tasks: 

a. Set-up a data structure to collect information regarding the amount of time 

each machine spends being broken down, i.e., waiting in the queue and also 

being repaired (see section 2 of Chapter 3). 

b. Augment your simulation program to calculate the mean and standard 

deviation. Then, run your simulation for 550 observations (i.e., repairs). 

Discard the first 50 observations to account for the transient state. Based on 

the remaining 500 observations, calculate the mean and the standard 

deviation of the time a machine is broken down. 

c. The calculation of the standard deviation may not be correct, due to the 

presence of autocorrelation. Write a program (or use an existing statistical 

package) to obtain a correlogram based on the above 500 observations. (You 

may graph the correlogram by hand!)  Based on the correlogram, employ the 

batch means approach to construct a confidence interval of the mean time a 

machine is broken down. (You may need more than 500 observations!) 

d. Using the batch means approach, implement a sequential procedure for 

estimating the mean time a machine is broken down (see section 5.6.2). 

e. Implement a scheme to estimate the 95th percentile of the time a machine is 

broken down. 

 

2. Likewise for the token-based access scheme. 

 

3. Likewise for the to-stage manufacturing system. 



 

  

 

 

CHAPTER 6: 

 

VALIDATION OF A SIMULATION MODEL 
 

 

Validation of a simulation model is a very important issue that is often neglected. How 

accurately does a simulation model (or, for that matter, any kind of model) reflect the 

operations of a real-life system?  How confident can we be that the obtained simulation 

results are accurate and meaningful? 

 In general, one models a system with a view to studying its performance. This 

system under study may or may not exist in real-life. Let us consider, for instance, a 

communications equipment manufacturer who is currently designing a new 

communications device, such as a switch. Obviously, the manufacturer would like to 

know in advance if the new switch has an acceptable performance. Also, the 

manufacturer would like to be able to study various alternative configurations of this new 

switch so that to come up with a good product. The performance of such a switch can be 

only estimated through modelling since the actual system does not exist. The question 

that arises here is how does one make sure that the model that will be constructed is a 

valid representation of the system under study? 

 Let us consider another example involving a communication system already in 

operation. Let us assume that it operates nearly at full capacity. The management is 

considering various alternatives for expanding the system's capacity. Which of these 

alternatives will improve the system's performance at minimum cost?  Now, these 

alternative configurations do not exist. Therefore, their performance can be only 

evaluated by constructing a model, say using simulation techniques. The standard method 

is to construct a model of the existing system. Then, change the model appropriately in 

order to analyze each of the above alternatives. The model of the existing system can be 
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validated by comparing its results against actual data obtained from the system under 

investigation. However, there is no guarantee that when altering the simulation model so 

that to study one of the above alternatives, this new simulation model will be a valid 

representation of the configuration under study! 

 The following checks can be carried out in order to validate a simulation model. 

 

1. Check the pseudo-random number generators. Are the pseudo-random numbers 

uniformly distributed in (0,1) and do they satisfy statistical criteria of 

independence?  Usually, one takes for granted that a random number generator is 

valid. 

 

2. Check the stochastic variate generators. Similar statistical tests can be carried out 

for each stochastic variate generator built into a simulation model. 

 

3. Check the logic of the simulation program. This is a rather difficult task. One way 

of going about it is to print out the status variables, the future event list, and other 

relevant data structures each time an event takes place in the simulation. Then, 

one has to check by hand whether the data structures are updated appropriately. 

This is a rather tedious task. However, using this method one can discover 

possible logical errors and also get a good feel about the simulation model. 

 

4. Relationship validity. Quite frequently the structure of a system under study is not 

fully reflected down to its very detail in a simulation model. Therefore, it is 

important that the management has the opportunity to check whether the model's 

assumptions are credible. 

 

5. Output validity. This is one of the most powerful validity checks. If actual data are 

available regarding the system under study, then these data can be compared with 

the output obtained from the simulation model. Obviously, if they do not compare 

well, the simulation model is not valid. 
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Computer assignments 

 

1. Consider the machine interference problem. This problem can be also analyzed 

using queuing theory. Set up the following validation scheme. Obtain exact values 

of the mean time a machine is broken down using queueing theory results for 

various values of the mean operational time. Let it vary, for instance, from 1 to 50 

so that to get a good spread. For each of these values, obtain an estimate of the 

mean down time of a machine using your simulation model. Graph both sets of 

results. Be sure to indicate the confidence interval at each simulated point. 

Compare the two sets of results. 





 

 

 

 

CHAPTER 7:  

 

VARIANCE REDUCTION TECHNIQUES 
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7.1 Introduction 

 

In Chapter 6, it was mentioned that the accuracy of an estimate is proportional to 1/ n , 

where n is the sample size. One way to increase the accuracy of an estimate (i.e., reduce 

the width of its confidence interval) is to increase n. For instance, the confidence interval 

width can be halved if the sample size is increased to 4n. However, large sample sizes 

required long simulation runs which, in general, are expensive. An alternative way to 

increasing the estimate's accuracy is to reduce its variance. If one can reduce the variance 

of an endogenously created random variable without disturbing its expected value, then 

the confidence interval width will be smaller, for the same amount of simulation. 
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Techniques aiming at reducing the variance of a random variable are known as Variance 

Reduction Techniques. Most of these techniques were originally developed in connection 

with Monte Carlo Techniques. 

 Variance reduction techniques require additional computation in order to be 

implemented. Furthermore, it is not possible to know in advance whether a variance 

reduction technique will effectively reduce the variance in comparison with 

straightforward simulation. It is standard practice, therefore, to carry out pilot simulation 

runs in order to get a feel of the effectiveness of a variance reduction technique and of the 

additional computational cost required for its implementation. 

 In this Chapter, we will examine two variance reduction techniques, namely, a) 

the antithetic variates technique and (b) the control variates technique. 

 

7.2 The Antithetic Variates Technique 

 

This is a very simply technique to use and it only requires a few additional instructions in 

order to be implemented. No general guarantee of its effectiveness can be given. Also, it 

is not possible to know in advance how much of variance reduction can be achieved. 

Therefore, a small pilot study may be useful in order to decide whether or not to 

implement this technique. 

 Let X be an endogenously created random variable. Let  

 

x(1)
1  , x(1)

2  , ..., x(1)
n    

 

be n i.i.d. realizations of X obtained in a simulation run. Also, let   

 

x(2)
1  , x(2)

2  , ..., x(2)
n    

 

be n i.i.d. observations of X obtained in a second simulation run. Now, let us define a 

new random variable 
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zi = 
x(1)

i  + x(2)
i

2   , i = 1, 2, ..., n.   (7.1) 

 

More specifically, let Z=(X(1)+X(2))/2, where X(i), i=1,2, indicates the random variable X 

as observed in the ith simulation run. We have 

 

E(Z)= E



X(1)+X(2)

2   

 = 
1
2  [E(X(1)) + E(X(2))] 

  = E(X) 

 

seeing that the expected value of X(1) or X(2) is that of X. Thus, the expected value of this 

new random variable Z is identical to that of X. Now, let us examine its variance. We 

have 

 

Var(Z) = Var



X(1)+X(2)

2   

 

  = 
1
4  [Var(X(1)) + Var(X(2)) + 2Cov(X(1), X(2))]. 

 

Remembering that Var(X(1))=Var(X(2))=Var(X), we have that 

 

Var(Z) = 
1
2 (Var(X) + Cov (X(1), X(2))) . 

 

Since Cov(X,Y)=ρ Var(X)Var(Y)  , we have that 

 

Var(Z) = 
1
2  Var(X) (1 + ρ),    (7.2) 
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where ρ is the correlation between X(1) and X(2).  

 In order to construct an interval estimate of E(X), we use random variable Z. 

Observations zi are obtained from (7.1) and the confidence interval is obtained using 

(7.2). As will be seen below, by appropriately constructing the two samples  

 

x(1)
1  , x(1)

2  , ..., x(1)
n    and  x(2)

1  , x(2)
2  , ..., x(2)

n  , 

 

we can cause Var(Z) to become significantly less than Var(X). This is achieved by 

causing ρ to become negative. In the special case where the two sets of observations 

 

x(1)
1  , x(1)

2  , ..., x(1)
n   and x(2)

1  , x(2)
2  , ..., x(2)

n     

 

are independent of each other, we have that ρ=0. Hence, Var(Z)=Var(X)/2.  

 The antithetic variates technique attempts to introduce a negative correlation 

between the two sets of observations. As an example, let us consider a simulation model 

of a single server queue, and let X and Y indicate the waiting time in the queue and the 

interarrival time respectively. If Y is very small, then customers arrive faster and, 

therefore, the queue size gets larger. The larger the queue size, the more a customer has 

to wait in the queue, i.e. X is larger. On the other hand, if Y is large, then customers 

arrive slower and, hence, the queue size gets smaller. Obviously, the smaller the queue 

size, the less a customer has to wait in the queue, i.e., X is small. Therefore, we see that X 

and Y can be negatively correlated.  

 This negative correlation between these two variables can be created in a 

systematic way as follows. Let F(t) and G(S) be the cumulative distribution of the inter-

arrival and service time respectively. Let ri and vi be pseudo-random numbers. Then, 

ti=F-1(ri) andsi=G-1(vi) are an interarrival and a service variate. These two variates can be 

associated with the ith simulated customer. An indication of whether the queue is tending 

to increase or decrease can be obtained by considering the difference di=ti-si. This 

difference may be positive or negative indicating that the queue is going through a busy 
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or slack period respectively. Now, let us consider that in the second run, we associate 

pseudo-random number rí  and ví  with the ith simulated customer, so that  

 

dí  = t1́  - sí (where t1́=F-1(rí) and sí = G-1(ví))   

 

has the opposite sign of di. That is, if the queue was going through a slack (busy) period 

in the first run at the time of the ith simulated customer, now it goes through a busy 

(slack) period. It can be shown that this can be achieved by simply setting rí  = 1-ri and 

ví  = 1-vi. 

 In this example, we make use of two controllable variables, Y1 and Y2, indicating 

the interarrival time and the service time respectively. These two random variables are 

strongly correlated with X, the waiting time in the queue. Yj(1) and Yj(2), j=1,2 can be 

negatively correlated by simply using the compliment of the pseudo-random numbers 

used in the first run. 

 This technique can be implemented as follows. Simulate the single server queue, 

and let   

 

x(1)
1  , x(1)

2  , ..., x(1)
n     

 

be n  i.i.d observations of X. Re-run the simulation, thus replicating the results, using 

pseudo-random numbers (ri,vi)=(1-r,1-vi). Let   

 

x(2)
1  , x(2)

2  , ..., x(2)
n  ,b 

 

e realizations of X. Construct the interval estimate of E(X) using the random variable Z 

as described above. Obviously, the correlation between the two samples of observations 

is as good as the correlation between Y(1)
j

  and Y(2)
j

 , j=1,2. 

 The antithetic variates technique, as described above, was implemented in a 

simulation of an M/M/1 queue. The random variable X is the time a customer spends in 
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the system. The i.i.d. observations of X were obtained by sampling every 10th customer. 

The results given in table 7.1 were obtained using straight simulation. Using the antithetic 

variates technique, we obtained a confidence interval of 13.52±1.76. We note that the 

antithetic variates techniques were employed using two sets of observations each of size 

equal to 300, i.e., a total of 600 observations. From table 7.1, we see that a similar width 

was obtained using a sample size of n=1800. Figure 7.2 shows the actual values for the 

original sample, the sample obtained using the antithetic variates and Z. We see, that the 

two samples of observations are fairly negatively correlated. Also, we observe that the Z 

values are all close to the mean, indicating that  their variance is small. 

 

 

Sample size n Confidence interval  

600 13.86 +_  3.46 

900 13.03 +_  2.70 

1200 13.11 +_  2.30 

1500 12.82 +_  1.99 

1800 12.86 +_  1.84 

 
Table 7.1:  Straight simulation of an M/M/1 queue. 

 

 In the above example, the antithetic variates technique worked quite well. 

However, this should not be construed that this method always works well. In particular, 

in the following example, an M/M/2 queuing system was simulated. Table 7.2 and figure 

7.2 show that in this case there is little benefit to be gained from using the antithetic 

variates technique. 
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Figure 7.1: Antithetic variates  technique applied to an M/M/1 queue. 
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Type of Simulation Sample 
Size 

Mean Standard 
Dev. 

Conf. 
Interval 

Standard 
Error 

Standard 
Error as a 

% of 
Mean 

Cost 

Straight 400 18.85 9.70 +/-3.31 1.69 8.96 $.68 
Straight 800 16.00 8.60 2.07 1.06 6.61 .72 
Standard Antithetic 800 17.23 6.73 2.30 1.17 6.79 .97 
Straight 1600 16.04 9.67 1.64 0.84 5.22 .79 
Standard Antithetic 1600 15.69 5.98 1.44 0.74 4.69 1.03 
Straight 2400 16.48 9.82 1.36 0.69 4.21 .88 
Standard Antithetic 2400 15.84 6.36 1.25 0.64 4.01 1.09 
Straight 3000 15.92 9.59 1.19 0.61 3.81 .93 
Standard Antithetic 3000 16.11 6.96 1.17 0.60 3.72 1.12 

 
Table 7.3:  Straight simulation and antithetic variates techniques for an M/M/2 queue. 
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Figure 7.2: Standard error plotted against sample size for straight simulation and antithetic 

variates techniques for an M/M/2 queue. 

 

7.3 The Control Variates Technique 

 

This method is otherwise known as the method of Concomitant Information. Let X be an 

endogenously created random variable whose mean we wish to estimate. Let Y be 

another endogenously created random variable whose mean is known in advance. This is 
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known as the control variable. Random variable Y is strongly correlated with X. We have 

the following two cases. 

 

a) X and Y are negatively correlated: 

 

Define a new random variable Z so that Z=X+Y-E(Y). We have  

 

  E(Z)=E(X+Y-E(Y))=E(X), 

   Var(Z) = Var(X) + Var(Y) + 2 Cov (X, Y). 

 

Since X and Y are negatively correlated, we have that Cov(X,Y)<0. Therefore, if 
Var(Y) - 2 | |Cov(X,Y)   < 0 then, a reduction in the variance of Z has been 

achieved. 

 

b) X and Y are positively correlated: 

 

Define Z=X-Y+E(Y). Then 

 

  E(Z) = E(X - Y + E(Y)) = E(X). 
  Var(Z) = Var(X) + Var(Y) - 2| |Cov(X,Y)   

 
Therefore, if Var(Y) - 2| |Cov(X,Y)   < 0 then a reduction in the variance of Z has 

been achieved. 

 

 Let us consider the example of a single server queue mentioned in section 7.2. Let 

X be the time a customer spends in the system. Then X is negatively correlated with the 

random variable Y representing the inter-arrival time. (It is also positively correlated with 

the random variable representing the service time.)  Let x1, x2, ..., xn be n i.i.d. 

observations of X. Likewise, let y1, y2, ..., yn be n observations of Y. (These observations 
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are i.i.d. by nature of the simulation model.)  yi is the inter-arrival time associated with 

the xi observation. Let  

 

zi = xi + yi - E(Y),  i=1,2,..., n.  

 

Then we can construct a confidence interval for the estimate of E(X) using  Z
_

 +1.96 
sz
n   

where 

 

Z
_

  = 
1
n ∑

i=1

n
 zi  

and 

s2
z  = 

! 

1

n "1
i=1

n

# (z
i
"Z)2 . 

 

 More generally, random variable Z can be obtained using 

 

Z = X - a (Y - E(Y)), 

 

where a is a constant to be estimated and Y is positively or negatively correlated to X. 

Again, we have E(Z)=E(X). Also, 

 

Var(Z) = Var(X) + a2 Var(Y) - 2a Cov(X,Y) 

 

so that Z has a smaller variance than X if 

 

a2 Var(Y) - 2a Cov(X,Y) < 0. 

 

We select a so that to minimize the right-hand side given in the above expression. We 

have 



Variance Reduction Techniques  135 

 

2a Var(Y) - 2Cov(X,Y) = 0 

or 

a* = 
Cov (X,Y)

Var (Y)   

 

Now, substituting into the expression for Var(Z) we have 

 

 Var(Z) = Var(X) - 
[Cov(X,Y)]2

Var(Y)   

 

  = (1-ρ 2 
XY ) Var(X). 

 

Thus, we always get a reduction in the variance of Z for the optimal value of a, provided 

that X and Y are correlated. The determination of a* requires a priori knowledge of the 

Var(Y) and Cov (X,Y). Sample estimates can be used in order to approximately obtain 

a*. 

 The definition of Z can be further generalized using multiple control variables, as 

follows 

 

Z = X - ∑
i=1

m
 ai(Yi - E(Yi)) , 

 

where ai, i=1,2,...,m, are any real numbers. In this case,  

 

Var(Z) = Var(X) + ∑

i=1
m  a2

i   Var(Yi) - 2 ∑

i=1
m  ai Cov(X,Yi) + 2 ∑

i=2

m
  ∑

j=1
i-1  aiaj Cov(Yi,Yj). 
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Computer assignments 

 

1. Consider the machine interference problem. Carry out the following tasks: 

a. Implement the antithetic variance reduction technique. 

b. Implement the control variates technique. 

c. Compare the above two variance reduction techniques against straight 

simulation. In particular, compare the three techniques for various sample 

sizes. Observe how the variance and the standard error expressed as a 

percentage of the mean, educe as the sample size goes up. Contrast this 

against the execution cost (if available). 
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