

Computer Simulation Techniques:

The definitive introduction!

by

Harry Perros
Computer Science Department

NC State University
Raleigh, NC

All rights reserved 2007

TO THE READER…

This book is available for free download from my web site:

http://www.csc.ncsu.edu/faculty/perros//simulation.pdf

Self-study: You can use this book to learn the basic simulation techniques by yourself!

At the end of Chapter 1, you will find three examples. Select one of them and do the

corresponding computer assignment given at the end of the Chapter. Then, after you read

each new Chapter, do all the problems at the end of the Chapter and also do the

computer assignment that corresponds to your problem, By the time you reach the end of

the book, you will have developed a very sophisticated simulation model !

You can use any high-level programming language you like.

Errors: I am not responsible for any errors in the book, and if you do find any, I would

appreciate it if you could let me know (hp@csc.ncsu.edu).

Acknowledgment: Please acknowledge this book, if you use it in a course, or in a project,

or in a publication.

Copyright: Please remember that it is illegal to reproduce parts of this book or all of the

book in other publications without my consent.

Enjoy!

Harry Perros, August 2007

TABLE OF CONTENTS

Chapter 1. Introduction, 1
1.1 The OR approach, 1
1.2 Building a simulation model, 2
1.3 Basic simulation methodology: Examples, 5
 1.3.1 The machine interference model, 5
 1.3.2 A token-based access scheme, 11
 1.3.3 A two-stage manufacturing system, 18
Problems, 20
Computer assignments, 21

Chapter 2. Generating pseudo-random numbers, 23

2.1 Introduction, 23
2.2 Pseudo-random numbers, 24
2.3 Congruential methods for generating pseudo-random numbers, 25
2.4 General congruential methods, 27
2.5 Composite generators, 28
2.6 Tausworthe generators, 28
2.7 The Mercenne Twister, 29
2.8 Statistical tests of pseudo-random number generators, 29
 2.8.1 Runs test, 30
 2.8.2 Chi-square test for goodness of fit, 31
Problems, 32
Computer assignments, 32

Chapter 3. Generating stochastic variates, 33

3.1 Introduction, 33
3.2 The inverse transformation method, 33
3.3 Sampling from continuous probability distribution, 35

3.3.1 Sampling from a uniform distribution, 35
 3.3.2 Sampling from an exponential distribution, 36
 3.3.3 Sampling from an Erlang distribution, 37
 3.3.4 Sampling from a normal distribution, 39
3.4 Sampling from a discrete probability distribution, 41
 3.4.1 Sampling from a geometric distribution, 42
 3.4.2 Sampling from a binomial distribution, 43

ii Computer Simulation Techniques

 3.4.3 Sampling from a Poisson distribution, 44
3.5 Sampling from an empirical probability distribution, 45
 3.5.1 Sampling from a discrete probability distribution, 45
 3.5.2 Sampling from a continuous probability distribution, 47
3.6 The Rejection Method, 49
3.7 Monte-Carlo methods, 51
Problems, 52
Computer assignments, 54
Solutions to the above problems, 55

Chapter 4. Simulation designs, 59
4.1 Introduction, 59
4.2 Event-advance design, 59
4.3 Future event list, 61
 4.3.1 Sequential arrays, 62
 4.3.2 Linked lists, 63
 4.3.3 Implementation of linked lists, 67
 4.3.4 Future event list, 71
 4.3.5 Doubly linked lists, 71
4.4 Unit-time advance design, 72

4.4.1 Selecting a unit-time, 75
 4.4.2 Implementation, 76
 4.4.3 Event-advance vs. unit-time advance, 76
4.5 Activity based simulation design, 76
4.6 Examples, 79
 4.6.1 An inventory system, 79
 4.6.2 round-robin queue, 82
Problems, 86
Computer assignments, 87

Chapter 5. Estimation techniques for analyzing endogenously created data, 89

5.1 Introduction, 89
5.2 Collecting endogenously created data, 89
5.3 Transient state vs. steady-state simulation, 92
 5.3.1 Transient-state simulation, 92
 5.3.2 Steady-state simulation, 93
5.4 Estimation techniques for steady-state simulation, 94

5.4.1 Estimation of the confidence interval of the mean of a
random variable, 94

 a. Estimation of the autocorrelation coefficients, 97
 b. Batch means, 102
 c. Replications, 103
 d. Regenerative method, 105
 The central limit theorem, 108
 The jacknife method, 111

Table of Contents iii

5.4.2 Estimation of other statistics of a random variable, 112
a. Probability that a random variable lies within a fixed

interval, 113
 b. Percentile of a probability distribution, 114
 c. Variance of the probability distribution, 115

5.5 Estimation techniques for transient state simulation, 117
5.6 Pilot experiments and sequential procedures for achieving a

required accuracy, 118
 5.6.1 Independent replications, 118
 5.6.2 Batch means, 119
Computer assignments, 120

Chapter 6. Validation of a simulation model, 121
 Computer assignments, 123

Chapter 7. Variance reduction techniques, 125

7.1 Introduction, 125
7.2 The antithetic variates technique, 126
7.3 The control variates technique, 132
Computer assignments, 136

CHAPTER 1:

INTRODUCTION

1.1 The OR approach

The OR approach to solving problems is characterized by the following steps:

1. Problem formulation

2. Construction of the model

3. Model validation

4. Using the model, evaluate various available alternatives (solution)

5. Implementation and maintenance of the solution

 The above steps are not carried out just once. Rather, during the course of an OR

exercise, one frequently goes back to earlier steps. For instance, during model validation

one frequently has to examine the basic assumptions made in steps 1 and 2.

The basic feature of the OR approach is that of model building. Operations

Researchers like to call themselves model builders! A model is a representation of the

structure of a real-life system. In general, models can be classified as follows: iconic,

analogue, and symbolic.

 An iconic model is an exact replica of the properties of the real-life system, but in

smaller scale. Examples are: model airplanes, maps, etc. An analogue model uses a set of

properties to represent the properties of a real-life system. For instance, a hydraulic

system can be used as an analogue of electrical, traffic and economic systems. Symbolic

models represent the properties of the real-life system through the means of symbols,

2 Computer Simulation Techniques

such as mathematical equations and computer programs. Obviously, simulation models

are symbolic models.

 Operations Research models are in general symbolic models and they can be

classified into two groups, namely deterministic models and stochastic models.

Deterministic models are models which do not contain the element of probability.

Examples are: linear programming, non-linear programming and dynamic programming.

Stochastic models are models which contain the element of probability. Examples are:

queueing theory, stochastic processes, reliability, and simulation techniques.

 Simulation techniques rely heavily on the element of randomness. However,

deterministic simulation techniques in which there is a no randomness, are not

uncommon. Simulation techniques are easy to learn and are applicable to a wide range of

problems. Simulation is probably the handiest technique to use amongst the array of OR

models. The argument goes that "when everything else fails, then simulate". That is,

when other models are not applicable, then use simulation techniques.

1.2 Building a simulation model

Any real-life system studied by simulation techniques (or for that matter by any other OR

model) is viewed as a system. A system, in general, is a collection of entities which are

logically related and which are of interest to a particular application. The following

features of a system are of interest:

• Environment: Each system can be seen as a subsystem of a broader system.

• Interdependency: No activity takes place in total isolation.

• Sub-systems: Each system can be broken down to sub-systems.

• Organization: Virtually all systems consist of highly organized elements or

components, which interact in order to carry out the function of the system.

• Change: The present condition or state of the system usually varies over a long

period of time.

Introduction 3

 When building a simulation model of a real-life system under investigation, one

does not simulate the whole system. Rather, one simulates those sub-systems which are

related to the problems at hand. This involves modelling parts of the system at various

levels of detail. This can be graphically depicted using Beard's managerial pyramid as

shown in Figure 1.1. The collection of blackened areas form those parts of the system

that are incorporated in the model.

Levels of

Detail

Figure 1.1: Beard's managerial pyramid

A simulation model is, in general, used in order to study real-life systems which

do not currently exist. In particular, one is interested in quantifying the performance of a

system under study for various values of its input parameters. Such quantified measures

of performance can be very useful in the managerial decision process. The basic steps

involved in carrying out a simulation exercise are depicted in Figure 1.2.

 All the relevant variables of a system under study are organized into two groups.

Those which are considered as given and are not to be manipulated (uncontrollable

variable) and those which are to be manipulated so that to come to a solution

(controllable variables). The distinction between controllable and uncontrollable

variables mainly depends upon the scope of the study.

4 Computer Simulation Techniques

Define the Problem

Analyze Data

Formulate Sub-Models

Combine Sub-Models

Collect Data

Write the Simulation
Program

Debug

Validate Model

Design Simulation
Experiments

Run the Simulator

Analyze the Results

Implement Results

(alternatives)

a

a

Earlier
Steps

Figure 1.2: Basic steps involved in carrying out a simulation study.

 Another characterization of the relevant variables is whether they are affected or

not during a simulation run. A variable whose value is not affected is called exogenous. A

variable having a value determined by other variables during the course of the simulation

is called endogenous. For instance, when simulating a single server queue, the following

variables may be identified and characterized accordingly.

Exogenous variables

 1. The time interval between two successive arrivals.

 2. The service time of a customer.

 3. Number of servers.

 4. Priority discipline.

Introduction 5

Endogenous variables

 1. Mean waiting time in the queue.

 2. Mean number of customers in the queue.

 The above variables may be controllable or uncontrollable depending upon the

experiments we want to carry out. For instance, if we wish to find the impact of the

number of servers on the mean waiting time in the queue, then the number of servers

becomes an controllable variable. The remaining variables-the time interval between two

arrivals and the service time, will remain fixed. (uncontrollable variables)

 Some of the variables of the system that are of paramount importance are those

used to define the status of the system. Such variables are known as status variables.

These variables form the backbone of any simulation model. At any instance, during a

simulation run, one should be able to determine how things stand in the system using

these variables. Obviously, the selection of these variables is affected by what kind of

information regarding the system one wants to maintain.

 We now proceed to identify the basic simulation methodology through the means

of a few simulation examples.

1.3 Basic simulation methodology: Examples

1.3.1 The machine interference problem

Let us consider a single server queue with a finite population known as the

machine interference problem. This problem arose originally out of a need to model the

behavior of machines. Later on, it was used extensively in computer modelling. Let us

consider M machines. Each machine is operational for a period of time and then it breaks

down. We assume that there is one repairman. A machine remains broken down until it is

fixed by the repairman. Broken down machines are served in a FIFO manner, and the

service is non-preemptive. Obviously, the total down time of a machine is made up of the

time it has to "queue" for the repairman and the time it takes for the repairman to fix it. A

6 Computer Simulation Techniques

machine becomes immediately operational after it has been fixed. Thus, each machine

follows a basic cycle as shown in figure 1.3, which is repeated continuously.

Operational Broken Down

Queueing
Time

Repair
Time

Figure 1.3: The basic cycle of a machine.

In general, one has information regarding the operational time and the repair time

of a machine. However, in order to determine the down time of a machine, one should be

able to calculate the queueing time for the repairman. If this quantity is known, then one

can calculate the utilization of a machine. Other quantities of interest could be the

utilization of the repairman.

Finite
Population

of Machines

Repairman

Figure 1.4: The machine interference problem.

Let us now look at the repairman's queue. This can be visualized as a single server

queue fed by a finite population of customers, as shown in figure 1.4

 For simplicity, we will assume that the operational time of each machine is equal

to 10 units of time. Also, the repair time of each machine is equal to 5 units of time. In

other words, we assume that all the machines have identical constant operational times.

Introduction 7

They also have identical and constant repair times. (This can be easily changed to more

complicated cases where each machine has its own random operational and repair times.)

The first and most important step in building a simulation model of the above

system, is to identify the basic events whose occurrence will alter the status of the

system. This brings up the problem of having to define the status variables of the above

problem. The selection of the status variables depends mainly upon the type of

performance measures we want to obtain about the system under study.

A machine
breaks down

Repairman
busy

?

yes

Repairman
becomes busy

Repair
starts

Join the
queue

Figure 1.5: An arrival event.

In this problem, the most important status variable is n, the number of broken

down machines, i.e., those waiting in the queue plus the one being repaired. If n=0, then

we know that the queue is empty and the repairman is idle. If n=1, then the queue is

empty and the repairman is busy. If n>1, then the repairman is busy and there are n-1

broken down machines in the queue. Now, there are two events whose occurrence will

cause n to change. These are:

 a) A machine breaks down, i.e., an arrival occurs at the queue.

8 Computer Simulation Techniques

 b) A machine is fixed, i.e., a departure occurs from the queue.

 The flow-charts given in figures 1.5, and 1.6 show what happens when each of

these events occur.

A machine
is repaired

no

A new repair
starts

Repairman
becomes

idle

Other
machines to be

repaired?

Figure 1.6: A departure event.

In order to incorporate the above two basic events in the simulation model, we

need a set of variables, known as clocks, which will keep track of the time instants at

which an arrival or departure event will occur. In particular, for this specific model, we

need to associate a clock for each machine. The clock will simply show the time instant

at which the machine will break down, i. e., it will arrive at the repairman's queue.

Obviously, at any instance, only the clocks of the operational machines are of interest. In

addition to these clocks, we require to have another clock which shows the time instant at

which a machine currently being repaired will become operational, i.e., it will cause a

departure event to occur. Thus, in total, if we have m machines, we need m+1 clocks.

Each of these clocks is associated with the occurrence of an event. In particular, m clocks

are associated with m arrival events and one clock is associated with the departure event.

Introduction 9

In addition to these clocks, it is useful to maintain a master clock, which simply keeps

tracks of the simulated time.

 The heart of the simulation model centers around the manipulation of these

events. In particular, using the above clocks, the model decides which of all the possible

events will occur next. Then the master clock is advanced to this time instant, and the

model takes action as indicated in the flow-charts given in figures 1.5 and 1.6. This event

manipulation approach is depicted in figure 1.7.

Figure 1.7: Event manipulation.

 We are now ready to carry out the hand simulation shown below in table 1. Let us

assume that we have 3 machines. Let CL1, CL2, and CL3 be the clocks associated with

machine 1, 2, and 3 respectively (arrival event clocks). Let CL4 be the clock associated

with the departure event. Finally, let MC be the master clock and let R indicate whether

Choose
next event

a

A machine
Breaks down

A machine
is repaired

Create
operation time

Generate a
 new service

Queue
empty? a ye

s

n
o

a

Generate a
 new service

Queue
empty?

n
o

ye
s

a

a

10 Computer Simulation Techniques

the repairman is busy or idle. We assume that at time zero all three machines are

operational and that CL1=1, CL2=4, CL3=9. (These are known as initial conditions.)

MC CL1 CL2 CL3 CL4 n

0 1 4 9 - 0 idle

1 - 4 9 6 1 busy

4 - - 9 6 2 busy

6 16 - 9 11 1 busy

9 16 - - 11 2 busy

11 16 21 - 16 1 busy

16 - 21 26 21 1 busy

Table 1: Hand simulation for the machine interference problem

 We note that in order to schedule a new arrival time we simply have to set the

associated clock to MC+10. Similarly, each time a new repair service begins we set

CL4=MC+5. A very important aspect of this simulation model is that we only check the

system at time instants at which an event takes place. We observe in the above hand

simulation that the master clock in the above example gives us the time instants at which

something happened (i.e., an event occurred). These times are: 0, 1, 4, 6, 9, 11, 16, ... We

note that in-between these instants no event occurs and, therefore, the system's status

remains unchanged. In view of this, it suffices to check the system at time instants at

which an event occurs. Furthermore, having taken care of an event, we simply advance

the Master clock to the next event which has the smallest clock time. For instance, in the

above hand simulation, after we have taken care of a departure of time 11, the simulation

will advance to time 16. This is because following the time instant 11, there are three

events that are scheduled to take place in the future. These are: a) arrival of machine 1 at

time 16; b) arrival of machine 2 at time 21; and c) a departure of machine 3 at time 16.

Obviously, the next event to occur is the latter event at time 16.

Introduction 11

The above simulation can be easily done using a computer program. An outline of

the flow-chart of the simulation program is given in figure 1.8. The actual

implementation of this simulation model is left as an exercise.

Figure 1.8: A flowchart of the simulation program.

1.3.2 A token-based access scheme

We consider a computer network consisting of a number of nodes interconnected via a

shared wired or wireless transport medium, as shown in figure 1.9. Access to the shared

medium is controlled by a token. That is, a node cannot transmit on the network unless it

has the token. In this example, we simulate a simplified version of such an access

scheme. Below, we describe how such a token-based access scheme operates.

Initiate
simulation

A

Next
event

MC=0, CL1=1, CL2=4
CL3=9, n=0, R=0 (idle)

Arrival
(ith machine)

Departure
(ith machine)

MC=CLi MC=CLi

n=0 ?

R=1

yes

No n=n+1

CL4=MC+5

A

n=n-1

n=0 ? Yes R=0

A

CL4=MC+5

 No

CLj=MC+10

A

12 Computer Simulation Techniques

Figure 1.9: Nodes interconnected by a shared medium

There is a single token that visits the nodes in a certain logical sequence. The nodes are

logically connected so that they form a logical ring. In the case of a bus-based or ring-

based wireline medium, the order in which the nodes are logically linked may not be the

same with the order in which they are attached to the network. We will assume that the

token never gets lost. A node cannot transmit unless it has the token. When a node

receives the token, from its previous logical upstream node, it may keep it for a period of

time up to T. During this time, the node transmits packets. A packet is assumed to consist

of data and a header. The header consists of the address of the sender, the address of the

destination, and various control fields. The node surrenders the token when: a) time T

has run out, or b) it has transmitted out all the packets in its queue before T runs out, or

c) it receives the token when it has no packets in its queue to transmit. If time T runs out

and the node is in the process of transmitting, it will complete the transmission and then it

will surrender the token. Surrendering the token means, that the node will transmit it to

its next downstream logical neighbour.

. . .

token

Figure 1.10. The conceptual queueing system.

Introduction 13

 Conceptually, this network can be seen as comprising of a number of queues, one

per node. Only the queue that has the token can transmit packets. The token can be seen

as a server, who cyclically switches between the queues, as shown in figure 1.10. Once

the token is switched to a queue, packets waiting in this queue can be transmitted on the

network. The maximum time that a queue can keep the token is T units of time, as

explained above. The time it takes for the token to switch from one queue to the next is

known as switch-over time.

 It is much simpler to use the queueing model given in figure 1.10 when

constructing the simulation model of this access scheme. The following events have to be

taken into account in this simulation. For each queue, there is an arrival event and service

completion event. For the token, there is a time of arrival at the next queue event and a

time-out event. For each queue, we keep track of the time of arrival of the next packet,

the number of customers in the queue, and the time a packet is scheduled to depart, if it is

being transmitted. For the token, we keep track of the time of arrival at the next queue,

the number of the queue that may hold the token, and the time when the token has to be

surrendered to the next node, known as time-out.

In the hand simulation given below we assume that the network consists of three

nodes. That is, the queueing system in figure 1.10 consists of three queues. The inter-

arrival times to queues 1, 2, and 3 are constant and they are equal to 10, 15, and 20 unit

times respectively. T is assumed to be equal to 15 unit times. The time it takes to transmit

a packet is assumed to be constant equal to 6 unit times. The switch over time is equal to

1 unit time. For initial conditions we assume that the system is empty at time zero. The

first arrival to queues 1, 2, and 3 will occur at time 2, 4 and 6 respectively. Also, at time

zero, the token is in queue 1. In case when an arrival and a departure occur

simultaneously at the same queue, we will assume that the arrival occurs first.

 The logic for each of the events in this simulation is summarized in figures 1.11 to

1.14. The set of all possible events that can occur at a given time in a simulation is known

as the event list. This event-list has to be searched each time in order to locate the next

event. This event manipulation forms the basis of a simulation, and it is summarized in a

flow-chart given in figure 1.15.

14 Computer Simulation Techniques

Figure 1.11: Arrival event at queue i.

Service is
completed

Departs from
queue

Return

Pass
token

MC = DT

q = q-1

H = (H+1) mod3

Schedule new
service

Schedule arrival
time

Queue
empty?

Token
time out

?
Return

ANH =
MC + switch over time

DT = MC + new service time

yes

no

no

i

i

yes

Figure 1.12: Service completion at queue i.

Arrival
occurs

Join the
queue

Schedule
Next Arrival

Arrivals

Return

MC=ACi

qi = qi + 1

ATi = MC + new
inter-arrival time

Introduction 15

Time-out
occurs

Return

This means that
node is still

transmitting.

Raise a
flag

Figure 1.13 : Time-out of token

Arrival of token
at next queue

Return

Pass
token

MC = ANH

H = (H + 1) mod3

Schedule next
service

completion

Schedule
next arrival

Queue
empty

?

ANH = MC +
(switch over time)

DT4 = MC +
(new service time)

yes

no

Schedule
time-outTOUT = MC + T

yes

Figure 1.14 : Arrival of token at next queue.

DTi = MC +
(new service time)

16 Computer Simulation Techniques

Initialize
simulation

End

i. e. search event list for
smallest number

If new events
are scheduled
update next

event

Is
simulation

over
?

Take
appropriate

action

Locate
next event

no

yes

i. e. branch to the appropriate part of the
program (or procedure)

Figure 1.15 : Event manipulation.

The following variables represent the clocks used in the flow-charts:

• MC: Master clock

• ATi: Arrival time clock at queue i, i=1,2,3

• DTi: Departure time clock from queue i, i=1,2,3

• TOUT: Time out clock for token

• ANH: Arrival time clock of token to next queue

The hand simulation is given in table 2.

Introduction 17

 Queue 1 Queue 2 Queue 3 Toke

n

MC Arr
Clock

Depart
Clock

Queue
size

Arr
Clock

Depart
Clock

Queue
size

Arr
Clock

Depart
Clock

Queue
size

Node
No

Time
Out

Clock

Arriva
l Next
Node

0 2 0 4 0 6 0 1 1

1 2 0 4 0 6 0 2 2

2 12 1 4 0 6 0 3 3

3 12 9 1 4 0 6 0 1 18

4 12 9 1 19 1 6 0 1 18

6 12 9 1 19 1 26 1 1 18

9 12 0 19 1 26 1 1 10

10 12 0 19 16 1 26 1 2 25

12 22 1 19 16 1 26 1 2 25

16 22 1 19 0 26 1 2 17

17 22 1 19 0 26 23 1 3 32

19 22 1 34 1 26 23 1 3 32

22 32 2 34 1 26 23 1 3 32

23 32 2 34 1 26 0 3 24

24 32 30 2 34 1 26 0 1 39

26 32 30 2 34 1 46 1 1 39

30 32 36 1 34 1 46 1 1 39

32 42 36 2 34 1 46 1 1 39

34 42 36 2 49 2 46 1 1 39

36 42 42 1 49 2 46 1 1 39

39 42 42 1 49 2 46 1 1 *

42 52 42 2 49 2 46 1 1 *

42 52 1 49 2 46 1 1 43

43 52 1 49 49 2 46 1 2 58

Table 2: Hand simulation for the token-based access scheme

18 Computer Simulation Techniques

1.3.3 A two-stage manufacturing system

Let us consider a two-stage manufacturing system as depicted by the queueing network

shown in figure 1.16. The first queue has an infinite capacity, and the second queue has a

finite capacity. When the second queue becomes full, the server at the first queue stops.

In particular, upon service completion at server 1, the server gets blocked if the second

queue is

Figure 1.16: A two-stage queueing network.

full. Server 1 will remain blocked until a customer departs from the second queue. Each

server may break down. For simplicity, we will assume that a server may break down

whether it is busy or idle. A broken down server cannot provide service until it is

repaired. If a customer was in service when the breakdown occurred, the customer may

resume its service after the server is repaired without any loss. That is, it will continue

from where it stopped when the breakdown occurred.

 In the hand-simulation given in table 3, it is assumed that the buffer capacity of

the second queue is 3 (this includes the customer in service). All service times, inter-

arrival times, operational and repair times are constant with the following values: inter-

arrival time = 40, service time at node 1 = 20, service time at node 2 = 30, operational for

server 1 = 200, operational time for server 2 = 300, repair time for server 1 = 50, and

repair time for server 2 = 150. Initially the system is assumed to be empty. The first

arrival occurs at time 10, server 1 will break down for the first time at time 80, and server

2 at time 90.

Introduction 19

 Stage 1 Stage 2

MC

AC

Cust
Server
Clock

Oper
Clock

Rep
Clock

Server
Status

Cust Server
Clock

Oper
Clock

Rep
Clock

Server
Status

10 50 1 30 80 busy 90 idle

30 50 0 80 idle 1 60 90 busy

50 90 1 70 80 busy 1 60 90 busy

60 90 1 70 80 0 90 idle

70 90 0 80 idle 1 90 90 busy

80 90 0 130 down 1 90 90 busy

90 90 0 130 down 0 90 idle

90 130 1 130 down 0 90 idle

90 130 1 130 down 0 240 down

130 170 2 130 down 0 240 down

130 170 2 150 330 busy 0 240 down

150 170 1 170 330 busy 1 240 down

170 210 2 170 330 busy 1 240 down

170 210 1 190 330 busy 2 240 down

190 210 0 330 idle 3 240 down

210 250 1 230 330 busy 3 240 down

230 250 1 330 blocked 3 240 down

240 250 1 330 blocked 3 270 540 busy

250 290 2 330 blocked 3 270 540 busy

270 290 1 290 330 busy 3 300 540 busy

290 330 2 290 330 busy 3 300 540 busy

290 330 2 330 blocked 3 300 540 busy

300 330 1 320 busy 3 330 540 busy

320 330 1 blocked 3 330 540 busy

330 370 2 330 blocked 3 330 540 busy

330 370 1 350 330 busy 3 360 540 busy

330 370 1 380 down busy

360 370 1 380 down 2 390 540 busy

370 410 2 380 down 2 390 540 busy

380 410 2 400 580 busy 2 390 540 busy

390 410 2 400 580 busy 1 420 540 busy

20 Computer Simulation Techniques

Table 3: hand simulation for the two-stage manufacturing system

Since we are dealing with integer numbers, it is possible that more than one clock may

have the same value. That is, more than one event may occur at the same time. In this

particular simulation, simultaneous events can be taken care in any arbitrary order. In

general, however, the order with which such events are dealt with may matter, and it has

to be accounted for in the simulation. In a simulation, typically, clocks are represented by

real numbers. Therefore, it is not possible to have events occurring at the same time.

Problems

1. Do the hand simulation of the machine interference problem, discussed in section

1.3.1, for the following cases:

 a. Vary the repair and operational times.

b. Vary the number of repairmen.

c. Assume that the machines are not repaired in a FIFO manner, but according to

which machine has the shortest repair time.

2. Do the hand simulation of the token-based access scheme, described in section

1.3.2, for the following cases:

a. Vary the inter-arrival times.

b. Vary the number of queues.

c. Assume that packets have priority 1 or 2 (1 being the highest). The packets in a

queue are served according to their priority. Packets with the same priority are

served in a FIFO manner.

3. Do the hand simulation of the two-stage manufacturing system, described in

section 1.3.3, for the following cases:

 a. Assume no breakdowns.

Introduction 21

b. Assume a three-stage manufacturing system. (The third stage is similar to the

second stage.)

Computer assignments

1. Write a computer program to simulate the machine interference problem as

described in section 1.3.1. Each time an event occurs, print out a line of output to

show the current values of the clocks and of the other status parameters (as in the

hand simulation). Run your simulation until the master clock is equal to 20.

Check by hand whether the simulation advances from event to event properly, and

whether it updates the clocks and the other status parameters correctly.

2. Write a computer program to simulate the token bus as described in section 1.3.2.

Each time an event occurs, print out a line of output to show the current values of

the clocks and of the other status parameters (as in the hand simulation). Run your

simulation until the master clock is equal to 100. Check by hand whether the

simulation advances from event to event properly, and whether it updates the

clocks and the other status parameters correctly.

3. Write a computer program to simulate the two-stage manufacturing system as

described in section 1.3.3. Each time an event occurs, print out a line of output to

show the current values of the clocks and of the other status parameters (as in the

hand simulation). Run your simulation until the master clock is equal to 500.

Check by hand whether the simulation advances from event to event properly, and

whether it updates the clocks and the other status parameters correctly.

CHAPTER 2:

GENERATING PSEUDO-RANDOM NUMBERS

2.1 Introduction

We shall consider methods for generating random number uniformly distributed. Based

on these methods, we shall then proceed in the next Chapter to consider methods for

generating random numbers which have a certain distribution, i.e., exponential, normal,

etc.

Numbers which are chosen at random are useful in a variety of applications. For

instance, in numerical analysis, random numbers are used for solving complicated

integrals. In computer programming, random values make a good source of data for

testing the effectiveness of computer algorithms. In simulation, random numbers are used

in order to represent real-life situations.

Let us consider for a moment the machine interference simulation model

discussed in the previous Chapter. In this model it was assumed that the operational time

of a machine was constant. Also, it was assumed that the repair time of a machine was

constant. It is possible that one may identify real-life situations where these two

assumptions are valid. However, in most of the cases one will observe that the time a

machine remains operational varies. Also, the repair time may vary from machine to

machine. If we are able to observe the behavior of a machine over a reasonably long

period, we will find that the operational times can be characterized by a theoretical or an

empirical probability distribution. Similarly, the repair times can be also characterized by

a theoretical or empirical distribution. Therefore, in order to make the simulation model

more realistic, one would require a built-in mechanism which will produce random

numbers which follow the given distributions. Now, in order to generate such random

24 Computer Simulation Techniques

numbers one needs to be able to generate uniformly distributed random numbers,

otherwise known as pseudo-random numbers. The generation of pseudo-random numbers

is the subject matter of this Chapter.

2.2 Pseudo-random numbers

In a sense, there is no such a thing as a single random number. Rather, we speak of a

sequence of random numbers which follow a specified distribution. Each number in the

sequence has been obtained merely by chance, having nothing to do with other numbers

of the sequence, and each number has a specified probability of falling in any given

range.

Uniformly distributed random numbers in the space [0,1] are usually referred to

as random numbers, whereas random numbers following any other distribution are

referred to as random variates or stochastic variates.

Historically, the first method for creating random numbers by computer was Von

Neuman's mid-square method. His idea was to take the square of the previous random

number and to extract the middle digits. For example, let us assume that we are

generating 10-digit numbers and that the previous value was 5772156649. The square of

this value is 33317792380594909291 and the next number is 7923805949. The question

here that arises is how such a method can give a sequence of random numbers. Well, it

does not, but it appears to be!

The mid-square method was relatively slow and statistically unsatisfactory. It was

later abandoned in favour of congruential methods. At the present time, nearly all

computer codes for generating random numbers use some variation of the congruential

method. As will be seen, this method generates random numbers in a deterministic

manner. However, a sequence of such random numbers appear to be statistically random

Because of that, they are often referred to as pseudo-random numbers.

In general, an acceptable method for generating pseudo-random numbers must

yield sequences which are:

1. uniformly distributed

Generating Pseudo-random numbers 25

2. statistically independent

3. reproducible, and

4. non-repeating for any desired length.

2.3 Congruential methods for generating pseudo-random numbers

These methods are completely deterministic. Formulae are available for calculating in

advance the exact value of the ith number in a sequence of numbers, before the sequence

is actually generated. Numbers generated in this manner are not random. However, we

treat them as if they were random as long as they pass a certain number of statistical tests

designed to test various properties of random numbers. In particular, if it can be shown

that a sequence of numbers generated using the congruential method are uniformly

distributed and statistically independent, then these numbers can be assumed to be

random (even if they were created in a deterministic fashion).

Congruential methods use the following recursive relationship:

xi+1 = axi + c (mod m)

where xi, a, c and m are all non-negative numbers. Given that the previous random

number was xi, the next random number xi+1 can be generated as follows. Multiply xi by

a and then add c. Then, compute the modulus m of the result. That is, divide the result by

m and set xi+1 equal to the remainder of this division. For example, if x0 = a = c = 7, m =

10 then we can obtain the following sequence of numbers: 7,6,9,0,7,6,9,0,...

 The method using the above expression is known as the mixed congruential

method. A simpler variation of this method is the multiplicative congruential method.

This method utilizes the relation xi+1 = axi(mod m). Historically, multiplicative

congruential generators came before the mixed congruential generators. Below we limit

our discussion to mixed congruential generators.

 The numbers generated by a congruential method are between 0 and m-1. Quite

frequently in simulation, one needs uniformly distributed random numbers between 0 and

26 Computer Simulation Techniques

1. Such random numbers can be easily obtained from the congruential method by simply

dividing each xi by m.

 The number of successively generated pseudo-random numbers after which the

sequence starts repeating itself is called the period. If the period is equal to m, then the

generator is said to have a full period. Theorems from number theory show that the

period depends on m. The larger the value of m, the larger the period. In particular, the

following conditions on a, c, and m guarantee a full period:

1. m and c have no common divisor.

2. a = 1 (mod r) if r is a prime factor of m. That is, if r is a prime number

(divisible only by itself and 1) that divides m, then it divides a-1.

3. a = 1 (mod 4) if m is a multiple of 4.

It is important to note that one should not use any arbitrary values for a, c and m.

Systematic testing of various values for these parameters have led to generators which

have a full period and which are statistically satisfactory. A set of such values is: a =

314, 159, 269, c = 453, 806, 245, and m = 231 (for a 32 bit machine).

 In order to get a generator started, we further need an initial seed value for x. It

will become obvious later on that the seed value does not affect the sequence of

generated pseudo-random numbers in the long run.

 The implementation of a pseudo-random number generator involves a

multiplication, an addition and a division. A division, being comparatively a slow

operation, can be avoided if m is set equal to the size of the computer word. For, if the

total numerical value of the expression axi+c is less than the word size, then it is in itself

the result of the operation axi+c (mod m), where m is set equal to the word size. Now, let

us assume that a, xi and c have values such that the expression axi+c will give a number

greater than the word size. In this case, when the calculation is performed, an overflow

will occur. If the overflow does not cause the execution of the program to be aborted, but

it simply causes the significant digits to be lost, then the remaining digits left in the

register is the remainder of the division (axi+c)/m. This is because the lost significant

Generating Pseudo-random numbers 27

digits will represent multiples of the value of m, which is the quotient of the above

division.

 In order to demonstrate the above idea, let us consider a fictitious decimal

calculator whose register can accommodate a maximum of 2 digits. Obviously, the

largest number that can be held in the register is 99. Now, we set m equal to 100. For

a=8, x=2, and c=10, we have that axi + c = 26, and 26 (mod 100) = 26. However, if x=20,

then we have that axi + c = 170. If this computation is performed in the above fictitious

calculator, the product axi (which is equal to 8x20) will cause an overflow to occur. The

first significant digit will be lost and thus the register will contain the number 60. If we

now add c (which is equal to 10) to the above result we will obtain 70, which is, the

remaining of the division 170/100.

2.4 General congruential methods

The mixed congruential method described above can be thought of as a special case of a

following generator:

xi+1 = f(xi, xi-1, ...) (mod m),

where f(.) is a function of previously generated pseudo-random numbers. A special case

of the above general congruential method is the quadratic congruential generator. This

has the form:

 xi+1=a1x
2
i + a2xi-1+ c.

The special case of a1=a2=1, c=0 and m being a power of 2 has been found to be related

to the midsquare method. Another special case that has been considered is the additive

congruential method, which is based on the relation

f(xi, xi-1, ..., xi-k) = a1xi + a2xi-1 + ... akxi-k .

28 Computer Simulation Techniques

The case f(xi, xi-1)=xi+xi-1 has received attention.

2.5 Composite generators

These methods were developed by combining two separate generators (usually

congruential generators). By combining separate generators, one hopes to achieve better

statistical behaviour than either separate generator.

 The best known of the composite generators uses the second congruential

generator to shuffle the output of the first congruential generator. In particular, the first

generator is used to fill a vector of size n with its first k generated random numbers. The

second generator is then used to generate a random integer r uniformly distributed over

the numbers 1, 2, …, k. The random number stored in the rth position of the vector is

returned as the first random number of the composite generator. The first generator then

replaces the random number in the rth position with a new random number. The next

random number that will be returned by the composite generator, is the one selected by

the second generator from the updated vector of random numbers. The procedure repeats

itself in this fashion. It has been demonstrated that such a combined generator has good

statistical properties, even if two separate generators used are bad.

2.6 Tausworthe generators

Tausworthe generators are additive congruential generators obtained when the modulus

m is equal to 2. In particular,

xi = (a1xi-1 + a2xi-2 + ...+ anxi-n) (mod 2)

where xi can be either 0 or 1. This type of generator produces a stream of bits {bi}. In

view of this, it suffices to assume that the coefficients ai are also binary. Thus, xi is

obtained from the above expression by adding some of preceding bits and then carrying

Generating Pseudo-random numbers 29

out a modulo 2 operation. This is equivalent to the exclusive OR operation, notated as ⊕

and defined by the following truth table.

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

A⊕B is true (i.e. equal to 1), when either A is true and B false, or A is false and B true.

 The generated bits can be put together sequentially to form an -bit binary integer

between 0 and 2 -1. Several bit selection techniques have been suggested in the

literature.

 In the composite generator scheme discussed earlier on, one of the generators (but

not both) could be a Tausworthe generator.

 Tausworthe generators are independent of the computer used and its word size

and have very large cycles. However, they are too slow since they only produce bits. A

fast variation of this generator is the trinomial-based Tausworthe generator. Two or more

such generators have to be combined in order to obtain statistically good output.

2.7 The Mercenne Twister

This is a newer algorithm that has created a great deal of excitement. Its output has

excellent statistical properties and its period is very long, i.e., 219937-1. (219937-1 is a prime

number and it is also a Mersenne prime, since it is one less than a power of two.) The

algorithm uses a seed value which is 19,937 bits long, and is essentially a large linear-

feedback shift register.

2.8 Statistical tests of pseudo-random number generators

Pseudo-random number generation techniques are completely deterministic. Numbers

generated in this manner are not random. However, we can treat them as random as long

30 Computer Simulation Techniques

as they pass a certain number of statistical tests. A sequence of pseudo-random numbers

are treated as random if statistically they are uniformly distributed and independent of

each other.

2.8.1 Runs test

This statistical test can be used to test the assumption that the pseudo-random numbers

are independent of each other. We start with a sequence of pseudo-random numbers

between 0 and 1. We then look for unbroken subsequences of numbers, where the

numbers within each subsequence are monotonically increasing. Such a subsequence is

called a run up, and it may be as long as one number.

 For example, let us consider the sequence: 0.8, 0.7, 0.75, 0.55, 0.6, 0.7, 0.3,

0.4, 0.5. Starting from the beginning of this sequence (in this case, starting from the left),

we find a run up of length 1, i.e. 0.8, then a run up of length 2, i.e. 0.7, 0.75, followed by

two successive run ups of length 3, i.e. 0.55, 0.6, 0.7, and 0.3, 0.4, 0.5.

 In general, let ri be the number of run ups of length i. (In the above example we

have r1=1, r2=1, r3=2.) All run-ups with a length i>_ 6, are grouped together into a single

run-up. The ri values calculated for a particular sequence are then used to calculate the

following statistic:

R =
1
n ∑

1≤i,j≤6
 (ri-nbi)(rj-nbj)aij , 1≤i≤6, 1≤j≤6

where n is the sample size and bi, i=1,...6, and aij are known coefficients. The aij

coefficient is obtained as the (i,j)th element of the matrix









4529.4 9044.9 13568 18091 22615 27892

9044.9 18097 27139 36187 45234 55789
13568 27139 40721 54281 67852 83685
18091 36187 54281 72414 90470 111580
22615 45234 67852 90470 113262 139476
27892 55789 83685 111580 139476 172860

 ,

Generating Pseudo-random numbers 31

and the bi coefficient is obtained as the ith element of the vector

(b1,...,b6) = (
1
6 ,

5
24 ,

11
120 ,

19
720 ,

29
5040 ,

1
840) .

For n >_ 4000, R has a chi-square distribution (see below) with 6 degrees of freedom

(d.f). under the null hypothesis that the random numbers are independent and identically

distributed (i.i.d).

2.8.2 Chi-square test for goodness of fit

Having tested the independence assumption using the above test, we now proceed to

check the uniform distribution assumption. The chi-square test, in general, can be used to

check whether an empirical distribution follows a specific theoretical distribution. In our

case, we are concerned about testing whether the numbers produced by a generator are

uniformly distributed.

 Let us consider a sequence of pseudo-random numbers between 0 and 1. We

divide the interval [0,1] into k subintervals of equal length, where k > 100. Let fi be the

number of pseudo-random numbers that fall within the ith subinterval. (Make sure that

enough random numbers are generated so that fi > 5.) The fi values are called the

observed values. Now, if these generated random numbers are truly uniformly

distributed, then the mean number of random numbers that fall within each subinterval is

n/k, where n is the sample site. This value is called the theoretical value. The chi-square

test measures whether the difference between the observed and the theoretical values is

due to random fluctuations or due to the fact that the empirical distribution does not

follow the specific theoretical distribution. For the case where the theoretical distribution

is the uniform distribution, the chi-square statistic is given by the expression

χ2 =

!

k

n
(fi "

n

k
)
2

i=1

k

,

32 Computer Simulation Techniques

and it has k-1 degrees of freedom. The null hypothesis is that the generated random

numbers are i.i.d. uniformly distributed in [0,1]. This hypothesis is rejected if the

computed value of χ2 is greater than the one obtained from the chi-square tables for k-1

degrees of freedom and 1-a level of significance. (The chi-square tables can be found in

any introductory Statistics book, and of course they are also accessible through the

Internet!)

Problems

1. Consider the multiplicative congruential method for generating random digits.

Assuming that m=10, determine the length of the cycle for each set of values of a

and x0 given below.

 (a) a = 2, x0 =1, 3, 5.

 (b) a = 3, x0 = 1, 2, 5.

Computer Assignments

1. Use the two statistical tests described in section 2.7, to test a random number

generator available at your computer.

CHAPTER 3:

GENERATING STOCHASTIC VARIATES

3.1 Introduction

In the previous Chapter we examined techniques for generating random numbers. In this

Chapter, we discuss techniques for generating random numbers with a specific

distribution. Random numbers following a specific distribution are called random

variates or stochastic variates. Pseudo-random numbers which are uniformly distributed

are normally referred to as random numbers. Random numbers play a major role in the

generation of stochastic variates.

 There are many techniques for generating random variates. The inverse

transformation method is one of the most commonly used techniques. This is discussed

below. Sections 3.3 and 3.4 give methods for generating stochastic variates from known

continuous and discrete theoretical distributions. Section 3.5 discusses methods for

obtaining stochastic variates from empirical distributions. Section 3.6 describes an

alternative method for stochastic variates generation known as the rejection method.

3.2 The inverse transformation method

This method is applicable only to cases where the cumulative density function can be

inversed analytically. Assume that we wish to generate stochastic variates from a

probability density function (pdf) f(x). Let F(x) be its cumulative density function. We

note that F(x) is defined in the region [0,1]. We explore this property of the cumulative

density function to obtain the following simple stochastic variates generator.

34 Computer Simulation Techniques

 We first generate a random number r which we set equal to F(x). That is, F(x) =

r. The quantity x is then obtained by inverting F. That is, x = F-1(r), where F-1(r)

indicates the inverse transformation of F.

 As an example, let us assume that we want to generate random variates with

probability density function

f(x) = 2x, 0 <_ x <_ 1.

A graphical representation of this probability density function is given in figure 3.1a. We

first calculate the cumulative density function F(x). We have

F(x) = ⌡⌠
0

x
 2tdt

 = x2, 0 <_ x <_ 1.

Let r be a random number. We have

r = x2,

or
x = r .

2

f(x)

0

x

1

F(x) r

0

x 11

Figure 3.1a: pdf f(x). Figure 3.1b: Inversion of F(x).

Generating stochastic variates 35

This inversion is shown graphically in figure 3.1b.

 In sections 3 and 4 we employ the inverse transformation method to generate

random variates from various well-known continuous and discrete probability

distributions.

3.3 Sampling from continuous probability distributions

In this section, we use the inverse transformation method to generate variates from a

uniform distribution, an exponential distribution, and an Erlang distribution. We also

describe two techniques for generating variates from the normal distribution.

3.3.1 Sampling from a uniform distribution

The probability density function of the uniform distribution is defined as follows:

 f(x) =


 1

b-a a < x < b

0 otherwise
 ,

 and it is shown graphically in figure 3.2.

f(x)

a b

1
b-a

Figure 3.2: The uniform distribution.

The cumulative density function is:

36 Computer Simulation Techniques

F(x) = ⌡
⌠

a

x
1

b-a dt =
1

b-a ⌡⌠
a

x dt =
x-a
b-a .

The expectation and variance are given by the following expressions:

E(X) =

!

f(x)xdx
a

b

" =

!

1

b " a
xdx

a

b

=
b+a
2

Var(X) =

!

(x - E(X))
2
 F(x)dx

a

b

" =
(b-a)2

12 .

 The inverse transformation method for generating random variates is as follows.

r = F(x) =
x-a
b-a

or

x = a + (b - a)r.

3.3.2 Sampling from an exponential distribution

The probability density function of the exponential distribution is defined as follows:

f(x) = ae-ax , a > 0, x >_ 0.

The cumulative density function is:

F(x) =

!

f(t)dt
0

x

" =

!

ae
"at
tdt

0

x

= 1 - e-ax.

The expectation and variance are given by the following expressions:

Generating stochastic variates 37

E(X) =

!

aet
"at
dt

0

#

$ dt =
1
a

Var(X) =

!

(t "E(X))2e"attdt
0

#

$ dt =
1
a2 .

The inverse transformation method for generating random variates is as follows:

r = F(x) = 1 - e-ax

or

1 - r = e-ax

or

x = -
1
a log(1-r) = - E(x)log(l-r).

Since 1-F(x) is uniformly distributed in [0,1], we can use the following short-cut

procedure

r = e-ax,

and therefore,

x = -
1
a log r.

3.3.3 Sampling from an Erlang distribution

In many occasions an exponential distribution may not represent a real life situation. For

example, the execution time of a computer program, or the time it takes to manufacture

an item, may not be exponentially distributed. It can be seen, however, as a number of

exponentially distributed services which take place successively. If the mean of each of

38 Computer Simulation Techniques

these individual services is the same, then the total service time follows an Erlang

distribution, as shown in figure 3.3.

•!•!•1/a 1/a 1/a

Figure 3.3 : The Erlang distribution.

The Erlang distribution is the convolution of k exponential distributions having

the same mean 1/a. An Erlang distribution consisting of k exponential distributions is

referred to as Ek. The expected value and the variance of a random variable X that

follows the Erlang distribution are:

E(X) =
k
a

and

Var(X) =
k
a2 .

 Erlang variates may be generated by simply reproducing the random process on

which the Erlang distribution is based. This can be accomplished by taking the sum of k

exponential variates, x1, x2, ..., xk with identical mean 1/a. We have

 x = ∑
i=1

k xi

 = -
1
a ∑

i=1

k log ri =
-1
a




log ∑

i=1

k ri .

Generating stochastic variates 39

3.3.4 Sampling from a normal distribution

A random variable X with probability density function

f(x) =
1

σ 2π e
-
1
2

(x-µ)2

σ2
 , -∞ < x < +∞,

where σ is positive, is said to have a normal distribution with parameters µ and σ. The

expectation and variance of X are µ and σ2 respectively. If µ=0 and σ=1, then the normal

distribution is known as the standard normal distribution and its probability density

function is

f(x) =
1
2π e

-
1
2 x2

 , -∞ < x < +∞ .

If a random variable X follows a normal distribution with mean µ and variance σ2, then

the random variable Z defined as follows

Z =
X - µ
σ

follows the standard normal distribution.

 In order to generate variates from a normal distribution with parameters µ and σ,

we employ the central limit theorem. (This approach is named after this particular

theorem.) The central limit theorem briefly states that if x1, x2, ... ,xn are n independent

random variates, each having the same probability distribution with E(Xi)=µ and

Var(Xi)=σ2, then the sum ΣXi = X1+X2+...+Xn approaches a normal distribution as n

becomes large. The mean and variance of this normal distribution are:

E(ΣXi) = nµ

40 Computer Simulation Techniques

Var (ΣXi) = nσ2.

 The procedure for generating normal variates requires k random numbers r1, r2,...

,rk. Since each ri is a uniformly distributed random number over the interval [0 ,1], we

have that

E(ri) =
a+b
2 =

1
2

Var(ri) =
(b-a)2

12 =
1
12 .

Using the Central Limit theorem, we have that the sum Σri of these k random numbers

approaches the normal distribution. That is

Σri ~ N



k

2 ,
k
12 ,

or

Σri - k/2
k/ 12 ~ N(0, 1). (3.1)

Now, let us consider the normal distribution with parameters µ and σ from which we

want to generate normal variates. Let x be such a normal variate. Then

x - µ
σ ~ N(0,1). (3.2)

Equating (3.1) and (3.2) gives

Generating stochastic variates 41

x - µ
σ =

Σri - k/2
k/ 12 ,

or

x = σ
12
k 





Σri -
k
2 + µ .

 This equation provides us with a simple formula for generating normal variates

with a mean µ and standard deviation σ. The value of k has to be very large, since the

larger it is the better the accuracy. Usually, one has to balance accuracy against

efficiency. The smallest value recommended is k=10. (In fact, one can observe that k=12

has computational advantages).

 An alternative approach to generating normal variates (known as the direct

approach) is the following. Let r1 and r2 be two uniformly distributed independent

random numbers. Then

x1 = (-2 loge r1)
1
2 cos 2πr2

x2 = (-2 loge r1)
1
2 sin 2πr2

are two random variates from the standard normal distribution. This method produces

exact results and the speed of calculations compares well with the Central Limit approach

subject to the efficiency of the special function subroutines.

3.4 Sampling from discrete probability distributions

In this section, we use the inverse transformation method to generate variates from a

geometric distribution. Also, we describe a technique for sampling from a binomial

distribution, and a technique for sampling from a Poisson distribution.

42 Computer Simulation Techniques

3.4.1 Sampling from a geometric distribution

Consider a sequence of independent trials, where the outcome of each trial is either a

failure or a success. Let p and q be the probability of a success and failure respectively.

We have that p+q=1. The random variable that gives the number of successive failures

that occur before a success occurs follows the geometric distribution. The probability

density function of the geometric distribution is

p(n) = pqn, n = 0,1,2, . . .,

and its cumulative probability density function is

F(n) = ∑
s=0

n
pqs , n = 0, 1, 2, . . .

 The expectation and the variance of a random variable following the geometric

distribution are:

E(X) =
p
q

Var(X) =
p
q2 .

 The generation of geometric variates using the inverse transformation method can

be accomplished as follows.

F(n) = ∑
s=0

n
pqs

Generating stochastic variates 43

 = p ∑
s=0

n
qs

 = p
1 - qn+1

1 - q .

Since p = 1 - q, we have that F(n) = 1-qn+1. From this expression we obtain that 1-F(n)

= qn+1. We observe that 1-F(n) varies between 0 and 1. Therefore, let r be a random

number, then we have

r = qn+1

or
log r = (n+1) log q

or

n =
log r
log q - 1.

Alternatively, since (1-F(n))/q=qn, and (1-F(n))/q varies between 0 and 1, we have

r = qn

or

n =
log r
 log q .

3.4.2 Sampling from a binomial distribution

Consider a sequence of independent trials (Bernoulli trials). Let p be the probability of

success and q=1-p the probability of a failure. Let X be a random variable indicating the

number of successes in n trials. Then, this random variable follows the Binomial

distribution. The probability density function of X is

44 Computer Simulation Techniques

p (k) =  n
k pkqn-k, k = 0, 1, 2, . . .

The expectation and variance of the binomial distribution are:

E(X) = np

Var(X) = npq.

 We can generate variates from a binomial distribution with a given p and n as

follows. We generate n random numbers, after setting a variable k0 equal to zero. For

each random number ri, i=1, 2, ..., n, a check is made, and the variable ki is incremented

as follows:

ki = 

ki-1 + 1 if ri < p

ki-1 if ri > p

The final quantity kn is the binomial variate. This method for generating variates is

known as the rejection method. This method is discussed in detail below in section 6.

3.4.3 Sampling from a Poisson distribution

The Poisson distribution models the occurrence of a particular event over a time period.

Let λ be the average number of occurrences during a unit time period. Then, the number

of occurrence x during a unit period has the following probability density function

p(n) = e-λ(λn/n!), n = 0, 1, 2, . . .

 It can be demonstrated that the time elapsing between two successive occurrences

of the event is exponentially distributed with mean 1/λ, i.e., f(t) = λe-λt . One method for

Generating stochastic variates 45

generating Poisson variates involves the generation of exponentially distributed time

intervals t1, t2, t3,... with an expected value equal to 1/λ. These intervals are accumulated

until they exceed 1, the unit time period. That is,

!

ti

i=1

n

" < 1 <

!

ti

i=1

n+1

" .

The stochastic variate n is simply the number of events occurred during a unit time

period. Now, since ti = -
1
λ logri, n can be obtained by simply summing up random

numbers until the sum for n+1 exceeds the quantity e-λ. That is, n is given by the

following expression:

∑
i=0

n
 ri > e-λ > ∑

i=0

n+1
 ri .

3.5 Sampling from an empirical probability distribution

Quite often an empirical probability distribution may not be approximated satisfactorily

by one of the well-known theoretical distributions. In such a case, one is obliged to

generate variates which follow this particular empirical probability distribution. In this

section, we show how one can sample from a discrete or a continuous empirical

distribution.

3.5.1 Sampling from a discrete probability distribution

Let X be a discrete random variable, and let p(X = i) = pi, where pi is calculated from

empirical data. Let p(X≤i) = Pi be the cumulative probability. Random variates from this

probability distribution can be easily generated as follows. Now let r be a random

number. Let us assume that r falls between P2 and P3 (see figure 3.4). Then, the random

variate x is equal to 3. In general, if Pi-1<r<Pi then x=i. This method is based on the fact

46 Computer Simulation Techniques

that pi=Pi-Pi-1 and that since r is a random number, it will fall in the interval (Pi, Pi-1)

pi% of the time.

0 1 2 3 • •!• n

r

P
1

2
P

3
P

1

x

• •!•

Figure 3.4: Sampling from an empirical discrete probability distribution.

 As an example, let us consider the well-known newsboy problem. Let X be the

number of newspapers sold by a newsboy per day. From historical data we have the

following distribution for X.

X 1 2 3 4 5

f(x) 0.20 0.20 0.30 0.15 0.15

The cumulative probability distribution is:

X 1 2 3 4 5

f(x) 0.20 0.40 0.70 0.85 1

The random variate generator can be summarized as follows:

1. Sample a random number r.

Generating stochastic variates 47

2. Locate the interval within which r falls in order to determine the random

variate x.

• If 0.85 < r ≤ 1.00 then x = 5

• If 0.70 < r ≤ 0.85 then x = 4

• If 0.40 < r ≤ 0.70 then x = 3

• If 0.20 < r ≤ 0.40 then x = 2

• Otherwise then x = 1

3.5.2 Sampling from a continuous probability distribution

Let us assume that the empirical observations of a random variable X can be summarized

into the histogram shown in figure 3.5. From this histogram, a set of values (xi, f(xi)) can

be obtained,

f(x)

x

1

f(x)

f(x)

2

3

f(x)4

f(x)
5

f(x)
6

f(x)7

1 2 3 4 5 6 7x x x x x x

Figure 3.5: Histogram of a random variable X.

where xi is the midpoint of the ith interval, and f(xi) is the length of the ith rectangle.

Using this set of values we can approximately construct the cumulative probability

distribution shown in figure 3..6, where F(xi) = Σ1≤k≤1f(xk). The cumulative distribution

is assumed to be monotonically increasing within each interval [F(xi-1), F(xi)].

48 Computer Simulation Techniques

x

F(x)1

F(x)2

F(x)3

F(x)
4

F(x)5

F(x)
6

F(x)
7

1 2 3 4 5 6 7
x x x x x x

Figure 3.6: The cumulative distribution.

Now, let r be a random number and let us assume that F(xi-1)<r<F(xi). Then, using linear

interpolation, the random variate x can be obtained as follows:

x = xi-1 + (xi - xi-1)
r - F(xi-1)

F(xi) - F(xi-1) ,

where xi is the extreme right point of the ith interval.

x1 2 3 4 nx x x x•!•!•

f(x)

f(x)1

2f(x)

3
f(x)

4f(x)

nf(x)

Figure 3.7: "Discretizing" the probability density function.

Generating stochastic variates 49

 This approach can be also used to generate stochastic variates from a known

continuous probability distribution f(x). We first obtain a set of values (xi, f(xi)) as shown

in figure 3.7. This set of values is then used in place of the exact probability density

function. (This is known as "discretizing" the probability density function.) Using this set

of values we can proceed to construct the cumulative probability distribution and then

obtain random variates as described above. The accuracy of this approach depends on

how close the successive xi points are.

c

a b

f(x)

1

Figure 3.8: Normalized f(x)

3.6 The Rejection method

The rejection technique can be used to generate random variates, if f(x) is bounded and x

has a finite range, say a ≤ x ≤ b. The following steps are involved:

• Normalize the range of f(x) by a scale factor c so that cf(x) ≤ 1, a ≤ x ≤ b. (See

figure 3.8)

• Define x as a linear function of r, i.e. x = a + (b-a) r, where r is a random number.

• Generate pairs of random numbers (r1, r2).

• Accept the pair and use x = a + (b-a)r1 as a random variate whenever the pair

satisfies the relationship r2 ≤ cf(a + (b-a)r1), i.e. the pair (x,r2) falls under the

curve in figure 3.8.

The idea behind this approach is that the probability of r2 being less than or equal to

cf(x) is p[r2 ≤ cf(x)] = cf(x). Consequently, if x is chosen at random from the range (a,b)

50 Computer Simulation Techniques

and then rejected if r2>cf(x), the probability density function of the accepted x's will be

exact.

 We demonstrate the rejection method by giving two different examples. The first

example deals with random variate generation, and the second example deals with a

numerical integration problem.

Example 1:

Use the rejection method to generate random variates with probability density function

f(x)=2x, 0≤x≤1.

This can be accomplished using the following procedure:

1. Select c such that df(x)≤1, i.e. c = 1/2.

2. Generate r1, and set x = r1.

3. Generate r2. If r2 < cf(r1) = (1/2)2r1 = r1 then accept r2, otherwise, go back

to step 2.

Example 2:

Use the rejection method to compute the area of the first quadrant of a unit circle.

We first note that any pair of uniform numbers (r1, r2) defined over the unit

interval corresponds to a point within the unit square. A pair (r1, r2) lies on the

circumference if

r
2
1 +r

2
2 = 1.

The numerical integration can be accomplished by carrying out the following two steps

for a large number of times:

1. Generate a pair of random numbers (r1, r2).

2. If r2 < f(r1), , where f(r1) =

!

1" r1
2 , then r2 is under (or on) the curve and

hence the pair (r1, r2) is accepted. Otherwise, it is rejected.

Generating stochastic variates 51

The area under the curve can be obtained as the ratio

area =
total number of acceptable pairs
total number of generated pairs .

 The rejection method is not very efficient when c(b-a) becomes very large. The

method of mixtures can be used, whereby the distribution is broken into pieces and the

pieces are then sampled in proportion to the amount of distribution area each contains.

This process is identical to the rejection method for each piece of the distribution, plus a

straightforward sampling of data.

3.7 Monte Carlo methods

Monte Carlo methods comprise that branch of experimental mathematics which is

concerned with experiments on random numbers. Monte Carlo methods are usually

associated with problems of theoretical interest, as opposed to the simulation methods

described in this book, otherwise known as direct simulation. Unlike direct simulation

techniques, Monte Carlo methods are not concerned with the passage of time. Every

Monte Carlo computation that leads to quantitative results may be regarded as estimating

the value of a multiple integral.

 The previously demonstrated rejection method for calculating the integral of a

function is an example of Monte Carlo, known as hit-or-miss Monte Carlo. An alternative

method for calculating an integral of a function is the crude Monte Carlo method. Let us

assume that we wish to calculate the one-dimensional integral

θ = ⌡⌠
0

1
f(x)dx .

Let ζ1,ζ2,...ζn, be random numbers between 0 and 1. Then, the quantities fi = f(ζi) are

independent random variates with expectation θ. Therefore,

52 Computer Simulation Techniques

f
_
 =

1
n ∑

i=1

n
fi

is an unbiased estimator of θ. Its variance can be estimated using the expression

s2 =
1

n-1 ∑
i=1

n
 (fi - f

_
) 2 .

Thus, the standard error of f
_
 is s/ n .

 The above technique of evaluating θ is based on the following idea. In general, if

X is a random variable that takes values in [0,1] and f(x) is a function of this random

variable, then

E(f(x) = ⌡⌠
0

1
f(x)g(x)dx

where g(x) is the density function of X. Assuming that X is uniformly distributed in (0,1),

i.e. g(X) = 1, we obtain

E(f(x)) = ⌡⌠
0

1
f(x)dx .

Thus, f
_
 is an unbiased estimate of E(f(X)).

 This technique is more efficient than the technique mentioned in the previous

section.

Problems

1. Use the inverse transformation method to generate random variates with

probability density function

Generating stochastic variates 53

 f(x) = 

3x2 , 0 ≤ x ≤ 1
0 , otherwise

2. Apply the inverse transformation method and devise specific formulae that yield

the value of variate x given a random number r. (Note that f(x) below needs to be

normalized.)

f(x) =

!

5x 0 " x " 4

x # 2 4 < x "10

$
%
&

3. Set up a procedure to generate stochastic variates from

f(x) =

!

x 0 " x "1/2

1# x 1/2 < x "1

$
%
&

4. A customer in a bank may receive service which has an Erlang distribution E3

(each phase with mean 10) or an Erlang distribution E4 (each phase with mean 5)

with probability 0.4 and 0.6 respectively. Set-up a procedure to generate random

variates of a customer's service.

5. Use the rejection method to generate stochastic variates from

f(x) = (x-3)4, 0 ≤ x ≤ 10

6. Modify the procedure for generating stochastic variates from an Erlang

distribution, in order to generate variates from a Coxian distribution. A Coxian

distribution consists of a series of exponential distributions, each with a different

mean, and it has the following structure:

54 Computer Simulation Techniques

µ

b
1

2 n

b

µ µ
a
1

a
2

1

2

...

 After receiving an exponential service time with parameter µ1, there is a

probability b1(=1-a1) of departing, or a probability a1 of receiving another

exponential service time with parameter µ2, and so on until the kth exponential

service is received.

Computer Assignments

1. Test statistically one of the stochastic variates generator discussed in this Chapter.

2. Consider the machine interference problem. Change your simulation program so

that the operational time and the repair time of a machine are exponentially

distributed with the same means as before. Make sure that your clocks are defined

as real variables. Run your simulation model as before. Each time an event

occurs, print out a line of output to show the new value of the clocks and the other

relevant parameters.

3. Consider the token-based access scheme. Change your simulation program so that

the inter-arrival times are exponentially distributed with the same means as

before. The switch over time and the time period T remain constant as before. The

packet transmission time is calculated as follows. We assume that 80% of the

transmitted packets are due to interactive traffic (i.e. computer/terminal type of

traffic), and 20% of the transmitted packets are due to file transfer. Packets due to

interactive traffic tend to be short, whereas packets due to file transfers tend to be

large. Consequently, we will assume that the time to transmit an interactive packet

is exponentially distributed with mean 2.5, and the time to transmit a file transfer

packet is exponentially distributed with mean 20.

Generating stochastic variates 55

Make sure that your clocks are defined as real variables. Run your simulation

model as before. Each time an event occurs, print out a line of output to show the

new value of the clocks and the other relevant parameters

4. Consider the two-stage manufacturing system. Change your simulation program

so that the inter-arrival, service, operational, and repair times are all exponentially

distributed with the same means as before. Make sure that your clocks are defined

as real variables. Run your simulation model as before. Each time an event

occurs, print out a line of output to show the new value of the clocks and the other

relevant parameters.

Solutions to the above problems

1. ⌡⌠

0

1
f(x) dx = ⌡⌠

0

1
3x dx = 3

x3
3 

1
0

 = 3
1
3 = 1

 F(x) = ⌡⌠
0

x
3t2 dt = 3

t3
3 

x
0

 =
3x3
3 = x3

 Hence, r = x3 or x = 3 r .

2. F(x) = ⌡⌠
0

x
stdt ,x < 4

 = 5
t2
2 

x
0

 =
5
2 x2

 F(x) = ⌡⌠
0

4
5tdt = ⌡⌠

4

x
(t - 2)dt ,x > 4

 = 5
t2
2 

4
0

 +
t2
2 - 2t 


x
4

 = 40 +
x2
2 - 2x - 



16

2 - 8

56 Computer Simulation Techniques

 F(x) =




5
2 x2 0 ≤ x ≤ 4

 40 +
x2
2 - 2x 4 < x ≤ 10

 In order to normalize f(x), we have

 ⌡⌠

0

4
5xdx + = ⌡⌠

4

10
(x - 2)dx

 or

 =
5
2 x2 


4
0

 +
x2
2 - 2x 


10

4

 =
5
2 16 +

100
2 = 2 x 10 -

42
2 + 2 - 4

 Thus,

 F(x) =




1
70

5
2 x2 0 ≤ x ≤ 4

1
70 





40 +
x2
2 - 2x 4 < x ≤ 10

 Procedure:
 Draw a random number r.

 If r <
40
70 then r =

5
140 x2 or x =

140
5 xr .

 Otherwise, r =
1
70 





40 +
x2
2 - 2x , from which one can solve for x.

5. Step 1. Use calculus to establish the bounds of f(x)

3

1 2 3

7

10

4

4

Generating stochastic variates 57

 Thus c = 1/74

 Step 2:
 2.1 generate r1. Then 10r1.
 2.2 generate r2.

 if r2 <
1
74 f(10r1) then accept 10r1 as a stochastic variate.

 Otherwise go back to 2.1.

CHAPTER 4:

SIMULATION DESIGNS

4.1 Introduction

In this Chapter, we examine three different designs for building simulation models. The

first two designs are: a) event-advance and b)unit-time advance. Both these designs are

event-based but utilize different ways of advancing the time. The third design is activity-

based. The event-advance design is the most popular simulation design.

4.2 Event-advance design

This is the design employed in the three examples described in Chapter 1. The basic idea

behind this design is that the status of the system changes each time an event occurs.

During the time that elapses between two successive events, the system's status remains

unchanged. In view of this, it suffices to monitor the system's status. In order to

implement this idea, each event is associated with a clock. The value of this clock gives

the time instance in the future that this event will occur. The simulation model, upon

completion of processing an event, say at time t1, regroups all the possible events that

will occur in the future and finds the one with the smallest clock value. It then advances

the time, i.e., the master clock, to this particular time when the next event will occur, say

time t2. It takes appropriate action as dictated by the occurrence of this event, and then

repeats the process of finding the next event (say at time t3). The simulation model,

therefore, moves through time by simply visiting the time instances at which events

occur,. In view of this it is known as event-advance design.

60 Computer Simulation Techniques

 In the machine interference problem, described in section 3.1 of Chapter 1, there

are two types of events. That is, the event of an arrival at the repairman's queue, and the

event of a departure from the repairman's queue. These events are known as primary

events. Quite often the occurrence of a primary event may trigger off the creation of a

new event. For instance, the occurrence of an arrival at the repairman's queue may trigger

off the creation of a departure event (if this arrival occurs at a time when the repairman is

idle). Such triggered events are known as conditional events. The basic approach of this

design is shown in the flow chart in figure 4.1.

A

Find next
event

Advance
time

Take appropriate
action depending

on the type
of event

Any
conditional

events
?

A
no

yes

Create a new
event(s)

Future
event
list

A

Future
event
list

Figure 4.1: The event-advance simulation design.

Simulation designs 61

4.3 Future event list

Let us assume that a simulation model is currently at time t. The collection of all events

scheduled to occur in the future (i.e., events with clock greater than t) is known as the

future event list. For each event scheduled to occur in the future, the list contains the

following information:

• Time of occurrence (i.e., value of the event's clock)

• Type of event

The event type is used in order to determine what action should be taken when the event

occurs. For instance, using the event type the program can determine which procedure to

call or to which statement in the program to go to.

In each of the simulation examples described in section 3 of Chapter 1, there were

only a few events. For instance, in the case of the machine interference problem there

were only two: an arrivals at the repairman's queue and a service-ending (departure)

event. However, when simulating complex systems, the number of events may be very

large. In such cases, finding the next event might require more than a few comparisons.

Naturally, it is important to have an efficient algorithm for finding the next event since

this operation may well account for a large percentage of the total computations involved

in a simulation program. The efficiency of this algorithm depends upon the amount of

information kept in the future event list, and the way this information is stored in the

computer. An event list should be stored in such a way so as to lend itself to an efficient

execution of the following operations.

• Locating the next future event time and the associated event type.

• Deleting an event from the list after it has occurred.

• Inserting newly scheduled events in the event list.

 Below we examine two different schemes for storing an event list. In the first

scheme, the event list is stored in a sequential array. In the second scheme, it is stored as

a linked list.

62 Computer Simulation Techniques

4.3.1 Sequential arrays

In this scheme, all future event times are stored sequentially in an array. The simplest

way to implement this, is to associate each event type with an integer number i. The clock

associated with this event is always stored in the ith location of the array . For instance, in

figure 4.2, the clock CL1 for event type 1 is kept in the first location of the array, the

clock CL2 for the event type 2 is kept in the second position of the array, and so on.

CL CL CL CL1 2 3 n
• !• !•

Figure 4.2: Future event list stored sequentially in an array.

 Finding the next event is reduced to the problem of locating the smallest value in

an array. The following simple algorithm can be used to find the smallest value in an

array A.

 num ← 1
 help ← A(1)
 for i ← 1,n
 if help ≤ A(i) then continue else
 help ← A(i)
 num ← i

Variable num will eventually contain the location of the array with the smallest value. If

num=i, then the next event is of type i and it will occur at time A(i).

 An event is not deleted from the array after it has occurred. However, its clock

should not be considered when locating the next event. This can be avoided by simply

setting its clock to a very large value so that the above algorithm will never select this

event as the next event to occur. Finally, a newly-scheduled event j is inserted in the list

by simply updating its clock given by A(j).

Simulation designs 63

 The advantage of storing an event list in a sequential array is that insertions of

new events and deletions of caused events can be done very easily (i.e., in constant time).

The time it takes to find the smallest number in the array depends, in general, on the

length of the array n (i.e., its complexity is linear in time). Locating the smallest number

in array does not take much time if the array is small. However, if the array is large, it

becomes very time consuming. For such cases, one should store the future event list in a

linked list.

a a a
1 2 3

F a
n 0. . .

Figure 4.3: A linked list.

4.3.2 Linked lists

A linked list representation of data allows us to store each data element of the list in a

different part of the memory. In order to access the data elements in the list in their

correct order, we store along with a data element the address of the next data element.

This is a pointer pointing to the location of the next data element. This pointer is often

referred to as a link. The data element and the link (or links) is generally referred to as a

node. In general, a node may consist of a number of data elements and links. Linked lists

are drawn graphically as shown in figure 4.3. Each node is represented by a box

consisting of as many compartments as the number of data elements and links stored in

the node. In the example given in figure 4.3, each node consists of two compartments,

one for storing a data element and the other for storing the pointer to the next node.

Pointer F points to the first node in the list. If the linked list is empty, i.e., it contains no

nodes, then F is set to zero. The pointer of the last node is always set to zero indicating

that this is the last node in the linked list structure. Due to the fact that two successive

nodes are connected by a single pointer, this data structure is known as a singly linked

list.

64 Computer Simulation Techniques

. . .CL CLi jF CLn 0ji

Figure 4.4: Future event list stored sequentially in a linked list.

 A single linked list can be used to store a future event list as shown in figure 4.4.

Each node will consist of two data elements, namely a clock CLi showing the future time

of an event, and a value i indicating the type of event. The nodes are arranged in an

ascending order so that CLi ≤ CLj ≤ . . . ≤ CLn.

5

4

12

1

10

13

7

1

8

3

4

0

T P

F

Figure 4.5: An implementation of a singly linked list

In order to get a better insight into linked list structures, let us consider the

following example. Integer numbers are stored arbitrarily in various locations of an array

T. It is required that these numbers are maintained in an ascending order. This can be

achieved by setting up an equally dimensioned array, P, as shown in figure 4.5. Each

location i of P is associated with the corresponding location i of T. The content of P(i) is

a pointer to a location in array T which contains the next larger number after T(i). For

instance, P(1)=7. That means that the next larger number after T(1) is in the 7th location

of T, i.e. it is T(7). Thus, array P permits the occupied locations of T to be linked an

Simulation designs 65

ascending order. Pointer F (=5) points to the lowest integer number. This is a simple

implementation of a singly linked list. A node consists of a location in T and its

corresponding location in P. For instance, the second node is given by the pair (T(3),

P(3)) and it contains (4, 1).

 Linked list structures provide the means to do insertions and deletions very easily.

For instance, let us assume that we want to delete number 10. Using pointer F, we first

check the value stored in the first node (T(5), P(5)). Using pointer P(5) we can locate the

second node (T(3), P(3)). Pointer P(3) gives the address of the third node (T(1), P(1)),

whose pointer P(1) contains the address of the sought node. Given, therefore, that we

know the address of the first node of the linked list, we can easily visit all the other nodes

of the list. Note that we can only move forward and not backwards. This is due to the fact

that the nodes are singly linked. At each node, we only know the location of the next

node, and we do not know the location of the previous node.

5

4

12

1

10

13

4

1

8

3

4

0

T P

F

Figure 4.6: Deletion of node containing the value 10.

 Now, deletion of a node simply means that we change the value of the pointer of

the previous node, so that this particular node is no longer part of the linked list. In

particular, the previous node is (T(1), P(1)) = (5, 4). Now, the node containing 10 has a

pointer P(7) = 4. In order to delete the node, it suffices to set P(1) = P(7) = 4, as shown in

66 Computer Simulation Techniques

figure 4.6. The information pertaining to this node will be still in the arrays T and P.

However, it will no longer be accessible from the linked list. In figure 4.6, the above

deletion is shown using the standard graphical representation of linked lists.

1 4 5 10 12 13 0F

Figure 4.6: Deletion of node containing the value 10 using the linked list representation.

 Insertions can be carried out just as easily. Let us assume that we want to insert

number 6 in the linked list. The first step is to locate the two successive nodes in between

of which 6 will be inserted. Starting from the first node, we sequentially search the nodes

until we find that the new node has to be inserted between (5, 4) and (12, 8). In order to

do this, we first have to acquire an unused location in T. Let this be T(2). We set T(2)=6

and then we link (T(2), P(2)) to the list by appropriately rearranging the pointers P(2) and

P(1). That is P(1)=2 and P(2)=4, as shown in figure 4.7.

5

4

12

1

10

13

4

1

8

3

4

0

T P

F

6

2

Figure 4.7: Insertion of node containing the value 6.

Simulation designs 67

Using the standard graphical representation of linked lists, the above insertion is shown

figure 4.8.

1 4 5 10 12 13 0F

6

Figure 4.8: Insertion of node containing the value 6 using the linked list representation.

4.3.3 Implementation of linked lists

In order to process linked list structures, one has to be able to carry out the following

basic operations.

• Organize information such as data elements and pointers into a node.

• Access a node through the means of a pointer.

• Create a new node(s) or delete an existing unused node(s).

Programming languages provide commands that permit the user to carry out the above

operations. However, if such commands are not available, the user has to set-up an

appropriate storage scheme where these basic operations can be implemented. Such a

storage scheme can be easily set up by using sequential arrays as shown in the previous

section. If each node consists of K data elements and a pointer, then this storage scheme

requires K+1 arrays. The arrays should be long enough in order to accommodate the

maximum number of nodes that might be generated during the execution of the

simulation program. All the unused nodes have to be linked together in order to form a

pool of free nodes. Creating a new node would simply require getting a node from the

pool of free nodes. Similarly, discarding a node from the linked list would simply require

that this node be transferred back to the pool.

68 Computer Simulation Techniques

 In the following, we assume that each node consists of two fields, namely a

DATA field containing a data element and a LINK field containing a pointer.

Furthermore, we will assume a storage scheme whereby either fields of node i can be

accessed using DATA(i) and LINK(i). The pool of free nodes is assumed to be managed

by the following two functions:

1. GETNODE (X): This provides a pointer X to a free node. This command can

be used when creating a new node.

2. RET (X): This returns a node with address X back to the pool of free nodes.

Create a linked list

The following procedure creates a linked list consisting of two nodes containing the

integer numbers 1 and 4. This procedure can be easily expanded to create the linked list

given in section 4.3.2.

Procedure CREATE (F)
// F points to the first node of the linked list. //
call GETNODE (F)
DATA (F) ← 1
call GETNODE (I)
LINK (F) ← I
DATA (I) ← 4
LINK (I) ← 0
end CREATE

Deletion of a node

The following procedure deletes the node containing the data element 10 from the linked

list given in the example in section 4.3.2. It is assumed that data element 10 occurs only

once. Otherwise, the first node encountered that contains 10 will be deleted.

Procedure DELETE (F, C)
// F points to the first node of the linked list and C=10, Initial condition LINK (F)
= F //

Simulation designs 69

If F = 0 then error: list empty
I ← J ← F
do
If DATA (I) = C then
 [LINK (J) ← LINK (I)
 RET(I)
 exit]
else [J ← I
 I ← LINK (I)]
forever
end DELETE

Insertion of a new node

The following procedure inserts a node containing the data element G in the linked list

given in example 4.3.2.

Procedure INSERT (F, G)
// F points to the first node of the linked list and C is the data element to be
inserted, i. e., C = 6 //
If F = 0 then
 [GETNODE (X)
 DATA (X) ← C
 LINK (X) ← 0
 F ← X
 exit]
If DATA (F) > C then
 [GETNODE (X)
 DATA (X) ← C
 LINK (X) ← F
 F ← X
 exit]
J ← F
I ← LINK (J)
do
if DATA (I) > C then
 [GETNODE (X)
 DATA (X) ← C
 LINK (X) ← LINK (J)
 LINK (J) ← X
 exit]
else [J ← I
 I ← LINK (I)]

70 Computer Simulation Techniques

forever
end INSERT

Managing the storage pool

The storage pool contains all the nodes that are not being used. Function GETNODE

removes a node from the pool, and function RET returns a node to the pool. Most high-

level languages provide commands similar to GETNODE and RET. The following set of

procedures can be used to manage the storage pool in the absence of such commands. In

the following, it is assumed as above that the linked list is stored using sequential arrays.

Before using the linked list for the first time, all available nodes are linked

together as follows.

Procedure INIT (n)
//The number of nodes to be linked is n. AV is the pointer to the first node.//
For i ← 1 to n - 1 do
 LINK (I) ← i + 1
end LINK (n) ← 0
 AV ← 1
end INIT

Procedures GETNODE (X) and RET (X) can be implemented as follows.

Procedure GETNODE (X)
// X points to a node to be used by the linked list //
if AV = 0 then error: no more nodes
else [X ← AV
 AV ← LINK (AV)]
end GETNODE

Procedure RET (X)
// X points to a node which is to be returned back to the pool //
LINK (X) ← AV
AV ← X
end RET

Simulation designs 71

4.3.4 Future event list

The future event list can be implemented as a singly linked list as described in 4.3.2 and

shown in figure 4.4. Data element CLi and i describe each event scheduled to occur in the

future. The nodes are organized so that CLi ≤ CLj ≤ . . . ≤ CLn. Thus, in order to obtain

the next event, it suffices to look up the node pointed to by F. When this event has

occurred, it can be deleted from the list by simply executing RET(F) and then setting F

← LINK (F). A newly generated event can be appropriately inserted using the insertion

procedure given in 4.3.3.

 It is obvious that locating the next event and deleting a caused event can be done

in constant time. However, in order to insert a new event with clock CLm, it is necessary

to search sequentially each node, starting from the first node, until we find the first node

with clock CLk, such that CLm > CLk. The time to carry out this operation, in general,

depends on the number of events n in the list, i. e., it is linear on n. The worst case, in

fact, is to have to search all nodes in the list. Searching a linked list might be time

consuming if n is very large. In this case, one can employ better searching procedures.

For example, a simple solution is to maintain a pointer B to a node which is in the middle

of the linked list. This node logically separates the list into two sublists. By comparing

CLm with the clock stored in this node, we can easily establish in which sublist the

insertion is to take place. The actual insertion can then be located by sequentially

searching the nodes of the sublist.

4.3.5 Doubly linked lists

So far we have examined singly linked lists. The main disadvantage of these lists is that

they can be only traversed in one direction, namely from the first node to the last one.

Doubly linked lists allow traversing a linked list in both directions. This is enabled by

linking two successive nodes with two pointers as shown in figure 4.9. Depending upon

the application, a doubly-linked list may be more advantageous than a singly-linked list.

72 Computer Simulation Techniques

A doubly-linked list can be processed using procedures similar to those described in

section 4.3.3.

aF aaa
n321 • •!•

Figure 4.9: A doubly linked list.

4.4 Unit-time advance design

In the event-advance simulation, the master clock is advanced from event to event.

Alternatively, the master clock can be advanced in fixed increments of time, each

increment being equal to one unit of time. In view of this particular mode of advancing

the master clock, this simulation design is known as the unit-time advance design. Each

time the master clock is advanced by a unit time, all future event clocks are compared

with the current value of the master clock. If any of these clocks is equal to the current

value of the master clock, then the associated event has just occurred and appropriate

action has to take place. If no clock is equal to the current value of the master clock, then

no event has occurred and no action has to take place. In either case, the master clock is

again increased by unit-time and the cycle is repeated. This mode of advancing the

simulation through time is depicted in figure 4.10. The basic approach of the unit-time

design is summarized in the flow-chart in figure 4.11.

E E E
n21

time

Figure 4.10: The unit-time advance design.

Simulation designs 73

A

Master clock
is increased

by a unit-time

Is
any future

event clock
= MC

?

An event has
occurred

Take appropriate
action

Any
conditional

event(s)
?

Schedule new
event (j)

A

A

A
no

yes

no

yes

Figure 4.11: The unit-time advance design.

 In the flow-chart of the unit-time simulation design, given in figure 4.11, it was

implicitly assumed that a future event clock is a variable which, as in the case of the

event-advance design, contains a future time with respect to the origin. That is, it contains

the time at which the associated event will occur. Alternatively, a future clock can simply

reflect the duration of a particular activity. For instances, in the machine interference

problem, the departure clock will simply contain the duration of a service, rather than the

future time at which the service will be completed. In this case, the unit-time design can

74 Computer Simulation Techniques

be modified as follows. Each time the master clock is advanced by a unit of time, the

value of each future clock is decreased by a unit-time. If any of these clocks becomes

equal to zero, then the associated event has occurred and appropriate action has to take

place. Obviously, the way one defines the future event clock does not affect the unit-time

simulation design.

A

MCL = MCL + 1

ST

End of service
Take appropriate

action

AT

A

ST = ST - 1 ST = ST - 1

> 1 = 1

An arrival has
occurred. Take

appropriate action

AT = AT - 1 AT = AT - 1

> 1 = 1

Figure 4.12: A unit-time advance design of a single server queue.

 In order to demonstrate the unit-time advance design, we simulate a single queue

served by one server. The population of customers is assumed to be infinite. Figure 4.12

gives the flow-chart of the unit-time design. Variable AT contains the inter-arrival time

Simulation designs 75

between two successive arrivals. Variable ST contains the service time of the customer in

service. Finally, variable MCL contains the master clock of the simulation model.

4.4.1 Selecting a unit-time

The unit-time is readily obtained in the case where all future event clocks are represented

by integer variables. For, each event clock is simply a multiple of the unit-time. However,

quite frequently future event clocks are represented by real variables. In this case, it is

quite likely that an event may occur in between two successive time instants of the master

clock as shown in figure 4.13. Obviously, the exact time of occurrence of an event E is

not known to the master clock. In fact, as far as the simulation is concerned, event E

occurs at time t+1 (or t+2 depending upon how the program is set-up to monitor the

occurrence of events). This introduces inaccuracies when estimating time parameters

related to the occurrence of events. Another complication that might arise is due to the

possibility of having multiple events occurring during the same unit of time.

t E E
ij

time

t + 1 t + 2 t + 4t + 3

Figure 4.13: Events occurring in between two successive values of the master clock.

 In general, a unit-time should be small enough so that at most one event occurs

during the period of a unit of time. However, if it is too small, the simulation program

will spend most of its time in non-productive mode, i.e. advancing the master clock and

checking whether an event has occurred or not. Several heuristic and analytic methods

have been proposed for choosing a unit-time. One can use a simple heuristic rule such as

setting the unit-time equal to one-half of the smallest variate generated. Alternatively,

one can carry out several simulation runs, each with a different unit-time, in order to

observe its impact on the computed results. For instance, one can start with a small unit

76 Computer Simulation Techniques

time. Then, it can be slightly increased. If it is found to have no effect on the computed

results, then it can be further increased, and so on.

4.4.2 Implementation

The main operation related to the processing of the future event list is to compare all the

future event clocks against the master clock each time the master clock is increased by a

unit time. An implementation using a sequential array as described in section 4.3.1 would

suffice in this case.

4.4.3 Event-advance vs. unit-time advance

The unit-time advance method is advantageous in cases where there are many events

which occur at times close to each other. In this case, the next event can be selected fairly

rapidly provided that an appropriate value for the unit-time has been selected. The best

case, in fact, would occur when the events are about a unit-time from each other.

 The worst case for the unit-time advance method is when there are few events and

they are far apart from each other. In this case, the unit-time advance design will spend a

lot of non-productive time simply advancing the time and checking if an event has

occurred. In such cases, the event-advance design is obviously preferable.

4.5 Activity-based simulation design

This particular type of simulation design is activity based rather than event based. In an

event oriented simulation, the system is viewed as a world in which events occur that

trigger changes in the system. For instance, in the simulation model of the single server

queue considered in section 4, an arrival or a departure will change the status of the

system. In an activity oriented simulation, the system modelled is viewed as a collection

of activities or processes. For instance, a single server queueing system can be seen as a

collection of the following activities: a) inter arriving, b) being served, and c) waiting for

service. In an activity based design, one mainly concentrates on the set of conditions that

Simulation designs 77

determine when activities start or stop. This design is useful when simulating systems

with complex interactive processing patterns, sometimes referred to as machine-oriented

models.

 We demonstrate this design by setting up an activity-based simulation model of

the single server queue problem studied in section 4. Let STi and WTi be the service time

respectively the waiting time of the ith arrival. Also, let ATi+1 be the interarrival time

between the ith and (i+1)st arrival. Finally, let us assume that the ith arrival occurs at time

ai, starts its service at time si and ends its service at time si + STi, as shown in figure

4.14.

a s + STii
s i a

i+1 i

AT
i+1

ST
i

WTi

ith
arrival

ith arrival
begins its

service

(i+1)st
arrival

ith arrival
ends its
service

Figure 4.14: Time components related to the ith arrival.

 Let us assume now that we know the waiting time WTi and the service time STi

of the ith customer. Let ATi+1 be the inter-arrival time of the (i+1)st customer. Then,

one the following three situations may occur.

a. The (i+1)st arrival occurs during the time that the ith arrival is waiting.

b. The (i+1)st arrival occurs when the ith arrival is in service

c. The (i+1)st arrival occurs after the ith arrival has departed from the queue

78 Computer Simulation Techniques

A

Generate
AT

Compare
TW with

AT

TW = ST

A

Generate
ST

TW > AT TW ! AT

Initial
conditions

Next arrival
occurs when
server is idle

TW = ST + (TW - AT)

A

Generate
ST

Empty system
WT = ST = 0, TW = 0

Next arrival occurs
when current arrival
is either waiting or

is in service

Figure 4.15: An activity-based simulation design for a single server queue.

For each of these three cases, the waiting time WTi+1 of the (i+1)st customer can be

easily determined as follows:

a) WTi+1 = (WTi -ATi+1) + STi

 = (WTi + STi) - ATi+1

 = TWi - ATi+1,

where TWi is the total waiting time in the system of customer i.

b) WTi+1 = (WTi + STi) - ATi+1

Simulation designs 79

 = TWi - ATi+1

c) WTi+1= 0

Having calculated WTi+1, we generate a service time STi+1 for the (i+1)st arrival, and

an inter-arrival time ATi+2 for the (i+2)nd arrival. The waiting time of the (i+2)nd arival

can be obtained using the above expressions. The basic mechanism of this activity-based

simulation model is depicted in figure 4.15.

4.6 Examples

In this section, we further highlight the simulation designs discussed in this Chapter by

presenting two different simulation models.

4.6.1 An inventory system

In an inventory system, one is mainly concerned with making decisions in order to

minimize the total cost of the operation. These decisions are mainly related to the

quantity of inventory to be acquired (or produced) and the frequency of acquisitions. The

total cost of running an inventory system is made up of different types of costs. Here, we

will consider the following three costs: a) holding cost, b) setup cost, and c) shortage

cost. The holding cost is related to the cost of keeping one item of inventory over a period

of time. One of the most important components of this cost is that of the invested capital.

The setup cost is related to the cost in placing a new order or changes to production.

Finally, the shortage cost is associated with the cost of not having available a unit of

inventory when demanded. This cost may be in the form of transportation charges (i.e.,

expediting deliveries), increased overtime, and loss of future business.

Let It be the inventory at time t. Let S be the quantity added in the system

between time t and t´. Also, let D be the demand between these time instances. Then, the

inventory at time t´ is

80 Computer Simulation Techniques

It´ = It + S - D.

If It´ is below a certain value, then an order is placed. The time it takes for the ordered

stock to arrive is known as the lead time. We assume that the daily demand and the lead

time follow known arbitrary distributions. The inventory level is checked at the end of

each day. If it is less than or equal to the re-ordering level, an order is placed. The lead

time for the order begins to count from the following day. Orders arrive in the morning

and they can be disposed of during the same day. During stockout days, orders are

backlogged. They are satisfied on the day the order arrives. The fluctuation in the

inventory level is shown in figure 4.16.

t t t t
1 2 3 4

Reorder
point

time

Stock
level

Figure 4.16: An inventory system.

The simulation model is described in the flow chart given in figures 4.17 and 4.18. The

model estimates the total cost of the inventory system for specific values of the

reordering point and the quantity ordered. The model keeps track of It on a daily basis. In

view of this, the model was developed using the unit-time advance design. We note that

this design arises naturally in this case. A unit of time is simply equal to one day. The

lead time is expressed in the same unit-time. The basic input parameters to the simulation

model are the following. a) ROP, reordering point, b) Q, quantity ordered, c) BI, the

beginning inventory, d) probability distributions for variables D and LT representing the

daily demand and lead time, respectively, e) T, the total simulation time, and f) C1, C2,

C3, representing the holding cost per unit per unit time, the setup cost per order, and the

Simulation designs 81

shortage cost per unit per unit time, respectively. The output parameters are TC1, TC2,

TC3 representing the total holding, setup and shortage costs respectively.

a

Generate
AT

t > T

b

Initialization

Generate
daily demand D

LT = 0
I = I + Q

End

Print
results

no order
outstanding

LT

LT = LT - 1

> 1
= 1

= 0

I = I - D

order has
arrived

no

yes

Figure 4.17: A unit-time simulation design of an inventory system.

82 Computer Simulation Techniques

b

I < ROP
?

LT = 0

Generate
LT

TC1 = TC1 + I*C1

TC2 = TC2+ C2

no

yes
a

yes

no

I < 0
no

TC1 = TC1 + I*C1

a
TC3 = TC3 + I*C3

a

yes

Figure 4.18: A unit-time simulation design of an inventory system.

4.6.2 A round-robin queue

Let us consider a computer system consisting of N terminals accessing a single CPU. A

user at a terminal spends sometime thinking (i.e., typing a line or thinking what to do

next), upon completion of which it creates a job that is executed at the CPU. (Every time

the user hits the return key a process runs on the CPU). We assume that a user at a

terminal continuously cycles through a think time and a CPU time, as shown in figure

4.19. During the time that a user’s job is being executed, the user cannot submit another

job.

Simulation designs 83

think CPU think CPU think CPU

. . .

Figure 4.19: Cycling through a think time and a CPU time

 Jobs accessing the CPU are served in a round robin manner. That is, each job is

allowed to use the CPU for a small quantum of time. If the job is done at the end of this

quantum (or during the quantum), then it departs from the CPU. Otherwise, it is simply

placed at the end of the CPU queue. In this manner, each job in the CPU queue gets a

chance to use the CPU. Furthermore, short jobs get done faster than long ones. A job that

leaves the CPU simply goes back to the originating terminal. At that instance the user at

the terminal goes into a think state. The think time is typically significantly longer than

the duration of a quantum. For instance, the mean think time could be 30 seconds,

whereas a

•

•

• CPU

Terminals

Figure 4.20: A round-robin queue

quantum could be less than 1 msec. A job, in general, would require many CPU quanta. If

a job requires 5 seconds of CPU time, and a quantum is 1 msec, then it would cycle

through the CPU queue 5000 times.

84 Computer Simulation Techniques

The queueing system reflecting this round-robin queue is shown in figure 4.20.

This system is similar to the machine interference problem. The terminals are the

machines and the CPU is the repairman. A terminal in the think state is like a machine

being operational. The main difference from the machine interference problem is that the

CPU queue is served in a round robin fashion rather in a FIF0 manner.

 The basic events associated with this system are: a) arrival of a job at the CPU

queue, and b) service completion at the CPU. A job arriving at the CPU queue may be

either a new arrival (i.e., a user at a terminal hit the return key, thus completing the think

state), or it may be a job that has just received a quantum of CPU time and it requires

further processing. A departing job from the CPU may either go back to the originating

terminal, or it may simply join the end of the CPU queue for further execution. We

observe that during the time that the CPU is busy, departure events occur every quantum

of time. However, new arrivals of jobs at the CPU queue occur at time instances which

may be a few hundreds of quanta apart.

 Following the same approach as in the machine interference problem, described in

section 1.3.1 of Chapter 1, we can easily develop an event-advance simulation model. We

observe that in this case, the event-advance design is quite efficient. The future event list

will contain one event associated with a departure from the CPU and the remaining

events will be associated with future new arrivals of jobs. When a departure occurs, most

likely a new departure event will be scheduled to occur in the next quantum of time. This

new event will more likely be the next event to occur. In view of this, most of the time, a

newly created event will be simply inserted at the top of the future event list. Such

insertions can be done in 0(1) time.

t
i1

i
iF t

i2
i
2

t
in

i
n• • • 0

Figure 4.21: Future event list of all new arrivals to the CPU queue.

 We now give an alternative simulation model of the round-robin queue which

utilizes both the event-advance and unit-time advance designs! Specifically, all the events

Simulation designs 85

related to new arrivals at the CPU queue are kept in a linked list as shown in figure 4.21.

Each node contains a future event time and a terminal identification number. The event

time simply shows the time at which the user will stop thinking and will access the CPU.

Nodes are ordered in an ascending order of the data element that contains the future event

time. Thus, the next new arrival event is given by the first node of the linked list.

• • •
t
j1

j
1B t

j2
j
2

t
jk

j
k E

Figure 4.22: Future event list of all new arrivals to the CPU queue.

b

Is
CPU

queue
empty

?
A departure
event occurs

MCL = MCL + 1
no

b

b

yes

Is
MCL=tarr

?

no

yes

A new arrival
event occurs

b

A new arrival
event occurs

MCL = tarr

Figure 4.23: Hybrid simulation design of the round-robin queue.

86 Computer Simulation Techniques

All the information regarding the jobs in the CPU queue, including the one in

service, is maintained in the separate linked shown in figure 4.22. This linked list is

known as a circular singly linked list, since it is singly linked and the last node is linked

to the first node. Each node contains the number of quanta required by a job and its

terminal identification number. Pointers B and E point to the beginning and end of the list

respectively. The nodes are ordered in the same way that the jobs are kept in the CPU

queue. Thus, the first node corresponds to the job currently in service. When a new job

arrives at the CPU queue, a new node is created which is attached after node E. If a job

requires further service upon completion of its quantum, then its node is simply placed at

the end of the list. This is achieved by simply setting E←B and B←LINK(B).

The simulation model operates under the unit-time advance design during the

period of time that the CPU is busy. During the time that CPU is idle, the simulation

model switches to an event-advance design. This hybrid design is summarized in figure

4.23. Note that tarr gives the time of the next new arrival at the CPU queue. The

remaining details of this program. are left up to the reader as an exercise!

Problems

Consider the following systems:

1. Checkout stands at a supermarket

2. Teller's window at a bank

3. Elevators serving an office building

4. Traffic lights in a configuration of 8 city blocks

5. Outpatient clinic

6. Pumps at a gasoline station

7. Parking lot

8. Runways at an airport

9. A telecommunication system with 5 nodes (virtual HDLC three linked lists)

10. Solar heating of a house

Simulation designs 87

Choose any of the above systems. First, describe how the system operates. (Make

your own assumptions whenever necessary. Make sure that these assumptions do not

render the system trivial!) Then, set up a simulation model to represent the operations of

the system. If you choose an event-based simulation design, then state clearly which are

the state variables and what are the events. For each caused event, state clearly what

action the simulation model will take. If you choose an activity-based design, state

clearly which are the activities and under what conditions they are initiated and

terminated.

Computer Assignments

1. Implement the hybrid simulation model of the round-robin queue discussed in

section 4.6.2.

2. Consider the machine interference problem. Modify your simulation model so

that the event list is maintained in the form of a linked list. Assume that the queue

of broken-down machines can be repaired by more than one server (i.e., there are

more than one repairman repairing machines off the same queue). Parametrize

your program so that it can run for any number of machines and repairmen

(maximum 20 and 10, respectively). Run your simulation model until 20 repairs

have been completed. As before, each time an event occurs, print out the usual

line of output and also additional information pertaining to the event list. Check

by hand that your linked list implementation is correct.

3. Consider the token-based access scheme problem. Assume that transmissions are

not error-free. That is, when a packet arrives at the destination node, it may

contain errors. In this case, the packet will have to be re-transmitted. The

procedure is as follows:

 Upon completion of the transmission of a packet, the host will wait to hear from

the receiving host whether the packet has been received correctly or not. The time

88 Computer Simulation Techniques

for the receiver to notify the sender may be assumed to be constant. If the packet

has been correctly received, the host will proceed with the next transmission. If

the packet has been erroneously transmitted, the sender will re-transmit the

packet. There is 0.01 probability that the packet has been transmitted erroneously.

The sender will re-transmit the packet immediately. This procedure will be

repeated until the packet is correctly transmitted. No more than 5 re-transmissions

will be attempted. After the 5th re-transmission, the packet will be discarded, and

the sender will proceed to transmit another packet. All these re-transmissions take

place while the host has the token. When the token's time-out occurs, the host will

carry on re-transmitting until either the packet is transmitted correctly, or the

packet is discarded.

Describe how you will modify your simulation model in order to

accommodate the above acknowledgement scheme. Can this additional structure

be accommodated without introducing more events? If yes, how? If no, what

additional events need to be introduced? Describe what action will be taken each

time one of these additional events takes place. Also, describe how these new

events will interact with the existing events (i.e., triggering-off each other).

4. Consider the token-based access scheme problem. Modify the simulation design

in order to take advantage of the structure of the system. Specifically, do not

generate arrivals to each of the nodes. Store the residual inter-arrival time when

the node surrenders the token. Then, when the token comes back to the station,

continue to generate arrivals until the token times-out or it is surrendered by the

node. This change leads to a considerably simpler simulation model.

CHAPTER 5:

ESTIMATION TECHNIQUES FOR ANALYZING

ENDOGENOUSLY CREATED DATA

5.1 Introduction

So far we have examined techniques for building a simulation model. These techniques

were centered around the topics of random number generation and simulation design. The

reason why one develops a simulation model is because one needs to estimate various

performance measures. These measures are obtained by collecting and analyzing

endogenously created data. In this Chapter, we will examine various estimation

techniques that are commonly used in simulation. Before we proceed to discuss these

techniques, we will first discuss briefly how one can collect data generated by a

simulation program.

5.2 Collecting endogenously created data

A simulation model can be seen as a reconstruction of the system under investigation.

Within this reconstructed environment, one can collect data pertaining to parameters of

interest. This is similar to collecting actual data pertaining to parameters of interest in a

real-life system. Using the techniques outlined in the previous Chapters, one can

construct, say, an event simulation model of a system. This model simply keeps track of

the state of the system as it changes through time. Now, one can incorporate additional

logic to the simulation program in order to collect various statistics of interest such as the

frequency of occurrence of a particular activity, and the duration of an activity. These

90 Computer Simulation Techniques

statistics are obtained using data generated from within the simulation programs, known

as endogenous data.

 Endogenous data can sometimes be collected by simply introducing in the

simulation program single variables, acting as counters. However, quite frequently one is

interested in the duration of an activity. For instance, in the machine interference problem

one may be interested in the down time of a machine. This is equal to the time the

machine spends queueing up for the repairman plus the duration of its repair. In such

cases, one needs to introduce a storage scheme where the relevant endogenously created

data can be stored. The form of the storage scheme depends, of course, upon the nature of

the problem.

 In the machine interference problem, the down time of a machine can be obtained

by keeping the following information: a) time of arrival at the repairman's queue, and b)

time at which the repair was completed. This information can be kept in an array. At the

end of the simulation run, the array will simply contain arrival and departure times for all

the simulated breakdowns. The down time for each breakdown can be easily calculated.

Using this information one can then obtain various statistics such as the mean, the

standard deviation, and percentiles of the down time.

•! • !• Bt i t j t k
i j aF

Figure 5.1: The linked list for the repairman's queue.

 A more efficient method would be to maintain a linked list representing those

machines which are in the repairman's queue. This linked list is shown in figure 5.1. Each

node contains the following two data elements: a) time of arrival at the repairman's

queue, and b) index number of the machine. The nodes are linked so that to represent the

FIFO manner in which the machines are served. Thus, the first node, pointed by F,

represents the machine currently in service. If a machine arrives at the repairman's queue,

a new node will be appended after the last node, pointed to by B. The total down time of

a machine is calculated at the instance when the machine departs from the repairman.

Estimation Techniques 91

This is equal to the master clock's value at that instance minus its arrival time. In this

fashion we can obtain a sample of observations. Each observation is the duration of a

down time. Such a sample of observations can be analyzed statistically.

 Another statistic of interest in is the probability distribution of the number of

broken down machines. In this case, the maximum number of broken down machines

will not exceed m, the total number of machines. In view of this, it suffices to maintain an

array with m + l locations. Location i will contain the total time during which there were i

broken down machines. Each time an arrival or a departure occurs, the appropriate

location of the array is updated. At the end of the simulation run, the probability p(n) that

there are n machines down is obtained by dividing the contents of the nth location by T,

the total simulation time.

 As another example on how to collect endogenously created data, let us consider

the simulation model of the token-based access scheme. The simulation program can be

enhanced so that each node is associated with a two-dimensional array, as shown in

figure 5.2. In each array, the first column contains the arrival times of packets, and the

second column contains their departure time. When a packet arrives at the node, its

arrival time is stored in the next available location in the first column. When the packet

departs from the node, its departure time is stored in the corresponding location of the

second column. Thus, each array contains the arrival and departure times of all packets

that have been through the node. Also, it contains the arrival times of all the packets

currently waiting in the queue. Instead of keeping two columns per node, one can keep

one column. When a packet arrives, its arrival time is stored in the next available

location. Upon departure of the packet, its arrival time is substituted by its total time in

the system. These arrays can be processed later in order to obtain various statistics per

node.

An alternative approach is to maintain a linked list per node, as described above

for the machine interference problem. Each time a packet is transmitted, its total time is

calculated by subtracting the current master clock value from it arrival time stored in the

linked list. This value is then stored into a single array containing all durations of the

packets in the order in which they departed.

92 Computer Simulation Techniques

Node 1 Node 2 Node 3

Arr Dep Arr Dep Arr Dep

Top of
queue

Bottom
of queue

Current
queue

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 5.2: Data structure for the token-based access scheme simulation model.

5.3 Transient state vs. steady-state simulation

In general, a simulation model can be used to estimate a parameter of interest during the

transient state or the steady state.

 Let us consider the machine interference problem. Let us assume that one is

interested in obtaining statistics pertaining to the number of broken down machines. The

simulation starts by assuming that the system at time zero is at a given state. This is

known as the initial condition. Evidently, the behaviour of the system will be affected by

the particular initial condition. However, if we let the simulation run for a long period, its

statistical behaviour will eventually become independent of the particular initial

condition. In general, the initial condition will affect the behavior of the system for an

initial period of time, say T. Thereafter, the simulation will behave statistically in the

same way whatever the initial condition. During this initial period T, the simulated

system is said to be in a transient state. After period T is over, the simulated system is

said to be in a steady state.

5.3.1 Transient-state simulation

One may be interested in studying the behavior of a system during its transient state. In

Estimation Techniques 93

this case, one is mostly interested in analyzing problems associated with a specific initial

starting condition. This arises, for example, if we want to study the initial operation of a

new plant. Also, one may be forced to study the transient state of a system, if this system

does not have a steady state. Such a case may arise when the system under study is

constantly changing.

5.3.2 Steady-state simulation

Typically, a simulation model is used to study the steady-state behaviour of a system. In

this case, the simulation model has to run long enough so that to get away from the

transient state. There are two basic strategies for choosing the initial conditions. The first

strategy is to begin with an empty system. That is, we assume that there are no activities

going on in the system at the beginning of the simulation. The second strategy is to make

the initial condition to be as representative as possible of the typical states the system

might find itself in. This reduces the duration of the transient period. However, in order to

set the initial conditions properly, an a priori knowledge of the system is required.

 One should be careful about the effects of the transient period when collecting

endogenously created data. For, the data created during the transient period are dependent

on the initial condition. Two methods are commonly used to remove the effects of the

transient period. The first one requires a very long simulation run, so that the amount of

data collected during the transient period is insignificant relative to the amount of data

collected during the steady state period. The second method simply requires that no data

collection is carried out during the transient period. This can be easily implemented as

follows. Run the simulation model until it reaches its steady state, and then clear all

statistical accumulations (while leaving the state of the simulated system intact!).

Continue to simulate until a sufficient number of observations have been obtained. These

observations have all been collected during the steady-state. The second method is easy

to implement and it is quite popular.

 The problem of determining when the simulation system has reached its steady

state is a difficult one. A simple method involves trying out different transient periods

T1,T2,T3,...,Tk, where T1<T2<T3<...<Tk. Compile steady-state statistics for each

94 Computer Simulation Techniques

simulation run. Choose Ti so that for all the other intervals greater than Ti, the steady-

state statistics do not change significantly. Another similar method requires to compute a

moving average of the output and to assume steady-state when the average no longer

changes significantly over time.

5.4 Estimation techniques for steady-state simulation

Most of the performance measures that one would like to estimate through simulation are

related to the probability distribution of an endogenously created random variable. The

most commonly sought measures are the mean and the standard deviation of a random

variable. Also, of importance is the estimation of percentiles of the probability

distribution of an endogenously created random variable.

 For instance, in the machine interference problem one may be interested in the

distribution of the down time. In particular, one may settle for the mean and standard

deviation of the down time. However, percentiles can be very useful too. From the

management point of view, one may be interested in the 95% percentile of the down

time. This is the down time such that only 5% of down times are greater than it.

Percentiles often are more meaningful to the management than the mean down time.

5.4.1 Estimation of the confidence interval of the mean of a random variable

Let x1, x2,..., xn be n consecutive endogenously obtained observations of a random

variable. Then

x
_
 =

1
n ∑

i=1

n
xi (5.1)

is an unbiased estimate of the true population mean, i.e., the expectation of the random

variable. In order to obtain the confidence interval for the sample mean we have to first

Estimation Techniques 95

estimate the standard deviation. If the observations x1, x2,... ,xn are independent of each

other, then

s2 =
1

n - 1 ∑
i=1

n

 (xi -x
_
)2 (5.2)

or, using the short-cut formula

s2 =
1

n - 1 







∑
i=1

n
x
2
i -

(Σxi)2
n

and, therefore, we obtain the confidence interval

(x
_
 - 1.96

s
n , x

_
 + 1.96

s
n)

at 95% confidence. The confidence interval provides an indication of the error associated

with the sample mean . It is a very useful statistical tool and it should be always

computed. Unfortunately, quite frequently it is ignored. The confidence interval tells us

that the true population mean lies within the interval 95% of the time. That is, if we

repeat the above experiment 100 times, 95% of these times, on the average, the true

population mean will be within the interval.

 The theory behind the confidence interval is very simple indeed. Observations x1,

x2, …xn are assumed to come from a population known as the parent population whose

mean µ we are trying to estimate. Let σ2 be the variance of the parent population. The

distribution that

!

x follows is known as the sampling distribution. Using the Central Limit

Theorem we have that

!

x follows the normal distribution N(µ, σ/

!

n), as shown in figure

5.3. Now, let us fix points a and b in this distribution so that 95% of the observations (an

observation here is a sample mean

!

x) fall in-between the two points. Points a and b are

96 Computer Simulation Techniques

symmetrical around µ. The areas (-∞, a) and (b, +∞) account for 5% of the total

distribution. Using the table of the standard normal distribution, we have that a is 1.96

standard deviation below µ, i.e., a=µ-1.96σ/

!

n . Likewise, b=µ+1.96σ/

!

n . Now, if we

consider an arbitrary observation

!

x , this observation will lie in the interval [a,b] 95% of

the time. That is, its distance from µ will be less than 1.96σ/

!

n 95% of the time.

Therefore, µ will lie in the interval

(

!

x - 1.96 σ

!

n ,

!

x + 1.96 σ

!

n)

95% of the time. If σ is not known, one can use in its place the sample standard deviation

s.

a µ b

Figure 5.3: The normal distribution.

 The value 95% is known as the confidence. In general, a confidence interval can

be calculated for any value of confidence. Most typical confidence values are 99%, 95%

and 90%. For each value, points a and b are calculated from the table of the standard

normal distribution. If the sample size is small (less than 30), then we can construct

similar confidence intervals, but points a and b will be obtained using the t distribution,

i.e.,

(

!

x - t.95
s
n
 ,

!

x + t.95
s
n
)

Estimation Techniques 97

with (n-1) degrees of freedom.

 In general, the observations x1, x2,..., xn that one obtains endogenously from a

simulation model are correlated. For instance, the down time of a machine depends on the

down time of another machine that was ahead of it in the repairman's queue. In the

presence of correlated observations, the above expression (5.2) for the variance does not

hold. Expression (5.1) for the mean holds for correlated or uncorrelated observations. The

correct procedure, therefore, for obtaining the confidence interval of the sample mean is

to first check if the observations x1, x2,..., xn are correlated. If they are not, one can

proceed as described above. If the observations are correlated, then one has to use a

special procedure to get around this problem. Below, we discuss the following four

procedures for estimating the variance of correlated observations:

a. Estimation of the autocorrelation function.

b. Batch means.

c. Replications.

d. Regenerative method.

a) Estimation of the autocorrelation coefficients

Let X and Y be two random variables. Let µX and µY be the expectation of X and Y

respectively. Also, let

!

" X
2 and

!

"Y
2 be the variance of X and Y respectively. We define the

covariance between X and Y to be

Cov (X,Y) = E[(X-µX) (Y-µY)]

 = E(XY) - µX µY

This statistic reflects the dependency between X and Y. If X and Y are uncorrelated, then

Cov(X,Y) = 0. If Cov (X,Y) > 0, then X and Y are positively correlated, and if Cov (X,Y)

<0, then they are negatively correlated. If Y is identical to X, then Cov(X,X)=

!

" X
2 .

98 Computer Simulation Techniques

(i) uncorrelated, i.e. Cov(X,Y) = 0.

 (ii) positive correlation, i.e. Cov (X,Y) > 0.

 (iii) negative correlation, i.e. Cov (X,Y) <0.

Figure 5.4: The three cases of correlation.

Estimation Techniques 99

 Let us assume that we have obtained actual observations of the random variables

X and Y in the form of (x,y). Then, the scatter diagram can be plotted out. The scatter

diagrams given in figure 5.4 shows the three cases of correlation between X and Y

mentioned above.

The Cov (X,Y) may take values in the region (-∞, +∞). Also, it is not

dimensionless, which makes its interpretation troublesome. In view of this, the

correlation ρxy defined by

ρ XY =
Cov(X,Y)
σx σy

is typically used as the measure of dependency between X and Y. It can be shown that -

1≤ρXY≤1. If ρXY is close to 1, then X and Y are highly positively correlated. If ρXY is

close to -1, then they are highly negatively correlated. Finally, if ρXY=0, then they are

independent from each other.

 Now, let us assume we have n observations x1, x2, ..., xn. We form the following

n-1 pairs of observations: (x1,x2), (x2,x3), (x3,x4), ..., (xi,xi+1), ..., (xn-1,xn). Now, let us

regard the first observation in each pair as coming from a variable X and the second

observation as coming from a variable Y. Then, in this case ρXY is called the

autocorrelation or the serial correlation coefficient. It can be estimated as follows:

r1 =

!

i=1

n"1

(x
i
"X)(x

i+1 "Y)

i=1

n"1

(x
i
"X)

2

i=1

n"1

(x
i+1 "Y)

2

,

where X
_

 =
1

n-1∑
i=1

n-1
xi and Y

_
 =

1
n-1 ∑

i=2

n
xi . For n reasonably large, ρXY can be

approximated by

100 Computer Simulation Techniques

r1 =

!

i=1

n"1

(x
i
"X)(x

i+1 "X)

i=1

n"1

(x
i
"X)

2

where X
_

 =
1
n∑

i=1

n
xi is the overall mean.

 We refer to the above estimate of ρXY as r1 in order to remind ourselves that this

is the correlation between observations which are a distance of 1 apart. This auto-

correlation is often referred to as lag 1 autocorrelation. In a similar fashion, we can

obtain the lag k autocorrelation, that is the correlation between observations which are a

distance k apart. This can be calculated using the expression:

rk =

!

i=1

n"k

(x
i
"X)(x

i+k
"X)

i=1

n"1

(x
i
"X)

2

)

In practice, the autocorrelation coefficients are usually calculated by computing the series

of autocovariances R0, R1, ..., where Rk is given by the formula

Rk =

!

1

n i=1

n"k

(x
i
"X)(x

i+k
"X) (5.3)

We then compute rk as the ratio

rk =
Rk
R0 , (5.4)

where R0 = σ2. Typically, rk is not calculated for values of k greater than about n/4.

Estimation Techniques 101

lag k

+1

r
k

0

Figure 5.5: A correlogram with short-term correlation.

 A useful aid in interpreting the autocorrelation coefficients is the correlogram.

This is a graph in which rk is plotted against lag k. If the time series exhibits a short-term

correlation, then its correlogram will be similar to the one shown in figure 5.5. This is

characterized by a fairly large value of r1 followed by 2 or 3 more coefficients which,

while significantly greater than zero, tend to get successively smaller. Values of rk for

longer lags tend to be approximately zero. If the time series has a tendency to alternate,

with successive observations on different sides of the overall mean, then the correlogram

also tends to alternate as shown in figure 5.6.

lag k

+1

r
k

0

Figure 5.6: An alternating correlogram.

102 Computer Simulation Techniques

 Let us now return to our estimation problem. Having obtained a sample of n

observations x1,x2,...,xn, we calculate the autocorrelation coefficients using the

expressions (5.3) and (5.4). Then, the variance can be estimated using the expression

s2 =

!

s
X

2 [1 + 2

!

(1"
k

n
r
k
)

k=1

n"1

]

where

!

s
X

2 is the standard deviation given by

!

sX
2 =

!

1

n "1 i=1

n

(x
i
"X)

and X
_

 =

!

1

n
xi

i=1

n

" .

b) Batch Means

This is a fairly popular technique. It involves dividing successive observations into

batches as shown in figure 5.7. Each batch contains the same number of observations. Let

the batch size be equal to b. Then batch 1 contains observations x1, x2, ..., xb, batch 2

contains xb+1, xb+2, ...,

 | x1, x2, ..., xb | xb+1, xb+2, ..., x2b | . . . | xkb+1, xkb+2, ..., x(k+1)b |
 batch 1 batch 2 batch k

Figure 5.7: The batch means method.

x2b, and so on. The observations close to batch 2 are likely to be correlated with the

observations in batch 2 which are close to batch 1. Also, the observations in batch 2

which are close to batch 3 are likely to be correlated with those in batch 3 which are close

Estimation Techniques 103

to batch 2, and so on. Let

!

X
i be the sample mean of the observations in batch i. If we

choose b to be large enough, then the sequence

!

X
1 ,

!

X
2 , ...,

!

X
k can be shown that it is

approximately uncorrelated. Therefore, we can treat these means as a sample of

independent observations and calculate their mean and standard deviation. We have

X
__

 =
1
k ∑

i=1

k
 X

_
 i

s2 =

!

1

k "1
(X

i

i=1

k

"X)
2

.

Therefore, for large k (i.e. k ≥30), we obtain the confidence interval

(X
__

 - 1.96
s
k , X

__
 + 1.96

s
k).

For small k, we can construct our confidence interval using the t distribution.

 In general, the batch size b has to be large enough so that the successive batch

means are not correlated. If b is not large, then the successive batch means will be

correlated, and the above estimation procedure will yield severely biased estimates. An

estimate of b can be obtained by plotting out the correlogram of the observations

x1,x2,...,xn, which can be obtained from a preliminary simulation run. We can fix b so

that it is 5 times the smallest value b' for which rb' is approximately zero.

c) Replications

Another approach to constructing a confidence interval for a mean is to replicate the

simulation run several times. Suppose we make n replications, each resulting to n

observations as follows:

 replication 1: x11, x12, ..., x1m

104 Computer Simulation Techniques

 replication 2: x21, x22, ..., x2m

 .

 .

 .
 replication n: xnm, xn2, ..., xnm

For each sample, we can construct the sample mean

 X
_

 i =
1
m ∑

j=1

n
xij .

We can then treat the sample means X
_

 1, X
_

 2, ..., X
_

 n as a sample of independent

observations, thus obtaining

X
__

 =
1
n ∑

i=1

n
 X

_
 i

 s2 =

!

1

n
(X

i
" X

i=1

n

)2.

Using the above statistics we can construct our confidence interval.

 The problems that arise with this approach are: a) decide on the length of each

simulation run, i.e., the value m, and b) decide on the length of the transient period. One

of the following two approaches can be employed:

 Start each simulation run with different values for the seeds of the random

number generators. Allow the simulation to reach its steady state and then collect the

sample observations. Repeat this procedure n times. In order to obtain n samples,

therefore, we have to run n independent simulations, each time having to allow the

simulation to reach its steady state.

Estimation Techniques 105

 Alternatively, we can run one very long simulation. Allow first the simulation to

reach its steady state, and then collect the first sample of observations. Subsequently,

instead of terminating the simulation and starting all over again, we extend the simulation

run in order to collect the second sample of observations, then the third sample and so on.

The advantage of this method is that it does not require the simulation to go through a

transient period for each sampling period. However, some of the observations that will be

collected at the beginning of a sampling period will be correlated with observations that

will be collected towards the end of the previous sampling period.

 The replication method appears to be similar to the batch means approach.

However, in the batch means method, the batch size is relatively small and, in general,

one collects a large number of batches. In the above case, each sampling period is very

large and one collects only a few samples.

d) Regenerative method

 The last two methods described above can be used to obtain independent or

approximately independent sequences of observations. The method of independent

replications generates independent sequences through independent runs. The batch means

method generates approximately independent sequences by breaking up the output

generated in one run into successive subsequences which are approximately independent.

The regenerative method produces independent subsequences from a single run. Its

applicability, however, is limited to cases which exhibit a particular probabilistic

behaviour.

 Let us consider a single server queue. Let t0, t1, t2,... be points at which the

simulation model enters the state where the system is empty. Such time instances occur

when a customer departs and leaves an empty system behind. Let t0 be the instance when

the simulation run starts assuming an empty system. The first customer that will arrive

will see an empty system. During its service, other customers may arive thus forming a

queue. Let t1 be the point at which the last customer departs and leaves an empty system.

That is, t1 is the time instance where the server becomes idle. This will repeat itself as

shown in figure 5.8. It is important to note that the activity of the queue in the interval (ti,

106 Computer Simulation Techniques

ti+1) is independent of its activity during the previous interval (ti-1,ti). That is to say, the

probability of finding customer n in the interval (ti, ti+1) does not depend on the number

of customers in the system during the previous interval. These time instances are known

as regeneration points. The time between two such points is known as the regeneration

cycle or tour. The queue-length distribution observed during a cycle is independent of the

distribution observed during the previous cycles. The same applies for the density

probability distribution of the total time a customer spends in the system.

Number
in system

t
0

Time

1
t

2
t

3
t

Figure 5.8: Regeneration points.

 The regeneration points identified above in relation with the queue-length (or

waiting time) probability distribution are the time points when the system enters the

empty state. Regeneration points identified with time instances when the system enters

another state, can be also obtained if the service time is exponentially distributed. For

instance, the time instances when the system contains 5 customers are regeneration

points. Due to the memoryless property of the service time, the process repeats itself

probabilistically.

 In the case of the machine interference problem, regeneration points related to the

repairman's queue-length probability, or waiting time in the queue, can be identified with

the time instances when the repairman is idle. Such time instances occur when the last

machine is repaired and the system enters the state where all machines are operational.

Due to the assumption that operational times are exponentially distributed, the process

Estimation Techniques 107

repeats itself probabilistically following the occurrence of this state. Other states can be

used to identify regeneration points, assuming exponentially distributed repair times.

 Now, let us assume that we are interested in estimating the mean value of a

random variable X. Let (xi1, xi2, ..., xini) be a sequence of realizations of X during the ith

regeneration cycle occurring between ti and ti+1 regeneration points. Let ni be the total

number of observations. This sequence of observations will be independent from the one

obtained during the (i+1)st cycle. Thus, the output is partitioned into independent

sequences. In the batch means case, the output was partitioned into approximately

independent sequences. However, the number of observations in each batch was constant

equal to batch size. In this case, the number of observations in each cycle is a random

variable.

 Due to the nature of the regeneration method, there is no need to discard

observations at the beginning of the simulation run. The simulation starts by initially

setting the model to the regeneration state. Then the simulation is run for several cycles,

say M cycles. Let

Zi = ∑
j=1

ni
xij

be the sum of all realizations of X in the ith cycle. Then a point estimate of E(X) can be

obtained using the expression:

 X
_

 =

1
M ∑

i=1

M
 Zi

1
M ∑

i=1

M
 ni

 .

That is, E(X) is estimated using the ratio E(Z)/E(N), where Z is a random variable

indicating the sum of all observations of

!

X in a cycle, and N is a random variable

indicating the number of observations in a cycle.

108 Computer Simulation Techniques

!

X is not an unbiased estimator of E(X). That is E(

!

X) ≠ E(X). However, it is

consistent. That is,

!

X → E(X) as M → ∞. Now, in order to construct a confidence

interval of

!

X , we note that

!

X is obtained as the ratio of two random variables. The

following two methods can be used to construct confidence intervals for a ratio of two

random variables: the central limit theorem, and the jackknife method.

The central limit theorem

Let σ12 = Cov (Z, N),

!

"
11

2 = Var(Z), and

!

"
22

2 = Var(N). Also, let V=Z-NE(X). That is, for

cycle i we have Vi=Zi-niE(X). Then, the Vi's are independent and identically distributed

with a mean E(V) = 0. This because

E(V) = E(Z - NE(X))

 = E(Z) - E(N)E(X)

 = 0.

The variance σv
2 of the Vi's is as follows:

E(V - E(V))2 = E(V2)

 = E(Z - NE(X))2

 = E(Z2 - 2ZNE(X) + N2E(X)2)

 = E(Z2) - 2E(X)E(ZN) + E(N2)E(X)2.

Since Var(Y) = E(Y2) - E(Y)2 we have that

σv
2 = σ11

2 + E(Z)2 - 2E(X)E(ZN) + E(X)2 σ22
2 + E(N)2E(X)2

 = σ11
2 + E(X)2 σ22

2 - 2(E(X)E(ZN) + E(Z)2 + E(N)2E(X)2.

Estimation Techniques 109

Given that E(Z) = E(N)E(X) we have

σv
2 = σ11

2 + E(X)2 σ22
2 - 2E(X)E(ZN) + 2E(N)2E(X)2

 = σ11
2 + E(X)2 σ22

2 - 2E(X)[E(ZN) - E(X)E(N)2

 = σ11
2 + E(X)2 σ22

2 - 2E(X)[E(ZN) - E(Z)E(N)]

or

 σv
2 = σ11

2 + E(X)2 σ22
2 - 2E(X)σ12

since

Cov(Y1, Y2) = E(Y1 - E(Y1))(Y2 - E(Y2))

 = E(Y1Y2 - E(Y1)Y2 - E(Y2)Y1 + E(Y1)E(Y2))

 = E(Y1Y2) - E(Y1)E(Y2) - E(Y2)E(Y1) + E(Y1)E(Y2)

 = E(Y1Y2) - E(Y1)E(Y2).

 By the central limit theorem, we have that as M increases V
_

 becomes normally

distributed with a mean equal to 0 and a standard deviation equal to

!

"
v

2
/M , where

 V
_

 =
1
M ∑

i=1

M
Vi

 =
1
M ∑

i=1

M
 (Zi - niE(X))

110 Computer Simulation Techniques

 =
1
M ∑

i=1

M
 Zi - E(X)

1
M ∑

i=1

M
 ni

 = Z
_

 - E(X)N
_

 .

Hence,

 Z
_

 - E(X)N
_

 ~ N(0,
σv

2

M)

or

 Z
_

 - E(X)N
_

σv
2

M

 ~ N(0, 1)

Dividing by N we obtain that

 Z
_

/N
_

 - E(X)

(1/N
_

)

σv
2

M

 ~ N(0, 1).

Therefore, we obtain the confidence interval

Z
_

N
_ ± 1.96

σv
2 / M

N
_ .

Estimation Techniques 111

Now, it can be shown that sv
2 = sZ

2 - 2X
_

 RZ,N + X
_

 2sN
2 is an estimate of σ2. Therefore, it

can be used in place of σv
2 in the above confidence interval.

The above method can be summarized as follows:

1. Run the simulation for M cycles and obtain

Z1, Z2, Z3, ..., ZM

n1, n2, n3, ..., nM.

2. Estimate Z
_

 , N
_

 and set X
_

 = Z
_

 / N
_

 .

3. Estimate

 sZ
2 =

!

1

M "1
i=1

M

(z
i
"Z

2
)

 sN
2 =

!

1

M "1
i=1

M

(n
i
"N

2
)

 sZ,N
2 =

!

1

M "1
i=1

M

(z
i
"Z)(n

i
"N) .

The jacknife method

This method constitutes an alternative method to obtaining a confidence interval of a

ratio of two random variables. It also provides a means of obtaining a less biased point

estimator of the mean of the ratio of two random variables, sine the classical point

estimator is usually biased.

 Let X,Y be two random variables. Suppose we want to estimate φ=E(Y)/E(X)

from the data y1, y2, ..., yn and x1, x2, ..., xn, where the yi's are i.i.d., the xi's are i.i.d. and

Cov(yi,xj)≠0 for i≠j. The classical point estimator of φ is φc =

!

Y /

!

X and its confidence

interval can be obtained as shown above. The jacknife point and interval estimator can be

constructed as follows. Let

112 Computer Simulation Techniques

θg = n φ̂
C
 - (n - 1)

∑
j≠g

yj

∑
j≠g

xj
 , g = 1,2, ...,n.

The jacknife point estimator of φ is

φ̂ J = ∑
g=1

n
θg/n .

This is, in general, less biased than φ̂ C. Let

σ2
J =

!

g=1

n

"
(#g $% j

)
2

n $1
.

Then, it can be shown that

φ̂ J ~ N(φ,
σ2

J
n), as n → ∞.

That is, we can obtain the confidence interval at 95%

(φ̂ J -1.96
σJ

n , φ̂ J +1.96
σJ

n) .

 The difficulty in using the regenerative method is that real-world simulations may

not have regeneration points. If they do happen to have regeneration points, the expected

regeneration cycle may be too large so that only a few cycles may be simulated.

5.4.2 Estimation of other statistics of a random variable

So far we considered estimation techniques for constructing a confidence interval of the

mean of an endogenously created random variable. Other interesting statistics related to

the probability distribution of a random variable are:

Estimation Techniques 113

a. Probability that a random variable lies within a fixed interval.

b. Percentiles of the probability distribution.

c. Variance of the probability distribution.

Below, we examine ways of estimating the above statistics.

a) Probability that a random variable lies within a fixed interval

The estimation of this type of probability can be handled exactly the same way as the

estimation of the mean of a random variable. Let I be the designated interval. We want to

estimate

p = Pr (X ∈ I)

where X is an endogenously created random variable. We generate M replications of the

simulation. For each replication i we collect N observations of X. Let vi be the number of

times X was observed to lie in I. Then, pi = vi/N is an estimate of probability p. Thus,

p
_
 =

1
M ∑

i=1

M
pi

and

s2 =

!

1

M "1
i=1

M

(pi " p)
2.

As before, (p
_
 -p)/(s/ M) ~ N(0,1) if M is large.

 We observe, that the estimation of p requires M independent replications, each

giving rise to one realization of p. Other methods examined in section 4.1 of this Chapter

can be used in order to remove unwanted autocorrelations. For instance, instead of

replications, the batch means method or the regenerative method can be used.

 Alternatively, the estimation of p can be seen as estimating a population mean.

Let Yi=1 if ith realization of X belongs to I. Otherwise, Yi=0. Then, in one replication we

114 Computer Simulation Techniques

have that (1/N)ΣYi is equal to Vi/N or pi. Thus, the techniques developed in section 4.1

of this Chapter can be employed to estimate p.

!

x!
Figure 5.9: Percentile xβ.

b) Percentile of a probability distribution

This is a very important statistic that is often ignored in favour of the mean of a random

variable X. Management, sometimes, is not interested in the mean of a particular random

variable. For instance, the person in charge of a computer real-time system may not be

interested in its mean response time. Rather, he or she may be interested in "serving as

many as possible as fast as possible". More specifically, he or she may be interested in

knowing the 95th percentile of the response time. That is, a value such that the response

time of the real time system is below it 95% of the time.

 In general, let us consider a probability density function f(x). The 100βth

percentile is the smallest value xβ such that f(xβ) < β. That is, the area from -∞ to xβ

under f(x) is less or equal to β as shown in figure 5.9. Typically, there is interest in the

50th percentile (median) x0.50 or in extreme percentiles such as x0.90, x0.95, x0.99.

 We are interested in placing a confidence interval on the point estimator of xβ of a

distribution of a random variable X. Let us assume independent replications of the

simulation. Each replication yields N observations, having allowed for the transient

period. For each replication i, let xi1, xi2, ..., xiN be the observed realizations of X. Now,

let us consider a reordering of these observations Yil, Yi2, ..., YiN so that Yij<Yi,j+1.

Then, the 100βth percentile x(i)
β for the ith replication is observation Yik where

Estimation Techniques 115

k = 

N if Nβ is integer
∈βN� + 1 otherwise

(x means the largest integer which is less or equal to x). For instance, if we have a

sample of 50 observations ordered in an ascending order, then the 90th percentile is the

observation number 0.90.50 = 45. The 95th percentile is 50x.95+1=47.5+1=47+1=48.

Hence

x
_
 β =

!

1

M
i=1

M

" x(i)
β

and

s2 =

!

1

M "1
i=1

M

(x(i)"x $)2.

Confidence intervals can now be constructed in the usual manner.

 The estimation of extreme percentiles requires long simulation runs. If the runs

are not long, then the estimates will be biased. The calculation of a percentile requires

that a) we store the entire sample of observations until the end of the simulation, and b)

that we order the sample of observations in an ascending order. These two operations can

be avoided by constructing a frequency histogram of the random variable on the fly.

When a realization of the random variable becomes available, it is immediately classified

into the appropriate interval of the histogram. Thus, it suffices to keep track of how many

observations fall within each interval. At the end of the replication, the 100βth percentile

can be easily picked out from the histogram. Obviously, the accuracy of this

implementation depends on the chosen width of the intervals of the histogram.

 Finally, we note that instead of independent replications of the simulation, other

methods can be used such as the regeneration method.

c) Variance of the probability distribution

Let us consider M independent replications of the simulation. From each replication i we

obtain N realizations of a random variable xi1,xi2,...,xiN, after we allow for the transient

116 Computer Simulation Techniques

period. We have

µ
_

 i =
1
N ∑

j=1

N
 xij

and

µ
__

 =
1
M ∑

i=1

M
µi

is the grand sample mean. Hence,

 s2
i =

!

1

N
j=1

N

" (xij #µ))2

 =
1
N [∑

j=1

N
 xij

2
 - 2µ

_
 iµ

__
 +µ

__
 2].

As the point estimate of the variance σ2 we take

 s2
i =

!

1

M
i=1

M

" s
2
i

 =

!

1

M
i=1

M

" (
1

N ij

2

x
j=1

N

") -

!

1

M

2

N
µ
i

i=1

M

" µ+

!

2

M
µ2

 =

!

1

M
i=1

M

" (
1

N ij

2

x
j=1

N

") - µ
__

 2

The estimates of

!

s
i

2are all functions of

!

µ . Thus, they are not independent. A confidence

interval can be constructed by jacknifing the estimator s2. Let

!

" i
2 be an estimate of σ2

with the ith replication left out. That is,

 σ
_2

i =

!

1

M "1
j# i

$ (
1

N
i=1

N

$ x2)-
1

M - 1 ∑

j≠i
 µ
_
j

2 .

Estimation Techniques 117

Define zi = Ms2 - (M-1) σ
_2

i . Then,

Z =
1
M ∑

i=1
M Zi

s2
Z =

1
M-1 ∑

i=1
M (Zi - Z

_
) 2

and a confidence interval can be constructed in the usual way.

 Alternatively, we can obtain a confidence interval of the variance by running the

simualtion only once, rather than using repications, and then calculating the standard

deviation assuming that the successive observations are independent! This approach is

correct when the sample of observations is extremely large.

5.5 Estimation techniques for transient-state simulation

The statistical behaviour of a simulation during its transient state depends on the initial

condition. In order to estimate statistics of a random variable X during the transient state

one needs to be able to obtain independent realizations of X. The only way to get such

independent observations is to repeat the simulation. That is, employ the replications

technique discussed above in section 4.1. Each independent simulation run has to start

with the same initial condition.

 As an example, let us assume that we want to estimate the 95th percentile of the

probability distribution of a random variable X. This can be achieved by simply

replicating the simulation times. For each replication we can obtain an estimate x.95. A

confidence interval can be obtained as shown in 4.2. Each replication will be obtained by

starting the simulation with the same initial condition, and running the simulation during

its transient period. This, of course, requires advanced knowledge of the length of the

transient period. Furthermore, the pseudo-random numbers used in a replication have to

be independent of those used in previous replications. This can be achieved by using a

118 Computer Simulation Techniques

different seed for each replication. The difference between two seeds should be about

10,000.

5.6 Pilot experiments and sequential procedures for achieving a required

accuracy

So far, we discussed techniques for generating confidence intervals for various statistics

of an endogenously generated random variable. The expected width of the confidence

interval is, in general, proportional to 1/ N , where N is the number of i.i.d. observations

used. Obviously, the larger the value of N, the smaller the width confidence interval.

(This is defined as half the confidence interval.) For instance, in order to halve the width

of the confidence interval of the mean of a random variable, N has to be increased by four

times so that 1/ 4N =(1/2)(1/ N). In general, the accuracy of an estimate of a statistic

depends on the width of the confidence interval. The smaller the width, the higher is the

accuracy.

 Quite frequently one does not have prior information regarding the value of N that

will give a required accuracy. For instance, one does not know the value of N that will

yield a width equal to 10% of the estimate. Typically, this problem is tackled by

conducting a pilot experiment. This experiment provides a rough estimate of the value of

N that will yield the desired confidence interval width. An alternative approach is the

sequential method. That is, the main simulation experiment is carried out continuously.

Periodically, a test is carried out to see if the desired accuracy has been achieved. The

simulation stops the first time it senses that the desired accuracy has been achieved.

Below, we examine the methods of independent replications and batch means.

5.6.1 Independent replications

This discussion is applicable to transient and steady state estimation. Let us assume that

we want to estimate a statistic θ of a random variable using independent replications. A

pilot experiment is first carried out involving N1 replications. Let

!

ˆ "
1
 be a point estimate

Estimation Techniques 119

of θ and let Δ1 be the width of its confidence interval. We assume that the width of the

confidence interval is required to be approximately less or equal to 0.1θ̂ . If Δ1≤0.1

!

ˆ "
1
,

then we stop. If Δ1>0.1

!

ˆ "
1
, then we need to conduct a main experiment involving N2

replications where, N2 = (Δ1/0.1

!

ˆ "
1
)2N1 appropriately rounded off to the nearest integer.

Let

!

ˆ "
2

 and Δ2 be the new estimate and width based on N2 replications. Due to

randomness, the N2 observations will not exactly yield a confidence interval width equal

to 0.1

!

ˆ "
2

. We note that it is not necessary to run a new experiment involving N2

replications. Rather, one can use the N1 replications from the pilot experiment, and then

carry out only N2- N1 additional replications.

 The above approach can be implemented as a sequential procedure as follows.

The simulation program is modified to conduct N* independent replications. The point

estimate

!

ˆ "
1
 and the width Δ1 of its confidence interval are calculated. If Δ1≤0.1

!

ˆ "
1
, then

the simulation stops. Otherwise, the simulation proceeds to carry out N* additional

replications. The new point estimate

!

ˆ "
2

 and width Δ2 are constructed based on the total

2N* replications. The simulation will stop if Δ2≤0.1

!

ˆ "
2

. Otherwise, it will proceed to

generate another N* replication and so on. N* can be set equal to 10.

5.6.2 Batch means

This discussion is obviously applicable to steady state estimations. Using the pilot

experiment approach, one can run the simulation for k1 batches. From this, one can

obtain

!

ˆ "
1
 and Δ1. If Δ1≤0.1

!

ˆ "
1
, then the desired accuracy has been achieved. Otherwise,

k2-k1 additional batches have to be simulated, where k2=(Δ1/0.1

!

ˆ "
1
)2k1. These additional

batches can be obtained by simply re-running the simulator for k2-k1 batches.

 Alternatively, the simulation program can be enhanced to include the following

sequential procedure. The simulation first runs for k* batches. Let

!

ˆ "
1
 and Δ1 be the point

estimate and the width of its confidence interval respectively. The simulation stops if

Δ1≤0.1

!

ˆ "
1
. Otherwise, it runs for k* additional batches. Now, based on the 2k* batches

120 Computer Simulation Techniques

generated to this point,

!

ˆ "
2

 and Δ2 are constructed. If Δ2≤0.1

!

ˆ "
2

, then the simulation stops.

Otherwise, it runs for another k* batches, and so on.

Computer Assignments

1. Consider the machine interference problem. Modify the simulation model to carry

out the following tasks:

a. Set-up a data structure to collect information regarding the amount of time

each machine spends being broken down, i.e., waiting in the queue and also

being repaired (see section 2 of Chapter 3).

b. Augment your simulation program to calculate the mean and standard

deviation. Then, run your simulation for 550 observations (i.e., repairs).

Discard the first 50 observations to account for the transient state. Based on

the remaining 500 observations, calculate the mean and the standard

deviation of the time a machine is broken down.

c. The calculation of the standard deviation may not be correct, due to the

presence of autocorrelation. Write a program (or use an existing statistical

package) to obtain a correlogram based on the above 500 observations. (You

may graph the correlogram by hand!) Based on the correlogram, employ the

batch means approach to construct a confidence interval of the mean time a

machine is broken down. (You may need more than 500 observations!)

d. Using the batch means approach, implement a sequential procedure for

estimating the mean time a machine is broken down (see section 5.6.2).

e. Implement a scheme to estimate the 95th percentile of the time a machine is

broken down.

2. Likewise for the token-based access scheme.

3. Likewise for the to-stage manufacturing system.

CHAPTER 6:

VALIDATION OF A SIMULATION MODEL

Validation of a simulation model is a very important issue that is often neglected. How

accurately does a simulation model (or, for that matter, any kind of model) reflect the

operations of a real-life system? How confident can we be that the obtained simulation

results are accurate and meaningful?

 In general, one models a system with a view to studying its performance. This

system under study may or may not exist in real-life. Let us consider, for instance, a

communications equipment manufacturer who is currently designing a new

communications device, such as a switch. Obviously, the manufacturer would like to

know in advance if the new switch has an acceptable performance. Also, the

manufacturer would like to be able to study various alternative configurations of this new

switch so that to come up with a good product. The performance of such a switch can be

only estimated through modelling since the actual system does not exist. The question

that arises here is how does one make sure that the model that will be constructed is a

valid representation of the system under study?

 Let us consider another example involving a communication system already in

operation. Let us assume that it operates nearly at full capacity. The management is

considering various alternatives for expanding the system's capacity. Which of these

alternatives will improve the system's performance at minimum cost? Now, these

alternative configurations do not exist. Therefore, their performance can be only

evaluated by constructing a model, say using simulation techniques. The standard method

is to construct a model of the existing system. Then, change the model appropriately in

order to analyze each of the above alternatives. The model of the existing system can be

122 Computer Simulation Techniques

validated by comparing its results against actual data obtained from the system under

investigation. However, there is no guarantee that when altering the simulation model so

that to study one of the above alternatives, this new simulation model will be a valid

representation of the configuration under study!

 The following checks can be carried out in order to validate a simulation model.

1. Check the pseudo-random number generators. Are the pseudo-random numbers

uniformly distributed in (0,1) and do they satisfy statistical criteria of

independence? Usually, one takes for granted that a random number generator is

valid.

2. Check the stochastic variate generators. Similar statistical tests can be carried out

for each stochastic variate generator built into a simulation model.

3. Check the logic of the simulation program. This is a rather difficult task. One way

of going about it is to print out the status variables, the future event list, and other

relevant data structures each time an event takes place in the simulation. Then,

one has to check by hand whether the data structures are updated appropriately.

This is a rather tedious task. However, using this method one can discover

possible logical errors and also get a good feel about the simulation model.

4. Relationship validity. Quite frequently the structure of a system under study is not

fully reflected down to its very detail in a simulation model. Therefore, it is

important that the management has the opportunity to check whether the model's

assumptions are credible.

5. Output validity. This is one of the most powerful validity checks. If actual data are

available regarding the system under study, then these data can be compared with

the output obtained from the simulation model. Obviously, if they do not compare

well, the simulation model is not valid.

Estimation Techniques 123

Computer assignments

1. Consider the machine interference problem. This problem can be also analyzed

using queuing theory. Set up the following validation scheme. Obtain exact values

of the mean time a machine is broken down using queueing theory results for

various values of the mean operational time. Let it vary, for instance, from 1 to 50

so that to get a good spread. For each of these values, obtain an estimate of the

mean down time of a machine using your simulation model. Graph both sets of

results. Be sure to indicate the confidence interval at each simulated point.

Compare the two sets of results.

CHAPTER 7:

VARIANCE REDUCTION TECHNIQUES

Variance

Reduction

NC S U

7.1 Introduction

In Chapter 6, it was mentioned that the accuracy of an estimate is proportional to 1/ n ,

where n is the sample size. One way to increase the accuracy of an estimate (i.e., reduce

the width of its confidence interval) is to increase n. For instance, the confidence interval

width can be halved if the sample size is increased to 4n. However, large sample sizes

required long simulation runs which, in general, are expensive. An alternative way to

increasing the estimate's accuracy is to reduce its variance. If one can reduce the variance

of an endogenously created random variable without disturbing its expected value, then

the confidence interval width will be smaller, for the same amount of simulation.

126 Computer Simulation Techniques

Techniques aiming at reducing the variance of a random variable are known as Variance

Reduction Techniques. Most of these techniques were originally developed in connection

with Monte Carlo Techniques.

 Variance reduction techniques require additional computation in order to be

implemented. Furthermore, it is not possible to know in advance whether a variance

reduction technique will effectively reduce the variance in comparison with

straightforward simulation. It is standard practice, therefore, to carry out pilot simulation

runs in order to get a feel of the effectiveness of a variance reduction technique and of the

additional computational cost required for its implementation.

 In this Chapter, we will examine two variance reduction techniques, namely, a)

the antithetic variates technique and (b) the control variates technique.

7.2 The Antithetic Variates Technique

This is a very simply technique to use and it only requires a few additional instructions in

order to be implemented. No general guarantee of its effectiveness can be given. Also, it

is not possible to know in advance how much of variance reduction can be achieved.

Therefore, a small pilot study may be useful in order to decide whether or not to

implement this technique.

 Let X be an endogenously created random variable. Let

x(1)
1 , x(1)

2 , ..., x(1)
n

be n i.i.d. realizations of X obtained in a simulation run. Also, let

x(2)
1 , x(2)

2 , ..., x(2)
n

be n i.i.d. observations of X obtained in a second simulation run. Now, let us define a

new random variable

Variance Reduction Techniques 127

zi =
x(1)

i + x(2)
i

2 , i = 1, 2, ..., n. (7.1)

More specifically, let Z=(X(1)+X(2))/2, where X(i), i=1,2, indicates the random variable X

as observed in the ith simulation run. We have

E(Z)= E



X(1)+X(2)

2

 =
1
2 [E(X(1)) + E(X(2))]

 = E(X)

seeing that the expected value of X(1) or X(2) is that of X. Thus, the expected value of this

new random variable Z is identical to that of X. Now, let us examine its variance. We

have

Var(Z) = Var



X(1)+X(2)

2

 =
1
4 [Var(X(1)) + Var(X(2)) + 2Cov(X(1), X(2))].

Remembering that Var(X(1))=Var(X(2))=Var(X), we have that

Var(Z) =
1
2 (Var(X) + Cov (X(1), X(2))) .

Since Cov(X,Y)=ρ Var(X)Var(Y) , we have that

Var(Z) =
1
2 Var(X) (1 + ρ), (7.2)

128 Computer Simulation Techniques

where ρ is the correlation between X(1) and X(2).

 In order to construct an interval estimate of E(X), we use random variable Z.

Observations zi are obtained from (7.1) and the confidence interval is obtained using

(7.2). As will be seen below, by appropriately constructing the two samples

x(1)
1 , x(1)

2 , ..., x(1)
n and x(2)

1 , x(2)
2 , ..., x(2)

n ,

we can cause Var(Z) to become significantly less than Var(X). This is achieved by

causing ρ to become negative. In the special case where the two sets of observations

x(1)
1 , x(1)

2 , ..., x(1)
n and x(2)

1 , x(2)
2 , ..., x(2)

n

are independent of each other, we have that ρ=0. Hence, Var(Z)=Var(X)/2.

 The antithetic variates technique attempts to introduce a negative correlation

between the two sets of observations. As an example, let us consider a simulation model

of a single server queue, and let X and Y indicate the waiting time in the queue and the

interarrival time respectively. If Y is very small, then customers arrive faster and,

therefore, the queue size gets larger. The larger the queue size, the more a customer has

to wait in the queue, i.e. X is larger. On the other hand, if Y is large, then customers

arrive slower and, hence, the queue size gets smaller. Obviously, the smaller the queue

size, the less a customer has to wait in the queue, i.e., X is small. Therefore, we see that X

and Y can be negatively correlated.

 This negative correlation between these two variables can be created in a

systematic way as follows. Let F(t) and G(S) be the cumulative distribution of the inter-

arrival and service time respectively. Let ri and vi be pseudo-random numbers. Then,

ti=F-1(ri) andsi=G-1(vi) are an interarrival and a service variate. These two variates can be

associated with the ith simulated customer. An indication of whether the queue is tending

to increase or decrease can be obtained by considering the difference di=ti-si. This

difference may be positive or negative indicating that the queue is going through a busy

Variance Reduction Techniques 129

or slack period respectively. Now, let us consider that in the second run, we associate

pseudo-random number rí and ví with the ith simulated customer, so that

dí = t1́ - sí (where t1́=F-1(rí) and sí = G-1(ví))

has the opposite sign of di. That is, if the queue was going through a slack (busy) period

in the first run at the time of the ith simulated customer, now it goes through a busy

(slack) period. It can be shown that this can be achieved by simply setting rí = 1-ri and

ví = 1-vi.

 In this example, we make use of two controllable variables, Y1 and Y2, indicating

the interarrival time and the service time respectively. These two random variables are

strongly correlated with X, the waiting time in the queue. Yj(1) and Yj(2), j=1,2 can be

negatively correlated by simply using the compliment of the pseudo-random numbers

used in the first run.

 This technique can be implemented as follows. Simulate the single server queue,

and let

x(1)
1 , x(1)

2 , ..., x(1)
n

be n i.i.d observations of X. Re-run the simulation, thus replicating the results, using

pseudo-random numbers (ri,vi)=(1-r,1-vi). Let

x(2)
1 , x(2)

2 , ..., x(2)
n ,b

e realizations of X. Construct the interval estimate of E(X) using the random variable Z

as described above. Obviously, the correlation between the two samples of observations

is as good as the correlation between Y(1)
j

 and Y(2)
j

 , j=1,2.

 The antithetic variates technique, as described above, was implemented in a

simulation of an M/M/1 queue. The random variable X is the time a customer spends in

130 Computer Simulation Techniques

the system. The i.i.d. observations of X were obtained by sampling every 10th customer.

The results given in table 7.1 were obtained using straight simulation. Using the antithetic

variates technique, we obtained a confidence interval of 13.52±1.76. We note that the

antithetic variates techniques were employed using two sets of observations each of size

equal to 300, i.e., a total of 600 observations. From table 7.1, we see that a similar width

was obtained using a sample size of n=1800. Figure 7.2 shows the actual values for the

original sample, the sample obtained using the antithetic variates and Z. We see, that the

two samples of observations are fairly negatively correlated. Also, we observe that the Z

values are all close to the mean, indicating that their variance is small.

Sample size n Confidence interval

600 13.86 +_ 3.46

900 13.03 +_ 2.70

1200 13.11 +_ 2.30

1500 12.82 +_ 1.99

1800 12.86 +_ 1.84

Table 7.1: Straight simulation of an M/M/1 queue.

 In the above example, the antithetic variates technique worked quite well.

However, this should not be construed that this method always works well. In particular,

in the following example, an M/M/2 queuing system was simulated. Table 7.2 and figure

7.2 show that in this case there is little benefit to be gained from using the antithetic

variates technique.

Variance Reduction Techniques 131

1
5

.0

2
5

.0

3
5

.0

4
5

.0

5
5

.0

5
.0

5
1

0
1

5
2

0
2

5
3

0
1

S
im

u
lated

 N
u
m

b
er o

f C
u
sto

m
ers

Waiting Time Per Customer

O
rig

in
al S

am
p
le

A
n
tith

etic V
ariates

M
ean

 o
f T

w
o
 S

am
p
les

Figure 7.1: Antithetic variates technique applied to an M/M/1 queue.

132 Computer Simulation Techniques

Type of Simulation Sample
Size

Mean Standard
Dev.

Conf.
Interval

Standard
Error

Standard
Error as a

% of
Mean

Cost

Straight 400 18.85 9.70 +/-3.31 1.69 8.96 $.68
Straight 800 16.00 8.60 2.07 1.06 6.61 .72
Standard Antithetic 800 17.23 6.73 2.30 1.17 6.79 .97
Straight 1600 16.04 9.67 1.64 0.84 5.22 .79
Standard Antithetic 1600 15.69 5.98 1.44 0.74 4.69 1.03
Straight 2400 16.48 9.82 1.36 0.69 4.21 .88
Standard Antithetic 2400 15.84 6.36 1.25 0.64 4.01 1.09
Straight 3000 15.92 9.59 1.19 0.61 3.81 .93
Standard Antithetic 3000 16.11 6.96 1.17 0.60 3.72 1.12

Table 7.3: Straight simulation and antithetic variates techniques for an M/M/2 queue.

0.4

0.8

1.2

1.6

$

#
$

800 1600 2400 3200

$ $
$

$ $# #
#

Sample Size

S
ta

n
d
ar

d
 E

rr
o
r

$!Straight Simulation
#!Standard Antithetic Variate Technique

Figure 7.2: Standard error plotted against sample size for straight simulation and antithetic

variates techniques for an M/M/2 queue.

7.3 The Control Variates Technique

This method is otherwise known as the method of Concomitant Information. Let X be an

endogenously created random variable whose mean we wish to estimate. Let Y be

another endogenously created random variable whose mean is known in advance. This is

Variance Reduction Techniques 133

known as the control variable. Random variable Y is strongly correlated with X. We have

the following two cases.

a) X and Y are negatively correlated:

Define a new random variable Z so that Z=X+Y-E(Y). We have

 E(Z)=E(X+Y-E(Y))=E(X),

 Var(Z) = Var(X) + Var(Y) + 2 Cov (X, Y).

Since X and Y are negatively correlated, we have that Cov(X,Y)<0. Therefore, if
Var(Y) - 2 | |Cov(X,Y) < 0 then, a reduction in the variance of Z has been

achieved.

b) X and Y are positively correlated:

Define Z=X-Y+E(Y). Then

 E(Z) = E(X - Y + E(Y)) = E(X).
 Var(Z) = Var(X) + Var(Y) - 2| |Cov(X,Y)

Therefore, if Var(Y) - 2| |Cov(X,Y) < 0 then a reduction in the variance of Z has

been achieved.

 Let us consider the example of a single server queue mentioned in section 7.2. Let

X be the time a customer spends in the system. Then X is negatively correlated with the

random variable Y representing the inter-arrival time. (It is also positively correlated with

the random variable representing the service time.) Let x1, x2, ..., xn be n i.i.d.

observations of X. Likewise, let y1, y2, ..., yn be n observations of Y. (These observations

134 Computer Simulation Techniques

are i.i.d. by nature of the simulation model.) yi is the inter-arrival time associated with

the xi observation. Let

zi = xi + yi - E(Y), i=1,2,..., n.

Then we can construct a confidence interval for the estimate of E(X) using Z
_

 +1.96
sz
n

where

Z
_

 =
1
n ∑

i=1

n
 zi

and

s2
z =

!

1

n "1
i=1

n

(z
i
"Z)2 .

 More generally, random variable Z can be obtained using

Z = X - a (Y - E(Y)),

where a is a constant to be estimated and Y is positively or negatively correlated to X.

Again, we have E(Z)=E(X). Also,

Var(Z) = Var(X) + a2 Var(Y) - 2a Cov(X,Y)

so that Z has a smaller variance than X if

a2 Var(Y) - 2a Cov(X,Y) < 0.

We select a so that to minimize the right-hand side given in the above expression. We

have

Variance Reduction Techniques 135

2a Var(Y) - 2Cov(X,Y) = 0

or

a* =
Cov (X,Y)

Var (Y)

Now, substituting into the expression for Var(Z) we have

 Var(Z) = Var(X) -
[Cov(X,Y)]2

Var(Y)

 = (1-ρ 2
XY) Var(X).

Thus, we always get a reduction in the variance of Z for the optimal value of a, provided

that X and Y are correlated. The determination of a* requires a priori knowledge of the

Var(Y) and Cov (X,Y). Sample estimates can be used in order to approximately obtain

a*.

 The definition of Z can be further generalized using multiple control variables, as

follows

Z = X - ∑
i=1

m
 ai(Yi - E(Yi)) ,

where ai, i=1,2,...,m, are any real numbers. In this case,

Var(Z) = Var(X) + ∑

i=1
m a2

i Var(Yi) - 2 ∑

i=1
m ai Cov(X,Yi) + 2 ∑

i=2

m
 ∑

j=1
i-1 aiaj Cov(Yi,Yj).

136 Computer Simulation Techniques

Computer assignments

1. Consider the machine interference problem. Carry out the following tasks:

a. Implement the antithetic variance reduction technique.

b. Implement the control variates technique.

c. Compare the above two variance reduction techniques against straight

simulation. In particular, compare the three techniques for various sample

sizes. Observe how the variance and the standard error expressed as a

percentage of the mean, educe as the sample size goes up. Contrast this

against the execution cost (if available).

All rights reserved 2007

138 Computer Simulation Techniques

